
 Chapter 11: The 7Cs and FastFIX Design Core

Submitted January 27, 2007 176 Case-driven Collaborative Classification
Revised July 27, 2007 Megan Vazey

CHAPTER 11: THE 7CS AND FASTFIX DESIGN CORE

11.1 Chapter Outline

The 7Cs system was created to help trouble-shooters in any problem domain repetitively and

collaboratively solve their information retrieval (configuration and / or classification–based)

problems. FastFIX provided a prototype implementation of the 7Cs design. This chapter

provides definitions together with screenshots of the FastFIX prototype, with the aim of

providing an overview of the main concepts and features in the 7Cs system.

The web-based application shell of the FastFIX prototype is presented in Appendix M (page

424), including the User Security model and the FastFIX prototype GUI. Once the dial-home

problem domain at HTG was selected, some customisation of the FastFIX graphical user

interface (GUI) was made to simplify and streamline the trouble-shooting experience for

users. These changes were minor and amounted to less than a week of customisation. Note

that the core features discussed in this chapter could be implemented in many different

conceivable shells, not just the shell afforded by the FastFIX prototype.

At this point, it may be helpful to draw the reader’s attention to some of the key philosophical

differences between the 7Cs approach and conventional MCRDR:

1. The prevailing view in conventional MCRDR is that knowledge bases only exist for

cases, so KA should only ever occur using cases. This was highlighted previously in

sections 8.3.1 (page 140), 8.3.6 (page 148), 8.3.10 (page 155) and 8.4 (page 158). In

contrast, the 7Cs philosophy is that knowledge bases only exist for cases, but KA from

human users can be achieved by acquiring either rules or cases. Requiring the user to

always put their rules in the context of cases can be cumbersome in human-computer

interaction (HCI) terms. The system can be tested with cases, but not every RuleNode

in the system needs a case associated with it. As discussed previously in section 8.3.7

(page 150), this is particularly true for characteristic RuleNodes. Accordingly for ease

of the 7Cs KA system has been designed to handle both top-down rule-driven and

bottom-up case-driven KA.

2. As discussed previously in sections 8.3.1 (page 140), 8.3.8 (page 151), 8.3.9 (page

153), and 8.4 (page 158), in conventional MCRDR approaches it has been assumed

that experts make few errors in entering the knowledge. However in the support

 Chapter 11: The 7Cs and FastFIX Design Core

Submitted January 27, 2007 177 Case-driven Collaborative Classification
Revised July 27, 2007 Megan Vazey

centre domain, many of the users are novices, and much of the knowledge is

uncertain, so users can make many errors. From point 1 above, the 7Cs philosophy is

that both top-down and bottom-up KA mechanisms are needed to support users in

correcting errors in the knowledge base.

3. In conventional MCRDR and N-RDR approaches it is assumed that users already have

the knowledge that needs to be acquired so they can enter it as soon as the need arises.

However in the support centre domain much of the knowledge is dynamic and

evolving so there can be significant delays between the user realising that some

knowledge is missing in the knowledge base, and the user finding out what knowledge

to enter and how best to enter it. The 7Cs philosophy is that the system needs to

support a delay in users entering knowledge to the knowledge base, so that users can

do this when the knowledge becomes available, and at a time that best suits them.

4. In conventional MCRDR approaches it is assumed that only one expert need update

the system at a time. In contrast, the 7Cs philosophy is that knowledge will be more

rapidly acquired and higher quality knowledge will result from allowing multiple

experts to contribute to and negotiate within a shared knowledge acquisition

framework.

5. Knowledge acquisition by definition involves human users, with human error, conflict

and dynamic knowledge. Hence the 7Cs philosophy is that addressing human-

computer-interaction (HCI) issues like flexible user input facilities and minimal wait-

times is incredibly important in the KA implementation. Attention must be given to

optimising the underlying data structures. External simplicity for the user may come

at the (acceptable) cost of increased internal software complexity.

Further to these key philosophical differences, significant novel ideas included in the 7Cs

system, implemented in the FastFIX prototype, and tested during the FastFIX software trial

include:

• The ability for multiple users to build an MCRDR-based decision tree in a wiki-style

collaborative effort. This includes the identification of classes of incoming problem

cases and manual indexing of solutions by multiple users using rule conditions

analogous to logical tags in a folksomony.

 Chapter 11: The 7Cs and FastFIX Design Core

Submitted January 27, 2007 178 Case-driven Collaborative Classification
Revised July 27, 2007 Megan Vazey

• The separation between the live case-RuleNode associations that represent the current

global truth calculated and recorded by the 7Cs expert system, and the registered case-

RuleNode associations that represent the current truths of individual contributors to

the expert system.

• The ability for users to “work-up” a case using a novel Interactive and Recursive

MCRDR decision structure.

• The ability for users to edit previously created cases (including cornerstone cases) and

RuleNodes in the system.

• Continuous background monitoring of changes to the knowledge base so that users

with affected ConditionNodes and Cases can notice and respond to the changes. This

approach allows classification conflicts to be identified, clarified and resolved and

hence it enhances knowledge acquisition.

• Separation between classifications and conclusions so that richer classification

relationships can be maintained.

• Reference to multiple exemplar cornerstone cases for each ConditionNode.

• The ability for users to relocate i.e. move ConditionNodes in the system.

The creation, formation, development and testing of these novel ideas with real users in a real

trouble-shooting environment has been one of the most significant contributions of this thesis.

The chapter has been organised into features pertaining to:

• Users,

• ConditionNodes and the Condition Mesh (Conditions, Classifications and

Conclusions),

• Attributes,

• Cases,

• Change Histories and

• Case-ConditionNode Associations

 Chapter 11: The 7Cs and FastFIX Design Core

Submitted January 27, 2007 179 Case-driven Collaborative Classification
Revised July 27, 2007 Megan Vazey

Appendix M (page 424) describes additional features implemented in the FastFIX prototype.

Design enhancements for future embodiments of the 7Cs system are proposed in Chapter 13

(page 242).

11.2 Users

As shown in Appendix M.2 (page 426), users are identified via a username and password so

that their activity can be tracked in the system. A super-user can modify a user’s “user type”

to modify that user’s privileges. In the future, it may be useful to allow users to not just be

human users, but also computer users such as intelligent agents, or computer robots.

11.2.1 “My Details”

The following screenshot show the details currently held for a user in the FastFIX prototype.

Figure 24: My User Details

11.2.2 “My Statistics”

The idea of using incrementally accrued, context-specific performance statistics to enhance

the credibility of the reported conclusions was introduced to SCRDR by Edwards (1996, p i,

vi, 208). Performance statistics are also reportedly recorded by PKS’s LabWizard product

(see section G.12, page 411). However, since conventional RDR systems allowed only one

expert at a time to add knowledge to the KBS, no user-based statistics were kept in relation to

those users who modified the KBS.

 Chapter 11: The 7Cs and FastFIX Design Core

Submitted January 27, 2007 180 Case-driven Collaborative Classification
Revised July 27, 2007 Megan Vazey

In contrast, in the 7Cs system experts are encouraged to assess each other’s credibility by

publishing user-based knowledge acquisition statistics such as the number of times an

expert’s RuleNodes are used, corrected, augmented, approved, or overturned; and the number

of times their cases are revisited and their previous decisions corrected.

The more that users use the system, the more refined the knowledge in the system will

become, and the more useful the system will be. Therefore, the 7Cs system aims to capture

statistics that will help users obtain confidence in the information presented. As shown in the

next figure, statistics are accessible for every user in the system showing the number of cases

and RuleNodes that each user creates, works on or makes changes to.

Figure 25: My User Statistics

Apart from the intrinsic motivation to use the system that making this information public may

provide for some users, it may be possible to encourage users to increase their usage and

hence their User Credibility Scores with extrinsic individual and / or team motivators, for

example by giving out movie tickets or t-shirts for “gold users” – those that provide the most

used and highest rating RuleNodes.

Note that in Figure 25 the hyperlinks for cases and RuleNodes are underlined and can be

clicked on by users to bring up the corresponding case or RuleNode views.

The following table shows some of the statistics that could be recorded in future system

embodiments.

 Chapter 11: The 7Cs and FastFIX Design Core

Submitted January 27, 2007 181 Case-driven Collaborative Classification
Revised July 27, 2007 Megan Vazey

Table 13: User statistics

Item Statistics kept per user

Attributes Number of attributes created; Number of attributes edited; Most recent attribute
activity.

Cases Total number of cases created; Total number of cases worked on; Total number of
case changes made; Most recent case activity.

Total number of times a user’s cases have been revisited and their previous
decisions corrected.
Total number of cases assigned to this user, opened by this user, resolved by this
user, verified by this user, closed by this user.

Total number of cases currently being tracked for this user.

Total number of this user’s tracked cases that are currently dropped-through.

Total number of case drop-throughs169 for this user since the commencement of the
system.

RuleNodes Total number of RuleNodes created; Total number of RuleNodes worked on; Total
number of RuleNode changes made; Most recent RuleNode activity.

Total number of intermediate RuleNodes created; Total number of shared child
RuleNodes created; Total number of RuleNodes with classification labels created.

Total number of RuleNodes created that have been stopped.

Total number of RuleNodes created that have been approved across each approval
partition, and across all approval partitions.

Total number of times a user’s RuleNodes have been used, corrected, augmented,
approved, or overturned.

Conclusions Number of conclusions created; Number of conclusions edited; Most recent
conclusion activity.

Total number of hyperlink / getAttribute / setAttribute / and stopping conclusions
created.

