THE DESIGN AND ANALYSIS OF QUANTUM

CRYPTOGRAPHIC PROTOCOLS

MACQUARIE
University

SYDNEY-AUSTRALIA

A dissertation submitted in fulfilment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Department of Computing
Faculty of Science and Engineering
Macquarie University
Sydney, Australia

Supervisors: Prof. Mehmet A. Orgun and Prof. Josef Pieprzyk

April 2015






Copyright (©) 2015 Hong Lai

All Rights Reserved



STATEMENT OF CANDIDATE

I (HONG LAI) certify that the work in this thesis entitled “THE DESIGN AND
ANALYSIS OF QUANTUM CRYPTOGRAPHY PROTOCOLS” has not pre-
viously been submitted for a degree nor has it been submitted as part of the
requirements for a degree to any other university or institution other than Mac-

quarie University.

I also certify that the thesis is an original piece of research and has been written
by me. Any help and assistance that I have received in my research work and the

preparation of the thesis itself have been appropriately acknowledged.

In addition, I certify that all information sources and literature used are indicated

in the thesis.

G
Signature .. W ...... (
Date ..... M .. M 29 [ S,-



ABSTRACT

Quantum cryptography including quantum key distribution and quantum se-
cret sharing, a fundamental branch in quantum information processing, is the
process whereby two or more parties agree on a key for subsequent cryptographic
use. The goal of quantum cryptography is to establish a secure key in an insecure
communication environment, leading to the difficulty of the protocols’ design and
analysis. In this thesis, we focus on the design and analysis of secure and efficient
protocols of two or more parties in quantum settings.

Firstly, we focus on high-capacity quantum key distribution protocols over the
general and collective-noise quantum channels. With Lucas numbers and Cheby-
shev maps, flexible lower-dimensional high-capacity quantum key distribution can
be achieved. Our proposed protocol can simultaneously satisfy high secure key
generation rates and long achievable operating distances. Then, we construct
sixteen 2—extended unitary operations in terms of the four unitary operations
based on collective noises to double the capacity of a photon carried.

Then, we use recurrence and fountain codes to present (2,3) threshold discrete
variable quantum secret sharing of secure direct communication. Moreover, we
generalize the (2,3) protocol to (n,n) threshold quantum secret sharing of secure
direct communication. To be exact, fountain codes can be used to distill a shorter
but highly secure key information and authenticate the identities of participants
and detect eavesdropping. Recurrence can be used to improve key generation
rates.

Finally, we construct n—extended unitary operations in terms of the four uni-

tary operations to present hybrid quantum key distribution and hybrid quantum
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secret sharing protocols based on threshold and adversary structure. The goal
of these protocols is to reduce the number of photons and quantum participants

used so that they can be realized with the current quantum technology.
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Chapter 1

Introduction

1.1 Motivation

More and more individuals and organizations are connecting their internal networks
and computers to the insecure Internet, ranging from a bill payment and electronic bank-
ing to a global network contributing to a great amount of dollars of electronic commerce.
Therefore, it is critical to provide security that can ensure the confidentiality and the
integrity of data over the insecure channel. To address these issues, many secure cryp-
tographic protocols and approaches have been proposed. Quantum cryptography is one
of such critical methods, which allows communicating parties to establish a key over hos-
tile network systems. The key provides a secure channel for subsequent use. Quantum
cryptography employs quantum mechanics (rather than the assumed hardness of certain
computational problems like the integer-factoring or discrete-logarithm problems in clas-
sical cryptography) to promise secure key distribution.

In 1994, Shor [1] showed that integer-factoring or discrete-logarithm problems in classi-
cal cryptography can be theoretically solved in polynomial time on a quantum computer.

Since then, Shor’s algorithm sparked a great deal of interest in the study of quantum
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computers in the scientific community. Quantum computers are immensely powerful due
to two main properties [2]: 1) they can be in multiple states at once, and 2) they can
act on all of their states simultaneously. Though quantum computers may eventually put
an end to many of the public key techniques that are widely used today, their poten-
tial realization is what spurred the research in quantum cryptography because quantum
cryptography does not rely on unproven mathematical assumptions about the intrinsic
difficulty of certain operations [3]. Quantum cryptography derives from quantum and
cryptography. As we know, quantum is the minimum discrete quantity of any physical
entity involved in an interaction (this definition is from wikipedia.org.), and cryptography
is a technique for secure communication in the presence of an adversary. That is, by com-
bining the classical cryptographic approach (i.e., one-time pad) with quantum effects [4],
quantum cryptography enables these functions to work.

The strong point of quantum cryptography is that its security is guaranteed by laws of
physics as it is impossible for an unauthorized party to copy an unknown quantum state.
Therefore, many protocols for quantum cryptography including quantum key distribution
and quantum secret sharing (which extends from two parties in quantum key distribution
to more parties [5]) have been proposed in [3,6-21]. However, four major weaknesses have
stood in the way of widespread applications of these protocols [22,23], i.e., low coding
capacity, low qubit efficiency, short achievable operating distances and low secure key
generation rates. On the other hand, there are two major problems [24-26]: 1) It is very
hard and expensive to deal with a lot of quantum data. And 2) Quantum information is
fragile (here, it means that it is easy to be broken physically) in nature. In fact, these are
also the main reasons why quantum cryptography has not yet been widely used in our
daily life. In this thesis, these issues are studied and analyzed.

