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Abstract

Many fundamental constructions from ordinary category theory can be generalised to

higher categories. Obvious examples include adjunctions, monads, algebras, limits, and

colimits. This thesis explores three cases where a construction from category theory is

extended to higher categories.

We first consider (Grothendieck) fibrations and the Grothendieck construction. We

generalise fibrations to the contexts of 2-categories and bicategories. A fibration of bi-

categories exhibits many of the usual properties of ordinary fibrations. The main result

is the Grothendieck construction which presents a correspondence between fibrations of

bicategories and contravariant trihomomorphisms into the tricategory of bicategories.

We next consider skew monoidal categories. Our goal is to uncover a definition of skew

monoidal bicategory (a definition which is non-trivial due to the absence of a coherence

theorem for skew monoidal categories). We do this by introducing the Catalan simplicial

set C and show that simplicial maps from C into an appropriate nerve of Cat are precisely

skew-monoidal categories. This simplicial set has a similar classifying property for skew-

monoidales internal to any monoidal bicategory. By examining simplicial maps from C
to a suitable nerve of Bicat we obtain a definition of skew-monoidal bicategory that is

consistent with existing definitions of monoidal bicategory.

Finally, we consider Street’s paper Parity Complexes. Parity complexes are multi-

dimensional graph-like objects that exhibit the minimal structure required to build free

n-categories such as the orientals. Due to its detailed combinatorial nature, the material

in this paper can be difficult to follow and quite hard to verify. Indeed, there are minor

errors in the original text that were later corrected. We present a formalisation, in Coq, of

this theory up to the excision of extremals algorithm in Section 4. We have verified that

Street’s work is fundamentally sound and that there are no further errors. We summarise

the main content of the theory, and the basic intuition involved in its construction. We

also discuss some technical aspects of the formalisation, and comment on which portions

of the theory could benefit from some refinement.
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Chapter 1

Introduction

Many fundamental constructions from ordinary category theory can be generalised to

higher categories. Obvious examples include adjunctions, monads, algebras, limits, and

colimits. In most cases, even when the intuition is relatively clear, a detailed account of

the theory at higher dimensions is not easy to write down and requires a lot of careful work

to make it precise. This thesis explores three cases where a construction from category

theory may be extended to higher categories. The topics are fibrations, skew-monoidal

categories, and presentations of free categories. In each case we find that the intuition

behind a generalisation is not too hard to follow, but supplying accurate definitions and

rigorous proofs requires substantial patience and care.

Each chapter of the thesis reproduces a paper that was published or submitted for

publication during the time of the author’s PhD candidature.

Fibrations

Suppose P : E → B is a functor. A map f : a→ b in E is cartesian when, for each g : c→ b

with Pg = Pf.h there exists a unique ĥ : c → a with Pĥ = h and g = f.ĥ. A functor P

is a (Grothendieck) fibration when for all e ∈ E and f : b → Pe in B there is a cartesian

map h : a → e with Ph = f . The main consequence of this definition is that every map

f : a→ b in B creates a ‘pullback’ functor Ea ← Eb between the fibres in E over a and b.

Our goal in Chapter 2 is to define a notion of fibration of bicategory in such a way that the

usual theory for fibrations is essentially repeated at this higher dimension. We regard this

as an important first important step toward understanding fibrations for higher categories

in general.

We are not the first to investigate fibrations of bicategories. Claudio Hermida gave the

first definition of 2-fibration (fibration of 2-categories) by examining the structure of the

2-functor Fib → Cat. In the process he gave new definitions of cartesian 1- and 2-cell,

1



2 CHAPTER 1. INTRODUCTION

and also presented a number of results concerning the behaviour of those cells. This was

partially extended by Igor Baković who generalised those definitions to bicategories and

homomorphisms of a certain kind. He also sketched out the Grothendieck construction for

such fibrations but publicly available proofs were incomplete at the time of our research.

Our investigation in this area revealed some holes in the original literature. First, the

full Grothendieck construction was not proved and basic results concerning composition

and pullback of fibrations were not given. Second, there was an axiom missing from

the definition of fibration that prevented the Grothendieck construction from being a

triequivalence.

Before we go any further, consider the following list of standard results concerning

ordinary fibrations and cartesian arrows.

1. Fibrations are closed under composition.

2. If we take the pullback of a fibration P : E → B along any functor F : A→ B then

A×B E → A is a fibration and A×B E → E preserves cartesian arrows.

3. A map f : y → z is cartesian for P : E → B if and only if the following square is a

pullback in Set.

E(x, y)
f∗ //

Px,y

��

E(x, z)

Px,z

��
B(Px, Py)

Pf∗

// B(Px, Pz)

4. There is a biequivalence between fibrations over B and contravariant pseudo-functors

from B to Cat.

Fib(B) ' PsFun(Bop,Cat)

The right-to-left functor underlying this equivalence is called the Grothendieck con-

struction.

5. Let Fam(B) be the comma category (Set ↓ B). The projection Fam(B)→ Set is a

fibration.

6. If F : E → B is any functor then the projection (B ↓ F ) → B is a fibration. It has

a particular universal property that makes it the free fibration on F .

We expect that a reasonable definition of fibration of bicategories should satisfy these

theorems when they are properly expressed in a bicategorical context. In particular, the

Grothendieck construction should exist and provide a triequivalence between a certain tri-

category of fibrations of bicategories over a fixed base and the tricategory of contravariant

trihomomorphisms from that base into Bicat. In order to make the other results in our list

precise we must also introduce and study a number of general bicategorical constructions,

such as appropriate bicategorical pullbacks and commas.
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Following intuitions developed from the list of desirable properties given above, as

informed by the work of our 2-categorical predecessors [Her99] and [Bak12], we obtain the

following definition:

Definition 2.3.5. Suppose that B is a bicategory, P : E → B is a homomorphism, and

cartesian 1-cells and 2-cells are appropriately defined in E . We say that P is a fibration

of bicategories when

i. for any f : b→ Pe in B there is a cartesian 1-cell h : a→ e in E with Ph = f ;

ii. each hom-functor Px,y : E (x, y)→ B(Px, Py) is a fibration; and

iii. the horizontal composite of any two cartesian 2-cells is cartesian.

This definition gives rise to a natural theory of bicategorical fibrations in which the defi-

nitions of accompanying structures, such as cartesian homomorphisms between fibrations,

follow directly. These then allow us to prove the following generalisations of the usual

theorems:

1. Proposition 2.4.1. Fibrations of bicategories are closed under composition.

2. Proposition 2.4.15. The ‘pullback’ of a fibration along any homomorphism is

a fibration and the homomorphism along the top of the pullback square preserves

cartesian 1- and 2-cells.

3. Proposition 2.3.2. A 1-cell f : y → z is cartesian for P : E → B if and only if the

following square is a bipullback in Cat.

E (x, y)
f∗ //

Px,y

��
∼=

E (x, z)

Px,z

��
B(Px, Py)

Pf∗

// B(Px, Pz)

4. Theorem 2.3.32. There is a triequivalence between fibrations over B and con-

travariant trihomomorphisms from B to Bicat

Fib(B) ' Trihom(Bcoop,Bicat)

The right-to-left functor underlying this triequivalence is called the Grothendieck

construction for fibrations of bicategories.

5. Proposition 2.3.36. Define Fam(B) to be a certain comma bicategory (Cat ↓ B).

The projection Fam(B)→ Cat is a fibration.
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6. Proposition 2.4.6. If F : E → B is any homomorphism then the projection (B ↓
F ) → B from a certain comma bicategory is a fibration of bicategories. It has a

particular universal property that makes it the free fibration on F .

This material clears up many of the details left behind by previous authors. Cartesian

1-cells are indeed defined by bipullback, the local actions of a fibration are in themselves

fibrations, fibrations are closed under pullback, and most importantly the Grothendieck

construction behaves precisely as well as one might hope. The fact that these fibrations

exhibit so many of the properties of ordinary fibrations gives us confidence that our formu-

lation is both sound and complete. It might now be noted that the conceptual framework

we have built to inform our generalisation from dimension one to dimension two should

also apply in the passage to dimensions three and above. It is our view that this structured

approach may well lead to more routine generalisation of these notions to tricategories,

iterated Segal spaces and so forth.

Skew-monoidal bicategories

A skew monoidal category consists of a category A, two functors

⊗ : A×A → A and I : 1→ A,

and three natural transformations α, λ, ρ, with components

αabc : (a⊗ b)⊗ c→ a⊗ (b⊗ c),

λa : I ⊗ a→ a, and

ρa : a⊗ I → a

which are not necessarily invertible. These natural transformations must satisfy Mac

Lane’s five axioms for a monoidal category (see p.95). This definition is due to Kornel

Szlachányi, who showed that bialgebroids over a ring R can be characterised in terms of

certain skew-monoidal structures on the category of R-modules. It is clear that when α, λ,

and ρ are invertible a skew-monoidal category is precisely a monoidal category. However,

it is important to note that without invertibility of α, λ, and ρ, the usual coherence

theorem does not hold and it is not the case that all diagrams commute. In particular

ρI ◦ λI : I ⊗ I → I → I ⊗ I is not generally equal to idI⊗I .

Just as it is possible to describe monoidales (pseudo-monoids) internal to any monoidal

bicategory H, and monoidal categories are monoidales in Cat, it is also possible to define

skew monoidales internal to any monoidal bicategory, and skew-monoidal categories are

skew monoidales in Cat. Skew monoidales were introduced by Stephen Lack and Ross

Street who showed that if V is a suitably complete braided monoidal category then quan-
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tum categories are certain skew monoidales in Comod(V).

Following their lead, we would like to understand what a skew-monoidal bicategory

would look like. This then might act as a prelude to a general understanding of what a

skew-monoidal n-category might be.

To that end, let us first consider how to describe monoidal bicategories as a gener-

alisation of monoidal categories. A monoidal category V has a tensor functor ⊗, a unit

functor I and natural isomorphisms α, λ, ρ that satisfy three axioms. When we move to

monoidal bicategories we make the following changes: natural isomorphisms α, λ, ρ are

replaced with pseudo-natural equivalences, the three axioms are replaced with invertible

modifications, and three further axioms are introduced to govern all of this data. As we

make these changes we find that, because each new coherence map is essentially invertible,

we do not need to worry about their orientation. Also, since we expect to prove a coher-

ence theorem where ‘all diagrams commute’, once we introduce a minimum few axioms for

the data, we are free to add any other axioms without changing the theory. The case for

skew-monoidal bicategories is not so simple. When we introduce new coherence data we

are forced to choose an orientation for each map. And when we introduce the coherence

axioms we need to be careful that we do not introduce too few, or too many (since we do

not expect that all diagrams will commute). It is not obvious how these choices should be

made.

We have a solution to this problem that is quite surprising. Our observation (first

noted by Mike Johnson) is that the data for a skew-monoidal category can be described

using 1-, 2-, and 3-simplexes. We regard the underlying category as a 1-simplex

• A // •

and the tensor and unit as 2-simplexes

•
A

��
•

A
??

A
//

⊗��
•

•
1

��
•

1

??

A
//

I��
•

then each coherence natural transformation takes the form of a 3-simplex

•

• •

•

A

GG

A

::

A //

A //

A

$$

A

��

⊗��

⊗ �� ⊗��

⊗��
α *4

•

• •

•

1

GG

A

::

A //

1 //

A

$$

A

��

I
��

⊗ ��

λ *4

•

• •

•

A

GG

A

::

A //

1 //

A

$$

1

��⊗��

I��ρ *4

and each of the five axioms can be described with a 4-simplex. This presentation encodes

not only the domains and codomains, but the orientation of each map.
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If we regard Cat as a 1-object bicategory then these are simplexes in an appropriate

nerve of Cat. In that case, a skew-monoidal category may be identified with a simplicial

map C → N(Cat) whose domain C it remains for us to describe formally. Coherence

concerns lead us to observing that C is precisely the 2-coskeletal simplicial set whose

non-degenerate 0-, 1- and 2-simplexes are precisely those whose shape is displayed in the

diagrams above. In studying this structure we are led to the remarkable observation

that for all integers n the number of (n − 1)-simplexes of C is simply the nth Catalan

number. This realisation eventually leads us to the following simple and explicit structural

characterisation:

Proposition 3.2.5. The simplicial set C is uniquely isomorphic to the monoidal nerve of

the poset 2 = ⊥ 6 >, seen as a monoidal category under disjunction.

Aside from its interesting combinatorial properties, this simplicial set also allows us to

prove the following classification results.

Proposition 3.4.3. To give a simplicial map f : C→ Np(Cat) is equally to give a small

monoidal category; to give a simplicial map f : C → N`(Cat) is equally to give a small

skew-monoidal category (Np and N` are pseudo- and lax-nerve functors).

Theorem 4.4.3. For any monoidal bicategory H there is a biequivalence

sSet(C,NH) ' SkMon(H)

where the bicategory on the right is the bicategory of skew monoidales in H.

We do not understand exactly why this result holds though we have a few thoughts (see

Remark 4.4.7). In light of these two classification results, it seems likely that simplicial

maps C→ N(Bicat) will be skew-monoidal bicategories.

In Chapter 3 we introduce and study this Catalan simplicial set, explore some of its

combinatorial properties and prove the first classification result above. In Chapter 4 we

prove the second classification result and derive a definition of skew-monoidal bicategory

by examining simplicial maps C → N(Bicat), where the nerve of Bicat is appropriately

defined. When the coherence maps for a skew-monoidal bicategory are equivalences (re-

spectively isomorphisms) we recover the usual definition of monoidal bicategory. We do

not prove a classification result for skew-monoidal bicategories because the proof from

earlier cases does not generalise directly.

The Catalan simplicial set appears to encode the combinatorics of skew monoidal

structure at multiple dimensions. At the very least it successfully classifies skew monoidal

categories and skew-monoidales. The definition of skew-monoidal bicategory obtained

from C is sensible and consistent with existing definitions of monoidal bicategory; this

suggests that C might describe skew-monoidal structure at arbitrary dimensions. At the



7

very least, it seems clear that C is a part of some underlying process concerning skew-

monoidal categories. We hope that future work will uncover more about this process and

produce a characterisation of skew-monoidal structure for higher categories in general.

Parity Complexes

An n-simplex is a geometric figure that generalises the notion of triangle or tetrahedron

to n-dimensional space. Simplexes have a number of properties that make them useful

in algebraic topology, algebraic geometry and homotopy theory where they often play a

foundational role. Each face of an n-simplex can be oriented in such a way that the n-

simplex freely generates a strongly “loop free” n-category. We include below the cases for

n = 1, 2 and 3.

• // •

•

����
•

??

// •
•

• •

•

GG ::

//

//

$$ ��

��

�� ��

��
*4

This orientation is easily described at all dimensions, but as n increases beyond three it

becomes more of a challenge to give an explicit description of the n-category generated

by the n-simplex. Its cells are certain large pasting diagrams of oriented faces of the n-

simplex, whose fine structure depends upon some detailed combinatorial and structural

analyses of loop freeness as higher dimensions. It turns out that simplexes are not the only

structures that are amenable to this kind of analysis; cubes and globes can be similarly

oriented and given a category structure in low dimensions. We include below the cases for

n = 1, 2 and 3.

• // •

•

�#

// •

•

OO

// •

OO •

• •

•

•

••

•

OO

//??

OO OO

OO

//

//

//??

??

??

⇒
⇒
⇒
⇓ ⇓
⇓
7G
•

• // • •
��
DD�� • • •

��
CC

� ~�

*4

Again, in the case for cubes, the orientation of the faces of these objects are easily described

at all dimensions but as n increases beyond three it becomes very difficult to describe the

corresponding free n-category structures. The free n-category structure on each globe can
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be described quite easily.

In the early 1980s Ross Street examined the case for simplexes and showed how to form

a free n-category On from each n-simplex. These categories were dubbed the orientals.

At the same time, the case for cubes was examined by Iain Aitcheson who showed how to

form a free n-category from each n-cube. Following these successes, Ross Street (Parity

complexes [Str91]) and Richard Steiner (Directed complexes [Ste93]) described some gen-

eral conditions under which one could directly build free categories from these oriented

combinatorial structures. Each paper describes the essential combinatorial structure, ex-

hibited by the examples above, that enable the construction of free categories in this way.

Parity complexes and directed complexes are each closed under geometrical product and

join operations, so that all examples of which we are aware are covered.

To orient the reader here, we might simply mention that a parity complex is a kind of

multi-dimensional directed graph. It is a graded set C =
∑∞
n=0 Cn with face-set operators

(-)+, (-)− : Cn+1 → PCn satisfying some basic axioms that make it suitably well-formed

and loop-free. Each set Cn contains the elements of the structure at dimension n and

when x ∈ Cn+1 the set x+ ⊆ Cn is the set of ‘positive faces’ of x (x− plays a dual

role). Every parity complex C gives rise to a free ω-category O(C). When appropriately

oriented, simplexes, cubes, and globes all become natural examples of parity complexes.

A key theorem in Street’s paper is the excision of extremals algorithm, which shows how

to present each cell of O(C) as a composite of atomic cells; this is, in large part, the

sense in which O(C) is free. This algorithm can also be used to generate explicit algebraic

descriptions of the cells in O(C).

The goal of Chapter 5 is to present a formal verification, in Coq, of Street’s Parity

Complexes [Str91]. Our motivation is two-fold. First, some of the combinatorial argu-

ments in Street’s text can be difficult to follow and can easily conceal small yet significant

mistakes; in fact, some key corrections were issued shortly after the original publication

[Str94]. The work presented here provides a formal verification that Street’s theorems hold

once the necessary amendments of that latter paper are made. Second, a computer-verified

encoding provides a good resource for understanding the intricacies of these complicated

structures and opens a path to further refinement of the material.

Chapter 5 begins by outlining the basic definitions (mostly set-theoretic) that are

required to describe parity complexes. We then summarise the main content of sections

1, 2 and 3 of Street’s paper and end with the excision of extremals algorithm (Theorem

4.2). Throughout this summary we explain how various definitions were encoded, and

the essential nature of each proof. Further details can be uncovered by examining the

code itself at https://github.com/MitchellBuckley/Parity-Complexes. We end the

chapter by commenting on the difficulties associated with formalising such a detailed piece

of mathematics.

Our encoding of Parity Complexes verifies that the main body of Street’s work on the

https://github.com/MitchellBuckley/Parity-Complexes
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subject is sound. By working through every detail we are able to discover which parts of

the theory follow directly from definitions in an elegant way, and which parts of the theory

might benefit from some refinement and further investigation. The encoding also serves

as an example of formal verification of mathematics. The code is freely available online

for anyone to check.
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Chapter 2

Fibred 2-categories and

bicategories

Abstract

We generalise the usual notion of fibred category; first to fibred 2-categories and then to

fibred bicategories. Fibred 2-categories correspond to 2-functors from a 2-category into

2Cat. Fibred bicategories correspond to trihomomorphisms from a bicategory into Bicat.

We describe the Grothendieck construction for each kind of fibration and present a few

examples of each. We give constructions of oplax comma bicategory and equiv-comma

bicategory by analogy with ordinary comma categories and iso-comma categories. Then

fibrations in our sense, between bicategories, are not only closed under composition but

when F : C → B is a homomorphism and P : E → B is a fibration of bicategories then

the projection from the equiv-comma C ×' E → C is also a fibration of bicategories. If

F : A → B is a homomorphism then the projection from the oplax comma bicategory

(1B ↓ F )→ B is the free such fibration on F .

Contribution by the author

As the sole author, this paper is entirely my own work. It is a direct reproduction of the

original which was published in the Journal of Pure and Applied Algebra. Any differences

from that publication are limited to cosmetic changes such as citation numbering.

11
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2.1 Introduction

Fibred categories were first developed by Grothendieck [Gro71; Gro60] to describe notions

of descent in algebraic geometry. Some of this material was then extended by Gray as

tool for understanding Čech cohomology[Gra66] and by Giraud for non-abelian cohomol-

ogy [Gir64; Gir71]. Later, Street described fibrations internal to any bicategory [Str74;

Str80] together with internal two-sided fibrations. Some more recent work on internal

fibrations can be found in [Rie10]. Fibrations have found strong application in categorical

logic: in describing comprehension schema for categories [Gra69; Law70] and via indexed

categories [PS78]. For an overview of applications to categorical logic and type theory

see [Jac99]. Fibrations were also used by Bénabou [Bén85] to describe some foundations

of category theory.

Fibred 2-categories (also called 2-fibrations) were investigated by Hermida [Her99]

where the projection Fib → Cat was used as a canonical example. A definition of

2-fibration is given that very nearly (but not entirely) captures the full structure re-

quired for a Grothendieck construction. This definition was extended in a preprint by

Baković [Bak12] to strict homomorphisms of bicategories. In that paper he describes

the action-on-objects of a Grothendieck construction sending trihomomorphisms Bcoop →
Bicat to fibrations of bicategories. The paper also presents a large number of examples and

from each strict homomorphism of bicategories he constructs a ‘canonical fibration’ asso-

ciated to that homomorphism. Fibrations of bicategories are characterised by a certain

right biadjoint right inverse. The action-on-objects of a pseudo-inverse to the Grothendieck

construction is also partially described.

Our goal is to establish precise definitions of 2-fibration and fibration of bicategories

by describing a complete Grothendieck construction in each case. By ‘complete’ we mean

a construction that is provably a 3-equivalence or triequivalence. In the most general

case fibrations of bicategories should be triequivalent to trihomomorphisms into Bicat.

Among other things this means dealing with the fibres of non-strict homomorphisms and

understanding the properties of cartesian 1- and 2-cells. Our second goal is to understand

in what sense these fibrations are closed under ‘pullback’ and composition. Third, we aim

to describe the ‘free fibration’ on a homomorphism of bicategories.

In doing this we find that the existing definitions of 2-fibration need to be adjusted:

cartesian 2-cells must be preserved by both pre- and post-composition with any 1-cell. Un-

til now definitions have only required that cartesian 2-cells be closed under pre-composition.

Without adding the post-composition property it is not possible to construct a pseudo-

inverse to the Grothendieck construction and fibrations of bicategories do not truly cor-

respond to trihomomorphisms into Bicat. This important observation is made in Re-

mark 2.2.9 and this definition of fibration is used in the rest of the paper.

In general, fibrations of bicategories can be non-strict homomorphisms P : E → B and

we use the fact that fibrations are locally iso-lifting to show that any fibration is equivalent
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to a strict (and better behaved) fibration. We prove many of the usual results concerning

cartesian 1-cells in this new context. Our main result is a proof that the Grothendieck

construction described partially in [Bak12] can be extended to a full triequivalence once the

necessary adjustments are made. We give the construction of the free fibration (Baković’s

canonical fibration) using the oplax comma construction (to be defined). We also show

that fibrations are closed under composition and stable underequiv-comma (also to be

defined).

In Section 1 we give an introduction and remind the reader of the basic theory of

fibred categories. Subsection 1.1 includes the basic definitions of cartesian arrow, fibration,

cleavage, et cetera. We then outline some standard properties of cartesian arrows and give

a brief description of the original Grothendieck construction.

In Section 2 we outline the theory of fibred 2-categories. We say that a 2-category is

fibred when it is the domain of a 2-fibration. In line with the usual theory, we require

that these 2-functors have cartesian 1-cells which are cartesian in the normal sense but

also have a 2-dimensional lifting property. A 2-fibration P also has cartesian 2-cells which

are cartesian as 1-cells for the action of P on hom-sets; we ask also that cartesian 2-cells

be closed under horizontal composition. In subsection 2.1 we give definitions of cartesian

1-cell, cartesian 2-cell and 2-fibration. We prove 2-categorical versions of the standard

results concerning cartesian 1-cells. Subsection 2.2 gives the Grothendieck construction

for 2-categories: this is an equivalence that sends 2-fibrations P : E → B to 2-functors

from Bcoop → 2Cat. Subsection 2.3 contains some examples of 2-fibrations. Many of

the results found in this section correspond well with the classical theory and become

somewhat routine once the right foundations are established.

In Section 3 we outline the theory of fibred bicategories. We say that a bicategory

is fibred when it is the domain of a (bicategorical) fibration. Fibrations of bicategories

have the same structure as 2-fibrations except that cartesian 1-cells have a much weaker

lifting property defined by bipullback in Cat. This significantly weakens the usual results

concerning cartesian 1-cells: multiple invertible 2-cells are introduced into every calculation

and many uniqueness properties are reduced to ‘unique up to isomorphism’ or weaker.

Despite these complications the usual results can be stated in a form that is consistent

with this bicategorical setting. Subsection 3.1 covers these new definitions and results. The

fact that fibrations are locally fibred means that they locally have the iso-lifting property;

as a result many of the complications mentioned above can be simplified. In subsection

3.2 we show that every fibration is equivalent to one with a somewhat simpler structure.

Subsection 3.3 describes the Grothendieck construction for fibrations between bicategories:

a triequivalence that sends fibred bicategories to trihomomorphisms into Bicat! Some of

the heavier calculations have been omitted as they are not immediately helpful to the

reader. Subsection 3.4 contains a number of examples.

In Section 4 we investigate how fibrations between bicategories behave under composi-
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tion, pullback and comma. Fibrations are closed under composition (4.1) and stable under

(bi-)pullback (4.2). We define the oplax comma of two homomorphisms (4.3) and show

that the free fibration on a homomorphism is the projection from an appropriate oplax

comma bicategory.

2.1.1 Standard notation

Here we present the basic definitions and properties of fibrations and cartesian maps. For

a more complete account see Chapter 1 of [Jac99] and Section 8 in [Bor94].

Throughout the entire chapter we will use single arrows f : a → b to denote 1-cells or

functors, 2-functors, or homomorphisms of bicategories (which are 1-cells in a higher cat-

egory). We will use double arrows α : f ⇒ g to denote 2-cells or natural transformations,

2-natural transformations, or transformations of homomorphisms (which are 2-cells in a

higher category). We will use triple arrows Γ: α V γ to denote modifications which are

a commonly used notion of map between 2-natural transformations or transformations of

homomorphisms.

Suppose P : E → B is a functor. A map f : a→ b in E is cartesian when

E(z, a)
f∗ //

Pza

��

E(z, b)

Pzb

��
B(Pz, Pa)

Pf∗

// B(Pz, Pb)

is a pullback. This is the same as saying that for each g : c → b with Pg = Pf.h there

exists a unique ĥ : c→ a with Pĥ = h and g = f.ĥ.

A functor P is a fibration when for all e ∈ E and f : b→ Pe in B there is a cartesian

map h : a→ e with Ph = f . In this case we say that h is a cartesian lift of f . Informally,

we say that E is a fibred category when it is the domain of a fibration. A cleavage for a

fibration P is a function ϕ(-, -) that describes for each e and f : b→ Pe as above a choice

of cartesian lift of f which is denoted ϕ(f, e). That is, ϕ(f, e) : f∗e → e is the chosen

cartesian lift of f at e. A fibration equipped with a cleavage is called a cloven fibration.

Every fibration can be equipped with a cleavage using the axiom of choice so we implicitly

regard all fibrations as cloven. If a cloven fibration has ϕ(g.f , e) = ϕ(g, e).ϕ(f, g∗e) where

g : a→ b, and ϕ(1Pe, 1) = 1e then we say the cleavage is split and call it a split fibration.

Strictly speaking, we should annotate each cleavage so we know for which fibration it

makes choices of cartesian lift. In practice there is generally little confusion and we will

only make such annotations when omitting them would create ambiguity.

The following results are easy to verify for any fibration P : E → B. Cartesian lifts

of any 1-cell in B are unique up to unique isomorphism in the slice over their common

codomain. If f and g are composable 1-cells in E and are both cartesian then g.f is also
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cartesian. If f and g are composable 1-cells in E and g.f and g are cartesian then f is

also cartesian. If f is a cartesian 1-cell in E and Pf is an isomorphism, then f is an

isomorphism.

Let Fib be the 2-category whose objects are fibrations P , Q; 1-cells are pairs of functors

(F,G) such that QF = GP and F preserves cartesian maps; and 2-cells are pairs of natural

transformations (α, β) such that Qα = βP .

E

P

��

F

''

F ′

77α�� D

Q

��
B

G

''

G′

77β�� C

In this case we say that a functor F underlying a 1-cell (F,G) is cartesian. That is, a

functor F : E → D between domains of fibrations P and Q is cartesian (with respect to G)

when it preserves cartesian maps and has QF = GP . In practice, it is the preservation of

cartesian maps that is most relevant and G is either an identity or is otherwise clear from

context. If such a functor also preserves choice of cartesian map ( F (ϕ(v, e)) = ϕ(v, Fe) )

then we say F is split. We say that a natural transformation α underlying a 2-cell (α, β)

is vertical (with respect to β). In practice β is either an identity or is otherwise clear from

context.

We use Fib(B) to denote the sub-2-category of Fib whose objects, arrows and 2-cells

have second component B, 1B , and 11B respectively.

Let Cat be the 2-category of small categories. We use Hom(Bop,Cat) to denote the

2-category of pseudo-functors, pseudo-natural transformations and modifications. The

Grothendieck construction is a 2-functor el : Hom(Bop,Cat) → Fib(B). It sends each

pseudo-functor F : Bop → Cat to the obvious projection elF → B from the category

of elements. The category of elements has objects pairs (a, x) where a ∈ B and x ∈
Fa; arrows are pairs (f, u) : (a, x) → (b, y) where f : a → b and u : x → Ff(y). The

Grothendieck construction is an equivalence.

Suppose the following square is a pullback. If P is a fibration then P ′ is a fibration

and F ′ is cartesian; F ′ also reflects cartesian maps.

D
F ′ //

P ′

��

E

P
��

C
F
// B

Fibrations are also closed under composition. There is a 2-monad on Cat/B whose cat-
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egory of algebras is Fib(B). The monad acts by taking each functor F : A → B to the

comma category (B ↓ F ); the projection (B ↓ F )→ B is the free fibration on F .

A functor P : E → B is a Street fibration when for all e ∈ E and f : b→ Pe in B there

is a cartesian map h : a→ e where Ph is isomorphic to f in the slice over Pe. Morphisms

of Street fibrations P : E → B,Q : C → D are pairs of functors (F : C → E,F ′ : D → B)

together with an isomorphism α : PF ∼= F ′Q where F preserves cartesian maps. This

is only a slight variation on the ordinary notion of fibration but is useful for considering

fibrations internal to a 2-category.

Remark 2.1.1. Suppose that F and P are functors (or 2-functors or homomorphisms)

between categories (or 2-categories or bicategories) with a common codomain and there is

some construction that forms a square as pictured below.

C ? E
F? //

P?

��

E

P
��

C
F
// B

The symbol ? does not refer to any specific concept, it is just a place-holder here. Usually

the square will commute or contain a transformation, and have a universal property. The

usual example is the pullback construction. Suppose now that there is some class of

functors (or 2-functors or homomorphisms) W and for all F and P we know that P ∈ W

implies P ? ∈ W . In this case we say that W is closed under or stable under the construction

in question. Thus ordinary fibrations are stable under pullback and we will find that 2-

fibrations and fibrations of bicategories are stable under analogous constructions in their

2-categorical and bicategorical contexts.

Remark 2.1.2. It is generally the case that cartesian lifts are unique up to unique isomor-

phism (or equivalence in later sections). It is for this reason that we have invoked the axiom

of choice above and are not generally concerned with choice of cartesian lifts. This attitude

continues when we consider fibrations of 2-categories and of bicategories. There has in the

past been some controversy attached to this approach (see the appendix of [Bén85]). If

there is any confusion over choice, or uniqueness, or use of ‘up-to-isomorphism’ terminol-

ogy then one should equip every fibration with a specific cleavage and observe how each

construction incorporates such a choice of cartesian lifts. We make no claim that any

maps are ‘canonical’ and acknowledge that there may be cases where such choices have

non-trivial consequences.

2.2 Fibred 2-categories

We present the basic data and properties of fibrations of 2-categories. All notions in this

section are completely 2-categorical unless otherwise indicated.
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2.2.1 Definitions and properties of cartesian 1- and 2-cells

We wish to define fibrations of 2-categories in a way that fits with the usual definition of

fibration of categories. It is thus necessary to describe cartesian arrows (and in this case

cartesian 2-cells).

Definition 2.2.1. Suppose P : E → B is a 2-functor. We shall say a 1-cell f : x → y in

E is cartesian when it has the following two properties.

1. For all h : z → y and u : Pz → Px with Ph = Pf.u, there is a unique û : z → x with

Pû = u and h = f.û;

z

h

((

û

��

Pz

Ph

((
u

��
x

f
// y Px

Pf
// Py

.

We call û the lift of u.

2. For all σ : h ⇒ k, τ : u ⇒ v with Pσ = Pf.τ and lifts û,v̂ of u,v, there is a unique

τ̂ : û⇒ v̂ with P τ̂ = τ and σ = f.τ̂ .

z
h

��k
++

σ{�û

��

v̂

��
τ̂
ks

Pz
Ph

  Pk
++

Pσ
{�u

��

v

��
τ
ks

x
f

// y Px
Pf

// Py

We call τ̂ the lift of τ .

The pairs of pastings shown above have the property that the right hand side is the

image of the left hand side via the functor P . This is a convenient way to illustrate

various lifting properties of cartesian maps and these kinds of diagrams will be repeated

throughout the chapter.

It is not hard to prove that:

Proposition 2.2.2. Suppose P : E → B is a 2-functor. A 1-cell f : x → y in E is

cartesian if and only if

E(z, x)
f∗ //

Pzx

��

E(z, y)

Pzy

��
B(Pz, Px)

Pf∗

// B(Pz, Py)

is a pullback in Cat.



18 CHAPTER 2. FIBRED 2-CATEGORIES AND BICATEGORIES

Definition 2.2.3. Suppose P : E → B is a 2-functor. A 2-cell α : f ⇒ g : x → y in E is

cartesian if it is cartesian as a 1-cell for the functor Pxy : E(x, y)→ B(Px, Py).

We take the time here to establish a few basic properties of cartesian maps.

Proposition 2.2.4. Suppose P : E → B is a 2-functor.

1. Suppose that E′, B′ are the 1-categories obtained from E,B by forgetting 2-cells, and

that P ′ : E′ → B′ agrees with P on 0 and 1-cells. If f : x→ y in E is cartesian for

P , then it is cartesian for P ′.

2. If f : x → y and f ′ : z → y are cartesian in E and Pf = Pf ′ then there exists a

unique isomorphism h : z → x with f ′ = h.f and Ph = 1Pa.

3. If f : x→ y is cartesian in E and Pf is an isomorphism then f is an isomorphism.

4. Suppose f : x→ y and g : y → z in E. If f and g are cartesian then g.f is cartesian.

5. Suppose f : x→ y and g : y → z in E. If g and g.f are cartesian then f is cartesian.

Proof. (1) is true because cartesian 1-cells have the ordinary lifting property for 1-cells.

(2) and (3) are a consequence of (1). For (4), notice that since f and g are cartesian, the

two commuting squares below are pullbacks. Hence, the outer rectangle is a pullback and

g.f is cartesian.

E(w, x)
f∗ //

Pwx

��

E(w, y)

Pwy

��

g∗ // E(w, z)

Pwz

��
B(Pw,Px)

Pf∗

// B(Pw,Py)
Pg∗

// B(Pw,Pz)

For (5), use the same diagram as above. Since g and g.f are cartesian, the right square and

outer rectangle are pullbacks. Hence, the left square is a pullback and f is cartesian.

Proposition 2.2.5. Suppose P : E → B is a 2-functor and that h : y → z, α : f ⇒ g : x→
y in E. If h and hα are cartesian then α is cartesian.

Proof. Since h is cartesian, the following square is a pullback.

E(x, y)
h∗ //

Pzx

��

E(x, z)

Pzy

��
B(Px, Py)

Ph∗

// B(Px, Pz)

It is a property of pullbacks that h∗ reflects cartesian maps. Now since hα is cartesian, α

is cartesian.
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Definition 2.2.6. A 2-functor P : E → B is a 2-fibration if

1. for any e ∈ E and f : b→ Pe, there is a cartesian 1-cell h : a→ e with Ph = f ;

2. for any g ∈ E and α : f ⇒ Pg, there is a cartesian 2-cell σ : h ⇒ g with Pσ = α;

and

3. the horizontal composite of any two cartesian 2-cells is cartesian.

We will often say that E is a fibred 2-category when it is the domain of a 2-fibration

P : E → B. This terminology is informal and should only be used when it is clear from

context which 2-fibration makes E a fibred 2-category.

Remark 2.2.7. The second condition in Definition 2.2.6 could equivalently be stated as

“Pxy : E(x, y)→ B(Px, Py) is a fibration for all x, y in E”. In this case we say that P is

locally fibred.

Remark 2.2.8. The third condition in Definition 2.2.6 could equivalently be stated as

“cartesian 2-cells are closed under pre-composition and post-composition with arbitrary

1-cells”. This is a consequence of the middle-four interchange and the fact that cartesian

2-cells are closed under vertical composition.

Remark 2.2.9. The first definition of 2-fibration was given by Hermida in [Her99]. His

local characterisation of 2-fibrations (Theorem 2.8) is identical to our definition except

that it only requires cartesian 2-cells to be closed under pre-composition with any 1-cell.

We insist that cartesian 2-cells also be closed under post-composition with any 1-cell. The

two definitions are not equivalent. This is illustrated by the following example.

Remember that Fib is the 2-category whose objects are fibrations P , Q in Cat; 1-cells

are pairs of functors (F,G) such that QF = GP and F preserves cartesian maps; and

2-cells are pairs of natural transformations (α, β) such that Qα = βP .