Note that in his evaluation of PEIRS, Edwards suggested that conventional RDR

implementations lent themselves to credentialing via statistics since RuleNodes couldn’t be

modified or deleted. He argued that for other rule-editable expert systems, context-specific

performance indices would not be possible (Edwards, 1996 p210). However, allowing

RuleNodes to be edited and moved need not compromise the ability of the system to maintain

statistics and hence credentials. In the proposed 7Cs system, a change history is kept for all

elements of the system, including case-RuleNode associations. Statistics can be suitably

recorded and reported according to each phase in the history of changes to the RuleNode. For

example: “While the RuleNode said A and was located under X, N cases were registered

169 Case drop-through was described previously in 6.5 on page 84.

 Chapter 11: The 7Cs and FastFIX Design Core

Submitted January 27, 2007 182 Case-driven Collaborative Classification
Revised July 27, 2007 Megan Vazey

against it. In its current location and form, M cases have been recorded against it. In total N

+ M cases have been registered against it.” Each of these line items in the credentials history

could be selected for inclusion or exclusion from the summary of credentials reported for the

RuleNode.

11.2.3 “View User Stats”

The next figure shows a summary for all users in the system. From this figure we can see that

during the trial of the FastFIX prototype, 12 users registered themselves in the system, 172

Cases were created, and 107 RuleNodes were acquired.

Figure 26: Statistics for all users in the system

(Commercial in confidence)

Referring to the “User Level” in the above figure, a very simple credibility model was

implemented in the FastFIX prototype using the key shown in Figure 27.

Figure 27: Key for User Levels

 Chapter 11: The 7Cs and FastFIX Design Core

Submitted January 27, 2007 183 Case-driven Collaborative Classification
Revised July 27, 2007 Megan Vazey

11.3 RuleNodes and the Rule Mesh

The following table provides definitions for key RuleNode and Rule Mesh Concepts used.

Table 14: RuleNode and Rule Mesh Concepts

Rule Tree or
Decision Tree

A directed acyclic graph with rules at each decision node as described in
Chapter 4 for traditional MCRDR systems. This structure was used in the
FastFIX prototype.

Condition
Mesh or
Decision Mesh
or Rule Mesh

The traditional MCRDR decision tree with the additional property that each
child RuleNode may have one or more parent RuleNodes. The rule mesh
need not be acyclic. This structure is proposed for future system
embodiments as described in section 13.4 on page 245.

RuleNode or
ConditionNode

One of the nodes in the rule tree or condition mesh. RuleNodes contain a
Rule Statement, which is a boolean expression that may include pattern
matching, comparative, or custom operators that can be evaluated by the
system to determine the truth of that rule statement for a given case. Each
RuleNode in the system is given a unique integer identity.

Live
RuleNodes

A Live RuleNode for a given Case is one that is currently the last TRUE
RuleNode on a given path through the knowledge base for that case. Its
conclusions are part of the set of current conclusions derived from the
knowledge base for the case. The system remembers its Live RuleNodes for
“Tracked” cases as described in section 11.5 on page 199.

Live RuleNodes may be correct or incorrect. Correcting incorrect live
RuleNodes is the primary role of a (human or computer) expert who trains
the knowledge base and hence builds up the knowledge in the rule tree.

Registered
RuleNodes

A Registered RuleNode is one that has been confirmed by a User as being
correct and TRUE for that Case. For each case, each RuleNode registration
may be current or expired. This is explored in more detail in section 11.3.2
on page 185, Appendix O.2 on page 452, and Appendix O.3 on page 453.

RuleNode
Status

RuleNodes may have several states, including pending (i.e. awaiting
approval), approved, or disapproved. Note that if a RuleNode is
disapproved, then the RuleNode is stopped by setting the rule condition to
FALSE. This is explored in more detail in Appendix O.5 on page 456.

continued overleaf…

 Chapter 11: The 7Cs and FastFIX Design Core

Submitted January 27, 2007 184 Case-driven Collaborative Classification
Revised July 27, 2007 Megan Vazey

Stopping
RuleNode

A stopping RuleNode has a single conclusion that is the keyword “stop”.
Stopping RuleNodes can be used to invalidate a parent RuleNode by causing
cases that are live for the parent RuleNode to drop-through to the child
RuleNode. Stopping RuleNodes specify the conditions under which a
conclusion should not fire (Edwards, 1996, p 178).

A special type of stopping RuleNode is an unconditional stopping
RuleNode. This is a stopping RuleNode with a rule condition that returns
TRUE for every case evaluated against the RuleNode and it has a “stop”
conclusion.

For most user types, the system will not display live Stopping RuleNodes
for a case in the Case View, unless they are also registered for that case. If
however the Stopping RuleNode is registered for a case then it will be
displayed.

Stopped
RuleNode

A RuleNode with its Boolean test equal to FALSE for every case evaluated
against the RuleNode is a stopped RuleNode. It cannot be live for any cases.

11.3.1 Live and Dependent Cases and RuleNodes

In the FastFIX prototype, at every RuleNode in the system a Live Case List (LCL) is recorded

containing all of the cases currently live for the RuleNode. Similarly, at every Case in the

system a Live RuleNode List (LRL) is recorded, containing all of the RuleNodes currently

live for the Case. As well, at every RuleNode in the system a Dependent Case List (DCL)170

is recorded containing all of the cases currently live for the RuleNode, or any of its dependent

(i.e. child, grandchild etc) RuleNodes.

Note that Beydoun, Kwok and Hoffman (2000, p4) have previously defined the DCL for the

parent of RuleNode r as context(r), the DCL for the RuleNode r as domain(r), and the LCL

for the RuleNode r as scope(r).

The LCL, LRL and DCL mechanisms were implemented as simple lists in the FastFIX

prototype. As mentioned in Appendix O.2 on page 452, for a production system with

potentially large volumes of Cases and RuleNodes a different data structure, such as a multi-

level hashing structure, would be warranted.

170 Note that in an alternate 7Cs system embodiment, the DCL for each RuleNode could be constructed on the fly

from the LCL at the RuleNode and the LCL of each of its dependent RuleNodes.

 Chapter 11: The 7Cs and FastFIX Design Core

Submitted January 27, 2007 185 Case-driven Collaborative Classification
Revised July 27, 2007 Megan Vazey

Note that in traditional MCRDR systems, the DCL was generated on the fly as needed. It

consisted of the cornerstone case for the RuleNode and each of its dependent RuleNodes, and

it was known as the cornerstone case list. Note also that in traditional MCRDR systems, only

one cornerstone case was kept at each RuleNode.

In the 7Cs system, multiple tracked cases can be live and possibly even registered for a given

RuleNode in FastFIX. Some or perhaps even all of these cases can be applied as cornerstone

i.e. exemplar cases for this RuleNode. In the FastFIX prototype, the cornerstone case list was

constructed from the LCL at the RuleNode.

11.3.2 Registered Cases and RuleNodes

In the FastFIX prototype, the final set of RuleNodes confirmed as being TRUE by a user are

registered for the case under review. As an example, when Case 101 in Figure 1 on page 42

was evaluated against the rule tree in Figure 5 on page 52 the set of last TRUE RuleNodes for

each path through the rule tree was RuleNodes 1, 5, and 7. So if a user had agreed with all the

conclusions presented then the registered RuleNodes for Case 101 would have been {1, 5, 7}.

At every RuleNode in the system a Registered Case List (RCL) is recorded containing all of

the cases currently registered for the RuleNode. Similarly, at every Case in the system a

Registered RuleNode List (RRL) is recorded, containing all of the RuleNodes currently

registered for the Case.

As described in Appendix O.2 on page 452, in future embodiments of the system, the name of

the user who registered each RuleNode as being correct for the case could be recorded,

together with the most recent date and time at which the RuleNode – Case association was

created or modified.

As with the live Case-RuleNode associations, for a production system with potentially

volumes of Cases and RuleNodes, shared hash tables rather than separate lists could offer

faster processing and simpler management of transactions and rollbacks. This is explored in

more detail in Appendix O.2 on page 452.

(Note that in FastFIX, RuleNodes with getAttribute() or setAttribute() conclusions should not

be registered for cases, since once the new information is added to the case it will fetch a

deeper and different set of conclusions. Figure 26 on page 182 has an example of a

getAttribute() conclusion in RuleNode 7).

 Chapter 11: The 7Cs and FastFIX Design Core

Submitted January 27, 2007 186 Case-driven Collaborative Classification
Revised July 27, 2007 Megan Vazey

11.3.3 The “Rule Tree" View

Figure 28 shows the Rule Tree View implemented in the FastFIX prototype. Items in blue

and underlined are hyperlinks that can be clicked on to display an appropriate view of that

element. RuleNode 7 is shown. In the prototype a decision tree is used so that child

RuleNodes only ever have one parent RuleNode. Hence a HTML table structure can be used

to display the rule tree. For future embodiments, a shared child RuleNode structure is

proposed as discussed in section 13.4 on page 245.

As shown in Figure 28, the lists of live and registered cases for this node can be optionally

displayed, as can the RuleNode history. Clicking on any of the case hyperlinks will bring up

the corresponding case view.

In Figure 28 we can see that RuleNode 7 is a child of parent RuleNode 1, a sibling of

RuleNodes 6 and 9, and a parent of child RuleNodes 48 and 49. Clicking on any of the

RuleNode hyperlinks will bring up the rule tree view for that RuleNode, hence one can

navigate around the rule tree using these hyperlinks. RuleNodes can be edited by clicking on

the corresponding “Edit RuleNode” button in the rule tree view.

Note that for a RuleNode to be live for any given case, all of its ancestor RuleNodes must be

TRUE for that case, and all of its descendent RuleNodes must be FALSE for that case.

 Chapter 11: The 7Cs and FastFIX Design Core

Submitted January 27, 2007 187 Case-driven Collaborative Classification
Revised July 27, 2007 Megan Vazey

Figure 28: Rule Tree View for RuleNode 7

As shown in Figure 28, RuleNodes are comprised of one or more rule conditions, and they are

associated with one or more classifications and conclusions. This have been previously

explained with reference to “classes” in Figure 10 on page 98. The “conditions”,

“classifications” and “conclusions” associated with each RuleNode and hence class are now

described.

