
Macquarie University

Department of Statistics

Log quantile differences and the

temporal aggregation of

alpha-stable moving average

processes

Adrian Walter Barker

Submitted for fulfilment of the requirement for the degree of Doctor of Philosophy

(Statistics)

July 2015

Supervisor: Dr. Nino Kordzakhia



Contents

Contents ii

List of Tables vi

List of Figures xii

Abstract xiv

Declaration xvi

Acknowledgement xvii

Notation and Acronyms xviii

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Estimation of realised volatility from infinite variance intraday log returns . 8

1.3 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Log quantile difference of the temporal aggregation of stable moving av-

erage processes 16

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Calculation of the log quantile difference . . . . . . . . . . . . . . . . . . . . 17

2.3 Invertible SMA(1) and SMA(2) processes . . . . . . . . . . . . . . . . . . . 21

3 Estimation of the parameters of a stable moving average process 30

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

ii



CONTENTS iii

3.2 Quantile estimation from a stable moving average process . . . . . . . . . . 33

3.3 Quantile-based estimation of stable distribution parameters from a stable

moving average process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4 Evaluation of the asymptotic standard deviation of the maximum likelihood

estimator of the stable distribution parameters . . . . . . . . . . . . . . . . 41

3.5 Optimal choice of quantile levels, pM , for stable distribution parameter esti-

mation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.6 Estimation of the autocorrelation function of a stable moving average process 59

3.7 The Q-Statistic for a stable moving average process . . . . . . . . . . . . . . 63

3.8 An alternative method for the order identification of a stable moving average

process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.9 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4 Estimation of the log quantile difference of the temporal aggregation an

SMA(q) process 79

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.2 Estimation of the stable distribution parameters of the temporal aggregation

of an SMA(q) process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.3 Parametric estimation of the log quantile difference of the temporal aggrega-

tion of an SMA(q) process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.4 Effect of the correlation between ω̂(1) and θ̂ on the asymptotic variance of

the parametric log quantile difference estimator ζ̃
(r)

p . . . . . . . . . . . . . 88

4.5 Non-parametric estimation of the log quantile difference of the temporal ag-

gregation of an SMA(q) process . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.6 Relative asymptotic effi ciency of non-parametric and parametric log quantile

difference estimators of an SMA(q) process. . . . . . . . . . . . . . . . . . . 93

4.7 Analytic estimation of the log quantile difference of the temporal aggregation

of an SMA(q) process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.8 Joint asymptotic distribution of α̂ and ζ̂
(1)

p . . . . . . . . . . . . . . . . . . . 101

4.9 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5 Measurement of realised volatility using log quantile differences 111



CONTENTS iv

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.2 Estimation of realised volatility in a stable stochastic volatility model . . . 117

5.3 Estimation of log quantile difference processes in the presence of measurement

error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.4 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6 Application 130

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.2 Data cleaning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.3 Estimation of SSV model parameters . . . . . . . . . . . . . . . . . . . . . . 133

6.4 Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7 Conclusion 151

A Proofs 153

A.1 Proof of Theorem 2.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

A.2 Proof of Theorem 4.2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

A.3 Proof of Theorem 4.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

A.4 Proof of Theorem 4.7.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

A.5 Proof of Theorem 5.1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

A.6 Proof of Theorem 5.2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

A.7 Proof of Theorem 5.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

B Stochastic convergence 177

B.1 Modes of convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

B.2 Convergence theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

C Time series 180

C.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

C.2 Summation of autoregressive moving average processes . . . . . . . . . . . . 183

C.3 Self-weighted least absolute deviation estimation . . . . . . . . . . . . . . . 184

C.4 Generalised method of moments estimation . . . . . . . . . . . . . . . . . . 187



CONTENTS v

D Quantile estimation 191

D.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

E Stable distributions 193

E.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

Bibliography 197



List of Tables

2.3.1 Categorisation of the sub-regions of the invertibility region of the sma(2)

process into positive, zero, negative and mixed sub-regions with respect to

the sign of gα(θ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.2 Categorisation of the sub-region borders of the invertibility region of the

sma(2) process into positive, zero and negative borders with respect to the

sign of gα(θ). We use (a,b) to denote the border between sub-regions a and b. 24

3.4.1 Evaluation of the Fisher information matrix integrals for a symmetric stable

distribution, β = 0. For clarity, we write I44 = Iδδ, I33 = Iγγ , I11 = Iαα and

I12 = Iαγ . Values in () are from Table 6 of Matsui and Takemura (2006). . 46

3.4.2 Evaluation of the asymptotic standard deviations, σα and σβ, for selected

values of α and β. Values in () are from Nolan (2001). . . . . . . . . . . . . 48

3.4.3 Evaluation of the asymptotic standard deviations, σγ and σδ, for selected

values of α and β. Values in () are from Nolan (2001). . . . . . . . . . . . . 49

3.5.1 Optimal values of pM1 and pM2 for the the estimation of α and β from an iid

process where α takes selected values and β = 0.0. Asymptotic variances of

the optimal estimators are denoted by Vα;pM and Vβ;pM respectively. Asymp-

totic effi ciencies relative to ml estimators are calculated for (i) the optimal

value of pM and (ii) the standard value of pM = (0.05, 0.25, 0.50, 0.75, 0.95). 52

3.5.2 Optimal values of pM1 and pM2 for the the estimation of α and β from an iid

process where α takes selected values and β = 0.5. Asymptotic variances of

the optimal estimators are denoted by Vα;pM and Vβ;pM respectively. Asymp-

totic effi ciencies relative to ml estimators are calculated for (i) the optimal

value of pM and (ii) the standard value of pM = (0.05, 0.25, 0.50, 0.75, 0.95). 53

vi



LIST OF TABLES vii

3.5.3 Optimal values of pM1 and pM2 for the the estimation of α and β from an

sma(1) process where α takes selected values and β = 0, θ1 = 0.4. Asymp-

totic variances of the estimators are calculated for (i) the optimal value of

pM and (ii) the standard value of pM = (0.05, 0.25, 0.50, 0.75, 0.95). . . . . . 55

3.5.4 Asymptotic variances Vα;pM and Vβ:pM for α = 1.4 and β = 0 at selected

values of pM1 and pM2 . The standard quantile levels provide good estimates

for both α and β. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.5.5 Asymptotic variances Vα;pM and Vβ:pM for α = 1.8 and β = 0 at selected

values of pM1 and pM2 . The standard quantile levels provide poor estimates

for both α and β. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.5.6 Optimal values of pM subject to (3.5.11) - (3.5.13) which minimise the as-

ymptotic variance of αpM from an iid process where β = 0.5. Relative as-

ymptotic effi ciencies to ml estimators are included for (i) optimal pM subject

to (3.5.11) - (3.5.13), (ii) optimal pM subject to (3.5.3) - (3.5.6) and (iii) the

standard quantile levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.5.7 Optimal values of pM2 which minimise the asymptotic variance of γ̂pM where

α is known, β is known to be zero and the sample is iid. . . . . . . . . . . . 58

3.6.1 Percentage of ρ (1) estimates from 10,000 realisations of iid stable processes

which lie outside the interval [BASY
ρ̂1

(n, 2.5;α, β), BASY
ρ̂1

(n, 97.5;α, β)]. . . . . 61

3.6.2 Estimated values of Bρ̂1(n, 2.5;α, β) and Bρ̂1(n, 97.5;α, β) where n = 720.

Values were estimated from simulations consisting of 100,000 realisations of

iid stable processes for each pair (α, β). . . . . . . . . . . . . . . . . . . . . 62

3.7.1 Estimated values of BQs(n, 95;α, β) where n = 720 and s = 20. Values were

estimated from simulations consisting of 100,000 realisations of iid stable

processes for each pair (α, β). . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.8.1 Order identification of various sma(1) processes from a sample of length 720.

Reported in this table are the percentage of correct identifications, PC and

the percentage of Type L misidentifications, PL, in ( ). Identification is

conducted using the ICauchy interval and the IFinite interval where (a1, a2)

is (i) (4.0%, 96.0%), (ii) (2.5%, 97.5%), (iii) (1.5%, 98.5%), (iv) (1.0%, 99.0%)

and (v) (0.5%, 99.5%), . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68



LIST OF TABLES viii

3.8.2 Order identification of various sma(2) processes from a sample of length 720.

Reported in this table are the percentage of correct identifications, PC , and

the percentage of Type L misidentifications, PL, in ( ). Identification is

conducted using the ICauchy interval and the IFinite interval where (a1, a2) is

(1.0%, 99.0%). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.9.1 Simulation results for the estimation of α from selected sma(1) processes.

Reported in this table for each process are (i) the mean and standard devi-

ation, in ( ), of α̂ across all realisations and (ii) the variance of α̂ across all

realisations multiplied by the sample size T and the true asymptotic variance,

in [ ]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.9.2 Simulation results for the estimation of β from selected sma(1) processes.

Reported in this table for each process are (i) the mean and standard devi-

ation, in ( ), of β̂ across all realisations and (ii) the variance of β̂ across all

realisations multiplied by the sample size T and the true asymptotic variance,

in [ ]. Note that β = βe for all processes reported in this table. . . . . . . . 74

3.9.3 Simulation results for the estimation of γ from selected sma(1) processes.

Reported in this table for each process are (i) the mean and standard devi-

ation, in ( ), of γ̂ across all realisations and (ii) the variance of γ̂ across all

realisations multiplied by the sample size T and the true asymptotic variance,

in [ ]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.9.4 Simulation results for the estimation of δ from selected sma(1) processes.

Reported in this table for each process are (i) the mean and standard devi-

ation, in ( ), of δ̂ across all realisations and (ii) the variance of δ̂ across all

realisations multiplied by the sample size T and the true asymptotic variance,

in [ ]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.9.5 Simulation results for the estimation of θ1 from selected sma(1) processes.

Reported in this table for each process are (i) the mean and standard devia-

tion, in ( ), of θ̂1 across all realisations and (ii) the variance of θ̂1 across all

realisations multiplied by the sample size T and the mean estimated asymp-

totic variance across all realisations, in [ ]. . . . . . . . . . . . . . . . . . . . 77



LIST OF TABLES ix

4.4.1 Estimates of RZS
ζ̃
(r)
p

for a selection of sma(1) processes at quantile level p =

(0.05, 0.95) and selected aggregation levels. . . . . . . . . . . . . . . . . . . 90

4.9.1 Parametric estimation of the log quantile difference ζ(r)
p for p = (0.05, 0.95)′

at selected aggregation levels from samples of selected sma(1) processes as-

suming that θ1 is known. Included in this table are (i) the mean and standard

deviation, in ( ), of the estimates across all realisations and (ii) the standard-

ised variance, i.e. the variance multiplied by the sample size T, across all

realisations and the asymptotic variance, in [ ]. . . . . . . . . . . . . . . . . 104

4.9.2 Parametric estimation of the log quantile difference ζ(r)
p for p = (0.05, 0.95)′

at selected aggregation levels from samples of selected sma(1) processes where

θ1 needs to be estimated. Included in this table are (i) the mean and standard

deviation, in ( ), of the estimates across all realisations and (ii) the standard-

ised variance, i.e. the variance multiplied by the sample size T, across all

realisations and the estimated asymptotic variance, in [ ]. . . . . . . . . . . 106

4.9.3 Simulation results for the non-parametric ζ̂
(1)

p and parametric ζ̃
(1)

p log quantile

difference estimators at p = (0.05, 0.95)′ from samples of selected sma(1)

processes. Included in this table are (i) the mean and standard deviation, in

( ), of the estimates across all realisations and (ii) the standardised variance

and the asymptotic variance, in [ ]. . . . . . . . . . . . . . . . . . . . . . . . 107

4.9.4 Simulation results for the non-parametric ζ̂
(1)

p and parametric ζ̃
(1)

p log quantile

difference estimators at p = (0.10, 0.90)′ from samples of selected sma(1)

processes. Included in this table are (i) the mean and standard deviation, in

( ), of the estimates across all realisations and (ii) the standardised variance

and the asymptotic variance, in [ ]. . . . . . . . . . . . . . . . . . . . . . . . 108

4.9.5 Simulation results for the non-parametric ζ̂
(1)

p and parametric ζ̃
(1)

p log quantile

difference estimators at p = (0.20, 0.80)′ from samples of selected sma(1)

processes. Included in this table are (i) the mean and standard deviation, in

( ), of the estimates across all realisations and (ii) the standardised variance

and the asymptotic variance, in [ ]. . . . . . . . . . . . . . . . . . . . . . . . 110



LIST OF TABLES x

5.4.1 Simulation results for the cml estimators of the log quantile difference process

parameters µ, φ1 and ψ1. Included in this table are (i) the mean and stan-

dard deviation, in ( ), of the estimates across all realisations and (ii) the

standardised variance and the asymptotic variance, in [ ]. . . . . . . . . . 128

5.4.2 Simulation results for the measurement error σ2
w and the cml estimator of the

log quantile difference process parameter σ2
u. Included in this table are (i) the

true asymptotic measurement error, (ii) the mean and standard deviation, in

( ), of the estimates across all realisations and (iii) the standardised variance

and the asymptotic variance, in [ ]. . . . . . . . . . . . . . . . . . . . . . . 129

6.3.1 Estimates for α, θ1 and the measurement error variance σ2
w from the asx200

index intraday log return data between Jan 2009 and Dec 2010 at selected

return interval lengths, ∆t. Estimates for α and σ2
w were calculated using

quantile-based stable distribution parameter estimators at each of the quan-

tile levels (i) pMA
, (ii) pMB

and (iii) pMC
. Estimates for σ2

w were calculated

for ζ
(Tr)
p at p = (0.25, 0.75). Standard errors of estimates are in ( ). . . . . . 137

6.3.2 Parameters of the arma(1, 1), ssvmodel on asx200 index intraday log return

data between Jan 2009 and Dec 2010. The arma(1, 1)ssv model parameter

estimates were calculated using lqd estimators calculated from stable distri-

bution parameter estimators calculated using quantile levels pMA
. Standard

errors of parameters estimates are in ( ). . . . . . . . . . . . . . . . . . . . . 139

6.3.3 Parameters of the ar(1), ssvmodel on asx200 index intraday log return data

between Jan 2009 and Dec 2010. The ar(1)ssv model parameter estimates

were calculated using lqd estimators calculated from stable distribution pa-

rameter estimators calculated using quantile levels pMA
. Standard errors of

parameters estimates are in ( ). . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.4.1 Test results for the null hypothesis, H1 at significance level a = 0.95 based

on the asymptotic variance using quantile levels pMA
and pMB

. The null

hypothesis is rejected if. Z1 > R1(a). . . . . . . . . . . . . . . . . . . . . . 144

6.4.2 Test results for the null hypothesis, H1 at significance level a = 0.95 based on

the standardised small sample variance using quantile levels pMA
and pMB

.

The null hypothesis is rejected if. Z1 > R1;T (a). . . . . . . . . . . . . . . . 145



LIST OF TABLES xi

6.4.3 Test results for the null hypothesis, H2 at significance level a = 0.95. The

null hypothesis is rejected if. Z2 > R2(a). . . . . . . . . . . . . . . . . . . . 146

6.4.4 Q statistic test results at significance level a = 0.95. Listed in this table

is the percentage of days on which (i) the null hypothesis of independence

of the intraday log return process was rejected, (ii) the null hypothesis of

independence of the residuals of sma(1) model using θ1 was rejected and (iii)

the null hypothesis of independence of the residuals of sma(1) model using

θ̂1 was rejected. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.4.5 Test results for the moving average order, q, of the intraday log return

processes based on the extended Adler test. . . . . . . . . . . . . . . . . . . 149



List of Figures

2.3.1 The five sub-regions of the invertibility region of the sma(2) process. . . . . 23

2.3.2 A graphical display of the categorisation of the invertibility region of the

sma(2) process with respect to the sign of gα(θ) into positive (blue), zero

(green) and negative (red) regions for (a) 0 < α < 1.0, (b) α = 1.0, (c) α =

1.5 and (d) α = 2.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.3 Plots of the log quantile difference values at quantile levels p = (0.50, 0.95)

of an aggregated symmetric sma(2) process for various values of α with pa-

rameters in each of the sub-regions of the invertibility region. For sub-region

1 (θ1,θ2) = (-1.4,0.6), sub-region 2 (θ1,θ2) = (-0.5,0.2), sub-region 3 (θ1,θ2)

= (0.2,0.9), sub-region 4 (θ1,θ2) = (-0.2,-0.4) and sub-region 5 (θ1,θ2) =

(0.7,-0.2). The dotted lines are at a slope of 1/α. . . . . . . . . . . . . . . . 27

3.3.1 Estimates for (a)
∂α̂

∂ξ̂0.95

where α = 1.5 and β = 0.3 and (b)
∂β̂

∂ξ̂0.50

where

α = 1.7 and β = 0.0. The estimates for C = 400 are those indicated by a red

’*’. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5.1 Asymptotic variance Vα from an iid sample where α = 1.2 and β = 0.0. In

(a) pM2 is fixed at 0.308. In (b) pM1 is fixed at 0.041. . . . . . . . . . . . . . 54

3.9.1 Estimated correlation of the ω̂ and θ̂1 estimators from selected symmetric

sma(1) processes: (a) between α̂ and θ̂1, (b) between β̂ and θ̂1, (c) between

γ̂ and θ̂1 and (d) between δ̂ and θ̂1. . . . . . . . . . . . . . . . . . . . . . . . 78

xii



LIST OF FIGURES xiii

4.2.1 A graphical display of the categorisation of the invertibility region of the

sma(2) process with respect to the sign of C4(κ) into positive (blue), zero

(green) and negative (red) regions for (a) α = 0.5, (b) α = 1.0, (c) α = 1.5

and (d) α = 2.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.6.1 Relative asymptotic effi ciency of the parametric versus the non-parametric

log quantile difference estimators for selected sma(1) processes at quantile

level p = (0.05, 0.95). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.6.2 Relative asymptotic effi ciency of parametric versus non-parametric log quan-

tile difference estimators for p = (p1, 1− p1). . . . . . . . . . . . . . . . . . . 94

4.6.3 Comparison of relative asymptotic effi ciency of log quantile difference esti-

mators ζ̃
(1)

p and ζ̈
(1)
p for p = (p1, 1− p1). . . . . . . . . . . . . . . . . . . . . 95

4.8.1 Asymptotic correlation between α̂ and ζ̂
(1)

p for (a) p = (0.05, 0.95) and (b)

p = (0.50, 0.95) where {Xt} is a symmetric sma(1) process with moving

average parameter θ1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.9.1 Estimated correlation of the ζ̂
(1)

p and θ̂1 estimators from selected symmetric

sma(1) processes: (a) for p = (0.05, 0.95) and (b) for p = (0.50, 0.95). . . . . 109

6.1.1 Daily closing price of asx200 index from 2 Jan 2009 to 31 Dec 2010. . . . . 131

6.1.2 Intraday returns over 30 second intervals of asx200 index on 21 Jan 2009. . 131

6.3.1 Box plots of estimates for α̂d calculated using quantile levels pMA
. . . . . . 138

6.3.2 Box plots of estimates for θ̂d;1. . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.3.3 Estimates of arma(1, 1) ssv model parameters and their standard errors: (a)

µ̂, (b) φ̂1, (c) ψ̂1 and (d) σ̂
2
u, . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.3.4 Estimates of ar(1) ssv model parameters and their standard errors: (a) µ̂,

(b) φ̂1 and (c) σ̂
2
u, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.4.1 Plots of the empirical lqd estimator of the distribution of the intraday log

returns as a function of the time of day. The lqd estimators are calculated at

quantile level p = (0.25, 0.75) and return interval lengths (a) ∆t = 120(sec)

and (b) ∆t = 180(sec). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

A.3.1A plot of the quantiles of the stable distribution (a), (b) as a function of α

where β = 0 and (c), (d) as a function of β where α = 1.5. . . . . . . . . . . 166



Abstract

The modelling of the time-varying volatility of financial market asset log returns has at-

tracted considerable interest from researchers and market participants. Prominent amongst

these models are the generalized autoregressive conditional heteroskedastic (garch) mod-

els and the stochastic volatility (sv) models. Generally, such models use the conditional

variance as the measure of dispersion. This thesis advocates for the use of the log quantile

difference (lqd) as an alternative measure of dispersion where the variance of the intraday

log returns does not exist.

Use of the lqd rather than the variance can present analytical and computational chal-

lenges. In this thesis we show that the impact can be mitigated by assuming that the log

returns are from an alpha-stable moving average (sma) process. The formulae derived for

the lqd of the temporal aggregation of an sma process allow the lqd shape to be examined

as a function of aggregation level.

Asymptotically normal estimators are proposed for the lqd of the temporal aggregation

of an sma process, which require asymptotically normal estimators of the sma process. The

quantile-based stable distribution parameter estimators of McCulloch (1986) are adapted

for use from an sma process rather than an independent process. Traditionally such estima-

tors have been calculated at the standard quantile levels originally proposed by McCulloch

(1986). In this thesis, the quantile levels are identified which optimise estimators from a

selection of sma processes. We find that in many cases these optimised quantile-based esti-

mators significantly outperform the quantile-based estimators using the standard quantile

levels. Improved evaluations of the maximum likelihood estimator asymptotics are made to

calculate the relative asymptotic effi ciency of the optimal quantile-based estimators. Meth-

ods for order identification of an sma process are developed and studied.

An extension to the sv model is proposed, which we call the stable stochastic volatility

xiv
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(ssv) model, where the conditional distribution of the daily log returns is alpha-stable.

Estimation of the ssv model parameters is done utilising the lqd estimators of the temporal

aggregation of the intraday log return process together with an allowance for measurement

error.

The methods proposed in this thesis are illustrated in an empirical study carried out on

asx200 index data from 2009 and 2010. A similar study was carried out by the author on

the same data in Barker (2014).
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Chapter 1

Introduction

1.1 Background

The modelling of financial market data has been the subject of a large amount of research

over many decades. The attraction of such research is easy to understand, given the volume

and value of daily financial market transactions modelling and the potential benefit should

one be able to create an advantage over other market participants through a superior model.

A frequently observed characteristic of financial market data is that of volatility clustering,

(Pagan (1996), Cont (2001) and Zumbach (2011)). Volatility clustering occurs when high

or low volatility trading days cluster together. This can be described quantitatively as the

presence of a high positive autocorrelation in the volatility time series. Volatility clustering

lies in stark contrast to the general absence of autocorrelation in the actual asset returns,

(Cont (2001)). The presence of volatility clustering provides opportunities for using a range

of models in its modelling and forecasting.

A simple example of the use of volatility forecasts can be found in options trading. The

buyer of a call option pays a premium for the right but not obligation to buy an asset at a

fixed price at some pre-determined time in the future regardless of the asset price at that

time. A trader who judges that the price of an asset is likely to increase enough to cover the

cost of the premium, may consider buying a call option to be profitable. Trading in options,

rather than the asset itself, can increase the trader’s leverage in the market. Similarly, the

buyer of a put option pays a premium for the right but not obligation to sell an asset at

a fixed price at some time in the future. Buying a put and call option of the same asset

1
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creates a position called the long straddle. The long straddle is profitable if the asset price

moves up or down by a large amount, i.e. has high volatility and is unprofitable if the

asset price remains steady, i.e. has low volatility. Thus an ability to forecast volatility may

assist a trader to calculate the value of a long straddle position and determine whether the

current market price is under-valued or over-valued.

A popular type of stochastic volatility model are variations of the autoregressive con-

ditional heteroscedastic (arch) and generalised autoregressive conditional heteroscedastic

(garch) models. The arch model was first proposed by Engle (1982) and extended to

become garch models by Bollerslev (1986). Let Pt denote the price of an asset at time t

and define the log return of the asset by

Xt = ln (Pt/Pt−1) . (1.1.1)

The conditional variance of the log return, σ2
t , is given by

σ2
t = var [Xt | Ft−1] (1.1.2)

where Ft−1 is the collection of all information available at time t− 1.

Definition 1.1.1 (Generalised Autoregressive Conditional Heteroscedastic Model).

A garch(p, q) model is defined by the following equations

Xt = σtεt (1.1.3)

σ2
t = α0 +

p∑
i=1

αiX
2
t−i +

q∑
j=1

βjσ
2
t−j (1.1.4)

where {εt} is a sequence of independent, identically distributed ( iid) N (0, 1) random vari-

ables and α0 > 0, αi, βj ≥ 0 are constants which serve as the model parameters.

That garch models exhibit volatility clustering is clear from (1.1.4) . Large values for

X2
t−i and σ

2
t−j will generate a large value for σ

2
t and make it likely that Xt will also have a

large absolute value. Conversely small values for X2
t−i and σ

2
t−j make it likely that Xt will

also have a small absolute value. The garch models also exhibit the heavy tails commonly

seen in financial markets and there is no autocorrelation in the log returns {Xt} . Estimation

of the garch model parameters can be achieved through maximisation of the log likelihood

function, (e.g. Xekalaki and Degiannakis (2010)).
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Despite having the attractive properties discussed above, various limitations of the

garch model have led to a plethora of garch model variants. The exponential garch

(or egarch) model (Nelson (1991)) allows asymmetry in the formula for the conditional

variance σ2
t , which otherwise depends only on the absolute value of Xt−i and σt−j , not the

sign. The integrated garch (or igarch) model (Engle and Bollerslev (1986)) allows for

shocks to the conditional variance σ2
t to persist indefinitely rather than decay asymptoti-

cally. The relationship between the garch and igarchmodels is analogous to that between

the autoregressive moving average (arma) and autoregressive integrated moving average

(arima) models. The heterogeneous arch (or harch) model (Müller et al. (1997)) allows

the conditional variance σ2
t to be affected differently by past conditional variances evaluated

over different time intervals. Descriptions of these and other garch model variants can be

found in Xekalaki and Degiannakis (2010).

An alternative to the garch models is the stochastic volatility (sv) model, sometimes

referred to as autoregressive variance (arv) model. These models were first proposed in

Taylor (1982) and Taylor (1986) (Section 3.5).

Definition 1.1.2 (Stochastic Volatility Model). The sv model is defined by the fol-

lowing equations

Xt = σtεt (1.1.5)

lnσt = µ+
k∑
j=1

φj lnσt−j + vt, (1.1.6)

where {εt} is a sequence of iid N (0, 1) random variables, {vt} are a sequence of iid

N
(
0, σ2

v

)
random variables, and {εt} , {vt} are assumed to be independent of each other.

If the parameters φj are chosen so that (1.1.6) has a positive autocorrelation function

at low lag values, then volatility clustering is a property of the sv models. The kurtosis of

Xt was shown (Taylor (1986) ) to be

kurtosis [Xt] = 3 exp
(
4σ2

v

)
. (1.1.7)

Thus the distribution of Xt always has a heavier tail than the normal distribution however,

unlike garch models, the fourth moment of Xt always exists. Popular estimation meth-

ods for sv models include quasi maximum likelihood (qml) (Harvey et al. (1994) see also
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Anderson and Sorensen (1997)) and generalised method of moments (gmm) (Melino and

Turnbull (1990) and Anderson and Sorensen (1996)).

The garch and sv models described above include only the daily log returns as ob-

servational data. The availability of high-frequency intraday prices offers the potential to

develop alternate models for the volatility of financial market asset returns. High-frequency

finance is the analysis of financial market data gathered over short time intervals, often

trade by trade, either for its own purposes or for possible inferences about the behaviour

of financial markets over longer time intervals, (Dacorogna et al. (2001), Tsay (2010) and

Hautsch (2012)).

An important concept in high-frequency finance is that of temporal aggregation. The

temporal aggregation of the stochastic process {Xt} is generally defined as the weighted

sum of past and current process values, (Silvestrini and Veredas (2008)). The importance of

temporal aggregation is in its role in examining the relationship between models indexed on

time intervals of different lengths. Such relationships may allow inference on high frequency

data from models derived from low frequency data and vice versa. In this thesis, we consider

only a special case of temporal aggregation, sometimes referred to as flow aggregation, where

all the weights equal one.

Definition 1.1.3 (Temporal Aggregation). The temporal aggregation of the stochastic

process {Xt} at aggregation level r, is defined by

S
(r)
t =

r−1∑
i=0

Xt−i. (1.1.8)

We may refer to {Xt} as the base process and
{
S

(r)
t

}
as the aggregated process. A non-

overlapping aggregated process is one where each element of the base process contributes to

only one element of the aggregated process

S(r)
τ =

r−1∑
i=0

Xrτ−i. (1.1.9)

Important early work on the temporal aggregation of ar processes was done by Amemiya

and Wu (1972). They showed that the temporal aggregation of a non-overlapping ar(p)

process is an arma(p, q) process where p ≤ q. In addition, they compared the perfor-

mance of predictors for the aggregated process derived from aggregated process data with
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those derived from base process data. This work was continued by Tiao (1972) where it

was shown that the predictors were asymptotically equivalent for large aggregation levels

unless the base process is non-stationary. The temporal aggregation of non-overlapping

arma(p, q) processes was shown by Brewer (1973) to converge at large aggregation levels to

an arma(p, p+ 1) process if q > p or an arma(p, p) process if q ≤ p. Temporal aggregation

of arima processes was considered by Weiss (1984) and Stram and Wei (1986), of vector

arma (or varma) processes by Lütkepohl (1986), of vector arima (or varima) processes

by Marcellino (1999) and of autoregressive fractionally integrated moving average (arfima)

processes by Tsai and Chan (2005).

Research on temporal aggregation has also been extended to include volatility processes.

In Drost and Nijman (1993), three classes of the garch model are defined: strong, semi-

strong and weak. These classes differ in the requirements for independence of the inno-

vation process {εt} in (1.1.3) . Strong garch models have an iid innovation process {εt} .

All weak garch models are semi-strong garch models, all semi-strong garch models

are strong garch models. It was shown that symmetric weak garch models, but not

strong nor semi-strong garch models, are closed under temporal aggregation. In Meddahi

and Renault (2005), the square-root stochastic autoregressive volatility (sr-sarv) class of

volatility models was defined as an extension of the class of weak garch models. The class

of sr-sarv models includes sv models. They show that non-overlapping sr-sarv models

are closed under temporal aggregation.

After the logarithmic transformations, the base and aggregated lognormal ar processes

are related by a type of "non-linear temporal aggregation", (Salazar and Fereira (2011)).

The logarithm of a lognormal ar process is a Gaussian ar process. However, the logarithm

of the temporal aggregation of a lognormal ar process is not a Gaussian process, though

empirically it may appear very similar. A moment-matching method is proposed by Salazar

and Fereira (2011), for approximating the aggregated process by a lognormal ar process.

A unified framework is proposed by Sbrana and Silvestrini (2013) for modelling both the

temporal aggregation and contemporaneous aggregation of financial asset returns based on

integrated moving average (ima) processes. Contemporaneous aggregation is the weighted

sum of different stochastic processes at the same points in time.

Where the base process {Xt} is the log return of a financial asset, the aggregated process
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S

(r)
t

}
is particularly useful, since the sum of adjacent log returns is equal to the log return

over the union of the intervals

S
(r)
t =

r−1∑
i=0

Xt−i =

r−1∑
i=0

ln (Pt−i/Pt−i−1) = ln (Pt/Pt−r) . (1.1.10)

Therefore if we can derive properties of the aggregated process from the properties of the

base process, then we may be able to use the aggregated process properties to provide

estimates for the low frequency volatility.

One method for the estimation of low frequency volatility from high-frequency returns

is through the use of realised volatility, R(r)
t , given by

R
(r)
t =

r−1∑
i=0

X2
t−i. (1.1.11)

If the base process {Xt} is an iid process with zero mean and finite variance, then the

expected value of R(r)
t is equal to the variance of the aggregated process

{
S

(r)
t

}
. Cross-

product terms may be added to (1.1.11) , if the assumption that {Xt} is an iid process is

relaxed to allow {Xt} to be an ma process. Realised volatility was used in French et al.

(1987) to estimate the volatility of monthly returns from daily returns and by Anderson

et al. (2001a) and Anderson et al. (2001b) to estimate the volatility of daily returns from

intraday returns. However, the assumption that the distribution of the high frequency

returns has a finite variance is still a contentious topic in financial markets research.

The finite variance hypothesis for financial market returns dates back to the Brownian

motion model of Bachelier (1900) and later by Osborne (1959) and others. This model

implies a Gaussian distribution for financial market log returns. However, the empirical

evidence analysed in Mandelbrot (1963) and Fama (1965) suggested that the distribution of

financial market log returns had heavier tails than the Gaussian and that a non-Gaussian

stable distribution with infinite variance would be more appropriate, (see Appendix E for

the definition and some properties of stable distributions). In subsequent years, many

empirical studies have been conducted and other distributions have been proposed, (e.g.

Teichmoeller (1971), Fielitz and Smith (1972), Blattberg and Gonedes (1974), Fielitz and

Rozelle (1983), Barndorff-Nielsen (1997) and Grabchak and Samorodnitsky (2010)).

Whilst it is generally accepted that the Gaussian distribution is too light-tailed for most

financial market returns, whether or not non-Gaussian stable distributions are too heavy-
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tailed remains unclear. Measurement of the heaviness of the tail of a distribution is often

performed using the tail index.

Definition 1.1.4 (Tail Index) Let Ru denote the class of regularly varying functions at

infinity with index u, that is the class of positive functions g such that

lim
t→∞

g (tx)

g (t)
= xu (1.1.12)

for all x > 0. The tail index v of a distribution function F is the value such that 1−F ∈ R−v.

A simple example is the Pareto distribution where

F (x) = 1− x−v, x ≥ 1 (1.1.13)

which has a tail index equal to v. For such distributions, all moments greater than or equal

to the tail index are infinite. The tail index of a non-Gaussian stable distribution equals the

stability parameter and of a t distribution equals the degrees of freedom parameter. See

Rachev and Mittnik (2000) - Section 3.6, for a discussion on tail index estimation.

Several studies have reported that the tail index of financial market returns appears to

increase with aggregation level (e.g. Akgiray and Booth (1988) and Dacorogna et al. (2001)

- Section 5.4). If the base process {Xt} is an iid stable process, then the tail index should

be constant across all aggregation levels. To quote E. Schwartz in the foreward of Rachev

and Mittnik (2000),

"This observation actually implies that returns are not independent, and / or

not identically distributed, and / or not stable, but it does not automatically

rule out that stable processes may underlie generating models."

The models considered in this thesis do not allow for a change in the tail index with

aggregation level. The empirical study included in this thesis is not conclusive on the

assertion that the tail index does not change with aggregation level, but does provide some

evidence to suggest that the intraday log returns are not identically distributed.

If the conditional distribution of financial market returns does not have a finite variance,

then the expected value of the realised volatility, as defined in (1.1.11) , does not exist. In

this thesis, we consider an alternative definition of realised volatility based on quantiles,

the expected value of which can exist where the conditional distribution of financial market

returns does not have a finite variance.
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1.2 Estimation of realised volatility from infinite variance in-

traday log returns

For infinite variance distributions, an alternative to the variance as a measure of dispersion

is the log quantile difference (lqd).

Definition 1.2.1 (Log Quantile Diff erence). Let {Xt} be a stationary process. Let ξpj
denote the pthj quantile of {Xt} . Define the log quantile difference of {Xt} at quantile levels

p = (p1, p2) to be

ζp = ln
(
ξp2 − ξp1

)
(1.2.1)

where 0 < p1 < p2 < 1. We take the logarithm in (1.2.1) , in order that this measure of

dispersion takes values over the entire real line.

The lqd has a number of advantages over the variance as a measure of dispersion. The

lqd is finite for all stable distributions, whereas only the Gaussian stable distribution has a

finite variance. The log quantile difference provides multiple measures of volatility for each

distribution, through the choice of p, whereas the variance provides only a single measure.

The lqd is a more robust measure than the variance, (see for example Wilcox (2005)).

Use of the lqd as a measure of volatility is closely related to the use of value at risk

(VaR) as a measure of market risk. Market risk is the risk to a financial asset due to

an unexpected movement in the asset’s price. The VaR is defined as the maximum loss

suffered by a financial asset over a given time period which is not exceeded with a given

probability. Thus, forecasts from models of the lqd of a financial asset can be used to

estimate the VaR of the asset. See Chapter 7 of Tsay (2010) and included references for

more information on VaR.

The main advantage of the variance over the lqd is that the calculations are much

simpler. More specifically, for any two independent random variables with finite variance,

the sum of the variances is equal to the variance of the sum. The same result is not true in

general for lqds. Inequality relations between the quantiles of some iid random variables

and the quantiles of their sum are provided in Watson and Gordon (1986), (see also Liu

and David (1989)). The author is not aware of any general equality relations between the

quantiles of iid random variables and the quantiles of their sum.
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Many of the calculation diffi culties related to the use of lqds can be overcome if we

assume that the intraday log returns follow a stable moving average (sma) process. The

use of sma processes also allows for more realistic modelling where intraday log returns are

not iid.

Definition 1.2.2 (Stable Moving Average Process). The process {Xt} is called a

stable moving average process of order q, sma(q), if it follows the model equation

Xt =

q∑
j=0

θjet−j (1.2.2)

where θ0 = 1 and {et} is an iid sequence of stable random variables such that

et ∼ S0
α (βe, γe, δe) (1.2.3)

using the S0 parameterisation of stable distributions proposed in Nolan (1998). See (E.1.3)

for the characteristic function of the S0 parameterisation.

The stability parameter α determines the heaviness of the tails of the distribution,

with special cases at α = 1 (Cauchy) and α = 2 (Gaussian). The parameters βe, γe and

δe respectively determine the skewness, scale and location of the distribution. A stable

random variable has a finite variance only if α = 2 and has a finite mean only if α ≥ 1.

One of the useful properties of stable distributions is that linear combinations of stable

random variables with stability parameter α are also stable random variables with stability

parameter α. Thus

Xt ∼ S0
α

(
β(1), γ(1), δ(1)

)
(1.2.4)

and

S
(r)
t ∼ S0

α

(
β(r), γ(r), δ(r)

)
(1.2.5)

are stable random variables and have the same stability parameter α as et. Note that the

temporal aggregation
{
S

(r)
t

}
of the sma process {Xt} is also a sma process with the same

innovation sequence {et} . Formulae for the stable distribution parameters of Xt and S
(r)
t

are provided in Chapter 2.

These properties of stable distributions allow analytic formula to be derived for the lqd

of S(r)
t in terms of the parameters of some sma processes {Xt} . Let ζ(r)

p denote the lqd
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of the temporal aggregation
{
S

(r)
t

}
of the sma(q) process {Xt} . In the simple case where

q = 0, i.e. {Xt} is an iid process, it can be shown that

ζ(r)
p = α−1 ln r + ζ(1)

p . (1.2.6)

More general formulae for ζ(r)
p where q 6= 0 are provided in Chapter 2.

Under the assumption that the intraday log returns are from an sma process, we can

use the formulae in Chapter 2 to calculate an estimate of ζ(r)
p provided we have estimates

for the sma process parameters. Asymptotically normal estimators for θj , j = 0, . . . , q can

be calculated using the self-weighted least absolute deviation (slad) method described in

Zhu and Ling (2012). However, the estimation of stable distribution parameters from an

sma process requires a new method developed in this thesis.

A number of methods have been proposed for the estimation of the parameters of a

stable distribution. Quantile-based methods were proposed by Fama and Roll (1971) and

McCulloch (1986). Methods based on the sample characteristic function were proposed by

Press (1972), Paulson et al. (1975) and Kogon and Williams (1998). Maximum likelihood

estimation methods were investigated in Brorsen and Yang (1990) and Nolan (2001). The

methods listed above all assume that estimation is from an independent sample. In this

thesis, we show how to adapt the quantile-based stable distribution parameter estimators of

McCulloch (1986) to construct asymptotically normal estimators of the stable distribution

parameters from an sma process.

Quantile-based stable distribution parameter estimators have traditionally used quantile

estimators at the standard quantile levels proposed by McCulloch (1986). However, no

reason was provided by McCulloch to explain why those quantile levels should be used in

preference to any of an infinite selection of possible alternatives. In this thesis, we attempt

to identify the optimal choice of quantile levels for use in quantile-based stable distribution

parameter estimation from a range of sma processes. We find that estimators for α and

β(1) generated using the standard quantile levels are reasonably effi cient from a range of

different sma processes, but are far from optimal in many cases. For example, estimators

for α generated using the standard quantile levels from a symmetric iid process are quite

poor where α lies outside the range [0.8, 1.6] . In addition, we find that the optimal choice

of quantile levels for estimating α do not necessarily produce good estimates of β(1) and

vice versa.
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The relative asymptotic effi ciency was calculated of the optimal quantile-based stable

distribution parameter estimators compared with the maximum likelihood estimators. No

analytic formula is available for the asymptotic variance of the maximum likelihood es-

timators, but instead can be calculated through numerical approximations of the Fisher

information matrix integral. Evaluations of the asymptotic variance of the maximum like-

lihood estimators have been published in DuMouchel (1975), Nolan (2001) and Matsui and

Takemura (2006). However, these values are not always consistent and in some cases would

mean that the optimal quantile-based estimator is more effi cient than the maximum like-

lihood estimator. Evaluations in Nolan (2001) were found to have insuffi ciently accounted

for the contribution of the tail of the Fisher information matrix integral. We propose a

new method for evaluating the tails of the Fisher information matrix integral using the

asymptotic properties of the stable distribution and use this method to evaluate a new set

of approximations for the asymptotic variance of the maximum likelihood estimators. Using

these evaluations, we find that the relative asymptotic effi ciency of the optimal quantile-

based estimator compared to the maximum likelihood estimator is between 70% and 85%

for many values of α and β(1).

Standard methods for order identification and goodness of fit testing available in fi-

nite variance time series analysis are not necessarily appropriate for sma processes. How-

ever, some methods involving the sample autocorrelation function can be adapted for sma

processes since, somewhat surprisingly, the autocorrelation function is well-defined for an

sma process even though the autocovariance function may be infinite. The asymptotic dis-

tribution of the sample autocorrelation function was derived in Davis and Resnick (1986).

Unfortunately convergence to the asymptotic distribution for the sample autocorrelation

function is very slow, hence the asymptotic distribution does not provide accurate signifi-

cance levels for any autocorrelation function based statistical tests. For order identification

of sma processes, it was suggested to use significance levels calculated from the sample

acf asymptotic distribution of the Cauchy distribution for all sma processes, (Adler et al.

(1998)). Whilst this suggestion performs well for sma(1) processes where the value of θ1 is

close to one, it performs poorly for sma(1) processes where the value of θ1 is close to zero.

In this thesis, we propose the use of significance levels calculated from simulations of the

same size as the sample. We show that these significance levels produce similar results to
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those in Adler et al. (1998) for sma(1) processes where the value of θ1 is close to one and

much better results for sma(1) processes where the value of θ1 is close to zero. A similar

approach is adopted for a Q-statistic test of the independence of sma process residuals.

That intraday log returns follow an sma process is inconsistent with the sv model for

daily returns which assume a conditionally normal distribution. To address this, we propose

an extension to the sv model, which we call the stable stochastic volatility (ssv) model.

Definition 1.2.3 (Stable Stochastic Volatility Model). The ssv model is defined by

the following equations

Xd ∼ Γdεd (1.2.7)

ln Γd = µ+

k∑
j=1

φj ln Γd−j + vd +

m∑
j=1

ψjvd−j (1.2.8)

where {εd} is a sequence of iid S0
α (0, 1, 0) random variables, {vd} are a sequence of iid

N
(
0, σ2

v

)
random variables. It is assumed that {εd} and {vd} are independent sequences.

Equations (1.2.7) and (1.2.8) in the ssv model are analogous to equations (1.1.5) and

(1.1.6) of the sv model. In the ssv model, we allow {ln Γd} to be an arma(k,m) process,

rather than the pure autoregressive process included in the sv model. Note that if α = 2

and m = 0, then the sv and ssv models are identical. Recent work on sv models with

non-Gaussian conditional distributions can be found in Gander and Stephens (2007) and

its references. For more information on alpha-stable risk modelling in general, see Peters

and Shevchenko (2015).

Let {Xd;t} denote the intraday log returns indexed over day d and time t. We assume

that {Xd;t} follows the sma process

Xd;t = ed;t + θ1ed;t−1 (1.2.9)

where for each day d, the innovarions {ed;t} is an iid sequence of random variables

ed;t ∼ S0
α (0, γd, 0) . (1.2.10)

All parameters of the intraday log return processes are assumed constant except for the

innovations scale parameter, γd, which is stochastic from day to day. If the intraday log

returns are an sma process, then the daily log return, being the temporal aggregation of
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the intraday log returns, also has a stable distribution with Γd as the scale parameter, (see

Section 2.2). Thus the scale parameter Γd is a function of the parameters of the day’s

intraday log return process parameters and so constant within that day, but stochastic

from day to day, and so can be estimated each day from that day’s intraday log return

data. These estimates for Γd can then be used as data for the estimation of the ssv model

parameters in (1.2.8) . Note that the lqd of the temporal aggregation of the intraday log

return process and ln Γd differ only by a constant. Note also that the gmm and qmlmethods

for estimation of the sv model do not translate directly to the ssv model.

1.3 Thesis outline

In Chapter 2, formulae are provided for the stable distribution parameters of the temporal

aggregation of an sma process. Given the parameters of a stable distribution, the log

quantile differences can always be calculated numerically however, for some types of sma

processes we have derived formulae for the log quantile differences of the aggregated process.

For these sma processes, the shape of the log quantile difference as a function of aggregation

level is shown to be independent of quantile level. In Section 2.3, the classes of invertible

sma(1) and sma(2) processes are examined in more detail.

