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Abstract

Decision-making is an integral part of everyday life for animals of all spe-

cies. Some decisions are rapid and based on sensory input alone, others rely

on factors such as context and internal motivation. The possibilities for the

experimental investigation of choice behaviour in mammals, especially in hu-

mans, are seemingly endless. However, neuroscience has struggled to define the

neural circuitry behind decision-making processes due to the complex struc-

ture of the mammalian brain.

For this work we turn to the honeybee for inspiration. With a brain com-

posed of approximately 106 neurons and sized at a tiny 1mm3, it may be

assumed that such an insect produces mere ‘programmed’ behaviours, yet,

the honeybee exhibits a rich, elaborate behavioural repertoire and a large ca-

pacity for learning in a variety of different paradigms. Indeed, the honeybee

has been identified as a powerful model for decision-making.

Sequential sampling models, originating in psychology, have been used to

explain rapid decision-making behaviours. Such models assume that noisy

sensory evidence is integrated over time until a threshold is reached, whereby

a decision is made. These models have proven popular because they are able

to fit biological data and are furthermore supported by neural evidence. Addi-

tionally, they explain the speed-accuracy trade-off, a behavioural phenomenon

also demonstrated in bees.

For this work we examine honeybee choice behaviour in different levels

of satiation, and show that hungry bees are faster and less accurate than

partially satiated bees in a simple choice task. We suggest that differences in



choice behaviour may be attributed to a simple mechanism which alters the

level of the decision threshold according to how satiated the bee is. We further

speculate that the honeybee olfactory system may be a drift-diffusion channel,

and develop a simple computational model, based on honeybee neurobiology,

with simulations that match behavioural results.
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Chapter 1

Introduction

This research aims to unite computational modelling with biological experi-

mentation to examine decision-making in perceptual choice tasks, emphasising

the importance of the widely applicable ‘accumulator’ models of decision-

making and their contributions to understanding choice behaviours. To this

end, the study examines the role of inhibitory circuits within these models

and the impact they have upon decision processes. Additionally, it also exam-

ines the influence of satiation on perceptual decision-making with respect to

the mechanisms of the aforementioned accumulator models. The results here

bring together computational neuroscience with biology and will hopefully

encourage future studies to do the same.

Decision-making has been well studied behaviourally in a wide variety of

different animals and contexts. All animals need to make decisions in their

day-to-day lives and some of these will be inherently more complex than oth-

ers. For example, a foraging animal must continually decide where to search

for food and how to carry out this process efficiently, such that the costs in-

curred are minimised (Marshall et al. 2015). This type of decision-making

often requires discrimination between alternative options. For example, a

foraging bee will need to discriminate between a rewarding flower and the

alternatives which are similar in colour or odour (Dyer and Chittka 2004a).

Foraging is one example which is shared across species, however, other levels
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Introduction

of decision-making can also be observed. This becomes particularly appar-

ent in human choice behaviour. When instructed to analyse a photograph, a

human will explore differing methods of gathering visual data, implementing

eye saccades in a manner which optimises the analysis (Walker-Smith et al.

2013). For example, asking someone to estimate a subject’s age from a pho-

tograph will invoke initial eye saccades over the face. Deciding to invest in a

long-term commitment, such as a house, involves a longer and more complex

decision-making process, in which emotions and past experiences play a role.

Regardless of the complexity, however, it can be asserted that decision-making

is indeed a process. In ‘Multiple Criteria Decision Making’, Milan Zeleny de-

scribed the process as a ‘dynamic and interrelated unity of predecision, decision

and postdecision stages’ (Zeleny 1998, p. 84), identifying that decision-making

is not simply an act nor is it static nor absolute. Indeed, choice behaviour is

heavily influenced by multiple internal and external factors, such as internal

state and task difficulty. What kind of components make up the decision-

making process? Are we able to identify them from behavioural data? Can

modelling the decision-making process provide any insight?

Fast, robust decision-making between alternative options has been well

studied in laboratory settings, with a heavy focus on accuracy and response

time (Chittka et al. 2009). This type of decision-making has often been mod-

elled using sequential sampling models, which assume that noisy evidence for a

stimulus is accumulated over time until a threshold or boundary is met (Lam-

ing 1968, Smith and Vickers 1988, Usher and McClelland 2001, Ratcliff and

Smith 2004, Bogacz et al. 2006, Ratcliff and McKoon 2008, Brown and Heath-

cote 2008, Purcell and Palmeri 2017). The level of the threshold is variable

and denotes the amount of evidence that is required to trigger a decision. Al-

though there are now many variations of these models which employ different

mechanisms (for example, various forms of inhibition), perhaps the most-well

known of these is the drift-diffusion model, which was developed in 1978 by

Roger Ratcliff and has been proven to be optimal in the sense that, for a

2
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given accuracy, a decision is reached within the shortest possible time and,

for a given reaction time, the highest possible accuracy is obtained (Ratcliff

1978). Differing choice behaviours can be induced by varying the components

of sequential sampling models, in particular, a mediation of the threshold de-

notes how long a decision-maker should wait before deciding. A low threshold

corresponds to a fast decision which is more likely to be inaccurate due to an

insufficient amount of evidence being integrated, whilst a high threshold allows

for more time for evidence integration, thus the decision-maker will be slower

but more accurate (Bogacz et al. 2010b). This relationship between speed and

accuracy is known as the speed-accuracy trade -off and it is a behavioural phe-

nomenon which has been shown to exist in many animals (Chittka et al. 2009).

Modification of sequential sampling models’ properties such as the threshold

level has been shown to replicate findings from the speed- accuracy trade-

off. As such, these models offer an explanation for certain choice behaviours.

As well as the threshold level, the drift-diffusion model also incorporates the

average rate of accumulation, also known as the drift rate, into the process.

Sequential sampling models have been successfully fitted to behavioural data

obtained from two-alternative forced-choice tasks and so they have seen a rise

in popularity (Ratcliff et al. 2016). It is important to note that these models

are applicable only to fast, perceptual decision-making. Other types of de-

cisions, such as which candidate to vote for in an election, are higher level

and inherently more complex, engaging other mechanisms within the brain to

facilitate consideration over some time (Kanai et al. 2011, Jost et al. 2014).

It might be suggested that the complexity of decision-making and action

selection is attributed to the complexity of an agent’s neural network, but this

is not always the case. A human must innately decide which foot to walk with

first in a similar fashion to a quadruped. However, simpler agents may be

confined to simpler decisions, whilst more complex agents encounter decisions

that require more internal debate. How exactly a process is carried out within

the brain is difficult to pinpoint, due to the inherently intricate design of neural
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circuitry. It is here we might be drawn to study the simpler organisms, the

nematode worm C. elegans for example, with a nervous system consisting of

only 302 or 381 neurons (depending on if the worm is hermaphrodite or male,

respectively) (Bono and Villu Maricq 2005). The connectome (the map or

diagram of the neural connections within the nervous system) of C. elegans was

first completed in 1986 (White et al. 1986), thereafter being studied and built

upon to produce a more complete picture. Analysis of the wiring diagrams

led to the realisation that, functionally, neuronal circuits are dynamic and

subject to change due to the influence of neuromodulators such as dopamine

or serotonin (Bargmann 2012). In addition to C. elegans, other systems such as

that of Drosophila have been examined extensively. For this work, inspiration

is drawn from Apis mellifera, the honeybee.

Honeybees have been shown to have a rich behavioural repertoire with a

robust capacity for learning and memory. They have a remarkable ability to

navigate long distances with a low resolution visual system, and they are able

to solve discrimination problems of varying difficulties (Guerrieri et al. 2005).

Recently, it has become clear that this insect exhibits behaviours widely re-

garded as cognitive (for example, the ability to learn two abstract concepts

simultaneously (Avarguès-Weber et al. 2012)) and that it may be useful as

a model of decision-making (Menzel 2012, Giurfa 2013). The honeybee has

a relatively simple neural architecture, with simplicity here being defined in

terms of number of neurons. With a brain 1mm3 in size that contains one mil-

lion neurons (Menzel and Giurfa 2001), honeybee neural circuitry is thus far

simpler than that found in mammalian brains (there are approximately 1010

neurons in human brains, for example) but more complex than other model an-

imals such as Drosophila (which has 100, 000 neurons). Since the honeybee has

been physically constrained in terms of its body size, it has needed to survive

with a smaller brain (and thus a smaller number of neurons). Despite this

limitation, the honeybee demonstrates a high capacity for decision-making;

it has evolved to be ‘intelligent’ using a smaller amount of neural circuitry,
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giving rise to adaptive decision-making behaviours which have ensured its sur-

vival. Many behavioural studies have been performed with honeybees, both

in the field and within laboratory settings, and they have demonstrated that

honeybees are capable of many forms of learning and are able to apply their

knowledge to novel stimuli or situations (Zhang et al. 2012b). For example,

bees that were trained to learn the concepts of ‘sameness’ and ‘difference’ were

able to apply their knowledge to novel stimuli that hadn’t been presented be-

fore, even outside of the sensory domain they had been trained on (Giurfa

et al. 2001). Bees that had been trained on colours were able to perform in

transfer tests which made use of black and white gratings, and bees trained

on the gratings were also able to perform in tests which instead made use of

colours. In a study on maze learning, bees trained to follow certain colours

through a maze were able to apply their training to novel mazes they hadn’t

navigated through before (Zhang et al. 1996). These results demonstrate that

honeybees are not simply hard-wired or preprogramed. Its ability to survive

despite its simplicity is what makes this insect ideal as a model of decision-

making; that these insects also contribute to collective decisions within the

hive makes them even more interesting for study.

Over the past few decades, there have been many turning points in honey-

bee research. The pioneering work of Karl von Frisch in the 20th century was

perhaps the first of these turning points. In 1946, von Frisch published ‘Die

Tänze der Bienen’ which documented how honeybee foragers communicate

the location of resources to other hive mates by means of the now well known

‘waggle dance’ (?). This ground-breaking discovery in honeybee ‘language’

won him the Nobel Prize in 1973. Prior to this, the notion that animals - es-

pecially insects - could be capable of such intricate communication would not

have been entertained. Karl von Frisch’s work shone a much-needed light on

the inner workings of the honeybee hive, demonstrating for the first time the

complexity of the workers within. More recent research has demonstrated that

honeybees make use of other signals for their collective decision-making. One
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example is the stop signal, which was first proposed to be a begging signal by

Harald Esch in 1964 (Esch 1964). After a few decades, research by James Nieh

in 1993 indicated that the signal functioned as a way to halt waggle dancing,

acting as negative feedback (Nieh 1993). This finding was later confirmed in

2005 by Pastor and Seeley; their study also found that the signal encouraged

dancing bees to stop (Pastor and Seeley 2005). To this day research into hon-

eybee communication continues, with many other observed behaviours still

not entirely understood.

Another turning point came from the discovery that honeybees could learn

Pavlovian associations, a significant finding that arose from Kimihisa Takeda’s

development of the ‘proboscis extension reflex’ paradigm in 1961 (Takeda

1961). This paradigm made use of the bee’s natural reflex to extend its pro-

boscis to a rewarding stimulus, such as sucrose solution, and the Pavlovian

conditioning protocol (Pavlov 1927). It was further solidified by an influential

paper by Bitterman and colleagues in 1983 (Bitterman et al. 1983), and the

success of the paradigm resulted in many laboratories using it to address a wide

range of questions (Giurfa and Sandoz 2012). More complex forms of learning

in bees were starting to be discovered in the early 2000’s, a notable study

being that of Giurfa and colleagues in 2001 which demonstrated that bees

are capable of learning abstract properties such as ‘sameness’ and ‘difference’

(Giurfa et al. 2001). The study made use of the delayed-matching-to-sample

task where bees were required to respond to a stimulus which matched the

one shown on the entrance to a maze, and also the delayed-non-matching-to-

sample task where bees were required to choose a stimulus which didn’t match

the one shown. After training, honeybees were shown to transfer what they

had learnt to novel stimuli, indicating learning of the concept itself.

It was once assumed that there were great differences between the ver-

tebrate and invertebrate species, such that insects were inherently useless for

investigating any aspect of mammalian cognition. However, this assumption

began to lose its strength when behavioural studies on honeybees began to
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reveal surprising insights about their nature, noted by James Gould, an evol-

utionary biologist of Princeton University, in the late 1990’s: ‘This picture

has changed over the past decade; honey bees, at least, turn out to be more

like birds and mammals...’ (Gould 1986). More recently, it has been suggested

that the insect central complex and mammalian basal ganglia are homologous,

sharing evolutionary ancestry that results in similar topography and function

within those brain regions (Strausfeld and Hirth 2013). Although a somewhat

controversial claim, research is nonetheless accumulating that points to the

honeybee as being an ideal model for understanding cognition, perhaps cap-

able of crossing the invertebrate border. The honeybee is thus a central theme

throughout this thesis.

1.1 Thesis Structure

The thesis is structured in the following way. Chapter 2 gives a detailed liter-

ature review which aims to introduce the core principles which have driven this

work. Discussed is computational neuroscience and a few sequential sampling

models, honeybee neurobiology and the proboscis extension reflex paradigm,

the role of inhibitory signals in decision-making, and how motivation can im-

pact decision-making behaviours. Following this are three results chapters.

Chapter 3 describes an abstract model of decision-making. More specific-

ally, it is a model of behavioural switching which can be applied to foraging

animals looking to balance their nutritional intake. This balance requires the

decision of whether to consume one specific type of nutrient or another. This

model builds upon an older model of behavioural switching and combines it

with an inhibitory neural mechanism which is well known in computational

neuroscience and has been documented heavily in previous research. The in-

troduction of this mechanism is shown to improve decision-making and assist

the modelled animal in foraging efficiently. The model makes the prediction

that animals should switch between alternatives irregularly if they wish to

reduce the costs they encounter.
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Chapter 4 presents a behavioural experiment using the famous probos-

cis extension reflex paradigm, which was devised to examine how honeybee

decision- making changes according to motivational state. Differences in be-

haviours, reaction times and accuracies are attributed to differences in the

satiation level of the bees. The behavioural data obtained can be described

by the DDM. This model has been applied to humans as well as other mam-

mals; this chapter shows that it can also be applied to honeybees, suggesting

that simple perceptual decisions in invertebrates may be solved by the use of

mechanisms which also exist within the mammalian brain. This is the first

time the drift-diffusion model has been applied within a motivational context.

Chapter 5 describes a new computational model of decision-making which

is based on the honeybee brain. The model implements the olfactory system

of the bee as a higher-level network, with a particular focus on how groups

of neurons interact and how specific groups contribute to the decision-making

process. This model predicted the behavioural data in Chapter 4 successfully

and indicates what neural circuits may be crucial for decision-making. It builds

upon the neural mechanism discussed in Chapter 3 as well as a previous model

of decision-making which also implemented this mechanism.

Finally, Chapter 6 summarises the work that has been undertaken here

and discusses the limitations. Future directions of research are also proposed.

At the time of writing, some of the work described in Chapter 3 has been

published (Marshall et al. 2015) and the results of Chapter 4 and 5 have been

combined into a single manuscript, which is in preparation. Some of the ideas

in Chapter 4 and 5 were published in another paper which reviewed inverteb-

rate decision-making in light of vertebrate studies (Barron et al. 2015).
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Chapter 2

Literature Review

Over the years, computational models have proven to be remarkably valuable

to many fields of research and especially in the area of perceptual decision-

making. Used to make predictions and replicate real world data, models have

provided important insights into how systems work. Indeed, they have been

described as ‘increasingly essential to systems neuroscience’ (Cleland and Lin-

ster 2005, p. 801). A well-known example is the integrate- and- fire neuron

model, which aims to simulate spiking neurons and demonstrates how the

membrane potential of a neuron changes in the presence of excitatory or in-

hibitory inputs (see Burkitt 2006 for a review). When the membrane potential

of the neuron reaches a certain threshold, an action potential (spike) is fired.

The simplicity of this model has made it useful for investigating neural dynam-

ics, as noted in the review by Burkitt: ‘Focusing on the subthreshold membrane

properties and excluding the mechanisms responsible for generating action po-

tentials... has proven to be a powerful tool in understanding the information

processing capabilities of neurons’ (Burkitt 2006, p. 1). Other neural models

of varying complexity exist, such as the biologically plausible Hodgkin–Huxley

model (Hodgkin and Huxley 1952), and a neural model which offers both the

plausibility of the Hodgkin–Huxley model and the efficiency of the integrate-

and-fire model has been proposed (Izhikevich 2003). As with neuron models,

there are numerous models of decision-making that vary in their complexity
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and biological plausibility.

2.1 Decision-Making Models

The field of psychophysics is credited to Gustav Fechner and has been tradi-

tionally concerned with the accuracy of decision-makers without considering

other behavioural elements such as reaction time. In particular, experimenters

have been interested in the discrimination capabilities of subjects and how this

changed when stimuli were systematically varied to be increasingly similar or

dissimilar.

For a detailed account of the experiments that were performed before the

rise of sequential sampling models, see the review by Heitz (Heitz 2014). As

noted in this review, the first experimental account of the relationship between

decision time and accuracy was provided by Henmon in 1911 (Henmon 1911),

but it was the work in statistics which really progressed the conception of

the framework of the SAT. Stone (Stone 1960) is credited for the first math-

ematical model model of the decision process, which made use of the SPRT

developed by Wald (Wald et al. 1948) and applied it to the assumption that a

decision-maker will accumulate evidence in a task. Perhaps the most compel-

ling experimental evidence for the sequential sampling framework is the work

of Shadlen and Newsome in the 1990’s; their neural recordings from monkeys

in a visual task heavily suggest that the decision-making process in the brain

resembles sequential sampling (see Chapter Four).

Mathematical models known as sequential sampling models (which imple-

ment the non- probabilistic sampling technique sequential sampling as their

underlying principle (Gold and Shadlen 2001, Busemeyer and Johnson 2004,

Usher and McClelland 2004, Teodorescu and Usher 2013) thus assume that

decision-making is a process whereby noisy evidence is accumulated over time.

They have been used to explore the underlying neural mechanisms of decision-

making and the consequences of such mechanisms on an animal’s speed and

accuracy. For example, evidence is assumed to be integrated to a boundary
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or threshold, and a change in threshold level has been taken to be ‘the basis

of speed-accuracy trade-off ’ (Ratcliff 1978, p. 65). These models originate

from psychology, the most well-known of them being the drift-diffusion model

(DDM) which was pioneered by Roger Ratcliff in the 1970’s (Ratcliff 1978).

Since then there have been many different models proposed which vary in their

biological plausibility and can be divided into certain categories such as linear

integrators, race models or non-linear attractor models (Stone 1960, Vickers

1970, Link and Heath 1975, Ratcliff 1978, Smith and Vickers 1988, Ratcliff

and Rouder 1998, Van Zandt et al. 2000, Usher and McClelland 2001, Wang

2002, Mazurek et al. 2003, McMillen and Holmes 2006, Ratcliff et al. 2007,

Brown and Heathcote 2008, Niwa and Ditterich 2008, Ratcliff and McKoon

2008, Wang 2008, Albantakis and Deco 2009, Bogacz 2009, Ditterich et al.

2010, Krajbich and Rangel 2011). Indeed, sequential sampling models have

proven to be popular for modelling choice behaviour. As noted by Smith and

Vickers, ‘the attraction of sequential sampling models is that they provide a de-

scription of the relationship between sampling time and performance accuracy,

and hence are natural candidates for modeling speed-accuracy tradeoff effects’

(Smith and Vickers 1988, p. 135). Many of these models have been shown to

fit certain experimental data well, however, many have failed to explain (and

in some cases, have even predicted the opposite of) the results of other exper-

iments (Teodorescu and Usher 2013). Due to the broad scope of models that

have been proposed, it is difficult to differentiate between them and ascertain

what properties or mechanisms are indeed crucial for the decision process. The

schematics of some well-known classical models are given in Fig 2.1.

Usually, these models are designed to fit the two-alternative forced-choice,

or 2AFC, paradigm. Here, a subject is presented with two options simultan-

eously, one of which is the ‘correct’ choice, and must choose one. The two

options can also be presented sequentially (in which case the paradigm be-

comes the two-interval forced-choice or 2IFC). In the free-response paradigm,

a decision is reached in the decision-maker’s own time, which corresponds to
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Figure 2.1: Schematics of several accumulator models. A: the race model (Vickers
1970) with uncoupled pathways. B: feed-forward inhibition (Ditterich et al. 2003).
C: leaky competing accumulators (Usher and McClelland 2001). D: pooled inhibition
(Wang 2002). Circles denoted with ‘A’ and ‘B’ are the neural populations which are
integrating noisy sensory evidence. These are known as the decision populations as
their activity determines whether or not a decision is triggered. ‘IA’ and ‘IB ’ are
the sensory populations which present the initial evidence. Note that these models
make use of inhibition in varying ways. Black arrows denote excitatory connections,
red dotted lines with circles denote inhibitory connections. Figure from Barron et al.
2015.

the decision threshold being reached. In the interrogation paradigm, the de-

cision threshold is typically thought of as being discarded, and the decision

is dependent on the accumulator that has integrated the most evidence when

the trial ends. The development of the 2AFC and indeed the field of psycho-

physics is attributed to experimental psychologist Gustav Theodor Fechner.

The 2AFC paradigm can be used to test the discrimination abilities of a sub-

ject and can be made harder by presenting two stimuli which are perceptually

more similar. It has been observed that a focus on decision-making in the

binary domain is a simplification of real world decision- making, which will

undoubtedly present more than two alternatives at a time. However, it has

been argued that two-alternative forced-choice tasks are still representative

of the choices that animals will make in their everyday lives (Bogacz et al.

2006) and, furthermore, they can be well studied in laboratory studies. In

an attempt to generalise sequential sampling models to a broader range of
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tasks, some multi-alternative models have been developed (Bogacz et al. 2007,

Tsetsos et al. 2011), however, they are not covered in this literature review.

We here instead focus on binary decision-making tasks as they are simpler

to model and, as mentioned, sequential sampling models have mostly been

developed with the 2AFC in mind (Bogacz et al. 2006). In the following sec-

tion, the models are presented in order of their complexity, starting with the

one-dimensional (single integrator) Drift-Diffusion Model.

2.1.1 Drift-Diffusion Model

Remarked as being ‘one of the cornerstones of modern psychology’ (Milosavljevic

et al. 2010, p. 437), the drift-diffusion model (DDM) is a statistically op-

timal (Laming 1968) model of decision-making (Ratcliff 1978, Stone 1960)

that demonstrates the trade-off between accuracy and decision-speed. The

DDM is an implementation of the sequential probability ratio test (SPRT),

which has been shown to implement optimal decision-making (Wald et al.

1948) in the sense that, for a given accuracy, a decision can be made within

the shortest possible time. In the same way, for a given decision-speed, the

model will achieve the greatest possible accuracy. The behavioural task de-

termines whether speed or accuracy will be optimised; if the optimisation of

speed is required, the decision-maker’s accuracy will decrease, demonstrating

the speed-accuracy trade-off (likewise, if accuracy needs to be optimised, the

decision-maker’s speed will decrease).

Other models which are more complex and are able to be reduced down to

the DDM are thus optimal in this sense (Bogacz et al. 2006). This particular

model has kindled some interest recently as it has been shown to better fit

reaction time data than other non-optimal models (Ratcliff and Smith 2004),

and, furthermore, it can be applied to value-based decision tasks (Milosavljevic

et al. 2010, Krajbich and Rangel 2011). Conversely, other researchers propose

that the model is too simple to be useful and put forward experimental data

that the model cannot account for, thus highlighting its limitations (Pirrone
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et al. 2014).

The DDM is a one-dimensional decision-maker, viz. it has one integrator

which accumulates the noisy difference between two alternatives over the dur-

ation of a trial. A decision is made when the accumulated difference crosses

one of two thresholds; the value of these thresholds being set by the experi-

menter (but they are generally thought to be positive and negative in value,

since the point of equal evidence is at zero). Varying the decision thresholds

can demonstrate the trade-off between speed and accuracy; a threshold that

is closer to the initial integration point induces a shorter reaction time and

a threshold that is further away induces a longer reaction time, as a higher

amount of evidence accumulation is required to reach it. Generally, accuracy

is decreased and increased respectively. The decision-maker itself can be set

to be more accurate (more experienced) or less accurate (less experienced);

the former is able to make correct decisions more quickly, the latter tends to

make more mistakes.

An alternative implementation of this model is known as the single bound

drift- diffusion model, and this can represent go/no-go tasks instead of 2AFC

tasks (see Cohen-Gilbert et al. 2014 for a recent example with human par-

ticipants). In go/no-go tasks, the subjects are required to either respond or

not respond to a stimulus, as such the negative threshold (representing the

response to an alternative stimulus) is removed or set to zero. The process

of evidence accumulation remains the same. A simulated example of a single

bound DDM is given in Fig. 2.2. In this figure, the lower threshold is set

to zero; in each simulation, the modelled animal can either respond to the

presented stimulus or instead refrain from responding.

Whilst the single bound variant of the drift-diffusion model remains to be

useful for the examination of decision-making in go/no-go tasks, its imple-

mentation generates a problem with ambiguity. It is not possible to ascertain

whether the subject has refrained from responding due to the fact that it was

not able to reach a decision in the given time (i.e, was still deciding), if the
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Figure 2.2: An example of a one-dimensional DDM simulation, with absorbing
boundaries (author’s own simulation). Here, the lower decision threshold has been set
to zero and the higher decision threshold has been set to one. Over five individual tri-
als, the decision-maker has made two correct choices (shown by the integrator reaching
the top threshold twice) and has remained undecided for the other three trials (where
the integrator has not reached a threshold within the time limit). The integrator’s
preference for an alternative demonstrates the strength of the drift as the difference
in the evidence is integrated, with small fluctuations towards each threshold. The
bias of this decision-maker is slightly towards being accurate (with a drift of 0.5 de-
noting no bias), however, this can be increased or decreased via alteration of the drift
parameter (see main text).

subject had specifically chosen not to respond, or if the subject refrained from

responding for some other reason, such as uncertainty or disengagement. As

such, it is not possible to define whether or not the subject has made an error

in each simulation.

Mathematically, the drift-diffusion model is defined by the following dif-

ferential equation (Bogacz et al. 2006):

dx = Adt+ cdW, x(0) = 0 (2.1)

where x represents the difference in evidence that has been accumulated, Adt

represents the average evidence increase and cdW represents noise, with dW

representing a Wiener process (a continuous, stochastic diffusion process, also

called Brownian motion). The initial amount of evidence integrated is usually

set to zero, but it can be set to a non-zero value in order to encode a pre-
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experimental bias towards one of the alternatives, thus making the likelihood

of choosing one alternative higher than the likelihood of choosing the other.

This can alter the accuracy of the decision-maker, and in such situations, the

decision-maker is usually able to choose an option within a shorter time.

A variant of the DDM, known as the attentional drift-diffusion model

(aDDM) applies the model to a task involving attentional fixation (Krajbich

et al. 2010, Krajbich et al. 2012). As such, evidence accumulation is entirely

dependent on the visual attention of the decision-maker. In this way, evidence

for an alternative can only be integrated when the subject is looking at said

alternative. When an alternative is out of focus, evidence is not accumulated

or accumulated to a lesser extent. Consequently, a subject spending a lot of

time looking at an alternative is integrating a lot more evidence for that al-

ternative, as such, it is more likely to be chosen. The aDDM was found to be

predictive of reaction times within a purchasing task (which combined visual

stimuli with numerical) (Krajbich et al. 2012).

2.1.2 Ornstein-Uhlenbeck

The Ornstein-Uhlenbeck (OU) model is a variant of the DDM (Busemeyer and

Townsend 1993). The OU process itself was proposed many decades before

(Uhlenbeck and Ornstein 1930), originally as an alternative to the diffusion

process model. It introduces the additional term λ , which controls the mag-

nitude of how dependent dx is on the current value of information accumulated.

Mathematically, it is defined in the following way (again using the equations

derived from Bogacz et al. 2006):

dx = (λx+A)dt+ cdW, x(0) = 0 (2.2)

with the parameters as before for the drift-diffusion model. The parameter λ

alters the rate of accumulation; setting this to zero thus reduces the OU model

to the DDM as the rate would be equivalent to that of the DDM. As such,

this model is also statistically optimal. Setting λ 6= 0 accelerates x towards
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one of the two thresholds, dependent on the value of λ.

2.1.3 Race Model

The DDM and OU models both incorporate one accumulator to integrate evid-

ence. In contrast to this, the race model (Vickers 1970) assumes that evidence

for each alternative is being integrated by independent accumulators. As such,

evidence for n alternatives is being integrated separately by n accumulators.

The accumulators are not coupled in any way and are not leaky, and they

‘race’ to reach the decision threshold. Thus, the outcome of the decision is

determined by which accumulator reaches the threshold first. The race model

cannot be reduced to the DDM (Bogacz et al. 2006) and as such it is not

an optimal decision- maker. Despite this limitation, race models have been

praised for their biological plausibility: ‘they offer a parsimonious, generic

and neurobiologically plausible mechanism by which actions can be selected on

the basis of either a cued single action (specified) or a cued choice between

actions’ (Rowe et al. 2010, p. 893). Formally, the race model is defined as:

dy1 = I1dt+ cdW1

dy2 = I2dt+ cdW2 (2.3)

where In denote input strengths and cdWn denote noise, as with the DDM,

however, the noise is independent for each accumulator. Here, there is no

‘drift’, A. The likelihood of the alternatives is typically equal and the decision-

maker is assumed to have no initial preference for either, i.e., y1(0) = y2(0) =

0.

The race model has been used to predict perceptual and behavioural

decision-making and has also been tied in with action selection (Rowe et al.

2010). In the study of Rowe and colleagues, an experiment with humans was

coupled with the development of a race model with competitive accumulators.

Human subjects were asked to select actions without any indication of which
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actions were correct, a paradigm based on an earlier one using monkeys. Us-

ing fMRI scans, brain activity of the subjects was recorded and the activity of

certain areas correlated with the model predictions. Thus, the race model was

used in determining parts of the human brain associated with action selection.

Recently, the race model has also been applied to a behavioural exper-

iment which explored the role of confidence in value-based decision-making

(De Martino et al. 2013), where confidence was defined as the ‘degree of sub-

jective certainty in having made the best choice, which equates to choosing the

higher valued item’ (De Martino et al. 2013, p. 105). In their behavioural

experiment, twenty human participants chose between food items that they

would eat later, and indicated their confidence in their choice. The model

predicted that an increase in confidence would result in a decrease in reaction

time, and this was indeed found to be the case. The results showed that the

race model was able to describe the relationship between confidence, reaction

time and the difference in value of the alternatives and matched the observed

behavioural data.

2.1.4 Pooled Inhibition

The pooled inhibition model (Wang 2002) was proposed as a more biologic-

ally plausible accumulator, originally introduced as a model for the posterior

parietal cortex, an area in the mammalian brain which guides saccadic eye

movement. For a TAFC task there are two pools of decision neurons which

accumulate evidence for each alternative. These pools of neurons compete

with each other (with the activity of one pool directly influencing that of the

other pool) and have self-excitatory recurrent projections (see Fig 2.1), such

that the neurons are able to maintain activity without stimulus input for some

time, and also decay in activity at a slow enough rate for integration to take

place (Bogacz et al. 2006).

In addition to these decision neurons there is also a pool of shared inhibit-

ory neurons. Both pools of decision neurons are able to excite these inhibitory
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neurons, and the inhibitory neurons in turn inhibit the decision neurons via

recurrent connections (Bogacz et al. 2006). This was introduced as a way of

inhibiting the decision neurons’ activity without them inhibiting each other

directly. With these three pools of neurons, the pooled inhibition model is a

three-dimensional model and is formally defined in the following way (Bogacz

et al. 2006):

dy1 = (−ky1 − wy3 + vy1 + I1)dt+ cdW1

dy2 = (−ky2 − wy3 + vy2 + I2)dt+ cdW2

dy3 = (−kinhy3 + w′(y1 + y2))dt (2.4)

with dy1 and dy2 representing the decision neurons, dy3 representing the inhib-

ition neurons, v denoting the self-excitatory recurrent projections, w′ denoting

the weights between the decision neurons and inhibition neurons and k denot-

ing the decay of activity (with kinh representing the decay of activity in the

inhibition neurons). I1 and I2 denote input units with strength I. Finally,

cdW1 and cdW2 denote white noise.