E

P

��

F

''

F ′

77α�� D

Q

��
B

G

''

G′

77β�� C

There is an obvious projection cod: Fib→ Cat that sends P to B, (F,G) to G and (α, β)

to β.

This is the 2-functor Hermida takes as a prototype for 2-fibrations. Its cartesian

1-cells are pullback squares and its cartesian 2-cells are (α, β) where α is point-wise carte-

sian. Pre-composition with 1-cells obviously preserves cartesian 2-cells because it amounts
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to re-indexing the natural transformations. Post-composition with 1-cells also preserves

cartesian 2-cells because the 1-cells in Fib are cartesian in their first component.

Suppose we modify Fib by not requiring that the first component of each 1-cell preserves

cartesian maps. In this case cod is a Hermida-style 2-fibration and not a 2-fibration by

our definition. Thus the definitions are not equivalent.

The post-composition property is essential for building a pseudo-inverse to the Grothendieck

construction. It arises when defining the action of a trihomomorphism on 2-cells. We will

see in Proposition 2.2.19 and Construction 2.3.25 below where the property is explicitly

required.

Definition 2.2.10. A cleavage for a 2-fibration P : E → B is a function ϕ(-, -) that

describes a choice of cartesian lifts. If e ∈ E and f : b → Pe is a 1-cell in B then

ϕ(f, e) : f∗e → e is a cartesian 1-cell in E with Pϕ(f, e) = f which we call the chosen

cartesian lift of f at e. The function also acts on 2-cells: if k : a → b is a 1-cell in E

and α : h ⇒ Pk is a 2-cell in E then ϕ(α, k) : α∗k ⇒ k is a cartesian 2-cell in E with

Pϕ(α, k) = α which we call the chosen cartesian lift of α at k. A 2-fibration with a

cleavage is called a cloven 2-fibration.

A split 2-fibration is a cloven 2-fibration where ϕ(-, -) satisfies the following five equa-

tions. For all e ∈ E , g : b→ Pe and f : a→ b,

ϕ(gf, e) = ϕ(g, e).ϕ(f, g∗e) . (2.2.1)

For all k : c→ d in E , β : h→ Pk and α : j → j,

ϕ(βα, k) = ϕ(β, k).ϕ(α, β∗e) . (2.2.2)

For all k : x→ y, l : y → z in E , α : h→ Pk and γ : m→ Pl,

ϕ(γ ∗ α, lk) = ϕ(γ, l) ∗ ϕ(α, k) . (2.2.3)

For all e and k : c→ d in E ,

ϕ(1Pe, e) = 1e , (2.2.4)

ϕ(1Pk, k) = 1k . (2.2.5)

These conditions specify that chosen cartesian maps be closed under all forms of composi-

tion and that chosen cartesian lifts of identities are identities. We say that P is locally split

when each Pxy is split (conditions (2.2.2) and (2.2.4)). We say that P is horizontally split

when chosen cartesian 2-cells are closed under horizontal composition (condition (2.2.3)).

Remark 2.2.11. Every 2-fibration can be equipped with a cleavage using the axiom of

choice. Since cartesian lifts are unique up to isomorphism the choice of cleavage for a
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2-fibration does not significantly affect its behaviour. As a result we usually suppose that

every 2-fibration is cloven and rarely distinguish between one cleavage and another.

Remark 2.2.12. There is some subtlety in equation (2.2.3) in the definition of split 2-

fibration. We could equally well ask that chosen cartesian 2-cells be closed under pre- and

post-composition with arbitrary 1-cells. That is, for every pair of composable 1-cells j and

k, if α : h⇒ k then

ϕ(α, k)j = ϕ(αPj, kj) (2.2.6)

and if γ : l⇒ j then

kϕ(γ, j) = ϕ(Pkγ, kj) . (2.2.7)

The equivalence of these two statements relies on equations (2.2.1), (2.2.2) and the middle-

four interchange.

Definition 2.2.13. Suppose P : E → B and Q : D → B are 2-fibrations. A 2-functor

η : E → D between fibred 2-categories is cartesian when it preserves all cartesian maps and

Qη = P . A 2-natural transformation α : η ⇒ τ is vertical when Qα = 1P . A modification

Γ: α V β is vertical when QΓ = 11P . Together, these constitute the 0,1,2,3-cells of a

3-category Fib(B)

A cartesian 2-functor η : E → D is split when it also preserves choice of cartesian maps.

That is, for all f : b→ Pe

η(ϕ(f, e)) = ϕ(f, η(e)) (2.2.8)

and for all α : h⇒ k

η(ϕ(α, k)) = ϕ(α, η(k)) . (2.2.9)

Suppose that B is a 2-category. Let Fibs(B) be the sub-3-category of Fib(B) containing

the split 2-fibrations over B, split cartesian 2-functors, vertical 2-natural transformations

and vertical modifications. Let 2Cat be the 3-category of 2-categories, 2-functors, 2-natural

transformations and modifications. Let [Bcoop, 2Cat] be the 3-category of contravariant

2-functors from B to 2Cat, 2-natural transformations, modifications and perturbations. A

perturbation is a morphism of modifications as defined in [GPS95; Gur06].

The following two results will prove useful.

Proposition 2.2.14. Suppose that P : E → B is a 2-functor and that α and β are carte-

sian 2-cells in E with domains and codomains as indicated in the diagram below. If β ∗ α
is cartesian then all cartesian 2-cells over Pα and Pβ are closed under horizontal compo-

sition.

a α��

f

&&

h

88 b

g

&&

k

88β�� c

Proof. Suppose that α, β and β ∗ α are cartesian and γ and δ are cartesian lifts of Pα

and Pβ. There exist unique isomorphisms η and τ such that γ = α.η and δ = β.τ . Then
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δ ∗ γ = (β.τ) ∗ (α.η) = (β ∗ α).(τ ∗ η). Since β ∗ α is cartesian and τ ∗ η is an isomorphism

δ ∗ γ is cartesian.

Proposition 2.2.15. Suppose that P and Q are 2-fibrations, F is a 2-functor and the

following diagram commutes.

E

P   

F // D

Q~~
B

If F sends chosen cartesian maps to cartesian maps then it preserves all cartesian maps.

Proof. Suppose that α : f ⇒ h is cartesian in D. It factors as α = ϕ(Pα, h).σ where σ

is an isomorphism. Then Fα = Fϕ(Pα, h).Fσ and since F preserves chosen cartesian

maps and isomorphisms Fα is cartesian. The reasoning for cartesian 1-cells is exactly the

same.

2.2.2 The Grothendieck construction

We will describe the Grothendieck construction for split fibred 2-categories: for every

2-category B, an equivalence

el : [Bcoop, 2Cat]→ Fibs(B).

We are mostly concerned with its action on objects and use “Grothendieck construc-

tion” to mean both the action on objects and the whole 3-functor. This generalises the

Grothendieck construction for ordinary fibrations. We found that the Grothendieck con-

struction for general 2-fibrations could not be described so neatly as for split 2-fibrations;

this is discussed in Remark 2.2.28. In Section 2.3 we will give a more general result: the

Grothendieck construction for fibred bicategories.

Construction 2.2.16 (The Grothendieck construction for 2-categories). Suppose that

F : Bcoop → 2Cat is a 2-functor. Let elF be the 2-category:

• 0-cells are pairs (x, x ) where x ∈ B and x ∈ Fx.

• 1-cells are pairs (f, f ) : (x, x )→ (y, y ) where f : x→ y and f : x → Ff(y ).

• 2-cells are pairs (α, α ) : (f, f )⇒ (g, g ) : (x, x )→ (y, y ) where α : f ⇒ g and

x
f //

g
&&

Ff(y )
α
�#

Fg(y )

Fαy

OO
.
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• If (α, α ) as above and (γ, γ ) : (g, g )⇒ (h, h ) : (x, x )→ (y, y ) then the composite

(γ, γ ).(α, α ) has first component γ.α and second component

x
f //

g
&&

h

%%

Ff(y )
α
�#

Fg(y )

Fαy

OO

Fh(y )

Fγy

OOγ
�#

.

• If (α, α ) as above and (β, β ) : (j, j )⇒ (k, k ) : (y, y )→ (z, z ) then the composite

(β, β ) ∗ (α, α ) has first component β ∗ α and second component

x
f //

g
&&

Ff(y )
Ff(j ) //

Ff(k ) ((

FfFj(z )
α
�#

Fg(y )

Fg(k ) ((

Fαy

OO Ff(β )

�#

FfFk(z )

Ff(Fβz )

OO

FgFk(z )

FαFk(z )

OO
.

• Identity 1-cells are (1x, 1x ) : (x, x )→ (x, x ) and identity 2-cells are (1f , 1f ) : (f, f )⇒
(f, f ).

By projecting onto the first component of elF we obtain a 2-functor PF : elF → B.

Proposition 2.2.17. For any 2-functor F : Bcoop → 2Cat, the projection PF : elF → B

of Construction 2.2.16 is a split 2-fibration.

Proof. It is easy to show that elF is a 2-category. Associativity and unit laws rely on

the fact that F is a 2-functor and that it maps into 2Cat. Now notice that in the first

component of elF composition is just composition in B. Thus PF is a 2-functor.

We need to show that PF is a 2-fibration. Suppose that (y, y ) is an object of elF and

f : x→ y in B. We claim that (f, 1Ff(y )) : (x, Ff(y ))→ (y, y ) is cartesian over f . This

can be verified by examining the following commuting diagrams where the diagram on the

left maps down to the diagram on the right under the action of PF

(z, z )
(g,g )

%%(g′,g ′)
--

(α,α )
{�(h,g )

��
(β,α )
ks(h′,g ′)

��
(x, Ff(y ))

(f,1Ff(y ))
// (y, y )

z
g

��g′

,,

α{�h

��

h′

��

β
ks

x
f

// y
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and showing that the indicated lifts are unique.

Suppose that (g, g ) : (x, x )→ (y, y ) in elF and α : f ⇒ g : x→ y in B. We claim that

(α, 1Fαy g ) : (f, Fαy g ) ⇒ (g, g ) is cartesian over α. This can be verified by examining

the following commuting diagrams where the diagram on the left maps down to the diagram

on the right under the action of PF

(h, h )

(β,β )

 (

(σ,β )

��
(f, Fαy g )

(α,1Fαy g )
+3 (g, g )

h

σ

��

β

�'
f

α
+3 g

and showing that the indicated lift is unique.

When

(x, x )
(f,f ) // (y, y )

(g,g ) // (z, z )

is a diagram in elF which maps to the codomain of the following composite in B

x

f ′

""

f

;;α�� y

g′

""

g

;;σ�� z ,

the chosen cartesian lifts of α and σ compose to give

(α, 1Fαy f ) ∗ (σ, 1Fσz g ) = (α ∗ σ, Ff ′(1Fσz g ) ∗ 1Fαy f )

= (α ∗ σ, 1Ff ′(Fσz g )Fαy f )

= (α ∗ σ, 1F (σ∗α)z Ff(g )f )

because Ff is a 2-functor, Fα is 2-natural and F is a 2-functor. Thus chosen cartesian

2-cells are closed under horizontal composition and by Proposition 2.2.14 all cartesian

2-cells are closed under horizontal composition. Thus PF is a 2-fibration.

We need to show that PF is split. The equations above demonstrate that PF is hori-

zontally split. The other two conditions are a matter of routine verification.

Construction 2.2.18 (Pseudo-inverse to the Grothendieck construction). Suppose that

P : E → B is a split 2-fibration. We define a functor FP : Bcoop → 2Cat as follows:

on 0-cells: For all b ∈ B, set FP b = Eb where Eb is the fibre of P over b i.e. the sub-category

of E with 0-, 1-, and 2-cells being those that map to b, 1b and 11b .

on 1-cells: For all f : b→ b′ in B, set FP f = f∗ : Eb′ → Eb to be the 2-functor described
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by the following diagram.

f∗e

f∗k

��

f∗h

��

f∗α+3

ϕ(f,e) // e

k

��

h

��

α +3

f∗e′
ϕ(f,e′)

// e′

� P //

b
f //

1b

��

1b

��

=

b′

1b′

��

1b′

��

=

b
f

// b′

It sends e to the domain of ϕ(f, e). It sends h, k to the unique f∗h, f∗k over 1b generated

by the cartesian 1-cell ϕ(f, e′) and α to the unique f∗α over 11b .

on 2-cells: For all σ : f ⇒ g : b → b′ in B, set FPσ = σ∗ : g∗ ⇒ f∗ : Eb′ → Eb is the

2-natural transformation described by the following diagram.

f∗e ϕ(f,e)

&&
g∗e

σ∗e //

ϕ(g,e)

77ϕ(σ,ϕ(g,e))�� e � P // b

f

''

g

77σ�� b′

We take the cartesian lift of σ at ϕ(g, e) and uniquely factorise its domain as ϕ(f, e)σ∗e .

Then (FPσ)e = σ∗e . This unique factorisation is explained in Proposition 2.2.20.

Proposition 2.2.19. Suppose that P : E → B is a split 2-fibration, then FP : Bcoop →
2Cat defined in Construction 2.2.18 is a 2-functor.

Proof. First of all, it is clear that Fb = Eb is well defined as a 2-category. Second, when

f : b → b′ in B and α, β are 2-cells in E with domains and codomains as indicated in

the diagram below, we get ϕ(f, e′)(f∗α.f∗β) = (α.β)ϕ(f, e). Thus by the uniqueness of

liftings along ϕ(f, e) we have f∗(α.β) = f∗α.f∗β. The diagrams are:

f∗e
ϕ(f,e) //

f∗k

��

f∗g

��
f∗h
��

f∗αksf∗βks

e

k

__

g

��
h
��

αksβks

f∗e′
ϕ(f,e′)

// e′

f∗e
ϕ(f,e) //

f∗h

��

f∗h

��
f∗1h

ks

e

h

��

h

��
1h
ks

f∗e′
ϕ(f,e′)

// e′

Similarly, we have ϕ(f, e′)1f∗h = 1hϕ(f, e) and thus f∗1h = 1f∗h. Very similar arguments

tell us that if α and β are horizontally composable 2-cells in E then f∗(β ∗α) = f∗β ∗ f∗α
and f∗(1e) = 1f∗e for all e ∈ E . Thus f∗ is a 2-functor.

On 2-cells, if σ : g ⇒ f : x→ y is a 2-cell in B we display the 2-natural transformation
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σ∗ using the following diagram.

g∗e
ϕ(g,e)

&&

����

ks
f∗e

ϕ(σ,ϕ(g,e))��

ϕ(f,e)
//

σ∗e

77

f∗h

		

f∗k

��

f∗α
ks

e

h

		

k

��

α
ksg∗e′

ϕ(g,e′)

&&
f∗e′

ϕ(f,e′)

//

σ∗
e′ 77

ϕ(σ,ϕ(g,e′))��
e′

The unlabelled 2-cell at the back is g∗α. We want to show that g∗α.σ∗e equals σ∗e′ .f
∗α.

For simplicity, let η = ϕ(σ, ϕ(g, e)) and τ = ϕ(σ, ϕ(g, e′)). Since g∗ασ∗e and σ∗e′f
∗α both

map down to 1b, and ϕ(g, e′) is cartesian, and lifts along cartesian 1-cells are equal, it is

enough to show that ϕ(g, e′)g∗ασ∗e = ϕ(g, e′)σ∗e′f
∗α. Similarly, since τf∗k is cartesian,

it is enough to show that τf∗k.ϕ(g, e′)(g∗α)σ∗e = τf∗k.ϕ(g, e′)(σ∗e′)f
∗α. In the equations

below we use various combinations of the middle-four interchange, the fact that cartesian

2-cells are closed under pre- and post-composition, that cartesian 2-cells are split, and

that both front and back-right squares commute.

τf∗k.ϕ(g, e′)(σ∗e′)f
∗α = ϕ(f, e′)f∗α.τf∗h

= αϕ(f, e).hη

= αϕ(g, e)σ∗e .kη

= ϕ(g, e′)(g∗α)σ∗e .kη

= τf∗k.ϕ(g, e′)(g∗α)σ∗e .

Thus the back-left composites are equal and σ∗ is a 2-natural transformation.

Note that the 2-naturality of σ∗ relies heavily on the post-composition property of

cartesian 2-cells (Remark 2.2.9). We needed to show that τf∗h = hη. We proved it by

saying that since both η and τ are cartesian, τf∗h and hη are cartesian, but they both

sit over σ, so by the splitness property they must be equal. Without post-composition,

we couldn’t say that hη is cartesian and hence that σ∗ is 2-natural. Without the post-

composition property FP would not be well-defined on 2-cells.

Now we need to show that FP preserves composition and identities. If α : f ⇒ g and
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β : h⇒ f in B and e ∈ E then we can form two different composites

h∗e
ϕ(h,e)

))g∗e

(αβ)∗e
55

ϕ(g,e)

88ϕ(αβ,ϕ(g,e))�� e

h∗e

ϕ(h,e)

""

f∗e

β∗e
55

ϕ(f,e) ..

ϕ(β,ϕ(f,e))��

g∗e

α∗e
55

ϕ(g,e)

55ϕ(α,ϕ(g,e))�� e

and assert that ϕ(αβ, ϕ(g, e)) = ϕ(α,ϕ(g, e)).ϕ(β, ϕ(f, e))α∗e because of the splitness con-

ditions. Since (αβ)∗e is defined via unique factorisation it follows directly that (αβ)∗ =

β∗α∗. Similarly, ϕ(1g, ϕ(g, e)) = 1ϕ(g,e) and hence (1g)
∗ = 1g∗ . Thus 2-cell composition is

preserved.

For composition of 1-cells, suppose that f and g are composable 1-cells in B and

α : h⇒ k : e→ e′ is a 2-cell in E , then we get the following pasting diagram

g∗f∗e
ϕ(g,f∗e) //

g∗f∗h

��

g∗f∗k

��

g∗f∗α+3

f∗e
ϕ(f,e) //

f∗h

��

f∗k

��

f∗α+3

e

k

��

h

��

α +3

g∗f∗e′
ϕ(g,f∗e′)

// f∗e′
ϕ(f,e′)

// e′

and assert that ϕ(gf, e) = ϕ(f, e).ϕ(g, f∗e) because of the splitness conditions. It follows

directly that f∗g∗ = (gf)∗. Similarly, ϕ(1b′ , e) = 1e and hence (1b′)
∗ = 1Eb′ . Thus 1-cell

composition is preserved.

For horizontal composition of 2-cells, if σ : h ⇒ g and τ : k ⇒ f are horizontally

composable 2-cells in B and e ∈ E we get diagrams

h∗k∗e ϕ(h,k∗e)

++h∗f∗e ϕ(h,f∗e)
++

h∗τ∗e 33
k∗e ϕ(k,e)

++g∗f∗e ϕ(σ,ϕ(g,f∗e))��

ϕ(g,f∗e)

44

σ∗f∗e 33
f∗e ϕ(τ,ϕ(f,e))��

τ∗e 33

ϕ(f,e)

55 e

and
hk∗e ϕ(hk,e)

++gf∗e ϕ(στ,ϕ(gf,e))��

ϕ(gf,e)

33

(στ)∗e
33

e .

The top-left 1-cells are the components of (στ)∗ and τ∗σ∗. By the splitness conditions on

2-cells these two diagrams are equal as 2-cells. By the splitness conditions on 1-cells the

top-right 1-cells are equal. Finally, by uniqueness of factorisation, the top-left 1-cells are



28 CHAPTER 2. FIBRED 2-CATEGORIES AND BICATEGORIES

equal.

To prove that the Grothendieck construction is surjective up to isomorphism, we will

need the following two results.

Proposition 2.2.20. Suppose P : E → B is a 2-fibration. Every f : x → z in E factors

uniquely as
x

f̂

��

f

##
y

ϕ(Pf,z)
// z

where P f̂ = 1Px.

Proof. Simply note that

x
f

##
y

ϕ(Pf,z)
// z

over

Px

1Px
��

Pf

$$
Px

Pf
// Pz

and there exists a unique f̂ : x→ y with P f̂ = 1Px and f = ϕ(Pf, z)f̂ .

Proposition 2.2.21. Suppose P : E → B is a 2-fibration and α : f ⇒ g is a 2-cell in E .

There exist unique f̂ , ĝ, α̂ such that

w f

��g ..

α��

z

=

w

f̂

((

ĝ &&

α̂�� y
ϕ(Pf,z)

&&
x

ĥ
88

ϕ(Pg,z)

66ϕ(Pα,ϕ(Pg,z))�� z

,

P f̂ = P ĝ = Pĥ = 1Pw and Pα̂ = 11Pw .

Proof. The proof is similar to that above but somewhat more involved. Begin by uniquely

factoring f = ϕ(Pf, z) · f̂ and g = ϕ(Pg, z) · ĝ by Proposition 2.2.20. Now take the

cartesian lift of Pα at ϕ(Pg, z):

x

h

&&

ϕ(Pg,z)

88ϕ(Pα,ϕ(Pg,z))�� z over Px

Pf

%%

Pg

::Pα�� Pz .
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Then ϕ(Pα,ϕ(Pg, z))ĝ is cartesian over Pα and

f

α

 (
hĝ

ϕ(Pα,...)ĝ
+3 g

over

Pf

1Pf

��

Pα

!)
Pf

Pα
+3 Pg

so there exists a unique η with Pη = 1Pf and

w f

��g ..

α��

z

=

w

f̂

((

ĝ &&

y
ϕ(Pf,z)

&&

η��

x

h

((

ϕ(Pg,z)

66ϕ(Pα,ϕ(Pg,z))�� z

.

By Proposition 2.2.20 we factor h = ϕ(Pf, z) · ĥ uniquely where Pĥ = 1Px. Finally, we

observe that

w

f

��**

η{�f̂

��

ĥĝ

��
y

ϕ(Pf,z)
// z

over

Pw

Pf

��
Pf

))

1Pf
{�1Pw

��

1Pw

��
11

ks

Pw
Pf

// Pz

so there exists a unique α̂ : f̂ ⇒ ĥĝ over 11Pw with η = α̂ϕ(Pf, z) and hence a unique

factorisation of α as stated.

Remark 2.2.22. This last result (Proposition 2.2.21) is recognised by Hermida in proposi-

tion 2.4 of [Her99]. He doesn’t explicitly mention the uniqueness of such factorisations.

Remark 2.2.23. The factorisations of Proposition 2.2.20 and 2.2.21 are unique up to choice

of cartesian lift. In each of these results we have implicitly supposed that P is cloven and

that the factorisation occurs through the chosen cartesian lift. In fact, there is a unique

factorisation for every cleavage on the fibration.

Construction 2.2.24 (Surjective up to isomorphism). In order to show that the Grothendieck

construction is surjective up to isomorphism, we need to find for every 2-fibration P : E →
B an invertible map of fibrations H with

elFP
H //

π
!!

E

P��
B

.
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Here we will use π in place of PFP which is somewhat notationally confusing. First, what

is elFP ? Its data consists of:

0-cells: pairs (x, x ) where x ∈ E and Px = x.

1-cells: pairs (f, f ) : (x, x )→ (y, y ) where f : x→ y in B and f : x → f∗(y ) in Ex.

2-cells: pairs (α, α ) : (f, f )⇒ (g, g ) : (x, x )→ (y, y ) where α : f → g in B and α : f →
α∗y g in Ex.

x
f //

g
%%

f∗(y )
α
�#

g∗(y )

α∗y

OO

We define H : elFP → E by

(x, x )

(f,f )

''

(g,g )

77
(α,α )�� (y, y ) 7−→ x

ϕ(f,y )f

''

ϕ(g,y )g

77ϕ(α,y )g .ϕ(f,y )α�� y .

The action on 2-cells is to send (α, α ) to

x α��

f

**

g &&

f∗y
ϕ(f,y )

&&
g∗y

α∗y 77

ϕ(g,y )

44ϕ(α,ϕ(g,y ))�� y

.

The reader can verify that this is 2-functorial.

Proposition 2.2.25. H is a split cartesian isomorphism.

Proof. First,

π(x, x ) = x = Px = PH(x, x )

π(f, f ) = f = Pf = PH(f, f )

π(α, α ) = α = Pα = PH(α, α )

so π = PH. Second, the chosen cartesian maps in elFP are those with identities in

the second component. Since H acts by post-composition with chosen cartesian maps

it is split cartesian. Third, for every e ∈ E there exists a unique (Pe, e) ∈ elFP with

H(Pe, e) = e so H is bijective on objects. Then Proposition 2.2.20 tells us that for every
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f ∈ E there exists a unique f̂ with H(f, f̂) = ϕ(f, e)f̂ = f so H is bijective on 1-cells.

Proposition 2.2.21 gives the same result on 2-cells. Thus H is an isomorphism.

Theorem 2.2.26. For every 2-category B the Grothendieck construction is the action on

objects of a 3-functor

el : [Bcoop, 2Cat]→ 2Fibs(B)

and this is an equivalence.

Proof. We have already shown that el is surjective up to isomorphism on objects (Propo-

sition 2.2.25). To show that el is an equivalence we need to define its action on 1,2,3-cells

and show that it is locally an isomorphism.

Suppose η : F ⇒ G is a 2-natural transformation in [Bcoop, 2Cat]. We define el η : elF →
elG by

(x, x )

(g,g )

��

(f,f )

��

(α,α )+3

(y, y )

� //

(x, ηxx )

(g,ηxg )

��

(f,ηxf )

��

(α,ηxα )+3

(y, ηyy )

.

This is a split cartesian 2-functor from PF to PG.Suppose Γ: η V ε is a modification in

[Bcoop, 2Cat]. We define el Γ: el η ⇒ el ε by

el Γ(x,x ) = (1x, (Γx)x ) : (x, ηxx )→ (x, εxx ).

where el Γ(x,x ) : el η(x, x )→ el ε(x, x ). This is a vertical 2-natural transformation. Sup-

pose ζ : Γ→ Λ is a perturbation in [Bcoop, 2Cat]. We define el ζ : el ΓV el Λ by

el ζ(x,x ) = (11x , (ζx)x ) : (1x, (Γx)x )⇒ (1x, (Λx)x )

where el ζ(x,x ) : el Γ(x,x ) ⇒ el Λ(x,x ). This is a vertical modification. This defines el on

1,2,3-cells and it is 3-functorial.

Now suppose that η : elF → elG is a split cartesian 2-functor. Define η : F ⇒ G

by ηx(a) = π2(η(x, a)), ηx(f) = π2(η(1x, f)), ηx(σ) = π2(η(11x , σ)). This is 2-natural

because η is a split cartesian 2-functor. Then el(η) = η and is unique with that property.

Thus el is bijective on 1-cells.

Suppose that Γ: el η ⇒ el ε is a vertical 2-natural transformation. Define Γ: η V ε

by (Γx)x = π2(Γ(x,x )). This is a modification because Γ is 2-natural and η, ε are split

cartesian. Then el(Γ) = Γ and is unique with that property. Thus el is bijective on 2-cells.

Suppose that θ : el Γ V el Λ is a vertical modification. Define θ : Γ V Λ by (θx)x =

π2(θ(x,x )). This is a perturbation because θ is a modification and η, ε are split cartesian.

Then el(θ) = θ and and is unique with that property. Thus el is bijective on 3-cells.
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This makes el locally an isomorphism and thus an equivalence.

Remark 2.2.27. The action of the Grothendieck construction on objects is described by

Baković in [Bak12] Section 6. Section 5 of the same paper gives a partial description of

the action on objects of the pseudo-inverse. With some adjustments, we have completed

the second construction (Theorem 5.1) and shown that together they form an equivalence

of 3-categories. It was in completing Baković’s description of the pseudo-inverse to the

Grothendieck construction that we discovered that cartesian 2-cells must be closed under

post-composition with all 1-cells.

Remark 2.2.28 (Non-split 2-fibrations). The Grothendieck construction for non-split 2-

fibrations is somewhat more complicated than demonstrated above. We chose to first

build the Grothendieck construction for fibred bicategories and then to observe how the

arguments simplify when restricted to 2-fibrations. We found that non-split 2-fibrations

correspond to a slightly odd kind of trihomomorphism (see Remark 2.3.33). We found how-

ever that 2-fibrations that are locally and horizontally split correspond to homomorphisms

of 2Cat-enriched bicategories Bcoop → 2Cat (enriched in 2Cat as a monoidal bicategory).

This is somewhat more pleasing.

Remark 2.2.29 (Dual constructions). All of these results could be adjusted to describe

three other kinds of fibrations: op-2-fibrations, co-2-fibrations and coop-2-fibrations. They

correspond to ‘op’-contravariant, ‘co’-contravariant and covariant 2-functors into 2Cat.

The dual Grothendieck constructions are obtained by reversing the direction of the second

components of 1- and 2-cells in elF (in 2-cells, in 1-cells or in both). We could reasonably

refer to coop-2-fibrations as 2-opfibrations. In that case cartesian 1- and 2-cells would be

defined using pullbacks associated with pre-composition instead of post-composition.

2.2.3 Examples

When C is a category, Fam(C) is the category of families of objects of C. The objects of

Fam(C) are pairs (I,X) where I is a set and X : I → C is a functor. The 1-cells are pairs

(u, α) : (I,X)→ (J, Y ) where u : I → J is a function and α is a natural transformation.

I

X ��

u //

α +3

J

Y��
C

Composition and identities are defined in the obvious way. There is a functor π : Fam(C)→
Set that is the projection onto the first component of Fam(C). This is a well-known

example of a fibration.

Construction 2.2.30 (Families). When B is a 2-category we define Fam(B) to be the

2-category of ‘1-cell diagrams’ in B. The objects of Fam(B) are pairs (C,X) where
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C is a small category and X : Cop → B is a pseudo-functor. The 1-cells are pairs

(F, α) : (C,X) → (D,Y ) where F : C → D is a functor and α : X ⇒ Y F op is a pseudo-

natural transformation. The 2-cells are pairs (σ,Σ): (F, α) ⇒ (G, β) where σ : F ⇒ G is

a natural transformation and Σ is a modification

Cop

X
��

F op
//

α +3

Dop

Y
��

Cop

X
��

F op

++

Gop

33σop
KS

β +3

Dop

Y
��

B

Σ *4

B

.

Composition and identities are defined in the obvious way. There is a 2-functor π : Fam(B)→
Cat defined by projection onto the first component of Fam(B).

Proposition 2.2.31. π : Fam(B)→ Cat is a 2-fibration.

Proof. Suppose (D,Y ) in Fam(B) and F : C → D in Cat. Its cartesian lift is (F, 1Y F op) : (C, Y F op)→
(D,Y ). Suppose that (σ,Σ): (G, β) ⇒ (H, γ) : (E,Z) → (D,Y ) and σF = λ where

λ : J ⇒ K. The unique lift of λ is (λ,Σ): (J, β) ⇒ (K, γ) : (E,Z) → (C, Y F op). The

diagrams are

(E,Z)
(G,β)

  (H,γ)
++

(σ,Σ)
{�

(J,β)
��

(K,γ)

��
(λ,Σ)
ks

(C, Y F op)
(F,1)

// (D,Y )

over

E
G

  H
++

σ{�J

��

K

��
λ
ks

C
F

// D

.

Suppose (G, β) : (C,X) → (D,Y ) in Fam(B) and σ : F ⇒ G : C → D in Cat. Its

cartesian lift is (σ, 1Y σ.β) : (F, Y σ.β)⇒ (G, β). Suppose that (λ,Λ): (H, γ)⇒ (G, β) and

σω = λ. The unique lift of ω is (ω,Λ): (H, γ)⇒ (F, Y σop.β).

(H, γ)

(λ,Λ)

 (
(ω,Λ)

��
(F, Y σop.β)

(σ,1)
+3 (G, β)

H

λ

�&

ω

��
F

σ
+3 G

Suppose that σ : F ⇒ G and τ : H ⇒ K with (G, β) : (C,X)→ (D,Y ) and (K, δ) : (D,Y )→
(E,Z)) and we compose the chosen cartesian lifts of σ and τ . They are (σ, 1) and (τ, 1)

their composite (τ, 1) ∗ (σ, 1) is isomorphic to (τ ∗σ, 1) which is cartesian. Thus by Propo-

sition 2.2.14 all cartesian 2-cells are closed under composition.

Remark 2.2.32. π : Fam(B) → Cat can be obtained by applying the Grothendieck con-

struction to F : Catcoop → 2Cat defined on objects by F (C) = Hom(Cop, B).
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Remark 2.2.33. The above construction yields a 2-fibration that is split under composition

of cartesian 1-cells but it is not split in any other sense. If we modify this construction

by replacing pseudo-functors and pseudo-natural transformations with 2-functors and 2-

natural transformations then the result is split in every way. This variation can be obtained

by applying the Grothendieck construction to F defined by F (C) = [Cop, B].

Definition 2.2.34. We say that an arrow p : e→ b in a 2-category B is a (split) fibration

when p∗ : B(c, e)→ B(c, b) is a (split) fibration for all c and the commuting square

B(c, e)

p∗

��

f∗ // B(c′, e)

p∗

��
B(c, b)

f∗
// B(c′, b)

is a (split) morphism of fibrations for all f : c′ → c.

Definition 2.2.35. A morphism between (split) fibrations p : e → b and q : e′ → b′ in a

2-category B is a pair (f : e→ e′, g : b→ b′) where q.f = g.p and

B(c, e)

p∗

��

f∗ // B(c, e′)

q∗

��
B(c, b)

g∗
// B(c, b′)

is a (split) morphism of fibrations for all c. In this case we say that f is cartesian.

Construction 2.2.36 (Internal fibrations). The category of fibrations internal to a 2-

category B is denoted by FibB . The objects are fibrations p : e → b in B. The 1-cells

are morphisms of fibrations. The 2-cells are pairs of 2-cells (α, β) : (f, g) ⇒ (f ′, g′) with

qα = βp. Composition and identities are the same as in B2.

There is a 2-functor cod: FibB → B defined by projection onto the codomain:

e

f

&&

f ′

88α��

p

��

e′

q

��
b

g

&&

g′

88β�� b′

� cod // b

g

&&

g′

88β�� b′ .

When B = Cat we omit the subscript and FibCat is just Fib. It is the category of fibrations

in Cat and the codomain 2-functor is cod: Fib→ Cat.

Proposition 2.2.37. When B has 2-pullbacks, cod: FibB → B is a 2-fibration.
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Proof. Suppose q : e′ → b′ in Fib(B) and g′ : b → b′ in B, then there exists a map

(g, g′) : (g′)∗q → q defined by taking the 2-pullback

e
g //

g∗q

��

e′

q

��
b

g′
// b′

.

Since both pullbacks and fibrations in B are defined representably and fibrations in Cat

are closed under pullback, fibrations in B must also be closed under pullback. The same

argument ensures that g is cartesian. Thus (g, g′) is well-defined as a 1-cell. To see

that this is cartesian, suppose that (h, h′) : r → q in Fib(B) and h′ = g′.f ′ in B. Then

there exists a unique f with p.f = f ′.r and h = g.f and hence a unique (f, f ′) with

(h, h′) = (g, g′)(f, f ′) and π(f, f ′) = f ′. We know that f is cartesian because h is cartesian

and g reflects cartesian maps (again because pullbacks in Cat reflect cartesian maps). This

same argument works for 2-cells into e′ so (g, g′) is cartesian. The diagram is

e′′
h

''
f

��

r

��
b′′

f ′ ��

h′

''

e
g
//

p

��

e′

q

��
b

g′
// b′

.

Suppose that (g, g′) : p → q in Fib(B) and α′ : f ′ ⇒ g′ in B. Since q is cartesian we

can take the cartesian lift of α′p at g (call it α) and get a 2-cell (α, α′) : (f, f ′) ⇒ (g, g′).

To show that this is cartesian, suppose that (γ, γ′) : (h, h′)⇒ (g, g′) and γ′ = η′α′. Since

α is cartesian for q and qγ = γ′p = η′p.α′p = η′p.qα there exists a unique η : h ⇒ f and

hence (η, η′) with (γ, γ′) = (α, α′).(η, η′). Thus (α, α′) is cartesian.

h
γ

�$
η

��
f

α
+3 g

qh

qγ=γ′p

�&
η′p

��
qf

qα=α′p

+3 qg

Suppose that we take the cartesian lifts of α′ : f ′ ⇒ g′ and γ′ : h′ ⇒ k′ at (g, g′) and
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(k, k′) as indicated below.

e

p

��

f

%%

g

99α�� e′

q

��

h
&&

k

88γ�� e′′

r

��
b

f ′

%%

g′

99α′�� b′
h′

&&

k′

88γ′�� b′′

Since cartesian 2-cells for r are closed under pre-composition with any 1-cell γg is cartesian.

Also since h preserves cartesian maps for q we know that hα is cartesian. Then because

cartesian 2-cells are closed under vertical composition γ ∗α = γg.hα is cartesian. Thus by

Proposition 2.2.14 cartesian 2-cells for cod are closed under composition.

Remark 2.2.38. If we apply the pseudo-inverse to the Grothendieck construction to cod: FibB →
B we get F : Bcoop → 2Cat defined by F (b) = FibB/b, the category of fibrations over b.

Its action on 1-cells is to send f : b→ b′ to f∗ : FibB/b
′ → FibB/b defined by pullback.

Remark 2.2.39. Let FibsB be the sub-2-category of FibB containing split fibrations and

split maps. Suppose also that we can choose 2-pullbacks in B in such a way that they

are closed under composition in B2 (not just up to isomorphism). Then the proof above

requires only slight adjustments to show that cod: FibsB → B is a split 2-fibration.

