
REPRESENTING AND
REASONING

ABOUT BAYESIAN GAMES
WITH EPISTEMIC LOGIC

Oldooz Dianat

Master of Computer Science, University Technology of

Malaysia (UTM), 2010

Bachelor of Science in Applied Mathematics , University of

Tehran, 2004

This dissertation is presented for the degree of

Doctor of Philosophy

at

Department of Computing

c© 2014 Oldooz Dianat

To the memory of my father.

Declaration

I certify that the work in this thesis entitled REPRESENTING AND REA-

SONING ABOUT BAYESIAN GAMES WITH EPISTEMIC LOGIC has not

previously been submitted for a degree nor has it been submitted as part

of the requirements for a degree to any other university or institution other

than Macquarie University. I also certify that the thesis is an original piece of

research and it has been written by me. Any help and assistance that I have

received in my research work and the preparation of the thesis itself have

been appropriately acknowledged. In addition, I certify that all information

sources and literature used are indicated in the thesis.

Signed: Oldooz Dianat

Date:

v

Abstract

Multi-agent systems are systems which include more than one autonomous

agent with either varying information or varying interests, or both. An

agent in a multi-agent system should behave rationally, which informally

is defined as choosing actions that improve its chance of success. This

definition of rationality is adopted to game theory which is the science of

studying interactions between agents in multi-agent systems. However, these

descriptions do not consider the reasoning abilities of agents. One way to

tackle this issue is to use logical declarative languages, as these languages

enable reasoning about the best strategy in games by considering other players’

rationality and reasoning abilities. Furthermore, logical languages are used to

represent game models explicitly and these languages can formulate certain

specific situations, such as game theory solutions. Agents are then able to

verify the correctness of these formulae in the model, thus these languages

equip agents with decision making capability based on reasoning.

In this thesis, we study normal form games, in which a set of agents make

their decisions simultaneously, without the knowledge about the decisions of

other agents, and Bayesian games that let agents face uncertainty and hold

private information. We first provide an epistemic language which can model

the knowledge of an agent for reasoning about games without uncertainty

for reasoning about normal form games. We then extend it for representing

and reasoning about Bayesian games. The extended language is used to

describe explicit models that assist agents in decision making. In addition,

this language is used as an expressive, general, semantically well-defined query

language for model checkers. To show that our language is a succinct and

expressive language and our approach is practical for a reasonable class of

applications, several representative game scenarios are investigated, such as

detection of attackers in wireless networks and recognition of the benefits of

using cloud computing.

vii

Acknowledgment

I would like to take this opportunity to thank my principal supervisor Professor

Mehmet A. Orgun for his encouragement, and his belief in me. He gave me

the freedom to pursue my own directions, while providing me with advice

whenever I am in need. His emphasis on presenting the simplest explanation

possible has helped me to understand problems in ways deeper that I thought

possible. I am most indebted to his support and guidance.

To my associate supervisor Dr Lee Flax, thanks for his guidance. Thanks

are also due to the members of the Department of Computing at Macquarie

University for their help and encouragement. I am especially thankful of

Associate Professor Lenore D. Zuck from the University of Illinois at Chicago

for her valuable comments.

I am grateful of Yasaman Motazedi, a fellow PhD student in computing

department for working together. I would like to thank Dr Christoph Krisp

for his time and his comments on an earlier draft of this thesis.

I would like to thank my colleagues at the Commonwealth Scientific and

Industrial Research Organisation (CSIRO) for a most enjoyable and fruitful

year. I would also like to thank my master degree supervisor Professor

Habibollah Haron who has first instilled in me a love for research.

From a more personal side, I am most grateful to my mother, who has over

the years provided with unconditional love and care. Her willingness to let

me pursue my dreams despite being far away, has given me the opportunity

to complete this academic journey. I would also like to thank Sepideh and

Pooya for their unwavering support.

I am also grateful for having a great circle of friends who share my joys

and disappointments during PhD program, Atefeh, Emma, Francesca, Joshua,

Kayla, Mauro, Melanie, Nieke, Nora and Tommaso. I am also grateful for

family members and many friends, both near and far away.

ix

List of Related Publications

This thesis has resulted in the following publications; my contribution to

those publications is 80%.

Conference papers:

• O. Dianat and M. A. Orgun; Representing and Reasoning about Utiliza-

tion of Cloud Computing as Bayesian games with Epistemic Logic. In

Proceedings of The 4th International Conference on Ambient Systems,

Networks and Technologies (ANT-2013), June 2528, 2013, Halifax, Nova

Scotia, Canada, Procedia Computer Science, Volume 19, 2013, Pages

4047, ISSN 1877-0509.

• O. Dianat and M. A. Orgun; Modelling Bayesian Attacker Detection

Game in Wireless Networks with Epistemic Logic. In Proceedings of

The 8th International Conference on Collaborative Computing: Net-

working, Applications and Worksharing, October 1417, 2012 Pittsburgh,

Pennsylvania, USA, IEEE Conference Publications, pages 210215.

xi

Contents

Declaration v

Abstract vii

Acknowledgements ix

List of Related Publication xi

List of Figures xvii

List of Tables xix

1 Introduction 1

1.1 Motivation . 1

1.2 Related Work . 4

1.3 The Approach . 7

1.4 Aims and Contributions . 9

1.5 Outline of the Thesis . 12

2 Game Theory and Modal Logic 15

2.1 Multi-agent Systems and Game Theory 15

2.1.1 Normal Form Games 17

2.1.2 Bayesian Games . 18

2.2 Game Theory and Modal Logic 25

2.2.1 Representing and Reasoning about Normal Form Games 26

2.2.1.1 Dynamic Epistemic Logic 26

2.2.1.2 Dynamic Logic 27

2.2.1.3 Epistemic Logic 28

2.2.2 Representing and Reasoning about Simultaneous Games 32

2.2.2.1 Alternating-time Temporal Logic 32

2.2.2.2 Concurrent Dynamic Games Logic 34

xiii

xiv CONTENTS

2.2.2.3 Probabilistic Dynamic Epistemic Logic 35

2.2.2.4 Set-Theoretic Beliefs 36

2.3 Model Checking . 38

2.4 Remarks . 41

3 Games and Epistemic Logic 43

3.1 Epistemic Logic for Normal Form Games 43

3.1.1 Syntax for Normal Form Games 46

3.1.2 Semantics for Normal Form Games 48

3.2 Bayesian Games and Epistemic Logic 55

3.3 Epistemic Logic for Bayesian Games 56

3.3.1 Language for Bayesian Games 58

3.3.2 Semantics for Bayesian Games 61

3.4 Remarks . 68

4 Model Checking 71

4.1 Model Checking Games . 71

4.2 Model Checker’s Input Language 75

4.3 Model Checker’s Specification Language 77

4.4 Model Checker’s Algorithms 82

4.5 Remarks . 87

5 Applications 89

5.1 Wireless Network and Game Theoretic Approach 90

5.1.1 Security in Wireless Network with Channel Uncertainty 92

5.1.2 Bayesian Attacker Detection Game 93

5.1.3 Reasoning About Bayesian Attacker Detection Games

by Epistemic Logic . 95

5.2 Cloud Computing . 100

5.2.1 Cloud Computing Characteristics 102

5.2.2 Cloud Computing as Bayesian Games 104

5.2.3 Epistemic Logic for Cloud Computing as Bayesian Games106

5.2.4 Representing and Reasoning About Cloud Computing

by Epistemic Logic . 109

5.3 Remarks . 113

xiv

CONTENTS xv

6 Conclusions 115

6.1 Discussion . 115

6.2 Future Work . 117

xv

List of Figures

3.1 The four states of Prisoner’s dilemma (table 3.1) 53

3.2 Representing the states of a Bayesian game 67

3.3 Representing relations between the states of a Bayesian game . 69

4.1 Parsing a state formula . 74

4.2 System structure . 76

4.3 The system input format . 78

5.1 An eavesdropper can passively listen to the communication. . 92

5.2 A jammer actively transmits signals to inference and interrupt

the communication. 93

5.3 Representing relations between states of the attacker detection

game of a Bayesian game . 100

5.4 The system input format . 101

5.5 The capacity versus utilisation curve [86] 103

5.6 States of the game . 107

5.7 Knowledge about rationality 108

5.8 The system input format . 111

xvii

List of Tables

2.1 Prisoner’s dilemma . 17

2.2 A Bayesian game with 16 normal form games 21

2.3 The induced normal form of the Bayesian game shown in figure

2.2 . 23

2.3 Second part of the induced normal form of the Bayesian game

shown in figure 2.2 . 24

3.1 Prisoner’s dilemma . 45

3.2 A Bayesian game (taken from [100]) 57

4.1 Examples of basic expressions 77

4.2 Knowledge operators . 78

4.3 Properties to be checked . 83

5.1 Payoff matrix of an attacker detection game [115] 93

5.2 The induced normal form of Bayesian attacker detection games 96

5.3 Payoff matrix based on 2% peak load capacity θ = 0 [64] . . . 104

5.4 Payoff matrix based on 50% peak load capacity θ = 1 [64] . . 105

5.5 Induced normal form . 106

xix

Chapter 1

Introduction

Synergy means behaviour of whole systems unpredicted by the behaviour of

their parts. (R. Buckminster Fulller, What I have learned).

1.1 Motivation

Agents can be considered as successors to the traditional knowledge-based or

expert systems which could reason with the symbolic representation of some

universe of discourse (or knowledge domain), and could provide expert-level

advise on problems related to that domain. When several agents interact with

each other in a computerised system, a multi-agent system is formed. Multi-

agent systems can be used to solve problems that are difficult or impossible

for an individual agent to solve. Furthermore, these systems can reduce

operation time by providing methods for distributed computation.

In multi-agent systems, an optimal action to be chosen by one agent

depends on the actions the other agents choose, therefore game theory provides

a suitable basis for the analysis of these interactions [31]. This is motivated

by the fact that a game is a setting in which a player is an agent who operates

in an environment determined by the other agents’ behaviour and who takes

the behaviour of the other agents as an input to its decision making process

[96]. Under this interpretation, a solution’s strategy entails the behaviour

of a player who knows the other players’ strategies but reasons about the

outcome from the model’s primitive, i.e., the preferences and the informational

structures. In other words, it deals with the question of rational decision

making by individual agents at situations of strategic interaction. To answer

this question, traditional game theory offers a number of solution concepts.

In abstract terms, a solution concept is a foundation that relates to each

1

2 Chapter 1: Introduction

game a set of strategies. Each strategy of this set is viewed as one that a

rational player would choose. The Nash equilibrium probably is the best

known solution concept for normal form games, that is, those as games in

which agents choose an action simultaneously [92].

Most works in game theory have made two crucial assumptions. First,

the payoff to each agent (player) is given by a fixed, deterministic value.

Second, these values are common knowledge among all agents. However, both

assumptions often fail to hold for real world problems. Here, players do not

necessarily know which game they are playing, or who the other players are

[112]. This leads to uncertainty in game theory, which is represented by a

probability distribution over a set of possible games [67]. Classical Bayesian-

ism is still a favourite means of dealing with uncertainty [66]. Therefore,

games with incomplete information or Bayesian games provide a natural and

compelling model that enables understanding the actions of agents in a multi-

agent system under uncertainty. Bayesian games can simply be defined as

incorporation of procedural rationality consideration into models of uncertain

interactive situations, such as a set of normal form games where players do

not know which game is about to be played.

Game theory is a well-studied area, it is, however, not based on logic. It is

important to try to base it on a logic or to incorporate it in a logic, because

game theory is often presented as a theory that models reasoning. In the

theoretical description of a game, an informal notation of rationality is given in

the situation that rational agents interact with each other [104]. Therefore, a

logical language is required which is intended to make this informal rationality

precise. A formal language for games is not only about formalising solution

concepts but also about precisely and intuitively specifying the condition

under which rational players should be expected to act to achieve a solution

concept. Nevertheless, any action which game theory suggests, should be

proved that, under appropriate setting, it is a rational move [104]. Therefore,

it is an adequate practice to develop a formal language with a clear distinction

between syntax and semantics and various notions of validity. Modal logic

offers formalisation for games with the required syntax and semantics.

To analyse implicitly the concept of modal operators of modal logic, one

should use the axiom systems of modal logic. To analyse explicitly a formal

language, a model and rules have to be defined and the rules have to assign

1.1 Motivation 3

values to the sentences of the language related to the model. Saul Kripke

proposed semantics for modal logics, which allowed for a more systematic

evaluation of modal logics. If a sentence is true in some set of models, then the

sentence is valid relative to those models. This is the reason of flexibility of

modal logic. As a result, based on demand, a logic semantics can be justified

by finding a set of models. The models characterise the logic with respect to

the fact that the set of theorems of the logic is exactly the set of sentences that

are valid relative to that set of models. Therefore, game-theoretic settings

can have models which offer an interpretation for solution concepts, such as

a model of a game is a representation of the game that is being played, or

a set of models of a game should determine a set of strategies. Therefore,

one of the main theoretical tasks is to define a model in which one particular

situation as playing a game, is presented. The model should represent players’

choice, players’ preferences and players’ utility functions.

So far only the semantics of a formal logic is expressed. However, the

syntax of a formal language is important [104]. Although we can reason

about a fixed situation by working with sets (possible worlds) rather than

formulae, we can formalise certain notations in a semantics-independent way

with the syntax of the language. For example, based on one model, Ki mean

“agent i has knowledge” and in another model, it means “agent i is rational”.

Another advantage of developing syntax is to differentiate logically equivalent

formulae. For example, both formulae Kitrue and Ki(p ∨ ¬p) are logically

equivalent, since (p∨¬p) is a tautology. However, a computationally bounded

agent may not identify (p∨¬p) as a tautology and therefore, might not know

it. In addition, syntax allows us to reason and to carry out proofs, which

are usually achieved by induction on the structure of formulae. Moreover,

formulae provide comparison tools for the same basic phenomena. In other

words, formulae relate structures in a way that cannot be done using sets. For

example, considering two epistemic structures M1, M2, both of which have 2

worlds (states). Agent 1 and agent 2 in M1 know that p is true. Nevertheless,

in M2 at one of its worlds p is false and agent 2 does not know whether p is

true or not. Consequently, K1p ∨K1¬p holds in every state of both M1 and

M2, while K2p ∨K2¬p. Therefore, a formula can compare different worlds,

as K2p ∨K2¬p differentiates between worlds in M1 and M2.

Besides abstracting and specifying the behaviour of complex systems by

4 Chapter 1: Introduction

means of logic, in recent years researchers have been concerned about the

problem of verifying the specifications of those complex systems. One of the

most successful verification techniques among traditional approaches, such

as simulation, testing, and deductive reasoning, is model checking [28]. The

procedure is as follows: a real system, such as S, is first modelled to MS

by a logical language that encodes the computational traces of the system,

and then it is formally verified that the system complies with certain desired

properties such as P , which is expressed via a logical formula ϕP . Verification

with model checking technique is defined as the problem of demonstrating

whether or not MS |= ϕP .

Several tools have been developed to perform this task automatically for

temporal and epistemic models. However, traditional model checking tools

do not allow for the representation of social interaction and autonomous

behaviour of the agents under the lack of information.

To show that our language is a succinct and expressive language and

our approach is practical for a reasonable class of applications, different

representative scenarios will be investigated. Another motivation to model

applications with this formal language is to show those properties that may

be expressed using this language. Since extended epistemic logic is a suitable

language to cope with uncertainty, it is also appropriate to analyse real life

situations, such as detection of attackers in wireless networks and recognition

of the benefits of using cloud computing. The reason to consider these

two scenarios is that, they both demonstrate Bayesian game characteristics.

Simply, both scenarios form different normal form game settings in which

players are uncertain about the game that is being played.

1.2 Related Work

Modal logic has already been applied in conjunction with game theory to

model interaction between agents in multi-agent systems. Moreover, some

game theorists make the point that the formalism of an agent’s information

by means of logic should be included in game models [92]. Epistemic and

temporal logic are used widely for modelling game settings and analysing them.

Epistemic logic as the logic of knowledge and belief presents the knowledge

1.2 Related Work 5

of agents. Temporal logic provides the ability for formalising the concept of

time and it is used extensively for representing games with sequential actions

over time [29], [3], [57], [25], [23], [42]. These logics do not provide enough

flexibility to represent the interaction between agents in normal form games

and Bayesian games.

A variety of logics have been proposed for reasoning about normal form

games. We discuss those logics that are closely related to this thesis. van

Benthem proposed dynamic epistemic logic [108], [110], [36] for representing

the change of agents’ knowledge. As this logic is the mixture of epistemic logic

and pubic announcement logic, the lack of announcement in games makes it

inapplicable for normal form games. By the help of Dynamic logic [91] two

player normal from games are presented. However, by dynamic logic, games

can be modelled while the outcome of the current game is dependent upon

the previous game. Because this is not the desired property for reasoning

about only one normal form games.

To the best of our knowledge, Bayesian games as concurrent games in

which agents suffer from lack of information about the game is being played,

have never been formalised by means of logic. However, concurrent games

have attracted a good deal of attention in the logic community as they

offer a similar structure to concurrent systems such as operating systems.

Alternating-time temporal logic [3] is a suitable formalism for representing

two player concurrent games in which players move simultaneously and the

combination of two moves determines the next state. A variety of extensions

of this logic have been proposed to increase the expressiveness of this logic

such as alternating-time µ-calculus logic [49].

All the mentioned temporal logics represent perfect information games.

Nevertheless, there are some studies that consider the uncertainty of players

about the strategy such as alternating-time temporal observational logic [58].

In another study [99], incomplete information games are studied with the

assumption that agents have access to only their system state, known as

information. Most of similar work to these studies are suitable for agents

with bounded recall of the past.

Another logic for concurrent games is concurrent dynamic game logic [111],

which has two different sets of rules, one for propositions and another for

games. This language provides the ability to represent games as propositions.

6 Chapter 1: Introduction

However this logic is not suitable for representing Bayesian games as it does

not offer any means to model the private knowledge of agents in Bayesian

games.

A combined logic of dynamic epistemic logic and probabilistic epistemic

logic [39] is proposed as probabilistic dynamic epistemic logic [61]. Proba-

bilistic epistemic logic semantically represents probability on the worlds that

agents consider possible. The mentioned combination provides the dynamic

power of dynamic epistemic logic for probabilistic epistemic logic. Therefore,

the resulting logic has two sets of rules for propositions and games. However,

representing the rationality of an agent is not offered in this language.

Beliefs in games with incomplete information is studied in [27]. A prob-

abilistic Kripke structure is used and a notion of rationality is proposed.

However, representing probabilistic beliefs is not considered in this work. In

[10] also the notion of dynamic rationality is studied by conditional doxastic

logic. This logic represents plausibility situations that are common situations

in the belief revision structures. Backward induction is used as the method

to detect solutions of games and therefore to define rational behaviour. As

backward induction is based on reasoning backwards in time, it only applies

to extensive form games.

Harsanyi [47] analysed the uncertainty about the structure of a game-

specifically, about the players’ payoff functions. To this end, he introduced

the concept of a player’s type, a fundamental concept which can be used

to encode what the player believes the payoff functions might be, what the

player believes other players believe the payoff functions might be, and so on

indefinitely. Interactive epistemology deals with the beliefs and the knowledge

of game players. It comes in two versions. The semantic approach represents

knowledge by means of possible world structures, identifying the knowledge

of a player i with the set of propositions that are true at all worlds which

i cannot distinguish from the actual world [15], [48], [105]. The syntactic

approach represents knowledge by sentences that are provable in extensions

of various epistemic logics.

On a related front, syntactic investigations have found their way into the

economic and game theoretic literature [9], [107], [17], [30]. Most of these

applications are concerned with extensive games.

The syntactic approach with axiomatic systems for playing games has

1.3 The Approach 7

recently been proposed by B. de Bruin [32]. Bonanno proposed a formula for

representing Nash equilibrium strategies in games [16]. He also argued that

epistemic logic is not only a useful tool to describe the rational behaviour

of players, but also effective when it comes to recommending players how to

act. The syntax of the language can be used as a query language to verify a

game’s properties with model checking techniques.

A variety of model checking tools exist to automatically verify properties

in different systems. PRISM [65], Mocha [4] and MCK [44] are among the

set of model checkers that are in some aspects related to our work. PRISM

is a powerful model checker for probabilistic systems and it can be used for

checking properties using different temporal logics. PRISM however is not

applicable to model Bayesian games as it still does not support real and

rational numbers and as a consequence unable to represent probabilities.

For representing the type of players, a system is needed to support a larger

set of numbers than the natural numbers. Mocha is another model checker

that can be used to represent games and verify game properties [94], but

its current stage does not support probabilistic systems. MCK is a model

checker suitable for models that deal with knowledge of agents. Therefore,

it supports epistemic logic, and it also supports probabilistic reasoning [52].

This system, however, does not provide enough flexibility for representing the

type of Bayesian games.

Different applications are modelled as Bayesian games, such as crypto-

graphic protocols [113], mechanism design, such as auctions [27], detection

of attackers in wireless network [115] and cloud computing [64]. We provide

formal descriptions for the two latter applications as they have not been

analysed with epistemic logic and model checking techniques yet.

1.3 The Approach

The standard approach to develop a logic in the philosophy and computer

science communities is, to build the language syntax first, and then assign

formulas in the language truth values in a semantic structure. Epistemic

logic is shown to be a precise language for formalising games [26], [40], [96].

We can represent a basic notion of individual rationality, often the idea of

8 Chapter 1: Introduction

maximisation of expected utility, and obtain what the payoff is given the

informational context of a game. This means that, rather than saying that

a set of strategies is a rational solution for a game, with epistemic logic, we

try to understand what would be a rational decision for each agent, based

on the agent’s expectations on other agents’ behaviour. In other words, in a

game where agents interact with other rational decision makers, each agent’s

expectations about what it will gain based on its decision depend on what the

agent expects the other decision-makers decide to do. We restrict ourselves to

agents’ attitudes that are fully self-examining, truthful and not revisable as

proposed in [109]. In the literature of epistemic logic as well as game theory,

it is commonly called knowledge [93].

This thesis has benefited from the studies of B. de Bruin [32] and G.

Bonanno [19] but our approach is substantially different from them. Semantics

that were proposed by [19] are only applicable to two person games, while

we allow any number of players in the general case. Furthermore, the syntax

in [32] focuses only on mixed strategies, while we consider pure strategies.

More importantly, B. de Bruin’s approach does not provide links between

syntax and semantics by means of frame characterisation results. Semantics

of our work is influenced by G. Bonanno [19] but it is different in several

ways. G. Bonanno’s approach is based on ordinal payoffs, while we assume

von Neumann Morgenstern payoffs [100]. The significant difference to [19]

is, that it only focuses on complete information games, while our approach

covers both, complete information games and incomplete information games.

Following early work on epistemic game theory, we specify players’ payoff,

their beliefs about other players’ types and their beliefs about beliefs by using

type frames [7]. To get a succinct representation, a type frame is specified

using Kripke structures. Roughly speaking, a type frame specifies a set Ω

of possible worlds (or states), and for each player i, each world ω specifies a

payoff for i, as well as what worlds player i considers possible at ω- called i’s

belief at ω.

In a Bayesian game, as the players should consider all games in one move,

each player has to play a set of strategies simultaneously. Semantically, this

mixed set of strategies is not interpreted as player’s choices, but as its beliefs.

Therefore, type frames in combination with epistemic logic offer a suitable

formal representation of Bayesian games.

1.4 Aims and Contributions 9

1.4 Aims and Contributions

We aim to develop an epistemic logic in an incomplete information game

setting. In such a setting, an agent i is certain about its own payoff, but

may have uncertainty about the other agents’ payoffs, and about the other

agents’ beliefs about the whole payoff. Typically, the literature on epistemic

logic in games focuses on extensive form games, in which players take turns

to play. These games can represent many multi-agent system applications.

However, simultaneous single moves are inevitable in many situations, for

example auctions with private values which is, the players are assumed to

how much the good is worth to them, but different players may value it

differently. In order to analyse these situations, we may want to represent

them in a formal manner. As just explained, this involves more than just

studying these settings with game theory; one also needs tools to reason about

incentives of agents. The central tool we will use throughout the thesis, is a

formal language, called epistemic logic. Initially, in this logic, one could model

the knowledge of a single agent only. We introduce an epistemic logic for

analysing normal form games and Bayesian games. This epistemic logic with

uncertainty obtains a more all-encompassing picture of practical reasoning

for agents. This formal language enables us to define the desirability of

outcomes not only based on players’ actual payoff, but also based on their

beliefs about other players’ types. In this thesis, we use rationality to analyse

which outcomes are consistent with the definition of solution concepts such

as the Nash equilibrium.

Another restriction in the literature is to analyse games mostly semantically.

The axioms for games have not been studied until recently [112]. Both, syntax

and semantics, are considered as closely connected throughout this thesis, as

they provide support for each other.

This formal language will be supported by a model checker. The term

model checking refers to a collection of techniques for the automatic analysis

of reactive systems that are assumed to maintain an ongoing interaction with

their environment. Subtle errors in the design of these systems that often

elude conventional simulation and testing techniques can be identified using

this method. Model checking has been proven cost-effective and integrates

well with conventional design methods. Therefore, it is being adopted as a

10 Chapter 1: Introduction

standard procedure for quality assurance [71].

In model checking, a logic formula ϕ specifies some system property to be

checked. One approach in model checking is to have another logic formula, Γ,

that precisely specifies the system. To check that a property holds, we have

to prove that we can infer ϕ from Γ [20]. The model checker either confirms

that the properties hold or reports that they are violated. Later, it provides

a counter example: a run that violates the property. It can provide valuable

feedback and points to design errors.

Our language is a concise and expressive language for describing complex

properties of multi-agent systems. We showcase this logic in the context of

two example games from wireless networks and cloud computing, presenting

uncertainty over set of similar situations with different outcomes in both

scenarios.

The main contributions of this thesis are as follows:

• We provide an extension of the epistemic logic for normal form games

by considering player’s preferences over a set of outcomes. The ex-

tension makes the formulation of rationality by epistemic logic more

tangible. Parallel to syntax, semantics is extended to explicitly analyse

the rationality and thus the solution concepts in these games.

• We provide a formal approach for establishing Bayesian games for

multi-agent systems, which include a method for modelling agents’

strategies, payoffs and preferences, and a technique to express agent’s

uncertainty over a set of normal form games. The approach can be used

to specify agents’ knowledge and uncertainty beliefs. Such an approach

provides a foundation for reasoning about playing games given the lack

of information about the game that is being played. It can also be used

to describe the interaction and preferences of agents under uncertainty.

It provides a basis to enable formal verification techniques to check

whether a given agent behaves rationally. Therefore, an irrational

behaviour can be revised before any major loss happens for agents.

• We provide a system that implements model checking techniques. The

system can be used to verify game playing rules and rationality in

normal form games and Bayesian games. It offers the modelling of these

1.4 Aims and Contributions 11

games by the proposed formal language. The system demonstrates

the advantages of the model checking verification technique and its

associated reasoning technique, such as analysing a game property. The

system can be used to prove the correctness act of agents in games with

respect to the specification language. It also provides rational moves for

an agent based on the other agents’ actions which determines a solution

concept. This contribution is presented in [33].

• As the first application of our system, we provide a method for the

detection of attackers in wireless networks, by means of epistemic logic.

The approach formalises the interaction between attacker nodes and

regular nodes in the network, which facilitates the determination of

attacking behaviour. It provides recommendation for having a secure

network by formal definition of rational movement of regular nodes. A

scenario can be modelled as a Bayesian game in epistemic logic and

checked automatically by the model checker system with respect to the

semantics of formal language. A certain situation, an attack to the

wireless network, can be automatically detected by the system. This

contribution is presented in [34].

• As the second application of our system, we provide an analysis for

an ongoing interaction between cloud providers and cloud clients. The

formal language enables us to formulate the utilisation of the cloud

for clients’ processing, covering dynamics of pricing offered by cloud

providers. The approach can suggest advisable behaviour by contrasting

their possible choices under uncertainty. The model checker system

models the scenario and it helps to better understand of the financial

aspects of the scenario. It recommends clients the potential balance

between using clouds or private data centres by reasoning about ratio-

nal reaction to different cloud price schemata with respect to formal

specification language. This contribution is presented in [35].

These methods and techniques will be developed for representing and

reasoning about Bayesian game settings. They can be used in any multi-agent

systems where agents face variety of similar events with different outcomes in

the way that the agent is not certain which event might be happening.

12 Chapter 1: Introduction

1.5 Outline of the Thesis

The thesis is organised as follows:

We start in Chapter 2 by showing the connection between multi-agent

systems and game-theoretical setting. The definition of rational behaviour of

agents justifies the important position of game theory in multi-agent systems.