11.3.4 Conditions (i.e. Rule Conditions)

Rule Conditions are the primary means in ontology and descriptive logics by which exemplar

cases i.e. instances are mapped to their abstractions i.e. their classes. They represent a

 Chapter 11: The 7Cs and FastFIX Design Core

Submitted January 27, 2007 188 Case-driven Collaborative Classification
Revised July 27, 2007 Megan Vazey

relationship between instances (the A-box171) and the classes (T-box) that represent them. In

the FastFIX prototype, an LR parser172 and rule compiler was implemented to evaluate the

rule conditions created by users.

The operators shown in Table 15 were made available for users to create rule conditions in the

FastFIX prototype. Note that in PEIRS, standard arithmetic operators were provided

including a test for existence similar to that provided in the FastFIX system (Edwards, 1996,

pp 82 – 83).

Table 15: Available rule operators

Operator Description Class

'==' or '=' EQUIVALENT TO comparative

'!=' NOT EQUIVALENT TO comparative

'<' LESS THAN comparative

'>' GREATER THAN comparative

'<=' LESS THAN OR EQUAL TO comparative

'>=' GREATER THAN OR EQUAL TO comparative

'&&' BOOLEAN 'AND' combinatorial

'||' BOOLEAN 'OR' combinatorial

'&' BITWISE 'AND' combinatorial

'|' BITWISE 'OR' combinatorial

! NOT i.e. negation unary

'?' EXISTS unary

'!?' DOES NOT EXIST unary

'grep('pattern','subject')' GREP pattern modifiers include unix / perl / php grep modifiers. The
‘subject’ must provide the name of the attribute whose value is to be
grepped.

functional

locate

('errorsig:

parameters:

directors',

'subject')

For example:

locate(XX.FF56.XX:S12=01&S13=02:DA|FA,'error_signatures')

will check that the error pattern "XX.FF56.XX" is present with sense
byte 12 == 01 AND sense byte 13 == 02 on either a DA OR on an FA
in the error signature provided.

functional

171 Amongst many others, Giacomo & Lenzerini (1996) provide definitions of the A-box and T-box.

172 An LR parser parses the input conditions in left-to-right order. Further information is available at

http://en.wikipedia.org/wiki/LR_parser.

 Chapter 11: The 7Cs and FastFIX Design Core

Submitted January 27, 2007 189 Case-driven Collaborative Classification
Revised July 27, 2007 Megan Vazey

FastFIX supports the use of complex nested expressions using brackets. However the PEIRS

trial found that complex expressions were only used in 6.1% of RuleNodes and were mostly

used for representing time intervals and rates of change. In time they were abandoned in

favour of more simply expressed heuristic rules that called upon predefined functions

(Edwards, 1996, pp 115-117).

The locate operator shown in Table 15 provides an example of an HTG-specific predefined

function that allows heuristic rules to be more simply expressed. The locate operator was

created in light of the dial-home context described in Chapter 10 so that HTG’s Hardware

Support engineers could check for the presence of particular error codes at that RuleNode

(XX.FF56.XX in the example), including particular values of sense bytes (S12 and S13 in the

example), and on particular hardware directors (DAs or FAs in the example). For example,

for RuleNode 7 as shown in Figure 28 on page 187, the rule is:

locate(XX.FF56.XX:DA|FA|RE,'error_signatures')

This checks whether an error matching the XX.FF56.XX error mask has occurred on a DA,

FA, or an RE as recorded in the attribute entitled 'error_signatures'.

PEIRS included simple built-in functions such as current(), maximum() and minimum();

global functions such as netChange(), average(); and indexed functions that could be nested as

parameters in other functions such as timeDifference() (Edwards, 1996, pp 79 - 81). PEIRS

also supported the use of the clinical_notes field in a similar manner to the grep() function

supplied in FastFIX. The use of the clinical_notes field increased over time and appeared in

the rule conditions for more than 20% of RuleNodes in the final phase of PEIRS operation

(Edwards, 1996, p 111).

In PEIRS, Edwards (1996, pp iv, 83, 145) showed that allowing the expert to define and re-

use their own functions eased the rule-building task for pathologists. Re-useable functions

were a feature in TCRDR and were seen to simplify and simultaneously increase the

sophistication of feature definition for pathology data in PEIRS so that repetitious knowledge

acquisition was reduced. This was important even in MCRDR systems, where repetitious re-

definition of lengthy or complex rule expressions was still found to be a KA problem (p120).

In future embodiments of the system, new functions could be configured or coded by the user.

As well, natural language processing could be used to translate user articulated rules into the

system’s rule syntax. For example, the natural language statement “that the product name

 Chapter 11: The 7Cs and FastFIX Design Core

Submitted January 27, 2007 190 Case-driven Collaborative Classification
Revised July 27, 2007 Megan Vazey

contains ‘product A’” may be translated into the rule expression: “grep(‘product

A’,’product’)”. User configured templates, similar to those reportedly used in PKS’s

LabWizard product (see section G.12, page 411), could be used to define these translations.

As well, in future system embodiments, functions used in the rule conditions could return

multiple variables that could for example be used as input to other calling functions. This

would allow a useful nesting of functions. The output of these functions could also be used

and/or displayed in the conditions, classifications and/or conclusions of RuleNodes.

In future system embodiments, more complex rules could be analysed in a pre-processing step

invoked for new or edited cases. This pre-processing step would set or clear boolean

attributes for the case corresponding with the more complex rule statement being tested. This

mechanism could be used to reduce the amount of text-based processing required by rules that

may appear in more than one location in the FastFIX decision mesh. A pre-processing step

similar to the one described here was used to extract important features from doctor’s

comments and numeric data in cases analysed during the MCRDR trials involving the Garvan

Thyroid database (Kang, 1995, p 29, 30, User Manual p3). As well, in PEIRS, data could be

pre-processed as represented as qualitative descriptors such as HIGH, NORMAL, LOW,

INCREASING, and DECREASING (Edwards, 1996, p82). Although over time in PEIRS it

was found that users preferred to use numerical rule expressions rather than those referring to

a pre-processed reference range (Edwards, 1996, PhD, p109).

Note that in conventional MCRDR, the conditions at RuleNodes were comprised only of

conjunctions of rules (Kang, 1995 p18). This is one of the major reasons why repetitious

knowledge acquisition was still a problem in conventional MCRDR systems. In the 7Cs and

FastFIX model, the logical OR is permitted173.

RuleNodes could also simply contain the logical TRUE or FALSE rule condition. As

mentioned in Table 14, and Appendix O.5 on page 456, RuleNodes can be completely

stopped by setting the rule condition to FALSE. This disables that RuleNode, and any of its

173 Although (A || B) can be represented as the logical alternative !(!A && !B), the latter representation is not as

readable, intelligible or useful as the former for domain-oriented human users. Permitting the logical OR makes

sense when the heuristic identification of a given classification e.g. XYZ only requires that some of the features

be available in the case being classified, for example when (XY OR YZ) results in the XYZ classification.

 Chapter 11: The 7Cs and FastFIX Design Core

Submitted January 27, 2007 191 Case-driven Collaborative Classification
Revised July 27, 2007 Megan Vazey

dependent RuleNodes, since no cases can be live for a RuleNode whose rule condition always

returns FALSE, or for any of that RuleNode’s dependent RuleNodes174.

11.3.5 Classifications

In FastFIX, a classification is grouping, category or a set of things that share one or more

common properties. It is a conceptual extension of a set of things and it is defined by a set of

rules that all members of the classification obey. A classification is the result of a case

evaluating to TRUE through a sequential set of RuleNodes, where each RuleNode has a

Boolean test that may examine the attributes of the case. A classification may be labelled

using text or hyperlinks, or it may remain unlabelled. Note that labelled classifications were

known as an intermediate conclusions in N-RDR as described in section 4.4.5 on page 62.

In pathology, classifications may be diagnosis-oriented, for example: “kidney stones”, “breast

cancer”, and “blood sugar too high”. Examples of some labelled classifications in ICT

support include the ones used in Figure 5 on page 52, namely: “product B”, “windows

platform”, “old software”.

Note that previous MCRDR implementations did not distinguish between classification labels

and conclusions. Rather, previous MCRDR implementations required both classification

labels and conclusions to be the conclusion at a RuleNode. In the 7Cs system, classification

labels are explicitly allowed that are separate from other types of conclusions so that the

classification labels can be referred to at other RuleNodes.

For the benefit of the HTG FastFIX software trial, the FastFIX prototype was customised to

include only one classification label per RuleNode. However in general, classifications may

have more than one label or name as in the sciences (geology, biology, physics, chemistry).

For instance in botany, unique species of plants may have a scientific name, and a common

name. Alternate embodiments of the system should allow room for multiple classification

labels to be applied for each RuleNode. Where a RuleNode does have one or more identified

classification labels, then any of the alternate classification labels can be referred to and

reused elsewhere in the system.

174 Note that this provides a different affect to having a RuleNode with a stopping conclusion. A stopping

conclusion just prevents the RuleNode from being displayed under the prescribed rule conditions. The stop

conclusion type is discussed in section 11.3.6 on page 193.

 Chapter 11: The 7Cs and FastFIX Design Core

Submitted January 27, 2007 192 Case-driven Collaborative Classification
Revised July 27, 2007 Megan Vazey

In many domains, an expert may not be able to think of an appropriate label or name for a

classification. For instance in the health domain, perhaps the expert can observe a set of

symptoms without knowing the exact disease. However, the expert knows what actions need

to be taken as a result of arriving at a particular RuleNode, and the corresponding unlabelled

classification. For example the actions may be that the patient should “drink more water”,

“cut out refined sugars”, “eat more fibre” and so on. Providing a classification label at a

given RuleNode is therefore optional.