2.1.5 Limitations

The classical computational models of decision-making, although incredibly

useful, are not without their flaws. Taking the DDM as an example, whilst

this model can quite elegantly show the trade-off between speed and accuracy,

it fails to demonstrate reasonable behaviour under certain conditions. For

instance, given a choice between two alternatives, both of which are equivalent

(and assuming that the decision-maker is not biased towards either alternative

if value is taken into account), the model will be reduced to simply integrating

noise over time until randomly ending up at one decision threshold or the

other. A real world decision-maker would be expected to instead immediately

choose either at random (Pais et al. 2013). This limitation prompted the

development of more complex models which were able to solve this problem
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(Brown and Holmes 2001, Pais et al. 2013).

2.2 The Honeybee as a Model of Cognition

It was noted by James McConnell in his 1966 review on invertebrate learning

that ‘man is generally more interested in man than in any other animal...’

(McConnell 1966, p. 107) and the decision-making abilities of human subjects

has been thoroughly studied within a wide range of tasks. Over the years, it

has been heavily debated whether or not invertebrates are capable of learning,

however, the accumulation of research to date heavily suggests that they are.

Recently, it has become clear that the honeybee in particular has a rich behavi-

oural repertoire. Research has shown that this insect is not merely hardwired;

that is to say, it is able learn and adapt its behaviour to new situations. This

capacity for plasticity was noted in Randolf Menzel’s recent review on honey-

bee research: ‘Honeybees contradict the notion that insect behaviour tends to

be relatively inflexible and stereotypical ’ (Menzel, 2012, p. 758). Indeed, recent

studies into honeybee learning and memory have shown that this insect may

be an ideal candidate as a model for learning. They are able to rapidly learn

Pavlovian associations (for example, Bitterman et al. 1983) and are capable of

other types of non-elemental learning such as contextual learning (see Giurfa

2003b for a detailed review).

Karl von Frisch was famous for his work on honeybee behaviour and his

discovery of the intricate waggle dance, which honeybee foragers use to com-

municate to other bees within the hive the location of food sources (Von Frisch

1967). Indeed, the honeybee is a eusocial creature which is required to make

decisions both independently and as part of a group, with one example of

collective decision- making being house hunting (Seeley et al. 2012). Foraging

requires the bee to navigate several kilometres in search of flowers, thus it must

not only find its way to food sources once outside the hive but must also return

safely; and it is for this reason that honeybee navigation and spatial learning

has been so greatly studied (for example, see Srinivasan et al. 1996), along
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with other invertebrates that demonstrate such learning, such as the digger

wasp (Tinbergen 1972) and desert ant Wehner 2003. Furthermore, honeybees

see in colour and have demonstrated impressive feats in visual learning and

memory (for a detailed review see De Ibarra et al. 2014 as well as Zhang et al.

2012b). Additionally, they are able to sense odours acutely and they per-

form remarkably well in discrimination tests (Guerrieri et al. 2005). For their

everyday success and ability to survive despite their limited neural circuitry,

‘the insect brain must therefore provide intelligent solutions to a wide range

of ecologically relevant problems...’ [p. 62](Menzel and Giurfa 2001) and, as

such, they function well as models of decision-making and learning.

2.2.1 The Proboscis Extension Reflex

Classical or Pavlovian conditioning, originally studied through behavioural

experiments with dogs, was pioneered by Ivan Pavlov back in the late 1920’s

(Pavlov 1927). It is used to train an animal to associate an initially neutral

stimulus (the conditioned stimulus or ‘CS’) with another stimulus which is

naturally rewarding (usually, some kind of food reward, referred to as the

unconditioned stimulus or ‘US’). After a single reinforced trial, the animal

begins to associate the reward with the neutral stimulus, and, as a consequence

of this, it will display behaviours towards the neutral stimulus which otherwise

would not have been invoked (in the case of the original experiments, salivating

at a bell when no food was present). Today, this form of conditioning remains

an important tool in the study of animal behaviour, and it has been adapted

to suit many different experimental tasks within different sensory modalities.

Indeed, it has also been applied in the invertebrate realm.

Work on classical conditioning with honeybees started in the late 1950’s

when Matsutaro Kuwabara discovered that they could be trained to associate

coloured lights with a sugar reward (Kuwabara 1957). This discovery was

made by use of the Proboscis Extension Reflex (PER) paradigm, an accessible

approach to the study of honeybee learning which requires bees to be har-
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nessed rather than free-flying (Kuwabara 1957, Takeda 1961, Bitterman et al.

1983, Felsenberg et al. 2011, Giurfa and Sandoz 2012). In this paradigm, an

experimenter gently touches the antennae of a bee with a toothpick or similar

object which has sucrose solution on. This will invoke the proboscis extension

reflex from the bee, which is a behavioural response whereby the bee extends

its proboscis (tongue). After a few trials of classical conditioning, where a

stimulus is presented just prior to the presentation of the sugar, the bee will

extend its proboscis to the neutral stimulus alone. Unfortunately, using the

PER paradigm with stimuli in the visual domain has proven difficult as it re-

quires the bees’ antennae to be cut. For quite some time this was overlooked;

consequently the results from Kuwabara’s work were unreproducible (Giurfa

and Sandoz 2012). Furthermore, cutting the antennae for visual conditioning

results in a drop in learning performance, as shown by the experiments con-

ducted by Hori and colleagues (Hori et al. 2006; 2007). This is a result thought

to arise from a reduction in bees’ responsiveness to sucrose (de Brito Sanchez

et al. 2008). Furthermore, in order for the bees to learn the association, the

training phase needed to be extended to span across two days.

A popular alternative to visual stimuli in PER conditioning is olfactory

stimuli. In 1961, Kimihisa Takeda developed the PER protocol which used

odourants instead (Takeda 1961) and it was later built upon by Bitterman and

colleagues who implemented proper controls (Bitterman et al. 1983). Experi-

ments over the years have shown that bees are able to perform well in olfactory

conditioning trials, rapidly learning the association between odour and sugar

reward after a single trial and reaching high performance rates after around

five trials. For this reason, PER is usually performed using olfactory as op-

posed to visual stimuli. However, recent studies have shown that conditioning

with visual stimuli is possible in bees, but a change in harnessing is required

(Dobrin and Fahrbach 2012). Another study examined the role of motion cues

in visual conditioning and found that the performance of bees improved when

the trained colours were presented along with visual stimuli (Balamurali et al.
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2015). Interestingly, this study also found that intact bees performed equally

as well as bees that were deprived of their antennae. Another study in visual

PER demonstrated that bees are capable of learning visual associations but

that they are unable to discriminate between colours well, even though the

colours used in the experiments had shown to be discriminable by bees in

free-flying experiments (Niggebrügge et al. 2009).

The protocol for olfactory PER conditioning has now been standardised

(Felsenberg et al. 2011). Standardisation is important for ensuring that signi-

ficant differences found between results have not arisen due to differences in

experimental protocol. In addition, results derived from studies making use of

the standardised protocol should be directly comparable. PER conditioning

has enabled researchers to examine honeybee decision-making and discrimin-

ation behaviours with a high degree of control over the experimental subjects,

to the point where neural recordings can be made as they respond to odours

(Smith and Menzel 1989). For example, an individual’s level of satiation can

be manipulated precisely in PER studies; this sort of control is not possible

in free-flying experiments. A very thorough study by Guerrieriand colleagues

serves as an example of how discrimination behaviours can be evaluated in

great detail using PER (Guerrieri et al. 2005). In this study, the paradigm

was used to evaluate honeybee discrimination using sixteen different odours.

The odours were classified in terms of their functional group (alcohols, alde-

hydes and ketones) and chain length (between six and nine carbon atoms),

which made task difficulty very easy to manipulate systematically. For ex-

ample, odours within the same functional group will have a higher degree

of similarity between them. Odours with closer chain lengths will also be

more similar to each other. Thus, an aldehyde of chain length six (Hexanal)

is more similar to an aldehyde of chain length seven (Heptanal) than eight

(Octanal). In their experiment, the authors used a total of 1,457 bees to pro-

duce a behavioural matrix which demonstrated how the bees were generalising

across odours. The bees were each trained to a single odour using the PER
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paradigm and then tested with four alternatives, one of which might have been

the trained odour. The more bees that responded to the alternatives, the more

perceptually similar to the trained odour the test odour was considered. The

full generalisation matrix shows the percentage of proboscis extensions recor-

ded across all sixteen odours and demonstrates that, whilst the bees mainly

responded to the trained odourant, they also responded to perceptually similar

ones. Furthermore, the authors went on to show that the perceptual distances

of the odours were correlated with those found from neural recordings: ‘The

correlation between both datasets was highly significant, thus indicating that

odours that are encoded as physiologically similar are also perceived as similar

by honeybees’ (Guerrieri et al. 2005, p. 719).

Despite the attractiveness of the PER paradigm, it does not come without

its limitations due to how it has been applied across different labs. Over the

years, researchers have adapted the methodology to suit their own experi-

ments and introduced small changes in inter-trial interval (ITI), the length of

time the odour is presented for, and a multitude of other parameters, which in

turn may impact experimental results. This was noted by Giurfa and Sandoz:

‘...subtle modifications in experimental parameters such as inter-trial intervals

... among others, may lead to radically different conclusions, some of which

may be misleading ’ (Giurfa and Sandoz 2012, p. 58). In a recent review on

visual conditioning in bees, Avarguès-Weber and Mota also write: ‘...the liter-

ature provides results obtained with different visual conditioning protocols that

are rarely comparable and sometimes conflictive.’ (Avarguès-Weber and Mota

2016, p. 108). The recent standardisation of the procedure is a step towards

minimising this drawback. Other influences on PER results, such as the ef-

fects of the season, ITI and the number of trials used in training, have been

considered and discussed thoroughly in a publication by Frost, Shutler and

Hillier (Frost et al. 2012).

Despite its limitations, the PER paradigm has proven to be invaluable to

honeybee research, especially in the evaluation of learning and memory (for
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example, see Scheiner et al. 1999). Since its establishment in 1961, it continues

to be widely used to date and has even been adapted for use in experiments

with other insects such as ants (Guerrieri and d’Ettorre 2010). It is a paradigm

well suited for the examination of olfactory discrimination behaviours and is

here used in our behavioural experiments with bees.

2.2.2 The Speed-Accuracy Trade-off

In decision-making tasks, the accuracy of an individual under different experi-

mental conditions has been studied extensively. In humans, it has been shown

that there is a relationship between the time taken for a person to complete

a decision- making task and their accuracy. Subjects who make quicker de-

cisions are more prone to error whilst those who take longer are more accurate.

This result has also been found in other animals, and more generally it sug-

gests that the sampling time required to solve a decision task is related to the

accuracy of an agent. This is known as the speed-accuracy trade-off (SAT).

It has also been shown that there is a relationship between the difficulty of a

decision-making task and the time taken by a subject to complete it, though

this is not always the case. In a task where accuracy is critical and errors

are penalised, an animal will sacrifice speed in order to make a more reliable

decision, however, within a different task this sacrifice may be costly, as such

sampling time depends heavily on both the individual and the context of the

task. The speed-accuracy trade-off has recently been shown to exist in bees

within a variety of different contexts such as foraging and house hunting. In-

deed, according to the theory behind the drift-diffusion model, the SAT is an

unavoidable phenomenon for optimal decision-makers.

In 2003, Chittka, Dyer and Dornhaus demonstrated that bumblebees ex-

hibit a speed-accuracy trade-off (Chittka et al. 2003). Within their experi-

mental paradigm, a colour discrimination task using projected virtual flowers,

bees that made decisions quickly made more errors whilst bees that were

slower were more accurate. Furthermore, bees were shown to have consistent
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individual differences in how quickly they made a decision, which indicates

that bees have their own individual foraging strategies. Interestingly, it has

been shown that faster bees collect nectar more efficiently than slower bees,

though this holds only when foraging patches have a higher proportion of

flowers that are rewarding (Burns 2005, Burns and Dyer 2008). It has been

suggested that these individual differences are beneficial to a colony as mul-

tiple foraging strategies will reduce the variability in nectar collection rate and

in turn promote colony fitness (Burns and Dyer 2008). If the natural diversity

of a colony’s environment is taken into account, it is perhaps logical that hav-

ing individuals employing their own foraging behaviours will be beneficial as

they will be targeting different patches of flowers. Thus, individual differences

in foraging strategies are an important factor when designing discrimination

tasks; such differences will have an impact on an animal’s accuracy (Burns

2005).

The experiment by Dyer and Chittka in 2004 built upon the premise that a

colour discrimination task becomes increasingly difficult as colour differences

are reduced, with colour difference defined as ‘the Euclidean distance between

stimuli loci in colour space’ (Dyer and Chittka 2004b, p. 761). They investig-

ated how bees decided to forage on certain flowers with relation to how hard

they perceived the task to be, also supporting the hypothesis that bees alter

the time they take to make decisions depending on task difficulty.

In their visual discrimination task, bees were trained to forage from artifi-

cial flowers (plastic discs), with distractor flowers delivering water as opposed

to sugar water. Task difficulty was controlled by colour distance from the tar-

get stimulus; distractor flowers that were more similar in terms of colour thus

corresponded to a harder decision task. They found that bees very quickly

learned to discriminate flowers that were low in similarity, needing fewer vis-

its to flowers in order to solve the task. For harder tasks, there was a sharp

drop in accuracy and bees needed more visits to flowers before they could

begin to learn to discriminate between them. Their experiment confirmed
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that between individuals there is a speed-accuracy trade-off; for harder tasks,

bees that made decisions more quickly were also less accurate. Additionally,

they analysed the bees as a group and found that they were slowing down to

complete harder tasks.

The results from these studies suggest that there exists a speed-accuracy

trade- off in bees; difficult discrimination tasks result in longer sampling times

for the animal, which suggests that assessment of stimulus characteristics in

the brain improves over time, perhaps due to noise averaging (Wright et al.

2009). Moreover, bees can be trained to perform better and discriminate more

effectively in harder tasks by using differential conditioning.

In discrimination tasks it has often been assumed that an animal will

desire to perform exceptionally well, and, as a consequence of this, errors have

been taken to show the limit of an individual’s capabilities. As stated by

Chittka and colleagues, ‘It is not clear whether low accuracy actually reflects

the limits of discrimination’ (Chittka et al. 2003, p. 388). Indeed, this is

often not the case (Chittka et al. 2009, Chittka et al. 2003, Giurfa 2004).

In particular, discrimination tasks using differential conditioning have shown

that an increase in cost for errors will often result in the animal slowing down

to accumulate more evidence in tasks. For example, when foraging induces

a risk of predation, bees take longer to inspect flowers and ensure that they

are safe before landing (Ings and Chittka 2008). In an experiment by Chittka

and colleagues, distractor flowers were developed to deliver aversive quinine

solution as a punishment and in response to this the bees improved their

accuracy (Chittka et al. 2003). When the punishment was removed from

the task the accuracy of the bees decreased, indicating that the improved

performance was not due to experience. The results suggest that an animal’s

discrimination capacity is not static, rather, it depends on both the individual

as well as the context. As such, how bees are trained becomes an important

contributing factor when examining their behaviour in discrimination tasks.
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2.3 Honeybee Neurobiology

Advances in digital technology have encouraged the formation of 3D brain

atlases, and there has been a rise in research studying invertebrate brains in

an attempt to create complete neural maps. Perhaps the most well mapped

invertebrate brain is that of Drosophila. The connectome or neural map of this

insect has recently been constructed using a database of 23,579 neuron images

(Shih et al. 2015). The honeybee brain has also been studied in great detail,

and a computational atlas known as the Honeybee Standard Brain (HSB) has

been developed (Brandt et al. 2005, Rybak et al. 2010). The HSB was created

from the data of twenty individual worker honeybees, consisting of twenty-

two neuropils, and serves as a representation of the average honeybee brain.

It is a virtual, 3D map which is widely accessible, and it contains detailed

information about the locations of specific neurons within the bee brain.

The olfactory system of the honeybee has been well studied (for example,

see Zwaka et al. 2016), along with other brain regions which are suggested to

play a role in learning, memory, decision-making or action selection. Here, the

focus is on the olfactory regions but other higher order regions are briefly dis-

cussed. Where gaps are apparent in the honeybee literature, research in other

insects such as Drosophila is substituted, if available, instead. It is argued that

this is acceptable because the basis of decision-making and action selection,

i.e., the convergence of competing motor commands for execution at a spe-

cific neuropil, is assumed to be conserved between the different species (Perry

and Barron 2013b). Considering that action selection is an evolutionarily ‘old’

problem, this assumption should indeed hold. Strausfeld noted the similarities

of the higher order regions, the mushroom bodies, in his paper: ‘comparisons

between insect groups suggest that within an order there are highly conserved

features of the mushroom body shape and lobe arrangements’ (Strausfeld et al.

1998, p. 15). Indeed, in Shih and colleagues’ recent paper on the Drosophila

neural map, the authors suggested that, even for this simplistic insect, ‘...the

overall organizational scheme showed fundamental similarities to the network
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structure of the mammalian brain’ (Shih et al. 2015, p. 1249). Strausfeld

and Hirth recently suggested that vertebrate and invertebrate action selection

centres (the basal ganglia and central complex, respectively) may be homolog-

ous, however, this suggestion has been seen as controversial (Strausfeld and

Hirth 2013). If similarities exist between Drosophila and mammalian brains,

these similarities are expected to be found in honeybee brains. Undoubtedly

however, there will be specific differences in the differing brain morphologies

that may determine behavioural differences between similar insects. Thus, it

can be argued that a review of the literature for multiple insects is a worthwhile

cause, as common traits or mechanisms as well as species-specific differences

can be identified. Indeed, the importance of ‘comparative connectonomics’,

the ‘quantitative study of cross-species commonalities and variations in brain

network topology ’, has very recently been brought to light (van den Heuvel

et al. 2016, p. 345). It is worth mentioning that previous models of insect

neurobiology have also used data from more than one inveretebrate (for ex-

ample, see Smith et al. 2008 and Cope et al. 2016).

Due to a vast number of researchers publishing neurobiological data from

many different arthropods, conflicting or otherwise confusing terminology has

arisen as an unfortunate consequence. As such, different names have been

given to equivalent brain regions across species. For example, the fan-shaped

body and ellipsoid body are also referred to as the central body upper division

and central body lower division, respectively. Recently, a group of researchers

known collectively as the ‘Insect Brain Name Working Group’ have attempted

to define a standard that can be applied across insect species (Ito et al. 2014),

This nomenclature will no doubt help to ensure that future studies use the

same terminology.

2.3.1 The Honeybee Olfactory System

In the honeybee, there are around 60,000 olfactory receptor neurons (ORNs)

which provide the olfactory system with information about a presented odour’s

29



Literature Review

identity. The ORNs then innervate the antennal lobes (AL), sites of olfactory

processing (Galizia 2014), via four different tracts, which are named T1 - T4

(Abel et al. 2001, Kirschner et al. 2006, Nawrot 2012). The antennal lobes are

structures composed of around 160 glomeruli. Each glomerulus collates odour

information from ORNs which express the same olfactory receptors. Within

the glomeruli, local interneurons (LNs) project to multiple other glomeruli but

are constrained within the antennal lobes. Also within the antennal lobes are

dendrites of projection neurons (PNs). Both excitatory and inhibitory PNs

(ePNs and iPNs, respectively) output processed neural signals to higher order

brain centres such as the lateral protocerebrum (LP) (Galizia 2014). The LP is

an understudied site of convergence for processed olfactory input; it is thought

to be pre-motor in nature and is indicated to play a major role in action

selection (Galizia 2014, Barron et al. 2015). Projection neurons innervate

these higher order brain regions via five different antennal lobe tracts, which

are named the median (m-ALT), the lateral (l-ALT) and the medio-lateral

(ml-ALTs) tracts (of which there are three) (Abel et al. 2001, Kirschner et al.

2006). A schematic diagram of the honeybee brain is given in in Fig 2.3, where

the m-ALT, l-ALT and ml-ALT1 tracts are shown.

Some of the projection neurons receive olfactory signals from one glom-

erulus and are thus referred to as uniglomerular. There are estimated to be

around 900 of these neurons, from both the m-ALT and l-ALT (Zwaka et al.

2016). Other projection neurons collate neural signals from several glomeruli

and are thus referred to as being multiglomerular. These multiglomerular PNs

have been shown to be mostly GABAergic (thus, inhibitory). These inhibitory

projection neurons, the iPNs, project from the antennal lobes directly to the

lateral horn (LH - a sub-region of the lateral protocerebrum indicated to play

a role in innate decision-making (Heimbeck et al. 2001, Gupta and Stopfer

2012) via the three ml-ALTs, bypassing the mushroom bodies entirely. The

uniglomerular, excitatory projection neurons (ePNs) innervate the mushroom

bodies as well as the lateral horn via the m-ALT and l-ALT tracts. The former
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Figure 2.3: Schematic of the honeybee brain from the frontal position. Shown
in colour are three antennal lobe (AL) tracts: ml-ALT1 (where projection neurons
innervate the lateral horn (LH) from the antennal lobes), m-ALT (where projection
neurons innervate the mushroom bodies and then the lateral horn) and l-ALT (where
projection neurons innervate the lateral horn and then the mushroom bodies). Local
interneurons within the antennal lobes are not shown. Antennal lobe tracts ml-ALT2
and ml-ALT3 are also not shown. It should be noted that the projections shown here
are bilaterally symmetrical. Figure adapted from (Perry and Barron 2013b).

tract innervates the MB first before heading to the LH; the latter does the re-

verse and innervates the LH before the MB. Recently, some of the differences

between the m-ALT and l-ALT neurons have been observed. For example,

they differ in volume as well as in neural length (Zwaka et al. 2016). It should

also be noted that the l-ACT and m-ACT neurons differ in latencies, with

l-ACT neurons being quicker to respond to stimuli but also being ‘unspecific’

(Müller et al. 2002). As the l-ACT neurons project to the LH first, it might

be that these neurons are for innate responses or attention. Additionally, l-

ACT neurons have been shown to habituate faster. The slower responding

m-ACT neurons project to the mushroom body calyces (cup shaped struc-

tures that have been identified as input regions to the mushroom bodies, with

inner regions termed as the basal ring, the collar and the lip (Mobbs 1982))

first, perhaps encoding odours specifically for identification (Müller et al. 2002,

Galizia 2014). It has been suggested that the l-ACT neurons may be involved
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with learning (Müller et al. 2002).

Within the invertebrate literature, the paired neuropils known as the mush-

room bodies were first brought to light in 1850 (Dujardin 1850). Since their

discovery, they have been the primary point of focus in many experiments

on learning, memory and cognitive abilities in insects (for a recent review,

see Menzel 2014). The discovery that honeybees do not simply exhibit pre-

programmed behaviour led to a rise of experiments focusing specifically on

learning and memory, which arose in the 1970’s and 1980’s (for example, Men-

zel and Erber 1978, Erber 1981, see also Menzel and Muller 1996 and Giurfa

2007 for more heavily detailed reviews); this coupled with the result that the

cooling of the mushroom bodies impaired memory has led to research mostly

focused on these regions (see Heisenberg 1998). The mushroom bodies have

been suggested to be involved with decision-making (Mizunami et al. 1998b,

Grünewald 1999, McGuire et al. 2001, Schröter and Menzel 2003, Akalal et al.

2006). Indeed, they have been found to integrate multiple forms of sensory

information (Menzel and Muller 1996). That they are sites which take input

from more than one sensory domain adds strength to the hypothesis that they

play an important role in decision-making.

It was found in the early 1980s that cooling the lateral protocerebrum had

no effect on memory (Menzel 1983) and as such this neuropil (and the ml-ALT)

has been heavily overlooked, despite the fact that it exists as a pre-motor area

(i.e., Gupta and Stopfer 2012, Galizia 2014) and seems therefore to be crucial

in decision-making processes too (Barron et al. 2015). It is within the lateral

protocerebrum that evidence accumulating pathways are hypothesised to con-

verge (Barron et al. 2015), and the activity of this region is thus suggested to

determine motor output. The convergence of evidence pathways is of particu-

lar interest as it may be comparable to the action selection circuit of the basal

ganglia.

As mentioned before, recently proposed by Strausfeld and Hirth (Strausfeld

and Hirth 2013) was the idea that the vertebrate basal ganglia and invertebrate
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central complex (another region thought to be important to action selection,

see Plath and Barron 2015) are homologous, based on comparisons of gene

expression and anatomical similarities, for example. Although a controversial

suggestion, these similarities are nonetheless worthy of investigation.

We have seen that an animal’s performance in a choice task is dependent

upon how sensory information processed by the brain. There are many factors

which affect this, one such example being task difficulty. However, it is also

the case that behaviour can be influenced by internal state, indeed, without

this perhaps we would not see behaviour at all: ‘The field of motivation is

concerned with what animates living organisms, that is, what makes them go’

(Wright 2016, p. 16). What the term ‘motivation’ precisely describes is still

being debated upon. In humans, three categories of motivation have been pro-

posed, one of which is the motivation to survive (Reeve 2016). Evidently, this

category of motivation does not just apply to humans. Within this category

is hunger, which undoubtedly also plays an important role in laboratory ex-

periments where subjects are responding to food rewards (for example, in the

PER paradigm). As such, we next explore how an animal’s level of satiation

can influence its behaviour.

2.4 The Impact of Satiation

Studies in animal decision-making have shown that choice behaviours are ro-

bust and can be influenced by the internal state of the animal. Hunger is

perhaps the most well studied of all the possible motivational influences as

it is somewhat simpler to control. Indeed, an animal’s level of satiation has

been shown to mediate certain behaviours, especially those associated with

feeding. The influence of hunger is crucial to study, as animals being observed

within choice tasks are often responding to food rewards, as such, differences

in their motivational levels could cause differences in their behaviours. For

humans, hunger has been termed as one of multiple ‘visceral factors’ which

have the ability to influence and impair rational decision-making (Loewenstein
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1996), which suggests that starvation or extreme hunger can heavily impact

an individual’s decision-making process.

The impact of satiation level can be well studied for a variety of anim-

als. Indeed, starvation has been shown to produce behavioural switching and

induce searching behaviours in insects (Bell 1990). The sea slug, Hermis-

senda, was shown to consume food faster when starved (Avila et al. 1998). In

threespine sticklebacks, extreme hunger caused fish to invest in more ‘risky’

behaviours, showing an increased tendency to perform inspections on possible

predators (Godin and Crossman 1994). As with the sea slug, threespine stickle-

backs were also found to feed at an increased rate. In crucian carp, hungry

fish were more likely to sacrifice safety than satiated fish, again demonstrat-

ing more ‘risky’ behaviours (Pettersson and Brönmark 1993). Rather than

opting for safety, the fish showed a preference for open, unsafe habitats which

offered a feeding area. Moreover, the carps’ foraging behaviour was shown

to impact predator-avoidance, demonstrating that several internal states may

be interacting during the time a decision is made. Indeed, starvation has

also been shown to alter mating behaviours. In Microvelia austrina, a semi-

aquatic insect, starving males were shown to mate for shorter periods of time

than satiated males (Travers and Sih 1991). In Mesocyclops edax, a genus

of crustaceans, starving organisms were shown to alter their prey preference

(Williamson 1980). It was shown that satiated organisms initially avoided

Bosmina, a type of water flea. However, after several days of starvation,

Mesocyclops edax began to demonstrate a preference for Bosmina instead. In

the crayfish Orconectes virilis, starved animals demonstrated an increase in

activity (Hazlett et al. 1975). Furthermore, animals that had been starved for

one week tended to be more aggressive. After being starved for two weeks,

both the physical activity and the aggressiveness of the starved animals de-

creased, most likely because the animal has undergone extreme starvation and

has either reached a critical point wherein it is no longer able to function

or is dying. Recent studies into the unicellular slime mould, Physarum poly-
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cephalum, show that even this brainless organism exhibits behaviours that are

mediated by internal state (Latty and Beekman 2011). Again, as with the

sea slug and threespine sticklebacks, starving slime moulds displayed more

‘risky’ behaviours and ventured into well lit (aversive) environments in order

to reach a more plentiful food source, whilst non-starving organisms preferred

to remain in darker environments despite less food being available.

Taken together, all these studies demonstrate how internal state, in this

case more specifically the level of satiation, can alter animal behaviours. This

research also suggests that the driving force of hunger can even interact with

other internal states, demonstrating that multiple internal states can have an

impact on behaviour. Indeed, it is clear that an animal’s hunger will have a

profound impact on its decision-making, especially if the animal is responding

to a food reward.

With honeybees, it has already been shown that sucrose responsiveness has

an impact on learning performance. Individuals which show a high sucrose re-

sponsiveness demonstrate a higher level of acquisition than individuals with

a low responsiveness (Scheiner et al. 2004) and it has been shown that food

intake can mediate sucrose responsiveness (Pankiw et al. 2001). It can be in-

ferred from this result that food intake can impact learning and decision- mak-

ing as a whole. Furthermore, food intake has been shown to impact memory

formation. Using the Proboscis Extension Reflex paradigm, Friedrich and

colleagues showed that learning performances were highly dependent on when

individuals were fed (Friedrich et al. 2004). Their study linked the cAMP-PKA

cascade with satiation and demonstrated that memory formation is depend-

ent on satiation level; it was found that feeding individuals four hours prior to

conditioning would impair memory formation. These studies heavily suggest

that there is a link between satiation, learning and memory, which in turn

suggests that the mushroom bodies may play a crucial role. Additionally,

the latter study measured the basal PKA activity from the central brain, as

such this higher order centre may also play a role in conveying satiety sig-
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nals: ‘Only satiation status, not sucrose responsiveness, affects the basal PKA

activity in the brain tissue’ (Friedrich et al. 2004, p. 4464). Notably, a single

interneuron ‘VUMmx1’ has been shown to respond heavily to sucrose and

learnt CS presentations in another study which used the PER paradigm; this

neuron innervates the lateral protocerebrum as well as the lips and basal rings

of the mushroom bodies (and the glomeruli of the antennal lobes) (Hammer

1993b).

We have now covered how decision-making and action selection can be in-

fluenced and how this can be observed at the behavioural level (for example,

animals are riskier when hungry and are less accurate in more difficult dis-

crimination tasks). Another topic of interest is how the brain processes stimuli

during decision-making and how this processing can be influenced by neural

mechanisms. As such we now proceed to investigate an inhibitory mechanism

which is employed by the brains of both vertebrates and invertebrates, which

has been hypothesised to aid in decision-making tasks.

2.5 Lateral Inhibition

Research into the existence of lateral inhibition in arthropods can be traced

back to studies on horseshoe crab visual processing in the 1950’s. One study

demonstrated that optic nerve fibres within the eye could be inhibited by the

activity of neighbouring fibres: ‘...the frequency of the discharge of impulses in

a single optic nerve fiber is decreased and may even be stopped by illuminating

areas of the eye in the neighbourhood of the sensory element from which the

fiber arises’ (Hartline et al. 1956, p. 651). Lateral inhibition has also been

shown to exist in the fly (Zettler and Järvilehto 1972, Kirschfeld and Lutz

1974, Strausfeld and Campos-Ortega 1977) and cat, through an experiment

which examined orientation detectors (Blakemore and Tobin 1972). By the

1970’s, lateral inhibition in the visual system was referred to as a ‘common

phenomenon’ (Kirschfeld and Lutz 1974).

These experiments all conclude that lateral inhibition exists within the
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visual system. Research has also been performed on other systems within the

brain, and some studies have found that a similar mechanism exists for the

olfactory system. Indeed, lateral inhibition has been shown to exist within

the olfactory bulb as well as the antennal lobe (Urban 2002, Mori et al. 1999).