Game theory covers different ways of agent interaction, and we study the

behaviour of self-interested agents in the context of normal form games

and Bayesian games. We introduce different methods for detecting solution

concepts in these games and provide examples. Modal logic provides an

adequate foundation for representing and reasoning about games. We explain

different formal languages which satisfy the requirement under different

assumptions to formalise games. We provide a brief review of different logics

which justifies the need for proposing an extended epistemic logic for these

classes of games. As a tool to apply formal languages to model and check

desired properties in a scenario, model checker techniques are explained. We

compare different model checker tools to show their power and weaknesses.

Normal form games form the basic foundation of Bayesian games. There-

fore, in Chapter 3 we first extend the already proposed epistemic logic for

normal form games by adding axioms and evaluation rules. We show the

rationality axiom and its truth value justification. We apply this formal

language to model and reason about a simple two player normal form game

(the prisoner’s dilemma game). We propose a formal language for modelling

and reasoning about Bayesian games. The language is the epistemic logic

for normal form games with the power to express the type of players as

probability beliefs. The semantics and syntax of the language, are presented.

We analyse the rational behaviour of players in a Bayesian game. The chapter

also presents a case study of reasoning about rational behaviour in a Bayesian

game.

In Chapter 4, we turn to model checking tool as an automatic verifica-

tion mechanism about Bayesian games. Here, we develop a model checker

that receives epistemic logic specifications to model normal form games and

Bayesian games. We show the input language and specification language and

present different algorithms that are used to implement the tool.

1.5 Outline of the Thesis 13

Chapter 5 presents two applications for the formal language of Bayesian

games. The applications are modelled as Bayesian games and then represented

by epistemic logic. The first application is the detection of attackers in

a wireless network. The detection action is formalised and the rational

behaviour is explicitly determined. The rational behaviour of participants as

a specification is checked by the model checker. Cloud computing is modelled

to recognise the balance between using a cloud or an own data centre. The

modelled scenario is formalised as a Bayesian game by the epistemic logic.

The rational behaviour of the cloud provider and the client is formalised

and the model checker used to verify the suitable choices under different

circumstances for both players.

This thesis concludes in Chapter 6 which presents a summary of the

contributions. We discuss future work that we are interested in pursuing as a

result of this work.

Chapter 2

Game Theory and Modal Logic

In this chapter, we introduce the concept of agent interaction in game settings

with respect of detecting the stable points with the best possible outcome.

Since formalism by means of logic proves to be a strong tool for specifying

and analysing games, we briefly summarise the formalisms to model normal

form games and Bayesian game and reason about the rational behaviour of

agents. After this, we summarise the approaches to model checking with

different tools.

2.1 Multi-agent Systems and Game Theory

In the recent decades, it is expected from agents to decide for themselves and

satisfy their design objectives by doing what they need to do autonomously

[116]. The agents may be humans, individuals, groups, companies or artificial

systems. They are broadly defined as actors in a system [97]. The term

multi-agent systems obviously implies a system with more than one actor.

These systems spread widely and play important roles in our society, ranging

from wireless networks to cloud computing. In other words, multi-agent

systems are systems which include multiple autonomous agents with either

varying information or varying interests, or both.

However, the agents in multi-agent systems should behave rationally,

which informally is defined as choosing actions that improve their success

[53]. Nevertheless, there are different formal definitions for a rational agent.

One of them is, that a rational agent acts as well as tries to opt its resources.

That is, the profit for a rational agent is at least as high as the profit of any

other agent running on the same system [40].

15

16 Chapter 2: Game Theory and Modal Logic

A rational agent is of real, practical interest because its behaviour is the

best that can be obtained [13]. This is the definition of rationality which is

adopted to game theory. In addition, game theory offers rules for analysing

decision problems in multi-agent systems. In these problems, the utility of

a given action depends on the actions of other agents. The classical game

scenario involves a set of agents who make their decisions simultaneously,

without the knowledge about the decisions of other agents. In a formal

definition based on game theory, a rational agent embodies preferences,

knowledge about the environment, and moreover knowledge about other

agents with which it will interact.

Two common approaches in game theory are non-cooperative game theory

and cooperative game theory. In the latter approach, the basic modelling

unit, is a group of agents rather than an individual agent [100]. In this thesis,

we are exclusively interested in non-cooperative games and we do not study

cooperative games.

The non-cooperative games are referred to as the dominant approach in

game theory [100]. In this branch, self-interested agents have a degree of

preferences across a set of available alternatives [83]. To model an agent’s

interest based on that definition of preferences is referred to as utility theory.

Throughout this thesis, the assumption is, that the agent has desires about

how to act which is consistent with utility theory. We use words such as,

“utility functions”, “payoffs” or “outcomes” to implicitly refer to this theory.

Non-cooperative games cover a wide spectrum of games, ranging from

normal form games to games with sequential actions, also known as extensive

form games. The extensive form games, unlike normal form games, represent

the sequence or time of the action a player takes in a game. However, both

games are expected to be finite games. In contrast to infinite games, finite

games provide the fundamental game-theoretic setting, but to represent

realistic situations they are insufficient. Hence, infinite games are suitable to

model complex and real-life scenarios.

Infinite games cover different games, such as repeated games, stochastic

games, Bayesian games, and congestion games. Naturally, for repeated games

and stochastic games, time is the most important factor, while Bayesian

games have different structures and involve uncertainty.

In this thesis, we study normal form games as the basic structure of game

2.1 Multi-agent Systems and Game Theory 17

theory and Bayesian games that let agents face uncertainty and hold private

information.

2.1.1 Normal Form Games

The most familiar representation of strategic interactions in game theory

are normal form games. These games are also known as the strategic form.

A natural way to present these games is via an n-dimensional matrix. An

example is given in table 2.1 for the well known game of the prisoner’s

dilemma.

player 2
cooperates defects

player 1
cooperates (2,2) (0,3)

defects (3,0) (1,1)

Table 2.1: Prisoner’s dilemma

There are different methods to play normal form games. Agents should

follow some rules to achieve solutions of games. These rules should identify

some outcomes that are interesting in one sense or another [75]. We briefly

review three main solutions.

• Iterated elimination of strictly dominated strategies: a strictly dom-

inated strategy is the strategy that pays less than other available

strategies, regardless of what the other players play. Therefore, in a

matrix presentation of a game, we delete all cells that relate to this

strategy. For example, in the game shown in table 2.1 we delete the

rows and columns that relate to the strategy “cooperate”. Therefore,

the only outcome is “defect” for both players.

• Pareto optimality: it tries to identify an outcome that is better than

another from the point of view of an outsider. Formally, it says that

there should be a set of strategies that some agents cannot be made

better off by making other agents worse off.

• Nash equilibrium: this is a stable point in a game, at which no agent

would want to change its strategy given the strategies of other agents.

18 Chapter 2: Game Theory and Modal Logic

In this thesis, as the solution for those games we try to detect the pure Nash

equilibrium. The reason is that the complexity of finding a sample (pure

or mixed) Nash equilibrium in a finite game with two or more agents is a

polynomial parity argument directed graph (PPAD) [100] which is a less known

complexity class. PPAD is a subset of the total function nondeterministic

polynomial (TFNP) class. A binary relation P (x, y) belongs to TFNP class

if and only if there is a deterministic polynomial time algorithm that can

determine whether P (x, y) is true given both x and y, and for every x, there

exists a y such that P (x, y) is true.

To detect the solution in a game, we go through each step shown below

[77].

1. detect all pure strategies for player i.

2. for each pure strategy of player i, determine the pure strategies of other

players.

3. determine the best utility among a set of combination of the pure

strategy of player i and other players’ strategies.

Now we find the solution for the prison dilemma game that is shown in

table 3.1. One pure strategy for player 1 is “cooperates” and another one is

“defects”. The utilities for player 1, if it cooperates, are 2 and 0. If it defects,

the utilities are 3 and 1. Similarly, the pure strategies for player 2 are either

“cooperates” or “defects”. The utilities for player 2 when it cooperates are 2

and 3 and if it defects are 0 and 1. The best sets of utilities are (2,2) and

(1,1). The sets of utilities (3,0) and (0,3) are unstable. In the first case, player

2 will deviate from it to increase its outcome. Likewise, the utility (0,3) will

not be chosen by player 1, this player is able to gain a better outcome than

this utility.

In the next section, we review different models of Bayesian games which

consist of different normal form games.

2.1.2 Bayesian Games

Game theory studies decision problems in which the utility of a given action

depends not only on the actions of other agents but also on chance of events

2.1 Multi-agent Systems and Game Theory 19

in the environment. If we want to model these events, the state of the world

as a game depends on randomness in the environment. These settings are

known as Bayesian games or games of incomplete information, because agents

are uncertain about the very game being played [120]. Agents’ uncertainties

are presented as a probability distribution over a set of possible games.

There are several ways for representing Bayesian games, as information set

[7], extensive form with chance moves [100], epistemic type [47] or interactive

epistemology [12]. The difference between the epistemic type and interactive

epistemology is that the latter one restricts agents’ beliefs about their own

knowledge and their opponents’ strategies.

In this thesis, we choose the epistemic type, because it offers a presentation

that can be represented by epistemic logic.

Two accepted assumptions about these games are :

• All normal form games that form a Bayesian game have the same

number of agents and the same number of strategies for each agent;

these games only differ in their utility functions.

• The type (probability belief) of each agent is a posterior, obtained by

conditioning a common prior on individual private signal.

The second assumption is important, since Bayesian games define, besides

the uncertainties of agents about the game being played, the agent’s beliefs

about the beliefs of other agents about the game that is being played. There-

fore, an entire infinite hierarchy of nested beliefs with this assumptions is

defined. John Harsanyi [47] suggested a solution that avoided the difficulty

of having to deal with infinite hierarchies of beliefs, by providing a much

more workable implicit, encapsulated model. The key notion in Harsanyi’s

model is the type (second assumption). Each agent can be of several types,

where a type is to be thought of as a full description of the agents beliefs

about the state of nature (the data of the game), beliefs about the beliefs of

other agents about the state of nature and about its own beliefs, etc. This

assumption is necessary to formulate the main ideas in Bayesian games[100].

Therefore, in Bayesian games we have expected utility which is:

20 Chapter 2: Game Theory and Modal Logic

(2.1) ExpUi(ai, a−i) =
m∑
j=1

P (θij, θ−i)(ui(ai, a−i|θij, θ−i))

We assume that the number of players is n and each player has m types.

θ−i = {θ1, ..., θi−1, θi+1, ..., θn} is the set of types other players have. P (θij, θ−i)

is the probability of having type j of player i with a set of types of other

players. ui(ai, a−i|θij, θ−i) is the utility of player i playing strategy ai in

combination with other players’ strategy sets a−i = {a1, ..., ai−1, ai+1, ..., an}
given (θij, θ−i).

The best response and consequently Bayes-Nash equilibrium is defined

based on the equation 2.1. The best response of agent i to the set of other

players’ strategies a−i is a set of strategies that:

(2.2) BestResi(a−i) = arg max
a′i∈ai

ExpUi(a
′
i, a−i)

Equation 2.2 intuitively means that a set of strategies of all available

strategies for player i (a′i ∈ ai) for which given ExpU function attains its

maximum value.

A Bayes-Nash equilibrium is a set of strategies that satisfies the following

statement

∀i ai ∈ BestResi(a−i).

Despite its similarity to the Nash equilibrium, it seems conceptually more

complicated. However, the solution is to model Bayesian games as normal

form games. Formally known as induced normal form for Bayesian games, the

induced normal form presentation of Bayesian games has expected utilities

for each player. Furthermore, the Bayes-Nash equilibria of a Bayesian game

are the Nash equilibria of its induced normal form.

As an example, we define an arbitrary Bayesian game, and present its

induced normal form and Bayes-Nash equilibria. Consider the Bayesian game

in table 2.2, which is constructed from 16 normal form games. The strategies

for player 1 in each normal form game of the Bayesian game is U and D,

2.1 Multi-agent Systems and Game Theory 21

player 2

p
la

ye
r1

Θ21 Θ22 Θ23 Θ24

game1 game2 game3 game4

Θ11

L R
U 3,2 1,1
D 1,1 2,3

p=0.1

L R
U 4,4 1,7
D 7,1 2,2

p=0.09

L R
U 5,5 1,1
D 1,1 3,3

p=0.12

L R
U 3,0 0,3
D 0,3 3,0

p=0.13
game5 game6 game7 game8

Θ12

L R
U 4,1 1,4
D 1,4 4,1

p=0.05

L R
U 3,3 0,0
D 0,0 1,1

p=0.1

L R
U 5,5 0,6
D 6,0 4,4

p=0.02

L R
U 6,4 0,0
D 0,0 4,6

p=0.11
game9 game10 game11 game12

Θ13

L R
U 4,4 1,6
D 6,1 3,3

p=0.01

L R
U 3,2 2,3
D 2,3 3,2

p=0.08

L R
U 5,5 2,2
D 2,2 4,4

p=0.02

L R
U 6,5 2,2
D 2,2 5,6

p=0.02
game13 game14 game15 game16

Θ14

L R
U 4,4 0,0
D 0,0 1,1

p=0.05

L R
U 6,5 2,2
D 2,2 5,6

p=0.09

L R
U 2,0 0,2
D 0,2 2,0

p=0.02

L R
U 6,6 0,7
D 7,0 3,3

p=0.08

Table 2.2: A Bayesian game with 16 normal form games

which could be substituted with any desired action. Similarly for player 2 is

L and R.

In the induced normal form game each player has sixteen possible strategies.

Each player has four types and two actions, thus for every type it has two

actions therefore, 24 = 16. Then player 1’s sixteen strategies are labelled

as UUUU, UUUD, UUDU, UDUU, DUUU, UUDD,UDUD, DUUD, DUDU,

DDUU, UDDU, UDDD, DUDD, DDUD, DDDU, DDDD. Note that UUUU

means that player 1 chooses U regardless its type, UUUD means that it

chooses U when it has type θ11 and U in its other types. Similarly, we can

denote the strategies of player 2 in the Bayesian game by LLLL, LLLR, LLRL,

LRLL, RLLL, LLRR, LRLR, RLLR, RLRL, RRLL, LRRL, LRRR, RLRR,

RRLR, RRRL, RRRR.

We define a 16 × 16 normal form game in which these are the sixteen

strategies of the two players, and the utilities are the expected utilities in the

22 Chapter 2: Game Theory and Modal Logic

individual games, given the players’ beliefs. For example, player 1’s expected

utility under the set of strategies (DUDU, LLRR) is calculated by:

u1(DUDU,LLRR) =
4∑
j=1

P (θ1j , θ2)(u1(a1, a2|θ1j , θ2)) =

p(θ11 , θ21)u1(D,L, θ11 , θ21) + p(θ11 , θ22)u1(D,L, θ11 , θ22)+

p(θ11 , θ23)u1(D,R, θ11 , θ23) + p(θ11 , θ24)u1(D,R, θ11 , θ24)+

p(θ12 , θ21)u1(U,L, θ12 , θ21) + p(θ12 , θ22)u1(U,L, θ12 , θ22)+

p(θ12 , θ23)u1(U,R, θ12 , θ23) + p(θ12 , θ24)u1(U,R, θ12 , θ24)+

p(θ13 , θ23)u1(D,L, θ13 , θ23) + p(θ13 , θ22)u1(D,L, θ13 , θ22)+

p(θ13 , θ23)u1(D,R, θ13 , θ23) + p(θ13 , θ24)u1(D,R, θ13 , θ24)+

p(θ14 , θ21)u1(U,L, θ14 , θ21) + p(θ14 , θ22)u1(U,L, θ14 , θ22)+

p(θ14 , θ23)u1(U,R, θ14 , θ23) + p(θ14 , θ24)u1(U,R, θ14 , θ24) =

0.1 ∗ 1 + 0.09 ∗ 7 + 0.12 ∗ 3 + 0.13 ∗ 3 + 0.05 ∗ 4+

0.01 ∗ 3 + 0.02 ∗ 0 + 0.11 ∗ 0 + 0.01 ∗ 6 + 0.08 ∗ 2+

0.02 ∗ 4 + 0.02 ∗ 5 + 0.05 ∗ 4 + 0.09 ∗ 6 + 0.02 ∗ 0+

0.08 ∗ 0 = 2.85

We can construct the complete utility matrix by computing all the possible

combination of strategies at given types. The induced normal form that is

achieved by this computation is shown in table 2.3. Now, the game can be

analysed in a straightforward fashion. For example, we can determine player

2’s best response to DUUD is RLLR with an utility of 3.4.

When we have an application based on game theoretic settings, agents

autonomously perform some actions. The agents need to reason about what

they know and what they believe precisely to make a decision. One way is

to represent games with formal languages. In the next section, we provide a

brief survey about the connection between game theory and modal logic.

2.1 Multi-agent Systems and Game Theory 23

∆
T

ab
le

2.
3:

T
h
e

in
d
u
ce

d
n
or

m
al

fo
rm

of
th

e
B

ay
es

ia
n

ga
m

e
sh

ow
n

in
fi
gu

re
2.

2

R
L

R
L

R
R

L
L

L
R

R
L

L
R

R
R

R
L

R
R

R
R

L
R

R
R

R
L

R
R

R
R

U
U

U
U

2.
81

,3
.3

7
2.

12
,3

.0
9

3.
21

,2
.9

9
2.

13
,2

.6
4

1.
73

,3
.0

2
1.

04
,2

.7
4

1.
87

,3
.0

7
0.

79
,2

.7
2

U
U

U
D

2.
29

,2
.4

6
1.

6,
2.

18
2.

69
,2

.0
8

2.
73

,2
.6

9
2.

33
,3

.0
7

1.
64

,2
.7

9
1.

35
,2

.1
6

1.
39

,2
.7

7

U
U

D
U

3.
01

,3
.3

8
1.

92
,3

.0
2

3.
41

,3
2.

33
,2

.6
5

1.
93

,3
.0

3
0.

84
,2

.6
7

2.
07

,3
.0

8
0.

99
,2

.7
3

U
D

U
U

1.
99

,2
.9

5
2.

8,
3.

57
3.

89
,3

.4
7

2.
81

,3
.1

2
0.

91
,2

.6
1.

72
,3

.2
2

2.
55

,3
.5

5
1.

47
,3

.2

D
U

U
U

1.
99

,2
.9

5
2.

94
,2

.6
9

2.
41

,2
.5

3
1.

33
,2

.1
8

2.
55

,2
.6

2
1.

86
,2

.3
4

2.
69

,2
.6

7
1.

61
,2

.3
2

U
U

D
D

3.
01

,3
.3

8
1.

4,
2.

11
3.

41
,3

2.
93

,2
.7

2.
53

,3
.0

8
1.

44
,2

.7
2

2.
07

,3
.0

8
0.

99
,2

.7
3

U
D

U
D

1.
47

,2
.0

4
2.

28
,2

.6
6

3.
37

,2
.5

6
3.

41
,3

.1
7

1.
51

,2
.6

5
2.

32
,3

.2
7

2.
03

,2
.6

4
2.

07
,3

.2
5

D
U

U
D

3.
11

,2
.0

6
2.

42
,1

.7
8

1.
89

,1
.6

2
1.

93
,2

.2
3

3.
15

,2
.6

7
2.

46
,2

.3
9

2.
17

,1
.7

6
2.

21
,2

.3
7

D
U

D
U

3.
83

,2
.9

8
2.

74
,2

.6
2

2.
61

,2
.5

4
1.

53
,2

.1
9

2.
75

,2
.6

3
1.

66
,2

.2
7

2.
89

,2
.6

8
1.

81
,2

.3
3

D
D

U
U

2.
81

,2
.5

5
3.

62
,3

.1
7

3.
09

,3
.0

1
2.

01
,2

.6
6

1.
73

,2
.2

2.
54

,2
.8

2
3.

37
,3

.1
5

2.
29

,2
.8

U
D

D
U

2.
19

,2
.9

6
2.

6,
3.

5
4.

09
,3

.4
8

3.
01

,3
.1

3
1.

11
,2

.6
1

1.
52

,3
.1

5
2.

75
,3

.5
6

1.
67

,3
.2

1

U
D

D
D

1.
67

,2
.0

5
2.

08
,2

.5
9

3.
57

,2
.5

7
3.

61
,3

.1
8

1.
71

,2
.6

6
2.

12
,3

.2
2.

23
,2

.6
5

2.
27

,3
.2

6

D
U

D
D

3.
11

,2
.0

6
2.

22
,1

.7
1

1.
89

,1
.6

2
1.

93
,2

.2
3

3.
15

,2
.6

7
2.

46
,2

.3
9

2.
17

,1
.7

6
2.

21
,2

.3
7

D
D

U
D

2.
29

,1
.6

4
3.

1,
2.

26
2.

57
,2

.1
2.

61
,2

.7
1

2.
33

,2
.2

5
3.

14
,2

.8
7

2.
85

,2
.2

4
2.

89
,2

.8
5

D
D

D
U

3.
01

,2
.5

6
3.

42
,3

.1
3.

29
,3

.0
2

2.
21

,2
.6

7
1.

93
,2

.2
1

2.
34

,2
.7

5
3.

57
,3

.1
6

2.
49

,2
.8

1

D
D

D
D

2.
49

,1
.6

5
2.

9,
2.

19
2.

77
,2

.1
1

2.
81

,2
.7

2
2.

53
,2

.2
6

2.
94

,2
.8

3.
05

,2
.2

5
3.

09
,2

.8
6

24 Chapter 2: Game Theory and Modal Logic

T
ab

le
2.

3:
S
ec

on
d

p
ar

t
of

th
e

in
d
u
ce

d
n
or

m
al

fo
rm

of
th

e
B

ay
es

ia
n

ga
m

e
sh

ow
n

in
fi
gu

re
2.

2

L
L

L
L

L
L

L
R

L
L

R
L

L
R

L
L

R
L

L
L

L
L

R
R

L
R

L
R

R
L

L
R

U
U

U
U

4.
4,

3.
31

3.
32

,2
.9

6
4.

15
,3

.2
9

3.
46

,3
.0

1
3.

06
,3

.3
9

3.
07

,2
.9

4
2.

38
,2

.6
6

1.
98

,3
.0

4

U
U

U
D

3.
88

,2
.4

3.
92

,3
.0

1
3.

63
,2

.3
8

2.
94

,2
.1

2.
54

,2
.4

8
3.

67
,2

.9
9

2.
98

,2
.7

1
2.

58
,3

.0
9

U
U

D
U

4.
2,

3.
24

3.
12

,2
.8

9
4.

35
,3

.3
3.

26
,2

.9
4

2.
86

,3
.3

2
3.

27
,2

.9
5

2.
18

,2
.5

9
1.

78
,2

.9
7

U
D

U
U

3.
58

,2
.8

9
2.

5,
2.

54
3.

33
,2

.8
7

4.
14

,3
.4

9
2.

24
,2

.9
7

2.
25

,2
.5

2
3.

06
,3

.1
4

1.
16

,2
.6

2

D
U

U
U

3.
6,

2.
85

2.
52

,2
.5

3.
35

,2
.8

3
2.

66
,2

.5
5

3.
88

,2
.9

9
2.

27
,2

.4
8

1.
58

,2
.2

2.
8,

2.
64

U
U

D
D

3.
68

,2
.3

3
3.

72
,2

.9
4

4.
35

,3
.3

3.
26

,2
.9

4
2.

34
,2

.4
1

3.
87

,3
2.

78
,2

.6
4

2.
38

,3
.0

2

U
D

U
D

3.
06

,1
.9

8
3.

1,
2.

59
2.

81
,1

.9
6

3.
62

,2
.5

8
1.

72
,2

.0
6

2.
85

,2
.5

7
3.

66
,3

.1
9

1.
76

,2
.6

7

D
U

U
D

3.
08

,1
.9

4
3.

12
,2

.5
5

2.
83

,1
.9

2
2.

14
,1

.6
4

3.
36

,2
.0

8
2.

87
,2

.5
3

2.
18

,2
.2

5
3.

4,
2.

69

D
U

D
U

3.
4,

2.
78

2.
32

,2
.4

3
3.

55
,2

.8
4

2.
46

,2
.4

8
3.

68
,2

.9
2

2.
47

,2
.4

9
1.

38
,2

.1
3

2.
6,

2.
57

D
D

U
U

2.
78

,2
.4

3
1.

7,
2.

08
2.

53
,2

.4
1

1.
7,

2.
08

3.
06

,2
.5

7
1.

45
,2

.0
6

2.
26

,2
.6

8
1.

98
,2

.2
2

U
D

D
U

3.
38

,2
.8

2
2.

3,
2.

47
3.

53
,2

.8
8

3.
94

,3
.4

2
2.

04
,2

.9
2.

45
,2

.5
3

2.
86

,3
.0

7
0.

96
,2

.5
5

U
D

D
D

2.
86

,1
.9

1
2.

9,
2.

52
3.

01
,1

.9
7

3.
42

,2
.5

1
1.

52
,1

.9
9

3.
05

,2
.5

8
3.

46
,3

.1
2

1.
56

,2
.6

D
U

D
D

2.
88

,1
.8

7
3.

12
,2

.5
5

2.
83

,1
.9

2
1.

94
,1

.5
7

3.
16

,2
.0

1
2.

87
,2

.5
3

2.
18

,2
.2

5
3.

4,
2.

69

D
D

U
D

2.
26

,1
.5

2
2.

3,
2.

13
2.

01
,1

.5
2.

14
,1

.6
4

2.
54

,1
.6

6
2.

05
,2

.1
1

2.
86

,2
.7

3
2.

58
,2

.2
7

D
D

D
U

2.
58

,2
.3

6
1.

5,
2.

01
2.

73
,2

.4
2

3.
14

,2
.9

6
2.

86
,2

.5
1.

65
,2

.0
7

2.
06

,2
.6

1
1.

78
,2

.1
5

D
D

D
D

2.
06

,1
.4

5
2.

1,
2.

06
2.

21
,1

.5
1

2.
62

,2
.0

5
2.

34
,1

.5
9

2.
25

,2
.1

2
2.

66
,2

.6
6

2.
38

,2
.2

2.2 Game Theory and Modal Logic 25

2.2 Game Theory and Modal Logic

The connection between game theory and modal logic has been developed

recently [112]. Most of the research that has been done by the logic community

has restricted their attention to mainly two player extensive games (games

with sequential actions over time) of prefect information which are just

competitive in which players either lose or win [118], [16], [46]. In spite of the

restriction on games, presenting and reasoning about these games turn out to

be complicated. Nevertheless, more recent work on logic has extended the

game theoretic toolbox by introducing cooperative game theory, imperfect

information and multi-player games of more than two players [112].

As games can be modelled as tree structures, Kripke models [63] provide

a natural way to represent them. A Kripke model can be considered as a

directed graph so that nodes can represent different concepts such as states,

times, situations, worlds and other properties. Each edge represents a binary

relation between nodes. The formal definition of Kripke model M is:

M = {Ω, R, V }

Where Ω is a non-empty set and its elements are nodes. R is a binary relation

on Ω. V is the function (evaluation of formulae) that assigns to each atomic

proposition p a subset V (p) of Ω. V (p) is the set of nodes in M at which p is

true.

A Kripke model can be considered as the basic model in a modal language.

In modal logic, a formula is evaluated inside models at particular points. This

is the definition of semantics for modal logic. The syntax of modal logics is

the same language of propositional logic augmented with additional modal

operators.

Different categories of modal logics are used for representing and reasoning

about games such as dynamic game logic [78] and alternating-time µ-calculus

[111]. However, two prominent logics are epistemic logic and temporal logic.

Epistemic logic is the logic of knowledge and belief. It was introduced by

Jaako Hintikka [50] and flourished by Fagin, Halpern, Moses, and Vardi

[40]. In epistemic logic the accessibility relation R of Kripke model is for

interpreting the modal operator K. In this logic, the set of states that are

accessible from a state are epistemic alternatives for this state. Therefore, an

26 Chapter 2: Game Theory and Modal Logic

agent in this state is not able to distinguish between these accessible states

due to its lack of knowledge.

Temporal logic deals with time and the modal operates in this logic

represent different concepts of time. It has different versions such as linear

temporal logic, computation tree logic (CTL) [29] (branching time logic) and

alternating-time temporal logic (ATL)[3]. Temporal logic is extensively used

in connection with game theory [57], [25], [23], [42]. However, the nature

of games in this thesis, in which agents play simultaneously single moves,

temporal logic renders unsuitable to be applied.

2.2.1 Representing and Reasoning about Normal Form

Games

Normal form games can be defined as the basic presentation in game-

theoretical settings. However, reasoning about this basic structure appears to

be complicated. There are several different studies about this field and we

provide a brief survey about the ones related to this thesis.

2.2.1.1 Dynamic Epistemic Logic

In [108], [110] and [36] van Benthem investigated normal form games (strate-

gic games) with dynamic epistemic logic. With this logic, we can express

how knowledge changes based on decision making in games. Thus, we can

describe acts of information flow, such as public announcements or observa-

tions. However, this logic is the combination of epistemic logic and public

announcement logic. If in a game either no announcement is provided or no

information about the announcement is available, the logic is not applicable.