Example 2.2.40 (Enriched Categories). There is a 2-functor Mon → 2Cat that maps

each monoidal category V to V -Cat. We can use a dual to the Grothendieck construction

to get a 2-opfibration Enr → Mon. The objects of the total category Enr are enriched

categories: pairs (V , A) where V is a monoidal category and A is a V -enriched category.

The rest of the structure can be deduced from the dual Grothendieck construction.

Example 2.2.41 (Algebras). Let Mnd(K) be the 2-category of 2-monads on a 2-category

K. There is a 2-functor F : Mnd(K)coop → 2Cat that maps each 2-monad T to the

2-category T -Algl of strict T -algebras, lax algebra morphisms and algebra 2-cells. Each

monad morphism λ : S → T gives a 2-functor that acts on m : TA→ A by pre-composition

with λA : SA→ TA. Each monad 2-cell Γ: λ⇒ τ gives a 2-natural transformation whose

component at m : TA→ A is (1, 1,m.ΓA) as shown below.

SA

τA

��

1 // SA

λA
��

TA

m

��

TA

m

��
A

1
//

m.ΓA��

A

We know that F is contravariant on 2-cells because we are using lax morphisms of algebras.
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If F mapped each monad to T -Algoplax containing the oplax morphisms then it would be

covariant on 2-cells. Further details on 2-monads can be found in [Kel74].

We can use the Grothendieck construction to construct a 2-fibration Alg → Mnd.

The objects of the total category Alg are algebras of a 2-monad: pairs (S, (A,m)) where

m : SA→ A is an S-algebra. The 1-cells from (S, (A,m)) to (T, (B,n)) are pairs (λ, (f, θf ))

where λ is a monad morphism from S to T and (f, θf ) : λ(A,m)→ Fλ(B,n) is a lax algebra

morphism

SA

Sf

��

m //
θf ;C

A

f

��
SB

λB

// TB
n
// B

.

The 2-cells of Alg are pairs (Γ, α) : (λ, (f, θf )) → (τ, (g, θg)) where Γ: λ → τ is a monad

2-cell and α is an algebra 2-cell

(A,m)

(g,θg)   

(f,θf ) //

α��

Fλ(B,n)

Fτ(B,n)

FΓ(B,n)

<<
.

The 2-fibration is projection on the first component of Alg. By construction the fibre over

T is T -Algl.

2.3 Fibred bicategories

What follows is the theory of fibrations developed specifically for bicategories. The con-

cepts are not significantly different from Section 2.2 but the details are much more com-

plicated.

2.3.1 Definitions and properties of cartesian 1- and 2-cells

Definition 2.3.1. Suppose P : E → B is a homomorphism of bicategories. We say a

1-cell f : x→ y in E is cartesian when it has the following two properties:

1. Suppose that g : z → y in E with h : Pz → Px and an isomorphism α : Pf.h⇒ Pg

z

g

��
x

f
// y

Pz

h

��

Pg

!!
Px

Pf
//

α ;C

Py

.
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Then there exists an ĥ : z → x and isomorphisms α̂ : fĥ⇒ g, β̂ : Pĥ⇒ h such that

α.Pfβ̂ = Pα̂.φhf . We say that (ĥ, α̂, β̂) is a lift of (h, α).

2. Suppose that σ : g ⇒ g′ in E and h, h′ : Pz → Px with isomorphisms α : Pf.h⇒ Pg

and α′ : Pf.h′ ⇒ Pg′. Suppose also that (h, α) and (h′, α′) have lifts (ĥ, α̂, β̂) and

(ĥ′, α̂′, β̂′). For any δ : h⇒ h′ in B with α′.Pfδ = Pσ.α

z

ĥ

��

ĥ′

��

g′

��
g

**

σ ;C

x
f

//

α̂ +3

y

α̂′ +3

Pz

h

��

h′

��

δ ;C
Pg′

��
Pg

**

Pσ ;C

Px
Pf

//

α +3

Py

α′ +3

there exists a unique δ̂ : ĥ⇒ ĥ′ such that α̂′.f δ̂ = σ.α̂ and δ.β̂ = β̂′.P δ̂.

Informally this can be stated by saying that f lifts 1-cells up to isomorphism and lifts

2-cells coherently with the lifted isomorphisms. The uniqueness of lifted 2-cells implies

that lifted 1-cells are unique up to a coherent isomorphism.

Proposition 2.3.2. Suppose P : E → B is a homomorphism of bicategories. A 1-cell

f : x→ y in E is cartesian if and only if

E (z, x)

Pzx

��

f∗ // E (z, y)

Pzy

��
∼=

B(Pz, Px)
Pf∗

// B(Pz, Py)

is a bipullback for all z. The pictured isomorphism is the coherence map for P on compo-

sition.

Remark 2.3.3. In Proposition 2.3.2 we use bipullback in the sense of Street and Joyal [JS93]:

a weakly-universal iso-square over Pf∗ and Pzy. That is, there is a pseudo-natural equiv-

alence

Hom(A,E (z, x)) ' Hom(A,B(Pz, Px))×∼= Hom(A,B(Pz, Py))

where the right expression is a pseudo-pullback (iso-comma-category).

Definition 2.3.4. Suppose P : E → B is a homomorphism of bicategories. A 2-cell

α : f ⇒ g : x→ y in E is cartesian if it is cartesian as a 1-cell for the functor Pxy : E (x, y)→
B(Px, Py).

As in Section 2.2 we say that P is locally fibred when Pxy : E (x, y) → B(Px, Py) is a

fibration for all x, y in E .
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Definition 2.3.5. Let P : E → B be a homomorphism. We say that P is a fibration

when

1. for any e ∈ E and f : b→ Pe, there is a cartesian 1-cell h : a→ e with Ph = f ;

2. P is locally fibred; and

3. the horizontal composite of any two cartesian 2-cells is cartesian.

Informally, we say that E is a fibred bicategory when it is the domain of a fibration.

Remark 2.3.6. In the first condition of Definition 2.3.5 we could insist that cartesian 1-

cells only have Ph ∼= f and the definition above would not be any weaker. When P is

a fibration it is locally fibred and thus locally has the iso-lifting property. Now cartesian

1-cells isomorphic to a cartesian 1-cell are cartesian (see Proposition 2.3.8 below). Thus if

there is a cartesian lift h with Ph ∼= f then there is a cartesian lift h′ with Ph′ = f . The

converse is trivial so the two definitions are equivalent.

Remark 2.3.7. Corollary 1 in [JS93] states that if one leg of a cospan has the iso-lifting

property then the pullback of that cospan is a bipullback. When P is a fibration it is

locally fibred and thus locally has the iso-lifting property. It follows that if a 1-cell is

2-categorically cartesian (Definition 2.2.1) then it is bicategorically cartesian (Definition

2.3.1). As a result fibred 2-categories are also fibred bicategories.

We take the time here to establish a few basic properties of cartesian maps.

Proposition 2.3.8. Suppose P : E → B is a homomorphism of bicategories. If 1-cells f

and g in E are isomorphic then f is cartesian if and only if g is cartesian.

Proof. Suppose that f is cartesian and α : f ⇒ g is an isomorphism. In the diagram below:

the inner isomorphism is the coherence of P on composition with f . The isomorphisms

above and below are induced by α and Pα and thus the pasting is equal to the coherence

of P on composition with g.

E (z, x)

Pzx

��

g∗ ,,

f∗

22∼= E (z, y)

Pzx

��
B(Pz, Px)

Pf∗ --

Pg∗

11
∼= B(Pz, Py)

∼=

By definition of cartesian 1-cell the inner isomorphism is a bipullback. Bipullbacks are

closed under the pasting of isomorphisms as indicated. Thus whole diagram is a bipullback

and g is cartesian.

Proposition 2.3.9. Suppose P : E → B is a homomorphism of bicategories and f : w → x

and g : x→ y are 1-cells in E . If f and g are cartesian then gf is cartesian.
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Proof. Suppose that f and g are cartesian. In the diagram below: the inner two isomor-

phisms are coherence of P on composition with f and g. The outer isomorphisms are

induced by associativity of composition. Thus the pasting is equal to the coherence of P

on composition with gf .

∼=
E (z, w)

Pzw

��

f∗ //

(gf)∗

''
E (z, x)

Pzx

��

g∗ // E (z, y)

Pzy

��
B(Pz, Pw)

Pf∗

//

(Pgf)∗

77
B(Pz, Px)

Pg∗

//

∼=

B(Pz, Py)

∼=

∼=

The inner two isomorphisms are bipullbacks by definition of cartesian 1-cell. Bipullbacks

are closed under the inner pasting as indicated, as well as the pasting of isomorphisms on

top and bottom. Thus the whole diagram is a bipullback and gf is cartesian.

Proposition 2.3.10. Suppose P : E → B is a homomorphism of bicategories and f : w →
x, g : x→ y are 1-cells in E . If g and gf are cartesian then f is cartesian.

Proof. This proof is essentially the same as Proposition 2.3.9. The only other thing we

need to know is that bipullbacks have the same cancellation property as pullbacks.

Proposition 2.3.11. Suppose P : E → B is a fibration of bicategories and f : x→ y is a

1-cell in E . If f is an equivalence then it is cartesian for P .

Proof. Suppose that f is part of an adjoint equivalence (f, f �, η, ε) and

z

g

��
x

f
// y

over

Pz

Pg

!!
h

��
Px

Pf
//

α ;C

Py

.

Let ĥ = f �g and let α̂ be the composite f.(f �.g) ∼= (f.f �).g ∼= 1.g ∼= g. Let β̂ : Pĥ ⇒ h

be the composite P (f �.g) ∼= Pf �.Pg ∼= Pf �.(Pf.h) ∼= (Pf �.Pf).h ∼= P (f �.f).h ∼= P1.h ∼=
1.h ∼= h. This is a lift of (h, α).
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To check the 2-cell property suppose that γ : g ⇒ g′ and

Pz

Pg′

  
h

��
h′

��

σ +3

Px
Pf

//

α′ ;C

Py

equals

Pz

Pg ((

Pg′

��

Pγ ;C
h

��
Px

Pf
//

α ;C

Py

.

Then suppose that there are lifts (ĥ, α̂, β), (ĥ′, α̂′, β′) of (h, α) and (h′, β) as above. Let σ̂

be the composite

h
l +3 1.h

η.h +3 (f− � .f).h
a +3 f− � .(f.h)

f �.α̂ +3 f �.g

f �.γ
��

h′ ks
l

1.h′ ks
η−1.h′

(f �.f).h′ ks
a

f �.(f.h′) ks
f �.α̂′

f �.g′

.

It is unique with the property that α̂′.f σ̂ = γ.α̂ and σ.β̂ = β̂′.P σ̂.

Proposition 2.3.12. Suppose that P : E → B is a fibration of bicategories and f : x→ y

is cartesian in E . If Pf is an equivalence then f is an equivalence.

Proof. Suppose Pf is part of an adjoint equivalence (Pf, Pf �, η, ε). Then we can lift ε to

obtain ε̂ : f.h ∼= 1.

y

1

��

h

��
x

f
//

ε̂ ;C

y

Py

1 ((

P1

��

∼=(Pf)�

��
Px

Pf
//

ε ;C

Py

Now since 1y is an equivalence it is cartesian. Then since f.h ∼= 1, fh is cartesian. Then

Proposition 2.3.10 tells us that h is cartesian. We can then lift Ph.Pf ∼= (Pf)�.Pf ∼= 1 ∼=
P1 as picture on the right to obtain η̂ : h.k ∼= 1.

x

1

��

k

��
y

h
//

η̂ ;C

x

Px

1

%%

P1

��

∼=Pf

��
Py

(Pf)�

++

Ph

33∼=

η ;C

Px

Finally, f ∼= f.1 ∼= f.(h.k) ∼= (f.h.).k ∼= 1.k ∼= k and then h.f ∼= h.k ∼= 1. Thus f is an

equivalence.
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Proposition 2.3.13. Suppose P : E → B is a homomorphism of bicategories, f : a → b

is a cartesian 1-cell in E and σ, τ are isomorphisms in B as pictured. In this case the

unique lift of σ along f , called σ̂, is an isomorphism.

z

ĥ

��

ĥ′

��

σ̂ +3
g

��
g′

))

τ ;C

x
f

// y

over

Pz

h

��

h′

��

σ +3
Pg

��
Pg′

))

Pτ ;C

Px
Pf

// Py

There are isomorphisms on the front and back of each pasting that we have not illustrated

in this diagram.

Proof. If σ and τ are both invertible then the above lifting can be done with σ−1 and τ−1.

This gives a map σ̂� : ĥ ⇒ ĥ′. If we paste these diagrams together then σ̂σ̂� is a lift of

σσ−1 = 1h. However 1ĥ is also a lift of 1h and thus by uniqueness σ̂σ̂� = 1ĥ. Pasting the

diagrams together the other way gives σ̂�σ̂ = 1ĥ′ .

Corollary 2.3.14. Suppose P : E → B is a homomorphism of bicategories. The lift of

any 1-cell in B along any cartesian 1-cell in E , as in Definition 2.3.1 (1), is unique up to

a unique invertible 2-cell.

Proof. Use the above result with σ = 1h and τ = 1g.

Proposition 2.3.15. Suppose P : E → B is a homomorphism of bicategories and f : a→
b is cartesian over Pf : Pa→ Pb. Among all cartesian 1-cells that map to Pf , it is unique

up to an equivalence 1-cell and isomorphism 2-cell. This equivalence and isomorphism are

unique up to an isomorphism 2-cell.

Proof. Suppose that g : c→ b is cartesian over Pf . Then

c
g

��
ĥ

��
a

f
//

r̂ ;C

b

over

Pc
Pg

!!
1

��
Pa

Pf
//

r ;C

Pb

and f is cartesian so there exists a lift (ĥ, r̂, β̂). By Corollary 2.3.14 this lift is unique up

to a unique isomorphism. We have yet to show that ĥ is an equivalence.

If we draw the same diagram with g in the base then since g is cartesian there exists

a lift (ĥ′, l̂′, β̂′) of r : Pg.1 ⇒ Pf . These two lifts can be pasted together to form a lift

pictured on the left. The base forms a commuting shell by coherence in a bicategory. Then

there exists a unique lift of r : 1.1⇒ 1. It is a 2-cell ĥĥ′ ⇒ 1 and it is an isomorphism by
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Proposition 2.3.13.

x

f

��

1

��

ĥ′

�� f
=

��

z

g
##

ĥ

��

r̂′ ;C

x
f

//

r̂ ;C

y

over

Px

Pf

��

1

��

1

�� Pf
=

��

Pz

Pg ##

1

��

r ;C

Px
Pf

//

r ;C

Py

The isomorphisms omitted in this diagram are all r. If we paste the lifts together the

other way and follow the same reasoning we get another isomorphism ĥ′ĥ⇒ 1. Thus ĥ is

an equivalence.

Proposition 2.3.16. Suppose that P , Q, F are homomorphisms with with P = QF .

1. If P is locally fibred and chosen cartesian 2-cells are closed under horizontal compo-

sition then all cartesian 2-cells are closed under horizontal composition.

2. If P and Q are fibrations and F preserves chosen cartesian maps then F preserves

all cartesian maps.

Proof. The proofs are essentially the same as for Proposition 2.2.14 and 2.2.15.

2.3.2 Fibrations with stricter properties

Every fibration is locally fibred and thus locally has the iso-lifting property. We can take

advantage of this to make fibrations much easier to handle.

Proposition 2.3.17. Suppose P : E → B is a homomorphism of bicategories. When P

is locally fibred every lift (ĥ, α̂, β̂) of (h, α) along a cartesian 1-cell can be chosen so that

β̂ = 1h. That is, lifts along cartesian 1-cells can be chosen so Pĥ = h.

Proof. Suppose that f is cartesian and (ĥ, α̂, β̂) is a lift of (h, α). That is,

z

g

��

ĥ

��
x

f
//

α̂ ;C

y

Pz

h

��

Pg

!!
Px

Pf
//

α ;C

Py

where α.Pfβ̂ = Pα̂.φhf . Let σ : h! ⇒ h be the cartesian lift of β̂ at h and let α! = α̂.fσ (σ

is an isomorphism because it is a cartesian 2-cell over an isomorphism). Then (h!, α!, 1h)
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is a lift of (h, α) for f . This is proved by Pα!.φh!f = Pα̂.P (fσ).φh!f = Pα̂.φhf .PfPσ =

α.

Proposition 2.3.18. Every locally fibred homomorphism P : E → B is isomorphic in

the slice over B to a locally fibred P ′ : E ′ → B that preserves identities and composition

strictly. Call the isomorphism S as pictured. If P is a fibration then P ′ is a fibration and

S is cartesian.

E

P ��

S // E ′

P ′��
B

Proof. Suppose P : E → B is locally fibred. Let E ′ have the same 0-, 1-, and 2-cells as E

with the same vertical composition and 2-cell identities. Then let P ′ have the same action

as P on 0-, 1-, and 2-cells so that S is the identity on 0-, 1-, and 2-cells. We now define

horizontal composition in E ′. If f : e → e′ and g : e′ → e′′ in E ′ then g ◦ f is the domain

of the cartesian lift of φgf : PgPf ⇒ P (gf) at gf . If α : f ⇒ f ′, β : g ⇒ g′ then β ◦ α is

the unique map above Pβ ∗ Pα such that

g ◦ f
ϕ(φ,gf) +3

β◦α
��

gf

β∗α
��

g′ ◦ f ′
ϕ(φ,g′f ′)

+3 g′f ′

over

PgPf
φ +3

Pβ∗Pα
��

P (gf)

P (β∗α)

��
Pg′Pf ′

φ
+3 P (g′f ′)

This has the effect that P ′(g ◦ f) = P ′g.P ′f and P ′(β ◦ α) = Pβ ∗ Pα = P ′β ∗ P ′α.

Similarly, let the identity 1-cells 1̂e be the domain of the cartesian lift of φe : 1Pe ⇒ P (1e)

at 1e. Then P ′(1̂e) = 1P ′e. The coherence isomorphisms for E ′ are obtained as the unique

maps in the following diagrams.

(h ◦ g) ◦ f
ϕ +3

â

��

(h ◦ g).f
ϕ.f +3 (h.g).f

a

��
h ◦ (g ◦ f)

ϕ
+3 h.(g ◦ f)

h.ϕ
+3 h.(g.f)

f

r

$,
r̂
��

f ◦ 1̂
ϕ
+3 f.1̂

f.ϕ
+3 f.1

f

l

$,
l̂
��

1̂ ◦ f
ϕ
+3 1̂.f

ϕ.f
+3 1.f

The reader can verify that this is a bicategory and that P ′ is a homomorphism that

preserves composition and identities. Let S be the identity on 0-, 1-, and 2-cells. The

coherence morphisms for S are the isomorphisms ϕ(φ, gf) : g ◦ f ∼= gf and ϕ(φe, 1e) : 1̂e ∼=
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1e described above. It is easy to check that P ′S = P and since S is the identity on 0-, 1-,

and 2-cells it is an isomorphism.

Suppose that P is a fibration. The cartesian 1-cells in E ′ are precisely those we obtain

in E . Lifts along cartesian 1-cells are (ĥ, α!, β̂) obtained by taking lifts (ĥ, α̂, β̂) in E and

letting α! = α̂ϕ(φ, fĥ). Thus P ′ has cartesian lifts of 1-cells. Since the action of P ′ on

hom-categories is the same as P , P ′ is locally fibred. Suppose that β, α are cartesian

2-cells. Their composite in E ′ is defined using the diagram

g ◦ f
ϕ +3

β◦α
��

g.f

β∗α
��

g′ ◦ f ′
ϕ
+3 g′.f ′

.

Since P is a fibration β ∗α is cartesian. Then the cancellation property of cartesian 1-cells

tells us that β ◦α is also cartesian. Thus P ′ is a fibration. Chosen cartesian 1- and 2-cells

in E ′ are the same as in E . Since S is the identity on 0-, 1-, and 2-cells it is cartesian.

Remark 2.3.19. These last two results rely on the local iso-lifting property of P . The

first result corresponds to the lifting of an isomorphism that arises from the bipullback

definition of cartesian 1-cell.

2

!!

%%##
E (z, x)

∼=
∼=

Pzx

��

f∗ // E (z, y)

Pzy

��
∼=

B(Pz, Px)
Pf∗

// B(Pz, Py)

� //

2

!!

%%��''
∼= ∼=

E (z, x)

Pzx

��

f∗ // E (z, y)

Pzy

��
∼=

B(Pz, Px)
Pf∗

// B(Pz, Py)

The isomorphism on the left is the β̂ associated with lifts along cartesian f . The second

result corresponds to the lifting of the isomorphisms associated with the action of P on

composition and identities.

E (y, z)× E (x, y)

Pyz×Pxy
��

∗ //

∼=

E (x, z)

Pxz

��
B(Py, Pz)×B(Px, Py) ∗

// B(Px, Pz)

� //
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E (y, z)× E (x, y)

Pyz×Pxy
��

∗
++

◦
33∼= E (x, z)

Pxz

��
B(Py, Pz)×B(Px, Py) ∗

// B(Px, Pz)

1

1Px
((

1x // E (x, x)

Pxx

��

∼=

B(Px, Px)

� //
1

1Px
((

1x **

1̂x

44
∼= E (x, x)

Pxx

��
B(Px, Px)

We’ve borrowed this convenient visual representation of iso-lifting from [JS93].

From this point on we will suppose that all fibrations preserve composition and iden-

tities and have the stronger lifting property of Proposition 2.3.17. Working under this

supposition will vastly simplify future calculations. We can do this without loss of gener-

ality because all fibrations are isomorphic to a fibration of this kind.

Definition 2.3.20. Suppose P : E → B and Q : D → B are fibrations of bicategories.

A homomorphism η : E → D is called cartesian when it preserves cartesian maps and

Qη = P .

Let Fib(B) be the tricategory whose objects are fibrations over B, whose 1-cells are

cartesian homomorphisms,2-cells are pseudo-natural transformations Γ: η ⇒ ε that have

QΓ = 1P ; and 3-cells are modifications ζ : Γ V Λ that have Qζ = 11P . Let Bicat be

the tricategory of bicategories, homomorphisms, transformations and modifications. Let

[Bcoop,Bicat] be the tricategory of contravariant trihomomorphisms from B to Bicat,

tritransformations, trimodifications and perturbations. As in Section 2.2, a perturbation

is a morphism of modifications as defined in [GPS95; Gur06]..

2.3.3 The Grothendieck construction

Before describing the Grothendieck construction for bicategories we will unpack the tricat-

egory structure of Bicat and see what a contravariant trihomomorphism from B to Bicat

really means.

Remark 2.3.21. An algebraic definition of tricategory can be found in [Gur06, p. 23].

There is more than one tricategory structure on Bicat. We choose the following:

• Composition of 1-cells is the usual composition of homomorphisms: GF (x) = G(F (x))

and the usual coherence isomorphisms.

• Composition of 2-cells: When α : F ⇒ G and β : G ⇒ H we let (βα)x = βxαx and
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(βα)f be the associated pasting of 2-cells. When

B

F
%%

F ′

::α�� C

G
%%

G′

::β�� D

we let (β ∗ α)x be

GF (x)
βF (x) // G′F (x)

G′(αx)// G′F ′(x) .

(β ∗ α)f be the associated pasting of 2-cells.

• Composition of 3-cells is similar to that for 2-cells.

• Identity 1-cells are the obvious identity homomorphisms 1B : B → B. Identity 2-

cells are transformations 1F : F ⇒ F with 1-cell components (1F )x = 1F (x). Identity

3-cells are modifications 1α with (1α)x = 1(αx).

The rest of the data consists firstly of pseudo-natural equivalences governing associa-

tivity and the action of identities. The final data are invertible modifications that sit in

place of the usual axioms. The details can be found in [GPS95] and are summarised below.

• Associativity of composition is governed by a pseudo-natural equivalence

(HG)F

(γβ)α

��

aHGF +3 H(GF )

γ(βα)

��
(H ′G′)F ′

aH′G′F ′
+3

∼=

H ′(G′F ′)

.

The 2-cells components are identity transformations 1: H(GF ) ⇒ (HG)F . The 3-

cell components are invertible modifications whose components are a composite of

coherence isomorphisms in the image of H ′(G′F ′).

• The unity of identities is governed by two pseudo-natural transformations

1.F

11.α

��

lF +3 F

α

��
1.F ′

l′F

+3

∼=

F ′

F

α

��

rF +3 F.1

α.11

��
F ′

r′F

+3

∼=

F ′.1

.

The 2-cells components are identity transformations 1: 1F ⇒ F and 1: F ⇒ F1.

The 3-cell components are invertible modifications whose components are a compos-

ite of coherence isomorphisms in the image of F ′.

• There are invertible modifications π, µ, λ, ρ that relate various composites of a, l,
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r above. In this case they are built from the coherence isomorphisms of assorted

bicategories and homomorphisms.

• There are three axioms that π, µ, λ, ρ are required to satisfy. The coherence theorem

for bicategories guarantees that they hold.

There is a related tricategory structure given by an alternate composition rule for

2,3-cells. Choosing one or the other will not significantly effect the nature of our results.

Remark 2.3.22. An algebraic definition of trihomomorphism can be found in [Gur06, p.

29]. A trihomomorphism F : Bcoop → Bicat consists of the following data:

• An object function F0 : ob B → ob Bicat.

• For objects a, b of B, a pseudo-functor B(a, b) → Bicat(Fa, Fb). This means that

2-cell composition and identities in B are preserved up to natural isomorphisms

satisfying standard coherence axioms. The data is just isomorphisms φβα : F (β.α)V

Fα.Fβ and φf : F (1f )V 1Ff . The components are

Ff(x)

Fαx
//

φβα��

F (β.α)x

**
Fh(x)

Fg(x)
Fβx

55
and Ff(x)

F (1f )x
**

1Ff(x)

44
φf�� Ff(x) .

• For objects a, b, c of B, an adjoint equivalence χ : ⊗′ ◦(F ×F )⇒ F ◦⊗. This means

that horizontal composition is preserved up to adjoint equivalence. The data is

Ff.Fg
χgf +3

Fα.Fβ

��

F (gf)

F (βα)

��
Ff ′.Fg′

χβαw�

χg′f′
+3 F (g′f ′)

which amounts to

FfFg(x)
χgfx //

FfFg(h)

��

Fgf(x)

Fgf(h)

��
FfFg(y)

χgfh
{�

χgf y
// Fgf(y)

and

FfFg(x)
χgfx //

FαFg(x)
��

Fgf(x)

F (βα)x

��

Ff ′Fg(x)

Ff ′(Fβx)
��

Ff ′Fg′(x)

χβαx
{�

χg′f′x

// Fgf(x)

.

The data on the left indicates that χgf is a pseudo-natural equivalence and the data

on the right is the component at x of the modification χβα.
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• For objects a of B, an adjoint equivalence transformation ι : I ′Fa ⇒ F ◦ Ia. This

means that identity 1-cells are preserved up to adjoint equivalence. The data is

1Fa
ιa +3

11Fa

��

F1a

F (11a )

��
1Fa

ι1a
w�

ιa
+3 F1a

.

This means

x
ιax //

h

��

F1(x)

F1(h)

��
y

ιah{�

ιay
// F1(y)

and

x
ιax //

1x

��

F1(x)

F (11)x
��

x

ι1ax
{�

ιax
// F1(x)

.

The data on the left indicates that ιa is a pseudo-natural equivalence and the data

on the right is the component at x of the modification ι1a .

• For objects a, b, c, d of B, an invertible modification ω whose component at fgh is

itself an invertible modification whose component at x is an invertible pseudo-natural

transformation

FfF (h.g)(x)
χx // F ((h.g).f)(x)

Fa
**

FfFgFh(x)

Ff(χx) 44

ωfgh,x��

1
**

F (h.(g.f))(x)

FfFgFh(x)
χFh(x)

// F (g.f)Fh(x)
χx

44 .

• For objects a, b of B, an invertible modification γ whose component at f is itself

an invertible modification whose component at x is an invertible pseudo-natural

transformation

FfF1(x)
χx // F (1.f)(x)

Flx

%%
Ff(x)

Ff(ιx)
99

1
// Ff(x)

γx�� .

• For objects a, b of B, an invertible modification δ whose component at f is itself

an invertible modification whose component at x is an invertible pseudo-natural
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transformation

Ff(x)

1 $$

Frx // F (f.1)(x)

δx��

Ff(x)
ιFf(x)

// F1Ff(x)

χx

88

.

• There are two axioms involving ω, δ, γ, ι, χ above. They can be found in [Gur06;

GPS95].

We will describe the Grothendieck construction for fibred bicategories: a triequivalence

el : [Bcoop,Bicat]→ Fib(B)

that generalises the result given in Section 2.2. Again, we are mostly concerned with its

action on objects and use “Grothendieck construction” to mean both the action on objects

and the whole trihomomorphism.

Construction 2.3.23 (The Grothendieck construction for bicategories). Suppose F : Bcoop →
Bicat is a trihomomorphism. We define a fibration PF : elF → B as follows. elF is the

bicategory with:

• 0-cells are pairs (x, x ) where x ∈ B and x ∈ Fx.

• 1-cells are pairs (f, f ) : (x, x )→ (y, y ) where f : x→ y and f : x → Ff(y ).

• 2-cells are pairs (α, α ) : (f, f )⇒ (g, g ) : (x, x )→ (y, y ) where α : f ⇒ g and

x
f //

g
""

Ff(y )

Fg(y )

α��
Fαy

::
.

• If (g, g ) : (y, y )→ (z, z ) then the composite (g, g ).(f, f ) has first component g.f

and second component

x
f // Ff(y )

Ff(g ) // FfFg(z )
χgf // Fgf(z ).

• If (γ, γ ) : (g, g ) → (h, h ) : (x, x ) → (y, y ) then the vertical composite has first
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component γ.α and second component

x
f //

g
**

h

��

Ff(y )

Fg(y )

α��
Fαy

88

Fh(y )

γ�� Fγy
88

Fγαy

II

φαγy��

• If (β, β ) : (j, j ) → (k, k ) : (y, y ) → (z, z ) then the horizontal composite has first

component β ∗ α and second component

x

α��

f //

g

##

Ff(y )

Ff(β )��
Ff(k )

&&

Ff(j ) // FfFj(z )
χjf // Fjf(z )

Fg(y ) Fαk��

Fαy

OO

Fg(k )

&&

FfFk(z )

Ff(Fβz )

OO

FgFk(z )

(FαFβ)z

^^

FαFk(z )

OO

χkg
// Fkg(z )

Fβαz

^^

χβα��

.

The 2-cell labelled Ff(β ) is strictly the composite φ.Ff(β ) where φ is an isomor-

phism associated with Ff . In order to simplify this diagram and those that follow,

all isomorphisms associated with such homomorphisms have been omitted.

• Identity 1-cells are 1(x,x ) = (1x, (ix)x ), the second component is

1Fx(x )
(ix)x // F1x(x ) .

• Identity 2-cells are 1(f,f ) = (1f , φff .lf ), the second component is

x

f ++

f //

lf��

Ff(y )

Ff(y )

1

FF

F1f y

XX
φf +3 .

• For associativity isomorphisms, 2-cells with first component afgh and second com-
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ponent given by the following composite.

w
f // Ff(x )

Ff(g )// FfFg(y )

FfFg(h )

%%

χy // Fgf(z )

χh��

Fgf(h )// FgfFh(z )

ω−1
fgh��

χ // Fh(gf)(z )

FfFgFh(z )
Ff(χ)

//

χFh(z )

99

FfFhg(z )
χ
// F (hg)f(z )

Faz

OO

• For left unit isomorphisms, 2-cells with first component lf and second component

given by the following composite.

x
f // Ff(y )

Ff(iy)

$$

1 // Ff(y )

FfF1y(y )Ff(y )
χ
//

γ−1
f��

F1yf(y )

Fly

==

• For right unit isomorphisms, 2-cells with first component rf and second component

given by the following composite.

x
i //

f --

F1(x )
F1(f)// F1Ff(y )

χ // Ff1(y )

Ff(y )

i�� iFf

OO

Fry

::

δ−1
f��

By projecting onto the first component of elF we obtain a homomorphism PF : elF →
B.

Proposition 2.3.24. The homomorphism PF : elF → B defined above is a fibration.

Proof. To show that elF is a bicategory we need to use the axioms for a trihomomorphism.

• elF ((x, x ), (y, y )) is a category: the definition of vertical composition uses the

coherence isomorphisms for the homomorphism Fxy. The three axioms for this

homomorphism give associativity and left and right identity in elF ((x, x ), (y, y )).

• Horizontal composition is functorial: the definition of horizontal composition uses the

isomorphism χβα from the transformation χ. The two axioms for this transformation

make horizontal composition in elF functorial.

• Coherence axioms: the coherence isomorphisms make use of invertible modifications

ω, γ and δ. The two axioms for these modifications ensure that the axioms for a

bicategory hold.
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Observe that composition in elF in the first component is just composition in B, thus

PF is a homomorphism that preserves composition and identities strictly. We need to

show that PF : elF → B is a fibration.

Suppose that f : x → y in B and (y, y ) is in elF . We claim that ϕ(f, (y, y )) =

(f, 1Ff(y )) : (x, Ff(y ))→ (y, y ) is cartesian over f .

Ff(y )
1Ff(y )

// Ff(y )

Whenever
(z, z )

(g,g )

&&
(h, )

��
(α, ) ;C

(x, Ff(y ))
(f,1)

// (y, y )

over

z

g

##

h

��
α ;C

x
f

// y

we can choose h = χ�.Fαy .g and α equal to

z
g //

g
11

Fg(y )
Fαy // Ffh(y )

1

88
χ�

//

l��

FhFf(y )
Fh(1) //

χ

55
1
00

ε��

FhFf(y )
r��

χ // Ffh(y )

Fg(y )
Fαy

>>

to give a lifting of (h, α) as required. Showing the 2-cell property is not very difficult but

requires large diagrams that we will not include here. Thus PF has cartesian 1-cells.

Suppose that α : f ⇒ g : x→ y in B and (g, g ) is in elF . We claim that ϕ(α, (g, g )) =

(α, 1Fαy g) : (f, Fαy g)⇒ (g, g ) : (x, x )→ (y, y ) is cartesian over α.

x
Fαy g //

g
%%

Ff(y )

1��

Fg(y )

Fαy

OO

Whenever
(h, h )

(γ,γ )

"*
(δ, )

��
(f, Fαy g

(α,1)
+3 (g, g )

over

h
γ

 (
δ

��
f

α
+3 g

we find that δ = γ .φ−1
δα g and that this uniquely makes (γ, γ ) = (α, 1).(δ, δ ). This occurs

precisely because 1Fαy g is an isomorphism. Thus PF has cartesian 2-cells.

The horizontal composite of the two lifts (α, 1Fαy g), (β, 1Fβz k) has first component

β ∗ α and second component a pasting of χβα and Fαg . Since the second component is

an isomorphism we can use the argument above to show that this is cartesian. Thus by
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Proposition 2.3.16 cartesian 2-cells are closed under horizontal composition.

Construction 2.3.25 (Pseudo-inverse to the Grothendieck construction). Suppose that

P : E → B is a fibration. We define a trihomomorphism FP : Bcoop → Bicat as follows:

on 0-cells: Fb = Eb for all b ∈ B. Eb is the fibre of P over b. Its 0-, 1- and 2-cells are

those in E that map to b, 1b and 11b . Horizontal composition of 1-cells is defined by

g∗̂f = r∗(g.f): the domain of the cartesian lift of r : 1b → 1b.1b at g.f . Composition of

2-cells is defined to be the unique 2-cell in the following diagram.

g∗̂f
ϕ +3

α∗̂β
��

g.f

α∗β
��

k∗̂h
ϕ
+3 k.h

over

1
r +3

11

��

1.1

11∗11

��
1

r
+3 1.1

Identities are given by

1̂
ϕ +3

1̂1

��

1

11

��
1̂

ϕ
+3 1

over

1
φ +3

11

��

P1

11

��
1

φ
+3 P1

and coherence isomorphisms by

h∗̂(g∗̂f)
ϕ +3

â

��

h.(g∗̂f)
hϕ +3 h.(g.f)

a

��
(h∗̂g)∗̂f

ϕ
+3 (h∗̂g).f

ϕf
+3 (h.g).f

over

1
r +3

11

��

1.1
1.r +3 1.(1.1)

a

��
1

r
+3 1.1

r.1
+3 (1.1).1

et cetera. The uniqueness of these 2-cells guarantees that the middle-four interchange

holds and that these isomorphisms satisfy the axioms for a bicategory.

on 1-cells: Ff = f∗ : Eb′ → Eb is the homomorphism described using the following diagram

(isomorphisms omitted).

f∗e

f∗k

��

f∗h

��

f∗α+3

ϕ(f,e) // e

k

��

h

��

α +3

f∗e′
ϕ(f,e′)

// e′

over

b
f //

1b

��

1b

��

=

b′

1b′

��

1b′

��

=

b
f

// b′

Ff sends e to the domain of ϕ(f, e). Using the cartesian 1-cell ϕ(f, e′) we send h, k to



2.3. FIBRED BICATEGORIES 55

f∗h, f∗k over 1b with an iso-square on the front and back and α is send to the unique

f∗α over 11b . The action of f∗ on 1-cells is only defined up to a unique isomorphism. The

coherence isomorphisms for f∗ are precisely the unique 2-cells that arise when comparing

f∗h′∗̂f∗h to f∗(h′ ∗ h) and 1̂f∗e to f∗(1e).

