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CHAPTER 12: RESULTS OF THE FASTFIX TRIAL 

12.1 Chapter Outline 

This chapter presents the results of the FastFIX prototype software trial undertaken at HTG 

during November 2005.  The software trial showed that the 7Cs system and FastFIX 

prototype was able to support multiple users in collaboratively building the knowledge base 

using both a top-down rule-driven and bottom-up case-driven manner, with minimal training 

and supervision.  Users had no problems working from a top-down rule-driven perspective, as 

well as a bottom-up case-driven perspective and the system did not appear to demand any 

significant additional knowledge engineering load than could be expected from a purely 

bottom-up case-driven RDR approach.  As well, it was demonstrated that separately tracking 

the live versus registered RuleNodes captured the frequently occurring Case drop-through 

events in the rapidly evolving knowledge base, and thereby supported and maintained the 

integrity of the knowledge base.  The tracking of live versus registered case-RuleNode 

associations facilitated the conflict resolution required for collaborative knowledge 

acquisition. 

12.2 User Activity 

The following table summarises user interaction with the FastFIX prototype during the 

software trial.  12 users registered themselves within the system, including the author (User 

ID 12).  Most of the registered users were onlookers – managers, team leaders and other 

interested parties.  There were three main contributors from the HTG side with user IDs 1, 3 

and 6.  These contributors were able to use the system with minimal training and supervision 

(less than 60 minutes per contributor).  Contributors commenced by providing trouble-

shooting knowledge for the most frequently occurring dial-home errors: those with an XX2F 

error code that related to disk-drive errors. 
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Table 21: User Activity in the prototype FastFIX system 

User ID 1 2 3 4 5 6 7 8 9 10 11 12 Totals

Total Case Creations 64 0 15 2 2 83 1 1 0 0 1 3 172 

Total RuleNode Creations 42 0 13 0 0 30 1 0 0 0 0 21 107 

Total Case Edits 45 0 22 0 0 33 0 0 2 0 7 30 139 

Total RuleNode Edits 32 0 13 0 0 59 0 0 0 0 0 37 141 

Total Case drop-throughs  
resulting from RuleNode Creations 59 0 1 0 0 43 0 0 0 0 0 1 104 

Total Case drop-through Events resulting 
from RuleNodeEdits 24 0 6 0 0 48 0 0 0 0 0 18 96 

 

In total 172 cases and 107 RuleNodes were created.  The total number of case edits was 139 

and the total number of RuleNode edits was 141 demonstrating both the desire and capacity 

of users to contribute to knowledge evolution in this way.  In total there were 104 case drop-

throughs resulting from RuleNode creations.  As well, there were 96 case drop-through events 

resulting from RuleNode edits where each of these events may have affected 1 or more cases 

(further details of the case drop-through events as a result of RuleNode Edits were not 

recorded during the trial). 

The following figure provides a graphical representation of the data in Table 21. 
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Figure 42: User Activity in the prototype FastFIX system 
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12.3 Other Statistics 

14 attributes were created in the system. 5 attributes were created prior to the software trial by 

the author, and 9 were created by users that were active in the system.  These last 9 attributes 

were created by users in order to fetch more information in specific contexts that could be 

used to narrow down the classification of incoming cases.   

Appendix N (page 440) shows the rule statement, classification and conclusion details of the 

accumulated RuleNodes.  Note that the use of functions in the rule conditions at RuleNodes 

reduced the need for additional attributes to characterise (and hence separate) cases in the 

domain.  Users took just 1-2 mins to add a rule, but it took 2-3 person weeks for one of the 

domain experts and the software engineer (the author) to define and develop the locate() 

function (described previously in Table 15, page 188) which was found to be necessary to 

sufficiently differentiate the incoming cases. 
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The maximum width of the rule tree was 54 RuleNodes.  That width occurred directly beneath 

the root RuleNode.  The maximum depth of the rule tree was just 4 nodes, including the root 

RuleNode.   

Few people worked on the same case but numerous people worked on the same RuleNode.  

Changes to the same RuleNode occurred over a period of weeks.  The separation between live 

and registered RuleNodes allowed users to be notified of the relevant knowledge evolution 

affects and their impact. 

12.4 Combined KA Curves for All Users 

The following figure shows the cumulative number of Case Creations, RuleNode Creations, 

Case Edits, RuleNode Edits, Case Drop-throughs resulting from RuleNode Creations, and 

Case Drop-through Events resulting from RuleNode Edits as knowledge was acquired by the 

system.  The change histories for cases and RuleNodes recorded the timestamp at which each 

event occurred.  In the following graph, a unique KA Event ID has been assigned to each 

unique timestamp recorded by the system.  The KA Event ID was used to construct the x-axis.  

The vertical sets of case drop-throughs show that at times, multiple cases were affected by 

some of the RuleNode creations and/or RuleNode edits. 
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Figure 43:Cumulative Knowledge Acquisition Curves – All Users 
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12.5 Effectiveness of the Solution 

After 7 person hours of effort in total the test team had captured 105 cases and 55 RuleNodes.  

The red arrow in each of following figures has been used to indicate this point in time.  At this 

point the team had provided enough RuleNodes to automatically solve approximately 90% of 

disk drive (XX2F) related errors on errant equipment.  These errors contribute to 30% of all 

dial-home errors seen by the system which account for 20% of the ~5,000 problem cases per 

day seen by the global ICT support centre.  Hence after 7 hours of effort enough knowledge 

had been acquired to automatically provide solutions to more than 270 cases per day, without 

requiring the trouble-shooters to figure out the class of problem on hand, where to search for a 

solution, or what to search for.   
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Appendix N (page 440) shows the rule statement, classification and conclusion details of the 

accumulated RuleNodes.  From Appendix N, it can be seen that significant cognitive 

processing and recall is required by experts to characterise the incoming problems and to 

know where-to-search and what-to-search-for to arrive at a relevant solution. 

Say that each dial-home problem takes on average 15 minutes to solve, and that 1 minute of 

this time is spent in determining the problem and finding its solution.  This represents a time 

saving of 1 mins * 270 cases per day, or 4.5 hours per day.  Actually, the average solution 

search time is possibly a lot longer.  One of the problems with manually searching for 

solutions is that if you haven’t found the answer, you don’t know if its just because your not 

searching for it correctly, or if its because a solution does not exist.  The FastFIX system has 

the advantage that it unambiguously associates relevant solutions with their incoming 

problem classes.  If the answer is unknown, FastFIX can provide that information (see 

Appendix N, RuleNode 49). 

After the first 105 cases and 55 RuleNodes, the test team broadened the knowledge domain 

being covered to include non-drive queue problems.  The trial of the prototype ceased after 

107 RuleNodes and 172 cases had been accumulated.  At that point, no new information was 

being gathered and it was time to look to the future at what additional features might enhance 

the system. 

Note that these results parallel the results of the much longer PEIRS SCRDR software trial in 

which additional domains were incorporated incrementally after the pathologists had gained 

confidence in the performance of the system with the initially selected thyroid domain 

(Edwards, 1996, p90). 

12.6 Case Drop-throughs 

The following curve shows the cumulative case and RuleNode creations and Case drop-

throughs resulting from RuleNode Creations in greater detail.  A unique KA Event ID has 

been assigned to each unique timestamp captured in this subset of data and it has been used to 

construct the x-axis. 
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Figure 44: Cumulative Case and RuleNode Creation Curves 

Knowledge Acquisition Curves - All Users

17
2

10
5

10
7

55

20

0

20

40

60

80

100

120

140

160

180

200

0 50 100 150 200 250 300

KA Event ID

C
um

ul
at

iv
e 

K
A

 E
ve

nt
s

Cum Case Creations Cum RuleNode Creations Cum Case Drop-throughs
 

It can be seen from the data and observed in the above figure that the first 20 RuleNodes were 

provided to the system in a top-down (and hence rule-driven linear) manner.  In contrast, 

RuleNodes 21 to 55 were provided mostly on the basis of cases seen in a case-driven bottom-

up monotonically increasing and stochastic manner as described in Chapter 7.  After this 

point, users were selective in choosing which cases to train the system with, choosing cases 

that were expected to be novel183.  Hence RuleNodes 56 to 107 were provided to the system in 

a more top-down (and hence rule-driven linear) manner as for the first 20 RuleNodes. 

It is difficult to say how the ability of users to edit RuleNodes affects the overall case and 

RuleNode creation trajectories.  If most of the RuleNode edits were cosmetic e.g. as a result 

fixing spelling mistakes then it can be expected that these KA trajectories would be little 

                                                 

183 Users can do a similar thing to “active learning” in which the learner selects instances that it believes most 

uncertain. 
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affected by the RuleNode edits.  However, if RuleNode editing represents a significant KA 

activity whereby genuinely new knowledge is being acquired, rather than existing knowledge 

being cosmetically corrected, then those RuleNode edit events should be added into the above 

case-driven KA trajectory.  However, it was beyond the scope of this trial to examine this in 

any detail. 

The following figure shows the Cumulative Case Creation and RuleNode Edit Curves. 

Figure 45: Cumulative Case Creation and RuleNode Edit Curves 
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The number of RuleNode edits appears to grow in proportion to the number of cases seen by 

the system, which (according to the findings of Chapter 7) indicates that RuleNode editing 

tends to be a top-down knowledge acquisition activity. 
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12.7 Features Employed by Users 

Users took advantage of the ability to label the classifications represented by RuleNodes as 

distinct from the conclusions at that RuleNode.  22 of 106 manually constructed RuleNodes 

had their classifications labelled (see Appendix N, page 440).  As well, users also found cause 

to refer to conclusions at other RuleNodes (see Appendix N, RuleNode 76), although this 

feature was only introduced towards the end of the software trial. 

The ability to combine text and hyperlinks in the conclusions at RuleNodes meant that 

multiple conclusions could be referred to at a single RuleNode (see Appendix N, RuleNode 

62). 

Users were able to add new attributes to the system and the system provided a way for users 

to effectively “work-up” their problem cases.  This feature will need more testing and 

development in the future in order to improve its ease of use. 

Users disabled 10 RuleNodes by editing them and creating rule statements that were FALSE 

(This feature was discussed in section 11.3.4 on page 190).  In addition, users created 3 

stopping RuleNodes to negate the validity of the parent RuleNode under certain rule 

conditions (refer to RuleNodes 29, 104 and 105 in Appendix N, page 440). 

12.8 Experimental results 

Figure 46 shows the KA trajectories for User 1. 
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Figure 46: KA Trajectory for a Human Expert. 

 

In Figure 46 we see clear examples of both top-down rule-based and bottom-up case-based 

KA.  In the figure both case and rule acquisitions are plotted on the x-axis as KA events so 

that the two types of KA trajectories can be shown together. User 1 shared 64 cases with the 

KBS and constructed 42 rules.  The phases shown have been interpreted from the data. 

In Phase 1, the user entered a completely new knowledge domain and began adding rules to 

the KBS in a top-down fashion by directly editing the condition mesh. At the end of this 

phase ground rules and background knowledge were established in the domain. A linear rule-

driven KA trajectory was observed in this phase. 