The epistemic dynamic language without common knowledge has the

following formation rules:

Φ := p ∈ P | ¬φ | φ ∨ ψ |Kiφ | [χ]ψ

where P is a set of propositions, a modal operator Ki for every agent i with

Kiφ means “agent i knows φ”. The modal operator [χ]ψ means that “after

the truthful public announcement of χ , ψ is true”.

In addition to Kripke model M = {Ω, R, V }, submodel M, M|χ is defined

2.2 Game Theory and Modal Logic 27

as all states in which χ is true. Formally, we have M|χ = {Ω′, R′, V ′} where

Ω′ = {ω ∈ Ω|(Ω, ω) |= χ}. The valuation of this modal operator is defined as:

M, s |= [χ]ψ iff (M, s |= χ ⇒ M|χ, s |= ψ)

The axioms of this logic are the following:

• ([χ]ϕ ∧ [χ](ϕ→ ψ))→ [χ]ψ

• [χ]p↔ (χ→ p)

• [χ]¬ϕ↔ (χ→ ¬[χ]ϕ)

• [χ]Kiϕ↔ (χ→ Ki[χ]ϕ)

with the following inference rule:

• ` ϕ⇒ [χ]ϕ

The rationality of agents and solutions of games are not studied by this logic.

2.2.1.2 Dynamic Logic

In [91], two player normal from games are presented by dynamic logic. The

basic concept in that work is to represent “composition of game play pairs”.

For reasoning about normal form games, it is considered that numbers of

these games are played in a manner that the outcome of the current game

is dependent upon the previous game. Although they start by modelling

one game as the basic structure, the reasoning performed in a single stage

is outcome based. We briefly present the syntax and the semantics of that

work.

The proposed language has the following grammar:

Φ := p ∈ P | ¬α | α1 ∨ α2 | 〈g, η〉∀α

where P is a countable set of propositions, g is a normal form game, η ⊆ Σg

and Σg is a set of action symbols which represent moves of players in game

g. Thus, η represent a set of strategies in g. Intuitively, 〈g, η〉∀α states that

formula α holds at states where strategies of g are specified by η.

28 Chapter 2: Game Theory and Modal Logic

From the semantic point of view, normal form games are modelled as a

tree of depth one, at which edges are labelled by pairs of actions, one for

each player. The game g is a set {S,→, s0, λ} where S is the set of states, s0

is the root of the tree. The transition function → assigns to s0 × Σ a state

and finally a utility function λ that assigns to each state a pair of players’

payoffs. The game model M = (g, V) where g = {S,→, s0, λ} and a valuation

function is defined as V : S → 2P .

A set of special propositions Θi = {θ1
i , ..., θ

l
i} is defined for player i when

the number of actions for player i is l. Each θji is the jth action of player

i. The payoffs of the players are important and the logic should provide

reasoning about this concept. The only truth valuation of this work that is

not obvious is:

• M, s |= 〈g, η〉∀α iff s is not a leaf node and ∀s′ ∈ tail(g, η),M, s′ |= α

where tail(g, η) = {s′ |s0
a→ s′ and a ∈ η}

The strategy b is better that b′ for player i, given that a strategy x for

the other player ī is:

Betterix(b, b
′) ≡

∧
θi∈Θi

(〈g, (b′, x)〉∀θi ⊃ 〈g, (b, x)〉∀θi)

The best response is expressed by this logic as b is the best response of player

i for x as BRi
x(b) ≡

∧
b′∈Σgi

Betterix(b, b
′).

2.2.1.3 Epistemic Logic

Bonanno [16] models normal form games semantically. Kripke model is

used with m modal operators 2i where i = {1, ...,m}. Therefore, M =

{Ω, R1, ..., Rm, V } where Ri is a binary relation on Ω and we have αRiβ

when state β is Ri-accessible from α. A function σ : Ω→ S that assigns to

each state a set of strategies is added to M in order to obtain a model of a

particular game G. Important notation, which is introduced in that work, is:

• ri: means player i is rational.

Based on the defined model M , we can say α ∈ V (ri) if and only if :

2.2 Game Theory and Modal Logic 29

1. player i is not uncertain about the strategy it is playing because:

αRiβ then σi(α) = σi(β)

2. σi(α) maximises i’s utility given its belief.

However, the solution concept which is studied in this work is based on

the iterative deletion of strictly dominated strategies.

Another important contribution of that work is the following formula:

(2.3) ∧(ui = pi) ∧ ∧2i((ui = qi) → (qi ≤ pi)) ↔ ∧(ui = pi) ∧ Nash

The formula is equivalent to say, if the utility of player i is pi, the strategy

played belongs to the Nash equilibrium of the game, if and only if no player i

can unilaterally deviate and achieve something like qi better than pi. In the

equation 2.3, some notations are assumed, e.g., q ≤ p for any natural number

q and p, ui = p for every player i and number p states player i’s utility at

any state and finally Nash denoting strategy which has Nash equilibrium

characteristics. Also the notation ∧ means all sentences from a finite set which

can be a set of players, or actions, or utilities. The differences of that work

from the work of this thesis are:

• We provide a syntax for representing normal form games and the

rationality of the player.

• We have not used iterated elimination of strictly dominated strategies

as the method to find the solution, instead we focus on pure Nash

equilibrium at which no player can gain better by deviating from the

set of strategies that belong to the Nash equilibrium.

Although in that work no axiom system was proposed, de Bruin [32]

provides axioms for normal form games and extensive games. The main focus

of de Bruin’s work is to formalise the characterisation of solution concepts

in games using epistemic constructs. In addition, it is argued that given

specific assumptions about a player’s utility and rationality, we can predict

the decision of the player due to epistemic characterisation formalisation.

This formal language has besides atomic propositions, the certain propositions

given as follows:

30 Chapter 2: Game Theory and Modal Logic

• The proposition letters im stand for the statement ’i plays its mth

strategy im’.

• The proposition ui(1k1 , ..., Nk1) = ri,1k1 ,...,Nk1 denotes that the utility

for player i, when the strategy profile (1k1 , ..., Nk1) is played, equals the

number r.

• R is a set of countably many symbols such as r. The elements of R

represent real numbers,but R is not taken as the set of real numbers.

• The proposition rati denotes the rationality of player i, in the sense

that i is an expected utility maximiser.

In [32] axioms are proposed as “axioms for game playing situations” which

are for 2 player normal form games:

• Start≥ 1:
∨
m im.

• Start≤ 1:
∧
m6=n ¬(im ∧ in).

• KnStart:
∧
m(2iim ↔ im).

• KnUt: ui(k, l) = r→ Kiui(k, l) = r.

where m ranges over the strategies available to player i. These axioms de-

termine what players do and what they know when they play normal form

games. The first axiom says, every player plays at least one strategy, while

the second does not allow players to play more than one strategy. Moreover,

axiom KnStart stipulates that every player knows its chosen strategy, and

likewise axiom KnUt requires players to have a correct knowledge/belief about

their own utility functions. The axiom RAT which is the formalism of utility

maximisation captures the rati as the following implication:

rati ↔
∧
m

((2i

∧
k,l

ui(k, l) = ri,k,l ∧
∧
l

Pi(jl) = pl ∧ im)→(2.4) ∧
k

∑
l

pl.ri,m,l ≥
∑
l

plri,k,l)

2.2 Game Theory and Modal Logic 31

where Pi presents the probabilistic belief of player i. Equation 2.4 states that

when player i chooses to play its mth strategy while it has certain beliefs

about utility (captured by ri,k,l) and about its prospective strategies (captured

by pl) then the mth strategy is better than other, given its beliefs. Therefore,

player i is an expected utility maximiser when it has the information above.

By considering all the axioms in [32], a proof is provided for the theorem

proposed by Aumann and Brandenburger [6] for two player normal form

games:

• All players know their own utility function, which is:
∧
i2i

∧
k,l ui(k, l) =

ri,k,l

• All players are rational, which is:
∧
i rati

• All players know each player’s actual choice of an action, which is:

221m ∧212n

Then the actual action profile played constitutes a Nash equilibrium. It means

the solution concept for player 1 is

(2.5)
∧
k

r1,m,l ≥ r1,k,l

and for player 2 is

(2.6)
∧
l

r2,k,n ≥ r2,k,l

.

Our work differs from [32] because:

• We provide a semantics for representing normal form games and the

rationality of the player.

• We consider players’ preferences over a set of strategies.

• We extend the language for n player normal form games.

As we study the formalisation of normal form games we have the basic

block foundation to study Bayesian games.

32 Chapter 2: Game Theory and Modal Logic

2.2.2 Representing and Reasoning about Simultaneous

Games

To the best of our knowledge, Bayesian games have never been formalised.

Although there are other approaches to study simultaneous, concurrent or

parallel games, none of these approaches consider the lack of player’s knowl-

edge about the game that is being played. We briefly review some of these

formalisations for concurrent games.

2.2.2.1 Alternating-time Temporal Logic

To verify parallel/concurrent programs such as operating systems and network

communication protocols, linear time temporal logic is proposed [85]. Similar

to all modal languages which study different modes of truth, this logic provides

a formal system for qualitatively describing and reasoning about the truth

values of assertions of time varying events. As linear time temporal logic singly

focuses on the moment that has only one possible future moment, the sibling of

this logic, computational tree logic [37] as branching time logic, studies events

at a moment, where time may split into alternate courses representing different

possible futures. However, this logic describes the transition of systems at a

very abstract level in which it is not important what or who is involved in

making transitions. Pauly in [81] and [82] provides a formalisation based on

computational tree logic by which we can describe agents’ abilities to influence

system transitions. This formalism is important especially in game-theoretical

scenarios at which we have to explicitly represent how different agents can

contribute to the system’s evolution. Nevertheless, Pauly just focuses on the

cooperation of agents. It means that the language describes what strategy is

achieved jointly. However, the strategies of each player in most games are

required to be represented explicitly and this can be done by alternating-time

temporal logic [3]. Alur, Henzinger, and Kupferman formalised this logic

of two player concurrent games, which means in each round, both players

choose their moves simultaneously and independently from each other, and

the combination of two moves determines the next state. Semantically, the

authors use alternating transition systems to model concurrent games. A

tuple S = {Σ, Q,∆,Π, π} is alternating transition system with the following

components:

2.2 Game Theory and Modal Logic 33

• Σ is the finite set of players.

• Q is set of states.

• ∆ = {δi : Q → 22Q|i ∈ Σ} is a set of transition functions. For every

player, it maps each state to a non-empty set of choices. Generally, each

choice is a set of possible next states.

• Π is a set of propositions.

• π : Π→ 2Q assigns each proposition to a set of states.

A game logic L is proposed and its formulae are interpreted over the states

of alternating transition systems. In other words, for every L-formula ϕ and

every alternating transition system S.

The grammar of this language is:

ϕ := | p | ¬ϕ | ϕ1 ∨ ϕ2 | 〈〈I〉〉 © ϕ | 〈〈I〉〉2ϕ | 〈〈I〉〉ϕ1 U ϕ2

where p is a proposition, I ⊆ Σ belongs to teams of players. The formula

〈〈I〉〉© ϕ says that the team of players I has a joint strategy for achieving ϕ

at the next step. 〈〈I〉〉2ϕ expresses that the team of players I can maintain

ϕ forever in the future. 〈〈I〉〉ϕ1 U ϕ2 states that the team of players I can

maintain ϕ1 until ϕ2 holds.

This logic is extended to alternating-time µ-calculus logic [49], which

is strictly more expressive than alternating-time temporal logic. However,

all mentioned temporal logics represent perfect information games. In [119]

and [51], the alternating-time temporal logic is extended with an epistemic

accessibility relation ∼i for each player i. This logic is called alternating-time

temporal epistemic logic and adds to alternating-time temporal logic operators

for representing knowledge in the world of incomplete information. Kaϕ reads

as “agent a knows that ϕ”.

In [58], the uncertainty of players about the strategy is considered and

they show the subtle distinction between an agent that knows that it has a

suitable strategy and knows the strategy. The logic is called alternating-time

temporal observational logic, and it is suitable for agents with bounded recall

of the past.

34 Chapter 2: Game Theory and Modal Logic

Song, Goeckel, and Towsley [99] study incomplete information games at

which agents have access to only their system state, known as information.

It has been done by including an explicit description of the memory of the

agents to the model.

However, none of previously mentioned logics cover Bayesian games, where

agents do not know which game is about to be played.

2.2.2.2 Concurrent Dynamic Games Logic

In [111], concurrent dynamic game logic is introduced. The games of con-

current dynamic games, are two player normal form games. The language

consists of two sorts, propositions and games. Given a set of atomic games

Γ0 and a set of atomic propositions Φ0, game γ and proposition ϕ can have

the following syntactic forms, yielding the set concurrent game logic games Γ

and the set of concurrent game logic propositions Φ:

γ := g | ϕ? | γ1 ; γ2 | γ1 ∪ γ2 | γ1 × γ2

ϕ := | p | ¬ϕ | ϕ1 ∨ ϕ | 〈 γ , i 〉ϕ

where p ∈ Φ0, g ∈ Γ0 and i is the number of games. The formula 〈 γ , i 〉ϕ
expresses that player 1 has a strategy in ith game of the set of games γ and

this formula ensures that the game ends in a state satisfying ϕ. The test

game ϕ? checks whether proposition ϕ holds at that position.

We avoid going through all the details, but informally γ states the relation

between normal form games in concurrent dynamic games. For example,

γ1 ∪ γ2 says that the first player chooses which of the two normal form

games to continue to play, and γ1 ; γ2 states the sequential composition of two

normal form games consists of first playing γ1 and then γ2. The important

notation introduced in that work is γ1 × γ2 which means the normal form

games γ1and γ2 are played in parallel.

The semantics for this language follows the neighbourhood models or

minimal models which are used in the semantics of non-normal modal logics.

As it is mentioned before this formalisation is not suitable for presenting

Bayesian games as, in Bayesian games, the private knowledge of players should

be considered.

2.2 Game Theory and Modal Logic 35

2.2.2.3 Probabilistic Dynamic Epistemic Logic

In [61], a logic is proposed that combines dynamic epistemic logic, mentioned

in section 2.2.1.1, and probabilistic epistemic logic. Probabilistic epistemic

logic is proposed in [39] and semantically in the possible world model at each

state, inferring each agent has a probability on the worlds that the agent

considers possible. In [48], Heifetz and Mongin propose a probability logic

for type spaces, which is very similar to probabilistic dynamic epistemic logic

without dynamic capability. The language of probabilistic dynamic epistemic

logic is given by the following formation rules:

ϕ := p | ¬ϕ | ϕ1 ∨ ϕ2 |Kaϕ | [ϕ1]ϕ2 | q1Pa(ϕ1) + ...+ qnPa(ϕn) ≥ q

where p belongs to a countable set of propositions, a belongs to a finite set of

agents and q1, ..qn and q are rationales. A formula of the form Pa(ϕ) ≥ q can

be read as “the probability a assigned to ϕ is greater than or equal to b”. A

probabilistic epistemic model is M = (W,R, V, P) such that:

• W 6= ∅ is a set of possible worlds.

• R : A → 2W×W assigns an accessibility relation to each agent.

• V : P → 2W assigns a set of worlds to each proposition.

• P : (A×W)→ (W ⇀ [0, 1]) with the following condition

∀a ∈ A ∀ω ∈ W
∑

υ∈dom(P (a,ω)) P (a, ω)(υ) = 1

assigns a probability function to each agent at each world, such that its

domain in a non-empty subset of the set of possible worlds.(⇀ means

that it is a partial function; some worlds may not be in the domain of

the function.)

where P is a countable set of propositions and A is a finite set of agents.

Truth definition for formula
∑n

i=1 qiPa(ϕi) ≥ q in model M at states ω is

as follows:

(M,ω) |=
∑n

i=1 qiPa(ϕi) ≥ q if and only if
∑n

i=1 qiP (a, ω)(ϕi) ≥ q

where P (a, ω)(ϕi) = P (a, ω)({υ ∈ dom(P (a, ω))|(M,υ) |= ϕi})

36 Chapter 2: Game Theory and Modal Logic

In this thesis, we apply the same approach to represent the probabilistic

belief. However, our approach has a slightly different semantic approach.

In [2] based on dynamic epistemic logic, public announcement logic is

proposed by which we can describe actions in the form of public, truthful

announcements. This logic makes epistemic logic dynamic by adding operator

〈ψ〉, where ψ is a formula. Formula 〈ψ〉ϕ says after ψ is truthfully and publicly

announced, ϕ will be true. In this work, Bayesian games are modelled as

public announcement games by changing type’s of each player to a signal

that may be observed by player i. The method for finding Nash equilibrium

strategies is by eliminating dominated strategies. In that work, axioms for

games and rationality were not studied.

2.2.2.4 Set-Theoretic Beliefs

In [27], Chen and Micali formalise Bayesian games by modelling agents’ belief

about their types, belief about other’s beliefs, etc. A possibilistic Kripke

structure was used. In this structure beliefs are possibilistic (i.e. represented

as sets) as opposed to being probabilistic. They refer to such a structure as

type frame. If n is a set of player and Θ = Θ1× ...×Θn is a set of type tuples

for each player (Θi), a type frame V for (n,Θ) is V = (Ω, v, P1, ..., Pn) such

that :

• Ω is a finite set of states.

• v associates with each state ω ∈ Ω a tuple of types ~ν ∈ Θ.

• Pi for each player i ∈ n associates with each each state ω ∈ Ω a subset

of Ω under the following conditions:

1. Pi(ω) ⊆ [[vali(vi(ω))]]V , where ∀ν ∈ Θi, [[vali(ν)]]V = {ω′ : vi(ω′) =

ν} and vi(ω) denotes player i’s type in the type tuple v(ω).

2. Pi(ω) ⊆ [[beliefi(Pi(ω))]]V where for each subset π ∈ Ω ,

[[beliefi(π)]]V = {ω : Pi(ω) = π}

The above conditions say that player i knows its own type and its own belief,

which means in every state of the world the player considers possible, the

state has the same type and beliefs.

2.2 Game Theory and Modal Logic 37

This frame is extended for n-player games by adding an extra function

and condition. A game structure M is a tuple {Ω, s, v, P1, ..., Pn} where s

associates with each state ω ∈ Ω a pure strategy s(ω). Besides the condition

mentioned above for Pi(ω), an additional condition is defined as:

• Pi(ω) ⊆ [[playi(si(ω))]]M where for each strategy σi for player i,

[[playi(σi)]]M = {ω′ : si(ω′) = σi} and si(ω
′) denotes player i’s strategy

in the strategy tuple s(ω′).

They also model a very weak notion of rationality, which is σi is a rational

choice of strategy for player i, if for every alternative σ′i for i, some state of

the world exists that i considered possible, such that playing σi would perform

at least as well as σ′i. Thus, no alternative strategy σ′i performs better than

σi in every situation that player i considers possible. Using these definitions,

they define the semantics of the weak rationality operator RATi as follows:

• (M,ω) |= RATi if and only if for every strategy σ′i for player i some

ω′ ∈ Pi(ω) exists such that

ui(v(ω′), (si(ω), s−i(ω
′))) ≥ ui(v(ω′), (σ′i, s−i(ω

′)))

where ui is player i’s utility and s−i(ω
′) = {s1(ω′), ..., si−1(ω′), si+1(ω′), ...,

sn(ω′)} is the strategy tuple of other players excluding the strategy of player

i.

This work is different from the work in thesis as we consider probabilistic

beliefs. Furthermore, the axioms for playing Bayesian games are not provided.

The concept of rationality leads us to detect solutions in the games. In [10]

dynamic rationality is formalised by conditional doxastic logic which can model

plausibility situation that are unavoidable in the belief revision structures.

However, the rationality is studied in a backward induction procedure to find

the solution of games. Furthermore, backward induction procedures can only

be applied on extensive form games, as backward induction is the process of

reasoning backwards in time. Thus, it starts from the end of a problem or

situation, to determine a sequence of optimal actions. Therefore, it is not

suitable for analysing simultaneous games.

38 Chapter 2: Game Theory and Modal Logic

In this section, we provided a review of the background and related works.

In the next section, we briefly study suitable methods that can be used based

on semantics of formal languages to verify properties in games.

2.3 Model Checking

In the domain of multi-agent systems and game theory, it is natural to reason

about both, actions and states. Furthermore, a number of modalities such as

epistemic or deontic are also formalised in terms of relations over states of a

system or model. In this setting, it is worthy to have analysis techniques and

tools, in which information can be assigned to both, states and transitions

of the model. In addition, systems that have more than one relation over

states can be considered within the same model. Model checking, which has

been first proposed by Clarke and Emerson [29], is an approach to automated

analysis of finite state concurrent systems.

Generally, in a model checking technique, specifications are formulated in

a modal logic and the system is modelled as a state transition graph, which is

the same as a Kripke structure for the applied logic. The procedure continues

by checking whether the system satisfies its specifications given by a logical

formula or not. Therefore, model checking techniques reduce verification to

testing whether the Kripke structure is the model of the formula.

Temporal modal logic is the dominant logic used in model checking as

it provides convenient formalisms for reasoning about distributed systems.

Among temporal logic, computational tree logic receives many attentions

in traditional model checking tools, as it can be used for reasoning about

branching time [90], [84], [24]. However, different model checking techniques

have been proposed for other logics, such as hybrid logic [41], modal µ-calculus

[22], alternating-time temporal logic [94], [1] and epistemic logic.

Naturally, different variations of epistemic logics are suggested for the

model checking technique. In [21], Boureanu, Jones and Lomuscio used

temporal epistemic logic proposed by [79] and extended it by a modal operator

for rewriting-knowledge modality, which combines equational theories with

epistemic logic. Alternating-time temporal logic is extended with epistemic

modality, which is called alternating temporal epistemic logic [51] and it

2.3 Model Checking 39

is suitable for checking proprieties of planning in multi-agent systems. In

another work [119], alternating temporal epistemic logic is interpreted for

alternating-time temporal epistemic transition systems.

Model checking, a combined logic of knowledge and linear time in syn-

chronous systems with perfect recall is studied in [72]. The studied language

is a propositional multi-modal language, based on a set of propositional

constants with formulae generated by modalities © (next), U (until), and

knowledge operator Ki for each agent i ∈ {1, ..., n} and a common knowledge

operator CG for each group of agents G ⊆ {1, ..., n}. A model M of the form

〈S, I, T,O, π, α〉 is assumed such that: S is a finite set of states, I is a subset

of S, representing the possible initial states, T ⊆ S2 is a transition relation, O

is a tuple (O1, ..., On) of functions, where for each i ∈ {1, ..., n} the component

Oi : S → O is called the observation of agent i, π : S → {0, 1}propositions

is an interpretation for each proposition at each state and α ⊆ S is an ac-

ceptance condition. To decide the relation M,ω |= Kiϕ, where ω is a state

and ϕ a formula, they factorise formulae into their temporal and knowledge

components. Then each temporal component is mapped to a knowledge

component, which means simultaneous substitution for each occurrence in ϕ

of a temporal component, that the formula Kiψ such that ψ is true in that

particular mapping. Although this technique works for applications in which

knowledge changes over time, it does not cover probabilistic beliefs.

In [52] the temporal epistemic language for model checking is extended to

express probability. As probabilistic interpreted systems are infinite structures,

they are not suitable as input for a model checking algorithm. Therefore,

they worked with a type of finite model called interpreted partially observed

discrete-time Markov chain. By this model, we can express the probability of

a transition.

Model checking for most of the modal logics usually has a trivial NP-hard

lower bound, because these logics contain propositional logic. For propo-

sitional logic, model checking or satisfiability is the defining NP-complete

problem. For branching time logics it is not clear whether it contains proposi-

tional logic, because it does not have primitive propositions [1]. Ågotnes, van

der Hoek and Wooldridge [1] proved that the satisfiability problem for coop-

erative game logic is NP-complete, even for cooperative game logic formulae

with one agent.

40 Chapter 2: Game Theory and Modal Logic

In [72], it was proven that the problem of determining a formula ϕ of the

combined logic of knowledge and linear time logic in model M is decidable in

polynomial space with following complexity:

|ϕ|.exp(depth(ϕ), O(|M |)).

where depth(ϕ) is the deepest nesting of modal operators (here Ki,© and

U). Formulas without any modal operators have a modal depth of zero.

In the area of model checking not only many techniques are developed,

but also many tools are designed and implemented. In some cases a tool or

method is devised to translate the desired language to the input language of

already implemented systems. An example is the game description language

in [95], which is a special purpose declarative language. In [94], it was shown

that the game description language and alternating-time temporal logic are

intimately related at the semantic level. A link between these two languages

was built as a translator of game description language to alternating-time

temporal logic for model checking. Therefore, game-theoretical situations

can be verified by alternating-time temporal logic and consequently with any

model checker tool that supports this logic. One of the developed model

checkers that support this logic is Mocha [74].

Mocha is an interactive model checker for system specification and verifica-

tion. A model is specified in the language of reactive modules. This language

allows the formal specification of systems with synchronous, asynchronous,

and real-time components. It accepts specifications in alternating tempo-

ral logic and also computational tree logic. This tool verifies by checking

trace containment between implementation and specification modules. Al-

though Mocha can be adapted to model games, it does not support epistemic

operators of epistemic logic.

PRISM [87] is a model checker for formal modelling and analysis of

systems with random or probabilistic behaviour [65]. PRISM is a Prolog

based statistical modelling language benefits from various learning methods

other that MLE (maximum likelihood estimation) such as MAP (maximum a

posterior) [55]. However, PRISM has a problem and it still does not support

real numbers as a type, therefore, we cannot use this tool for modelling

Bayesian games.

2.4 Remarks 41

Another model checker is Spin [103]. Spin is a model checker to verify

the correctness of distributed software models in a rigorous and automated

fashion. Systems that can be verified are modelled by Promela (Process Meta

Language), which supports modelling of asynchronous distributed algorithms.

Properties that can be verified in these models are expressed as linear temporal

logic formulas. Nevertheless, knowledge operator has not been implemented

in Spin.

The model checker for the logic of knowledge is MCK [70]. The system is

suitable as a testbed for a variety of approaches to model checking epistemic

logic. This model checker supports several different ways of defining knowledge,

given a description of a multi-agent system as the model with possible

observations made by the agents. The observation can be done in different

modes such as observation only, observation and time, and synchronous and

asynchronous perfect recall of all observations. Both, linear and branching

time temporal operators are supported. Even though it is extended to support

probabilistic epistemic logic, it still does not support epistemic beliefs over

games.

2.4 Remarks

In this chapter, we have reviewed game-theoretical scenarios in the multi-agent

system context. We reviewed examples of how to model and find solutions in

normal form games and Bayesian games. Different presentations exist and we

have chosen those that are straightforward for reasoning with epistemic logic.

Based on the characteristic of desired games, modal logics offer the best

approach to study reasoning about games. Different modal logics have been

reviewed for both game categories and hardly any of them satisfied all the

required expressiveness. Therefore, it is required to have a formal language in

which inferences can be represented with a clear distinction between syntax

and semantics, various notations of validity, and decision procedures.

We have also reviewed different approaches to automatically verify systems

by formal languages. As a proof that a formal language can satisfy a desired

property, it is a good practice to use it as a model checking technique. A

variety of techniques and tools have already been developed, but each of them

42 Chapter 2: Game Theory and Modal Logic

alone cannot satisfy the characteristics of our formal language. Therefore, we

decide to develop our own system as a proof of concept, which will be capable

of addressing all characteristics of our formal language.

Based on the mentioned reasons, in Chapter 3 we introduce epistemic

logics for normal form games and Bayesian games, for qualitatively describing

them and reasoning about them.

Chapter 3

Games and Epistemic Logic

The first step in devising a formalism for reasoning about games is to decide

what general properties of games we want that formalism to capture. In

this thesis, we want to reason about rational players in two kinds of games,

normal form games and Bayesian games. A rational player has knowledge

about some aspects of games, and it also has clear preferences over a set of

feasible strategies. Furthermore, it is able to discover an optimal strategy

that maximises payoffs. Rationality implies that not only the chosen strategy

is the best possible given player’s knowledge, but also is derived from coherent

inferences. The classical formalism for reasoning about rationality in games

is epistemic logic.

In this chapter, we present game models for normal form games and

Bayesian games. We use epistemic logic to represent these games. Moreover,

we extend the epistemic logic to model Bayesian games. In addition, we

reason about the rationality of players of these two game models.

3.1 Epistemic Logic for Normal Form Games

Game theory as a theory of practical reasoning [114] is a matter of detecting

the behaviour or actions that have the best expected outcome given one’s

preferences. Consequently it tries to facilitate decision making in multi-agent

systems [100], [96], by means of predicting or explaining the behaviour of

agents under a sequence of interactions.