Importantly, some of these studies suggested that lateral inhibition was not

static and could be modified by the inputs presented. For example, a study

using Drosophila found that the strength of lateral inhibition between glom-

eruli scales with ORN strength, such that it is reduced in the case of weak

ORN input (Olsen and Wilson 2008).

A study by Wilson and Laurent suggests that temporal patterns in neur-

ons are dependent on what odour has been presented (Wilson and Laurent

2005). The study focused on Drosophila and demonstrated that GABAergic

inhibition increases the differences between neural representations of odours,

essentially acting as a decorrelator. Importantly, the authors note that two

different odours can induce very similar activation levels in a projection neuron

initially, but that this similarity decreases later on with GABAB-mediated in-

hibition. It was suggested that inhibition arises due to the activation of other

glomeruli. The study also shows that temporal patterns are not present in

ORN responses to odours, thus it has been hypothesised that they arise due

to antennal lobe processing.

The temporal differences in neural responses prompted another study to

examine how this might be happening within the brain. The research conduc-

ted by Linster and colleagues (Linster et al. 2005) built on older studies both

in mammalian olfactory bulb and insect antennal lobe, where, as mentioned

before, it has been shown that inhibitory networks are important for olfact-

ory processing. The authors raised the point that the exact mapping of these

inhibitory networks had not been clearly defined or organised. Their work

suggests that it is the response profiles of the glomeruli that determine the

lateral connectivity between these neural structures. Indeed, their computa-

tional model of the honeybee antennal lobes points to lateral inhibition being
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mediated by the response profiles of the glomeruli; their network wherein lat-

eral inhibition is proportional to the similarity of the response profiles was able

to reproduce experimentally derived results (namely the output of PNs). The

study reiterates the point that odour representations in the brain are both spa-

tially and temporally defined since representations are more dissimilar when

leaving the antennal lobes than when entering them as ORN input. Here, it

is proposed that the antennal lobes are not merely suppressing a lesser activ-

ated glomerulus and that lateral inhibition is not based on spatial location or

proximity, rather, it is a function of glomerulus response profiles.

The publication by Linster and colleagues was cited in a recent review

by Galizia, in which the processing of the antennal lobes is discussed heavily

(Galizia 2014). Here, the results of the study are reinforced and it is again sug-

gested that lateral inhibition within the antennal lobes is not uniform. Galizia

also cited a study by Chou and colleagues which focused on Drosophila and

showed that glomeruli with narrower tuning properties are less innervated by

other glomeruli LNs. The fact that some glomeruli have narrower tuning also

suggests that they have less overlap with the response profiles of other glom-

eruli, which in turn may highlight a decrease in lateral inhibition necessary

for the discrimination of odours (and hence less innervation).

In 2007, Schmuker and Schneider inferred that ‘insect and vertebrate ol-

factory systems can be subdivided into three stages of functional organization’

(Schmuker and Schneider 2007, p. 20285). They argue that the initial stage

is where stimulus attributes are encoded by neurons into neural signals, the

second is where the stimulus representations are decorrelated, and in the third

stage the signals are associated with specific qualities. They then asked if such

a system could be generalised. In their publication, they were able to design

a computational model that could process chemical information using only

these three computational principles. They too support the hypothesis that

the decorrelation of neural signals in the second stage assists in stimulus classi-

fication. In their model, they implemented correlation-based lateral inhibition
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and agreed that processed output should be more dissimilar as a result.

A study in Drosophila in 2008 also suggested that neural responses to odour

stimuli have both spatial and temporal properties, however, they did not find

evidence for ‘response-sharpening’, which may be attributed to experimental

limitations (the odours they used activating fewer glomeruli, for example) or a

difference in the olfactory processing systems of bees and fruit flies (Silbering

et al. 2008).

It is important to mention that behavioural evidence of lateral inhibition

has even been found in honeybee collective decision-making. It was shown that

lateral inhibition - implemented via headbutts which are referred to as stop

signals - functioned as a deadlock breaker which allowed the swarm to make a

choice as a whole (Seeley et al. 2012). A computational model of value sensitive

decision-making reinforced the results from this study, whereby the strength

of lateral inhibition was the deciding factor in whether or not a decision was

made (Pais et al. 2013). The model was also sensitive to the relative value of

the alternatives; if the options were equally poor then the model would wait

in case superior alternatives were presented later, whilst if the options were

equally good, one would be chosen at random. Taken together, we can see that

lateral inhibition exists as an important mechanism not only in the brain, but

also in collective decision-making behaviours.

2.6 Summary

In this literature review, the fundamentals of various different topics have been

covered. Though quite broad, all these topics have contributed to this work. In

particular, the impressive abilities of honeybees have been highlighted, along

with their efficient neural circuitry. Additionally, the motivation for modelling

the decision process as an accumulation of evidence as has been presented, and

a range of classical decision-making models described. The impact of satiation

on choice behaviour was covered briefly, emphasising that decision-making

processes are highly influential. Finally, the importance of lateral inhibition
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was introduced. This inhibitory mechanism is explored in the next chapter,

which presents an abstract model of action selection where a modelled animal

needs to choose between two alternatives whilst foraging. The mechanism

of lateral inhibition is adapted from one classical decision-making model in

particular, the leaky competing accumulator model, and is applied to this

model of foraging to demonstrate how this mechanism is beneficial to choice

behaviour.
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The Role of Inhibition in

Decision-Making

During its lifetime an animal will need to make important decisions, some of

which will be critical for its survival. Taking the honeybee as an example, this

animal must decide not only where to forage but also which flowers it should

target. There will be various factors that will influence these decisions, such

as context (for example, the time of day), environmental or social information

(for example, choosing to forage in a location that has been communicated

by a hive mate), and internal motivational state. If a honeybee, or indeed

any animal, is presented with two alternatives, how do the motivations of the

animal contribute to its choice? The question perhaps invokes the paradox of

Buridan’s ass, wherein a donkey finds itself exactly halfway between food and

water. The donkey is equally hungry as it is thirsty, and since its motivational

drives are equivalent it should choose the closer option. Stuck in an infinite

loop which can never be resolved, the animal remains undecided and eventually

dies.

The question of how foraging animals solve the problem of choosing between

alternatives remains to be fully answered. Previous research has indicated

that foraging behaviours can be modelled using the ‘geometric framework’

(Simpson and Raubenheimer 1993, Simpson et al. 2004), whereby an animal
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attempts to balance its nutritional intake. The animal moves through n-

dimensional nutritional space and acts so as to bring its current nutritional

state closer to that of a target state. This target has been defined as the

nutritional state that will ensure the highest reproductive success for the an-

imal (Houston et al. 2011) but it could also be defined as the state which

maximises growth rate and development (Helm et al. 2017), dependent on the

developmental state of the animal. The foraging problem thus becomes how

the animal decides to move through nutritional space in order to reach the

target, with performance determined by the distance from its current state to

that of the target. When the nutrients the animal is consuming do not interact

in any way, this can be found simply by taking the Euclidean distance.

Behavioural switching, defined here as moving from the consumption of

one type of nutrient to another, is a crucial aspect of this problem as it allows

an animal to reach the target state. Choosing between food and water, with

the assumption that both of these options offer only one nutrient, can thus

be imagined in two dimensional space, and the decisions of the animal should

move it closer to the target point. How might it choose to move through

this nutritional space? The motivation of the animal, here defined as ‘the

tendency to eat or drink’ (Marshall et al. 2015), will sway it one way or

another: an animal that is more hungry than thirsty will be expected to forage

for food as opposed to water. Upon finding nourishment the animal should

then feed until its corresponding motivation has been reduced sufficiently. As

the animal becomes satiated it will experience the motivation to drink; as

such the animal will, eventually, switch from feeding to instead seeking water.

As the animal consumes one type of nutrient, it reduces its deficit for that

nutrient. In previous work, a deficit has been defined as ‘the quantity of food

or water that the animal will ingest, under ad libitum conditions, until it is

satiated’ (Sibly 1975). Here, a food or water deficit is thus the shortage of the

respective nutrient from the target. Consuming one type of nutrient will move

the animal along a linear path through nutritional space, as such switching
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from one behaviour to another can be imagined as a series of linear foraging

bouts.

With this scenario in mind, it could be assumed that an animal will

simply act on its strongest motivation, however, there are costs associated

with decision-making that should first be considered. Depending on the en-

vironment, food and water resources may not be in nearby locations, thus

switching from one activity to another will incur costs in terms of using re-

sources to travel from one location to another. It becomes apparent that there

is a trade-off between an animal reducing its motivations and reducing the cost

of behavioural switching. Of course, in real world foraging situations there are

other costs to consider. In the case of the honeybee, a novel rewarding flower

may hide a predator; as such choosing to forage on it would increase the risk

of predation. Here, a model of animal choosing between two nutrients is im-

plemented to address the question of how the cost of behavioural switching

can be reduced.

A foraging animal choosing between two alternatives is comparable to a

two- alternative forced-choice task (2AFC), a paradigm originating from psy-

chophysics which was developed to analyse a subject’s choice and discrimina-

tion behaviours (Fechner 1966). The subject is presented with two alternatives

and is required to choose one of the two (as such, choosing neither is not an op-

tion). Usually implemented within a laboratory setting, this paradigm allows

for a thorough analysis of the subject’s reaction time, among other behavi-

oural traits, and can be easily manipulated such that the task is easier or

harder. Although a simplification of real world decision-making tasks, the

2AFC paradigm is useful as it is analytically simple and is still representative

of some of the decision problems that could be made by an animal. Perhaps

one of the main differences between real foraging situations and a 2AFC task

is the cost of switching between options. Due to time and energy investments,

a foraging animal will incur a cost if it chooses to switch from one alternative

to the other. However, in 2AFC tasks, the cost of switching will either be
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minimal or the animal will not be given such an option. In some 2AFC tasks,

once the animal has made a decision the task ends and another is presented, as

such switching is not possible. Nevertheless, the foraging task modelled here

can perhaps be described as an ecological 2AFC task with switching costs.

Due to the simplicity of the 2AFC paradigm, recent advances in computa-

tional neuroscience have provided insights into what types of neural circuitry

may give rise to certain behaviours in binary decision-making tasks. Indeed, a

variety of decision-making models, known as sequential sampling models, have

been described and analysed in great detail (Ratcliff and Smith 2004, Bogacz

et al. 2006) and are able to fit data obtained from behavioural experiments,

making the underlying theories behind them applicable to other models, such

as the foraging model discussed here. One of the main findings from these

models is that the coupling of evidence accumulation pathways is beneficial

for decision-making. The mechanism of lateral inhibition, or cross-inhibition,

whereby the competing accumulators inhibit one another mutually, has been

shown to be especially beneficial. Within the sequential sampling models, this

was a prominent feature of the leaky competing accumulator (LCA) model,

discussed in more detail below. This mechanism is here adapted and applied

to the motivations of the modelled animal, as such, the benefits of inhibitory

coupling is examined within a foraging context which can be comparable to a

2AFC with switching costs.

It is important to note that, for this particular model, lateral inhibition

is not being applied between neurons or neural units. Although comparisons

can be made between the LCA model and this model of foraging (they both

apply lateral inhibition as a form of coupling to benefit decision- making, for

example), they are not equivalent. Here, the benefits of lateral inhibition are

examined by analysis of how the animal reduces its deficits over time and

its ability to reduce the costs it incurs as it switches from one alternative to

another. Despite these differences, lateral inhibition as a form of coupling has

been well explored within the realm of sequential sampling models, as such a
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brief overview of the LCA is given here.

3.1 The Leaky Competing Accumulator

The leaky competing accumulator (LCA) is a biologically-inspired model of

decision-making (Usher and McClelland 2001). This model is notably different

from earlier decision-making models such as the race model (Vickers 1970) due

to the nature of the way that the accumulators interact. In the race model,

evidence accumulating pathways are independent, such that they never inter-

act, and are ‘racing’ towards a joint decision threshold; when one accumulator

reaches this threshold, a decision will be made. However, it has been shown

that this implementation is suboptimal (Bogacz et al. 2006). The race model

is outperformed by other models which make use of coupled pathways, and

these models may furthermore be more neurally plausible. Indeed, the race

model is unable to approximate the well-known drift-diffusion model (Ratcliff

1978), another sequential sampling model which has been shown to be optimal

(optimality here is achieved by obtaining the highest accuracy for a given re-

action time, or the fastest reaction time for a given accuracy). Under certain

parametric conditions, however, the LCA can approximate the drift-diffusion

model and so exhibit optimality (Bogacz et al. 2006).

The LCA model couples the evidence accumulation pathways through a

mechanism known as ‘mutual inhibition’ or ‘cross inhibition’. Here, accumu-

lators are connected so that they inhibit each other, which introduces com-

petition into the network. After the model is allowed some time to integrate

sensory evidence, the end result is that one accumulator will have a very high

firing rate whilst the other will not, which is beneficial to a decision-maker

(note that the higher its activity, the more it suppresses the alternative accu-

mulator). This mechanism has been shown to aid decision-making previously

(Bogacz et al. 2006, Marshall et al. 2009) and, remarkably, it has also been

documented in insect collective decision-making (Seeley et al. 2012, Pais et al.

2013, Reina et al. 2015). The LCA model furthermore incorporates a leak or
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decay to the accumulated evidence; as such the removal of sensory evidence

will cause a drop in accumulator activity and the firing rate will return to the

baseline. Recently, cross-inhibition has been shown to aid decision-making in

a model of animal foraging (Marshall et al. 2015), the methodology and results

of which will be presented in this chapter.

Formally, the dynamics of the LCA model are described by two coupled

differential equations:

dy1 = (I1 − ky1 − wy2)dt+ c1dW1

dy2 = (I2 − ky2 − wy1)dt+ c2dW2 (3.1)

where yi denotes the activity levels of the accumulators, Ii denotes the mean

activity of the sensory neurons, k denotes the strength of the neural leak,

w denotes the strength of the mutual inhibition and dWi denotes Gaussian-

distributed noise with zero mean and root-mean-square strength ci (Bogacz

et al. 2006).

For a two-alternative forced-choice task, the LCA is a two-dimensional

model with two accumulators, each integrating evidence in support of one

alternative or the other. The model can also be extended for multiple al-

ternatives (Usher and McClelland 2004, McMillen and Holmes 2006) however,

this is not discussed here. This model can be applied to decision tasks within

both the free-response and interrogation paradigms (Bogacz et al. 2006). In

the former, the accumulators continuously integrate evidence until one crosses

a decision threshold. The first accumulator to reach this threshold is the

accumulator that determines the final decision. In the latter paradigm the

accumulators are allowed to integrate evidence for a certain amount of time,

which is decided by the experimenter. At decision time, the trial ends and

the accumulator with the highest integrated evidence determines the decision.

Both of these experimental paradigms were made use of in a recent experi-

ment using a biomimetic robot (Lepora et al. 2012). For the task, the robot
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was required to identify the shape and location of a presented object using a

biologically inspired sensing system: artificial ‘whiskers’ which imitate those

of rodents. Within the free-response paradigm, the robot was able to make a

decision in its own time, once it had accumulated enough evidence. Within

the interrogation paradigm, the robot was expected to make a decision after a

pre-set number of whisks. The study found that the robot was able to obtain

similar decision accuracies in both of these paradigms.

3.2 Materials and Methods

The LCA mechanism of lateral inhibition is here applied to a previous model

of behavioural switching (Houston and Sumida 1985) in which an agent is

deciding between seeking water or seeking food. This model attempted to

solve the problem whereby an animal services one motivation (for example,

thirst) such that its ‘drive’ is reduced to a value just below that of the al-

ternative drive. This would result in the animal switching to the alternative

activity and then servicing the alternative motivation for a short time before

switching again (since the two competing motivations will be unequal but in

close proximity to each other). This behaviour was referred to as ‘dithering’

or ‘chattering’ and is an example of costly behavioural switching (Houston

and Sumida 1985). The model implements the notion of positive feedback,

such that performing an activity would not only reduce its associated drive

but also increase its motivation. The rise occurs quickly after the agent has

switched to a new activity and is mediated by an upper bound. This way,

a drive is pushed to its maximum when the animal switches and is not close

to the value of the other. This solution prevents the problem of dithering,

and also the problem whereby the drives are equivalent and the model cannot

choose between them, akin to the paradox of Buridan’s ass.

Since the mechanism of lateral inhibition, as described with the LCA

model, has been shown to improve decision-making, it is here applied such

that the two motivations of the animal are coupled. Unlike the LCA model,
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the model here is deterministic (as such noise has been removed). These mo-

tivations are formally described by a pair of partial differential equations, as

with the original LCA model:

dv1 := (c1dx1 + c2x1 + c3v1 + c4v2)dt

dv2 := (c1dx2 + c2x2 + c3v2 + c4v1)dt (3.2)

where vi denotes the level of the i-th motivation (for example, seeking food),

xi is the level of the i-th deficit and dvi and dxi denote their rates of change.

Additionally, c1 denotes the influence of dxi on dvi, c3 denotes the strength

of motivational decay and c4 denotes the strength of cross-inhibition. To see

the equivalence between this model and the LCA, note that the first two

terms of the equation denote the sensory information (Ii), the third denotes

the leak of the accumulators (k) and the fourth denotes the strength of in-

hibition (w). Here, cross-inhibition is introduced by setting c4 < 0; setting

c4 > 0 thus removes it. It should be noted that this model, unlike the LCA

model, is deterministic (without noise). Under certain parametric conditions

(c2 > 0, c3 = −c2, c4 = 0) the model is equivalent to the original model of Hou-

ston and Sumida (Marshall et al. 2015). Thus it is intuitive that using these

parameters and setting c4 < 0 is equivalent to introducing cross-inhibition into

the original model.

In each simulation, the agent initially begins equidistant from two loca-

tions which offer either food or water. The agent then moves to the location

corresponding to its strongest motivation. An agent motivated by hunger will

thus move towards the location where food is present. There, it reduces its

corresponding deficit (feeds) until the strongest motivation changes. Whilst

the agent is performing action i, the corresponding deficit (xi) decreases at the

rate of dxi = −(g − h)dt, where g is the rate of reduction of the deficit and h

is the rate of increase of the deficit. When the agent is not performing action

i, the deficit xi increases at the rate of dxi = h. As in the original model, the
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dynamics of increasing deficits are ignored and it is assumed that h = 0 (Hous-

ton and Sumida 1985). Once the agent is more strongly motivated by another

deficit, it ceases its current activity and moves from its current location to the

other. Whilst moving, it cannot reduce either of its deficits. This behavioural

pattern continues until the agent has fully reduced its deficits. It is assumed

that the animal will be interrupted during foraging, and the probability of this

interruption per-unit-time is set to λ. After interruption, the agent is scored

on its performance according to a penalty function, which is defined as the

following:

p := x21 + x22 (3.3)

A lower penalty thus determines a higher performance score for the agent.

From the model simulations, parameters were identified which generated the

optimal performance of the agent, for various switching costs and interrup-

tion probabilities. Additionally, c1 was systematically varied with the cost of

switching between two alternatives, τ . In order to maintain equivalence with

the original model of Houston and Sumida, only c1, c3 and c4 were varied,

leaving c2 = −c3 and with the constraint that c3 < 0. Performance variations

due to λ and τ were deemed to construe a sensitivity analysis.

3.3 Results

It should be noted that these results are presented in Marshall et al., (2015)

and that they are the work of the other co-authors of this publication. The

analysis of the foraging bouts of the animal (presented in Fig 3.6) is original

work and was used as supplementary material for the publication. Addition-

ally, the non-linear extension of this model and the results that are presented

in Section 3.4 are also original work and feature an adapted version of the

model.

Simulations of the model were carried out whereby the cost of switching
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and the rate of interruption parameters were varied. For each of these different

set-ups, parameters c3 and c4 were varied systematically. At the end of each

simulation, the penalty score was determined along with the foraging bout

durations. Furthermore, the model dynamics were analysed in order to show

how the deficits and motivations of the animal changed as time progressed.

Taken together, these results ascertained which parametric set-ups gave the

optimal performances. The penalty scores shall first be discussed. A low

penalty is derived when the modelled animal is able to reduce frequent, costly

behavioural switching, thus moving its nutritional state to that of the target

without incurring costs. An example 2D plot of the penalty scores is given in

Fig 3.1.

Figure 3.1: A 2D slice which shows the penalty scores obtained for the given values
of λ (interruption probability), τ (switching cost) and c1 (influence of dx1 on dvi).
Parameter c2 was set to −c3, and parameters c3 and c4 are both varied systematically.
Darker blues denote the lower penalty scores and thus a better performance from the
animal. From Marshall et al. 2015.

The best penalty scores are obtained when the animal is modelled with

cross- inhibition (i.e., where c4 < 0) and also when |c4| > |c3|, as shown by

the dark blue areas of the graph. Setting c4 > 0 results in an increase in the

penalty score. This was the case for all the examined variations of interruption

rate and switching cost, demonstrating that the relationship between the ci
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parameters is conserved across parametric space. A more complete sensitivity

analysis for the model is shown in Fig 3.2, where penalty scores are shown for

different values of λ and τ , as well as c1.

Figure 3.2: The full sensitivity analysis which shows the derived penalty scores for
varying switching costs and interruption rates. As in the previous figure, darker blue
areas denote lower penalties and thus better performance. From Marshall et al. 2015.

The full sensitivity analysis makes it clear that cross-inhibition generates

the lowest penalties for the entire parameter space, again shown by the dark

blue areas. As before, the dependence on c3 is highlighted; when |c4| > |c3|

the decision penalties are greatly reduced. Furthermore, the result is held

for changing values of c1, λ and τ , demonstrating the importance of cross-

inhibition and rate of decay on the model performance. The reason why these

two parameters impact the penalty scores can be determined by analysis of the

modelled animal’s motivations and deficits over time. The results of the model

show that the foraging behaviour changes when cross-inhibition is introduced.

This is shown in Fig 3.3. Time in these plots begins at the top- right (as

such, when t = 0 the motivations are at their highest) and increases along the

x-axis. The original publication also makes use of these plots (Houston and

Sumida 1985).

In the top-left plot of Fig 3.3, the motivational state of the animal without

cross-inhibition fluctuates regularly across the behavioural switching line (dashed
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Figure 3.3: The animal’s motivations and deficits in two different parametric situ-
ations. The top row depicts the motivations, vi, and the bottom row the deficits,
xi, of a modelled animal with cross-inhibition (right) and without (left). Without
cross-inhibition, the animal frequently switches between the two activities. The
introduction of inhibitory coupling induces irregular foraging bouts and a reduc-
tion in behavioural switching. Time begins at the top-right of plots where motiv-
ations and deficits are highest, and ends at the bottom-left, as in (Houston and
Sumida 1985). Parameters: c1 = −1, c3 = −1. Left (without cross-inhibition):
c4 = 0. Right (with cross-inhibition): c4 = −1. Initial deficits and motivations:
x1(0) = v1(0) = 10, x2(0) = v2(0) = 10.1. From Marshall et al. 2015.

line in the figure, where v1 = v2), which corresponds to the animal frequently

switching back and forth between the two activities. In the top-right plot,

the motivations are far more irregular and they allow for the animal to spend

more time attending to a single nutrient. This is also shown in the bottom

plots which depict the deficits. The introduction of cross- inhibition results in

irregular foraging bouts so that the animal spends less time switching. This

behaviour in turn produces a lower penalty score. The dynamics of the mo-

tivations and deficits can be examined in more detail with regard to the decay

parameter c3. This is shown in Fig 3.4.

It is obvious that the relationship between c3 and c4 produces differences in

the animal’s motivations and consequent deficit reduction. As demonstrated
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Figure 3.4: The animal’s motivations and deficits for different combinations of c3
(strength of decay) and c4 (strength of cross-inhibition). Deficits are given on the
left, motivations on the right. When |c3| > |c4|, the animal switches between the
two activities frequently. If |c3| ≤ |c4|, the animal instead exhibits irregular foraging
bouts and a reduction in frequent switching. Top row: c3 = −5, c4 = −5, middle row:
c3 = −10, c4 = −2, bottom row: c3 = −5, c4 = −20. All plots: c1 = −5.
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Figure 3.5: Plot to show how the dynamics of the modelled motivations change ac-
cording to variations in the c3 (strength of decay) and c4 (strength of cross-inhibition)
parameters. When |c3| < |c4|, the motivations of the animal end up in a state where
one is suppressed whilst the other is not, which is beneficial to decision-making.
Stable points in motivational states are denoted by black filled (semi) circles, un-
stable points are shown by open circles. Parameters: c1 = 0, c3 = −2. Left: c4 = −3.
Right: c4 = −1.

in the previous figure, when |c3| > |c4| the performance of the animal is im-

paired due to frequent switching, shown in the middle row. Setting |c3| ≤ |c4|

drastically improves performance, especially when |c3| < |c4|. An explanation

as to why the motivations of the animal change in such a way can be attrib-

uted to the model dynamics. To give further insight into these dynamics, we

show them graphically in Fig 3.5.

The dynamics of the model are very different according to the relationship

between c3 and c4. When |c3| < |c4|, the motivational states converge onto

one of two stable points wherein one motivation is high whilst the other is

suppressed. The motivations are accelerated to this state due to the single

unstable point between them. However, when |c3| > |c4|, the motivations

instead converge onto a single stable point where the they are very similar to

each other (right plot in Fig 3.5). This in turn causes the animal to switch

frequently.

In addition to the penalty scores, the animal’s foraging bout durations

were analysed over the running time of each simulation, in order to ascertain

whether or not the derived behavioural data were plausible. In previous studies
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Figure 3.6: The full results for the foraging bouts analysis for systematically varied
values of c1, c3 and c4. The matrices show the proportion of bouts that are being
consistently decreased over the simulation time, as such, the best performance is 100%,
shown in darker red. If this result is obtained, the agent has successfully decreased the
length of each foraging bout following the previous one, spending less time consuming
nutrient i as deficit xi decreases. The results are given for each deficit individually, on
the left is the result for the x2 deficit, on the right, the x1 deficit. The results indicate
that the best performances are derived when cross-inhibition is present within the
model (c4 < 0). The consistency of foraging bout reduction is also dependent on the
c3 parameter (strength of decay), as with previous results.

examining animal ‘vilgilance’, defined as alertness to stimuli (Dukas and Clark

1995), it has been found that such alertness cannot be sustained over long

periods of time. In a model of foraging which incorporates vigilance as a

parameter, it was found that vigilance should decrease over time as the animal

forages and that the length of the animal’s foraging bouts should decrease

accordingly (Dukas and Clark 1995). As such, the modelled animal here should

be reducing its bout durations as time progresses and its deficits are reduced.

Hence, a more successful parameter setup will result in the agent being able to

consistently reduce its bout durations over the entire period of the simulation.

Fig. 3.6 shows the full results matrices whereby c1, c3 and c4 are being varied.

It is apparent that the agent is able to fully decrease its bout lengths in

some simulations for the x1 deficit, however, it is unable to fully decrease

its bout lengths for the other deficit. Despite this difference in performance,

a similar pattern can be noted in both matrices. When cross-inhibition is

introduced (where c4 < 0), the proportion of bout length durations being

reduced increases. As the strength of inhibition grows, the agent is able to

fully reduce its bouts in a greater number of simulations. This indicates that
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cross-inhibition not only improves decision-making but also is necessary for

the agent to implement rational foraging behaviour.

3.4 The Non-linear Model

The model described thus far is a deterministic linear model, however, decision-

making is a non-linear process (Bogacz et al. 2007). As such, a non-linear

extension to the model was developed which builds upon the original model

by altering the formal dynamics, such that the interaction between the mo-

tivations is no longer linear. The extension was originally planned to be non-

deterministic, however, preliminary results suggested that the introduction of

noise was not beneficial for the model. As such, even though noise would make

the model more biologically plausible, it remains deterministic.

The non-linear model functions in precisely the same way as the linear

model, where the modelled animal must choose between two alternative nu-

trients and act so as to minimise the distance between its current nutritional

state and that of the target state. With the entirety of the model parameters

being held constant, the only change is in the formal definition of the model.

Like the linear model, it is defined by two coupled differential equations:

dv1 := c1dx1 + c2x1 + c3v1 + c4(v2 − (1/(v1)
2))

dv2 := c1dx2 + c2x2 + c3v2 + c4(v1 − (1/(v2)
2)) (3.4)

Here, there is an additional coupling present in the inhibitory pathways. A

single accumulator’s activity is still inhibited by the other accumulator, how-

ever, this inhibition itself is stunted by a small amount of the accumulator’s

own inhibition. This coupling is demonstrated diagrammatically in Fig. 3.7.

This introduces additional competition in the inhibitory pathways as well as

the decision pathways. Thus, the strength of cross -inhibition is modulated

or regulated by the agent’s own motivations. This change was hypothesised

to be beneficial to the model. In the original model, one motivation would
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be accelerated and would inhibit the other accordingly; as such a very mo-

tivated animal would perhaps supress the competing motivation too rapidly.

Mediation, however, would ensure that the inhibition is never too high.

Figure 3.7: Schematic of the non-linear extension of the original model. Here, lateral
inhibition between accumulating units is mediated by inhibition. Excitation denoted
by arrows, leak denoted by dashed arrows. Inhibitory connection to competing units
denoted by small blue circles, inhibition of lateral inhibition denoted by small red
circles.

3.5 Results

As described before with the linear model, simulations were carried out where

the model parameters were varied and the penalty scores determined. In

addition, we also analysed the model dynamics and foraging bout durations of

the animal to contrast with the results of the linear model. The full sensitivity

analysis for the penalty scores is given in Fig. 3.8, where λ, τ and c1 are varied

along with c3 and c4.

It is apparent that the penalty scores for the non-linear model are very sim-

ilar to those which were derived previously; the lowest penalties are obtained

from simulations where cross-inhibition is introduced (c4 < 0) and |c4| < |c3|.

This result is not surprising. However, when cross-inhibition becomes particu-

larly strong, there is a slight degradation in the performance of the agent and

higher penalties are derived, dependent on the value of λ. Despite this, the

‘wedge’ of best performance is consistent with the linear model and is retained
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Figure 3.8: Full sensitivity analysis for the non-linear model for varying switching
costs and interruption rates. As with the linear model, darker blue areas denote lower
penalties and thus a better performance.

throughout the various parametric set-ups. This suggests that the motivations

and deficits are changing in a manner very similar to that of the linear model.

Indeed, Fig. 3.9 indicates that the dynamics are very similar.

Here, the same result is obtained. With cross-inhibition, the motivations

of the agent are irregular and allow for the agent to spend a longer amount of

time reducing its deficits earlier on in the trial, with foraging bout durations

clearly decreasing in length as time progresses. Without cross-inhibition, the

agent again fluctuates across the switching line and so switches between the

two nutrients frequently. To build upon this result, a parameter analysis was

also carried out to show more clearly how the motivations and deficits changed

according to the c3 and c4 parameters. This is shown in Fig. 3.10.

As shown before, having |c3| > |c4| results in frequent behavioural switch-

ing. Instead, setting |c3| ≤ |c4| results in irregular motivational states. When

|c3| is particularly smaller than |c4|, the motivations are initially very high

before being reduced quite quickly. As this result is also similar to that of the
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Figure 3.9: The animal’s motivations and deficits for two different parametric situ-
ations. The top row depicts the motivations, vi, and the bottom row depicts the
deficits, xi, of the modelled animal with cross-inhibition (right) and without (left).
As with the linear model, the introduction of cross-inhibition reduces costly behavi-
oural switching. Again, time begins at the top-right where the deficits are at their
maximum level. The parameters used for this figure are the same as those for Fig. 3.3.

linear model, it is implied that the same holds for the model dynamics. These

are given in Fig 3.11.

The dynamics are equivalent to those that were found before. When |c3| <

|c4| the motivations are pushed to one of the two stable points, separated by

the unstable point. When |c3| > |c4| there is only one stable point where the

motivations converge, and at this point the two motivations are very similar

to each other.