In Chapter 3, we derive a method for estimating the parameters of an sma process. In

Sections 3.2 and 3.3, we adapt the quantile-based estimators of McCulloch (1986), to allow

for samples from an sma process and show how to calculate the asymptotic distribution of

these estimators. A new method for the evaluation of the asymptotic distribution of maxi-

mum likelihood stable distribution parameter estimators is proposed in Section 3.4. These

asymptotic variances are used to calculate the relative asymptotic effi ciency of the optimal

quantile-based estimators identified in Section 3.5. Simulation results for the quantile-based

estimation of stable distribution parameters from an sma process are presented in Section

3.9.

In Section 3.6, background information is provided on the asymptotic distribution of the

sample acf from an sma process. Simulations are used to demonstrate the slow convergence

of the sample acf to its asymptotic distribution as well as to provide estimates of quantiles of

the sample acf distribution at realistic sample sizes. In Section 3.7, simulations are used to

estimate the significance levels of small sample Q-statistic tests for residual independence.
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In Section 3.8, simulations are used to estimate the significance levels of small sample

order indentification tests of sma processes. Comparisons between the misidentification

percentages obtained using our simulated significance levels and the asymptotic Cauchy

significance levels used in Adler et al. (1998) are included in Tables 3.8.1 and 3.8.2.

In Chapter 4, we use the formulae provided in Chapter 2 and the estimators defined

in Chapter 3 to define the parametric estimator for the lqd of the temporal aggregation

of an sma process. Estimators for the stable distribution parameters of the temporal ag-

gregation of an sma process are defined in Section 4.2. Based on the estimators defined in

Section 4.2, estimators for the lqd of the temporal aggregation of an sma process, referred

to as parametric lqd estimators, are defined in Section 4.3. Formulae for the asymptotic

distribution of the parametric lqd estimators are derived in Section 4.3. The asymptotic

variance of the parametric lqd estimators is dependent on the asymptotic covariance be-

tween the stable distribution parameter estimators and the moving average parameter slad

estimators. Although no formulae are available for this asymptotic covariance, simulations

in Section 4.4 are used to show that the asymptotic covariance is fairly small and has little

effect on the asymptotic variance of parametric lqd estimators. In Section 4.5, an estimator

is defined for the lqd of an sma process, referred to as the non-parametric lqd estimator,

based on the empirical quantile estimates. In Section 4.6, we demonstrate how the choice

of quantile levels for the quantile-based stable distribution parameter estimators can effect

the relative asymptotic effi ciency of the parametric and non-parametric lqd estimators. In

Section 4.7, an estimator is defined for the lqd of the temporal aggregation of some types

of sma processes, referred to as the analytic lqd estimator. The analytic lqd estimator

is based on formulae derived in Chapter 2. In Section 4.8, we derive formulae for the joint

asymptotic distribution of the stability parameter estimator and the non-parametric lqd

estimator. Simulation results are presented in Section 4.9.

In Chapter 5, we examine in more detail, the estimation of realised volatility under the

assumptions of the ssv model. In Section 5.2. we adapt the more general lqd estima-

tors defined in Chapter 4 to define the mean symmetric parametric lqd estimator which

satisfies the assumptions of the ssv model. In Section 5.3, we define the corrected maxi-

mum likelihood (cml) method for estimating the parameters of the true, unobservable, lqd

process
{
ζ

(r)
d;p

}
from the estimated lqd process

{
ζ

(r)
d;p

}
and the measurement error variance



1. Introduction 15

estimates. Simulation results are presented in Section 5.4.

In Chapter 6 we apply the methods of this thesis to the asx200 index of the Australian

Stock Exchange (asx) in 2009 and 2010. A study of the same data was done in Barker

(2014), using slightly different methods and without any correction for measurement er-

ror. In Section 6.2, we describe the data cleaning tasks performed to deal with missing

data, frozen data and the discontinuities in sample return distributions near zero. The

base process data used for this analysis was the log returns over thirty second intervals.

Estimation of the realised volatility and ssv model parameters are reported in Section 6.3.

The results of some diagnostic tests are reported in Section 6.4. Proofs and additional

background information are given in the appendicies.



Chapter 2

Log quantile difference of the

temporal aggregation of stable

moving average processes

2.1 Introduction

Let {Xt} be the stable moving average process (Definition 1.2.2) of order q, sma(q),

Xt =

q∑
j=0

θjet−j (2.1.1)

where θ0 = 1 and {et} is an iid sequence of stable random variables such that

et ∼ S0
α (βe, γe, δe) (2.1.2)

using the S0 parameterisation of stable random variables in Nolan (1998). Let θ denote the

q + 1 dimensional vector of moving average parameters

θ = (θ0, . . . , θq)
′ . (2.1.3)

Let
{
S

(r)
t

}
denote the temporal aggregation (Definition 1.1.3) of {Xt} at aggregation level

r

S
(r)
t =

r−1∑
i=0

Xt−i. (2.1.4)

Note that

S
(1)
t = Xt. (2.1.5)

16
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Let ξ(r)
pj denote the pjth quantile of

{
S

(r)
t

}
and ζ(r)

p the log quantile difference (Definition

1.2.1) of
{
S

(r)
t

}
at quantile levels p = (p1, p2)′

ζ(r)
p = ln

(∣∣∣ξ(r)
p2 − ξ

(r)
p1

∣∣∣) . (2.1.6)

Similarly, let ξpj denote the pjth quantile of {et} and ζp the log quantile difference of {et} at

quantile levels p = (p1, p2)′ .

In this chapter formulae are derived for the stable distribution parameters of
{
S

(r)
t

}
. An

analytic formula is derived for ζ(r)
p which is applicable to some sma(q) processes. For these

sma(q) processes, the shape of the log quantile difference as a function of the aggregation

level is examined and shown to be dependent on the parameters of the moving average

process but not the quantile levels. Invertible sma(1) and sma(2) processes are examined

in more detail.

2.2 Calculation of the log quantile difference

In this section, we show, under certain conditions on the stable moving average process

{Xt} , that

ζ(r)
p = α−1 ln

(
r

∣∣∣∣∣
q∑
i=0

θi

∣∣∣∣∣
α

+ gα (θ)

)
+ ζp (2.2.1)

where

gα (θ) =

q−1∑
i=0

∣∣∣∣∣∣
i∑

j=0

θj

∣∣∣∣∣∣
α

− q
∣∣∣∣∣
q∑
i=0

θi

∣∣∣∣∣
α

+

q∑
i=1

∣∣∣∣∣∣
q∑
j=i

θj

∣∣∣∣∣∣
α . (2.2.2)

We start with a general result which applies to all sma(q) processes.

Theorem 2.2.1 The distribution of the aggregated process
{
S

(r)
t

}
is given by

S
(r)
t ∼ S0

α

(
β(r), γ(r), δ(r)

)
(2.2.3)

where

β(r) =

∑r+q−1
j=0 sign

(
c

(r)
j

) ∣∣∣c(r)
j

∣∣∣α∑r+q−1
j=0

∣∣∣c(r)
j

∣∣∣α βe, (2.2.4)

γ(r) =

r+q−1∑
j=0

∣∣∣c(r)
j

∣∣∣α
1/α

γe, (2.2.5)
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if α 6= 1

δ(r) =

r+q−1∑
j=0

c
(r)
j

 δe + (2.2.6)

tan (πα/2)

[
β(r)γ(r) − βeγe

(
r+q−1∑
i=0

sign
(
c

(r)
j

) ∣∣∣c(r)
j

∣∣∣)]
if α = 1

δ(r) =

r+q−1∑
j=0

c
(r)
j

 δe + (2.2.7)

2

π

[
β(r)γ(r) ln γ(r) − βeγe

(
r+q−1∑
i=0

sign
(
c

(r)
j

) ∣∣∣c(r)
j

∣∣∣ ln(∣∣∣c(r)
j

∣∣∣ γe)
)]

and

c
(r)
j =

min(j,q)∑
k=max(j−r+1,0)

θk. (2.2.8)

Proof. From the definition of the base process {Xt} and the aggregated process
{
S

(r)
t

}
,

we have

S
(r)
t =

r−1∑
i=0

Xt−i

=

r−1∑
i=0

q∑
j=0

θjet−i−j

=

r+q−1∑
j=0

c
(r)
j et−j (2.2.9)

where c(r)
j is given by (2.2.8). Thus S(r)

t is a linear combination of iid stable random

variables. An application of parts a) and c) of Lemma E.1.1 proves the theorem.

Whilst Theorem 2.2.1 provides formulae for the stable distribution parameters of the

aggregated process, in general it is not possible to derive from these a formula for the log

quantile difference of the aggregated process. However, such a formula can be derived under

certain conditions on the base process.

Theorem 2.2.2 If the stable distribution skewness parameters of the innovations {et} and

the aggregated process
{
S

(r)
t

}
are equal, that is

β(r) = βe (2.2.10)
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where β(r) is given by (2.2.4) , then the log quantile difference ζ(r)
p is given by

ζ(r)
p = ln

(
γ(r)/γe

)
+ ζp. (2.2.11)

Proof. From Theorem 2.2.1, we have that the aggregated process,
{
S

(r)
t

}
, has a stable

distribution given by

S
(r)
t ∼ S0

α

(
β(r), γ(r), δ(r)

)
(2.2.12)

where β(r), γ(r) and δ(r) are as shown in (2.2.4) , (2.2.5) and (2.2.6) or (2.2.7). If β(r) = βe,

then
{
S

(r)
t

}
is a scale and location transformation of the innovations {et} . Thus

S
(r)
t − δ(r)

γ(r)
∼ et − δe

γe
(2.2.13)

and Lemma E.1.2 gives (2.2.12) .

The requirement of Theorem 2.2.2 that β(r) = βe is satisfied if either

βe = 0 (2.2.14)

or

c
(r)
j ≥ 0 for j = 0, . . . , r + q − 1 (2.2.15)

Note that

c
(r)
0 = 1 for all r. (2.2.16)

The following corollary to Theorem 2.2.2 holds at all aggregation levels.

Corollary 2.2.1 If βe = 0 or θk ≥ 0 for k = 0, . . . , q then

ζ(r)
p = ln

(
γ(r)/γ(1)

)
+ ζ(1)

p . (2.2.17)

for any r = 1, 2, . . . .

For r ≥ q we can slightly relax the assumptions of Corollary 2.2.1 to obtain the following

result.

Corollary 2.2.2 If β = 0 or

i∑
j=0

θj ≥ 0 for i = 0, . . . , q − 1 and
q∑
j=i

θj ≥ 0 for i = 1, . . . , q (2.2.18)

then for any r ≥ q the log quantile difference ζ(r)
p is given by the formula in (2.2.1).



2. Log quantile difference of the temporal aggregation of stable moving
average processes 20

Proof. For any r ≥ q, the condition (2.2.18) is suffi cient for all the c(r)
j terms to be

non-negative. Note that
∑q

j=1 θj ≥ 0 implies that
∑q

j=0 θj > 0. Substitution of the formula

for γ(r) in (2.2.5) into (2.2.11) yields (2.2.1) .

The simple nature of (2.2.1) as a function of the aggregation level r, allows the derivation

of some interesting results regarding the properties of ζ(r)
p .

Although for our purposes the formula for ζ(r)
p in (2.2.1) is only valid for integer values

of r ≥ q, nonetheless it is a function of r which is well defined for all real positive values of

r. Formally we can take partial derivatives of ζ(r)
p with respect to ln r, to get for r ≥ q

∂

∂ ln r
ζ(r)
p = α−1 r |

∑q
i=0 θi|

α

r |
∑q

i=0 θi|
α

+ gα (θ)
(2.2.19)

and
∂2

(∂ ln r)2 ζ
(r)
p = α−1 r |

∑q
i=0 θi|

α
gα (θ)(

r |
∑q

i=0 θi|
α

+ gα (θ)
)2 (2.2.20)

and draw conclusions on the shape of ζ(r)
p as a function of ln r.

Corollary 2.2.3 If the assumptions of Corollary 2.2.2 hold then

lim
r→∞

∂

∂ ln r
ζ(r)
p = α−1. (2.2.21)

For r ≥ q,

sign
(

∂2

(∂ ln r)2 ζ
(r)
p

)
= sign (gα (θ)) (2.2.22)

and therefore

if gα (θ) > 0 then ζ(r)
p is convex in ln r,

if gα (θ) = 0 then ζ(r)
p is linear in ln r,

if gα (θ) < 0 then ζ(r)
p is concave in ln r.

(2.2.23)

Remark 2.2.1 The derivatives in (2.2.19) and (2.2.20) and therefore the results of Corol-

lary 2.2.3 do not depend on p for all r ≥ q and all α.

Remark 2.2.2 A general formula for the characteristic function of the temporal aggrega-

tion of a moving average process is derived in McKenzie (1988). This formula can be used

in an alternative proof of Theorem 2.2.1.
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Remark 2.2.3 The function gα (θ) is finite and does not depend on the aggregation level

r. Thus for large r we can approximate (2.2.1) to get

ζ(r)
p ≈ α−1 ln r + ln

(∣∣∣∣∣
q∑
i=0

θi

∣∣∣∣∣
)

+ ζp (2.2.24)

which describes a linear relationship between ζ(r)
p and ln r.

Remark 2.2.4 If β(r) 6= βe, .then (2.2.13) in the proof of Theorem 2.2.2 does not hold.

General equality relations for the quantiles of sums of random variables in terms of the

quantiles of the summands are diffi cult to achieve. (Watson and Gordon (1986), Liu and

David (1989))

Remark 2.2.5 In the special case where the base process {Xt} is iid, we have

β(r) = βe, (2.2.25)

γ(r) = r1/αγe, (2.2.26)

δ(r) =

 rδe + tan (πα/2)βeγe
(
r1/α − r

)
if α 6= 1

rδe +
2

π
βeγer ln r if α = 1

(2.2.27)

and the expression for ζ(r)
p in (2.2.1) reduces to

ζ(r)
p = α−1 ln r + ζp

= α−1 ln r + ln γ + ζ∗p. (2.2.28)

where ζ∗p is the log quantile difference of S
0
α (βe, 1, 0) at quantile level p. Note that the

expressions for δ(r) in (2.2.27) are different from those derived in Section 2.2 of Chan et al.

(2008) which the author believes to be in error.

Remark 2.2.6 Using the results of Lemma E.1.2, it can seen that ζ(r)
p does not depend on

δe.

2.3 Invertible SMA(1) and SMA(2) processes

In order to improve our understanding of the results in Section 2.2, in this section we

explore further their application to the classes of invertible sma(1) and sma(2) processes.
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More specifically, we identify sub-regions within the invertibility region of the sma(1) and

sma(2) process where gα (θ) is either positive, zero or negative for various values of α.

An invertible sma(q) process is one where all the roots of the moving average polynomial

(Definition C.1.8)

1 + θ1z + · · ·+ θqz
q = 0 (2.3.1)

lie outside the complex unit circle, |z| > 1. The subset of Rq comprising the invertible

parameters of an sma(q) process is referred to as the invertibility region. The invertibility

region of the sma(1) process is the set

{θ1 : |θ1| < 1} . (2.3.2)

The invertibility region of the sma(2) process is the set

{(θ1, θ2) : θ2 < 1 and θ1 + θ2 > −1 and θ1 − θ2 < 1} . (2.3.3)

Expressions for the invertibility region of higher order sma(q) processes can be found in

Wise (1956).

To assist with this analysis we divide the invertibility region of the sma(2) process into

five sub-regions as shown in Figure 2.3.1. These sub-regions are defined as open sets, so

that the entire invertibility region consists of the union of the five sub-regions, the borders

between them and the origin. The inequalities defining these sub-regions are listed in

(2.3.4) .

Sub-Region 1 {(θ1, θ2) : θ1 < −1 and θ2 < 1 and θ1 + θ2 > −1}

Sub-Region 2 {(θ1, θ2) : θ1 > −1 and θ2 > 0 and θ1 + θ2 < 0}

Sub-Region 3 {(θ1, θ2) : θ2 > 0 and θ2 < 1 and θ1 + θ2 > 0 and θ1 − θ2 < 1}

Sub-Region 4 {(θ1, θ2) : θ2 < 0 and − 1 < θ1 + θ2 < 0 and θ1 − θ2 < 1}

Sub-Region 5 {(θ1, θ2) : θ2 < 0 and θ1 + θ2 > 0 and θ1 − θ2 < 1}

(2.3.4)

This analysis of sma(2) processes encompasses an analysis of sma(1) processes and

iid stable processes. The invertibility region of the sma(1) process consists of the border

between sub-regions 2 and 4, the border between sub-regions 3 and 5 and the origin. The

invertibility region of the iid stable process is located at the origin.
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Figure 2.3.1: The five sub-regions of the invertibility region of the sma(2) process.

Remark 2.3.1 For an invertible sma(2) process, the set of values of (θ1, θ2) which satisfy

(2.2.18) in Corollary 2.2.2 consists of sub-region 3 and its borders with sub-regions 2 and 5.

A sub-region is said to be positive, zero or negative for a given α if gα (θ) is respectively

positive, zero or negative for all points in the sub-region. A sub-region is said to be mixed

for a given α if there exist some points in the sub-region for which gα (θ) is positive and other

points for which gα (θ) is negative. Similar descriptions are used to describe the borders

between the sub-regions.

Theorem 2.3.1 The categorisation of the sub-regions of the invertibility region of the

sma(2) process according to the values of gα (θ) in the sub-region is listed in Table 2.3.1.

The categorisation of the sub-regions of the invertibility region of the sma(2) process accord-

ing to the values of gα (θ) in the sub-region is listed in Table 2.3.1. At the origin, gα (θ) = 0

for all α.

Proof. See Appendix A.1.

Corollary 2.3.1 For an invertible sma(1) process , the function gα (θ) satisfies the follow-
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Sub-Region 0 < α < 1 α = 1 1 < α ≤ 2

Positive All 1,2,4 and 5 1 and 4

Zero None 3 None

Negative None None 3

Mixed None None 2 and 5

Table 2.3.1: Categorisation of the sub-regions of the invertibility region of the sma(2)

process into positive, zero, negative and mixed sub-regions with respect to the sign of

gα(θ).

Border 0 < α < 1 α = 1 1 < α ≤ 2

Positive All (1,2), (2,4) and (4,5) (1,2), (2,4) and (4,5)

Zero None (2,3) and (3,5) None

Negative None None (2,3) and (3,5)

Table 2.3.2: Categorisation of the sub-region borders of the invertibility region of the sma(2)

process into positive, zero and negative borders with respect to the sign of gα(θ). We use

(a,b) to denote the border between sub-regions a and b.
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ing relations

gα (θ) is


> 0 if θ1 < 0 or θ1 > 0 and α < 1

= 0 if θ1 = 0 or θ1 > 0 and α = 1

< 0 if θ1 > 0 and α > 1

. (2.3.5)

Proof. This corollary follows immediately from the results in Theorem 2.3.1 for the

origin and for the borders between sub-regions (2, 4) and (3, 5).

It is perhaps helpful to see the results of Theorem 2.3.1 in graphical form as provided

in Figure 2.3.2. Figure 2.3.2(a) is applicable to gα (θ) for any α ∈ (0, 1) . Whilst Figures

2.3.2(c) and 2.3.2(d) appear similar, the locations of the respective green lines, i.e. the sets

Dα = {θ : gα (θ) = 0} (2.3.6)

are not the same.

Remark 2.3.2 For an sma(2) process it is straightforward to show that

D2 = {θ : θ1 + 2θ2 + θ1θ2 = 0} . (2.3.7)

For α ∈ (1, 2) ,closed form expressions for Dα have not been obtained except to note that Dα

contains the points θ = (1, 0, 0)′ and θ = (1,−1, 1)′ .Strictly θ = (1,−1, 1)′ is on the border

of but not in the invertibility region.

To illustrate the behaviour of ζ(r)
p where θ lie in different sub-regions of the invertibility

region, we present plots of ζ(r)
p for p = (0.50, 0.95)′ , β = 0 and various combinations of α, θ1

and θ2 in Figure 2.3.3. The dotted parallel lines in Figure 2.3.3 have a slope 1/α.

As shown in Corollary 2.2.3, for each choice of α, θ in Figure 2.3.3, it can be seen that

the plot of ζ(r)
p against ln r is concave, linear or convex wherever gα (θ) is negative, zero or

positive and that the sign of gα (θ) agrees with the results in Table 2.3.1. In all cases the

derivative ∂ζ(r)
p /∂ ln r approaches 1/α with increasing r.

The convergence of the derivative ∂ζ(r)
p /∂ ln r to 1/α can be much slower in the positive

sub-regions than in the negative sub-regions. The example shown in Figure 2.3.3(d) for α =

2 and sub-region 1, still has a derivative ∂ζ(r)
p /∂ ln r much less than 1/α at an aggregation

level of exp (3.8) ≈ 45.

To conclude this chapter, we show that two different invertible sma(2) processes can

have the same log quantile differences at all aggregation levels and all quantile levels, i.e.

the log quantile difference does not necessarily identify an sma(2) process.
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Figure 2.3.2: A graphical display of the categorisation of the invertibility region of the

sma(2) process with respect to the sign of gα(θ) into positive (blue), zero (green) and

negative (red) regions for (a) 0 < α < 1.0, (b) α = 1.0, (c) α = 1.5 and (d) α = 2.0.
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Figure 2.3.3: Plots of the log quantile difference values at quantile levels p = (0.50, 0.95) of

an aggregated symmetric sma(2) process for various values of α with parameters in each of

the sub-regions of the invertibility region. For sub-region 1 (θ1,θ2) = (-1.4,0.6), sub-region

2 (θ1,θ2) = (-0.5,0.2), sub-region 3 (θ1,θ2) = (0.2,0.9), sub-region 4 (θ1,θ2) = (-0.2,-0.4) and

sub-region 5 (θ1,θ2) = (0.7,-0.2). The dotted lines are at a slope of 1/α.
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Theorem 2.3.2 Let {Xt} be the sma(2) process

Xt = et + θ1et−1 + θ2et−2 (2.3.8)

where

et ∼ S0
α (0, γe, δe) . (2.3.9)

If {Xt} is invertible and its parameters satisfy

θ1 < 0 and θ1 − θ2 6= 1, (2.3.10)

then there exists an invertible sma(2) process, {Yt} , given by

Yt = ut + ψ1ut−1 + ψ2ut−2 (2.3.11)

and

ut ∼ S0
α (0, γ, δ) (2.3.12)

which has the same log quantile differences as {Xt} for all aggregation levels r ≥ 2 and all

quantile levels and where

θ1 6= ψ1 and θ2 6= ψ2. (2.3.13)

Proof. This theorem is proved by demonstration, choosing

ψ1 = −1 + θ2 and ψ2 = 1 + θ1. (2.3.14)

We note that if θ1 − θ2 6= 1, then θ1 6= ψ1 and θ2 6= ψ2.

For {Yt} to be invertible, the parameters ψ1, ψ2 need to satisfy the inequalities in (2.3.3) .

By assumption θ1 < 0 and therefore

ψ2 = 1 + θ1 < 1. (2.3.15)

The process {Xt} is assumed invertible and therefore

ψ1 + ψ2 = θ1 + θ2 > −1. (2.3.16)

Further θ2 < 1 and θ1 > −2, therefore

ψ2 − ψ1 = θ2 − θ1 − 2

< −θ1 − 1

< 1 (2.3.17)
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and consequently {Yt} is invertible.

Since {Xt} and {Yt} both satisfy (2.2.18) it follows from Corollary 2.2.2 that for r ≥ 2

ζ
(r)
X;p = α−1 ln (r |1 + θ1 + θ2|α + gα (θ1, θ2)) + ζp, (2.3.18)

ζ
(r)
Y ;p = α−1 ln (r |1 + ψ1 + ψ2|α + gα (ψ1, ψ2)) + ζp (2.3.19)

where ζ(r)
X;p, ζ

(r)
Y ;p are the log quantile differences of {Xt} and {Yt} respectively at aggregation

level r and quantile levels p1 and p2. Note that ζp is the log quantile difference of both {et}

and {ut} at quantile level p. Since

gα (θ) = 1 + |1 + θ1|α − 2 |1 + θ1 + θ2|α + |θ1 + θ2|α + |θ2|α

= 1 + |ψ2|α − 2 |1 + ψ1 + ψ2|α + |ψ1 + ψ2|α + |1 + ψ1|α

= gα (ψ) , (2.3.20)

it follows that

ζ
(r)
X;p = ζ

(r)
Y ;p (2.3.21)

and the theorem is proved.



Chapter 3

Estimation of the parameters of a

stable moving average process

3.1 Introduction

Let {Xt} be the sma(q) process (Definition 1.2.2),

Xt =

q∑
j=0

θjet−j (3.1.1)

where θ0 = 1 and {et} is an iid sequence of stable random variables such that

et ∼ S0
α (βe, γe, δe) (3.1.2)

using the S0 parameterisation of stable random variables in Nolan (1998). Let θ denote the

q + 1 dimensional vector of moving average parameters

θ = (θ0, . . . , θq)
′ . (3.1.3)

In Theorem 2.2.1 it was shown that

Xt ∼ S0
α

(
β(1), γ(1), δ(1)

)
(3.1.4)

and formulae for β(1), γ(1) and δ(1) were provided. For brevity, in this chapter, we drop the

"(1)" superscripts from the stable distribution parameter symbols in 3.1.4 and instead say

that

Xt ∼ S0
α (β, γ, δ) (3.1.5)

30



3. Estimation of the parameters of a stable moving average process 31

Let

ω = (α, β, γ, δ)′ (3.1.6)

denote the vector of stable distribution parameters of Xt. In this chapter we construct a

method for the asymptotically normal estimation of the parameters ω from an sma process.

A number of methods have been proposed for the estimation of the parameters of a stable

distribution. A method based on sample quantiles was proposed by Fama and Roll (1971)

which was simple to implement, but was only applicable to symmetric stable distributions

with α ≥ 1 and contained a bias. This method was extended by McCulloch (1986) to cover

asymmetric stable distributions and is asymptotically unbiased. A more recent discussion

on the related use of indirect inference for the estimation of stable distributions is included

in Garcia et al. (2011). Methods based on the sample characteristic function were proposed

by Press (1972), Paulson et al. (1975) and Kogon and Williams (1998). Maximum likelihood

estimation methods were investigated in Brorsen and Yang (1990) and Nolan (2001). The

methods listed above assume an independent sample is available. In this thesis, we require

a method which can be used to estimate stable distribution parameters from a dependent

sample, more specifically a sample from an sma process.

In Section 3.2, we provide the asymptotic distribution of empirical quantile estimators

from an sma process based on results from Sen (1972). In Section 3.3 we show how to

use these quantile estimators to adapt the quantile-based stable distribution parameter

estimators of McCulloch (1986) to construct asymptotically normal estimators of the stable

distribution parameters from an sma process.

The quantile-based stable distribution parameter estimators have traditionally used

quantile estimators at the standard quantile levels proposed by McCulloch (1986). In Sec-

tion 3.5, we show that more effi cient quantile-based stable distribution parameter estimators

can be constructed from quantile estimators at other quantile levels. The optimal choice of

quantile levels is shown to be dependent on the stable distribution parameters. The relative

asymptotic effi ciency of these optimal quantile-based stable distribution parameter estima-

tors is calculated against the maximum likelihood stable distribution parameter estimators.

A new method for the evaluation of the asymptotic distribution of maximum likelihood

stable distribution parameter estimators is proposed in Section 3.4.

Many of the standard methods available for the estimation of finite variance arma
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processes, such as Gaussian maximum likelihood, least squares, Yule-Walker and Hannan-

Risannen etc, are not valid for the estimation of infinite variance arma processes. Alterna-

tive methods have been proposed by several authors, but the estimators from many of these

methods have complicated asymptotic distributions which makes them very diffi cult to use.

(Hannan and Kanter (1977), Davis et al. (1992), Mikosch et al. (1995) and Davis (1996)).

A self-weighted least absolute deviation (slad) estimator was proposed by Ling (2005) for

infinite variance autoregressive processes and was shown to have an asymptotically normal

distribution. The slad estimator was extended to cover infinite variance arma processes in

Pan et al. (2007). The asymptotic properties of the global slad estimator were established

by Zhu and Ling (2012) and it is the global slad estimator, hereafter referred to simply

as the slad estimator, which is used for the estimation of θ from sma processes through-

out this thesis. Some of the theory behind slad estimators is included in Appendix C.3,

together with a discussion on the various configuration choices which were made for this

thesis. Note that selection of a weight function for the slad estimator ration requires either

knowledge or an estimate of the stable distribution parameter α.

Standard methods for order identification and goodness of fit testing available in fi-

nite variance time series analysis are not necessarily appropriate for sma processes. How-

ever, some methods involving the sample autocorrelation function can be adapted for sma

processes since, somewhat surprisingly, the autocorrelation function is well-defined for an

sma process, even though the autocovariance function may be infinite. The asymptotic dis-

tribution of the sample autocorrelation function was derived by Davis and Resnick (1986).

Details are provided in Section 3.6. Unfortunately convergence to the asymptotic distribu-

tion for the sample autocorrelation function is very slow, hence the asymptotic distribution

does not provide accurate significance levels for any autocorrelation function based statisti-

cal tests. In Sections 3.7 and 3.8, we show how simulations can be used to provide accurate

significance levels for statistical tests which identify the order of an sma process and test

for the independence of residuals.

The results of simulations are reported in Section 3.9 which demonstrate the use of

the methods described in this chapter. We also investigate the correlation between the

estimators for ω and θ.
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3.2 Quantile estimation from a stable moving average process

For any real-valued random variable X on a probability space (Ω,A, P ) , there is an asso-

ciated distribution function F : R→ [0, 1] defined by

F (x) ≡ P (X ≤ x) , (3.2.1)

from which we can construct a quantile function Q : [0, 1]→ R defined by

Q (p) ≡ inf {x : F (x) ≥ p} (3.2.2)

and a density function f : R→ R+ defined by

F (x) ≡
∫ x

−∞
f (s) ds. (3.2.3)

Often, it is convenient to denote the pth quantile of a distribution function by

ξp ≡ Q (p) . (3.2.4)

Let {xj}nj=1 be a sample drawn from the distribution function F, then we define the

empirical distribution function and the empirical quantile estimator.

Definition 3.2.1 (Empirical Distribution Function). The empirical distribution func-

tion is given by

F̂n (x) =
1

n

n∑
j=1

I(−∞,x] (xj) . (3.2.5)

Definition 3.2.2 (Empirical Quantile Estimator). The empirical quantile estimator

is given by

ξ̂n;p = inf
{
x : F̂n (x) ≥ p

}
. (3.2.6)

Where convenient, we may use ξ̂p instead of ξ̂n;p to denote the empirical quantile estimator.

The asymptotic distribution of the empirical quantile estimator from an iid process is

well known, (Appendix D). The asymptotic distribution of the empirical quantile estimator,

where the sample is taken from a possibly non-stationary m-dependent process was derived

by Sen (1968). Further work in this area has been done by, amongst others: Dutta and Sen

(1971) on autoregressive processes, Sen (1972) on φ-mixing processes, Oberhofer and Haupt

(2005) on non-stationary processes and Dominicy et al. (2013) on S-mixing processes. In

this section we apply these earlier results to find the joint asymptotic distribution of multiple

empirical quantile estimators from a stable moving average process.
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Definition 3.2.3 (φ - mixing process). Let {Xt} be a stationary process defined on a

probability space {Ω,A, P} . Let Fn denote the σ - field generated by {Xt : t ≤ n} and Gn
denote the σ - field generated by {Xt : t ≥ n}. The φn measure of dependence between Fn
and Gn is given by

φn = sup {|P (B | A)− P (B)| : A ∈ F0, P (A) > 0, B ∈ Gn} . (3.2.7)

If

lim
n→∞

φn = 0, (3.2.8)

then the process {Xt} is said to be φ - mixing.

An sma(q) process is φ - mixing, since F0 and Gn are independent for all n > q and

therefore φn = 0 for all n > q. A general result for the asymptotic distribution of the

empirical quantile estimator from a φ - mixing process is given in Theorem 3.1 of Sen

(1972). We adapt that result in the following theorem for the specific case of an sma(q)

process.

Theorem 3.2.1 If {Xt} is an sma(q) process and p ∈ (0, 1) , then

√
n
(
ξ̂p − ξp

)
d−→ N (0, Vξ) (3.2.9)

where

Vξ =

∑q
h=−q

(
Gh
(
ξp
)
− p2

)
f2
(
ξp
) (3.2.10)

and

Gh (ξ) = P
({
Xt ≤ ξp

}
∩
{
Xt+h ≤ ξp

})
. (3.2.11)

Proof. An sma(q) process is a stationary φ - mixing process with a continuous density

function f at ξp satisfying
∞∑
n=1

φ1/2
n <∞ (3.2.12)

and

0 < f
(
ξp
)
<∞ (3.2.13)

and therefore we can apply Theorem 3.1 of Sen (1972) to prove this theorem. Note that for

an sma(q) process

Gh
(
ξp
)

= p2, ∀ |h| > q. (3.2.14)
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In Sen (1972), the results for empirical quantile estimators from scalar φ - mixing

processes are extended to cover multivariate φ - mixing processes. A general result for

the asymptotic distribution of the empirical quantile estimator from a multivariate φ -

mixing process is given in Theorem 6.5 of Sen (1972). We use that result in the follow-

ing theorem for the specific case of the joint asymptotic distribution of multiple empirical

quantile estimators from an sma(q) process.

Theorem 3.2.2 Let

ξ = (ξ1, . . . , ξk)
′ (3.2.15)

denote the vector of true quantiles of an sma(q) process {Xt} at the vector of quantile levels

p = (p1, . . . , pk)
′ (3.2.16)

where 0 < p1, . . . , pk < 1 and

ξ̂ =
(
ξ̂1, . . . , ξ̂k

)′
(3.2.17)

denote the corresponding vector of empirical quantiles. Then

√
n
(
ξ̂ − ξ

)
d−→ N (0, Vξ) (3.2.18)

where

Vξ = (vij) , (3.2.19)

vij =

∑q
h=−q

(
Gh
(
ξi, ξj

)
− pipj

)
f (ξi) f

(
ξj
) (3.2.20)

and

Gh
(
ξi, ξj

)
= P

(
{Xt ≤ ξi} ∩

{
Xt+h ≤ ξj

})
. (3.2.21)

Proof. Apply Theorem 6.5 of Sen (1972) to the process

Xt = (X1;t, . . . , Xk;t)
′ (3.2.22)

where Xi;t for i = 1, . . . , k are identical copies of the sma(q) process {Xt}.

In order to calculate the asymptotic variance, Vξ from (3.2.19), it is necessary to calculate

the joint probabilities, Gh
(
ξi, ξj

)
, for each |h| ≤ q. For h = 0, Gh

(
ξi, ξj

)
simplifies to

become

G0

(
ξi, ξj

)
= min (pi, pj) (3.2.23)
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For h 6= 0, the evaluation of (3.2.21) whilst theoretically possible is computationally diffi cult

for many sma(q) processes. For an iid process we get

Gh
(
ξi, ξj

)
= 0, for h 6= 0. (3.2.24)

Thus for iid processes, the asymptotic covariance matrix of Theorem 3.2.2 reduces to the

same asymptotic covariance matrix as in Theorem D.1.3.

Suppose Xt is the sma(1) process defined by

Xt = et + θ1et−1, (3.2.25)

where {et} is an iid sequence of random variables such that

et ∼ S0
α (βe, γe, δe) . (3.2.26)

Let fe and Fe denote respectively the density and distribution functions of {et}. Then

G1

(
ξi, ξj

)
= P

(
{et + θ1et−1 ≤ ξi} ∩

{
et+1 + θ1et ≤ ξj

})
= P

({
et−1 ≤

ξi − et
θ1

}
∩
{
et+1 ≤ ξj − θ1et

})
=

∫ ∞
−∞

Fe

(
ξi − u
θ1

)
Fe
(
ξj − θ1u

)
fe (u) du, (3.2.27)

which can be evaluated numerically. Note that

G1

(
ξi, ξj

)
= G−1

(
ξj , ξi

)
. (3.2.28)

For higher order sma(q) processes, the evaluation ofGh
(
ξi, ξj

)
becomes computationally

diffi cult, involving a q − 1 + h dimensional integral however, the estimation of Gh
(
ξi, ξj

)
is straightforward. Let {xt}nt=1 be a sample of size n from the stationary sma(q) process

{Xt} . We define the estimator Ĝh
(
ξi, ξj

)
as

Ĝh
(
ξi, ξj

)
= (n− h)−1

∑
t=1

I {xt ≤ ξi} I
{
xt+h ≤ ξj

}
, for |h| > 1 (3.2.29)

and it is clear that Ĝh
(
ξi, ξj

)
is a consistent estimator of Gh

(
ξi, ξj

)
.

3.3 Quantile-based estimation of stable distribution parame-

ters from a stable moving average process

In this section we investigate an extension of the quantile-based method of McCulloch

(1986), which we adapt for estimation from an sma(q) process with distribution S0
α (β, γ, δ).
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Let ξp denote the pth quantile of the stable distribution S
0
α (β, γ, δ) and define the following

statistics

vα =
ξ0.95 − ξ0.05

ξ0.75 − ξ0.25

, (3.3.1)

vβ =
ξ0.95 + ξ0.05 − 2ξ0.50

ξ0.95 − ξ0.05

. (3.3.2)

From Lemma E.1.3, it can be shown that the statistics vα and vβ do not depend on γ and

δ and we can consider them as functions solely of α and β

vα = φ1 (α, β) , (3.3.3)

vβ = φ2 (α, β) . (3.3.4)

It can be seen that φ1 (α, β) is a strictly decreasing function of α for each β and that φ2 (α, β)

is a strictly decreasing function of β for each α. The relationships (3.3.3) and (3.3.4) can

be inverted to give

α = ψ1 (vα, vβ) , (3.3.5)

β = ψ2 (vα, vβ) . (3.3.6)

No analytic formula is available for the functions φ1, φ2, ψ1 and ψ2. Our approach to the

numerical evaluation of these functions is discussed later in this section.

Let ξ̂p denote a consistent estimator for ξp. Substituting the estimators ξ̂p into (3.3.1)

and (3.3.2) gives consistent estimators for vα, vβ,

v̂α =
ξ̂0.95 − ξ̂0.05

ξ̂0.75 − ξ̂0.25

, (3.3.7)

v̂β =
ξ̂0.95 + ξ̂0.05 − 2ξ̂0.50

ξ̂0.95 − ξ̂0.05

. (3.3.8)

Consistent estimators for the parameters α, β can then be calculated using

α̂ = ψ1 (v̂α, v̂β) , (3.3.9)

β̂ = ψ2 (v̂α, v̂β) . (3.3.10)

We can use the results of Lemma E.1.3 to define estimators for γ and δ by

γ̂ =
ξ̂0.75 − ξ̂0.25

ξ̂
∗
0.75 − ξ̂

∗
0.25

(3.3.11)
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and

δ̂ = ξ̂0.50 − γ̂ξ̂
∗
0.50. (3.3.12)

The estimators in (3.3.11) and (3.3.12) are similar to those defined in McCulloch (1986).

The differences are due to McCulloch’s choice of parameterisation for the stable distribution,

which includes discontinuities at α = 1.

Let

pM = (0.05, 0.25, 0.50, 0.75, 0.95) (3.3.13)

denote the quantile levels used to define the statistics in (3.3.1) and (3.3.2) and let

ξM = (ξ0.05, ξ0.25, ξ0.50, ξ0.75, ξ0.95)′ (3.3.14)

denote the quantiles at those levels. Other quantile levels not included in pM could have

been used to define γ̂ and δ̂, although it seems natural to choose from the same quantile

levels used to define α̂ and β̂. Indeed, other choices of quantile levels are also available to

define α̂ and β̂ and it is possible that a different choice of quantile levels would produce

better estimates. In Section 3.5, an investigation is conducted into the optimal choice of

quantile levels for quantile-based stable distribution parameter estimation.

Let

ω = (α, β, γ, δ)′ (3.3.15)

denote the vector of stable distribution parameters and

ω̂ =
(
α̂, β̂, γ̂, δ̂

)′
(3.3.16)

denote the vector of estimators defined above. An asymptotic distribution for ω̂ was derived

in McCulloch (1986) under the assumption of an independent sample. The assumption of

an independent sample allows the use of empirical quantile estimators to form a consis-

tent, asymptotically normal, estimator for ξM . However, we have seen that a consistent,

asymptotically normal, estimator for ξM can also be defined from an sma sample using the

methods described in Section 3.2. Thus, we can use the same approach as was taken in

McCulloch (1986) to derive an asymptotic distribution for ω̂ under the assumption that the

sample is an sma process.

Theorem 3.3.1 Let

ξ̂M =
(
ξ̂0.05, ξ̂0.25, ξ̂0.50, ξ̂0.75, ξ̂0.95

)′
(3.3.17)
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be the empirical quantile estimators of ξM from an sma process, then as the sample size

n→∞ we have from Theorem 3.2.2 we have

√
n
(
ξ̂M − ξM

)
d−→ N

(
0, V

ξ̂M

)
. (3.3.18)

The asymptotic distribution of the stable distribution parameter ω̂ is given by

√
n (ω̂ − ω)

d−→ N (0, Vω̂) , (3.3.19)

where

Vω̂ = Dω̂Vξ̂M
D′ω̂ (3.3.20)

and Dω̂ is the 4× 5 matrix given by

Dω̂ =

(
∂ω̂i

ξ̂M ;j

|
ξ̂M=ξM

)
i=1,4;j=1,5

. (3.3.21)

Proof. The proof of this theorem follows the same approach as was taken in McCulloch

(1986), which is essentially a use of Theorem B.2.3.

The formula for the asymptotic covariance matrix Vω̂ in (3.3.20) has the same partial

derivative matrix Dω̂ as that in McCulloch (1986) however, the asymptotic covariance

matrix, V
ξ̂M
, of the quantile estimators is different from that in McCulloch (1986) due to

sample being from an sma process rather than from an iid process.

Remark 3.3.1 If the true innovation values of the sma process were observable, then they

would form a sample from an iid process from which quantile-based stable distribution pa-

rameter estimates could be calculated. However, the estimated residuals of an sma process

are only approximately stable and do not necessarily provide unbiased estimates for the true

innovation quantiles.

A general analytic formula is not available for the calculation of the partial deriva-

tives in (3.3.21). It is suggested in McCulloch (1986) that the partial derivatives can be

estimated "by means of small perturbations of the population quantiles", but no specific

recommendations regarding the size of these perturbations are given. To limit the scope of

our investigation into this matter, we restrict ourselves to perturbations given by

∆ξ =
ξ̂0.75 − ξ̂0.25

C
(3.3.22)
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Figure 3.3.1: Estimates for (a)
∂α̂

∂ξ̂0.95

where α = 1.5 and β = 0.3 and (b)
∂β̂

∂ξ̂0.50

where

α = 1.7 and β = 0.0. The estimates for C = 400 are those indicated by a red ’*’.

for some C > 0 and assume that the same perturbation is applied to each quantile estimator.

Let ξ̂ =
(
ξ̂0.05, ξ̂0.25, ξ̂0.50, ξ̂0.75, ξ̂0.95

)
be the sample quantiles. Let α̂+

p be the estimate of α

derived from the set of quantiles where ξ̂p is replaced by ξ̂p + ∆ξ and α̂−p be the estimate

of α derived from the set of quantiles where ξ̂p is replaced by ξ̂p −∆ξ. Similarly, we define

β̂
+

p , β̂
−
p , etc. Our estimate for

∂α̂

∂ξp
is defined to be

∂̂α̂

∂ξ̂p
=
α̂+
p − α̂−p
2∆ξ

(3.3.23)

with similar definitions for
∂̂β̂

∂ξp
,
∂̂γ̂

∂ξp
and

∂̂δ̂

∂ξp
.

Estimates for each of the partial derivative estimators were calculated for various stable

distributions. Examples of these calculations are presented in Figure 3.3.1 for values of C

between 50 and 1000. The optimal choice for C is not obvious, given we do not have any

true values for the partial derivatives, although in general the value of the partial derivative

estimates does not change greatly for C between 50 and 1000. A slightly lower value of

C and hence slightly larger perturbation can help to smooth the partial derivatives and

avoid occasional numerical abberations. Unless otherwise stated, in the remainder of this

thesis we use C = 400 to calculate the partial derivative estimates.
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Remark 3.3.2 The quantile-based method for stable distribution parameter estimation can

easily be adapted for the estimation of the parameters of a stable distribution which is known

to be symmetric. A symmetric stable distribution has parameters β and δ and the statistic

νβ equal to zero. The estimator ν̂α is still calculated as per (3.3.7) , but ν̂β is set to zero.

Estimates for α and γ are then calculated as described above. In calculating the asymptotic

covariance matrix Vω̂, it is necessary to set to zero all elements of the partial derivative

matrix Dω̂ corresponding to partial derivatives of β̂ and δ̂.

With some minor modifications by the author, the matlab package stbl_code was

used throughout this thesis to generate sequences of stable random variable, calculate values

of the stable density, distribution and quantile functions. To implement stable distribution

parameter estimation, a lookup table was generated for ψ1 and ψ2 with 184 values of vα and

86 values of vβ. Interpolation is used to calculate the values of ψ1 and ψ2 for those values

of vα and vβ which do not exactly match the lookup table values. Spline interpolation is

used in preference to linear interpolation, except for α close to 2, where spline interpolation

occasionally performs poorly. All partial derivatives in Figure 3.3.1 were calculated using

spline interpolation. Were linear interpolation used to calculate the derivatives in Figure

3.3.1, then the resulting plots would show discontinuities in the first derivative at points

where the values of vα and vβ move between cells in the lookup tables.