Two factors that define the foundation of an agent’s rationality are the

dependency of the agent on its reasoning ability and the information about

other agents. Furthermore, the epistemic program in game theory [32], [18]

43

44 Chapter 3: Games and Epistemic Logic

and [8] demonstrates the power of understanding rational behaviour through

mutual expectation in game-theoretic interactions [92]. In a game, an agent

may behave in a particular way if the agent knows that another agent is

rational, yet behave differently if the agent is not aware of other agents

rationality. As a result, knowledge and belief can be interpreted as equally

important in game scenarios. For instance, some game theorists make the

point that an agent’s information should be included in game models [92] and

epistemic logic can be used for the development of these models. Epistemic

logic as an analytical toolbox that combines both philosophical logic and

theoretical computer science themes, is used to analyse reasoning about

information and the update of information. Epistemic logic lets players

consider their own reasoning abilities. It is the logic of knowledge, and allows

reasoning about the knowledge of agents in a group. Agents may have different

information and thus different epistemic alternatives at each possible state.

We start from the specific actions for specific agents and reason about what

those agents can achieve.

Before we present the epistemic language, we review the definition of games

that are studied in this thesis. Here, we focus on normal form games which are

also known as the strategic or matrix form with imperfect information. Normal

form games are important since Bayesian games or incomplete information

games are formed by a set of normal form games. The following is the

definition of normal form games.

The normal games model strategic interactions in which at least two or

more rational decision makers determine the outcome of a decision situation.

The two general branches of game theory are non-cooperative and cooperative

games; the normal games are the standard model of non-cooperative game

theory [112]. In a normal game, every player selects an action/strategy from

a set of possible strategies and taken together a combination of choices of all

players who determine the set of outcomes. At this stage the model is called a

game form, which only deals with a combination of a set of strategies in each

state but players are neutral about the different states. Adding preferences as

utility functions over the set of outcomes, transfers a game form to a normal

game. As an implicit principle, players become rational, i.e., their decisions

involve the maximisation of the expected utility. As players are uncertain

about other players preferences, a player might chose a strategy but this

3.1 Epistemic Logic for Normal Form Games 45

depends on the actions of others. Therefore, the expected utility would not

be the one to be used to maximise the outcome. These situations might

happen because players play simultaneously and have imperfect information

about the game which means players can not observe the selections of their

opponents at the time of making decisions. To overcome this difficulty, game

theory has formulated a number of solution concepts which specify a strategy

or a set of strategies for each player as a solution for games such as iterated

elimination of dominated strategies or the Nash equilibrium.

These games are represented by a tuple (N, {Si}i∈N , u), where:

• N is a finite set of n players, indexed by i.

• S = S1 ×× Sn where Si is a finite set of strategies of player i ∈ N .

• u = (u1, ..., un) where ui : Si → R is a real-valued utility (pay-

off/outcome) function for player i.

The last item u can be replaced with � which is the preference relation and

is the equivalent definition for the utility function. A common way to present

these games is via an n-dimensional matrix.

player 2
cooperate defect

player 1
cooperate (a,a) (b,c)

defect (c,b) (d,d)

Table 3.1: Prisoner’s dilemma

The game shown in table 3.1 is a common example of normal games,

called the prisoner’s dilemma. The numbers a, b, c, d are interpreted as a

measure of an agent’s level of happiness. They are called utility values and

we assume in this example c > a > d > b. There are two players who are

presumably suspected of a crime, where each of them has two options, which

are either to cooperate or to defect. In each cell of table 3.1, the first letter

represents the player 1’s payoff and the second letter represents player 2’s

payoff. If the payoffs are all positive or all negative, their absolute values

can represent the length of the jail term. If one player cooperates and the

other defects, the player will lose by b and the other one will gain c. If both

of them cooperate, they will gain a. The last scenario, to choose d, is the

46 Chapter 3: Games and Epistemic Logic

one that will be adopted by any rational player based on game theory. A

rational player should choose to defect because it looks at the game from its

own point of view regardless of what the other players will do. This will lead

to the Nash equilibrium which is to defect for both players.

3.1.1 Syntax for Normal Form Games

Game theory explains actions in terms of the reasons agents have to carry

them out. Normal form games provide the basic structure of simultaneous

games. These games are the basis of Bayesian games. Study of these games is

useful in order to distinguish between possible actions a player can choose to

perform, its preferred ordering between those actions, the rationality principle,

the action eventually performed and finally the beliefs about all the four

ingredients. B. de Burin [32] introduced an epistemic language for representing

the solution concept in normal games and extensive games. He proposed a

formula that expresses the solution concept such as the Nash equilibrium.

This formula simply says that, if a player expects its opponent to be rational,

and knows that its opponent knows the utility structure, these beliefs form

a pure strategy Nash equilibrium. Thus,we first introduce the language for

representing normal form games.

This epistemic logic is a multi-modal logic whose syntax is formed in

the usual way [14], [26] by a countable set A of atomic propositions. The

Boolean combinators (connectives) used are ¬ (negation), ∧ (conjunction),

∨ (disjunction), → (implication), and ↔ (equivalence). The conjunction

(disjunction) of all sentences from a finite set Σ is abbreviated by
∧

Σ (
∨

Σ),

assuming commutativity. If the ϕi enumerate Σ, it is written as
∧
i ϕi (

∨
i ϕi).

Also, the logic has modal (knowledge) operators Ki for each player i. The

basic atomic propositions for games are:

• The proposition letter im (i = 1, ..., N) stands for the statement ‘i plays

its mth strategy im’. This notation has two important items of informa-

tion, first about the player and the second about the strategy/action

the player chooses to play.

• The proposition ui(1k1 , ..., NkN) = r1k1 ,...,iki ,...,NkN
denotes that the utility

for player i, when the strategy profile (1k1 , ..., NkN) is played, equals the

3.1 Epistemic Logic for Normal Form Games 47

number r. This notation shows the other players strategies, because

the utility of a player depends on the selected strategies of others. For

example, player 1 plays one of its strategies, which here is presented as

k1, and in the same manner player N plays kN from its set of strategies.

Consequently player i plays ki.

• R is a countable set of symbols such as r. The elements of R represent

real numbers.(Note that R is not the set of real numbers.)

• The proposition r1k1 ,...,im,...,NkN
� r1k1 ,...,in,...,NkN

states that for player i

its mth strategy is at least as good as his nth strategy while other players

choose {1k1 , ..., i − 1ki−1
, i + 1ki+1

, ..., NkN} to play. Binary relation �
satisfies the following properties: for all r, r′, r′′ ∈ R

1. either r �i r′ or r′ �i r (completeness or connectedness),

2. if r �i r′ and r′ �i r′′ then r �i r′′(transitivity).

That is, it is a total preorder (also called a preference relation).

• The proposition rationali denotes the rationality of player i, in the

sense that i is an expected utility maximizer.

A Hilbert-style proof system can be used to check the validity of a formula.

However, the following axioms are needed for the knowledge modality:

1. Any axiomatisation for propositional logic (classical)

2. (Kiϕ ∧Ki(ϕ→ ψ))→ Kiψ (K, knowledge or distribution property)

3. Kiϕ→ ¬Ki¬ϕ (D or consistency)

4. Kiϕ→ KiKiϕ (4 or positive introspective)

5. ¬Kiϕ→ Ki¬Kiϕ (5 or negative introspective)

6. Kiϕ→ ϕ (T or Knowledge of truth)

The inference rules are:

• If ` ϕ→ ψ and ` ϕ then ` ψ (Modus Ponens)

• If ` ϕ then Kiϕ (Necessitation or Knowledge Generalisation)

48 Chapter 3: Games and Epistemic Logic

In addition, there are specific axioms for playing normal form games.

∧
i

∨
m im (G1)

∧
i

∧
m ¬(im ∧ in) (G2)

∧
i

∧
m(Kiim ↔ im) (G3)

ui(1k1 , ..., NkN) = r1k1 ,...,iki ,...,NkN
→ (G4)

Kiui(1k1 , ..., NkN) = r1k1 ,...,iki ,...,NkN

(r1k1 ,...,im,...,NkN
� r1k1 ,...,in,...,NkN

) ∨ (G5)

(r1k1 ,...,in,...,NkN
� r1k1 ,...,im,...,NkN

)

Axiom G1 states that each player plays at least one strategy (where

m ranges over the strategies available to player i). Axiom G2 says that a

player must not choose more than one strategy. Consequently, these two

axioms together imply that a player only chooses one strategy. Axiom G3

states that each player knows its selected strategy and consequently plays

it. Furthermore, a player has information about that strategy when played.

Axiom G4 is an immediate consequence of the necessitation rule and says

a player knows its own payoff. The last, axiom G5, defines that payoffs are

comparable under binary relation �.

To validate these axioms and to connect the logic to game situations, a

connector is needed, which is a semantics.

3.1.2 Semantics for Normal Form Games

Epistemic logic is a branch of modal logic which can support a different

number of modal operators. The logic for normal games is based on a multi-

modal logic with n operators K1, K2, ..., Kn, where i = 1, ..., n, Kiϕ means

that player i knows that ϕ. A semantics is required to establish conditions for

3.1 Epistemic Logic for Normal Form Games 49

the statement at which the logic is true or satisfied for a normal form game

structure. Due to the knowledge operator K and the need for supporting other

axioms such as T, 4 and 5, the modal system S5 is chosen as the epistemic

semantic system. The common method to encode the agent’s information

starts with possible-worlds structures, also called Kripke structures. Kripke

structures are those structures 〈Ω,K1, ...,Kn〉 in which Ω is a set of states

or possible worlds and for every i ∈ {1, ..., n}, Ki is a binary relation on Ω.

Because of axiom T the binary relation in the Kripke structure needs to

be reflexive (a binary relation R over domain X is reflexive if and only if

∀x ∈ X, xRx).

The truth value of a non-modal sentence is determined at a possible world

by the following satisfaction relation:

• w |= p if p is true in w ∈ Ω, for any atomic proposition p;

• w |= ¬ϕ if and only if it is not the case that w |= ϕ;

• w |= ϕ ∨ ψ if w |= ϕ or w |= ψ;

• w |= ϕ ∧ ψ if w |= ϕ and w |= ψ;

• w |= Kiϕ if for all w′ ∈ Ki(w), we have w′ |= ϕ ;

where for every w ∈ Ω and for every i ∈ {1, ..., n}, Ki(w) is defined as :

Ki(w) = {w′ ∈ Ω : wKiw′}

Given a normal form game G = (N, {Si}i∈N , u) and the Kripke struc-

ture S5 〈Ω, {Ki}i∈N〉, a structure for the game G is formed by adding n

functions to F . These functions are σi : Ω −→ Si(i ∈ N) satisfying

that if w′ ∈ Ki(w) then σi(w
′) = σi(w). These n functions form at each

state w a strategy profile σ(w) = (σ1(w), ..., σn(w)) which is a combination

of all players’ strategies at each state. If we need to refer to the com-

bination of all players’ strategies excluding player i, we use the notation

σ−i(w) = (σ1(w), ..., σi−1(w), σi+1(w), ..., σn(w)). G-structure is defined as

〈Ω, {Ki}i∈N , {σi}i∈N〉. A semantic model of G or G-model is obtained by

adding the following valuation to the G-structure:

50 Chapter 3: Games and Epistemic Logic

• w |= im if and only if σi(w) = im,

It says that im is true in the G-model at state w when player i selects strategy

im if and only if the strategy of player i related to state w by function σ is im.

• w |= ui(1k1 , ..., NkN) = r1k1 ,...,iki ,...,NkN
if and only if σ−i(w) exists such

that u(σi(w), σ−i(w)) = r,

It states that ui(1k1 , ..., NkN) = r1k1 ,...,iki ,...,NkN
is true in the G-model at state

w, the payoff of player i is ui(1k1 , ..., NkN) = r1k1 ,...,iki ,...,NkN
if and only if the

combination of players’s strategies excluding player i related to state w by

σ−i(w). In addition, player i’s payoff at state w is u(σi(w), σ−i(w)) = r.

• w |= r1k1 ,...,im,...,NkN
� r1k1 ,...,in,...,NkN

if and only if u(im, σ−i(w)) �
u(in, σ−i(w)).

It says that r1k1 ,...,im,...,NkN
� r1k1 ,...,in,...,NkN

is true in the G-model at state w,

when strategy im is at least as good as strategy in for player i if and only if

the combination of im and σ−i(w) results at a payoff at which player i gains

at least as good as the payoff of the combination of in and σ−i(w).

For reasoning about games, the rationality of players should be represented.

Moreover, the definition of rationality as the player’s characteristic results in

reasoning about games. There are three criteria for rationality [96]:

• knowledge of the problem which says the player has a clear picture of

the choice problem,

• clear preference, which means the player has an ordering over the entire

set of strategies, and

• ability to optimise which captures the ability to discover the optimal

course of action.

The proposition that captures the rationality of player i is called rationali.

The axiom RATIONAL which is the formalism of utility maximisation cap-

tures rationali as follows:

3.1 Epistemic Logic for Normal Form Games 51

RATIONAL : rationali ↔ (Ki

∧
iki

ui(1k1 , ..., NkN) = r1k1 ,...,iki ,...,NkN
∧ im)

∧
∧
iki

(r1k1 ,...,im,...,NkN
� r1k1 ,...,iki ,...,NkN

)

The above axiom states that player i aims at its utility maximiser, if the

player decides to play its mth strategy (im) in a situation in which the player

has information about the utility (captured by the (Ki

∧
ik1

ui(1k1 , ..., NkN) =

r1k1 ,...,iki ,...,NkN
)) then the mth strategy is better than any other, given its

beliefs. This axiomatisation of rationality of player i also means that the

strategy im is the Nash equilibrium for player i.

In game theory Nash equilibrium is the best response of a player after

knowing other players’ strategies [100]. The best strategy contains the concept

of preference or ordering and also ability to optimise. Knowing other players’

strategies is equal to having information about the problem. Therefore, a

rational player chooses a strategy that is a Nash equilibrium.

However, to verify the axiom RATIONAL in a game structure, a criterion

is needed. Thus, the satisfaction relation for G-model satisfies the following

extra condition:

• w |= rationali if and only if, for every si ∈ Si there exists an w′ ∈ Ki(w)

such that u(im, σ−i(w
′)) � u(si, σ−i(w

′)).

For normal form games, a logic with syntax and semantic is proposed.

We now show the soundness of the logic. A system of modal logic Γ is sound

with respect to a class of models C, when every theorem (axiom) of Γ is valid

in C [26].

Proposition 1: The proposed logic is sound with respect to the class of

G-models which is S5 plus game axioms (G1, ...,G5).

Proof

• Axioms G1 and G2 imply that a player chooses only one strategy at

each state. G1 and G2 are valid in every model because for every state

w there is a unique strategy im ∈ Si such that σi(w) = im by the

validation rule w |= im if and only if σi(w) = im.

52 Chapter 3: Games and Epistemic Logic

• Axiom G3 (left to right) is an immediate consequence of the definition of

the binary accessibility relation for modal Ki operator that if w′ ∈ Ki(w)

then σi(w
′) = σi(w) and axiom G3 (right to left) is valid because the

relation in this structure is reflexive (axiom T) so w ∈ Ki(w).

• Axiom G4 is valid because if w′ ∈ Ki(w) then σi(w
′) = σi(w) and

u(σi(w), σ−i(w)) = u(σi(w
′), σ−i(w)).

• Axiom G5 is valid because for every state w there is a unique pro-

file strategy σ−i(w) of the players other than i and the ordering of

ui(1k1 , ..., NkN) induces an ordering of
∧
m im.

• Axiom rationali is valid. Let’s suppose that

w |= (Ki

∧
iki

ui(1k1 , ..., NkN) = r1k1 ,...,iki ,...,NkN
∧ im)

∧
∧
iki

(r1k1 ,...,im,...,NkN
� r1k1 ,...,iki ,...,NkN

)

– Ki

∧
ik1

ui(1k1 , ..., NkN) = r1k1 ,...,iki ,...,NkN
means that for every w′

that w′ ∈ Ki(w) based on the modalKi operator definition σi(w
′) =

σi(w). Furthermore, for each state w there is a unique σ−i(w) and

(σi(w
′), σ−i(w)) = r,

– im means σi(w) = im,

–
∧
iki

(r1k1 ,...,im,...,NkN
� r1k1 ,...,iki ,...,NkN

) says for all strategies of

player i u(im, σ−i(w)) � u(σi(w), σ−i(w)) is true,

Therefore, every im ∈ Si there exists a w′ ∈ Ki(w) such that u(im, σ−i(w
′))

� u(σi(w
′), σ−i(w

′)).

�

Since the proposed logic is sound, a rational player can reason about the

best strategy at each state in a normal form game by using this logic. As an

example of reasoning by this logic, we revisit the Prisoner’s dilemma from

3.1 Epistemic Logic for Normal Form Games 53

table 3.1 as a normal form game. In the game, the following set of strategies

will be used:

S = {(cooperate, cooperate), (cooperate, defect),

(defect, cooperate), (defect, defect)}

The game has two players, i ∈ 1, 2, player i = 1 is considered as the row

player and consequently player i = 2 is the column player.

state1
1cooperate
2cooperate

U1(a)
U2(a)

state2
1cooperate
2defect
U1(b)
U2(c)

state3
1defect

2cooperate
U1(c)
U2(b)

state4
1defect
2defect
U1(d)
U2(d)

K1 K1

K2

K2

Figure 3.1: The four states of Prisoner’s dilemma (table 3.1)

In figure 3.1, all the four states of the game from table 3.1 are shown.

Player 1 knows player 2’s strategy in states 1 and 3 and player 2 knows

player 1’s strategy in states 2 and 4. As it is shown in figure 3.1, player 2

has knowledge about player 1’s strategy because in states 1 and 2, player 1’s

54 Chapter 3: Games and Epistemic Logic

strategies are the same (cooperation) σ2(state1) = σ2(state2). Consequently,

we have that state2 ∈ K2(state1) holds in state 1. Figure 3.1 presents that

player 1 has knowledge about player 2’s strategy as in states 1 and 3, player

2’s strategies are identical (cooperation) σ1(state1) = σ1(state3). Thus, in

state 1 we have that state3 ∈ K1(state1). Based on this argument, state 1

implies the following valuation.

state1 |= 1cooperate ∧ 2cooperate∧

(u2(1cooperate, 2defect) � u2(1cooperate, 2cooperate))∧

(u1(1defect, 2cooperate) � u1(1cooperate, 2cooperate))

Therefore, both players are irrational at state 1 and this state is not a

Nash equilibrium.

state1 |= (¬rational1 ∧ ¬rational2)

At state 2 the following valuation is true.

state2 |= 1cooperate ∧ 2defect∧

(u1(1defect, 2defect) � u1(1cooperate, 2defect))∧

(u2(1cooperate, 2defect) � u2(1cooperate, 2cooperate))

In state 2 player 2 is rational and player 1 is irrational.

state2 |= (¬rational1 ∧ rational2)

State 3 implies the following valuation:

state3 |= 1defect ∧ 2cooperate∧

(u2(1defect, 2defect) � u2(1defect, 2cooperate))∧

(u1(1defect, 2cooperate) � u1(1cooperate, 2cooperate))

3.2 Bayesian Games and Epistemic Logic 55

In state 3 player 1 is rational and player 2 is irrational.

state3 |= (rational1 ∧ ¬rational2)

Finally, the following valuation is true in state 4:

state4 |= 1defect ∧ 2defect∧

(u1(1defect, 2defect) � u1(1cooperate, 2defect))∧

(u2(1defect, 2defect) � u2(1defect, 2cooperate))

In this state both players are rational and this state is the Nash equilibrium

of the game.

state4 |= (rational1 ∧ rational2)

In conclusion, we have proposed a formal representation for normal form

games and reasoned based on the proposed logic about a game. In the

following section we apply this logic and extend it for Bayesian games.

3.2 Bayesian Games and Epistemic Logic

In many disciplines such as philosophy, economics and artificial intelligence,

reasoning about knowledge is not only about agents but also it is about

the probability of certain events. In particular, game theory encounters

uncertainty about events in a variety of situations. One scenario is given a

set of games with no information available about which game is about to be

played. A possible approach to the study of the interaction between players in

these is all games should be considered as probable games. These games are

known as Bayesian games. For reasoning about these games, the rationality

of players should be considered. It means, if the rationality of players is

represented by a logical language, the reasoning about these games will be

explicit. In the previous section, epistemic logic has been used to represent

56 Chapter 3: Games and Epistemic Logic

normal form games. It dealt with knowledge of the players and it represented

the rationality of the players. For representing Bayesian games, the logical

language has to be powerful enough to reason about the knowledge of the

players as well as uncertainty of each player about the set of games being

played. In the next section a formal logic is introduced to represent and

reason about Bayesian games.

3.3 Epistemic Logic for Bayesian Games

Interactive decision making situations are modelled with Bayesian games. In

these situations decision makers possess only partial information about the

games and the other players. This lack of knowledge or uncertainty about the

situations is typical in real-life decision making and reveals the importance

of these games. In normal form games, the common assumption is that

information about these games are common knowledge among the players.

This assumption is strong and makes the normal form games inflexible for

many real-life situations. Bayesian games are important because in these

games this assumption is relaxed. Therefore, Bayesian games model the

situations in which the game that is being played may not be common

knowledge among the players. Instead, some players may hold a different

payoff table or pure strategy set to be true. In a Bayesian game a player’s

beliefs include the knowledge of the game description (payoffs, strategies), as

well as the probability distribution over the beliefs other agents may have.

The set of beliefs held by a player is known as its epistemic type or simply type.

The uncertainty is defined directly over a game’s utility function. Therefore,

a Bayesian game is a tuple (N,A,Θ, p, u) where:

• N is a finite set of n players, indexed by i.

• A = A1× ...×An where Ai is a finite set of actions available to player i.

• Θ = Θ1 × ...×Θn, where Θi is the type space of player i.

• p : Θ 7−→ [0, 1] is a common prior over types.

• u = (u1, ..., un) where ui : A×Θi → R is a real-valued utility (or payoff)

function for player i.

3.3 Epistemic Logic for Bayesian Games 57

The assumption is that all the above is common knowledge among the

players, and each agent knows his own type. An example of a Bayesian game

is given in table 3.2.

θ2,1 θ2,2

θ1,1

MP
L R

U 2,0 0,2
D 0,2 2,0

p=0.3

PD
L R

U 2,2 0,3
D 3,0 1,1

p=0.1

θ1,2

Coor
L R

U 2,2 0,0
D 0,0 1,1

p=0.2

Bos
L R

U 2,1 0,0
D 0,0 1,2

p=0.4

Table 3.2: A Bayesian game (taken from [100])

As illustrated in table 3.2, a Bayesian game consists of different normal

form games which have the same number of players and strategies. In this

example, four normal form games are played simultaneously, MP (Matching

Pennies), PD (Prisoner’s Dilemma), Coor (Coordination) and Bos (Battle for

Sexes). This example has two players, player 1 as the row player and player 2

as the column player. Both players have two actions, player 1’s are U and D

and player 2’s L and R. These actions can be interpreted differently in each

normal form game. As an attempt to simplify notations, we consider the case

that all normal form games have the same actions. Therefore, U means player

1 moves up and D is player 1 moves down. Similarly, L is a left movement

and R is a right movement for player 2. As a way of defining uncertainty over

a game’s utility function, each player has two types, θ1,1 and θ1,2 for player

1 and θ2,1 and θ2,2 for player 2. The type of a player includes the player’s

private knowledge about the games which are not common knowledge. The

game is played in three steps:

1. a chance move chooses a particular game using the probability distribu-

tion p.

2. every player knows its type θ but not the game that will be played or

58 Chapter 3: Games and Epistemic Logic

the other players’ types.

3. the players simultaneously choose an action and receive a payoff.

In Bayesian games, the pure strategy of a player is a map from player’s

types or information to actions si : Θi −→ Ai. The notation si(ai| θi) is

used to denote the probability under strategy si when player i chooses action

ai, given that i’s type is θi. As Bayesian games have different sources of

uncertainty, the notation of expected utility has three different notions: ex

post, ex interim and ex ante. Ex post considers the actual player’s type, ex

interim is computed when the player knows its own type but does not have

any information about the types of the other players. The last one, ex ante,

is expected utility under the setting that the player knows nobody’s actual

type. The question is, which of these expected utilities should be considered

as the expected utility to find the equilibrium in Bayesian games. Harsanyi

[47] proved that any equilibrium in ex ante condition is also an equilibrium

under the ex interim condition. This is justified by the assumption that when

a player knows its type, the player also knows that the other players do not

know its type. Thus, they might consider the player may have a different

type which affects their decisions. Therefore, the player has to consider its

different types as well even if the player knows its actual type. This fact

makes Bayes-Nash equilibrium a natural extension of the Nash equilibrium.

Here, the method for reasoning about Bayesian games is the same as that

for reasoning about normal form games. Reasoning about the games stands

for reasoning about the rationality of players. Representing the rationality

of players implies that they maximise their payoff. In the next section, we

propose a language for representing and reasoning about Bayesian games.

3.3.1 Language for Bayesian Games

In this section, we extend the epistemic logic for normal form games for

representing and reasoning about the rationality of players in Bayesian games.

Consequently reasoning about the rationality of players leads us to reasoning

about Bayes-Nash equilibrium. Most of the propositions are the same as

those in normal form games, however, we define new propositions for utility

and strategy. Before we present the propositions and axioms of the language,

3.3 Epistemic Logic for Bayesian Games 59

we should give a clear meaning for notation θin . This notation represents a

type of player i, from the set {θi1 , θi2 , ..., θin}. In this definition, θin represents

the fact that player i has n different types. In addition, the notation θ−in

is a set of the types of all the players excluding player i, therefore, θ−i(n) =

{θ1n , ..., θi−1n , θi+1n , ..., θnn}. The other critical notation is θin,−in . It describes

a set of types for player i in combination with other players’ types.

• The propositional letter imθin
stands for the statement ‘i plays its mth

strategy in its θin type ’ and reveals information about the player and

the strategy, and also the type of player.

• The proposition ui(1k1 , ..., NkN , θin , θ−in) = r1k1 ,...,NkN ,θin ,θ−in
denotes

that the utility for player i with type θin , when the strategy profile

(1k1 , ..., NkN) is played in combination with other players’ types θ−in ,

equals the number r.

• R is a countable set of many symbols such as r. The elements of R

represent real numbers.

• The proposition r1k1 ,...,im,...,NkN ,θin ,θ−in
� r1k1 ,...,in,...,NkN ,θin ,θ−in

states

that for player i its mth strategy is at least as good as its nth strategy

while other players choose 1k1 , ..., NkN to play when the player has type

θin and the type of the other players are θ−in .

• The proposition rationali denotes the rationality of player i in the

sense that i is an expected utility maximiser.

We use the syntax introduced by [39] for probabilistic expressions. Pi(.) = .

represents i’s probabilistic belief of player i’s type and arbitrary finite sums

of such expressions when ϕi’s are certain sentences, qi and q are rational

numbers Pi(ϕ1).q1+...+Pi(ϕn).qn ≥ q. This formula is called an i-probability

formula or simply a probability formula, if i is not mentioned. i-probability

formulae are allowed for only one player in formulae. Therefore, the case

Pi(ϕ1).q1 + Pj(ϕ2).q2 ≥ q would not be valid for i 6= j. Also obvious

abbreviations use the Σ notation.

To capture probabilistic reasoning, the Kolmogorov axioms are used.

• Nonnegativity: for each i : Pi(θ) ≥ 0.

60 Chapter 3: Games and Epistemic Logic

• True: for each i :Pi(>) = 1 the probability of the event true is 1.

• False: for each i : Pi(⊥) = 0 the probability of the event false is 0.

• Additivity: for each i : Pi(θ) = Pi(θ ∧ ψ) + Pi(θ ∧ ¬ψ).

• Distributivity: for each i : Pi(θ) = Pi(ψ) whenever θ ↔ ψ is a

propositional tautology.

In order to ensure that probabilistic and non-probabilistic beliefs are

related in the right way, two additional axioms are useful [32].

• Consistency assumption: Kiϕ↔ Pi(ϕ) = 1.

This axiom says that the set of states that player i considers possible has the

probability 1. In other words, a formula is inconsistent if a player knows an

event is false then the player does not hold 0 probability on that event.

• Uniformity assumption: ϕ→ Kiϕ for ϕ an i-probability formula (the

sentence starts with Pi or Boolean combinations thereof).

This axiom says in a given state, player i knows all i-probability formulae

that are true in that state.

Then, there are specific axioms for Bayesian games. Without loss of

generality, we consider 2 player Bayesian games.

∧
i

∧
m ¬(imθin

∧ inθin
) (G2′)

∧
i

∧
m(Kiimθin

↔ imθin
) (G3′)

ui(1k1 , ..., NkN , θin,−in) = r→ (G4′)

Kiui(1k1 , ..., NkN , θin,−in) = r

(r1k1 ,...,im,...,NkN ,θin,−in
� r1k1 ,...,in,...,NkN ,θin,−in

) ∨ (G5′)

(r1k1 ,...,in,...,NkN ,θin,−in
� r1k1 ,...,im,...,NkN ,θin,−in

)

3.3 Epistemic Logic for Bayesian Games 61

Axiom G1′ says that every player plays at least one strategy based on its

type θin in each state where m ranges over the available strategies in type

θin . Axiom G2′ states that each player cannot choose two or more strategies

at each state. Axiom G3′ implies that every player knows its own strategies

likewise G4′ says that every player knows its own utilities. The last axiom

G5′ states payoffs are comparable under the binary relation � or�.