Classifications from arbitrary RuleNodes in the 7Cs system can be pre-processed and

presented in an integrated fashion as part of the conclusion view for the case by using a

refer(RuleNodeID) function in the conclusion.

The following screenshot shows the facility to refer to arbitrary classifications in the FastFIX

decision tree. In this figure, the conclusion at RuleNode 76 is refer(74). FastFIX interprets

this and displays the conclusions at parent RuleNode 74 at child RuleNode 76.

Note that the advise() function provides hyperlinked text advice for the meaning of each of

the >10,000 different error codes that may appear in the HTG dial-home logs.

 Chapter 11: The 7Cs and FastFIX Design Core

Submitted January 27, 2007 193 Case-driven Collaborative Classification
Revised July 27, 2007 Megan Vazey

Figure 29: Showing the conclusions from arbitrary RuleNodes in the decision tree

Additional examples of the benefit and power of classification reference and re-use are

provided in section 13.6 on page 258 and section 13.7 on page 261.

11.3.6 Conclusions

In FastFIX, a conclusion represents one or more propositions, or final statements, including

actions that one should take as a result of arriving at a given classification.

In pathology, conclusions may be prescription-oriented, for example: “eat 100g fibre bran for

breakfast each morning”, “do 15 mins aerobic exercise per day”, and “drink 2L water per

day”.

 Chapter 11: The 7Cs and FastFIX Design Core

Submitted January 27, 2007 194 Case-driven Collaborative Classification
Revised July 27, 2007 Megan Vazey

In I.T. support, conclusions may be action-oriented. The conclusions may include

instructions for example to: click on a web link such as http://lookatme.pdf; run a particular

software application with a particular set of parameters; read a document located in a

particular place; ask the customer a particular question; or enter a value for a particular

attribute. Conclusions can be a single word, a lengthy passage of text, or even a directive to

use a particular Internet search engine with a suggested set of search criteria to further

navigate the solution space.

Conclusions are statements that can include Internet URIs, plain text, or instructions to the

system to interactively prompt the user for more A-V details and then recursively re-evaluate

the case. In the context of HTG support centre problems, a typical approach would have

conclusions that are sets of intranet URIs pointing to existing solutions in the SolutionDB

solution repository or the document repository (Docco).

In the FastFIX prototype, a conclusion can be of any of the types that an attribute can be,

including a hyperlink (see Table 17 on page 197 and Table 18 on page 198). Conclusions can

also be one of the special types shown in Table 16 and described here:

• a stopping conclusion that prevents the RuleNode from being displayed under the

prescribed rule conditions;

• a getAttribute(‘attributeName’) conclusion that indicates that the user should be

prompted to enter the value of a particular attribute, in this case the ‘attributeName’

attribute;

• a showfile() conclusion that provides a hyperlink to an uploaded file, or perhaps even

displays the file’s contents inline;

• an advise() conclusion that provides a hyperlink to the text advice for a particular

HTG dial-home error code; and

• a refer() conclusion that refers to conclusions provided at another RuleNode or

classification in the system.

 Chapter 11: The 7Cs and FastFIX Design Core

Submitted January 27, 2007 195 Case-driven Collaborative Classification
Revised July 27, 2007 Megan Vazey

Table 16: Available Conclusion Types

Conclusion Type Example

Stopping Conclusion stop

Get Attribute getAttribute('habitat')

Show File showfile(uploadedfileNum)

Show Error Code Advise advise(XX.FF56.XX)

Refer to the Conclusions at another RuleNode refer(RuleNodeID)

In future system embodiments a setAttribute(‘attributeName’, ’attributeValue’, confirm=true)

conclusion could also be used to indicate that the ‘attributeName’ attribute should have its

value set to ‘attributeValue’, that the changes should optionally be confirmed by a user, and

that the case should then be re-evaluated against the rule tree. As mentioned previously

(section 4.4.2 on page 61) in the ion chromatography solution reported by Kang (1995,

pp132-133) an inference mechanism was developed that automatically filled in missing

values in the SCRDR system to assist with the configuration of the ion chromatography

equipment. The setAttribute() conclusion type would achieve the same result within a

multiple classification paradigm. As well as that, it could be used to provide similar

functionality to the hierachical nesting of concepts provided by NRDR (Beydoun and

Hoffman, 1997). Note that N-RDR was previously described in section 4.4.5 (page 62).

(Compton, Cao and Kerr, 2004, section 2.2 p4) also describe a process by which

classifications add information to a case, with or without the input of a human user, and the

case then gets re-evaluated against the KBS.

The lack of tools for abstracting specific features to more general features was seen as an

important limitation in PEIRS (Edwards, 1996, pp 120, 134, 137) and is also discussed in

(Richards, 1998a, pp 71-72). As discussed in section 4.4.5 on page 62, N-RDR offers an

approach to overcome this limitation175. Alternatively, the setAttribute() conclusion could be

175 As discussed later on (section 11.7.1 on page 210), N-RDR avoids the case drop-through issues suffered by

MCRDR (section 6.5 on page 84) by insisting that any inconsistencies in the database resulting from changes to

classifications are sorted out at the time of the database modification. 7Cs takes a much more flexible approach

by allowing inconsistencies to be tracked via the live versus registered case-RuleNode associations so that

inconsistencies in the database can be sorted out at a time that makes the most sense to the user.

 Chapter 11: The 7Cs and FastFIX Design Core

Submitted January 27, 2007 196 Case-driven Collaborative Classification
Revised July 27, 2007 Megan Vazey

used to provide a simple solution. The case would simply be evaluated against a relevant

function / concept at the selected RuleNode. Then, if the function evaluates to TRUE, the

conclusion at that RuleNode could set an attribute to store the derived value of that function /

concept for the case in question. In order to consistently manage the evaluation of other

RuleNodes for the case, the case would be recursively evaluated against the rule tree each

time a setAttribute() function affected some change in the case.

Previous MCRDR implementations only allowed one conclusion per RuleNode As noted

previously in section 11.3.5 (page 191), classifications are diagnosis-oriented whereas

conclusions are prescription-oriented. Obviously in real-life, prescriptions (conclusions) can

be shared across multiple different diagnoses (classifications) and in multiple different

combinations. Therefore the 7Cs system allows multiple conclusions per RuleNode where

those conclusions can be reused as one of several conclusions for multiple RuleNodes across

the system. For some embodiments, the provision of multiple conclusions per RuleNode

could help in the re-use of those conclusions by other users. As well, shared identical

conclusions can be more easily kept up to date if they are only stored in one location, and a

common alias or reference is used across the system for that conclusion.

In the FastFIX prototype the different conclusion types could be used repetitively in any

combination within a given conclusion’s text. For example observe multiple references to the

SolutionDB() hyperlinked conclusion type in the hybrid text and hyperlink conclusion for

RuleNode 15 in Appendix N (page 440).

In future embodiments of the system even richer conclusion types may be possible. These are

described in section 13.7 (commencing on page 261).

Note that in the PEIRS system, users were encouraged to re-use existing conclusions.

Alternate embodiments of the 7Cs system might encourage the re-use of conditions,

classifications and conclusions by making them searchable, or by using a sentence complete

facility as in many MS windows applications (Internet Explorer, MS excel), or by including

them in a drop-through box, as appropriate.

 Chapter 11: The 7Cs and FastFIX Design Core

Submitted January 27, 2007 197 Case-driven Collaborative Classification
Revised July 27, 2007 Megan Vazey

11.4 Attributes

11.4.1 Attribute Concepts

In the 7Cs system, attributes may be binary, integers, floats, characters, strings, one of a set of

strings/integers/floats, some of a set of strings/integers/floats, free text; or even combinations

of the above types. In summary, attributes may be in the form of any of the standard data

types one expects to see in a programming language, or as fields in a database; or some

combination of those types. The following table shows some of the set and numeric types

that are available when creating attributes in the FastFIX prototype.

Table 17: Set and numeric type attributes

Attribute
Type

Description Definition Example

oneofset one of a set 'class1','class2','class3' An option select list is provided for
available items in the set.

int
selection

limited range integer 'min=0','max=100','step=10' An option select list is provided for
available integers in the set.

float
selection

limited range floating
point number

'min=0.0','max=100.0','step=10.0' An option select list is provided for
available floats in the set.

int
freetext

raw integer 42

float
freetext

raw floating point
number

 42.00

In addition, attributes may be hyperlinks, including hyperlinks to uploaded files. In alternate

system embodiments, users could configure templates that translate a function used in a field

of type ‘hyperlink’. For example, the user could configure the syntax casetracker(101) used

in an attribute (or a conclusion) for a case to translate to the hyperlink

http://casetracker.com/mycasetracker.php?casenumber=101.

The following table shows some of the text and link types that are available when creating

attributes (as well as conclusions) in FastFIX:

 Chapter 11: The 7Cs and FastFIX Design Core

Submitted January 27, 2007 198 Case-driven Collaborative Classification
Revised July 27, 2007 Megan Vazey

Table 18: Text and Link type attributes

Attribute Type Description Example

Text Free Text my example

URI Internet web link http://website.com.au

combo A combination of free text
interspersed with Internet URIs

checkout my website at: http://website.com.au and
also checkout my friend’s website at:
http://myfriendswebsite.com.au

imageURI web link to an image on the Internet http://website.com.au/images/ *.jpg, *.jpeg, *.gif,
or *.bmp

case() link to a FastFIX case case(caseNum)

CaseDB() link to a CaseDB case CaseDB(CaseDBNum)

SolutionDB() link to a SolutionDB solution SolutionDB(SolutionDBNum)

file() link to an uploaded file file(fileNum)

image() link to an uploaded image file image(fileNum)

refer() link to an existing RuleNode refer(76)

11.4.2 “View Attributes”

As shown in the following figure, each FastFIX attribute has a name; a type; a set of

accepted-values (as required by one-of-a-set, some-of-a-set or ranged attribute types) and the

attribute display units (for example kilograms, metres).