Again, the uniqueness of these maps ensures that f∗ preserves vertical composition of

2-cells in the fibres and that the coherence isomorphisms satisfy the appropriate axioms.

on 2-cells: Fσ = σ∗ : g∗ ⇒ f∗ : Eb′ → Eb is the transformation described by the following

diagrams (isomorphisms omitted).

f∗e ϕ(f,e)

  
g∗e

σ∗e
33
ge

**

ϕ(g,e)

44ϕ(σ,ϕ(g,e))�� e
over

b f

!!
b

f

))

g

55σ��

1
22

b′

We take the cartesian lift of σ at ϕ(g, e) and factor its domain as ϕ(f, e).σ∗e (see Proposi-

tion 2.3.28 below). Then (Fσ)e = σ∗e . Now suppose k : e → e′ and consider the action of

f∗ and g∗ on k. We construct Fσk = σ∗k as the unique isomorphism in the diagram

ϕ(f, e′).f∗k ∗ σ∗e
1ϕ +3

1σ∗k ��

ϕ(f, e′).f∗k.σ∗e
τf1 +3 k.ϕ(f, e).σ∗e

1ϕ +3 k.ge
τg��

ϕ(f, e′).σ∗e′ ∗ g∗k 1ϕ
+3 ϕ(f, e′).σ∗e′ .g

∗k
ϕ1

+3 ge′ .g∗k

(2.3.1)

over

f.1
f.r +3

f.11 ��

f.1.1
lr.1 +3 1.f.1

1.r +3 1.f
lr��

f.1
f.r
+3 f.1.1

r.1
+3 f.1

.

where τf is the isomorphism associated with the action of f∗ on k. It is obtained using

the cartesian property of ϕ(f, e′) and the indicated diagrams. Again, the uniqueness of

the σ∗k ensures that σ∗ is actually a transformation.

Note that the 2-cell σ∗k exists because the bottom composite in (2.3.1) is cartesian. It is

an isomorphism because the upper composite is cartesian. This relies on the fact that each

1ϕ is cartesian (the post-composition property). Without the post-composition property

this map doesn’t exist, σ∗ is not natural in any sense and FP is not well-defined. This

demonstrates again the importance of the post-composition property (see Remark 2.2.9).
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F is locally a homomorphism: Suppose α : f ⇒ g : b→ b′ and β : g ⇒ h. Then

f∗e

ϕ(f,e)

��

∼=

g∗e

α∗e

CC

∼=
ϕ(g,e)

++

ge

��

ϕ(α, )��

h∗e

β∗e

CC

ϕ(h,e)

44

he

**ϕ(β, )�� e

and

f∗e

ϕ(f,e)

��

∼=

h∗e

(α.β)∗e

DD

he

**

ϕ(h,e)

44ϕ(α.β, )�� e

both sit over
b

f

��

r��

b

1

@@

f

))

h

55α.β�� b′

so there exists a unique isomorphism (φβα)e : (α.β)∗e ⇒ α∗e .β
∗
e . This is the component of a

modification and is one of the coherence isomorphisms for Fbb′ : B(b, b′)→ Bicat(Eb,Eb′).

The isomorphism for identities φf : (1f )∗ ⇒ (1f∗) is formed in a similar way. Their

uniqueness ensures that they satisfy the appropriate axioms.

Horizontal composition is preserved up to pseudo-natural equivalence: Suppose α : f ⇒
g : b→ b′ and β : h⇒ k : b′ → b′′ then since cartesian 1-cells are unique up to equivalence

we get an equivalence χhf e

(hf)∗e
ϕ(hf,e)

))

χhf e

��
r̂ ;C

f∗h∗e
ϕ(f,h∗e)

// h∗e
ϕ(h,e)

// e

over

b
hf

))

1

��
r ;C

b
f

// b′
h

// b′′

that is unique up to isomorphism. It is the 1-cell component of a transformation χhf : f∗h∗ ⇒
(hf)∗. The 2-cell component of χhf is obtained as the unique 2-cell comparing two 1-cell

lifts along a given cartesian 1-cell. Essentially every 2-cell isomorphism in this construc-

tion is obtained this way and all the the relevant axioms hold by uniqueness. For example,

the invertible modification χβα is described the same way and satisfies the axioms for a

modification by uniqueness.

Identity 1-cells are preserved up to pseudo-natural equivalence: Suppose 1b : b → b
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then since cartesian 1-cells are unique up to equivalence we get an equivalence ιbe

e
1

))

ιbe
��

r̂ ;C

1∗e
ϕ(1,e)

// e

over

b

1

))
1

��
r ;C

b
1

// b′′

that is unique up to isomorphism. It is the 1-cell component of a transformation ιb : (1b)
∗ ⇒

1Eb . The 2-cell component of ιb and the modification ι1b are constructed in a similar way

to that above.

Invertible modifications ω, γ, δ: As above, these are obtained using the 2-cell property

for cartesian 1-cells. For ωfghe we use

f∗(g∗(h∗e))
ϕ(f,g∗(h∗e)) // g∗(h∗e)

ϕ(g,h∗e) // h∗e
ϕ(h,e) // e

and the appropriate liftings from the definitions of χgf et cetera. The other two are done in

a similar way. We then use the uniqueness property to show that they satisfy the relevant

axioms.

This gives us the following result.

Proposition 2.3.26. The FP : Bcoop → Bicat defined above is a trihomomorphism.

Remark 2.3.27 (Fibres). We defined the fibre over an object b by insisting that each 1-cell

and 2-cell sit exactly above 1b and 11b . Then the composition is such that this actually

forms a bicategory. We could give a different kind of fibre by asking that 0-cells only

have Px ' b and 1-cells only have Pf ∼= 1b and so on. The construction would work

either way. However, when these simpler fibres are transported back and forth across the

Grothendieck construction, the result is a bicategory that is not just biequivalent to the

original, but almost exactly the same bicategory. This makes some of the proofs easier.

To prove that the Grothendieck construction is surjective up to equivalence we will

need the following two results.

Proposition 2.3.28. Suppose P : E → B is a fibration. Every f : x → z in E can be

factored as
x

f

$$
f̂

��
y

ϕ(Pf,z)
//

l̂ ;C

z

over

Px

1Px
��

Pf

%%
Px

Pf
//

l ;C

Pz

where f̂ is unique up to unique isomorphism.

Proof. The cartesian property of ϕ(Pf, z) gives a factorisation as shown above. Suppose

that there is another factorisation (f̂ ′, l̂′) and consider the commuting shell formed with
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1Pf and 11Px in the base. There is then a unique isomorphism τ : f̂ ∼= f̂ ′ with l̂ =

l̂′.ϕ(Pf, z)τ and Pτ = 11Px .

Proposition 2.3.29. Suppose P : E → B is a fibration. Every α : f ⇒ g : w → z in E

can be factored as

w

f

��

g

;;

f̂

))

ĥ∗ĝ

55α̂��

ĝ

((

x

ϕ(Pf,z)

��
y

h

))

ϕ(Pg,z)

55ϕ(Pα,ϕ(g,z))��

ĥ

;;

z

over

Pw

Pf

��

Pg

::

1

**

1

44

1
''

Pw

Pf

��
Pw

Pf

**

Pg

44Pα��

1

::

Pz

where α̂ is unique up to choice of f̂ , ĝ and ĥ. (Invertible 2-cells have been omitted in each

diagram).

Proof. The structure of this proof is the same as Proposition 2.2.21. Begin by factoring

f ∼= ϕ(Pf, z) · f̂ and g ∼= ϕ(Pg, z) · ĝ using Proposition 2.3.28. Now take the cartesian lift

of Pα at ϕ(Pg, z). Then ϕ(Pα,ϕ(Pg, z))ĝ is cartesian over Pα.1 and

ϕ(Pf, z)f̂
τf +3

η

��

f
α +3 g

τg

��
hĝ

ϕ(Pα,ϕ(Pg,z))ĝ
+3 ϕ(Pg, z)ĝ

over

Pf.1
r +3

1

��

Pf
Pα +3 Pg

r

��
Pf.1

Pα.1
+3 Pg.1

so there exists a unique η : ϕ(Pf, z)f̂ ⇒ hĝ with Pη = 1Pf.1 and

w

f̂

++

ĝ
''

f

$$g ..

α��

y
ϕ(Pf,z)

��
x

ϕ(Pg,z)

33 z

=

w

f̂

++

ĝ
''

y

η��

ϕ(Pf,z)

��
x

h

((

ϕ(Pg,z)

66ϕ(Pα,...)�� z

.

By Proposition 2.3.28 we factor h ∼= ϕ(Pf, z) · ĥ where Pĥ = 1Px. We then form the
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fibre-composite of ĥ and ĝ by lifting the isomorphism 1 ∼= 1.1. Finally, we observe that

ϕ(Pf, z)f̂
η +3

1

��

hĝ

τhĝ
��

ϕ(Ph, z)ĥĝ

ϕ(Ph,z)ϕ(r,−)
��

ϕ(Pf, z)f̂
ϕ(Ph,z)α̂

+3 ϕ(Ph, z)(ĥ∗̂ĝ)

over

Pf.1
1 +3

1

��

Ph.1

r1
��

Pf.1.1

Pfr
��

Pf.1
Pf.11

+3 Pf.1

so there exists a unique α̂ : f̂ ⇒ ĥ∗̂ĝ over 11Pw with ϕ(Ph, z)ϕ(r, 1).τhĝ.η = ϕ(Pf, z)α̂

and hence a decomposition of α as stated.

Suppose that there was another decomposition of α that obtained α̂′ using f̂ ′, ĝ′ and

ĥ′. Then there exist unique τf , τg and τh as in Proposition 2.3.28. Using the fact that α̂′

is unique, we find that α̂′ = (τh∗̂τg).α̂.τf .

Construction 2.3.30 (Surjective up to biequivalence). In order to show that the Grothendieck

construction is surjective up to biequivalence we need to find for every P a biequivalence

of fibrations H.

elFP
H //

π
!!

E

P��
B

Here π is used in place of PFP .

First, what is elFP ? Its data consists of:

0-cells: pairs (x, x ) where x ∈ E and Px = x.

1-cells: pairs (f, f ) : (x, x )→ (y, y ) where f : x→ y in B and f : x → f∗(y ) in Ex.

2-cells: pairs (α, α ) : (f, f )⇒ (g, g ) : (x, x )→ (y, y ) where α : f ⇒ g in B and α : f ⇒
α∗y ∗̂g in Ex.

x

f

,,

α∗y ∗g

22

g &&

α�� f∗(y )

g∗(y )
α∗y

88

Then H : elFP → E is defined on 0-cells by H(x, x ) = x . On 1-cells by H(f, f ) =

r∗(ϕ(f, y ).f ), the domain of the cartesian lift of r : f ⇒ f.1 at

x
f // f∗y

ϕ(f,y ) // y .
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On 2-cells H(α, α ) is the composite

x

H(f,f )

��

H(g,g )

::

f

**

α∗y ∗ĝ

44α��

g

''

f∗y

ϕ(f,y )

��
y

h

**

ϕ(g,y )

44ϕ(α,ϕ(g,y ))��

α∗y

::

y

.

The coherence isomorphisms are the unique fillers in the following diagrams.

H(g, g ).H(f, f )
r̂∗r̂ +3

��

ϕ(Pg, ).g .ϕ(Pf, ).f

ϕ(Pg, ).∼=.f
��

ϕ(Pg, ).ϕ(Pf, ).f∗(g ).f

∼=.f∗(g ).f

��
H((g, g ).(f, f ))

r̂
+3 ϕ(Pgf, ).χ.f∗(g ).f

H((1, (ix)x )
r̂ +3

��

ϕ(P1, )(ix)x

∼=
��

1H(x,x ) 1
+3 1x

Note that the coherence maps χ and ι are those given by the inverse to the Grothendieck

construction.

Proposition 2.3.31. The functor H is a cartesian biequivalence.

Proof. First,

π(x, x ) = x = PH(x, x )

π(f, f ) = f = PH(f, f )

π(α, α ) = α = PH(α, α )

so PH = π.

Second, the chosen cartesian maps in elFP are those with identities in the second

component. Since H acts by post-composition with cartesian maps it is cartesian on

chosen cartesian maps, thus H is cartesian.

Third, for every e ∈ E there exists (Pe, e) ∈ elFP with H(Pe, e) = e so H is surjective



2.3. FIBRED BICATEGORIES 61

on objects. Then each 1-cell in the image of H is a composite of a factorisation according to

Proposition 2.3.28. Since such factorisations are unique up to isomorphism, H is surjective

up to isomorphism on 1-cells. Finally, all 2-cells in the image of H are composites of

factorisations according to Proposition 2.3.29. Since such factorisations are unique (up to

the given factorisation of the 1-cells), H is appropriately bijective on 2-cells. Thus H is a

biequivalence.

Theorem 2.3.32. The Grothendieck construction is the action on objects of a triequiva-

lence

el : [Bcoop,Bicat]→ Fib(B).

Proof. We have already shown that on objects el is surjective up to biequivalence (Proposi-

tion 2.3.31). Showing that it is locally a biequivalence requires many pages of verification.

We will present most of the required data but omit many of the details.

Suppose η : F ⇒ G is a tritransformation in [Bcoop,Bicat]. We define el η : elF → elG

by el η(x, x ) = (x, ηx(x )) on objects and el η(f, f ) = (f, ηf y .ηx(f )) on 1-cells. The first

component of el η(α, α ) is α and the second is the composite

ηx(x )
ηx(f )//

ηx(g )

""

ηxFf(y )
ηf y // Gfηy(y )

ηx(α )��

ηxFg(y )

ηxFαy

OO

ηgy
// Ggηy(y )

Gαηyy

OO

ηαy�� .

The coherence isomorphisms φfg have first component 1fg and second component

ηx(x )

ηx(f )

��
ηxFf(y )

ηxFg(f )

##

ηf y // Gfηy(y )
Gf(g )// GfηyFg(z )

Gfηgy // GfGgηz(z )
χ1 // Ggfηz(z )

ηxFgFf

ηfFg

::

ηxχ
//

ηf��

ηxFgf

ηgf

99

Π��

ηgf
// Ggfηz

G1ηz z

OO

∼=

where Π is part of the data of a tritransformation. The coherence isomorphisms φx have
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first component 11x and second component

ηx(x )

ιηx(x ) %%

ηx(i)// ηxF1(x )
η1 // G1ηx(x )

G1ηx(x )

G1ηxx

88

M��
.

M is part of the data of a tritransformation.

This is a cartesian homomorphism from PF to PG and defines the action of el on 1-cells.

Suppose Γ: η V ε is a trimodification in [Bcoop,Bicat]. We define a transformation

el Γ: el η → el ε. The first component of el Γ(x,x ) is 1x and second component is

ηx(x )
Γxx // τx(x )

i // G1τx(x ) .

The first component of el Γ(f,f ) is lr and second component is

ηx(x )
Γx //

ηx(f )

""

τx(x )

τx(f )

##

ιτ // G1τx(x )
G1τx(f )// G1τxFf(y )

G1τf // G1Gfτx(y )
χ1 // Gf1τx(y )

ηxFf(y )

∼=

ΓxFf //

ηf

##

τxFf(y )

∼=
ιτFf

::

τf

$$

Gfτy(y )

Grτy

OO

δ��

Gfηy(y )
GfΓy

//

m��

Gfτy(y )

∼=

1

44ιGfτ

BB

Gfιτy

// GfG1τy(y )
χ1
// G1fτy(y )

Glτy

OO
Glrτyy

\\

γ��

where m is part of the data of a trimodification. The unlabelled isomorphisms are associ-

ated with ι. This is a vertical transformation from el η to el τ and defines el on 2-cells.

Suppose ζ : Γ → Λ is a perturbation in [Bcoop,Bicat]. We define a modification

el ζ : el Γ→ el Λ. The first component of el ζ(x,x ) is 11x and the second component is

ηx(x )

Γx
**

Λx

44
ζx�� τx(x )

ι //

ι

$$

G1τx(x )

∼=

G1τx(x )

1

FF

G11τxx

XX

∼=
.

This is a vertical modification from el Γ to el Λ and defines el on 3-cells.

It can be verified that el is a trihomomorphism.

Suppose α : elF → elG is a cartesian homomorphism. We will define a tritrans-

formation α̂ : F ⇒ G with el α̂ ' α. This means homomorphisms α̂x : Fx → Gx and
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pseudo-natural equivalences α̂x.F (-)⇒ G(-).α̂y

α̂x.Fg

α̂xFγ

��

α̂g +3 Gg.α̂y

Gγα̂x

��
α̂x.Ff

α̂f

+3

α̂γ 7G

Gf.α̂y

together with two invertible modifications Π and M .

Suppose σ : h ⇒ k : a → b in Fx. Define α̂x : Fx → Gx to be the composite Fx →
elFx → elGx → Gx where elFx is the fibre over x. The first map sends

a

h

$$

k

::σ�� b 7→ (x, a)

(1x,ι.h)
))

(1x,ι.k)

55(11x ,δ)�� (x, b) where δ is

a
h //

k
!!

b
ιb //

OO

1

F1(b)
OO

F (11)b

σ
�#

b
ιb

//

ι1b
�#

F1(b)

.

The second map is α restricted to fibres and the final map is π2, the projection onto the

second component. We choose not to include descriptions of α̂f , α̂σ, Π or M .

We find that α(x, x ) equals el α̂(x, x ) and that 1α(x,x ) are the 1-cell components of

a pseudo-natural equivalence. Thus el is locally surjective up to equivalence.

Suppose Γ: elα → elβ is a vertical transformation. We will define a trimodification

Γ̂ : α⇒ β with el Γ̂ ∼= Γ. This means transformations Γ̂xαx ⇒ βx together with invertible

modifications m.

Remember that the action of elα on objects is elα(x, x ) = (x, αx(x )). Thus the

second component of Γ(x,x ) : (x, αx(x )) → (x, βx(x )) is a 1-cell αx(x ) → G1βx(x ).

Then let (Γ̂x)x be this 1-cell composed with ι� : G1βx(x ) → βx(x ). We choose not to

include descriptions of (Γ̂x)f or m.

We find that (el Γ̂)(x,x ) = (1x, ι.(Γ̂x)x ) = (1x, ι.ι
�.π2Γ(x,x )) ∼= (1x, π2Γ(x,x )) = Γ(x,x )

and that this invertible 2-cell is the component of a modification. Thus el is surjective up

to isomorphism on 2-cells.

Suppose ζ : el Γ→ el Λ is a vertical modification. We will define a perturbation ζ̂ : Γ⇒
Λ with el ζ̂ = ζ. This means modifications ζ̂x : Γx V Λx satisfying the appropriate axioms.

The 2-cell components of ζ(x,x ) have first component 11x and second component a

2-cell pictured on the left. We define ζ̂ by letting (ζ̂x)x equal the pasting given on the
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right.

αx(x )
ιΓx //

ιΛx ((

G1βx(x )

�#

G1βx(x )

G11

OO
αx(x )

Γx

))

Λx

66

ιΓx //

ιΛx %%

G1βx(x )
ι� // βx(x )

�#

G1βx(x )

G11

OO

ι�
// βx(x )

1

OO
ι
�#

This makes ζ̂ a perturbation and it is unique with the property that el ζ̂ = ζ. Thus el is

bijective on 3-cells.

Remark 2.3.33 (Variations on the Grothendieck construction). The Grothendieck con-

structions given in sections 2.2 and 2.3 are closely related but are purpose-built for their

2-categorical and bicategorical settings. What happens if we apply the bicategorical con-

struction to a 2-categorical fibration? Suppose that P : E → B is a 2-fibration of 2-

categories (2.2.6) and apply the inverse Grothendieck construction (2.3.25) with the ordi-

nary notion of fibre. When we inspect the reasoning we find:

• Fb = Eb is a 2-category.

• Ff = f∗ is a 2-functor.

• Fα = α∗ is a pseudo-natural transformation (2-natural when P is horizontally split).

• F is still locally a homomorphism (locally a 2-functor when P is locally split and

horizontally split).

• χ is a pseudo-natural isomorphism and χgf is 2-natural (χ is 2-natural when P is

horizontally split and χgf is an identity when P is split on 1-cells).

• ι is a pseudo-natural isomorphism and ιb is 2-natural (ι is 2-natural when P is locally

split and ιb is an identity when P is split on 1-cells).

• ω, δ and γ are identities.

This amounts to a trihomomorphism F : Bcoop → Gray where χ, ι are invertible, ω, δ and

γ are identities and χgf , ιa are 2-natural. Trihomomorphisms of this kind certainly do

give 2-fibrations under the Grothendieck construction.

When P is locally and horizontally split these trihomomorphisms map into 2Cat and

are just homomorphisms of “2Cat-enriched bicategories”. Functors of this kind certainly

do give (appropriately split) 2-fibrations under the Grothendieck construction.

Remark 2.3.34. As in Section 2: the action of the Grothendieck construction on objects

is described by Baković in [Bak12] Section 6. Section 5 of the same paper gives a partial
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description of the action on objects of the pseudo-inverse. With some adjustments, we have

completed the second construction (Theorem 5.1) and shown that together they form an

equivalence of 3-categories. In Proposition 2.3.25 we indicate where the post-composition

property (mentioned in Remark 2.2.9) is explicitly required.

2.3.4 Examples

Construction 2.3.35 (Families). When B is a bicategory we define Fam(B) as the

bicategory of ‘1-cell diagrams’ in B. An object of Fam(B) is a pair (C , X) of where C is a

category and X : C op → B is a pseudo-functor. A 1-cell is a pair (F, α) : (C , X)→ (D , Y )

where F : C → D is a functor and α : X ⇒ Y F op is a pseudo-natural transformation. A

2-cell is a pair (σ,Σ): (F, α) ⇒ (G, β) where σ : F ⇒ G is a natural transformation and

Σ: αV Y σop.β is a modification as pictured here.

C op

X
��

F op
//

α +3

Dop

Y
��

C op

X
��

F op

++

Gop

33σop
KS

β +3

Dop

Y
��

B

Σ *4

B

Composition and identities are not hard to describe. The coherence isomorphisms a, l and

r are modifications obtained from the corresponding coherence isomorphisms in B. There

is an obvious functor π : Fam(B)→ Cat defined by projection from the first component.

Proposition 2.3.36. π : Fam(B)→ Cat is a fibration.

Proof. First, suppose that (D , Y ) is an object in Fam(B) and F : C → D a 1-cell in Cat.

Let the cartesian lift of F at (D , Y ) be (F, 1Y F op) : (C , Y F op) → (D , Y ). Now suppose

that (G, β) : (C , X)→ (D , Y ) is a 1-cell in Fam(B) and σ : F ⇒ G is a 2-cell in Cat. Let

the cartesian lift of σ at (G, β) be (σ, 1Y σ.β) : (F, Y σ.β) ⇒ (G, β). The details here are

somewhat more complicated but the basic behaviour is the same as Proposition 2.2.31.

Definition 2.3.37. Suppose that B is a bicategory. An arrow p : a→ b in B is called a

Street fibration when p∗ : B(c, e)→ B(c, b) is a Street fibration for all c and the square

B(c, e)

p∗

��

f∗ // B(c′, e)

p∗

��
B(c, b)

f∗
//

∼=

B(c′, b)

is a morphism of Street fibrations for all f : c′ → c.

This means that for each 1-cell g : e → a and 2-cell α : h → pg in B there exists

a ‘cartesian’ 2-cell ϕ(α, g) : α∗g ⇒ g and isomorphism η : h ⇒ pα∗g where ϕ(α, g) is
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cartesian for p∗ and

e
g //

h ..

a

p

��

α ;C

b

equals
e

g

&&

α∗g

88

h ..

ϕ(α,g)
KS

η ;C

a

p

��
b

.

It also means that the ‘cartesian’ 2-cells are closed under pre-composition with arbitrary

1-cells.

Definition 2.3.38. Suppose that B is a bicategory. A morphism between Street fibrations

p : e→ b and q : e′ → b′ in B is a pair of 1-cells (f : e→ e′, g : b→ b′) in B where q.f ∼= g.p

and the induced natural transformation

B(c, e)

p∗

��

f∗ // B(c, e′)

q∗

��
B(c, b)

g∗
//

∼=

B(c, b′)

is a morphism of Street fibrations for all c.

Construction 2.3.39 (Internal fibrations). Suppose that B is a bicategory. We define

FibB to be the bicategory whose:

• Objects are Street fibrations g : a→ b in B. These are sometimes written as a triple

(a, g, b).

• 1-cells are triples (h, σ, h′) : (a, g, b)→ (c, g′, d) where h : a→ c, h′ : b→ d,

a
h //

g

��
σ��

c

g′

��
b

h′
// d

is an isomorphism and h is a cartesian 1-cell.

• 2-cells are pairs of 2-cells (α, α′) : (h, σ, h′)⇒ (k, τ, k′) where α : h⇒ k, α′ : h′ ⇒ k′,

and

a
h //

g

��

σ��

c

g′

��
b

h′

&&

k′

88α′�� d

equals

a

h

%%

k

99α��

g

�� τ��

c

g′

��
b

k′
// d



2.3. FIBRED BICATEGORIES 67

in B. We sometimes write (α, 1, α′) where 1 is representative of the commuting

condition.

Composition and identities are easy to describe.

There is a homomorphism cod: FibB → B defined by projection onto the third com-

ponent. It is called the codomain functor because it projects onto the codomain of the

objects of FibB. It is modelled on cod: Fib → Cat which was used by Hermida to guide

his definition of 2-fibrations.

Proposition 2.3.40. When a bicategory B has bipullbacks cod: FibB → B is a fibration.

Proof. Suppose that (c, q, d) is an object of FibB and h : b → d is a 1-cell in B. The

cartesian lift of h is obtained by taking the bipullback of q and h which is pictured below.

The 2-cell σ is an isomorphism.

a
ĥ //

q̂
��

σ��

c

q

��
b

h
// d

.

See [Str74] for a proof that internal Street fibrations are closed under bipullback.

Now suppose that (h, σ, h′) is a 1-cell in FibB and α′ : k′ ⇒ g′ is a 2-cell in B. Then

σ.α′g : k′g ⇒ g′h and since g′ is a Street fibration, we get a cartesian lift α : k ⇒ h and an

isomorphism η : g′k ⇒ k′g satisfying

a
h

��
g

��
σ ;C

b
h′

��
k′ --

c

g′

��

α′ ;C

d

=

a
h

��k --

g

��
α ;C

b

k′ --

c

g′

��

η ;C

d

.

Then the cartesian lift of α′ is (α, 1, α′) : (k, η, k′)→ (h, σ, h′).

Example 2.3.41 (Algebras). Let Mnd(K ) be the bicategory of pseudo-monads on a

bicategory K (called doctrines in [Str80]). There is a trihomomorphism Mnd(K )coop →
Bicat that maps each pseudo-monad T to the bicategory T -Alg of T -algebras, lax algebra

morphisms and algebra 2-cells. We can use the Grothendieck construction to construct

a fibration Alg → Mnd(K ). The objects of the total category Alg are algebras for a

pseudo-monad: pairs (S, (A,m)) where m : SA → A is an S-algebra for a pseudo-monad

S. The 1-cells from algebras (S, (A,m)) to (T, (B,n)) are pairs (λ, (f, θf )) where λ is a
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monad morphism from S to T and (f, θf ) : (A,m)→ (B,nλB) is a lax algebra morphism.

SA

Sf

��

m //
θf ;C

A

f

��
SB

λB

// TB
n
// B

.

The 2-cells of Alg are pairs (Γ, α) : (λ, (f, θf )) ⇒ (τ, (g, θg)) where Γ: λ ⇒ τ is a monad

2-cell and α is an algebra 2-cell

(A,m)

(g,θg)   

(f,θf ) //

α��

(B,nλB)

(B,nτB)

(1B ,nΓB)

<<
.

The fibration is projection on the first component of Alg. By construction the fibre over

T is equivalent to T -Alg.

Example 2.3.42 (Equivalence lifting). A homomorphism P : E → B is said the have the

equivalence lifting property when:

1. for each object e ∈ E and equivalence f : b → Pe in B there is an equivalence

f̂ : a→ e in E with P f̂ = f ; and

2. for each arrow h : e → e′ in E and isomorphism α : g → Ph in B there is an

isomorphism α̂ : k → h with Pα̂ = α.

When P is strict, these are precisely the fibrations in Lack’s Quillen model structure on

Bicats [Lac04].

Every fibration has the equivalence lifting property. Further more, when E and B are

bigroupoids (bicategories in which all 1-cells are equivalences and all 2-cells are isomor-

phisms) every homomorphism with the equivalence lifting property is a fibration.

2.4 Composition, commas and pullbacks

In this section we show that fibrations of bicategories are closed under composition and

closed under equiv-comma, and that projections from oplax comma bicategories are fibra-

tions.

2.4.1 Composition

Proposition 2.4.1. If P : D → B and Q : E → D are fibrations of bicategories then

PQ : E → B is a fibration of bicategories.
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Proof. We first need to show that it has cartesian lifts of 1-cells. Suppose that e ∈ E and

f : a→ PQe in B, then let f ′′ = ϕ(ϕ(f,Qb), b). This is the cartesian double-lift:

f ′∗b
f ′′ // b

f∗Qb
F ′ // Qb

a
f // PQb

where f ′ is cartesian for P over f and f ′′ is cartesian for Q over f ′. We need to show that

f ′′ is cartesian for PQ over f . This is trivial when we consider the definition of cartesian

1-cell by bipullback.

E(z, x)

Qzx

��

f ′′∗ // E(z, y)

Qzy

��
∼=

D(Qz,Qx)

PQzQx

��

f ′∗ // D(Qz,Qy)

PQzQy

��
∼=

B(PQz, PQx)
f∗

// B(PQz, PQy)

Since both squares below are bipullbacks, the composite is a bipullback and f ′′ is a carte-

sian 1-cell over f . This could also be proved by explicitly using the properties of cartesian

1-cells.

Now we need to show that PQ locally fibred. Since PQxy is defined by the composite

E(x, y)
Qxy // D(Qx,Qy)

PQxQy// B(PQx, PQy)

and P and Q are locally fibred, PQxy is a fibration. Thus PQ is locally fibred. The

cartesian lifts of 2-cells in B are the double-lifts similar to those described above.

Finally, we need to show that cartesian 2-cells closed under horizontal composition.

Suppose that α : h ⇒ k and β : f ⇒ g are the chosen cartesian lifts of PQα and PQβ;

then α ∗ β is cartesian over Q(α ∗ β) because Q is a fibration. Notice also that Qα ∗ Qβ
is cartesian over P (Qα ∗Qβ) because P is a fibration. But

Qhf
Q(α∗β)+3 Qkg = Qhf

φ +3 QhQf
Qα∗Qβ+3 QkQg

φ−1

+3 Qkg

where each φ is a composition coherence isomorphism for Q. Now since isomorphisms are

cartesian, Q(α ∗β) is cartesian over PQ(α ∗β). Thus α ∗β is a cartesian lift of a cartesian

lift and so it is cartesian for PQ. We have proven this for the chosen cartesian lift only

but by Proposition 2.2.14 this is enough.
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Proposition 2.4.2. If P : D → B and Q : E → D are 2-fibrations then PQ : E → B is a

2-fibration.

Proof. This proof is essentially the same as that for fibrations of bicategories. There are

no major differences.

2.4.2 Oplax comma bicategories

Construction 2.4.3 (Oplax comma bicategory). Suppose that F : C → D , G : B → D

are homomorphisms. Let (F ↓ G) be the bicategory whose objects are (x, x′, τx) where

x ∈ C , x′ ∈ B and τx : Fx → Gx′. The arrows are triples (f, f ′, τf ) : (x, x′, τx) →
(y, y′, τy) where f : x → y, f ′ : x′ → y′ and τf : τyFf ⇒ Gf ′τx. The 2-cells are triples

(α, α′, τα) : (f, f ′, τf )⇒ (g, g′, τg) where α : f ⇒ g, α′ : f ′ ⇒ g′ and τα is an equality:

Fx
τx //

Fg

��
Ff

��

Fα +3

Gx′

Gg′

��
Fy

τy
// Gy′

τg ;C =

Fx
τx //

Ff

��

Gx′

Gg′

��
Gf ′

��

Gα′+3

Fy
τy

//

τf ;C

Gy′

.

Composition and identities are given in the obvious way. By projection onto the first and

second components we obtain pseudo-functors d0 and d1 as displayed below. Both of these

preserve composition and identities on the nose.

This gives rise to an oplax natural transformation τ whose components are given by

projecting (F ↓ G) onto its third component.

(F ↓ G)
d1 //

d0

��

B

G

��
C

F
// D

τ ;C

Remark 2.4.4 (Lax comma bicategories). There is an obvious dual to this construction in

which τ above is a lax natural transformation. This variation is called “2-comma-category”

in [Gra69] and “lax comma category” in [Kel74].

Remark 2.4.5 (Weighted limits). The oplax comma bicategory construction could also be

defined as some kind of weighted limit. The same is true of other constructions later in

this section. We leave the details to the interested reader.

Proposition 2.4.6. For any pair of homomorphisms F : C → D and G : B → D ,

d0 : (F ↓ G)→ C is a fibration.

Proof. We need to show that d0 has cartesian lifts of 1-cells. Suppose that (y, y′, σy) in

(F ↓ G) and f : x → y in C . Then there exists (f, 1, σf1) : (x, x′, σx) → (y, y′, σy) where
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x′ := y′, σx := σy.Ff and σf1 is

Fx
σx //

Ff

��
σx

  

Gy′

G1

��

1

��

∼=

Fy
σy

//

∼=

Gy′

where the unlabelled isomorphisms are coherence data for G and D . This is a cartesian

lift of f .

We need to show that d0 has cartesian lifts of 2-cells. Suppose that (g, g′, σg) : (x, x′, σx)→
(y, y′, σy) in (F ↓ G) and α : f ⇒ g in C . Then there exists (α, 1g′) : (f, f ′, σf )⇒ (g, g′, σg)

where f ′ := g′, σf := σg.σyFα and thus

Fx
σx //

Fg

��
Ff

��

Fα +3

Gx′

Gg′

��
Fy

σy
// Gy′

σg ;C =

Fx
σx //

Ff

��

Gx′

Gg′

��
Gg′

��

G1 +3

Fy
σy

//

σf ;C

Gy′

.

This is a cartesian lift of α.

We need to check that cartesian 2-cells are closed under horizontal composition. Ex-

amining the chosen cartesian 2-cells we find that (α, 1g′) ∗ (β, 1k′) = (α ∗β, 1g′k′) and thus

they’re closed under composition. We’ve proven this for the chosen cartesian lifts only,

but by Proposition 2.2.14 this is enough.

Remark 2.4.7. Suppose that G : B → D is a homomorphism. We use the notation D/G→
D instead of (1D ↓ G) → D . This is referred to by Baković [Bak12] as the “canonical

fibration associated to F”. We call it the free fibration on F (see the following remark).

Remark 2.4.8 (Free fibrations). If H : A → B is a homomorphism then define FH :=

d0 : B/H → B and call it the free fibration on H. For each fibration of bicategories P

there is a biequivalence

(Fib/B)(FH,P ) ' (Bicat/B)(H,UP )

where UP is P regarded simply as a homomorphism. The details are very similar to the

standard result for ordinary fibrations; the only extra result we need is that arbitrary

2-cells can be lifted along cartesian 1-cells (The defining property of cartesian 1-cells given

in Definition 2.3.1 point 1 holds even when the α given there is not invertible). This relies

on the fact that fibrations are locally fibred.

The naturality of this biequivalence is very weak: it is the 1-cell component of a
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tritransformation

(Bicat/B)op × Fib/B

Fib/B(F -,-)

,,

Bicat/B(-,U-)

33�� Bicat .

Remark 2.4.9 (Two-sided fibrations). Suppose that F : C → D , G : B → D are homo-

morphisms. The oplax comma construction also makes d1 a ‘coop-fibration’ and the span

(d0, d1) over C and B has some of the characteristics of a two-sided discrete fibration.

By ‘coop-fibration’ we mean the notion dual to fibration: a homomorphism that is locally

an opfibration, has opcartesian lifts of 1-cells and opcartesian 2-cells are closed under

horizontal composition.

Locally, the span (d0, d1) is a discrete two-sided fibration. Suppose that (α, α′) : (f, f ′, σf )⇒
(g, g′, σg) is a 2-cell in (F ↓ G) and opcartesian lifts for d1 are described using the same

notation as cartesian lifts for d0. Then

d1(ϕ(α, (g, g′, σg))) = 1g′

d0(ϕ(α′, (f, f ′, σf ))) = 1f

ϕ(α′, (f, f ′, σf )).ϕ(α, (g, g′, σg))) = (α, α′) .

This means that the cartesian lifts for d0 are identities under the action of d1; and vice

versa; and that the cartesian lift of d0(α, α′) and the opcartesian lift of d1(α, α′) compose

to give (α, α′).

On 1-cells the behaviour is somewhat weaker. Suppose (f, f ′, σf ) : (x, x′, σx)→ (y, y′, σy)

is a 1-cell in (F ↓ G). Then

d1(ϕ(f, (y, y′, σy))) = 1y′

d0(ϕ(f ′, (x, x′, σx))) = 1x

and

(x, x′, σx)
(f,f ′,σf ) //

(1,f ′,r.φ) &&

(y, y′, σy)

(x, y′, Gf ′σx)
(1,φ.l.σf .r.φ)

//

(r.r,l.l)��

(x, y′, σyFf)

(f,1,φ.l)

88

where the φ are coherence isomorphisms for F and G.