3.4 Evaluation of the asymptotic standard deviation of the

maximum likelihood estimator of the stable distribution

parameters

In this section, we evaluate the asymptotic standard deviation (asd) of the maximum like-

lihood (ml) estimator of the stable distribution parameters, ω. We use these evaluations in

Section 3.5 to investigate the asymptotic effi ciency of McCulloch’s quantile-based estima-

tors defined in Section 3.3. Since the ml estimator is the minimum variance asymptotically

normal estimator, it provides a convenient benchmark for the asymptotic effi ciency of other

estimators. Throughout this section, we assume that the ml estimator is taken from an iid

sample.

The asymptotic covariance matrix of the ml estimator, VML
ω , is the inverse of the 4× 4



3. Estimation of the parameters of a stable moving average process 42

Fisher information matrix I = (Iij) where

Iij =

∫ ∞
−∞

gij (x) dx (3.4.1)

where

gij =
∂f

∂ωi

∂f

∂ωj

1

f
(3.4.2)

and f is the stable distribution density function and

(ω1, ω2, ω3, ω4) = (α, β, γ, δ) . (3.4.3)

No general formula exists for the asd of the ml estimator, therefore evaluation must be

done numerically. Evaluations previously reported in DuMouchel (1975) and Nolan (2001)

both have shortcomings. In DuMouchel (1975), the asds near α = 1 are unreliable due

to the choice of parameterisation. In Nolan (2001), the asds at low values of α are higher

than the true asds due to the narrow interval used when evaluating the Fisher information

matrix integrals, Nolan (2014). Concerns about the accuracy of the evaluations listed in

Nolan (2001) were raised in Fan (2006). Evaluation of the Fisher information matrix for

the special case of symmetric stable distributions was reported in Matsui and Takemura

(2006).

To evaluate the Fisher information matrix integrals, we adopt a similar approach to that

taken in Nolan (2001), but also include an approximation for the integral tails.

1. A grid of n points {xj}nj=1 on the real line is chosen using the quantiles
{
ξpj

}n
j=1

of

the stable distribution function at quantile levels {pj}nj=1 where

p1 = 0.00002, p2 = 0.00004, . . . , pn = 0.99998. (3.4.4)

For this choice of quantile levels n = 49, 999.

2. At each point xj approximations for the partial derivatives in (3.4.2) are calculated

from changes to the density function due to small perturbations of each of the stable

distribution parameters. The size of perturbation used was 0.002, except where α = 1

which required the use of larger perturbations to avoid numerical problems.

3. The sum over the grid of points {xj} of the product of the partial derivatives and the

density function weighted by the distance between the points is used to approximate
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the body

Bij =

∫ ξpn

ξp1

gij (x) dx (3.4.5)

of the each of the integrals Iij .

Inevitably, any choice for the grid of points {xj} , does not account for the contribution

to

Iij = Nij +Bij + Pij (3.4.6)

by the negative,

Nij =

∫ ξp1

−∞
gij (x) dx (3.4.7)

and positive,

Pij =

∫ ∞
ξpn

gij (x) dx (3.4.8)

tails of the integral. Moreover, a single choice of quantile levels in (3.4.4) does not produce

approximations of Iij to the same precision for all stable distributions. For high values of

α, more extreme quantile levels need to be included in (3.4.4) than for low values of α.

An approximation of the tails Nij and Pij can be obtained through use of the following

tail approximation of the stable density function. The statement h1 (x) ' h2 (x) as x → a

means limx→a h1 (x) /h2 (x) = 1.

Theorem 3.4.1 (Tail density approximation - Nolan (2015), Theorem 1.12). For

0 < α < 2 and −1 < β < 1, the tail properties of the stable distribution density function, f,

are given by

f (x) ' Cα,β,γx−(α+1) as x→∞ (3.4.9)

and

f (x) ' Cα,−β,γ |x|−(α+1) as x→ −∞ (3.4.10)

where

Cα,β,γ = αγα sin
(πα

2

) Γ (α)

π
(1 + β) . (3.4.11)

The author acknowledges Professor Nolan’s assistance in drawing the author’s atten-

tion to Theorem 3.4.1, (Nolan (2014)). The following corollary of Theorem 3.4.1 provides

formulae for tail properties of the partial derivatives,
∂f

∂ωi
.
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Corollary 3.4.1 For 0 < α < 2 and −1 < β < 1, the tail properties as x → ∞ of the

partial derivatives,
∂f

∂α
,
∂f

∂β
,
∂f

∂γ
and

∂f

∂δ
are given by

∂f

∂α
' x−(α+1)

(
∂Cα,β,γ
∂α

− Cα,β,γ lnx

)
(3.4.12)

∂f

∂β
' 1

1 + β
f (3.4.13)

∂f

∂γ
' α

γ
f (3.4.14)

∂f

∂δ
' (α+ 1)

x
f (3.4.15)

and as x→ −∞ by

∂f

∂α
' |x|−(α+1)

(
∂Cα,−β,γ
∂α

− Cα,−β,γ ln |x|
)

(3.4.16)

∂f

∂β
' 1

1− β f (3.4.17)

∂f

∂γ
' α

γ
f (3.4.18)

∂f

∂δ
' (α+ 1)

x
f (3.4.19)

Note that the derivation of the formula for
∂f

∂δ
utilises the fact that

∂f

∂δ
= −∂f

∂x
. The

following corollary of Theorem 3.4.1 provides formulae for tail properties of the Fisher

information functions gij .

Corollary 3.4.2 For 0 < α < 2 and −1 < β < 1, the tail properties as x → ∞ and as

x→ −∞ of the derivatives of the Fisher information functions, gij , are given by

d ln |gij |
d ln |x| ' bij (3.4.20)

where

bij =


− (α+ 1) i, j 6= 4

− (α+ 2) i = 4, j 6= 4 and i 6= 4, j = 4

− (α+ 3) i, j = 4

. (3.4.21)

The results of Corollary 3.4.2 suggest an approximation of the Fisher information matrix
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functions over the tails of the distribution by the following linear relationships

ln (|gij (x)|) ≈ ln
(∣∣gij (ξpn)∣∣)+ bij

(
ln |x| − ln

∣∣ξpn∣∣) , x ∈
[
ξpn ,∞

)
,

(3.4.22)

ln (|gij (x)|) ≈ ln
(∣∣gij (ξp1)∣∣)+ bij

(
ln |x| − ln

∣∣ξp1∣∣) , x ∈
(
−∞, ξp1

]
,

(3.4.23)

where p1, pn are the quantile levels choosen in (3.4.4) .

Use of the approximations for gij in (3.4.22) and (3.4.23) allow analytic approximations

for tails of the Fisher information matrix integrals given by

Pij ≈ −gij
(
ξpn
) ξpn

(bij + 1)
(3.4.24)

and

Nij ≈ −gij
(
ξp1
) ∣∣ξp1∣∣

(bij + 1)
. (3.4.25)

Let

Tij =
Nij + Pij

Iij
∗ 100% (3.4.26)

denote the relative percentage size of the Fisher information matrix integral tails compared

to the complete integral. For clarity, we write I11 as Iαα, I12 as Iαβ etc and similarly for

Nij , Pij , Tij and gij . For the choice of quantile levels {pj}nj=1 in (3.4.4) , Tij is generally

less than 1%, except for Tββ in highly skewed distributions which can approach 5%. For

symmetric distributions, Tαα is the highest of the Tij percentages. The approximations

for gαα in (3.4.22) and (3.4.23) are the least accurate of all the gij functions due to the

inclusion of the lnx term in (3.4.12). Fortunately, the accuracy of the approximations for

gαα increases with α, as does Tij , and therefore the accuracy of the approximations for Iαα

are largely independent of α for symmetric distributions.

In Table 3.4.1, we list our evaluations of the elements of the Fisher information matrix

for selected symmetric stable distributions. Our evaluations are close to those listed in

Table 6 of Matsui and Takemura (2006). The greatest differences occur for Iαα and all

our evaluations of Iαα are within 0.2% of those listed in Table 6 of Matsui and Takemura

(2006).

Taking the square roots of diagonal elements of the inverse of the Fisher information

matrix gives the asds, σα, σβ, σγ and σδ of the stable distribution parameters α, β, γ and
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α Iδδ Iγγ Iαα Iαγ

1.9 0.4727 1.6127 0.8838 -0.3962

(0.4727) (1.6127) (0.8846) (-0.3963)

1.8 0.4552 1.3898 0.5931 -0.3138

(0.4552) (1.3898) (0.5937) (-0.3138)

1.7 0.4424 1.2189 0.5023 -0.2692

(0.4424) (1.2189) (0.5028) (-0.2692)

1.6 0.4334 1.0775 0.4722 -0.2395

(0.4334) (1.0775) (0.4726) (-0.2396)

1.5 0.4281 0.9556 0.4732 -0.2173

(0.4281) (0.9556) (0.4737) (-0.2174)

1.4 0.4270 0.8475 0.4968 -0.1992

(0.4270) (0.8475) (0.4973) (-0.1992)

1.3 0.4310 0.7498 0.5419 -0.1832

(0.4310) (0.7498) (0.5424) (-0.1832)

1.2 0.4419 0.6603 0.6114 -0.1679

(0.4419) (0.6603) (0.6119) (-0.1679)

1.1 0.4630 0.5775 0.7127 -0.1523

(0.4630) (0.5774) (0.7132) (-0.1523)

1.0 0.5000 0.5000 0.8593 -0.1352

(0.5000) (0.5000) (0.8590) (-0.1352)

0.9 0.5641 0.4272 1.0718 -0.1154

(0.5641) (0.4272) (1.0721) (-0.1154)

0.8 0.6800 0.3586 1.3928 -0.0914

(0.6800) (0.3586) (1.3928) (-0.0913)

0.7 0.9094 0.2937 1.8982 -0.0612

(0.9094) (0.2937) (1.8974) (-0.0611)

0.6 1.4445 0.2325 2.7439 -0.0222

(1.4446) (0.2325) (2.7414) (-0.0220)

0.5 3.1162 0.1753 4.2819 -0.0292

(3.1167) (0.1753) (4.2748) (0.0295)

Table 3.4.1: Evaluation of the Fisher information matrix integrals for a symmetric stable

distribution, β = 0. For clarity, we write I44 = Iδδ, I33 = Iγγ , I11 = Iαα and I12 = Iαγ .

Values in () are from Table 6 of Matsui and Takemura (2006).
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δ respectively. In Tables 3.4.2 and 3.4.3, we list our evaluations of σα, σβ, σγ and σδ for

selected values of α, β. Each of σα, σβ, σγ and σδ is symmetric in β about zero.

Remark 3.4.1 Given the technology available at the time, many of the asd evaluations

listed in DuMouchel (1975) are surprisingly close to those in Tables 3.4.2 and 3.4.3. Differ-

ences for σδ are due to the different stable distribution parameterisation used by DuMouchel.

Also, as noted in McCulloch (1986), DuMouchel’s values for σα and σγ for β = 0.5 at

α = 1.1 "seem to be out of line".

Remark 3.4.2 The asd evaluations in Tables 3.4.2 and 3.4.3 are almost all less than

those in the appendix of Nolan (2001). In Nolan (2001) a uniform boundary of [−50, 50]

was used to evaluate the body Bij of the Fisher information matrix integrals and the tails

Nij , Pij were set to zero, (Nolan (2014)). For higher values of α, this choice of boundary

provides reasonable evaluations. However, for lower values of α it results in significantly low

evaluations for the Fisher information matrix integrals and consequently significantly high

evaluations for the asds. Differences between these two sets of evaluations are minimal at

α = 1.9 but increase as α decreases. The relative magnitude of these differences is greater

than 4% for σα where α < 1.5, for σβ, σγ where α < 0.8 and for σδ where α < 0.6. The

relative magnitude of these differences is largely unaffected by the value of β.



3. Estimation of the parameters of a stable moving average process 48

σα σβ

α β = 0.0 β = 0.5 β = 0.9 β = 0.0 β = 0.5 β = 0.9

1.9 1.128 1.098 0.992 9.060 8.471 5.448

(1.134) (1.104) (0.998) (9.082) (8.504) (5.517)

1.8 1.384 1.350 1.226 5.671 5.216 3.255

(1.397) (1.363) (1.237) (5.686) (5.235) (3.281)

1.7 1.503 1.468 1.341 4.318 3.912 2.349

(1.526) (1.491) (1.360) (4.332) (3.928) (2.367)

1.6 1.545 1.511 1.387 3.551 3.179 1.842

(1.583) (1.548) (1.417) (3.565) (3.194) (1.857)

1.5 1.536 1.504 1.385 3.037 2.695 1.516

(1.593) (1.558) (1.430) (3.054) (2.712) (1.529)

1.4 1.491 1.460 1.348 2.658 2.344 1.286

(1.571) (1.536) (1.412) (2.677) (2.362) (1.299)

1.3 1.418 1.389 1.284 2.361 2.073 1.116

(1.526) (1.492) (1.371) (2.383) (2.094) (1.129)

1.2 1.326 1.298 1.201 2.117 1.854 0.984

(1.465) (1.432) (1.315) (2.144) (1.878) (0.998)

1.1 1.219 1.193 1.104 1.911 1.671 0.878

(1.393) (1.360) (1.246) (1.942) (1.699) (0.894)

1.0 1.103 1.081 0.999 1.732 1.515 0.791

(1.309) (1.240) (1.166) (1.780) (1.560) (0.817)

0.9 0.980 0.958 0.884 1.575 1.379 0.719

(1.226) (1.194) (1.086) (1.619) (1.418) (0.739)

0.8 0.855 0.834 0.768 1.436 1.260 0.657

(1.132) (1.100) (0.995) (1.488) (1.305) (0.681)

0.7 0.728 0.710 0.652 1.312 1.155 0.604

(1.029) (0.997) (0.897) (1.374) (1.210) (0.633)

0.6 0.604 0.587 0.538 1.203 1.063 0.559

(0.912) (0.883) (0.789) (1.278) (1.129) (0.594)

0.5 0.484 0.470 0.430 1.110 0.985 0.520

(0.776) (0.749) (0.665) (1.201) (1.065) (0.564)

Table 3.4.2: Evaluation of the asymptotic standard deviations, σα and σβ, for selected

values of α and β. Values in () are from Nolan (2001).
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σγ σδ

α β = 0.0 β = 0.5 β = 0.9 β = 0.0 β = 0.5 β = 0.9

1.9 0.835 0.827 0.800 1.682 1.680 1.675

(0.835) (0.827) (0.800) (1.683) (1.681) (1.676)

1.8 0.904 0.891 0.848 1.742 1.739 1.733

(0.904) (0.891) (0.848) (1.744) (1.741) (1.735)

1.7 0.965 0.946 0.889 1.764 1.761 1.753

(0.965) (0.947) (0.889) (1.766) (1.763) (1.757)

1.6 1.023 0.999 0.928 1.764 1.762 1.757

(1.024) (1.000) (0.928) (1.766) (1.765) (1.762)

1.5 1.081 1.052 0.966 1.747 1.749 1.751

(1.082) (1.052) (0.966) (1.750) (1.753) (1.759)

1.4 1.141 1.106 1.006 1.716 1.725 1.741

(1.142) (1.107) (1.006) (1.718) (1.730) (1.750)

1.3 1.206 1.165 1.049 1.670 1.691 1.728

(1.206) (1.165) (1.050) (1.673) (1.696) (1.739)

1.2 1.276 1.229 1.098 1.610 1.647 1.713

(1.276) (1.229) (1.099) (1.613) (1.653) (1.725)

1.1 1.355 1.301 1.155 1.536 1.595 1.698

(1.355) (1.302) (1.160) (1.538) (1.601) (1.708)

1.0 1.445 1.385 1.224 1.445 1.533 1.681

(1.459) (1.401) (1.251) (1.438) (1.534) (1.688)

0.9 1.553 1.486 1.311 1.338 1.463 1.664

(1.563) (1.500) (1.343) (1.338) (1.467) (1.669)

0.8 1.684 1.611 1.424 1.214 1.385 1.645

(1.717) (1.652) (1.496) (1.214) (1.388) (1.647)

0.7 1.852 1.773 1.577 1.073 1.301 1.624

(1.939) (1.875) (1.731) (1.076) (1.304) (1.631)

0.6 2.075 1.992 1.791 0.922 1.214 1.599

(2.283) (2.226) (2.101) (0.933) (1.226) (1.633)

0.5 2.390 2.305 2.106 0.769 1.127 1.567

(2.840) (2.797) (2.687) (0.799) (1.175) (1.676)

Table 3.4.3: Evaluation of the asymptotic standard deviations, σγ and σδ, for selected values

of α and β. Values in () are from Nolan (2001).
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3.5 Optimal choice of quantile levels, pM , for stable distrib-

ution parameter estimation

In McCulloch (1986), quantile estimators at quantile levels

pM = (0.05, 0.25, 0.50, 0.75, 0.95) (3.5.1)

were used to construct the statistics vα and vβ (3.3.1 and 3.3.2) which were then used to

construct estimators for the stable distribution parameters α and β. Hereafter, we refer

to the quantile levels in (3.5.1) as the standard quantile levels for quantile-based stable

distribution parameter estimation, or standard quantile levels. The properties of vα and

vβ which allow construction of estimators for α and β are their independence of γ and δ

and their invertibility as functions of α and β. These properties are also shared by similar

statistics constructed using other choices for the quantile levels in (3.5.1) which could be

used to construct other, possibly more effi cient, estimators for α and β. The use of quantile

levels other than the standard quantile levels was mentioned in Garcia et al. (2011) where

the concern was mainly regarding the robustness of quantile-based estimates of α when

applied to non stable distributions.

Initially, we restrict our investigation to quantile levels pM of the form

pM = (pM1 , pM2 , pM3 , pM4 , pM5) (3.5.2)

where

0 < pM1 < pM2 < 0.50, (3.5.3)

pM3 = 0.50, (3.5.4)

pM4 = 1− pM2 , (3.5.5)

pM5 = 1− pM1 . (3.5.6)

Note that the standard quantile levels satisfy the above restrictions where

(pM1 , pM2) = (0.05, 0.25) . (3.5.7)

We define statistics vα;pM and vβ;pM by

vα;pM =
ξpM5

− ξpM1

ξpM4
− ξpM2

, (3.5.8)

vβ;pM =
ξpM5

+ ξpM1
− 2ξpM3

ξpM5
− ξpM1

, (3.5.9)
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where ξpMj
is the pthMj

quantile of the distribution. Estimators α̂pM and β̂pM for α and β are

constructed by substituting empirical quantile estimators into (3.5.8) and (3.5.9) , similar

to the method described in Section 3.3.

We wish to identify the optimal value of pM , which minimises the asymptotic variance

of the estimators α̂pM and β̂pM . For any single value of pM , the creation of a lookup ta-

ble to evaluate the functions ψ1 and ψ2 in (3.3.5) and (3.3.6) significantly improves the

computation speed in calculating estimators α̂pM and β̂pM and their asymptotic variances.

However, the creation of an accurate lookup table is itself a time-consuming exercise and so

it is not practical to create such a lookup table for each of the many values of pM examined

whilst searching for the optimal value of pM . Instead, we use the simplex optimisation

method to evaluate the functions ψ1 and ψ2, (Nelder and Mead (1965)). In order to avoid

numerical problems, it was necessary to evaluate the partial derivatives Dω̂ from the aver-

age over a range of larger perturbations rather than from a single smaller perturbation as

described in Section 3.3. Consequently the asymptotic variance evaluations listed in this

section are slightly different to those listed elsewhere in this thesis, where lookup tables for

the functions ψ1 and ψ2 were available.

Let Vα̂;pM and V
β̂;pM

denote the asymptotic variances of the estimators α̂pM and β̂pM

respectively. In general, we see that both Vα̂;pM and Vα̂;pM are more sensitive to changes in

pM1 than to changes in pM2 , (Figure 3.5.1).

Optimal values of pM1 and pM2 , subject to (3.5.3) − (3.5.6) , for the estimation of α

and β are listed in: i) Table 3.5.1 from a symmetric iid process; ii) Table 3.5.2 from an

asymmetric iid process and iii) Table 3.5.3 from a symmetric sma(1) process. The relative

asymptotic effi ciencies with respect to the ml estimator is given by

RML
α;pM

=
VML
α

Vα;pM

, RML
β;pM

=
VML
β

Vβ;pM

(3.5.10)

where VML
α , VML

β are the asymptotic variances of the ml estimators of α, β respectively,

taken from Table 3.4.2.

The optimal values of pM1 and pM2 for the estimation of α are not optimal for the

estimation of β. Moreover the optimal values of pM1 and pM2 for the estimation of α and β

are non-constant functions of both α and β. Note that Vα;pM and Vβ;pM are symmetrical in

β about zero.

Estimators using the standard pM are close to optimal over a reasonable range of values
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Estimation of α Estimation of β

RML
α;pM

RML
β;pM

α (pM1 , pM2) Vα;pM (i) (ii) (pM1 , pM2) Vβ;pM (i) (ii)

0.8 (0.057,0.385) 1.026 0.712 0.504 (0.232,0.396) 2.393 0.861 0.242

0.9 (0.052,0.366) 1.346 0.714 0.557 (0.197,0.377) 2.909 0.853 0.296

1.0 (0.049,0.350) 1.694 0.718 0.608 (0.169,0.350) 3.551 0.845 0.359

1.1 (0.044,0.327) 2.048 0.726 0.654 (0.144,0.324) 4.342 0.841 0.432

1.2 (0.041,0.308) 2.394 0.735 0.688 (0.121,0.295) 5.356 0.837 0.516

1.3 (0.036,0.290) 2.702 0.744 0.703 (0.101,0.268) 6.698 0.832 0.612

1.4 (0.031,0.270) 2.935 0.757 0.683 (0.080,0.238) 8.533 0.828 0.710

1.5 (0.027,0.255) 3.053 0.773 0.612 (0.065,0.231) 11.208 0.823 0.791

1.6 (0.022,0.237) 3.028 0.788 0.490 (0.049,0.207) 15.462 0.815 0.814

1.7 (0.015,0.220) 2.801 0.806 0.340 (0.035,0.178) 23.186 0.804 0.750

1.8 (0.010,0.207) 2.335 0.820 0.201 (0.021,0.167) 40.938 0.786 0.597

1.9 (0.004,0.193) 1.540 0.826 0.091 (0.009,0.142) 109.842 0.747 0.378

Table 3.5.1: Optimal values of pM1 and pM2 for the the estimation of α and β from an iid

process where α takes selected values and β = 0.0. Asymptotic variances of the optimal

estimators are denoted by Vα;pM and Vβ;pM respectively. Asymptotic effi ciencies relative to

ml estimators are calculated for (i) the optimal value of pM and (ii) the standard value of

pM = (0.05, 0.25, 0.50, 0.75, 0.95).
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Estimation of α Estimation of β

RML
α;pM

RML
β;pM

α (pM1 , pM2) Vα;pM (i) (ii) (pM1 , pM2) Vβ;pM (i) (ii)

0.8 (0.065,0.337) 2.205 0.315 0.272 (0.095,0.333) 2.095 0.758 0.463

0.9 (0.060,0.328) 2.669 0.344 0.310 (0.085,0.317) 2.394 0.795 0.545

1.0 (0.053,0.332) 3.100 0.377 0.351 (0.076,0.302) 2.805 0.818 0.636

1.1 (0.048,0.315) 3.480 0.409 0.389 (0.067,0.281) 3.344 0.835 0.733

1.2 (0.041,0.307) 3.800 0.444 0.424 (0.057,0.270) 4.104 0.838 0.812

1.3 (0.039,0.297) 4.051 0.476 0.449 (0.049,0.244) 5.164 0.832 0.830

1.4 (0.033,0.284) 4.201 0.507 0.455 (0.039,0.216) 6.701 0.820 0.761

1.5 (0.025,0.274) 4.222 0.536 0.434 (0.031,0.185) 9.050 0.802 0.631

1.6 (0.021,0.251) 4.058 0.563 0.378 (0.024,0.161) 12.950 0.780 0.484

1.7 (0.016,0.237) 3.660 0.589 0.288 (0.016,0.133) 20.347 0.752 0.344

1.8 (0.011,0.214) 2.953 0.617 0.183 (0.010,0.116) 38.033 0.715 0.218

1.9 (0.006,0.199) 1.814 0.664 0.086 (0.004,0.071) 107.878 0.665 0.115

Table 3.5.2: Optimal values of pM1 and pM2 for the the estimation of α and β from an iid

process where α takes selected values and β = 0.5. Asymptotic variances of the optimal

estimators are denoted by Vα;pM and Vβ;pM respectively. Asymptotic effi ciencies relative to

ml estimators are calculated for (i) the optimal value of pM and (ii) the standard value of

pM = (0.05, 0.25, 0.50, 0.75, 0.95).
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Figure 3.5.1: Asymptotic variance Vα from an iid sample where α = 1.2 and β = 0.0. In

(a) pM2 is fixed at 0.308. In (b) pM1 is fixed at 0.041.

for α and β. For some values of α and β, estimators using the optimal pM for the estimation

of α provide a poor estimate of β and estimators using the optimal pM for the estimation

of β provide a poor estimate of α. The standard pM may provide a good compromise, (e.g.

α = 1.4 and β = 0.0 in Table 3.5.4). However, for some values of α and β, the optimal

pM for the estimation of α and the optimal pM for the estimation of β both provide better

estimates of both α and β than the standard pM , (e.g. α = 1.8 and β = 0 in Table 3.5.5).

From Table 3.5.2, it can be seen that estimators using the optimal pM subject to (3.5.3)−

(3.5.6) do not provide particularly effi cient estimators of α from asymmetric iid processes.

Relaxing those constraints to allow pM to take on all values such that

0 < pM1 < pM2 < pM4 < pM5 < 1, (3.5.11)

pM1 < pM3 < pM5 (3.5.12)

pM3 = 0.50, (3.5.13)

enables additional improvement in the asymptotic effi ciency of estimators using the optimal

pM . Note that the application of restrictions (3.5.11)− (3.5.13) does not preclude values of

pM where pM2 > pM3 or pM4 < pM3 . Optimal values of pM1 , pM2 , pM4 and pM5 subject to

(3.5.11)− (3.5.13) , for the estimation of α are listed in Table 3.5.6 from an asymmetric iid

process.
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Estimation of α Estimation of β

Vα;pM Vβ;pM

α (pM1 , pM2) (i) (ii) (pM1 , pM2) (i) (ii)

0.8 (0.076,0.391) 1.445 2.111 (0.253,0.397) 3.525 14.081

0.9 (0.068,0.371) 1.840 2.417 (0.217,0.371) 4.184 13.553

1.0 (0.062,0.351) 2.258 2.699 (0.187,0.351) 4.989 13.206

1.1 (0.057,0.329) 2.663 2.955 (0.160,0.337) 5.977 12.988

1.2 (0.050,0.309) 3.045 3.199 (0.135,0.314) 7.230 12.948

1.3 (0.044,0.295) 3.374 3.462 (0.109,0.320) 8.872 13.152

1.4 (0.038,0.266) 3.619 3.805 (0.090,0.291) 11.105 13.836

1.5 (0.030,0.253) 3.730 4.351 (0.071,0.292) 14.430 15.514

1.6 (0.024,0.236) 3.671 5.316 (0.054,0.259) 19.452 19.546

1.7 (0.018,0.235) 3.389 7.017 (0.039,0.243) 28.693 29.662

1.8 (0.010,0.208) 2.822 9.819 (0.024,0.229) 49.777 60.811

1.9 (0.005,0.199) 1.857 14.130 (0.011,0.218) 130.626 233.403

Table 3.5.3: Optimal values of pM1 and pM2 for the the estimation of α and β from an

sma(1) process where α takes selected values and β = 0, θ1 = 0.4. Asymptotic variances of

the estimators are calculated for (i) the optimal value of pM and (ii) the standard value of

pM = (0.05, 0.25, 0.50, 0.75, 0.95).

Optimal α estimation Optimal β estimation Standard

(pM1 , pM2) (0.031, 0.270) (0.080, 0.238) (0.050, 0.250)

Vα;pM 2.935 4.976 3.255

Vβ;pM 14.207 8.533 9.955

Table 3.5.4: Asymptotic variances Vα;pM and Vβ:pM for α = 1.4 and β = 0 at selected values

of pM1 and pM2 . The standard quantile levels provide good estimates for both α and β.
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Optimal α estimation Optimal β estimation Standard

(pM1 , pM2) (0.010, 0.207) (0.021, 0.167) (0.050, 0.250)

Vα;pM 2.335 3.246 9.506

Vβ;pM 51.593 40.938 53.903

Table 3.5.5: Asymptotic variances Vα;pM and Vβ:pM for α = 1.8 and β = 0 at selected values

of pM1 and pM2 . The standard quantile levels provide poor estimates for both α and β.

Estimation of α

RMLE
α;pM

α (pM1 , pM2 , pM4 , pM5) Vα;pM (i) (ii) (iii)

0.8 (0.039,0.196,0.438,0.918) 0.978 0.711 0.315 0.272

0.9 (0.035,0.187,0.461,0.929) 1.283 0.715 0.344 0.310

1.0 (0.030,0.186,0.502,0.932) 1.618 0.722 0.377 0.351

1.1 (0.030,0.169,0.512,0.932) 1.958 0.727 0.409 0.389

1.2 (0.028,0.158,0.543,0.942) 2.288 0.737 0.444 0.424

1.3 (0.024,0.152,0.569,0.949) 2.577 0.749 0.476 0.449

1.4 (0.019,0.143,0.598,0.957) 2.788 0.764 0.507 0.455

1.5 (0.015,0.132,0.622,0.961) 2.907 0.778 0.536 0.434

1.6 (0.011,0.127,0.665,0.967) 2.883 0.792 0.563 0.378

1.7 (0.008,0.114,0.690,0.975) 2.674 0.806 0.589 0.288

1.8 (0.004,0.102,0.728,0.985) 2.239 0.814 0.617 0.183

1.9 (0.002,0.087,0.754,0.992) 1.464 0.823 0.664 0.086

Table 3.5.6: Optimal values of pM subject to (3.5.11) - (3.5.13) which minimise the asymp-

totic variance of αpM from an iid process where β = 0.5. Relative asymptotic effi ciencies

to ml estimators are included for (i) optimal pM subject to (3.5.11) - (3.5.13), (ii) optimal

pM subject to (3.5.3) - (3.5.6) and (iii) the standard quantile levels.
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Remark 3.5.1 For α close to 2, the optimal value of pM1 and pM5 approach zero and

one respectively. At moderate sample sizes the asymptotic distribution of the empirical

quantile estimators at these quantile levels may be quite different to the actual distribution.

Consequently the optimal values of pM at moderate sample sizes may also be quite different

from the values calculated using the asymptotic distributions.

Remark 3.5.2 Let

p∗M =
(
p∗M1

, p∗M2
, p∗M3

, p∗M4
, p∗M5

)
(3.5.14)

denote the optimal value of pM for some α, β under restrictions (3.5.11) − (3.5.13) . Then

the optimal value, q∗M , of pM for α,−β under restrictions (3.5.11)− (3.5.13) is given by

q∗M =
(
1− p∗M5

, 1− p∗M4
, p∗M3

, 1− p∗M2
, 1− p∗M1

)
. (3.5.15)

Remark 3.5.3 It is possible to relax the restrictions on pM by removing (3.5.13) . However,

results, not included in this thesis, suggest that this relaxation makes: the optimisation

process much lengthier; more vulnerable to convergence to a local minima and does not

significantly improve the optimal asymptotic variance.

Remark 3.5.4 Naturally, it is only possible to calculate estimates using the optimal value

for pM if the true values of α, β and θ are known. This problem can be overcome by

making an initial estimate for α, β using the standard value for pM and then use the initial

estimates to make a better choice for pM and perhaps improve the quality of estimate for

α, β. However, an infinite range of choices for pM requires an infinite number of lookup

tables for the evaluation of ψ1 and ψ2. In practice, the availability of lookup tables covering

a dozen or so choices for pM would allow improved estimators for many values of α, β and

θ.

A similar optimisation of the asymptotic variances of the quantile-based stable distri-

bution γ parameter estimator is computationally more diffi cult and not attempted here.

However, some optimisation results were achieved under the assumption that α is known

and β is known to be zero. Let γ̂pM denote the estimator for γ using the quantile-based

estimator with quantile levels pM . If α is known and β is known to be zero, then

γ̂pM =
ξ̂pM4

− ξ̂pM2

ξ∗pM4
− ξ∗pM2

(3.5.16)
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α 1.0 1.2 1.4 1.6 1.8 2.0

pM2 0.250 0.212 0.176 0.141 0.107 0.069

Vγ̂;pM /γ
2 2.467 1.855 1.455 1.171 0.952 0.767

Table 3.5.7: Optimal values of pM2 which minimise the asymptotic variance of γ̂pM where

α is known, β is known to be zero and the sample is iid.

where ξ∗pMj
is the pMj th quantile of the S

0
α (0, 1, 0) . Note that under these assumptions ξ∗pMj

is also known and the estimator γ̂pM depends only on ξ̂pM2
and ξ̂pM4

. Let Vγ̂pM denote the

asymptotic variance of γ̂pM . If we further assume that the sample is iid, and that

pM2 = 1− pM4 (3.5.17)

then we have the following formula for Vγ̂;pM

Vγ̂;pM =
pM2 (2pM2 − 1)

2ξ2
pM2

f2
(
ξpM2

) (3.5.18)

where f is the density function of the distribution S0
α (0, γ, 0) . In the special case where

α = 1, i.e. the Cauchy distribution, there exist the following closed form formulae for ξpM2

and f
(
ξpM2

)

ξpM2
= γ tan

(
π

(
pM2 −

1

2

))
, (3.5.19)

f
(
ξpM2

)
=

1

πγ

(
1 +

(
ξpM2

/γ
)2
) . (3.5.20)

For α = 1, the minimum value of Vγ̂;pM is γ2π2/4 occuring at pM2 = 1/4, which, perhaps by

coincidence, was the original choice for pM2 made in McCulloch (1986). Optimal values of

pM2 and the associated minimum values of Vγ̂;pM for various values of α are listed in Table

3.5.7. Optimal values of pM2 for non-iid, sma(1) processes are not recorded here but are

slightly higher than those listed in Table 3.5.7.
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3.6 Estimation of the autocorrelation function of a stable

moving average process

For a finite variance process {Xt} , the autocorrelation function ρ (h) at lag h is defined as

ρ (h) =
Cov [Xt, Xt+h]

V ar [Xt]
. (3.6.1)

However, if {Xt} is an sma(q) process and α < 2, i.e. an infinite variance process, then

V ar [Xt] and possibly Cov [Xt, Xt+h] are infinite, and the definition in (3.6.1) is not applica-

ble. An alternative definition for the autocorrelation function ρ (h) at lag h can be made

where

ρ (h) =

∑∞
j=−∞ θjθj+h∑∞
j=−∞ θ

2
j

, (3.6.2)

which is equivalent to (3.6.1) where α = 2.

Definition 3.6.1 (Sample Autocorrelation Function). The sample autocorrelation

function ρ̂ (h) at lag h from a sample X1, . . . , Xn is given by

ρ̃ (h) =

∑n−h
j=1 XjXj+h∑n

j=1X
2
j

. (3.6.3)

The mean corrected sample autocorrelation function ρ̂ (h) at lag h from a sample X1, . . . , Xn

is given by

ρ̂ (h) =

∑n−h
j=1

(
Xj −X

) (
Xj+h −X

)∑n
j=1

(
Xj −X

)2 , (3.6.4)

where

X = n−1
n∑
j=1

Xj (3.6.5)

is the sample mean.

The sample autocorrelation function ρ̃ (h) was shown to be a consistent estimator of

ρ (h) in (3.6.2) and its asymptotic distribution was derived in Davis and Resnick (1986).

Theorem 3.6.1 Let {Xt} be an sma(q) process, then for any positive integer h(
n

ln (n)

)1/α

(ρ̃ (1)− ρ (1) , . . . , ρ̃ (h)− ρ (h))′
d−→ (Y1, . . . , Yh)′ (3.6.6)
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where

Yk =
∞∑
j=1

(ρ (k + j) + ρ (k − j)− 2ρ (j) ρ (k))Sj/S0, for k = 1, . . . , h, (3.6.7)

S0, S1, . . . are independent stable random variables such that

S0 ∼ S0
α/2

(
1, C

−2/α
α/2 , 0

)
(3.6.8)

Sj ∼ S0
α

(
0, C−1/α

α , 0
)

(3.6.9)

and

Cα =


(1− α)

Γ (2− α) cos (πα/2)
if α 6= 1

2

π
if α = 1

(3.6.10)

Corollary 3.6.1 Let {Xt} be an sma(q) process where 1 < α < 2, then Theorem 3.6.1 also

describes the asymptotic distribution of the mean corrected sample autocorrelation function

by replacing ρ̃ with ρ̂ in (3.6.6).

There are no analytic formulae for the distribution of Yk however, percentiles of the

distribution can be calculated numerically or estimated through simulation. In practice,

the convergence of ρ̂ (h) to its asymptotic distribution is very slow. (Adler et al. (1998))

Let BASY
ρ̂(1) (n, a;α, β) denote the ath percentile of the asymptotic distribution of ρ̂ (1) from

an iid sample of length n and distribution Sα (β, 1, 0) . To illustrate the rate of con-

vergence of ρ̂ (1) to its asymptotic distribution, we calculated ρ̂ (1) from 10, 000 realisa-

tions of iid symmetric stable processes for various values of α and n. For each combina-

tion (α, n) , we calculated the percentage of realisations which were outside the interval[
BASY
ρ̂(1) (n, 2.5;α, β) , BASY

ρ̂(1) (n, 97.5;α, β)
]
, (Table 3.6.1). Note that similar results are re-

ported in Table 4(i) of Adler et al. (1998).

If the finite sample distribution is the same as the asymptotic distribution, then one

would expect the values in Table 3.6.1 to be close to 5%. If a value in Table 3.6.1 is less

than 5%, it indicates that the spread of the finite sample distribution is smaller than the

spread of the asymptotic distribution. The converse applies if the value in Table 3.6.1 is

greater than 5%.

The values in Table 3.6.1 move closer to 5% as n increases though, even for n = 100, 000

it is clear that the finite sample distributions and asymptotic distributions are very different
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α�n 100 300 1, 000 3, 000 10, 000 30, 000 100, 000

1.0 0.00 0.56 1.38 1.72 2.02 2.28 2.92

1.1 0.02 0.59 1.27 1.48 1.96 2.48 2.50

1.2 0.06 0.65 1.35 1.92 2.12 2.18 3.13

1.3 0.19 0.80 1.51 2.09 1.99 2.46 2.71

1.4 0.37 0.86 1.52 1.78 2.12 2.32 2.83

1.5 0.85 1.48 1.73 2.17 2.44 2.74 2.81

1.6 2.13 2.54 2.56 2.84 2.92 3.02 3.14

1.7 5.56 4.76 4.57 4.12 4.47 4.15 4.28

1.8 14.53 11.93 10.05 9.38 8.54 7.85 6.74

1.9 33.23 28.19 26.09 22.71 20.55 19.55 17.02

2.0 4.84 4.69 4.53 4.68 4.86 5.34 4.73

Table 3.6.1: Percentage of ρ (1) estimates from 10,000 realisations of iid stable processes

which lie outside the interval [BASY
ρ̂1

(n, 2.5;α, β), BASY
ρ̂1

(n, 97.5;α, β)].

for most values of α. Curiously, for low values of α, we see the percentages in Table 3.6.1

increasing with n towards 5% and for high values of α, we see the the percentages in Table

3.6.1 decreasing with n towards 5%. There appears to be an "optimal" value in the range

(1.7, 1.8) where the spread of the finite sample distribution and the asymptotic distribution

are fairly close for all n.

In this thesis, we require percentiles of the sample autocovariance function on stable

processes of length n ≤ 720 to use as significance levels for statistical tests. For samples of

that size, it is clear from Table 3.6.1 that percentiles derived from the asymptotic distribu-

tion are only reliable for a very narrow range of values of α. As an alternative to percentiles

from the asymptotic distribution, we can instead use percentiles derived from simulations.

Let Bρ̂(1) (n, a;α, β) denote the ath percentile of the small sample distribution of ρ̂ (1)

from an iid sample of length n and distribution Sα (β, 1, 0) . To estimate values for the

Bρ̂(1) (n, a;α, β) percentiles, we calculate ρ̂ (1) from 100, 000 realisations of iid stable processes

at various values of α and β, (Table 3.6.2). Note that for α < 1, the sample autocorrelation

function ρ̃ (1) without mean correction is used instead of ρ̂ (1) .
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α�β 0.0 0.2 0.4 0.6 0.8 1.0

0.8

 -0.030

0.030

  -0.028

0.030

  -0.022

0.036

  -0.014

0.045

  -0.004

0.058

  0.000

0.075


1.0

 -0.045

0.041

  -0.043

0.042

  -0.041

0.045

  -0.037

0.048

  -0.033

0.053

  -0.029

0.061


1.2

 -0.055

0.052

  -0.055

0.053

  -0.051

0.056

  -0.048

0.058

  -0.043

0.063

  -0.039

0.071


1.4

 -0.063

0.060

  -0.062

0.060

  -0.060

0.061

  -0.057

0.065

  -0.053

0.068

  -0.049

0.074


1.6

 -0.067

0.064

  -0.067

0.065

  -0.065

0.065

  -0.064

0.067

  -0.062

0.070

  -0.059

0.073


1.8

 -0.071

0.068

  -0.071

0.068

  -0.070

0.069

  -0.070

0.069

  -0.069

0.070

  -0.068

0.071


2.0

 -0.075

0.072

 - - - - -

Table 3.6.2: Estimated values of Bρ̂1(n, 2.5;α, β) and Bρ̂1(n, 97.5;α, β) where n = 720. Val-

ues were estimated from simulations consisting of 100,000 realisations of iid stable processes

for each pair (α, β).
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Note that for finite samples where β 6= 0 we observe that the 2.5th and 97.5th simulation

percentiles in Table 3.6.2 can have quite different absolute values. Values of Bρ̂(1) (n, a;α, β)

are symmetric about 0 in β.

3.7 The Q-Statistic for a stable moving average process

Estimation methods such as slad can determine the parameter values of a particular type

of model for any given data, but do not determine whether that type of model is appropriate

for that data. To assess whether a particular type of model is appropriate for the data,

there are a number of what are generically called "goodness of fit" tests. Many goodness of

fit tests attempt to verify one of the following hypotheses:

1. That the residuals of the model belong to a particular distribution type (e.g. Gaussian,

stable, etc);

2. That the residuals of the model are uncorrelated or independent.

For finite variance processes, a popular test for both uncorrelated residuals is the Q-

statistic (Box and Pierce (1970)), which uses the statistic

Qs = n

s∑
h=1

ρ̂2 (h) , s < n (3.7.1)

where ρ̂ (h) is the mean corrected sample autocorrelation function (Definition 3.6.1) at lag

h of the residual process {êj} . Under the null hypothesis that the residuals {êj} are iid, it

can be shown for s suffi ciently large, that

Qs
d−→ χ2

s. (3.7.2)

The Q-statistic can also be used for order identification, by identifying the order of the

proposed model to be the most parsimonious model which has uncorrelated residuals.

For infinite variance processes we can define a Q-statistic in a similar manner although,

the asymptotic distribution given in (3.7.2) no longer applies. Instead we can use the

following result from Runde (1997).
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Theorem 3.7.1 Let X1, X2, . . . be a sequence of iid random variables which belong to

the domain of attraction of a symmetric stable distribution with characteristic exponent α,

1 < α < 2. Then as n→∞,(
n

ln (n)

)2/α s∑
h=1

ρ̂2 (h)
d−→ S2

1 + · · ·+ S2
s

S2
0

(3.7.3)

where S0, S1, . . . are independent with distributions given in (3.6.8) and (3.6.9) .

In Lin and McLeod (2008), it was noted that Theorem 3.7.1 also holds for 0 < α ≤ 1

if we replace in (3.7.3) the mean corrected sample autocorrelation function, ρ̂ (h) , with the

sample autocorrelation function ρ̃ (h).

As discussed in Section 3.6, the convergence of autocorrelation estimators to their as-

ymptotic distributions is very slow. Naturally this also affects the convergence of the Q-

statistic to the asymptotic distribution as given in Theorem 3.7.1. In this thesis, we want

to identify significance levels of the Q-statistic from sma processes of length n ≤ 720. As an

alternative to significance levels derived from the asymptotic distribution, we can instead

use significance levels derived from simulations.

Let BQs (n, a;α, β) denote the ath percentile of the small sample distribution of Qs from

an iid sample of length n and distribution Sα (β, 1, 0) . To estimate values for BQs (n, a;α, β),

we calculate Qs for s = 20 from 100, 000 realisations of iid stable processes at various values

of α and β, (Table 3.7.1).

For α ≥ 1 where the mean corrected autocorrelation estimator is used, the simulated

value of BQs (720, 95;α, β) appears to decrease with α and be largely independent of β. For

α < 1, the simulated value of BQs (720, 95;α, β) appears to be symmetric in β about 0.

Remark 3.7.1 In this thesis, we use BQs (n, 95;α, β) as the 95% significance level for

Q-statistic tests on residuals from models for sma processes with sample size n.