Finally, the agent’s foraging bout durations were analysed. The full results

for this are shown in Fig. 3.12.

Here, the agent exhibits foraging behaviours that are similar to that of

the linear model. The agent is able to fully reduce its x2 bout durations in

some simulations but not its x1 deficit bouts. The pattern seen before can be

noted again; when c4 < 0 the proportion of bouts being consistently reduced
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Figure 3.10: The animal’s motivations and deficits for different combinations of
c3 (strength of decay) and c4 (cross- inhibition). Deficits are shown on the left,
motivations are shown on the right. As with the linear model, when |c3| > |c4| the
modelled animal frequently switches. Parameters used for these plots are the same
as those used in Fig. 3.4.
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Figure 3.11: As with the linear mode, the changes in the dynamics are dependent
on the c3 (strength of decay) and c4 (strength of inhibition) parameters. Again, when
|c3| < |c4|, the motivations of the animal end up in a state where one is suppressed
whilst the other isn’t. Stable points in motivational states are denoted by black filled
(semi) circles; unstable points by open circles. The parameters used are as in Fig 3.5.

Figure 3.12: The full results for foraging bouts analysis for the non-linear model. The
matrices show that proportion of bouts that are being consistently decreased over the
simulation time. Again, the best performance that may be obtained is 100%, denoted
by the red areas of the plots. The results are given for each deficit individually, on
the left is the result of the x2 deficit, on the right is the result for the x1 deficit. The
results show that the best performances are derived when cross-inhibition is present
within the model (c4 < 0). Parameters used are the same as those used in Fig. 3.6.
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increases, and as the strength of inhibition grows the number of simulations

where the agent is able to reduce 100% of its bouts also increases. When

c4 > 0, the agent is unable to consistently reduce its bouts over the course

of a simulation, indicated by the blue areas of the matrices. The relation-

ship between cross-inhibition and agent performance is perhaps highlighted

to a greater degree in the non-linear extension, as the agent is able to reduce

100% of its bouts in more simulations when c4 < 0. This indicates that the

introduction of secondary competition in the inhibitory pathways improves

the behavioural performance of the agent, allowing it to reduce its bouts to a

further extent (compare results from Fig. 3.6 with Fig. 3.12).

3.6 Discussion

The model presented in this chapter examines an animal’s decision-making

in a foraging task wherein the animal must choose to consume one nutri-

ent or the other. The model builds upon a previous model of behavioural

switching developed by Houston and Sumida (Houston and Sumida 1985) and

introduces cross-inhibition as proposed in the leaky competing accumulator

model of Usher and McClelland (Usher and McClelland 2001). The results

suggest that cross-inhibition improves decision-making, allowing the agent to

reduce costly behavioural switching and also reduce its bout length durations

over time. Interaction between motivations thus produces more optimal for-

aging behaviours. Although cross-inhibition has been shown to be beneficial to

decision-making models before, it was here shown for the first time in a model

of behavioural switching, originally proposed to minimise switching via the

positive feedback mechanism. The introduction of cross-inhibition improved

the original model by improving the modelled animal’s foraging efficiency and

reducing frequent switching (Marshall et al. 2015).

There are a few limitations to this model. Firstly, it makes the assumption

that each resource will only provide a single type of nutrient, however, in many

cases this assumption will not hold (Marshall et al. 2015). As an example,
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many food sources will also provide water as well. Secondly, the original

model made use of linear dynamics, however, decision-making is not a linear

process. As a possible solution to this limitation, a non-linear extension was

proposed whereby the interactions between the agent’s motivations are not

linear. This model made use of the inhibition of lateral inhibition and was

able to produce similar results to that of the linear model, with improvements

to the agent’s trajectories in nutrient space. However, there was also a slight

degradation in penalty scores for certain parametric set-ups.

We hypothesise that although the dynamics of the non-linear model were

shown to be almost equivalent to those of the linear model, they are such that

for particularly large values of |c4|, the agent returns to switching frequently,

although it begins the simulation by spending more time at one location before

switching to another. As such, the correctness of the behavioural data (where

the agent is reducing the duration of its foraging bouts as time progresses)

comes with the reintroduction of some costly switching, for certain paramet-

ers. Such a result indicates that the non-linear model needs some revision.

Alternatively, it could also indicate a trade-off.

Under certain parametric conditions, the interactions of the agent’s two

competing motivations gave rise to an increase in its penalty score. The dy-

namics of the interactions were analysed over the course of several simulations.

The analysis revealed that, at the beginning of these simulations, one motiva-

tion was very large whilst the other had been supressed and was much smaller.

Shortly after the initial stage, the motivations decreased to the point where

one was only just larger than the other. Finally, the motivations converged

to a point where they were almost equivalent and they remained in this state

until the end of the simulation, which resulted in the reintroduction of behavi-

oural switching. These dynamics are only present when |c4| becomes too high.

Nonetheless, both linear and non-linear models predict that an animal should

exhibit irregular foraging bouts in order to forage optimally.

Can a model of behavioural switching be applied to honeybees? Recently,
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the geometric framework has been used to examine honeybee worker nutrition

and gives some insight into how honeybees need to balance protein and carbo-

hydrate intake (Paoli et al. 2014). Furthermore, the framework has also been

applied to larval honeybee nutrition, and it has been demonstrated that the

ratio of protein and carbohydrate levels impact the growth rate and develop-

ment of honeybees in their larval state (Helm et al. 2017), indicating that there

is a nutritional balance that optimises larval growth and minimises mortality.

The framework has also been applied to adult worker bumblebees (Stabler

et al. 2015) and Drosophila larvae (Rodrigues et al. 2015). Furthermore, the

geometric framework may also be applied to collective decision-making in hon-

eybee colonies (Bose et al. 2017) as it has been in ant colonies (Dussutour and

Simpson 2009). Taken together, all these studies suggest that invertebrates are

working to optimise their nutritional intake and that switching from the con-

sumption from one nutrient to another is necessary. In which case, irregular

foraging bouts from honeybees is predicted.

To conclude, although this model of behavioural switching may be simpli-

fied, it can be applied to many foraging contexts and demonstrates the need

for irregular foraging bouts to optimise nutritional intake. Furthermore, the

model reiterates the need for coupling in decision-making pathways; a foraging

agent without cross-inhibition between its motivations was shown to be unable

to reduce costly behavioural switching. The geometric framework has proven

very valuable in predicting an animal’s decision-making behaviours in light

of its motivational state. Indeed, the level of satiation may have a profound

impact on an animal’s foraging strategies and its ability to choose between

two alternatives. This is explored experimentally in the next chapter.
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Chapter 4

Is Honeybee Decision-Making

Described by a

Drift-Diffusion Process?

Fast, robust decision-making in response to sensory input has typically been

studied using the two-alternative forced-choice task. Originating from psycho-

physics, this paradigm involves the presentation of two different stimuli to a

subject that must discriminate between them. The similarity of the stimuli is

experimentally controlled such that they are quite disparate or almost indis-

tinguishable, corresponding to an easy or hard task, respectively. A classical

example of such a task is that of the random-dot paradigm, where a monkey is

trained to observe a group of moving dots on a screen and indicate the overall

direction of their movement by an eye saccade (Shadlen and Newsome 1996,

Kim and Shadlen 1999, Shadlen and Newsome 2001, Roitman and Shadlen

2002, Huk and Shadlen 2005).

Shadlen and Newsome identified the lateral intraparietal (LIP) area of the

mammalian brain as a higher-level region which may play a role in the decision

process (Shadlen and Newsome 1996). They used the random-dot paradigm

to determine whether or not this was the case, recording from neurons in LIP
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Figure 4.1: The random-dot paradigm. Left: 0% coherence where all the dots move
in random directions. Middle: 50% coherence where half the dots move in the same
direction (filled black circles). Right: 100% coherence where all the dots move in the
same direction.

whilst a monkey made its decision. They found that the responses of the LIP

neurons could be used to predict what the monkey would decide, so much so

that ‘an experimenter could generally predict decisions “on the fly” during an

experiment simply by listening to the neuron’s activity on the audio monitor ’

(Shadlen and Newsome 1996, p. 630). They also found that the predictions

became increasingly reliable as time progressed; the neural responses were

indicative of a system that integrated sensory evidence over time in order to

make a decision. Furthermore, it was later found that the neural accumulation

process stopped when it reached a certain threshold (Roitman and Shadlen

2002, Huk and Shadlen 2005). These experimental findings are in agreement

with the evidence accumulation theory applied in sequential sampling models:

noisy sensory evidence is integrated over time (as such, a higher integration

time allows for a greater build-up of evidence and thus a higher degree of

accuracy from the animal) until a threshold level is met, at which point a

decision is made. These results suggest that for simple perceptual decisions,

mammals may be using a drift-diffusion process in order to make a choice.

Indeed, the drift-diffusion model (DDM) of decision-making (Ratcliff 1978;

1988, also see Chapter 2 for an overview) has been fitted successfully to ex-

perimental data (for example, see Ratcliff and Rouder 1998). Furthermore

it can explain the speed-accuracy trade-off (SAT), a behavioural phenomenon

whereby faster decision makers are less accurate. Recently, the speed-accuracy

trade-off has been described as the benchmark of the decision process (Heitz

2014). Since it is so prevalent within so many species, and even within group
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decision- making (Franks et al. 2003, Passino and Seeley 2006, Marshall et al.

2009), it may be inferred that the drift-diffusion process - which is statistically

optimal - may capture general features of sensory evidence accumulation. If

this is the case, we would expect the phenomenon of the speed-accuracy trade-

off to be demonstrated in most decision-making systems, including those of

non-mammalian model systems. Indeed, this has already been shown to be

the case for honeybees (Burns and Dyer 2008, Wright et al. 2009) as well as

bumblebees (Chittka et al. 2003, Dyer and Chittka 2004b, Ings and Chittka

2008, Riveros and Gronenberg 2012) (also see Chittka et al. 2009). As such, we

here hypothesise that the drift-diffusion model is able to describe perceptual

decision-making behaviours in honeybees. We furthermore hypothesise that

changes in motivational state impact the process of evidence accumulation,

and are translated as changes in the decision threshold of the drift-diffusion

model, as shown in Fig 4.2.

If honeybees approximate a drift-diffusion process in their decision-making,

a change in motivational state should thus correspond to a change in accuracy

and reaction time, as predicted by the drift-diffusion model. We here test

this hypothesis by observing how the choice behaviour of honeybees differs

according to two different levels of satiation, using the proboscis extension

reflex (PER) paradigm. We first present the PER paradigm in detail before

discussing the expected behavioural changes.

4.1 The Proboscis Extension Reflex

The proboscis extension reflex paradigm (Takeda 1961, Bitterman et al. 1983,

Felsenberg et al. 2011, Giurfa and Sandoz 2012) makes use of classical Pavlovian

conditioning (Pavlov 1927) in order to train honeybees to associate an initially

neutral stimulus (known as the conditioned stimulus or ‘CS’) with positive

or negative, biologically relevant, reinforcement (known as the unconditioned

stimulus or ‘US’). The US will invoke an innate behavioural response and,

after training, the animal will exhibit this response to the CS. Touching the
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Figure 4.2: Diagram to show a theoretical evidence accumulation process during a
decision-making trial. The two dashed horizontal lines depict decision thresholds at
two different levels; these levels have been determined by the internal state of the
decision maker. Vertical dashed lines indicate when an agent shows a behavioural
response. If the evidence accumulated is crossing from below the threshold to above,
the decision maker will reach a decision and respond to the stimulus. In our case, a
bee will extend its proboscis. If the evidence accumulation is crossing from above to
below the threshold, this corresponds to the withdrawal of the proboscis. Here, we
can see that a satiated animal should take longer to respond and should also spend
less time responding, either in the event of an error or if the stimulus is removed. The
lower threshold has been removed since the task given in this experiment is more of
a go/no-go task.

antennae of a bee with sucrose solution will elicit the proboscis extension reflex

(where the bee extends its proboscis); olfactory conditioning will result in the

bee showing this same response to trained odours. Experimental results have

shown that honeybees are very efficient learners, with high learning rates after

two to five associative trials (Bitterman et al. 1983).

This paradigm has given experimenters the chance to implement a decision-

making task that is suitable for invertebrates with a high degree of control over

the animal. Although many mammalian choice tasks use visual stimuli, PER

conditioning with honeybees requires moving from the visual to the olfactory

domain. Previous studies in olfactory PER conditioning have shown that

honeybees perform very well and are able to discriminate between odours

(Guerrieri et al. 2005). Using visual stimuli with PER is only possible if

the antennae of the bees are cut, however, this results in drastically reduced
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learning rates (Hori et al. 2006; 2007). This may be attributed to the fact that

bees with removed antennae are less responsive to sucrose (de Brito Sanchez

et al. 2008). Even after an extensive number of learning trials, many more than

what is required for olfactory conditioning, performance is heavily impacted.

Furthermore, the ability to discriminate colours, even those which should be

easily distinguishable, is diminished (Niggebrügge et al. 2009). Interestingly, a

recent study has reported success in honeybee visual conditioning by using an

alternative method of restraint (Dobrin and Fahrbach 2012), however, since

we here use the classical method of individual tubes and tape to hold the bee

in place (see Materials and Methods), it is more desirable to use odours in

our conditioning (for a review of visual conditioning protocols, see Avarguès-

Weber and Mota 2016).

The PER paradigm has now been standardised (Felsenberg et al. 2011) and

it has proven to be popular in honeybee research over the last few decades,

especially for the examination of choice behaviour and discrimination ability

(e.g., Guerrieri et al. 2005) and also for the analysis of learning and memory.

We here use it to ascertain honeybee discrimination ability within different

motivational settings, and furthermore compare the behavioural results with

predictions from the drift-diffusion model of decision-making. Since the PER

paradigm allows for a high degree of experimental control, motivational state

(more specifically, the level of satiation) is rendered easy to manipulate. Once

restrained, bees can be fed with measured amounts of sucrose solution and

then held without food for precise intervals of time.

4.2 The Impact of Motivation

Decision-making is a cognitive process which can be influenced by both ex-

ternal and internal states. An example state is that of hunger, which has been

shown to cause observable changes in animal behaviour (for example, Susswein

et al. 1978, Weiss et al. 1982, and also see Marshall et al. 2015, a model of

behavioural switching with a motivational element). This particular internal
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state plays a vital role in PER conditioning studies because the animals are re-

sponding to food rewards; a fully satiated animal is unlikely to respond to the

conditioning phase of the paradigm as it will have no motivation to extend its

proboscis to sucrose. Experimental studies which examine specific behaviours

of animals, but do not ensure that the subjects are equivalent in terms of their

hunger states, may encounter differences in the behavioural results obtained.

When considering how a bee’s satiation level may impact the way it makes

choices, it is first necessary to review the components of the hypothesised

decision process. Since we view this from a drift-diffusion perspective, we thus

find that a change in motivation could alter the following properties:

• the level of sensory noise

• the rate of evidence accumulation (drift)

• the level of the decision threshold

Within a foraging context, a starving bee (or indeed, any animal) will need

to act quickly in order to ensure its survival; as such it will make decisions rap-

idly and perhaps respond to alternatives it might not have if it were satiated,

including options which introduce a higher chance of predation (Pettersson

and Brönmark 1993, Godin and Crossman 1994, Latty and Beekman 2011).

This could be translated as ‘risky’ behaviour. Within a two-alternative forced-

choice task, the bee may respond to unrewarded or punished odours, which

would be deemed as being inaccurate. This is intuitive from the drift-diffusion

perspective, as faster decision-making results in a higher proportion of errors.

Theoretically, the component to control the speed of the decision-maker is the

decision threshold. We then hypothesise that, if honeybees are indeed using a

drift-diffusion process to make perceptual decisions, then hungry bees should

implement a lower decision threshold than satiated bees (corresponding to

faster and more inaccurate decision-making). A lower decision threshold de-

termines that the evidence accumulation process will trigger a motor output

within a shorter amount of time, thus the discrimination abilities of hungry
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bees should be reduced. Within the PER paradigm, we expect to see that

hungry bees will respond positively (extend their proboscis) to neutral or neg-

atively reinforced odours and will exhibit a faster response time than satiated

bees.

4.3 Materials & Methods

The first PER experiment was conducted between July 2016 and August 2016

at Paul Sabatier University in Toulouse, France. Honeybee foragers, both de-

parting and returning from the hive, were caught from the hive entrance in

the morning (using a BioQuip bee vacuum) then chilled on ice until immobil-

ised. Each individual was placed within a small tube and restrained using the

classical method of harnessing, such that it could only move its proboscis and

antennae. This was implemented using two strips of tape. One strip covered

the front and back of the tube so that the body of the bee was secure. Another,

thinner strip ran underneath the neck and held the head in place. Groups of

twenty to twenty- five individuals were harnessed each day, fed until satiated

on 30% sucrose solution and then left to rest for three hours.

Thirty minutes before conditioning, the harnessed bees were tested for their

sucrose responsiveness by gently touching their antennae with 50% sucrose

solution on the end of a toothpick. Individuals that did not extend their

proboscis in response were discarded from the experiment. Each day, the fif-

teen individuals that showed sucrose responsiveness proceeded to the training

phase of the experiment. If there were more than fifteen individuals available,

the first fifteen of these were chosen.

The olfactory version of the PER paradigm uses odourants as the condi-

tioned stimuli (CS) and sucrose solution as the unconditioned stimulus (US).

Odourant molecules that are within the same chemical group or that have sim-

ilar carbon chain lengths are generalised more often by bees (Guerrieri et al.

2005). The two odours chosen were Hexanal and 1-Heptanol; these differ in

both their carbon chain length and chemical group and should thus be easy to
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discriminate (Guerrieri et al. 2005). Hexanal was chosen to be the rewarded

odour and 1-Heptanol the unrewarded. During conditioning, presentations

of the rewarded odour were paired with the US (50% sucrose solution) and

presentations of the unrewarded odour were not reinforced (and as such the

odour remained a neutral stimulus). During training, the bees were exposed

to each odour five times, resulting in a total of ten trials, which were in a

pseudo-random sequence with an inter-trial interval (ITI) of eight minutes

(Drezner-Levy et al. 2009). In each trial, individual bees were placed in front

of an olfactory stimulus controller (shown in Fig 4.3), which provided a clean

airflow, and were allowed to familiarise with the set-up for fifteen seconds. An

extractor fan was also positioned behind the bee in order to remove lingering

odours. After familiarisation, if the trial was a rewarded trial, the CS was

presented alone for four seconds and then presented with the US for a fur-

ther two seconds. For unrewarded trials, the CS was presented alone for four

seconds but no US was present in the following two seconds, as such it was

presented alone for a total of six seconds. Finally, the CS was removed and

replaced with clean air by the controller, allowing the US to be presented alone

for one second (for rewarded trials). Finally, the bee remained exposed to the

clean airflow until its trial ended, whereby it was removed from the set-up. In

total, a single trial lasted for thirty-two seconds.

After conditioning, an individual was judged to have learnt the associations

if they responded correctly in either the last two trials (trials nine and ten) or

trials six, seven and eight (see Appendix B for the data sheets that were used

for the training). A rewarded odour was presented in trial nine and an unre-

warded odour in trial ten, thus if an individual showed a proboscis extension

in trial nine and no response in trial ten, they were judged to have learnt. If

an individual failed to perform correctly in these two trials, performance in

trials six, seven and eight was examined. Trials six and seven were rewarded

trials and eight was unrewarded, as such if an individual extended its probos-

cis in trials six and seven and showed no response in eight, it was judged to
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Figure 4.3: Some of the apparatus used for the PER experiment. Shown is the
rig which provides a constant, clean airflow during experimental trials; this device
is attached to a programmable computer which controls the timing of the odour
presentations (not shown). Also shown is the chamber wherein a harnessed bee is
held, behind this is an extractor fan which removes lingering odours from the set-up.

have learnt. If an individual did not fulfil either of these two criteria, it was

classified as a non-learner and discarded from the experiment. Preliminary ex-

periments showed that some individuals were quicker to learn the associations

than others and demonstrated that they had learnt from trial six onwards.

Some individuals were slower to learn and demonstrated the correct responses

in the final two trials. Some individuals showed they had learnt in trials six

to eight but then became unresponsive to the rewarded odour on the ninth

trial, however, this did not mean that they had not learnt. It was hypothes-

ised that these individuals had either become demotivated (perhaps due to

being gradually satiated throughout the training phase where they were given

small amounts of sucrose solution) or perhaps fatigued, and so they were taken

through to the testing phase. In this way, the criteria implemented here for

learning allows for both slower and faster learners. Spontaneous responders,

individuals which responded to the first rewarded trial in the training phase,

remained in the experiment. In total, there were three of these (one from the

satiated group and two from the hungry group).

After all fifteen bees had undergone the training procedure, those which

had demonstrated learning were split into two different motivational groups,

hungry and satiated. Both groups were allowed to rest for another three hours
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and were then tested on the learnt odours in order to assess their discrimina-

tion abilities. The hungry group received no further food whilst the satiated

group received a further 5µL of 30% sucrose solution one hour before the

testing phase using an Eppendorf pipette. The bees were placed nearby, but

not at, the experimental site. Bees that were fed demonstrated good sucrose

responsiveness, however the responsiveness of the hungry bees was not tested.

If a bee within the satiated group did not show PER when required to feed

prior to the testing phase, it was discarded from the experiment.

During testing, bees were once again placed individually before the airflow

and presented with Hexanal and 1-Heptanol over two sequential trials. The

bees’ responses to the two odours were recorded; bees showing a proboscis

extension to the rewarded odour and no response to the unrewarded odour

were marked as having perfect accuracy. Bees that failed to respond to the

rewarded odour, responded to the unrewarded odour, or responded to the

airflow before the odours had been presented, were all marked as incorrect.

As such, here an ‘error’ is defined as an incorrect response in either (or both)

of the two test trials. Bees which did not respond in both of the trials were

discarded from the experiment. To determine the response time of each of the

bees, video footage was recorded during the testing phase and analysed frame

by frame. The response time was determined as the length of time between

the odour onset (which is determined by a small beep from the olfactory

stimulus controller) and the first full proboscis extension exhibited by the bee.

The reaction time was measured in the same way for both the rewarded and

unrewarded test trials.

Bees responding to the airflow are here marked as incorrect as it is more

likely that they are responding to the contextual evidence (that they are within

the experimental setup, which itself is not rewarding) rather than the odour

presentations. As such, they may be responding randomly. If this is the case,

this result aligns with the drift-diffusion model as random responses are more

likely when a lower decision threshold has been implemented.
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The total number of bees used for this experiment and the analysis of the

results is 84 (41 of which were in the satiated group and 43 of which were in

the hungry group). A total of fifteen bees were excluded from the analysis

of the results due to being completely unresponsive in the testing phase (nine

satiated, six hungry), as such the total number of bees successfully trained was

99. Bees faced exclusion from the experiment primarily at five points: post-

harnessing (if they did not show PER after being harnessed and could not be

fed to satiation), prior to training (if they did not show PER just prior to the

training phase), post- training (for being unable to learn the associations), at

feeding (if they did not show PER to receive sucrose solution) and post-testing

(if they remained completely unresponsive).

For this experiment, we made the following predictions:

• hungry bees will be more inaccurate than satiated bees (or satiated bees

will be more accurate than hungry bees).

• hungry bees will have faster reaction times than satiated bees (or satiated

bees will have slower reaction times than hungry bees).

These predictions are inferred from the single-bound drift-diffusion model,

which predicts that behaviour will be dependent upon the ‘positive’ threshold

(the animal can either respond or not respond). We hypothesise that the level

of this threshold can be altered by hunger. More specifically, we hypothesise

that a hungry animal will lower their decision threshold. This in turn indic-

ates that they will reach a decision within a shorter amount of time and will

consequently become more inaccurate in their decision-making. On the other

hand, satiated bees should implement a higher threshold and thus spend more

time accumulating evidence before making a decision, as such they will have

slower reaction time but will be more accurate.
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4.4 Results

Since the odours chosen for the experiment are quite dissimilar, we presented

the honeybees with what should have been an easy discrimination task. We

first demonstrate that the learning curves for the two groups was similar from

the training phase, such that differences in behaviour cannot be attributed to

any differences in learning. The acquisition curves are presented in Fig 4.4.

Figure 4.4: The acquisition curves for both groups of bees from the training phase.
Trial numbers denote the presentations of the rewarded odour and do not refer to the
actual trial numbers in the experiment. All bees were treated the same upon being
caught from the hive (i.e., fed until satiated and left to rest) and were given the same
training, as such it should be the case that these curves are similar.

During the testing phase, we found that the majority of bees from both

groups responded to the rewarded odour presentation (all the hungry bees

and 39 of the 43 satiated bees) and that there was no significant difference

between the responses. For the unrewarded odour presentation, responses were

recorded from 22 of the 41 hungry bees and only 6 of the 43 satiated bees.

There was a significant difference between the responses of the two groups

(2-sample proportion test, p < .001), thus we can conclude that hungry bees

were significantly more responsive to the unrewarded odour than the satiated

bees. These data are shown in Fig 4.5.

The full data for the testing phase are shown in Fig 4.6. A total of 9
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Figure 4.5: Graph to show the percentage of bees from each motivational group that
responded to each of the test odours.

satiated bees and 6 hungry bees were discarded for not responding in any

of the test trials and are thus not included in the results. We found that

most satiated bees were able to discriminate between the two odours correctly,

with around 73% of bees completing the choice task without error. However,

the hungry bees were not able to discriminate as well, and often mistakenly

extended their proboscis to the clean airflow before the odour was presented.

Only 30% of bees in the hungry group were able to discriminate without

making a mistake (that is to say, the bees both responded to the rewarded

odour and did not respond to the unrewarded odour). We found that the

difference in accuracies of the two groups was statistically significant (2-sample

proportion test, p < .001), as such we can conclude that hungry bees are

more error prone than satiated bees. For completeness, we also analysed the

accuracies of the groups when the bees that responded to the airflow were

not marked as incorrect. In this case, only the bees that responded to the

punished odour were marked as making an error. This analysis is shown

in Fig 4.7. We further analysed the response times of the two groups to

determine whether or not hungry bees were responding to the presented odours
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quicker than satiated bees. Analysis showed that, for the unrewarded odour

presentation, hungry bees were, on average, significantly quicker in extending

their proboscis (Wilcoxon-Mann-Whitney test, p < .05). Although we did not

find significance for the rewarded odour, the average response time for hungry

bees was still less than that of satiated bees. The result for the unrewarded

trial, taken together with the results for the accuracies, is indicative of a speed-

accuracy trade-off: the hungry bees were quicker in making their decisions for

the unrewarded odour presentation and suffered a reduction in their accuracy.

This result suggests that the bees were not making mistakes due to some

other factor; if bees are indeed approximating a drift-diffusion process in their

decision-making, a reduction in decision accuracy must be accompanied by a

reduction in reactionctime, and these behavioural changes should arise from a

reduction in the level of the decision threshold. The results here, in terms of

the decision accuracies and the reaction times for the rewarded odour, support

the theory that hungry bees are limiting their evidence accumulation by means

of a reduced decision threshold.

4.5 Discussion

We used the proboscis extension reflex paradigm to test the discrimination

abilities of honeybees in two different motivational states, keeping the training

protocol for the groups equivalent and instead focusing on how internal state

can impact decision-making processes. Our experiment showed that hungry

honeybees are significantly more prone to error than satiated bees. We also

found that hungry bees were more likely to extend their proboscis to the airflow

upon being placed in front of the PER rig. This implies that hungry bees

may be completing their evidence accumulation even before the odour onset,

and consequently reaching the decision threshold before they could identify

which odour was presented. This also indicates that hungry bees were making

quicker decisions. Another interpretation of this result is that the hungry

bees were responding randomly, however, randomness is also indicative of a
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Figure 4.6: Honeybee decision-making analysis. Left: percentage of bees from each
group that were able to discriminate without making an error. Right: response
times for both the rewarded and unrewarded odours. Medians are denoted by white
lines, averages are denoted by white crosses, and outliers are denoted by red crosses.
Asterisks denote significance values. *: p < .05, **: p < .01, ***: p < .001. Statistical
test used for decision accuracies: 2-sample proportion test. Statistical test used for
reaction times: Wilcoxon-Mann-Whitney test.

lower decision threshold (fluctuations below and above the threshold due to

noise causing extensions and retractions, which is more likely to happen when

the threshold is at a lower level, see Fig 4.2). As such, either behavioural

explanation (that hungry bees were more random or that they had reached

a decision before the odour onset) can align with inferences from the drift-

diffusion model.

In addition, we compared the response times of hungry bees to satiated

bees after the odour had been presented. We found that hungry bees took

less time to extend their proboscis than satiated bees (had a quicker response

time). For the unrewarded odour, this result was significant. This behavi-

oural result supports the hypothesis that honeybees may be implementing a

drift-diffusion process for simple perceptual decisions, where the level of sati-

ation mediates the decision threshold and consequently the level of evidence

that is accumulated before a decision is reached. The results suggest that a

hungrier animal will have a lower decision threshold allowing it to respond to
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Figure 4.7: Honeybee decision-making analysis with the definition of error adjusted
to no longer count bees responding to the airflow as incorrect. Graph shows the
percentage of bees from each group that were able to discriminate without error.
Asterisks denote significance values; ***: p < .001. Statistical test used: 2-sample
proportion test.

stimuli more quickly, even if a speed-up in response time will result in more

errors. This result, taken together with the decision accuracies, demonstrates

a speed-accuracy trade-off (hungry bees made more mistakes and were faster

in responding to odours). It should be noted, however, that there was no

significant difference for the rewarded odour presentation. There may be sev-

eral reasons for this, including an insufficient sample size or an insufficient

difference in the hunger levels of the two groups. These limitations provide

options for future work; this experiment could be replicated but with more

than 40 bees in each group, and an additional hour (or more) could be ad-

ded to the resting time for the bees so that hunger is more pronounced. It

should be noted that bees in the hungry group should not be starved to the

point wherein their health is impacted as this would undoubtedly change the

behavioural results.

We have here used the drift-diffusion model to make inferences about the

behaviours of the bees in different internal states. For one of the presented

odours, the satiated bees are significantly slower in responding than hungry
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bees and this was explained by the mediation of the decision threshold. An-

other explanation is that satiated bees are slower due to their using energy for

digestion. This is unlikely to be the case, since they were given a small amount

of sucrose solution when fed before the testing phase and were also given one

additional hour to rest after this feed (as such, they had already had one hour

for digestion). Additionally, although we have here attributed a change within

internal state to a change in the level of the decision threshold, it is possible

that the rate of acccumulation (drift) is being altered instead. To explain the

slower response times, satiated bees would need to be accumulating evidence

at a slower rate than hungry bees, as such it would take them longer to reach

a static threshold. At this stage, it is not possible to ascertain whether the be-

havioural changes observed are due to a change in the decision threshold level

or the drift. In order to clarify, the mechanism that implements the threshold

within the brain of the bee would need to first be identified and then neural

recordings taken.

Another explanation of the behavioural differences found could be that

the hungry bees became disengaged from the task, which in turn made them

more prone to error or more prone to showing PER to stimuli other than the

rewarded odour. As mentioned above, if it was the case that hungry bees

became disengaged and more ‘random’ than satiated bees, this behavioural

difference still fits the predictions of the drift-diffusion model and the inference

that hunger should lower the decision threshold. However, this is unlikely, as

all bees were tested for sucrose responsiveness before the testing phase and

were seen to be motivated and in good health, as such it is most likely not

the case that they were too hungry. However, since this experiment was a

go/no-go task, it is impossible to distinguish between a bee that has chosen

not to respond from a bee which did not reach a decision. As such, it would be

beneficial to translate this experiment into a true two-alternative forced-choice

task, such that an error can be properly differentiated from disengagement or

a lack of choice. This is yet another opportunity for future work.
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4.6 Experiment Two: Materials & Methods

We theorised that the large number of bees extending their proboscis to the

airflow in the first experiment may have been caused by the training protocol.