This section has presented the axioms about Bayesian games. However, to

validate these axioms a semantics frame for these axioms has to be presented.

The semantic applicable to Bayesian games is introduced in the next section.

3.3.2 Semantics for Bayesian Games

We want to extend our logic to cover formulae such as Pi(ϕ) ≥ b, which

means that “according to player i, formula ϕ holds with a probability of at

least b”, where b is an arbitrary real number between [0,1]. We start from a

classic Kripke structure and add required features to this structure to develop

semantics for Bayesian games.

The standard Kripke model for normal form games was defined in previous

section as:

• Game-structure = 〈Ω, {Ki}i∈N , {σi}i∈N〉.

Ω is a set of states or possible worlds, Ki is a binary relation on Ω that

for every w ∈ Ω and for every i ∈ N , Ki is defined as:

• Ki = {w′ ∈ Ω : wKiw′}.

σi are functions that:

• σi : Ω −→ Si(i ∈ N)

satisfying that:

• if w′ ∈ Ki(w) then σi(w
′) = σi(w).

A basic assumption for the set of subsets of possible worlds Ω to which

probability assigned is that these subsets fulfil some closure properties. For

example, if both u and v have some probability then it is possible that u ∪ v

62 Chapter 3: Games and Epistemic Logic

and ¬u have a probability too. Here, ¬ is not negation complement, for

example if u = (Pi(ϕ) > b) then ¬u is Pi(ϕ) ≤ b.

This is the definition of σ-algebra of subsets with one extra assumption

that a probability is assigned to the union of sets for countable sets of worlds.

From probability theory, a probability space is a tuple (Γ,H, µ) where

Γ is a set called the sample space, H is a σ-algebra of subsets of Γ, whose

elements are called measurable sets, and a probability measure µ : H → [0, 1]

satisfies the following two properties:

• µ(Γ) = 1.

• µ(u ∪ v) = µ(u) + µ(v) if u and v are disjoint elements of H.

Given a Game-structure = 〈Ω, {Ki}i∈N , {σi}i∈N〉 to check whether a prob-

ability formula is true at a state w, a probability space is assigned to each

state w. Thus, we extend Game-structure by adding Pi which is a prob-

ability assignment to each player i and state w ∈ Ω a probability space

P(i, w) = (Ω,Hi,w, µi,w) where Hi,w = Hi(w) and Hi(w) ⊆ Ω. Without loss

of generality, we assume Hi(w) is measurable. The extended Game-structure

with a probability space is Game-structure = 〈Ω, {Ki}i∈N , {σi}i∈N , {Pi}i∈N〉
P(i, w) can be considered as ∆(Ω) that denotes the set of probability distri-

butions over Ω. Therefore Pi : Ω −→ ∆(Ω). It means that Pi are the sets

{µ ∈ ∆(Ω) : µ(E) ≥ α} for all E ∈ σi(w) and real number α ∈ [0, 1].

Game-model (structure) is also extended by adding the following valuation:

• w |= imθin
if and only if σi(w) = imθin

and µi(σi(w)) = θin .

It says that imθin
is true in the Game-model at state w when player i with

type θin selects strategy im if and only if the strategy of player i related to

state w by function σ is im and the probability measure of σi(w) happening

is equal to θin .

• w |= ui(1k1 , ..., NkN , θin , θ−in) = ri,1k1 ,...,NkN ,θin ,θ−in if and only if u(σi(w),

σ−i(w)) = r and µi,w(σi(w), σ−i(w)) = θin,−in .

It states that ui(1k1 , ..., NkN , θin , θ−in) = ri,1k1 ,...,NkN ,θin ,θ−in is true in the

Game-model at state w, where the payoff of player i with type θin in combina-

tion with the type of other players θ−in is given by ui(1k1 , ..., NkN , θin , θ−in) =

3.3 Epistemic Logic for Bayesian Games 63

ri,1k1 ,...,NkN ,θin ,θ−in if and only if the strategy profile of all players with type

θ−in , related to state w with function σ−i(w). In addition, σ−i(w) in combi-

nation with player i’s strategy profile is equal to r (u(σi(w), σ−i(w)) = r).

Furthermore, the probability measure of tuple (σi(w), σ−i(w)) is equal to

θin,−in .

• w |= (r1k1 ,...,im,...,NkN ,θin ,θ−in
� r1k1 ,...,in,...,NkN ,θin ,θ−in

) if and only if

µi,w(u(imθin
, σ−i(w))) � µi,w(u(inθin

, σ−i(w))).

It says that r1k1 ,...,im,...,NkN ,θin ,θ−in
� r1k1 ,...,in,...,NkN ,θin ,θ−in

is true in the

Game-model at state w, where player i’s strategy im with type θni is at least

as good as strategy in with the same type if and only if probability measure

of combination of im with σ−i(w) results at a payoff at which player i gains at

least as good as the payoff of probability measure of combination of in with

σ−i(w).

• w |= Pi(ϕ) ≥ b if and only if µi,w(Hi,w(ϕ)) ≥ b while Hi,w(ϕ) = {w′ ∈
Hi,w|w′ |= ϕ}.

It says formula ϕ holds with a probability of at least b if and only if measure

H is at least b.

For reasoning about Bayesian games as in normal form games, the rational-

ity of players also needs to be represented. We extend the axiom RATIONAL

for normal form games to the axiom rationaltypei which is the formalism of

utility maximisation by considering a player’s type. It is defined for N player

Bayesian games as follows:

RATIONALTYPE : rationaltypei ↔ (Ki

∧
iki

q∑
i=1

(Pi(θin,−in)

(ui(1k1 , ..., NkN , θin , θ−in) = r1k1 ,...,iki ,...,NkN ,θin ,θ−in
) ∧ imθin

))

→
∧
iki

q∑
i=1

Pi(θin,−in)r1k1 ,...,im,...,NkN ,θin ,θ−in
≥

q∑
i=1

Pi(θin,−in)r1k1 ,...,iki ,...,NkN ,θin ,θ−in
)

64 Chapter 3: Games and Epistemic Logic

Here q is the number of available types for player i. The axiom

rationaltypei states that player i is a utility maximiser whenever, the player

decides to play its mθi th strategy in a situation in which the player knows prob-

abilistic beliefs Pi(θin,−in) and utility (captured by theKi

∧
iki

∑m
i=1(Pi(θin,−in)

(ui(1k1 , ..., NkN , θin , θ−in) = r1k1 ,...,iki ,...,NkN ,θin ,θ−in
))). According to this, the

mθni
th strategy is better than any other, given the player’s beliefs.

At this stage the valuation function for Game-model satisfies the following

extra condition:

• w |= rationaltypei if and only if, for every siθni
∈ Si there ex-

ists w′ ∈ Ki(w) such that u(imθni
, σ−i(w

′)) � u(siθni
, σ−i(w

′)) and

µi,w(σi(w), σ−i(w)) = θni,n(−i) .

The syntax and semantics have been proposed for Bayesian games by

considering different types for each player. We established the soundness of

the logic below.

Proposition 2: The proposed logic is sound with respect to the class of

Game-models.

Proof

• Axioms G1′ and G2′ say that at each state for each type of player only

one strategy is played. G′1 and G′2 are valid because at each state

w and each type θin of player i, there is a unique strategy such that

imθin
by validation rule w |= imθin

if and only if σi(w) = imθin
and

µi(σi(w)) = θin .

• Axiom G3′ is valid because if w′ ∈ Ki(w) then σi(w) = σi(w
′) and by

using µi we have µi(σi(w
′)) = µi(σi(w)) = θni .

• Axiom G4′ is valid because if w′ ∈ Ki(w), then σi(w
′) = σi(w), and then

we have u(σi(w), σ−i(w)) = u(σi(w
′), σ−i(w)). Also by applying µi we

have µi(σi(w
′)) = µi(σi(w)) = θin . Furthermore, because each σ−i(w)) is

unique and has unique type θ−in we have µi,w(σi(w
′), σ−i(w)) = θin,−in .

• Axiom G5′ is valid because for every state w there is a unique σ−i(w) for

players excluding player i and the ordering of ui(1k1 , ..., NkN) induces

an ordering of
∧
m u(im, σ−i(w)). In addition, by using µi we have

µi,w(u(imθin
, σ−i(w))) � µi,w(u(inθin

, σ−i(w))).

3.3 Epistemic Logic for Bayesian Games 65

• rationaltypei is valid. Suppose that:

w |= (Ki

∧
iki

∑q
i=1(Pi(θin,−in)

(ui(1k1 , ..., NkN , θin , θ−in) = r1k1 ,...,iki ,...,NkN ,θin ,θ−in
) ∧ imθin

)

→
∧
iki

∑q
i=1 Pi(θin,−in)r1k1 ,...,im,...,NkN ,θin ,θ−in

≥∑q
i=1 Pi(θin,−in)r1k1 ,...,iki ,...,NkN ,θin ,θ−in

– Ki

∧
iki

∑q
i=1(Pi(θin,−in)(ui(1k1 , ..., NkN , θin , θ−in) =

r1k1 ,...,iki ,...,NkN ,θin ,θ−in
) means that for every w′ where w′ ∈ Ki(w)

based on the definition of the binary relations Ki, σi(w′) = σi(w)

and as for each state w there is a unique σ−i(w), and probabilistic

beliefs Pi(θin,−in), there exists µi(σi(w
′), σ−i(w)) = r,

– imθin
means σi(w) = imθin

and µi(σi(w)) = θin ,

–
∧
iki

∑q
i=1 Pi(θin,−in)r1k1 ,...,im,...,NkN ,θin ,θ−in

≥∑q
i=1 Pi(θin,−in)r1k1 ,...,iki ,...,NkN ,θin ,θ−in

says for all strategies and

types of player i we have µi,w(u(imθin
, σ−i(w))) � µi,w(u(inθin

, σ−i(w))),

Therefore for every im ∈ Si there exists a w′ ∈ Ki(w) such that

u(imθin
, σ−i(w

′)) � u(siθin
, σ−i(w

′)) and µi,w(σi(w), σ−i(w)) = θin,−in .

�

We have demonstrated that, the formal logic is sound and can be applied

by a rational player to make decisions in a Bayesian game. The Bayesian

game shown in table 3.2 consists of four normal form games. To represent

this game by a formal language and reason about it, the system has to be

represented as a finite state system. A finite state system has a finite number

of states and relations between these states. For this game the figures 3.2

and 3.3 show states and relations, respectively. The number of players is two

throughout all the four games. In each game the row player is player 1 and

the column player is player 2. The set of strategies in each normal form game

is:

S = {(U,L), (U,R), (D,L), (D,R)}

66 Chapter 3: Games and Epistemic Logic

Each normal form game is represented by four states. In section 3.1.2,

the knowledge of each player in the first normal game, which is called MP,

is represented in figure 3.3. The relation between states 1 and 2, indicated

by a dashed line, stands for player 2’s knowledge, and the same applies to

the relation between states 3 and 4. For player 1, games MP and PD are

the same since they have its first type. Player 2 cannot distinguish between

games MP and Coor from each other as in these games player 2 has identical

types. However, in each game the combination of players’ types is unique,

which is represented by a probability about every game. Therefore, each game

of four states is separated from the other states by the probability about

the game. In figure 3.2, the probability for player 1 with type 1 is shown

as P1(θ1). The combination of this notation with player 2’s notation P2(θ1)

is equal to the probability of playing the game MP. Each player knows this

distribution, which means, there are relations between games in a Bayesian

game in figure 3.3. These relations are depicted for each first state of every

game as solid lines. There are relations between each state equal to the ones

drawn for states 1, 5, 9 and 13. In other words, each state from one game has

relations to all the other states of other games. The order of the game is not

important, because at the end of a Bayesian game, a player has to consider

all the games. In fact if a player plays the game MP either first or last, this

does not effect the final payoff.

Each player can choose the same number of strategies as the number of

its types. For example, in the game that is shown in figure 3.2, every player

has two types, therefore, the player has to select two numbers of strategies.

The reason is that, a Bayesian game is divided in to different sets of normal

form games, by the observation of each player. This observation is the type

of the player. Hence each player has to choose a strategy from each set of

normal form games. In the following equation, player 1 chooses U for each

type and depending on strategies player 2 chooses, a final payoff for both

players will be determined.

|= (1Uθ11
∧ 1Uθ12

) ∧ ((2Lθ21
∧ 2Lθ22

) ∨ (2Lθ21
∧ 2Rθ22

))∧

(P1(θ11,21)(u1(1U , 2L, θ11 , θ21)) ∧P1(θ12,22)(u1(1U , 2L, θ12 , θ22))) �

(P1(θ11,21)(u1(1U , 2L, θ11 , θ21)) ∧P1(θ12,22)(u1(1U , 2R, θ12 , θ22)))

3.3 Epistemic Logic for Bayesian Games 67

s
ta
te

1
:

1
U
θ
1
∧

2
L
θ
1
,

(P
1
(θ

1
),

P
2
(θ

1
))

=
0
.3
,

u
1
(2

),
u
2
(0

)

s
ta
te

2
:

1
U
θ
1
∧

2
R
θ
1
,

(P
1
(θ

1
),

P
2
(θ

1
))

=
0
.3
,

u
1
(0

),
u
2
(2

)

s
ta
te

3
,

1
D
θ
∧
2
L
θ
,

(P
1
(θ

1
),

P
2
(θ

1
))

=
0
.3
,

u
1
(0

),
u
2
(2

)

s
ta
te

4
,

1
D
θ
∧
2
R
θ
,

(P
1
(θ

1
),

P
2
(θ

1
))

=
0
.3
,

u
1
(2

),
u
2
(0

)

s
ta
te

5
,

1
U
θ
1
∧

2
L
θ
2
,

(P
1
(θ

1
),

P
2
(θ

2
))

=
0
.1
,

u
1
(2

),
u
2
(2

)

s
ta
te

6
,

1
U
θ
1
∧

2
R
θ
2
,

(P
1
(θ

1
),

P
2
(θ

2
))

=
0
.1
,

u
1
(0

),
u
2
(3

)

s
ta
te

7
,

1
D
θ
1
∧

2
L
θ
2
,

(P
1
(θ

1
),

P
2
(θ

2
))

=
0
.1
,

u
1
(3

),
u
2
(0

)

s
ta
te

8
,

1
D
θ
1
∧

2
R
θ
2
,

(P
1
(θ

1
),

P
2
(θ

2
))

=
0
.1
,

u
1
(1

),
u
2
(1

)

s
ta
te

9
,

1
U
θ
2
∧

2
L
θ
1
,

(P
1
(θ

2
),

P
2
(θ

1
))

=
0
.2
,

u
1
(2

),
u
2
(2

)

s
ta
te

1
0
,

1
U
θ
2
∧

2
R
θ
1
,

(P
1
(θ

2
),

P
2
(θ

1
))

=
0
.2
,

u
1
(0

),
u
2
(0

)

s
ta
te

1
1
,

1
D
θ
2
∧

2
L
θ
1
,

(P
1
(θ

2
),

P
2
(θ

1
))

=
0
.2
,

u
1
(0

),
u
2
(0

)

s
ta
te

1
2
,

1
D
θ
2
∧

2
R
θ
1
,

(P
1
(θ

2
),

P
2
(θ

1
))

=
0
.2
,

u
1
(1

),
u
2
(1

)

s
ta
te

1
3
,

1
U
θ
2
∧

2
L
θ
2
,

(P
1
(θ

2
),

P
2
(θ

2
))

=
0
.4
,

u
1
(2

),
u
2
(1

)

s
ta
te

1
4
,

1
U
θ
2
∧

2
R
θ
2
,

(P
1
(θ

2
),

P
2
(θ

2
))

=
0
.4
,

u
1
(0

),
u
2
(0

)

s
ta
te

1
5
,

1
D
θ
2
∧

2
L
θ
2
,

(P
1
(θ

2
),

P
2
(θ

2
))

=
0
.4
,

u
1
(0

),
u
2
(0

)

s
ta
te

1
6
,

1
D
θ
2
∧

2
R
θ
2
,

(P
1
(θ

2
),

P
2
(θ

2
))

=
0
.4
,

u
1
(1

),
u
2
(2

)

F
ig

u
re

3.
2:

R
ep

re
se

n
ti

n
g

th
e

st
at

es
of

a
B

ay
es

ia
n

ga
m

e

68 Chapter 3: Games and Epistemic Logic

Player 2 is irrational if it chooses (2Lθ21
∧ 2Rθ22

). From figure 3.2 we can

infer:

• the payoff for each player when the strategy profile is (1Uθ11
∧ 1Uθ12

) ∧
(2Lθ21

∧ 2Lθ22
)

1. utility for player 1: 2*0.3+2*0.1+2*0.2+2*0.4=2

2. utility for player 2: 0*0.3+2*0.1+2*0.2+1*0.4=1

• the payoff for each player when the strategy profile is (1Uθ11
∧ 1Uθ12

) ∧
(2Lθ21

∧ 2Rθ22
)

1. utility for player 1: 2*0.3+0*0.1+2*0.2+0*0.4=1

2. utility for player 2:0*0.3+3*0.1+2*0.2+0*0.4=0.7

Therefore player 2 is rational if it selects strategies (2Lθ21
∧ 2Lθ22

)

3.4 Remarks

In this chapter, we have proposed a formal approach to specifying players’

knowledge and probability beliefs in games, specifically in normal form games

and Bayesian games. Moreover, we have represented these games by this for-

mal logic. We have also represented the rationality of players. Therefore, we

can reason about the behaviour of a rational player in a game. This has been

done by detecting the set of strategies that satisfy the characterisations of ra-

tionality. This is important because this logic is intended to make precise the

informal notation of rationality that is appropriate for the situation in which

rational players interact in the way specified in the theoretical description of

games [104]. Furthermore, an implicit analysis of game theoretic rationality

is interpreted as the specification of strategies-definition of a solution to a

game [104]. Thus, by representing and reasoning about the rationality of the

players, we have represented and reasoned about solutions to games.

3.4 Remarks 69

st
a
te

1
st
a
te

2
st
a
te

3
st
a
te

4

st
a
te

5
st
a
te

6
st
a
te

7
st
a
te

8

st
a
te

9
st
a
te

1
0

st
a
te

1
1

st
a
te

1
2

st
a
te

1
3

st
a
te

1
4

st
a
te

1
5

st
a
te

1
6

F
ig

u
re

3.
3:

R
ep

re
se

n
ti

n
g

re
la

ti
on

s
b

et
w

ee
n

th
e

st
at

es
of

a
B

ay
es

ia
n

ga
m

e

Chapter 4

Model Checking

Model checking is a method in the domain of formal verification. Formal

verification is a systematic approach that benefits from mathematical rea-

soning to check the correctness of a system. There are a variety of tools

that offer model checking for different modal languages. However, due to the

characteristics of the proposed formal language, the already developed tools

show lack of setting to model a system based on the language.

We have implemented a model checking system which supports epistemic

logic for normal form games and Bayesian games. The system uses the syntax

and the semantics that was proposed in chapter 3. This chapter introduces the

system, the language of the system to model games and defines the language

which is used to describe the specifications in this system. Furthermore,

different algorithms are presented which are implemented in the system.

4.1 Model Checking Games

The system analyses the scenarios that have the following structure. A

situation as a game is modelled where some number of agents (players)

interact. In a state of a model based on agents’ knowledge and the chosen

strategies payoffs can be determined. The agents’ rationality is therefore used

as a criterion to choose a strategy. The input to the system consists of a file

which contains different formulae that represent a variety of concepts:

• the possible states of the model,

• the names of agents,

• the strategy of each agent,

71

72 Chapter 4: Model Checking

• other useful information such as agent’s utility,

• the probability belief in Bayesian games, the games’ specification.

The source of a deadlock is often a wait-for relation between states. To

prevent deadlocks, we assume that all above concepts are non-empty when

the model is a Bayesian game. An exception is made for the probability belief

if the probability belief is not given, the model is a normal form game.

The system accepts different approaches to representing the epistemic

aspect of the formulae. The descriptions of the formulae are based on the

epistemic logic that are developed in chapter 3. This logic for normal form

games and Bayesian games belongs to a set of modal logics. In this logic,

the modal operator is related to the information available to agents in a

distributed or multi-agent system. The syntax of the logic for these games is

defined in the previous section. The grammar applied in this section is:

ϕ ::= > | p | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | Kiϕ| Piθ

where p is an atomic proposition and i ∈ {1...n} is an agent in a game with

n agents.

The semantics that is introduced in the previous chapter described knowl-

edge modal operator K in the Kripke structure and P as probability belief.

We model a normal form game or a Bayesian game by this semantics as a

finite-state transition system. Therefore, verifying a property in this model

can be achieved by model checking techniques. Each model of games consists

of a set of states. In the normal form games and Bayesian games, players have

to choose between different strategies simultaneously. To represent games

as finite state systems, in addition to states, the transition between states

should be defined. For these games a transition is a set of strategies that are

chosen when each agent has information about those strategies. Moreover,

the set of strategies should fulfil certain conditions such as maximising the

payoff. This condition relates to the agent’s rationality.

In a game, each agent starts from one state to play the game and uses its

observation to gain information about the model since agent makes inferences

about the state just based on its last observation. As the order of a state

does not have any effect on the final result of a game, the starting state can

4.1 Model Checking Games 73

be randomly chosen from a set of states. The reason is that, all the states

in a game are observed by agents to optimise for the best strategy therefore

the order of checking is irrelevant. The observation and the behaviour of the

agents are precisely determined in the system by formulae of the logic.

The system reads each formula from an input file. Then, a formula is

parsed as a tree by using ANTLR (ANother Tool for Language Recognition)

[80]. ANTLR is a powerful parser generator for reading, processing, executing,

or translating structured text or binary files.

To obtain each formula as a tree structure, we have to define a grammar

of the developed epistemic logic as executable programs first. The language

of these programs is a domain-specific language (DSL), which is designed

for expressing language structure. Then ANTLR can automatically convert

grammars to parsers for us. Figure 4.1 depicts an example of trees generated

by ANTLR based on our grammar.

In the tree shown in figure 4.1, agents as player 1 (the row player) and

player 2 (the column player), are represented as ?1 and ?2, respectively. The

player’s nodes have leaves as the strategy of the player, e.g. player 1’s child

node is the strategy U and player 2’s child node is the strategy D. The other

leaves represent the probability (type) of the game as (p = 0.3). The other

leaf nodes in the format of (u = 2) shows the utility for each player. Therefore,

each leaf node of these trees is an atomic proposition which is a formula, and

when ϕ and ψ are formulae, other formulae such as ¬ϕ, ϕ ∧ ψ and Ki(ϕ) for

each i = 1, ..., n can be defined. This technique for representing each state

by a formula is known as a symbolic model checking technique. A symbolic

technique is used because a formula is assigned to every state.

The grammar is generated into two Java files, lexer and parse by ANTLR

version 1.4.3.

• a lexer: reads an input character, divides it into tokens using the

developed epistemic logic grammar, and generates a token stream as

output. It can also flag some tokens such as white space and comments as

hidden using a protocol that ANTLR parsers automatically understand

and respect.

• a parser: reads a token stream (generated by a lexer), and matches

phrases in the developed epistemic logic language via the specified

74 Chapter 4: Model Checking

&

&

&

?1

U

?2

L

&

?1

p=0.3

?2

p=0.3

&

?1

u=2

?2

u=0

Figure 4.1: Parsing a state formula

rules, and typically performs some semantic action for each phrase (or

sub-phrase) matched. Each match could invoke a custom action, or

generate an abstract syntax tree for additional processing.

The system reads these tree structures and with the provided information

it generates a finite-state transition system. The language which is used for

implementing the system is Java.

Figure 4.2 lists the main components of the system that implements the

algorithms which are present in section 4.4. The steps that are performed

automatically upon invocation of the system are as follows:

• In step 2, the input file is parsed. In this step various parameters are

stored in temporary lists.

• In step 3, the formula to be checked is read from a text file, and parsed

appropriately.

• In step 4, the list obtained in step 2 are traversed to build states for the

verification algorithms, then verification is performed by running the

algorithms. The list obtained in step 3 are traversed to build states of

formula. The states of model in which a formula holds are computed.

• In step 5, the set of reachable states is detected based on the knowledge

accessibility.

4.2 Model Checker’s Input Language 75

• In step 6, the set of reachable states is detected based on the probability

belief accessibility.

• In step 7, compute the expected utility for states that has relations.

• In step 8, compare the expected utility of combination of related states

to detect the greatest expected utility.

• In step 9, the set of reachable states from step 5 and 6 are compared

with the states in which a formula holds. If there is set of states in

the model that is same as states of the formula, the system return a

positive output or the greatest expected utility.

• In step 10, the set of reachable states from step 5 and 6 are compared

with the states in which a formula holds, If there is no set of states in

the model that is same as states of the formula, the system return a

negative output.

Step 2 and 3, inside the light grey box, are performed parallel. Step 7 and

8 are performed parallel too.

In the next section, we explain step 2 and step 4 in more details.

4.2 Model Checker’s Input Language

Model checking is based on the construction and analysis of a model. In

addition to a model there is a desired property that should be verified against

all available states in the model. Depth first search can be used to check a

property in a set of all available states. In this section, we discuss the input

language of the developed model checker for normal form games and Bayesian

games. An input script consists of a set of states declarations and one or

more specifications as illustrated in figure 4.3. We begin by describing the

lexical conventions, the structure of state declarations, and finally specification

language.

The model checker’s lexical structure is as follows:

• Comments: the system supports single line comments that begin with

“−−”.

76 Chapter 4: Model Checking

parallel I

parallel II

Algorithm 2

Specify a game

parse the input

parse the
formula to check

Compute the set
of states in which

formula holds

Detect states
of the model

that has knowl-
edge relation

Detect states of
the model that
has probability
belief relation

Compute the
expected utility

Detect the tran-
sitions(based on
the accessibility
relations)that

has the greatest
expected utility

True in the model
False in

the model

Any text
editor

ANTLR
parser

ANTLR
parser

java code

java code

java code

java code

java code

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Step 8

Step 9

Figure 4.2: System structure

• Constants: strategies, agent names, agent types, and agent utilities are

constants. They begin with lower-case letters followed by any number

of a mix of alphanumeric characters and underscores.

The system also supports different arithmetic types, such as natural

4.3 Model Checker’s Specification Language 77

numbers and rational numbers.

The subformula that is not only an atomic proposition is called an expression.

The combination of the expressions forms formulae to represent games. The

syntax of expressions depends on the type of the value they represent, namely

boolean and numerical.

• boolean expressions: are expressions which are composed of constants

atomic propositions using boolean operators & (and), |(or) and − >

(implication).

• numerical expressions: are expressions that are formed from numerical

constants using operators * and + .

Besides the mentioned expressions, several examples of the basic expres-

sions are given in table 4.1.

Operator Expression
Equality u = 0

Relational u > 0
Agent’s name ?2

Table 4.1: Examples of basic expressions

The input to the system shown in figure 4.3 describes a Bayesian game

that represented different states in table 3.2 (on page 57). As mentioned

before, the structure of each state is determined by a formula in which the

agent’s name, the agent’s strategy and the type of the game are mentioned.

As shown in figure 4.3, input lines without p : represent the states and the

last line with p : is the property that is needed to be verified in the model.

4.3 Model Checker’s Specification Language

Same as the input language of the system, the specification language is slightly

different from the syntax of the proposed logic. The specification language is

able to express different aspects of agent’s knowledge. The available operators

for knowledge and their descriptions are as follows:

78 Chapter 4: Model Checking

(?1(U)&?2(L))&(?1(p = 0.3)&?2(p = 0.3))&(?1(u = 2)&?2(u = 0))

(?1(U)&?2(R))&(?1(p = 0.3)&?2(p = 0.3))&(?1(u = 0)&?2(u = 2))

(?1(D)&?2(L))&(?1(p = 0.3)&?2(p = 0.3))&(?1(u = 0)&?2(u = 2))

(?1(D)&?2(R))&(?1(p = 0.3)&?2(p = 0.3))&(?1(u = 2)&?2(u = 0))

(?1(U)&?2(L))&(?1(p = 0.1)&?2(p = 0.1))&(?1(u = 2)&?2(u = 2))

(?1(U)&?2(R))&(?1(p = 0.1)&?2(p = 0.1))&(?1(u = 0)&?2(u = 3))

(?1(D)&?2(L))&(?1(p = 0.1)&?2(p = 0.1))&(?1(u = 3)&?2(u = 0))

(?1(D)&?2(R))&(?1(p = 0.1)&?2(p = 0.1))&(?1(u = 1)&?2(u = 1))

(?1(U)&?2(L))&(?1(p = 0.2)&?2(p = 0.2))&(?1(u = 2)&?2(u = 2))

(?1(U)&?2(R))&(?1(p = 0.2)&?2(p = 0.2))&(?1(u = 0)&?2(u = 0))

(?1(D)&?2(L))&(?1(p = 0.2)&?2(p = 0.2))&(?1(u = 0)&?2(u = 0))

(?1(D)&?2(R))&(?1(p = 0.2)&?2(p = 0.2))&(?1(u = 1)&?2(u = 1))

(?1(U)&?2(L))&(?1(p = 0.4)&?2(p = 0.4))&(?1(u = 2)&?2(u = 1))

(?1(U)&?2(R))&(?1(p = 0.4)&?2(p = 0.4))&(?1(u = 0)&?2(u = 0))

(?1(D)&?2(L))&(?1(p = 0.4)&?2(p = 0.4))&(?1(u = 0)&?2(u = 0))

(?1(D)&?2(R))&(?1(p = 0.4)&?2(p = 0.4))&(?1(u = 1)&?2(u = 2))

P : (?1(U)&?2(L))&(K(?1(rational))&K(?2(rational)))

Figure 4.3: The system input format

Operator Description

K knowledge

P probability belief

Table 4.2: Knowledge operators

The knowledge modality is written K(?agent(formula)). The probability

belief for each agent is written ?agent(p = numerical type).