3.8 An alternative method for the order identification of a

stable moving average process

In this section, we consider an alternative to the Q-statistic for the order identification of

a stable moving average process. For a sma(q) process, all autocorrelations at lags greater
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α�β 0.0 0.2 0.4 0.6 0.8 1.0

0.8 39.52 40.49 41.13 43.40 48.63 60.49

1.0 41.35 40.83 41.12 41.07 41.10 41.21

1.2 39.82 39.43 39.73 39.75 39.18 39.19

1.4 36.21 36.49 35.99 36.10 36.07 36.34

1.6 32.81 32.83 32.72 32.57 32.82 32.86

1.8 31.13 30.82 30.91 30.79 30.85 30.82

2.0 31.23 - - - - -

Table 3.7.1: Estimated values of BQs(n, 95;α, β) where n = 720 and s = 20. Values were

estimated from simulations consisting of 100,000 realisations of iid stable processes for each

pair (α, β).

than q are zero. Thus the order of an sma(q) process can be identified as the highest lag

of the sample autocorrelation function which has a value significantly different from zero.

However, there are diffi culties involved with such a method for sma(q) processes in deter-

mining whether or not a lag of a sample autocorrelation function is significantly different

from zero. We have seen in Section 3.6 evidence of the discrepancies between the asymptotic

and finite sample distributions of the sample autocorrelation function. Previous work on

this topic includes: Rosenfeld (1976), who used data clipping to reduce the effects of the

data heavy tails; Adler et al. (1998), who recommended the use of the asymptotic distribu-

tion of ρ̂ (1) for a symmetric iid Cauchy process to determine the statistical significance of

the sample autocorrelation function and Rosadi (2007), who used the codifference function

as an alterative to the autocorrelation function for order identification.

Motivation for the use of the Cauchy asymptotic distribution function to determine the

statistical significance of the sample autocorrelation function is found in the simulation

results in Adler et al. (1998). In this simulation the order is identified of the sma(1) process

Xt = et + θ1et−1 (3.8.1)

where θ1 = −0.8 and {et} is an iid sequence of symmetric stable random variables with

distribution Sα (β, 1, 0). For a sample size n, define the interval ICauchy to be

ICauchy =
[
BASY
ρ̂(1) (n, 2.5; 1, 0) , BASY

ρ̂(1) (n, 97.5; 1, 0)
]
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where BASY
ρ̂(1) (n, a;α, β) denotes the ath percentile of the asymptotic distribution of ρ̂ (1)

from a symmetric iid stable process with distribution Sα (β, 1, 0). For this simulation, 10,000

samples of length 1,000 are generated, the sample autocorrelation function is calculated at

lags 1, 2,. . . , 10 and the order is determined as follows:

1. If ρ̂ (1) lies inside ICauchy, then the order is identified as 0. We denote this as a Type

L misidentification (identified order is lower than true value).

2. Else if any of ρ̂ (2) , . . . , ρ̂ (10) lie outside ICauchy, then the order is identified as the

maximum lag h for ρ̂ (h) satisfies this condition. We denote this as a Type H misiden-

tification (identified order is higher than true value).

3. Otherwise, the order is identified as 1.

Let PC denote the percentage of correct identifications, let PL denote the percentage of

Type L misidentifications and PH the percentage of Type H misidentifications. Naturally,

PC + PL + PH = 100%. (3.8.2)

In Table 6 of Adler et al. (1998) it was reported that values of PC between 83% and 90%

were achieved in correctly identifying the sample as being from an sma(1) process for various

values of the stable distribution parameter α. For this simulation, the true value of

ρ (1) = −0.488 (3.8.3)

and the numerical values of the ICauchy interval are

ICauchy = [−0.086, 0.086] . (3.8.4)

Let Ph denote the probability that ρ̂ (h) lies outside ICauchy, that is

Ph = P {ρ̂ (h) ∈ ICauchy} , (3.8.5)

then P1 > 99.9% for all α ∈ [1, 2] and therefore PL is less than 0.1%. The probabilities

P2, . . . , P10 are between 98% and 99% depending on α and h and therefore PH is approx-

imately
∑10

h=2 100% − Ph which is between 10% and 17% as reported in Table 6 of Adler

et al. (1998). In fact, for this simulation even better results could have been achieved by re-

placing ICauchy with, for example, the interval [−0.150, 0.150] .This change of interval would
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not greatly effect P1 but would reduce the probabilities P2, . . . , P10 and increase the values

of PC to greater than 96% for all α when running the same simulation.

A more useful test of the methods effi cacy, might involve the choice of processes which

have a greater probability of a Type L misidentification. Such processes would have lower

absolute values of the true autocorrelation function. We show that use of the interval

ICauchy is much less successful when applied to such processes and demonstrate that a more

effi cient method is to use an interval derived from the finite sample distribution of IFinite

defined by

IFinite =
[
Bρ̂(1) (n, a1;α, β) , Bρ̂(1) (n, a2;α, β)

]
(3.8.6)

for appropriate choices of a1, a2 where Bρ̂(1) (n, a;α, β) denotes the ath percentile of the small

sample distribution of ρ̂ (1) from an iid sample of length n and distribution Sα (β, 1, 0) .

As discussed in Section 3.6, the convergence of the distribution of ρ̂ (h) to its asymptotic

distribution is very slow. For moderate sample sizes, significance levels derived from the

asymptotic distribution of ρ̂ (h) do not accurately reflect the behaviour of the finite sample

distribution (Table 3.6.1). However, it is possible to use simulations to estimate percentiles

for the finite sample distribution of ρ̂ (h). In Table 3.6.2 estimates of Bρ̂(1) (720, 2.5;α, β)

and Bρ̂(1) (720, 97.5;α, β) are listed for various values of (α, β) .

To demonstrate the effi cacy of the IFinite interval in comparison with the ICauchy interval,

we ran a simulation of 10, 000 realisations of various symmetric sma(1) processes, each of

length 720. For each choice of θ1 and α, the percentages PC and PL are recorded in Table

3.8.1 using both the ICauchy interval and the IFinite interval at various choices for the

percentile levels a1 amd a2 The results in Table 3.8.1 assume that α and β are known.

The misidentification percentages in Table 3.8.1 using the ICauchy are generally fairly

good where θ1 = 0.15 and 0.20 but quite poor where θ1 = 0.10. To help to understand why

that is so, consider the case where θ1 = 0.10, α = 1 and n = 720. Then the true value of

ρ (1) = 0.099 (3.8.7)

and the numerical values of the ICauchy interval are

ICauchy = [−0.113, 0.113] . (3.8.8)

Note the difference between the numerical values in (3.8.4) and (3.8.8) is due to the difference

in the sample sizes. Recall from Theorem 3.6.1, that the values of BASY
ρ̂(1) (n, a;α, β) decrease
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ICauchy IFinite

θ1 α (i) (ii) (iii) (iv) (v)

0.10 1.0
9.06

(89.59)

54.65

(0.89)

65.67

(1.34)

75.27

(2.42)

79.66

(5.18)

10.88

(87.51)

0.10 1.4
20.84

(77.16)

50.50

(3.56)

61.66

(6.49)

67.87

(12.88)

64.75

(23.70)

25.14

(72.36)

0.10 1.8
31.12

(69.27)

42.03

(12.78)

51.70

(18.23)

56.70

(25.56)

56.46

(32.04)

50.76

(44.15)

0.15 1.0
88.01

(3.82)

54.69

(0.36)

66.26

(0.53)

76.60

(0.78)

83.03

(1.07)

88.16

(3.48)

0.15 1.4
84.22

(8.86)

51.88

(0.58)

64.72

(1.01)

76.14

(1.63)

82.33

(2.50)

85.14

(7.45)

0.15 1.8
81.47

(14.46)

47.28

(0.71)

62.05

(1.23)

73.61

(2.18)

79.90

(3.28)

85.19

(5.85)

0.20 1.0
90.93

(0.82)

53.75

(0.11)

65.61

(0.15)

76.93

(0.24)

83.61

(0.34)

90.80

(0.78)

0.20 1.4
90.65

(1.19)

50.90

(0.19)

64.31

(0.29)

76.33

(0.35)

83.46

(0.47)

90.38

(1.09)

0.20 1.8
95.39

(1.26)

47.32

(0.06)

62.20

(0.11)

74.35

(0.18)

82.38

(0.20)

90.51

(0.35)

Table 3.8.1: Order identification of various sma(1) processes from a sample of length 720.

Reported in this table are the percentage of correct identifications, PC and the percentage

of Type L misidentifications, PL, in ( ). Identification is conducted using the ICauchy

interval and the IFinite interval where (a1, a2) is (i) (4.0%, 96.0%), (ii) (2.5%, 97.5%), (iii)

(1.5%, 98.5%), (iv) (1.0%, 99.0%) and (v) (0.5%, 99.5%),
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in absolute value with the sample size n, at the rate
(

log n

n

)1/α

. Clearly, the probability

that ρ̂ (1) lies within ICauchy and consequently PL is very high. In this case the numerical

values of the IFinite interval are

IFinite = [−0.080, 0.074] , for (a1, a2) = (1.0%, 99.0%) . (3.8.9)

The reduction in size of the IFinite interval compared to the ICauchy interval is suffi cient to

reduce PL from 89.59% to 5.18%.

For all processes, the misidentification percentages in Table 3.8.1 using IFinite with

(a1, a2) = (0.5%, 99.5%) are similar to those using ICauchy. The percentage of correct iden-

tifications using IFinite with (a1, a2) = (1.0%, 99.0%) is higher than using IFinite with values

of (a1, a2) closer to 50%. Where the values of (a1, a2) closer to 50%, the percentage of cor-

rect identifcations is reduced by an increase in the percentage of Type H misidentifications.

The optimal value for the IFinite percentile levels is dependent on θ1, α, to a lesser extent

on β and also on the sample size. However, a choice of (a1, a2) = (1.0%, 99.0%) appears to

work reasonably well for many of the sma(1) processes tested here.

The correct identification of a sma(2) process requires that both ρ̂ (1) and ρ̂ (2) lie outside

the designated interval, thus increasing the vulnerability to Type L misidentifications. A

simulation of 10, 000 realisations of various symmetric sma(2) processes, each of length 720,

was used to compare the order identification performance using the ICauchy interval and

the IFinite interval where (a1, a2) = (1.0%, 99.0%) , (Table 3.8.2). The results in Table 3.8.2

assume that α and β are known.

Of the ten sma(2) processes reported in Table 3.8.2, the value for PC obtained using

the IFinite interval is substantially higher than that obtained using ICauchy interval for four

processes, marginally higher for three processes and marginally lower for three processes.

Comparisons are not greatly affected by α. Neither method handles well the sma(2) process

where (θ1, θ2) = (−0.1,−0.4) and the true autocorrelation function is given by

ρ (1) = −0.051, (3.8.10)

ρ (2) = −0.342. (3.8.11)

Remark 3.8.1 In this thesis, we use the interval

IFinite =
[
Bρ̂(1) (n, 1.0;α, β) , Bρ̂(1) (n, 99.0;α, β)

]
(3.8.12)
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α = 1.0 α = 1.4 α = 1.8

(θ1, θ2) ICauchy IFinite ICauchy IFinite ICauchy IFinite

(0.4, 0.2)
89.71

(2.93)

83.24

(1.01)

87.62

(5.23)

82.00

(1.71)

86.61

(8.46)

76.48

(1.86)

(−0.4,−0.2)
89.61

(2.83)

83.72

(1.34)

87.86

(4.71)

83.18

(1.62)

88.41

(7.52)

79.51

(2.08)

(−0.3, 0.1)
6.76

(91.93)

76.85

(10.93)

15.51

(82.82)

53.28

(37.77)

24.17

(74.17)

46.48

(42.05)

(0.3,−0.1)
6.46

(92.46)

72.41

(16.66)

15.22

(83.13)

45.90

(46.48)

25.67

(73.50)

45.75

(45.22)

(0.2,−0.3)
80.43

(13.46)

84.03

(1.57)

68.29

(26.41)

80.84

(4.82)

63.80

(33.55)

76.27

(6.92)

(−0.2, 0.3)
90.95

(1.10)

84.08

(0.61)

91.79

(0.90)

83.94

(0.54)

95.18

(0.50)

80.16

(0.17)

(0.1, 0.4)
70.19

(24.43)

81.48

(3.77)

56.60

(38.52)

73.16

(13.35)

51.60

(45.70)

61.82

(22.29)

(−0.1,−0.4)
0.56

(99.17)

2.21

(96.47)

0.83

(98.97)

2.68

(95.95)

1.06

(98.78)

5.67

(91.72)

(0.2, 0.1)
7.83

(90.57)

79.53

(7.95)

18.13

(79.91)

59.92

(30.35)

27.91

(71.09)

53.25

(36.67)

(−0.2,−0.1)
7.30

(91.52)

77.29

(11.07)

16.76

(81.51)

53.39

(37.63)

26.50

(72.49)

49.12

(40..87)

Table 3.8.2: Order identification of various sma(2) processes from a sample of length 720.

Reported in this table are the percentage of correct identifications, PC , and the percentage

of Type L misidentifications, PL, in ( ). Identification is conducted using the ICauchy interval

and the IFinite interval where (a1, a2) is (1.0%, 99.0%).
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for all order identification tests on sma processes. We refer to an order identification test

using this interval as an extended Adler test.

3.9 Simulation

In this section we present the results of simulations which demonstrate the use of the

methods described in this chapter for the estimation of the parameters of a stable moving

average process. For selected set of values α, β, and θ1 a simulation is run where 2,000

realisations of an sma(1) process each of length 720 are generated . The parameters γe = 2

and δe = 1 are fixed for all simulations. All stable distribution parameter estimations are

done using the standard quantile levels,

pM = (0.05, 0.25, 0.50, 0.75, 0.95) . (3.9.1)

Estimates for the parameters α, β, γ, δ and θ1 are calculated for each realisation.

The mean and variance of these estimates across all realisations of a particular simulation

are then compared with the true parameter values and the asymptotic variance of the

estimators. The results for α, β, γ, δ and θ1 are reported respectively in Tables 3.9.1, 3.9.2,

3.9.3, 3.9.4 and 3.9.5.

In each case the mean value of the estimator across all realisations is within one stan-

dard deviation of the true parameter value and is generally much closer than that. The

normalised variance (i.e. the variance multiplied by the sample size) across all realisations

is reasonably close to the asymptotic variance. Note that for θ̂1 we are unable to calculate

a true asymptotic variance and instead substitute the mean of the estimated asymptotic

variance across all realisations.

The normalised variance of α̂ where α = 1.8 appears to be slightly less than the as-

ymptotic variance. This is due to the truncation of all α̂ estimates into the range (0, 2] .

A similar effect is seen with β̂ estimates where α = 1.8 and βe = 0.5. Estimates of β̂

where α = 1.8 are the least precise. This is to be expected as the asymptotic variance of β̂

increases to ∞ as α increases to 2.

For each of the selected sma(1) processes and for each of the estimators α̂, β̂, γ̂ and δ̂

the asymptotic variance of the estimator is higher for θ1 = 0.2 than for θ1 = 0.0 and higher

still for θ1 = 0.4. The effect of increases in θ1 on the asymptotic variance of the estimators
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θ1 = 0.0 θ1 = 0.2 θ1 = 0.4

α β (i) (ii) (i) (ii) (i) (ii)

1.2 0.0
1.195

(0.061)

2.682

[2.555]

1.195

(0.063)

2.891

[2.740]

1.194

(0.068)

3.322

[3.200]

1.2 0.2
1.196

(0.062)

2.746

[2.833]

1.199

(0.067)

3.224

[3.040]

1.198

(0.072)

3.702

[3.568]

1.2 0.5
1.202

(0.076)

4.134

[3.975]

1.201

(0.076)

4.204

[4.257]

1.200

(0.084)

5.074

[5.058]

1.5 0.0
1.503

(0.076)

4.105

[3.852]

1.504

(0.079)

4.472

[3.984]

1.502

(0.080)

4.604

[4.348]

1.5 0.2
1.504

(0.078)

4.346

[4.076]

1.506

(0.081)

4.693

[4.217]

1.505

(0.087)

5.466

[4.611]

1.5 0.5
1.505

(0.087)

5.384

[5.207]

1.506

(0.091)

5.907

[5.384]

1.506

(0.094)

6.375

[5.919]

1.8 0.0
1.808

(0.108)

8.389

[9.471]

1.809

(0.107)

8.160

[9.544]

1.809

(0.109)

8.495

[9.783]

1.8 0.2
1.810

(0.109)

8.515

[9.536]

1.808

(0.110)

8.678

[9.611]

1.806

(0.109)

8.614

[9.853]

1.8 0.5
1.809

(0.106)

8.083

[9.902]

1.808

(0.108)

8.353

[9.981]

1.809

(0.110)

8.669

[10.24]

Table 3.9.1: Simulation results for the estimation of α from selected sma(1) processes.

Reported in this table for each process are (i) the mean and standard deviation, in ( ), of

α̂ across all realisations and (ii) the variance of α̂ across all realisations multiplied by the

sample size T and the true asymptotic variance, in [ ].
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α̂, β̂, γ̂ and δ̂ appears to decrease as α increases and is more significant for γ̂ and δ̂ than

for α̂ and β̂. From additional simulation results not included in this thesis, we observe that

the asymptotic variance of γ̂ appears symmetric in θ1 about zero however, that does not

appear to be the case for α̂, β̂ and δ̂ where more complicated relationships exist between

the asymptotic variances and the parameter values.

These simulations provide some confidence that the estimators discussed in this appen-

dix, are an unbiased method for the estimation of stable distribution parameters from an

sma(1) process and that the asymptotic variance provides a reasonable approximation for

estimator variance at sample sizes equal to 720.

At present we have no method for calculating the asymptotic covariance of ω̂ and θ̂ how-

ever, we can use simulations to estimate its value. Each simulation contains 2000 realisations

of an sma(1) process of length 720 where θ1 takes values from the set {−0.9,−0.8, . . . , 0.9} ,

ω = (α, 0, 2, 1) and α takes values from the set {1.2, 1.5, 1.8} . For each realisation of a

process, the estimates ω̂ and θ̂1 are calculated. The correlation of ω̂ and θ̂1 is calculated

across all realisations of each process, (Figure 3.9.1).

The estimators β̂ and δ̂ appear uncorrelated with θ̂1. There appears to be a small

correlation between α̂ and θ̂1 and a slightly larger correlation between γ̂ and θ̂1. In both

cases the correlation appears to increase with α and be most significant at θ1 ≈ ±0.4 where

the absolute values of the simulated correlation γ̂ and θ̂1 approaches 0.2 and between γ̂

and θ̂1 approaches 0.4. Additional simulations were run with non-zero values of β. The

correlations from those simulations were not significantly different to those reported here

from simulations with zero values of β and are not reported here.
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θ1 = 0.0 θ1 = 0.2 θ1 = 0.4

α β (i) (ii) (i) (ii) (i) (ii)

1.2 0.0
0.000

(0.105)

7.961

[8.684]

0.002

(0.121)

10.46

[10.91]

0.001

(0.131)

12.30

[12.94]

1.2 0.2
0.193

(0.101)

7.408

[7.677]

0.196

(0.113)

9.230

[9.657]

0.194

(0.124)

11.03

[11.44]

1.2 0.5
0.498

(0.082)

4.866

[4.223]

0.495

(0.089)

5.751

[5.199]

0.494

(0.098)

6.852

[6.046]

1.5 0.0
-0.001

(0.127)

11.60

[11.67]

0.001

(0.140)

14.10

[13.27]

0.000

(0.151)

16.44

[15.52]

1.5 0.2
0.202

(0.140)

14.06

[11.16]

0.204

(0.139)

13.88

[12.60]

0.203

(0.151)

16.33

[14.63]

1.5 0.5
0.525

(0.147)

15.44

[11.44]

0.522

(0.152)

16.70

[12.24]

0.520

(0.156)

17.57

[13.45]

1.8 0.0
−0.008

(0.367)

97.20

[53.62]

0.008

(0.369)

97.76

[55.74]

0.000

(0.375)

101.5

[60.59]

1.8 0.2
0.223

(0.367)

97.40

[63.83]

0.202

(0.381)

104.4

[65.85]

0.186

(0.380)

104.1

[70.58]

1.8 0.5
0.488

(0.334)

80.51

[118.5]

0.488

(0.347)

86.49

[120.0]

0.484

(0.353)

89.85

[124.1]

Table 3.9.2: Simulation results for the estimation of β from selected sma(1) processes.

Reported in this table for each process are (i) the mean and standard deviation, in ( ), of

β̂ across all realisations and (ii) the variance of β̂ across all realisations multiplied by the

sample size T and the true asymptotic variance, in [ ]. Note that β = βe for all processes

reported in this table.
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θ1 = 0.0 θ1 = 0.4

α β γ (i) (ii) γ (i) (ii)

1.2 0.0 2.000
1.991

(0.104)

7.751

[7.983]
2.541

2.523

(0.153)

16.82

[16.32]

1.2 0.2 2.000
1.992

(0.112)

9.000

[8.648]
2.541

2.535

(0.156)

17.58

[17.52]

1.2 0.5 2.000
2.001

(0.123)

10.83

[10.80]
2.541

2.543

(0.171)

21.14

[21.15]

1.5 0.0 2.000
2.000

(0.097)

6.822

[6.553]
2.325

2.322

(0.120)

10.32

[10.45]

1.5 0.2 2.000
1.997

(0.094)

6.290

[6.633]
2.325

2.318

(0.120)

10.37

[10.54]

1.5 0.5 2.000
2.000

(0.098)

6.838

[6.877]
2.325

2.321

(0.125)

11.24

[10.77]

1.8 0.0 2.000
2.000

(0.093)

6.162

[6.272]
2.205

2.204

(0.108)

8.407

[8.482]

1.8 0.2 2.000
2.000

(0.094)

6.417

[6.267]
2.205

2.200

(0.108)

8.378

[8.473]

1.8 0.5 2.000
2.003

(0.093)

6.146

[6.227]
2.205

2.210

(0.111)

8.799

[8.408]

Table 3.9.3: Simulation results for the estimation of γ from selected sma(1) processes.

Reported in this table for each process are (i) the mean and standard deviation, in ( ), of

γ̂ across all realisations and (ii) the variance of γ̂ across all realisations multiplied by the

sample size T and the true asymptotic variance, in [ ].
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θ1 = 0.0 θ1 = 0.4

α β δ (i) (ii) δ (i) (ii)

1.2 0.0 1.000
0.998

(0.130)

12.15

[13.05]
1.400

1.398

(0.194)

27.04

[28.32]

1.2 0.2 1.000
1.003

(0.134)

12.95

[13.19]
1.559

1.558

(0.197)

27.97

[28.62]

1.2 0.5 1.000
1.001

(0.139)

14.00

[14.11]
1.798

1.812

(0.208)

31.15

[30.41]

1.5 0.0 1.000
1.001

(0.143)

14.73

[15.49]
1.400

1.397

(0.200)

28.71

[27.46]

1.5 0.2 1.000
1.005

(0.148)

15.73

[15.61]
1.495

1.500

(0.198)

28.22

[27.68]

1.5 0.5 1.000
0.993

(0.150)

16.27

[16.58]
1.638

1.633

(0.201)

29.09

[29.24]

1.8 0.0 1.000
0.997

(0.160)

18.49

[19.50]
1.400

1.395

(0.202)

29.35

[30.46]

1.8 0.2 1.000
1.010

(0.159)

18.15

[19.61]
1.439

1.454

(0.199)

28.62

[30.59]

1.8 0.5 1.000
1.018

(0.160)

18.35

[20.10]
1.497

1.512

(0.203)

29.80

[31.24]

Table 3.9.4: Simulation results for the estimation of δ from selected sma(1) processes.

Reported in this table for each process are (i) the mean and standard deviation, in ( ), of

δ̂ across all realisations and (ii) the variance of δ̂ across all realisations multiplied by the

sample size T and the true asymptotic variance, in [ ].
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θ1 = 0.0 θ1 = 0.2 θ1 = 0.4

α β (i) (ii) (i) (ii) (i) (ii)

1.2 0.0
0.000

(0.016)

0.175

[0.164]

0.200

(0.014)

0.145

[0.132]

0.400

(0.012)

0.100

[0.088]

1.2 0.2
0.000

(0.016)

0.181

[0.172]

0.200

(0.014)

0.143

[0.137]

0.400

(0.011)

0.092

[0.090]

1.2 0.5
0.000

(0.017)

0.219

[0.193]

0.200

(0.015)

0.168

[0.153]

0.400

(0.014)

0.132

[0.101]

1.5 0.0
-0.001

(0.028)

0.582

[0.594]

0.200

(0.027)

0.530

[0.530]

0.400

(0.024)

0.401

[0.402]

1.5 0.2
0.000

(0.029)

0.624

[0.596]

0.199

(0.028)

0.551

[0.542]

0.400

(0.024)

0.412

[0.412]

1.5 0.5
0.000

(0.029)

0.607

[0.618]

0.200

(0.027)

0.529

[0.554]

0.400

(0.024)

0.410

[0.419]

1.8 0.0
-0.003

(0.041)

1.226

[1.236]

0.197

(0.040)

1.160

[1.160]

0.398

(0.037)

0.983

[0.962]

1.8 0.2
-0.002

(0.041)

1.202

[1.238]

0.199

(0.040)

1.162

[1.161]

0.399

(0.036)

0.960

[0.965]

1.8 0.5
-0.001

(0.043)

1.304

[1.241]

0.200

(0.041)

1.185

[1.161]

0.400

(0.037)

0.971

[0.966]

Table 3.9.5: Simulation results for the estimation of θ1 from selected sma(1) processes.

Reported in this table for each process are (i) the mean and standard deviation, in ( ), of

θ̂1 across all realisations and (ii) the variance of θ̂1 across all realisations multiplied by the

sample size T and the mean estimated asymptotic variance across all realisations, in [ ].
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Figure 3.9.1: Estimated correlation of the ω̂ and θ̂1 estimators from selected symmetric

sma(1) processes: (a) between α̂ and θ̂1, (b) between β̂ and θ̂1, (c) between γ̂ and θ̂1 and

(d) between δ̂ and θ̂1.



Chapter 4

Estimation of the log quantile

difference of the temporal

aggregation an SMA(q) process

4.1 Introduction

In this chapter, three different estimators are proposed for the estimation of the log quantile

difference, ζ(r)
p , of the temporal aggregation of an sma(q) process. These estimators are

referred to as the non-parametric, parametric and analytic log quantile difference estimators.

Each of these estimators is asymptotically normal. Asymptotic variances are derived for

each of these estimators based on the results presented in Chapters 2 and 3.

The parametric lqd estimator, ζ̃
(r)

p , can be applied to a sample taken from any sma(q)

process. The estimators

ω̂(1) =
(
α̂, β̂

(1)
, γ̂(1)

)′
(4.1.1)

and

θ̂ =
(
θ̂1, . . . , θ̂q

)′
(4.1.2)

defined in Section 3.3 and Appendix C.3 respectively are combined in Section 4.2 to provide

an estimator

ω̂(r) =
(
α̂, β̂

(r)
, γ̂(r)

)′
(4.1.3)

for the stable distribution parameters of the temporal aggregation of an sma(q) process. In

79
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Section 4.3, the stable distribution parameter estimates ω̂(r) are then used to construct the

parametric lqd estimator.

The asymptotic variance of parametric lqd estimator, ζ̃
(r)

p , depends on the asymptotic

correlation of the estimators ω̂(1) and θ̂. No formula exists for the asymptotic correlation

of the estimators ω̂(1) and θ̂. Simulations reported in Section 3.9 suggest that a modest

correlation exists between θ̂ and both α̂ and γ̂(1) and a negligible correlation between θ̂ and

β̂
(1)
. In Section 4.4, an investigation is conducted into the effect of this correlation on the

asymptotic variance of parametric lqd estimator.

In Section 4.5, the non-parametric lqd estimator, ζ̂
(r)

p , is defined as a function of the

empirical quantile estimators. The non-parametric lqd estimator can be applied to a sample

from any φ - mixing process and does not require that the process has a stable distribution.

The non-parametric lqd estimator has computational advantages over the parametric lqd

estimator however, it suffers from a loss of effi ciency at aggregation levels greater than one

due to the effective reduction in sample size. At aggregation level equal to one, there are

situations where the non-parametric lqd estimator is more effi cient that the parametric

lqd estimator. In Section 4.6, an investigation is conducted into the relationship between

the relative asymptotic effi ciency of these estimators and the quantile levels pM used in the

construction of ω̂(1).

The analytic lqd estimator, ζ̌
(r)
p , can be applied to a sample taken from sma(q) processes

which satisfy the conditions for Corollary 2.2.2, i.e. those sma(q) processes where β(r) =

β and r ≥ q. Where those conditions are satisfied, Corollary 2.2.2 provides a formula

for the analytic lqd estimator in terms of α̂, θ̂ and the non-parametric lqd estimator at

aggregation level one, ζ̂
(1)

p . Where applicable, the analytic and parametric lqd estimators

return the same estimates however, the analytic lqd estimator has minor computational

advantages over the parametric lqd estimator. The analytic lqd estimator does not require

the calculation of the estimators β̂
(1)
and γ̂(1) and a formula is provided in Section 4.8 for

the asymptotic covariance of α̂ and ζ̂
(1)

p .

The results of simulations are reported in Section 4.9 which demonstrate the use of the

methods described in this chapter.
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4.2 Estimation of the stable distribution parameters of the

temporal aggregation of an SMA(q) process

Let {Xt} be the sma(q) process (Definition 1.2.2),

Xt =

q∑
j=0

θjet−j (4.2.1)

where θ0 = 1 and {et} is an iid sequence of stable random variables such that

et ∼ S0
α (βe, γe, δe) (4.2.2)

using the S0 parameterisation of stable random variables in Nolan (1998). Let θ denote the

q + 1 dimensional vector of moving average parameters

θ = (θ0, . . . , θq)
′ . (4.2.3)

Let
{
S

(r)
t

}
denote the temporal aggregation (Definition 1.1.3) of {Xt} at aggregation level

r

S
(r)
t =

r−1∑
i=0

Xt−i. (4.2.4)

Note that

S
(1)
t = Xt. (4.2.5)

As shown in Theorem 2.2.1, the base process {Xt} and aggregated process
{
S

(r)
t

}
both

have a stable distribution. We denote the stable distribution parameters of the aggregated

process by

S
(r)
t ∼ S0

α

(
β(r), γ(r), δ(r)

)
. (4.2.6)

Let ζ(r)
p denote the log quantile difference (Definition 1.2.1) of the aggregated process,{

S
(r)
t

}
at quantile level

p = (p1, p2) . (4.2.7)

In Chapter 2, formulae were derived for the calculation of the log quantile difference of

the temporal aggregation of a stable moving average process. In Chapter 3, asymptotically

normal estimators for θ and

ω(1) =
(
α, β(1), γ(1)

)′
(4.2.8)
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were defined. For the remainder of this thesis we omit the parameter δ(1) from the vector

of parameters ω(1) in (4.2.8) since the log quantile difference ζ(r)
p is independent of δ(1). In

this section we define an estimator for the stable distribution parameters

ω(r) =
(
α, β(r), γ(r)

)′
(4.2.9)

of the temporal aggregation of an sma(q) process derived from the estimators for the stable

distribution parameters, ω(1), and an estimator for the moving average parameters, θ. This

estimator is based on the results from Theorem 2.2.1. It is convenient to use the symbol κ

to denote the vector of parameters

κ =
(
α, β(1), γ(1), θ1, . . . , θq

)′
. (4.2.10)

Let C(r)
1 (κ) , C2 (κ) , C

(r)
3 (κ) and C4 (κ) denote the following

C
(r)
1 (κ) =

r+q−1∑
j=0

∣∣∣c(r)
j

∣∣∣α , (4.2.11)

C2 (κ) =

q∑
j=0

|θj |α , (4.2.12)

C
(r)
3 (κ) =

r+q−1∑
j=0

sign
(
c

(r)
j

) ∣∣∣c(r)
j

∣∣∣α , (4.2.13)

C4 (κ) =

q∑
j=0

sign (θj) |θj |α (4.2.14)

where c(r)
j are the moving average parameters of the aggregated process given in Theorem

2.2.1,

c
(r)
j =

min(j,q)∑
k=max(j−r+1,0)

θk. (4.2.15)

Where appropriate, we may simply refer to C(r)
1 (κ) , C2 (κ) , C

(r)
3 (κ) and C4 (κ) as C(r)

1 , C2, C
(r)
3

and C4 respectively.

Using this notation we can modify equations (2.2.4) and (2.2.5) to obtain

γ(r) =

(
C

(r)
1

C2

)1/α

γ(1) (4.2.16)

and if C4 6= 0

β(r) =
C2C

(r)
3

C
(r)
1 C4

β(1). (4.2.17)
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Note that C(r)
1 and C2 are always strictly positive.

Let κ̂ denote the estimator of κ,

κ̂ =
(
ω̂(1)′, θ̂

)′
(4.2.18)

where

ω̂(1) =
(
α̂, β̂

(1)
, γ̂(1)

)′
(4.2.19)

is the quantile-based stable distribution parameter estimator of ω(1) defined in Section 3.3

and

θ̂ =
(
θ̂1, . . . , θ̂q

)
(4.2.20)

is the slad moving average parameter estimator of θ defined in Appendix C.3. Let κ0

denote the true value of the parameter κ. The asymptotic distribution of κ̂ is given in the

following theorem.

Theorem 4.2.1 Let κ0 denote the true value of the parameter κ. As the the sample size

T →∞ the asymptotic distribution of κ̂ is given by
√
T (κ̂ − κ0)

d−→ N (0, Vκ̂) (4.2.21)

where

Vκ̂ =

 V
ω̂(1)

V ′
ω̂(1),θ̂

V
ω̂(1),θ̂

V
θ̂

 , (4.2.22)

and V
ω̂(1)

is given in (3.3.20) and V
θ̂
is given in (C.3.9) .

Proof. This theorem follows from the asymptotic distributions of ω̂(1) and θ̂ established

in Theorems 3.3.1 and C.3.1 respectively.

There is no formula for V
ω̂(1),θ̂

though, the simulation results in Section 3.9, suggest that

the true values are close to zero. An investigation on the effects of various assumptions

for V
ω̂(1),θ̂

on the asymptotic variance of log quantile difference estimators is provided in

Section 4.4

We are now able to define our estimator ω̂(r) of ω(r).

Definition 4.2.1 (Aggregated Stable Distribution Parameter Estimator - ω̂(r)). If

C4 (κ̂) 6= 0, then the estimator ω̂(r) of the stable distribution parameters of the aggregated

process
{
S

(r)
t

}
is given by

ω̂(r) =
(
α̂, β̂

(r)
, γ̂(r)

)′
(4.2.23)
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where

β̂
(r)

=
C2 (κ̂)C

(r)
3 (κ̂)

C
(r)
1 (κ̂)C4 (κ̂)

β̂
(1)

(4.2.24)

and

γ̂(r) =

(
C

(r)
1 (κ̂)

C2 (κ̂)

)1/α

γ̂(1). (4.2.25)

In the following theorem, we derive the asymptotic distribution of ω̂(r).

Theorem 4.2.2 Let κ0 denote the true value of the parameters κ and let ω
(r)
0 denote the

true value of the parameters ω(r). If

C
(r)
3 (κ0) 6= 0, (4.2.26)

C4 (κ0) 6= 0 (4.2.27)

and

either α ≥ 1 (4.2.28)

or c(r)
j 6= 0, for j = 0, . . . , r + q − 1 and θj 6= 0, for j = 1, . . . , q,

then the asymptotic distribution of ω̂(r) is given by

√
T
(
ω̂(r) − ω(r)

0

)
d−→ N

(
0, V

ω̂(r)
)

(4.2.29)

where

V
ω̂(r)

= D
ω̂(r)

Vκ̂D
′
ω̂(r)

(4.2.30)

and

D
ω̂(r)

=

[
∂ω̂(r)

∂κ̂j
|κ̂=κ0

]
j=1:3+q

(4.2.31)

and T is the sample size.

Proof. See Appendix A.2.

Remark 4.2.1 The requirement in Theorem 4.2.2 that C(r)
3 (κ0) 6= 0 is a suffi cient condi-

tion to ensure that the estimator β̂
(r)
has a non-zero differential at κ̂ = κ0. A necessary

condition has not been established. Without this requirement, the estimator β̂
(r)
still has a

differential, but it may be zero. For the application in this thesis, the estimated values of

C
(r)
3 are always positive. For example, it can be shown that C(r)

3 (κ0) > 0, where r ≥ 2 for

all invertible sma(2) processes.
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Remark 4.2.2 The requirement in Theorem 4.2.2 that C4 (κ0) 6= 0, is a necessary condi-

tion to ensure that the estimator β̂
(r)
is well defined for r > 1. If C4 (κ0) = 0, then β(1) = 0

even though β and β(r) may not equal zero. For the application in this thesis, the estimated

values of C4 are always positive. A graphical illustration of the values of C4 for various

invertible sma(2) processes is provided in Figure 4.2.1. For an invertible sma(2) process

with α ≥ 1 and θ1 > −1, C4 (κ) is always greater than zero.

Remark 4.2.3 The requirement in Theorem 4.2.2 that either α ≥ 1 or c(r)
j 6= 0, for j =

0, . . . , r + q − 1 and θj 6= 0, for j = 1, . . . , q is a necessary condition to ensure that the

partial derivatives
∂β̂

(r)

∂θ̂k
and

∂γ̂(r)

∂θ̂k
to exist. For the application in this thesis, the values of

the estimator α̂ are greater than one and therefore this requirement is satisfied.

4.3 Parametric estimation of the log quantile difference of

the temporal aggregation of an SMA(q) process

In this section we define an estimator for the log quantile difference of the temporal aggre-

gation of an sma(q) process using the stable distribution parameter estimators, ω̂(r), of the

aggregated process defined in Section 4.2. Let p = (p1, p2) , then for j = 1, 2, let ξ(r)
pj denote

the pjth quantile of the stable distribution function S0
α

(
β(r), γ(r), δ(r)

)
. Define the location

adjusted quantile

ξ∗(r)pj = ξ(r)
pj − δ

(r). (4.3.1)

Note that ξ∗(r)pj is the pjth quantile of the stable distribution function S0
α

(
β(r), γ(r), 0

)
,

(Lemma E.1.1).

Definition 4.3.1 (Parametric Quantile Estimator - ξ̃
∗(r)
pj ). The estimator ξ̃

∗(r)
pj of

ξ
∗(r)
pj is defined to be the pjth quantile of the distribution function S0

α̂

(
β̂

(r)
, γ̂(r), 0

)
where

ω̂(r) =
(
α̂, β̂

(r)
, γ̂(r)

)′
(4.3.2)

is as defined in Definition 4.2.1.

We use the tilde superscript for ξ̃
∗(r)
pj to distinguish the parametric quantile estimator

from the empirical quantile estimator, ξ̂pj , (Definition 3.2.2). Use of the location adjusted
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Figure 4.2.1: A graphical display of the categorisation of the invertibility region of the

sma(2) process with respect to the sign of C4(κ) into positive (blue), zero (green) and

negative (red) regions for (a) α = 0.5, (b) α = 1.0, (c) α = 1.5 and (d) α = 2.0.
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quantile, ξ∗(r)pj , rather than the quantile, ξ(r)
pj , means that it is not necessary to include

estimators for δ(r) in the vector of stable distribution parameters ω̂(r).

Definition 4.3.2 (Parametric Log Quantile Diff erence Estimator - ζ̃
(r)

p ). The esti-

mator ζ̃
(r)

p of the lqd at quantile levels p = (p1, p2) , where 0 < p1 < p2 < 1, of the temporal

aggregation,
{
S

(r)
t

}
, of an sma(q) process {Xt} is given by

ζ̃
(r)

p = ln
(
ξ̃
∗(r)
p2 − ξ̃

∗(r)
p1

)
(4.3.3)

where ξ̃
∗(r)
pj is the parametric quantile estimators (Definition 4.3.1) of

{
S

(r)
t

}
at quantile

level pj , j = 1, 2.

Let ω(r)
0 denote the true value of the parameters ω(r). It was shown in Theorem 4.2.2,

that under certain conditions as the sample size T →∞
√
T
(
ω̂(r) − ω(r)

0

)
d−→ N

(
0, V

ω̂(r)
)
. (4.3.4)

In the following theorem, we derive the asymptotic distribution of ζ̃
(r)

p .

Theorem 4.3.1 If the properties of
{
S

(r)
t

}
are such that the assumptions of Theorem 4.2.2

are satisfied, then as the sample size T →∞
√
T
(
ζ̃

(r)

p − ζ
(r)
p;0

)
d−→ N

(
0, V

ζ̃
(r)
p

)
(4.3.5)

where

V
ζ̃
(r)
p

= D
ζ̃
(r)
p

D
ξ̃
∗(r)
p

V
ω̂(r)

D′
ξ̃
∗(r)
p

D′
ζ̃
(r)
p

(4.3.6)

and

D
ζ̃
(r)
p

=

 ∂ζ̃(r)

p

∂ξ̃
∗(r)
pi

|
ξ̃
∗(r)
pi

=ξ
∗(r)
pi


i=1,2

(4.3.7)

and

D
ξ̃
∗(r)
p

=

∂ξ̃∗(r)pi

∂ω̂
(r)
j

|
ω̂(r)=ω

(r)
0


i=1,2;j=1,...,3

. (4.3.8)

Proof. See Appendix A.3.

No closed form formula exists for the partial derivative matrix D
ξ̃
∗(r)
p

and consequently

it needs to be calculated numerically. To approximate
∂ξ̃
∗(r)
p1

∂α̂
, we use the difference equation

∂ξ̃
∗(r)
p1

∂α̂
≈
ξ̃
∗(r)
p1 |α̂=α+∆α −ξ̃

∗(r)
p1 |α̂=α−∆α

2∆α
(4.3.9)
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for a suitable choice of ∆α with similar equations for the other elements of D
ξ̃
∗(r)
p

.

4.4 Effect of the correlation between ω̂(1) and θ̂ on the asymp-

totic variance of the parametric log quantile difference

estimator ζ̃
(r)

p

Combining the results of Theorems 4.2.2 and 4.3.1, we have under certain conditions that

the asymptotic distribution of the parametric log quantile difference estimator, ζ̃
(r)

p is given

by

√
T
(
ζ̃

(r)

p − ζ(r)
p

)
d−→ N

(
0, V

ζ̃
(r)
p

)
(4.4.1)

where

V
ζ̃
(r)
p

= D
ζ̃
(r)
p

D
ξ̃
∗(r)
p

D
ω̂(r)

Vκ̂D
′
ω̂(r)

D′
ξ̃
∗(r)
p

D′
ζ̃
(r)
p

(4.4.2)

and Vκ̂ is the asymptotic covariance matrix of

κ̂ =
(
ω̂(1)′, θ̂

′)′
(4.4.3)

where

ω̂(1) =
(
α̂, β̂

(1)
, γ̂(1)

)′
, (4.4.4)

θ̂ =
(
θ̂1, . . . , θ̂q

)
(4.4.5)

and the partial derivative matrices D
ζ̃
(r)
p

, D
ξ̃
∗(r)
p

and D
ω̂(r)

are defined in (4.3.7) , (4.3.8) and

(4.2.31) respectively. Let the components of Vκ̂ be denoted by

Vκ̂ =

 V
ω̂(1)

V ′
ω̂(1),θ̂

V
ω̂(1),θ̂

V
θ̂

 (4.4.6)
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where

V
ω̂(1)

=


Vα̂ V

α̂,β̂
(1) V

α̂,γ̂(1)

V
α̂,β̂

(1) V
β̂
(1) V

β̂
(1)
,γ̂(1)

V
α̂,γ̂(1)

V
β̂
(1)
.γ̂(1)

V
γ̂(1)

 (4.4.7)

V
θ̂

=


V
θ̂1

· · · V
θ̂1,θ̂q

...
. . .

...

V
θ̂1,θ̂q

· · · V
θ̂q

 (4.4.8)

V
ω̂(1),θ̂

=


V
α̂,θ̂1

V
β̂
(1)
,θ̂1

V
γ̂(1),θ̂1

...
...

...

V
α̂,θ̂q

V
β̂
(1)
,θ̂q

V
γ̂(1),θ̂q

 . (4.4.9)

Formulae for V
ω̂(1)

and V
θ̂
are given in (3.3.20) and (C.3.9) respectively however, as

discussed in Section 4.2, we have no analytic formula for V
ω̂(1),θ̂

. The simulations, reported

in Section 3.9, can be used to estimate the value of V
ω̂(1),θ̂

. Recall that these simulations

consisted of 2,000 realisations of selected sma(1) processes each of length 720, from each of

which the estimators ω̂(1) and θ̂ were calculated. Modest correlations were found between

α̂ and θ̂1 and between γ̂
(1) and θ̂1. Negligible correlation was found between β̂

(1)
and θ̂1.

In this section, we investigate the effect of changes to the value of V
ω̂(1),θ̂

has on V
ζ̃
(r)
p

.

More specifically, we investigate changes to the value of V
ζ̃
(r)
p

under each of the following

assumptions.

A4.4.1 The asymptotic covariance matrix V
ω̂(1),θ̂

is zero, i.e. that ω̂(1) and θ̂ are asymptot-

ically independent. Denote the asymptotic covariance matrix under this assumption

by V Z

ζ̃
(r)
p

.