During conditioning, 1-Heptanol was an unrewarded CS, as such there was

no negative consequence for bees that extended their proboscis to it. Further-

more, it has been shown that aversive conditioning can improve discrimination

in free- flying bees (Avarguès-Weber et al. 2010), as such, it may have been the

case that conditioning with an aversive stimulus was impacting the discrim-

ination abilities of the bees. We therefore decided to replicate the experiment

and alter the training protocol such that 1-Heptanol was instead punished.

The second behavioural experiment was conducted between January 2017

and February 2017 at Macquarie University, Sydney, Australia. It mirrors the

first experiment closely and aims to examine the same hypothesis, however, we

implemented a few changes that were hypothesised to make the results more

concrete. Firstly, we altered the conditioning protocol such that 1-Heptanol

was punished as opposed to unrewarded. During training, presentations of

1-Heptanol were paired with saturated salt solution, which was delivered to

the bee in the same way as the sucrose solution (on the end of a toothpick,

first touching the bees’ antennae and then the proboscis). This change was

hypothesised to stop the bees from responding to the clean airflow prior to

the odour onset.

Additionally, we incorporated a change to the testing protocol. As well

as presenting the two odours that were used during conditioning, we made

three different compound odours which were composed of ratios of the trained

odours (referred to in terms of their ratios; Hexanal:1-Heptanol). As such, the

compound mixtures would present the trained odours simultaneously but also

introduce a novel component. How exactly bees process compound odours has

been debated. Two main theories have been proposed, ‘elemental’ processing

(whereby a compound is regarded as the sum of its parts, XAB = XA +XB)

and ‘configural’ processing (whereby a compound is an entirely novel stimu-
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lus) (Rescorla 1973, Giurfa et al. 2003, Deisig et al. 2003). It has been found

that bees use a combination of both (Meyer and Galizia 2012); as such a

compound is processed as the sum of its parts, but with the addition of a

unique component (XAB = XA +XB +XC) (Deisig et al. 2003). Thus, com-

pound mixtures are excellent for controlling precisely how similar or dissimilar

an odour should be to the rewarded stimulus; they present both learned and

novel features, and they furthermore negate the need to use alternative odours

(that differ in chemical group and carbon chain length). Whilst it is expected

that the presence of a greater amount of CS+ within a compound odour will

generate more responses from bees (as it is chemically more similar to the

rewarded odour), the presence of the CS- (and the novel component) indic-

ate that the odour is still not equivalent with the rewarded odour and that a

response is thus a mistake. We used five test odours in total:

• the rewarded odour, Hexanal (100:0)

• a compound composed mostly of the rewarded odour (70:30)

• a compound composed with equal amounts of the trained odours (50:50)

• a compound composed mostly of the punished odour (30:70)

• the punished odour, 1-Heptanol (0:100)

The introduction of the compound odours meant that the bees would ex-

perience multiple presentations of the trained stimuli without reward. As

such, the bees may have, at some point during the testing phase, undergone a

type of learning whereby the reinforced CS become neutral again due to the

retraction of reinforcement. This type of learning is known as ‘extinction’.

Thus, the rewarded odour is no longer perceived as rewarded, and the pun-

ished odour as no longer punished. Previous experiments have shown that

total extinction can occur within as little as five trials and can begin on the

second trial (Bitterman et al. 1983), following a conditioning protocol com-

posed of five positive trials. As such, after the first odour presentation during
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the testing phase, bees may become less responsive. Additionally, the pos-

sibility of extinction makes the order in which the test odours are presented

important. For this experiment, the five test odours were arranged into the

following pseudo-random sequence: (1) 0:100, (2) 70:30, (3) 50:50, (4) 100:0,

(5) 30:70. The odours were presented in this order to each bee, such that each

individual encountered the odours in the same sequence. This was to ensure

that any observed differences in behaviour were not due to encountering the

odours at a different time.

As with the first experiment, the bees’ responses to the five odours were

recorded. Bees that showed a proboscis extension to the rewarded stimulus

(Hexanal, or 100:0) only were marked as discriminating without error. Bees

that failed to respond to the rewarded stimulus, responded to any of the

compound mixtures of the punished odour, or responded to the airflow before

the odour onset, were marked as incorrect. Since there were more chances

to make an error and involved the presentation of compound mixtures that

would be very similar to the rewarded stimulus (i.e., 70:30), this choice task

was harder than the one presented in the first experiment. However, this

experiment aimed to examine the choice behaviour of the bees more closely

and determine if hungry bees would mistake the compound mixtures as the

rewarded odour more than satiated bees.

Video footage of the bees was again recorded during the testing phase.

Frame-by- frame analysis was carried out to determine the bees’ response time

(calculated as before), as well as several other additional response character-

istics that were thought to differ between the two groups. We also examined

the number of proboscis extensions, or bouts, that the bees exhibited during

their trials. For example, a full extension followed by a retraction and then

another extension would count as two bouts. We furthermore observed that

some bees differed in which direction they extended their proboscis; many bees

would extend level to the plane of their head, others would try to extend above

the plane. We thus recorded if bouts were at or above the plane. Finally, we
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analysed how much time each bee spent with an extended proboscis, and cal-

culated how much of this time was spent before the odour onset or after the

odour onset.

The total number of bees used for this experiment and the analysis of the

results is 81 (41 of which were in the satiated group and 40 of which were in

the hungry group). A total of 23 bees were excluded from the analysis of the

results due to being completely unresponsive in the testing phase (18 satiated,

5 hungry), as such the total number of bees successfully trained was 104. As

the methodology for the second experiment remains the same (asides from the

changes to the test odours and that the unrewarded odour is now punished)

the bees can be excluded from the experiment within the same points as listed

in Materials & Methods. A total of 15 bees were noted to be spontaneous

responders (8 satiated and 7 hungry) and these were kept in the experiment.

Our final predictions for this experiment are as follows:

• from the first experiment, hungry bees will be more inaccurate than

satiated bees (or satiate bees will be more accurate than hungry bees).

• from the first experiment, hungry bees will have faster reaction times

than satiated bees (or satiated bees will have slower reaction times than

hungry bees).

• the closer a compound odour is to the rewarded odour (chemically), the

more bees will respond to it. As such, the more similar compound odours

should induce more errors in both the hungry and satiated bees.

• hungry bees will spend more time extending their proboscis to an odour

than satiated bees (or satiated bees will retract their proboscis more

quickly than hungry bees).

The first two predictions are inferred from the drift-diffusion model, as

with the first experiment, and are described in the Materials & Methods of

that experiment. Additionally, we hypothesise that compound odours that
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incorporate more of the rewarded odour than the punished odour are more

likely to be responded to than other compound odours (i.e., the 70:30 com-

pound will see more bees responding to it than the 50:50 compound). This

is due to the fact that odours which are chemically more similar to a trained,

rewarded odour will induce bees to generalise more, as seen in the work of

Guerrier and colleagues (Guerrieri et al. 2005). Here, an error is defined as a

response to any odour other than the rewarded odour (as such, PER to any of

the compound odours or the punished odour will be recorded as a mistake).

This is due to the way bees are hypothesised to process compound odours

(Meyer and Galizia 2012), however, an alternative theory (which concludes

that PER to compounds should not be marked as mistakes) is presented in

the Discussion. The fourth prediction is again inferred from the single-bound

drift-diffusion model. Since hungry bees are implementing a lower decision

threshold, the accumulated evidence should remain above the threshold for a

longer amount of time, as such the hungry bees should prolong their responses

to the odour presentations.

4.7 Experiment Two: Results

We presented honeybees with a discrimination task that was slightly more

difficult than that of the first experiment, however, it should still have been

easy to solve. As before, we first show that the acquisition curves for the two

groups are similar. This is given in Fig 4.8.

The proportion of bees responding to each of the test odours is shown

in Fig 4.9. We found that hungry bees were consistently more responsive

to the odours than satiated bees, with a higher proportion of hungry bees

extending their proboscis in each case. For three of the odours, the differences

in responsiveness between the two groups was significant; analysis showed

that significantly more hungry bees extended to the punished odour (2-sample

proportion test, p < .001), the 70:30 compound mixture (2-sample proportion

test, p < .05) and the 50:50 compound mixture (2-sample proportion test, p <

86



Is Honeybee Decision-Making Described by a Drift-Diffusion Process?

Figure 4.8: The acquisition curves for the two groups of bees from the training
phase. As in Fig 4.4, the trial numbers here denote the presentations of the rewarded
odour and do not refer to the actual trial numbers in the experiment. As in the first
experiment, all bees were given equivalent training and were treated the same upon
being taken form the hive.

.05). Bees responded similarly to the rewarded odour and the 30:70 compound

mixture. The majority of bees from both of the motivational groups responded

to the rewarded odour, and the compound mixtures that were composed of a

higher ratio of the rewarded odour invoked a higher proportion of responses.

The compound mixtures were more similar to the rewarded odour than the

punished odour, as such these should have been more likely to invoke incorrect

responses from the bees, depending on the ratio of the odour’s components.

Indeed, analysis of Fig 4.9 indicates that more bees responded incorrectly to

the 70:30 mixture than the 50:50 mixture, and more to 50:50 than 30:70. The

number of responses for the punished odour is quite high, especially for the

hungry bees. A theory as to why is presented in the Discussion. Since the

compound mixtures were indeed similar to the rewarded odour, but not en-

tirely equivalent, bees that responded to them were noted for making an error.

We calculated the percentage of bees from each group that had responded to

the rewarded odour only (i.e., obtained perfect accuracy) and then compared

this result to that of the first experiment. The accuracy comparison is shown
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Figure 4.9: Line graph to show what percentage of bees from each motivational
group responded to the test odour presentations. Satiated n = 41, hungry n = 40.

in Fig 4.10.

The accuracies obtained from the two motivational groups are very similar

for both experiments. In the second experiment, the satiated bees are slightly

less accurate, however, this is not significant. This result confirms that we

were able to replicate the first experiment even with slightly different training

and testing protocols. In both experiments we found that satiated bees are

significantly more accurate than hungry bees (2-sample proportion test, p <

.001). This can also be seen in Fig 4.9, as less satiated bees respond to the

compound mixtures and punished odour. After confirming that the decision

accuracies were comparable, we then compared the response times. Since the

first experiment only used the rewarded and punished odours in the testing

phase, we here only include response times for these two odours from the

second experiment. These data are shown in Fig 4.11.

As with the decision accuracy data, we found that both experiments resul-

ted in similar response times for the bees. Hungry bees were again significantly

faster in responding to the rewarded odour presentation than satiated bees (2-

sample t-test, p < .05). Hungry bees were also faster in responding to the

punished odour, however, this result was not significant. Nonetheless, of the
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Figure 4.10: Comparison of average honeybee decision accuracy from the first (left)
and second (right) experiments. A correct decision corresponds to a proboscis exten-
sion to the rewarded odour only. For the second experiment, the given accuracy refers
to those bees which responded to the rewarded odour but not the punished odour.
In both experiments, there was a significant difference in the accuracies of the two
groups (2-sample proportion test, p < .001 in both cases.

two reaction time comparisons that were made in each experiment, one in

each was found to be significant: hungry bees were faster than satiated bees

in responding. These significant results taken with the accuracy data (which

show that hungry bees are more error prone) are suggestive of a speed-accuracy

trade-off and fit the predictions of the drift-diffusion model of decision-making.

We additionally analysed the response times for the novel compound mixtures;

the full data are presented in Fig 4.12. Of the 41 satiated bees, 4, 32, 8, 5

and 2 of these responded to the punished, rewarded, 70:30, 50:50 and 30:70

compound odours, respectively. Of the 40 hungry bees, 16, 36, 16, 12 and 5 of

these responded to the punished, rewarded, 70:30, 50:50 and 30:70 compound

odours, respectively.

We found that hungry honeybees were, on average, faster decision makers

for every test odour except for the 30:70 compound. In this case, hungry bees

were almost equivalent. We found that one test odour shows a significant

result. However, the data show that hungry bees are indeed consistently re-

sponding quicker than satiated bees, for both the trained odours and novel

compounds. This is not the only behaviour that was consistently different in
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Figure 4.11: Comparison of average honeybee response time from the first (left) and
second (right) experiments. See Appendix A for statistical tests used.

hungry bees, however. We performed a more in-depth analysis of the honey-

bees proboscis extension behaviours to determine whether or not hunger would

cause any other behavioural modifications. From here on we thus separate the

data in terms of the test odours and present the results for each one. Firstly,

we present the full data for the rewarded odour in Fig 4.13.

We first analysed how many times honeybees extended their proboscis to

the odour and in which direction. This analysis highlighted no differences

in the behavioural response of the bees; both groups extended, on average,

an equivalent number of times, with hungry bees extending above the plane

of the head slightly more than satiated bees. However, this result is non-

significant. As discussed before, hungry bees were responding quicker than

satiated bees. We then looked at how much time the bees were spending

responding to the odour. We found that hungry bees were spending slightly

more time in total extending their proboscis to the odour, however, the result

was non-significant. We found that, despite the presence of the punished odour

during the conditioning, some bees were still extending their proboscis to the

airflow. Bees from the hungry group spent significantly more time extending

before the punished odour onset than satiated bees (2-sample t- test, p < .05).

This may suggest that, for some bees, the decision threshold is sufficiently low

enough that evidence accumulation stops before the stimulus presentation.
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Figure 4.12: Response time data for all test odours. Medians denoted by white
lines, averages denoted by white crosses, outliers denoted by red crosses. Odours are
given in the order they were presented in during the experiment. See Appendix A for
statistical tests used.

Finally, we found no difference in the time bees took extending their proboscis

after the odour onset. This result is perhaps expected as both groups will

recognise this as the rewarded odour. Following this, we analysed the data for

the compound mixtures. The results are shown in are shown in Fig 4.14.

The vast majority of honeybees did not respond to the 30:70 compound

mixture (bottom plot in Fig 4.14, hungry n = 5, satiated n = 2). We found

that, for the bees that did respond, hungry bees showed more proboscis exten-

sions both at the plane of the head and above. No satiated bees displayed any

extensions above. Both motivational groups were roughly the same in their

response times, however, there is a very notable difference in how much time

they spent with their proboscis extended, despite the lack of significance. No

bees extended before the odour presentation, however, hungry bees spent far

more time than satiated bees responding to the presented odour.

A small number of bees responded to the 50:50 compound mixture (middle

plot in Fig 4.14, hungry n = 12, satiated n = 5). We found that, as with the
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Figure 4.13: Complete data analysis for both motivational groups responding to the
rewarded odour. Left: average number of proboscis extensions, in total and separated
by the direction. Right: average response time, average total time that honeybees
extended their proboscis for during the trial, average time honeybees extended their
proboscis before the odour was presented, and average time honeybees extended their
proboscis after the odour was presented.

30:70 compound, there were no significant results. Bees from both groups

showed a similar number of proboscis extensions, in total and in both direc-

tions. Hungry bees had a slightly quicker response time, but the result is non-

significant. For this odour, bees spent more time responding before onset.

Interestingly, satiated bees spent slightly more time responding than hungry

bees. After the odour onset, hungry bees were again spending more time dis-

playing a proboscis extension, although this result isn’t as strong as that of

the 30:70 mixture.

The 70:30 compound mixture generated the most responses out of all three

mixtures, an expected result as this odour was the most similar to the rewar-

ded odour (top plot in Fig 4.14, hungry n = 16, satiated n = 8). We found

several significant results here. Firstly, hungry bees showed significantly more

proboscis extensions than satiated bees (2-sample t-test, p < .05). Strikingly,

hungry bees also showed more proboscis extensions above the plane of the head

than satiated bees (2-sample t-test, p < .05). Hungry bees were slightly faster

in their decision-making than satiated bees, and spent more time extending

their proboscis after the odour had been presented. Hungry bees spent signific-

antly more time extending before the odour onset (Wilcoxon-Mann -Whitney
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test, p < .05, no satiated bees showed this behaviour for this compound) and

also more time extending in total (Wilcoxon-Mann-Whitney test, p < .05).

This result indicates that satiated bees that made the error in responding to

this odour withdrew their proboscis significantly quicker than hungry bees.

Finally, the full data for the punished odour are given in Fig 4.15.

Significantly more hungry bees than satiated bees responded to the pun-

ished odour (2-sample proportion test, p < .01). We found that hungry bees

displayed more proboscis extensions than satiated bees, both above the plane

of the head and at the plane, however, nothing of significance was found.

Hungry bees responded faster to this odour than satiated bees, but again

this was not significant. However, hungry bees were spending significantly

more time extending their proboscis, both before odour onset, (2-sample t-

test, p < .05), after odour onset (Wilcoxon-Mann-Whitney test, p < .05), and

in total (Wilcoxon-Mann -Whitney test, p < .05)

4.8 Experiment Two: Discussion

Honeybees are required to solve discrimination problems every day of their

lives, and many of these will be more difficult than others. They will no doubt

encounter these tasks within different internal states, and how their motivation

impacts their decision-making is understudied. We here used the proboscis

extension reflex paradigm in order to carry out differential conditioning with

honeybees and examine their discrimination behaviours in different states.

As in the first experiment, we separated the trained bees into two different

motivational groups, hungry and satiated, and examined how their internal

state impacted their decision performance. We observed honeybee decision-

making behaviours and analysed them in a high amount of detail, going further

than just obtaining data for accuracy and response time. The results of the

experiment highlighted several behavioural differences between hungry and

satiated bees.

We noted from our first experiment that the testing phase was more akin
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to a go/no-go task as opposed to a two-alternative forced-choice task. The

ideal experimental set-up for the latter would involve the presentation of two

odours simultaneously, perhaps from either side of the bees’ head, such that

each odour contacts one individual antenna. Additionally, the set-up would

need to allow the bee to move its head from one side to another. The equip-

ment we used (the olfactory stimulus controller and individual tubes) were not

compatible with such an experiment. Instead, we tried to incorporate some

changes into the testing phase in our second experiment, and included odours

that were composed of components of both the trained odours. In this way,

although still not a true two-alternative forced-choice task, the two odours

used for training would be presented simultaneously.

We were able to replicate some of the results from the first experiment

despite altering the training protocol and introducing novel compound odours

to the testing phase. We again found that satiated bees are significantly more

accurate than hungry bees (even when the responses to the compound odours

are not taken into account and thus not marked as errors) and are also, on

average, slower decision makers. However, the difference in response times

was only significant for the rewarded odour presentation. This result, taken

together with the difference in accuracies, is indicative of a speed-accuracy

trade-off, however, four of the five test odours showed no statistical significance

for response times. The reason for this may be due to the same problems

encountered in the first experiment: insufficient sample sizes or the hungry

group not being sufficiently hungrier than the satiated group. We can conclude

that one result from the response time data fits the inferences of the drift-

diffusion model of decision-making and is indicative of the SAT.

Hungry bees were, on average, faster decision-makers than satiated bees

in each of the test odour presentations (asides from the 30:70 compound,

however, there were only 2 satiated bees that responded to this odour). This

observation is reassuring and we hypothesise that a larger sample size together

with a possible change to how hungry the bees are allowed to become (i.e.,
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resting them for four or five hours instead of three) will emphasise what has

been observed here and will further produce more significant results. For a

particularly hungry animal, acting quickly will be of great importance in order

to avoid mortality. Responding quickly and making the wrong choice will

perhaps be less costly than not acting at all. It is thus intuitive that a simple,

efficient mechanism can control decision-making behaviours and alter them

according to motivational state. A simple change in the decision threshold

can cause a ‘cautious’ animal to become more ‘risky’.

In the first experiment, we noted that hungry bees were more likely to

show a response prior to the odour onset. Here, we examined how much time

the bees were spending with their proboscis extended both before and after

the odours had been presented. We found that, for several odours (rewar-

ded, 70:30 compound, punished), hungry bees spent significantly more time

responding to the airflow before odour onset. This result gives some insight

into the evidence accumulation process. For some bees, this process begins

upon being placed in front of the olfactory stimulus controller, and hungry

bees were more likely to come to a decision before the odour was even presen-

ted, even though an extension may have resulted in punishment, depending

on the odour. This behaviour, which perhaps could be seen as ‘risky’ as it is a

response to an unknown, possibly negative stimulus, also fits the theory that

hungry bees are implementing a lower decision threshold. Rather than wait-

ing for the odour onset, the bee begins to accumulate contextual evidence as

soon as it is placed in front of the airflow, and the implementation of a lower

decision threshold results in extensions of the proboscis. For satiated bees,

which should be implementing a higher decision threshold, a higher amount

of evidence is required to trigger a response. Therefore, even if satiated bees

begin evidence accumulation as soon as they are placed within the airflow,

they are more likely to refrain from responding than hungry bees.

We also found behavioural differences in the amount of time bees spent

extending their proboscis after the odour onset. For all odours except the
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rewarded odour, hungry bees spent much more time extending their proboscis

than satiated bees. For the punished odour, this difference was significant.

This result suggests that evidence accumulation continues after an initial de-

cision has been made, which gives the animal a chance to change its mind

or correct an error. For satiated bees with a higher decision threshold, the

evidence accumulated has a greater chance to fall below it, and is more likely

to do so if, for example, the bee has identified that the stimulus presented

is not the rewarding stimulus. Behaviourally, this would correspond to sati-

ated bees withdrawing their proboscis after a shorter amount of time. On the

other hand, with lower decision thresholds, hungry bees are far more likely

to continue responding once they have reached their decision, as the evid-

ence accumulation will take more time before it drops back below the decision

threshold. Indeed, fluctuations (due to noise) or a reduction in the presen-

ted evidence will remain above a lower decision threshold for longer. This is

represented visually in Fig 4.2.

The significant results found (hungry bees more inaccurate, hungry bees

faster in responding to the rewarded odour, hungry bees spent more time

responding to the 70:30 compound, hungry bees spent more time responding

before the odour onset for the 70:30 compound, hungry bees showing a greater

number of bouts to the 70:30 compound, hungry bees spending more time

responding to the punished odour and to the airflow before the odour onset)

are all compatible with the drift-diffusion model of decision-making. Whilst

there are many results which are non-significant, none have been found that

conflict with the inferences of this model and the hypothesis that hungry bees

are implenting a lower decision threshold. We also discovered significance

in a result not predicted: for the 70:30 compound odour, hungry bees were

making a significantly greater number of proboscis extensions than satiated

bees, and also displayed significantly more ‘above the plane’ extensions than

satiated bees. Thus, internal state has shown to cause a difference not only

in the decision accuacy and response time but also the total time responding
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(before and after odour onset), the total number of proboscis extensions and

even the direction in which bees will extend. Here, it is proposed that bees

are extending upwards as, during conditioning, the toothpick with rewarding

sucrose solution would come from above their head, touch their antennae and

finally touch their proboscis. As such, the bees are extending in the direction

the reward should be coming from.

In our first experiment, we theorised that the introduction of the punish-

ment during training would stop bees from responding to the clean airflow

before the presentation of the odour. The results show that this is not entirely

the case, as many bees (mostly from the hungry group) still extended their

proboscis. For the rewarded odour presentation and 70:30 compound, hungry

bees spent significantly more time responding to the clean airflow. Interest-

ingly, discrimination performance was not enhanced despite the fact that we

introduced the punishment. This may be because the testing protocol was

also made more difficult than that of the first experiment, and perhaps if we

had used this testing protocol originally, the decision accuracies would have

been reduced there.

An unusually large number of bees responded to the punished odour (mostly

bees from the hungry group, but also a few satiated). This may have been be-

cause this odour was presented first in the testing phase. The 30:70 compound

mixture was presented last, following the rewarded odour, and this generated

the fewest responses. Since this odour was presented last, extinction may have

had an effect, and this would explain why more bees responded to the punished

odour than the 30:70 compound odour, even though the 30:70 compound had

components of the rewarded odour and was thus more similar to it than the

punished odour. This result also further indicates that the sequence in which

odours are presented is very important. The first odour presented may gener-

ate more responses than usual as it will be the first time the bees experience

the experimental set-up post conditioning. For both groups, bees were more

likely to respond to the 70:30 compound than the 50:50 compound. These
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two odours were presented in the middle of the sequence and the responses

to these odours were predicted, as the former is more similar to the rewarded

odour than the latter. We have seen in previous experiments that more similar

odours invoke a higher amount of generalisation (Guerrieri et al. 2005) and

this is indeed the case here.

Many of our results were consistent but insignificant. An example is re-

sponse time; although hungry bees were, on average, faster than satiated bees,

only in one case was this a significant difference. We also found this in the first

experiment. We propose two reasons for this lack of significance despite con-

sistency and sometimes quite large differences between groups (for example,

see the bottom plot in Fig 4.14. There is quite a big difference in the total

time the bees were responding, as well as the total number of proboscis exten-

sions they exhibited). Firstly, in most cases, we lacked statistical power due

to small sample sizes. As many of the bees didn’t respond to the punished or

compound odours (especially 30:70), we only had data from a few bees. To ob-

tain more significant results, this experiment would need to be performed with

n > 80 bees. Secondly, bees may need to be made hungrier and thus starved

for a longer period of time. In this experiment, hungry bees went three hours

without food before they were tested. If this interval is lengthened to perhaps

six or more hours, we expect that the results will be more exaggerated (al-

though it will be important not to starve bees to the point where they become

unhealthy, as this will be an unfair comparison).

As mentioned before, the testing protocol used here is more akin to a go/no-

go task than a two-alternative forced-choice task. Even with the simultaneous

presentation of the trained odours in the compound mixtures, the honeybee

can only either respond or not respond. Can the drift-diffusion model account

for this sort of task? Indeed, the process of evidence accumulation should

remain the same. There is a theoretical difference in terms of the thresholds

used to trigger motor responses, however. A two-alternative forced-choice

task requires the use of two thresholds; the accumulated evidence crossing
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one threshold corresponds to a specific behaviour from the animal whilst the

crossing of the other threshold corresponds to another behaviour. For a har-

nessed insect responding to odour presentations from the left and right, this

may translate as a head turn in one direction or the other. For the go/no-go

task, only one threshold is required, corresponding to a response (for example,

a proboscis extension) or lack thereof. A drawback to using this paradigm

is that it is unclear if a lack of response is due to the evidence accumulation

process not yet terminating or if the individual has actively made the decision

not to respond. Nonetheless, the go/no-go task is still suitable as the drift-

diffusion model may be adapted to suit it (using one threshold) and still keep

the underlying assumptions.

An alternative theory to be considered is that the responses to compound

odours should not be marked as errors (however, even when the data are

analysed with this criteria, the hungry bees are still significantly less accurate

than satiated bees). Instead, those which respond should be deemed more

accurate, since they are responding to the presence of the rewarded odour.

With this theory in mind, it could instead perhaps be concluded that hungry

bees are significantly more likely to generalise than satiated bees. However,

seeing as significantly more hungry bees responded to the punished odour

here, this most certainly allows us to draw the conclusion that hungry bees

are making more errors. With the concept of generalisation in mind, however,

it would be interesting to replicate the experiment of (Guerrieri et al. 2005) and

examine how two different internal states impact the rates of generalisation.

This is another possibility for future work.

All the data obtained from these experiments heavily suggest that honey-

bees are using a drift-diffusion process for evidence accumulation, and further-

more that the level of satiation can mediate the level of the decision threshold

and in turn cause behavioural changes. This is in contrast to another theory of

why response probability in bees changes according to hunger, which instead

proposes that hunger causes a change in sucrose responsiveness (Page Jr et al.
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1998). If we conclude that satiation can mediate the decision threshold, we

can ask the following questions: where might this process take place within the

bee brain, and can we imagine the olfactory system to act as a network that is

integrating evidence over time? Furthermore, what sort of circuit is required

to implement this efficiently, and could a computational model provide any

insight into what properties such a network might need?
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Figure 4.14: Complete data analysis for both motivational groups responding to
the 70:30 (top), 50:50 (middle) and 30:70 (bottom) compound odours. Data presen-
ted as in Fig 4.13. Medians denoted by white lines, averages denoted by white (or
black) crosses. Asterisks denote significance values. *: p < .05. See Appendix A for
statistical tests used.
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Figure 4.15: Complete data analysis for both motivational groups for the punished
odour. Data presented as in Fig 4.13. Medians denoted by white lines, averages
denoted by white crosses. Asterisks denote significance values. *: p < .05. See
Appendix A for statistical tests used.
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Chapter 5

A Computational Model of

Decision-Making

How do animals make fast and robust decisions? Previous research has at-

tempted to answer this question through a combination of behavioural and

neurobiological experiments in conjunction with computational modelling. In

particular, sequential sampling models that focus on the decision accuracy and

decision time of an agent have been used to infer what neural mechanisms may

be driving choice behaviours. Originating from psychology, the first and most

well-known of these models is the drift-diffusion model (Ratcliff 1978). Since

this model was developed a multitude of others have built upon it which vary

in their complexity and biological plausibility (see Ratcliff and Smith 2004).

One model in particular, the leaky competing accumulator model (LCA, Usher

and McClelland 2001), introduces an important biological mechanism which

was introduced in Chapter 3. We here use the LCA model, and an extension of

it (Brown and Holmes 2001) which is described in detail later in this chapter,

as inspiration for a biologically inspired model of decision-making. To give

an idea of where the model fits in comparison with other sequential sampling

models, a chart of the different models and their categories is given in Fig 5.1,

though there are many others which are not depicted here.

Sequential sampling models have been successfully fitted to the behavi-
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Figure 5.1: A range of sequential sampling models with the LCA model highlighted.
Adapted from Ratcliff et al. 2016 with permission.

oural data obtained from experiments within a range of decision-making tasks

(Ratcliff et al. 1999, Ratcliff and Rouder 2000, Ratcliff and Smith 2004, Ratcliff

et al. 2004). They are usually developed with three underlying assumptions

about decision-making processes (Bogacz et al. 2006): the first assumption is

that evidence for each choice is being accumulated over time by the decision-

maker, and that the evidence presented is in favour of each choice. Second, it

is assumed that the accumulation process is noisy. Finally, sequential sampling

models employ the mechanism of the decision threshold to ascertain when a

decision has been made. The decision threshold determines the level of evid-

ence that is required for the initiation of a response. As such, a decision can

only be made when the decision-maker has sampled a sufficient amount of
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evidence. A low decision threshold invokes a fast response and typically yields

a reduction in accuracy. A high threshold allows for a slower response but

a gain in accuracy since the model will be acting upon a level of evidence

which is not so limited. This is known as the speed-accuracy trade-off (SAT),

a behavioural phenomenon which has been shown to manifest in a variety of

animals (Chittka et al. 2009).

In choice behaviour, the speed-accuracy trade-off has been shown to be

ubiquitous. For example, it has been demonstrated in human (Bogacz et al.

2010a, Starns and Ratcliff 2010) and primate decision-making (Heitz and

Schall 2012, Shadlen and Kiani 2013), as well as insects such as monarch

butterflies (Rodrigues 2016), bumblebees (Chittka et al. 2003, Dyer and Chit-

tka 2004b) and honeybees (Wright et al. 2009). The SAT has furthermore

been demonstrated in collective insect decision-making, governing the beha-

viours of ant and honeybee colonies (Franks et al. 2003, Marshall et al. 2009).

Although the concept may seem trivial, the fact that it is so prevalent across

species suggests that it is very much worthy of being studied. Indeed, it has

been argued to be the ‘benchmark’ for the decision process (Heitz 2014) and so

understanding the neural mechanisms that govern this phenomenon may so-

lidify our understanding of decision-making. Sequential sampling models offer

insights into these mechanisms. As such, they play an invaluable role in de-

coding the decision-making process, at least for simpler, perceptual decisions

where an animal’s ability to discriminate between alternatives will impact their

accuracy and speed.

What kind of mechanisms might a successful decision-making system em-

ploy? Already mentioned is that of lateral inhibition: a circuit especially

researched in the visual domain (Goldstein and Brockmole 2016). Empirical

evidence for this mechanism can be traced back to experiments with the horse-

shoe crab, wherein experimenters took advantage of the organisation of the

eyes in order to record activity from individual receptors (Hartline et al. 1956).