4.3 Model Checker’s Specification Language 79

The probability belief should be presented in a Bayesian game, because

each state of the game has a probability. In this system, the representation

of type (probability belief) is different from the formal logic. To illustrate

this difference, we explain the first line of the input in figure 4.3:

(?1(U)&?2(L))&(?1(p = 0.3)&?2(p = 0.3))&(?1(u = 2)&?2(u = 0))

The formula consists of a variety of expressions. The formula that contains

expressions such as ?1(p = 0.3) indicates that the formula is related to a

Bayesian game. Each expression is explained as follows:

• ?1(U) is the representation of 1Uθ0

• ?2(L)) is the representation of 2Lθ0

• ?1(p = 0.3) is the representation of P1(θ0)

• ?2(p = 0.3) is the representation of P2(θ0)

• ?1(u = 2) is the representation of u1(1Uθ0 ,2Lθ0)

• ?2(u = 0) is the representation of u2(1Uθ0 ,2Lθ0)

A game model has different states that represent situations of a game and

relations between these states. In this system, there are different relations

for representing different scenarios. These relations are the representation of

player’s knowledge. From the epistemic perspective, agents use their observa-

tions in different ways to consider what they know. A player’s observation

determines its knowledge about the other players’ strategies. This knowledge

is represented as the relation that connects states to each other. How states

are accessible from each other then represents the relation between states. It

means that player i has knowledge about the other players’ strategies when

in the possible worlds (states) for player i, the strategies of the other players

are the same. Therefore, Ki(strategyj) means if player i in state r has access

to state p then strategyj in r is equal to strategyj in p.

In a normal form game with two strategies for each player, each player has

two knowledge relations with the other player’s strategy as shown in figure

80 Chapter 4: Model Checking

3.1. In addition to this knowledge, in a Bayesian game, a set of states has

also a relation to other set of states, when an agent knows the type of each

state. Therefore, in a Bayesian game, different games are played and since all

of these games are probable players consider all games to be played. These

games might be played by different or equal probabilities. To represent the

probability distribution over these games in the formal language, we used

types as it is proposed by [47]. A type in a Bayesian game can be presented

from two different perspectives.

Players have different types in each normal form game of a Bayesian game

or the normal form games have different types. We can prove that these two

points are equal. Considering that players have different types, so they play

games with different types. This however, does not mean that for every game

a player has a different type because this would then imply that all players

have complete knowledge about the games. Without loss of generality, we

assume a two player Bayesian game. A set of games are indistinguishable for

a player when the other player has different types in this set. However, the

first player has one constant type in all these games. If the first player has

different types in each of these games, the set of these games would not be

indistinguishable. Although the players have the same types, in some games

the combination of the player’s type and the other player’s type is unique in

each game. This combination represents the probability of each game to be

played. Thus, each normal form game has a type in a Bayesian game.

For the purpose of implementation, we represent the probability belief as

the type of a game. As mentioned above, the type of a game is the result of

the combination of players’ types and represents the probability of playing

the game. Player i in state r has knowledge about the type of a set of states

when the player has access to all these states and the states have the same

type. It is represented in formal logic as Pi(θin , θ−in) for the states which

are accessible for player i. Thus, two atomic propositions θin and θ−in as the

type of player i and the type of other players, respectively, are represented as

one proposition. This proposition is ?i(p =).

The specification language is used to represent the desired properties of

games that we want to check. For example consider the following property

corresponds to the last line in figure 4.3:

4.3 Model Checker’s Specification Language 81

((K1(rationaltype2θ0
)) ∧ (K2(rationaltype1θ0

))) ∧ (1Uθ0 ∧ 2Lθ0)

The result from the system is states 0,4,8,12 which means:

(((K1(rationaltype2θ0
)) ∧ (K2(rationaltype1θ0

))) ∧ (1Uθ0 ∧ 2Lθ0))→

(1Uθ1 ∧ 2Lθ1)

(4.1)

Based on table 3.2, equation 4.2 is the correct move. When player 1 chooses

to play U with its first type θ0 and player 2 plays L with its first type θ0, the

best solution is for both players to play the same strategies, U and L with

their second types θ1. This is the meaning of equation 4.2. As in a game, a

different solution could be possible, so an alternative best response in this

game with the same start is states 0,5,10,15:

(((K1(rationaltype2θ0
)) ∧ (K2(rationaltype1θ0

))) ∧ (1Uθ0 ∧ 2Lθ0))→

(1Dθ1 ∧ 2Rθ1)

(4.2)

Equation 4.2 shows an alternative solution for the same game from table 3.2.

If the players start with the same assumption as above, this solution is that

player 1 plays D and Player 2 chooses R with their second types θ1.

The above example shows how to define game properties with the specifi-

cation language of the system. The next section discusses the algorithms that

are implemented in the system to model and verify the desired properties in

games.

82 Chapter 4: Model Checking

4.4 Model Checker’s Algorithms

Model checking has a variety of techniques, such as symbolic model checking

using Binary Decision Diagram, explicit state model checking, and bounded

model checking. Although the system can use the symbolic model checking

approach, the default technique used in this thesis is explicit state model

checking. That technique in model checking explicitly constructs all reachable

states of a model and then inductively checks these states with the expressions

of the specification formula that hold at these states. This technique is well

known as a classical approach in model checking.

In this section, we propose an algorithm for model checking of the games.

The problem of model checking can be formally stated as follows: given a

property (or a logical formula) ϕ, and a model M, return the set of states Ω

such that w ∈ Ω if and only if ϕ is true at state w in M. The input model M

here for the model checking algorithm is 〈π, 〈Ω,K1, ...,Kn,P1, ...,Pn〉〉, which

is the same as the model defined in section 3, in addition to the extra function

π. This function and other input parameters for the model checking algorithm

are as follows:

• The boolean variables for a normal form game im,ui(1k1 , ..., NkN) =

ri,1k1 ,...,NkN , ri,1k1 ,...,im,...,NkN � ri,1k1 ,...,in,...,NkN
and rationali.

• The boolean variables for a Bayesian game imθin , ui(1k1 , ..., NkN , θin , θ−in)

= ri,1k1 ,...,NkN ,θin ,θ−in , ri,1k1 ,...,im,...,NkN � ri,1k1 ,...,in,...,NkN
and rationaltypei.

• The function π(p) which gives the set of states in which the atomic

proposition p holds.

• Boolean functions RK
i encoding the epistemic accessibility relations (for

each agent i this function takes as input a state w and a binary relation

R on the set of states, and returns the set of states accessible from w

via R)

• Boolean functions RP
i encoding the probability belief accessibility re-

lations (for each agent i this function takes as input a state w and a

binary relation R on the set of states, and returns the set of states

accessible from w via R)

4.4 Model Checker’s Algorithms 83

This algorithm is similar, to model checking techniques for modal logics

[88] [51], without temporal modalities.

Algorithm 1 Break down a formula in the system

function verify (ϕ,M) . returns a subset of states
ϕ is an atomic formula:
return π(ϕ)
ϕ is ¬ϕ1:
return Ω\ verify (ϕ1,M)
ϕ is ϕ1 ∨ ϕ2:
return verify(ϕ1,M)∪ verify(ϕ2,M)
ϕ is ϕ1 ∧ ϕ2:
return verify(ϕ1,M)∩ verify(ϕ2,M)
ϕ is Kiϕ:
return {g|RK

i (g) ⊆ verify(ϕ,M)}
ϕ is Piϕ:
return {g|RP

i (g) ⊆ verify(ϕ,M)}
end function

In algorithm 1, we only have cases for logical symbols ¬,∧,∨ but the

formal language from section 3 supports the other symbols such as→,↔. The

reason is that the algorithm covers this set and by this set we can express the

other symbols. The use of this set simplifies the model checking algorithm.

This algorithm is correct, which means if, the algorithm is passed a

formula ϕ and the model M = 〈π, 〈Ω,K1, ...,Kn,P1, ...,Pn〉〉, it returns the

set of states at which ϕ is true. Above all, this algorithm terminates, because

the recursive calls are all on sub-formulae of the original formula.

A constructed parse tree of a formula, such as shown in figure 4.1, is

traced upward towards the root. We recursively compute the set of states

satisfying each expression of the parse tree by algorithm 1, and at the end

the system has determined the set of states satisfying the formula.

Those formulae as the properties of these models that we are interested

to check are shown in table 4.3.

Provided Information Properties to be checked
a player’s strategy and type other players’ strategies and types

a set of players’strategies and types other set of players’strategies and types

Table 4.3: Properties to be checked

84 Chapter 4: Model Checking

We might also assume that a player knows that the other player is rational

which can be written as Ki(rationaltypejθjn
). By checking the properties

from table 4.3 with this assumption in the model, the Nash equilibrium is

determined. For verifying properties in the model we use different algorithms.

Algorithm 2 builds the relations between games in a Bayesian game. This

algorithm is marked in figure 4.2 with a dark grey box. This algorithm applies

the additional algorithms 3 and 4 to model the relations. A set of relations

based on information about the strategies is developed and another set of

relations is built based on the type of games.

Algorithm 2 Build Relations in a Bayesian Game

S: array of states in a Bayesian game
R: array of relations in a Bayesian game

RK : null . array of knowledge relations
RP : null . array of probabilistic belief relations
NoGame: number of normal form games
NoStateInGame: number of states in a normal form game
NoPlayer: number of players in a normal form game
for i := 1, i ≤ count (states) do

si:=set the current state
for j := 1, j ≤ NoGame do

gj:=set the current game
for n := 1, n ≤ NoPlayer do

pn:=set the current player
if Knowledge(pn, gj(si), gj(si+1)) then

RK .add(si,si+1)
end if
for m := 1, m ≤ NoStateInGame do

if KnowledgeType(gj, gj+1, pn, , gj(si), gj+1(sm)) then
s′i:=sm (i’ is m)
RP .add(si,s

′
i)

end if
end for

end for
end for

end for

Algorithm 3 checks the strategies in the states. If a strategy for a player is

the same in some states, the other players have knowledge about that strategy.

This algorithm corresponds to step 5 in figure 4.2.

4.4 Model Checker’s Algorithms 85

Algorithm 3 Algorithm Build Knowledge Strategy

function Knowledge (player, state1, state2) . returns a subset of states

r:=T[player.id, state1.id,state2.id]

if r 6= null then

return r . have already evaluated

end if

r:=new pair of states

T[player.id, state1.id, state2.id]:=r . add tuple to table

if player.state1.strategy = player.state2.strategy then

return r

end if

end function

Algorithm 4 checks the types of the states. The same types of the states

means that those states belong to one game. There is relation between games,

that are built based on the type of games. For example all the states in a

game have one type, therefore from point of view of other states in the model,

they are indistinguishable. Step 6 in figure 4.2 corresponds to this algorithm.

Algorithm 4 Algorithm Build Knowledge Type

function KnowledgeType (game1, game2, player, state1, state2) .

returns a subset of states

r:=T[game1.id,game2.id, player.id, state1.id,state2.id]

if r 6= null then

return r . have already evaluated

end if

r:=new pair of states

T[game1.id,game2.id, player.id, state1.id, state2.id]:=r . add tuple to

table

if game1.player.state1.type = game2.player.state2.type then

return r

end if

end function

If the input language does not contain a formula with a P operator,

86 Chapter 4: Model Checking

the system models states for a normal form game. Otherwise, states are

considered for a Bayesian game.

Another important algorithm in this work is the computation of expected

utility in a Bayesian game. Algorithm 5 represents step 7 in figure 4.2.

Algorithm 5 Algorithm Computation of Expected Utility in a Bayesian
Game
Array of states in a Bayesian games Array of states, each of them from distinct
normal form game, that has relations with a specific state and transitions
through them give the maximum utility

NoGame:number of normal form games
NoStateInGame:number of states in a normal form game
NoPlayer:number of players in a normal form game
for i:=1, i ≤ count states do

si:=set the current state
for m := 1, m ≤ NoGame do

gm:=set the current game
for j := 1, j ≤ NoStateInGame do

for n := 1, n ≤ NoPlayer do
if EXPUTIL (gm.playern.si) + EXPUTIL (gm+1.playern.sj)

is maximum then
return (si, sj)

end if
end for

end for
end for

end for

Function EXPUTIL simply computes the expected utility in a state for

each player, based on the player’s utility times type of the game (obtained by

probability distribution over games).

The system by applying the presented algorithms build the whole model’s

states. It computes the set of states in which a formula holds, and checks

whether or not a formula holds in the whole model. Furthermore, it returns

states where by passing through them players can obtain the greatest total

expected utility.

4.5 Remarks 87

4.5 Remarks

We have implemented a model checking system that verifies a Bayesian game’s

properties in a game model. The system constructs a game’s model based on

the syntax and semantics of epistemic logic. The model checking algorithms

are polynomial in the size of the states in the model and the algorithms are

linear in the size of formula which equals the number of logical connectives

and modal operators.

The model checker is a proof-of-concept implementation. Computational

complexity of a model checker is determined by the size of the given model and

the size of the given formula to be checked against the model[89]. Previous

studies [89], [38] show that the complexity of model checkers for logics such as

temporal-epistemic logic or the logic of knowledge and linear time is PSPACE

(polynomial space) complete. Although the logic in this thesis is different

from those logics, the model checker implemented in this chapter follows the

same approach in [89] and [38]. Therefore, we expect this model checker to

also have the PSPACE completeness.

In the next chapter, we use the developed formal logic in chapter 3 and

the model checking system from chapter 4 to verify properties in different

scenarios. These scenarios are chosen since they are examples of Bayesian

games from the literature.

Chapter 5

Applications

The study of multi-agent systems focuses on systems in which many intelligent

agents interact with each other. The area of multi-agent systems is not only

about game theory, however, there is an important discussion that game

theory is a key tool in the field [100]. Although the normal form game

is conceptually fundamental in game theory, game representations such as

Bayesian games are also important. The reason is that normal form games are

sometimes unsuitable for modelling large or realistic game-theoretic settings.

In many realistic situations, agents might have private information that affects

their own payoffs and other agents might have only probabilistic information

about each others’ private information. These situations are modelled as

Bayesian games. In this chapter, we focus on examples of Bayesian games in

wireless networks and cloud computing.

There are many game-theoretic approaches in addressing different forms of

security and privacy problems in computer and communication networks [69].

The reason is that, there is a fundamental relationship between the decision

making of agents and network security problems. Independent decision

makers, e.g., devices or softwares, can be cooperative, selfish, or malicious.

The behaviour of these agents can be modelled by game-theoretic approaches.

Consequently, we can avoid inadequate stability points and design security

mechanisms that coverage to the optimal possible solution.

Game theory is also addressed in different situations in cloud computing.

In cloud computing, computational resources are rarely allocated completely

to a user. In this area, there are conflicts of interest between cloud providers

and multiple consumers using the cloud simultaneously [56]. Game theory

can solve utilisation problems between a cloud provider and customers, by

determining equilibrium solutions in usage of cloud resources.

89

90 Chapter 5: Applications

Since we have the models for these two scenarios as Bayesian games, we

can reason about them. It is important in these scenarios to express knowledge

of agents precisely and to capture the reasoning that leads to solutions. In

this chapter, the intention is to delve in enough details in each application to

be able to represent them by the proposed logic in chapter 3 and to reason

about them.

These two scenarios represent different application domains where Bayesian

games can be used as a modelling technique. The general characteristics of

these scenarios are:

• they involve more than one agent/player.

• they can be divided into independent normal form games.

• all the normal form games might be played by players simultaneously

and it is not determined which games would be played. Therefore, all the

games should be considered plausible under a probability distribution.

Although, in this chapter, we focus only on two specific application domains,

these general characteristics might be satisfied by many other applications.

5.1 Wireless Network and Game Theoretic

Approach

Wireless networks cover a wide spectrum of architectures such as wireless

metropolitan mesh networks, sensor networks and ad hoc networks [117].

Collaboration in these networks improves the connectivity [102]. For example

with an ad hoc network, the number of sensor nodes can collaboratively

collect information and then collaboratively send the information back [76].

However, since in these networks collaborative nodes are responsible for

all functions, such as packet forwarding, routing and network management,

they are sensitive to the misbehaviour of nodes. The nodes’ misbehaviours

that affect these operations may range from simple selfishness or lack of

collaboration due to the need for power saving to active attacks aiming at

Denial of Service (DoS) [73].

5.1 Wireless Network and Game Theoretic Approach 91

While advanced cryptographic techniques can be used, the security chal-

lenges in wireless networks , e.g., DoS attacks, are not fully addressed because

of the distributed nature of the networks. Hence, it is desirable that security

schemes can be modelled from the nodes’ perspective. Wang et al. [115] used

game theory to capture and analyse the interaction between an attacker and

a regular node in wireless networks. They modelled the scenario as Bayesian

attacker detection games, in which nodes have imperfect information because

the attacker can disguise as a regular node and the actions are hidden because

of the noise and imperfect observation.

Games with incomplete information or Bayesian games such as Bayesian

attacker detection games provide a natural and compelling model that enables

understanding actions of players under uncertainty [100]. However, these

models do not provide any mechanisms for players (nodes) to reason about

different situations in these models. One solution is to use formal logics

for these models. The positive aspects of logic approaches are that we can

specify the properties of agents and multi-agent systems as logical axioms

and theorems in the language with clear semantics. Therefore, there is

no ambiguity in the specification and everything is explicit. Furthermore,

properties, interrelationships and inferences are open to examination. In

comparison to logic, computer programs need implementation and control

aspects within. Thus, the issues, which are to be tested, can often become

confusing [43].

The aim is to represent and reason about Bayesian attacker detection

games using formal logics. There are several approaches to consider uncer-

tainty in a logic that involves the quantification of uncertainty [59]. The

developed formal logic for representing Bayesian games in chapter 3, used

beliefs about uncertainty to model Bayesian games. The logic for Bayesian

games is the extension of the epistemic logic for normal form games. We

model Bayesian attacker detection games by this logic and then we use this

logic for reasoning about the solution concept of these games.

92 Chapter 5: Applications

5.1.1 Security in Wireless Network with Channel Un-

certainty

An important concern of security in networks is jamming and eavesdropping,

where communication channels may suffer from attacks. These attacks happen

in both wired and wireless networks, but they are greater in wireless networks.

These malicious behaviour are shown in figure 5.1 and 5.2.

Eavesdropping is a passive attack in the network, since the eavesdropper

node listens to the network and captures data without interacting with the

network. Here, we do not consider these nodes as they do not interrupt the

network.

Jamming as an active attack can disrupt data transmission. An attacker

can disrupt the communication of a putative victim by transmitting at the

same time as the victim. In general, for a jamming attack, no special hardware

is needed in order to be launched. It can be done by listening to an open

medium and broadcasting in the same frequency band as the targeted network.

Consequently, attacks can be done with huge success and with considerably

low costs for the attacker. This attack is usually implemented at the level of

physical layers by means of a high transmission power signal that corrupts

a communication link or an area. The conventional solution for physical

jamming can be too energy consuming to be deployed in resource constrained

sensors. In addition, these attacks can also occur at the access layer. In this

layer, attacker might corrupt control packets or reverse the channel for the

maximum allowable number of slots. Therefore, other nodes experience low

throughput by not being able to access the channel.

Figure 5.1: An eavesdropper can passively listen to the communication.

The common approach to detect attackers is based on external detection

if the transmission of the attacker nodes are fixed and known [68]. Malicious

behaviour in wireless networks can be modelled as game models by relating

attackers with a different type of a utility function. The utility function

represents gain at the expense of performance degradation of other nodes in

the network. An attacker node has a conflicting interest with other nodes and

is attempting to minimise their utility. In [98], conditions have been obtained

5.1 Wireless Network and Game Theoretic Approach 93

under which the type of nodes’ identities should be concealed or revealed to

improve the cooperative nodes’ performance or to reduce the performance of

attackers. In practice, attacker nodes would rather conceal their intention, i.e.,

if nodes may have incomplete information regarding the types of other nodes.

We study the effects of such incomplete information as Bayesian games.

Figure 5.2: A jammer actively transmits signals to inference and interrupt
the communication.

5.1.2 Bayesian Attacker Detection Game

Attacker detection games are proposed by Wang et al [115]. In this section,

we briefly summarise this game and its analysis. These games model the

interaction between the potential attacker node i and the regular node j. The

regular node j is unable to tell by default if node i is an attacker or not,

instead it can only detect the attacker through observations. Nodes can have

different types, and these types are their private information.

Node j θj = 0

Node i θi1 = 1

Monitor Idle

Attack −uA − cA −uA − uM uA − cA −uA
Cooperate −uC −uM −uC 0

Node j θj = 0

Monitor Idle

Node i θi2 = 0 Cooperate −uC −uM −uC 0

Table 5.1: Payoff matrix of an attacker detection game [115]

94 Chapter 5: Applications

Here, as the game has two nodes (players), we have two types θin for node

i and θjn for node j. While θjn = 0, i.e., always regular, θin can be either

1 (attacker) or 0 (regular), depending on its true type. Because node j has

only one type, we omit the subscript and refer to node j’s type as θj.

This game is a Bayesian game because the type of node i is hidden and

the observation is usually inaccurate due to noise. The strategies si of node

i are based on its type. For θi1 = 1, si={Cooperate} that is, the only

strategy available to a regular node is cooperation. For θi2 = 0, si={Attack,

Cooperate}, i.e., an attacker can camouflage itself as regular. Node j has the

option to monitor or be idle regardless of whether node i is attacking or not,

thus, node j has two available strategies sj={Monitor, Idle}. Because the

scenario is modelled based on the game theory approach, we need a payoff

matrix. For this purpose, the following values are assumed. uA is considered

as the payoff of an attacker node if it successfully attacks. The cost associated

with such an attack is cA. The cost of monitoring is uM for the regular node

j and 0 if it is idle. Therefore, for the strategy profile (si, sj)=(Attack, Idle),

the net utility for a successful attacker i is uA − cA, the loss for node j is

−uA due to the attack. Similarly, if the strategy profile is (si, sj) = (Attack,

Monitor), the attacker node i loses uA + cA, and the net gain for node j is

uA − uM .

Nonetheless, if an attacker node chooses to cooperate, the cost is uC . Based

on the types of node i and node j and their strategies, the payoffs matrices

are shown in table 5.1. Here, we also assume that uA > um > uC > cA.

In this game, due to monitoring, both nodes develop knowledge about

their opponents over time. Developing the knowledge is useful because it

decreases the costs for both players. For the regular node, it is not optimum

to monitor continuously due to the cost of monitoring. It is also not suitable

for the attacker node to attack all the time because of an increased chance of

detection. While node j is monitoring, it acquires a knowledge about node

i on whether it is an attacker or not. This knowledge is updated over time

whenever node i is observed to be an attacker. This observation is possible

from the attacker node’s point of view. Despite of the fact that the uncertainty

of the wireless medium makes the observations inaccurate, the more often the

attacker attacks, the quicker node j can develop knowledge about its attacker

type. The strategies adopted by node i is only determined by the current

5.1 Wireless Network and Game Theoretic Approach 95

state of the knowledge, i.e., when the knowledge update process takes place.

However, the knowledge held by node j is its private information, and node i

does not have access to this information. Thus, it is important for node i to

develop its own knowledge system.

In [115], formulae are developed to predict the probability distribution of

each of the normal form games of this Bayesian game being played. Here we

assume, the first game happens with probability 0.55 and the probability of

the second game is 0.45.

Uncertainty is unavoidable in this model and in order to deal with uncer-

tainly we need to be able to represent it and reason about it. We overcome it

by applying the epistemic logic.

5.1.3 Reasoning About Bayesian Attacker Detection

Games by Epistemic Logic

Due to the uncertainty in Bayesian games, a Bayesian game is modelled as a

set of games that differ only in their payoffs, and a common prior defined over

them. For Bayesian games the counterpart of the Nash equilibrium is called

the Bayes-Nash equilibrium. This equilibrium for agent i is a mixed strategy

profile which is the best response to a mixed strategy profile of the other

player. The Bayes-Nash equilibrium may seem conceptually complicated.

The solution, however, is to construct a normal form representation that

corresponds to a given Bayesian game. This representation is called an

induced normal form. We now reason why we transformed the Bayesian

games to their induced normal forms.

For attacker detection games with two players (attacker and regular nodes)

if the current state is a member of the equivalence states (the states that

are connected by an accessibility relation in the Kripke models) that the

attacker node considers all equivalence states as possible states. It also might

consider many possibilities what the equivalence states of the regular node

might be. Thus, the attacker node must take into account what the regular

node is likely to do in all of these circumstances, but the regular nodes choice

depends on the states, which it considers possible. It may also consider a state

possible that is not in the actual equivalence states of the attacker node. We

therefore have to take into account all reachable states, that is (because our

96 Chapter 5: Applications

N
o
d
e

j
M

on
itor

Id
le

N
o
d
e

i
attack

,
co

op
erate

p
(−
u
A
−
c
A

)+
(1-p

)(−
u
C

)
p
(u

A
−
u
M

)+
(1-p

)(−
u
M

)
p
(u

A
−
c
A

)+
(1-p

)(−
u
C

)
p
(−
u
A

)
co

op
erate,

co
op

erate
−
u
C

−
u
M

−
u
C

0

T
ab

le
5.2:

T
h
e

in
d
u
ced

n
orm

al
form

of
B

ayesian
attacker

d
etection

gam
es

5.1 Wireless Network and Game Theoretic Approach 97

model is connected) every state in the model. This means that the attacker

node has to know what the regular node might do in any of the states in the

model, independent from regular node’s actual state, and vice versa for the

attacker node. This explains why strategies are formulated as contingencies

for every state in the model, i.e., as functions from every state to a choice of

strategies in that state. These strategies and their expected payoffs define

normal induced games for Bayesian games, such as the attacker detection

games described here. Payoffs are computed by taking the average over all

states in the model. It is clear that it does not suffice to look only in the

current state, as each agent also might consider other states possible. One

solution might be to compute a players payoff by taking the average over

all the states that that agent considers possible, i.e., that agents equivalence

class. However, we cannot apply this solution, because the strategic game

must be common knowledge, in order for solution concepts such as the Nash

equilibrium to make sense.

Here, for the game from table 5.1 we have two players and two games, to

model the scenario based on the logic from 3.3, we consider the attacker node

as 1 and the regular node as 2. The players do not know which game is about

to be played. Therefore, we represent the game as an induced normal form

game. The assumption is that θi1 = 1 with probability p and θi2 = 0 with

probability 1-p. For the first normal game the logical notation for the attacker

node’s strategy profile is (1co,1att) with ‘co’ and ‘att’ abbreviating cooperate

and attack, respectively. Note that in the Bayesian game the attacker node

has three possible pure strategies. These pure strategies are derived from

the two types and the two actions of the player. Then the attacker’s three

strategies in a Bayesian game can be labelled ”the first action in first type”

(attθi1) ”the second action in first type” (coθi1) and ”the second action in

second type” (coθi2). The logical notations respectively are 1attθ11 , 1coθ11 and

1coθ12 .

The regular node has only one type and two pure strategies 2monitor and

2idle. Now we have a 2 × 2 normal form game in which the utilities are the

ex-ante expected utilities in the individual games, given the agents’ common

prior belief. The ex-ante utility is an expected utility in which players know

nothing about the other players actual type. The payoff matrix for this

attacker detection game is constructed, which is the induced normal form of

98 Chapter 5: Applications

this game (table 5.2).

We assume that uA > um > uC > cA then we have uA − cA > uA − uM >

0 > −uC > −uM > −uA > −uA − cA. We now specify the axioms for the

attacker detection game:

• 1coθ11 ∨ 1attθ11 ∨ 1coθ12

• 2monitor ∨ 2idle

The formulae above mean that each node should choose one strategy at each

state.