Proposition 2.4.10. For any 2-functors F : C → D and G : B → D, d0 : (F ↓ G) → C

is a 2-fibration.

Proof. This proof is essentially the same as that for fibrations of bicategories. There are

no major differences.
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2.4.3 Pullbacks

Construction 2.4.11 (equiv-comma). Suppose F : C → D and G : B → D are homo-

morphisms. The equiv-comma C ×' B is the subcategory of (F ↓ G) containing: all

objects (x, x′, τx) where τx : Fx → Gx′ is an equivalence; all 1-cells (f, f ′, τf ) where τf is

an isomorphism; and all 2-cells. The functors G′ and F ′ are the projections onto the first

and second components of C ×'B. This gives a pseudo-natural equivalence

C ×'B
F ′ //

G′

��

B

G

��
C

F
// D

τ ;C .

Proposition 2.4.12. Let A ×' E be the equiv-comma of homomorphisms P : E → B

and F : A → B. If P is a fibration then P ′ is a fibration and F ′ is cartesian.

Proof. We want to show that P ′ is a fibration. We first need to show that it has cartesian

lifts of 1-cells. Suppose (y, y′, τy) is a 0-cell in A ×' E and f : x → y is a 1-cell in

B and let τ̂ : τ∗y′ → y′ be the cartesian lift of τy.Ff : Fx → Fy → Py′ in B. Then

(f, τ̂ , η) : (x, τ∗y′, 1Fx)→ (y, y′, τy) is a 1-cell in A ×' E where η is

Fx

Ff

��

1 //

Ff $$

Fx

Ff
��

r��

Fy

τy
��

Fy
τy
// Py′

.

This is a cartesian lift of f for P ′.

We need to show that there are cartesian lifts of 2-cells. Suppose (g, g′, τg) : (x, x′, τx)→
(y, y′, τy) is a 1-cell in A ×' E and α : f ⇒ g : x → y is a 2-cell in B. Suppose also that

τx is an adjoint equivalence. Now let α̂ : f ′ → g′ be the cartesian lift of the following

composite at g′.

Fx Fα��

Ff

((

Fg
66

τx &&

Fy
τy

&&
τg��

Px′

τ �
x

88

1 //

Pg′

22

ε��
Px′

Pg′ // Py′
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Then (α, α̂) : (f, f ′, τf )⇒ (g, g′, τg) is a 2-cell where τf is

Fx

Ff

��

τx //

1 ##

Px′

Pf ′

		

τ �
x

��

η ;C

Fx′

Ff

��
Fy′

τy

��
Fy

τy
//

r ;C

Py′

.

This is a cartesian lift of α for P ′.

We need to show that cartesian 2-cells are closed under horizontal composition. The

chosen cartesian lifts are cartesian precisely because their second component is cartesian for

P . Since P is a fibration we know that the second component of (α, α̂)∗(β, β̂) = (α∗β, α̂∗β̂)

is also cartesian. Thus the chosen cartesian lifts are closed under horizontal composition

and by Proposition 2.2.14 this is enough. This makes P ′ a fibration.

Notice that cartesian lifts for P ′ have cartesian maps in their second component so F ′

is cartesian.

Remark 2.4.13. We say that a functor F reflects cartesian maps when Ff cartesian implies

f cartesian. It is worth noting that the F ′ above reflects cartesian maps.

Remark 2.4.14. Suppose F : C → D and G : B → D are homomorphisms, the usual

notion of pullback of F and G is not well-defined as a bicategory. If (f, f ′) and (g, g′)

are 1-cells in C ×B with Ff = Gf ′ and Fg = Gg′ and f, g are composable and f ′, g′

are composable then (gf, g′f ′) only has F (gf) ∼= G(g′f ′) and not equality; thus the usual

notion of composition of 1-cells is not well-defined. The following construction is in some

sense the closest we can get to pullback of homomorphisms. The “pullback” of F and G

is the subcategory of (F ↓ G) containing: all objects (x, x′, τx) where τx : Fx→ Gx′ is an

identity ; all 1-cells (f, f ′, τf ) where τf is an isomorphism; and all 2-cells. The functors G′′

and F ′′ are the projections onto the first and second components of C ×D B. This gives

a pseudo-natural equivalence τ as displayed.

C ×D B
F ′′ //

G′′

��

B

G

��
C

F
// D

τ ;C

This is actually an iso-comma object in Bicat2: the 2-category of bicategories, homomor-

phisms and icons in the sense of [Lac10].
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Suppose now that G is a fibration. We can prove that G
′′

is a fibration using essentially

the same argument as Proposition 2.4.12. Alternatively, we can prove an analogue of a

result by Joyal and Street: when G is a fibration the pullback has the same universal

property as the equiv-comma (in the sense that the induced comparison is a biequivalence).

Thus G′ and G′′ are biequivalent in the slice over C and G′′ is a fibration.

We’ve proved the following theorem.

Proposition 2.4.15. Let A ×B E be the “pullback” of P : E → B and F : A → B. If

P is a fibration then P ′ is a fibration and F ′ is cartesian.

A quick investigation reveals that 2-fibrations are not closed under equiv-comma. They

are however closed under iso-comma as defined below.

Construction 2.4.16 (Iso-comma). Suppose F : C → D and G : B → D are 2-functors.

The iso-comma C ×∼= B is the subcategory of (F ↓ G) containing: all objects (x, x′, τx)

where τx : Fx→ Gx′ is an isomorphism; all 1-cells (f, f ′, τf ) : (x, x′, τx)→ (y, y′, τy) where

τf is an identity ; and all 2-cells. The functors G′ and F ′ are the projections onto the first

and second components of C ×∼= B. This gives a 2-natural isomorphism τ as follows.

C ×∼= B
F ′ //

G′

��

B

G

��
C

F
// D

τ ;C

Proposition 2.4.17. Let A×∼= E be the iso-comma of P : E → B and F : A→ B. If P

is a 2-fibration then P ′ is a 2-fibration and F ′ is cartesian.

Proof. This proof is essentially the same as that for equiv-commas. There are no major

differences.

Construction 2.4.18 (Pullback). Suppose F : C → D and G : B → D are 2-functors.

The pullback C×DB is the subcategory of (F ↓ G) containing: all objects (x, x′, τx) where

τx : Fx → Gx′ is an identity ; all 1-cells (f, f ′, τf ) : (x, x′, τx) → (y, y′, τy) where τf is an

identity ; and all 2-cells. The functors G′ and F ′ are the projections onto the first and

second components of C ×B. This gives commuting square.

C ×D B
F ′ //

G′

��

B

G

��
C

F
// D

Proposition 2.4.19. Let A×B E be the pullback of P : E → B and F : A → B. If P is

a 2-fibration then P ′ is a 2-fibration and F ′ is cartesian.
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Proof. The proof is essentially the same as Proposition 2.4.17 but much easier because the

isomorphisms are equalities.



Chapter 3

The Catalan simplicial set

Abstract

The Catalan numbers are well known to be the answer to many different counting prob-

lems, and so there are many different families of sets whose cardinalities are the Catalan

numbers. We show how such a family can be given the structure of a simplicial set. We

show how the low-dimensional parts of this simplicial set classify, in a precise sense, the

structures of monoid and of monoidal category. This involves aspects of combinatorics,

algebraic topology, quantum groups, logic, and category theory.

Contribution by the author

This paper was co-authored with Richard Garner, Steve Lack, and Ross Street. My initial

interest was prompted by a talk of Professor Michael Johnson at the Australian Categories

Seminar. It began as a discussion with Professor Street as we considered how simplicial

sets could describe skew monoidal categories. It quickly evolved into a four-person effort

as Dr Lack and Dr Garner identified the presence of the Catalan numbers and number of

key results. As one author in four my contribution should be considered 25%.

What follows is is a direct reproduction of the original which was published in the

Mathematical Proceedings of the Cambridge Philosophical Society. Any differences from

that publication are limited to cosmetic changes such as citation numbering.

3.1 Introduction

The nth Catalan number Cn, given explicitly by 1
n+1

(
2n
n

)
, is well-known to be the answer

to many different counting problems; for example, it is the number of bracketings of an

77
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(n + 1)-fold product. Thus there are many N-indexed families of sets whose cardinalities

are the Catalan numbers; Stanley [Sta99; Sta13] describes at least 205 such.

A Catalan family of sets may bear extra structure that is invisible in the mere sequence

of Catalan numbers. For example, one presentation of the nth Catalan set is as the set of

functions f : {1, . . . , n} → {1, . . . , n} which preserve order and satisfy f(k) 6 k for each k.

The set of such functions is a monoid under composition, and in this way we obtain the

Catalan monoids [Sol96] which are of importance to combinatorial semigroup theory. For

another example, a result due to Tamari [Tam62] makes each Catalan set into a lattice,

whose ordering is most clearly understood in terms of bracketings of words, as the order

generated by the basic inequality (xy)z 6 x(yz) under substitution.

The first main objective of this paper is to describe another kind of structure borne

by Catalan families of sets. We shall show how to define functions between them in such

a way as to produce a simplicial set C, which is the “Catalan simplicial set” of the title.

The simplicial structure can be defined in various ways, but the most elegant makes use of

what seems to be a new presentation of the Catalan sets that relies heavily on the Boolean

algebra 2.

Simplicial sets are abstract, combinatorial entities, most often used as models of spaces

in homotopy theory, but flexible enough to also serve as models of higher categories [Lur09;

Ver08]. Therefore, we might hope that the Catalan simplicial set had some natural role to

play in homotopy theory or higher category theory. Our second objective in this paper is

to affirm this hope, by showing that the Catalan simplicial set has a classifying property

with respect to certain kinds of categorical structure. More precisely, we will consider

simplicial maps from C into the nerves of various kinds of higher category (the nerve of

such a structure is a simplicial set which encodes its cellular data). We will see that:

(a) Maps from C to the nerve of a monoidal category V are the same thing as monoids

in V ;

(b) Maps from C to the nerve of a bicategory B are the same thing as monads in B;

(c) Maps from C to the pseudo nerve of the monoidal bicategory Cat of categories and

functors are the same thing as monoidal categories;

(d) Maps from C to the lax nerve of the monoidal bicategory Cat are the same thing as

skew-monoidal categories.

Skew-monoidal categories generalise Mac Lane’s notion of monoidal category [Mac63]

by dropping the requirement of invertibility of the associativity and unit constraints; they

were introduced recently by Szlachányi [Szl12] in his study of bialgebroids, which are

themselves an extension of the notion of quantum group. The result in (d) can be seen

as a coherence result for the notion of skew-monoidal category, providing an abstract

justification for the axioms. Thus the work presented here lies at the interface of several

mathematical disciplines:
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• combinatorics, in the form of the Catalan numbers;

• algebraic topology, via simplicial sets and nerves;

• quantum groups, through recent work on bialgebroids;

• logic, through the distinguished role of the Boolean algebra 2; and

• category theory.

Nor is this the end of the story. Monoidal categories and skew-monoidal categories can

be generalised to notions of monoidale (pseudo-monoid) and skew monoidale in a monoidal

bicategory; this has further relevance for quantum algebra, since Lack and Street showed

in [LS12] that quantum categories in the sense of [DS04] can be described using skew

monoidales. In a sequel to this paper, we will generalise (c) and (d) to prove that:

(e) Maps from C to the pseudo nerve of a monoidal bicategory W are the same thing

as monoidales in W ; and

(f) Maps from C to the lax nerve of a monoidal bicategory W are the same thing as

skew monoidales in W .

The results (a)–(f) use only the lower dimensions of the Catalan simplicial set, and we ex-

pect that its higher dimensions in fact encode all of the coherence that a higher-dimensional

monoidal object should satisfy. We therefore hope also to show that:

(g) Maps from C to the pseudo nerve of the monoidal tricategory Bicat of bicategories

are the same thing as monoidal bicategories;

(h) Maps from C to the homotopy-coherent nerve of the monoidal simplicial category

∞-Cat of ∞-categories are the same thing as monoidal ∞-categories in the sense

of [Lur14];

together with appropriate skew analogues of these results.

Finally, a note on the genesis of this work. We have chosen to present the Catalan

simplicial set as basic, and its classifying properties as derived. This belies the method

of its discovery, which was to look for a simplicial set with the classifying property (d);

the link with the Catalan numbers only later came to light. The notion that a classifying

object as in (d) might exist is based on an old idea of Michael Johnson’s on how to capture

not only associativity but also unitality constraints simplicially. He reminded us of this in

a recent talk [Joh] to the Australian Category Seminar.



80 CHAPTER 3. THE CATALAN SIMPLICIAL SET

3.2 The Catalan simplicial set

In this section we define and investigate the Catalan simplicial set. We begin by recalling

some basic definitions. We write ∆ for the simplicial category, whose objects are non-empty

finite ordinals [n] = {0, . . . , n} and whose morphisms are order-preserving functions, and

write SSet for the category of presheaves on ∆. Objects X of SSet are called simplicial

sets; we think of them as glueings-together of discs, with the n-dimensional discs in that

glueing labelled by the set Xn := X([n]) of n-simplices of X. We write δi : [n − 1] → [n]

and σi : [n+ 1]→ [n] for the maps of ∆ defined by

δi(x) =

x if x < i

x+ 1 otherwise
and σi(x) =

x if x 6 i

x− 1 otherwise.

The action of these morphisms on a simplicial set X yields functions di : Xn → Xn−1 and

si : Xn → Xn+1, which we call face and degeneracy maps. An (n+ 1)-simplex x is called

degenerate when it is in the image of some si, and non-degenerate otherwise. The face

and degeneracy maps of a simplicial set satisfy the following simplicial identities:

didj = dj−1di for i < j

sisj = sj+1si for i 6 j
disj =


sj−1di for i < j

id for i = j, j + 1

sjdi−1 for i > j + 1;

and in fact, a simplicial set may be completely specified by giving its sets of n-simplices,

together with face and degeneracy maps satisfying the simplicial identities.

Definition 3.2.1. The Catalan simplicial set C has its n-simplices given by Dyck words

of length 2n+ 2; these are strings comprised of (n+ 1) U ’s and (n+ 1) D’s such that the

ith U precedes the ith D for each 1 6 i 6 n+ 1. The face maps di : Cn → Cn−1 act on a

word W by deleting the ith U and ith D; the degeneracy maps si : Cn−1 → Cn act on a

word W by repeating the ith U and ith D.

Each Dyck word corresponds to a sequence of moves up and down a ladder, starting

from ground-level. In each Dyck word W , each U denotes a step up on the ladder and

D indicates a step down on the ladder. The condition that the ith U precedes the ith

D ensures that one cannot take a step below ground-level. The fact that there are equal

numbers of Us and Ds ensures that the sequence starts and ends at ground-level.

The sets of Dyck words of length 2n are a Catalan family of sets—corresponding to (i)

or (r) in Stanley’s enumeration [Sta99]—and so we have that |Cn| = Cn+1, the (n + 1)st

Catalan number.

Remark 3.2.2. The sets of n-simplices of C are not quite a Catalan family, due to the

dimension shift causing us to omit the 0th Catalan number. We may rectify this by
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viewing C as an augmented simplicial set. An augmented simplicial set is a presheaf on

∆+, the category of all finite ordinals and order-preserving maps; it is equally given by a

simplicial set X together with a set X−1 of (−1)-simplices and an “augmentation” map

d0 : X0 → X−1 satisfying d0d0 = d0d1 : X1 → X−1. By allowing n to range over {−1} ∪N
in the definition of the Catalan simplicial set C, it becomes an augmented simplicial set

with the property that its sets of (n− 1)-simplices (for n ∈ N) are a Catalan family.

In order to understand the Catalan simplicial set as a simplicial set, we must understand

the face and degeneracy relations between its simplices. In low dimensions, we see directly

that C has:

• A unique 0-simplex UD, which we write as ?;

• Two 1-simplices UUDD and UDUD, the first of which is s0(?) and the second of

which is non-degenerate; we write these as e = s0(?) : ?→ ? and c : ?→ ?;

• Five 2-simplices: three degenerate ones UUUDDD, UUDDUD and UDUUDD,

and two non-degenerate ones UUDUDD and UDUDUD. We depict these, and

their faces, by:

?
e

��
s0(e)

=s1(e)

?
e

//

e

??

?

?
c

��
s0(c)

?
c

//

e

??

?

?
e

��
s1(c)

?
c

//

c

??

?

?
c

��
t

?
c

//

c

??

?

?
e

��
i

?
c

//

e

??

?

.

(3.2.1)

In higher dimensions, the simplices of C will be determined by coskeletality. A simplicial

set is called r-coskeletal when every n-boundary with n > r has a unique filler; here, an

n-boundary in a simplicial set is a collection of (n − 1)-simplices (x0, . . . , xn) satisfying

dj(xi) = di(xj+1) for all 0 6 i 6 j < n; a filler for such a boundary is an n-simplex x

with di(x) = xi for i = 0, . . . , n.

Proposition 3.2.3. The Catalan simplicial set is 2-coskeletal.

Proof. For each natural number n, let Kn be the set of binary relations R ⊂ {0, . . . , n}2

such that

(i) i R j implies i < j;

(ii) i < j < k and i R k implies i R j and j R k.

For each n > 0, there is a bijection Cn → Kn which sends a Dyck wordW to the set of those

pairs i < j such that the (j+ 1)st D precedes the (i+ 1)st U in W ; these bijections induce
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a simplicial structure on the Kn’s, and it suffices to prove that this induced structure is

2-coskeletal.

We may identify the faces of an n-simplex R ∈ Kn with the restrictions of R to the

(n + 1) distinct n-element subsets of {0, . . . , n}. An arbitrary collection (R0, . . . , Rn) of

such relations, seen as elements of Kn−1, comprises an n-boundary just when each Ri

and Rj agree on the intersections of their domains. In this situation, there is a a unique

relation R ⊂ {0, . . . , n}2 restricting back to the given Ri’s, and satisfying (i) since each

Ri does. If n > 2, then each triple 0 6 i < j < k 6 n will lie entirely inside the domain of

some R`, and so the relation R will satisfy (ii) since each R` does, and thus constitute an

element of Kn. Thus for n > 2, each n-boundary of K ∼= C has a unique filler.

We now give one further description of the Catalan simplicial set, perhaps the most

appealing: we will exhibit it as the monoidal nerve of a particularly simple monoidal

category, namely the poset 2 = ⊥ 6 >, seen as a monoidal category with tensor product

given by disjunction.

We first explain what we mean by this. Recall that if A is a category, then its nerve

N(A ) is the simplicial set whose 0-simplices are objects of A , and whose n-simplices

for n > 0 are strings of n composable morphisms. Since the face and degeneracy maps

are obtained from identities and composition in A , the nerve in fact encodes the entire

category structure of A .

Suppose now that A is a monoidal category in the sense of [Mac63]—thus, equipped

with a tensor product functor ⊗ : A ×A → A , a unit object I ∈ A , and families of natural

isomorphisms αABC : (A ⊗ B) ⊗ C ∼= A ⊗ (B ⊗ C), λA : I ⊗ A ∼= A and ρA : A ∼= A ⊗ I,

satisfying certain coherence axioms which we recall in detail in Section 3.4 below. In

this situation, the nerve of A as a category fails to encode any information concerning

the monoidal structure. However, by viewing A as a one-object bicategory (=weak 2-

category), we may form a different nerve which does encode this extra information.

Definition 3.2.4. Let A be a monoidal category. The monoidal nerve of A is the

simplicial set N⊗(A ) defined as follows:

• There is a unique 0-simplex, denoted ?.

• A 1-simplex is an object A ∈ A ; its two faces are necessarily ?.

• A 2-simplex is a morphism A12 ⊗A01 → A02 in A ; its three faces are A12, A02 and

A01.
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• A 3-simplex is a commuting diagram

(A23 ⊗A12)⊗A01
α //

A123⊗1

��

A23 ⊗ (A12 ⊗A01)

1⊗A012

��
A13 ⊗A01

A013

// A03 A23 ⊗A02
A023

oo

(3.2.2)

in A ; its four faces are A123, A023, A013 and A012.

• Higher-dimensional simplices are determined by 3-coskeletality.

The degeneracy of the unique 0-simplex is the unit object I ∈ A ; the two degeneracies

s0(A), s1(A) of a 1-simplex are the respective coherence constraints ρ−1
A : A⊗ I → A and

λA : I ⊗ A → A; the three degeneracies of a 2-simplex are simply the assertions that

certain diagrams commute, which is so by the axioms for a monoidal category. Higher

degeneracies are determined by coskeletality.

Note that, because the monoidal nerve arises from viewing a monoidal category as a

one-object bicategory, we have a dimension shift: objects and morphisms of A become 1-

and 2-simplices of the nerve, rather than 0- and 1-simplices.

Proposition 3.2.5. The simplicial set C is uniquely isomorphic to the monoidal nerve of

the poset 2 = ⊥ 6 >, seen as a monoidal category under disjunction.

Proof. In any monoidal nerve N⊗(A ), each 3-dimensional boundary has at most one filler,

existing just when the diagram (3.2.2) associated to the boundary commutes. Since every

diagram in a poset commutes, the nerve N⊗(2), like C, is 2-coskeletal. It remains to show

that C ∼= N⊗(2) in dimensions 0, 1, 2. In dimension 0 this is trivial. In dimension 1, any

isomorphism must send s0(?) = e ∈ C1 to s0(?) = ⊥ ∈ N⊗(2)1 and hence must send c to

>. In dimension 2, the 2-simplices of N⊗(2) are of the form

?
x12

��
?

x02

//

x01

??

?

where x12 ∨ x01 6 x02 in N⊗(2). Thus in N⊗(2), as in C, there is at most one 2-simplex

with a given boundary, and by examination of (3.2.1), we see that the same possibilities

arise on both sides; thus there is a unique isomorphism C2
∼= N⊗(2)2 compatible with the

face maps, as required.

We conclude this section by investigating the non-degenerate simplices of the Cata-

lan simplicial set; these will be of importance in the following sections, where they will

play the role of basic coherence data in higher-dimensional monoidal structures. We will
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see that these non-degenerate simplices form a sequence of Motzkin sets. The Motzkin

numbers [DS77] 1, 1, 2, 4, 9, . . . are defined by the recurrence relations

M0 = 1 and Mn+1 = Mn +
∑n−1
k=0 MkMn−1−k .

An N-indexed family of sets is a sequence of Motzkin sets if there are a Motzkin number

of elements in each dimension.

Example 3.2.6. A Motzkin word is a string in the alphabet {U,C,D} which, on striking

out every C, becomes a Dyck word. The sets Mn of Motzkin words of length n are a

sequence of Motzkin sets.

Proposition 3.2.7. The family (ndCn : n ∈ N) of non-degenerate simplices of C is a

sequence of Motzkin sets.

Proof. It suffices to construct a bijection ndCn ∼= Mn for each n. In one direction, we

have a map ndCn → Mn sending a non-degenerate Dyck word W to the Motzkin word

M1 . . .Mn defined as follows: if the ith and (i+ 1)st U ’s are adjacent in W , then Mi = U ;

if the ith and (i + 1)st D’s are adjacent in W , then Mi = D; otherwise Mi = C. (Note

that the first two cases are disjoint; a Dyck word W satisfying both would have to be in

the image of the ith degeneracy map).

In the other direction, suppose given a Motzkin word M = M1 . . .Mn. Let a1 < · · · <
ak enumerate all i for which Mi is D or C, and let b1 < · · · < bk enumerate all i for which

Mi is U or C. The inverse mapping Mn → ndCn now sends M to the Dyck word

Ua1Db1Ua2−a1Db2−b1 · · ·Uak−ak−1Dbk−bk−1Un+1−akDn+1−bk .

Using this result, we may re-derive a well-known combinatorial identity relating the

Catalan and Motzkin numbers.

Corollary 3.2.8. For each n > 0, we have Cn+1 =
∑
k

(
n
k

)
Mk.

Proof. Recall that the Eilenberg–Zilber lemma [GZ67, §II.3] states that every simplex

x ∈ Xn of a simplicial set X is the image under a unique surjection φ : [n] � [k] in ∆ of

a unique non-degenerate simplex y ∈ Xk. Since there are
(
n
k

)
order-preserving surjections

[n]� [k],

Cn+1 = |Cn| =
∑
φ : [n]�[k] |ndCk| =

∑
k

(
n
k

)
|ndCk| =

∑
k

(
n
k

)
Mk

as required.
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3.3 First classifying properties

We now begin to investigate the classifying properties of the Catalan simplicial set, by

looking at the structure picked out by maps from C into the nerves of certain kinds of

categorical structure.

For our first classifying property, recall that a monoid in a monoidal category A is

given by an object A ∈ A and morphisms µ : A ⊗ A → A and η : I → A rendering

commutative the three diagrams

(A⊗A)⊗A α //

µ⊗1

��

A⊗ (A⊗A)

1⊗µ
��

A⊗A
µ
// A A⊗A

µ
oo

A
ρA // A⊗ I

1⊗η
��

A A⊗A
µ
oo

I ⊗A λA //

η⊗1

��

A

A⊗A
µ

<<

Proposition 3.3.1. If A is a monoidal category, then to give a simplicial map f : C →
N⊗(A ) is equally to give a monoid in A .

Proof. Since N⊗(A ) is 3-coskeletal, a simplicial map f : C → N⊗(A ) is uniquely deter-

mined by where it sends non-degenerate simplices of dimension 6 3. We have already

described the non-degenerate simplices in dimensions 6 2, while in dimension 3, there are

four such, given by

a = (t, t, t, t) ` = (i, s1(c), t, s1(c))

r = (s0(c), t, s0(c), i) k = (i, s1(c), s0(c), i) .

Here, we take advantage of 2-coskeletality of C to identify a 3-simplex x with its tuple

(d0(x), d1(x), d2(x), d3(x)) of 2-dimensional faces. We thus see that to give f : C→ N⊗(A )

is to give:

• In dimension 0, no data: f must send ? to ?;

• In dimension 1, an object A ∈ A , the image of the non-degenerate simplex c ∈ C1;

• In dimension 2, morphisms µ : A ⊗ A → A and η′ : I ⊗ I → A, the images of the

non-degenerate simplices t, i ∈ C2;

• In dimension 3, commutative diagrams

f(a) =

(A⊗A)⊗A α //

µ⊗1

��

A⊗ (A⊗A)

1⊗µ
��

A⊗A
µ
// A A⊗A

µ
oo
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f(`) =

(I ⊗ I)⊗A α //

η′⊗1

��

I ⊗ (I ⊗A)

1⊗λA
��

A⊗A
µ
// A I ⊗A

λA

oo

f(r) =

(A⊗ I)⊗ I α //

ρ−1
A ⊗1

��

A⊗ (I ⊗ I)

1⊗η′

��
A⊗ I

ρ−1
A

// A A⊗A
µ

oo

f(k) =

(I ⊗ I)⊗ I α //

η′⊗1

��

I ⊗ (I ⊗ I)

1⊗η′

��
A⊗ I

ρ−1
A

// A I ⊗A
λA

oo

the images as displayed of the non-degenerate 3-simplices of C.

On defining η = η′ ◦ ρA : I → I ⊗ I → A, we obtain a bijective correspondence between

the data (A,µ, η′) for a simplicial map C → N⊗(A ) and the data (A,µ, η) for a monoid

in A . Under this correspondence, the axiom f(a) for (A,µ, η′) is clearly the same as

the first monoid axiom for (A,µ, η); a short calculation with the axioms for a monoidal

category shows that f(`) and f(r) correspond likewise with the second and third monoid

axioms. This leaves only f(k); but it is easy to show that this is automatically satisfied in

any monoidal category. Thus monoids in A correspond bijectively with simplicial maps

C→ N⊗(A ) as claimed.

Remark 3.3.2. A generalisation of this classifying property concerns maps from C into the

nerve of a bicategory B in the sense of [Bén67]. Bicategories are “many object” versions

of monoidal categories, and the nerve of a bicategory is a “many object” version of the

monoidal nerve of Definition 3.2.4. An easy modification of the preceding argument shows

that simplicial maps C→ N(B) classify monads in the bicategory B.

3.4 Higher classifying properties

The category Cat of small categories and functors bears a monoidal structure given by

cartesian product, and monoids with respect to this are precisely small strict monoidal

categories—those for which the associativity and unit constraints α, λ and ρ are all iden-

tities. It follows by Proposition 3.3.1 that simplicial maps C → N⊗(Cat) classify small

strict monoidal categories. The purpose of this section is to show that, in fact, we may

also classify both

(i) Not-necessarily-strict monoidal categories; and
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(ii) Skew-monoidal categories in the sense of [Szl12]

by simplicial maps from C into suitably modified nerves of Cat, where the modifications

at issue involve changing the simplices from dimension 3 upwards. The 3-simplices will

no longer be commutative diagrams as in (3.2.2), but rather diagrams commuting up to a

natural transformation, invertible in the case of (i) but not necessarily so for (ii). The 4-

simplices will be, in both cases, suitably commuting diagrams of natural transformations,

while higher simplices will be determined by coskeletality as before. Note that, to obtain

these new classification results, we do not need to change C itself, only what we map it

into. The change is from something 3-coskeletal to something 4-coskeletal, which means

that the non-degenerate 4-simplices of C come into play. As we will see, these encode

precisely the coherence axioms for monoidal or skew-monoidal structure.

Before continuing, let us make precise the definition of skew-monoidal category. As ex-

plained in the introduction, the notion was introduced by Szlachányi in [Szl12] to describe

structures arising in quantum algebra, and generalises Mac Lane’s notion of monoidal

category by dropping the requirement that the coherence constraints be invertible.

Definition 3.4.1. A skew-monoidal category is a category A equipped with a unit element

I ∈ A , a tensor product ⊗ : A × A → A , and natural families of (not necessarily

invertible) constraint maps

αABC : (A⊗B)⊗ C → A⊗ (B ⊗ C)

λA : I ⊗A→ A and ρA : A→ A⊗ I
(3.4.1)

subject to the commutativity of the following diagrams—wherein tensor is denoted by

juxtaposition—for all A,B,C,D ∈ A :

(AB)(CD)

((AB)C)D

(A(BC))D A((BC)D)

A(B(CD))

(5.1)

α ::

α1

��

α
//

1α

JJ

α

$$ (AI)B
α // A(IB)

1λ

��
(5.2)

AB

ρ1

OO

id
// AB

I(AB)

λ

��
(5.3)

(IA)B

α

@@

λ1
// AB

(AB)I

α

��
(5.4)

AB

ρ
@@

1ρ
// A(BI)

II

λ

��
(5.5)

I

ρ

@@

id
// I .

A skew-monoidal category in which α, λ and ρ are invertible is exactly a monoidal

category; the axioms (5.1)–(5.5) are then Mac Lane’s original five axioms [Mac63], justified

by the fact that they imply the commutativity of all diagrams of constraint maps. In the



88 CHAPTER 3. THE CATALAN SIMPLICIAL SET

skew case, this justification no longer applies, as the axioms no longer force every diagram

of constraint maps to commute; for example, we need not have 1I⊗I = ρI◦λI : I⊗I → I⊗I.

The classification of skew-monoidal structure by maps out of the Catalan simplicial set

can thus be seen as an alternative justification of the axioms in the absence of such a

result.

Before giving our classification result, we describe the modified nerves of Cat which

will be involved. The possibility of taking natural transformations as 2-cells makes Cat

not just a monoidal category, but a monoidal bicategory in the sense of [GPS95]. Just as

one can form a nerve of a monoidal category by viewing it as a one-object bicategory, so

one can form a nerve of a monoidal bicategory by viewing it as a one-object tricategory

(=weak 3-category), and in fact, various nerve constructions are possible—see [CH12].

The following definitions are specialisations of some of these nerves to the case of Cat.

Definition 3.4.2. The lax nerve N`(Cat) of the monoidal bicategory Cat is the simplicial

set defined as follows:

• There is a unique 0-simplex, denoted ?.

• A 1-simplex is a (small) category A01; its two faces are both ?.

• A 2-simplex is a functor A012 : A12 ×A01 → A02.

• A 3-simplex is a natural transformation

(A23 ×A12)×A01

∼= //

A0123+3A123×1

��

A23 × (A12 ×A01)

1×A012

��
A13 ×A01

A013

// A03 A23 ×A02
A023

oo

with 1-cell components

(A0123)a23,a12,a01 : A013(A123(a23, a12), a01)→ A023(a23, A012(a12, a01)) .

• A 4-simplex is a quintuple of appropriately-formed natural transformations
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(A1234, A0234, A0134, A0124, A0123) making the pentagon

A024(A234(a34, a23), A012(a12, a01))

A0234

##

A014(A124(A234(a34, a23), a12), a01)

A0124

77

A014(A1234,1)

��

A034(a34, A023(a23, A012(a12, a01)))

A014(A134(a34, A123(a23, a12)), a01)

A0134 ''
A034(a34, A013(A123(a23, a12), a01))

A034(1,A0123)

;;

commute in A04 for all (a01, a12, a23, a34) ∈ A01 ×A12 ×A23 ×A34.

• Higher-dimensional simplices are determined by 4-coskeletality, and face and degen-

eracy maps are defined as before.

The pseudo nerve Np(Cat) is defined identically except that the natural transformations

occurring in dimensions 3 and 4 are required to be invertible.

We are now ready to give our higher classifying property of the Catalan simplicial set.

Proposition 3.4.3. To give a simplicial map f : C→ Np(Cat) is equally to give a small

monoidal category; to give a simplicial map f : C → N`(Cat) is equally to give a small

skew-monoidal category.

Proof. First we prove the second statement. Since N`(Cat) is 4-coskeletal, a simplicial map

into it is uniquely determined by where it sends non-degenerate simplices of dimension 6 4.

In dimensions 6 3, to give f : C→ N`(Cat) is to give:

• In dimension 0, no data: f must send ? to ?;

• In dimension 1, a small category A = f(c);

• In dimension 2, a functor ⊗ = f(t) : A ×A → A and an object I ∈ A picked out

by the functor f(i) : 1× 1→ A ;

• In dimension 3, natural transformations

f(a) =

(A ×A )×A
∼= //

α +3⊗×1

��

A × (A ×A )

1×⊗
��

A ×A
⊗
// A A ×A

⊗
oo
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f(`) =

(1× 1)×A
∼= //

λ +3f(i)×1

��

1× (1×A )

1×∼=
��

A ×A
⊗
// A 1×A∼=
oo

f(r) =

(A × 1)× 1
∼= //

ρ +3∼=×1

��

A × (1× 1)

1×f(i)

��
A × 1 ∼=

// A A ×A
⊗
oo

f(k) =

(1× 1)× 1
∼= //

κ +3f(i)×1

��

1× (1× 1)

1×f(i)

��
A × 1 ∼=

// A 1×A∼=
oo

which are equally well natural families α, λ and ρ as in (3.4.1) together with a map

κ? : I → I.

So the data in dimensions6 3 for a simplicial map C→ N`(Cat) is the data (A ,⊗, I, α, λ, ρ)

for a small skew-monoidal category augmented with a map κ? : I → I in A . It remains

to consider the action on non-degenerate 4-simplices of C. There are nine such, given by:

A1 = (a, a, a, a, a) A6 = (s0(i), `, k, r, s2(i))

A2 = (r, s1(t), a, s1(t), `) A7 = (k, `, s0s1(c), r, k)

A3 = (`, `, s2(t), a, s2(t)) A8 = (r, s1(t), s0(t), r, k)

A4 = (s0(t), a, s0(t), r, r) A9 = (k, `, s2(t), s1(t), `)

A5 = (s1(i), s2(i), k, s0(i), s1(i))

where as before, we take advantage of coskeletality of C to identify a 4-simplex with its

tuple of 3-dimensional faces. The images of these simplices each assert the commutativity

of a pentagon of natural transformations involving α, ρ, λ or κ; explicitly, they assert that

for any A,B,C,D ∈ A , the following pentagons commute in A :

(AB)(CD)

((AB)C)D

(A(BC))D A((BC)D)

A(B(CD))

(A1)

α ::

α1

��

α
//

1α

JJ

α

$$

AB

AB

(AI)B A(IB)

AB
(A2)

1
::

ρ1

��

α
//

1λ

JJ

1

$$

I(AB)

(IA)B

AB AB

AB
(A3)

α ::

λ1

��

1
//

1

JJ

λ

$$
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(AB)I

AB

AB AB

A(BI)

(A4)

ρ ::

1

��

1
//

1ρ

JJ

α

$$

I

I

I I

I
(A5)

1
::

1

��
κ?

//

1

JJ

1

$$

II

I

I I

I
(A6)

ρI
::

1

��
κ?

//

1

JJ

λI

$$

II

I

I I

I
(A7)

ρI
::

κ?

��

1
//

κ?

JJ

λI

$$

AI

A

AI AI

AI
(A8)

ρ ::

ρ

��

1
//

1κ

JJ

1

$$

IA

IA

IA IA

A .
(A9)

1
::

κ1

��

1
//

λ

JJ

λ

$$

Note first that (A5) forces κ? = 1I : I → I. Now (A1)–(A4) express the axioms (5.1)–(5.4),

both (A6) and (A7) express axiom (5.5), whilst (A8) and (A9) are trivially satisfied. Thus

the 4-simplex data of a simplicial map C → N`(Cat) exactly express the skew-monoidal

axioms and the fact that the additional datum κ? : I → I is trivial; whence a simplicial

map C→ N`(Cat) is precisely a small skew-monoidal category.