Figure 30: A View of Attributes in the FastFIX prototype

In the FastFIX prototype, all expert users were able to create and modify attributes.

The following figure shows the FastFIX view provided to users when they clicked on an

attribute in order to edit it.

 Chapter 11: The 7Cs and FastFIX Design Core

Submitted January 27, 2007 199 Case-driven Collaborative Classification
Revised July 27, 2007 Megan Vazey

Figure 31: Edit Attribute View

Since URIs frequently expire, future systems would need to provide a facility for users to

check the currency of URIs, and globally edit and update any expired web references.

As well, it should be possible to simply merge attributes that turn out to be synonyms of each

other, and to update the global knowledge base accordingly. The first of the listed synonyms

for a given attribute could be globally substituted throughout the system wherever any of its

synonyms have been used. After that, hovering over that attribute with the mouse could

inform the user of the complete synonym list for that attribute. Naturally an undo facility

would be advantageous.

In future system embodiments a change history should be kept for attributes, identifying who

made the changes and when, and perhaps with the ability to rollback changes as required. It

would also be helpful to indicate to users the likely impact of their proposed attribute changes

before the changes get committed to memory.

The super-user in the FastFIX prototype managed a manual display ordering of attributes.

For future system embodiments, a hierarchy of attributes may be useful, as well as a

configurable display ordering. An attribute hierarchy could be inferred from the decision

mesh since higher-level attributes tend to be incorporated in the conditions for higher level

RuleNodes in the decision mesh, and lower level attributes tend to be incorporated in the

conditions for lower level RuleNodes in the decision mesh.

11.5 Cases

The following table provides definitions for key Case Concepts used.

 Chapter 11: The 7Cs and FastFIX Design Core

Submitted January 27, 2007 200 Case-driven Collaborative Classification
Revised July 27, 2007 Megan Vazey

Table 19: Case Concepts

Case A Case is a set of one or more possibly temporal attribute-value (A-V) pairs
that describes a user’s observations of an object or a scenario. In defining the
attributes of a case, users ask the question - what is our sense of the case? That
is, how does the item look, sound, smell, taste, and feel? What are its
properties? Cases and their attributes are observation oriented.

For example, in geology a case may refer to a rock object with properties or
attributes such as {weight, dimensions (height, width, depth), colour,
composition, and temperature as measured every minute for the last 5
minutes}. The attribute will have corresponding values such as {950g,
(100mm,50mm,25mm), grey, iron 98% nickel 1.5% and cadmium 0.5%, (100
deg C, 89 deg C, 80 deg C, 72 deg C, 64 deg C)}.

Cases based on observations of an object may be observed in many domains
where taxonomies naturally apply, for example: pathology, biology, botany,
zoology, and chemistry.

Figure 1 on page 42 showed some examples of cases in the I.T. support
domain. These cases represent a trouble-shooting scenario being faced by a
customer or employee of an I.T. organisation. Cases based on observations of
a scenario might also be used in the legal or medical domains.

Cases need not remain static and may represent observations of an object or a
scenario over time. Cases may contain a history of case statements that have
been added to the case over time by users.

Cases are given a unique integer identifier in the FastFIX system.

Case
Workflow
Status

In future system embodiments, the status of cases may be recorded for example
as: new, assigned, open, resolved, verified, closed, expired according to the
desired workflow through the system. These state based case properties are in
current use by multiple vendor case tracking solutions as previously described
in section 2.4.1 on page 17.

A new case is one that is new in the system and has not yet been assigned. An
assigned case has been assigned to a user for the user to work the case and
attempt to find a solution. An open case has been opened, i.e. accepted by a
user. A resolved case has been solved by a user, i.e. a solution has been found
for that case. A verified case has been verified as being correct by some user,
possibly a user with extra “verify” privileges compared to a regular user. A
closed case has been closed by a user. An expired case has been in the system
so long that the system has decided to mark the case as expired.

continued overleaf…

 Chapter 11: The 7Cs and FastFIX Design Core

Submitted January 27, 2007 201 Case-driven Collaborative Classification
Revised July 27, 2007 Megan Vazey

Live Case A Live Case for a given RuleNode is one for which that RuleNode is currently
the last TRUE RuleNode on a given path through the knowledge base for that
case.

Live Cases may be correctly or incorrectly classified by a given RuleNode.
Correcting incorrect live Case-RuleNode associations is the primary role of a
(human or computer) expert who trains the knowledge base and hence builds
up the knowledge in the rule tree.

Registered
Case

A Registered Case is one that has been confirmed by a User as being correct
and TRUE for a given RuleNode. For each RuleNode, each case registration
may be current or expired. This is explored in more detail in section 11.3.2 on
page 185, Appendix O.2 on page 452, and Appendix O.3 on page 453.

Tracked
Case

The notion of “tracking” cases is introduced by the 7Cs system. In this system,
a “Tracked” Case is one whose Live and Registered RuleNodes are currently
being recorded and remembered by the system. These case-RuleNode
associations may be recorded in a Live RuleNode to Case association data
structure, or a Registered RuleNode to Case association data structure, or in an
LRL, LCL, RRL, or RCL as described in section 11.7 on page 210 and
Appendix O.4 on page 454. In the FastFIX prototype, all cases seen by the
system were Tracked.

Cornerstone
Case

This is a case that has been stored by the system in association with one or
more RuleNodes.

It may be that when this case was executed against the knowledge base, one or
more classifications given by the system were found to be in error, either by a
human or software agent. As a result one or more new RuleNodes were added
to the knowledge base to correct the classification and conclusions given. All
of the RuleNodes that were added because of this case become associated with
this case and likewise the case becomes known as the cornerstone case for
these RuleNodes.

Alternatively, the case may have been substituted as the cornerstone case for an
existing RuleNode in accordance with section 11.7.3 (page 212).

Cornerstone cases are retrieved and may be shown to an expert when the live
RuleNodes for the case are deemed to be incorrect by some user. Cornerstone
cases are used for system validation by providing the context behind a
modification to the knowledge base and ensuring that new knowledge does not
invalidate previous knowledge. Cornerstone cases also assist the user in the
selection of features that will help form new rule conditions. Cornerstone
cases provide the context and a counterexample for the new case that is
motivating the knowledge in the system to be changed.

Further information is provided in the Glossary (page 277).

 Chapter 11: The 7Cs and FastFIX Design Core

Submitted January 27, 2007 202 Case-driven Collaborative Classification
Revised July 27, 2007 Megan Vazey

11.5.1 “Case View”

In the following figure, a case view is shown for FastFIX Case ID 1. This FastFIX case was

previously shown in Figure 23 on page 172 and refers to CaseDB Case ID 13315712 in

Appendix B (commencing on p 387).

In the FastFIX prototype, the case view shows the attribute-value pairs comprised by the case,

and the classifications and conclusions arrived at by the system for the case. For the benefit

of the HTG implementation, the case view provides links to related FastFIX cases that record

different dial-home events for the same CaseDB Case ID.

Figure 32: Case View for FastFIX Case ID 1: CaseDB Case ID 13315712 – Dial Home 1

In Figure 32 we see that the incoming case has been evaluated against the FastFIX decision

mesh and there is only one live RuleNode for the case, namely RuleNode 7. The conclusion

for this RuleNode is that the user needs to check whether there has been an IML timeout in

step 12 of the equipment’s start-up sequence.

The rule trace (condition trace) shows that the case arrived at RuleNode 7 by way of

RuleNode 1. Note that for the case to be live at RuleNode 7 means that the case is TRUE for

all of RuleNode 7’s ancestors, and FALSE for all of RuleNode 7’s descendents. As shown in

Figure 28 on page 187, the descendents of RuleNode 7 are RuleNodes 48 and 49. In future

 Chapter 11: The 7Cs and FastFIX Design Core

Submitted January 27, 2007 203 Case-driven Collaborative Classification
Revised July 27, 2007 Megan Vazey

system embodiments it may be worthwhile displaying the negated descendent RuleNodes in

the condition trace.

The system allows the live RuleNodes that have been evaluated for the case to be accepted or

rejected or ignored on a RuleNode by RuleNode basis (see the “do nothing” column in the

above figure). For example, the user can accept agreeable RuleNodes in the early stages of

evaluating a case, and they can defer their decision on the contentious RuleNodes until a time

when they can be more informed about the decision they need to make. The user can re-enter

the case view at some later time to accept or reject the RuleNodes. When the user does decide

to take action, the user can choose to “do nothing” for some RuleNodes, and separately

“Accept” or “Reject” other RuleNodes.

In the example provided for FastFIX Case 1 in Figure 32, the user is advised to edit the case

to answer the IML_Timeout_Step_12 question rather than accept or reject the RuleNode.

11.5.2 “Case Edit”

The next figure shows the result of selecting the “edit case” button in the case view. The user

is presented with the case details and is able to edit them. In particular, they are asked to

provide an answer as to whether there has been an IML timeout in step 12 via a corresponding

parameter created by some user to reflect this question.

 Chapter 11: The 7Cs and FastFIX Design Core

Submitted January 27, 2007 204 Case-driven Collaborative Classification
Revised July 27, 2007 Megan Vazey

Figure 33: The “Edit Case” View

In future system embodiments, it might be more user friendly to record the question presented

by the getAttribute(‘IML_Timeout_Step_12’) conclusion in natural language and allow the

user to answer the question in natural language inline within the case view. The attribute that

stores the corresponding answer could be automatically generated and could remain hidden

from users. A strategy would need to be developed to make sure that the same questions isn’t

asked multiple times (within the same or different RuleNode conclusions) within the same

case view.