• (1coθ11 → ¬(1attθ11 ∨ 1coθ12)) ∧ (1attθ11 → ¬(1coθ11 ∨ 1coθ12)) ∧ (1coθ12 →
¬(1coθ11 ∨ 1attθ11))

• ¬(2monitor ∧ 2idle)

These formulae say that each node can not choose more than one strategy at

each state

• K11coθ11 ↔ 1coθ11

It says that attacker node knows its own strategies which here is cooperation

with type θ11.

• u1(1co,2monitor, θ11) = −uA − cA →
K1u1(1co,2monitor, θ11) = −uA − cA

It says that attacker node knows its own utility at this state.

• r1,1co,2monitor,θ11 � r1,1att,2monitor,θ11

It shows that the ordering of strategies are complete.

• rationaltype1 ↔ K1((P1(θ11)u1(1att,2monitor)∧P1(θ12)u1(1co,2monitor)) =

r1,1att,1co,2monitor,θ11,θ2∧(P1(θ11)u1(1co,2monitor)∧P1(θ2)u1(1co,2monitor)) =

r1,1co,1co,2monitor,θ11,θ2∧(1coθ11∧1coθ2))→ p1coθ1
∧p1coθ0

r1,1co,1co,2monitor,θ11,θ2 ≥
p1attθ11

∧ p1coθ2
r1,1att,1co,2monitor,θ11,θ2

5.1 Wireless Network and Game Theoretic Approach 99

The axiom set above states that player 1 is a utility maximiser whenever,

player 1 decides to play (1coθ11 ∧ 1coθ12) or (1attθ11 ∧ 1coθ12) strategy in a

situation that it has probabilistic beliefs P1(θ11) ∧P1(θ12) about utility then

the (1coθ11 ∧ 1coθ12) strategy is better than the other, given his beliefs. This

pattern of reasoning can be continued to find the best response for both nodes.

The final result is the Bayes-Nash equilibrium.

Now we can have an axiom for the detection of attack.

detect attack↔ K2(P1(θ12)1coθ0) ∧P1(θ11)1attθ11) ∧ ¬2idle

This axiom says that the regular node can detect the attacker node when it

develops knowledge about strategies and forms a probabilistic belief about

the performance of the attacker node and when it is not idle. The axiom is

valid because the regular node develops the knowledge about the strategies

of the attacker node and its types, inferring that in any state that the regular

node considers possible and the accessibility relation is related to equivalence

states, given that the regular node’s strategy is not idle, the regular node can

detect attacks.

Since we have the model for detecting attackers in a wireless network

as a Bayesian game and we represent the game by epistemic logic, we can

check properties of this scenario with the model checker introduced in chapter

4. The set of states of this scenario is shown in figure 5.3. These are the

presentation of states which are generated by the system. The system receives

the input file as presented in figure 5.4 and generates the corresponding states.

Game played as a Bayesian game is presented with alphabet letters as

utility functions (figure 5.2). For the purpose of model checking, we need

to provide the system with numeric information. Therefore, we assume

uA = 10,um = 7, uC = 5, and cA = 3. Consequently, we have uA − cA = 7,

uA − uM = 3, −uC = −5,−uM = −7,−uA = −10, −uA − cA = −13, and

−uA − uM = −17.

The result from the system is state 6. The reason is, that if node i

cooperated in the first game, it is rational and knows that node j is rational

too, in the second game node i gains more when choosing to cooperate again.

In this section, we have transformed the Bayesian attacker detection

games into the induced normal form and then modelled the game based on

100 Chapter 5: Applications

state1

1att,
2monitor
θ11

state2

1att,
2idle
θ11

state3

1co,
2monitor
θ11

state4

1co,
2idle
θ11

state5

1co,
2monitor
θ12

state6

1co,
2idle
θ12

Figure 5.3: Representing relations between states of the attacker detection
game of a Bayesian game

the epistemic logic developed in section 3.3. We show that if the nodes are

rational they try to maximise their own utilities. Furthermore, we showed in

which state the regular node can detect the attacker. Finally, we modelled the

scenario by the model checker. The system we proposed is a straightforward

application to verify different situations in attacker detection games.

The next section is another example that we investigated, with the aim to

model the situation as a Bayesian game and represented it by epistemic logic.

5.2 Cloud Computing

The term cloud computing implies computing performed on centralised facili-

ties provided by third-parties for compute and storage utilities [106]. Clients

use cloud computing as an alternative resource of computing infrastructures,

easy accessibility and on-demand usage. Cloud providers rent their resources

to multiple clients concurrently and charge them depending on the amount

5.2 Cloud Computing 101

(?1(att)&?2(monitor))&(?1(p = 0.55)&?2(p = 0.55))&(?1(u = −13)&?2(u = −17))

(?1(att)&?2(idle))&(?1(p = 0.55)&?2(p = 0.55))&(?1(u = 7)&?2(u = −10))

(?1(co)&?2(monitor))&(?1(p = 0.55)&?2(p = 0.55))&(?1(u = −5)&?2(u = −7))

(?1(co)&?2(idle))&(?1(p = 0.55)&?2(p = 0.55))&(?1(u = −5)&?2(u = 0))

(?1(co)&?2(monitor))&(?1(p = 0.45)&?2(p = 0.45))&(?1(u = −5)&?2(u = −7))

(?1(co)&?2(idle))&(?1(p = 0.45)&?2(p = 0.45))&(?1(u = −5)&?2(u = 0))

P : (?1(co)&?2(monitor))&(?1(rational)&?2(rational))

Figure 5.4: The system input format

of resources used by the customers. The current pricing strategies are quite

preliminary [56], as these strategies do not consider the consequence of clients

sharing the cloud’s resources. Although the isolation of a client’s usage of

the cloud is guaranteed, a client’s job can take longer to run when the cloud

is heavily loaded. In [64], the authors have proposed a game-theoretical

approach to analyse the characteristics of benefits of cloud computing for

clients and providers. In this section, we model the utilisation of cloud services

as Bayesian games, in which clients have imperfect information because there

are different load capacities when using the cloud.

Incomplete information games which also called Bayesian games offer a

natural model that helps to understand actions of players under uncertainty.

However, these models do not provide any structure for players (clients and

providers) to reason about different situations in these models. These models

can be precisely modelled using formal logic. Therefore, the properties of

agents and multi-agent systems are represented as logical axioms and theorems

in the language with clear semantics. This advantage of formal logic helps to

present the specification of models without ambiguity. Then we can examine

properties, interrelationships and inferences of these games using reasoning

techniques which can be automated. Thus, the issues which are to be tested

and/or verified, can have determined results [43]. Modal logics also enable

automated verification by model checking specifications. To verify a model

102 Chapter 5: Applications

of a system, the model should be constructed, and tested that this model

satisfies a formula specifying the system.

We model cloud computing as Bayesian games due to the uncertainty

about different load capacities. We represent and reason about the utilisation

of cloud computing with formal logics, apply the epistemic logic from chapter

3 and model the scenario by the model checker from chapter 4. An example

is provided to verify game’s property by this system.

5.2.1 Cloud Computing Characteristics

A company-owned data centre is costly in regards to equipment and operation.

The main costs would be categorised as the IT, networking, facilities capital

expenses and operating expenses such as architectural and engineering fees.

To assess true total costs of building, owning, operating and maintaining a

company-owned data centre (one of the most financially concentrated assets)

is complicated [62]. Cloud service is an alternative to such data centres.

There are different cloud services available such as lower-level services that

are famous as Infrastructure-as-a-Service (IaaS) while higher level services

are called Platform-as-a-Service (Paas). In this work we focus on IaaS cloud

provides. The utilisation rate of cloud computing is technically a complicated

economy to scale[45]. It might be based on server utilisation (CPU) and in

practice it is rare to constantly fully utilise available server capacities [60].

Therefore, there are always compromises between resource over-utilisation

and under-utilisation. Over-utilisation causes inadequate service providence

and results in negative financial performance.

Based on the graph used by [5] the cost impact of over-utilisation and

under-utilisation is losing customers. Therefore to develop a cloud, one should

considers the workload and by this consideration the assumption of constant

price is insufficient. In [64], the reason for the previous claim is clarified. If

the cloud provider chooses a price that is less than the cost of an owned data

centre, the demand for cloud will stay constant. If the price of cloud is higher

than the cost of the owned data centre at full workload the owned data centre

is preferred. We can define break-even workload at which the suggested price

and the cost of the data centre is equal. The break-even property can be

considered as a decreasing function of price. For a client with a workload

5.2 Cloud Computing 103

higher than the break-even workload, it is not suitable to use the cloud at

the given price. Therefore, a price higher than the break-even price makes

the cloud more expensive compared to the data centre option. Based on the

setting above, a provider should offer different prices not only based on the

cost of maintaining the cloud but also for different workloads. When the

price is offered to the customer less than the break-even price, the customer

might use the cloud and build a data centre when the price is higher than

the break-even price. The other option is that the client combines the use of

cloud and data centre depending on different workloads.

The proposed game-theoretic approach by [64] tries to model cloud com-

puting as a suitable alternative to a company-owned data centre. This study

provides a more analytical perspective that leads to better understanding of

the financial aspects, e.g., knowledge may prevent a wrong decision on both

Figure 5.5: The capacity versus utilisation curve [86]

104 Chapter 5: Applications

the client and the provider sides. We model the combination of cloud and

owned data centre as Bayesian games. The recommended action for the client

based on different load capacities is the solution of these games.

5.2.2 Cloud Computing as Bayesian Games

A game for using the cloud for processing is introduced in [64]. The game has

two players, the client and the cloud provider. The cloud provider has the

strategy to offer different prices based on different criteria such as network

hardware cost, maintenance cost and increasing revenue. The client can build

its own data centre or use the cloud. The question for the client is whether

to use the cloud or not. This question can be interpreted for the provider as

is to make the best decision for offering the prices. This game can be played

under different load profiles which model the capacity in use. Some capacity

is always in use (base load) and some capacity is idle at times (peak load)

[64].

player 2
build data centre use the cloud

player 1
price1=22 ct/h 0,-1.29 0.23,-0.23
price2=44 ct/h 0,-1.29 0.45,-0.45
price3=66 ct/h 0,-1.29 0.66,-0.66

Table 5.3: Payoff matrix based on 2% peak load capacity θ = 0 [64]

The payoffs shown in table 5.3 and table 5.4 are based on the case study

discussed in [64]. There are a pair of numbers in each cell, where the first

number in the pair is the provider’s profit and the second number is the client’s

cost. From the client’s perspective, some situations are disproportionally

expensive to self provide, such as when the total capacity demand exceeds

base loads. The reason is that costs are only amortised over the time during

when the necessary capacity is actually used. The solution is to build a

smaller data centre to meet base load and buy instances from the cloud to

meet peak demand. Therefore, we can have different games with the same

strategy and different payoffs. As the provider does not know which action

a client might play, the provider might consider all the possible situations.

The client plays all the games at the same time. These games are different

5.2 Cloud Computing 105

based on demanding different load capacities, and the provider offers different

prices for different load capacities.

player 2
build data centre use the cloud

player 1
price1=22 ct/h 0,-1.29 0.46,-0.46
price2=44 ct/h 0,-1.29 0.91,-0.91
price3=66 ct/h 0,-1.29 1.36,-1.36

Table 5.4: Payoff matrix based on 50% peak load capacity θ = 1 [64]

In [64] they propose formulas for client and provider payoffs. They show

that there is a subgame perfect Nash equilibrium with the client combining

building a data centre and using the cloud. Another way of solving the

problem of using the cloud or not, is to model it as a Bayesian game, which

means to play all these games at the same time with some probability.

To represent the uncertainty in Bayesian games, a Bayesian game is

regarded as a set of games that have the same number of players and strategies

with different payoffs, and a common prior defined over them. As mentioned

before, the counterpart of the Nash equilibrium for Bayesian games is called

the Bayes-Nash equilibrium. This equilibrium is defined for agent i as a mixed

strategy profile which is the best response to a mixed strategy profile of the

other player. Although, the Bayes-Nash equilibrium of a given Bayesian game

is conceptually complicated to compute, one solution is to develop a normal

form representation for the game.

Because we have only two games (based on the case study), we assume

the probability of 2% peak load capacity game happening is equal to that

of 50% peak load capacity game happening. This representation is called an

induced normal form. The next step is to build an induced normal form game

for this Bayesian game.

The matrix of payoff the induced normal game (table 5.5) is obtained by

considering the probability of the game in table 5.3 happening is equal to

1/2 and the probability of the game in table 5.4 happening is equal to 1/2.

The payoff matrix shows that if the provider proposes price2 in game 1 (table

5.3) and price 1 in game 2 (table 5.4) and if the client in game 1 chooses

to build the data centre and in game 2 uses the cloud services, the provider

gets 0.23 and the client pays 0.875. The Nash equilibrium for the Bayesian

106 Chapter 5: Applications

player2
build build build use use build use use

p
la

ye
r1

price1 price1 0,-1.29 0.23,-0.875 0.115,-0.758 0.345,-0.345
price1 price2 0,-1.29 0.445,-1.100 0.115,-0.758 0.56,-0.56
price1 price3 0,-1.29 0.68,-1.325 0.115,-0.758 0.795,-0.795
price2 price1 0,-1.29 0.23,-0.875 0.225,-0.870 0.455,-0.455
price2 price2 0,-1.29 0.445,-1.100 0.225,-0.870 0.670,-0.670
price2 price3 0,-1.29 0.68,-1.325 0.225,-0.870 0.905,-0.905
price3 price1 0,-1.29 0.23,-0.875 0.33,-0.975 0.56,-0.56
price3 price2 0,-1.29 0.445,-1.100 0.33,-0.975 0.775,-0.775
price3 price3 0,-1.29 0.68,-1.325 0.33,-0.975 1.01,-1.01

Table 5.5: Induced normal form

game is recognisable from its induced normal form. As an example, if the

provider offers price 2 and price 3 in game 1 and game 2, respectively, the

Nash equilibrium for the client is to use the cloud in game 1 and build a data

centre in game 2.

This is the Bayesian game approach to model whether to use the cloud or

not. In the next section we propose an epistemic logic approach to model the

situation and reason about the solution.

5.2.3 Epistemic Logic for Cloud Computing as Bayesian

Games

In this section, we present a formal language for expressing cloud utilisation

benefits. We consider the problem of specifying the criteria of using the cloud

for a client in regards to the price and load capacities. In order to achieve

this, we need a formal language in which we may express rules of using the

cloud. This could be a set of rules that determines the optimum strategies

under different criteria. This language can capture different load capacity, is

abstract and does not dependent on any specific condition. As in section 5.2.2

we have shown that using the cloud can be modelled as a Bayesian game, this

formal language should be able to be used to specify the rules of Bayesian

games.

The example, rules for playing this game are:

1. The client should choose one action for each peak load and the provider

5.2 Cloud Computing 107

should offer one price.

2. The provider knows the price and the client knows his actions.

3. The client and the provider know their own payoffs.

4. The strategy of the client is rational if it maximises the client’s expected

payoff.

state1

1price1

2build

θ10

state2

1price1

2use

θ10

state3

1price2

2build

θ10

state4

1price2

2use

θ10

state5

1price3

2build

θ10

state6

1price1

2use

θ10

state7

1price1

2build

θ11

state8

1price1

2use

θ11

state9

1price2

2build

θ11

state10

1price2

2use

θ11

state11

1price3

2build

θ11

state12

1price3

2use

θ11

Figure 5.6: States of the game

This game can be modelled by the state transition diagram shown in

figure 5.6. The diagram is regarded as a Kripke structure which can be used

to provide semantics for the epistemic logic, which is a kind of modal logic

[26]. From in total 12 states (5.6) the first six states are the different states of

game table 5.3 and the rest of the states are the states of game table 5.4. The

symbol θ in the states is the type of players based on different load capacity.

For differentiating between the various types, we use a subscript for θ, where

θ0 means game 1(table 5.3) and θ1 means game 2(table 5.4). In this scenario,

we consider the type for each normal form game. Therefore, we omit the

subscript of θ for each player.

108 Chapter 5: Applications

We develop a language for representing Bayesian games based on a par-

ticular vocabulary. In figure 5.6 we used the propositional symbol 1price1

meaning the provider (player 1) offers price1. To find the game solution for

a Bayesian game we need to model the induced normal form game. Figure

5.6 models the induced normal form game table 5.5 in which players, their

actions and different games are more straightforward to recognise compared

to those properties in matrix payoff induced normal form game. The lines

state1

1price1

2build

θ10

state2

1price1

2use

θ10

state3

1price2

2build

θ10

state4

1price2

2use

θ10

state5

1price3

2build

θ10

state6

1price1

2use

θ10

state7
rationaltype1

θ11

state8
rationaltype1

θ11

state9
rationaltype1

θ11

state10
rationaltype1

θ11

state11
rationaltype1

θ11

state12
rationaltype1

θ11

Figure 5.7: Knowledge about rationality

between the states represent reachable states. To keep the figures readable,

we only drew connecting lines for to state 1 and 2 with no different meaning

of solid or dash lines. The reachable states mean that if the client and the

provider are in state 1 they can choose for the next game to play any of

the states 7 to 12. It should be considered that the client knows that the

provider is rational and also the provider knows that the client is rational.

The propositional symbols rationaltype1 and rationaltype2 capture the

rationality of the client and the provider, respectively. The knowledge that

the client knows the provider is rational is shown in figure 5.7. It is clear that

the states 7 to 12 represent the same knowledge and rationaltype1 is true

in all of them. Therefore, the states 7 to 12 for the client in state 1 are all

equally possible, which is considered as the knowledge of the client. In this

5.2 Cloud Computing 109

section, we intuitively apply the epistemic logic to represent the game, and in

the section 5.2.4 we use the formal logic for this purpose.

5.2.4 Representing and Reasoning About Cloud Com-

puting by Epistemic Logic

In order to illustrate the syntax and examine the expressivity of the language,

we present some rules for playing the game using the formal language:

1. The client should choose exactly one action for each peak load and the

provider should offer exactly one price.

• (1price1θ0 → ¬(1price2θ0 ∨1price3θ0 ∨1price1θ1 ∨1price2θ1 ∨1price3θ1))∧
(1price2θ0 → ¬(1price1θ0 ∨1price3θ0 ∨1price1θ1 ∨1price2θ1 ∨1price3θ1))∧
(1price3θ0 → ¬(1price2θ0 ∨1price1θ0 ∨1price1θ1 ∨1price2θ1 ∨1price3θ1))∧
(1price1θ1 → ¬(1price2θ0 ∨1price3θ0 ∨1price1θ0 ∨1price2θ1 ∨1price3θ1))∧
(1price2θ1 → ¬(1price2θ0 ∨1price3θ0 ∨1price1θ0 ∨1price1θ1 ∨1price3θ1))∧
(1price3θ1 → ¬(1price2θ0 ∨ 1price3θ0 ∨ 1price1θ0 ∨ 1price2θ1 ∨ 1price1θ1))

• (2buildθ0 → ¬(2buildθ1 ∨ 2useθ0 ∨ 2useθ1)) ∧ (2buildθ1 → ¬(2buildθ0 ∨
2useθ0 ∨2useθ1))∧(2useθ0 → ¬(2buildθ1 ∨2buildθ0 ∨2useθ1))∧(2useθ1 →
¬(2buildθ1 ∨ 2buildθ0 ∨ 2useθ0))

2. The provider knows the price, and also the client knows his actions.

• K11price1θ1 ↔ 1price1θ1

• K22buildθ1 ↔ 2buildθ1

3. The client and the provider know their own payoffs.

• u1(1price1,2use, θ0) = r1,1price1,2use,θ0 → K1(u1(1price1,2use, θ0)

= r1,1price1,2use,θ0)

4. The strategy of the client is rational if it maximises the client’s expected

payoff.

110 Chapter 5: Applications

• rationaltype2 ↔ K2((P2(θ0)u2(1ptice1,2build)∧P2(θ1)u2(1price2,2build))

= r2,1price1,1price2,2build,2build,θ0,θ1) ∧
(P2(θ0)u2(1ptice1,2build) ∧P2(θ1)u2(1price2,2use))

= r2,1price1,1price2,2build,2use,θ0,θ1) ∧
(P2(θ0)u2(1ptice1,2use) ∧P2(θ1)u2(1price2,2build))

= r2,1price1,1price2,2use,2build,θ0,θ1) ∧
(P2(θ0)u2(1ptice1,2use) ∧P2(θ1)u2(1price2,2use))

= r2,1price1,1price2,2use,2use,θ0,θ1)→
p2useθ0

∧ p2useθ1
r2,1price1,1price2,2use,2use,θ0,θ1

The set of rules are complete and by following them we have the interaction

between the client and the cloud provider based on the game rules. In the

next section we show that we can also use the formal language as a query

language to verify the solution of the game.

The property of these models, we are interested in checking is, if the

provider proposes different prices what the client should do. We assume that

the provider knows that the client is rational, which can be written as K1(

rationaltype2θ1
). Furthermore, the provider offers price 1 in game 1 which is

1price1θ0 and price 3 in game 2 which is 1price3θ1 . Based on these information,

the rational client should use the cloud service in game 1 and build the data

centre in game 2. Such a formula can be directly written as:

(5.1) (K1(rationaltype2θ1
) ∧ (1price1θ0 ∧ 1price3θ1))→ (2useθ0 ∧ 2buildθ1)

If this formula holds in the model, it is also the Nash equilibrium of the

subgame.

To investigate the application described above, we have used the model

checker from chapter 4.

The input of this application is shown in figure 5.8. Each state of cloud

computing scenario is determined by a formula in which the player, the

player’s strategy and the type of the game are mentioned. For example the

notations in the first line of the input:

5.2 Cloud Computing 111

(?1(price1)&?2(use))&(?1(p = 0.5)&?2(p = 0.5))&(?1(u = 0.23)&?2(u = −0.23))

(?1(price1)&?2(build))&(?1(p = 0.5)&?2(p = 0.5))&(?1(u = 0)&?2(u = −1.29))

(?1(price2)&?2(use))&(?1(p = 0.5)&?2(p = 0.5))&(?1(u = 0.45)&?2(u = −0.45))

(?1(price2)&?2(build))&(?1(p = 0.5)&?2(p = 0.5))&(?1(u = 0)&?2(u = −1.29))

(?1(price3)&?2(use))&(?1(p = 0.5)&?2(p = 0.5))&(?1(u = 0.66)&?2(u = −0.66))

(?1(price3)&?2(build))&(?1(p = 0.5)&?2(p = 0.5))&(?1(u = 0)&?2(u = −1.29))

(?1(price1)&?2(use))&(?1(p = 0.5)&?2(p = 0.5))&(?1(u = 0.46)&?2(u = −0.46))

(?1(price1)&?2(build))&(?1(p = 0.5)&?2(p = 0.5))&(?1(u = 0)&?2(u = −1.29))

(?1(price2)&?2(use))&(?1(p = 0.5)&?2(p = 0.5))&(?1(u = 0.91)&?2(u = −0.91))

(?1(price2)&?2(build))&(?1(p = 0.5)&?2(p = 0.5))&(?1(u = 0)&?2(u = −1.29))

(?1(price3)&?2(use))&(?1(p = 0.5)&?2(p = 0.5))&(?1(u = 1.36)&?2(u = −1.36))

(?1(price3)&?2(build))&(?1(p = 0.5)&?2(p = 0.5))&(?1(u = 0)&?2(u = −1.29))

P : (?1(price1)&?2(use))&(?1(rational)&?2(rational))

Figure 5.8: The system input format

(?1(price1) & ?2(use)) & (?1(p=0.5) & ?2(p=0.5)) & (?1(u=0.23) & ?2(u=-0.23))

are assigned to their logical form as following:

• ?1(price1) is the representation of 1price1θ0

• ?2(use)) is the representation of 2useθ0

• ?1(p = 0.5) is the representation of P1(θ0)

• ?2(p = 0.5) is the representation of P2(θ0)

• ?1(u = 0.23) is the representation of u1(1price1θ0 ,2useθ0)

• ?2(u = −0.23) is the representation of u2(1price1θ0 ,2useθ0)

112 Chapter 5: Applications

The cloud provider and the cloud client as players are represented as ?1

and ?2, respectively. Strategies of the players are presented after the player’s

name in the parentheses. The first line of the input shows the strategy of

each player as price1 for player 1 and use for player 2. The probability belief

(type) of the game is symbolised as (p = 0.5) and the utility of each player as

(u = 0.23).

The last line of figure 5.8 is the representation of the following property.

This property is checked by the system.

((K1(rationaltype2θ0
)) ∧ (K2(rationaltype1θ0

))) ∧ (1price1θ0 ∧ 2useθ0)

The result for the system is state 6 which means:

(((K1(rationaltype2θ0
)) ∧ (K2(rationaltype1θ0

))) ∧ (1price1θ0 ∧ 2useθ0))→

(1price1θ1 ∧ 2useθ1)

(5.2)

Based on table 5.5, equation 5.2 is the correct move. In this state the

client should invest 0.345. If the cloud provider offers any price in the second

game and the client decides to build its own data centre, it will lose 0.758.

However, the client has to invest more if the client decides to use the cloud

and the cloud provider offers a different price rather than price1.

As we mentioned in chapter 4 we can verify different properties in a

Bayesian games. In the above formula we provide information about each

player and also the type of each player. The result was a state that determined

the strategies of players with alternative types. We can define new properties

by changing the strategies and types of each player.

Another set of properties that we can check has the template equal to

equation 5.1. We need to provide information about one player but in all

its types. For example, for the cloud provider we determine the strategy of

its first type as price1 in type θ11 and price3 in type θ12 . The result from

5.3 Remarks 113

the model checker is the states that have the same strategies for the cloud

provider in each of its type. As a result, we are able to find the best move

of the client, from these states. By changing parameters, such as players or

strategies, we are able to check different properties of the scenario.

5.3 Remarks

In this chapter, we have studied two different examples of Bayesian games.

As shown in this chapter, both scenarios can be modelled as Bayesian games.

Because of an increasing number of applications of wireless networks with

collaborative nodes, the security of these networks has been receiving an

increasing attention among researchers in recent years. However, little has

been done so far in terms of the definition of security needs specific to different

types of scenarios that can be defined for wireless networks. One approach

is to model attacker detection with uncertainty of node types as a Bayesian

game in the game theoretic scenario.

As another application, we have adopted a game-theoretic approach with

uncertainty to analyse the interaction between a cloud client and a cloud

provider. We have modelled this interaction with respect to different load

capacities as Bayesian games.

However, the conceptual study of Bayesian game-playing situations cannot

be used to derive stable results as long as no appropriate formalism is available

to model the situation. The main purpose of this chapter was to show that

a formal tool, namely epistemic logic for normal form games can be used

to represent and reason about Bayesian games. We have shown that this

language provides reasoning about the solution as pure Nash equilibrium for

the normal node in wireless network and the client of the cloud in Bayesian

games. By using the language for representing and reasoning about Bayesian

attacker detection games and cloud computing games, two representative

examples of the application of this language are provided. Although we

have shown the use of the extended language to verify some specifications

of Bayesian games such as the solution concept, these verifications for these

games can also be performed through model checking. The inputs to a model

checker are the description of a system to be analysed and a number of

114 Chapter 5: Applications

properties, often expressed as formulae of one kind of logic. We have modelled

and verified desired properties for both scenarios.

Chapter 6

Conclusions

In this thesis, we have proposed a theory of practical reasoning which was

driven by two contemporary paradigms: instrumental rationality from game

theory, and epistemic reasoning from philosophical logic and computer science.

This provides a unified theory of rational agencies, which is a theory of how

agents deliberate when they take into account the demands of instrumental

rationality, their background of future-directed desires and the information

they have about the rationality and information of others. The approach is

not limited to two player games, but can be applied to multi-player systems.

We conclude the thesis by summarising its contributions and several

promising future research directions.

6.1 Discussion

We have shown in Chapter 2 that a broad perspective can account for

modelling game settings, mainly, normal form games and Bayesian games by

means of modal logic, because this formal approach provides a natural way

to represent games. We have explained the different approaches to detect

solution concepts in these games, as these approaches are the foundations for

studying interactions of agents in multi-agent systems.

In Chapter 3, we have shown that an epistemic modal logic for normal form

games can have an axiom for agents’ preferences. Consequently, it is more

precise to reason about rationality in these game settings. An agent is rational

if it chooses a particular strategy while believing that this strategy is at least

as good as other alternative strategies and it considers possible that the chosen

one is actually better than the other strategies. The notion of rationality

corresponds to the detection of solution concepts in games. Therefore, by

115

116 Chapter 6: Conclusions

reasoning about rational behaviour, we analyse solution concepts in games.

With the help of the epistemic language for normal form games, we were able

to develop an epistemic approach to specifying Bayesian games. We have

explicitly represented agents’ knowledge about payoffs, preferences, other

players and uncertainty beliefs over a set of games. Furthermore, we have

studied how rational agents try to opt their expected utilities and act rational,

which is a synonym to achieve solution concepts such as the Nash equilibrium

in games. Finally, we have outlined axiomatic proof systems for the epistemic

logic, which gives it an explicit representation of practical reasoning in games

with uncertainty.