A4.4.2 The asymptotic covariance matrix V
ω̂(1),θ̂

is equal to the simulated values reported

in Section 3.9. Denote the asymptotic covariance matrix under this assumption by

V S

ζ̃
(r)
p

.

Let

RZS
ζ̃
(r)
p

=

V Z

ζ̃
(r)
p

V S

ζ̃
(r)
p

(4.4.10)
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RZS
ζ̃
(r)
p

θ1

α r −0.8 −0.6 −0.4 −0.2 0.2 0.4 0.6 0.8

1.2 5 1.002 1.003 1.008 1.015 0.998 1.000 1.000 1.000

1.2 20 1.001 1.003 1.008 1.011 0.999 1.000 1.000 1.000

1.2 120 0.999 1.001 1.006 1.007 0.999 1.000 1.000 1.000

1.2 720 0.998 1.001 1.005 1.004 0.999 1.000 1.000 1.000

1.5 5 1.011 1.032 1.029 1.029 0.997 0.998 0.999 1.000

1.5 20 1.010 1.032 1.019 1.011 1.001 1.001 1.000 1.000

1.5 120 1.003 1.022 1.009 1.001 1.003 1.001 1.000 1.000

1.5 720 0.999 1.015 1.004 0.997 1.003 1.002 1.000 1.000

1.8 5 1.053 1.074 1.002 0.966 1.027 1.000 0.999 0.999

1.8 20 1.036 1.023 0.971 0.941 1.033 1.012 1.004 1.000

1.8 120 0.994 0.992 0.955 0.941 1.028 1.013 1.004 1.000

1.8 720 0.982 0.983 0.956 0.949 1.023 1.011 1.004 1.000

Table 4.4.1: Estimates of RZS
ζ̃
(r)
p

for a selection of sma(1) processes at quantile level p =

(0.05, 0.95) and selected aggregation levels.

denote the ratio of the asymptotic variances of the parametric lqd estimator under these

assumptions.

In Table 4.4.1 we record the values of RZS
ζ̃
(r)
p

for a selection of sma(1) processes and

aggregation levels. The effect of correlation between ω̂(1) and θ̂ on the asymptotic variance

of the log quantile estimator ζ̃
(r)

p is less than 6% for all cases reported in Table 4.4.1. Larger

effects, up to 10%, were estimated in some cases at low aggregation levels. For α = 1.8, the

effect is more significant than for lower values of α, due to the higher absolute correlation

values between ω̂(1) and θ̂ and also the higher variance of θ̂. The effect is more significant

for negative values of θ1, than for positive values. Results of simulations not included in

Table 4.4.1 suggest that the values of RZS
ζ̃
(r)
p

are largely unaffected by changes in quantile

level p or the innovation skewness parameter β of the sma(1) process.

We conclude there is a relatively minor effect of the correlation between ω̂(1) and θ̂

on the asymptotic variance of the log quantile estimator ζ̃
(r)

p . If we only considered sma(1)
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processes, we could use the results in Table 4.4.1 to correct values for V
ζ̃
(r)
p

for the correlation

between ω̂(1) and θ̂. However, this is impractical for sma(q) processes of higher order.

Remark 4.4.1 On the basis of the results reported in this section, we consider it reasonable

to use V Z

ζ̃
(r)
p

as an approximation of V
ζ̃
(r)
p

and shall do so for the remainder of this thesis.

4.5 Non-parametric estimation of the log quantile difference

of the temporal aggregation of an SMA(q) process

In this section we define a non-parametric estimator of the log quantile difference of the

base process derived from the empirical quantile estimators.

Definition 4.5.1 (Non-parametric Log Quantile Diff erence Estimator - ζ̂
(r)

p ). The

estimator ζ̂
(r)

p of the lqd at quantile levels p = (p1, p2) , where 0 < p1 < p2 < 1, of the

temporal aggregation,
{
S

(r)
t

}
, of an sma(q) process, {Xt} , is given by

ζ̂
(r)

p = ln
(∣∣∣ξ̂(r)

p2 − ξ̂
(r)

p1

∣∣∣) (4.5.1)

where ξ̂
(r)

pj are the empirical quantile estimators (Definition 3.2.2) of
{
S

(r)
t

}
at quantile level

pj , j = 1, 2.

Let ξ(r)
p =

(
ξ

(r)
p1;0, ξ

(r)
p2;0

)′
denote the true values of

{
S

(r)
t

}
at quantile levels p1 and p2

respectively and let

ζ
(1)
p;0 = ln

(∣∣∣ξ(r)
p2;0 − ξ

(r)
p1;0

∣∣∣) (4.5.2)

denote the true value of the lqd of
{
S

(r)
t

}
at quantile levels p = (p1, p2) . Since

{
S

(r)
t

}
is

also an sma(q) process, we have from Theorem 3.2.2 that the joint asymptotic distribution

of ξ̂
(r)

p =
(
ξ̂

(r)

p1 , ξ̂
(r)

p2

)′
is given by

√
T
(
ξ̂

(r)

p − ξ(r)
p

)
d−→ N

(
0, V

ξ̂

)
(4.5.3)

where the formula for V
ξ̂
is given in (3.2.19) .

In the following theorem we derive the asymptotic distribution of the estimator ζ̂
(r)

p .

Theorem 4.5.1 The asymptotic distribution of the non-parametric log quantile difference

estimator, ζ̂
(r)

p , as the sample size T →∞ is given by

√
T
(
ζ̂

(r)

p − ζ
(r)
p;0

)
d−→ N

(
0, V

ζ̂

)
(4.5.4)
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where

V
ζ̂

= D
ζ̂
V
ξ̂
D′
ζ̂

(4.5.5)

D
ζ̂

=

∂ζ̂(r)

p

∂ξ̂
(r)

pj

|
ξ̂
(r)
p =ξ

(r)
p;0


j=1:2

. (4.5.6)

Proof. Define the function g
(
ξ

(r)
p

)
: R2 → R by

g
(
ξ(r)
p

)
= ln

(∣∣∣ξ(r)
p2 − ξ

(r)
p1

∣∣∣) . (4.5.7)

From the Definition (1.2.1) it is clear that

g
(
ξ

(r)
p;0

)
= ζ

(r)
p;0. (4.5.8)

To prove the theorem, it remains to be shown that g has a non-zero differential at ξ̂
(r)

p = ξ
(r)
p;0,

(Theorem B.2.2). To show that g has a non-zero differential at ξ̂
(r)

p = ξ
(r)
p;0 it is suffi cient to

show that the partial derivatives exist at ξ̂
(r)

p = ξ
(r)
p;0, are continuous at ξ̂

(r)

p = ξ
(r)
p;0 and that

at least one of the partial derivatives is non-zero at ξ̂
(r)

p = ξ
(r)
p;0.

The partial derivatives in D
ζ̂
are given by

D
ζ̂

=

[
−1

ξ
(r)
p2;0 − ξ

(r)
p1;0

,
1

ξ
(r)
p2;0 − ξ

(r)
p1;0

]
. (4.5.9)

Given that the density of
{
S

(r)
t

}
is positive and continuous in the neighbourhoods of

ξ
(1)
p1;0 and ξ

(1)
p2;0, and by assumption that 0 < p1, p2 < 1, it follows that the partial derivatives

D
ζ̂
exist and are continuous and non-zero at ξ̂

(r)

p = ξ
(r)
p;0. This completes the proof of the

theorem.

Remark 4.5.1 Although Theorem 4.5.1 assumes that
{
S

(r)
t

}
is the temporal aggregation of

an sma(q) process, a similar result is possible for other φ - mixing processes with non-stable

distributions, as long as
{
S

(r)
t

}
has a positive density at ξ(r)

p1 and ξ
(r)
p2 .

Remark 4.5.2 The non-parametric log quantile difference estimator quickly loses effi ciency

as the aggregation level increases. A comparison of the relative asymptotic effi ciency of

the non-parametric and parametric lqd estimators at aggregation level one is provided in

Section 4.6.
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Figure 4.6.1: Relative asymptotic effi ciency of the parametric versus the non-parametric log

quantile difference estimators for selected sma(1) processes at quantile level p = (0.05, 0.95).

4.6 Relative asymptotic effi ciency of non-parametric and para-

metric log quantile difference estimators of an SMA(q)

process.

In this section we consider the relative asymptotic effi ciency of the non-parametric log

quantile difference estimator, ζ̂
(1)

p and the parametric log quantile difference estimator ζ̃
(1)

p

as described in earlier sections of this chapter. Let

R̃(1)
p = V

ζ̃
/V

ζ̂
(4.6.1)

denote the relative asymptotic effi ciency of ζ̃
(1)

p compared to ζ̂
(1)

p where V
ζ̃
and V

ζ̂
are the

asymptotic variances given in (4.3.6) and (4.5.5) respectively. Although obscured in the

notation, it is worth noting that R̃(1)
p may depend on θ and ω(1) as well as p.

The relative asymptotic effi ciencies shown in Figure 4.6.1, are all in the range [0.985, 1.015]

and most are in the range [0.995, 1.005] . The differences from 1 may be attributabed sim-

ply to the numerical approximations involved, especially in calculating Dω̂. These numerical

approximations have a greater impact on the calculation of Dω̂ where α is close to 2 and

|β| is close to 1. Calculations of R̃(1)
p for other values of θ, α and β produced similar results

to those shown in Figure 4.6.1.

Recall that the estimator ω̂(1) takes as its inputs, the empirical quantile estimators of
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Figure 4.6.2: Relative asymptotic effi ciency of parametric versus non-parametric log quantile

difference estimators for p = (p1, 1− p1).

{Xt} at the quantile levels

pM = (0.05, 0.25, 0.50, 0.75, 0.95)′ (4.6.2)

and that the non-parametric log quantile difference estimator takes as its inputs, the empir-

ical quantile estimators of {Xt} at p = (p1, p2)′ .Where the quantile levels of p are included

in the quantile levels of pM , one might expect that R̃
(1)
p ≥ 1 since the all information avail-

able non-parametric estimator is also available to the parametric estimator. That R̃(1)
p ≈ 1

suggests that the empirical quantile estimators at the other quantile levels do not contribute

significantly to the parametric log quantile difference estimator.

Where the quantile levels of p are not included in the quantile levels of pM , we see that

there can be significant deviations from 1 in R̃(1)
p (Figure 4.6.2). Where p1 = 0.05 and

p1 = 0.25, we still have R̃(1)
p ≈ 1. However, there are values of p1 for which R̃

(1)
p < 1, i.e.

the parametric estimator is more effi cient, and other values of p1 for which R̃
(1)
p > 1, i.e.

the non-parametric estimator is more effi cient.

As seen in Section 3.5, more effi cient estimators for ω(1) are available through an ap-

propriate choice of the quantile levels pM other than the standard levels. Similarly, given

some choice of p it may be possible through an appropriate choice of pM to define a more

effi cient parametric estimator of ζ(1)
p .

Suppose we wish to estimate ζ(1)
p where p = (0.15, 0.85). A more effi cient choice of pM
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Figure 4.6.3: Comparison of relative asymptotic effi ciency of log quantile difference estima-

tors ζ̃
(1)

p and ζ̈
(1)
p for p = (p1, 1− p1).

for this task might be

pM = (0.12, 0.20, 0.50, 0.80, 0.88)′ (4.6.3)

which provides a pair of empirical quantile estimators at quantile levels close to each of the

quantile levels 0.15 and 0.85. Let ω̈(1) denote the stable distribution parameter estimator

calculated using quantile levels for pM given in (4.6.3) . Let ζ̈
(1)
p denote the corresponding

lqd estimator and R̈(1)
p the corresponding relative asymptotic effi ciency compared with the

non-parametric estimator.

The relative asymptotic effi ciencies R̃(1)
p and R̈(1)

p are shown in Figure 4.6.3 for the same

processes used in Figure 4.6.2. For most values of p1, the original non-parametric estimator

ζ̃
(1)

p is superior to the new non-parametric estimator ζ̈
(1)
p . However, the new non-parametric

estimator ζ̈
(1)
p does produce a superior estimate at p = (0.15, 0.85)′ .

α p R̃
(1)
p R̈

(1)
p

1.2 (0.15, 0.85)′ 0.9687 0.9063

1.5 (0.15, 0.85)′ 1.0199 0.8974

If the quantile levels in p are included in the quantile levels of pM , it is unclear from the

calculated values of R̃(1)
p given in this section whether or not R̃(1)

p is exactly equal to one or

whether it is just very close. We note that R̈(1)
p is very close to one at p = (0.12, 0.88)′ and

(0.20, 0.80)′ .
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Let us consider the proposition that R̃(1)
p is equal to one whenever the quantile levels

in p are included in the quantile levels in pM . Let ξM denote the quantiles of {Xt} at the

quantile levels pM and let V
ξ̃M
, V

ξ̂M
denote respectively the asymptotic covariance matrices

of the parametric quantile estimator ξ̃M and the non-parametric quantile estimator ξ̂M .

Now if R̃(1)
p is equal to one, then V

ζ̃
= V

ζ̂
and V

ξ̃M
= V

ξ̂M
and it would follow from (4.3.6)

and (3.3.20) that

V
ξ̃M

= D
ξ̃
Dω̂Vξ̂M

D′ω̂D
′
ξ̃

= V
ξ̂M

(4.6.4)

and therefore that

D
ξ̃
Dω̂Lξ̂M

L′
ξ̂M
D′ω̂D

′
ξ̃

= L
ξ̂M
L′
ξ̂M

(4.6.5)

and

D
ξ̃
Dω̂ = I4 (4.6.6)

where L
ξ̂M
is the lower Cholesky decomposition of V

ξ̂M
and I4 is the 4× 4 identity matrix.

Whilst D
ξ̃
and Dω̂ are not square matrices and therefore do not have proper inverses we

can construct a left-sided inverse of D
ξ̃
given by

D−1

ξ̃;left
=
(
D′
ξ̃
D
ξ̃

)−1
D′
ξ̃

(4.6.7)

with which we can multiply the left sides of both parts of (4.6.6) to get

Dω̂ = D−1

ξ̃;left
. (4.6.8)

Now if (4.6.8) were true, it would be quite useful since Dω̂ is diffi cult to accurately

calculate (Section 3.3) whereas D
ξ̃
is relatively easy to accurately calculate (Section 4.3).

For θ1 = 0.2, α = 1.5 and β = 0.0, we have calculated Dω̂ and D
−1

ξ̃;left
with the following

results

Dω̂ =


−0.179 0.564 0.000 −0.564 0.179

0.323 0.000 −0.646 0.000 0.323

−0.006 0.536 0.000 −0.536 0.006

−0.089 0.000 1.179 −0.000 −0.089

 , (4.6.9)

and

D−1

ξ̃;left
=


−0.179 0.564 0.000 −0.564 0.179

0.345 −0.208 −0.275 −0.208 0.345

−0.006 0.536 0.000 −0.536 0.006

−0.133 0.400 0.465 0.400 −0.133

 . (4.6.10)
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The first and third rows of Dω̂ and D
−1

ξ̃;left
, representing respectively the partial deriva-

tives of α̂ and γ̂(1) with respect to ξ̂M are identical to three decimal places. However, the

second and fourth rows of Dω̂ and D
−1

ξ̃;left
, representing respectively the partial derivatives

of β̂
(1)
and δ̂

(1)
with respect to ξ̂M are quite different. The zero entries in second and

fourth rows of Dω̂ indicate that the estimates for β̂
(1)
and δ̂

(1)
are not affected by the non-

parametric quantile estimates ξ̂0.25 and ξ̂0.75. The corresponding non-zero entries in D
−1

ξ̃;left

indicate that parametric quantile estimates ξ̃0.25 and ξ̃0.75 are not affected by β̂
(1)
and δ̂

(1)
.

That Dω̂ and D
−1

ξ̃;left
in (4.6.9) and (4.6.10) respectively are not identical suggests that,

at least in this case, our proposition that R̃(1)
p is equal to one whenever the quantile levels

in p are also in pM is incorrect.

4.7 Analytic estimation of the log quantile difference of the

temporal aggregation of an SMA(q) process

In this section we define an analytic estimator, ζ̌
(r)
p , for the log quantile difference of the

temporal aggregation of an sma(q) process. Unlike the parametric log quantile difference es-

timator ζ̃
(r)

p (Definition 4.3.2) which is valid for all sma(q) processes, the analytic estimator,

ζ̌
(r)
p , is valid only where the base process satisfies the assumptions of Corollary 2.2.2. We

show that this estimator is asymptotically normal and derive a formula for its asymptotic

distribution. The use of ζ̌
(r)
p instead of ζ̃

(r)

p has minor computational advantages.

Let α̂ be an estimator of the stable distribution parameter α of the base process {Xt} .

Let θ̂ =
(
θ̂1, . . . , θ̂q

)′
be estimators of the moving average parameters θ = (θ1, . . . , θq)

′ of

{Xt} and let ζ̂
(1)

p (Definition 4.5.1) be the non-parametric estimator of the log quantile

difference of {Xt} at quantile levels p = (p1, p2) . Note that we could use the parametric

estimator ζ̃
(1)

p instead of the non-parametric estimator ζ̂
(1)

p however, doing so mitigates the

computational advantages of the analytic estimator ζ̌
(r)
p .

To simplify the notation we define the 2 + q dimensional vector of parameters

χ =
(
α, ζ(1)

p , θ′
)′
. (4.7.1)

We use similar definitions for C(r)
1 (χ) and C2 (χ) to those used in Section 4.2,

C
(r)
1 (χ) =

r+q−1∑
j=0

∣∣∣c(r)
j

∣∣∣α (4.7.2)
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and

C2 (χ) =

q∑
j=0

|θj |α (4.7.3)

where c(r)
j are the moving average parameters of the aggregated process given in Theorem

2.2.1,

c
(r)
j =

min(j,q)∑
k=max(j−r+1,0)

θk. (4.7.4)

Where appropriate, we may simply refer to C(r)
1 (κ) and C2 (κ) as C(r)

1 and C2 respectively.

Let χ̂ denote the estimator of χ

χ̂ =
(
α̂, ζ̂

(1)

p , θ̂
′)′

(4.7.5)

where α̂ is the quantile-based estimator of α defined in Section 3.3, ζ̂
(1)

p is the non-parametric

log quantile difference estimator of ζ(1)
p defined in Section 4.5 and θ̂ is the slad moving

average parameter estimator of θ defined in Appendix C.3. The asymptotic distribution of

χ̂ is given in the following theorem.

Theorem 4.7.1 Let χ0 denote the true value of the parameters χ. As the sample size

T →∞ the asymptotic distribution of χ̂ is given by

√
T (χ̂− χ)

d−→ N
(
0, Vχ̂

)
(4.7.6)

where

Vχ̂ =


Vα̂ V

α̂,ζ̂
(1)
p

V
α̂,θ̂

V
α̂,ζ̂

(1)
p

V
ζ̂
(1)
p

V
ζ̂
(1)
p ,θ̂

V
α̂,θ̂

V
ζ̂
(1)
p ,θ̂

V
θ̂

 (4.7.7)

and Vα̂ is the asymptotic variance of α̂ included in (3.3.20) , V
ζ̂
(1)
p

is given in (4.5.5) and V
θ̂

given in (C.3.9) .

Proof. This theorem follows from the asymptotic distributions of α̂, θ̂ and ζ̂
(1)

p estab-

lished in Theorems 3.3.1, C.3.1 and 4.5.1 respectively.

As with the calculation of V
ω̂(1),θ̂

discussed in Section 4.4, we have no formulae for the

asymptotic covariances V
α̂,θ̂
and V

ζ̂
(1)
p ,θ̂

. However, we do have a formula for V
α̂,ζ̂

(1)
p

. Since the

estimators α̂ and ζ̂
(1)

p are both derived from quantile estimates of the base process {Xt} it
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is not surprising that there is an non-zero asymptotic correlation between them. A method

for the calculation of V
α̂,ζ̂

(1)
p

is described in Section 4.8. The results of simulations used to

estimate V
α̂,θ̂
and V

ζ̂
(1)
p ,θ̂

are reported in Section 4.9.

We are now able to define the analytic log quantile difference estimator ζ̌
(r)
p of ζ(r)

p .

Definition 4.7.1 (Analytic Log Quantile Diff erence Estimator - ζ̌(r)
p ). We define

the estimator, ζ̌
(r)
p , for the log quantile difference of the temporal aggregation

{
S

(r)
t

}
of an

sma(q) process {Xt} at aggregation level r and quantile levels p = (p1, p2)′ to be

ζ̌
(r)
p = α̂−1 ln

(
C

(r)
1 (χ̂)

C2 (χ̂)

)
+ ζ̂

(1)

p . (4.7.8)

In the following theorem we derive the asymptotic distribution of ζ̌
(r)
p .

Theorem 4.7.2 Let χ0 denote the true value of the parameters χ and let ζ
(r)
p;0 denote the

true value of the log quantile difference ζ(r)
p . If

either β = 0 (4.7.9)

or θj ≥ 0 for i = 0, . . . , q

and

either α ≥ 1 (4.7.10)

or c(r)
j 6= 0, for j = 0, . . . , r + q − 1 and θj 6= 0, for j = 1, . . . , q,

then the asymptotic distribution of ζ̌
(r)
p is given by

√
T
(
ζ̌

(r)
p − ζ

(r)
p;0

)
d−→ N

(
0, V

ζ̌
(r)
p

)
(4.7.11)

where

V
ζ̌
(r)
p

= D
ζ̌
(r)
p
Vχ̂D

′
ζ̌
(r)
p

(4.7.12)

and

D
ζ̌
(r)
p

=

∂ζ̌(r)
p

∂χ̂j
|χ̂=χ0


j=1:2+q

. (4.7.13)

Proof. See Appendix A.4.
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Remark 4.7.1 The assumption in Theorem 4.7.2 that either β = 0 or θj ≥ 0 for i =

0, . . . , q is necessary to ensure that ζ̌
(r)
p is an unbiased estimator.

Remark 4.7.2 The assumption in Theorem 4.7.2 that either α ≥ 1 or c(r)
j 6= 0, for j =

0, . . . , r+ q− 1 and θj 6= 0, for j = 1, . . . , q is necessary to ensure that the partial derivative

∂ζ̌
(r)
p

∂θ̂k
exist.

Remark 4.7.3 It is possible for the assumptions in Theorem 4.7.2 to be satisfied and the

assumptions in Theorem 4.2.2 are not satisfied. For example, if β = 0, C3 = 0 and α ≥ 1.

Under such circumstances, an asymptotic distribution for the analytic log quantile difference

estimator can be calculated, but an asymptotic distribution for the parametric log quantile

difference estimator cannot be calculated.

There are computational advantages of using the analytic lqd estimator ζ̌
(r)
p where

possible rather than parametric lqd estimator ζ̃
(r)

p . These advantages are largely related to

the calculation of respective asymptotic variances. Recall the formula for the asymptotic

variance of the parametric lqd estimator ζ̃
(r)

p

V
ζ̃
(r)
p

= D
ζ̃
(r)
p

D
ξ̃
(r)
p

D
ω̂(r)

Vκ̂D
′
ω̂(r)

D′
ξ̃
(r)
p

D′
ζ̃
(r)
p

, (4.7.14)

and for the analytic lqd estimator ζ̌
(r)
p

V
ζ̌
(r)
p

= D
ζ̌
(r)
p
Vχ̂D

′
ζ̌
(r)
p

. (4.7.15)

1. Calculation of Vκ̂ requires simulated estimates for the asymptotic covariances Vα̂,θ̂1 ,

V
β̂
(1)
,θ̂1
and V

γ̂(1),θ̂1
and numerical approximations for the asymptotic covariances Vα̂,

V
β̂
(1) , Vγ̂(1) , Vα̂,β̂(1)

, V
α̂,γ̂(1)

, V
β̂
(1)
,γ̂(1)

and V
θ̂1
.

2. Calculation of Vχ̂ requires simulated estimates for the asymptotic covariances Vα̂,θ̂1
and V

ζ̂
(1)
p ,θ̂1

, use of formulae for V
α̂,ζ̂

(1)
p

and V
ζ̂
(1)
p

and numerical approximations for the

asymptotic covariances Vα̂ and Vθ̂1 .

3. The partial differential matrices D
ω̂(r)

and D
ζ̌
(r)
p
are calculated using similar formulae,

though the formulae for D
ζ̌
(r)
p
are somewhat simpler.

4. The numerical approximations for D
ξ̃
(r)
p

are not required for the analytic estimator.
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4.8 Joint asymptotic distribution of α̂ and ζ̂
(1)

p

The estimators α̂ and ζ̂
(1)

p are both asymptotic normal estimators derived from quantile

estimates of the base process {Xt} . Thus, we can use the multivariate delta theorem (The-

orem B.2.3) to derive a joint asymptotic distribution for α̂ and ζ̂
(1)

p . We begin with the case

where the quantile levels

p = (p1, p2)′ (4.8.1)

of the log quantile difference ζ(1)
p are not included in the quantile levels

pM = (pM ;1, pM ;2, pM ;3, pM ;4, pM ;5) (4.8.2)

used for the quantile-based estimation of α. Let

p0 =
(
p′, p′M

)′ (4.8.3)

denote the following vector of the union of quantile levels p and pM , let

ξp0 =
(
ξp1 , ξp2 , ξpM ;1

, ξpM ;2
, ξpM ;3

, ξpM ;4
, ξpM ;5

)′
(4.8.4)

denote the vector of quantiles of {Xt} at quantile levels p0 and let ξ̂p0 denote the associated

vector of empirical quantile estimators from the base process {Xt} . The following theorem

derives an expression joint asymptotic distribution of α̂ and ζ̂
(1)

p .

Theorem 4.8.1 Given a sample of size T from the base process {Xt} , the estimators α̂

and ζ̂
(1)

p satisfy

√
T

 α̂

ζ̂
(1)

p

−
 α

ζ
(1)
p

 d−→ N
(
0, D′Σp0D

)
(4.8.5)

where

D =


0 0

∂α̂

∂ξ̂pM ;1

∂α̂

∂ξ̂pM ;2

∂α̂

∂ξ̂pM ;3

∂α̂

∂ξ̂pM ;4

∂α̂

∂ξ̂pM ;5

−1

ξ̂p2 − ξ̂p1

1

ξ̂p2 − ξ̂p1
0 0 0 0 0


′

|
ξ̂p0=ξp0

,

(4.8.6)

and Σp0 is the asymptotic covariance matrix of the empirical quantile estimators ξ̂p0 given

in Theorem 3.2.1.
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Proof. The proof of this theorem involves an application of the multivariate delta

theorem (Theorem B.2.3). Define the function g as

g
(
ξ̂p0

)
=

 α̂

ζ̂
(1)

p

 . (4.8.7)

Since α̂ does not depend on ξ̂p2 , ξ̂p1 , the partial derivatives of α̂ with respect to these

estimators is 0. Similarly the partial derivatives of ζ̂
(1)

p with respect to ξ̂pM ;1
, ξ̂pM ;2

, ξ̂pM ;3
,

ξ̂pM ;4
and ξ̂pM ;5

are also all 0. Thus D in (4.8.6) represents the matrix of partial derivatives

of g
(
ξ̂p0

)
with respect to each of the components evaluated at ξp0 and an application of

Theorem B.2.3 proves this theorem.

In the proof of Theorem 4.8.1, we assume that

p1, p2 /∈ {pM ;1, pM ;2, pM ;3, pM ;4, pM ;5} . (4.8.8)

If say, p1 = pM ;2, then we can achieve a similar result by defining

ξp0 =
(
ξp2 , ξpM ;1

, ξpM ;2
, ξpM ;3

, ξpM ;4
, ξpM ;5

)′
(4.8.9)

and

D =


0

∂α̂

∂ξ̂pM ;1

∂α̂

∂ξ̂pM ;2

∂α̂

∂ξ̂pM ;3

∂α̂

∂ξ̂pM ;4

∂α̂

∂ξ̂pM ;5

1

ξ̂p2 − ξ̂p1
0

−1

ξ̂p2 − ξ̂p1
0 0 0


′

|
ξ̂p0=ξp0

. (4.8.10)

Similar adjustments can be made should both p1 and p2 be elements of pM .

To illustrate the result of Theorem 4.8.1, we plot in Figure 4.8.1 the asymptotic correla-

tion between α̂ and ζ̂
(1)

p where {Xt} are selected symmetric sma(1) processes. A significant

negative correlation between α̂ and ζ̂
(1)

p can be seen for each of the selected values of α and

θ1. This correlation appears to become more significant as α decreases and to be dependent

on the quantile levels p.

From some additional calculations not shown in Figure 4.8.1, it can be seen that, for

quantile levels p = (0.05, 0.95)′ and α ≈ 1.73, the asymptotic correlation is almost indepen-

dent of θ1. Recall that in Section 3.6, we saw that the value of α ≈ 1.73 is also where the

asymptotic and finite sample distributions of the ρ̂ (1) estimator most closely aligned. An in-

teresting area of further research may be to investigate whether this is merely a coincidence

or whether this is the result of some inherent property of the stable distribution.
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Figure 4.8.1: Asymptotic correlation between α̂ and ζ̂
(1)

p for (a) p = (0.05, 0.95) and (b)

p = (0.50, 0.95) where {Xt} is a symmetric sma(1) process with moving average parameter

θ1.

4.9 Simulation

In this section, the results of simulations are presented to demonstrate the use of the methods

described in this chapter for the estimation of the log quantile difference of the temporal

aggregation of an sma(q) process. For each simulation 1,000 realisations, each of length 720,

of an sma(1) process are generated for selected values of α, β and θ1. For each realisation

of an sma(1) process, estimates for ζ(r)
p are calculated and the results compared with the

true value. The parameters γ = 2 and δ = 1 are fixed for all simulations. We refer to the

product of the sample size and the variance of an estimator across all realisations of an

sma(q) process as the normalised variance of the estimator.

The first round of simulations demonstrates the use of the parametric log quantile dif-

ference estimator, ζ̃
(r)

p , assuming that θ1 is known, (Table 4.9.1). The assumption that

θ1 is known means that the components Vθ̂ and V
ω̂(1),θ̂

of Vκ̂ in (4.4.3) are zero. Thus

we can calculate Vκ̂ and consequently V
ζ̃
(r)
p

without any further assumptions about V
θ̂
and

V
ω̂(1),θ̂

. Note that estimates for different aggregation levels are taken from the same process

realisations.

For each process and aggregation level, the mean of the estimator ζ̃
(r)

p across all reali-

sations of the process is within one standard deviation of the true value. For each process
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p = (0.05, 0.95)′ θ1 = −0.4 θ1 = 0.4

α β r ζ
(r)
p (i) (ii) ζ

(r)
p (i) (ii)

1.2 0.0 20 4.905
4.917

(0.217)

33.97

[33.24]
5.689

5.704

(0.224)

36.01

[33.15]

1.2 0.0 720 7.834
7.857

(0.380)

104.18

[101.69]
8.680

8.707

(0.394)

111.62

[101.68]

1.2 0.5 20 4.918
4.922

(0.223)

35.94

[37.48]
5.704

5.720

(0.257)

47.53

[46.07]

1.2 0.5 720 7.849
7.859

(0.392)

110.71

[116.25]
8.695

8.725

(0.464)

154.87

[150.24]

1.5 0.0 20 4.043
4.049

(0.150)

16.24

[15.67]
4.828

4.824

(0.156)

17.45

[15.65]

1.5 0.0 720 6.379
6.391

(0.272)

53.29

[51.24]
7.225

7.217

(0.283)

57.59

[51.24]

1.5 0.5 20 4.055
4.056

(0.154)

17.07

[17.04]
4.841

4.850

(0.169)

20.43

[19.87]

1.5 0.5 720 6.393
6.395

(0.281)

56.81

[56.74]
7.238

7.253

(0.310)

69.28

[67.54]

1.8 0.0 20 3.511
3.512

(0.114)

8.95

[10.61]
4.296

4.286

(0.111)

9.06

[10.64]

1.8 0.0 720 5.450
5.451

(0.230)

36.60

[43.87]
6.296

6.273

(0.225)

36.85

[43.87]

1.8 0.5 20 3.515
3.515

(0.114)

9.47

[10.86]
4.300

4.301

(0.116)

9.56

[11.16]

1.8 0.5 720 5.455
5.453

(0.231)

38.12

[44.83]
6.300

6.301

(0.235)

38.63

[45.98]

Table 4.9.1: Parametric estimation of the log quantile difference ζ(r)
p for p = (0.05, 0.95)′ at

selected aggregation levels from samples of selected sma(1) processes assuming that θ1 is

known. Included in this table are (i) the mean and standard deviation, in ( ), of the estimates

across all realisations and (ii) the standardised variance, i.e. the variance multiplied by the

sample size T, across all realisations and the asymptotic variance, in [ ].
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and aggregation level, the normalised variance of the estimator ζ̃
(r)

p across all realisations

is within 20% of the asymptotic variance. There does not appear to be any obvious bias in

either the mean or normalised variance of ζ̃
(r)

p .

The second round of simulations demonstrates the use of the parametric log quantile

difference estimator, ζ̃
(r)

p where θ1 needs to be estimated, (Table 4.9.2). We have no method

for calculating the true values of V
θ̂
and hence also V

ζ̃
(r)
p

. However, we can estimate V
ζ̃
(r)
p

under the assumption that all elements of V
ω̂(1),θ̂

are zero (Section 4.4) and compare those

estimates to the normalised variance of ζ̃
(r)

p . The same samples used in the first round of

simulations are also used in the second round of simulations.

For each process and aggregation level, the mean of the estimator ζ̃
(r)

p across all reali-

sations of the process is within one standard deviation of the true value. For each process

and aggregation level, the normalised variance of the estimator ζ̃
(r)

p across all realisations is

within 20% of the mean estimated asymptotic variance. There does not appear to be any

obvious bias in either the mean or normalised variance of ζ̂
(r)

p .

The variances of ζ̃
(r)

p in Table 4.9.1 where θ1 is assumed known are generally higher than

the variances of ζ̃
(r)

p in Table 4.9.2 where θ1 needs to be estimated. This difference is more

significant where θ1 = −0.4 and α = 1.8 but surprisingly small for other processes. This is

partially explained by the increase in Vθ as α increases.

The third round of simulations compares the use parametric log quantile difference

estimator ζ̃
(r)

p and the non-parametric log quantile difference estimator at aggregation level

r = 1. All parametric estimators in these simulations are calculated using

pM = (0.05, 0.25, 0.50, 0.75, 0.95)′ . (4.9.1)

Included in Tables 4.9.3, 4.9.4 and 4.9.5 are the simulation results at quantile levels p =

(0.05, 0.95)′ , p = (0.10, 0.90)′ and p = (0.20, 0.80)′ respectively.

For each simulation, the mean of the log quantile difference estimates across all reali-

sations of a process is within one standard deviation of the true value. The standardised

variance of the log quantile difference estimators are within 15% of their asymptotic vari-

ance.

In Table 4.9.3 for quantile level p = (0.05, 0.95)′ where both elements of p are included

in pM the asymptotic variance of the non-parametric and parametric estimators are almost
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p = (0.05, 0.95)′ θ1 = −0.4 θ1 = 0.4

α β r ζ
(r)
p (i) (ii) ζ

(r)
p (i) (ii)

1.2 0.0 20 4.905
4.916

(0.218)

34.18

[34.43]
5.689

5.703

(0.224)

36.02

[35.01]

1.2 0.0 720 7.834
7.856

(0.381)

104.43

[104.95]
8.680

8.707

(0.394)

111.64

[108.72]

1.2 0.5 20 4.918
4.923

(0.224)

36.03

[38.21]
5.704

5.721

(0.257)

47.51

[47.53]

1.2 0.5 720 7.849
7.860

(0.392)

110.85

[117.84]
8.695

8.725

(0.464)

154.83

[155.23]

1.5 0.0 20 4.043
4.046

(0.155)

17.35

[17.63]
4.828

4.824

(0.156)

17.51

[16.22]

1.5 0.0 720 6.379
6.387

(0.276)

54.96

[55.07]
7.225

7.217

(0.283)

57.64

[53.67]

1.5 0.5 20 4.055
4.055

(0.159)

18.27

[18.97]
4.841

4.850

(0.169)

20.45

[20.67]

1.5 0.5 720 6.393
6.393

(0.286)

58.93

[60.40]
7.238

7.253

(0.310)

69.24

[70.45]

1.8 0.0 20 3.511
3.507

(0.130)

12.14

[13.44]
4.296

4.285

(0.113)

9.12

[10.55]

1.8 0.0 720 5.450
5.444

(0.242)

42.19

[46.75]
6.296

6.273

(0.226)

36.65

[43.23]

1.8 0.5 20 3.515
3.509

(0.134)

12.97

[13.53]
4.300

4.301

(0.115)

9.59

[11.20]

1.8 0.5 720 5.455
5.446

(0.249)

44.74

[46.98]
6.300

6.301

(0.231)

38.41

[45.30]

Table 4.9.2: Parametric estimation of the log quantile difference ζ(r)
p for p = (0.05, 0.95)′

at selected aggregation levels from samples of selected sma(1) processes where θ1 needs to

be estimated. Included in this table are (i) the mean and standard deviation, in ( ), of the

estimates across all realisations and (ii) the standardised variance, i.e. the variance multi-

plied by the sample size T, across all realisations and the estimated asymptotic variance,

in [ ].
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p = (0.05, 0.95)′ ζ̂
(1)

p ζ̃
(1)

p

θ1 α β ζ
(1)
p R̃

(1)
p (i) (ii) (i) (ii)

0.2 1.2 0.0 2.974 1.000
2.980

(0.103)

7.672

[7.307]

2.980

(0.103)

7.678

[7.304]

0.2 1.2 0.5 2.988 1.000
2.990

(0.112)

8.973

[8.626]

2.990

(0.112)

8.974

[8.624]

0.2 1.5 0.0 2.559 1.000
2.560

(0.066)

3.175

[3.129]

2.560

(0.066)

3.175

[3.129]

0.2 1.5 0.5 2.573 1.000
2.575

(0.070)

3.534

[3.500]

2.575

(0.070)

3.534

[3.499]

0.4 1.2 0.0 3.100 1.000
3.113

(0.111)

8.866

[8.645]

3.113

(0.111)

8.874

[8.640]

0.4 1.2 0.5 3.115 1.000
3.125

(0.122)

10.713

[10.215]

3.125

(0.122)

10.715

[10.213]

0.4 1.5 0.0 2.652 1.000
2.655

(0.072)

3.700

[3.692]

2.655

(0.072)

3.700

[3.692]

0.4 1.5 0.5 2.666 1.000
2.668

(0.074)

3.937

[4.142]

2.668

(0.074)

3.938

[4.141]

Table 4.9.3: Simulation results for the non-parametric ζ̂
(1)

p and parametric ζ̃
(1)

p log quantile

difference estimators at p = (0.05, 0.95)′ from samples of selected sma(1) processes. Included

in this table are (i) the mean and standard deviation, in ( ), of the estimates across all

realisations and (ii) the standardised variance and the asymptotic variance, in [ ].
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p = (0.10, 0.90)′ ζ̂
(1)

p ζ̃
(1)

p

θ1 α β ζ
(1)
p R̃

(1)
p (i) (ii) (i) (ii)

0.2 1.2 0.0 2.407 0.993
2.407

(0.070)

3.485

[3.516]

2.410

(0.072)

3.690

[3.489]

0.2 1.2 0.5 2.451 0.937
2.450

(0.079)

4.465

[4.193]

2.451

(0.075)

4.046

[3.927]

0.2 1.5 0.0 2.167 0.936
2.166

(0.049)

1.735

[1.713]

2.168

(0.046)

1.527

[1.603]

0.2 1.5 0.5 2.189 0.938
2.189

(0.052)

1.930

[1.904]

2.189

(0.050)

1.829

[1.786]

0.4 1.2 0.0 2.534 0.995
2.539

(0.075)

4.069

[4.108]

2.542

(0.074)

3.973

[4.088]

0.4 1.2 0.5 2.578 0.934
2.582

(0.083)

4.925

[4.922]

2.585

(0.082)

4.817

[4.595]

0.4 1.5 0.0 2.260 0.950
2.260

(0.051)

1.890

[1.987]

2.262

(0.050)

1.824

[1.887]

0.4 1.5 0.5 2.282 0.952
2.282

(0.054)

2.100

[2.222]

2.283

(0.053)

2.013

[2.115]

Table 4.9.4: Simulation results for the non-parametric ζ̂
(1)

p and parametric ζ̃
(1)

p log quantile

difference estimators at p = (0.10, 0.90)′ from samples of selected sma(1) processes. Included

in this table are (i) the mean and standard deviation, in ( ), of the estimates across all

realisations and (ii) the standardised variance and the asymptotic variance, in [ ].
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Figure 4.9.1: Estimated correlation of the ζ̂
(1)

p and θ̂1 estimators from selected symmetric

sma(1) processes: (a) for p = (0.05, 0.95) and (b) for p = (0.50, 0.95).

identical for each process. In Tables 4.9.4 for quantile level p = (0.10, 0.90)′ and 4.9.5

for quantile level p = (0.20, 0.80)′ both elements of p are not included in pM . Examples

where the parametric estimator is 5-7% more effi cient than the non-parametric estimator

are included in Table 4.9.4. Examples where the parametric estimator is 4-6% less effi cient

than the non-parametric estimator are included in Table 4.9.5.

At present we have no method for calculating the asymptotic covariance of ζ̂
(1)

p and θ̂

however, we can use simulations to estimate its value. Each simulation contains 2000 realisa-

tions of an sma(1) process of length 720 where θ1 takes values from the set {−0.9,−0.8, . . . , 0.9} ,

ω(1) = (α, 0, 1, 0) and α takes values from the set {1.2, 1.5, 1.8} . For each realisation of a

process, the estimates ζ̂
(1)

p and θ̂1 are calculated. The correlation of ζ̂
(1)

p and θ̂1 is calculated

across all realisations of each process, (Figure 4.9.1).

The estimated correlation between ζ̂
(1)

p and θ̂1 increases with α and is most significant at

θ1 ≈ ±0.5. The estimated correlation is greater for p = (0.05, 0.95) than for p = (0.50, 0.95) .

For most processes the absolute value of the correlation is less than 0.2.
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p = (0.20, 0.80)′ ζ̂
(1)

p ζ̃
(1)

p

θ1 α β ζ
(1)
p R̃

(1)
p (i) (ii) (i) (ii)

0.2 1.2 0.0 1.756 0.994
1.755

(0.056)

2.281

[2.207]

1.754

(0.057)

2.321

[2.194]

0.2 1.2 0.5 1.828 0.993
1.825

(0.061)

2.701

[2.641]

1.826

(0.061)

2.653

[2.622]

0.2 1.5 0.0 1.654 1.058
1.655

(0.043)

1.303

[1.502]

1.656

(0.045)

1.448

[1,589]

0.2 1.5 0.5 1.679 1.049
1.678

(0.047)

1.554

[1.602]

1.678

(0.049)

1.713

[1.681]

0.4 1.2 0.0 1.883 0.988
1.886

(0.057)

2.362

[2.514]

1.886

(0.057)

2.356

[2.484]

0.4 1.2 0.5 1.955 0.984
1.956

(0.066)

3.110

[3.049]

1.958

(0.065)

3.040

[3.001]

0.4 1.5 0.0 1.747 1.049
1.748

(0.047)

1.607

[1.690]

1.748

(0.049)

1.702

[1.777]

0.4 1.5 0.5 1.772 1.044
1.771

(0.050)

1.803

[1.815]

1.772

(0.051)

1.888

[1.895]

Table 4.9.5: Simulation results for the non-parametric ζ̂
(1)

p and parametric ζ̃
(1)

p log quantile

difference estimators at p = (0.20, 0.80)′ from samples of selected sma(1) processes. Included

in this table are (i) the mean and standard deviation, in ( ), of the estimates across all

realisations and (ii) the standardised variance and the asymptotic variance, in [ ].



Chapter 5

Measurement of realised volatility

using log quantile differences

5.1 Introduction

Let Od and Cd denote the opening and closing price respectively of a financial market asset

on day d. Let

Xd = ln (Cd/Od) (5.1.1)

denote the daily log return of the asset on day d. Elsewhere, the daily log return is used to

refer to the log of the ratio of closing prices on consecutive days. For markets which trade

throughout the day, these definitions are equivalent.

1) Finite Variance Case

The daily log returns {Xd} of a financial market asset are modelled in the stochastic

volatility (sv) model by the following equations

Xd = σdεd (5.1.2)

and

lnσd ∼ ar (k) (5.1.3)

where σ2
d is the conditional variance, {εd} is a sequence of iid N (0, 1) random variables

assumed to be independent of {lnσd} and k is the autoregressive order of the {lnσd} process,

111
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(see for example Tsay (2010)). The sequence of random variables {Xd} in (5.1.2) is said to

be conditionally normal given σd, which we denote by

(Xd | σd) ∼ N
(
0, σ2

d

)
. (5.1.4)

Note that the generalised autoregressive conditional heteroscedastic (garch) model also

has a conditionally normal distribution for Xd, but uses a different equation to model the

conditional variance, σ2
d. A comparison of two popular methods for estimation of the sv

model, generalised method of moments (gmm) and quasi maximum likelihood (qml) can

by found in Anderson and Sorensen (1997).