In Chapter 3 of this thesis, we first propose a high-capacity and extensible Quantum

Key Distribution (QKD) protocol, in which the number of particles that are used to be



1.2 Related work 3

entangled is reduced but the dimensions of used entangled particles are increased in the
protocol. Then, we construct 2-extended unitary operations to design two fault-tolerant
high-capacity quantum key distribution protocols over a collective-noise channel, aiming
at improving the capacity of a single photon and reducing the use of particles. We use
recurrence and fountain codes to design two efficient quantum secret sharing protocols
of secure direct communication in Chapter 4. Finally, we generalize 2-extended unitary
operations to n-extended unitary operations. With the use of n-extended unitary opera-
tions, classical data can be combined with quantum data to implement hybrid quantum
secret sharing and hybrid quantum key distribution protocols as discussed in Chapter 5.

In the proposed protocols, the number of photons can be reduced to 1 in theory.

1.2 Related work

In this section, we present the related work for the subfields of quantum cryptography,

i.e., quantum key distribution and quantum secret sharing.

1.2.1 Quantum key distribution

Quantum key distribution (QKD) is relatively new in the information security world,
in which the laws of quantum mechanics are applied to create new cryptographic primi-
tives. Wiesner [27] is the first researcher to use the properties of quantum mechanics to
securely encode information in 1970s. However, in 1984, Bennett and Brassard (the BB84
protocol) [3] developed the first and the most famous prepare-and-measure quantum key
distribution (QKD) protocol, in which Alice sends each qubit in one of four states of two
complementary bases. In 1991, Ekert [7] proposed another well-known QKD protocol
based on entanglement. After these groundbreaking protocols, there have been dozens of

QKD protocols, but they are either based on the BB84 protocol or on Ekert 91. BB84
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protocol’s security is first proved by Mayers [28], and later by Shor and Preskill [29]. But
most proofs are based on the assumption of idealized QKD system components, like well-
characterized detectors and perfect single photon sources [30]. Therefore, Wang et al. [31]
and Masanes et al. [32] proposed to use decoy particles or states and a device-independent
method to address the above-mentioned weaknesses respectively. Moreover, quantum key
distribution protocols can be implemented using a variety of different quantum technolo-
gies such as lasers, fibre-optics and free space transmission to mention a few. When the
BB84 protocol was invented, the distance between two parties was in the range of a meter.
In 1993, Muller et al. [33] reported that the distance could be increased to 1.1 km using
fiber optic channels. In 2013, Inagaki et al. [34] demonstrated a solution that enabled the
communicating parties to be 300 km apart.

In recent years, there has been a growing interest in the study of high-capacity quan-
tum key distribution protocols that use high-dimensional Hilbert spaces. The study is
motivated by the following two advantages: (1) it is expected that a single photon can be
used to encode multiple bits of a shared key and (2) it seems that high-dimensional sys-
tems can be made robust against certain types of noise [35,36]. The recent high-capacity
quantum key distribution protocols have been reported in [22,23,37-39]. In Barreiro and
Kwiat’s protocol [37], the capacity of each entangled state has been enhanced by incor-
porating quantum states which are meanwhile entangled in multiple degrees of freedom
“hyperentangled”. Also, they have applied the hyperentanglement to advanced quantum
communication such as remotely entangled state preparation and super-dense coding [6].
Mafu et al. [38] have shown that increasing the dimension contributes to increasing the
information capacity per photon and key generation rates. But they have also found that
the advantage of increasing the dimension is limited by practical implementations. Boyd
et al’s protocol [39] suffers from the corruption of the quantum state of the received

photons due to atmospheric turbulence, though their proposed QKD protocol can enable
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each photon to carry many bits of information by constructing a free-space. In 2013, Si-
mon and Sergienko [23] have used a hyperentangled system to increase the Hilbert space
dimension N, in which one entangled degree of freedom is used for key generation, and
a different degree of freedom for security check. In Chapter 3, we use the conjugation
relation between Lucas numbers and Fibonacci numbers to achieve pure classical key
expansion based on Simon et al.’s work [22].

However, the above-mentioned high-capacity QKD protocols are studied in an ideal
situation, i.e., a noiseless quantum channel. In actual settings, there always exists noise
including thermal fluctuation, vibration, and an imperfection of the fiber in quantum
channels during the process of transmitting qubits. All of those qubits will be affected by
the same noise, which is caused by the variation of the noise sources that are longer than
that of qubits traveling inside a time window. It is called collective noise. That is, if a few
qubits are transmitted through the noise channel at the same time or they are close to
each other spatially, the transformation of the noise on each of the qubits is identical [40].

Many studies on QKD protocols under collective noisehave been proposed [40-48],
mainly focusing on collective-dephasing and collective-rotation noises. For example, in
2004, Boileau et al. [41] presented a QKD protocol under collective random unitary noise
with the linear combination of two singlet states. In 2008, Li and Li [42] proposed two
robust QKD protocols against two kinds of collective noise associated with the two Bell
states [{*)ap = J5(10)a|1)p +[1)4[0)5) and |¢7) ap = J5(10)4|0)5 — |1) 1) ) to encode
a message. Here |0) and |1) denote two possible states of a photon respectively, i.e., the
horizontal polarization state and the vertical polarization state. They are the two eigen-
states of the basis Z (that is, the Pauli operator o.). Their subscripts A and B represent
two photons in an entangled state. In 2009, Li et al. [40] studied two robust quantum
key distribution protocols under collective-dephasing and collective-rotation noiseusing

quantum dense coding. In Chapter 3, we propose to use 2-extended unitary operations
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over collective noiseto obtain higher-capacity quantum key distribution protocols [50].