In Phase 2, the user began examining randomised repetitive incoming cases in the established 

domain, and the user augmented the condition mesh on an as-needs basis in the context of the 
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current case under review. A bottom-up case-driven KA trajectory was observed in this phase, 

as well as in phases 3, 4, and 5. 

In Phase 3, the user continued to review cases and add rules to the condition mesh whenever 

the existing classes did not fit the case under review. However, in this phase, which occurred 

on a different day we see that the user may have gained new insights as to the differences 

between cases and the types of rules that may be added to the system. Phases 4 and 5 may 

represent further small quantum leaps in understanding and hence knowledge transfer ability 

– the user may be incrementally getting better at training the KBS, and / or the KBS is 

incrementally getting better at receiving the new knowledge. 

In Phase 6 the user entered a completely new knowledge domain. Again we see that the user 

has chosen to populate this new domain in a top-down fashion by directly editing the 

condition mesh and adding new rules independent of any cases seen. The KA trajectory is 

therefore linear during this phase. 

As shown in the next section, the KA curves for each of main contributors to the FastFIX 

KBS also demonstrated the transition between rule-based and case-based KA trajectories.  It 

is very difficult to obtain statistically significant results for human driven KA experiments 

due to the natural variability of the knowledge transfer coefficients (such as those discussed in 

Chapter 7 on page 92 and Appendix Q on page 473).  However, as sanity check the observed 

data aligns well with the predictions offered by the case-driven KA model proposed in 

Chapter 7. 

12.9 Individual KA Curves 

Individual KA Curves are displayed in the next four figures for the most active users (with 

User IDs 1, 3, 6, and 12) in the system, including the author (User ID 12).  Vertical lines have 

been included in the graphs to show the co-occurrence of RuleNode Creations and their 

resultant case drop-throughs, as well as RuleNode Edits and their resultant case drop-through 

events.  Case edit events have been left out of the curves to allow the rate of RuleNode 

accumulation to be compared with the rate of Case accumulation. 
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12.9.1 User 1 

From Figure 46 and Figure 47 it appears that RuleNodes are acquired by User 1 bottom-up 

prior to the domain change, and top-down thereafter.  Figure 47 shows the case drop-through 

events resulting from edits to existing RuleNodes, as well as RuleNode creations by this user. 

Figure 47: User 1 
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12.9.2 User 3 

In the following figure, User 3’s KA activity only started once the domain had been expanded 

to cover the non drive-queue problems.  There appears to be a steady rate of accumulation of 

both cases and RuleNodes, although not much data is available for User 3. 

Figure 48: User 3 
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12.9.3 User 6 

In the following figure, User 6’s KA curves show a steady rate of accumulation of both cases 

and RuleNodes.  As for User 1 it appears that RuleNodes are acquired bottom-up prior to the 

domain change, and top-down thereafter.  User 6 undertook a major RuleNode editing activity 

between KA event 80 and 100.  This effort was focussed on increasing the scope of the rule 

statements in a number of RuleNodes to not just consider 0F.XX2F errors, but to also cater 

for XX.XX2F errors. 

Figure 49: User 6 

 

 

12.9.4 User 12 

In the following figure, User 12’s (i.e. the author and researcher’s) KA curves show a focus 

on RuleNode edits in the early phases.  At this point the system was still under development 

so both the users and the system were changing in the way they interacted with each other.  

User 12 created the first 20 RuleNodes in the system in a (traditional knowledge engineering) 
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top-down fashion after consulting with User 6.  In contrast, user 12 was involved in very few 

case creations. 

Figure 50: User 12 (the author) 

 

 

Note that the initial knowledge base activity by user 12 parallels that reported in the early 

days of the PEIRS trial.  In PEIRS the first 198 rules were added off-line while interfacing 

problems were sorted out (Kang, 1995, p 34-35) (Edwards, 1996, p89).  In FastFIX, the first 

21 RuleNodes were added in this manner. 

12.10 Managing the Complexity for Users 

Users were able to add RuleNodes to the system in the conventional case-based RDR manner 

(previously described in section 11.7.6 on page 214), or in the novel top-down rule-based 

manner provided by FastFIX (previously described in section 11.3.3, page 186).  This meant 

that in terms of RuleNode acquisitions, system interaction was no more difficult than for 

previous conventional RDR systems, since users could always just add their new knowledge 
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in the local context of the case on hand, without having to understand or have any knowledge 

of the decision tree, or any other RuleNodes in the system. 

On the other hand, the system was more flexible than conventional RDR systems, since if 

users did have this more global knowledge, they could capitalise on it, and enter it in a top-

down manner. 

As noted for Figure 25 (page 180), the hyperlinked internet-based navigation structure 

simplified rule tree navigation for the users.  The FastFIX application allowed users to easily 

toggle between a case-based view with hyperlinks to the related (live or registered) 

RuleNodes, or a RuleNode-based view with hyperlinks to the related (live, registered or 

dependent) cases as well as any related (ancestor, sibling, dependent or referenced) 

RuleNodes. 

12.11 Collaboration and Conflict 

The negotiation and conflict resolution facility supported by the public (live) and private 

(registered) views in FastFIX were key in allowing users to negotiate and resolve their 

classification conflicts.  As reported in section 12.2 on page 223, in total there were 107 

RuleNode creations resulting in 104 case drop-through events, and 141 RuleNode edits 

resulting in 96 case drop-through events.  Each of these case drop-through events involved 1 

or more cases (and hence users).  Each of the 200 case drop-through events over the course of 

the 172 case and 107 RuleNode software trial reported on a situation in the knowledge base 

system where the live versus registered RuleNodes for one or more cases (and hence users) 

lost synchronisation due to knowledge and hence user conflict.  Affected users were notified 

and prompted to work together to resolve the highlighted conflicts in the acquired knowledge.  

Figure 110 on page 434 shows a summary of cases where the difference between the live and 

registered RuleNodes for each case can be observed.  This represents a situation in which 

there is conflict, and hence a corresponding opportunity for knowledge to be acquired. 

An example of a conflict that occurred at the commencement of the trial was that numerous of 

the RuleNodes that had been initially entered into the system used the rule 

“locate(0F.XX2F.XX…” instead of the more general “locate(XX.XX2F.XX…” .  The 

success of conflict resolution between experts was anecdotally commented on by HTG staff 

involved with the FastFIX software trial and the rapid domain coverage reported on in section 

12.5 (page 227) offers support for the approach.   
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The trajectories of RuleNode Creations versus RuleNode Edits displayed previously in Figure 

43 (page 227) show that over time within the same domain, the nature of the conflict moved 

from being a conflict over the rules that defined each classification i.e. fixes to any over-

generalisations and / or over-specialisations within the decision tree; to refinements of the 

wording of the classification labels, and the wording of the conclusions offered by those 

classifications.  Correcting minor spelling errors was the major reason for numerous of the 

RuleNode Edits towards the end of the software trial in the initial problem domain. 

Further examination of how experts who don’t agree represent their differing points of view 

within the proposed system may be of interest to future researchers.  When it comes to 

labelling controversial classifications or conclusions, a “neutral point of view” approach is 

recommended184.  Note for example that some of the more controversial and debateable 

articles in Wikipedia (Wales, 2001) notoriously suffer from oscillations between conflicting 

viewpoints.  Since the knowledge acquired by FastFIX is provided by human users, it seems 

reasonable to expect that these oscillations will at times happen for rules, classifications and / 

or conclusions within the FastFIX framework, and the system will need to continue dealing 

with the ongoing and inevitable clarifications and refinements that ensue. 

12.12 Inadvertent Gross Errors 

FastFIX opens the possibility of users inadvertently making gross errors, for example in 

RuleNode creations, deletions, edits, or relocations; that may impact on a very large number 

of cases.  One example of a RuleNode edit that (for better or worse) impacted numerous cases 

during the FastFIX software trial is demonstrated in Figure 43 (page 227) at around the 450th 

KA event.  FastFIX relies on peer pressure in a closed system, and change histories to track 

and manage such gross changes.  In a commercial system, an “undo” feature would obviously 

be beneficial, as well as a “look-ahead” feature that predicted and warned the user of the 

impact of a proposed change prior to the user’s final confirmation and commitment of the 

change.  In the FastFIX trial, it was sufficient to re-edit any incorrectly changed RuleNodes.  

The idea of untracking disused cases to ensure that the impact of evolving knowledge is 

restricted to cases of only present and future concern is presented later in Appendix O.4 (page 

454). 
                                                 

184 The discussion on journalistic objectivitity at: http://en.wikipedia.org/wiki/Neutral_point_of_view is relevant. 
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Note that inadvertent gross errors that impact many cases also occur in conventional RDR 

systems.  As with humans and systems that model their knowledge, gross repetitive errors can 

and do frequently occur.  The best KA system would keep correct knowledge static while 

enabling incorrect knowledge to be identified and changed as quickly as possible.  The idea in 

FastFIX is to expose the errors publicly across many users so that they are quickly picked up 

on and resolved.  In that way the solutions are shared and remembered so that errors seldom 

(if ever) recur.  The idea of approving specific sections of the knowledge to support 

confidence in the knowledge for users and to stop incorrect or immature data being used by 

users is presented later in Appendix O.5 (page 456). 

Related to this discussion, the idea of enhancing robustness through inference is discussed in 

section 13.5 (page 256).  As well, verification in knowledge bases has previously been 

proposed by Preece and Shinghal (1994) and is discussed further in relation to the Prudence 

work of Edwards (1996) in section 13.8 (page 263). 

12.13 Knowledge Engineering Effort 

To set-up this software trial, only 5 attributes were required to initially model the domain.  

However, as mentioned previously (section 12.3, page 225) 2-3 person weeks were spent in 

developing the much needed locate() function.  This represented a significant KE effort, even 

in the simplified world of RDR.   

User 12 (the author) created the first 20 RuleNodes in a top-down rule-based manner after 

consulting with User 6.  As well, the number of case edits was 139 and the number of 

RuleNode edits was 141 demonstrating both the desire and capacity of users to contribute to 

knowledge evolution in a top-down rule-based manner. 

In total 172 cases, a further 87 RuleNodes (in addition to the initial 20), and 9 attributes were 

captured during routine system use. 

12.14 Chapter Summary 

In summary, the results of the FastFIX software trial indicate that: 

• Significant KE effort is still required to model the domain, create suitable 

differentiating functions, and pre-populate the KBS with background knowledge, even 

in the simplified world of RDR. 
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• Users were able to use the system with minimal training and supervision (less than 60 

minutes on average per contributor). 

• The system was able to support multiple users in collaboratively building the 

knowledge base, and was effective at communicating to colleagues when changes to 

the knowledge base occurred that might affect areas of the knowledge base that they 

had been working on. 

• Case drop-throughs occurred frequently (in this example, about as frequently as 

RuleNodes were created and edited), so it appeared to be an important enhancement to 

separately track the live versus registered RuleNodes for users. 

• Given that case drop-throughs occurred so frequently, if cornerstone case are 

important to users, it will be important to allow more representative cornerstone cases 

to be substituted for less representative ones when case drop-through occurs. 