In the sv model, the sequences of random variables {σd} and {εd} are not observable,

only the sequence, {Xd} , of daily log returns is observable. Taking the logarithm the

absolute values of both sides of (5.1.2) , gives

ln |Xd| = lnσd + ln |εd| . (5.1.5)

It can be shown that the variance of ln |εd| is given by

V [ln |εd|] = π2/8. (5.1.6)

Now suppose that the intraday log returns {Xd;t} are from the invertible ma(1) process,

Xd;t = ed;t + θ1ed;t−1 (5.1.7)

where {ed;t} is an iid sequence of zero-mean finite variance random variables. Let

S
(r)
d;t =

r−1∑
i=0

Xd;t−j (5.1.8)

denote the temporal aggregation of {Xd;t} at aggregation level r. Let
(
σ

(r)
d

)2
denote the

variance of
{
S

(r)
d;t

}
. If there are T intraday log returns in a day, then the following relation-

ships exist between the daily log return and the temporal aggregation of the intraday log

returns

Xd = S
(T )
d;T , (5.1.9)

σd = σ
(T )
d (5.1.10)

It can be shown that is given by(
σ

(r)
d

)2
= rλ0 + 2 (r − 1)λ1 (5.1.11)
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where λ0, λ1 are the autocovariance functions of {Xd;t} at lags 0, 1 respectively. Thus, we

define an estimator ln σ̂
(r)
d of lnσ

(r)
d by

ln σ̂
(r)
d =

1

2
ln
(
rλ̂0 + 2 (r − 1) λ̂1

)
(5.1.12)

where λ̂0, λ̂1 are the sample autocovariance functions of {Xd;t} at lags 0, 1 respectively.

The following theorem shows that ln σ̂
(r)
d is an asymptotically normal estimator of lnσ

(r)
d .

Note that the asymptotic distribution in this theorem assumes that the aggregation level r

is fixed as the sample n increases to ∞.

Theorem 5.1.1 For a given d, let {Xd;t} be the ma(1) process defined in (5.1.11) and εd;t ∼

N
(

0, σ2
ε;d

)
. Let λ0, λ1 denote the autocovariance function of {Xd;t} at lags 0,1 respectively.

Then as the sample size n→∞

√
n
(

ln σ̂
(r)
d − lnσ

(r)
d

)
d−→ N

(
0, D(r)VλD

(r)′
)

(5.1.13)

where

D(r) =
1

rλ0 + 2 (r − 1)λ1
(r/2, r − 1) (5.1.14)

and

Vλ =

 2λ2
0 + 4λ2

1 4λ0λ1

4λ0λ1 λ2
0 + 3λ2

1

 . (5.1.15)

Proof. See Appendix A.5.

Remark 5.1.1 The limit as r →∞ of D(r)VλD
(r)′ is given by

lim
r→∞

D(r)VλD
(r)′ = 1 +

λ2
0

2 (λ0 + 2λ1)2 . (5.1.16)

Thus, for large r the variance of ln σ̂
(r)
d as an estimator of lnσ

(r)
d is O

(
n−1

)
The estimator σ̂(r)

d is sometimes referred to as the realised volatility, (French et al.

(1987)). Realised volatility was also investigated in Anderson et al. (2001a) and Anderson

et al. (2001b) where an allowance was included for the intraday log returns to have a non-

zero mean.

The realised volatility is an estimate of the unobservable conditional standard deviation

σd and can be used to estimate the parameters of the sv model assuming that the ma(1)
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model for the intraday log returns is valid. For assets which have a large number of intraday

returns, the realised volatility estimates of the conditional standard deviation σd should be

more precise than those derived from the daily returns in (5.1.5) .

Inherent in the use of the sv model, is that the daily log returns and the intraday

log returns are conditionally normal. Conditionally normal daily returns imply that the

intraday returns are if not conditionally normal then at least conditionally of finite variance.

Given the availability of intraday returns of suffi ciently high frequency it is possible to test

the conditional finite variance hypothesis on each day’s intraday returns, see for example

Chapter 5 of Dacorogna et al. (2001) which estimates the tail index of foreign exchange

data over various time intervals.

2) Stable Distribution Case

As a generalisation of the sv model, which can accomodate both the success and failure

of the conditional finite variance hypothesis, we propose the stable stochastic variance (ssv)

model. Construction of the ssv model requires replacement of the iid sequence of normal

random variables in (5.1.2) with an iid sequence of stable random variables. The ssv model

equations are

Xd = Γdεd (5.1.17)

and

ln Γd ∼ ar (k) (5.1.18)

where {εd} is a sequence of iid Sα (0, 1, 0) random variables assumed to be independent of

{ln Γd} and k is the autoregressive order of the {ln Γd} process. The sequence of random

variables {Xd} in (5.1.17) is said to be conditionally stable given Γd, which we denote by

(Xd | Γd) ∼ S0
α (0,Γd, 0) . (5.1.19)

In this thesis, we do not address the properties of the unconditional distribution of {Xd} in

the ssv model.

Remark 5.1.2 Where α = 2, the ssv model in (5.1.17) and (5.1.18) is identical to the sv

model in (5.1.2) and (5.1.3) .
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As in the sv model, the sequences of random variables {Γd} and {εd} are not observable,

only the sequence, {Xd} , of daily log returns is observable. Taking the logarithm the

absolute values of both sides of (5.1.17) , gives

ln |Xd| = ln Γd + ln |εd| . (5.1.20)

Although stable distributions other than the Gaussian do not have a variance, the logarithm

of the absolute value of a stable distribution can have a variance. In the case where α = 1,

it can be shown that the variance of ln |εd| is given by

V [ln |εd|] = π2/4. (5.1.21)

The gmm and qml methods available for the estimation of the sv model are not immedi-

ately available for the estimation of the ssv model. Indeed most of the moments commonly

used by the gmm would not exist for the ssv model where α < 2. In this thesis, we do

not attempt to adapt these methods for the estimation of the ssv model, but instead con-

centrate on using the realised volatility as a basis for estimation. However, where α < 2

realised volatility as defined for the sv model does not exist for the ssv model. Instead, we

create a new definition for realised volatility based on log quantile differences.

As with the sv model, we assume that the T intraday log returns are recorded each day

over uniform time intervals. Suppose that the intraday log returns for each day are from

an sma(1) process, i.e.

Xd;t = ed;t + θ1ed;t−1 (5.1.22)

where {ed;t} is an iid sequence of S0
α (0, γd, 0) random variables. Again we use S(r)

d;t to denote

the temporal aggregation of {Xd;t} at aggregation level r, that is

S
(r)
d;t =

r−1∑
i=0

Xd;t−j (5.1.23)

From Theorem 2.2.1 we have that

S
(r)
d;t ∼ S

0
α

(
0, γ

(r)
d , 0

)
(5.1.24)

where

ln γ
(r)
d = α−1 ln

r+q−1∑
j=0

∣∣∣c(r)
j

∣∣∣α
+ ln γd (5.1.25)
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and

c
(r)
j =


1 j = 0

1 + θ1 j = 1, . . . , r − 1

θ1 j = r

. (5.1.26)

If there are T intraday log returns in a day, then the following relationships exist between

the daily log return and the temporal aggregation of the intraday log returns

Xd = S
(T )
d;T , (5.1.27)

Γd = γ
(T )
d . (5.1.28)

Let ζ(r)
p;d and ζp;d denote the lqd of

{
S

(r)
d;t

}
and {ed;t} respectively at quantile levels p.

Since {ed;t} is symmetric, we have from Theorem 2.2.2 that

ζ
(r)
p;d = ln

(
γ

(r)
d /γd

)
+ ζp;d (5.1.29)

and in addition at aggregation level r = T that

ζ
(T )
p;d = ln (Γd/γd) + ζp;d. (5.1.30)

Under the assumptions of the ssv model, the random variables ζ(T )
p;d , ζp;d, ln Γd and ln γd

are all separated by a constant. Let ζ∗p denote the constant value of the lqd of the distrib-

ution S0
α (0, 1, 0) at quantile levels p. Then from Lemma E.1.2, we have

ζp;d = ln γd + ζ∗p (5.1.31)

and also

ζ
(T )
p;d = ln Γd + ζ∗p. (5.1.32)

Rearranging (5.1.25) shows that ln Γd and ln γd are also separated by a constant. Although

either ln Γd or ζ
(T )
p;d could be used as a definition for realised volatility, our preference is for

ζ
(T )
p;d as it more directly relates to value at risk statistics.

For estimation purposes we assume that all of the intraday log return processes are

independent of each other. In practice, it is often beneficial to fit an arma time series

model to
{
ζ

(T )
p;d

}
rather than just an ar(k) as suggested in (5.1.18) .

In Section 5.2, we adapt the aggregated lqd estimators discussed in Chapter 4 so that

they can be used for estimation within the ssv model. In Section 5.3, methods are described

for the estimation of the parameters of the
{
ζ

(T )
p;d

}
process in the presence of measurement

error. In Section 5.4, simulation results are presented.
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5.2 Estimation of realised volatility in a stable stochastic

volatility model

In Section 5.1, it was suggested for the ssv model that ζ(T )
p;d , the lqd of the temporal

aggregation of the sma intraday log return process, be used as a measure of the realised

volatility of the daily log returns on day d. Various methods for the estimation of ζ(r)
p;d were

proposed in Chapter 4, including the parametric lqd estimator, ζ̃
(r)

p;d, (Definition 4.3.2). The

parametric lqd estimator was defined as a function of the parameters κ =
(
α, β(1), γ

(1)
d , θ1

)′
of the base process, in this case the intraday log return process. However, the ssv model

places additional constraints on the parameters κ which were not considered in the definition

of parametric lqd estimator,

1. the distribution of each of the intraday log returns processes is symmetric i.e. β(1) is

zero and

2. the α and θ1 parameters are the same for each day d.

Let κ̂d =
(
α̂d, β̂

(1)

d , γ̂
(1)
d , θ̂1;d

)′
denote the vector of estimators for the parameters of the

intraday log return process {Xd;t} calculated using the quantile-based stable distribution

parameter estimators described in Section 3.3 and slad estimator in Appendix C.3. As

discussed in Remark 3.3.2, we adapt the quantile-based stable distribution parameter esti-

mators to allow for a known symmetric distribution, so that β̂
(1)

d = 0 for all d. Suppose we

have a sample which contains D days of intraday log returns, then we define a new vector

of estimators κd =
(
α, β, γ̂

(1)
d , θ1

)′
which satisfies the constraints of the ssv model by

α = D−1
D∑
d=1

α̂d, (5.2.1)

β = 0, (5.2.2)

γ
(1)
d =

ξ̂pM4
;d − ξ̂pM2

;d

ξ
∗
pM4
− ξ∗pM2

, (5.2.3)

θ1 = D−1
D∑
d=1

θ̂1;d (5.2.4)

where

pM = (pM1 , pM2 , pM3 , pM4 , pM5) (5.2.5)
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are the chosen quantile levels for the quantile-based estimation of α̂d, β̂
(1)

d , γ̂
(1)
d , ξ̂pMj

;d is the

empirical quantile estimator of the pMj th quantile from the intraday log returns sample on

day d and ξ
∗
pMj

is the pMj th quantile of the distribution S
0
α (0, 1, 0) .

As discussed in Section 4.2, as the sample size T →∞, the asymptotic properties of κ̂d
are

√
T (κ̂d − κ)

d−→ N
(
0, Vκ̂d

)
(5.2.6)

where

Vκ̂d =

 V
ω̂
(1)
d

V
ω̂
(1)
d ,θ̂1;d

V
ω̂
(1)
d ,θ̂1;d

V
θ̂1;d

 , (5.2.7)

V
ω̂
(1)
d

= D
ω̂
(1)
d

V
ξ̂pM

D
ω̂
(1)
d

, (5.2.8)

D
ω̂
(1)
d

=

 ∂ω̂
(1)
i;d

∂ξ̂pMj
;d

|
ξ̂pMj

;d=ξpMj
;d


i=1,...,3,j=1,...,5

, (5.2.9)

ω̂
(1)
d =

(
α̂d, β̂

(1)

d , γ̂
(1)
d

)
, (5.2.10)

V
θ̂1;d

is given in C.3.9 and V
ξ̂pM ;d

is given in (3.2.10). There is no formula for V
ω̂(1),θ̂1

however, the simulation results in Section 4.4 suggest that we can assume V
ω̂(1),θ̂1

= 0 with

little effect on approximations of the asymptotic variance of ζ(T )
p;d .

Following a similar logic to the above, we get

√
T (κd − κ)

d−→ N (0, Vκd) (5.2.11)

where

Vκd =

 V
ω
(1)
d

Vω(1),θ1

V
ω
(1)
d ,θ1

Vθ1

 , (5.2.12)

Vω(1) = D
ω
(1)
d

V
ξ̂pM ;d

D
ω
(1)
d

, (5.2.13)

D
ω
(1)
d

=

 ∂ω
(1)
d;i

∂ξ̂pMj
;d

|
ξ̂pMj

;d=ξpMj
;d


i=1,...,3,j=1,...,5

(5.2.14)

and

ω
(1)
d =

(
α, β

(1)
, γ

(1)
d

)
. (5.2.15)

Note that the same sample quantiles, ξ̂pM ;d, are used in the calculation of both ω̂
(1)
d and ω(1)

d .

By assumption, the intraday log return processes are independent of each other. Therefore
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the sequences of estimators
{
θ̂1;d

}
and {α̂d} are also independent and we have

Vθ1 = D−1V
θ̂1;d

, (5.2.16)

∂α

∂ξ̂pMj
;d

= D−1/2 ∂α̂d

∂ξ̂pMj
;d

. (5.2.17)

As discussed in Section 3.3, no general formulae exist for the partial derivatives in (5.2.14) .

For the moderately large values of D used in this thesis, it is useful to approximate
∂γ

(1)
d

∂ξ̂pMj
;d

by the values it would take were α known, i.e.

∂γ
(1)
d

∂ξ̂pMj
;d

≈



0 j = 1, 3, 5
−1

ξ
∗
pM4
− ξ∗pM2

j = 2

1

ξ
∗
pM4
− ξ∗pM2

j = 4

. (5.2.18)

To calculate an estimator ζ
(r)
p;d for the log quantile difference ζ

(r)
p;d from the estimator

ω
(1)
d , we adopt the same approach described in Sections 4.2 and 4.3 to calculate the para-

metric lqd estimator ζ̃
(r)

p;d from ω̂
(1)
d . We refer to ζ

(r)
p;d as the mean symmetric parametric

lqd estimator. The estimators ω(r)
d and ξ

∗(r)
pj ;d are defined analogously to the aggregated sta-

ble distribution parameter estimator, ω̂(r)
d (Definition 4.2.1), and the parametric quantile

estimator, ξ̃
∗(r)
pj ;d (Definition 4.3.1), respectively.

The following theorem proves that the asymptotic variance of the ζ
(r)
p;d does not depend

on γ(1)
d . This result affects the available choices of estimation method for the parameters of

the arma(1, 1) model for
{
ζ

(T )
p;d

}
, (see Section 5.3).

Theorem 5.2.1 The asymptotic variance, V
ζ
(r)
p;d

, of the mean symmetric parametric lqd

estimator, ζ
(r)
p;d, is the same for all values of γ

(1)
d > 0.

Proof. See Appendix A.6.

5.3 Estimation of log quantile difference processes in the

presence of measurement error

In practice, data from the true log quantile difference process
{
ζ

(r)
p;d

}
is not observable.

Instead, we can calculate an estimated log quantile difference process
{
ζ

(r)
p;d

}
using the
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methods described in Section 5.2. The relationship between the true and estimated log

quantile difference processes is given by

ζ
(r)
p;d = ζ

(r)
p;d + u

(r)
p;d (5.3.1)

where the asymptotic distribution of u(r)
p;d is derived in Section 5.2. If the true process,{

ζ
(r)
p;d

}
, is an arma process, then using data from the estimated process,

{
ζ

(r)
p;d

}
, can

introduce a bias into the parameter estimates unless an allowance is made for the presence

of measurement error.

To illustrate the effect of measurement error on arma process parameter estimation,

let us examine a simple case in more detail. Suppose {Xd} is the unobservable stationary

ar(1) process defined by

Xd = φ1Xd−1 + ud (5.3.2)

where {ud} is iid with zero mean and variance σ2
u > 0 and Yd is the observable process

Yd = Xd + wd (5.3.3)

where the measurement error {wd} is iid with zero mean and variance σ2
w > 0. We assume

that {Xd} and {wd} are uncorrelated. Let λX (h) and λY (h) denote the autocovariance

functions at lag h of the processes {Xd} and {Yd} respectively. Multiplying (5.3.2) by itself

at lag h and taking expectations we get

E [YdYd−h] = E [XdXd−h] + E [Xdwd−h] + E [wdXd−h] + E [wdwd−h]

= E [XdXd−h] + E [wdwd−h] . (5.3.4)

Expressing (5.3.4) in terms of autocovariance functions gives

λY (h) =

 λX (h) + σ2
w for h = 0

λX (h) for h 6= 0
. (5.3.5)

The following relationships exist between the model parameters and the autocovariance

function of the unobservable process {Xd} ,

φ1 =
λX (1)

λX (0)
, (5.3.6)

σ2
u = λX (0)− λ2

X (1)

λX (0)
. (5.3.7)
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Substitution of the sample autocovariance function, λ̂X (h) , of {Xd} into (5.3.6) and (5.3.7)

would allow the calculation of estimators for φ1 and σ
2
u. However, since {Xd} is unobservable

we are unable to calculate λ̂X (h) directly. The naive substitution of the sample autoco-

variance function, λ̂Y (h) , of the observable process {Yd} into (5.3.6) and (5.3.7) would

introduce a bias into the estimators for φ1 and σ
2
u due to the fact that λY (0) 6= λX (0) .

The properties of the sums of uncorrelated arma processes are well known and can be

used in the estimation of arma processes affected by measurement error, (Theorem C.2.1).

In particular it can be shown that the sum of uncorrelated arma processes is also an arma

process. However, for a given arma(p, q) process {Yd} and arma(r, s) process {wd} there

may not exist an arma(k,m) process {Xd} such that Yd = Xd+wd even though the process

orders satisfy Theorem C.2.1. See Granger and Morris (1976) for examples of this, including

the simple case where {Xd} is ar(1), {wd} is iid and {Yd} is arma(1, 1).

Thus, if the unobserved true process is an arma process and the unobserved measure-

ment error is also an arma process, not correlated with the true process, then the observed

estimated process is also an arma process. The arma parameters of the observed esti-

mated process can be estimated using standard methods. It then remains to determine

estimates for the arma parameters of the unobserved processes from the estimates for the

arma parameters of the observed process. A method was proposed in Pagano (1974) which

covers the case where the true process is an ar process and the measurement error is iid.

This was extended by Miazaki and Dorea (1993) to allow the noise to be a ma process.

The restricted maximum likelihood (rml) method proposed by Lee and Shin (1997), allows

both the true process and the measurement error to be arma processes.

Assume that the order of the measurement error process {wd} is known and an appro-

priate selection is made for the orders of the true process {Xd} and the estimated process

{Yd} . The rml method uses Newton-Raphson optimisation to identify the maximum like-

lihood model for {Yd} subject to the restriction that the corresponding model for {Xd} has

the selected order. We refer to this model for {Yd} as the restricted model. The maximum

likelihood model for {Yd} not subject to any restriction on the order of the corresponding

model for {Xd} is referred to as the unrestricted model. In the case where {Xd} is ar(1),

{wd} is iid and {Yd} is arma(1, 1) , the restricted and unrestricted models for {Yd} are

unlikely to be the same. However, in the case where {Xd} is arma(1, 1), {wd} is iid and
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{Yd} is arma(1, 1) , the restricted and unrestricted models for {Yd} usually are the same.

Moreover, we can obtain formulae for the parameters of the model for {Xd} in terms of the

parameters of the model for {Yd}. We use these formulae extensively in Chapter 6.

Suppose that the true process {Xd} is arma(1, 1) with the following model equation

Xd − µ = φ1 (Xd−1 − µ) + ud + ψ1ud−1 (5.3.8)

where {ud} is an iid sequence of N
(
0, σ2

u

)
random variables. Further suppose that the

measurement error {wd} of the estimated process {Yd} be an iid sequence of N
(
0, σ2

w

)
random variables where σ2

w is assumed known, so that

Yd = Xd + wd. (5.3.9)

We assume that {Xd} and {wd} are uncorrelated. Combining (5.3.8) and (5.3.9) gives

Yd − µ = φ1 (Yd−1 − µ) + ud + ψ1ud−1 + wd − φ1wd−1 (5.3.10)

where the last four terms on the rhs of (5.3.10) form an ma(1) process. Let {vd} be the

ma(1) process such that

vd + η1vd−1 = ud + ψ1ud−1 + wd − φ1wd−1 (5.3.11)

where {vd} is an iid sequence of N
(
0, σ2

v

)
random variables. The parameters of the {vd}

process are determined by the requirement that both sides of (5.3.11) have the same auto-

covariance function at all lags. The arma(1, 1) model equation for {Yd} becomes

Yd − µ = φ1 (Yd−1 − µ) + vd + η1vd−1. (5.3.12)

The parameters µ and φ1 are common to the arma(1, 1) models of both {Xd} and {Yd} .

To obtain formulae for the remaining parameters ψ1 and σ
2
u of the model for {Xd} in terms

of the parameters of the model for {Yd}, we equate the autocovariances at lags 0 and 1 of

both sides of (5.3.11)

Lag 0:
(
1 + η2

1

)
σ2
v =

(
1 + ψ2

1

)
σ2
u +

(
1 + φ2

1

)
σ2
w,

Lag 1: η1σ
2
v = ψ1σ

2
u − φ1σ

2
w.

(5.3.13)
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Solving (5.3.13) for ψ1 and σ
2
u gives

ψ1 =



κ0/κ1 +
√

(κ0/κ1)2 − 4

2
if κ1 < 0

0 if κ1 = 0

κ0/κ1 −
√

(κ0/κ1)2 − 4

2
if κ1 > 0

(5.3.14)

σ2
u =

κ0

1 + ψ2
1

(5.3.15)

where

κ0 =
(
1 + η2

1

)
σ2
v −

(
1 + φ2

1

)
σ2
w, (5.3.16)

κ1 = η1σ
2
v + φ1σ

2
w. (5.3.17)

Substitution of the maximum likelihood estimators Θ̂ =
(
µ̂, φ̂1, η̂1, σ̂

2
v

)′
for the parame-

ters Θ =
(
µ, φ1, η1, σ

2
v

)′ of the observable process {Yd} into the equations (5.3.14) - (5.3.17)

defines a set of estimators Ω̂ =
(
µ̂, φ̂1, ψ̂1, σ̂

2
u

)′
of the parameters Ω =

(
µ, φ1, ψ1, σ

2
u

)′ of
the unobservable process {Xd} . We call these estimators Ω̂, the Corrected Maximum Like-

lihood (cml) estimators. The asymptotic covariance of the cml estimators is given in the

following theorem.

Theorem 5.3.1 Let {Xd} , {ud} , {Yd} and {wd} be the processes described in (5.3.8) and

(5.3.9) . Let Ω0 denote the true values of the parameters in the model for {Xd} . If σ2
w, σ

2
v > 0

and φ1 6= −η1, then as the sample size T →∞,

√
T
(

Ω̂− Ω0

)
d−→ N

(
0, DV D′

)
(5.3.18)

where

V =



σ2
v

(1 + η1)2

(1− φ1)2 0 0

0

 (
1− φ2

1

)−1
(1 + φ1η1)−1

(1 + φ1η1)−1 (
1− η2

1

)−1

−1

0

0 0 2
(
σ2
v

)2


, (5.3.19)

D =

(
∂Ωi

∂Θj
|
Ω̂=Ω0

)
i,j=1,...,4

(5.3.20)

Proof. See Appendix A.7.
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Remark 5.3.1 The motivation for the use of cml rather than rml estimators is purely

computational. For cml estimation, any standard arma estimation software can be used to

calculate estimates for the parameters of the observed process, after which straightforward

calculations are used to calculate estimates for the parameters of the unobserved process.

For rml estimation, the need for restricted optimisation makes the use of standard arma

estimation software more diffi cult.

Variations of Theorem 5.3.1 can be written where the processes have a different order

however, closed form formulae such as those in equations (5.3.14) - (5.3.17) may not exist.

Instead numerical values for the arma model parameters of {Yd} can be calculated using

the Wilson Factorisation Algorithm. (Wilson (1969), see also Appendix C.2)

Remark 5.3.2 The cml method is only appropriate where maximum likelihood estimators

of the parameters of {Zd} can be transformed into an arma process for {Yd} which exists

and is of the correct order. In general, the cml method is not appropriate where the true

process is ar(1), the measurement error is iid and the observed process is arma(1, 1) .In

this case the cml method will usually result in an arma(1, 1) model for the true process

rather than an ar(1) model as required. In this case we can instead use the rml estimation

method.

Several other methods have been proposed for the estimation of time series models in the

presence of measurement error. The modified Yule-Walker method (Walker (1960)) applies

to ar time series models with heteroscedastic measurement error of unknown variance. The

Staudenmayer-Buonaccorsi method (Staudenmayer and Buonaccorsi (2005)) applies to ar

time series models with heteroscedastic measurement error of known or at least estimable

variance. Generalised method of moments estimation (Melino and Turnbull (1990)) is com-

monly used for the estimation of sv models where the measurement error has a known

log normal distribution. State space models (e.g. Durbin and Koopman (2001)) provide

solutions to many measurement error time series estimation problems. A comparison of

some of these methods can be found in Buonaccorsi (2010).
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5.4 Simulation

In this section the results of simulations are presented which demonstrate the estimation of

the parameters of an ssv model using cml on the log quantile difference realised volatility.

Each days trading is divided into T equally spaced periods and the intraday log returns

{Xd;t} , t = 1, . . . , T on day d follow the sma(1) process

Xd;t = ed,t + θ1ed,t−1 (5.4.1)

where {ed,t} is a sequence of symmetric iid random variables with distribution

ed;t ∼ S0
α (0, γd, 0) . (5.4.2)

The daily log returns {Xd} are the temporal aggregation of the intraday returns

Xd =

T∑
t=1

Xd;t (5.4.3)

and are conditionally stable,

(Xd | Fd−1) ∼ S0
α

(
0, γ

(T )
d , 0

)
, (5.4.4)

and Fd−1 denotes the sigma field of all information available at the end of day d− 1. From

Theorem 2.2.1,

γ
(T )
d =

 T∑
j=0

∣∣∣c(T )
j

∣∣∣α
1/α

γd, (5.4.5)

where

c
(T )
j =


1 j = 0

1 + θ1 j = 1, . . . , T − 1

θ1 j = T

. (5.4.6)

Let ζ(T )
p;d denote the log quantile difference of the daily log returns, {Xd} , at quantile

level p = (p1, p2) . The model equation of the arma(1, 1) process for
{
ζ

(T )
p;d

}
is

ζ
(T )
p;d − µ = φ1

(
ζ

(T )
p;d−1 − µ

)
+ ud + ψ1ud−1 (5.4.7)

where {ud} is an iid sequence of N
(
0, σ2

u

)
random variables. The following parameters



5. Measurement of realised volatility using log quantile differences 126

were chosen for the
{
ζ

(T )
p;d

}
process

µ = −2, (5.4.8)

φ1 = 0.9, (5.4.9)

ψ1 = −0.5, (5.4.10)

σ2
u = 0.01. (5.4.11)

For each round of this simulation a single realisation of the process
{
ζ

(T )
p;d

}
is generated of

lengthD = 500. In addition, D realisations of the process {Xd;t} are generated each of length

T. The objective of this simulation is to attempt to estimate the parameters µ, φ1, ψ1 and

σ2
v of the unobserved daily volatility process

{
ζ

(T )
p;d

}
from the observed intraday log returns

{Xd;t} .

The mean symmetric parametric log quantile difference estimator ζ
(r)
p;d is used to estimate

ζ
(r)
p;d at r = T. Although the asymptotic properties of ζ

(r)
p;d, established in Section 5.2, assume

that the aggregation level r is fixed as the sample size T → ∞, nevertheless, for these

simulations, the asymptotic variance still provides a reasonable estimate for the variance of

the estimator ζ
(T )
p;d . Let

ζ
(T )
p;d = ζ

(T )
p;d + wd (5.4.12)

where wd is the measurement error with variance σ2
w. From Theorem 5.2.1, we know that

V
ζ
(r)
p;d

, the asymptotic variance of ζ
(r)
p;d, has the same value for all values of γd > 0. For the

purposes of this simulation, we approximate the σ2
w by

σ2
w ≈ T−1V

ζ
(T )
p

(5.4.13)

where V
ζ
(T )
p

is the asymptotic variance of ζ
(r)
p;d at r = d.

The quantile levels chosen for stable distribution parameter estimation in this simulation

are

pM = (0.040, 0.200, 0.500, 0.800, 0.960) . (5.4.14)

For the ζ
(r)
p;d estimator, α and θ1, being the mean of D independent estimates, are very

precisely estimated and the size of the asymptotic variance V
ζ
(r)
p

depends largely on the

precision of the γ(1)
d estimates. From Table 3.5.7, it can be seen that the choice of pM2 =

0.200 provides better estimates of γ(1)
d than the standard choice of pM2 = 0.250 where



5. Measurement of realised volatility using log quantile differences 127

α > 1.2 is known, β is known to be zero and the sample is iid. From Table 3.5.1, it can

be seen that the choice of pM1 = 0.040 provides better estimators of α than the standard

choice of pM1 = 0.050 where α > 1.2, β is zero and the sample is iid. Similar statements

can be made where θ1 is non-zero and say, less than 0.5. In choosing the quantile levels pM ,

one needs to be wary that:

1. due to a slower convergence of the quantile estimators to their asymptotic distribution,

the choice of quantile levels too close to zero and one may result in estimators with a

small sample variance much greater than the asymptotic variance,

2. a choice of pM2 which is too close to pM1 tends to increase the asymptotic variance of

the estimator of α.

Rather than attempt to find an optimal choice for pM for each simulation, we use the

value of pM in (5.4.14) for all simulations. For each simulation, the choice of pM in (5.4.14)

has a lower value for σ2
u than the standard quantile levels.

Results of these simulations are recorded in Tables 5.4.1 and 5.4.2. Generally, the

mean of each parameter is within one standard deviation of the true parameter value. The

measurement error variance , σ2
w, is naturally higher by a factor of four at T = 180 than

at T = 720. The value of σ2
w, is also higher for α = 1.4 than for α = 1.7 and higher

for θ1 = 0.4, than for θ1 = 0.2 or −0.2 which have approximately the same measurement

error. The higher the measurement error variance the higher the variance in the parameter

estimates. The highest value for the measurement error variance in these simulations is

σ2
w = 0.0106 which is slightly higher than σ2

u = 0.0100.

The variance of the φ1 parameter is much higher than the asymptotic value. This is

largely due to a few outliers which have values up to four standard deviations less than the

true value.
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µ φ1 ψ1

α θ1 T (i) (ii) (i) (ii) (i) (ii)

1.4 −0.2 180
-1.997

(0.030)

0.435

[0.259]

0.880

(0.037)

0.683

[0.514]

-0.475

(0.093)

4.345

[3.569]

1.4 −0.2 720
-2.001

(0.024)

0.293

[0.252]

0.880

(0.037)

0.685

[0.400]

-0.479

(0.063)

1.952

[1.905]

1.4 0.2 180
-1.983

(0.030)

0.452

[0.259]

0.876

(0.041)

0.832

[0.514]

-0.468

(0.090)

4.079

[3.566]

1.4 0.2 720
-1.998

(0.025)

0.304

[0.252]

0.880

(0.038)

0.707

[0.400]

-0.475

(0.063)

1.964

[1.905]

1.4 0.4 180
-1.980

(0.030)

0.443

[0.261]

0.876

(0.040)

0.783

[0.536]

-0.466

(0.089)

3.939

[3.932]

1.4 0.4 720
-1.997

(0.025)

0.304

[0.253]

0.879

(0.039)

0.747

[0.406]

-0.473

(0.064)

2.018

[1.981]

1.7 −0.2 180
-2.020

(0.027)

0.361

[0.257]

0.881

(0.036)

0.654

[0.470]

-0.498

(0.074)

2.709

[2.882]

1.7 −0.2 720
-2.016

(0.024)

0.294

[0.252]

0.880

(0.037)

0.697

[0.388]

-0.485

(0.060)

1.812

[1.751]

1.7 0.2 180
-2.014

(0.026)

0.346

[0.257]

0.879

(0.039)

0.743

[0.470]

-0.492

(0.081)

3.289

[2.877]

1.7 0.2 720
-2.014

(0.024)

0.281

[0.252]

0.880

(0.038)

0.711

[0.388]

-0.482

(0.061)

1.874

[1.749]

1.7 0.4 180
-2.009

(0.026)

0.347

[0.257]

0.878

(0.039)

0.761

[0.484]

-0.489

(0.081)

3.284

[3.089]

1.7 0.4 720
-2.013

(0.024)

0.291

[0.252]

0.881

(0.040)

0.787

[0.392]

-0.483

(0.062)

1.947

[1.796]

Table 5.4.1: Simulation results for the cml estimators of the log quantile difference process

parameters µ, φ1 and ψ1. Included in this table are (i) the mean and standard deviation,

in ( ), of the estimates across all realisations and (ii) the standardised variance and the

asymptotic variance, in [ ].
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σ2
w σ2

u

α θ1 T (i) (ii) (ii) (iii)

1.4 −0.2 180 0.0092
0.0092

(9.5×10−5)

0.0100

(0.0014)

1.0×10−3

[9.3×10−4]

1.4 −0.2 720 0.0023
0.0023

(1.2×10−5)

0.0099

(0.0008)

3.6×10−4

[3.3×10−4]

1.4 0.2 180 0.0092
0.0092

(1.0×10−4)

0.0100

(0.0014)

1.0×10−3

[9.3×10−4]

1.4 0.2 720 0.0023
0.0023

(1.2×10−5)

0.0098

(0.0008)

3.3×10−4

[3.3×10−4]

1.4 0.4 180 0.0105
0.0106

(1.3×10−4)

0.0099

(0.0015)

1.2×10−3

[1.1×10−3]

1.4 0.4 720 0.0027
0.0027

(1.5×10−5)

0.0097

(0.0008)

3.3×10−4

[3.5×10−4]

1.7 −0.2 180 0.0065
0.0064

(5.8×10−5)

0.0108

(0.0012)

7.5×10−4

[6.6×10−4]

1.7 −0.2 720 0.0016
0.0016

(8.1×10−6)

0.0102

(0.0008)

3.3×10−4

[2.9×10−4]

1.7 0.2 180 0.0065
0.0064

(5.5×10−5)

0.0107

(0.0013)

8.4×10−4

[6.6×10−4]

1.7 0.2 720 0.0016
0.0016

(8.1×10−6)

0.0100

(0.0008)

3.2×10−4

[2.9×10−4]

1.7 0.4 180 0.0073
0.0073

(7.0×10−5)

0.0106

(0.0014)

9.3×10−4

[7.4×10−4]

1.7 0.4 720 0.0018
0.0018

(9.4×10−6)

0.0100

(0.0008)

3.5×10−4

[3.0×10−4]

Table 5.4.2: Simulation results for the measurement error σ2
w and the cml estimator of the

log quantile difference process parameter σ2
u. Included in this table are (i) the true asymp-

totic measurement error, (ii) the mean and standard deviation, in ( ), of the estimates

across all realisations and (iii) the standardised variance and the asymptotic variance, in

[ ].



Chapter 6

Application

6.1 Introduction

In this chapter we apply the models developed in previous chapters to actual financial market

data. In particular we attempt to create time series models for sequences of intraday returns

and show how these models may provide an insight into the volatility of daily returns. The

financial market asset used in this chapter is the asx200 index of the Australian Stock

Exchange (asx). The asx200 index reflects the combined market capitalisation of the

leading 200 companies listed on the asx. The asx200 index data used in this chapter

has been collected over an observation period from 2 Jan 2009 to 31 December 2010, a

total of D = 507 trading days (Figure 6.1.1). The data was provided by Thomson Reuters

(https://tickhistory.thomsonreuters.com/TickHistory/login.jsp).

Trading hours for the asx are 10am to 4pm, Monday to Friday, except for public holidays

when the asx is closed and for Christmas Eve and Near Years Eve when trading hours are

from 10am to 2pm. Data for the asx200 index is available at 30 second intervals during

trading hours, resulting in 721 prices and 720 intraday log returns on a normal trading

day. An example of a single day’s intraday log returns over 30 second intervals is plotted

in Figure 6.1.2.
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Figure 6.1.1: Daily closing price of asx200 index from 2 Jan 2009 to 31 Dec 2010.
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Figure 6.1.2: Intraday returns over 30 second intervals of asx200 index on 21 Jan 2009.
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6.2 Data cleaning

The data is provided by Thomson Reuters in csv file format. Each line in the file includes

date, time and price fields in addition to other fields which we do not use. Approximately

every 30 seconds, there is a pair of records in the csv file. Both records in the pair always

contain the same price data. Data included in these files for times outside normal trading

hours is not used in this analysis. Cleaning of the data was required to address the following

issues:

1. Periods of missing data,

2. Periods of frozen data,

3. Discreteness of data.

Where data is missing it is usually not for more than one consecutive 30 second interval.

If the missing data was in the middle of the day, then we used linear interpolation on the

adjacent data to calculate an estimate for the missing data. If the missing data was at the

beginning or end of the day, or the gap too long for any sort of interpolation, then it was

ignored and the base process sample for that day is considered to be shorter than usual.

Where the asx200 index has the same value, correct to one decimal place, for a number

of consecutive 30 second intervals, it is said a period of frozen data exists. Whilst it is

possible that periods of frozen data can occur legitimately, the volatility of the asx200

index is suffi cient, that such periods are unlikely to last for more than a few consecutive

intervals.

Somewhat arbitrarily, we decided that any period of frozen data longer than 2 minutes,

be considered to be caused by some error at the asx and not a true reflection of the price of

the asx200 index. Over the two year period 2009-2010, five periods of frozen data longer

than two minutes were found. Each of these periods were removed from the base process

sample for that day.
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After data cleaning, the length of the base process samples for the two year period

2009-2010 were

Base Process

Sample Length
425 452 480 588 685 693 694 712 719 720

No. of Trading Days 1 1 2 1 1 1 1 1 15 483

The final data cleaning task is related to the discreteness of the data. The asx200

index is reported correct to one decimal place, thus if the price of the asx200 index were

say 5000, then the smallest possible absolute value of a non-zero return is

log

(
5000.1

5000

)
= 2× 10−5 (6.2.1)

and all returns are an approximately a multiple of (6.2.1) .

Over the two year period 2009-2010, 5.9% of the 30 second interval returns were zero

and 11.5% were due to a move in the asx200 index price of ±0.1. Returns due to a price

move of ±0.1 are "fuzzied" by changes to the asx200 index price, but the asx200 index

price has no such effect on zero returns. Consequently, often the median of the base process

is zero and there is a large number of of elements of the base process with exactly the

same value as the median. This has little effect on the estimation of the stable distribution

parameters but can have a significant effect on the estimation of their asymptotic variance,

often resulting in negative variance estimators.

To avoid this problem we "fuzzify" the zero returns through the addition of a small

amount of noise to all zero returns. The distribution of this noise is U
[
−10−7, 10−7

]
. The

addition of this noise has no effect on the order identification of the base processes, but for

some base processes had an effect on the moving average parameter estimates.

6.3 Estimation of SSV model parameters

In this section we describe the results of fitting ssv models to asx200 index intraday log

returns over the two year period 2009-2010 containing D = 507 trading days. The highest

frequency asx200 index intraday log returns available are reported every ∆t = 30 seconds

with results in a maximum of 720 intraday log returns each full trading day. Let {Xd;t}

denote the intraday log return on day d and time t. Only trading days are included in this

index, therefore d = 1 refers to Friday 2nd Jan 2009, day d = 2 refers to Monday 5th Jan
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2009 and so on up to d = 507 which refers to Friday 31st December 2010. The time index

t = 1 refers to the period ending at 10:00:30, t = 2 refers to the period ending at 10:01:00

and so on up to t = 720 which refers to the period ending at 16:00:00.

For this analysis, ssv models are not fitted only on the highest frequency intraday log

returns, but also on lower frequency returns. Non-overlapping temporal aggregation can

convert of the 30 second intraday log returns into lower frequency returns. Let

S
(r)
d;t =

r−1∑
j=0

Xd;t−j , t = rτ , τ = 1, . . . .Tr (6.3.1)

denote the non-overlapping temporal aggregation of Xd;t. Clearly

Xd;t = S
(1)
d;t . (6.3.2)

The frequency of the intraday log returns used for fitting ssv models may be identified

interchangeably by either ∆t, r or max(Tr) as listed below:

∆t (sec) 30 60 90 120 150 180 240 300

r 1 2 3 4 5 6 8 10

max(Tr) 720 360 240 180 144 120 90 72

. (6.3.3)

The observable base processes for ssv model estimation are
{
S

(r)
d;t

}
for d = 1, . . . , D.

Let ζ(r)
p;d denote the lqd of

{
S

(r)
d;t

}
at aggregation level r and quantile level p = (p1, p2) .

Recall that an ssv model makes the following assumptions about the nature of the intraday

log returns.

A6.3.1 That the intraday log returns follow an sma(q) process and that the parameters

θ1, . . . , θq do not change with d.

A6.3.2 That the distribution of the intraday log returns is symmetric.

A6.3.3 That the stability parameter α does not change with d.

A6.3.4 That
{
ζ

(Tr)
p;d

}
is an arma process indexed by day d.

The first step in the fitting of an ssv model involves the estimation of ζ(Tr)
p;d for d =

1, . . . , D at some choice of quantile level p = (p1, p2) from the corresponding base process{
S

(r)
d;t

}
. The lqd estimator used in this analysis is the mean symmetric parametric lqd
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estimator, ζ
(Tr)
p;d , described in Section 5.2. The steps involved in calculating ζ

(Tr)
p;d are listed

below.

S6.3.1 Calculate the estimators α̂d and θ̂1;d for each d from the observed intraday log

returns
{
S

(r)
d;t

}
.

S6.3.2 Calculate the means α and θ1 of the α̂d and θ̂1;d estimators respectively.

S6.3.3 Calculate the estimator γ(1)
d from α using (5.2.3) .

S6.3.4 Calculate the estimator ζ(Tr)
p;d for each d from α, γ

(1)
d and θ1.

S6.3.5 Estimate the asymptotic variance V
ζ
(Tr)
p

of ζ
(Tr)
p;d . Note that Vζ(Tr)p

has the same value

for each d.

S6.3.6 Use V
ζ
(Tr)
p

to calculate an approximation for the measurement error variance

σ2
w ≈ (Tr)

−1 V
ζ
(Tr)
p

. (6.3.4)

Once individual estimates for ζ(Tr)
p;d and an approximation for σ2

w have been calculated, it

remains to estimate the parameters of the ssv model. Order identification of an arma(k,m)

model is done by finding the values of k,m which minimise the aicc statistic, (see Section

9.2, Brockwell and Davis (1991)). For each r, and all k,m ≤ 2, the aicc statistic was

calculated on the observable process
{
ζ

(Tr)
p;d

}
and either an arma(1, 1) or an arma(2, 2)

model was identified as optimal. For this analysis, we assume that
{
ζ

(Tr)
p;d

}
is an arma(1, 1)

process and fit to the unobservable process
{
ζ

(Tr)
p;d

}
both an arma(1, 1) model using the

cml method as well as an ar(1) model using the rml method.

In this chapter, we use three different sets of quantile levels for the quantile-based

estimation of stable distribution parameters. We hereafter refer to those quantile levels as

follows:

pMA
= (0.040, 0.200, 0.500, 0.800, 0.960) , (6.3.5)

pMB
= (0.022, 0.237, 0.500, 0.763, 0.978) (6.3.6)

and the standard quantile levels as

pMC
= (0.050, 0.250, 0.500, 0.750, 0.950) (6.3.7)
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The precision of ζ
(Tr)
p;d estimates depends largely on the precision of the γ(1)

d estimates and

less so on the precision of α and θ1 which being the mean of D independent estimates are

already very precisely estimated. The quantile levels pMA
were chosen because they provide

better estimates of γ(1)
d and α than the standard quantile levels, pMC

, from symmetric iid

samples where α > 1.2, (See Tables 3.5.1 and 3.5.7). We do not claim that the quantile levels

pMA
are optimal, but merely superior to pMB

and pMC
for the purposes of this analysis.

The quantile levels pMB
are the optimal quantile levels for estimation of α from symmetric

iid samples where α = 1.6, (See Table 3.5.1).

Estimates for α and θ1 and the approximations for σ2
w are listed in Table 6.3.1. Whilst

the estimators using pMB
provide more accurate estimates of α than those using pMA

and

pMC
, it is the estimators using pMA

which provide the more accurate estimates of ζ(Tr)
p;d and

therefore the lower measurement error variance σ2
w. Estimates of θ1 are unaffected by the

choice of quantile levels for stable distribution parameter estimation.

If the asx200 index intraday log returns were truly from an ssv model then we would

expect α to be the same for all intervals ∆t and θ1 to decrease in absolute value as ∆t

increases. The box plots of α̂d and θ̂1;d in Figures 6.3.1 and 6.3.2 respectively illustrate these

relationships. The relationship between α and θ1 and ∆t is as expected where ∆t is greater

than 120 seconds, but contrary to expectations, both α and θ1 appear to increase with ∆t

where ∆t is less than 120 seconds. This may be partially explained by the discontinuous

nature of the intraday log return distributions at low interval lengths (See Section 6.2).

If the intraday log returns have a stable distribution, it is expected that estimates of

α obtained using each of the quantile level choices pMA
, pMB

and pMC
would be similar.