1.2.2 Quantum secret sharing

Quantum secret sharing (QSS) (which is the generalization of QKD [5]), has made
great progress since the first QSS protocol has been proposed by Hillery et al. [51] in
1999. Hillery et al.’s protocol is a natural extension of the classical secret sharing proposed
by Shamir [52] and Blakley [53] in 1979 independently. Soon after Karlsson et al. [54]
proposed another QSS protocol with a two-photon polarization entangled state. Since
these two QSS protocols [51,54] were presented, many authors [24,55-77] have proposed
a variety of QSS protocols in both theory and experiments. For theory, Xiao et al.
[57] proposed an efficient multiparty QSS protocol. Deng et al. [73-75] presented a few
protocols for QSS based on polarized single photons or EPR pairs. In 2010, Lin et al. [62]
proposed a semi-quantum secret sharing protocol using entangled states, where Alice
(who can perform any quantum operation) can securely distribute a key to Bob (who is
classical). For experiments [76,77], a QSS protocol based on four-state Grover algorithm
was successfully demonstrated using the nuclear magnetic resonance technique.

In 2005, Zhang [78] generalized the work in [79] into the QSS regime, and proposed
a new concept, i.e, QSS of secure direct communication. Thereafter, many researchers
followed Zhang’s work and proposed many new protocols. Moreover, QSS with continuous
variables is shown to be feasible by Tyc and Sanders [80], who developed continuous
variable threshold QSS and showed explicitly how to achieve the (2,3) threshold QSS
special case. In 2002, Lance et al. [81] extended their protocol by utilizing an electro-
optic feedforward technique and gave two further protocols. In Chapter 4, we also propose

two quantum direct secret sharing protocols based on their work [82].
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1.3 The Contributions and organisation of the thesis

1.3.1 Main contributions of the thesis

In this dissertation, we design and analyze several quantum cryptographic protocols
to address the problems of the existing studies. To be exact, the major contributions of
this dissertation are outlined as follows:

In Chapter 3, we first analyze Simon et al.’s protocol, and we observe that Lucas
numbers (defined by Ly = 2, L1 = 1, L,.» = L,y1 + L,) have a close relationship to
the first kind of Chebyshev polynomials (T},), i.e., 2i T, (%) = L, [83]. This relation-
ship motivates us to propose an approach to lower-dimensional high-capacity quantum
key distribution with pure classical key expansion. The proposed distribution of keys
replacing Fibonacci numbers with Lucas numbers in analogy with the Simon et al. proto-
col [22] is valid because the dimensionality is the same as that in the previously proposed
Fibonacci protocol. But in our approach, the actual coding uses Chebyshev-map values
(which means that the variable z,z € C, is confirmed in Chebyshev polynomials) and
k-Chebyshev-map values (which refer to the correlation of variable z), making consec-
utive and flexible key expansion possible. Due to the key expansion property, only a
few Lucas numbers are required for a secure generation of long keys. Besides, proper
Lucas numbers can be chosen to meet both longer distances and lower error rates at the
same time. Therefore, our protocol can achieve lower-dimensional high-capacity quantum
transmission.

The work on high-capacity quantum key distribution protocol using Chebyshev-map

values corresponding to Lucas numbers coding appeared in the following paper:

H. Lai, M. A. Orgun, J. Pieprzyk, J. H. Xiao, L. Y. Xue, Lower-dimensional
high-capacity quantum key distribution using Chebyshev-map values cor-

responding Lucas numbers coding, Submitted to Journal of Physics A:
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Mathematical and Theoretical, April 2015.

In Chapter 3, we then analyze many QKD protocols over collective noises [40-48] and
identify that either four- or six- photon entanglements [40,41,43,44,46] are used or the
times of Bell-measurements [46] needed are much more than those of [42,45]. Currently,
the preparation of multi-photon entangled states and Bell-measurements are not easy to
realize [49], which will increase the difficulty of the implementation of QKD protocols
with the current technology. Though it is easier to implement some of the protocols
in [42,45] over collective noisein practice, the qubit efficiency is much lower compared
to those in [40,41, 43,44, 46] (see Table 3.3). To obtain the advantages of the protocols
in [40,41,43,44,46] (higher qubit efficiency) and those in [42,45] (easier to implement),
we propose a new approach to quantum key distribution based on the use of extended
unitary operations from collective noisetogether with quantum dense coding [50].

The work on fault-tolerant high-capacity quantum key distribution over a collective-

noise channel appeared in the following publication:

H. Lai, M. A. Orgun, J. H. Xiao, L. Y. Xue, Fault-tolerant high-capacity quan-
tum key distribution over a collective-noise channel, Quantum Information

Processing), 1523-1535, 2014(13).

In Chapter 4, we show that a (2,3) (meaning that any two participants of all three
participants can share a secret) discrete variable threshold quantum secret sharing pro-
tocol of secure direct communication can also be achieved based on recurrence using the
same devices as in BB84. Besides, we use the idea of distributed fountain codes to let par-
ticipants know the positions of the inserted nonorthogonal state particles and the control
codes for the implementation of no-cloning principle for eavesdropping-check and authen-

tication. The proposed protocol is inherently immune to Trojan horse attacks. Moreover,
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every particle can on average carry up to 1.5-bit messages rather than at most 1 bit be-
cause the shares of smaller secret pieces are all accumulated into the shares of the largest
secret piece, and Bobs can detect eavesdropping by themselves without sending classical
messages to Alice due to the generated control codes, thereby enhancing the efficiency of
quantum secret sharing.

The work on recursive (2,3) threshold quantum direct secret sharing appeared in the

following publication:

H. Lai, M. A. Orgun, J. H. Xiao, L. Y. Xue, J. Pieprzyk, Dynamic (2,3)
threshold quantum secret sharing of secure direct communication, Com-

munications in Theoretical Physics, 459-465, 2015(63).

In Chapter 4, we also propose a simple and effective way to achieve secure quantum
direct secret sharing. The proposed protocol uses the properties of fountain codes to
allow a realization of the physical conditions necessary for the implementation of no-
cloning principle for eavesdropping-check and authentication. In our protocol, to achieve
a variety of security purposes, nonorthogonal state particles are inserted in the transmitted
sequence carrying the secret shares to disorder it. However, the positions of the inserted
nonorthogonal state particles are not announced directly, but are obtained by sending the
degrees and positions of a sequence that is pre-shared between Alice and Bobs. Moreover,
Bobs can confirm that whether there exists an eavesdropper without sending classical
messages to Alice. Most importantly, without knowing the positions of the inserted
nonorthogonal state particles and the sequence constituted by the first particles from
every EPR pair, the proposed protocol is shown to be secure.