They demonstrated that stimulation of one receptor would cause it to respond,
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however, the stimulation of the receptor’s neighbours would cause a reduction

in its activity. Importantly, the experiment brought forward the proposal that

the receptors were not independent of each other, instead they were coupled

such that each receptor could directly inhibit those surrounding it. Lateral in-

hibition is also a well-known circuit in classical decision-making models, used

for introducing competition within competing integration channels and for

implementing a winner-take-all output (Usher and McClelland 2001, Brown

and Holmes 2001, Bogacz et al. 2006). The circuit has been shown to improve

decision-making in a behavioural switching context (Marshall et al. 2015) and,

remarkably, it has also been observed in collective decision-making in honey-

bees (Seeley et al. 2012, Pais et al. 2013), acting as a stop signal for bees

which are opting for inferior choices. Recently, this circuitry has been sug-

gested to exist in the invertebrate antennal lobes as another form of contrast

enhancement, and it has been proposed that this mechanism should be dy-

namic and dependent on the similarity of the odours presented, such that

inhibition is increased when the odours are similar (Linster et al. 2005). This

hypothesis introduces the concept of an inhibitory mechanism which is robust

and dependent on the composition of the presented stimuli.

To fully answer the question of what other mechanisms might be in place

to ensure robust discrimination, it is necessary to study neurobiology. It may

be tempting to use human or primate brains as the ‘gold standard’, however,

the neural circuitry behind decision-making behaviours at this level is remark-

ably complex (Sporns et al. 2005, Azevedo et al. 2009). Instead, it is more

reasonable to turn to a simpler animal which is fully capable of solving dis-

criminatory problems. An increasing amount of research over the years has

pointed to the honeybee as an ideal model for the study of decision-making

and cognitive-like behaviours (Menzel and Giurfa 2006, Giurfa 2007, Menzel

2012). Indeed, this is an animal which has a rich behavioural repertoire and

is capable of solving complex problems despite its relatively small brain. It is

clear that this animal has evolved to solve decision-making problems efficiently,
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making use of simple yet powerful neural circuits which are more amenable to

study. It is for this reason that we use the honeybee for inspiration for this

model. A particularly well studied domain within the honeybee brain is that

of olfaction; a higher-level map of several olfactory circuits has been identified

such that information flow from one centre to another can be traced. Indeed,

honeybees have been shown to be very good at olfactory discrimination tasks

(Guerrieri et al. 2005) and the simplicity of the honeybee olfactory system

allows us to examine what is contributing to such a robust decision-making

circuit.

The Honeybee Olfactory System

The olfactory system of the honeybee (and other invertebrates) has been well

studied (e.g., Galizia 2014). In the honeybee, detection of olfactory stimuli

begins at the antennae, where olfactory receptor neurons (ORNs) encode in-

formation about the presented odours and then innervate the antennal lobes

(AL), which are sites dedicated to the processing of olfactory information.

Within the antennal lobes are structures known as glomeruli, which collate

odour information. Within the glomeruli are local interneurons (LNs) which

project to multiple other glomeruli, and both inhibitory and excitatory projec-

tion neurons (iPNs and ePNs, respectively). The projection neurons project

to higher-order brain regions such as the mushroom bodies (MB) and lateral

protocerebrum (LP), both of which are regions thought to play important

roles in decision-making. For a more in-depth review of the olfactory system,

see Chapter 2. Within the antennal lobes, an inhibitory mechanism referred

to as lateral inhibition has been shown to exist. This mechanism is thought

to act as a decorrelator of neural signals, aiding in discriminatory behaviours

and introducing contrast enhancement into the system.

Indeed, inhibitory circuits have been shown to be of great importance to

decision-making and action selection circuits, both biologically and theoretic-

ally (Hensch et al. 1998, Bogacz et al. 2006, Hergarden et al. 2012, Pool et al.
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2014, Marshall et al. 2015, Barron et al. 2015). In honeybee neurobiology,

the function of the iPNs within the olfactory circuit has only recently been

quantified. Recent studies have shown that they act as a form of gain control

or contrast enhancement, increasing the differences between neural response

maps in order to aid in discrimination (Parnas et al. 2013). This is hypo-

thesised to be implemented by a ‘high-pass filter’ such that iPN inhibition

selectively blocks low-frequency spike trains but allows high-frequency spike

trains to pass (Parnas et al. 2013). Additionally, recent work by Liang and

colleagues (Liang et al. 2013) suggests that iPNs regulate olfactory informa-

tion in the lateral horn by suppressing the responses of a specific population

of neurons (vlpr neurons) to some odours but not others. Thus, it can be

concluded that iPNs target some, but not all, higher-order neurons (i.e., are

selective)

Task Difficulty

One parameter that is often manipulated in discrimination tasks is that of task

difficulty. An intuitive result obtained from behavioural experiments is that

the harder the task, the more a decision-maker’s accuracy will decline. Within

the olfactory domain, this is thought to be caused by overlapping response

profiles within the pre-processing areas of the brain (both in vertebrates and

invertebrates), with the neural mechanisms employed to aid in discrimination

(e.g., lateral inhibition) unable to sufficiently decorrelate neural signals (for the

drift-diffusion model, more difficult choices will have a low signal- to-noise ratio

(SNR), as such the model should also be less accurate). For example, it was

found in Drosophila that the overlap between neural representations of odours

could be described in terms of the Euclidean distance between neural activity

vectors; similar odours were found to invoke similar response profiles (and

thus shorter Euclidean distances) whereas dissimilar odours invoked dissimilar

response profiles (and thus larger Euclidean distances) (Parnas et al. 2013).

The derived Euclidean distances could be used to predict the discrimination
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abilities of the animals within a strict two- alternative forced-choice paradigm.

The study used behavioural chambers which were developed such that the

left and right sides could present odours simultaneously, which allowed for

choice behaviours to be evaluated based on what side animals preferred. When

presented with an odour that fruit flies exhibit innate preferences for on one

side and a dissimilar odour on the other, fruit flies show a clear bias for the

side of the chamber which presents the preferred odour. Instead, if a similar

odour is presented with the preferred odour, fruit flies will pick one side over

another by chance, showing no preference for either side. As the Euclidean

distance between the preferred odour and an alternative increases, fruit flies

begin to show an increased bias for the side of the chamber which presents the

preferred odour.

It is quite simple to control the similarity of odours, and honeybee choice

behaviour in binary olfactory discrimination tasks has been studied quite pro-

fusely (Guerrieri et al. 2005). Previous experiments have shown that more

similar odours induce a higher degree of generalisation in bees (or causes them

to misidentify the ‘correct’ choice and thus make a higher proportion of errors).

From these experiments, it can be concluded that task difficulty (or stimuli

similarity) is highly influential on the choice behaviours of decision-makers

and so it is a parameter which we factor into our model.

Classical decision-making models have historically struggled with the case

of being presented with two alternatives that are very similar or the same

perceptually. In the case of the DDM, the presentation of two equivalent

stimuli results in the model integrating noise over time. The model thus

remains in a deadlock and is unable to choose one option or the other. This

is behaviourally implausible. There have been several methods proposed to

overcome deadlock, for example, implementing a mechanism known as the

‘urgency signal’ such that the decision thresholds collapse over time (Cisek

et al. 2009, Hanks et al. 2011). Whilst this does indeed break deadlock, a recent

study found that models with static or fixed thresholds are better suited to
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fit experimental data (Hawkins et al. 2015). We here make use of the Brown

& Holmes model (Brown and Holmes 2001) as a deadlock breaker, which

introduces accumulator biases and a saturation function on the inhibitory

mechanism of the LCA. The dynamics of the model are such that, in the case

of two equivalent alternatives, the model picks one or the other at random.

The reason for this is described within the following section. We make use of

the deadlock breaking parameters in our own model, as such it serves as an

extension to the Brown & Holmes decision-maker.

Brown & Holmes

The Brown & Holmes model of decision-making (Brown and Holmes 2001) was

developed as an extension to the original LCA model. As with most sequen-

tial sampling models, neural populations are accumulating noisy evidence over

time, with each population integrating for one stimulus or the other (since this

is a binary decision-making model). Like the original leaky competing accu-

mulators, the neural populations are in competition with each other through

laterally inhibitory connections and have a decay constant through which ac-

tivation decreases (their definition of activation being ‘a population-averaged

analogy to membrane voltage’ (Brown and Holmes 2001, p. 1). External stim-

uli are denoted as ρi in the original publication but are here adapted to Ii,

such that they are consistent with the Bogacz et al., (2006) notation, which we

also use for our own model definitions. The input stimuli are normalised such

that when Ii 6= 0, I2 = 1− I1. Two forms of ‘priming biases’ are introduced to

the model which are not present in the original leaky competing accumulators.

The first type of bias, denoted bi, affects the neural populations independently.

These biases may also be removed (as such bi = 0). The second type, denoted

as i0, affects both populations. Lateral inhibition is modified such that it is

implemented via a sigmoidal activation function:

f(x; g, b) =
1

1 + e−g(x−b)
(5.1)
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where g, the ‘activation gain’, denotes the slope of the function, and an increase

in this parameter results in a steeper curve. The ‘activation bias’, b, denotes

the midpoint of the function, and thus when x = b the slope is at a maximum.

In the original publication, b = 0.5. To visualise the function and observe the

changes in respect of activation gain g, the curve is plotted in Fig 5.2.

Figure 5.2: The Brown & Holmes activation function plotted for different values of
g, the ‘activation gain’ or slope of the function. The red circle indicates the midpoint
of the function curve where x = b.

Model Definitions

We now detail the definitions which describe the accumulator dynamics. The

activation function f(x; g, b) is from this point forward shortened to f(x).

As with other classical decision-making models, the model is described using

differential equations:

dx1 = (I1 + b1 + h0 − kx1 − wf(x2))dt

dx2 = (I2 + b2 + h0 − kx2 − wf(x1))dt (5.2)

where Ii denotes the input stimuli, bi the individual accumulator biases, h0

the joint accumulator bias (originally i0 in the Brown & Holmes model), k the

decay constant (leak) and w (originally β) the strength of lateral inhibition.
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To understand the deadlock breaking mechanisms of this model, the phase

plane for equivalent values of Ii is illustrated in Fig 5.3.

Figure 5.3: Phase plane for the Brown & Holmes model. Stable points denoted by
closed circles, unstable points denoted by open circle. Accumulator activities converge
at one stable point or the other. Parameters: h0 = 0.5, b = 0.5, g = 5, k = 0.2, w =
0.75, b1 = 0, b2 = 0, I1 = 0, I2 = 0.

The phase plane serves as a visual representation of the fixed points in rela-

tion to the accumulator activities, as such we can see how the neural dynamics

will change according to the state the system is in. Both the accumulators

begin integration at the baseline activation, which is 0, and so from the ori-

gin they begin to increase. They will initially be drawn to an unstable fixed

point which is close to the baseline. They are then repelled from this point,

and the direction in which they go is determined by a small perturbation in

the system. After this perturbation, the activities converge onto one of the

stable points. The benefit of this is that, at these fixed points, one accumu-

lator has a higher activation than the other, which is a crucial dynamic for

decision-making. Exactly which stable point the accumulators will converge
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at is random - this corresponds to the decision-maker selecting one alternative

or the other without bias. This result is compatible with biological choice

behaviour and thus solves the problem that other classical decision-making

models faced when presented with two equivalent alternatives.

In order to see how these dynamics contribute to changes in neural activity

over time, we simulated the model computationally in binary decision-making

tasks. A single trial may last for any predetermined number of seconds, here

the maximum has been set to 50 (it should be noted that this is a simulation

of the free-response paradigm, where the decision-maker responds whenever

the decision threshold has been crossed and as such it responds in its own

time). We also set dt = 0.01, as in the (Bogacz et al. 2006) analysis. We here

run simulations with the parameters according to the standard parameter set

outlined in (Brown and Holmes 2001). Simulation results for a single choice

task are shown in Fig 5.4. Additionally, since this model is an extension of

the leaky competing accumulators, we also simulate the LCA model alongside

the Brown & Holmes one. This is to further emphasise how the additional

parameters are changing the decision process, such that the extended model

is now able to make a choice at random.

Fig 5.4 makes it clear how the neural dynamics of the Brown & Holmes

model aid in decision-making for two equivalent alternatives (where the dif-

ference in alternatives, ∆v, is set to 0). Although the process of evidence

accumulation is noisy in these decision-making models, here noise has been

removed in order to emphasise the dynamics. Both of the leaky competing

accumulators are stuck at the baseline level of activation and consequently the

model never makes a decision. In contrast, the Brown & Holmes accumulators

eventually diverge such that one of the accumulators is suppressed below the

baseline whilst the other is accelerated beyond the decision threshold. Which

accumulator reaches the threshold is random, and running multiple simula-

tions will yield situations where the y2 accumulator (where y2 represents the

activity level of the second accumulator, which is integrating evidence for the
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Figure 5.4: Accumulator activities of the Brown & Holmes model (black) compared
with those of the original LCA model (blue). The decision threshold is denoted by
the dashed red line. Note that noise has been removed (see main text). Parameters:
h0 = 0.5, b = 0.5, g = 5, k = 0.2, w = 0.75, b1 = 0, b2 = 0, I1 = 0, I2 = 0.

non-preferred alternative) will instead ‘win’ the trial.

It is important to note that these dynamics are dependent on the model

parameters being used. In some cases, a difference in accumulator activations

is never induced. This is demonstrated in Fig 5.5. Ideally, the difference in

activities should be larger in order to aid in discrimination tasks; as such para-

meter sensitivity must be taken into consideration when running simulations.

From Fig 5.5 we can see that setting the joint bias (h0) to 0.1 or 0.2

will result in the Brown & Holmes model behaving effectively like the leaky

competing accumulators, where there is no difference between the activities

of the two accumulators and as such the model is unable to make a decision.

The best performances are obtained when h0 > 0.4, and we use h0 = 0.5 for

our own simulations.

From this analysis we can conclude that the Brown & Holmes model is

able to perform well in decision-making tasks where previous classical decision-

making models failed. It builds upon the biologically plausible leaky compet-
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Figure 5.5: Examination of how the performance of the Brown & Holmes model
changes according to parametric setup. Plotted is the difference in accumulator activ-
ities (y1 − y2) at the end of a trial, for systematically varied values of g (the slope
of the activation function) and h0 (the joint accumulator bias). Darker blue areas
denote larger differences in accumulator activities and thus better performance. Yel-
low areas denote where the two accumulator activities are the same at the end of the
trial, which is undesirable. Parameters are reproduced from the standard set.

ing accumulators and serves as a good approximation to the antennal lobe

part of the decision-making circuit, where lateral inhibition is thought to be

employed. We can think of these neural populations as the computational

equivalent of the excitatory projection neurons of the antennal lobes, connec-

ted via lateral inhibition, the strength of which is mediated by the similarity of

the odours presented. With this part of the decision-making circuit in place,

we must now look to model the connections between the antennal lobes and

the lateral protocerebrum. As mentioned previously, within the invertebrate

olfactory system, ePN and iPN connections run in parallel, with ePN projec-

tions being excitatory and iPN projections being inhibitory, and pooled across

glomeruli. The secondary part of the circuit can thus be imagined as a ‘pooled-

feedforward’ model, which has been hypothesised to aid in discrimination by

increasing the difference in the population activities (Parnas et al. 2013).
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Weighted Lateral Inhibition

In the Brown & Holmes decision-maker, and indeed in other decision-making

models, the strength of lateral inhibition between neural units is set to a con-

stant value. However, there is evidence to suggest that inhibitory connections

between antennal lobe neurons are dependent on glomerular response profiles,

that is, a change of input brings about a change in inhibitory strength. As

such, lateral inhibition should be mediated according to the stimuli that are

presented.

In 1999, it was demonstrated in honeybees that usage of the GABA re-

ceptor antagonist picrotoxin impaired discrimination of similar odours but

not dissimilar ones, suggesting that lateral inhibition is engaged to decorrelate

similar odour response profiles but not dissimilar ones (Laurent et al. 1999).

The authors noted that the neuronal responses to stimuli are often ‘temporally

structured’ and suggested that the temporal dynamics of spike trains may be

encoding information about stimuli. More recently, a study in Drosophila sug-

gested that temporal patterns in the brain are dependent on the odours that

have been presented (Wilson and Laurent 2005). The results demonstrated

that GABAergic inhibition is employed to decorrelate the neural representa-

tions of odours, such that the differences between projection neuron activation

levels are increased over time. That is, the similarity of neural representations

decreased with GABA B-mediated inhibition. This study also proposed that

neural temporal patterns are a direct consequence of antennal lobe processing,

as such patterns are not found in ORN responses to odourants.

Finally, research conducted by Linster and colleagues examined how tem-

poral differences in neural responses may be taking place within the honeybee

brain (Linster et al. 2005). Their study built upon older studies on both

mammalian olfactory bulb and insect antennal lobe, where, as mentioned be-

fore, it has been shown that inhibitory networks are important for olfactory

processing. Their work suggests that it is the response profiles of the glom-

eruli that determine the lateral connectivity between these neural structures.
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Their computational model of the honeybee antennal lobes points to lateral

inhibition being mediated by the response profiles of the glomeruli. Their

network, wherein lateral inhibition is proportional to the similarity of the re-

sponse profiles, was able to produce experimentally observed results (namely

the output of PNs) more accurately than other networks. The study reiter-

ates the point that odour representations in the brain are both spatially and

temporally defined since representations are more dissimilar when leaving the

antennal lobes than when entering them as ORN input.

Taken together, the results of these studies heavily suggest that lateral

inhibition should not be constant between neural structures. It should be

noted that, although the evidence for weighted lateral inhibition has been

obtained from studies which have used different invertebrates, we here assume

it can be generalised across groups (Galizia 2014). From these results we

conclude that inhibitory strength should be dependent upon odour input, more

specifically the similarity between odours (∆v in our model). As such, we

modify the Brown & Holmes model to take the stimuli presented into account.

Pooled Feedforward Inhibition

The second ‘layer’ of the model has been designed to replicate the connectivity

from the antennal lobe iPNs to the lateral protocerebrum. We thus employ a

mechanism which has not been explored in sequential sampling models before,

where input from the first layer of accumulators is summed and the total used

as inhibition on the following layer of accumulators (Fig 5.6).

This inhibition is selective and it targets only one accumulator, represent-

ing the selective inhibition in the honeybee lateral protocerebrum (see Fig 5.9,

in the model this layer is composed of the xi and z populations. For the full

definitions, see ‘Materials & Methods’). Biologically, this denotes either an

innate preference for one stimulus over another, or, a learned preference. The

model can thus represent the state of a decision-maker post learning.

To see how this part of the model will aid in decision-making, as before
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Figure 5.6: Schematic for pooled-feedforward inhibition part of the model.

with the Brown & Holmes model, we can analyse the phase plane. This is

shown in Fig 5.7.

Figure 5.7: Phase plane for the pooled-feedforward layer of the model. Demonstrated
is an unstable star node (unstable point denoted by open circle). Parameters: I1 =
0, I2 = 0, h0 = 0.5, w′′ = 0.4, k′′ = 0.1, g = 5, b = 0.5, k = 0.2 w = 0.75, k̄ = 0.2.

We assume that the neural activities have settled into one stable point or

another from the dynamics of the first layer (see Fig 5.3). At either of the

stable points, the dynamics of the second layer will enhance the differences in

accumulator activities, allowing one to increase whilst inhibiting the other. As
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Figure 5.8: The pooled-feedforward inhibition model is unable to decorrelate when
two equal alternatives are presented. Parameters: I1 = 0, I2 = 0, h0 = 0.5, w′′ =
0.2, k′′ = 0.3, g = 10, b = 0.5, k = 0.2, w = 0.75, k̄ = 0.2.

such, the phase plane indicates that pooled-feedforward inhibition may indeed

be acting as a decorrelator for neural signals, which agrees with the hypotheses

put forward by previous research. This idea is tested in our simulations.

It is worth noting that this model, on its own, suffers fom the same problem

as other classical decision-making models. With two equal alternatives, it is

unable to separate the population activities and simply integrates noise over

time. This is shown in Fig 5.8.

The figure shows the Brown & Holmes model (blue) and the pooled-

feedforward inhibition model (black) implemented separately. In the presence

of equal alternatives, the pooled-inhibition model hovers around the baseline

level of activation and never reaches the decision threshold (red). However,

since the model has been developed on the basis of honeybee neurobiological

data (with the assumption that features of the honeybee olfactory system can

be generalised to other invertebrates) it would make sense that such a model

needs the first layer, where lateral inhibition is applied to introduce competi-

tion into the circuit and provide the initial decorrelation, in order to perform

well. Because this model builds upon the dynamics of the first, it is not a

problem that it is unable to decorrelate the signals of equal alternatives when

implemented alone.
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5.1 Materials and Methods

Our decision-making network is based on classical models of decision-making

(Bogacz et al. 2006) and is composed of leaky accumulating units which are

organised in a manner inspired by that of the invertebrate olfactory system

(Fig. 5.9). It extends the Brown & Holmes model of decision-making (Brown

and Holmes 2001) which makes use of priming biases as well as a neural activa-

tion function in order to invoke random choice behaviour upon the presentation

of two alternatives equal in value. Taking inspiration from previous biological

and computational studies, we alter lateral inhibition so that it is mediated

according to the similarity of the alternatives presented.

We use our model of decision-making to simulate a T-maze olfactometer

task. Here, two odours are presented to the network and it must discriminate

between them and respond to the correct one (the one it would have been

trained to prefer, as the network is in the post-learning state) within a given

amount of time. Since we are simulating a two-alternative forced-choice task,

the network is composed of two competing evidence accumulation channels;

the first channel (denoted by integer 1 in the unit labels shown in Fig. 5.9)

accumulates the preferred olfactory input and is thus the ‘preferred’ chan-

nel. In simulations, odours presented to the model invoke responses from the

ORN populations and their mean firing rate is used for odour encoding. The

odour which invokes a higher mean firing rate is denoted the preferred option,

thus I1 > I2, and a greater difference in the means corresponds to a greater

Euclidean distance within the neural representations (and therefore an easier

task).

The pre-motor accumulator of the first channel, corresponding to neural

units in the honeybee lateral protocerebrum, must reach the decision threshold

in order for the network to respond to the preferred odour. At the end of each

simulated trial the decision time is recorded, as well as whether or not the

network made the correct decision.

We use this model to examine the impact of two inhibitory circuits to

120



A Computational Model of Decision-Making

Figure 5.9: A biologically constrained network for binary decision-making. Right:
frontal section of the honeybee brain, adapted from Perry and Barron 2013b with
permission, with modelled brain regions highlighted in colour. A single olfactory
tract, which bypasses the mushroom bodies and projects directly to the lateral proto-
cerebrum, is shown in blue. Left: the network schematic. The decision network is com-
posed of external sensory units which provide input to the system (dotted circles) and
leaky accumulating units which integrate sensory information (solid circles). Neural
pools are defined as follows: Ii populations denote ORNs, yi denote antennal lobe
neurons (both LNs and ePNs), z denotes the iPNs and xi denote the pre-motor units
in the lateral protocerebrum. Excitatory connections between units are denoted by
solid black arrows, inhibitory connections by red filled circles, and neural leak by
dashed arrows.

quantify their role in robust decision-making. Furthermore, we alter specific

parameters to see how decision accuracy and time changes within a binary

task. In particular, we vary the difficulty of the task (such that the presented

odours are similar or dissimilar), the decision threshold (the level of which

represents the internal state of the bee, discussed in the previous chapter),

the strength of pooled inhibition arising from the iPN population and the

plasticity of lateral inhibition within the antennal lobes.

Precisely what determines the level of the decision threshold, and causes

some agents to respond more quickly than others, is currently unknown. Un-

doubtedly such a mechanism will be subject to individual differences, indeed,

such was seen to be the case with bumblebees in a discrimination task using

virtual flowers (Chittka et al. 2003). The level of training given to an agent

prior to a task may also impact response time, however, it would be unreas-

onable to assume that agents completing the task will behave in the same

121



A Computational Model of Decision-Making

manner simply because they have received the same training. One factor that

is often overlooked, perhaps due to the fact that it is difficult to control exper-

imentally, is motivational state, and it is this factor that we wish to explore

by means of the decision threshold within the model.

We now describe our network of accumulators for our model of decision-

making, using ordinary differential equations to update the accumulator activ-

ity. The equations are defined as follows (cf Fig. 5.9)):

dy1 = (I1 + h0 − ky1 − (
w

∆v
)f(y2))dt

dy2 = (I2 + h0 − ky2 − (
w

∆v
)f(y1))dt (5.3)

where dyi denote the activity of the antennal lobe accumulators, Ii denote

the activity of the olfactory receptor neurons, h0 represents a bias presented

to both accumulators (otherwise known as the baseline activation), k denotes

the strength of accumulator leak, w denotes the strength of lateral inhibition,

∆v denotes the difference in chemical structure of the two presented odours,

and f(yi) denote the neural saturation function used when implementing lat-

eral inhibition (see Brown and Holmes 2001). Here, the strength of lateral

inhibition is weighted according to the similarity of the two presented stimuli,

∆v.

The group of inhibitory projection neurons are described as follows:

dz = (y1 + y2 − k̃z)dt (5.4)

where k̃ denotes the leak of the iPN population. Finally, the pre-motor accu-

mulators are described by the following:

dx1 = (y1 − k′x1)dt

dx2 = (y2 − k′x2 − w′z)dt (5.5)

where w̃ denotes the leak of the pre-motor accumulators and w′ denotes the
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strength of the inhibition from the iPN population.

The inputs of the model are normalised (Brown and Holmes 2001) and are

determined as follows:

I2 =


1− I1, if I1 6= 0

0, otherwise

(5.6)

This model does not have the capacity to learn as the mushroom bodies have

not been modelled here. Instead, we assume that the odour preference is a

result of a training phase, thus the agent has been pre-trained and prefers one

odour over the other as it is associated with a reward. Alternatively, it could

be assumed that the odour preference is innate and evolutionarily determined.

Innate odour preferences within a binary decision-making task have been ex-

plored quite recently with Drosophila (Parnas et al. 2013) and we can assume

that this concept extends to honeybees. Here, the first odour (input from I1)

is considered the preferred stimulus and thus a correct decision corresponds

to the first pre-motor accumulator, x1, reaching the decision threshold first.

All results from the model are generated using what we refer to as the

standard parameter set unless specifically stated otherwise. These parameters

are in Table 5.1 and were derived from simulation results in order to produce

good model performance in decision-making tasks.

Table 5.1: The standard parameter set.
Value Function

b 0.50 midpoint of saturation function

g 5.00 slope of saturation function

w 0.75 weight of lateral inhibition (static)

k 0.20 neural leak of antennal lobe units

i0 0.50 baseline neural activation; joint bias

w′ 0.40 strength of pooled inhibition

k′ 0.10 neural leak of pre-motor units

k̃ 0.20 neural leak of iPN population

dt 0.01 time step used in Euler method

z 0.01 - 0.5 decision threshold

∆v 0.1 - 0.9 chemical difference / task difficulty

123



A Computational Model of Decision-Making

5.2 Results

We ran simulations of binary decision-making tasks using this model. In or-

der to examine the full impact of the two inhibitory circuits (weighted lateral

inhibition and pooled-feedforward inhibition), we first simulated the model

with and without these circuits intact. We obtained an accuracy matrix for

decision-making performances for the full model, under different task diffi-

culties and levels of decision threshold (corresponding to the motivational

state of the modelled animal). Finally, we then used the results obtained to

infer how an animal’s choice behaviours may differ according to task difficulty

and motivational state, and we compared the theoretical data with our behavi-

oural experiments performed in Chapter 4, as well as with another experiment

performed by (Parnas et al. 2013) using Drosophila.

Inhibitory projection neurons enhance discrimination

We first investigated the role of pooled feedforward-inhibition in the decision-

making process. In the model, a single accumulator (z) pools the antennal lobe

activity and propagates the combined total forward as inhibition to a single

channel in the lateral protocerebrum. This corresponds to the multiglomerular

inhibitory projection neurons (iPNs) of the honeybee brain and functionally

achieves selective attenuation of the non-preferred channel (see Fig 5.9, where

only the non-preferred pre-motor accumulator is inhibited).

We thus compared the performance of two models: one with and one

without the iPN population. We term the complete model ‘WiPN’ (with iPN)

and the alternative model ‘NiPN’ (no iPN). We then ran decision-making

tasks with these two models under the same conditions such that their neural

dynamics could be compared. Analysis of the simulations showed that pooled

inhibition enhanced the decorrelation of the neural signals and produced a

greater difference in neural activity by the end of the trial. This is shown for

several different simulations in (Fig. 5.10).

From the accumulator plot in Fig. 5.10, it is clear that both models are
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Figure 5.10: Pooled inhibition improves discrimination by decorrelating neural sig-
nals. Top-left: accumulator plot to show how the integrated evidence (neural activity)
changes over the course of an easy discrimination trial for the pre-motor units. Solid
lines denote preferred accumulator activity, dashed lines denote non-preferred accu-
mulator activity. Black lines denote WiPN model, blue lines denote NiPN model.
Top-right: the discrimination performances of the two models compared across ten
thousand trials for tasks of varying difficulty and allowed integration time. Plotted is
the percentage of trials where the WiPN model improves discrimination (thus, at 50
%, the WiPN model is performing as well as the NiPN model). Bottom: plots to show
the absolute difference between the pre-motor units at the end of an easy decision-
making trial (lasting for five seconds), for the WiPN model (right) and NiPN model
(left), for varying baseline activation (h0) and neural saturation (g) parameters. A
higher absolute difference (blue areas) denotes enhanced decorrelation.
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able to decorrelate the two neural signals. In this particular simulation, both

models also make the correct choice, with the WiPN model selecting the pre-

ferred alternative slightly faster. However, by the end of the trial, the model

with pooled inhibition was able to decorrelate its signals to a greater extent.

Further investigation showed that decorrelation was enhanced more con-

sistently for easier tasks (performance plot in Fig. 5.10). Furthermore, en-

hancement was also dependent on the time allowed for the task: when the

model was given more time to accumulate evidence the iPN population im-

proved discrimination to a greater extent (Fig. 5.10). Although the perform-

ance curves for five and ten seconds are very similar, suggesting that five

seconds is plenty of time for the pooled-feedforward model to decorrelate the

signals, there is quite a large difference between one and two seconds. When

allowed two seconds for evidence accumulation, and when given an easy task,

the WiPN model successfully outperformed the NiPN model (in terms of de-

correlation) around 95% of the time. For harder tasks, this percentage drops

to around 60 - 70%. When five seconds are allowed, the difficulty of the task

becomes less detrimental to performance.

We then performed a sensitivity analysis on the two models to see how

decorrelation performance changed under varying parametric conditions. We

varied two parameters of the original Brown & Holmes model, the slope of

the neural saturation function (g) and the baseline activity or joint accumu-

lator bias (h0). The results are shown in the bottom row of Fig. 5.10. We

found that, for all cases, the WiPN model was able to enhance decorrelation,

with improvements being especially pronounced when h0 was set to a higher

value. As such, this model was able to outperform the NiPN model across

parametric setups. Taken together, these results suggest how multiglomerular

iPNs could act as an effective decorrelator of similar neural signals to improve

discrimination.

We then investigated whether or not pooled inhibition would impact the

overall decision accuracy and decision speed of the model. Since we hypothes-
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ise that the motivational state of an animal will impact the speed-accuracy

trade-off, we recognised that the level of the decision threshold would need to

be taken into account, thus we ran simulations for tasks of varying difficulty

with different decision thresholds. As with the results in Fig 5.10, we com-

pared the results with the NiPN model to quantify the benefits of the iPN

neurons.