The Rule Tree View for RuleNode 7 presented in Figure 28 on page 187 provides a sneak

preview of the possible results of further interaction by the user. If there has been an IML

timeout in step 12, then the user is referred by RuleNode 48 via an Internet URI to the

relevant solution in SolutionDB. Otherwise, the solution is unknown.

 Chapter 11: The 7Cs and FastFIX Design Core

Submitted January 27, 2007 205 Case-driven Collaborative Classification
Revised July 27, 2007 Megan Vazey

The above example demonstrates one of the key benefits of the 7Cs system – the ability for

trouble-shooters to “work up a case” as described in the next section.

11.5.3 Working Up the Case

The idea of using MCRDR for propose and revise (Zdrahal and Motta 1995) construction

tasks such as configuration has been previously proposed (Kang, 1995 pp ii, 131, 138), but as

noted by Richards (1998a, pp 212 – 214) the work was postponed “until the need became

application driven”. In the FastFIX prototype, two previously mentioned variations on the

Single Classification RDR theme (section 4.4 on page 60) were adopted and integrated with

the Multiple Classification RDR approach: Recursive RDR (R-RDR) (Mulholland et al 1993)

that involved repeated inference cycles using the SCRDR structure; and Interactive RDR (I-

RDR) which was a technique that allowed an SCRDR system to prompt users for more

information when required.

Hence the 7Cs system provides a novel IR-MCRDR structure that allows users to “work-up”

their cases. Importantly, rather than the user being overwhelmed with a large set of A-V pairs

in the initial configuration of their problem case, they only need to enter A-V pairs that are

relevant to the current case context. The effect is analogous to the Microsoft paper clip

trouble-shooter where users are asked to answer a series of self-help questions that allows

them to drill down through a decision tree to arrive at a useful solution. It also has parallels

with user-interactions with an interactive voice response (IVR) system, for example the one

provided by banks to access your account details, or by utility companies to pay your bills,

where users are asked to make a series of keypad responses that allows them to arrive at some

relevant conclusion or state in their query or session.

The difference in FastFIX is that the user can be simultaneously directed down multiple paths

of the decision tree. As well, those paths are collaboratively and dynamically built by a group

of domain experts. The net result is a data structure that allows cases to be configured and re-

evaluated against a dynamically built decision tree.

A further example of working up a case is provided in the following figure.

 Chapter 11: The 7Cs and FastFIX Design Core

Submitted January 27, 2007 206 Case-driven Collaborative Classification
Revised July 27, 2007 Megan Vazey

Figure 34: Working up a case

RuleNode 0
“root node”

RuleNode 4
‘winXP’

RuleNode 5
getAttribute(‘software version’)

rule 5: !?’software version’

rule 6: (‘software version’ >= ‘2.0’)
&& (‘software version’ < ‘3.0’)

RuleNode 1
getAttribute(‘product type’)

rule 1: !?‘product type’

RuleNode 6
“We recommended
that you update the

software using update
patch 7.8.9.”

rule 0: true

RuleNode 2
getAttribute(‘operating system’)

rule 2: !?‘operating system’

RuleNode 3
‘product A’

rule 3: grep(‘product A’,‘product type’)

rule 4: grep(‘XP’,‘operating system’)

In this example, the user brings an empty case to the system. The user is searching for a

solution to the problem on hand. The customer is experiencing performance problems on a

windows XP deployment of Product A with software version 2.5 and the user suspects that

the customer needs to upgrade their software but they don’t know the details.

Referring to the above figure, firstly, rule 1 tests that the ‘product type’ attribute has not been

defined for the case. Note that in this syntax, !? tests that the RHS of the expression does not

(!) exist (?). Obviously this is TRUE for an empty case so the user is prompted by the live

RuleNode 1 to edit the case and enter the ‘product type’. As well, rule 2 tests that the

‘operating system’ has not been defined for the case. This is also TRUE for the empty case so

the user is prompted by the live RuleNode 2 to edit the case and enter the ‘operating system’.

 Chapter 11: The 7Cs and FastFIX Design Core

Submitted January 27, 2007 207 Case-driven Collaborative Classification
Revised July 27, 2007 Megan Vazey

Assuming that the user edits the case and enters the product and operating system details as

‘product A’ and ‘windows XP’, now rule 3 and rule 4 both evaluate to TRUE. At this point

rule 5 also evaluates to TRUE and the user is prompted to enter the ‘software version’. Again,

the user obliges and enters the software version as 2.5. The case then evaluates to TRUE for

rule 6 and the user receives the recommendation: “We recommended that you update the

software using update patch 7.8.9.”

This example demonstrates several benefits of the 7Cs system. Firstly, since the rule tree is

collaboratively built, a number of experts can document the relevant questions that a novice

should ask themselves when attempting to define and classify the problem on hand and

subsequently navigate the knowledge base. Secondly, for a novice user who may not have

any clue where to start in attempting to find a solution to their problem, this mechanism

provides a guided trouble-shooting methodology that leads the user through the rule tree to

possible scenarios that the user may be experiencing, and possible solutions. Thirdly, the user

only has to enter attributes relevant to their particular problem. This provides an effective and

efficient way to manage potentially large lists of attributes for users, and it minimizes the time

and effort that a user must expend in defining and classifying their problem, and finding a

solution to it. Fourthly, since the user can be guided down several paths of the decision tree at

once, they can potentially arrive at a relevant solution more quickly than if they could only

traverse through a single decision path. Analogous examples could easily be constructed for

other domains.

When the user attempts to first create a case, the near-empty rule base will not present any

attributes for the user to enter. The user will first need to populate the rule tree with

RuleNodes checking for a lack of existence of the relevant attributes, and concluding with

getAttribute() statements defining those attributes that should be fetched at that level of the

rule tree. Alternatively, if child RuleNodes test for some attribute which hasn’t already been

defined in a case the system could automatically create the requisite getAttribute() requests.

In summary, an interactive and recursive IR-MCRDR approach has been developed and

tested that helps users to: collaboratively capture problem determination and classification

determination knowledge; navigate the solution or classification space in the knowledge base;

and quickly classify the case on hand and find matching conclusions for it.

 Chapter 11: The 7Cs and FastFIX Design Core

Submitted January 27, 2007 208 Case-driven Collaborative Classification
Revised July 27, 2007 Megan Vazey

11.6 Change Histories

Change histories were not kept in the conventional MCRDR system trialled by Kang (1995,

p141). Our interview with PKS indicated that the LabWizard product was recording some

change histories, for example for conclusions (section G.12 page 411). However change

histories were not kept for the case-RuleNode associations, since LabWizard only recorded

historic snapshots of the cornerstone cases. At the time of this research, there was no facility

in LabWizard for dynamic cases and their changing RuleNode associations to be tracked by

the system.

In the FastFIX system, change histories are kept to identify the changes made, by whom and

when. This is a key component of conflict resolution in the system. In the FastFIX prototype,

the change history is kept for Cases, RuleNodes, and their associations; and in future system

embodiments it should be kept for all attributes, conclusions, and rules (described in

Appendix O.3 on page 453).

The following screenshot shows FastFIX Case 164 that is live and registered for RuleNodes 8

and 97 in the decision tree. The change history for the case shows that it was created, its live

RuleNodes were registered, and then the case was edited.

 Chapter 11: The 7Cs and FastFIX Design Core

Submitted January 27, 2007 209 Case-driven Collaborative Classification
Revised July 27, 2007 Megan Vazey

Figure 35: Case View showing Change History for FastFIX Case ID 164176

The following screenshot shows RuleNode 99 that is currently registered and live for FastFIX

Case 158. The RuleNode history includes the history of which cases were live (see the

livecaselist), registered (see the regcaselist) and dependent (see the livepathcaselist) on this

RuleNode when the given event occurred, as well as who made the change and when it

occurred. Activity from each of three different users resulted in the changes shown.

176 The user name is aliased in the figure to protect the commercial confidentiality of HTG.

 Chapter 11: The 7Cs and FastFIX Design Core

Submitted January 27, 2007 210 Case-driven Collaborative Classification
Revised July 27, 2007 Megan Vazey

Figure 36: Rule Tree View for RuleNode 99

In future system embodiments zero-impact edits should be excluded from the change history

for the sake of clarity and efficiency.

11.7 Case-RuleNode Associations

11.7.1 Relaxing the Case differentiation test

In the FastFIX prototype, the requirement to explicitly differentiate the current case from the

set of cornerstone cases for a parent RuleNode is relaxed as it was done in PEIRS (Edwards,

1996, p184). This is because the case may have been inappropriately classified at the parent

RuleNode. For example the case may now warrant a more specific classification than that

provided by the parent node.

Relaxing the case differentiation test raises issues of knowledge consistency and version

control since “case drop-through” may now occur. This is where a case in the DCL177 at the

parent RuleNode drops-down into the new child RuleNode and becomes live for that child

RuleNode. The example provided in Figure 122 on page 468 illustrated the “case drop-

through” situation in a traditional MCRDR KBS. Conventional MCRDR implementations

did not handle this scenario well. For example, in PEIRS, the parent RuleNode would be left

177 If required, please refer to the glossary on page 277.

 Chapter 11: The 7Cs and FastFIX Design Core

Submitted January 27, 2007 211 Case-driven Collaborative Classification
Revised July 27, 2007 Megan Vazey

without a representative cornerstone case since that case would drop-through to become the

cornerstone case of the child RuleNode, and the case that caused the child RuleNode to be

created would not be used as a cornerstone case for the new child RuleNode (Edwards, 1996,

p184).