The work on quantum direct secret sharing based on distributed fountain codes ap-

peared in the following publication:

H. Lai, J. H. Xiao, M. A. Orgun, L. Y. Xue, J. Pieprzyk, Quantum direct
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secret sharing with efficient eavesdropping-check and authentication based
on distributed fountain codes. Quantum Information Processing, 895-907,

2014(13).

In Chapter 5, we first introduce extended unitary operations by the tensor product
of n,n > 2, basic unitary operations, and then use those extended operations and dis-
tributed fountain codes to design a hybrid QKD protocol. Meanwhile, we propose hybrid
quantum secret sharing protocols based on a threshold and adversary structure. On the
one hand, the extended unitary operations can eventually boil down to the four basic
unitary operations when they are used to transform EPR pairs; on the other hand, the
ultimate operations (i.e., the n-extended unitary operations (see Chapter 5)) can link the
transition operation with control bits, making hybrid QKD and QSS protocols possible.
Moreover, the number of digits of the key messages that can be carried by per photon is
limited by practical considerations rather than by any matter of principle.

The work on hybrid QKD and QSS using extended unitary operations appeared in

the following publications:

H. Lai, M. A. Orgun, L. Y. Xue, J. H. Xiao, J. Pieprzyk, Dual compressible
hybrid quantum secret sharing protocols based on extended unitary op-
erations, Proc. SPIE 9123, Quantum Information and Computation XII,

Baltimore, USA, May, 1-13,2014.

H. Lai, L. Y. Xue , M. A. Orgun, J. H. Xiao, J. Pieprzyk, A hybrid quan-
tum key distribution using extended unitary operations and distributed

fountain codes, Quantum Information Processing, 697-713, 2015(14).

1.3.2 Organisation of the thesis

The structure of the thesis is as follows (see Figure 1.1).
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The design and analysis of quantum cryptographic protocols

Quantum secret sharing Hybrid quantum

High-capacity

quantum key protocols of secure direct cryptography with
distribution protocols communication extended unitary
operations

7N N I

High- High- Recursive (n,n) Hybrid Hybrid
capacity capacity (2,3) threshold QKD QSS
QKD using QKP threshold quantum based on protocols
Lucas- agamsf a quantum direct extended using
sequence collective direct secret unitary extended
coding noise secret sharing operations unitary
sharing based on and operations
fountain fountain
codes codes
(Chapter 3) (Chapter 4) (Chapter 5)

Figure 1.1: The sketch of the organisation of the thesis.

Chapter 3 presents three high-capacity quantum key distribution protocols using
Lucas-sequence coding and 2-extended unitary operations over collective noise respec-
tively.

Chapter 4 first describes a (2,3) threshold quantum secret sharing protocol for secure
direct communication by utilizing fountain codes and a recursive secret encoding method.
Then it generalizes it to (n,n) threshold quantum secret sharing.

Chapter 5 presents a hybrid quantum key distribution protocol and two hybrid quan-
tum secret sharing protocols by extending the basic unitary operations to n-extended
unitary operations, which combines the advantages of quantum cryptography with clas-

sical cryptography.
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Chapter 6 outlines the major conclusions of the thesis and discusses future research

directions.



Chapter 2

Preliminaries

In this section, we provide the preliminary background used in the thesis in a general

way.

2.1 Cryptographic background

2.1.1 Fountain codes

Fountain codes (also known as rateless erasure codes) have the property that a poten-
tially limitless sequence of encoding symbols can be generated on-line from a given set of
k source symbols, as few or as many as needed. The process of generating an encoding

symbol (see Figure 2.1) is conceptually very easy to describe [84,85]:
1. choose the degree d (1 < d < pu) of the encoding symbol at random,
2. select at random exactly d distinct bits from the source symbols,
3. compute the value of the encoding symbol by XOR-ing d source symbols.

Definition 1. (Decoder recovery rule) [84,85]: If there is at least one encoding

symbol that has exactly one degree then the source symbol can be recovered immediately

13
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Source symbols Encoding symbols Source symbols  Encoding symbols
1 . 1 XOR 1=0 1 0
(d.(1,3)) 0
0 . 0
degreed = 2 0
1 1 1
1. Randomly choose the degree d of the encoding symbol.
2. Exactly d bits from the source symbols are randomly
chosen. .
3. The value of the encoding symbol is the exclusive-or of A few source symbols can produce

the d source symbols.
4. Dealer sends (d,(1,3)) to participant, where (1,3)
denotes the first and the third bit in the source symbols.

potentially limitless encoding symbols.

Figure 2.1: Generation of encoding symbols

since it is a copy of the encoding symbol. The value of the recovered source symbol is
exclusive-ored into any remaining encoding symbols that also have that source symbol
as a neighbor, the recovered source symbol is removed as a neighbor from each of these
encoding symbols and the degree of each such encoding symbol is decreased by one to
reflect this removal (see Figure 2.2).

Note that the “decoder recovery rule” does not need to be used in our protocols in
Chapters 3-5. We stipulate that the communicating parties first share a sequence as source
symbols before key distribution takes place. We simply use the idea of producing fountain
codes to prepare control codes and obtain the positions of inserted nonorthogonal state

particles based on the source symbols, which are established by using the way in BB84.