The same proof now shows that a simplicial map C → Np(Cat) is precisely a small

monoidal category, under the identification of monoidal categories with skew-monoidal

categories whose constraint maps are invertible.



92 CHAPTER 3. THE CATALAN SIMPLICIAL SET



Chapter 4

The Catalan simplicial set II

Abstract

The Catalan simplicial set C is known to classify skew-monoidal categories in the sense

that a map from C to a suitably defined nerve of Cat is precisely a skew-monoidal cat-

egory [Buc+15]. We extend this result to the case of skew monoidales internal to any

monoidal bicategory B. We then show that monoidal bicategories themselves are classified

by maps from C to a suitably defined nerve of Bicat and extend this result to obtain a

definition of skew-monoidal bicategory that aligns with existing theory.

Contribution by the author

As the sole author, this paper is entirely my own work. It is a direct reproduction of the

original which was submitted for publication. Any differences from that submission are

limited to cosmetic changes such as citation numbering.

4.1 Introduction

Skew-monoidal categories generalise Mac Lane’s notion of monoidal category [Mac63] by

dropping the requirement of invertibility of the associativity and unit constraints. They

were introduced recently by Szlachányi [Szl12] in his study of bialgebroids, which are

themselves an extension of the notion of quantum group. Monoidal categories and skew-

monoidal categories can be further generalised to notions of monoidale and skew monoidale

in a monoidal bicategory; this has further relevance for quantum algebra, since Lack and

Street showed in [LS12] that quantum categories in the sense of [DS04] can be described

using skew monoidales.

93
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Skew-monoidal categories are only one of many possible generalisations of monoidal

category: the orientation of the coherence maps and the number and shape of the axioms

could reasonably be chosen otherwise. The connection with bialgebroids and quantum

categories motivates the particular generalisation in current usage, but until recently there

was no abstract justification for such a choice.

The Catalan simplicial set C was introduced in [Buc+15] where it was shown that,

apart from a number of interesting combinatorial properties, it classifies skew-monoidal

categories in the sense that simplicial maps from C into a suitably-defined nerve of Cat

are the same thing as skew-monoidal categories. This provides some abstract justification

for the choices made in describing coherence data for skew-monoidal categories.

The first main goal of this paper is to demonstrate that C has a further classifying

property: for any monoidal bicategory B, simplicial maps from C into a suitably defined

nerve of B are the same as skew monoidales in B. More precisely, we construct a biequiv-

alence between the sSet(C,NB), the bicategory whose objects are simplicial maps from

C to the nerve of B, and SkMon(B), the bicategory of skew-monoidales, lax monoidal

morphisms and monoidal transformations.

Our second main goal is to investigate whether C has this classifying property for

higher-dimensional categories; in particular, whether simplicial maps from C to a suitably

defined nerve of Bicat are the same as monoidal or skew-monoidal bicategories. We first

describe a nerve for Bicat by informally regarding it as a monoidal tricategory. We then

find that simplicial maps from C into this nerve contain some unexpected data which go

beyond what is required for a monoidal bicategory. In the case for monoidal bicategories,

when the coherence data are invertible, the unexpected data are essentially trivial and

the classification result holds. In the case for skew-monoidal bicategories, the data are

not invertible, and the unexpected data appear to be a problem. We address this by

identifying certain simplices in C and insist that they be mapped to trivial coherence

data. By considering only simplicial maps satisfying this condition, it is easy to compute

the data and axioms of a skew-monoidal bicategory.

In Section 4.2 we define skew-monoidal categories and re-introduce the Catalan sim-

plicial set. In Section 4.3 we provide an introduction to monoidal bicategories, skew

monoidales, and nerves of monoidal bicategories. In Section 4.4 we describe a biequiva-

lence between maps from C to the nerve of a monoidal bicategory B and skew monoidales

in B. In Section 4.5 we describe a nerve for Bicat, and define skew-monoidal bicategories

by examining certain maps from C to the nerve of Bicat.

4.2 Preliminaries

In this section we recall the definition of skew-monoidal category, outline our notation for

simplicial sets, and re-introduce the Catalan simplicial set defined in [Buc+15].
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4.2.1 Skew-monoidal categories

A skew-monoidal category is a category A equipped with a a unit element I ∈ A and a

tensor ⊗ : A×A → A with natural families of maps:

λA : I ⊗A→ A and ρA : A→ A⊗ I (for A ∈ A)

αABC : (A⊗B)⊗ C → A⊗ (B ⊗ C) (for A,B,C,∈ A)
(4.2.1)

satisfying five axioms:

(A⊗B)⊗ (C ⊗D)

α

))
((A⊗B)⊗ C)⊗D

α

55

α⊗D $$

A⊗ (B ⊗ (C ⊗D)

(A⊗ (B ⊗ C))⊗D
α
// A⊗ ((B ⊗ C)⊗D)

A⊗α

:: (4.2.2)

(A⊗ I)⊗B α // A⊗ (I ⊗B)

A⊗λ

''
A⊗B

ρ⊗B
77

id
// A⊗B

(4.2.3)

I ⊗ (A⊗B)

λ

&&
(I ⊗A)⊗B

α

88

λ⊗B
// A⊗B

(4.2.4)

(A⊗B)⊗ I
α

&&
A⊗B

ρ
88

A⊗ρ
// A⊗ (B ⊗ I)

(4.2.5)

I ⊗ I
λ

""
I

ρ
<<

id
// I .

(4.2.6)

These five axioms are the same as those given in Mac Lane’s original formulation of

monoidal categories [Mac63]. Thus, when α, λ and ρ are invertible, A is precisely a

monoidal category. In that case, Kelly [Kel64] showed that the final three axioms can be

derived from the first two, in light of which, some definitions of monoidal category choose

to include only those first two axioms. The same result does not hold for skew-monoidal

categories and so we must list all five.
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On a similar note, when A is a monoidal category the commutativity of these particular

diagrams in fact implies the commutativity of all such diagrams; this is one form of

the coherence theorem for monoidal categories [Mac71]. Skew-monoidal categories, by

contrast, do not have the property that all coherence diagrams commute. For example,

the composite ρIλI : I ⊗ I → I ⊗ I does not generally equal the identity on I ⊗ I.

4.2.2 Simplicial sets

We write ∆ for the simplicial category; the objects are [n] = {0, . . . , n} for n ≥ 0 and

the morphisms are order-preserving functions. Objects X of SSet = [∆op,Set] are called

simplicial sets; we write Xn for X([n]) and call its elements n-simplices of X. We use the

notation di : Xn → Xn−1 and si : Xn → Xn+1 for the face and degeneracy maps, induced

by acting on X by the maps δi : [n − 1] → [n] and σi : [n + 1] → [n] of ∆, the respective

injections and surjections for which δ−1
i (i) = ∅ and σ−1

i (i) = {i, i+1}. An (n+1)-simplex

x is called degenerate when it is in the image of some si, and non-degenerate otherwise.

A simplicial set is called r-coskeletal when it lies in the image of the right Kan extension

functor [(∆(r))op,Set] → [∆op,Set], where ∆(r) ⊂ ∆ is the full subcategory on those [n]

with n ≤ r. In elementary terms, a simplicial set is r-coskeletal when every n-boundary

with n > r has a unique filler; here, an n-boundary in a simplicial set is a collection of

(n− 1)-simplices (x0, . . . , xn) satisfying dj(xi) = di(xj+1) for all 0 6 i 6 j < n; a filler for

such a boundary is an n-simplex x with di(x) = xi for i = 0, . . . , n.

4.2.3 The Catalan simplicial set

The Catalan simplicial set C was introduced and studied in [Buc+15]; its name derives

from the fact that it has a Catalan number of simplices in each dimension. There are

many ways to characterise C up to isomorphism; perhaps the most concise and elegant is

as the nerve of the monoidal poset (2,∨,⊥). Here, we will take the following description

as basic, since it is most helpful for seeing the connection with skew-monoidal categories.

Definition 4.2.1. The Catalan simplicial set C is the simplicial set with:

• A unique 0-simplex ?;

• Two 1-simplices s0(?) : ?→ ? and c : ?→ ?;
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• Five 2-simplices as displayed in:

?
s0(?)

��
s0(s0(?))

=s1(s0(?))

?
s0(?)

//

s0(?)
??

?

?
c

��
s0(c)

?
c

//

s0(?)
??

?

?
s0(?)

��
s1(c)

?
c

//

c

??

?

?
c

��
t

?
c

//

c

??

?

?
s0(?)

��
i

?
c

//

s0(?)
??

?

;

• Higher-dimensional simplices determined by 2-coskeletality.

Since C is 2-coskeletal, all simplices above dimension one are uniquely determined by

their faces and as such, every n-simplex a for n ≥ 2 can be identified with the (n + 1)-

tuple of faces (d0(a), d1(a), . . . , dn(a)). By direct computation we find that there are four

non-degenerate 3-simplices

a = (t, t, t, t)

` = (i, s1(c), t, s1(c))

r = (s0(c), t, s0(c), i)

k = (i, s1(c), s0(c), i) ;

and nine non-degenerate 4-simplices

A1 = (a, a, a, a, a) A6 = (s0(i), r, k, `, s2(i))

A2 = (r, s1(t), a, s1(t), `) A7 = (k, r, s0s1(c), `, k)

A3 = (r, r, s2(t), a, s2(t)) A8 = (`, s1(t), s0(t), `, k)

A4 = (s0(t), a, s0(t), `, `) A9 = (k, r, s2(t), s1(t), r)

A5 = (s1(i), s2(i), k, s0(i), s1(i))

.

The simplices above dimension four will play more of a role in Section 4.5.

Now consider a simplicial map F : C → NCat, it is completely determined by its

behaviour on non-degenerate simplices. At dimension 0, F? is the unique 0-simplex in

the nerve of Cat. At dimension 1, we get a category Fc. At dimension 2, we get two

functors Ft : Fc × Fc → Fc and Fi : I × I → Fc. At dimension 3, we get four natural

transformations.

(Fc× Fc)× Fc
∼= //

Fa +3Ft×1

��

Fc× (Fc× Fc)

1×Ft
��

Fc× Fc
Ft
// Fc Fc× Fc

Ft
oo
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(I × I)× Fc
∼= //

F` +3Fi×1

��

I × (I × Fc)

1×∼=
��

Fc× Fc
Ft
// Fc I × Fc∼=
oo

(Fc× I)× I
∼= //

Fr +3∼=×1

��

Fc× (I × I)

1×Fi
��

Fc× I ∼=
// Fc Fc× Fc

Ft
oo

(I × I)× I
∼= //

Fk +3Fi×1

��

I × (I × I)

1×Fi
��

Fc× I ∼=
// I I × Fc∼=
oo

The unnamed isomorphisms are canonical maps arising from the monoidal category struc-

ture on Cat. Already we can see the strong resemblance with skew-monoidal categories.

At dimension 5 we get nine axioms concerning transformations Fa, F`, Fr, Fk. Among

those nine are the Mac Lane pentagon and the four other axioms for a skew-monoidal

category.

There is some work to do in sorting out the details, but there is a perfect bijection

between skew-monoidal categories and simplicial maps F : C → NCat. This is the final

classification result presented in [Buc+15] and the result which we seek to generalise.

4.3 Monoidal bicategories and skew monoidales

One way to generalise monoidal categories is to consider monoidales in a monoidal bicat-

egory B. In this case a monoidal category is precisely a monoidale in Cat. In the same

way, it is possible to generalise skew-monoidal categories by describing skew monoidales

in a monoidal bicategory B, in which case, a skew-monoidal category is precisely a skew

monoidale in Cat. This generalisation was put to use by Lack and Street in [LS12], where

it was shown that quantum categories in the sense of [DS04] are skew monoidales in a

monoidal bicategory of comodules.

In the following section, we will show that skew-monoidales in a monoidal bicategory

B correspond with simplicial maps from C into a suitably defined nerve of B. Our result

will take the form of a biequivalence

SkMon(B) ' sSet(C,NB) . (4.3.1)

The purpose of the present section is to define the bicategories appearing on each side

of (4.3.1). We begin by fixing definitions and notation for monoidal bicategories. We then
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define skew monoidales and describe the bicategory SkMon(B) of skew monoidales in B
appearing to the left of (4.3.1). Finally we describe a nerve construction for monoidal

bicategories assigning to each monoidal bicategory B a simplicial set NB, and explain how

this simplicial set underlies a simplicial bicategory NB; now homming into this simplicial

bicategory from C yields the bicategory sSet(C,NB) on the right-hand side of (4.3.1).

4.3.1 Monoidal bicategories

A monoidal bicategory is a one-object tricategory in the sense of [Gur06]; it thus comprises

a bicategory B equipped with a unit object I and tensor product homomorphism ⊗ : B ×
B → B which is associative and unital only up to pseudo-natural equivalences a, l and r.

The coherence of these equivalences is witnessed by invertible modifications π, µ, σ and τ ,

whose components are 2-cells with boundaries those of the axioms (4.2.2)–(4.2.5) above,

and an invertible 2-cell θ whose boundary is that of (4.2.6). The modifications π, µ, σ and

τ are as in [Gur06], though we write σ and τ for what there are called λ and ρ; whilst

θ : rI ◦ lI ⇒ 1I⊗I : I ⊗ I → I ⊗ I can be defined from the remaining coherence data as the

composite

l

l�

1l

a
l

l1

r1

r�

r

r
σ µ

.

The axioms for a tricategory also imply that each of σ and τ are also completely determined

by π and µ.

Here, and elsewhere in this paper, we use string notation to display composite 2-cells

in a bicategory, with objects represented by regions, 1-cells by strings, and generating 2-

cells by vertices. We orient our string diagrams with 1-cells proceeding down the page and

2-cells proceeding from left to right. If a 1-cell ψ belongs to a specified adjoint equivalence,

then we will denote its specified adjoint pseudo-inverse by ψ�, and as usual with adjunc-

tions, will draw the unit and counit of the adjoint equivalence in string diagrams as simple

caps and cups. In representing the monoidal structure of a bicategory, we notate the ten-

sor product ⊗ by juxtaposition, notate the structural 1-cells a, l, r and 2-cells π, µ, σ, τ, θ

explicitly, and use string crossings to notate pseudo-naturality constraint 2-cells, and also

instances of the pseudo-functoriality of ⊗ of the form (f ⊗ 1) ◦ (1⊗ g) ∼= (1⊗ g) ◦ (f ⊗ 1)

(the interchange isomorphisms). String splittings and joinings are used to notate pseudo-

functoriality of ⊗ of the form f ⊗ g ∼= (f ⊗ 1) ◦ (1 ⊗ g) and (1 ⊗ g) ◦ (f ⊗ 1) ∼= f ⊗ g
respectively.
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4.3.2 Skew monoidales

Let B be a monoidal bicategory.

Definition 4.3.1. A skew monoidale in B is an object A ∈ B together with morphisms

i : I → A and t : A⊗A→ A, and (non-invertible) coherence 2-cells

(A⊗A)⊗A
α +3

a //

t⊗A
��

A⊗ (A⊗A)

A⊗t
��

A⊗A
t

// A A⊗A
t

oo

and

I ⊗A

i⊗A
��

λ +3

l // A
ρ +3

r // A⊗ I

A⊗i
��

A⊗A
t
// A A⊗A

t
oo

subject to the following five axioms, the appropriate analogues of (4.2.2)–(4.2.6).

(t1)1

t1

a1

t1

t
t

1a 1(1t)

1t

a

a

1t

a(1t)1

1(t1)

π

α1

α
1α

=
t1

t

t

1t

t

a

1t

1t
1(1t)

a

(t1)1

t1

α α

t t

t1

r1

1t

(1i)1
1(i1)

a

1l
α

ρ1

1λ

µ

= t t

t1

t

(i1)1

i1

a

1t

1t

l

t

α
λ

=

(i1)1

t1

a

t

1t

l

l1
λ1 σ

a1i

1i

rt

t1
1t

t

t

ρ

α

=

t t

r

a

1i

1(1i)
1t

1r

1ρ

τ

i

i1

r

1i 1i i

l

t

ρ

λ

θ

= i i

Definition 4.3.2. Let A and B be skew monoidales in B. A lax monoidal morphism from
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A to B consists of a morphism F : A→ B together with 2-cells

A⊗A t //

F⊗F
��

A

F

��
B ⊗B

t
//

φ +3

B

and

I
i // A

F
��

I
i
//

ψ +3

B

subject to the following three axioms.

(FF )F (FF )1

t

t1
1F

1F

t1

F1

FF
t

F

a

1t

t

φ1

φ

α

=
t

t1

1t

1F FF

a(FF )F

F (FF )
1(FF )

1t 1t

F1

t

1φ

α

t

Fφ

i1

i1

1F

1F

t F

i1

FF
F1 l

t
ψ1

φ

λ =

l

l

F

1F

t

i1

λ

t F

t

1i

1F
FF

F

F1

F1

r�

1i

1i

ρ
φ

1ψ
=

FF

t

r�

1i
ρ

Definition 4.3.3. Let F and G be lax monoidal morphisms from A to B. A monoidal

transformation from F to G consists of a 2-cell γ : F ⇒ G satisfying the following two

axioms.

t

FF

G

t

F
γ

φF
=

Gt

t

GG

FF

φG

γγ

i

i

G

ψG
=

i

i

F
Gγ

ψF

Together, skew monoidales, lax monoidal morphisms, and monoidal transformations in

B form a bicategory SkMon(B). Suppose (F, φF , ψF ) : A → B and (G,φG, ψG) : B → C
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are lax monoidal morphisms; their composite is GF together with 2-cells

A⊗A t //

F⊗F
��

GF⊗GF

��

A

F

��
B ⊗B t //

G⊗G
��

φF +3

B

G��
C ⊗ C

t
//

φG +3

∼=

C

and

I
i // A

F
��

I
i //

ψF +3

A

G
��

I
i
//

ψG +3

B

.

The unnamed isomorphism arises from the pseudo-functoriality of ⊗ : B × B → B. The

identity morphism on a skew monoidale A is 1A : A→ A together with 2-cells

A⊗A t //

1

��

1⊗1

��

∼= t

��

A

1

��
A⊗A

t
//

∼=

∼=

A

and

I
i //

i

��

A

1

��
I

i
//

∼=

A

.

The unnamed isomorphisms arise from the pseudo-functoriality of ⊗ : B × B → B and

coherence cells in the bicategory. If α and β are composable transformations, their com-

posite is βα. The identity transformation on a lax monoidal morphism F is 1F . Coherence

2-cells for SkMon(B) are inherited from B. That is, if F,G,H are composable lax monoidal

morphisms then the coherence isomorphisms (HG)F ∼= H(GF ), 1F ∼= F and F ∼= F1 in

B are already monoidal transformations.

4.3.3 Nerves of monoidal bicategories

As noted above, a monoidal bicategory is a one-object tricategory in the sense of [GPS95].

There are several known constructions of nerves for tricategories; the one of interest to us

is essentially Street’s ω-categorical nerve [Str87], restricted from dimension ω to dimension

3, and generalised from strict to weak 3-categories. An explicit description of this nerve

is given in [CH12]; we now reproduce the details for the case of a monoidal bicategory B.

Definition 4.3.4. Suppose that B is a monoidal bicategory. The nerve of B, denoted NB,

is the simplicial set with:

• A unique 0-simplex ?.

• A 1-simplex is an object A01 of B; its two faces are necessarily ?.

• A 2-simplex is given by objects A12, A02, A01 of B together with a 1-cell

A012 : A12 ⊗A01 → A02 ;
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its three faces are A12, A02, and A01.

• A 3-simplex is given by:

– Objects Aij for each 0 6 i < j 6 3;

– 1-cells Aijk : Ajk ⊗Aij → Aik for each 0 6 i < j < k 6 3;

– A 2-cell

(A23 ⊗A12)⊗A01

A0123+3

a //

A123⊗1

��

A23 ⊗ (A12 ⊗A01)

1⊗A012

��
A13 ⊗A01

A013

// A03 A23 ⊗A02 ;
A023

oo

its four faces are A123, A023, A013 and A012.

• A 4-simplex is given by:

– Objects Aij for each 0 6 i < j 6 4;

– 1-cells Aijk : Ajk ⊗Aij → Aik for each 0 6 i < j < k 6 4;

– 2-cells Aijk` : Aij`◦(Ajk`⊗1)⇒ Aik`◦(1⊗Aijk)◦a for each 0 6 i < j < k < ` 6 4

such that the 2-cell equality

(A2341)1

A1241

a1

A1341

A014

A034

1a 1(1A012)

1A023

a

a

1A013

a(1A123)1

1(A
1231)

π

A12341

A0134

1A0123

=

A1241

A014

A024

1A023

A034

a

1A012

1A012
1(1A012)

a

(A2341)1

A2341

A0124 A0234

holds. The five faces of this simplex are A1234, A0234, A0134, A0124 and A0123.

• Higher-dimensional simplices are determined by the requirement that NB be 4-

coskeletal.

It remains to describe the degeneracy operators. The degeneracy of the unique 0-simplex

is the unit object I ∈ B; the two degeneracies s0(A), s1(A) of a 1-simplex A ∈ B are the
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unit constraints r� : A⊗ I → A and l : I ⊗A→ A; the three degeneracies s0(γ), s1(γ) and

s2(γ) of a 2-simplex γ : B ⊗ C → A are the respective 2-cells

r�

γ1

γ

1r�

aτ

r�1

γγ

1l

a
µ−1

and

l

γ
1γ

a
l1

σ
.

The four degeneracies of a 3-simplex are simply the assertions of certain 2-cell equali-

ties; that these hold is a consequence of the axioms for a monoidal bicategory. Higher

degeneracies are determined by coskeletality.

All simplicial identities except s0(I) = s1(I) (i.e. r�I = `I) hold automatically. There is

however a canonical isomorphism r�I
∼= `I , see [Gur06] A.3.1. Thus `I is a pseudo-inverse

for rI and we can suppose that r�I = `I without any loss of generality.

Definition 4.3.5. The pseudo nerve of B, called NpB, is the same as NB with the extra

requirement that 3-simplex components A0123 be invertible.

Remark 4.3.6. The assignation B 7→ N(B) sending a monoidal bicategory to its nerve

can be extended to a functor N: MonBicats → SSet, where MonBicats is the category of

monoidal bicategories and morphisms which strictly preserve all the structure. When seen

in this way, the nerve is a right adjoint. This holds equally well for Np.

Now that the nerve is well defined, we can properly examine simplicial maps F : C→
NB. In the lowest few dimensions the data for such an F consist of the following.

• A single object Fc in B.

• Two 1-cells in B

Fc⊗ Fc Ft // Fc and I ⊗ I Fi // Fc

since F (s0(?)) = I.

Before we can examine the higher data we already notice a problem: while Ft has the

right form to provide a multiplication Fc ⊗ Fc → Fc, the map Fi : I ⊗ I → Fc has the

wrong domain to be a unit map for Fc. While this problem is easily resolved using the

canonical equivalence of I⊗ I with I, the fact that I⊗ I and I are only equivalent and not

isomorphic means that the correspondence we’re investigating cannot be a literal bijection

between sSet(C,NB) and the set of skew monoidales in B. It will, however, be surjective

up to equivalence when sSet(C,NB) is regarded as a bicategory.

4.3.4 The bicategory sSet(C,NB)

In order to construct the bicategory sSet(C,NB), we will first show that NB underlies a

simplicial bicategory (a bicategory object internal to simplicial sets). Then since the rep-
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resentable sSet(C, -) : sSet→ Set preserves limits, sSet(C,NB) becomes the set of objects

of a bicategory.

Observation 4.3.7. The nerve of a monoidal bicategory NB is the object of objects of a

bicategory internal to sSet

N(B ⇓ B) //// N(B ↓ B) // // N(B) (4.3.2)

where (B ↓ B) and (B ⇓ B) are monoidal bicategories defined below. We call this internal

bicategory NB; see Table 4.1 for an explicit description of 0, 1 and 2-cells in the lowest

few dimensions. We construct it by first building a bicategory

(B ⇓ B) //// (B ↓ B) //// (B)

internal to MonBicats and then use the fact that N preserves limits (because it is a right

adjoint, Remark 4.3.6).

The oplax-comma monoidal bicategory (B ↓ B) is defined as follows. Its objects are

arrows h : A → B. A morphism from h to h′ : A′ → B′ is a triple (fA, fB , fh), where

fA : A→ A′, fB : B → B′, and where

A

h

��

fA // A′

h′

��
B

fB

//

fh +3

B′

(4.3.3)

A 2-cell from (fA, fB , fh) to (gA, gB , gh) is a pair (αA, αB), where αA : fA ⇒ gA and

αB : fB ⇒ gB satisfy

h′

gA

fB

h

gB
αB

gh =

fB h′

h

fA

gA

fh

αA
. (4.3.4)

Composition and identities are defined in the obvious way. The tensor for the monoidal

structure is defined on 0 and 2-cells by tensoring the underlying data in B. On 1-cells, we

need (fA, fB , fh)⊗ (pA, pB , ph) = (fA ⊗ pA, fB ⊗ pB , ϕ0 ◦ (fh ⊗ ph) ◦ϕ1) where ϕ0 and ϕ1

are appropriate coherence maps associated to ⊗ : B × B → B.

The monoidal bicategory (B ⇓ B) is defined as follows. Its objects are 2-cells σ : h ⇒
k : A→ B in B. A morphism from σ to σ′ : h′ ⇒ k′ : A′ → B′ is a 4-tuple (fA, fB , fh, fk)
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where (fA, fB , fh) and (fA, fB , fk) take the same form as (4.3.3) and satisfy

fA

k′

h

fB

kσ

fk
=

h fA

fB

h′

k′

fh

σ′

.

A 2-cell (fA, fB , fh, fk)⇒ (gA, gB , gh, gk) is a pair (αA, αB), αA : fA ⇒ gA, αB : fB ⇒ gB

satisfying (4.3.4) for both h and k. Composition and identities are defined in the obvious

way. Again, the tensor for the monoidal structure is defined on 0 and 2-cells by tensoring

the underlying data in B. On 1-cells, we need (fA, fB , fh, fk) ⊗ (pA, pB , ph, pk) = (fA ⊗
pA, fB⊗pB , ϕ0◦(fh⊗ph)◦ϕ1, ϕ2◦(fh⊗ph)◦ϕ3) where each ϕi is an appropriate coherence

map associated to ⊗ : B × B → B.

The internal bicategory structure

(B ⇓ B) // // (B ↓ B) // // (B)

is given by first defining composition of 1-cells (4.3.3) to be ‘down-the-page’. Domain

maps, codomain maps, identities and 2-cell composition follow easily from there.

Observation 4.3.8. For any simplicial set X, sSet(X,NB) is a bicategory. To see this,

note that the representable sSet(X, -) : sSet→ Set preserves limits. Now if Y is a bicate-

gory

Y2 // // Y1 // // Y0

internal to sSet, the 2-globular set

sSet(X,Y2) // // sSet(X,Y1) // // sSet(X,Y0)

is a bicategory which we call sSet(X,Y).

The following observation is useful for understanding the nature of 0,1 and 2-cells in

sSet(X,NB).

Observation 4.3.9. Since N(B) is 4-coskeletal, its simplices at dimension 5 and above

are uniquely determined by their boundary.

This is also true for N(B ↓ B), but it has a stronger property: a 4-simplex in N(B ↓ B)

is uniquely determined by its boundary 3-simplices and its source and target 4-simplices

in N(B).

The simplicial set N(B ⇓ B) has both of these properties and an even stronger one: each

3-simplex is uniquely determined by its boundary 2-simplices and its source and target

3-simplices in N(B ↓ B). This means that the essential data of these simplicial sets are

contained in their lowest 4, 3, 2 dimensions respectively. In particular this means that a
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N
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↓
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⇓
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?
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0-cell in sSet(X,NB), a map X → N(B), is completely determined by its behaviour up to

dimension 4. A 1-cell in sSet(X,NB), a map X → N(B ↓ B), is completely determined by

its behaviour up to dimension 3 and its source and target. And a 2-cell in sSet(X,NB),

a map X → N(B ⇓ B), is completely determined by its behaviour up to dimension 2 and

its source and target.

In order to be more rigorous we make the following definition. Let F : X → Y be a map

of simplicial sets. We say that F is m-coskeletal or that X is m-coskeletal over Y when

F has the unique right-lifting property with respect to boundary inclusions δ∆n → ∆n

for all n > m. That is, for all u, v as below there exists a unique k making both triangles

commute.

∂∆n� _

��

u // X

F

��
∆n

k

==

v
// Y

.

A simplicial set X is m-coskeletal precisely when it is m-coskeletal over 1. We can now

restate the observation as:

• N(B) is 4-coskeletal;

• N(B ↓ B) is 3-coskeletal over NB ×NB via (Ns,Nt); and

• N(B ⇓ B) is 2-coskeletal over N(B ↓ B)×(Ns,Nt) N(B ↓ B) via (Ns,Nt).

To justify our observation, note the following. The nerve functor N: MonBicats → sSet

has the property that it sends every locally faithful functor to a 3-coskeletal map and every

locally fully faithful functor to a 2-coskeletal map. The maps (s, t) : (B ↓ B)→ B×B and

(s, t) : (B ⇓ B) → (B ↓ B) ×(s,t) (B ↓ B) are locally faithful and locally fully faithful

respectively.

4.4 Classifying skew monoidales

In this section we show that simplicial maps from C to NB are skew monoidales in B in

the sense that there is a biequivalence

sSet(C,NB) ' SkMon(B) .

Before we formally construct this biequivalence let us examine the data of a simplicial

map F : C→ NB and highlight the difficulties that arise. The data for such an F consist

of the following:

• A single object A in B
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• Two 1-cells in B
A⊗A t // A and I ⊗ I i // A

• Four 2-cells

(A⊗A)⊗A
a +3

a //

t⊗A
��

A⊗ (A⊗A)

A⊗t
��

A⊗A
t

// A A⊗A
t

oo

(A⊗ I)⊗ I
r +3

a //

r�⊗1

��

A⊗ (I ⊗ I)

A⊗i
��

A⊗ I
r�

// A A⊗A
t

oo

(I ⊗ I)⊗A
` +3

a //

i⊗1

��

I ⊗ (I ⊗A)

1⊗l
��

A⊗A
t

// A I ⊗A
l

oo

(I ⊗ I)⊗ I
k +3

a //

i⊗1

��

I ⊗ (I ⊗ I)

1⊗i
��

A⊗ I
r�

// A I ⊗A
l

oo

• And nine equalities

(t1)1

t1

a1

t1

t
t

1a 1(1t)

1t

a

a

1t

a(1t)1

1(t1)

π

a1

a
1a

=
t1

t

t

1t

t

a

1t

1t
1(1t)

a

(t1)1

t1

a a

(4.4.1)

(r�1)1

r�1

a1

t1

t
t

1a 1(1l)

1l

a

a

1t

a(1i)1

1(i1)

π

r1

a
1`

=
r�1

t

t

1l

t

a

1l

1l
1(1l)

a

(r�1)1

r�1

s1t s1t

(4.4.2)

(t1)1

r�1

a1

r�1

r�

t

1a 1(1i)

1t

a

a

1r�

a(1r�)1

1(r �
1)

π

s2t.1

s2t
1r

=
r�1

r�

t

1t

t

a

1i

1i
1(1i)

a

(t1)1

t1

r a

(4.4.3)
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(i1)1

t1

a1

l1

t
l

1a 1(1t)

1l

a

a

1t

a(1l)1

1(l1)

π

`1

s0t
1s0t

=
t1

t

t

1l

l

a

1t

1t
1(1t)

a

(i1)1

i1

a `

(4.4.4)

(l1)1

i1

a1

i1

l
l

1a 1(1l)

1i

a

a

1i

a(1l)1

1(l1)

π

s1i.1

k
1s1i

=
i1

l

i

1i

l

a

1l

1l
1(1l)

a

(l1)1

l1

s2i s0i

(4.4.5)

(i1)1

r�1

a1

t1

r�

l

1a 1(1i)

1l

a

a

1i

a(1r�)1

1(r �
1)

π

s2i.1

k
1s0i

=
r�1

r�

t

1l

l

a

1i

1i
1(1i)

a

(i1)1

i1

r `

(4.4.6)

(i1)1

r�1

a1

l1

r�

l

1a 1(1i)

1l

a

a

1r�

a(1i)1

1(i1)

π

k1

s0s1c
1k

=
r�1

r�

t

1l

l

a

1i

1i
1(1i)

a

(i1)1

i1

r `

(4.4.7)

(i1)1

r�1

a1

l1

t
l

1a 1(1l)

1l

a

a

1t

a(1l)1

1(l1)

π

k1

s0t
1`

=
r�1

t

t

1l

l

a

1l

1l
1(1l)

a

(i1)1

i1

s1t `

(4.4.8)

(r�1)1

r�1

a1

t1

r�

t

1a 1(1i)

1l

a

a

1r�

a(1i)1

1(i1)

π

r1

s2t
1k

=
r�1

r�

t

1l

t

a

1i

1i
1(1i)

a

(r�1)1

r�1

r s1t

(4.4.9)

The similarity with skew monoidales in B is strong but there are some problems.

As previously mentioned, the unit map for a skew monoidale is of the form I → A but i

is a map I⊗I → A. Similarly, the left and right unit constraints for a skew monoidale have

different domains and codomains than the r and ` shown here. These differences amount

to the fact that I ⊗ I does not equal I; we will deal with this momentarily. The second

problem is that there is an extra coherence 2-cell k. Fortunately, the equality in (4.4.5)
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together with the monoidal bicategory axioms force k to be equal to the pasting

r�1

ri.1

i
1.i

r�

l

1l

l
a

µ−1

θ−1

θ

(4.4.10)

and thus completely specified by the coherence data of B. The third problem is that there

are too many axioms! Fortunately, (4.4.8) and (4.4.9) hold trivially in any monoidal bicat-

egory. The remaining six equalities are precisely the five axioms we require (axioms (4.4.6)

and (4.4.7) are equivalent).

We have yet to resolve the first problem: i, `, r have the wrong shape. This is resolved

by constructing a new monoidal bicategory B∗ which is like B, but with unit object I ⊗ I
and appropriately modified coherence data. Then simplicial maps from C to NB are

exactly skew monoidales in B∗: there is an isomorphism of bicategories

sSet(C,NB) ∼= SkMon(B∗) .

Then since B∗ ' B we know that SkMon(B∗) ' SkMon(B) and we have the required

correspondence.

Definition 4.4.1. Suppose B is a monoidal bicategory B = (B,⊗, I, a, l, r, π, µ, σ, τ). Let

B∗ be the monoidal bicategory (B,⊗, I ⊗ I, a, l∗, r∗, π, µ∗, σ∗, τ∗) where the new data are

defined as follows. The new pseudo-natural transformations l∗ and r∗ have 1-cell compo-

nents

l∗A = (I ⊗ I)⊗A l⊗A // I ⊗A l // A

and

r∗A = A
r // A⊗ I A⊗r // A⊗ (I ⊗ I) .

Their 2-cell components can easily be deduced. The modifications µ∗, σ∗ and τ∗ have

2-cell components

µ∗AB =

(A(II))B
a //

∼=

A(II)B)

A(lB)

!!
A(IB)

(Ar)B
==

a //

µ��

(AI)B

Al

""
AB

rB
<<

id
// AB
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σ∗BC =

(II)(BC)

∼=

l(BC) // I(BC)

σ��
l

!!
((II)B)C

a

==

(lB)C
// (IB)C

a

==

lC
// BC

τ∗AB =

(AB)I

τ��
a

##

(AB)r // (AB)(II)

a

##
AB

r

;;

Ar
// A(BI)

∼=

A(Br)
// A(B(II))

Unlabelled isomorphisms come from pseudo-naturality of a. It is not hard to check that

this data satisfies the required axioms and that B ' B∗ as monoidal bicategories.

Theorem 4.4.2. For all monoidal bicategories B there is an isomorphism of bicategories

sSet(C,NB) ∼= SkMon(B∗) .

Proof. Suppose that F : C → NB. Let us compare the image of F with the data for a

skew monoidale in B∗ and demonstrate a correspondence between the two. At dimensions

one and two these data are exactly equal: a single object A, a tensor map t and a unit

map i : I ⊗ I → A. At dimension two, the 2-cell a has the same form as the associa-

tivity constraint α for a skew-monoidale; whilst, as observed above, k is necessarily of

the form (4.4.10). On the other hand, the data ` and r give rise to left and right unit

constraints λ and ρ upon forming the composites

l
l

1l

a
l1i.1

t

σ−1

`
and

1r

1.F i

t

a

r

r�

r�1

r

r

τ−1

.

The assignments ` 7→ λ and r 7→ ρ are in fact bijective, the former since it is given by

composing with an invertible 2-cell, and the latter since it is given by composition with an

invertible 2-cell followed by transposition under adjunction. Thus the 2-dimensional data

of F and of a skew monoidale in B∗ are in bijective correspondence.

Finally, after some calculation we find that, with respect to the α, λ and ρ defined

above, equations (4.4.1), (4.4.2), (4.4.3), (4.4.4), (4.4.6) and (4.4.7) express precisely the

five axioms for a skew monoidale in B; equation (4.4.5) specifies Fk and nothing more;

whilst equations (4.4.8) and (4.4.9) are both equalities which follow using only the axioms

for a monoidal bicategory. Thus, every simplicial map F : C → NB determines a skew

monoidale in B∗ and this assignment is bijective.