Again, the difference between the estimates of α is generally greater at low values of ∆t

than high values of ∆t. Typically, an analysis of variance (anova) test might be used to

test for any differences between the α estimators. However, in this case the results would

be compromised by the dependence between the α estimators.

Estimates for arma(1, 1) ssv model parameters µ̂, φ̂1, ψ̂1 and σ̂
2
u are listed in Table 6.3.2

and estimates for ar(1) ssv model parameters µ̂, φ̂1 and σ̂
2
u are listed in Table 6.3.3. All

ssv model parameter estimates were calculated using lqd estimators calculated from stable

distribution estimators calculated using quantile levels pMA
.

If the asx200 index intraday log returns were truly from an ssv model then we would
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∆t (sec) α θ1 σ2
w

(i) (ii) (iii) (i) (ii) (iii)

30
1.588

(0.003)

1.620

(0.003)

1.578

(0.004)

-0.022

(0.001)
0.0016 0.0018 0.0018

60
1.572

(0.005)

1.617

(0.004)

1.543

(0.005)

0.031

(0.002)
0.0033 0.0037 0.0037

90
1.601

(0.006)

1.638

(0.005)

1.566

(0.006)

0.047

(0.003)
0.0049 0.0055 0.0056

120
1.637

(0.007)

1.652

(0.006)

1.604

(0.007)

0.050

(0.003)
0.0063 0.0073 0.0073

150
1.653

(0.008)

1.669

(0.006)

1.624

(0.008)

0.055

(0.004)
0.0078 0.0091 0.0090

180
1.691

(0.009)

1.700

(0.007)

1.658

(0.010)

0.043

(0.004)
0.0091 0.0107 0.0106

240
1.687

(0.010)

1.660

(0.008)

1.673

(0.012)

0.047

(0.005)
0.0122 0.0147 0.0141

300
1.683

(0.011)

1.665

(0.009)

1.688

(0.013)

0.020

(0.005)
0.0153 0.0182 0.0175

Table 6.3.1: Estimates for α, θ1 and the measurement error variance σ2
w from the asx200

index intraday log return data between Jan 2009 and Dec 2010 at selected return interval

lengths, ∆t. Estimates for α and σ2
w were calculated using quantile-based stable distribution

parameter estimators at each of the quantile levels (i) pMA
, (ii) pMB

and (iii) pMC
. Estimates

for σ2
w were calculated for ζ

(Tr)
p at p = (0.25, 0.75). Standard errors of estimates are in ( ).
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Figure 6.3.1: Box plots of estimates for α̂d calculated using quantile levels pMA
.
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Figure 6.3.2: Box plots of estimates for θ̂d;1.
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∆t (sec) µ̂ φ̂1 ψ̂1 σ̂2
u

30
-4.359

(0.101)

0.975

(0.011)

-0.608

(0.040)

0.016

(0.001)

60
-4.328

(0.112)

0.969

(0.013)

-0.584

(0.042)

0.026

(0.002)

90
-4.380

(0.122)

0.969

(0.013)

-0.563

(0.045)

0.031

(0.002)

120
-4.449

(0.123)

0.968

(0.013)

-0.549

(0.045)

0.034

(0.003)

150
-4.463

(0.118)

0.965

(0.014)

-0.501

(0.048)

0.032

(0.003)

180
-4.547

(0.123)

0.969

(0.012)

-0.563

(0.046)

0.035

(0.003)

240
-4.538

(0.113)

0.964

(0.013)

-0.528

(0.047)

0.035

(0.003)

300
-4.558

(0.105)

0.960

(0.014)

-0.507

(0.055)

0.035

(0.004)

Table 6.3.2: Parameters of the arma(1, 1), ssv model on asx200 index intraday log return

data between Jan 2009 and Dec 2010. The arma(1, 1)ssv model parameter estimates were

calculated using lqd estimators calculated from stable distribution parameter estimators

calculated using quantile levels pMA
. Standard errors of parameters estimates are in ( ).

expect that the each of the arma(1, 1) and ar(1) ssv model parameters would be the same

for all intervals ∆t. A graphical display of these parameters and their standard errors is

provided in Figure 6.3.3 for the arma(1, 1) ssv model and Figure 6.3.4 for the ar(1) ssv

model. As was the case with the estimators α and θ1, any deviation from the equality of

the ssv model parameter estimates across ∆t values appears more significant at low values

of ∆t.

A similar analysis on the same data was done in Barker (2014). However, in Barker

(2014) the distribution of the intraday log return processes was not assumed to be sym-

metrical and the parameters α and β(1) were allowed to take different values on each day.
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∆t (sec) µ̂ φ̂1 σ̂2
u

30
-4.297

(0.030)

0.831

(0.022)

0.018

(0.001)

60
-4.266

(0.051)

0.822

(0.032)

0.029

(0.003)

90
-4.315

(0.072)

0.837

(0.037)

0.033

(0.004)

120
-4.379

(0.092)

0.848

(0.042)

0.036

(0.005)

150
-4.399

(0.114)

0.871

(0.044)

0.032

(0.005)

180
-4.473

(0.117)

0.854

(0.051)

0.037

(0.006)

240
-4.469

(0.145)

0.871

(0.057)

0.033

(0.007)

300
-4.490

(0.167)

0.878

(0.063)

0.028

(0.008)

Table 6.3.3: Parameters of the ar(1), ssv model on asx200 index intraday log return data

between Jan 2009 and Dec 2010. The ar(1)ssv model parameter estimates were calculated

using lqd estimators calculated from stable distribution parameter estimators calculated

using quantile levels pMA
. Standard errors of parameters estimates are in ( ).



6. Application 141

30 60 90 120 150 180 240 300
­4.7

­4.65

­4.6

­4.55

­4.5

­4.45

­4.4

­4.35

­4.3

­4.25

­4.2

(a)

30 60 90 120 150 180 240 300
0.94

0.95

0.96

0.97

0.98

0.99

1

(b)

30 60 90 120 150 180 240 300
­0.65

­0.6

­0.55

­0.5

­0.45

(c)

30 60 90 120 150 180 240 300
0.01

0.015

0.02

0.025

0.03

0.035

0.04

(d)

Figure 6.3.3: Estimates of arma(1, 1) ssv model parameters and their standard errors: (a)

µ̂, (b) φ̂1, (c) ψ̂1 and (d) σ̂
2
u,
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Figure 6.3.4: Estimates of ar(1) ssv model parameters and their standard errors: (a) µ̂,

(b) φ̂1 and (c) σ̂
2
u,
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The standard quantile levels pMC
were used for stable distribution parameter estimation.

In addition, the moving average order of the intraday log return processes was not assumed

to be equal to one, but was instead determined using the Adler method, Adler et al. (1998),

(see Section 3.8). No allowance for measurement error was made in Barker (2014) and

similar values for φ̂1 were obtained.

6.4 Diagnostics

In this section we test whether the asx200 index data supports some of the ssv model

assumptions. The null hypotheses to be tested are

H1 That the α parameter of the distribution of the intraday log returns is constant for all

d,

H2 That the θ1 parameter of the sma(1) intraday log return process is constant for all d,

H3 That the moving average order of each of the intraday log return processes is less than

or equal to one,

H4 That the distribution of the intraday log returns are stationary for all t.

First, we test the null hypothesisH1. Let Sα̂ denote the sample variance of the estimators

α̂d, so that

Sα̂ = (D − 1)−1
D∑
d=1

(α̂d − α)2 , (6.4.1)

and let Vα̂ denote the asymptotic variance of α̂d. If the null hypothesis H1 is true, then the

distribution of Sα̂ can be approximated by

(D − 1) ∗ Tr ∗ Sα̂
Vα̂

∼ χ2
D−1 (6.4.2)

where χ2
D−1 is the chi-squared distribution with D−1 degrees of freedom. The test statistic

used for testing the null hypothesis H1 is

Z1 = Tr ∗ Sα̂ (6.4.3)

and the rejection region at significance level a is

Z1 > R1 (a) (6.4.4)
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pMA
pMB

Tr Z1 R1 (a) Reject H1 Z1 R1 (a) Reject H1

720 11.276 4.211 Yes 7.562 3.339 Yes

360 5.215 4.117 Yes 3.345 3.339 Yes

240 4.742 4.309 Yes 3.214 3.332 No

180 4.496 4.604 No 3.592 3.329 Yes

144 4.543 4.776 No 3.452 3.344 Yes

120 3.935 5.212 No 3.056 3.371 No

Table 6.4.1: Test results for the null hypothesis, H1 at significance level a = 0.95 based on

the asymptotic variance using quantile levels pMA
and pMB

. The null hypothesis is rejected

if. Z1 > R1(a).

where

R1 (a) =
Vα̂ ∗ χ2

D−1 (a)

D − 1
(6.4.5)

and χ2
D−1 (a) is the ath quantile of the χ2

D−1 distribution.

Initial results for the H1 null hypothesis tests are listed in Table 6.4.1. Tests were

conducted from α̂d estimators calculated using the quantile levels pMA
and pMB

. Test results

derived from the more accurate estimators of αd using quantile levels pMB
are preferred.

Whilst H1 is clearly rejected at Tr = 720 and clearly not rejected at Tr = 120, the results

are mixed for the intermediate values of Tr.

The rejection region defined in (6.4.4) is based on the assumption that the small sample

distribution of Sα̂ can be approximated by its asymptotic distribution in (6.4.2) . In practice,

this approximation is not perfect. Let Vα̂;Tr denote the standardised small sample variance

of α̂d from samples of size Tr, the following opposing characteristics help to explain the

differences between Vα̂ and Vα̂;Tr :

1. The small sample standardised variance of quantile estimators from an sma process

tend to be higher than the asymptotic variance. This has the effect of making Vα̂;Tr

approximately 5% larger than Vα̂ for Tr = 720 and approximately 25% larger than Vα̂

for Tr = 120.

2. The maximum value of α̂d is 2.Where the sample size is small and α is close to 2, this
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pMA
pMB

Tr Z1 R1;T (a) Reject H1 Z1 R1;T (a) Reject H1

720 11.276 4.548 Yes 7.562 3.539 Yes

360 5.215 4.734 Yes 3.345 3.640 No

240 4.742 4.912 No 3.214 3.898 No

180 4.496 4.973 No 3.592 3.928 No

144 4.543 5.015 No 3.452 3.946 No

120 3.935 4.483 No 3.056 4.012 No

Table 6.4.2: Test results for the null hypothesis, H1 at significance level a = 0.95 based

on the standardised small sample variance using quantile levels pMA
and pMB

. The null

hypothesis is rejected if. Z1 > R1;T (a).

has the effect of truncating the small sample distribution of α̂d and reducing Vα̂;Tr

relative to Vα̂. For pMA
and Tr = 120, approximately 10% of the α̂d estimates are

equal to 2.

Simulations were run to estimate Vα̂;T and those estimates were used to define a new

rejection region R1;Tr (a) based on the small sample distribution of Sα̂, (Table 6.4.2). These

test results indicate that H1 should be rejected at Tr = 720, but does not support the

rejection of H1 at other values of Tr.

Remark 6.4.1 Tests conducted using the asx200 index data do not reject the ssv model

assumption that the α parameter of the distribution of the intraday log returns is constant

for all d, except for intraday log returns at 30 second intervals. The reason that intraday log

returns at 30 second intervals has a larger than expected variance of α̂d estimates may be

related to the discontinuous nature of the data at 30 second intervals, which is less significant

at longer intervals.

Next, we test the null hypothesis H2. Let Sθ̂1 denote the sample variance of the estima-

tors θ̂1;d, so that

S
θ̂

= (D − 1)−1
D∑
d=1

(
θ̂1;d − θ1

)2
, (6.4.6)
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Tr Z1 R2 (a) Reject H2

720 4.736 0.805 Yes

360 2.373 0.785 Yes

240 2.230 0.848 Yes

180 1.975 0.930 Yes

144 1.880 0.969 Yes

120 1.696 1.061 Yes

Table 6.4.3: Test results for the null hypothesis, H2 at significance level a = 0.95. The null

hypothesis is rejected if. Z2 > R2(a).

and let V
θ̂
denote the asymptotic variance of θ̂1;d. If the null hypothesis H2 is true, then

the distribution of S
θ̂
can be approximated by

(D − 1) ∗ Tr ∗ Sθ̂
V
θ̂

∼ χ2
D−1 (6.4.7)

where χ2
D−1 is the chi-squared distribution with D−1 degrees of freedom. The test statistic

used for testing the null hypothesis H2 is

Z2 = Tr ∗ Sθ̂1 (6.4.8)

and the rejection region at significance level a is

Z2 > R2 (a) (6.4.9)

where

R2 (a) =
V
θ̂
∗ χ2

D−1 (a)

(D − 1)
(6.4.10)

and χ2
D−1 (a) is the ath quantile of the χ2

D−1 distribution. We do not have a formula for

the standardised small sample variance V
θ̂1
, nor the asymptotic variance of θ̂1, therefore we

use simulations to estimate its value. Results for the H2 null hypothesis tests are listed in

Table 6.4.3.

Remark 6.4.2 Tests conducted using the asx200 index data reject the ssv model assump-

tion that the θ1 parameter of the distribution of the intraday log returns is constant for all

d.
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Tr (i) (ii) (iii)

720 59.6% 62.9% 55.4%

360 49.3% 44.2% 41.2%

240 39.3% 32.5% 28.2%

180 29.6% 22.3% 19.1%

144 25.3% 17.8% 14.2%

120 10.3% 10.3% 7.5%

Table 6.4.4: Q statistic test results at significance level a = 0.95. Listed in this table is

the percentage of days on which (i) the null hypothesis of independence of the intraday

log return process was rejected, (ii) the null hypothesis of independence of the residuals of

sma(1) model using θ1 was rejected and (iii) the null hypothesis of independence of the

residuals of sma(1) model using θ̂1 was rejected.

To test the null hypothesis H3, we use two different tests, both based on the sample

autocorrelation function: the Q-statistic, (see Section 3.7) and the extended Adler test, (see

Section 3.8).

The Q-statistic is defined by the following equation

Qs = Tr

s∑
h=1

ρ̂ (h) , s < Tr (6.4.11)

where ρ̂ (h) is the mean corrected sample autocorrelation function (Definition 3.6.1) at lag

h of the residuals of the sma(1) model fitted to the intraday log return data. Under the null

hypothesis H3, the residuals of the sma(1) model fitted to the intraday log return data have

the asymptotic distribution given by Theorem 3.7.1. Let Qs;Tr (a) denote the ath quantile

of the small sample distribution of Qs from a sample size of Tr. The rejection region of this

test is

Qs > Qs;Tr (a) (6.4.12)

where we choose s = 20 and a = 0.95. As discussed in Section 3.7, convergence to the

asymptotic distribution of Qs is very slow and simulations were used to derive numerical

approximations for Qs;Tr (a). See Table 3.7.1 for values of Qs;Tr (a) where Tr = 720. Results

of the Q statistic tests for null hypothesis H3 are presented in Table 6.4.4.
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The autocorrelation function of an sma(q) process is zero at all lags greater than q. If the

absolute value of the sample autocorrelation function ρ̂ (h) is greater than some significance

level, then that suggests the moving average order of the process is greater than or equal to

h. In Adler et al. (1998), the asymptotic distribution of the sample autocorrelation function

from an iid symmetric Cauchy process was used to determine a significance level for the

test. As described in Section 3.8, it was found that better results could be achieved using

significance levels determined by simulations from an iid process of the same size and with

the same α and β stable distribution parameters.

Let Bρ̂(1) (n, a;α, β) denote the ath percentile of ρ̂ (1) from an iid sample of length n

and distribution Sα (β, 1, 0). Let IFinite denote the interval

IFinite =
[
Bρ̂(1) (Tr, a1;α, 0) , Bρ̂(1) (Tr, a2;α, 0)

]
(6.4.13)

where (a1, a2) = (1.0%, 99.0%) . For this test we determine the order of each intraday log

return process as follows:

1. If the sample autocorrelation function at any of the lags h = 2, 3, . . . , 8 lies outside the

interval IFinite, then we say that the moving average order of the process is greater

than one,

2. If the sample autocorrelation function at each of the lags h = 1, 2, . . . , 8 lies inside the

interval IFinite, then we say that the moving average order of the process is equal to

zero,

3. Otherwise we say that the moving average order of the process is equal to one.

The results of this test are presented in Table 6.4.5.

Remark 6.4.3 Tests conducted using the asx200 index data suggest that the moving av-

erage order of the intraday log return processes may be greater than one in many cases,

though this appears to be less likely as the return interval increases, i.e. T decreases. The

poor results at low return interval values may be due to the discreteness of the log returns

at these intervals.

Finally we consider null hypothesis H4.We do not have a formal test for H4, but instead

display some graphical results. Let

Z
(r)
t (d) =

{
S

(r)
d;t

}
,
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Tr q = 0 q = 1 q > 1

720 23.5% 9.8% 66.7%

360 33.9% 9.3% 56.8%

240 37.9% 21.5% 40.6%

180 46.8% 20.1% 33.1%

144 51.7% 21.5% 26.8%

120 64.1% 11.8% 24.1%

Table 6.4.5: Test results for the moving average order, q, of the intraday log return processes

based on the extended Adler test.

where t is fixed, denote the intraday log returns at some particular time of day. In the ssv

model,

Z
(r)
t (d) ∼ S0

α

(
0, γ

(1)
d , 0

)
that is Z(r)

t (d) is an independent mixture of stable distributions which does not depend on

t. In Figure 6.4.1, plots are provided of the log quantile differences of
{
Z

(r)
t (d)

}
at quantile

level p = (0.25, 0.75) and return intervals of 120 seconds and 180 seconds.

Remark 6.4.4 A study of mixtures of stable distributions is beyond the scope of this thesis,

so we do not attempt to conduct a formal statistical test on the null hypothesis H5. However,

the plots in Figure 6.4.1, do suggest that trading on the asx200 index is more volatile at the

beginning of the day than during the remainder of the day and therefore that the intraday

log return processes are not stationary. Intuitively, this can be explained by the excess of

information from overseas events which needs to be absorbed by the market at the beginning

of the day.
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Figure 6.4.1: Plots of the empirical lqd estimator of the distribution of the intraday log

returns as a function of the time of day. The lqd estimators are calculated at quantile level

p = (0.25, 0.75) and return interval lengths (a) ∆t = 120(sec) and (b) ∆t = 180(sec).



Chapter 7

Conclusion

The main topic of this thesis is the estimation and behaviour of log quantile differences (lqd)

of alpha-stable moving average (sma) processes under temporal aggregation. Formulae for

the lqds are derived in Chapter 2 and these formulae are used to categorise the properties

of the lqds of the temporal aggregation of some sma(2) processes by the value of their

moving average parameters.

In Chapter 3, an extension is made to the quantile-based method from McCulloch (1986)

for estimating alpha-stable distribution parameters to allow estimation from an sma process.

Optimisation of this method is done through the use of quantile levels other than the stan-

dard quantile levels originally proposed in McCulloch (1986). More accurate evaluations are

made of the asymptotics of maximum likelihood stable distribution parameter estimators

which allow the calculation of the relative asymptotic effi ciencies of the optimal quantile-

based estimators. Improved performance is demonstrated in statistical tests for the order

identification and residual independence of sma processes through the introduction of sig-

nificance levels based on small sample rather than asymptotic distributions.

In Chapter 4, the formulae from Chapter 2 and the estimators of Chapter 3 are combined

to define asymptotically normal estimators for the lqd of the temporal aggregation of an

sma process. Whilst the focus of Chapters 2, 3 and 4 is on sma processes, an extension of

many of these results may be possible to cover alpha-stable autoregressive and alpha-stable

autoregressive moving average processes.

In Chapter 5, an application is developed for the lqd estimators proposed in Chapter

4 as a means for measuring the realised volatility of financial market asset returns. The

151
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realised volatility in terms of lqds is calculated under the assumption that the intraday log

returns were sma processes. That intraday log returns follow an sma process is inconsistent

with the stochastic volatility (sv) model which assumes that the daily log returns have a

finite conditional variance. Consequently, an extension to the sv model is proposed, called

the stable stochastic volatility (ssv) model, where the conditional distribution of the daily

log returns is stable. Estimation of the ssv model parameters is done utilising the realised

volaility in terms of lqds together with an allowance for measurement error.

In Chapter 6, an empirical study on these methods is carried out on asx200 index

data from 2009 and 2010. For each day an sma(1) process was fitted to the intraday log

returns at selected return interval lengths. Estimates for the ssv model parameters were

calculated from the parameters of the fitted sma(1) processes and some diagnostic tests were

conducted, including the residual independence and order identification tests proposed in

Chapter 3. Estimation of the ssv model may be improved by allowing intraday log returns

to be modelled by non-stationary sma processes which account for higher volatilities at the

start of the trading day.



Appendix A

Proofs

A.1 Proof of Theorem 2.3.1

The proof of Theorem 2.3.1 involves the collation of a number of lemmas, each of which

proves the properties of gα (θ1, θ2) for a particular part of the invertibility region. We

commence with a version of Jensen’s inequality, which we apply throughout this proof.

(See for example Rudin (1987).)

Lemma A.1.1 (Jensen’s Inequality). If the function f is strictly convex on (a, b), then

for a < x, y < b

f (x) + f (y) < f (x+ y) (A.1.1)

If 1 < α ≤ 2, then the function f (x) = xα is strictly convex on the interval (0,M) for

M > 0. If 0 < α < 1, then the function f (x) = − (xα) is strictly convex on the interval

(0,M) for M > 0. Applying Jensen’s inequality to these functions gives

xα + yα < (x+ y)α for x, y > 0 and 1 < α ≤ 2 (A.1.2)

xα + yα > (x+ y)α for x, y > 0 and 0 < α < 1. (A.1.3)

Since all elements of the invertibility region satisfy

θ1 + θ2 > −1, (A.1.4)

we can rewrite the expression for gα (θ1, θ2) in the invertibility region as

gα (θ1, θ2) = 1 + |1 + θ1|α − 2 (1 + θ1 + θ2)α + |θ1 + θ2|α + |θ2|α . (A.1.5)
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For convenience we define two new functions g(1)
α (θ1, θ2) and g(2)

α (θ1, θ2) as follows

g(a)
α (θ1, θ2) = 1 + |θ1 + θ2|α − (1 + θ1 + θ2)α (A.1.6)

g(b)
α (θ1, θ2) = |1 + θ1|α + |θ2|α − (1 + θ1 + θ2)α (A.1.7)

so that

gα (θ1, θ2) = g(a)
α (θ1, θ2) + g(b)

α (θ1, θ2) . (A.1.8)

The following lemmas show partial results for g(a)
α (θ1, θ2) and g(b)

α (θ1, θ2) in the various

sub-regions.

Lemma A.1.2 In sub-regions 1,2 and 4, g(a)
α (θ1, θ2) > 0.

Proof. In sub-regions 1,2 and 4

−1 < θ1 + θ2 < 0, (A.1.9)

therefore

(1 + θ1 + θ2)α < 1 (A.1.10)

and

g(a)
α (θ1, θ2) > |θ1 + θ2|α

> 0 (A.1.11)

Lemma A.1.3 In sub-regions 4 and 5, g(b)
α (θ1, θ2) > 0.

Proof. In sub-regions 4 and 5

−1 < θ2 < 0, (A.1.12)

therefore

(1 + θ1 + θ2)α < |1 + θ1|α (A.1.13)

and

g(b)
α (θ1, θ2) > |θ2|α

> 0 (A.1.14)
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Lemma A.1.4 In sub-region 1, g(b)
α (θ1, θ2) > 0.

Proof. In sub-region 1

1 + θ1 < 0, (A.1.15)

1 + θ1 + θ2 > 0 (A.1.16)

therefore

(1 + θ1 + θ2)α < |θ2|α (A.1.17)

and

g(b)
α (θ1, θ2) > |1 + θ1|α

> 0 (A.1.18)

Lemma A.1.5 In sub-regions 3 and 5,

g(a)
α (θ1, θ2) is


> 0 for 0 < α < 1

= 0 for α = 1

< 0 for 1 < α ≤ 2

. (A.1.19)

Proof. In sub-regions 3 and 5

θ1 + θ2 > 0. (A.1.20)

If 0 < α < 1, then by Jensen’s inequality

(1 + θ1 + θ2)α < 1 + |θ1 + θ2|α (A.1.21)

and therefore

g(a)
α (θ1, θ2) > 0. (A.1.22)

If α = 1, then

g(a)
α (θ1, θ2) = 1 + θ1 + θ2 − (1 + θ1 + θ2)

= 0 (A.1.23)

If 1 < α ≤ 2, then by Jensen’s inequality

(1 + θ1 + θ2)α > 1 + |θ1 + θ2|α (A.1.24)
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and so

g(a)
α (θ1, θ2) < 0. (A.1.25)

Lemma A.1.6 In sub-regions 2 and 3,

g(b)
α (θ1, θ2) is


> 0 for 0 < α < 1

= 0 for α = 1

< 0 for 1 < α ≤ 2

. (A.1.26)

Proof. In sub-regions 2 and 3

θ2 > 0, (A.1.27)

θ1 > −1. (A.1.28)

If 0 < α < 1, then by Jensen’s inequality

(1 + θ1 + θ2)α < |1 + θ1|α + |θ2|α (A.1.29)

and therefore

g(b)
α (θ1, θ2) > 0. (A.1.30)

If α = 1, then

g(b)
α (θ1, θ2) = 1 + θ1 + θ2 − (1 + θ1 + θ2)

= 0 (A.1.31)

If 1 < α ≤ 2, then by Jensen’s inequality

(1 + θ1 + θ2)α > |1 + θ1|α + |θ2|α (A.1.32)

and therefore

g(b)
α (θ1, θ2) < 0. (A.1.33)

The following lemmas show results for g(a)
α (θ1, θ2) and g(b)

α (θ1, θ2) in each of the borders

between the sub-regions.

Lemma A.1.7 On the border of sub-regions 1 and 2, gα (θ1, θ2) > 0.
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Proof. On the border of sub-regions 1 and 2

θ1 = −1, (A.1.34)

θ2 > 0. (A.1.35)

Therefore

g(a)
α (θ1, θ2) = 1 + |−1 + θ2|α − θα2

> |−1 + θ2|α

> 0 (A.1.36)

and

g(b)
α (θ1, θ2) = |θ2|α − (θ2)α

= 0. (A.1.37)

Combining (A.1.36) and (A.1.37) proves the lemma.

Lemma A.1.8 On the border of sub-regions 2 and 4, gα (θ1, θ2) > 0.

Proof. On the border of sub-regions 2 and 4

−1 < θ1 < 0, (A.1.38)

θ2 = 0. (A.1.39)

Therefore

g(a)
α (θ1, θ2) = 1 + |θ1|α − (1 + θ1)α

> |θ1|α

> 0 (A.1.40)

and

g(b)
α (θ1, θ2) = |1 + θ1|α − (1 + θ1)α

= 0. (A.1.41)

Combining (A.1.40) and (A.1.41) proves the lemma.
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Lemma A.1.9 On the border of sub-regions 4 and 5, gα (θ1, θ2) > 0.

Proof. On the border of sub-regions 4 and 5

θ1 > 0, (A.1.42)

θ1 + θ2 = 0. (A.1.43)

Therefore

g(a)
α (θ1, θ2) = 1− (1)α

= 0 (A.1.44)

and

g(b)
α (θ1, θ2) = |1 + θ1|α + |θ2|α − (1)α

> |θ2|α

> 0 (A.1.45)

Combining (A.1.44) and (A.1.45) proves the lemma.

Lemma A.1.10 On the border of sub-regions 2 and 3, g(a)
α (θ1, θ2) = 0 and

g(b)
α (θ1, θ2) is


> 0 for 0 < α < 1

= 0 for α = 1

< 0 for 1 < α ≤ 2

(A.1.46)

Proof. On the border of sub-regions 2 and 3

−1 < θ1 < 0, (A.1.47)

θ1 + θ2 = 0. (A.1.48)

Therefore

g(a)
α (θ1, θ2) = 1− (1)α

= 0 (A.1.49)

and

g(b)
α (θ1, θ2) = |1 + θ1|α + |θ2|α − (1)α

= |1− |θ1||α + |θ1|α − 1 (A.1.50)
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If 0 < α < 1, then by Jensen’s inequality

g(b)
α (θ1, θ2) < 0. (A.1.51)

If α = 1,then

g(b)
α (θ1, θ2) = 0 (A.1.52)

If 1 < α ≤ 2, then by Jensen’s inequality

g(b)
α (θ1, θ2) > 0. (A.1.53)

Combining (A.1.49) , (A.1.51) , (A.1.52) and (A.1.53) proves the lemma.

Lemma A.1.11 On the border of sub-regions 3 and 5,

g(a)
α (θ1, θ2) is


> 0 for 0 < α < 1

= 0 for α = 1

< 0 for 1 < α ≤ 2

(A.1.54)

and g(b)
α (θ1, θ2) = 0.

Proof. On the border of sub-regions 3 and 5

θ1 > 0, (A.1.55)

θ2 = 0. (A.1.56)

Therefore

g(a)
α (θ1, θ2) = 1 + θα1 − (1 + θ1)α (A.1.57)

and

g(b)
α (θ1, θ2) = |1 + θ1|α − (1 + θ1)α

= 0 (A.1.58)

If 0 < α < 1, then by Jensen’s inequality

g(a)
α (θ1, θ2) < 0. (A.1.59)

If α = 1,then

g(a)
α (θ1, θ2) = 0 (A.1.60)
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If 1 < α ≤ 2, then by Jensen’s inequality

g(a)
α (θ1, θ2) > 0. (A.1.61)

Combining (A.1.58) , (A.1.59) , (A.1.60) and (A.1.61) proves the lemma.

The following lemma shows results for g(a)
α (θ1, θ2) and g(b)

α (θ1, θ2) at the origin.

Lemma A.1.12 At the origin, gα (θ1, θ2) = 0.

Proof. At the origin

gα (θ1, θ2) = 1 + |1 + θ1|α − 2 (1 + θ1 + θ2)α + |θ1 + θ2|α + |θ2|α

= 1 + |1|α − 2 (1)α + 0 + 0

= 0 (A.1.62)

The Lemmas A.1.2 though A.1.12 are combined to prove Theorem 2.3.1.
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A.2 Proof of Theorem 4.2.2

The following lemma provides formulae for each of the partial derivatives
∂ω̂

(r)
i

∂κ̂j
. Derivation

of these formulae is achieved through the application of the standard chain and product

rules of differentiation and is presented without proof.

Lemma A.2.1 If C4 6= 0 and α̂ ≥ 1 then

∂α̂

∂α̂
= 1, (A.2.1)

∂β̂
(r)

∂α̂
= β̂

(1) ∂

∂α̂

(
C2C

(r)
3

C
(r)
1 C4

)
, (A.2.2)

∂γ̂(r)

∂α̂
= γ̂(1) ∂

∂α̂

(
C

(r)
1

C2

)1/α̂

, (A.2.3)

∂α̂

∂β̂
(1)

= 0, (A.2.4)

∂β̂
(r)

∂β̂
(1)

=
C2C

(r)
3

C
(r)
1 C4

, (A.2.5)

∂γ̂(r)

∂β̂
(1)

= 0, (A.2.6)

∂α̂

∂γ̂(1)
= 0, (A.2.7)

∂β̂
(r)

∂γ̂(1)
= 0, (A.2.8)

∂γ̂(r)

∂γ̂(1)
=

(
C

(r)
1

C2

)1/α̂

, (A.2.9)

∂α̂

∂θ̂k
= 0, for k = 1, . . . , q (A.2.10)

∂β̂
(r)

∂θ̂k
= β̂

(1) ∂

∂θ̂k

(
C2C

(r)
3

C
(r)
1 C4

)
, for k = 1, . . . , q (A.2.11)

∂γ̂(r)

∂θ̂k
= γ̂(1) ∂

∂θ̂k

(
C

(r)
1

C2

)1/α̂

, for k = 1, . . . , q (A.2.12)
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where

∂

∂α̂

(
C2C

(r)
3

C
(r)
1 C4

)
=

C2

C
(r)
1

[
1

C4

∂C
(r)
3

∂α̂
− C

(r)
3

C2
4

∂C4

∂α̂

]
+

C
(r)
3

C4

 1

C
(r)
1

∂C2

∂α
− C2(

C
(r)
1

)2

∂C
(r)
1

∂α

 (A.2.13)

∂

∂θ̂k

(
C2C

(r)
3

C
(r)
1 C4

)
=

C2

C
(r)
1

[
1

C4

∂C
(r)
3

∂θ̂k
− C

(r)
3

C2
4

∂C4

∂θ̂k

]
+

C
(r)
3

C4

 1

C
(r)
1

∂C2

∂θ̂k
− C2(

C
(r)
1

)2

∂C
(r)
1

∂θ̂k

 (A.2.14)

∂

∂α̂

(
C

(r)
1

C2

)1/α̂

= − 1

α̂2

(
C

(r)
1

C2

)1/α̂


ln

(
C

(r)
1

C2

)
−

α̂

(
1

C
(r)
1

∂C
(r)
1

∂α̂
− 1

C2

∂C2

∂α̂

)
 (A.2.15)

∂

∂θ̂k

(
C

(r)
1

C2

)1/α̂

= − 1

α̂

(
C

(r)
1

C2

)1/α̂−1 [
−C

(r)
1

C2
2

∂C2

∂θ̂k
+

1

C2

∂C
(r)
1

∂θ̂k

]
(A.2.16)

and

∂C
(r)
1

∂α̂
=

r+q−1∑
j=0

∣∣∣c(r)
j

∣∣∣α̂ ln
∣∣∣c(r)
j

∣∣∣ (A.2.17)

∂C2

∂α̂
=

q∑
j=0

∣∣∣θ̂j∣∣∣α ln
∣∣∣θ̂j∣∣∣ (A.2.18)

∂C
(r)
3

∂α̂
=

r+q−1∑
j=0

sign
(
c

(r)
j

) ∣∣∣c(r)
j

∣∣∣α̂ ln
∣∣∣c(r)
j

∣∣∣ (A.2.19)

∂C4

∂α̂
=

q∑
j=0

sign
(
θ̂j

) ∣∣∣θ̂j∣∣∣α̂ ln
∣∣∣θ̂j∣∣∣ (A.2.20)

∂C
(r)
1

∂θ̂k
= α̂

r+q−1∑
j=0

sign
(
c

(r)
j

) ∣∣∣c(r)
j

∣∣∣α̂−1 ∂c
(r)
j

∂θ̂k
(A.2.21)

∂C2

∂θ̂k
= α̂sign

(
θ̂k

) ∣∣∣θ̂k∣∣∣α̂−1
(A.2.22)

∂C
(r)
3

∂θ̂k
= α̂

r+q−1∑
j=0

sign2
(
c

(r)
j

) ∣∣∣c(r)
j

∣∣∣α̂−1 ∂c
(r)
j

∂θ̂k
(A.2.23)

∂C4

∂θ̂k
= α̂ |θk|α̂−1 sign2

(
θ̂k

)
(A.2.24)
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and
∂c

(r)
j

∂θ̂k
=

 1 for j = k, . . . , k + r − 1 and 0 ≤ k ≤ q

0 otherwise
(A.2.25)

Before proceeding with the proof of Theorem 4.2.2, we make the following observations

1. that l’Hopital’s rule can be used to show that limx→0 x
α lnxα = 0 for all α ∈ (0, 2] ,

and therefore that |x|α ln |x|α is a continuous function

2. that sign (x) |x| is a continuous function

3. that C(r)
1 and C2 are strictly positive functions.

Proof. Define the function g(r) (κ) : R3+q → R3 by

g(r) (κ) =
(
α, β(r), γ(r)

)′
(A.2.26)

where

κ =
(
α, β(1), γ(1), θ1, . . . , θq

)′
(A.2.27)

and

β(r) =
C2C

(r)
3

C
(r)
1 C4

β(1), (A.2.28)

γ(r) =
C2C

(r)
3

C
(r)
1 C4

γ(1) (A.2.29)

and C(r)
1 , C2, C

(r)
3 , C4 are defined in (4.2.11)− (4.2.14) . Let g(r)

i (κ) , i = 1, . . . , 3 denote the

component functions of g(r) (κ) .

For sample size T we have

√
T (κ̂ − κ0)

d−→ N (0, Vκ̂) , (A.2.30)

where Vκ̂ is given in (4.2.22).

In (4.2.16) and (4.2.17) it was established that

g(r) (κ0) = ω
(r)
0 . (A.2.31)

To prove the theorem it remains to be shown that each component function g(r)
i has a non-

zero differential at κ̂ = κ0, (Theorem B.2.3). To show that g(r)
i has a non-zero differential
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it is suffi cient to show that the partial derivatives exist at κ̂ = κ0, are continuous at κ̂ = κ0

and that at least one of the partial derivatives is non-zero at κ̂ = κ0.

If C4 6= 0, and either α̂ ≥ 1 or c(r)
j 6= 0 for j = 0, . . . , r+q+1 and θj 6= 0 for j = 1, . . . , q,

then it is clear from the results of Lemma A.2.1 that all partial derivatives
∂ω̂

(r)
i

∂κ̂j
exist.

Moreover, the partial derivatives being the sum and/or product of continuous functions are

themselves continuous.

It remains to find at least one partial derivative for each of the component functions

g
(r)
i which is non-zero at κ̂ = κ0.

For α̂ = g
(r)
1 ,

∂α̂

∂α̂
= 1 is non-zero.

For β̂
(r)

= g
(r)
2 , if C(r)

3 , C
(r)
4 6= 0, then

∂β̂
(r)

∂β̂
(1)

=
C2C

(r)
3

C
(r)
1 C4

is non-zero

For γ(r) = g
(r)
3 ,

∂γ̂(r)

∂γ̂(1)
=

(
C

(r)
1

C2

)1/α̂

is non-zero.

This completes the proof.

A.3 Proof of Theorem 4.3.1

In order to prove Theorem 4.3.1 it is necessary to prove first that the partial derivatives of

the quantile function of a stable distribution are continuous with respect to the parameter

of the distribution.

Let ξp (ω) denote the pth quantile of a stable distribution with parameters

ω = (α, β, γ, δ) (A.3.1)

using the S0
α (β, γ, δ) parameterisation of Nolan (1998). To show that the partial derivatives

of ξp (ω) with respect to the parameters γ and δ are continuous follows immediately from

the location and scale properties of those parameters.

Lemma A.3.1 Let X ∼ Sα (β, γ, δ) and X∗ ∼ Sα (β, 1, 0) be stable random variables. Let

ξp and ξ
∗
p denote the p

th quantile of X and X∗ respectively. Then

ξp = γξ∗p + δ (A.3.2)

(from Lemma E.1.2). Since ξ∗p does not depend on either γ or δ, it follows that

∂ξp
∂γ

= ξ∗p (A.3.3)
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and
∂ξp
∂δ

= 1. (A.3.4)

Remark A.3.1 It was not possible in this thesis to prove that the partial derivatives
∂ξp
∂α

and
∂ξp
∂β

are continuous functions however, the numerical evidence does support this as-

sertion. Examples of plots of ξp as a function of α and β are shown in Figure A.3.1. In

each case the plot appears to be of a continuously differentiable function. In each case, ξp

appears to be a strictly montonic function of β, but ξp is not a strictly monotonic function

of α. Whilst the absence of strict monotonicity in ξp as a function of α is not surprising at

p = 0.5 and β = 0 where ξp is zero, the case where p = 0.7 and β = 0 in Figure A.3.1(b) is

a non-constant function with distinct maxima and minima.

We are now able to complete the proof of Theorem 4.3.1.

Proof. Define the function g(r)
p

(
ω(r)

)
: R4 → R by

g(r)
p

(
ω(r)

)
= ζ̃

(r)

p (A.3.5)

where

ω(r) =
(
α, β(r), γ(r)

)
and ζ̃

(r)

p is the log quantile difference of the distribution Sα
(
β(r), γ(r), 0

)
at quantile levels

p = (p1, p2) .

For sample size T we have

√
T
(
ω̂(r) − ω(r)

0

)
d−→ N

(
0, V

ω̂(r)
)
, (A.3.6)

where V
ω̂(r)

is given in (4.2.30) and ω(r)
0 is the true value of the parameters ω(r).

By definition

g1;p

(
ω

(r)
0

)
= ζ

(r)
p;0. (A.3.7)

To prove the theorem it remains to be shown that the function g(r)
p has a non-zero differential

at ω̂(r) = ω
(r)
0 , (Theorem B.2.3). To show that g(r)

p has a non-zero differential it is suffi cient

to show that the partial derivatives exist at ω̂(r) = ω
(r)
0 , are continuous at ω̂(r) = ω

(r)
0 and

that at least one of the partial derivatives is non-zero at ω̂(r) = ω
(r)
0 .
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Figure A.3.1: A plot of the quantiles of the stable distribution (a), (b) as a function of α

where β = 0 and (c), (d) as a function of β where α = 1.5.
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We have shown in Lemma A.3.1 that the partial derivative
∂ξ̃
∗(r)
p

∂γ̂(r)
is continuous at

ω̂(r) = ω
(r)
0 and assumed in Remark A.3.1 that the partial derivatives

∂ξ̃
∗(r)
p

∂α̂
and

∂ξ̃
∗(r)
p

∂β̂
(r)

are

continuous at ω̂(r) = ω
(r)
0 . The partial derivative

∂ξ̃
∗(r)
p

∂γ̂(r)
is non-zero except where ξ̃

∗(r)
p is

zero. The partial derivative
∂ξ̃
∗(r)
p

∂β̂
(r)

is assumed to be non-zero.

The partial derivatives
∂ζ̃

(r)

p

∂ξ̃
∗(r)
pj

are given by

∂ζ̃
(r)

p

∂ξ̃
∗(r)
pj

=


−1

ξ̃
∗(r)
p2 − ξ̃

∗(r)
p1

j = 1

1

ξ̃
∗(r)
p2 − ξ̃

∗(r)
p1

j = 2

which are clearly continuous and non-zero wherever p1 6= p2.

This completes the proof.

A.4 Proof of Theorem 4.7.2

The following lemma provides formulae for each of the partial derivatives
∂ζ̌

(r)
p

∂χ̂j
. Derivation

of these formulae is achieved through the application of the standard chain and product

rules of differentiation and is presented without proof. Note that some of these formulae

also appeared in Lemma A.2.1.

Lemma A.4.1 The partial derivatives
∂ζ̌

(r)
p

∂χ̂j
are given by

∂ζ̌
(r)
p

∂α̂
= −α̂−2 ln

(
C

(r)
1

C2

)
+ α̂−1

(
1

C
(r)
1

∂C
(r)
1

∂α̂
− 1

C2

∂C2

∂α̂

)
, (A.4.1)

∂ζ̌
(r)
p

∂ζ̂
(1)

p

= 1 (A.4.2)

∂ζ̌
(r)
p

∂θ̂k
= α̂−1

(
1

C
(r)
1

∂C
(r)
1

∂θ̂k
− 1

C2

∂C2

∂θ̂k

)
, for k = 1, . . . , q (A.4.3)
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where

∂C
(r)
1

∂α̂
=

r+q−1∑
j=0

∣∣∣c(r)
j

∣∣∣α̂ ln
∣∣∣c(r)
j

∣∣∣ (A.4.4)

∂C2

∂α̂
=

q∑
j=0

∣∣∣θ̂j∣∣∣α ln
∣∣∣θ̂j∣∣∣ (A.4.5)

∂C
(r)
1

∂θ̂k
= α̂

r+q−1∑
j=0

sign
(
c

(r)
j

) ∣∣∣c(r)
j

∣∣∣α̂−1 ∂c
(r)
j

∂θ̂k
(A.4.6)

∂C2

∂θ̂k
= α̂sign

(
θ̂k

) ∣∣∣θ̂k∣∣∣α̂−1
(A.4.7)

and
∂c

(r)
j

∂θ̂k
=

 1 for j = k, . . . , k + r − 1 and 0 ≤ k ≤ q

0 otherwise
(A.4.8)

Before proceeding with the proof of Theorem 4.7.2, we make the following observations

1. that l’Hopital’s rule can be used to show that limx→0 x
α lnxα = 0 for all α ∈ (0, 2] ,

and therefore that |x|α ln |x|α is a continuous function

2. that sign (x) |x| is a continuous function

3. that C(r)
1 and C2 are strictly positive functions.

Proof. Define the function g(r) (χ) : R2+q → R by

g(r) (χ) = ζ̌
(r)
p (A.4.9)

where

χ =
(
α, ζ(1)

p , θ1, . . . , θq

)′
(A.4.10)

and

ζ̌
(r)
p = α̂−1 ln

(
C

(r)
1 (χ)

C2 (χ)

)
+ ζ̂

(1)

p (A.4.11)

and C(r)
1 , C2 are defined in (4.7.2)− (4.7.3) .

For sample size T we have

√
T (χ̂− χ0)

d−→ N
(
0, Vχ̂

)
, (A.4.12)

where Vχ̂ is given in (4.2.22).
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By assumption, either β = 0 or θj ≥ 0 for j = 1, . . . , q, therefore we have from Corollary

2.2.2 that

g(r) (χ0) = ζ
(r)
p;0. (A.4.13)

To prove the theorem it remains to be shown that g(r) has a non-zero differential at χ̂ = χ0,

(Theorem B.2.2). To show that g(r) has a non-zero differential it is suffi cient to show that

the partial derivatives exist at χ̂ = χ0, are continuous at χ̂ = χ0 and that at least one of

the partial derivatives is non-zero at χ̂ = χ0.