• Users were willing and able to work within both a case-based bottom-up and rule-

based top-down mindset to edit RuleNodes, and to add knowledge to the decision tree. 

• Users took advantage of the ability to label the classification represented by 

RuleNodes as distinct from the conclusions at that RuleNode. 

• Users found cause to refer to conclusions at other RuleNodes via the refer() function, 

even though this feature was only made available at a late stage in the software trial. 

• The ability to combine text and hyperlinks in the conclusions at RuleNodes meant that 

multiple conclusions could be referred to at a single RuleNode. 

• Users found cause both to disable some RuleNodes, and to negate the effect of parent 

RuleNodes under certain rule conditions. 

• The system was effective at rapidly acquiring sufficient knowledge to improve the 

effectiveness and efficiency of trouble-shooting drive-queue dial-home problems. 

• The system provided a way for users to effectively “work-up” their problem cases.  

Users were able to add new attributes to the system. 

The next chapter details additional recommended design enhancements for future system 

embodiments. 
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CHAPTER 13: DESIGN ENHANCEMENTS 

13.1 Chapter Outline 

This chapter details some suggested design enhancements for the 7Cs system, including: 

• The idea of allowing case-RuleNode associations to be updated in a RuleNode view 

that reciprocates the KA facilities provided in the case view; 

• The idea of either merging or rolling up RuleNodes into a SuperNode; 

• A shared child RuleNode framework; 

• An enriched mechanism for referring to classifications at other RuleNodes; 

• A mechanism for acquiring ontological data, and representating the data at RuleNodes 

in a frame-based ontological style; and 

• The idea of using Functional Exception Prudence to help the system recognise cases 

that are outside of its experience in a particular context, and warn the user of possible 

errors in the interpretation. 

In addition a number of implementation enhancements are suggested in Appendix O 

(commencing on page 451). 

Together with the implementation enhancements, the design enhancements outlined in this 

chapter will be important for ensuring the future applicability, robustness, effectiveness, 

scalability, and efficiency of the 7Cs design across a wide variety of problem domains. 

The ideas presented in this chapter are for particularly interested readers.  The usefulness and 

usability of many of the future design enhancement ideas presented here and in Appendix O 

are yet to be determined.  Less interested readers should feel free to skip ahead to the Thesis 

Conclusions presented in Chapter 14 (page 267). 

13.2 Reciprocity between the Case and RuleNode Views 

Boose et. al (1992, p2-6) discuss effective mediating representations for knowledge, and they 

describe how different user views provide different data model perspectives for users.  They 

discuss the importance of the different representations making important things explicit and 

hiding any unnecessary detail and they discuss the examples of case, decision tree, rule and 
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frame-based views.  Lee and Compton (1995) go one step further and suggest the interlinking 

of heuristics (surface knowledge) with causal models to provide users with a deeper system 

understanding that may improve their diagnostic capacity. Similarly, Richards and Compton 

(1997) and Kim (2003) discuss formal concept analysis (FCA) (Wille 1992) as a mediating 

representation for RDR systems.  The use of FCA as a mediating representation for RDR 

systems was noted previously in sections 4.3.2.3 (page 58) and 5.2 (page 66).  

In future system embodiments, cases could simply be accepted or rejected from a RuleNode 

View in a reciprocal way to the manner in which RuleNodes are accepted and rejected from 

the Case view.  For example for each RuleNode, the following RuleNode View could be 

provided: 

Figure 51: Sample View for RuleNode N 

Case 
Workflow 

Status 
Description Live Registered Accept Reject 

Do 
Nothing 

2 Assigned cat yes -    

3 Assigned dog yes -    

48 Assigned fish yes -    

57 Closed bird yes yes    

63 Closed elephant yes yes    

74 Opened giraffe - yes    

93 Closed zebra yes yes    

107 Opened tortoise yes -    

164 Verified snake yes yes    

166 Opened eagle yes -    

168 Opened lizard yes -    

 

Defaults for when to accept / reject or do nothing would apply reciprocally for cases as shown 

in the figure above, depending on whether they are live or registered for this RuleNode, and 

possibly depending on their workflow status as described in section 11.5 on page 199. 
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As for RuleNodes in the Case View, Cases in the RuleNode View could be accepted or 

rejected on a Case-by-Case basis (see section 11.5.1 on page 202).  The result of rejecting a 

Case-RuleNode association in the RuleNode view would be as for the Case view as described 

in section 11.7.6 on page 214. 

13.3 Rolling Up RuleNodes 

In my view, it would be worthwhile to allow sets of RuleNodes to be rolled-up into each 

other.  For example, classifications and conclusions at dependent RuleNodes may be merged 

with or “rolled-up” with the classifications and conclusions at the parent RuleNodes.  A 

SuperNode could be created that forms a grouping around two or more inner child 

RuleNodes.  The LCL, RCL, and DCL would then be tracked for the SuperNode instead of, or 

as well as for its inner RuleNodes, depending on the user’s preference.  Figure 52 provides an 

example. 

Figure 52: Rolling-Up RuleNodes 

 
root

bird

flies

eagle 

glides 

flies AND NOT doesn’t have feathers 
i.e. 

flies AND has feathers 

bird

0

1

3

4

stop 

doesn’t have 
feathers 

2 

 

In Figure 52 RuleNode 1 was clarified by RuleNode 2 with an exception condition: doesn’t 

have feathers.  This was done to stop aeroplanes being classified as birds.  When an eagle 

case was presented to the system, it was correctly classified as a bird, but the user wanted to 

provide a more specialised classification for it, and decided that compared to all the bird cases 

already seen by the system at RuleNode 1, it was really because it glides that it was an eagle.  
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A problem arose because now aeroplanes that had previously been stopped by RuleNode 2 

were falling into RuleNode 3.  So the user rolled-up RuleNode 2 with RuleNode 1 to create 

SuperNode 4 that for the cases thus far seen by the system, more accurately defines a bird as 

something that flies and has feathers.  The user can either merge RuleNode 2 into RuleNode 

1, or else maintain RuleNode 4 as a SuperNode comprised of these two inner nodes.  The 

advantage of former approach is the use of less system resources.  The advantage of the latter 

approach is that all the exception cases such as aircraft will continue to be tracked by 

RuleNode 2. 

Where SuperNode 4 is used, a new case that is live for RuleNode 1 will be displayed as being 

live for RuleNode 4.  Registration of the case will still be against RuleNode 1, but will be 

displayed as a registration against RuleNode 4.  A new case that is live for RuleNode 2 will 

be stopped by that RuleNode and hence for most users, that RuleNode won’t be displayed in 

the case view.  Only if someone drills into the rule view of RuleNode 4 to view RuleNode 2 

will they discover all of the cases that are currently live for it. 

This feature will be helpful in managing exceptions to parent RuleNodes that have non-

stopping dependent child RuleNodes that need to share the same exceptions.  Previously the 

rule condition at RuleNode 2 did not stop cases from falling through to RuleNode 3, but via a 

merge of RuleNode 2 into RuleNode 1, or via SuperNode 4 it now does. 

The system could allow the conditions proposed for stopping child RuleNodes to be 

automatically merged i.e. rolled-up into their parent RuleNodes as soon as they are created.  

As mentioned earlier, this need not have a negative impact on the statistics i.e. credentials 

maintained for the parent RuleNode.  As mentioned in section 11.2.2 on page 181, the overall 

credentials for any given RuleNode simply needs to be comprised of a change history of the 

subsets of credentials recorded throughout each phase of that RuleNode’s life. 

13.4 Shared Child RuleNodes 

Although MCRDR was very successful in reducing the replication of earlier SCRDR systems 

observed in multiple classification domains (a 7 fold reduction in redundancy was reported 

for the arterial blood gas domain), Edwards notes that even in the MCRDR implementation of 

PEIRS: “Each conclusion may appear at multiple sites on the tree.  Cases may therefore 

satisfy more than one rule associated with the same classification, and thereby generate the 

same conclusion by a number of paths.  Clearly each conclusion only needs to be presented to 
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the user once… however… if rule traces are to be used for explanation, the user may wish to 

access each rule trace, for each classification, individually.” (Edwards, 1996, pp 186, 192). 

As mentioned previously in section 8.3.10 on page 155, Edwards showed that the average 

replication in the MCRDR worsened in proportion to the number of cases seen by the system.  

Given that the major problem for staff was in deciding on the classification, its wording, and 

the most helpful form of interpretation to provide (Kang, 1995 pp 40, 129), failure to 

recognise re-use opportunities for conclusions can contribute to a significant level of 

redundant KA in an MCRDR system.  As well, over time, each replicated conclusion in an 

MCRDR system can result in replication of an entire sub-tree of qualifying child RuleNodes. 

The appropriateness of treating identical conclusions at different RuleNodes as identical 

classifications is exemplified by Edwards’ (1996, p202) implementation of Feature Exception 

Prudence (FEP), described further on in section 13.8 on page 263.  He noted that there was 

little value in considering separately all the different RuleNodes arriving at the same 

conclusion, so his FEP data was provided on the basis of conclusion-based context profiles.  

Interestingly, Golder and Huberman note that together with polsemy and varying user 

requirements for specificity, synonomy is also one of the major problems in tagsomonies 

(2005, p2). 

As shown in the following figure, a structure could be introduced where child RuleNodes can 

have multiple parent RuleNodes. 
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Figure 53: Illustrating Shared Child RuleNodes 

 

RuleNode 0 
“root node”

RuleNode 8 
“this is a dog” 

rule 1: ‘voice’ == ‘barks’ 

rule 0: true

RuleNode 3 
“land based” 

rule 4: ‘fat content’ > ‘7%’ 

RuleNode 5  
“this is an 

overweight dog”

rule 5a: (rule 3 && rule 4) 

rule 3: “inhabits the land” 

RuleNode 2 
“this is a frog” 

rule 2: ‘voice’ == ‘croaks’ 

RuleNode 4 
“overweight 
land animal” 

rule 5b: (rule 1) RuleNode 6 
“labrador” 

rule 6: ‘fur’ == ‘short and 
yellow’ 

RuleNode 7 
“overweight 
land based 
mammal” 

rule 7: “mammal” 

RuleNode 1 
“this is a canine”

rule 8: ?‘wagging tail’ 

RuleNode 9 
“this is a dog 
and a canine” 

rule 9a: TRUE 
rule 9b: TRUE 

 

This structure is particularly important for bringing together alternate classification paths that 

arrive at identical conclusions in the decision mesh.  We can expect this to occur in a 

collaborative classification system since different users of the system with differing 

perspectives generate the classification pathways.  For instance, one user might create a 

pathway saying that a dog is an animal that barks, and another user might generate a pathway 

saying that a dog is an animal that wags its tail.  The shared child RuleNode structure is 

analogous to multiple inheritances in ontology, or in a frame-based or object-oriented class 

structure.  It creates a decision mesh that is analogous to a neural network as described in 

section 7.2.3 (page 97).  Dazeley and Kang (2004, p5, 6, and Figure 3) have previously 

suggested the use of a neural network as a back-end to a single-user MCRDR structure.  This 

research proposes the loosening of the MCRDR structure to mimic a neural network that can 

be collaboratively developed using the live versus registered case-RuleNode paradigm 

introduced earlier. 