2.1.2 Hash functions

In our thesis, we use a suitable strongly collision-free hash function [86] in Chapter 5
for quantum secret sharing based on adversary structure , which takes as input a binary
string of an arbitrary length, and produces as output a binary string of a fixed length. It

has the following 4 properties.
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Source symbols  Encoding symbols

7 . 0
0 e 0
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9 L=

1. Identify encoding symbols of degree 1.
2. Recover the corresponding source
symbol. @

Source symbols Encoding symbols

7 . 0
o . ;'0
- 0

o

9 = 1

3. Ubdate neighbors of this source symbol.

4. Delete edges.
b)

Source symbols Encoding symbols

7 e 0
o

5. Continue to identify encoding symbal of
degree 1.
6. Recover the corresponding source
symbol.

€)

Source symbols Encoding symbols

? --\—-1

1

7. Update neighbors of this source
symbol.
8. Delete edges.
(d)
Source symbols Encoding symbols

1
0 .

1

9. Continue to identify encoding symbols
of degree 1.

10. Recover the corresponding source
symbol.

11. Decoding successful!

fe)

Figure 2.2: An introduction of the decoding process.

1) It is easy to compute the hash value for any given message.

3) It is infeasible to modify a message without changing the hash.

(1)
(2) It is infeasible to generate a message that has a given hash.
(3)
(4)

4) Tt is infeasible to find two different messages with the same hash.

If, given a message x, it is computationally infeasible to find a message y not equal to

x such that H(z) = H(y) then H is said to be a weakly collision-free hash function.

A strongly collision-free hash function H is one for which it is computationally infea-

sible to find any two messages = and y such that H(z) = H(y).

2.2 Mathematical background

2.2.1 Chebyshev maps

Definition 2 [87]. The first kind of Chebyshev maps of degree n (n € N) are defined
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as

T.(x) = cos(n x arccos(x)),{x|z € C} (2.1)

The recurrent formulas are defined as:

T.(z) = 22T, 1(x) — T,_o(x) (2.2)

where n > 2, Ty(z) = 1, and T (z) = z.

For degree n = 2,3, 4,5, we can obtain the expressions as below from equation (2.2):

Ty(z) = 22> — 1
Ts(z) = 42 — 32
(2.3)
Ty(z) = 8z* — 822 + 1
Ts(x) = 162° — 202° + 5z
Definition 3 [88]. The k-Chebyshev maps (k € N*) are defined as
Tma1 = cos(k X arccos(z,,)), {z|z € C} (2.4)
Note that the k-Chebyshev maps refer to a function or a map.
According to Definitions 2 and 3, we have:
T (1) = cos(n x arccos(cos(k x arccos(zy,))))
= cos(nk x arccos(x,,)) (2.5)

2.2.2 Fibonacci numbers

First, we provide the basic background about the Fibonacci numbers [89].
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Definition 4 [89]. The Fibonacci numbers or Fibonacci sequence are defined by the

recurrence relation

Fn—1+Fn—2 TLZQ

\

2.2.3 Lucas numbers

The Lucas numbers or Lucas series are an integer sequence named after the mathe-
matician Francois Eduardo Anatole Lucas (1842-1891). He studied both Lucas numbers
and Fibonacci numbers; the former is the closely related the later.

Similarly to the Fibonacci numbers, each Lucas number is defined to be the sum of the
two immediate predecessors, that is, it is an integer sequence with Fibonacci recurrent
relation. However, the first two Lucas numbers are Ly = 2, L; = 1 instead of 1 and
1. Consequently, the properties of Lucas numbers are therefore somewhat different from
those of the Fibonacci numbers.

First, we recall the definition of Lucas numbers, and then state some well-known facts
on the Fibonacci and Lucas numbers [90].

Definition 5 [90]. (Lucas numbers). The Lucas numbers can be defined as follows:

Ln—l + Ln_z n Z 2

\
In particular, L2 = 3, Lg = 4, L4 = 7, L5 = 11, Lﬁ = 18, L7 = 29, Lg = 47, Lg = 76.

The conjugation relation [90] between Lucas numbers and Fibonacci numbers is
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Ln+2 = Fn+1 + Fh (28)

Fibonacci numbers and Lucas numbers are special in the vast array of integer se-
quences [89]. In Chapter 4, we use the relation and difference between these two series to
achieve efficient quantum key distribution for key expansion with Chebyshev-map values
corresponding to Lucas numbers.

Moreover, Lucas numbers are related to the first kind of Chebyshev maps by the

equation given below [83]

where ¢ is an imaginary number.

2.3 Quantum cryptographic background

To better understand the content in our thesis, we now present the following quantum
cryptographic background.

Given a two-level quantum system, each bit can be represented by using a basis con-
sisting of two eigenstates |0) and |1). Moreover, any state can be denoted as a linear

combination of |0) and |1)

) = al0) + B[1) (2.10)

where o, 3 € C and o? + 3% = 1.
The bit in a quantum system is called a quantum bit or qubit. Multiple qubits can
form a quantum system together. For example, the space of a two-qubit system is the

tensor product of their spaces, and the joint state of two qubits is spanned by the basis
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{]00), |01),]10), |11)}. In principle, the space of an n-qubit system can be modeled as a

2™ dimensional complex vector space [8].

2.3.1 Two important principles

When designing quantum cryptosystems, the following two laws of quantum mechanics
must be taken into consideration.

Heisenberg uncertainty principle

Different from classical physics, quantum mechanics guarantee that the act of mea-
surement is integral. Therefore, it is impossible to encode information into quantum
properties of a photon without being detected. This statement is known as the Heisen-
berg uncertainty principle [8].

This principle plays a critical role in preventing the attempts of eavesdroppers in a
cryptosystem based on quantum cryptography. For any two observable properties linked

together like mass and momentum, we have that

((a A)*)((s B)?) > il|<[z4, B)|* (2.11)

where A A=A — (A), A B=B—(B), and [A,B] = AB — BA, where A and B are a
pair of operators.