Chklovski identifies that a lot of burden on the enterer is generated when knowledge must be

fully disambiguated at entry time (2001, p16). In N-RDR, abstracted RDRs can be edited in a

manner that can fetch new conclusions for old cases. In that instance, the expert is required to

maintain knowledge consistency by providing secondary refinements for the affected cases

(Beydoun and Hoffman, 1997) and (Beydoun et. al, 2005, p51)178. The potential complexity

of this knowledge engineering task was previously highlighted in section 8.2.5 on page 137.

According to Suryanto (personal communication, June 2004) the FastFIX approach lies

between NRDR and MCRDR:

• NRDR requires secondary refinement for affected cases,

• In FastFIX the secondary refinement of affected cases is delayed until such time that it

suits the user to make that refinement, and

• In MCRDR, the secondary refinement of affected cases is never required, and knowledge

inconsistencies can occur.

In the support centre domain, there are very good reasons to delay the secondary refinement

of affected cases: many of the users are novices, and much of the knowledge is dynamic, so it

can take some time before the user knows what knowledge to enter, and how best to enter it.

11.7.2 Knowledge Evolution and Case Drop-through

In PEIRS, typographical or conceptual errors in RuleNode expressions could only be

corrected with the use of “fall-through” rules (Edwards, 1996, p119). It was perceived that

even subtle changes in RuleNode expressions would “corrupt the knowledge base”.

The 7Cs system solves the problem of case drop-through that not only occurs when the

knowledge base evolves, but also when a case is changed, when a RuleNode is changed, when

an intermediate conclusion is changed, or when an attribute (or its ontological alias) is

178 N-RDR was introduced in section 4.4.5, page 62.

 Chapter 11: The 7Cs and FastFIX Design Core

Submitted January 27, 2007 212 Case-driven Collaborative Classification
Revised July 27, 2007 Megan Vazey

changed. The separation of live and registered case-RuleNode associations is a key part of

being able to resolve classification conflicts between multiple experts, and even between what

a single expert thinks today, as compared with tomorrow (Gaines, 1993)179.

In the FastFIX prototype, all cases presented to the system are tracked as defined in Table 19

on page 200. Appendix O.4 on page 454 describes the possibility of case un-tracking and re-

tracking cases in future system embodiments.

The tracking of cases by FastFIX means that case drop-through scenarios can be identified

and users can be made aware that they have occurred. The strategy assists with more rapid

knowledge acquisition since it can highlight inconsistencies between expert opinions. It lets

users capitalize on the knowledge acquisition opportunity presented by the case drop-through

scenario, and this in turn can result in quicker coverage of the domain and greater learning

opportunities for users. As noted by Easterbrook (1991, p26):

“… the final resolution is not necessarily the most important product of the negotiation

process – the extra information elicited during the process, and the participants new

understanding of one another’s viewpoints may be far more valuable”.

Note that cases don’t only drop-through from parent RuleNodes. They can also drop-across

from existing sibling nodes when the rule condition at the new RuleNode is permissive

enough to also apply to cases associated with the existing sibling nodes; or they can recoil to

a parent RuleNode for example when the editing of a child RuleNode is restrictive enough

that it now excludes the case under review.

11.7.3 Cornerstone Replacement

When a RuleNode is augmented with a new child RuleNode, the FastFIX prototype will

evaluate every case in the DCL at the parent node to see if it drops through to the new child

RuleNode. If a parent cornerstone case drops-down to a new child RuleNode, it may be used

as the cornerstone case for that RuleNode, and eliminated as a parent RuleNode cornerstone

case. This is not an act of cornerstone compression (as in PKS US Patent: US6553361), but

rather it is an act of achieving accuracy in the knowledge base. If a parent cornerstone case

179 Dazeley and Kang (2004, p6) also refer to the concept drift problem.

 Chapter 11: The 7Cs and FastFIX Design Core

Submitted January 27, 2007 213 Case-driven Collaborative Classification
Revised July 27, 2007 Megan Vazey

drops through to the new child RuleNode, it is because in terms of knowledge acquisition, it

no longer represents a valid cornerstone case for the parent RuleNode180.

11.7.4 Knowledge Evolution Notifications

Differences in the LCL and RCL for each RuleNode, and in the RRL and LRL for each case

were made available to viewers in the FastFIX Prototype via the “Check RuleNodes”, “Check

All Cases”, and “Check My Cases” screens as shown in sections M.11, M.12, and M.13

(commencing on page 434).

In future system embodiments, users can be notified whenever knowledge evolution of

interest to them occurs. The notification may be for example in the form of an email, an

instant message, an SMS, or something similar.

For example, users could be notified whenever the RRL or LRL for a case that they are

interested in changes. As well, the user could be notified whenever the LCL or RCL for a

RuleNode that they are interested in changes.

11.7.5 Maintaining Knowledge Base Integrity

At some later stage the expert could view each affected case or RuleNode and train the system

with the necessary knowledge to ensure that all the live case-RuleNode associations are

registered and hence that the consistency of the knowledge across all the “Tracked” cases is

maintained.

Importantly, users don't need to resolve differences between the RCL and LCL at a RuleNode,

or between the RRL and LRL at a Case unless they specifically want to. Cases are allowed to

hang around in the system in a state where their LRL is different to their RRL. In fact, users

may decide to un-track such cases as described in Appendix O.4 on page 454, particularly if

they have already been resolved and verified.

180 In future system embodiments, the policy for setting the cornerstone case for new RuleNodes may be

configured to be a FIFO (first in first out) or LIFO (last in first out) policy ordered for example by the age of

“Tracked” cases in the system (or possibly just for “Tracked” cases that are resolved and/or verified) where the

RuleNode in question is both registered and live for the replacement cornerstone case. If there are no such cases,

then this policy can be relaxed in stages, for example to first look for a replacement cornerstone case from all

verified cases that are live and registered, then all resolved cases that are live and registered, then any case that is

live and registered, then perhaps just any case that is live.

 Chapter 11: The 7Cs and FastFIX Design Core

Submitted January 27, 2007 214 Case-driven Collaborative Classification
Revised July 27, 2007 Megan Vazey

11.7.6 Knowledge Acquisition Scenarios

This maintenance of both live and registered case-RuleNode associations gives rise to the

knowledge acquisition scenarios shown in Table 20. For example, the system evaluates an

old case and shows the user that there is a registered RuleNode that is no longer live – perhaps

the case has been edited or the case now falls down to a new RuleNode – the user can either

reject the conclusion (010) to Remove this RuleNode from the Registered List, or accept the

conclusion (011) to Create a New RuleNode to Accept this Conclusion. In the table, 0

represents FALSE, and 1 represents TRUE.

Table 20: A Truth-Table of Knowledge Acquisition Scenarios

Live
RuleNode

Registered
RuleNode

Accept (1) or
Reject (0) Action

0 0 0 Do nothing

0 0 1 Create a New Rulenode

0 1 0 Remove RuleNode from the Registered List

0 1 1 Create a New RuleNode to accept this classification

1 0 0 Create a New RuleNode to reject this classification

1 0 1 Register this RuleNode

1 1 0 Create a New RuleNode to reject this classification

1 1 1 Do nothing

The following screenshot shows the interface in the FastFIX prototype for creating a new

RuleNode. As can be seen in this figure, the main portions of the RuleNode that need to be

created include its rule condition, optionally one or more classification labels, and the

conclusions. In this figure the user has decided to add a new independent RuleNode at the top

of the rule tree, hence its parent node is RuleNode 1.

 Chapter 11: The 7Cs and FastFIX Design Core

Submitted January 27, 2007 215 Case-driven Collaborative Classification
Revised July 27, 2007 Megan Vazey

Figure 37: Creating a New RuleNode with parent RuleNode 1

When the user chooses to view the guidelines for RuleNode construction for the parent node,

they are provided with a table of cases in the LCL for RuleNode 1 as shown in the following

figure. Differences between the attributes for these cases are highlighted in red so that users

can easily construct a rule that differentiates from either all of these cases, or a subset of them.

Undifferentiated cases will drop through to the new RuleNode.

 Chapter 11: The 7Cs and FastFIX Design Core

Submitted January 27, 2007 216 Case-driven Collaborative Classification
Revised July 27, 2007 Megan Vazey

Figure 38: Creating a rule that optionally differentiates from the LCL at RuleNode 1181

Note that during the FastFIX trial, as also experienced and commented on by PKS (see the

comment that “Difference lists are rarely used since most users know what conditions they

want to apply without needing to see a difference list” in section G.12, page 411), this

differentiation matrix was not used much in practice by experts populating the knowledge

base. Experts generally knew off the top of their heads or on the basis of the case under

review, the feature that would be relevant in characterising the new RuleNode that they

wanted to add. As noted in the evaluation of PEIRS, derived values for functions did not

appear in the difference lists, so valid rule conditions typically had to be created rather than

simply selected (Edwards, 1996, p144).

In the LabWizard TCRDR-like MCRDR implementation of PEIRS, clicking on an attribute in

the current case popped up a difference list for that attribute that included the evaluation of

relevant functions that would differentiate the case against the cornerstone cases for the parent

RuleNode (Edwards, 1996, p183). As well, Edwards suggested the use of a cornerstone

profile, rather than a single cornerstone case (Edwards, 1996, p219) where the profile

represents the full range of acceptable cases at that RuleNode. Edwards proposed that this

181 In future system embodiments, attributes not referred to by either the case in question, or by cases in the LCL

of the parent RuleNode, should be eliminated from this display.

 Chapter 11: The 7Cs and FastFIX Design Core

Submitted January 27, 2007 217 Case-driven Collaborative Classification
Revised July 27, 2007 Megan Vazey

information also be maintained in the context profile for the Feature Exception Prudence

(FEP) feature described in section 13.8.1 on page 264.