In Figure 53, RuleNode 9 is a shared child RuleNode that implements an OR-ing structure for 

RuleNodes 1 and 8 since these two RuleNodes arrive at synonymous conclusions.  The 

structure solves the problem of synonymous or identical conclusions being offered up in 
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multiple parts of the rule tree – the structure corrects the rule tree and eliminates the need for 

actions that modify the outputted rules to remove duplicate conclusions as described in the 

PKS interview in Appendix G.12 (see the comment “Hiding of multiple identical conclusions 

instead of duplicate display.” on page 411).  The knowledge base could be compacted by 

eliminating RuleNodes 1 and 8, hanging RuleNode 9 off RuleNode 0, and changing its rule to 

(rule 1 OR rule 8).  Automatic compaction of the rule tree may also be of value. 

Note that (Compton, Cao and Kerr, 2004) have previously proposed that incremental 

knowledge acquisition be generalised by attending to the relations of sequence and correction.  

They suggest that “systems can be recursively structured so that all KA is explicitly achieved 

by adding a KBS / program / rule to augment or replace output” (Compton, Cao and Kerr, 

2004, p3, paragraph 2).  In this approach, knowledge bases and hence RuleNodes should 

never be modified, only ever added to.  The authors “hypothesise that there can be no 

advantage in carrying out these tasks in an implicit way by editing the knowledge base”. 

In contrast what is proposed here is that shared child RuleNodes can be modified, moved or 

augmented using either a bottom-up case-based conventional MCRDR approach or a top-

down rule-based approach, as for any other RuleNode in the 7Cs decision tree.  As well, links 

from a child RuleNode to a parent RuleNode can be created or broken as appropriate by the 

users185.  Finally, the 7Cs approach makes the 1-to-many relationship between a child 

RuleNode and its parent RuleNodes explicit.  No extra add-on KBS is required186. 

Ontology, natural language processing and descriptive logics may be able to infer 

opportunities to combine RuleNodes in this fashion.  The system could recognise synonymic 

classifications or conclusions being applied to other RuleNodes and it could proactively 

prompt one or more users to consider modifying an existing RuleNode instead of creating a 

synonymic definition.  As well, the system could provide a query to find all synonymic 

RuleNodes and the user could unconditionally combine those paths with a shared child 
                                                 

185 Note that before the system allows any parent-child relationship to be created, an acyclic implementation 

could check that a continuous dependency loop cannot be established where for instance a dependent (e.g. child, 

grandchild etc) node becomes its own ancestor node through any path. 

186 Note that the purpose of the shared child RuleNode structure is different to the purpose of intermediate 

conclusions in N-RDR systems.  The setAttribute() feature described in section 11.3.6 (193) is of more relevance 

to the concept of intermediate conclusions. 
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RuleNode.  Note that an unconditional RuleNode combine means that the rule paths from the 

parent RuleNodes to the shared child RuleNode are all TRUE. 

Note that as for RuleNode 5 in Figure 53, the shared child RuleNode may have siblings at 

different levels in the rule tree according to each different parent node.   

In the shared child RuleNode data structure, every RuleNode has zero or more duplets of 

<parent RuleNode and a rule leading from that parent RuleNode to this RuleNode>, and zero 

or more child RuleNodes.  The following table uses this new data structure to describe the 

rule tree shown in Figure 53. 

Table 22: Child RuleNode data structure 

RuleNode <Parent RuleNode, Rule> list Child RuleNode list 

0 <n/a, 0> 1,2,3,8 

1 <0, 1> 5,6,9 

2 <0, 2>  

3 <0, 3> 4 

4 <3, 4> 5,7 

5 <1, 5a>, <4, 5b>  

6 <1, 6>  

7 <4, 7>  

8 <0,8> 9 

9 <8,9a>,<1,9b>  

 

With this data structure, processing commences at the root RuleNode.  For each RuleNode 

that evaluates to TRUE for the case on hand, the case is evaluated against each of that 

RuleNode’s child RuleNodes as identified in the child RuleNode list shown in the above 

table.  The rule for each ChildNode depends on which parental rule path the evaluation is 

coming through.  The <Parent RuleNode, Rule> list for each child RuleNode records which 

rule should be evaluated for each parental path.  If a rule evaluates to FALSE then no further 

processing is required through that path.  The set of last TRUE RuleNodes on each path 

through the rule tree constitutes the live RuleNodes for the case. 

For example, referring to the table above, if the case evaluates to TRUE for RuleNode 1 then 

it is evaluated against RuleNode 1’s child RuleNodes 5, 6, and 9.  The system looks-up the 
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rule for parent RuleNode 1 at child RuleNode 5 and sees that rule 5a is the appropriate rule to 

evaluate for this particular path through the rule tree.  The system evaluates rule 5a and if it is 

TRUE for the case on hand then processing will continue at RuleNode 5 for this case.  

Otherwise RuleNode 1 will be live for the case.  RuleNode 5 may be evaluated as live for the 

case through multiple paths in the system, but it is gets recorded once that RuleNode 5 is live 

for the case.  Similarly if a user registers RuleNode 5 for the case it need only be registered 

once. 

The normal user accept/reject mechanism for RuleNodes applies for systems using a shared 

child RuleNode data structure, except that there could be an additional option in the case view 

to combine some live RuleNodes.  There would also be an additional option in the rule tree 

view to combine some RuleNodes. 

Note that the DCL can be constructed in the normal fashion at any RuleNode in the shared 

child structure.  Note that if the DCL is being constructed from the LCLs of dependent 

RuleNodes, then in a shared child RuleNode structure a check should be made to ensure that 

each dependent RuleNode is only processed once. 

Note that software source control offers a useful analogy for a rule tree or rule mesh.  For 

example, Rational Rose’s Clearcase source control product and the GNU freeware Code 

Versioning System (CVS) allow users to merge code fragments that have been evolved in 

parallel with other team members into a common source code via a multitude of different 

evolutionary paths. 

Note also that the shared child RuleNode structure will require a new approach to decision 

mesh visualisation than that offered in the FastFIX prototype for the simpler decision tree data 

structure. 

13.4.1 Ordered Execution of RuleNodes 

The importance of controlling the order of rule evaluation was previously mentioned in 

section 4.3.2.3 (page 58) and is also noted in (Compton, Cao and Kerr, 2004).  The order of 

execution and presentation for decision meshes that use this new data structure (with or 

without the presence of any shared child RuleNodes) can be defined by ordering the “Child 

RuleNode list” at the parent RuleNode.  For example, the user could redefine the child 

RuleNode list for RuleNode 0 defined in Table 22 as {3,2,1,8} instead of {1,2,3,8}.  

Processing and presentation of the child RuleNodes for RuleNode 0 would therefore be done 
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in the order of RuleNodes 3 then 2 then 1 then 8.  This mechanism could be used to 

manipulate the order of RuleNodes being presented to users, and hence their classifications 

and conclusions. 

13.4.2 Merging Conclusions 

Another useful application of this data structure may be in merging the presentation of 

classifications or conclusions.  For example, a set of RuleNodes with rule paths (A, B, C) can 

be combined with a shared child RuleNode that tests for parent A the conditions B&C, for 

parent B the conditions A&C, and for parent C the conditions A&B i.e. the conjunction of the 

rule paths for each of the other RuleNodes.  The conclusions from each of these paths can be 

referred to at the shared child RuleNode using the refer() function, in the desired display 

order, for example refer(C), refer(B), and refer(A).  RuleNode 5 in Figure 53 on page 247 

provides an example of this type of application, although the refer() function has not been 

used in that example. 

Edwards highlights the complexity of representing some combinations of disorders in 

chemical pathology with his example of respiratory acidosis and metabolic alkalosis 

(Edwards, 1996, p192, 194).  He notes: “while each may occur alone, it is debateable whether 

their occurrence together should be considered as two separate disorders or as a single 

entity”.  The shared child RuleNode structure would solve this problem by allowing the 

disorders to be merged into a shared child RuleNode, while retaining links to and referring to 

the relevant parental disorders. 

13.4.3 Managing Subsumption - Inheriting Classifications 

A different example is provided in Figure 54.  In this example, RuleNodes have been acquired 

for the first 20 integers to check whether or not they are prime, and to indicate their divisors.  

When the most recent case with integer 20 was added to this structure, the last true 

RuleNodes through any path of the decision mesh were RuleNodes 4 and 10.  Since 

RuleNode 4 and 10 both refer to the conclusions at RuleNode 2, and RuleNode 10 refers to 

the conclusions at RuleNode 5, and since RuleNodes 2 and 5 in turn refer to the conclusion at 

RuleNode 1, we are informed by the decision mesh through RuleNodes 4 and 10 that integer 

20 is at least divisible by 10, 5, 4, 2, and 1. 
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Note that user preferences could be used to determine the manner in which the inherited 

conclusions are displayed, and whether or not duplicate inheritances like that of RuleNode 2 

(through both RuleNode 4 and RuleNode 10) are displayed. 
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Figure 54: Primes and Divisibility 
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The shared child RuleNode structure allows us to efficiently offer the advice that RuleNode 

20 is also divisible by 20 by creating RuleNode 20 as a child of RuleNodes 4 and 10, and by 

referring to the conclusions provided by RuleNodes 4 and 10 at RuleNode 20.  This allows a 

much more compact and useful representation than that allowed by the traditional MCRDR 

data structure, since the relationships between interdependent RuleNodes is utilised and 

maintained.  The maintenance effort for this structure is arguably much reduced than for 

traditional MCRDR systems.  The resultant class hierarchy means that duplicate conclusions 

and redundancy are avoided.  As well, the structure is much more efficient since dependent 

RuleNodes are only tested for a case if the more general parent RuleNodes are already 

satisfied by the case.  At present, there is no evidence to suggest that this exercise requires 

any more KE effort than that already demanded by RDR (described previously in Chapter 8, 

commencing on page 133). 

13.4.4 Child RuleNodes with Truthful Parents 

Active classifications at child RuleNodes could be restricted so that they are always 

specialisations of their parent RuleNode classification.  Exceptions would still be permitted, 

but they would always be stopping RuleNodes, or incorporated as conjunctions in the 

condition statements of the existing RuleNodes.  The actual classification and conclusions of 

the exception RuleNode would be located elsewhere in the decision mesh. The parent 

RuleNodes and their conclusions would always be true for their child RuleNodes so the 

refer() function wouldn’t need to be used at the child RuleNodes to refer to their ancestor 

RuleNodes since those references would be implicit. 

An example is provided in the following figure.  In this example, the user asserted that 

anything that flies is a bird.  Then they received a bat case, for which they observed that 

unlike birds the female lactates, so they created an exception condition for birds that if it flies, 

and the female lactates, then it’s not a bird.  Child classifications would only be allowed 

where the parent classification also applies.  New independent classifications would need to 

be appropriately located elsewhere in the decision mesh.  So the user would need to create the 

mammal and bat classifications elsewhere in the decision mesh under their relevant parent 

classification(s). 