Given the principle, two interrelated properties must be measured individually but the
measurement affects the other. This is because it is impossible to partition a photon into
two halves and to measure its state without affecting its value. Consequently, if anyone
tries to detect the state of photons being sent to the receiver, the receiver can detect an

error [8].
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No cloning theorem
Wootters and Zurek [8] proved that it is impossible for an adversary to have a perfect
copy of Alice’s message in the quantum world.

The ideal machine would produce:
@ [b) ®10) — 0 ® 0@ |fy) (2.12)

where |f,,) denotes the final state of Eve’s machine which might depend on ¢. Accordingly,

using obvious notations,

[ 1,5,0) — 1.1, f1) (2.13)
[ 4,5,0) — L1, £,) (2.14)

By linearity of quantum dynamics it follows that

=80 = —=( D+ D& 0

= SOt A) + LA (2.15)
But the latter state differs from the ideal copy | —, —, f,), whatever the states |f,)
are.
Because the perfect quantum copy machines cannot exist, Eve cannot obtain a perfect
quantum copy. Making a perfect copy can be done in classical cryptography and that
is why classical cryptography cannot detect eavesdropping. However, the quantum no

cloning theorem prevents Eve from perfect eavesdropping, making quantum cryptography

potentially secure.
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2.3.2 Quantum entanglement

In short, quantum entanglement, one of the central principles of quantum physics,
means that multiple particles are linked together. As long as one particle’s quantum state
is measured, the other particles can be determined. Moreover, the states of individual
particles cannot be used to describe the entangled particles, but all entangled particles
from the entangled state can share information, no matter how far apart the particles
may be at the time.

EPR (Einstein-Podolsky-Rosen) pairs [6]

In quantum information science, the Bell states are a concept and represent the sim-
plest examples of entanglement. An EPR pair is in one of the four Bell states shown as

follows:

9*an = =(00als + [1)410)5),[¥ a5 = %<0>A|1>B — [1)410)5). -
B ) a5 = —=(10)A10)5 + | 1) Al 1)5), 197 ) a5 = —=(0)4]0)5 — [1)4[1)5).

S

V2 2

2.3.3 Unitary operations

A unitary operator is a rotation of a Hilbert space about the origin. Four unitary

operations [91] Uy, Uy, Uy, Us are listed as follows.

Uy=L®I,= = (2.17)
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0100
o, 0 1 000
U1:IQ®O'EZ = (218)
0 o, 0 001
0 010
0 -1 0 O
—io, 0 1 0 0 0
U2 = IQ X —in = = (219)
0 —io, 0 0 0 —1
0 0 1 0
1 0 0 O
o, O 0 -1 0 O
U3 - 12 &® O, = - (220)
0 o, 0 0 1 0
0 0 0 -1

where 0,,0, and o, are the Pauli matrices.

Dense coding

In 1992, C. H. Bennett and S. J. Wiesner presented the special feature of Einstein-
Podolsky-Rosen (EPR) pairs, i.e., dense coding [6]. Without loss of generality, suppose
that Alice and Bob share an EPR pair [1)7)4p, that is, Alice holds particle A and Bob
has B. Alice can encode two bits of messages into the state by performing one of the four

basic local unitary operations on particle A, under which this state changes as:

Ut ™) = [7), Ul = [9F), Ut ™) = [¢7), Uty ™) = |¢). (2.21)

where the superscript A denotes the photon on which unitary operations are performed.
Then Alice transmits the encoded particle A to Bob via a quantum channel. Bob can

distinguish which unitary operation is performed by Alice using Bell measurement on
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particles A and B. Bob is able to obtain two-bit messages from Alice when Uy, Uy, U,
Us represent 00, 01, 10, 11 separately. For instance, Bob knows Alice’s message is 11 if
his measurement result is |¢T). Likewise, any one of the four EPR pairs can be used as

the original state in the communication.
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Chapter 3

High-capacity quantum key

distribution protocols

In this chapter, with Chebyshev-map values corresponding to Lucas numbers cod-
ing, we achieve a lower-dimensional high-capacity protocol for quantum key distribution
which can greatly enhance the number of digits of the key that can be carried per pho-
ton. Moreover, our protocol can be implemented without the limit of OAM bandwidths
and exchanging classical messages for key generation. Also, we present two high-capacity
quantum key distribution protocols over collective noise using 2-extended unitary opera-

tions.

3.1 Introduction

In recent years, there has been a growing interest for researchers to study high-capacity
quantum key distribution protocols by developing high-dimensional Hilbert spaces due to
two main advantages. First, multiple bits of a shared key can be encoded on a single
photon. Second, high-dimensional systems can be more robust against certain types

of noise [35,36]. Consequently, the use of many degrees of freedom of photons has been

25
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investigated, including position momentum [92], time [93], energy time [94-96] and orbital
angular momentum (OAM) [97-100]. Among these methods, according to Simon et al.
[22], OAM with spontaneous parametric down-conversion (SPDC) is the most promising
in producing entangled OAM states. This is because SPDC is able to provide photon
pairs that are not only entangled in states of a single degree of freedom, but also are
actually hyper-entangled in both polarization and OAM at the same time.