Suppose next that γ : F → G is a 1-cell in sSet(C,NB). By Remark 4.3.9, γ is deter-
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mined by F and G and the data up to dimension 3 of a simplicial map γ satisfying

N(B ↓ B)

N(s,t)

��
C

γ
55

(F,G)
// N(B)×N(B)

.

This consists of:

• A single arrow γc : Fc→ Gc.

• Two 2-cells

A⊗A Ft //

γc⊗γc
��

A

γc

��
B ⊗B

Gt
//

γt +3

B

and

I ⊗ I Fi //

1⊗1

��

A

γc

��
I ⊗ I

Gi
//

γi +3

B

where A = Fc and B = Gc.

• Four equations

(γcγc)γc (γcγc)1

Gt

Gt1

1γc

1γc

Ft1

γc1

γcγc
Ft

γc

a

1Ft

Ft

γt1

γt

Fa

=
Gt

Gt1

1Ft

1γc γcγc

a(γcγc)γc

γc(γcγc)
1(γcγc)

1Gt
1Gt

γc1

Gt

1γt

Ga

Ft

γcγt

(4.4.11)
(11)γc (11)1

Gt

Gi1

1γc

1γc

Fi1

γc1

γcγc
Ft

γc

a

1l

F l

γi1

γt

F`

=
Gt

Gi1

1l

1γc 1γc

a(11)γc

1(1γc)
1(1γc)

1l
1l

11

l

1 ∼=

G`

l

γc∼=

(4.4.12)
(γc1)1 (γc1)1

r�

r�1
11

11

r�1

γc1

γc1
r�

γc

a

1Fi

Ft

∼= 1

∼=

Fr

=
r�

r�1

1Fi

1γc γcγc

a(γc1)1

γc(11)
1(11)

1Gi
1Gi

γc1

Gt

1γi

Gr

Ft

γcγt

(4.4.13)
(11)1 (11)1

r�

Gi1
11

11

Fi1

γc1

γc1
r�

γc

a

1Fi

l

γi1

∼=

Fk

=
r�

Gi1

1Fi

1γc 11

a(11)1

1(11)
1(1γc)

1Gi
1Gi

11

l

1γi

Gk

l

γc∼=

(4.4.14)
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where unlabelled isomorphisms come from pseudo-naturality of l and r�. Display-

ing these isomorphisms explicitly (rather than using string-crossings) highlights the

uniformity of the axioms.

We now compare the data for γ with the data for a lax monoidal morphism in B∗. At

dimension one these data are exactly equal: a single arrow γc : A→ B. At dimension two,

the 2-cell γt has the same form as the tensor constraint φ for a lax monoidal morphism;

on the other hand, γi gives rise to unit constraint ψ upon forming the composite

I ⊗ I

1

��

Fi //

1⊗1

��
∼=

A

γc

��
I ⊗ I

Gi
// B

γi +3 .

The assignment γi 7→ ψ is bijective since it is just pre-composition with an invertible 2-cell.

Finally, after some calculation we find that, with respect to the φ and ψ defined

above, equations (4.4.11), (4.4.12) and (4.4.13) express precisely the three axioms for a

lax monoidal morphism in B; equation (4.4.14) is an equality which follows using only the

axioms for a monoidal bicategory. Thus, every 1-cell γ : F → G in sSet(C,NB) determines

a lax monoidal morphism in B∗ and this assignment is bijective.

Suppose finally that Γ: γ ⇒ δ is a 2-cell in sSet(C,NB). By Remark 4.3.9, Γ is

determined by γ and δ and the data up to dimension 2 of a simplicial map Γ satisfying

N(B ⇓ B)

N(s,t)

��
C

Γ

33

(γ,δ)
// N(B ↓ B)×N(s,t) N(B ↓ B)

.

This consists of:

• A single 2-cell Γc : γc ⇒ δc.

• Two equations

Ft

γcγc

δc

Gt

γc
Γc

γt =

δcFt

Gt

δcδc

γcγc

δt

ΓcΓc
(4.4.15)

Fi

11

γc

Gi

γc
Γc

γi =

γcFi

Gi

11

11

δi

11
. (4.4.16)

This is exactly the data of a monoidal transformation in B∗: a single 2-cell satisfying
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exactly the required axioms. Thus, every 2-cell Γ: γ ⇒ δ in sSet(C,NB) determines a

monoidal transformation in B∗ and the assignment is bijective.

The following result follows directly.

Theorem 4.4.3. For all monoidal bicategories B there is a biequivalence

sSet(C,NB) ' SkMon(B) .

Proof. From the biequivalence B∗ ' B we can show that SkMon(B∗) ' SkMon(B). This,

together with Theorem 4.4.2, gives the desired result.

Remark 4.4.4 (Results for dual notions). The biequivalence in Theorem 4.4.3 applies to the

bicategory of skew monoidales, lax monoidal morphisms and monoidal transformations.

The result is also true if we replace skew monoidales with opskew monoidales or ordinary

monoidales. We only need to change our definition of 3-simplices in NB by reversing the

direction of the 2-cells or making them invertible. Similarly, the result holds if we replace

lax monoidal morphisms with oplax monoidal morphisms or monoidal morphisms. We

only need to change our definition of 1-cells in (B ↓ B) by reversing the direction of the

2-cells or making them invertible.

We conclude this section with some remarks on the connection between monoids and lax

monoidal functors. It well known that, for a monoidal category V, there is an equivalence

MonCatlax(1,V) ' Mon(V)

between lax monoidal functors 1 → V and monoids internal to V. A similar result holds

for skew monoidales internal to a monoidal bicategory.

Definition 4.4.5. Suppose that B and E are monoidal bicategories. A lax monoidal

homomorphism from B to E is a homomorphism F : B → E on the underlying bicategories

together with pseudo-natural families of maps

φAB : FA⊗ FB → F (A⊗B) and φI : I → FI
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and modifications ω, γ, δ with (non-invertible) components

(FA⊗ FB)⊗ FC a //

φ⊗FC
��

FA⊗ (FB ⊗ FC)

FA⊗φ
��

F (A⊗B)⊗ FC

φ

��

FA⊗ F (B ⊗ C)

φ

��
F ((A⊗B)⊗ C)

Fa
// F (A⊗ (B ⊗ C))

ωABC+3 (4.4.17)

I ⊗ FA
φ⊗FA //

l

**

FI ⊗ FA

φ

��
F (IA)

Fl

��
FA

γA +3 (4.4.18)

FA
r //

Fr

((

FA⊗ I

FA⊗φ
��

FA⊗ FI

φ

��
F (A⊗ I)

δA +3 (4.4.19)

satisfying five axioms corresponding directly to those for skew-monoidal categories.

By giving appropriate definitions of monoidal transformation and monoidal modifica-

tion one can form a bicategory MonBicatlax(B, E) whose objects are lax monoidal homo-

morphisms. We state the following without proof.

Proposition 4.4.6. For any monoidal bicategory B, there is a biequivalence

MonBicatlax(1,B) ' SkMon(B) .

This result is not unexpected and easy to verify, but we do need to take care that

we have defined lax monoidal homomorphisms properly. It is also relevant in light of the

following remark.

Remark 4.4.7. Suppose that V is a monoidal category. There is an equivalence

MonCatlax(1,V) ' Mon(V)

mentioned above, between lax monoidal functors from 1 to V and monoids internal to V.
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The data for a lax monoidal functor consists of a functor F : 1 → V together with two

natural families of maps φ1 : 1 → F1 and φ11 : F1 ⊗ F1 → F1 satisfying certain axioms.

This is precisely an object F1 in V with a monoid structure and the correspondence is

easily extended to an equivalence of categories.

There is a second equivalence

MonCatnlax(2,V) ' MonCatlax(1,V)

between normal lax functors from 2 to V and lax functors from 1 to V. It exists as part

of an adjunction where 2 is the result of taking 1 and freely adding a new unit object

together with a map to the old unit object.

There is a third equivalence

sSet(N2,NV) ' MonCatnlax(2,V)

obtained by observing that the nerve functor for monoidal categories is fully-faithful on

normal lax functors.

Together, these form a sequence

sSet(N2,NV) ' MonCatnlax(2,V) ' MonCatlax(1,V) ' Mon(V) (4.4.20)

Since C is isomorphic to N2, this sequence demonstrates a correspondence between sim-

plicial maps C→ NV and monoids internal to V.

We fully expect that this sequence of equivalences can be generalised to the domain of

monoidal bicategories and skew monoidales. Such a generalisation would require a suitable

notion of normal lax functor for monoidal bicategories together with a proof that the nerve

construction is essentially fully faithful on such functors. That work would lead us too far

from our current goal and so we leave it for another time.

4.5 Towards skew-monoidal bicategories

In this section we give a definition of skew-monoidal bicategory by looking at simplicial

maps from C into a suitably defined nerve of Bicat. First, we describe a nerve of Bicat

by informally regarding it as a monoidal tricategory, we then examine simplicial maps

from C into this nerve. We find that a classification result for monoidal bicategories holds

almost immediately, but the corresponding result for skew-monoidal bicategories requires

an extra condition on the simplicial maps in question. We then obtain a definition of skew-

monoidal bicategory and find that skew-monoidal bicategories with invertible coherence

data are precisely monoidal bicategories in the usual sense. The data for a skew-monoidal

bicategory consists of a single bicategory, tensor and unit maps, three coherence transfor-
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mations, five coherence modifications and eight axioms. This means one new coherence

modification and five new axioms.

4.5.1 A nerve of Bicat

Let Bicat be the tricategory of bicategories, homomorphisms, pseudo-natural transforma-

tions and modifications. Informally regarding it as a monoidal tricategory, we take the

nerve of Bicat to be the simplicial set N(Bicat) defined as follows:

• There is a unique 0-simplex ?.

• A 1-simplex is a bicategory

B01 ;

its two faces are necessarily ?.

• A 2-simplex is given by bicategories B12,B02,B01 together with a pseudo-functor

F012 : B12 × B01 → B02 ;

its three faces are B12, B02, and B01.

• A 3-simplex is given by:

– Objects Bij for each 0 6 i < j 6 3;

– functors Fijk : Bjk × Bij → Bik for each 0 6 i < j < k 6 3;

– a pseudo-natural transformation γ0123 whose component at a, b, c is

F013(F123(a, b), c)
γ0123 // F023(a, F012(b, c)) ;

its four faces are F123, F023, F013 and F012.

• A 4-simplex is given by:

– Objects Bij for each 0 6 i < j 6 4;

– functors Fijk : Bjk × Bij → Bik for each 0 6 i < j < k 6 4;

– transformations γijk` : Fij` ◦ (Fjk` × 1)⇒ Fik` ◦ (1× Fijk) for each 0 6 i < j <

k < ` 6 4



4.5. TOWARDS SKEW-MONOIDAL BICATEGORIES 119

– a modification Γ01234 whose component at a, b, c, d is

F024(F012(a, b), F234(c, d))

γ0124

((
Γ01234��F024(F023(F012(a, b), c), d)

γ0234
66

F024(γ0123,d)

��

F014(a, F124(b, F234(c, d)))

F024(F013(a, F123(b, c)), d)
γ0134

// F014(a, F134(F123(b, c), d))

F014(a,γ1234)

OO ;

its five faces are γ1234, γ0234, γ0134, γ0124, and γ0123.

• A 5-simplex is given by six modifications Γijk`m for 0 6 i < j < k < ` < m 6 5 as
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above satisfying the following equality for each a, b, c, d, e.

((a(bc))d)e

(((ab)c)d)e ((ab)c)(de)

(ab)(c(de))

(a((bc)d))e

(a(b(cd)))e a((b(cd))e)

a(b((cd)e))

a(b(c(de)))

(a(bc))(de)

a(((bc)d)e)

a((bc)(de))

(γ0123d)e

��

γ0345 //

γ0235

��

γ0134e

��

(aγ1234)e

��

γ0145
//

aγ1245

??

a(bγ2345)

GG

γ0125

��

γ0345

33

γ0123(de)

��

γ0135

��
aγ1235 //

γ0145
++

aγ1345

??

a(γ1234e)

��

⇓ Γ01345

⇓ Γ01235

⇓ aΓ12345

∼=

∼=

=

(((ab)c)d)e ((ab)c)(de)

(ab)(c(de))

a(b(c(de)))

((a(bc))d)e

(a((bc)d))e

(a(b(cd)))e a((b(cd))e)

a(b((cd)e))

((ab)(cd))e (ab)((cd)e)

γ0345 //

γ0235

��

γ0125

��

(γ0123d)e

��

γ0134e

��

(aγ1234)e

��

γ0145
//

aγ1245

??

a(bγ2345)

GG

γ0234e

��
γ0245 //

(ab)γ2345

??

γ0124e

��

γ0125

��

⇓ Γ02345

⇓ Γ01234e

⇓ Γ01245

∼=

This one of the coherence axioms for a tricategory. It is the associahedron of dimen-

sion three, sometimes called the Stasheff polytope K5 or the non-abelian 4-cocycle
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condition [GPS95].

The three unnamed isomorphisms come from the pseudo-naturality of 3-simplices

γijk`. We have abbreviated each Fijk(F...(F...(ab)c)d)e to (((ab)c)d)e. We have also

chosen not to display coherence isomorphisms associated to each Fijk. The six faces

of this simplex are Γ12345, Γ02345, Γ01345, Γ01245, Γ01235, and Γ01234.

• Higher-dimensional simplices are determined by the requirement that

N(Bicat) be 5-coskeletal.

We still need to describe the degenerate simplices.

• At dimension zero, s0(?) = 1, the terminal bicategory.

• At dimension one, s0(B01) : 1 × B01 → B01 and s1(B01) : B01 × 1 → B01 are the

obvious projections.

• Each sj(F012 : B12 × B01 → B02) for j = 0, 1, 2 is a pseudo-natural transformation

whose 1-cell components are identities and 2-cell components are coherence data.

• At dimension four, s0(γ0123 : F013(F123(a, b), c) → F023(a, F012(b, c))) is the unique

composite of coherence 2-cells filling

F023(a, F012(b, c))

id

F013(F123(a, b), c)

γ0123
66

id

F023(a, F012(b, c))

F013(F123(a, b), c)
id

F013(F123(a, b), c)

γ0123

OO ;

and the other three are similarly defined.

• We won’t display degenerate 5-simplices; they can be computed using the simpli-

cial identities. The equalities of pastings they describe are guaranteed to hold by

coherence for bicategories.

In all of the above we have chosen to use pseudo-functors and pseudo-natural transfor-

mations rather than their lax and oplax cousins. Those other variations might work just

as well, but we haven’t investigated them in any detail.

Definition 4.5.1. The pseudo nerve of Bicat, called NpBicat, is the same as NBicat with

the extra requirement that each γ0123 be an equivalence and each Γ01234 an isomorphism.
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4.5.2 Skew-monoidal bicategories

In Section 4.4 we showed that a simplicial map F : C→ NB was precisely a skew monoidale

in a monoidal bicategory B. In that case, F actually determined an extra datum k and

three extra axioms (4.4.5) (4.4.8) (4.4.9). Fortunately, (4.4.5) forced k to be equal to a

pasting of coherence maps already found in B, and (4.4.8) and (4.4.9) were already true in

any monoidal bicategory. When we look at simplicial maps C into N(Bicat) or Np(Bicat)

we once again find more data and axioms than we might expect. Our approach to this

data will depend on whether we want to describe monoidal bicategories, or skew-monoidal

bicategories.

If our goal is to classify monoidal bicategories, we should consider simplicial maps from

C into NpBicat. In this case, because the maps in question are invertible, most of this data

is over-specified and the essential extra data consists of a single equivalence Fk : I → I and

a single isomorphism Fδ : idI ⇒ Fk satisfying FδFk = FkFδ. Without presenting every

detail: if we consider the set of all monoidal bicategories with this extra data, and also

describe a suitable notion of equivalence for them, every such structure is equivalent to

one where Fk and Fδ are trivial. Thus we have, up to equivalence, monoidal bicategories.

If our goal is to classify skew-monoidal bicategories, we should consider simplicial maps

from C into NBicat. Unfortunately, we cannot use the same trick as before to eliminate

this extra information because the unexpected axioms do not force the unexpected data

to be trivial, even up to equivalence. We don’t yet understand what role these ‘extra’

coherence maps might play and for the moment ask that each F : C → NBicat send the

offending simplices in C to pastings of coherence data in Bicat. Specifically, k is mapped

to the identity pseudo-natural transformation on the unit Fi and A9 is mapped to the

unique composite of coherence data with the corresponding boundary.

With this added condition in place, we define skew-monoidal bicategories by examining

the data of simplicial maps C→ N(Bicat). For convenience we have used the same notation

as [GPS95].

Definition 4.5.2. A skew-monoidal bicategory consists of:

• A bicategory M.

• Two homomorphisms

⊗ : M×M→M and I : 1→M.
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• Three pseudo-natural transformations

M×M×M

a��

⊗×1 //

1×⊗
��

M×M

⊗
��

M×M
⊗

//M

M I×1 //

id --

M×M

⊗
��

l��

M

M

1×I
��

id

��
r��

M×M
⊗

//M

• Five modifications with components:

π��

(A⊗B)⊗ (C ⊗D)

a

))
((A⊗B)⊗ C)⊗D

a

55

a⊗D $$

A⊗ (B ⊗ (C ⊗D)

(A⊗ (B ⊗ C))⊗D
a
// A⊗ ((B ⊗ C)⊗D)

A⊗a

::

A⊗B

r⊗B
&&

id // A⊗B

µ��

(A⊗ I)⊗B
a
// A⊗ (I ⊗B)

A⊗l

88

λ��

I ⊗ (A⊗B)

l

&&
(I ⊗A)⊗B

a

88

l⊗B
// A⊗B

ρ��

(A⊗B)⊗ I
a

&&
A⊗B

r

88

A⊗r
// A⊗ (B ⊗ I)

σ��

I ⊗ I
l

""
I

r

<<

id
// I

.

• All subject to 8 axioms. Unnamed isomorphisms are either pseudo-naturality data
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or composites of coherence data in M. Empty cells are actual equalities.

((A(BC))D)E

(((AB)C)D)E ((AB)C)(DE)

(AB)(C(DE))

(A((BC)D))E

(A(B(CD)))E A((B(CD))E)

A(B((CD)E))

A(B(C(DE)))

(A(BC))(DE)

A(((BC)D)E)

A((BC)(DE))

(aD)E

��

a //

a

��

aE

��

(Aa)E

��

a
//

Aa

??

A(Ba)

GG

a

��

aA(BC)

33

a(DE)

��

a

��
Aa //

a ++

Aa

??

A(aE)

��

⇓ πBC

⇓ πDE

⇓ Aπ

∼=

∼=

=

(((AB)C)D)E ((AB)C)(DE)

(AB)(C(DE))

A(B(C(DE)))

((A(BC))D)E

(A((BC)D))E

(A(B(CD)))E A((B(CD))E)

A(B((CD)E))

((AB)(CD))E (AB)((CD)E)

a //

a

��

a

��

(aD)E

��

aE

��

(Aa)E

��

a
//

Aa

??

A(Ba)

GG

aE

��
a //

(AB)a

??

aE

��

a

��

⇓ π

⇓ πE

⇓ π

∼=

(4.5.1)
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A(DE)

r(DE)

&&

id

,,

µ��

A(I(DE))

Aλ��
Al

// A(DE)

(AD)E ∼=

a

OO

(rD)E
&&

(AI)(DE)

π��

a

88

A(I(DE))

A(lE)

88

Aa

OO

∼= (AD)E

a

OO

((AI)D)E

a

OO

aE
// (A(ID))E

a

OO

(Al)E

88

=

A(DE)

∼=

id

,,
A(DE)

(AD)E id //

a

OO

(rD)E
&&

(AD)E

a

OO

((AI)D)E

µE��

aE
// (A(ID))E

(Al)E

88

(4.5.2)
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(AB)E

a

**

∼=

(AB)E

id

44

a //

(Ar)E
&&

A(BE)

∼=
A(rE)

&&

id // A(BE)

(A(BI))E
a
// A((BI)E)

Aµ��

Aa
// A(B(IE))

A(Bl)

88

=
µ��

(AB)E

a

**
(AB)E

id

44

rE //

(Ar)E
&&

(A(BI))E

ρE��

a //

aE

��

A((BI)E)

a

&&

(AB)l

OO

∼= A(BE)

(A(BI))E
a
//

π��

A((BI)E)
Aa

// A(B(IE))

A(Bl)

88

(4.5.3)

II
id //

rI

##

II

I ∼=

r

OO

r

##

(II)I

µ��

ρ��

a // I(II)
Iσ��

Il

;;

II

r

OO

Ir

;;

id

HH

=

II
id // II

I

r

OO

r

  
II

id

KK

(4.5.4)
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((AB)C)I
a //

ρ��

(AB)(CI)

a

&&
∼=(AB)C

r

88

a

&&

(AB)r

66

A(B(CI))

A(BC) A(Br)

66

=

((AB)C)I

aI

&&

a //

∼=

(AB)(CI)

a

&&
(AB)C

r

88

a

&&

(A(BC))I

π��

ρ��

a // A((BC)I)

Aρ��

Aa // A(B(CI))

A(BC)

r

88

Ar

66

A(Br)

66

(4.5.5)

(II)I
a //

lI ..

I(II)

l

##

λ��

II

r

;;

l

##

II

I

r

55∼=

=

(II)I

ρ��

a // I(II)

l

##
II

r

;;

l

##

Ir

;;

II

I

r

55∼=

(4.5.6)
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(IC)(DE)

∼=

a

**

l(DE)

++

((IC)D)E

a

44

(lD)E

++

I(C(DE))

λ��
l

��
C(DE)

(CD)E

a

44

=

(IC)(DE)

a

**
π��((IC)D)E

a

44

aE

&&

(lD)E

--

I(C(DE))

l

��
(I(CD))E

a //

lE

&&

λE��
λ��

I((CD)E) ∼=

Ia

88

l

xx

C(DE)

(CD)E

a

44

(4.5.7)
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II

rI

##

id

--

id // II

l

��
(II)I

a //

lI

##

µ��

σI��
I(II)

Il

;;

λ��
l

��

I∼=

II

l

;;

=

II

id

))

id // II

l

��
I

II

l

>>

(4.5.8)

Remark 4.5.3. When a, l, r are equivalences and π, µ, ρ, λ, σ are isomorphisms this defini-

tion becomes equivalent to the usual definition of monoidal bicategory.

Beginning with a skew-monoidal bicategory with invertible coherence maps, just forget

σ and axioms (4.5.4)–(4.5.8) and we have exactly a monoidal bicategory. Conversely, given

a monoidal bicategory we can construct σ according to axiom (4.5.4), and axioms (4.5.5)–

(4.5.8) are implied by (4.5.1)–(4.5.3) and coherence for tricategories (see Chapter 10 and

Appendix C in [Gur06]).
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Chapter 5

A formal verification of the

theory of parity complexes

Abstract

We formalise, in Coq, the opening sections of Parity Complexes [Str91] up to and in-

cluding the all important excision of extremals algorithm. Parity complexes describe the

essential combinatorial structure exhibited by simplexes, cubes and globes, that enable the

construction of free ω-categories on such objects. The excision of extremals is a recursive

algorithm that presents every cell in such a category as a unique composite of atomic cells,

this is the sense in which the ω-category is free. Due to the complicated multi-dimensional

nature of this work, the detail of definitions and proofs can be hard to follow and verify. In-

deed, some corrections were required some years following the original publication [Str94].

Our formalisation verifies that all cases of each result operate as stated. In particular, we

indicate which portions of the theory can be proved directly from definitions, and which

require more subtle and complex arguments. By identifying results that require the most

complicated proofs, we are able to investigate where this theory might benefit from further

study and which results need to be considered most carefully in future work.

Contribution by the author

As the sole author, this paper is entirely my own work. It is a direct reproduction of the

original which was submitted for publication. Any differences from that submission are

limited to cosmetic changes such as citation numbering.
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5.1 Introduction

An n-simplex ∆n is a geometric figure that generalises the notion of triangle or tetrahedron

to n-dimensional space. Simplexes have a number of properties that make them useful

in algebraic topology, algebraic geometry and homotopy theory where they often play a

foundational role. Each n-simplex can be oriented in such a way that it forms an n-

category. We include below the cases for n = 1, 2 and 3.

• // •

•

����
•

??

// •
•

• •

•

GG ::

//

//

$$ ��

��

�� ��

��
*4 (5.1.1)

At low dimensions, it is not hard make each of these into an n-category. At higher

dimensions, say n > 3, it is quite hard to describe the n-category structure because the

source and target of each cell are large pasting diagrams in high dimensions.

Beginning in the late 1970’s Ross Street, together with John Roberts and Jack Duskin,

began investigating how this process could be rigorously extended to any n. This was

achieved in [Str87] where the process was described for the simplexes and the correspond-

ing categories were dubbed the orientals (referring to the fact that they are oriented).

The main motivation at this time stemmed from non-abelian cohomology where various

constructions rely on the orientals.

At the same time, Iain Aitcheson was developing a similar series of results for n-cubes:

that each cube could be given an orientation in such a way that it forms an n-category

or even an ω-category [Ait86]. A third example of this phenomenon is found in n-globes

where the corresponding n-categories have a very simple description. For more on the

usefulness of simplexes and cubes, see Street’s survey [Str95].

Following these successes, the goal was then to describe the general structure of all

oriented multi-dimensional structures for which it is possible to extract free ω-categories

in the style of these three examples. The early 1990’s yielded a number of related solutions.

Ross Street defined a structure called a parity complex and gave an explicit description of

the ω-category associated to each [Str91]. Some minor corrections were added in [Str94].

Richard Steiner contributed directed complexes as a generalisation of directed graph. He

showed that loop-free directed complexes generated free ω-categories in the appropriate

way [Ste93]. Both of these authors also showed that their respective structures were

closed under product and join and covered the three main examples of simplexes, cubes,

and globes. Around the same period Mike Johnson was working on a formal description

of pasting scheme for ω-categories [Joh88; Joh89], and was able to describe the free ω-

category on such structures. He included the simplexes as his primary example, and there

is a strong sense in which this addressed the same problem. Further related work can be
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found in [AS93; Ste04] and also in [Ver08] where a conjecture of Street–Roberts is proved

in the closing chapter.

Our interest centres on Parity Complexes which takes a particularly ‘hands-on’ ap-

proach and describes the combinatorics of this construction in full detail. Our goal is to

encode and verify the opening sections of this text up to the excision of extremals algo-

rithm. The theory shows how to build, for any parity complex C an ω-category O(C).

The excision of extremals algorithm shows that each cell can be presented as a unique

composite of atomic cells; this is the sense in which O(C) is free. The algorithm can also

be used to generate explicit algebraic descriptions of the cells in O(C).

Our motivation is two-fold. First, some of the combinatorial arguments in Street’s text

can be difficult to follow and can easily conceal errors; this is illustrated by the fact that

corrections were later required. We will provide some confirmation that the corrections

have addressed all issues. Second, a computer-verified encoding provides a good resource

for understanding the intricacies of these complicated structures and opens a path to

further refinements of the material. We have not attempted to formalised the entirety of

the theory. The essential combinatorics are contained in sections 1 to 4 and culminate in

the excision of extremals algorithm which is the final result that we encode.

From this point on we often refer to [Str91] as the ‘original text’, and to [Str94] as ‘the

corrigenda’.

We programmed everything in Coq [Coq14] and the code is freely available for inspec-

tion at the following location.

https://github.com/MitchellBuckley/Parity-Complexes

In Section 2 we outline the foundational mathematics that needs to be introduced

for an encoding of parity complexes. We also outline how we chose to implement this

foundation. In Section 3 we outline the content of [Str91] section-by-section. At each

stage we comment on the intuition underlying each result and discuss our implementation

of the definitions and results. We pay particular attention to those sections of the material

that were difficult to translate into Coq. In Section 4 we discuss how formalisation has

shed light on the material and make suggestions for how future work might proceed. In

Section 5 we outline the few lessons we have learned in computer-verified encoding of

mathematics. Section 6 contains concluding remarks.

5.2 Required Foundations

Parity complexes are described using basic set theory and partially ordered sets. In par-

ticular, we need to implement:

• sets;

• set union, set intersection, set difference, etc.;

https://github.com/MitchellBuckley/Parity-Complexes
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• finite sets;

• cardinality of finite sets;

• partial orders; and

• segments of partial orders.

Many of these structures are already encoded in the Coq standard library.

5.2.1 Sets

We implement sets using the Ensembles standard library. This involves a universe type U :

Type on which all our sets will be based. Then a set is an ensemble: an indexed proposition

U → Prop. An element of the universe x : U is a member of a set A : U → Prop when the

corresponding proposition A x is true. Inclusion of sets relies on logical implication.

Definition Ensemble := U → Prop.

Definition In (A:Ensemble) (x:U) : Prop := A x.

Definition Included (B C:Ensemble) : Prop :=

forall x:U, In B x → In C x.

Set operations union, intersection, and set difference are all implemented using point-wise

logical operations:

Union A B := fun x => (A x ∨ B x)

Intersection A B := fun x => (A x ∧ B x)

Setminus A B := fun x => (A x ∧ ¬(B x))

For the purposes of this section we suppose that we always work with a fixed universe U.

The Coq language has a convenient feature that allows us to introduce notation for

these operations.

Notation "x ∈ B" := (In A x) (at level 71).

Notation "A ⊆ B" := (Included A B) (at level 71).

Notation "A ∪ B" := (Union A B) (at level 61).

Notation "A ∩ B" := (Intersection A B) (at level 61).

Notation "A ’\’ B" := (Setminus A B) (at level 61).

Each special symbol is introduced as a utf-8 character which Coq has no problem recog-

nising. This feature makes the code much more readable.

5.2.2 Finiteness and cardinality

Finiteness is implemented using the Finite_sets standard library. This contains an induc-

tively defined proposition Finite stating that a set S is finite when S = ∅, or S = {x} ∪S′

where S′ is finite. Cardinality is implemented in a similar way, using the same library.

There is an inductively defined proposition cardinal stating that a set S has cardinality 0

when it is empty and has cardinality n+ 1 when S = {x} ∪ S′ and S′ has cardinality n.
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Inductive Finite : Ensemble U → Prop :=

| Empty_is_finite : Finite (Empty_set U)

| Union_is_finite :

forall A:Ensemble U,

Finite A → forall x:U, ¬ In U A x →
Finite (Add U A x).

Inductive cardinal : Ensemble U → nat → Prop :=

| card_empty : cardinal (Empty_set U) 0

| card_add :

forall (A:Ensemble U) (n:nat),

cardinal A n → forall x:U, ¬ In U A x →
cardinal (Add U A x) (S n).

When our universe has decidable equality we can show that finiteness interacts well with

set operations, for example forall A B, Finite A ∧ Finite B → Finite (A ∪ B). Cardinality

and finiteness are related by the result forall S, (Finite S <-> exists n, cardinal S n).

5.2.3 Partial orders

Some material on partial orders is available in the Relations standard library. Our partic-

ular requirements for orders were slightly more complicated than that library could help

us with. We found it simpler to explicitly prove basic results as they were needed.

5.2.4 Equality of sets

We say that two sets S and T are equal when they are equal as terms of the type Ensemble

U; in that case forall x, S x = T x. We write S = T to indicate that S and T are equal.

This is the standard notion that is built into Coq and allows us to replace S with T in

any expression.

There is another notion of equality: we say that S and T are the same when they

contain the same elements. This is the usual notion of set equality used in mathematics.

Equivalently, two sets are the same when they are equivalent as indexed propositions

(forall x, S x ↔ T x), or when S ⊆ T ∧ T ⊆ S. We write Same_set S T or S == T to indicate

that S and T are the same.

If two sets are equal then they are certainly the same but two sets can be the same with-

out being equal. For example, the sets fun x => x = 0 and fun x => 1 + x = x in Ensemble nat

are the same but not equal. The standard library Ensembles contains an extensionality

axiom stating that forall A B, A == B → A = B. In order to keep our formalisation as con-

structive as possible we are careful never to use the axiom in our formalisation.

The standard facilities of Coq will allow for rewriting S with T whenever S is equal to

T . However, when S is the same as T we do not have any guarantee that such rewrites are

legitimate. In this situation, our type of sets Ensemble U becomes a setoid : a set equipped
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with an equivalence relation. Then S == T implies that we may rewrite S for T in any

expression which is built up of operations that preserve the equivalence relation. This

rewrite facility is provided by the standard library Setoid and requires us to prove that

Same_set is an equivalence relation and that the appropriate set operations preserve the

equivalence.

Without the extensionality axiom it is not possible to prove that Finite S and S == T

implies Finite T. Something similar happens with the definition of finite cardinality. The

problem occurs when we try to show that T == Empty_set implies that Finite T. In that

case, we find that neither T = Empty_set nor T = {x} ∪ T’ and so neither constructor will

show that T is finite. This problem can be solved in more than one way. We chose to solve

this by adding a third constructor for Finite that explicitly introduces the property that

Finite S ∧ S == T → Finite T. This modification allows us to recover this basic property

of finite sets without the extensionality axiom. This illustrates how careful one must be

with even the most basic of definitions.

5.2.5 More on finiteness

In many cases we augmented the standard library with extra results about finite sets that

were not already present. We found that setting up this basic theory was often tedious, but

occasionally an enjoyable exercise in constructive mathematics. For instance, it became

clear at some point that certain basic results about sets could not be proved without

supposing that equality in U is decidable, i.e. forall (a b : U), (a=b) ∨ ¬(a=b). Since none

of the examples used here or in the literature need a universe U without decidable equality,

we have made this a further assumption in our implementation.

If one wanted to reason about, say sets of integer sequences, then the obvious universes

to use would be nat− > Int or StreamInt each of which lacks decidable equality. In that

case one would find that various simple results concerning finite sets would not hold.

We have now covered the essential mathematical foundations required for a formalisation

of parity complexes. More details can be found by examining the code itself.

5.3 Definitions and the simplex example

In this section and those following we summarise sections 1 to 4 of [Str91] together with

modifications given in the corrigenda [Str94]. This content is sufficient to express the

excision of extremals algorithm (Theorem 22). As we progress through the material we

will usually reproduce definitions and terminology verbatim from [Str91; Str94]. In each
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case we will explain the underlying intuition of the material, comment on our implemen-

tation, and indicate where our formalisation shed light on the underlying arguments. The

reproduced content has been numbered consecutively while our personal comments have

been numbered within sections.

We begin by summarising the content of Section 1 of [Str91].

Definition 1. A parity complex is a graded set

C =

∞∑
n=0

Cn (5.3.1)

together with, for each x ∈ Cn+1 two disjoint, non-empty, finite sets x+, x− ⊆ Cn subject

to Axioms 1, 2, 3A and 3B which appear below.

From this point onward we will work exclusively within a single parity complex C as

described above. When we say S ⊆ C we mean that S is a subset of the underlying

graded set of the parity complex. When we say x ∈ C we mean that x is an element of

the underlying graded set of the parity complex.

Before we list the axioms we will introduce some terminology. If x ∈ C then elements

of x− are called negative faces of x, and those of x+ are called positive faces of x. We will

sometimes refer to x− and x+ as face-sets of x. Given S ⊆ C, let S− denote the set of

elements of C which occur as negative faces of some x ∈ S, and similarly for S+.

S− =
⋃
w∈S

w− and S+ =
⋃
w∈S

w+ (5.3.2)

Each subset S ⊆ C is graded via Sn = S ∩ Cn. The n-skeleton of S ⊆ C is defined by

Sn :=
n∑
k=0

Sk . (5.3.3)

Call S n-dimensional when it is equal to its n-skeleton.

The broad intuition is to see this structure as a generalisation of directed graph. El-

ements of C0 are vertices, elements of C1 are directed edges, elements of C2 are directed

‘faces’, elements of C3 are directed ‘volumes’, and so on. The usual notion of source and

target are replaced by face-sets x− and x+. The following is a basic example of this

structure of dimension two.

• // • //

��

• //

��

•

• // •

??

��

�� ��

•

??

��

�� • // •

•

00
AA

//
�#

•

?? (5.3.4)
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Notice that elements above dimension 1 can have more than one source-face or target-face.

Without the axioms below, this structure is very general indeed and many unusual

examples can be provided. When the axioms are applied, possible examples become much

better behaved. Examples of arbitrary dimension can be constructed from simplexes,

cubes, and other kinds of polytopes as seen below. Of course, the simplexes provide the

main motivation for understanding these kinds of structures.

So far we have described the data of a parity complex: a graded set with a pair of

face-set maps (−)−, (−)+ : Cn+1 → P(Cn). We now describe the required axioms.

Axiom 1. For all x ∈ C,

x++ ∪ x−− = x−+ ∪ x+−

where x++ = (x+)+ etc.

This is a kind of globularity condition that ensures various face-sets are appropriately

related. The following diagram is an example where x ∈ C2 and both x− and x+ have

four elements.
◦© // ◦© // ◦©

&&◦\

88

&&

•©x��

•\ // •\ // •\

88 (5.3.5)

Edges marked with a dotted line belong to x−, the other edges belong to x+. Vertices

marked with a • belong to x++, those marked with a ◦ belong to x−−, those marked

with a © belong to x−+, and those marked with a \ belong to x+−. In particular, this

axiom implies that x++ ⊆ x−+ ∪ x+−, that is, positive faces of positive faces must be the

negative face of a positive face, or the positive face of a negative face.