Note that this example was constructed using a classification scenario presented by Yao et al. 

(2005).  Yao et al. promote the use of Ripple Down Rules for security information analysis.  
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In their analysis, rules succinctly summarise normal situations, and exceptions characterise 

abnormal situations.  They argue that rule + exception strategies strike a balance between 

simplicity and accuracy and lend themselves to incremental knowledge acquisition. 

Figure 55: Birds with exceptions 

root

bird mammal 

flies

stop bat 

flies 

female lactates 

female lactates

 

13.4.5 Matching Classifications to their RuleNode Locations 

A problem arises in the previous example in the case of emus and penguins, since these are 

both birds, but they don’t fly.  In order to access the potentially rich pool of information 

provided by the bird classification in this example, the user of the 7Cs system would be 

encouraged to edit the rule condition and conclusion for bird to say for example, if it (flies OR 

has feathers) AND the female doesn’t lactate, then it’s a bird.   

However, conventional MCRDR did not allow RuleNode editing, and it didn’t allow the 

ORing of conditions within RuleNodes (Kang, 1995, pp 58, 36).  Hence conventional 

MCRDR would have required that new RuleNodes be incrementally created for both 

penguins and emus.  The original bird RuleNode would continue to create false negatives for 

example with Ostrich, and the relationship between ostriches, penguins, emus and other birds 

in the system would not have been recorded. 

The functionality afforded by conventional MCRDR is unnecessarily restrictive, especially 

for experts who know their domain of interest well. 
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In conventional MCRDR implementations a choice is made whether to locate rules at the top 

or bottom of the rule tree.  As mentioned earlier (section 8.3.8 on page 151), locating rules at 

the top of the rule tree tends to create a problem of false positives because of over-

generalisation, and locating rules at the bottom of the rule tree tends to create a problem of 

false negatives because of over-specialisation.  The point is that to avoid errors in either form, 

the classification and conclusions given at each RuleNode must correspond exactly with the 

rule conditions for that classification. 

At the time that conventional MCRDR was developed, the following viewpoint prevailed, and 

possibly still prevails today (Kang, 1995, pp 62 - 63): 

“(In) attempting to decide whether a classification is best seen as a refinement or 

an independent classification and the old classification stopped, we note that in 

some ways it does not matter – both are workable solutions for any 

classification.” 

Unlike conventional expert system methods, the proposed 7Cs system allows context specific 

knowledge to be acquired in an incremental bottom-up fashion by attending to real world 

cases.  Unlike conventional RDR methods, allowing the RuleNodes to be editable, moveable, 

deletable, roll-up-able, and replaceable in a top-down KA manner, lets users optionally attend 

to inconsistencies between classifications and their rule conditions, and to improve the 

performance of the expert system by tightening the knowledge representation.  Further to this, 

allowing the conditions at RuleNodes to be ANDed, or ORed allows users to reduce both 

false positive and false negative errors.  Finally, the shared child RuleNode mechanism assists 

users in creating a knowledge base with less redundant and duplicate knowledge. 

13.5 Enhancing Robustness through Inference 

The idea of using knowledge histories and inference to build more robust expert systems has 

been previously highlighted by Kang (1995, pp 121, 122, 138, 140) and Horn (1993, sections 

10 and 12).  A large part of the description logics effort described in section 5.6 (page 76) is 

also targeted at inferring knowledge in KBSs. 
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An example of where the system can infer opportunities to combine rule paths in conventional 

MCRDR systems is given by Kang (1995, pp 70, 71187).  In systems with a shared child 

RuleNode structure that demonstrate this concatenation pattern, combining RuleNodes can be 

to be done by inserting a RuleNode directly beneath the RuleNodes that share the 

classification.  Stopping child RuleNodes that were previously dependent on either of the two 

RuleNodes that shared the classification should be rolled-up into those RuleNodes.  Other 

child RuleNodes that were previously dependent on either of the two different RuleNodes that 

shared the classification need to be moved to become dependent RuleNodes of the new shared 

child RuleNode. 

A second inference opportunity is highlighted by Kang where two different paths result in a 

mirrored ordering of the same classifications e.g. classification A followed by sub-

classification B and in an alternate path, classification B followed by sub-classification A 

(Kang, 1995, p71)188.  A control study by Kang (1995, p123) showed that this type of 

classification mirroring occurred in more than 10% of classified cases in the GARVAN-ES1 

system.  These paths could be combined and both sets of classifications and conclusions could 

be offered at the shared child RuleNode. 

Another inference opportunity is where equivalent sets of rule conjunctions arrive at different 

classifications and conclusions.  Again, combining RuleNodes could be done by rolling-up 

any stopping RuleNodes into their parent RuleNodes, then inserting a RuleNode directly 

beneath the RuleNodes that share the classification and moving any previously dependent 

RuleNodes underneath the new shared child RuleNode. 

The idea of separately tracking the live versus registered case-RuleNode associations and 

applying induction to refine the acquired knowledge is supported by previous evaluations by 

Kang.  As a result of his controlled study of the GARVAN-ES1 system, Kang concluded that 

a history of changes in knowledge may be used as an important source of expertise, or rather 

common sense prudence for KBS (Kang, 1995, pp 120-126). 

                                                 

187 See pattern 1: basic, and pattern 3: concatenate. 

188 See pattern 2: mirror. 
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13.6 Using Classification Labels 

13.6.1 Moving from the General to the Specific 

Problem determination is both a configuration and a classification problem: configuration is 

required to “work-up” the case, and classification is required to “determine the class of 

problem on hand”.  At the highest level, when the least is known about the problem case on 

hand, general solutions will apply such as “search the Internet”, or “read this user guide”.  As 

more is known about a problem, more specific solutions become relevant such as “look at this 

particular website” or “read this paragraph on this page of the user guide”.  The traditional 

structure of MCRDR does not handle the transition from general to specific all that well since 

users must either accept both the general and specific conclusion, and risk being overwhelmed 

by conclusions; or reject a true but more general conclusion and replace it with a more 

specific conclusion for the given problem class.  In the call centre context, the amount of 

information that users need to wade through needs to be minimised, hence only the most 

pertinent and relevant solutions should be presented. 

A control study by Kang showed that both general and more specific classifications were 

ambiguously derived for more than 40% of classified cases in the GARVAN-ES1 system 

(Kang, 1995, p123). 

The following table lists four ways in which new RuleNodes correct a knowledge base and in 

particular introduces a new way, Scenario D, in which RuleNodes may be added by a user to 

correct a knowledge base. 
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Table 23: Four Ways in which new RuleNodes correct a KBS 

Scenario 

Identity 

Description Conclusion Status To correct the KB 

A: Reject Reject a 
classification because 

the classification 
does not apply 

Incorrect Add a stopping RuleNode at the 
end of the path to prevent the 
classification  

B: Replace by 
Rejecting and 

Adding 

Reject an existing 
classification and 

create a brand new 
independent 

classification instead 

Incorrect and Missing Add a stopping RuleNode at the 
end of the path to prevent the 
classification AND add a RuleNode 
somewhere else in the decision 
mesh to give the new classification 

C: Add Create a brand new 
classification 

Missing Add a RuleNode somewhere else in 
the decision mesh to give the new 
classification 

D: Refine Refine a more 
general classification 
in order to be more 

specific 

Greater specificity 
desired 

Add a refinement RuleNode at the 
end of path to provide a more 
specific classification. 

Adapted from Kang (1995, p63). 

Scenario D in Table 23 presents a new scenario not previously handled by conventional 

MCRDR systems.  In this Scenario, the information presented is not incorrect, but rather it is 

imprecise, and it needs refining rather than replacing.  This scenario commonly occurs in 

taxonomies or ontology where one moves from more general classifications to more specific 

classifications, for example, when moving from mammal to a dog or a cat.   

In this scenario, the user can indicate that they wish to refine the information provided rather 

than replace or reject the information.  In that case, when the user creates the new child 

RuleNode, the system may pre-populate the conclusion with a conclusion that refers to the 

parent RuleNode.  This was discussed previously in 13.4.2 on page 251.  The following table 

provides some conclusion examples for the referring RuleNode: 
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Table 24: Conclusion examples for the referring RuleNode 

Pre-populated 
conclusion at the 

referring RuleNode 

The effect that you get whenever the referring RuleNode is 
included in a case view 

refer(‘mammal’) all the conclusions for the referred classification “mammal” are 
pre-processed and displayed in the referring classification  

link(‘mammal’) 

or 

‘mammal’ 

a hyperlink to the mammal classification is provided for the 
word “mammal” – the user can click on this hyperlink to bring 
up the mammal classification details 

or 

a pop-up is activated on mouse-over across the word “mammal” 
to provide the mammal classification details 

or 

a pop-up is created and activated through a right click menu 
selection on the word “mammal” to provide the mammal 
classification details 

 

Similarly, if the referred classification is unnamed, a numeric reference to the referred 

classification can be used such as refer(43) or link(43) where these functions pre-process and 

extract the conclusions from the given classification (in this case RuleNode 43) as required, 

and display the conclusions according to the above table. 

Note that this referral mechanism can also be used for arbitrarily referred to classifications 

across the rule tree.  In other words, the conclusions for a RuleNode can refer to any other 

RuleNode in the system with the refer() and/or link() function. 

The behavior of the refer() and link() functions for conclusions depends upon the particular 

implementation.  Behaviors may also be defined by system and user specific configurations. 

13.6.2 Copying the Details from Arbitrary RuleNodes 

It can be seen in Figure 5 on page 52 that RuleNodes 4 and 5 are variations on the same theme 

– both conclusions recommend an upgrade with a software patch.  Therefore, if RuleNode 4 

was allowed the additional conclusion for example, “refer to the upgrade procedure document 

available at: http://myintranet/upgrade.pdf” where the latter text string is an Internet URI that 

the viewer can click on to be directed to the relevant document in their web browser, then it 

would be of benefit to allow a user creating RuleNode 5 to indicate that it is a variation on the 
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theme of RuleNode 4 so that when RuleNode 5 is created, the user can simply edit and 

modify the text provided at RuleNode 4, and apply it to RuleNode 5. 

When a user is constructing a new RuleNode, a request can be made to copy the details from 

another RuleNode.  In that case, the other RuleNode’s rule and / or conclusions and 

conclusion types are copied to the view where the new RuleNode is being constructed, and 

the user can edit them to form the new RuleNode. 

13.7 MCRDR and Ontology 

Ontologies were previously discussed in section 3.4 (page 34) and have previously been 

discussed in the context of RDR for example by (Suryanto and Compton, 2001) and 

(Beydoun et. al, 2005). 

Ontologies are typically built top-down by creating classifications from top-of-the-head 

expert knowledge.  Farquhar et al. (1995a) have previously highlighted the opportunity to use 

context logic to integrate ontology data from different sources.  Following this line of 

reasoning, an agent-driven 7Cs approach could be used to discover domain specific 

ontologies from the bottom-up, on the basis of cases seen, as well as using top-down 

background knowledge.  As with RDR approaches in general, the 7Cs approach allows a 

mental map to be formed from the Assertional case or instance-based A-box to the abstracted 

terminological T-box in a manner that concludes which meronyms are contained by classes, 

and the relationships between classes in the system (Baader and Sattler, 2000) (Baader and 

Nutt, 2003). 