Yu et al. [101] propose to use planar plasmonic interfaces to produce optical beams
carrying single OAM states. It is also shown that, in nanoplasmonic Vogel spiral arrays,
distinctive scattering resonances can support photonic band gaps with band edge modes
carrying multiple OAM values distributed among Fibonacci numbers [22]. Moreover,
Vogel spiral arrays can generate multiple OAM states encoding a well-defined numerical
sequence in their far-field radiation patterns [102]. Also, it is reported in [103] and [104]
that a down-conversion bandwidth of over 40 is possible and an entanglement between
photons with OAM of the order of 600 can be achieved. Based on these, Simon et
al. [22] suggest a different form of high-capacity and high-efficiency quantum cryptography.
They apply specially engineered OAM-entangled states of light and Fibonacci numbers
to achieve it. However, the high capacity of the Simon et al. protocol [22] is still limited
by implementation difficulties and the coding is not so flexible. This is because increasing
the information capacity depends on OAM with greater bandwidths and the method used
for encoding. As a result, due to the limitation of bandwidths in practice, it is unlikely
to meet both the longer distance and lower error rates simultaneously. In other words,
if smaller Fibonacci values for pump values are used, then photons can travel longer
distances but at the expense of higher error rates. If, however, larger Fibonacci values
for pump values are used, then error rates can be made low but photons can travel short
distances.

To address the above mentioned problems, in this chapter, we first propose an approach
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which could be considered as lower-dimensional high-capacity quantum key distribution
using Chebyshev-map values corresponding Lucas numbers coding. Simon et al. [22] com-
ment that their experiment setup will also work when Fibonacci numbers are replaced
by Lucas numbers. That is to say, we can replace the Fibonacci values onto entangled
orbital angular momentum states in Simon et al.’s protocol with Lucas numbers. This
alone would not be sufficient to overcome the limitation of the Simon et al. protocol. We
observe that Lucas numbers have a close relationship to the first kind of Chebyshev maps
(Ty), ie., 2i""T,(%) = L, [83]. This relationship motivates us to propose an approach to
lower-dimensional high-capacity quantum key distribution using Chebyshev-map values
corresponding to Lucas numbers coding, to address the above two weaknesses. The pro-
posed distribution of keys replacing Fibonacci numbers with Lucas numbers in analogy
with the Simon et al. protocol [22] is valid because the dimensionality is the same as
that in the previously proposed Fibonacci protocol. But in our approach, the actual cod-
ing uses Chebyshev-map values (which means that the variable z,z € C, is confirmed in
Chebyshev maps) and k-Chebyshev-map values (which refer to the correlation of variable
x), making consecutive and flexible key expansion possible. Due to the key expansion pro-
tocol, only a few Lucas numbers are required for a secure generation of long keys. Besides,
proper Lucas numbers can be chosen to meet both longer distances and lower error rates
at the same time. Therefore, our protocol can achieve lower-dimensional high-capacity
quantum transmission.

On the other hand, many studies on QKD protocols focusing on collective-dephasing
and collective-rotation noise have been proposed [40-48]. In [40,41,43,44,46], either four-
and six-photon entanglements are used or the times of Bell-measurements needed [46] are
much more than those of [42,45]. However, the preparation of multi-photon entangled
states and Bell-measurement are not easy to realize [49], which will increase the difficulty

of the implementation of QKD protocols with the current techniques. In [42,45], though it
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is easier to implement the protocols over collective noise in practice, the qubit efficiency is
much lower compared those in [40,41,43,44,46] (see Table 3.2). To obtain the advantages
both the protocols in [42,45] (higher qubit efficiency) and those in [40, 41, 43, 44, 46]
(easier to implement), we propose a new approach to quantum key distribution based on
the use of extended unitary operations from collective noise together with quantum dense
coding. The motivation for this approach is that, the original proposals for QKD against
a collective noise, encoded information into the logical qubit of an individual photon or
an entangled state. Consequently, only one or two bits of information can be compressed
into each logical qubit.

In our last two protocols, the method that we use is to first extend the four unitary
operations based on collective noise to sixteen 2—extended unitary operations, and then
encode each logical qubit with one of the sixteen extended unitary operations. Bob can
deduce the unitary operations performed by Alice using the initial states, the measurement
outcomes and a collation table pre-shared by Alice and Bob. Though the pre-shared
collation table is used, the capacity of every Bell-state is enhanced. This is worthwhile
because a quantum bit is more expensive to prepare than a classical bit. Actually, there
is no limit to how many bits of information can be compressed into a logical qubit, as
the unitary operations from collective noise together with quantum dense coding can
be extended to the infinite-dimension case. Qur current aim is to compress four bits
of information into every logical qubit. One motivation for doing this is that the rate
of data transmission is therefore increased. Another more subtle motivation for using a
large number of extended unitary operations is that the security of the protocol can be

increased in this manner.
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3.2 High-capacity QKD using Lucas-sequence coding

3.2.1 Entangled Lucas-sequence spiral source

When the Fibonacci sequences are replaced by Lucas sequences, Simon et al. said that
their protocol also works. Moreover, Lucas sequences (L,,) are related to the Chebyshev
maps (T,) by the equations 2i~"T,(%) = L, [83]. Hence, we can consider an entangled
Lucas-sequence spiral source, which uses the same mechanism of an entangled Fibonacci
spiral source as in [22]. That is, a different entangled light source which may be used
to physically implement the OAM-based realization of QKD protocol. According to a
scaling factor ay and a divergence angle a by r, = y/nag and 6, = na, a Vogel spiral
being an array of N particles with polar positions (r,,#,) is represented by a density

function [102]:

N

p(r,0) = 8(r — v/nag)s(6 — na) (3.1)

n=1

For arbitrary a and ay [102], the Fraunhofer far field Vogel spirals can be computed
analytically, within scalar diffraction theory. The far field [102] with a diffracted input

beam in cylindrical coordinates is as follows:

N
E.. (Ura UG) = E, Z ejZﬂ\/ﬁaovrcos(vgfna) (32)

n=1

where (v,,vy) are the Fourier conjugate variable of (r,0). Fourier-Hankel analysis of
the calculated far-field radiation is performed to decompose it into radial and azimuthal
components, providing the OAM values [102].