Model checking is a technique to establish the correctness of a system. In

contrast to testing, model checking tools look at all possible behaviours of a

system. While testing can find errors only, formal verification by means of

model checking can not only detect errors but also prove their absence. In

Chapter 4, we have presented a verification technique for multi-agent systems

to verify game properties, such as rules of games and solution concepts.

The system performs model checking of logics with modalities for both, the

knowledge of agents in the system and the probability belief of agents. We have

used the proposed language in Chapter 3 as a specification language for the

system which allowed us to verify the rational behaviour of agents and we found

this property valuable in many applications. Because the formal language

is the input and specification language of the system (notwithstanding the

adopted syntactic encoding of formulae), it is not necessary to translate the

system to be verified to the input language of the model checker.

In Chapter 5, we connect the abstract representation schemes and models

developed in the thesis to real-world applications. We have shown that

the new formal approach is helpful to explicitly represent and analyse these

applications. It was also helpful to better understand uncertainty in interactive

settings. Two applications that we have analysed are attacker detection in

wireless networks with channel uncertainty, and recognising the benefit of

using cloud computing. We have tested our implementation of the model

checker technique by the means of those two examples. These experimental

results indicate that our formal approach is a faithful interpretation of these

two challenges.

6.2 Future Work 117

6.2 Future Work

In game theory, the term Bayesian coalitional games [54] is used to specify

games with cooperation and uncertainty in movements. These games describe

optimal actions for rational agents, which are artificial computational entities.

However, these descriptions do not consider the reasoning abilities of agents.

One of the possible future directions is to develop a formal language that will

directly and transparently support reasoning about Bayesian coalitional games.

This task could be satisfied by breaking Bayesian coalitional games into some

sub games. The Bayesian coalitional games have two main components of

Bayesian games, and coalitional games. This breakdown would enable us to

apply our developed formal language, in combination with coalitional logic

[1], to specify and analyse Bayesian coalitional games explicitly.

In this thesis, we consider games in which, under fairly general conditions,

a universal space of epistemic types exists. Its elements are sequences of

probability measures, corresponding to progressively higher order beliefs.

Thus, essentially any statement about players’ reciprocal beliefs has a rep-

resentation in the universal space. However, in [11], it is proposed that this

type can be constructed by considering a space whose elements are sequences

of collections of conditional probabilities. Therefore, the elements of the

universal space are actually infinite hierarchies of conditional probability

systems. This framework applies to situations where agents hold interacting

beliefs conditional on a fixed collection of hypotheses about the prevailing

external state. Considering these interacting beliefs in our formal language

appears worthy as by keeping the history, an agent could update its beliefs.

It might enable us to specify scenarios that agents’ beliefs change based on

receiving new information.

Besides abstracting and specifying the behaviour of complex systems by

means of formalisms based on logic, researchers have been concerned with the

problem of verifying systems. As we have implemented a system for model

checking Bayesian games, we could extend our implementation by relying on

a symbolic data structure, which would enable us instead of a single state

representation to represent it as sets of states. The concept behind symbolic

representation is the exploitation of regularity and structures in models. This

results in highly compressed representation of the state-space. An example of

118 Chapter 6: Conclusions

a symbolic data structure is ordered binary decision diagrams (OBDD) which

can be used in the verification of epistemic and correct behaviour modalities

in systems. OBDDs as data structure for representing boolean functions can

be created and manipulated using CUDD library [101]. This package provides

the benefits of binary decision diagrams but by reordering, it reduces the

size of the decision diagrams. This facility optimises the performance of the

model checker tool.

Another future agenda could be coping with infinity that arises from loop

unfolding and from recursive data structures. Strategies must be defined so

that in most practical cases the analysis by the model checker tool is able to

produce an answer.

Finally, in the future the complexity of the model checker should be

investigated. As mentioned in chapter 4, there are several studies reported in

the literature on the complexity of model checkers for logics such as temporal-

epistemic logic or the logic of knowledge and linear time [89] [38]. They show

that in the best case scenario the computational complexity of model checking

for those logics is PSPACE-complete (that is, the model checking algorithm

requires polynomial space). Therefore we also expect that the complexity of

this model checker would be PSPACE-complete. The same techniques used

in those previous studies can also be used here in the complexity study.

Bibliography

[1] T. Ågotnes, W. van der Hoek, and M. Wooldridge. On the logic
of coalitional games. In Proceedings of the fifth international joint
conference on Autonomous agents and multiagent systems, AAMAS ’06,
pages 153–160, New York, NY, USA, 2006. ACM.

[2] T. Ågotnes and H. P. van Ditmarsch. What will they say? - public
announcement games. Synthese, 179(Supplement-1):57–85, 2011.

[3] R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time temporal
logic. J. ACM, 49(5):672–713, Sept. 2002.

[4] R. Alur, T. A. Henzinger, F. Y. C. Mang, S. Qadeer, S. K. Rajamani,
and S. Tasiran. Mocha: Modularity in model checking. In Proceedings
of the 10th International Conference on Computer Aided Verification,
CAV ’98, pages 521–525, London, UK, 1998. Springer-Verlag.

[5] Amazon web services. http://aws.amazon.com/. Accessed: 2014-01-
13.

[6] R. Aumann and A. Brandenburger. Epistemic conditions for nash
equilibrium. Econometrica, 63(5):pp. 1161–1180, 1995.

[7] R. J. Aumann. Agreeing to disagree. The Annals of Statistics, 4(6):1236–
1239, 1976.

[8] R. J. Aumann. Interactive epistemology i: Knowledge. International
Journal of Game Theory, 28(3):263–300, 1999.

[9] A. Baltag. A logic for suspicious players: Epistemic actions and belief-
updates in games, 2002.

[10] A. Baltag, S. Smets, and J. Zvesper. Keep hoping for rationality: a
solution to the backward induction paradox. Synthese, 169(2):301–333,
2009.

[11] P. Battigalli and M. Siniscalchi. Hierarchies of conditional beliefs
and interactive epistemology in dynamic games. Journal of Economic
Theory, 88(1):188–230, 1999.

119

http://aws.amazon.com/

120 BIBLIOGRAPHY

[12] P. Battigalli and M. Siniscalchi. Interactive epistemology in games with
payoff uncertainty. Research in Economics, 61(4):165–184, December
2007.

[13] K. Binmore. Fun and Games: A Text on Game Theory. D. C. Heath
Canada, Limited, 1992.

[14] P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press,
2002.

[15] O. Board. Dynamic interactive epistemology. Games and Economic
Behavior, 49(1):49–80, Oct. 2004.

[16] G. Bonanno. Modal logic and game theory: two alternative approaches.
Risk, Decision and Policy, 7:309–324, 12 2002.

[17] G. Bonanno. A syntactic characterization of perfect recall in extensive
games. Research in Economics, 57(3):201 – 217, 2003. Logic and the
Foundations of the Theory of Games and Decisions.

[18] G. Bonanno. Two lectures on the epistemic foundations of game theory.
Working Papers 72, University of California, Davis, Department of
Economics, Feb 2007.

[19] G. Bonanno. A syntactic approach to rationality in games with ordinal
payoffs. In G. Bonanno, W. van der Hoek, and M. Wooldridge, editors,
Logic and the Foundations of Game and Decision Theory, LOFT 7,
pages 59–86. Amsterdam University Press, 2008.

[20] R. Bordini, M. Fisher, M. Wooldridge, and W. Visser. Model checking
rational agents. Intelligent Systems, IEEE, 19(5):46 – 52, sept.-oct.
2004.

[21] I. Boureanu, A. V. Jones, and A. Lomuscio. Automatic verification
of epistemic specifications under convergent equational theories. In
Proceedings of the 11th International Conference on Autonomous Agents
and Multiagent Systems - Volume 2, AAMAS ’12, pages 1141–1148,
Richland, SC, 2012. International Foundation for Autonomous Agents
and Multiagent Systems.

[22] J. Bradfield. Introduction to modal and temporal mu-calculi. In
L. Brim, M. Kretnsk, A. Kucera, and P. Jancar, editors, CONCUR
2002 Concurrency Theory, volume 2421 of Lecture Notes in Computer
Science, pages 98–98. Springer Berlin Heidelberg, 2002.

BIBLIOGRAPHY 121

[23] J. Broersen. Ctl.stit: Enhancing atl to express important multi-agent
system verification properties. In Proceedings of the 9th International
Conference on Autonomous Agents and Multiagent Systems: Volume 1 -
Volume 1, AAMAS ’10, pages 683–690, Richland, SC, 2010. International
Foundation for Autonomous Agents and Multiagent Systems.

[24] F. Buccafurri, T. Eiter, G. Gottlob, and N. Leone. Enhancing
model checking in verification by AI techniques. Artificial Intelligence,
112(12):57 – 104, 1999.

[25] N. Bulling, W. Jamroga, and J. Dix. Reasoning about temporal proper-
ties of rational play. Annals of Mathematics and Artificial Intelligence,
53(1-4):51–114, 2008.

[26] B. Chellas. Modal Logic: An Introduction. Cambridge University Press,
1980.

[27] J. Chen and S. Micali. Mechanism design with set-theoretic beliefs. In
Foundations of Computer Science (FOCS), 2011 IEEE 52nd Annual
Symposium on, pages 87–96, 2011.

[28] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press,
1999.

[29] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification
of finite-state concurrent systems using temporal logic specifications.
ACM Trans. Program. Lang. Syst., 8(2):244–263, Apr. 1986.

[30] T. Clausing. Belief revision in games of perfect information. Economics
and Philosophy, 20(01):89–115, 2004.

[31] V. Conitzer and T. Sandholm. Computing the optimal strategy to
commit to. In Proceedings of the 7th ACM conference on Electronic
commerce, EC ’06, pages 82–90, New York, NY, USA, 2006. ACM.

[32] B. de Bruin. Explaining Games: The Epistemic Programme in Game
Theory. Synthese Library. Springer, 2010.

[33] O. Dianat and M. A. Orgun. Model checking bayesian cloud resource
utilisation game with epistemic logic. Submitted on October 31, 2013.

[34] O. Dianat and M. A. Orgun. Modelling bayesian attacker detection
game in wireless networks with epistemic logic. In CollaborateCom,
pages 210–215, 2012.

[35] O. Dianat and M. A. Orgun. Representing and reasoning about uti-
lization of cloud computing as bayesian games with epistemic logic. In
ANT/SEIT, pages 40–47, 2013.

122 BIBLIOGRAPHY

[36] H. v. Ditmarsch, W. van der Hoek, and B. Kooi. Dynamic Epistemic
Logic. Springer Publishing Company, Incorporated, 1st edition, 2007.

[37] E. A. Emerson. Handbook of theoretical computer science (vol. b). chap-
ter Temporal and Modal Logic, pages 995–1072. MIT Press, Cambridge,
MA, USA, 1990.

[38] K. Engelhardt, P. Gammie, and R. van der Meyden. Model checking
knowledge and linear time: Pspace cases. In S. Artemov and A. Nerode,
editors, Logical Foundations of Computer Science, volume 4514 of
Lecture Notes in Computer Science, pages 195–211. Springer Berlin
Heidelberg, 2007.

[39] R. Fagin and J. Y. Halpern. Reasoning about knowledge and probability.
J. ACM, 41(2):340–367, Mar. 1994.

[40] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning About
Knowledge. MIT Press, 1995.

[41] M. Franceschet and M. de Rijke. Model checking hybrid logics (with an
application to semistructured data). Journal of Applied Logic, 4(3):279
– 304, 2006.

[42] O. Friedmann, M. Latte, and M. Lange. A decision procedure for ctl*
based on tableaux and automata. In J. Giesl and R. Hhnle, editors, Au-
tomated Reasoning, volume 6173 of Lecture Notes in Computer Science,
pages 331–345. Springer Berlin Heidelberg, 2010.

[43] J. R. Galliers. A theoretical framework for computer models of coop-
erative dialogue, acknowledging multiagent conflict. PhD thesis, 1988.
AAIDX87541.

[44] P. Gammie and R. van der Meyden. Mck: Model checking the logic of
knowledge. In Computer Aided Verification, pages 256–259. 2004.

[45] J. Hamilton. Cloud computing economics of scale, 2010.

[46] P. Harrenstein, J.-J. Meyer, W. van der Hoek, and C. Witteveen. A
modal characterization of nash equilibrium. Fundam. Inf., 57(2-4):281–
321, Feb. 2003.

[47] J. C. Harsanyi. Games with incomplete information played by bayesian
players, i- iii. the basic probability distribution of the game. MANAGE-
MENT SCIENCE, 14(7):486–502, 1968.

[48] A. Heifetz and P. Mongin. Probability logic for type spaces. Games
and Economic Behavior, 35(12):31 – 53, 2001.

BIBLIOGRAPHY 123

[49] T. Henzinger, R. Majumdar, F. Mang, and J.-F. Raskin. Abstract
interpretation of game properties. In J. Palsberg, editor, Static Analysis,
volume 1824 of Lecture Notes in Computer Science, pages 220–239.
Springer Berlin Heidelberg, 2000.

[50] J. Hintikka. Knowledge and Belief. Ithaca, N.Y.,Cornell University
Press, 1962.

[51] W. V. D. Hoek and M. Wooldridge. Tractable multiagent planning
for epistemic goals. In In Proceedings of the First International Joint
Conference on Autonomous Agents and Multiagent Systems (AAMAS-
2002, pages 1167–1174. ACM Press, 2002.

[52] X. Huang, C. Luo, and R. van der Meyden. Symbolic model checking
of probabilistic knowledge. In Proceedings of the 13th Conference on
Theoretical Aspects of Rationality and Knowledge, TARK XIII, pages
177–186, New York, NY, USA, 2011. ACM.

[53] S. Ieong. Cooperation in Competition: Efficiently Representing and
Reasoning About Coalitional Games. PhD thesis, Stanford, CA, USA,
2008. AAI3313818.

[54] S. Ieong and Y. Shoham. Bayesian coalitional games. In Proceedings
of the 23rd national conference on Artificial intelligence - Volume 1,
AAAI’08, pages 95–100. AAAI Press, 2008.

[55] M. Ishihata, Y. Kameya, and T. Sato. Variational bayes infer-
ence for logic-based probabilistic models on bdds. In S. Muggleton,
A. Tamaddoni-Nezhad, and F. Lisi, editors, Inductive Logic Program-
ming, volume 7207 of Lecture Notes in Computer Science, pages 189–203.
Springer Berlin Heidelberg, 2012.

[56] V. Jalaparti, G. D. Nguyen, I. Gupta, and M. Caesar. Cloud resource
allocation games, 2010.

[57] W. Jamroga. Strategic planning through model checking of atl formulae.
In L. Rutkowski, J. Siekmann, R. Tadeusiewicz, and L. Zadeh, editors,
Artificial Intelligence and Soft Computing - ICAISC 2004, volume 3070
of Lecture Notes in Computer Science, pages 879–884. Springer Berlin
Heidelberg, 2004.

[58] W. Jamroga and W. van der Hoek. Agents that know how to play.
Fundam. Inform., 63(2-3):185–219, 2004.

[59] A. Jøsang. Probabilistic logic under uncertainty. In Proceedings of the
thirteenth Australasian symposium on Theory of computing - Volume

124 BIBLIOGRAPHY

65, CATS ’07, pages 101–110, Darlinghurst, Australia, Australia, 2007.
Australian Computer Society, Inc.

[60] M. Klems, J. Nimis, and S. Tai. Do clouds compute? a framework for
estimating the value of cloud computing. In C. Weinhardt, S. Luckner,
and J. Stößer, editors, Designing E-Business Systems. Markets, Services,
and Networks, volume 22 of Lecture Notes in Business Information
Processing, pages 110–123. Springer Berlin Heidelberg, 2009.

[61] B. P. Kooi. Probabilistic dynamic epistemic logic. J. of Logic, Lang.
and Inf., 12(4):381–408, Sept. 2003.

[62] J. Koomey. a simple model for determining true total cost of ownership
for data centers, 2007.

[63] S. Kripke. Semantical Considerations on Modal Logic. Acta Phil.
Fennica, 16:83–94, 1963.

[64] J. Künsemöller and H. Karl. A game-theoretical approach to the benefits
of cloud computing. In Proceedings of the 8th international conference
on Economics of Grids, Clouds, Systems, and Services, GECON’11,
pages 148–160, 2012.

[65] M. Kwiatkowska, G. Norman, and D. Parker. Prism: Probabilistic sym-
bolic model checker. In T. Field, P. Harrison, J. Bradley, and U. Harder,
editors, Computer Performance Evaluation: Modelling Techniques and
Tools, volume 2324 of Lecture Notes in Computer Science, chapter 13,
pages 113–140. Springer Berlin / Heidelberg, Berlin, Heidelberg, Apr.
2002.

[66] H. E. Kyburg, Jr. Uncertainty logics, pages 397–438. Oxford University
Press, Inc., New York, NY, USA, 1994.

[67] K. Leyton-Brown and Y. Shoham. Essentials of Game Theory: A
Concise, Multidisciplinary Introduction (Synthesis Lectures on Artificial
Intelligence and Machine Learning). Morgan and Claypool Publishers,
1 edition, June 2008.

[68] M. Li, I. Koutsopoulos, and R. Poovendran. Optimal jamming at-
tacks and network defense policies in wireless sensor networks. In
INFOCOM 2007. 26th IEEE International Conference on Computer
Communications. IEEE, pages 1307–1315, 2007.

[69] M. H. Manshaei, Q. Zhu, T. Alpcan, T. Bacşar, and J.-P. Hubaux.
Game theory meets network security and privacy. ACM Comput. Surv.,
45(3):25:1–25:39, July 2013.

BIBLIOGRAPHY 125

[70] http://cgi.cse.unsw.edu.au/~mck/pmck. Accessed: 2014-01-13.

[71] S. Merz. Modeling and verification of parallel processes. chapter Model
checking: a tutorial overview, pages 3–38. Springer-Verlag New York,
Inc., New York, NY, USA, 2001.

[72] R. Meyden and N. Shilov. Model checking knowledge and time in systems
with perfect recall. In C. Rangan, V. Raman, and R. Ramanujam,
editors, Foundations of Software Technology and Theoretical Computer
Science, volume 1738 of Lecture Notes in Computer Science, pages
432–445. Springer Berlin Heidelberg, 1999.

[73] P. Michiardi and R. Molva. Core: A collaborative reputation mech-
anism to enforce node cooperation. In in Mobile Ad Hoc Networks.
Communication and Multimedia Security, 2002.

[74] http://www.cis.upenn.edu/~mocha. Accessed: 2014-01-13.

[75] H. Moulin. The strategy of social choice. Advanced textbooks in
economics. North-Holland Publishing Company, 1983.

[76] H. Ochiai, P. Mitran, H. Poor, and V. Tarokh. Collaborative beamform-
ing for distributed wireless ad hoc sensor networks. Signal Processing,
IEEE Transactions on, 53(11):4110 – 4124, nov. 2005.

[77] C. H. Papadimitriou. Games, algorithms, and the internet. In WWW,
pages 5–6, 2011.

[78] P. Parikh. Situations, rules, and conventional meaning: Some uses of
games of partial information. Journal of Pragmatics, 39(5):917 – 933,
2007. ¡ce:title¿Focus-on Issue: Formal and Philosophical Aspects of
Pragmatics¡/ce:title¿.

[79] R. Parikh and R. Ramanujam. Distributed processes and the logic of
knowledge. In R. Parikh, editor, Logics of Programs, volume 193 of
Lecture Notes in Computer Science, pages 256–268. Springer Berlin
Heidelberg, 1985.

[80] T. Parr. The Definitive ANTLR Reference: Building Domain-Specific
Languages. Pragmatic Bookshelf, 2007.

[81] M. Pauly. A modal logic for coalitional power in games. Journal of
Logic and Computation, 12(1):149–166, 2002.

[82] M. Pauly. On the complexity of coalitional reasoning. IGTR, 4(3):237–
254, 2002.

http://cgi.cse.unsw.edu.au/~mck/pmck
http://www.cis.upenn.edu/~mocha

126 BIBLIOGRAPHY

[83] M. Pauly and R. Parikh. Game logic - an overview. Studia Logica,
75(2):165–182, 2003.

[84] C. Pecheur and F. Raimondi. Symbolic model checking of logics with
actions. In S. Edelkamp and A. Lomuscio, editors, Model Checking
and Artificial Intelligence, volume 4428 of Lecture Notes in Computer
Science, pages 113–128. Springer Berlin Heidelberg, 2007.

[85] A. Pnueli. The temporal logic of programs. In Foundations of Computer
Science, 1977., 18th Annual Symposium on, pages 46–57, 1977.

[86] http://www.opengroup.org/cloud/cloud/roi.htm. Accessed: 2014-
01-13.

[87] Prism. http://www.prismmodelchecker.org/. Accessed: 2014-01-13.

[88] F. Raimondi and A. Lomuscio. Verification of multiagent systems via
ordered binary decision diagrams: An algorithm and its implementation,
2004.

[89] F. Raimondi and A. Lomuscio. The complexity of symbolic model
checking temporal-epistemic logics. In In Proceedings of Concurrency,
Specification Programming (CSP), Ruciane-Nida, 2005.

[90] F. Raimondi and A. Lomuscio. Automatic verification of multi-agent sys-
tems by model checking via ordered binary decision diagrams. Journal
of Applied Logic, 5(2):235–251, 2007.

[91] R. Ramanujam and S. Simon. Dynamic logic on normal form games. In
Pre-proceedings of the KR2008-workshop on Knowledge Representation
for Agents and Multi-Agent Systems (KRAMAS), Sydney, September
2008, page 140, 2008.

[92] O. Roy. Thinking before acting: intentions, logic, rational choice. ILLC
Dissertation Series. Institute for Logic, Language and Computation,
2008.

[93] O. Roy. Epistemic logic and the foundations of decision and game theory.
Journal of the Indian Council of Philosophical Research, 27(2):283–314,
2010.

[94] J. Ruan, W. van der Hoek, and M. Wooldridge. Model Checking
GDL through MOCHA: A Case Study. Technical report, University of
Liverpool, 2009.

[95] J. Ruan, W. van der Hoek, and M. Wooldridge. Verification of games
in the game description language. J. Log. and Comput., 19:1127–1156,
December 2009.

http://www.opengroup.org/cloud/cloud/roi.htm
http://www.prismmodelchecker.org/

BIBLIOGRAPHY 127

[96] A. Rubinstein. Modeling Bounded Rationality, volume 1 of MIT Press
Books. The MIT Press, August 1997.

[97] S. Russell and P. Norvig. Artificial Intelligence - A Modern Approach.
Prentice-Hall, Inc, Englewood Cliffs, NJ, 1995.

[98] Y. Sagduyu, R. Berry, and A. Ephremides. Mac games for distributed
wireless network security with incomplete information of selfish and
malicious user types. In Game Theory for Networks, 2009. GameNets
’09. International Conference on, pages 130–139, 2009.

[99] P.-Y. Schobbens. Alternating-time logic with imperfect recall. Electr.
Notes Theor. Comput. Sci., 85(2):82–93, 2004.

[100] Y. Shoham and K. Leyton-Brown. Multiagent Systems: Algorithmic,
Game-Theoretic, and Logical Foundations. Cambridge University Press,
New York, NY, USA, 2008.

[101] F. Somenzi. CUDD: BDD package, University of Colorado, Boulder.
http://vlsi.colorado.edu/~fabio/CUDD/. Accessed: 2014-01-13.

[102] S. Song, D. Goeckel, and D. Towsley. Collaboration improves the
connectivity of wireless networks. In INFOCOM 2006. 25th IEEE
International Conference on Computer Communications. Proceedings,
pages 1 –11, april 2006.

[103] http://spinroot.com/spin/whatispin.html. Accessed: 2014-01-13.

[104] R. Stalnaker. On the evaluation of solution concepts. Theory and
Decision, 37(1):49–73, 1994.

[105] R. Stalnaker. Knowledge, belief and counterfactual reasoning in games.
Economics and Philosophy, 12(02):133–163, 1996.

[106] F. Teng and F. Magoules. A new game theoretical resource allocation
algorithm for cloud computing. In P. Bellavista, R.-S. Chang, H.-C.
Chao, S.-F. Lin, and P. Sloot, editors, Advances in Grid and Pervasive
Computing, volume 6104, pages 321–330. Springer Berlin Heidelberg,
2010.

[107] J. Van Benthem. Games in dynamic-epistemic logic. Bulletin of Eco-
nomic Research, 53(4):219–248, 2001.

[108] J. van Benthem. Rational dynamics and epistemic logic in games. IGTR,
9(1):13–45, 2007.

[109] J. van Benthem. Logical Dynamics of Information and Interaction.
Cambridge University Press, 2011.

http://vlsi.colorado.edu/~fabio/CUDD/
http://spinroot.com/spin/whatispin.html

128 BIBLIOGRAPHY

[110] J. van Benthem and A. Gheerbrant. Game solution, epistemic dynamics
and fixed-point logics. Fundam. Inform., 100(1-4):19–41, 2010.

[111] J. van Benthem, S. Ghosh, and F. Liu. Modelling simultaneous games
with concurrent dynamic logic. In J. van Benthem, S. Ju, and F. Velt-
man, editors, A Meeting of the Minds-Proceedings of the Workshop on
Logic, Rationality and Interaction, Beijing, 2007.

[112] W. van der Hoek and M. Pauly. 20 modal logic for games and informa-
tion. In J. V. B. Patrick Blackburn and F. Wolter, editors, Handbook
of Modal Logic, volume 3 of Studies in Logic and Practical Reasoning,
pages 1077 – 1148. Elsevier, 2007.

[113] R. van der Meyden and K. Su. Symbolic model checking the knowledge of
the dining cryptographers. In Computer Security Foundations Workshop,
2004. Proceedings. 17th IEEE, pages 280–291, 2004.

[114] R. J. Wallace. The Stanford Encyclopedia of Philosophy, 2003.

[115] W. Wang, M. Chatterjee, and K. Kwiat. Attacker detection game in
wireless networks with channel uncertainty. In Communications (ICC),
2010 IEEE International Conference on, pages 1 –5, may 2010.

[116] G. Weiss, editor. Multiagent Systems: A Modern Approach to Dis-
tributed Artificial Intelligence. MIT Press, Cambridge, MA, USA, 1999.

[117] C. Westphal. A study of the percolation threshold for k-collaborative
wireless networks. In Communications, 2009. ICC ’09. IEEE Interna-
tional Conference on, pages 1 –6, june 2009.

[118] M. Wooldridge. Logic for automated mechanism design and analysis. In
R. Bergmann, G. Lindemann, S. Kirn, and M. Pechoucek, editors, Mul-
tiagent System Technologies, volume 5244 of Lecture Notes in Computer
Science, pages 1–1. Springer Berlin Heidelberg, 2008.

[119] M. Wooldridge and W. Hoek. Time, knowledge, and cooperation:
Alternating-time temporal epistemic logic and its applications. In
F. Arbab and C. Talcott, editors, Coordination Models and Languages,
volume 2315 of Lecture Notes in Computer Science, pages 4–4. Springer
Berlin Heidelberg, 2002.

[120] S. Zamir. Bayesian games: Games with incomplete information. In R. A.
Meyers, editor, Computational Complexity, pages 238–253. Springer
New York, 2012.

	
	
	
	
	
	
	Introduction
	Motivation
	Related Work
	The Approach
	Aims and Contributions
	Outline of the Thesis

	Game Theory and Modal Logic
	Multi-agent Systems and Game Theory
	Normal Form Games
	Bayesian Games

	Game Theory and Modal Logic
	Representing and Reasoning about Normal Form Games
	Dynamic Epistemic Logic
	Dynamic Logic
	Epistemic Logic

	Representing and Reasoning about Simultaneous Games
	Alternating-time Temporal Logic
	Concurrent Dynamic Games Logic
	Probabilistic Dynamic Epistemic Logic
	Set-Theoretic Beliefs

	Model Checking
	Remarks

	Games and Epistemic Logic
	Epistemic Logic for Normal Form Games
	Syntax for Normal Form Games
	Semantics for Normal Form Games

	Bayesian Games and Epistemic Logic
	Epistemic Logic for Bayesian Games
	Language for Bayesian Games
	Semantics for Bayesian Games

	 Remarks

	Model Checking
	Model Checking Games
	Model Checker's Input Language
	Model Checker's Specification Language
	Model Checker's Algorithms
	Remarks

	Applications
	Wireless Network and Game Theoretic Approach
	Security in Wireless Network with Channel Uncertainty
	Bayesian Attacker Detection Game
	Reasoning About Bayesian Attacker Detection Games by Epistemic Logic

	Cloud Computing
	Cloud Computing Characteristics
	Cloud Computing as Bayesian Games
	Epistemic Logic for Cloud Computing as Bayesian Games
	Representing and Reasoning About Cloud Computing by Epistemic Logic

	Remarks

	Conclusions
	Discussion
	Future Work