At some point in the future the best features of manual KA and inductive machine-learning 

approaches could be possibly be combined to extract ontologies, for example from natural 

language text.  Table 25 has been reproduced from Maedche and Staab (2001, Table 1) and 

demonstrates some current approaches to ontology learning. 
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Table 25: Classification of Ontology Learning Approaches 

 

Reproduced from Maedche and Staab (2001, Table 1) 

with the kind permission of Steffen Staab. 

 

In the MCRDR implementation of PEIRS, Edwards noted that the generation of invalid 

combinations of RuleNodes and hence interpretations was a significant issue, and that there 

was no mechanism for preventing invalid RuleNode combinations from occurring (Edwards, 

1996, 1996).  In future embodiments of the system, the user could identify class 

relationships like those used ontology, for example in the RDF/OWL specifications.  As 

suggested by Hakimpour et al. (2001, section 4) descriptive logics (DLs) could be used to 

check the consistency of definitions and reduce semantic conflicts.   More specifically, DLs 

could be used to suggest opportunities to combine RuleNodes where synonyms are used; 

detect opportunities to merge parts of the Rule Mesh when homonyms or hypernyms are 

implied; and infer conflict when attempts are made to combine RuleNodes with antonym 

classifications or conclusions189.  In Appendix R, some of the class relationships that could be 

managed are outlined, and an example is provided that demonstrates how this information 

could be represented. 

                                                 

189   Note that at this stage I have excluded the paronym, metonymy, and exocentric semantic forms, because 

they don't appear to be as relevant as the forms outlined in this section.  I have also left out coordinate terms 

(sibling classifications that share the same generalised parent). 
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13.8 Prudence 

Preece and Shinghal have previously characterised anomalies as redundant knowledge, 

contradictory knowledge (ambivalence), circularity, and missing knowledge (deficiency) 

(Preece and Shinghal, 1994, p3 and Figure 1 on p8).  They found that: “despite the best efforts 

of their developers, real-world KBS often contain anomalies, sometimes in surprisingly large 

numbers.  Furthermore, where anomalies are present, they frequently correspond to errors in 

the KB”, (Preece and Shinghal, 1994, p15 and Table 3).  In conclusion they.found that 

“integrity checks inexpensively reveal anomalies in KBs, which have a high likelihood of 

indicating errors” (Preece and Shinghal, 1994, p17). 

Further to this, Edwards conjectured that expert systems should recognise the limits of their 

knowledge and experience, and seek assistance from others when faced with uncertainty 

(Edwards, 1996, p199).  Edwards (1996) advocated that error in KBSs should be predicted 

and actively managed (p197) and as a result of his experience with PEIRS, he introduced the 

concept of prudence in RDR systems (pp i, vi, 198, 211).  To evaluate the utility of Prudence, 

he built a new expert system for the PEIRS data, based on the aforementioned TC-RDR shell 

(section 4.4.6, page 62). 

Since FastFIX is able to track multiple cases at each RuleNode it easily lends itself to the 

implementation of the Feature Exception Prudence (FEP), Conclusions Prudence (CP), and 

Feature Recognition Prudence (FRP) features outlined by Edwards and described below.   

These features could be incorporated, along with the novel Functional Exception Prudence 

feature proposed below. 

As noted by Edwards (1996, p217) some flagged features will be supported by certain 

conclusions and irrelevant to others (p217).  To avoid information overload in the context 

profiles, he suggests updating the context profile at RuleNodes to note which features may be 

relevant in detecting FEP and CP at that RuleNode.  Therefore the user should be able to filter 

out the irrelevant FEP and CP flags at each RuleNode, as well as filter out the irrelevant 

Functional Exception Prudence flags proposed here. 

As noted in section 4.4.7 (page 63) later work on Prudence was conducted by Dazeley and 

Kang.  However, the shared child RuleNode structure proposed earlier in the 7Cs model, and 

the idea of approving RuleNodes in Appendix O.5 (page 456), provides a viable alternative to 

the rated MCRDR approach. 
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13.8.1 Feature Exception Prudence 

Feature Exception Prudence (FEP) (Edwards, 1996, pp 199-200) refers to the ability of the 

expert system to recognise data in cases that are outside of its experience in a particular 

context, and warn the user of possible errors in the interpretation.  While rule conditions 

represent the required features for an interpretation, Edwards recognised that other data in an 

expert validated case constitutes the permissible features.  He proposed that context-specific 

profiles be built at each RuleNode noting the permissible case features for that RuleNode.  In 

acknowledgement that conventional MCRDR systems result in identical conclusions being 

redundantly represented across the knowledge base, his data presented context-specific 

profiles for each unique conclusion, rather than each unique RuleNode (pp 202 - 205). 

In FEP, every time a new case evaluates to a given conclusion, the case is compared against 

the context profile of permissible features for that conclusion, and the user is warned of any 

unusual features in the case compared to the experience of cases thus far at that conclusion.   

Warning could be presented in the form of an out-of-range value, graphically, or statistically, 

for example in terms of standard deviations from the mean (p214).  As more cases are seen, 

and the system learns from the cases that it interprets, the context profile at each conclusion 

can be deliberately widened by the expert updating the system.  Merging of identical 

classifications in the proposed 7Cs system using the shared child RuleNode data structure 

(section 13.4, page 245) would allow FEP to be implemented on the basis of RuleNodes, 

rather than conclusions.  The FEP profile at each RuleNode would be matured by using cases 

that are live and/or already registered for the RuleNode. 

In his study of FEP with a subset of the PEIRS data and his early LabWizard TCRDR 

implementation, Edwards showed that of the 53% of the 995 cases interpreted 100% were 

correctly interpreted.  He suggests that reports generating no FEP flags might therefore be 

exempted from human validation (Edwards, 1996, p211).  This assumes that all the relevant 

case data has in fact been codified and included in the case, and that the system has a suitable 

way of comparing the similarity and difference between the possible values of case attributes.  

In the examples provided, only numeric attributes with values falling into known ranges are 

subjected to FEP (p204). 
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13.8.2 Functional Exception Prudence 

It may be worthwhile evaluating the functions used at RuleNodes elsewhere in the knowledge 

base for the cases that are live for a given RuleNode, in order to determine the similarity and 

differences between possible values of the case attributes, and hence the novelty of A-V 

combinations from the KBS’s perspective.  This need is similar to the need to display the 

results of function calls in the difference lists of attributes.  This would be particularly helpful 

for free text fields for example where grep() and/or locate() style functions apply. 

13.8.3 Conclusions Prudence 

Conclusions Prudence (CP) (Edwards, 1996, p218) refers to the novel presence or absence of 

other live RuleNodes for the case in question.  It is very easy to implement, and would 

provide a subset of the more comprehensive functional exception prudence test suite proposed 

in the previous section.  It only tests for the evaluation of functions in RuleNodes that are 

reachable by the case under review. 

13.8.4 Feature Recognition Prudence 

Feature Recognition Prudence (FRP) (Edwards, 1996, pp 207-208) refers to the ability of the 

expert system to recognise duplicate conclusions and hence duplicate RuleNodes in the 

knowledge base, and evaluate the present case against the child RuleNodes of the duplicated 

RuleNode to determine whether it would fetch an alternate conclusion. 

Edwards notes that of the 1610 PEIRS cases evaluated by the TCRDR-based LabWizard tool 

that he developed to evaluate his proposed Prudence features, FRP found possible 

interpretations for 8 cases and 7 of the 8 alternate interpretations were found to be correct 

(p207). 

Merging of RuleNodes with identical classifications and/or conclusions in the proposed 7Cs 

system using the shared child RuleNode data structure would achieve the same result as FRP, 

without any additional effort. 

13.9 Chapter Summary 

In summary, this chapter has proposed a number of design enhancements including: 

• A reciprocal view of case acceptance and rejection within the RuleNode view; 

• A mechanism for merging RuleNodes or rolling them up with the use of a SuperNode; 
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• A shared child RuleNode data structure that allows multiple paths through a decision 

mesh to arrive at the same RuleNode; 

• A richer use of classification labels and ontological concepts throughout the decision 

mesh data structure; and 

• The introduction of Functional Exception Prudence and other prudence features. 

It is believed that these features will be important in ensuring the future applicability, 

robustness, effectiveness, scalability and efficiency of the FastFIX knowledge acquisition 

engine across a wide variety of problem domains. 

The next chapter presents the summary and conclusions for the thesis as a whole. 
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CHAPTER 14: SUMMARY AND CONCLUSIONS 

14.1 Chapter Outline 

The first part of this chapter provides a summary of the body of this thesis.  Following this, 

the main outcomes of the thesis are recalled, and relevant caveats are presented.  The thesis 

concludes with some suggestions for future work. 

14.2 Thesis Summary 

Recalling from section 1.3 (page 3) that the aim of the research was to develop a knowledge 

acquisition approach to facilitate the capture and recall of problem solving knowledge in a 

dynamic multi-user knowledge environment using the HTG support centre as a case study, the 

questions addressed by this research were presented in section 1.4 (page 4) and pertained to 1. 

the nature of the trouble-shooting task; 2. problems with existing approaches to information 

recall and knowledge management; 3. existing software approaches to collaboration; 4. the 

changes required to adapt MCRDR to a dynamic and collaborative problem domain; 5. the 

stochastic nature of case-driven KA and a comparison with rule-driven KA; and 6. the 

motivations behind a hybrid case-based and rule-based KA approach. This aim and these 

research questions were addressed in the body of the thesis, as summarised in the remainder 

of this subsection. 

In Chapter 2 (page 13) and Appendix A (page 305), the support centre interviews and survey 

at HTG revealed that the trouble-shooting process could involve complex problems, requiring 

a wide span of experience and knowledge from multiple different and global sources. Tacit 

knowledge seldom shared within the trouble-shooting group included: problem determination, 

where-to-search and what-to-search-for knowledge.  It was found that troubleshooting 

involves a case-configuration-classification-conclusion cycle (section 2.5.3 on page 26).  As 

well, it was found that significant organisational inertia was locked up in the existing case-

tracking and solution-reporting systems at HTG, particularly in regard to culture, training, 

metrics and management reporting (section 2.4.1, page 17).  As a result of the interviews and 

survey at HTG, a large number of system and software requirements were identified (section 

2.6 on page 27, and Appendix C on page 390).  Although it was beyond the scope of this 

thesis to satisfy all of these requirements and to thoroughly test that the requirements had 

been met, the requirements analysis was used to guide the design of the proposed 7Cs system.  
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One of the benefits of the proposed 7Cs software architecture is that through the use of URI-

style hyperlinks, it can act as a very lightweight information broker that sits in-between 

legacy case and solution tracking systems, without requiring any modification to these 

databases or any major modification to an organisation’s existing workflow. 

In Chapter 3 (page 30) we learnt why popular search algorithms don’t work on data like that 

observed in the HTG dial-home problem domain.  We found that anchor text and hence 

tagging is an important asset to search engines in solving the findability problem.  