Note also that attributes representing the pre-processed results of more computationally

expensive functions like the locate() or grep() function would allow users to more simply

distinguish these cases from each-other. Future system embodiments might allow multiple

values from such function calls to be returned to several different attributes in the pre-

processed case.

Note that in the FastFIX system, the user could transition from the view and hence state

indicated by Figure 38 on page 216 to either add or remove attributes or their values, or to

return to the case under review and edit it.

In conventional MCRDR, cases in the DCL of the parent RuleNode were represented in the

difference list, rather than cases in the LCL that is a subset of the DCL at the parent node

(Kang, 1995, p65). If a human expert were to have used Kang’s proposed MCRDR system,

given that there was no facility for cornerstone cases to be replaced by more representative

cases as the knowledge evolved, cornerstone cases for stopping child RuleNodes (that

accounted for 40-60% of all the RuleNodes acquired across the 3 trial domains – see pp 117 –

119) would have been included in the difference lists at the parent RuleNodes, even though

they clearly do not represent good exemplar cases for the parent RuleNode.

In contrast, in FastFIX, only live cases at the parent RuleNode i.e. cases in the LCL are

deemed to be representative cases for the parent RuleNode. Using the LCL instead of the

DCL at the parent RuleNode helps to minimises the size of the difference lists and hence

alleviates some of the concerns previously highlighted by Kang (1995, pp 108, 129) regarding

the size of the KA task.

Note that cases arriving at an existing child RuleNode of the current parent RuleNode may

validly fetch the classification offered by the proposed new child RuleNode. Hence it is

suggested that in future system embodiments, that the user be forewarned if any cases in the

DCL of the parent RuleNode, but not in its LCL are going to fall across to the proposed new

child RuleNode182. As well, the user should be separately forewarned if any cases in the

182 If the new RuleNode is not mutually exclusive from its sibling RuleNodes, for example it is more general,

then cases in existing sibling RuleNodes recorded in the DCL of the parent RuleNode, but not in the parent

 Chapter 11: The 7Cs and FastFIX Design Core

Submitted January 27, 2007 218 Case-driven Collaborative Classification
Revised July 27, 2007 Megan Vazey

difference list from the LCL of the parent RuleNode are going to fall into the proposed new

child RuleNode under construction.

11.7.7 Moving RuleNodes

The facility to move RuleNodes was provided during the latter stages of the FastFIX software

trial and an example is provided in Figure 39.

Figure 39: Moving RuleNodes

horse

mammal

horse

cow

four-legged
animal

The following screenshot shows the RuleNode view with the Move RuleNode facility

implemented. Note that when a RuleNode is moved, all of its descendent RuleNodes are

moved along with it.

RuleNodes LCL and therefore not shown in the differentiation matrix, can drop down into the new RuleNode

from the parent RuleNode’s DCL. Such cases will fetch an additional classification and conclusion set.

For example, if the parent RuleNode represents mammals, and it already has a child RuleNode representing

horses, then if a new child RuleNode is created for four legged animals with a cow case in mind, horses already

classified by the system will not appear in the case differentiation list for the mammal RuleNode, but they will

drop into the new four-legged animal RuleNode from the mammal RuleNode’s DLC, so that they now fetch two

separate classifications: horse and four-legged animal.

An astute user might decide to move the horse sub-classification underneath the four-legged animal sub-

classification and also create a cow sub-classification, as discussed in the next section.

In a different example, the new RuleNode may not necessarily cover its sibling RuleNodes, but rather it may

have some amount of overlap together with some amount of exclusion. In that case, some cases in the

intersection of both sibling classifications will correctly fetch both sets of conclusions. For example, the animal

and plant kingdoms may be mutually exclusive siblings in a KBS concerning life on earth, but some grey and

overlapping regions may appear in the taxonomies of bacteria, yeasts, lichen, moulds, algae, and fungi.

 Chapter 11: The 7Cs and FastFIX Design Core

Submitted January 27, 2007 219 Case-driven Collaborative Classification
Revised July 27, 2007 Megan Vazey

Figure 40: RuleNode View with Move RuleNode facility

The next screenshot shows the panel used to determine where to move the RuleNode.

Figure 41:Details for Moving the RuleNode

Along with the facility to edit RuleNodes, the facility to move RuleNodes appears to be

important in solving problems of over- and under-generalisation and hence problems of false

 Chapter 11: The 7Cs and FastFIX Design Core

Submitted January 27, 2007 220 Case-driven Collaborative Classification
Revised July 27, 2007 Megan Vazey

positives and false negatives in the KBS. When a RuleNode is moved, the old DCL for that

RuleNode and the DCL for the new parent RuleNode can be used to update all of the affected

LCLs, LRLs, and DCLs.

11.7.8 Case Edits

The FastFIX prototype allows users to directly edit cases, including cornerstone cases. This is

a novel feature of the system. Except for cornerstone cases, traditional MCRDR systems do

not keep a record of cases seen by the system. As well, traditional MCRDR systems do not

allow cornerstone cases to be changed. If a case is edited in a traditional MCRDR systems

(PEIRS and LabWizard), it is presented as a brand new case to the system.

In contrast, when a “Tracked” case is edited and changed in the FastFIX prototype it gets re-

evaluated against the rule tree and a different set of Live RuleNodes may be derived for the

case. Hence the LRL for the case may change, the LCL for each previously associated live

RuleNode may change, and the LCL for any new newly associated live RuleNodes will

change.

11.7.9 RuleNode Edits

As mentioned previously, in the FastFIX prototype, users are allowed to directly edit

RuleNodes, including their rules, classifications and conclusions. This is another novel

feature of the system. When a RuleNode is changed, the old DCL for that RuleNode and the

DCL of the parent RuleNode can be used to update all of the affected LCLs, LRLs, and

DCLs.

The ability to edit RuleNodes and Cases is a vital part of maturing the knowledge base. In

this research it was found that human experts can and do notice errors that may not have been

considered by previous machine learning approaches to simulating expertise (Compton et al.

1995) (Compton et. al, 2000), for example structural errors leading to over and under

generalisations for as yet unseen cases; wrong classification labels and wrong conclusions;

the need for new or modified attributes and value options in the domain model; when a

cornerstone case is no longer representative of the classification that it is attached to; special

situations when RuleNodes should be added, deleted, edited, or moved.

Providing the RuleNode and Case edit, and RuleNode move top-down features can ease the

knowledge acquisition process for human users. This was also the experience at PKS (see the

 Chapter 11: The 7Cs and FastFIX Design Core

Submitted January 27, 2007 221 Case-driven Collaborative Classification
Revised July 27, 2007 Megan Vazey

comment about the need for a balance between structured and unstructured KA, and the

comment that “Incorrect rules are never changed since rules are cheap. However PKS is

looking at relaxing those conditions”, in section G.12, page 411).

11.7.10 Optimised Data structures

Given the large number of cases that need to be handled, the underlying data structure is

critical. In the FastFIX prototype, the following optimisations were made:

• Whenever a new RuleNode is added, or a Case, or RuleNode is edited, the system updates

its internal LCL and LRL references to maintain database integrity. The enormous benefit

of this is that when a tracked case is viewed, the case does not have to be re-evaluated

against the rule tree because all of its live RuleNode to Case associations are already

known and up to date. Similarly, when any RuleNode in the system is viewed, its live and

registered cases are already known, and do not require evaluation. The system is a finite

state machine whose live case-RuleNode associations for tracked cases are always known,

and always current.

• When a new RuleNode is added, the system need only evaluate cases in the DCL of the

immediate parent node. This saves significantly in processing overhead by reducing the

number of cases examined.

• Each version of each tracked case is only evaluated against the decision tree or decision

mesh once, and the results are recorded in the LRL for the case. Likewise, each version of

each RuleNode is only evaluated on a once-only as-needs basis for the affected cases, and

the results are recorded in the LCL for the RuleNode.

• The RRL is kept, even for untracked cases, so that when even when untracked cases are

viewed in the system, their registered RuleNodes are already known.

Further optimisations that may be implemented in future system embodiments are discussed

in Chapter 13 (page 242).

11.8 Chapter Summary

This chapter has described some aspects of the detailed design of the 7Cs system and the

FastFIX prototype implementation.

 Chapter 11: The 7Cs and FastFIX Design Core

Submitted January 27, 2007 222 Case-driven Collaborative Classification
Revised July 27, 2007 Megan Vazey

The 7Cs system is designed to capture the minimum set of knowledge required to identify and

solve specific classes of customer problems. It allows multiple experts to concurrently and

collaboratively modify the decision tree or decision mesh, share their differing expert

opinions, and resolve their classification conflicts. Experts can refine the system’s knowledge

both top-down by editing and adding attributes and RuleNodes, and bottom-up by identifying

key differences between conflicting cases. The 7Cs system allows users to record, retrieve,

review, refine and rate trouble-shooting knowledge in the context of specific problem cases,

and using existing solutions. Amongst other novel ideas, significant ideas included in the 7Cs

system, implemented in the FastFIX prototype, and tested during the FastFIX software trial

include:

1. The ability for multiple users to build an MCRDR-based decision tree in a hybrid top-

down rule-driven and bottom-up case-driven wiki-style collaborative effort.

2. The ability for users to share their trouble-shooting questions and thereby help each-

other to “work-up” their incoming cases using a novel Interactive and Recursive

Multiple Classification RDR decision structure.

3. Continuous background monitoring of changes to the knowledge base via live versus

registered case-RuleNode associations, so that users with affected RuleNodes and

Cases can notice and respond to the changes. This approach allows classification

conflicts to be identified, clarified and resolved in a manner not previously possible

for RDR systems, and in so doing it increases the opportunities for and hence the

speed of case-driven knowledge acquisition.

The creation, formation, development and testing of these novel ideas with real users in a real

trouble-shooting environment has been one of the most significant contributions of this thesis.

The next chapter presents the results of the FastFIX software trial.