The results are shown in Fig 5.11. The WiPN model tended to be slightly

more accurate in decision-making, with particularly superior performances

manifesting when the strength of pooled inhibition was increased beyond that

of the standard parameter. However, pooled inhibition had little to no effect

on the average decision speed of the WiPN model, even when the strength of

inhibition was increased. The model took longer to make a decision in harder

tasks than easier tasks, and this slowdown was enhanced by the implementa-

tion of a higher decision threshold. With a lower threshold, the model made

decisions very quickly regardless of task difficulty. Taken together, these res-

ults may indicate that this mechanism will not impact the decision speed of

an animal despite giving it a slight increase in accuracy. However, such a res-

ult also implies that the mechanism may be sub-optimal. As discussed before,

drift-diffusion theory predicts that the speed-accuracy trade-off is unavoidable

for optimal decision-makers.

Weighted lateral inhibition enhances discrimination for more

difficult tasks

We next investigated the role of weighted lateral inhibition in the decision-

making process. Within our full model, we varied the weight of the inhib-

itory connections according to the difficulty of the task such that a more

difficult task resulted in stronger lateral inhibition between the antennal lobe

populations. We compared this model to another which had static inhibitory

connections. We refer to this as the SI model (static inhibition) and the model

with weighted inhibition as the WI model. We ran comparisons akin to the
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Figure 5.11: Pooled inhibition can improve decision accuracy without impacting de-
cision speed. Left: average decision speeds for tasks of varying difficulty and threshold
levels. Right: average decision accuracies for respective tasks. Averages in this figure
were calculated from ten thousand trials. Low decision threshold: 0.1, higher decision
threshold: 0.5.

ones for the feedforward-pooled inhibition part of the model, and the results

are shown in Fig 5.12.

Analysis of the accumulator plot in Fig. 5.12 shows that, in contrast to the

SI model, the WI model is able to effectively decorrelate its neural signals. It

should be noted that this was a ‘bad’ simulation for the SI model, and that

the performance shown here is not representative of the overall performance

of the model. However, this emphasises the difference that weighted lateral

inhibition can make.

Additional investigation showed that decorrelation was enhanced more

consistently for harder tasks (performance plot in Fig. 5.12). As with the

pooled-feedforward part of the model, enhancement was dependent on the

time allowed for the model to integrate evidence. When the model was given

more time, the introduction of weighted inhibition improved discrimination to

a greater extent for more difficult tasks. Again, the performance curves for five

and ten second trials are similar. The difference in performance between two

and five seconds is here quite large, with the WI model in these cases being
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Figure 5.12: Weighted lateral inhibition gives rise to enhanced decorrelation. Top-
left: accumulator plot for a single trial. Black lines denote the WI model, blue lines
denote the SI model. Solid lines denote preferred accumulator activity, dashed lines
denote non-preferred accumulator activity. Top-right: percentage of trials where the
WI model improves discrimination. As before, a percentage of 50 % means that the
WI model performs just as well as the SI model. Bottom: plots to show the absolute
difference between the pre-motor units at the end of a harder decision-making trial,
for the WI model (right) and SI model (left), for varying baseline activation (h0) and
neural saturation (g) parameters. A higher absolute difference (blue areas) denotes
enhanced decorrelation.
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able to outperform the SI model around 90 - 100 % of the time. For easy tasks,

this performance drops, and the SI model instead is outperforming in terms

of decorrelation. Interestingly, for pooled-feedforward inhibition, allowing five

seconds or more for evidence accumulation results in the task difficulty hav-

ing less impact on performance, however, for the lateral inhibition part of the

model, the inverse is true. Here, when five seconds or more are allowed for the

model to accumulate, it becomes increasingly sensitive to task difficulty, and

easier tasks have a greater negative impact.

Finally, we then performed a sensitivity analysis on the two models to see

how decorrelation performance changed under varying parametric conditions.

As before, we varied two parameters of the original Brown & Holmes model,

the slope of the neural saturation function (g) and the baseline activity or

joint accumulator bias (h0). The results are shown in the bottom row of

Fig. 5.12. We found that, in most cases, the WI model was able to enhance

discrimination. Improvements were especially pronounced for higher values of

g and h0, with the best performances being obtained for h0 = 0.5, g = 20 (top

right of matrix in bottom-right plot of Fig. 5.12). For the WI model, using

smaller values of g reduced decorrelation performance. Regardless, this model

was able to outperform the SI model across many parametric setups, and these

results suggest that weighted lateral inhibition is particularly effective as a

decorrelating mechanism for difficult decision-making tasks. However, since it

is detrimental for easier tasks, this mechanism should perhaps be disengaged

(neurobiological results suggest that this is the case, see brief discussion of

weighted lateral inhibition above.)

A Model of Decision-Making can Predict Choice Behaviour

In this model, we used the level of the decision threshold to represent the

motivational state of an animal, thus we make the assumption that internal

state can directly impact the evidence accumulation process and change how

much evidence is needed to initiate a response. This assumption was ex-
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Figure 5.13: The full model, with both weighted lateral inhibition and pooled-
feedforward inhibition, completed discrimination tasks of varying difficulties with dif-
ferent decision thresholds. Our underlying assumption is that a change in motivation
causes an animal to alter its decision threshold, thus lower thresholds correspond to
‘hungry’ states and higher thresholds ‘satiated’ states. Dark blue areas denote high
decision accuracy. Pixels highlighted with an asterisk signify data that have been
used for comparison with data from the accompanying behavioural experiment.

plored in Chapter 4, where we used a well-known behavioural paradigm to

test how honeybee choice behaviour differed in satiated and hungry bees. Be-

fore performing this experiment, we first used this model to make behavioural

predictions. We ran decision-making trials where the decision threshold and

task difficulty were systematically varied and performed ten thousand trials

in each setup. We then recorded the average decision accuracy. The results

are given in Fig 5.13.

The model results show that the accuracy of the decision-maker is de-

pendent on task difficulty as well as motivational state. For task difficulty,

the model predicts that the decision-maker will be more accurate in easier

trials where the two odours presented are very dissimilar. For harder trials,

the model suffers a reduction in accuracy. For two odours that are almost

equivalent, the model picks the correct odour by chance. These results are in

agreement with those of the study of (Parnas et al. 2013), which examined
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Drosophila choice behaviour in a two-alternative forced-choice task.

Intuitively, the implementation of a low decision threshold caused a reduc-

tion in decision accuracy. In trials where the threshold was particularly low

(corresponding to a very hungry animal), the model performance was reduced,

even in tasks where two dissimilar odours were presented and should have been

easy to discriminate between. As such the model predicts that hungry animals

will make more mistakes than satiated animals when they are discriminating

between alternatives, regardless of how easy the task is. The model performs

the best when satiated and when discriminating between dissimilar alternat-

ives (easier tasks), in some cases achieving 100% accuracy (thus choosing the

correct option in each trial).

We here refer back to the behavioural data from Chapter 4. Although

the results of this model cannot be directly applied to the experiments (as

they were not true two-alternative forced-choice tasks), the model predictions

can still be used to infer behavioural changes under the assumption that the

process of evidence accumulation remains the same and that the underly-

ing mechanisms still apply (noisy evidence accumulated over time, decision

reached upon crossing the decision threshold, etc). In both our behavioural

experiments, we saw that hungry honeybees were significantly less accurate

than satiated bees. Furthermore, in our first experiment, this result was ob-

tained from a choice task which used two dissimilar odours, as such they should

have been easy to discriminate between. As such, these behavioural data are

in agreement with the model.

5.3 Discussion

We developed a sequential sampling model which has connectivity based on

honeybee neurobiology. Based on previous research in invertebrate olfactory

systems, we here held the assumption that the principles of olfactory pro-

cessing in honeybees can be generalised to other invertebrates. We replicated

part of the olfactory system using a higher-level approach, focusing on pop-
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ulations of neurons and how they interact with other brain centres. Using

this model, we examined how two different inhibitory mechanisms may con-

tribute to the discrimination abilities of an animal. We furthermore inferred

how these two mechanisms might interact with other parameters which im-

pact the evidence accumulation process, such as the decision threshold and

task difficulty.

The results suggest that pooled-feedforward inhibition, a mechanism which

is implemented in the honeybee brain via the multiglomerular iPNs, decorrel-

ate neural representations of odours as they reach the pre-motor region of the

brain, allowing for enhanced discrimination. This is achieved by means of tar-

geted or selective inhibition, where the signal for the non-preferred odour is

suppressed. We assume that this connection can be strengthened or weakened

as a result of further learning. The results also suggest that the decision accur-

acy of the animal should improve due to the presence of these inhibitory neur-

ons, since the accumulation channels integrating evidence for non-preferred

options are being driven below the decision threshold.

Although selective inhibition could be a mechanism that arises due to

learning or training, it could also be a consequence of evolutionary adaptation,

resulting in the animal developing innate preferences for some odours over

others. Previous research has suggested that this is the case. It has been

shown, for example, that the aldehydes invoke responses (proboscis extensions)

from bees more than other chemical groups (Guerrieri et al. 2005). Indeed,

our preliminary data with honeybees show that untrained bees were more

likely to respond to Hexanal, one of the aldehydes, than 1-Heptanol, on their

first learning trial (around 20% of bees). Furthermore, honeybees have been

shown to exhibit innate preferences for specific attributes of visual stimuli, for

example, symmetrical or ‘flower-like’ patterns (Lehrer et al. 1995) and colour

(Giurfa et al. 1995), as such it is reasonable to assume that they will have

innate preferences for some odours over others.

We investigated whether lateral inhibition, a mechanism also implemen-
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ted in the antennal lobes through the interactions of ePNs and LNs, would

improve the decision-making process by being weighted according to odour

similarity as opposed to being static. The results suggest that weighted lat-

eral inhibition may have evolved to enhance neural decorrelation for harder

discrimination tasks. For easier tasks, however, this mechanism eventually

becomes detrimental and does not perform well as a decorrelator. As such, it

may be the case that lateral inhibition is only ‘switched on’ for harder tasks,

when decorrelation within the antennal lobes becomes crucial. Alternatively,

there may be a minimum weight that inhibition cannot drop below.

Our sequential sampling model holds the assumptions that noisy sensory

evidence is accumulated over time and that a response is triggered when the

sampled evidence crosses the decision threshold. We further proposed that

the decision threshold should be mediated by motivational state. As such, it

is here predicted that the decision speed and accuracy of an animal within

a choice task should be dependent on motivational state. The results of the

model suggest that animals with low decision thresholds (corresponding to

being hungry) should be more prone to error. The behavioural data presented

in Chapter 4, which was obtained from real honeybees within a proboscis

extension reflex paradigm task, agree with the model predictions (although it

is important to note that they cannot be matched precisely, as the bees were

not in a two-alternative forced-choice task). In our experiments, we found that

hungry bees were indeed less accurate in their decision-making. This suggests

that evidence accumulation is directly impacted by motivational state and that

this state can thus alter decision accuracy and speed. Importantly, choice

behaviours can differ between animals, even if they have been through the

same training, if their motivational states are not controlled in some manner.

We found that the model results also agree with the behavioural data

obtained by (Parnas et al. 2013). Their study, which used a T-maze to exam-

ine Drosophila choice behaviours within a two-alternative forced-choice task,

demonstrated that odour similarity, or task difficulty, directly impacted the
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way the flies behaved. More specifically, when the flies were presented with two

dissimilar odours, one of which they innately preferred, they would exhibit a

very clear bias for the preferred odour. Within the model, this corresponds to

the decision-maker consistently choosing the correct odour over the incorrect

odour. However, when the flies were presented with an odour that was very

similar to the preferred odour, no preference was shown. This corresponds to

the trials where the model chose the correct odour around 50% of the time,

indicating no preference for either option.

It has also been suggested that fast and inaccurate decision-making may

be a foraging strategy implemented by bees, such that they can maximise

their nectar collection rate (Burns 2005). When a bee has depleted its food

resources, mediation of the decision threshold may cause it to switch to imple-

menting this strategy. In this state, waiting to accumulate more evidence is a

time cost that the bee cannot afford, thus quick decision-making is perhaps the

optimal strategy to implement. In the wild, honeybees (and other animals)

face predatory threats and inaccurate decisions may increase the likelihood of

an encounter, however, such an encounter will remain a possibility whilst star-

vation would be absolutely certain. In this situation, it can be inferred why

speed should be favoured, and a change in foraging strategy is advantageous.

From these results it is suggested that more attention is given to evidence

accumulation processes in decision-making and discrimination studies, and

that motivational state should be controlled where possible. In many cases

this may be too difficult, however, in tasks where animals are being trained

to respond to food rewards, the level of satiation is relatively easy to control.

Here, despite receiving the same training, honeybees in different motivational

states responded differently during the testing phase: hungry bees struggled

to discriminate in easy tasks which posed no problem for partially satiated

bees. We recognise that other motivations, for example thirst and stress, are

also likely to impact the decision-making process, however we do not model

them here. Instead, we use the model to emphasise that decision-making is a
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robust and dynamic process which can be influenced by internal states as well

as external parameters (such as task difficulty).

Our model does not encompass every mechanism that has been implemen-

ted by the honeybee brain to aid in discrimination tasks. However, it has

stressed the importance of two inhibitory mechanisms which are functionally

different but achieve similar results: the decorrelation of neural signals, res-

ulting in improved discrimination. The model has also suggested that these

inhibitory mechanisms may interact with the motivational state of the bee

to give rise to adaptive decision-making. From our network, we can infer

how the brains of honeybees and other invertebrates may operate using these

mechanisms.
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Chapter 6

Future Work and Conclusions

This research has approached perceptual decision-making from the perspect-

ive of sequential sampling models, which assume that action selection rests

upon the accumulation of evidence. Over the years, a tremendous amount of

research has focused on the behaviours resulting from decision-making, and

it is clear that it is a robust and dynamic process. The model that was de-

veloped here was based upon previous models of decision-making, the results of

which emphasise the role of inhibitory networks within the invertebrate brain.

Furthermore, the results of the biological experiment suggest that the crucial

mechanism of the decision threshold is mediated by motivational state. Whilst

the results are encouraging, it is important to keep in mind that the model

that was developed here is no doubt an oversimplification of real decision-

making mechanisms that ignores many of the aspects that will impact choice

behaviour. Furthermore, the behavioural experiment used honeybees within

laboratory settings wherein they were harnessed; as such, the conditions of

the bees will have been affected. Nonetheless, these results may still give an

insight into how certain neural circuits in the brain impact decision-making

and how motivation can influence it. This research has presented several novel

ideas that will hopefully be built upon in future projects.

The model of decision-making that was developed for this research attemp-

ted to replicate some of the olfactory pathways within the honeybee brain. It
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is in no way, however, a complete picture of what is happening. A few of the

limitations encountered with both the model and the biological experiment

are here explored, and proposals for future work presented.

6.1 Level of Abstraction

When implementing biologically-plausible computational models, the question

of how much detail to include within the model should always be considered.

Some models, for example, will include tens of parameters for the sake of

biological realism, whereas others will take a more ‘black box’ approach. The

latter approach will be simpler, and often it is the case that such a model

can still replicate real world data. More specifically for neural models, the

complexity can range between modelling groups of neurons as a single unit, as

was done for this research project, or individual neurons and their properties.

Although it may seem intuitive to include as much detail as possible, this does

not always produce more accurate results. Furthermore, more complex models

require more computational power, and they may also introduce a drawback

with regards to comprehensibility.

A typical neuron, at the most basic level, will be composed of a cell body

(or soma), dendrites for input into the cell body and an axon to deliver outputs

(Arbib 1995). Although there are many different types of neuron, computa-

tional models often simplify the matter and model neurons with as little com-

plexity as possible, which is important for networks built up from hundreds

or thousands of them. Of all the neuron models that exist, the point neurons

are the simplest (for example, rate neurons which do not spike and integrate-

and-fire neurons which do), although they are not used for many simulations

as they are often assmed to be too simplistic to produce reliable results. On

the other end of the spectrum is the Hodgkin-Huxley model (Hodgkin and

Huxley 1952), inspired by data from the giant squid axon, which incorporates

far more parameters which must be measured from biological experiments in

order to replicate real world data.
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With any of these models, what must be taken into account is how com-

putationally expensive the model is and whether or not higher levels of detail

will produce more accurate results or provide greater insight. For this research

we decided to develop a decision-making model using a higher-level approach,

which involved modelling neurons as populations. We thus assumed that each

population could be representative of a region within the brain. For this kind

of model, the details of the individual neurons must be ignored, which allows

for a focus on the connectivity between the populations and how different

regions might impact each other. Additionally, this kind of model assumes

that all the neurons within a single population will function in an equival-

ent manner. This is not always the case. Furthermore, there was no spiking

in the model, rather, activity was measured in terms of the mean firing rate

of the populations. The end result was a model that was computationally

inexpensive, which in turn meant that simulation results could be obtained

quickly. Although the simulations presented in this work are not computa-

tionally intensive, searching the parameter space for model performance can

quickly become a problem, certainly for searches comprising of three paramet-

ers (to show within a 3D performance plot, for example). If these searches

are being performed for tasks wherein the decision-maker is given more time

to make a decision (twenty or more seconds, for example), the time required

for these simulations to finish will increase rapidly. As such, a model of this

simplicity is beneficial.

It should also be noted that it is easier to start from a higher-level ap-

proach and add more biological detail to future versions of the model, rather

than start with a more detailed model that is made increasingly abstract. In-

deed, the former avenue has already been explored with quite a famous model

of mammalian action selection. In 2001, Kevin Gurney and colleagues im-

plemented a biologically-plausible population-level model of the basal ganglia,

which is able to perform action selection (Gurney et al. 2001a, Gurney et al.

2001b). The model used leaky-integrator neurons and simulated neural inter-
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action between regions of the mammalian basal ganglia. The model was able

to reproduce some forms of action selection seen in animals with results that

match neurobiological data, also incorporating dopaminergic modulation such

that dopamine levels impacted choice performance. A few years later, this

model of the mammalian basal ganglia was expanded upon (Humphries et al.

2006). This time, instead of using populations of neurons, the study imple-

mented spiking neurons, a move that aimed to increase biological plausibility

of the model. Here, the model was able to replicate some experimental data

obtained from rats (the mean firing rates of certain brain regions) and indeed

was able to reproduce the results of the original model. For example, setting

dopamine to a low value resulted in the model not selecting any action, and

higher levels of dopamine resulted in the model choosing more than one action.

As such, it was shown that a higher-level model which focuses on populations

of neurons can achieve the same results as one that incorporates individual

spiking neurons. This model thus serves as a good example of one which was

first developed to be a population model but was later successfully adapted to

include a greater amount of biological detail.

6.2 Multi-Alternative Decision-Making

For this research we have focused on binary decision-making, however, choos-

ing between only two alternatives is a simplification of real world situations.

Within their natural environments, animals are far more likely to encounter

multi-alternative choice tasks. Although binary decision-making tasks, such

as the two-alternative forced-choice paradigm, can be well studied in laborat-

ory settings, manipulated and adapted to suit different scenarios, they will not

be as representative of real world decision-making as multi-alternative tasks.

That said, it has been argued that binary decision-making is still worth study-

ing: ‘... it is representative of many problems faced by animals in their natural

environments (e.g., whether to approach or avoid a novel stimulus)’ (Bogacz

et al. 2006).
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In light of this limitation, there are models which have been developed to

build upon the original binary sequential sampling models and include more

than two alternatives (Bogacz et al. 2007, Tsetsos et al. 2011). It is assumed

that there are more than two integrators and, as with the two-alternative

models, that each integrator is accumulating evidence for a single alternative.

Tsetsos, Usher and McClelland develop multi-alternative extensions for the

race model, LCA model and DDM in a recent publication (Tsetsos et al.

2011). As the model developed here is an extension of the LCA model, it

should be possible to make a multi-alternative variant. It would be interesting

to see how the model performed when asked to discriminate between more

than two stimuli. A drawback to this approach, however, will be incorporating

the added complexity into behavioural experiments (as well as an increase in

computational power required for the model).

6.3 Honeybee Mushroom Bodies

The honeybee has a high capacity for learning and memory. This insect is

required to navigate large distances in order to forage for food and return to

the hive safely, detect rewarding flowers during foraging flights, communicate

the whereabouts of available food sources to other hive mates, and contribute

to collective decision-making. Furthermore, even though the honeybee does

indeed have a brain the size of a grass seed, it has a rich behavioural repertoire

(Menzel et al. 2001, Giurfa 2003a, Menzel and Giurfa 2006, Srinivasan 2010)

Indeed, behavioural and neurobiological studies indicate that the honeybee

is important to research in learning, memory and decision-making, despite

its relatively simple nervous system. It has been shown to be able to learn

abstract properties, such as orientation or colour, of stimuli (Van Hateren

et al. 1990, Horridge et al. 1992, Horridge and Zhang 1995, Giurfa et al. 1996)

and other concepts such as ‘sameness’ or ‘difference’ (Giurfa et al. 2001), learn

two concepts simultaneously (Avarguès-Weber et al. 2012), navigate through

complex mazes using visual cues (Zhang et al. 1999, Zhang et al. 2000) and
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solve contextual problems (Collett and Kelber 1988, Zhang et al. 2006). Since

decision-making can be influenced by learning, it is intuitive that it is beneficial

to incorporate into a model. In particular, the learning of abstract properties

of enables an agent to apply its knowledge to a decision-making task which

introduces novel stimuli.

The model of decision-making that has been developed for this research

is a higher level approach to modelling the honeybee brain. However, it is in

no way a complete model and it does not incorporate all of the brain centres

that are involved with decision-making and action selection, for example, the

mushroom bodies and central complex. Furthermore, we here focus only on

the olfactory centres. The model aimed to replicate some of the more well

studied olfactory pathways, however, since there are no mushroom bodies,

it cannot model them all. Another impact of this is that the model in its

current state is unable to demonstrate any form of learning. The decision-

maker is wired to exhibit a preference for one stimulus over another as a result

of training, however, this preference cannot be changed. Since the model is

making a choice within the proboscis extension reflex paradigm, a choice task

that is traditionally used to study honeybee learning and memory, it would be

desirable to incorporate aspects of learning into the model in order to replicate

the learning curves that are derived from real PER experiments. It would be

possible, for example, to adapt the model such that specific neural connections

are strengthened in the presence of positive reinforcement or reward. Indeed,

this has shown to be an effective method of implementing learning (Vasilaki

et al. 2009).

During this project, work on such an extended model already began but

currently remains in the theoretical stage. The more complete version includes

the mushroom body kenyon cells and the extrinsic neurons which connect

to other higher level brain centres, and has the capacity to learn to prefer

one stimulus over another, or to reverse this preference. Since the theoret-

ical foundations are in place, the computational implementation is the next
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stage. This extended model would perhaps be the first thing to work on in

future research, as it would give a more complete picture of the olfactory path-

ways within the brain. Indeed, since two of the more well-known pathways

travel through the mushroom bodies, full decision-making behaviours cannot

be modelled unless these brain regions are included. It would be interesting

to examine the contribution of these pathways to choice behaviours, as this is

still being studied.

6.4 Computational and Experimental Comparisons

Much of the previous research in decision-making makes use of the two-alternative

forced-choice task. Indeed, our sequential sampling model also aims to replic-

ate behaviours for such a task. In this paradigm, both stimuli are presented

to the animal at the same time. The biological experiment, which was devised

to accompany the computational model, cannot strictly be an example of a

two-alternative forced-choice task since the odours are presented sequentially

as opposed to simultaneously. As such, the model predictions and behavioural

data cannot be directly compared. This is quite a large drawback, however,

it does produce two avenues for possible future research:

• Modification of the computational model so that the two odours are

presented sequentially, as in the experimental paradigm

• Modification of the behavioural experiment so that the two odours are

presented simultaneously. This involves a change in experimental appar-

atus, such that each of the odours are presented to one antennae of the

bee only, and a choice is determined by movement of the head in one

direction or another

Of these two options, the former is perhaps the easier avenue as it involves

an adaptation of the model code, which will undoubtedly also invoke a change

in the parametric setup. However, computational simulations are easy to run
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and data can be obtained rather quickly. The latter option involves modifica-

tion of the device used for odour delivery as well as how the bee is harnessed,

since the traditional harnessing methodology for PER was devised to restrict

movement of the head. The olfactory controller used for gathering the ex-

perimental data is not programmed to deliver two odours at once, as such

this will also require modification. Changing the experimental equipment and

gathering new behavioural data will perhaps be a slower process, however, it

would be necessary in order to examine honeybee decision-making within a

true two-alternative forced-choice task.

6.5 Decision Boundaries

We here suggested that an animal’s decision boundary or threshold can be

directly influenced by the motivational state of the animal, thus inducing ob-

servable behavioural changes in the animal’s choice behaviour. This theory

was supported by our experimental results. In our computational model, the

threshold is a parameter which can be modified, however, the neural circuitry

which actually sets the level of this threshold is yet to be identified. Further-

more, we do not know where in the invertebrate brain this circuitry might

exist. In human decision-making, the subthalamic nucleus (STN) has been

recently identified as a brain region which modulates the decision threshold

(Herz et al. 2016) during perceptual decision-making. The STN is a brain

region which has previously been identified to play a role in action selection,

also featuring in the basal ganglia model by Gurney and colleagues mentioned

above. This result is very encouraging, and since recent studies also bring

to light the parallels between mammalian and invertebrate brain structures

(Strausfeld and Hirth 2013), perhaps it can be assumed that an invertebrate

equivalent can be found. The central complex and lateral protocerebrum are

two higher level brain centres in invertebrates that are known to play a role

in action selection but are currently rather understudied; it would be interest-

ing to see whether or not a mechanism which mediates the decision threshold
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exists in either of these regions.

6.6 Conclusions

This research has presented an examination of decision-making and action

selection using both experimental and theoretical approaches. An underly-

ing theme throughout this work has been the honeybee, an animal which has

evolved to solve decision-making problems efficiently. Specifically, we have

explored the role of inhibitory mechanisms and how they might benefit a

decision-maker within two different models, one of which was inspired by hon-

eybee neurobiology. Further, we have explored the role of motivation in hon-

eybees, and quantified how an animal’s satiation level may impact their choice

behaviours. We have also attempted to describe the observed behavioural data

using the classical drift-diffusion model of Ratcliff (Ratcliff 1978).

In Chapter 3, we presented an abstract model of action selection within a

foraging context, based upon a previous model of behavioural switching de-

veloped by Houston and Sumida (Houston and Sumida 1985). The results

showed that using lateral inhibition to couple the two competing motivations

of the modelled animal improved action selection as the animal reduced its

costly behavioural switching. We found that mediation of the inhibitory circuit

provided further benefits to the animal and allowed it to decrease its foraging

bout lengths consistently over time, a result which is more biologically plaus-

ible. However, in order to exhibit this behaviour, the animal began switching

between alternatives more frequently and consequently incurred more costs,

in some cases. This may indicate a trade-off between bout length reduction

and behavioural switching.

In Chapter 4, we investigated the role of satiation in honeybee choice be-

haviours using the proboscis extension reflex (PER) paradigm and found that

they can be described by a drift-diffusion process. In our two experiments,

we found that there was a clear difference in the decision-making behaviours

of hungry and satiated animals. In both experiments, we found that hungry
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bees were more inaccurate than satiated bees. We furthermore analysed their

reaction times and found that, for some odours, hungry bees were responding

significantly faster than satiated bees. In our second experiment, we expanded

on these results and analysed the behaviours of honeybees in more detail. We

found that, in some cases, hungry bees would respond before stimulus present-

ation significantly more than satiated bees. We furthermore found that, in

the event of an error, satiated bees would withdraw their proboscis signific-

antly quicker than hungry bees. We found that all these differences in their

behaviours are compatible with a drift-diffusion process, if we assume that

the decision threshold is lowered according to level of satiation. A reduced

threshold would make a decision-maker more inaccurate, quicker in respond-

ing and slower in correcting errors. Thus, from these results we suggest that

differences in behaviours are caused by a mediation of the decision threshold,

according to level of satiation. This is an additional theory to that put forward

by Page and colleagues, which suggested that a change in response probability

was caused by a change in sucrose sensitivity (Page Jr et al. 1998). If the

sucrose sensitivity of an individual is defined by the decision threshold, an in-

crease in sensitivity would reflect a lower threshold and thus a higher response

probability.

Finally, in Chapter 5, we presented a novel computational model of decision-

making, the connectivity of which was based on the honeybee brain and

inspired by the previous decision-making models of Ratcliff (Ratcliff 1978),

Usher and McClelland (Usher and McClelland 2001), and Brown and Holmes

(Brown and Holmes 2001). We used this model to further investigate the role

of inhibitory mechanisms in decision-making, and to see if this model could

match the behavioural data from our experiments as well as others. We found

that the mechanisms of lateral inhibition and pooled-feedforward inhibition,

both of which have been identified as circuits within the invertebrate antennal

lobes, were beneficial to aiding in discrimination tasks. Our results agree with

previous theories that lateral inhibition should not be static, rather, it should
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be robust and dependent on stimuli similarity. We found that weighted lateral

inhibition was more beneficial to harder decision-making tasks, whilst pooled-

feedforward inhibition was more beneficial to easier tasks. Our model also

demonstrated that increasing the similarity of two stimuli presented within a

two-alternative forced-choice task should make a decision-maker increasingly

more inaccurate. We found that, for two stimuli that are almost equivalent,

the decision-maker will exhibit no bias in picking one stimulus or the other.

This result is in agreement with the results in the study of Parnas et al.,

(2013). Finally, we found that a reduced decision threshold caused the model

to make more mistakes, even for easier tasks that should have been easy to

solve. Although this result cannot be directly matched with our experimental

study (since they use two different paradigms), the results indicate that a

hungry animal should make decisions faster and be more inaccurate.

This research, which utilised both computational neuroscience and biology,

has further emphasised the benefits of using the honeybee as a model for

decision-making, and has also demonstrated the power of abstract and higher-

level computational models.
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Statistical Tests

All statistical tests were carried out using R. For the decision accuracy data
the test of given proportions was used. For all other data, normality was first
tested using the Shapiro-Wilks normality test. If the data sets to be compared
were both normal, a two sample t-test was performed, and if normality could
not be assumed, a Wilcoxon-Mann-Whitney test was performed. The full
results from the statistical analyses are presented here.

A.1 Experiment One

We first present the tests for the original experiment.

A.1.1 Decision Accuracy

prop.test(c(12,31),c(41,43), correct=FALSE, alternative = "less")

2-sample test for equality of proportions without continuity

correction

data: c(12, 31) out of c(41, 43)

X-squared = 15.405, df = 1, p-value = 4.337e-05

alternative hypothesis: less

95 percent confidence interval:

-1.0000000 -0.2660136

sample estimates:

prop 1 prop 2

0.2926829 0.7209302

Result: p < .001; hungry bees significantly less accurate than
satiated bees.
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A.1.2 Reaction Time Data: Shapiro-Wilks Normality Tests

Before presenting the statistical tests, we first determine whether or not the
data sets are normal.

Rewarded odour (satiated bees):
shapiro.test(...)

Shapiro-Wilk normality test

W = 0.86824, p-value = 0.0004324

Result: This data set is normal.

Rewarded odour (hungry bees):
shapiro.test(...)

Shapiro-Wilk normality test

W = 0.83631, p-value = 0.0004027

Result: This data set is normal.

Unrewarded odour (satiated bees):
shapiro.test(...)

Shapiro-Wilk normality test

W = 0.88542, p-value = 0.2949

Result: This data set is not normal.

Unrewarded odour (hungry bees):
shapiro.test(...)

Shapiro-Wilk normality test

W = 0.82289, p-value = 0.01292

Result: This data set is normal.

A.1.3 Reaction Time Statistical Tests

Rewarded odour

t.test(..., paired=FALSE)

Welch Two Sample t-test

t = 0.751, df = 60.038, p-value = 0.4556

alternative hypothesis: true difference in means is not equal to

0

95 percent confidence interval:

-0.4124763 0.9083943

sample estimates:

mean of x mean of y
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1.828649 1.580690

Result: For the rewarded odour, hungry bees were not signific-
antly faster than satiated bees.