Folksomonies show us that it is possible to create a KBS that relies on some form of article 

tagging by users, and the frequency or popularity of those tags, to increase the findability of 

knowledge for both individuals, and groups.  As well, Wikipedia teaches us that it is possible 

to create a KBS that lets multiple users continuously contribute to the best of their knowledge, 

so that the best knowledge of all users is the one that persists. 

Chapter 4 (page 40) provided a review of conventional RDR systems.  Some past RDR 

implementations and variations to the RDR theme were discussed. 

In Chapter 5 (page 64), the importance of seeking input from multiple experts when 

attempting to elicit knowledge about a domain was discussed.  It was concluded that if we 

allow multiple experts to collaborate in the knowledge acquisition task and resolve their 

classification conflicts via an expanded MCRDR paradigm, then we may be able to get the 

benefits of a Wikipedia-style collaborative KA forum.  A solution could be developed that is 

analogous to the Folksomony idea where multiple users tag solutions with lexical symbols 

meaningful to both themselves and their colleagues.  In a multi-expert MCRDR paradigm, the 

tags or anchor text would be comprised of the case-oriented conditions or rules that examine 

the attributes of incoming cases and specify when a particular solution should apply to a 

particular class of case.  Such a solution would parallel the anchor text phenomenon exploited 

by search engines, where multiple unrelated webmasters inadvertently tag links to common 

websites with lexical symbols that correlate with the symbols applied by arbitrary users when 

attempting to recall that website using a popular search engine.  The end result would be a 

case-driven collaborative classification system that could be used to index solutions so that 

they could be easily rediscovered when exemplar cases for known problem classes arrive. 

In Chapter 6 (page 79), the idea of tracking the live versus registered case-RuleNode 

associations in MCRDR was presented.  This would allow the impact of case drop-downs in a 
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dynamic and multi-user MCRDR environment to be optionally tracked, and any knowledge 

discrepancies optionally resolved by users at their discretion and at their convenience.  The 

delayed validation and verification mechanism proposed by this research allows both top-

down rule-driven and bottom-up case-driven changes to be made to the knowledge base in a 

way that promotes a context-specific negotiation of changes to take place using real examples 

of affected cases, at a time that best suits the users.  The RDR benefits of capturing relative 

knowledge, in context are retained, while greater flexibility is offered to users in the manner 

in which they choose to contribute their knowledge (top-down versus bottom-up), what types 

of case-RuleNode associations they wish to track (Appendix O.4, page 454) and the time at 

which they choose to resolve any knowledge inconsistencies.  Review of social aspects of the 

PEIRS experience in section 4.3.1.2 on page 48 highlighted the important of achieving local 

concordance with domain experts.  Importantly, Edwards noted that improving the users’ 

control over and understanding of the system would facilitate its uptake into routine practice 

(Edwards, 1996, pp 229, 231, 244 - 246).  As mentioned in section 8.4 (page 158), validation 

and verification can be further supported through the notion of approved RuleNodes as 

described later in Appendix O.5 (page 456). 

In Chapter 7 (page 92) a mathematical model was provided for case-driven and rule-driven 

KA that showed that the probabilistically expected trajectory for case-driven KA is comprised 

of a monotonically increasing and rapidly slowing KA curve.  Formulas were derived and 

discussed for single and multiple classification scenarios, for domains with classes that occur 

with different frequencies, and for domains where multiple parties are transferring the 

knowledge.  The model offers important predictions for the knowledge acquisition curves 

seen in previous SCRDR and MCRDR machine learning trials, as well as the tag acquisition 

curves observed in Folksomonies and other collaborative tagging systems.  Reciprocal 

formulas were derived for the expected number of cases needed to acquire a certain number of 

classes, and the expected number of classes that would be acquired after a given number of 

cases has been seen. 

Chapter 8 (page 133) explained how RDR systems and expert systems in general might 

require a significant amount of Knowledge Engineering expertise, depending on the target 

problem domain.  Based on the availability of ground rules and background knowledge; the 

real nature of classification errors; the cost of correcting errors and the performance 

requirements of real-time interactive systems, the analysis in Chapter 8 called for a hybrid 
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Case And Rule-Driven (C.A.R.D.) approach to knowledge acquisition.  A hybrid approach 

can be used to prevent errors before they occur, minimise the cost of correcting errors, and 

enhance the overall performance of the system. 

The top level design of the proposed 7Cs system was presented in Chapter 9 (page 161), 

comprising the Collaborative Classification and Configuration of a stream of incoming Cases 

via a relational structure of ConditionNodes, Classes and Conclusions (hence 7Cs).  Key 

features included the idea of a decision mesh with shared child RuleNodes, rather than just a 

decision tree; multiple labelled classifications per RuleNode; multiple conclusions per 

RuleNode; and multiple experts collaboratively updating the knowledge.   

In Chapter 10 (page 169), the dial-home problem context was discussed and a sample 

CaseDB case was presented (Appendix B, page 387).  The problem context demonstrated a 

domain that did not lend itself to the plain text keyword search algorithms implemented by 

popular search engines; or to the easy application of data mining or machine learning 

techniques.  Rather it was a domain with a high volume of repetitive incoming problems that 

lent themselves to manual indexing via user-defined indexing functions. 

The 7Cs and FastFIX design core was presented in Chapter 11 (page 176) and the FastFIX 

Prototype shell was introduced in Appendix M (page 424).   

Chapter 12 (page 223) summarised the results of the FastFIX software trial.  It was found that 

the 7Cs system was effective at promoting conflict resolution and hence knowledge 

acquisition by communicating to colleagues when changes to the knowledge base occurred 

that might affect areas of the knowledge base that they had been working on.   

Finally, Chapter 13 (page 242) proposed some design enhancements for the 7Cs system and 

Appendix O (page 451) presented some implementation enhancements.   

14.3 Claims and Caveats 

In the three subsections that follow, each of the main outcomes of the thesis is recalled, and 

the relevant caveats are revisited. 

14.3.1 The Nature of Trouble-shooting 

The outcomes of this thesis were summarised and presented in section 1.6 (page 7).  The first 

of these outcomes was as follows: 
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1. A review of the trouble-shooting environment at HTG, showing that trouble-shooting 

know-how includes the ability to configure (i.e. work-up) a case, classify it, and locate 

its relevant solution. 

Some caveats and explanations should surround this claim.  Although the interviews and 

survey presented in Chapter 2 and Appendix A were as comprehensive as time would allow, 

this thesis represents just one small case study in the enormous, complex and much studied 

support centre space, not to mention the related and broader areas of Artificial Intelligence 

(AI), Knowledge Management (KM), Information Systems (IS), troubleshooting, 

collaborative configuration, and collaborative classification in general. 

Intuitively the reported case-configuration-classification-conclusion cycle makes sense.  But 

there are many problems with trying to take heuristic knowledge (in a structured, semi-

structured, or natural language form) from multiple different experts and trying to codify it in 

a discrete computer-storable representation190 that makes sense to multiple different users 

with multiple different cultural, dialectic and experiential paradigms, and multiple and 

sometimes conflicting needs, including different priorities and timeframes.   

As noted by (Beydoun et. al, 2005, p52) and in section 7.2.6 (page 118), the performance of 

the KBS depends on there being frequent exemplars of common classes.  Hence the 

economies of scale necessary for system success will only be reached if the encoded rules act 

on the incoming cases in a manner that causes those incoming cases to be accurately clustered 

in volume into a much smaller number of repetitively represented classes.  Further to this, 

depending on the type of problem domain, the brittleness problem attributed to conventional 

expert systems and referred to previously (section 3.5.1 on page 36) still applies.  As Dazeley 

and Kang note (2004): “it is next to impossible to include all the required knowledge to 

completely eradicate the inherent brittleness of these systems”.  As well, the necessary 

attribute and function lists must be comprehensible and manageable by the users.  The 7Cs 

and indeed the MCRDR knowledge acquisition and classification strategies will only succeed 

if the encoding benefit exceeds the actual cost of codification. 

An initial requirements analysis was presented in section 2.6 (page 27) and further 

requirements were listed in Appendix C (page 390).  Further to these requirements, and as 
                                                 

190 Recall the discussion of analogue versus digital knowledge in Appendix E (page 404). 
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with any expert system, the system needs to be compelling so that users keep adding to and 

refining the knowledge.  The resultant classifications and conclusions presented need to be 

accurate and relevant and the suggested solutions need to solve the target problem.  Any new 

system has to be compelling enough to overcome the significant organisational inertia that is 

locked up in incumbent systems and processes within an organisation (previously discussed in 

section 2.4.1, page 17).  Beydoun et. al (2007) recall Forsberg’s (Forsberg et. al, 2001) 

characterisation of design issues for social software navigation systems, namely that they 

require integration, that a variety of users need to actually use the system, and that users need 

to be able to trust the information provided by the system (Beydoun et. al, 2007, p3, p11).  As 

Dazeley et. al (2004) note, when a system is queried beyond its capabilities and it returns 

wrong information, it can cause users to “lose faith in the computer’s ability to give an 

accurate and meaningful conclusion”.  Validation, verification and completeness are therefore 

important usability issues. 

14.3.2 Modelling Knowledge Acquisition 

The second thesis outcome presented in section 1.6 (page 7) was as follows: 

2. The derivation of a stochastic model that explains and provides predictive formulas for 

Case-driven Knowledge Acquisition as in Single Classification Ripple Down Rules 

(SCRDR) systems, Multiple Classification Ripple Down Rules (MCRDR) systems, 

and Collaborative Tagging Systems such as Folksomonies. 

One caveat that should apply to the analysis in Chapter 7 surrounds the nature of knowledge 

itself.  Although the term “Knowledge Acquisition” has been used extensively in this thesis, 

and some discussion was presented in Appendix E (page 404) and in section 7.2.3 (page 97), 

the knowledge being acquired in the presented mathematical model was greatly simplified.  

Only the acquisition of new classifications was considered.  The acquisition of knowledge 

about inter-relationships between the classes was not discussed.  For heavily inter-related 

problem domains, such as word tokens in human language, the ability to acquire knowledge 

about the inter-relationships191 between classes will obviously increase as the acquired 

number of classes increases.  Further examples of this were provided in section 7.2.11 (page 

                                                 

191 The increased KA complexity for domains where class inter-relationships need to be acquired was noted in 

point 11 of section 8.2.7 on page 139. 
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123).  In these types of domain, the case-driven rate of knowledge acquisition could increase 

over time rather than decline. 

Another caveat that applies to the stochastic case-driven KA model relates to whether the 

transferred knowledge is sticky (see section 7.2.8 on page 122) i.e. that once it has been 

transferred and received it is also stored and the KA process will not work to deplete it.  Yet 

another caveat relates to whether the transferred knowledge is true, false or speculative (see 

Appendix Q, page 473).  Obviously incorrect knowledge should result in subsequent KA 

activities to correct the knowledge.   