By assumption, either α̂ ≥ 1 or c(r)
j 6= 0 for j = 0, . . . , r + q + 1 and θj 6= 0 for

j = 1, . . . , q,and thus it is clear from the results of Lemma A.4.1 that all partial derivatives

∂ζ̌
(r)
p

∂χ̂j
exist. Moreover, the partial derivatives being the sum and/or product of continuous

functions are themselves continuous.

Since the partial derivative
∂ζ̌

(r)
p

∂ζ̂
(1)

p

is always non-zero, the proof is complete.

A.5 Proof of Theorem 5.1.1

Define the function g(r)
(
λ̂0, λ̂1

)
: R2 → R by

g(r)
(
λ̂0, λ̂1

)
=

1

2
ln
(
rλ̂0 + 2 (r − 1) λ̂1

)
(A.5.1)

Lemma A.5.1 Under the assumption that the mean of the invertible ma(1) process {Xt}

is known to be zero (
σ(r)

)2
= V

[
S

(r)
t

]
= rE

[
X2
j

]
+ 2 (r − 1)E [XjXj−1]

= rλ0 + 2 (r − 1)λ1 (A.5.2)

and therefore

lnσ(r) =
1

2
ln (rλ0 + 2 (r − 1)λ1)

= g(r) (λ0, λ1) (A.5.3)

We now commence the proof of Theorem 5.1.1.

Proof. Let λ̂0, λ̂1 denote the sample autocovariance function of {Xd;t} and lags 0, 1

respectively. From Proposition 7.3.4 in Brockwell and Davis (1991), we have as the sample
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size n→∞ that

√
n

 λ̂0

λ̂1

−
 λ0

λ1

 d→ N (0, Vλ) (A.5.4)

where

Vλ =

 2λ2
0 + 4λ2

1 4λ0λ1

4λ0λ1 λ2
0 + 3λ2

1

 . (A.5.5)

From Lemma A.5.1, we have

g(r) (λ0, λ1) = lnσ(r) (A.5.6)

Let λ̂ =
(
λ̂0, λ̂1

)′
and λ = (λ0, λ1)′ . To prove the theorem it remains to be shown that g(r)

has a non-zero differential at λ̂ = λ, (Theorem B.2.2). To show that g(r) has a non-zero

differential it is suffi cient to show that the partial derivatives exist at λ̂ = λ, are continuous

at λ̂ = λ and that at least one of the partial derivatives is non-zero at λ̂ = λ.

The partial derivatives of g(r) are given by

∂g(r)

∂λ̂0

=
(r

2

) 1

rλ̂0 + 2 (r − 1) λ̂1

, (A.5.7)

∂g(r)

∂λ̂1

= (r − 1)
1

rλ̂0 + 2 (r − 1) λ̂1

. (A.5.8)

The partial derivatives
∂g(r)

∂λ̂0

and
∂g(r)

∂λ̂1

exist for all λ̂ except where

λ̂1

λ̂0

=
r

2 (r − 1)
>

1

2
. (A.5.9)

For an invertible ma(1) process,

λ1

λ0
=

θ1

1 + θ2
1

<
1

2
, (A.5.10)

and therefore the partial derivatives exist at λ̂ = λ.

Clearly the partial derivatives are continuous at λ̂ = λ, and at least one of the partial

derivatives is non-zero at λ̂ = λ, which completes the proof.

A.6 Proof of Theorem 5.2.1

Applying Theorems 4.3.1 and 4.2.2, to the Mean Symmetric Log Quantile Difference Esti-

mator ζ
(r)
p;d, we have as the sample size T →∞

√
T
(
ζ

(r)
p;d − ζ

(r)
p;d;0

)
d−→ N

(
0, V

ζ
(r)
p;d

)
(A.6.1)
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where

V
ζ
(r)
p;d

= D
ζ
(r)
p;d

D
ξ
∗(r)
p;d

D
ω
(r)
d

Vκ(1)d
D′
ω
(r)
d

D′
ξ
∗(r)
p;d

D′
ζ
(r)
p;d

, (A.6.2)

Vκ(1)d
=

 D
ω
(1)
d

V
ξ̂pM ;d

D′
ω
(1)
d

0

0 Vθ

 (A.6.3)

and

D
ζ
(r)
p;d

=

 ∂ζ(r)
p;d

∂ξ
∗(r)
p;d

|
ξ
∗(r)
p;d =ξ

∗(r)
p;d;0


j=1,...,2

, (A.6.4)

D
ξ
∗(r)
p;d

=

∂ξ∗(r)p;d

∂ω
(r)
j

|
ω
(r)
d =ω

(r)
d;0


i=1,...,2,j=1,...,3

, (A.6.5)

D
ω
(r)
d

=

∂ω(r)
d;i

∂κ(1)
d;j

|κ(1)d =κ(1)d;0


i=1,...,3,j=1,...,4

(A.6.6)

D
ω
(1)
d

=

 ∂ω
(1)
d;i

∂ξ̂pMj
;d

|
ξ̂pM ;d=ξpM ;d;0


i=1,...,3,j=1,...,5

(A.6.7)

and ζ(r)
p;d;0, ξ

∗(r)
p;d;0, ω

(r)
d;0,κ

(1)
d;0, ξpM ;d;0 are the true values of ζ

(r)
p;d, ξ

∗(r)
p;d ω

(r)
d ,κ(1)

d , ξpM ;d respectively.

Throughout this proof we write z ∝ γad to mean that z = c
(
γ

(1)
d

)a
for some constant

c 6= 0 which has the same value for all γ(1)
d > 0.

Proof. Some consideration of each of the terms in the partial derivative matrices gives

D
ζ
(r)
p;d

∝
(
γ−1
d γ−1

d

)
, (A.6.8)

D
ξ
∗(r)
p;d

∝

 γ1
d γ1

d γ0
d

γ1
d γ1

d γ0
d

 (A.6.9)

D
ω
(r)
d

∝


γ0
d 0 0 0

0 0 0 0

γ1
d 0 γ0

d γ1
d

 (A.6.10)

D
ω
(1)
d

∝


γ−1
d γ−1

d 0 γ−1
d γ−1

d

0 0 0 0 0

γ0
d γ0

d 0 γ0
d γ0

d

 (A.6.11)

Each element in the matrix V
ξ̂pM ;d

is inversely proportional to the square of the density
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function and therefore

V
ξ̂pM ;d

∝ γ2
d. (A.6.12)

Finally, from (C.3.9) ,it can be seen that

Vθ ∝ γ0
d. (A.6.13)

Use of the above formulae gives

Vκ(1)d
∝


γ0
d 0 γ1

d 0

0 0 0 0

γ1
d 0 γ2

d 0

0 0 0 γ0
d

 (A.6.14)

and

V
ζ
(r)
p;d

∝ γ0
d (A.6.15)

which proves the theorem.

A.7 Proof of Theorem 5.3.1

Recall that the model equation of the unobserved process is

Xd − µ = φ1 (Xd−1 − µ) + ud + ψ1ud−1, (A.7.1)

that the model equation of the observed process is

Yd − µ = φ1 (Yd−1 − µ) + vd + η1vd−1, (A.7.2)

and that the unobserved and observed processes are related by

Yd = Xd + wd (A.7.3)

where {ud} , {vd} and {wd} are iid sequences of random variables with distributionsN
(
0, σ2

u

)
, N
(
0, σ2

v

)
and N

(
0, σ2

w

)
respectively. We assume that ud and wd are uncorrelated and that σ2

w is

known.

Let Ω =
(
µ, φ1, ψ1, σ

2
u

)′ denote the vector of parameters in the model for {Xd} and

Θ =
(
µ, φ1, η1, σ

2
v

)′ denote the vector of parameters in the model for {Yd}. Define the
function g (Θ) : R4 → R4 by

g (Θ) = (g1 (Θ) , g2 (Θ) , g3 (Θ) , g4 (Θ))′ (A.7.4)
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where

g1 (Θ) = µ (A.7.5)

g2 (Θ) = φ1 (A.7.6)

g3 (Θ) = ψ1 (A.7.7)

g4 (Θ) = σ2
u (A.7.8)

and

ψ1 =



κ0/κ1 +
√

(κ0/κ1)2 − 4

2
if κ1 < 0

0 if κ1 = 0

κ0/κ1 −
√

(κ0/κ1)2 − 4

2
if κ1 > 0

, (A.7.9)

σ2
u =

κ0

1 + ψ2
1

(A.7.10)

κ0 =
(
1 + η2

1

)
σ2
v −

(
1 + φ2

1

)
σ2
w (A.7.11)

κ1 = η1σ
2
v + φ1σ

2
w (A.7.12)

Lemma A.7.1 The partial derivatives of the function g (Θ) are given by

∂g1

∂φ1

,
∂g1

∂η1

,
∂g1

∂σ2
v

,
∂g2

∂µ
,
∂g2

∂η1

,
∂g2

∂σ2
v

,
∂g3

∂µ
,
∂g4

∂µ
= 0 (A.7.13)

∂g1

∂µ
,
∂g2

∂φ1

= 1 (A.7.14)

and

∂g3

∂φ1

=
∂g3

∂κ0

∂κ0

∂φ1

+
∂g3

∂κ1

∂κ1

∂φ1

(A.7.15)

∂g3

∂η1

=
∂g3

∂κ0

∂κ0

∂η1

+
∂g3

∂κ1

∂κ1

∂η1

(A.7.16)

∂g3

∂σ2
v

=
∂g3

∂κ0

∂κ0

∂σ2
v

+
∂g3

∂κ1

∂κ1

∂σ2
v

(A.7.17)

∂g4

∂φ1

=
∂g4

∂κ0

∂κ0

∂φ1

+
∂g4

∂κ1

∂κ1

∂φ1

(A.7.18)

∂g4

∂η1

=
∂g4

∂κ0

∂κ0

∂η1

+
∂g4

∂κ1

∂κ1

∂η1

(A.7.19)

∂g4

∂σ2
v

=
∂g4

∂κ0

∂κ0

∂σ2
v

+
∂g4

∂κ1

∂κ1

∂σ2
v

(A.7.20)
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where

∂g3

∂κ0
=


1− κ0/

√
κ2

0 − 4κ2
1

2κ1
if κ1 6= 0

0 if κ1 = 0

(A.7.21)

∂g3

∂κ1
=


κ0

2κ2
1

(
κ0/
√(

κ2
0 − 4κ2

1

)
− 1
)

if κ1 6= 0

1 if κ1 = 0

(A.7.22)

∂g4

∂κ0
=


2κ2

1

4κ2
1 − κ2

0 + κ0

√(
κ2

0 − 4κ2
1

) if κ1 6= 0

1 if κ1 = 0

(A.7.23)

∂g4

∂κ1
=


−2κ1√(
κ2

0 − 4κ2
1

) if κ1 6= 0

0 if κ1 = 0

(A.7.24)

and

∂κ0

∂φ1

= −2φ1σ
2
w (A.7.25)

∂κ0

∂η1

= 2η1σ
2
v (A.7.26)

∂κ0

∂σ2
v

=
(
1 + η2

1

)
(A.7.27)

∂κ1

∂φ1

= σ2
w (A.7.28)

∂κ1

∂η1

= σ2
v (A.7.29)

∂κ1

∂σ2
v

= η1 (A.7.30)

Proof. Let Θ̂ =
(
µ̂, φ̂1, η̂1, σ̂

2
v

)′
denote the maximum likelihood estimators of the

parameters Θ and let Ω0,Θ0 denote the true values of Ω,Θ respectively. From Brockwell

and Davis (1991), Sections 7.1, 8.7 and 8.8, the maximum likelihood estimators of the

parameters of an arma(1, 1) process have the following asymptotic properties as the sample

size n→∞

√
n
(

Θ̂−Θ0

)
d→ N (0, V ) (A.7.31)
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where

V =



σ2
v

(1 + η1)2

(1− φ1)2 0 0

0

 (
1− φ2

1

)−1
(1 + φ1η1)−1

(1 + φ1η1)−1 (
1− η2

1

)−1

−1

0

0 0 2
(
σ2
v

)2


. (A.7.32)

In Section 5.3 it was established that

g (Θ0) = Ω0. (A.7.33)

To prove the theorem it remains to be shown that each component function gi has a non-

zero differential at Θ = Θ0, (Theorem B.2.3). To show that gi has a non-zero differential it

is suffi cient to show that the partial derivatives exist at Θ = Θ0, are continuous at Θ = Θ0

and that at least one of the partial derivatives is non-zero at Θ = Θ0.

From Lemma A.7.1, it is clear that the all the partial derivatives exist and are continuous

at Θ = Θ0.

It remains to find at least one partial derivative for each of the component functions gi

which is non-zero at Θ = Θ0.

For g1,
∂g1

∂µ
= 1 is non-zero.

For g2,
∂g2

∂φ1

= 1 is non-zero.

For g3, if κ1 = 0, then
∂g3

∂φ1

= σ2
w and

∂g3

∂η1

= σ2
v (A.7.34)

which by assumption are both non-zero. If κ1 6= 0, then

∂g3

∂φ1

= 0⇐⇒ φ1 = − κ0

2κ1
(A.7.35)

and
∂g3

∂η1

= 0⇐⇒ η1 =
κ0

2κ1
. (A.7.36)

It follows that both
∂g3

∂φ1

and
∂g3

∂η1

can both be zero if and only if φ1 = −η1, which we do

not allow.

For g4, if κ1 = 0, then
∂g4

∂σ2
v

= 1 + η2
1 (A.7.37)
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which is non-zero. If κ1 6= 0, then

∂g4

∂φ1

= 0⇐⇒ φ1 = ψ1 (A.7.38)

and
∂g4

∂η1

= 0⇐⇒ η1 = −ψ1. (A.7.39)

It follows that both
∂g4

∂φ1

and
∂g4

∂η1

can both be zero if and only if φ1 = −η1, which we

do not allow.

This completes the proof.



Appendix B

Stochastic convergence

B.1 Modes of convergence

In this section is defined the various modes of convergence which are referred to throughout

this thesis.

Definition B.1.1 (Convergence in Probability). A sequence of random variables {Xn}

is said to converge in probability to X if

lim
n→∞

P (|Xn −X| < ε) = 1

for all ε > 0. If this is the case, we write Xn
p→ X.

Definition B.1.2 (Convergence with Probability 1). A sequence of random variables

{Xn} is said to converge with probability 1 to X if

P
(

lim
n→∞

Xn = X
)

= 1.

If this is the case, we write Xn
wp1→ X.

Definition B.1.3 (Convergence in Distribution). A sequence of random variables

{Xn} is said to converge in distribution to X if

lim
n→∞

P (Xn ≤ x) = P (X ≤ x)

for each point x such that P (X = x) = 0. If this is the case, we write Xn
d→ X.

177
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As shown in Billingsley (1995) convergence with probability 1 implies convergence in

probability which in turn implies convergence in distribution. The reverse of these im-

plications does not necessarily hold. For more information on these and other modes of

convergence see Billingsley (1995) and Serfling (1980).

Frequently a sequence of random variables which converges in distribution, converges to

the normal distribution, in which case it is said to be asymptotically normal.

Definition B.1.4 (Asymptotically Normal). A sequence of random variables {Xn} is

said to be asymptotically normal with mean µn and variance σ
2
n > 0 if

Xn − µn
σn

d→ N (0, 1)

where N (0, 1) is the standard normal distribution and is denoted as such by writing Xn ∼

AN
(
µn, σ

2
n

)
.

The various modes of covergence are used to categorise the manner in which a sequence

of estimators converges to the object being estimated.

Definition B.1.5 (Weak Consistency). A sequence of estimators {Tn} is said to be

weakly consistent with a parametric function g (θ) if Tn converges in probability to g (θ) ,

i.e. Tn
p→ g (θ) .

Definition B.1.6 (Strong Consistency). A sequence of estimators {Tn} is said to be

strongly consistent with a parametric function g (θ) if Tn converges with probability 1 to

g (θ), i.e. Tn
wp1→ g (θ) .

Clearly any strongly consistent sequence of estimators is also weakly consistent.

B.2 Convergence theorems

The following theorem from Serfling (1980), using the Cramer-Wold device, seen also in

Billingsley (1995) (Theorem 29.4) and elsewhere, allows one to derive the asymptotic dis-

tribution of a linear combination of random variables from their multivariate asymptotic

distribution.
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Theorem B.2.1 (Asymptotic Distribution of a Linear Combination of Random

Variables - Serfling (1980), Theorem 1.5.2). In Rk, the random vectors Xn converge

in distribution to the random vector X if and only if each linear combination of the compo-

nents of Xn converges in distribution to the same linear combination of the components of

X.

The following theorem can be used to show that certain functions of an asymptotically

normal random variable are also asymptotically normal.

Theorem B.2.2 (Univariate Delta Theorem - Serfling (1980), Theorem 3.1A).

Suppose that Xn is AN
(
µ, σ2

n

)
with σn → 0. Let g be a real-valued function differentiable

at x = µ, with g′ (µ) 6= 0. Then

g (Xn) is AN
(
g (µ) ,

[
g′ (µ)

]2
σ2
n

)
. (B.2.1)

Extensions to Theorem B.2.2 are available to deal with the situation where g′ (µ) = 0,

see for example Serfling (1980) (Theorem 3.1B). However, we do not consider that situation

here. The following theorem deals with vector-valued functions g.

Theorem B.2.3 (Multivariate Delta Theorem - Serfling (1980), Theorem 3.3A).

Suppose that Xn = (Xn1, . . . , Xnk) is AN
(
µ, b2nΣ

)
, with Σ a covariance matrix and bn → 0.

Let g (x) = (g1 (x) , . . . , gm (x)) , where x = (x1, . . . , xk) , be a vector-valued function for

which each component function gi (x) is real-valued and has a non-zero differential gi (x; t) ,

where t = (t1, . . . , tk) , at x = µ, with g′ (µ) 6= 0. Put

D =

[
∂gi
∂xj
|x=µ

]
m×k

(B.2.2)

Then

g (Xn) is AN
(
g (µ) , b2nDΣD′

)
. (B.2.3)

Remark B.2.1 (Serfling (1980), Remark 3.3B(i)). A suffi cient condition for the

component function gi to have a non-zero differential at x = µ is that the partial derivatives
∂gi
∂xj

, for j = 1, . . . , k are all continuous at x = µ and not all zero at x = µ.
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Time series

C.1 Overview

A time series is a process indexed by some indicator of time, T . The process is defined by

a model equation of the form

Xt = ft ({Xt : t ∈ T } , {ut : t ∈ T }) (C.1.1)

where each Xt is an element of some space X, ft is the time series model function and ut is

an innovation process used to perturb the time series. The time series may also include some

function of exogenous data, which we do not consider at this stage. A model such as that

specified in equation (C.1.1) is too broad to be of much value, so to allow the development

of a useful theory for the estimation and prediction, some restrictions on the nature of ft, ut

and T are required.

In general, and throughout this thesis, T is restricted to the set of integers Z. The

innovation process may be restricted to being a white noise or strong white noise, which

we define below, though conditional heteroskedastic models such as arch, garch etc have

had a huge impact on the study of financial market data (Gourieroux (1997), Tsay (2010)).

Definition C.1.1 (White Noise). The process {ut} is said to be white noise with mean

0 and variance σ2 if and only if E [ut] = 0 for all t

E [utut−h] =

 σ2 <∞ if h = 0

0 if h 6= 0
(C.1.2)
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for all t. If in addition to the above conditions, ut is an independent and identically distrib-

uted, then ut is said to be strong white noise.

The more important and interesting restrictions are those placed on the function ft.

A time series process is said to be causal if the function ft takes as parameters only those

elements in the data set from the past. Time invariant functions f := ft are more commonly

employed than time variant functions. However, there is a good deal of literature about

processes with time varying coeffi cients, that is models where the structure of the function is

time invariant but the process coeffi cients may change. See Lütkepohl (2005) and Kitigawa

(2010) for more information on, in particular time-varying coeffi cient autoregressive time

series processes.

Another important restriction on the function ft is that of linearity. The class of linear

time series processes known as autoregressive moving average (arma) processes and the

subclasses of autoregressive (ar) and moving average (ma) processes provide the most

widely studied and used processes in time series analysis. The arma equation,

Xt = µ+

p∑
j=1

φj (Xt−j − µ) +

q∑
j=0

θjut−j (C.1.3)

includes the ar terms φj (Xt−j − µ) and ma terms θjut−j . An ar process is simply an arma

process where q = 0.Simlarly an ma process is an arma process where p = 0.Most standard

time series textbooks contains a substantial section on arma processes (Brockwell and Davis

(1991), Hamilton (1994), and Fuller (1996)). To denote that {Xt} is an arma(p, q) process,

we may write

Xt ∼ arma (p, q) . (C.1.4)

Similar notation may be used for ma(q) and ar(p) processes.

The bilinear process described by the following equation

Xt = µ+

p∑
j=1

φj (Xt−j − µ) +

q∑
k=0

θkut−k +

r∑
j=1

s∑
k=0

ψjk (Xt−j − µ)ut−k (C.1.5)

is another class of time series processesls which has been extensively studied. Bilinear

models offer the ability to model data sets which include sudden bursts away from the

mean, such as might be seen in seismic data. For more information on bilinear time series

processes, see Subba Rao and Gabr (1984). Other classes of nonlinear time series processes

are discussed in Fan and Yao (2005).
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Although in this thesis we are primarily concerned with univariate arma processes,

interesting extensions to much of this thesis may be possible onto both the finite dimensional

vector space RK and the infinite dimensional Hilbert space L2 [0, 1] .

We complete this introduction by stating the following definitions which are frequently

used in time series analysis.

Definition C.1.2 (Stationarity). The time series {Xt, t ∈ Z} is said to be stationary,

or second order stationary, if

(a) E
[
X2
t

]
<∞ for all t ∈ Z,

(b) E [Xt] = m for all t ∈ Z and

(c) Cov (Xr, Xs) = Cov (Xr+t, Xs+t) for all r, s, t ∈ Z.

Definition C.1.3 (Strict Stationarity). The time series {Xt, t ∈ Z} is said to be strictly

stationary if the joint distributions of (Xt1 , . . . , Xtk) and (Xt1+h, . . . , Xtk+h) are the same

for all positive integers k and for all t1, . . . , tk, h ∈ Z.

The autocovariance and autocorrelation functions are used to describe the dependency

of time series processes.

Definition C.1.4 (Autocovariance Function). If {Xt, t ∈ Z} is a process such that

V ar (Xt) <∞ for each t ∈ Z,then the autocovariance function λ (·, ·) of {Xt} is defined by

λ (r, s) = Cov [Xr, Xs] (C.1.6)

for r, s ∈ Z. If {Xt} is stationary, then for convenience we can redefine the autocovariance

function to be

λ (h) = Cov [Xt, Xt+h] (C.1.7)

Definition C.1.5 (Autocorrelation Function). If {Xt, t ∈ Z} is a process such that

V ar (Xt) <∞ for each t ∈ Z,then the autocorrelation function ρ (·, ·) of {Xt} is defined by

ρ (r, s) =
λ (r, s)

λ (r, r)
(C.1.8)

for r, s ∈ Z. If {Xt} is stationary, then for convenience we can redefine the autocorrelation

function to be

ρ (h) =
λ (h)

λ (0)
(C.1.9)
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The lag operator is commonly used in time series literature for ease of notation.

Definition C.1.6 (Lag Operator). The lag operator L on an element Xt of a time series

process is defined by

L (Xt) = Xt−1. (C.1.10)

The autoregressive and moving average polynomials of a play an important role in the analy-

sis of arma processes.

Definition C.1.7 (Autoregressive Polynomial). The autoregressive polynomial of the

arma(p, q) process in (C.1.3) is defined to be

φ (z) = 1− φ1z − · · · − φpzp. (C.1.11)

Definition C.1.8 (Moving Average Polynomial). The moving average polynomial of

the arma(p, q) process in (C.1.3) is defined to be

θ (z) = 1 + θ1z + · · ·+ θqz
q. (C.1.12)

The arma process equation (C.1.3) can be succinctly written using the autoregressive

and moving average polynomials and the lag operator as

φ (L)Xt = θ (L)ut. (C.1.13)

C.2 Summation of autoregressive moving average processes

In this section we describe some properties of the sums of arma processes. The following

theorem shows that arma processes are closed under addition and provides upper bounds

on the order of the summed process.

Theorem C.2.1 (Granger and Morris (1976) - Section 2). Suppose Xt ∼ arma(k1,m1)

and Yt ∼ arma(k2,m2) are indepedendent, zero-mean, stationary processes and define the

process {Zt} by

Zt = Xt + Yt. (C.2.1)

Then

Zt ∼ arma (k,m) (C.2.2)
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where

k ≤ k1 + k2 and m ≤ max (k1 +m2, k2 +m1) . (C.2.3)

The proof of Theorem C.2.1 involves the use of the autoregressive and moving average

polynomials of {Xt} and {Yt} to construct formulae for the autoregressive and moving

average polynomials of {Zt} . Suppose

φ1 (L)Xt = θ1 (L) et (C.2.4)

and

φ2 (L)Yt = θ2 (L)ut (C.2.5)

then

Zt = φ−1
1 (L) θ1 (L) et + φ−1

2 (L) θ2 (L)ut (C.2.6)

or

φ (L)Zt = φ1 (L)φ2 (L)Zt

= φ2 (L) θ1 (L) et + φ1 (L) θ2 (L)ut

= θ (L) vt (C.2.7)

The process {θ (L) vt} is the sum of an ma(k1 +m2) process and an ma(k2 +m1) process

which can be shown to be an ma(m) process wherem is given by (C.2.3) . The autoregressive

polynomial, φ (L) , of {Zt} is product φ1 (L)φ2 (L) which has order k ≤ k1 + k2. The

inequalities in (C.2.3) allow for the possibility that there may be common roots in the

polynomials of {Xt} and {Yt} .

Whilst calculation of φ (L) is straightforward, an analytic formula for the coeffi cients

of θ (L) may not be available. It is possible to calculate the autocovariance function of

{θ (L) vt} , even where there is a correlation between {et} and {ut} . Given the autocovari-

ance function of a moving average process, it is possible to calculate the unique moving

average polynomial of the process using a Newton-Raphson method proposed in Wilson

(1969), known as the Wilson Factorisation Algorithm.

C.3 Self-weighted least absolute deviation estimation

In this section we describe the self-weighted least absolute deviation (slad) method for the

estimation of the parameters of an sma(q) process. Although the slad method is used in
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this thesis only for the estimation of sma(q) processes, the slad method is applicable to

more general infinite variance arma processes. Let {Xt} be the following sma(q) process

Xt = µ+

q∑
j=1

θjet−j + et (C.3.1)

where {et} is an iid sequence of stable random variables such that

et ∼ S0
α (βe, γe, δe) . (C.3.2)

Denote the vector of process parameters by

ψ = (µ, θ1, . . . , θq)
′ . (C.3.3)

For a set of observations {x1, . . . , xn} and a set of initial values {x0, x−1, . . .} , we define

the objective function

Hn (ψ) =
1

n

n∑
t=1

wt |et (ψ)| (C.3.4)

where

et (ψ) = xt − µ−
q∑
j=1

θjet−j (ψ) (C.3.5)

and

wt ≡ w (xt−1, xt−2, . . .) (C.3.6)

is a weight function. If the initial values {x0, x−1, . . .} are not available we set them to

zero. The slad estimator ψ̂n is defined as the minimiser of the objective function over the

parameter space Ψ ⊂ Rk, where k = q + 1, i.e.

ψ̂n = arg min
ψ∈Ψ

Hn (ψ) . (C.3.7)

Asymptotic properties of the slad estimators are given in the following theorem.

Theorem C.3.1 (Zhu and Ling (2012) - Theorem 2). Let ψ0 denote the true value

of ψ for the sma(q) process in (C.3.1) . If the following assumptions are satisfied:

AC.3.1 That ψ0 is an interior point in a compact parameter space Ψ;

AC.3.2 For each ψ ∈ Ψ, the moving average polynomials have no zero roots in the unit

circle;
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AC.3.3 That the weight function wt is a positive, measurable and bounded function and

that E
[(
wt + w2

t

)
π2
ρ,t−1

]
<∞ for any ρ ∈ (0, 1) , where

πρ,t−1 = 1 +
∞∑
i=0

ρi |Xt−1−i| a.s.; (C.3.8)

AC.3.4 That εt has a zero median with a continuous density function g (x) satisfying

g (0) > 0 and supx∈R g (x) <∞.

then

1.
√
n
(
ψ̂n − ψ0

)
= Op (1)

2.
√
n
(
ψ̂n − ψ0

)
d−→ N (0, Vψ) as n→∞

where

Vψ = [2g (0)]−2 Σ−1
0 Ω0Σ−1

0 (C.3.9)

and

Σ0 = E
[
wt (∂et (ψ0) /∂ψ)

(
∂et (ψ0) /∂ψ′

)]
(C.3.10)

Ω0 = E
[
w2
t (∂et (ψ0) /∂ψ)

(
∂et (ψ0) /∂ψ′

)]
(C.3.11)

We denote the components of Vψ by

Vψ =

 Vµ Vµ,θ

V ′µ,θ Vθ

 (C.3.12)

where Vµ, Vµ,θ and Vθ are 1× 1, 1× q and q × q matrices respectively.

Assumptions AC.3.1 and AC.3.2 are satisfied by the collection of all invertible sma(q)

processes. If et has a non-zero median, then Assumption AC.3.4 can be satisfied by ap-

plying an appropriate location shift to the sequence {et} and the parameter µ. All stable

distributions have a non-zero density at the median.

There are many choices available for the weight function wt which satisfy Assumption

AC.3.3. The following weight function is suggested in Zhu and Ling (2012). If E
[
e2
t

]
<∞,

then

wt = 1. (C.3.13)
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If E
[
e2
t

]
=∞ and E [|et|] <∞, then

wt =

max

1, C−1
∞∑
j=1

1

j9
|Xt−j | I {|Xt−j | > C}

−4

(C.3.14)

where C > 0 is a constant. If E [|et|] =∞, then

wt =

max

1, C−1
∞∑
j=1

1

j1+16/α1
|Xt−j | I {|Xt−j | > C}

−4

(C.3.15)

where 0 < α1 < α.

It is claimed in Zhu and Ling (2012), that choosing C to be the 0.90th quantile of Xt

works well in practice. However, in running the simulations for this thesis it was found that

choosing C to be the 0.99th quantile of |Xt| produced estimates with a lower variance and

a distribution which more closely resembled the Gaussian distribution. Using a quantile

of |Xt| rather than Xt produced better estimates of an sma(q) process with a skewed

distribution. In the remainder of this thesis, unless stated otherwise, the weight functions

used by the slad estimator are those defined in (C.3.13) , (C.3.14) and (C.3.15) and are

used with C equal to the 0.99th empirical quantile estimate of {|Xt|} and α1 = 2α/3.

In Zhu and Ling (2012), it is suggested that an estimate for the asymptotic variance Vψ

can be obtained by using

V̂ψ = [2ĝ (0)]−2 Σ̂−1
n Ω̂nΣ̂−1

n (C.3.16)

where

Σ̂n =
1

n

n∑
t=1

wt
∂et

(
ψ̂n

)
∂ψ

∂et

(
ψ̂n

)
∂ψ′

(C.3.17)

Ω̂n =
1

n

n∑
t=1

w2
t

∂et

(
ψ̂n

)
∂ψ

∂et

(
ψ̂n

)
∂ψ′

(C.3.18)

and ĝ (0) is a density estimate of et at 0.

C.4 Generalised method of moments estimation

In this section we describe how the generalised method of moments (gmm) can be used to

estimate the parameters of a stochastic volatility (sv) model. The gmm is an extension of

the classical method of moments (cmm) as an alternative to maximum likelihood estimation.
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The advantage of gmm estimation is that it does not require knowledge of the complete

density function, only knowledge of selected moment functions. A moment function is just

a function of the moments.

In cmm the number of moment functions used equals the number of parameters to be

estimated and there is a unique solution. An example of cmm is the estimation of the

parameters of an ar(1) process. Let {Xt} be the ar(1) process given by

Xt = φ1Xt−1 + et (C.4.1)

where {et} is an iid sequence ofN
(
0, σ2

e

)
random variables. The parameters to be estimated

are φ1 and σ
2
e. In cmm, we might use the autocovariance function, λh, at lags h = 0, 1 as

our moment functions. Since

λ0 =
σ2
e

1− φ2
1

and λ1 = φ1

σ2
e

1− φ2
1

, (C.4.2)

substitution of the sample autocovariance functions λ0 and λ1 into (C.4.2) produces a unique

set of estimates for the parameters φ1 and σ
2
e. This example is also known as Yule-Walker

estimation. Similar results could be achieved using the autocovariance function at any

distinct pair of lags. There may be some benefit in including information from the sample

autocovariance functions at many lags. However, in general there is not a single set of

parameters which exactly matches the sample autocovariance function at more than two

distinct lags.

In gmm the number of moment functions used may be greater than the number of

parameters to be estimated. Instead of searching for a set of parameters which exactly

matches each of the sample moment functions, the gmm returns the set of parameters

which best matches all of the sample moment functions. Let g (θ) = (g1 (θ) , . . . , gk (θ))′

denote the vector of moment functions used in a gmm estimator of the vector of parameters

θ = (θ1, . . . , θm)′ where θ ∈ Θ and Θ is some parameter space. The gmm estimator, θ̂, from

a sample of size n is then defined by

θ̂ = arg min
θ∈Θ

(
n−1

n∑
t=1

ĝ (t)− g (θ)

)
W

(
n−1

n∑
t=1

ĝ (t)− g (θ)

)′
(C.4.3)

where ĝ (t) = (ĝ1 (t) , . . . , ĝk (t))′ is the vector of sample moment functions evaluated at t

and W is a symmetric weight matrix which assigns an importance to each moment function
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of the gmm estimator. Hence, in the design of a gmm estimator there are two important

decisions to be made: i) which moment functions to use and ii) which weight matrix to use.

The particular estimation problem of interest to this thesis to which we wish to apply the

gmm is the estimation of the parameters of an sv model. In our sv model, the observable

process {Xt} is given by

Xt = σtεt, (C.4.4)

lnσt = µ+ φ1 lnσt−1 + vt, (C.4.5)

where {εt} is an iid sequence of N (0, 1) random variables and {vt} is an iid sequence of

N
(
0, σ2

v

)
random variables which is independent of {εt} .The small-sample performance of

a gmm estimator for the sv model was explored in depth by Anderson and Sorensen (1996)

and we follow their design in this thesis. The 24 moment functions considered by Anderson

and Sorensen (1996) are as follows:

g1 (θ) = E [|Xt|] , (C.4.6)

g2 (θ) = E
[
X2
t

]
, (C.4.7)

g3 (θ) = E
[
|Xt|3

]
, (C.4.8)

g4 (θ) = E
[
X4
t

]
, (C.4.9)

g4+i (θ) = E [|XtXt−i|] , i = 1, . . . , 10, (C.4.10)

g14+i (θ) = E
[
X2
tX

2
t−i
]
, i = 1, . . . , 10. (C.4.11)

where θ =
(
µ, φ1, σ

2
v

)
. Formulae for each of the gi (θ) can be found in Section 1 of Anderson

and Sorensen (1996) and in the appendix of Jacquier et al. (1994).

The asymptotic optimal choice of the weight matrix,W ∗, is the inverse of the covariance

matrix of the moment functions, Hansen (1982), i.e.

(W ∗)−1 = (E [gi (θ) gj (θ)])i,j=1,...,k . (C.4.12)

The optimal weight matrix is not known unless the true parameters are known, but can be

estimated through a kernel method proposed by Newey and West (1987). For some chosen

lag h, the estimate
(
Ŵ ∗ (θ)

)−1
of (W ∗)−1 is given by

(
Ŵ ∗ (θ)

)−1
= n−1

h∑
i=0

(
1− i

h+ 1

) n∑
t=i

(ĝ (t)− g (θ)) (ĝ (t− i)− g (θ))′ . (C.4.13)
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An initial estimate of θ is obtained using an estimate for the weight matrix where the

mean of ĝ (t) is substituted for g (θ) in (C.4.13) . A final estimate of θ is obtained using

an estimate for the weight matrix obtained by substituting the initial estimate of θ into

(C.4.13) .

In Hansen (1982) it is shown that asymptotic distribution of θ̂ is given by

√
n
(
θ̂ − θ0

)
d→ D′ (W ∗)−1D (C.4.14)

where

D =
∂g (θ)

∂θ
|θ=θ0 (C.4.15)

and θ0 is the true value of the parameters. The inclusion of additional moment functions

tends to decrease the asymptotic variance of the gmm estimator, (Table 4, Anderson and

Sorensen (1996)). However, for small samples the use of fewer moment functions can be

optimal, (Tables 1 and 2, Anderson and Sorensen (1996)).

Further general information on gmm estimators can be found in Chapter 14 of Hamilton

(1994). A comparison of gmm estimation and quasi maximum likelihood estimation of the

sv model parameters can be found in Anderson and Sorensen (1997).



Appendix D

Quantile estimation

D.1 Introduction

There is an extensive literature on the statistical properties of the empirical quantile estima-

tors, see for example Cramer (1946), Wilks (1962), Durbin (1973) and Serfling (1980). Other

quantile estimators, such as those which involve some form of smoothing, e.g. histograms

or kernels (Silverman (1986)), are not considered in this thesis.

The following theorems assume that {xj}nj=1 is an independent sample drawn from

F. The first theorem shows that the empirical quantile estimator has strong consistency

wherever the underlying distribution function is not flat.

Theorem D.1.1 (Strong Consistency of ξ̂n;p - Serfling (1980), Theorem 2.3.1).

Let 0 < p < 1. If ξp is the unique solution x of F (x−) ≤ p ≤ F (x) , then ξ̂n;p is a strongly

consistent estimator of ξp.

The next theorem shows that the empirical quantile estimator is asymptotically normal

under some conditions on the underlying distribution function (See also Cramer (1946))

Theorem D.1.2 (Asymptotic Normality of Empirical Quantile Estimator - Ser-

fling (1980), Corollary 2.3.3B). For 0 < p < 1, if F possesses a density f in a

neighbourhood of ξp and if f is positive and continuous at ξp, then

ξ̂n;p is AN

(
ξp,

p (1− p)
f2
(
ξp
)
n

)
(D.1.1)

191
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or expressed in terms of the quantile density function q

ξ̂n;p is AN
(
ξp,

p (1− p) q2 (p)

n

)
. (D.1.2)

Theorem D.1.2 is extended in the following theorem to cover the estimation of multiple

quantiles from a single sample.

Theorem D.1.3 (Asymptotic Covariances of Empirical Quantile Estimators -

Serfling (1980), Theorem 2.3.3B). Let 0 < p1 < · · · < pk < 1.Suppose that F has

a density f in a neighbourhoods of ξp1 , . . . , ξpk and that f is positive and continuous at

ξp1 , . . . , ξpk . Let ξ̂n =
(
ξ̂n;p1 , . . . , ξ̂n;pk

)′
denote the empirical quantiles estimates of ξ =(

ξp1 , . . . , ξpk
)′
, then

√
n
(
ξ̂n − ξ

)
d−→ N (0, Vξ) . (D.1.3)

The element in the ith row and jth column of Vξ is given by

vij =


pi (1− pj)

f
(
ξpi
)
f
(
ξpj

) for i ≤ j

pj (1− pi)
f
(
ξpi
)
f
(
ξpj

) for i > j
. (D.1.4)



Appendix E

Stable distributions

E.1 Introduction

The following definition for stable distributions is from Feller (1970).

Definition E.1.1 (Stable Distribution). Let X,X1, X2, . . . be independent random vari-

ables with a common distribution F and define Sn by

Sn = X1 + · · ·+Xn. (E.1.1)

The distribution F is said to be stable (in the broad sense) if for each n there exist constants

an > 0 and bn such that

Sn ∼ anX + bn (E.1.2)

and F is not concentrated at a single point. The distribution F is said to be stable (in the

strict sense) if (E.1.2) holds with bn = 0.

Stable distributions can also be defined by their characteristic functions. Several differ-

ent parameterisations for stable characteristic functions have been proposed, see Zolotarev

(1986). In this thesis we use the S0
α (β, γ, δ) parameterisation recommended by Nolan (1998),

where α ∈ (0, 2] is the index of stability, β ∈ [−1, 1] is the skewness parameter, γ > 0 is the

scale parameter and δ is the location parameter. If X ∼ S0
α (β, γ, δ) , then the characteristic

193



E. Stable distributions 194

function of X is given by

E [exp (iuX)] =



exp

 −γ
α |u|α

[
1− iβ

(
tan

πα

2

)
sign (u)

]
+

i
[
δ − β

(
tan

πα

2

)
γ
]
u

 if α 6= 1

exp


−γ |u|

[
1 + iβ

2

π
sign (u) ln |u|

]
+

i

[
δ − β 2

π
γ ln γ

]
u

 if α = 1

. (E.1.3)

Note that the S0
α (β, γ, δ) parameterisation in Nolan (1998) is the same as the S (α, β, γ, δ; 0)

in Nolan (2015).

Unfortunately, closed form expressions for a stable density function exist only in the

special cases of the Cauchy distribution (α = 1) and the normal distribution (α = 2). The

S0
α parameterisation of a normal distribution is given by,

N
(
µ, σ2

)
∼ S0

2

(
0, σ/

√
2, µ
)
. (E.1.4)

Under the S0
α parameterisation, stable distributions exhibit the properties described in

the following lemma.

Lemma E.1.1 The S0
α parameterisation has the following properties.

a) The parameters γ and δ are true scale and location parameters: if X ∼ S0
α (β, γ, δ) , then

for any a 6= 0, b

aX + b ∼ S0
α (sign (a)β, |a| γ, aδ + b) (E.1.5)

b) The characteristic function and hence the density and distribution functions are jointly

continuous in all four parameters (α, β, γ, δ) .

c) If X1, X2, . . . , Xn are pairwise independent and Xj ∼ S0
α

(
βj , γj , δj

)
are independent,

then
∑n

j=1Xj ∼ S0
α (β, γ, δ) where

γα =

n∑
j=1

γαj (E.1.6)

β =

∑n
j=1 βjγ

α
j∑n

j=1 γ
α
j

(E.1.7)

δ =


∑n

j=1 δj +
(

tan
πα

2

) [
βγ −

∑n
j=1 βjγj

]
if α 6= 1∑n

j=1 δj +
2

π

[
βγ ln γ −

∑n
j=1 βjγj ln γj

]
if α = 1

. (E.1.8)
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Proof. Statements a) and b) are taken from Lemma 1, Nolan (1998). Statement c)

is included for n = 2 in Lemma 1, Nolan (1998). The extension of c) to general n is a

straightforward induction.

We make the following remarks on two of the more important consequences of Lemma

E.1.1 for this thesis.

Remark E.1.1 If {Xt} is a moving average process with stable innovations, then {Xt} has

a stable distribution and we can calculate the distributional parameters of {Xt} from the

distributional parameters of the innovations and the moving average process parameters.

Remark E.1.2 If {Xt} is an iid process with a stable distribution, then its temporal aggre-

gation
{
S

(r)
t

}
has a stable distribution and we can calculate the distributional parameters

of
{
S

(r)
t

}
from the distributional parameters of {Xt} .

We can use Lemma E.1.1, to establish a simple, yet useful, relation between the quantiles

and log quantile differences of stable random variables.

Lemma E.1.2 Suppose X ∼ S0
α (β, γ, δ) and Y ∼ S0

α (β, |a| γ, aδ + b) for some a > 0, b.

Let ξX;p, ξY ;p denote respectively the pth quantiles of X and Y, then

ξY ;p = aξX;p + b (E.1.9)

Let ζX;p1,p2 , ζY ;p1,p2 denote respectively the (p1, p2) th log quantile differences of X and Y,

then

ζY ;p1,p2 = ln a+ ζX;p1,p2 (E.1.10)

Proof. From Lemma E.1.1, we have that

Y ∼ aX + b. (E.1.11)

and therefore

p = P
(
X ≤ ξX;p

)
= P

(
Y ≤ aξX;p + b

)
(E.1.12)

which proves (E.1.9) .
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From (E.1.9) we get

ζY ;p1,p2 = ln
(∣∣ξY ;p2 − ξY ;p1

∣∣)
= ln

(∣∣aξX;p2 − aξX;p1

∣∣)
= ln a+ ζX;p1,p2 (E.1.13)

which proves (E.1.10) .

The scale and location properties of the γ and δ parameters lead to the following useful

result on the quantiles of the stable distribution.

Lemma E.1.3 Let

X ∼ S0
α (β, γ, δ) , (E.1.14)

X∗ ∼ S0
α (β, 1, 0) (E.1.15)

be stable random variables. Let ξp and ξ
∗
p denote respectively the pth quantile of X and X∗.

Then for any 0 < p1, p2 < 1 where p1 6= p2 we have

γ =
ξp2 − ξp1
ξ∗p2 − ξ

∗
p1

(E.1.16)

and

δ = ξp1 − γξ
∗
p1 . (E.1.17)

Proof. From Lemma E.1.1 we have

γX∗ + δ ∼ X. (E.1.18)

It follows that for any 0 < p < 1,

ξ∗p =
ξp − δ
γ

(E.1.19)

from which (E.1.16) and (E.1.17) follow immediately.

A final useful property of stable distributions is the reflection property.

Proposition E.1.1 (Reflection Property - Nolan (2015), Proposition 1.11). For

any α and β, if X1 ∼ S0
α (β, 1, β tanπα/2) and X2 ∼ S0

α (−β, 1, β tanπα/2) then

X1
d
= −X2. (E.1.20)
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