Unrewarded odour

wilcox.test(..., paired=FALSE, alternative="greater", correct=FALSE)

Wilcoxon rank sum test

W = 59, p-value = 0.03964

Result: p < .05 for the unrewarded odour, hungry bees were
significantly faster than satiated bees.

A.2 Experiment Two

A.2.1 Decision Accuracy (Overall)

prop.test(c(12,27),c(40,41), correct=FALSE, alternative = "less")

2-sample test for equality of proportions without continuity

correction

data: c(12, 27) out of c(40, 41)

X-squared = 10.425, df = 1, p-value = 0.0006216

alternative hypothesis: less

95 percent confidence interval:

-1.0000000 -0.1881172

sample estimates:

prop 1 prop 2

0.3000000 0.6585366

Result: p < .001; hungry bees significantly less accurate than
satiated bees.

A.2.2 Decision Accuracy (100:0)

prop.test(c(36,32),c(40,41), correct=FALSE, alternative = "greater")

2-sample test for equality of proportions without continuity

correction

data: c(36, 32) out of c(40, 41)

X-squared = 2.1464, df = 1, p-value = 0.07145

alternative hypothesis: greater

95 percent confidence interval:

-0.01237078 1.00000000

sample estimates:

prop 1 prop 2
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0.9000000 0.7804878

Result: p > .05; the proportion of hungry bees responding to this
odour is statistically the same as the proportion of satiated bees
responding.

A.2.3 Decision Accuracy (70:30)

prop.test(c(16,8),c(40,41), correct=FALSE, alternative = "greater")

2-sample test for equality of proportions without continuity

correction

data: c(16, 8) out of c(40, 41)

X-squared = 4.076, df = 1, p-value = 0.02175

alternative hypothesis: greater

95 percent confidence interval:

0.04179288 1.00000000

sample estimates:

prop 1 prop 2

0.400000 0.195122

Result: p < .05; significantly more hungry bees responded to this
odour than satiated bees.

A.2.4 Decision Accuracy (50:50)

prop.test(c(12,5),c(40,41), correct=FALSE, alternative = "greater")

2-sample test for equality of proportions without continuity

correction

data: c(12, 5) out of c(40, 41)

X-squared = 3.8706, df = 1, p-value = 0.02457

alternative hypothesis: greater

95 percent confidence interval:

0.03220594 1.00000000

sample estimates:

prop 1 prop 2

0.3000000 0.1219512

Result: p < .05; significantly more hungry bees responded to this
odour than satiated bees.

A.2.5 Decision Accuracy (30:70)

prop.test(c(5,2),c(40,41), correct=FALSE, alternative = "greater")

2-sample test for equality of proportions without continuity

correction

152



Appendix

data: c(5, 2) out of c(40, 41)

X-squared = 1.4898, df = 1, p-value = 0.1111

alternative hypothesis: greater

95 percent confidence interval:

-0.02605422 1.00000000

sample estimates:

prop 1 prop 2

0.12500000 0.04878049

Result: p > .05; the proportion of hungry bees responding to this
odour is statistically the same as the proportion of satiated bees
responding.

A.2.6 Decision Accuracy (0:100)

prop.test(c(16,4),c(40,41), correct=FALSE, alternative = "greater")

2-sample test for equality of proportions without continuity

correction

data: c(16, 4) out of c(40, 41)

X-squared = 9.9597, df = 1, p-value = 8e-04

alternative hypothesis: greater

95 percent confidence interval:

0.1539698 1.0000000

sample estimates:

prop 1 prop 2

0.40000000 0.09756098

Result: p < .001; significantly more hungry bees responded to
this odour than satiated bees.

A.2.7 Reaction Time Data: Shapiro-Wilks Normality Tests

Before presenting the statistical tests, we first determine whether or not the
data sets are normal.

Rewarded odour (satiated bees):
shapiro.test(...)

Shapiro-Wilk normality test

W = 0.90861, p-value = 0.0119

Result: This data set is normal.

Rewarded odour (hungry bees):
shapiro.test(...)

Shapiro-Wilk normality test

W = 0.91056, p-value = 0.007696
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Result: This data set is normal.

70:30 compound odour (satiated bees):
shapiro.test(...)

Shapiro-Wilk normality test

W = 0.96126, p-value = 0.822

Result: This data set is not normal.

70:30 compound odour (hungry bees):
shapiro.test(...)

Shapiro-Wilk normality test

W = 0.67751, p-value = 0.0002182

Result: This data set is normal.

50:50 compound odour (satiated bees):
shapiro.test(...)

Shapiro-Wilk normality test

W = 0.85499, p-value = 0.2108

Result: This data set is not normal.

50:50 compound odour (hungry bees):
shapiro.test(...)

Shapiro-Wilk normality test

W = 0.84844, p-value = 0.05565

Result: This data set is not normal.

30:70 compound odour (satiated bees):
Sample size too small to perform test.

30:70 compound odour (hungry bees):
shapiro.test(...)

Shapiro-Wilk normality test

W = 0.7936, p-value = 0.07179

Result: This data set is not normal.

Punished odour (satiated bees):
shapiro.test(...)

Shapiro-Wilk normality test

W = 0.76024, p-value = 0.04793

Result: This data set is normal.

Punished odour (hungry bees):
shapiro.test(...)

Shapiro-Wilk normality test
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W = 0.75913, p-value = 0.00461

Result: This data set is normal.

A.2.8 Reaction Time Statistical Tests

Rewarded odour (100:0)

t.test(..., paired=FALSE, alternative="greater")

Welch Two Sample t-test

t = 2.2001, df = 53.013, p-value = 0.01609

alternative hypothesis: true difference in means is greater than

0

95 percent confidence interval:

0.2270901 Inf

sample estimates:

mean of x mean of y

2.779355 1.829429

Result: p < .05 for the rewarded odour, hungry bees were signi-
ficantly faster than satiated bees.

70:30 compound odour

wilcox.test(..., paired=FALSE, alternative="greater", correct=FALSE)

Wilcoxon rank sum test

W = 74.5, p-value = 0.1032

Result: p > .05 for the 70:30 compound odour, hungry bees were
not significantly faster than satiated bees.

50:50 compound odour

wilcox.test(..., paired=FALSE, alternative="greater", correct=FALSE)

Wilcoxon rank sum test

W = 25.5, p-value = 0.4756

Result: p > .05 for the 50:50 compound odour, hungry bees were
not significantly faster than satiated bees.

30:70 compound odour

wilcox.test(..., paired=FALSE, alternative="greater", correct=FALSE)

Wilcoxon rank sum test

W = 4, p-value = 0.7143
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Result: p > .05 for the 30:70 compound odour, hungry bees were
not significantly faster than satiated bees.

Punished odour (0:100)

t.test(rt13, rt14, paired=FALSE, alternative="greater")

Welch Two Sample t-test

t = 0.43671, df = 7.3036, p-value = 0.3375

alternative hypothesis: true difference in means is greater than

0

95 percent confidence interval:

-1.821249 Inf

sample estimates:

mean of x mean of y

2.71 2.16

Result: p > .05 for the punished odour, hungry bees were not
significantly faster than satiated bees.

A.2.9 Number of Bouts: Shapiro-Wilks Normality Tests

Rewarded odour (satiated bees):
shapiro.test(...)

Shapiro-Wilk normality test

W = 0.79285, p-value = 3.816e-05

Result: This data set is normal.

Rewarded odour (hungry bees):
shapiro.test(...)

Shapiro-Wilk normality test

W = 0.8455, p-value = 0.0001502

Result: This data set is normal.

70:30 compound odour (satiated bees):
shapiro.test(...)

Shapiro-Wilk normality test

W = 0.6412, p-value = 0.0004791

Result: This data set is normal.

70:30 compound odour (hungry bees):
shapiro.test(...)

Shapiro-Wilk normality test
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W = 0.83177, p-value = 0.007431

Result: This data set is normal.

50:50 compound odour (satiated bees):
shapiro.test(...)

Shapiro-Wilk normality test

W = 0.73872, p-value = 0.02332

Result: This data set is normal.

50:50 compound odour (hungry bees):
shapiro.test(...)

Shapiro-Wilk normality test

W = 0.79416, p-value = 0.007882

Result: This data set is normal.

30:70 compound odour (satiated bees):
Sample size too small to perform test.

30:70 compound odour (hungry bees):
shapiro.test(...)

Shapiro-Wilk normality test

W = 0.8494, p-value = 0.2242

Result: This data set is not normal.

Punished odour (satiated bees):
shapiro.test(...)

Shapiro-Wilk normality test

W = 0.80788, p-value = 0.003473

Result: This data set is normal.

Punished odour (hungry bees):
shapiro.test(...)

Shapiro-Wilk normality test

W = 0.90769, p-value = 0.01128

Result: This data set is normal.
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A.2.10 Total Number of Bouts: Statistical Tests

Rewarded odour (100:0)

t.test(..., paired=FALSE)

Welch Two Sample t-test

t = -0.0046458, df = 60.198, p-value = 0.9963

alternative hypothesis: true difference in means is greater than

0

95 percent confidence interval:

-0.7733468 0.7697626

sample estimates:

mean of x mean of y

2.387097 2.388889

Result: p > .05 for the rewarded odour, hungry bees did not show
significantly more proboscis extensions than satiated bees.

70:30 compound odour

t.test(..., paired=FALSE)

Welch Two Sample t-test

t = -2.6881, df = 20.477, p-value = 0.01396

alternative hypothesis: true difference in means is greater than

0

95 percent confidence interval:

-1.9966898 -0.2533102

sample estimates:

mean of x mean of y

1.375 2.500

Result: p < .05 for the 70:30 compound odour, hungry bees
showed significantly more proboscis extensions than satiated bees.

50:50 compound odour

t.test(..., paired=FALSE)

Welch Two Sample t-test

t = -0.30484, df = 6.8666, p-value = 0.7695

alternative hypothesis: true difference in means is greater than

0

95 percent confidence interval:

-2.875908 2.221363

sample estimates:

mean of x mean of y
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2.400000 2.727273

Result: p > .05 for the 50:50 compound odour, hungry bees did
not show significantly more proboscis extensions than satiated bees.

30:70 compound odour

wilcox.test(..., paired=FALSE, correct=FALSE)

Wilcoxon rank sum test

W = 2, p-value = 0.1949

Result: p > .05 for the 30:70 compound odour, hungry bees did
not show significantly more proboscis extensions than satiated bees.

Punished odour (0:100)

wilcox.test(..., paired=FALSE, correct=FALSE)

Wilcoxon rank sum test

W = 16, p-value = 0.1231

Result: p > .05 for the punished odour, hungry bees did not show
significantly more proboscis extensions than satiated bees.

A.2.11 Total Time Responding: Shapiro-Wilks Normality Tests

Rewarded odour (satiated bees):
shapiro.test(...)

Shapiro-Wilk normality test

W = 0.90769, p-value = 0.01128

Result: This data set is normal.

Rewarded odour (hungry bees):
shapiro.test(...)

Shapiro-Wilk normality test

W = 0.92864, p-value = 0.02277

Result: This data set is normal.

70:30 compound odour (satiated bees):
shapiro.test(...)

Shapiro-Wilk normality test
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W = 0.67974, p-value = 0.001326

Result: This data set is normal.

70:30 compound odour (hungry bees):
shapiro.test(...)

Shapiro-Wilk normality test

W = 0.92242, p-value = 0.1845

Result: This data set is not normal.

50:50 compound odour (satiated bees):
shapiro.test(...)

Shapiro-Wilk normality test

W = 0.82294, p-value = 0.123

Result: This data set is not normal.

50:50 compound odour (hungry bees):
shapiro.test(...)

Shapiro-Wilk normality test

W = 0.8821, p-value = 0.1106

Result: This data set is not normal.

30:70 compound odour (satiated bees):
Sample size too small to perform test.

30:70 compound odour (hungry bees):
shapiro.test(...)

Shapiro-Wilk normality test

W = 0.87007, p-value = 0.2667

Result: This data set is not normal.

Punished odour (satiated bees):
shapiro.test(...)

Shapiro-Wilk normality test

W = 0.94213, p-value = 0.6673

Result: This data set is not normal.

Punished odour (hungry bees):
shapiro.test(...)

Shapiro-Wilk normality test
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W = 0.88526, p-value = 0.0469

Result: This data set is normal.

A.2.12 Total Time Responding to Odour: Statistical Tests

Rewarded odour (100:0)

t.test(..., paired=FALSE)

Welch Two Sample t-test, alternative="less"

t = -1.6043, df = 64.367, p-value = 0.05677

alternative hypothesis: true difference in means is greater than

0

95 percent confidence interval:

-Inf 0.0654051

sample estimates:

mean of x mean of y

5.539355 7.164722

Result: p > .05 for the rewarded odour, hungry bees did not
spend significantly more time responding than satiated bees.

70:30 compound odour

wilcox.test(..., paired=FALSE, correct=FALSE, alternative="less")

Wilcoxon rank sum test

W = 34, p-value = 0.03511

Result: p < .05 for the 70:30 compound odour, hungry bees spent
significantly more time responding than satiated bees.

50:50 compound odour

wilcox.test(..., paired=FALSE, correct=FALSE, alternative="less")

Wilcoxon rank sum test

W = 21, p-value = 0.2548

Result: p < .05 for the 70:30 compound odour, hungry bees did
not spend significantly more time responding than satiated bees.

30:70 compound odour

wilcox.test(..., paired=FALSE, correct=FALSE, alternative="less")
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Wilcoxon rank sum test

W = 2, p-value = 0.1905

Result: p < .05 for the 30:70 compound odour, hungry bees did
not spend significantly more time responding than satiated bees.

Punished odour (0:100)

wilcox.test(..., paired=FALSE, correct=FALSE)

Wilcoxon rank sum test

W = 11, p-value = 0.02497

Result: p < .05 for the punished odour, hungry bees spent signi-
ficantly more time responding than satiated bees.

A.2.13 Total Time Responding Before Odour Onset: Shapiro-
Wilks Normality Tests

Rewarded odour (satiated bees):
shapiro.test(...)

Shapiro-Wilk normality test

W = 0.32314, p-value = 7.331e-11

Result: This data set is normal.

Rewarded odour (hungry bees):
shapiro.test(...)

Shapiro-Wilk normality test

W = 0.51805, p-value = 1.025e-09

Result: This data set is normal.

70:30 compound odour (satiated bees):
Cannot perform test as all values are the same.

70:30 compound odour (hungry bees):
shapiro.test(...)

Shapiro-Wilk normality test

W = 0.66715, p-value = 7.5e-05

Result: This data set is normal.

50:50 compound odour (satiated bees):
shapiro.test(...)
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Shapiro-Wilk normality test

W = 0.58678, p-value = 0.0004144

Result: This data set is normal.

50:50 compound odour (hungry bees):
shapiro.test(...)

Shapiro-Wilk normality test

W = 0.71299, p-value = 0.0006876

Result: This data set is normal.

30:70 compound odour (satiated bees):
Sample size too small to perform test.

30:70 compound odour (hungry bees):
shapiro.test(...)

Shapiro-Wilk normality test

W = 0.62978, p-value = 0.001241

Result: This data set is normal.

Punished odour (satiated bees):
shapiro.test(...)

Shapiro-Wilk normality test

W = 0.87446, p-value = 0.03184

Result: This data set is normal.

Punished odour (hungry bees):
shapiro.test(...)

Shapiro-Wilk normality test

W = 0.9109, p-value = 0.01364

Result: This data set is normal.

A.2.14 Total Time Responding Before Odour Onset: Statist-
ical Tests

Rewarded odour (100:0)

t.test(..., paired=FALSE, alternative="less")

Welch Two Sample t-test, alternative="less"

t = -1.9206, df = 44.326, p-value = 0.03061

alternative hypothesis: true difference in means is greater than
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0

95 percent confidence interval:

-Inf -0.08297658

sample estimates:

mean of x mean of y

0.1896774 0.8519444

Result: p < .05 for the rewarded odour, hungry bees spent signi-
ficantly more time responding before the odour onset than satiated
bees.

70:30 compound odour

wilcox.test(..., paired=FALSE, correct=FALSE, alternative="less")

Wilcoxon rank sum test

W = 44, p-value = 0.0423

Result: p < .05 for the 70:30 compound odour, hungry bees spent
significantly more time responding before the odour onset than sa-
tiated bees.

50:50 compound odour

t.test(..., paired=FALSE, alternative="less")

Welch Two Sample t-test, alternative="less"

t = 0.16746, df = 5.4361, p-value = 0.5635

alternative hypothesis: true difference in means is greater than

0

95 percent confidence interval:

-Inf 3.54847

sample estimates:

mean of x mean of y

1.624000 1.347273

Result: p > .05 for the 50:50 compound odour, hungry bees did
not spend significantly more time responding before the odour on-
set than satiated bees.

30:70 compound odour

wilcox.test(..., paired=FALSE, correct=FALSE, alternative="less")

Wilcoxon rank sum test
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W = 44, p-value = 0.0423

Result: p > .05 for the 30:70 compound odour, hungry bees did
not spend significantly more time responding before the odour on-
set than satiated bees.

Punished odour (0:100)

t.test(..., paired=FALSE, alternative="less")

Welch Two Sample t-test, alternative="less"

t = -1.9156, df = 9.18, p-value = 0.04352

alternative hypothesis: true difference in means is greater than

0

95 percent confidence interval:

-Inf -0.1032791

sample estimates:

mean of x mean of y

0.870 3.155

Result: p < .05 for the punished odour, hungry bees spent signi-
ficantly more time responding before the odour onset than satiated
bees.

A.2.15 Total Time Responding After Odour Onset: Shapiro-
Wilks Normality Tests

Rewarded odour (satiated bees):
shapiro.test(...)

Shapiro-Wilk normality test

W = 0.9109, p-value = 0.01364

Result: This data set is normal.

Rewarded odour (hungry bees):
shapiro.test(...)

Shapiro-Wilk normality test

W = 0.96957, p-value = 0.414

Result: This data set is not normal.

70:30 compound odour (satiated bees):
shapiro.test(...)

Shapiro-Wilk normality test
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W = 0.67974, p-value = 0.001326

Result: This data set is normal.

70:30 compound odour (hungry bees):
shapiro.test(...)

Shapiro-Wilk normality test

W = 0.92954, p-value = 0.2398

Result: This data set is not normal.

50:50 compound odour (satiated bees):
shapiro.test(...)

Shapiro-Wilk normality test

W = 0.90261, p-value = 0.4245

Result: This data set is not normal.

50:50 compound odour (hungry bees):
shapiro.test(...)

Shapiro-Wilk normality test

W = 0.91518, p-value = 0.2805

Result: This data set is not normal.

30:70 compound odour (satiated bees):
Sample size too small to perform test.

30:70 compound odour (hungry bees):
shapiro.test(...)

Shapiro-Wilk normality test

W = 0.89867, p-value = 0.4245

Result: This data set is not normal.

Punished odour (satiated bees):
shapiro.test(...)

Shapiro-Wilk normality test

W = 0.89867, p-value = 0.4245

Result: This data set is not normal.

Punished odour (hungry bees):
shapiro.test(...)

Shapiro-Wilk normality test
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W = 0.96026, p-value = 0.6665

Result: This data set is not normal.

A.2.16 Total Time Responding After Odour Onset: Statistical
Tests

Rewarded odour (100:0)

wilcox.test(..., paired=FALSE, correct=FALSE, alternative="less")

Wilcoxon rank sum test

W = 461.5, p-value = 0.1125

Result: p > .05 for the rewarded odour, hungry bees did not
spend significantly more time responding after the odour onset than
satiated bees.

70:30 compound odour

wilcox.test(..., paired=FALSE, correct=FALSE, alternative="less")

Wilcoxon rank sum test

W = 37, p-value = 0.05282

Result: p > .05 for the 70:30 compound odour, hungry bees did
not spend significantly more time responding after the odour onset
than satiated bees.

50:50 compound odour

wilcox.test(..., paired=FALSE, correct=FALSE, alternative="less")

Wilcoxon rank sum test

W = 19, p-value = 0.1676

Result: p > .05 for the 50:50 compound odour, hungry bees did
not spend significantly more time responding after the odour onset
than satiated bees.

30:70 compound odour

wilcox.test(..., paired=FALSE, correct=FALSE, alternative="less")

Wilcoxon rank sum test
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W = 2, p-value = 0.1905

Result: p > .05 for the 30:70 compound odour, hungry bees did
not spend significantly more time responding after the odour onset
than satiated bees.

Punished odour (0:100)

wilcox.test(..., paired=FALSE, correct=FALSE, alternative="less")

Wilcoxon rank sum test

W = 14.5, p-value = 0.04904

Result: p < .05 for the punished odour, hungry bees spent signi-
ficantly more time responding after the odour onset than satiated
bees.

A.2.17 Number of Bouts Above the Plane: Shapiro-Wilks
Normality Tests

Rewarded odour (satiated bees):
shapiro.test(...)

Shapiro-Wilk normality test

W = 0.72593, p-value = 2.872e-06

Result: This data set is normal.

Rewarded odour (hungry bees):
shapiro.test(...)

Shapiro-Wilk normality test

W = 0.7913, p-value = 1.099e-05

Result: This data set is normal.

70:30 compound odour (satiated bees):
shapiro.test(...)

Shapiro-Wilk normality test

W = 0.6412, p-value = 0.0004791

Result: This data set is normal.

70:30 compound odour (hungry bees):
shapiro.test(...)

Shapiro-Wilk normality test
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W = 0.81401, p-value = 0.004205

Result: This data set is normal.

50:50 compound odour (satiated bees):
shapiro.test(...)

Shapiro-Wilk normality test

W = 0.55218, p-value = 0.000131

Result: This data set is normal.

50:50 compound odour (hungry bees):
shapiro.test(...)

Shapiro-Wilk normality test

W = 0.34499, p-value = 2.243e-08

Result: This data set is normal.

30:70 compound odour (satiated bees):
Sample size too small to perform test.

30:70 compound odour (hungry bees):
shapiro.test(...)

Shapiro-Wilk normality test

W = 0.89867, p-value = 0.4245

Result: This data set is not normal.

Punished odour (satiated bees):
shapiro.test(...)

Shapiro-Wilk normality test

W = 0.68403, p-value = 0.00647

Result: This data set is normal.

Punished odour (hungry bees):
shapiro.test(...)

Shapiro-Wilk normality test

W = 0.45449, p-value = 9.106e-07

Result: This data set is normal.
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A.2.18 Number of Bouts Above Plane of Head: Statistical
Tests

Rewarded odour (100:0)

t.test(..., paired=FALSE, alternative="less")

Welch Two Sample t-test, alternative="less"

t = -0.96385, df = 64.564, p-value = 0.1694

alternative hypothesis: true difference in means is greater than

0

95 percent confidence interval:

-Inf 0.1441808

sample estimates:

mean of x mean of y

0.5806452 0.7777778

Result: p > .05 for the rewarded odour, hungry bees did not show
significantly more proboscis extensions above the plane of the head
than satiated bees.

70:30 compound odour

t.test(..., paired=FALSE, alternative="less")

Welch Two Sample t-test, alternative="less"

t = -1.9496, df = 18.837, p-value = 0.03314

alternative hypothesis: true difference in means is greater than

0

95 percent confidence interval:

-Inf -0.05634282

sample estimates:

mean of x mean of y

0.375 0.875

Result: p < .05 for the 70:30 compound odour, hungry bees
showed significantly more proboscis extensions above the plane of
the head than satiated bees.

50:50 compound odour

t.test(..., paired=FALSE, alternative="less")

Welch Two Sample t-test, alternative="less"

t = 2.7116, df = 23.885, p-value = 0.9939

alternative hypothesis: true difference in means is greater than

0

95 percent confidence interval:
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-Inf 1.130629

sample estimates:

mean of x mean of y

0.8750000 0.1818182

Result: p > .05 for the 50:50 compound odour, hungry bees did
not show significantly more proboscis extensions above the plane of
the head than satiated bees.

30:70 compound odour

wilcox.test(..., paired=FALSE, correct=FALSE, alternative="less")

Wilcoxon rank sum test

W = 3, p-value = 0.1636

Result: p > .05 for the 30:70 compound odour, hungry bees did
not show significantly more proboscis extensions above the plane of
the head than satiated bees.

Punished odour (0:100)

wilcox.test(..., paired=FALSE, correct=FALSE, alternative="less")

Wilcoxon rank sum test

W = 24, p-value = 0.139

Result: p > .05 for the punished odour, hungry bees did not show
significantly more proboscis extensions above the plane of the head
than satiated bees.

A.2.19 Number of Bouts At the Plane: Shapiro-Wilks Nor-
mality Tests

Rewarded odour (satiated bees):
shapiro.test(...)

Shapiro-Wilk normality test

W = 0.86153, p-value = 0.0009008

Result: This data set is normal.

Rewarded odour (hungry bees):
shapiro.test(...)

Shapiro-Wilk normality test
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W = 0.89081, p-value = 0.001932

Result: This data set is normal.

70:30 compound odour (satiated bees):
shapiro.test(...)

Shapiro-Wilk normality test

W = 0.84891, p-value = 0.09288

Result: This data set is not normal.

70:30 compound odour (hungry bees):
shapiro.test(...)

Shapiro-Wilk normality test

W = 0.81087, p-value = 0.003811

Result: This data set is normal.

50:50 compound odour (satiated bees):
shapiro.test(...)

Shapiro-Wilk normality test

W = 0.85991, p-value = 0.2279

Result: This data set is not normal.

50:50 compound odour (hungry bees):
shapiro.test(...)

Shapiro-Wilk normality test

W = 0.76023, p-value = 0.002828

Result: This data set is normal.

30:70 compound odour (satiated bees):
Sample size too small to perform test.

30:70 compound odour (hungry bees):
shapiro.test(...)

Shapiro-Wilk normality test

W = 0.96086, p-value = 0.814

Result: This data set is not normal.

Punished odour (satiated bees):
shapiro.test(...)

Shapiro-Wilk normality test
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W = 0.8494, p-value = 0.2242

Result: This data set is not normal.

Punished odour (hungry bees):
shapiro.test(...)

Shapiro-Wilk normality test

W = 0.77026, p-value = 0.001126

Result: This data set is normal.

A.2.20 Number of Bouts At Plane of Head: Statistical Tests

Rewarded odour (100:0)

t.test(..., paired=FALSE, alternative="less")

Welch Two Sample t-test, alternative="less"

t = 0.53941, df = 60.517, p-value = 0.7042

alternative hypothesis: true difference in means is greater than

0

95 percent confidence interval:

-Inf 0.8002629

sample estimates:

mean of x mean of y

1.806452 1.611111

Result: p > .05 for the rewarded odour, hungry bees did not show
significantly more proboscis extensions at the plane of the head than
satiated bees.

70:30 compound odour

wilcox.test(..., paired=FALSE, correct=FALSE, alternative="less")

Wilcoxon rank sum test

W = 54, p-value = 0.2551

Result: p > .05 for the 70:30 compound odour, hungry bees did
not show significantly more proboscis extensions at the plane of the
head than satiated bees.

50:50 compound odour

wilcox.test(..., paired=FALSE, correct=FALSE, alternative="less")

Wilcoxon rank sum test
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W = 22.5, p-value = 0.2756

Result: p > .05 for the 50:50 compound odour, hungry bees did
not show significantly more proboscis extensions at the plane of the
head than satiated bees.

30:70 compound odour

wilcox.test(..., paired=FALSE, correct=FALSE, alternative="less")

Wilcoxon rank sum test

W = 3, p-value = 0.2085

Result: p > .05 for the 30:70 compound odour, hungry bees did
not show significantly more proboscis extensions at the plane of the
head than satiated bees.

Punished odour (0:100)

wilcox.test(..., paired=FALSE, correct=FALSE, alternative="less")

Wilcoxon rank sum test

W = 19, p-value = 0.1045

Result: p > .05 for the punished odour, hungry bees did not show
significantly more proboscis extensions at the plane of the head than
satiated bees.
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PER Training Data Sheets

B.1 First Experiment

Figure B.1: Data sheet used for the first experiment.
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B.2 Second Experiment

Figure B.2: Data sheet used for the second experiment.
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melanogaster larvae make nutritional choices that minimize developmental

time. Journal of Insect Physiology, 81:69–80, 2015.

Roitman, J. D. and Shadlen, M. N. Response of neurons in the lateral intra-

parietal area during a combined visual discrimination reaction time task.

The Journal of Neuroscience, 22(21):9475–9489, 2002.

Rolls, E. T., Grabenhorst, F., and Deco, G. Choice, difficulty, and confidence

in the brain. Neuroimage, 53(2):694–706, 2010.

Roubieu, F. L., Serres, J., Franceschini, N., Ruffier, F., and Viollet, S. A fully-

autonomous hovercraft inspired by bees: wall following and speed control

in straight and tapered corridors. In Robotics and Biomimetics (ROBIO),

2012 IEEE International Conference on, pages 1311–1318. IEEE, 2012.

Roussel, E., Sandoz, J.-C., and Giurfa, M. Searching for learning-dependent

changes in the antennal lobe: simultaneous recording of neural activity and

203



Appendix

aversive olfactory learning in honeybees. Frontiers in Behavioral Neuros-

cience, 4, 2010.

Rowe, J. B., Hughes, L., and Nimmo-Smith, I. Action selection: a race model

for selected and non-selected actions distinguishes the contribution of pre-

motor and prefrontal areas. Neuroimage, 51(2):888–896, 2010.

Ruffier, F., Viollet, S., Amic, S., and Franceschini, N. Bio-inspired optical

flow circuits for the visual guidance of micro air vehicles. In Circuits and

Systems, 2003. ISCAS’03. Proceedings of the 2003 International Symposium

on, volume 3, pages III–846. IEEE, 2003.

Rybak, J. The digital honey bee brain atlas. In Honeybee Neurobiology and

Behavior, pages 125–140. Springer, 2012.

Rybak, J., Kuß, A., Lamecker, H., Zachow, S., Hege, H.-C., Lienhard, M.,

Singer, J., Neubert, K., and Menzel, R. The digital bee brain: integrating

and managing neurons in a common 3D reference system. Frontiers in

Systems Neuroscience, 4, 2010.

Sandoz, J., Galizia, C. G., and Menzel, R. Side-specific olfactory conditioning

leads to more specific odor representation between sides but not within sides

in the honeybee antennal lobes. Neuroscience, 120(4):1137–1148, 2003.

Sandoz, J.-C. Olfaction in honey bees: from molecules to behavior. In Hon-

eybee Neurobiology and Behavior, pages 235–252. Springer, 2012.

Scheiner, R. Responsiveness to sucrose and habituation of the proboscis ex-

tension response in honey bees. Journal of Comparative Physiology A, 190

(9):727–733, 2004.

Scheiner, R., Erber, J., and Page Jr, R. Tactile learning and the individual

evaluation of the reward in honey bees (Apis mellifera L.). Journal of Com-

parative Physiology A, 185(1):1–10, 1999.

204



Appendix

Scheiner, R., Barnert, M., and Erber, J. Variation in water and sucrose re-

sponsiveness during the foraging season affects proboscis extension learning

in honey bees. Apidologie, 34(1):67–72, 2003.

Scheiner, R., Page, R. E., and Erber, J. Sucrose responsiveness and behavioral

plasticity in honey bees (Apis mellifera). Apidologie, 35(2):133–142, 2004.

Schmuker, M. and Schneider, G. Processing and classification of chemical

data inspired by insect olfaction. Proceedings of the National Academy of

Sciences, 104(51):20285–20289, 2007.

Schoofs, A., Hückesfeld, S., Schlegel, P., Miroschnikow, A., Peters, M., Zey-

mer, M., Spieβ, R., Chiang, A.-S., and Pankratz, M. J. Selection of motor

programs for suppressing food intake and inducing locomotion in the Dro-

sophila brain. PLoS Biology, 12(6):e1001893, 2014.
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