Notice that in both (5.3.4) and (5.3.5) the set of source (target) faces have all elements

aligned in a common direction and they do not branch apart. This behaviour is guaranteed

by introducing Axiom 2 below.

Suppose that S and T are subsets of C. We write S ⊥ T when S−∩T− = S+∩T+ = ∅.
This extends to elements by x ⊥ y when x− ∩ y− = x+ ∩ y+ = ∅ ∗. A subset S ⊆ C

is called well-formed when S0 has at most one element, and, for all x, y ∈ Sn (n > 0),

if x 6= y then x ⊥ y. Broadly speaking, a set is well-formed when it doesn’t contain any

branchings like
•

x

&& •

• y

88 or

• //

x��
��

•
&&

y��•

88

&&

•

•

AA

•

88 , (5.3.6)

and it contains at most one element of dimension 0. In each of the diagrams above we

can observe that {x, y} is not well-formed, while {x}, {y}, x+, x−, y+, and y− are all

∗This could equivalently be defined for elements first, and then extended to sets afterwards.



5.3. DEFINITIONS AND THE SIMPLEX EXAMPLE 139

well-formed. The diagram depicts branchings in dimensions 1 and 2, but well-formedness

prevents branching in all dimensions. The condition on dimension zero does not force

parity complexes to have a single element of dimension zero, but that (using the axiom

below) elements of dimension 1 have a single source vertex and a single target vertex.

Axiom 2. For all x ∈ C, x− and x+ are well-formed.

If we think of the union x− ∪ x+ as forming a boundary of x, as in (5.3.5) above, then

this axiom ensures that the boundary looks something like the boundary of a polytope.

For those familiar with higher categories, this condition ensures that the face-sets look like

valid pasting diagrams.

Suppose that x, y ∈ C. We write x < y whenever x+ ∩ y− is non-empty. That is,

when x and y abut by having a common element in their respective sets of positive and

negative faces. This implies x 6= y since x− and x+ are always disjoint. We then let C be

the reflexive transitive closure of <. An example is

• ''

((

⇓ x •
((•

66

((

⇓ y •

•
((

66

⇓ •

66

•

66

((

⇓ •

66

((• 77

66

⇓ z •

(5.3.7)

where x < y and y C z. In this case we often say that there is a path from x to z. For all

S ⊆ C we let CS denote the reflexive transitive closure of < restricted to S. When xCS z

we often say there is a path from x to z in S.

While Axioms 1 and 2 can be seen as imposing some of the basic structural behaviour

of graphs, the following axiom restricts us to certain ‘loop-free’ graphs.

Axiom 3. For all x, y ∈ C,

A. xC y C x implies x = y.

B. if xC y then ∀z ∈ C, ¬(x ∈ z+ ∧ y ∈ z−) and ¬(y ∈ z+ ∧ x ∈ z−).

Axiom 3.A says that C is anti-symmetric, or, that there are no paths that loop within

a fixed dimension. Axiom 3.B says that there are no paths that cross between the face-sets

of any element z. That is, we avoid circumstances where a path can cross from one face-set

to the other face-set of an element z as in the diagram below.

• //

��

• // •
&&•

x
88

&&

z�� •

• // • // • y

88 (5.3.8)
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These are all the axioms for a parity complex. The following examples come from

p.318–319 of [Str91].

Example 1. A 1-dimensional parity complex is precisely a directed graph with no circuits.

Example 2. The ω-glob is the parity complex G defined by Gn = {(ε, n) : ε = 	 or ⊕},
and (ε, n + 1)− = {(	, n)} and (ε, n + 1)+ = {(⊕, n)}. Elements of dimension 0, 1, and

2 are ‘n-discs’. There are precisely two elements at each dimension, each of which has

exactly one source face and exactly one target face.
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⊕1 // ⊕0
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� 
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~�

⊕3*4 (5.3.9)

We use 	n and ⊕n as short-hand for (	, n) and (⊕, n).

Example 3. The ω-simplex is the parity complex ∆ described as follows. Let ∆n denote

the set of (n + 1)-element subsets of the set of natural numbers N = {0, 1, 2, . . . }. Each

x ∈ ∆n is written as (x0, x1, . . . , xn) where x0 < x1 < · · · < xn. Let xδi denote the set

obtained from x by deleting xi. Take x− to be {xδi : i odd} and x+ to be {xδi : i even}.
Elements of dimension 0, 1, and 2 are ‘n-simplexes’.
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We use abcd as short-hand for (a, b, c, d) and similarly at other dimensions.

Example 4. The ω-cube is the parity complex Q described as follows. The elements

are infinite sequences of the three symbols 	,�,⊕ containing a finite number of �’s. The

dimension of an element is the number of �’s appearing in it. Let xδ−i denote the sequence

obtained from x by replacing the i-th � by 	 when i is odd and by ⊕ when i is even.

Similarly, xδ−i is defined by interchanging 	 and ⊕ in the previous sentence. For x ∈ Qn,

define xε = {xδεi : 1 < i < n}. The n-cube is the parity complex built the same way but
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using only lists of length n. The n-cubes of dimension 1, 2, and 3 are displayed below.
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Some labels have been omitted from the last diagram in order to keep it readable.

Before continuing our exposition of Section 1 of [Str91], we will comment briefly on

our implementation.

Implementation 5.3.1. The basic data for a parity complex without the axioms is some-

times called a pre-parity complex. We chose to implement this concept first, as there are

many trivial results about preparity complexes that we will later use. A preparity complex

is implemented as the following data:

C : Type

dim : C → nat

plus : C → Ensemble C

minus : C → Ensemble C

This data is technically different from our description above, but the essential structure is

identical. There is a collection of objects C, each member of which has a dimension and

two face-sets†. A few axioms are introduced to ensure that face-sets are finite, non-empty,

and disjoint, and that they interact with dimension correctly.

forall (x y : C), x ∈ (plus y) → dim y = dim x + 1

forall (x y : C), x ∈ (minus y) → dim y = dim x + 1

forall (x : C), Finite (plus x)

forall (x : C), Finite (minus x)

forall (x : C), dim x > 0 → Inhabited (plus x)

forall (x : C), dim x > 0 → Inhabited (minus x)

forall (x : C), dim x = 0 → plus x == Empty_set

forall (x : C), dim x = 0 → minus x == Empty_set

forall (x : C), Disjoint (plus x) (minus x)

These are given meaningful names such as plus_Finite, plus_dim, and plus_Inhabited.

Fundamental definitions for sets such as Sn and Sn are also given and some trivial state-

ments are also proved here. For example,

†In the actual code the type C is called carrier.
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Definition sub (R : Ensemble C) (n : nat) : Ensemble C

:= fun (x : C) => (x ∈ R ∧ (dim x) = n).

Lemma sub_Union :

forall T R n,

sub (T ∪ R) n == (sub T n) ∪ (sub R n).

More complicated definitions like well-formedness are also given and more powerful (though

almost trivial) results are also proved here. For example,

Definition well_formed (X : Ensemble C) : Prop :=

(forall (x y : C), x ∈ X ∧ y ∈ X

→ dim x = O → dim y = 0

→ x = y)

∧
(forall (x y : C), x ∈ X ∧ y ∈ X

→ (forall (n : nat), dim x = S n → dim y = S n

→ ¬ (perp x y) → x = y)).

Lemma well_formed_by_dimension :

forall X,

well_formed X <-> forall n, well_formed (sub X n).

All other basic definitions and trivial results are encoded in a similar fashion.

We now look at some basic properties of parity complexes.

Given S ⊆ C, let S∓ denote the set of negative faces of elements of S which are not

positive faces of any element of S, and similarly for S±. So

S∓ = S− \ S+ and S± = S+ \ S− .

This extends to individual elements by x± := {x}± and x∓ := {x}∓. These sets capture

the notion of purely positive and purely negative faces of an element x or set S.

The following propositions follow from Axioms 1, 2 and 3.

Proposition 2 (Proposition 1.1). For all x ∈ C,

x++ ∩ x−− = x−+ ∩ x+− = ∅ (5.3.12)

x−∓ = x+∓ = x−− ∩ x+− (5.3.13)

x−± = x+± = x−+ ∩ x++ . (5.3.14)

Theorem 2 contains identities that one would expect from a polytope-like structure

and are much like Axiom 1. The meaning is reasonably clear when the various face-sets

are highlighted in an example like (5.3.5) above.
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Proposition 3 (Proposition 1.2). For all u, v, x ∈ C, uC v and v ∈ x+ imply

u− ∩ x−+ = ∅ . (5.3.15)

Theorem 3 indicates that if u branches out from the source of x then a path from u

to v can not end in the target of x. This is a consequence of Axiom 3.B. This has three

duals obtained by reversing the roles of u and v and reversing the roles of x− and x+.

Theorem 3 and its duals are together equivalent to Axiom 3.B.

The following observation describes a convenient technical property of well-formed sets.

Observation 4 (page 322 in [Str91]). For all T,Z ⊆ C, if T ∪ Z is well-formed and

T ∩ Z = ∅, then T ⊥ Z.

We say a set R ⊆ C is tight when, for all u, v ∈ C, uC v and v ∈ R implies u− ∩R± is

empty. This condition prevents a path from starting in R± and ending in R. The following

two results are required for somewhat technical reasons.

Definition 5. Suppose that R, T ⊆ C. We say that R is a segment of T when for all

x, y, z ∈ T , xC y C z and x, z ∈ R implies y ∈ R.

Proposition 6 (Proposition 1.4). For all R,S ⊆ C, if R is tight, S is well-formed, and

R ⊆ S, then R is a segment of S.

Observation 7 (page 359 in [Str94]). For all x ∈ C, x+ and x− are tight.

This concludes our exposition of Section 1.

Remark 5.3.2. The notion of tightness was introduced in the Corrigenda [Str94]. It

appears to be entirely necessary, but we do not understand the full significance of the

concept (see our discussion on page 156).

Implementation 5.3.3. Each axiom and proposition is readily encoded, for example

Axiom axiom1 :

forall (x : C),

(Plus ( plus x)) ∪ (Minus (minus x)) ==

(Plus (minus x)) ∪ (Minus ( plus x)).

Lemma Prop_1_2 :

forall u v x,

triangle u v →
v ∈ (plus x) →
(minus u) ∩ (Plus (minus x)) == Empty_set.

We were able to prove each result from basic definitions and axioms. This is exactly as

described in the original work. The proof of Theorem 6 makes use of Propositions 2 and 3.

When we look ahead we find that Axioms 1 and 2 are used frequently throughout the

material. Axiom 3.A is only used to prove that CS is decidable and that finite non-empty
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sets X have minimal and maximal elements under CX . Axiom 3.B is used only to prove

Propositions 2 and 3.

5.4 Movement

In Section 2 of [Str91] the concept of movement is introduced. It is a concept that is

fundamental to describing cells in n-categories generated from parity complexes.

For three sets S,M,P ⊆ C, we say that S moves M to P , or M
S−→ P , when

M = (P ∪ S−) \ S+ and P = (M ∪ S+) \ S− . (5.4.1)

Here are some examples of movement at dimensions 2 and 1:
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where lowercase labels m, p, s indicate which set each component belongs to (unlabelled

elements do not belong to M , P , or S). This condition guarantees that the face-sets of S,

M and P are related in the basic way we would expect of pasting diagrams in n-categories.

The movement condition is intended to describe the basic combinatorial shape of cells in

our yet-to-be-defined ω-category. When those cells are defined we will need to add basic

finiteness and well-formedness conditions to ensure that various pathological examples of

movement are excluded.

It is helpful to recognise that movement is a condition that applies dimension-by-

dimension, that is, M
S−→ P if and only if Mn

Sn+1−−−→ Pn for all n. This not only aids in

various proofs, but it indicates there is nothing complicated happening across dimensions.

Proposition 8 (Proposition 2.1). For all S,M ⊆ C, there exists P ⊆ C with M
S−→ P if

and only if

S∓ ⊆M and M ∩ S+ = ∅ . (5.4.4)
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Theorem 8 illuminates a fundamental meaning of movement: that M contains the

purely negative faces of S and none of the positive faces. This is illustrated below where

elements of S∓2 are indicated by squiggly arrows and those of S+
2 are indicated by dashed

arrows.
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Observe that S∓2 ⊆M1 and M1 ∩ S+
2 = ∅ as indicated by the proposition. Theorem 8 has

a dual where M and P play opposite roles.

Proposition 9 (Proposition 2.2). Suppose S,M,P,X, Y ⊆ C, M
S−→ P and X ⊆ M has

S∓ ∩X = ∅. If Y ∩ S+ = ∅, and Y ∩ S− = ∅, then (M∪Y )∩¬X S−→ (P∪Y )∩¬X.

Theorem 9 indicates that some elements of M and P can be added or removed without

disturbing the movement condition. The conditions on X and Y indicate that they are

disjoint from the faces of S in a suitable way. Sets X and Y should be thought of as sets

that are added to or removed from the movement as below.
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Proposition 10 (Proposition 2.3). Suppose M,P,Q, S, T ⊆ C where M
S−→ P and P

T−→
Q. If S− ∩ T+ = ∅ then M

S∪T−−−→ Q.

Theorem 10 describes the condition under which movements can be ‘composed’ or

‘pasted’ together. The following diagram depicts an example. Elements of setsM,S, P, T,Q
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are labelled with the corresponding lower-case letters.
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Proposition 11 (Proposition 2.4). Suppose M
T∪Z−−−→ P with Z± ⊆ P . If T ⊥ Z then

there exists N such that M
T−→ N

Z−→ P .

Theorem 11 describes a condition under which movement can be decomposed. In

particular, if T ∪ Z is well-formed then T ⊥ Z as required in the proposition.

Implementation 5.4.1. The definition of movement and the propositions above are

readily encoded. For example:

Definition moves_def (S M P : Ensemble C) : Prop :=

P == ((M ∪ ( Plus S)) ∩ (Complement (Minus S)))

∧
M == ((P ∪ (Minus S)) ∩ (Complement ( Plus S))).

Notation "S ’moves ’ M ’to’ P" := (moves_def S M P) (at level 89).

Lemma Prop_2_3 : forall (S M P T Q : Ensemble C),

S moves M to P →
T moves P to Q →
(Disjoint (Minus S) (Plus T)) →

(S ∪ T) moves M to Q.

The Notation command in Coq allows us to use the statement S moves M to P in place of

the somewhat awkward moves_def S M P.

It did not take long to verify that the proofs in this section proceed precisely as indi-

cated in the original text.

Theorem 8 is proved by appealing to definitions and basic manipulation of sets. The-

orems 9 to 11 are proved using Theorem 8 and basic manipulation of sets. Theorems 8

and 11 have duals that are not displayed here but are required later; they are implemented

separately in our code. It is worth noting that none of these results require Axioms 1, 2 or

3. In our implementation, we prove these results before the axioms are even introduced.

This concludes our exposition of Section 2 of [Str91].
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5.5 The ω-category of a parity complex

Having described the basic properties of parity complexes and the more advanced notion

of movement, in Section 3 we describe the cells of an ω-category O(C) associated with

any parity complex C.

Definition 12. A cell of a parity complex C is a pair (M,P ) of non-empty, well-formed,

finite, subsets of C with the property that M and P both move M to P .

If this is interpreted dimension by dimension, we get the following picture at dimen-

sion 2,
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where lowercase labels m, p, s indicate which set the elements belong to. Notice that M1

and P1 are neither equal nor disjoint, but each move M0 to P0. Notice also that M2 = P2.

This kind of behaviour is uniform through all dimensions. Notice also that, aside from

the movement condition, we only require that M and P be non-empty, well-formed and

finite. Call (M,P ) an n-cell when M ∪P is n-dimensional. In this case we have Mn = Pn

as above.

Definition 13. The n-source and n-target of a pair of sets (M,P ) are defined by

sn(M,P ) = (Mn−1 ∪Mn, P
n−1 ∪Mn) (5.5.2)

and

tn(M,P ) = (Mn−1 ∪ Pn, Pn−1 ∪ Pn) . (5.5.3)

If (M,P ) is a cell we can show that sn(M,P ) and tn(M,P ) are also cells, and that

they are n-dimensional. Notice that (M,P ), sn(M,P ) and tn(M,P ) contain exactly the

same elements in dimension n − 1 and below. We encourage the reader to consider the

1-source and 1-target of the cell depicted in (5.5.1).

Definition 14. A pair of cells (M,P ), (N,Q) are n-composable when

tn(M,P ) = sn(N,Q) , (5.5.4)

in which case their n-composite is

(N,Q) ∗n (M,P ) := (M ∪ (N ∩ ¬Nn), (P ∩ ¬Pn) ∪Q) . (5.5.5)
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Notice that (5.5.4) implies that the two cells agree from dimensions 0 to n−1 and that

Pn = Nn at dimension n. The resulting composite is almost exactly the pair-wise union

of (M,P ) and (N,Q); the set-difference ensures correct behaviour at dimension n. It is

not surprising that some form of set-difference is required since most forms of composition

will forget the point of contact: A→ B → C composes to A→ C.

For any parity complex C, let O(C) be the set of cells of C. We will see later (The-

orem 19) that O(C) is an ω-category. Before this can be achieved, we need to establish

some basic properties of cells.

Definition 15. A set S ⊆ C is receptive when for all x ∈ C,

if x−+ ∩ x++ ⊆ S and S ∩ x−− = ∅ then S ∩ x+− = ∅

and

if x+− ∩ x−− ⊆ S and S ∩ x++ = ∅ then S ∩ x−+ = ∅ .

A cell is receptive when it is receptive at every dimension.

Remark 5.5.1. The notion of receptivity is somehow important, we find later that all

cells are receptive and it is a necessary condition for some central results. It appears to

be entirely necessary, but we do not have an intuitive understanding of its meaning (see

our discussion on page 156).

Lemma 16 (Lemma 3.1). For all M,P ⊆ C, x ∈ C, if M
x+

−−→ P and M is receptive then

M
x−−−→ P .

Theorem 16 is proved using definitions, basic manipulation of sets and Theorems 2

and 8. It has a dual which we implement in our code. We will find later that since all cells

are receptive, it is not hard to find receptive subsets M of C. In fact, it is a bit difficult to

illustrate why receptivity is even required because the most obvious examples of x,M,P

satisfying the movement condition above are also part of a cell structure.

Lemma 17 (Lemma 3.2). Suppose m,n ∈ N, all cells are receptive and (M,P ) is an n-

cell. Suppose also that X ⊆ Cn+1, |X| = m and X is well-formed with X± ⊆ Mn. Put

Y = (Mn ∪X−) ∩ ¬X+, then:

B. (Mn ∪ Y, Pn ∪ Y ) is a cell and and X− ∩Mn = ∅.

C. (Mn ∪ Y ∪X,P ∪X) is a cell.

Theorem 17 originally contained a part A which was removed in [Str94]. Theorem 17.C

indicates that, if X is a well-formed set of dimension n+1, (M,P ) is an n-cell, and X abuts

(M,P ) in the sense that X± ⊆Mn, then we can form an (n+ 1)-cell whose top-dimension
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elements are those of X and whose target is (M,P ). The source of this cell has Y at its

top dimension. The following diagram is labelled to illustrate this scenario.
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There is a dual lemma obtained by reversing the direction of X in the diagram above.

This kind of result does not seem unusual, but it is surprisingly hard to prove (see

Remark 5.5.3 below). The proof itself is done in three steps. To quickly summarise:

1. Theorem 17.B implies Theorem 17.C. The proof is somewhat direct and proceeds as

indicated in the original paper.

2. Theorem 17.B with m = 1 implies Theorem 17.B in general. This is done by induc-

tion on m and follows from basic definitions and axioms.

3. Theorem 17.B holds for m = 1. This is done by induction on n and the argument

relies on Theorem 18. The construction works as indicated, though it is not a short

argument. There are particular disjointness conditions that must be established

(p327 of [Str91]) and require their own special argument.

Proposition 18 (Proposition 3.3). For all n ∈ N, all n-cells in C are receptive.

This is a somewhat technical result, it is not immediately clear to us how the notion

of receptivity fits naturally into the combinatorics. The proof of this result relies on

Theorem 17.B.

Theorem 19 (Theorem 3.6). If C is any parity complex then O(C) is an ω-category.

Furthermore, if (M,P ), (N,Q) are n-composable cells‡ then (Mk∪Pk)−∩ (Nk∪Qk)+ = ∅
for all k > n.

Theorem 19 is a central result in [Str91] since it achieves one of the main goals of

the paper. In order to implement Theorem 19 we would need to implement a notion of

ω-category which is not trivial. Since there is little question that this result holds, and it

is not required to prove Theorem 22, we have chosen not to implement it. We similarly

omit Propositions 3.4 and 3.5 which are preliminary results leading up to Theorem 19.

Remark 5.5.2. Perceptive readers will have noticed that Theorem 17.B and Theorem 18

seem to logically rely on one another. At first glance this appears to be a circular argument

‡tn(M,P ) = sn(N,Q)
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and therefore unsound. However, if we look closely we can see that each result proceeds by

induction and that the two proofs can be woven together to produce a proof of both results

simultaneously. Theorem 18 is restated as: for all n, every n-dimensional cell (M,P ) is

receptive. The two results are proved by mutual induction on n, the dimension of (M,P ).

Included in that argument is an induction on m = |X|. The following statements hold

and are enough to show that both results hold for all n and m.

i. Theorem 17.B holds when m = 1 and n = 0.

ii. For a fixed n, if Theorem 17.B holds when m = 1 then it holds when m > 1 (by

induction on m).

iii. Theorem 18 holds when n = 0.

iv. If Theorem 17.B and Theorem 18 hold for n = k, then Theorem 17.B holds for

n = k + 1 and m = 1.

v. If Theorem 17.B holds for n = k + 1 and Theorem 18 holds for n = k, then Theo-

rem 18 holds for n = k + 1.

This understanding is not explicit in [Str91].

Implementation 5.5.3. As in earlier sections, the definitions and statement of results

are readily encoded. The main difficulty arises in encoding the proofs.

The proofs of Theorem 17 and Theorem 18 are by far the most difficult part of the

entire project and consumed most of our programming effort. Consider the components

of the proof given above. Each of the components follow the argument provided by Street

in his paper. However the disjointness condition in iv has a dual, and i, ii, iv each have

duals. Finally, we needed to uncover the logical dependence that allows us to weave these

things together to produce a non-cyclic argument.

It is worth noting that the original proof of Theorem 18 uses an argument about skele-

tons of parity complexes (treating separate parity complexes as objects of the argument).

We have translated the argument so that it is internal to any given parity complex. The

combinatorial logic of our argument is exactly the same as Street’s, we have only adjusted

the setting slightly.

Having built the ω-category O(C) from a parity complex C, we now prove that it is

generated from atoms.

In any parity complex C we expect that any individual element x of dimension p is the

top element of some cell whose lower-dimensional structure can be computed by examining

the face-sets of x and recursively taking face-sets of face-sets. This is made explicit in the

following definition.
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Definition 20. For each x ∈ Cp, two subsets µ(x), π(x) ⊆ Cp are defined inductively as

follows

µ(x)p = {x} and µ(x)k−1 = µ(x)∓k , 1 ≤ k ≤ p

π(x)p = {x} and π(x)k−1 = π(x)±k , 1 ≤ k ≤ p

The pair (µ(x), π(x)) is denoted by 〈x〉.

Take the following diagram for example. If x ∈ C of dimension 2 and has boundary as

illustrated here then 〈x〉 = ({x, p, q, r, a}, {x, s, t, e})

c
q // b

r

��
a

p

@@

s
//

x��

d
t

// e

(5.5.7)

A priori, we have no guarantee that such a pair is actually a cell.

Definition 21. An element x ∈ Cp is called relevant when 〈x〉 is a cell. This amounts to

saying that µ(x)n and π(x)n are well-formed for 0 ≤ n < p− 1, and

µ(x)n−1 = π(x)∓n , π(x)n−1 = µ(x)±n

for 0 < n < p− 1. Call a cell (M,P ) an atom when it is equal to 〈x〉 for some x ∈ C. In

that case we say that (M,P ) is atomic.

In all of our main examples, every 〈x〉 is a cell (all elements are relevant).

Theorem 22 (Theorem 4.1 : excision of extremals). Suppose that µ(x) is tight for all

x ∈ C. Suppose (M,P ) is an n-cell and u ∈ Mn (= Pn) is such that (M,P ) 6= 〈u〉 §.
Then (M,P ) can be decomposed as

(M,P ) = (N,Q) ∗m (L,R) (5.5.8)

where m < n, and (N,Q) and (L,R) are n-cells of dimension greater than m.

This is another central result of the paper. If this algorithm is applied recursively then

it shows how to present an arbitrary n-cell as a composite of atoms. Thus O(C) is not

only an ω-category, but it is generated from its atoms

The algorithm takes an n-cell (M,P ) and runs as follows.

1. Find the largest m < n with (Mm+1, Pm+1) 6= (µ(u)m+1, π(u)m+1). This amounts

to discovering the highest dimension at which the criterion for being atomic does

not hold¶. In this case, there exists w ∈Mm+1 ∩ Pm+1.

§Alternatively, let (M,P ) be a non-atomic n-cell.
¶Alternatively, find the largest m < n with Mm+1 ∩ Pm+1 6= ∅.
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2. We want to decompose our cell by pulling off a cell of dimension m + 1. Let x be

a minimal element of Mm+1 less than w, and let y be a maximal element of Mm+1

greater than w.

3. At least one of x or y must belong to Mm+1 ∩ Pm+1. This relies on the fact that

µ(u)m+1 is a segment of Mm+1, which itself relies on µ(u)m+1 being tight.

4. If x ∈Mm+1 ∩ Pm+1 then we get a decomposition of (M,P ) as

N = Mm ∪ {x} Q = Pm−1 ∪ ((Mm ∪ x+) ∩ ¬x−) ∪ {x} (5.5.9)

L = ((M ∩ ¬{x}) ∪ x+) ∩ ¬x− R = P ∩ ¬{x} (5.5.10)

Notice that (N,Q) is an (m+1)-cell whose single element at top dimension is x, and

(L,R) is the n-cell obtained by cutting x out of (M,P ).
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5. If y ∈Mm+1 ∩ Pm+1 then we get a decomposition of (M,P ) as

N = M ∩ ¬{y} Q = ((P ∩ ¬{y}) ∪ y−) ∩ ¬y+ (5.5.12)

L = Mm−1 ∪ ((Pm ∪ y−) ∩ ¬y+) ∪ {y} R = Pm ∪ {y} (5.5.13)

This is dual to the case for x. Notice that (L,R) is an (m + 1)-cell whose single

element at top dimension is y, and (N,Q) is the cell obtained by cutting y out of

(M,P ).

The two hardest parts of this algorithm are parts (3) and (4). In part (3) we must

show that either x or y belong to Mm+1 ∩Pm+1. This relies on the fact that µ(x)m+1 is a

segment of Mm+1, but this follows from Theorem 11 and the assumption that each µ(x)

is tight. In part (4) we need to show that (N,Q) and (L,R) are well-defined cells. The

various conditions of finiteness and well-formedness follow quite directly. The difficulty

comes in showing that the movement conditions hold. We investigate the cells dimension

by dimension and find that the movement conditions can be proved using Theorems 11

and 17.

How do we know that this algorithm terminates? The original text defines the rank

of an n-cell (M,P ) to be the cardinality of M ∪ P . The algorithm produces two cells of
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smaller rank, so therefore must terminate. It is also possible to define the rank by

rank(M,P ) =

n∑
k=0

|Mk ∩ Pk| (5.5.14)

In this case every n-cell has a rank of at least 1 since Mn∩Pn is non-empty. A cell of rank

1 must be atomic. A cell of rank k > 1 can be decomposed using excision of extremals into

two cells whose individual ranks are less than or equal to k − 1. Again, this is sufficient

to guarantee termination.

Implementation 5.5.4. As already indicated, Theorem 22 is readily proved using the

argument given above.

Remark 5.5.5. In order to show that O(C) is freely generated from its atoms we must

show that there are no equalities among composites of cells that are not a consequence

of the ω-category axioms. This is achieved in Street’s Theorem 4.2 but has not been

reproduced here and we have not included it in our formalisation.

Remark 5.5.6. Many of these theorems and lemmas come with a condition concerning

tightness and receptivity of various sets. We can show that these conditions are satisfied

by appealing to various other results. At the end of the day there may be some confusion

about which conditions are ultimately required. To summarise, if a parity complex C has

the property that µ(x) is tight for every x ∈ C, then all of the theorems up to this point

will hold.

At this stage, we have not shown that every 〈x〉 is a cell. In fact, we have no guarantee

that any cells exist at all. This is something of a loose end, it is accounted for in the

following section.

Section 5 begins by describing, for any two parity complexes C and D, their product

C × D and their join C • D. That section also describes two kinds of duals for parity

complexes obtained by reversing the roles of (−)+ and (−)− in all dimensions or in odd

dimensions only. This is of particular interest since the diagrams involved in descent are

products of globes with simplexes; this is explored in Section 6.

Section 5 also addresses some issues that are as yet unresolved. First, we don’t know

that any elements are relevant (consequently we don’t know if any cells exist at all).

Second, Theorem 17 relies on the fact that all µ(x) are tight, and this was never established.

Consider the following stronger forms of Axioms 1 and 2.

For all x,

(R1) µ(x)− ∪ π(x)+ = µ(x)+ ∪ π(x)− and

µ(x)− ∩ π(x)+ = µ(x)+ ∩ π(x)− = ∅

(R2) µ(x) and π(x) are well formed.
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These axioms hold for ∆, G, and Q.

Remark 5.5.7. If a parity complex C satisfies these axioms then every 〈x〉 is a cell (every

x is relevant). Thus all elements of ∆, G, and Q are relevant.

In a parity complex C, write x ≺ y when either y ∈ x+ or x ∈ y−. Let J denote

the reflexive transitive closure of the relation ≺. Notice that x < y means there exists

z ∈ x+ ∩ y−, so this implies x ≺ y. Hence, xC y implies x J y. The relation C compares

elements of the same dimension, whereas J compares elements of all dimensions. We

introduce this as an optional axiom.

(AS) J is anti-symmetric. (5.5.15)

This axiom holds in ∆, G, and Q where J is also total.

Proposition 23 (Proposition 5.2). If each x is relevant and (AS) holds then each µ(x) is

tight. Thus, every µ(x) in ∆, G, and Q are tight.

Section 5 of [Str91] contains two examples of parity complexes where J is not anti-

symmetric. These are small pasting diagrams that are explicitly illustrated in the article

and are quite elementary. This is why (AS) was not insisted upon in general.

Remark 5.5.8. It might remain unclear which conditions are required for which results

(see Remark 5.5.6). To summarise, if a parity complex C satisfies (R1) and (R2) and

(AS) then every theorem and proposition covered in this paper holds. In particular, every

theorem and proposition holds for the parity complexes ∆, G, and Q.

Remark 5.5.9. There seems to be a fundamental relationship between parity complexes

and ‘directed graphs of multiple dimension’. Note that this notion of higher-dimensional

graph would not be the same as an n-graph since each component of an n-graph has a

single source and single target rather than a source set and a target set. Some of the

axioms for parity complexes are just those of this ‘graph’ structure and others restrict us

to graphs of a certain kind. Axioms (R1), (R2) and (AS) place further restrictions. Since

we are mainly interested in examples that satisfy all of these conditions, we do not need

to worry too much about this narrowing of our focus. More generally though, it would be

good to know which of these conditions are associated with the graph structure of parity

complexes, and which of the conditions allow for the (free) ω-category construction. This

could be the focus of some future research.
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5.6 Implications for further work

5.6.1 Confirmed material

The process of formalisation reveals that Sections 1 and 2 and Theorem 22 can be imple-

mented with very little deviation from the original text. This is a testament to Street’s

insight and suggests that the definitions and results from those sections are well-expressed

and useful tools for understanding these complicated combinatorial structures.

5.6.2 Adjusting the axioms

In private conversation Christopher Nguyen pointed out that Axiom 3.B is only used

to prove Theorem 2, and Theorem 3 and its duals. We have commented already that

Theorem 3 and its duals are equivalent to Axiom 3.B. A quick examination of our code

then reveals that Theorem 3 is only used to prove that x+ is tight and the disjointness

condition described on p327. We haven’t investigated this in any detail, but it might be

possible to replace Axiom 3.B with something slightly weaker (or stronger) but which has

the same implications in the relevant proofs. This is of particular use in light of the fact

that Axiom 3.B is not always preserved under products and joins (see remark on page

334).

Note that the stronger axioms (R1) and (R2) subsume Axioms 1 and 2, and the ex-

amples of primary interest also have antisymmetry for J. So it is worth considering the

implications of adding these conditions from the very beginning. There are however good

examples of parity complexes that do not have these stronger properties. It is not yet

clear if these examples are for some reason unimportant, or if parity complexes should not

always be closed under product and join, or if there is even a third explanation.

5.6.3 Finding relevant elements

The excision of extremals shows that every cell can be presented as a composite of atomic

cells. Unfortunately, not all cells are relevant, so we must explicitly describe some cells

before we can use excision of extremals. And we’re not even sure yet that any cells exist.

In the presence of (R1) and (R2), the problem is solved since every element is relevant and

every 〈x〉 is a cell. It is not clear whether these stronger conditions are in fact completely

natural and should replace axioms 1 and 2, or whether they restrict our examples too

much, or in fact, whether they are not strictly any stronger.

5.6.4 Why do we need µ(x) tight?

Theorem 22 relies on the fact that each µ(x) is tight and therefore a segment in the

required place. This is readily proved when the ordering on J is antisymmetric and when

(R1) and (R2) hold. So, if we wish to use excision of extremals, we need to have these



156 CHAPTER 5. VERIFYING PARITY COMPLEXES

stronger conditions holding. So we ask, is the tightness condition strictly necessary? Is

there another way to ensure that µ(x) is a segment in that proof? Or, are we happy to

exclude examples of parity complexes where J is not antisymmetric?

5.6.5 Understanding receptivity and tightness

Section 3 of [Str91] is particularly hard to understand and the proofs there are not al-

ways straight-forward. The notions of tightness and receptivity are both a bit opaque and

Theorem 17 is very hard to prove. This provides some motivation to closely examine The-

orem 17 and see whether alternative arguments might be made to prove it. In particular,

it is not clear whether the stronger properties in ∆, G, and Q will allow for a simpler

argument. Or whether the various locations where tightness and receptivity are used,

a different, more elegant argument might be possible. Or whether, on closer inspection

tightness and receptivity can be seen as perfectly natural properties.

5.7 Some lessons in coded mathematics

5.7.1 Duals

We were often forced to prove dual results where x+ and x− were interchanged, or where

the direction of a movement M
S−→ P was reversed. In these cases we were forced to

explicitly restate and reprove the result, even though the underlying logic had not changed

whatsoever. It would have been better if, from the beginning we had encoded plus and

minus as duals to each other, then the theorems would dualise automatically. One way to

do this is to define faceset : bool → C → Ensemble C and then set minus := faceset false

and plus := faceset true. From this base-point, it should be easy to combine dual results

into one.

5.7.2 Notation

Coq has a Notation facility which allows the user to introduce custom notation for specific

expressions. We used this to make set operations easier to read and write. For example, an

expression such as Union A B is displayed as A ∪ B, and similarly for intersection, inclusion,

etc. This made our code much easier to read.

5.7.3 Tactics

Coq has a tactic language which allows for partial automation of proofs. The language

allows the user to describe simple proof strategies that can be automatically applied when

little innovative thinking is required. A particular built-in tactic called intuition will

automatically deal with simple proofs that require only knowledge of first-order logic. We



5.8. CONCLUSION 157

used the tactic language to describe a proof tactic called basic that automatically applied

further logical steps such as (x ∈ A ∩ B) → (x ∈ A ∧ x ∈ B). In many cases this vastly

simplified proofs by applying repeat (basic; intuition) to automatically prove some trivial

facts.

5.7.4 Setoid rewrite

Whenever two terms are definitionally equal (a = b), we can use the rewrite command

to replace a with b in any expression. Whenever we use a weaker notion of equality

such as Same_set, we do not necessarily have definitional equality and we can’t replace a

with b in every expression. This problem was solved using setoid rewrites as indicated

in Section 5.2.4. Given our decision to eliminate the axiom of extensionality, this facility

worked very well.

5.7.5 Axiom of extensionality for sets

We chose to remove the axiom of extensionality because we wanted to deal with sets in a

completely constructive fashion. This was a choice of style. In many ways, retaining the

axiom would not have weakened our encoding and we would not have needed to implement

setoid rewrite for ensembles.

5.7.6 Compiling the excision of extremals algorithm

Our choice to implement sets using ensembles has made it impossible to directly compile

an executable version of the excision of extremals. This is unfortunate: we have proved

that such an algorithm can run but we can’t actually compile or run it without further

coding. The mathematical significance of our work is not undermined, however some more

careful planning could have yielded this pleasant side-effect.

5.8 Conclusion

We have formalised Ross Street’s ‘Parity Complexes’ up to the excision of extremals algo-

rithm in Section 4. In particular, Sections 1 and 2 together with Theorem 22 are proved

as indicated in the original text. Section 3 is also formalised with the same essential argu-

ments as [Str91], but with many additional dual theorems, and a technical but meaningful

change to the logical flow of Theorem 17 and Theorem 18.

We have indicated where the material is most effective at capturing the difficult com-

binatorics, and where future work might make improvements. We have explicitly outlined

the logical dependence of the central results. We have also outlined some lessons learned

in the encoding of this mathematics.
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