As well, and as discussed in section 5.2 (page 66), users can have different needs for the 

acquired knowledge and those needs typically change over time.  As discussed in section 

11.7.2 (page 211), the separation of live and registered case-RuleNode associations in the 

proposed 7Cs system was a key part of being able to resolve classification conflicts between 

multiple experts, and between what a single expert thinks today, as compared with tomorrow 

(Gaines, 1993).  As discussed in section 7.2.11 (page 123), the upward drift in the size of the 

classification domain (m) in the case-driven KA curves observed for Folksomony data (Figure 

9, page 96) exemplifies the dynamic nature of knowledge. 

14.3.3 Extracting Knowledge 

The third and final thesis outcome presented in section 1.6 (page 7) was as follows: 

3. A knowledge representation and knowledge acquisition technique known as 7Cs that 

supports the Collaborative  Configuration and Classification of a stream of incoming 

problem Cases via a set of ConditionNodes linked to their Classes and associated 

Conclusions. 

7Cs was designed to allow a group of trouble-shooters to collaboratively configure and 

classify their incoming problem cases, for the most part by asking users to confirm, modify or 

incrementally augment the rule conditions that classify those incoming cases, and by linking 

those problem classes to relevant solutions that they and their peers can rely upon when repeat 

exemplar cases are received.  The proposed 7Cs collaborative-indexing system enables 

trouble-shooters to share the questions that they ask themselves when classifying incoming 

problems, and thereby assist themselves and their peers in configuring or working-up their 

incoming cases.  7Cs acts like an organisational memory, allowing a group of trouble-
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shooters to share their solutions and continuously refine the quality, relevance, and 

consistency of solutions offered. 

One caveat that should apply to the proposed 7Cs approach is that the problem domain must 

be suited to a classification-based KA approach. As previously discussed (section 8.2.7, page 

138), apart from the experience, capability and capacity of users, the size and complexity of 

the knowledge engineering and hence knowledge acquisition task is domain dependent, even 

for MCRDR and hence 7Cs systems.  As well, in the construction of the FastFIX trial, it took 

2-3 weeks to develop a suitable locate() function to help provide structure to the only partially 

structured case data (section 12.3, page 225).  In some domains, it may not be possible to 

derive suitable higher-level functions to differentiate the cases.  The number of attributes 

required to model the domain might be enormous, and the aforementioned problems 

associated with data mining and machine learning would apply (see Appendix D.8 on page 

403 and section 3.2 on page 31). 

The types of knowledge domains where 7Cs might apply was previously described in section 

9.5 (page 166) and includes high-volume, complex, repetitive and codifiable knowledge 

domains where users rely on heuristics to form classifications.  If the domain criteria 

summarised in section 9.5 are not met, then the 7Cs solution does not apply. 

Another caveat that should apply relates to the ability of users to collaborate in providing 

sufficient convergence in the set of attributes that model the domain, and in the classes that 

divide the problem space so as to achieve a sufficient level of reuse in the classifications and 

conclusions.  The FastFIX trial was a great start, but much more testing would be required to 

determine whether users on the whole could really work together in modelling and classifying 

a problem domain, and in resolving their inevitable conflicts192.  As discussed in section 8.4 

(page 158), a comparison of voting versus negotiating or other strategies to build consensus 

was left open by the research.   

Further to this, there was relatively little testing of the facility for users to work-up their 

problem cases, and share the questions they ask themselves when classifying problems.  Most 

of the testing surrounded the classification of previously configured cases, rather than cases 

configured on the fly.  As well, important features like the use of shared child RuleNodes and 
                                                 

192 Thanks to Debbie Richards (personal communication, 2006) for highlighting this caveat. 
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the facility to track and untrack cases remains as future work.  Obviously much more trialling, 

testing and refinement would be required to convert the 7Cs approach and / or FastFIX 

prototype into a production and / or commercial system.  In particular, the scalability of the 

system, the practicality of tracking possibly volumes of live versus registered case-RuleNode 

associations, and the implications of delaying the validation and verification of modifications 

to the KBS all require ongoing investigation. 

14.4 Future Work and Thesis Conclusion 

Areas of research left for future work were identified in sections 7.3.4 (page 127) in regard to 

hypothesis testing with the derived case-driven KA model; and in section 8.4 (page 158) in 

regard to testing the domain-dependent size and complexity of the KE and hence the KA task.   

As well, a number of design enhancements to the 7Cs approach were suggested in Chapter 13 

(page 242) and a number of implementation enhancements for FastFIX were suggested in 

Appendix O (commencing on page 451).  It would be great if some of these suggested 

enhancements could be explored in future work. 

In the past, there have been many hybrid KA and ML approaches, for example Gaines and 

Compton proposed the use of the Induct machine-learning algorithm (1995); Ware et al. 

provided a visual approach to support users in a combined KA and machine-learning 

approach (2000); McCreath and Kay proposed a hybrid KA and machine-learning approach 

for managing email (2003); and more recently, Bekmann (2006) combined KA with AI and 

ML techniques in the optimization of channel routes in VLSI design and separately in the 

optimization of traffic light controls (see section 4.4.1, page 60).  Further to this, a possible 

area for further research is to use the 7Cs approach with ML-based autonomous agents in 

place of human users, in order to elicit semantics from text, for example on the web. 

Remaining questions for the support centre are: What is the overall labour and human cost of 

codification in a MCRDR-based KBS? What are the financial and other benefits? Can the 

overall effort be justified?  Obviously these questions can only be answered in the context of 

the target problem domain(s).  It was beyond the scope of this thesis to perform a thorough 

evaluation of these questions for the HTG context.  However as a result of the software trial 

of the proposed system, a very preliminary evaluation was made for the HTG dial-home 

problem domain and a summary was provided (section 12.5 on page 227).   



 Chapter 14: Summary and Conclusions  

Submitted January 27, 2007 276 Case-driven Collaborative Classification 
Revised July 27, 2007  Megan Vazey 

Although much more time and data would be required to perform a thorough assessment of 

the questions arising from this research (in a related example, the PEIRS trial took four 

years), the results of the FastFIX software trial were most encouraging (section 12.14 on page 

240).  After less than a day of collective effort the test team had acquired enough knowledge 

for FastFIX to automatically identify and locate solutions to approximately 90% of problems 

in the selected sub-domain. 

Therefore it is hoped that the research reported in this thesis will provide insights and benefits 

to the acquisition of knowledge in many different trouble-shooting, configuration, and 

classification domains in the future. 

 



 Glossary  

Submitted January 27, 2007 277 Case-driven Collaborative Classification 
Revised July 27, 2007  Megan Vazey 

GLOSSARY 
7Cs A system that supports the Collaborative Classification and 

Configuration of a stream of incoming Cases via a relational structure 

of ConditionNodes, Classes and Conclusions (hence 7Cs) 

Anchor Text  is the text that webmasters use to label their links to others’ websites.  

For example in HTML the anchor reference:  <a 

href=”http://www.lookatme.com.au/here.html”>Look At Me</a> 

applies the anchor text: Look At Me to refer to the website shown.   

ANN Artificial Neural Network 

AI Artificial Intelligence 

Bottom Up The term “bottom-up” knowledge acquisition refers to human users 

adding rules on the basis of a specific case on hand, in a manner that 

does not necessitate the user to peruse the rule tree, for example by 

allowing the user to create new RuleNodes that are relative to existing 

RuleNodes in the system. 

A-V Attribute-Value 

C.A.R.D. Case And Rule Driven 

CBR Case Based Reasoning 

CD Case-driven 

CaseDB HTG’s case tracking tool 

CORAL Case Oriented Rule Acquisition Language 

ConditionNode see RuleNode 

Cornerstone Case A cornerstone case is one that first caused a given RuleNode to be 

created.  From Compton and Jansen (1990): “ The most important 

resource for knowledge maintenance is a data base of "cornerstone 

cases". These are cases which at some stage have required a change in 

the system's knowledge.”  From Richards (1998a, p55) “In single 

classification RDR only one case is associated with each rule. In 
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MCRDR there may be multiple cases that must be distinguished from 

the current case.”  In this thesis, this latter set of cases is referred to as 

a “cornerstone case list”.  See also Table 19 on page 201. 

Cornerstone Case List In MCRDR systems, this is the set of cases comprised of the 

Cornerstone case for a given RuleNode, as well as the cornerstone 

case of each of its dependent RuleNodes.  When the user wishes to 

reject the given RuleNode for a case on hand, the user will be shown 

the cornerstone case list for that parent RuleNode and invited to create 

a new child RuleNode that differentiates from all of the cases in its 

parent node’s cornerstone case list. 

CSI Consortium for Service Innovation 

DCL Dependent Case List 

DFD Data Flow Diagram 

DSS Decision Support System 

DM Data Mining 

DMQL Data Mining Query Language 

Docco An alias for HTG’s internal document management software system 

ES Expert System 

FastFIX  The name of the prototype software developed in this thesis in order to 

trial the 7Cs design concept. 

GDSS Group Decision Support System 

HCI Human Computer Interaction 

HSL HTG’s Hardware Support Lab 

HTG High Tech Global - an alias for the sponsor and target company 

HWversion An alias for the version number of the ProductA hardware 

ICT Information and Communications Technology 

IR Information Retrieval 
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I-RDR Interactive RDR 

IP Intellectual Property 

IS Information Systems 

KA Knowledge Acquisition 

KE Knowledge Engineering 

KBS Knowledge Based System 

KCS Knowledge-Centred Support 

KDD Knowledge Discovery in Databases 

KM Knowledge Management 

KPI Key Performance Indicator 

LCL Live Case List – see section 11.3.1 (page 184) 

LHS Left Hand Side 

LRL Live RuleNode List see section 11.3.1 (page 184) and Table 14 (page 

183) 

MCRDR Multiple Classification Ripple Down Rules 

ML Machine Learning 

NN Neural Network 

N-RDR Nested RDR 

OLAP On-line Analytical Processing 

OO Object Oriented 

PG1 HTG’s Product Group 1 

PG2 HTG’s Product Group 2 

PKS Pacific Knowledge Systems 

SolutionDB HTG’s solution tracking tool 

SWversion An alias for the version number of HTG’s ProductA software 
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ProductA An alias for one of HTG’s products 

ProductB An alias for another one of HTG’s products 

RCL Registered Case List – see section 11.3.2 (page 185) 

RHS Right Hand Side 

RRL Registered RuleNode List – see section 11.3.2 (page 185) and Table 

14 (page 183) 

RD Rule-driven 

RDR Ripple Down Rules 

R-RDR Recursive RDR 

RuleNode A node in a decision tree comprising of rule conditions, and optionally 

representing one or more classifications and conclusions.  In the 7Cs 

system, a RuleNode is also referred to as a ConditionNode. 

SCRDR Single Classification Ripple Down Rules 

SelfServeWeb An alias for HTG’s self-serve support website for customers 

SolverDB An alias for the solution tracking tool used by HTG’s Engineering 

group. 

Top-Down The term “top-down” knowledge acquisition refers to the process of 

human users adding rules directly to a rule tree, without needing to 

refer to cases. 

Trouble-shooting Solving Problems i.e. eliminating trouble 

TS1 HTG’s Technical Support Level 1 Group 

TS2 HTG’s Technical Support Level 2 Group 

URI Uniform Resource Identifier 
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