Due to the conjugate relation between Lucas and Fibonacci numbers (L, 2 = Fj,11 +
F,,_1), the experiment setup in Simon et al.’s protocol also works when Fibonacci numbers

are replaced by Lucas numbers. Hence, we consider an entangled Lucas number spiral
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source (see Figure 3.1), which can use the same mechanism of an entangled Fibonacci
spiral source as in [22]. Figure 3.1 demonstrates that a schematic of our improved high-
capacity QKD based on Simon’s protocol using Lucas sequences, in which the relationship
between Chebyshev-map values and Lucas numbers of the spiral source enable a different
way of achieving high-capacity QKD. The method can achieve consecutive and flexible
key expansion using Chebyshev maps. To be exact, though the source produces entangled
photons whose orbital angular momenta (OAM) values are Lucas numbers, we encode key
messages with the Chebyshev-map values corresponding to Lucas numbers. The coding

rules are described as follows.

3.2.2 Coding rules of proposed protocol

Before giving details of our protocol, we need to initialise the protocol parameters.

1. Choose N consecutive proper Lucas numbers set L={L,,,, L, 11, - - - s Ln,+n—1}, where
“proper” means that the numbers should allow encodings with a desired tradeoff
between transmission distances and error rates. This step is a modification of Simon
et al’s protocol [22]. The Lucas numbers are next converted into Chebyshev-map
values. The values are used to encode log, N-bit key information. Note that as
Lucas numbers are related to the first kind of Chebyshev maps by Equation (2.14),

so we have 41 = & = cos(k x arccos(z,)).

2. Generate at random the values k£ and m using the pre-shared source files between
Alice and Bob and the fountain codes (see Figure 2.1). The values x,,,- - ,x; are

determined using the k-Chebyshev map from Equation (2.4).

3. Compute T, (), -+ , T (x1),7 = ng,...,ng+ N — 1. Note that logy’-bit key infor-

mation can be encoded using each of m Chebyshev-map values, following T, (2,1 1)
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Figure 3.1: Experimental setup for lower-dimensional high-capacity QKD with Lucas-
valued OAM (adapted from [22]). A laser interacts with a Vogel spiral array, producing
intense superpositions of states with Lucas OAM, [ = L,,, that then pump the nonlinear
crystal, producing signal-idler pairs through SPDC. The OAM sorters that are labeled
L are used for allowing photons to arrive at the arrays of single-photon detectors when
they are Lucas valued as well, and the devices labeled D are used for allowing “diagonal”
superposition of the form %(]Ln) +|Ln+2)), and filtering any non-Lucas valued entangled
photons.

that corresponds to L,. The value m is determined by the quality of the quantum

channel. That is, the lower the error rate is, the larger the m is.

Therefore, if OAM values in the set of {L,,, Lny+1,.--,Ln,in_1} are used, then each
photon can be used to carry log, N to (log, N + mlog, m) bits of classical information.

To illustrate the initialisation process, consider an example for N =4, m = 8,

1. Alice chooses {Lg, L7, Ls, Ly}, and calculates {T4(%),T7(%), Ts(%), To(%)}. Every
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value from {Tg(%), T7(%), Ts(%), To(%)} can be used to encode two bits of classical

information. The encoding can look as follows.

(3.3)

2. According to Equation (2.9) and assuming that z,,, 11 = zg = % in Equation (2.4), Al-

ice computes xg, x7,- - ,x1 and obtains Tg(xg), -+, Te(x1), - -, To(xg), -, To(xy).

3. Alice takes the values Ty (xg), -+ ,Ty(x1); ¢/ = 6,7,8,9, and uses them to encode
the key. The encoding is as follows:
Ty(z;) = 000, Ty(z;,) = 001,

n/(l’js) = 010, ﬂ:(xj4) = 011,

(3.4)
El(l‘j5) = 100, T’i’(xjg) = 101,
T;/(l'ﬁ) = 110, T,;/(xjs) = 111,
where the indices j1, j2, . . ., Jg running through all possible permutations of eight el-

ements. For instance, for the permutation of three elements, the indices run through
the set {(1,2,3),(1,3,2),(2,1,3),(2,3,1),(3,1,2),(3,2,1)}. However, the permuta-
tion of 71, ja, . . . , js that will be used should be determined by the value (i’ x k)mod 8!

in the exact protocol.

Note that according to @41 = cos(k x arccos(z,)) = %, we can obtain zg =
arccos(k™" x arccos(%)). We do not need to compute the values Ty (z;) for i’ = 6,7,8,9

and j = 1,...,8 after obtaining x,,; m =1,...,8.



3.2 High-capacity QKD using Lucas-sequence coding 33

As illustrated in the above example, we can just use four Lucas numbers for OAM
values, but each Lucas number can then represent a twenty-six-digit binary string, in-
creasing the encoding capacity from two-digit binary strings to twenty-six-digit binary
strings. This is because of the use of another twenty-four-digit binary string from the key

expansion in Equation (3.4) with k-Chebyshev maps.

3.2.3 Proposed protocol

The protocol is similar to Simon et al.’s protocol and therefore the setup is the same as
the one from Figure 3.1. Alice and Bob use their L and D OAM sorters that allow L-type
and D-type measurements, respectively. The L sorters allow measurements of photons,
when their states are encoded using Lucas numbers. The D sorters, on the other hand,
measure photon states using “diagonal” superposition of the form %(|Ln> +|Lyy2)), and
filtering any non-Lucas numbers.

In Figure 3.1, the light coming from the entangled spiral source is in a superposition

of states with OAM equal to Lucas numbers. All the states that leave the spiral and enter

no+N—1

the down-conversion crystal must be of the form » /%"

|Lyi2),m0 > 1,n9 € N. Down-
conversion breaks each |L,.2) into two smaller OAM values, |L,;;) and |L,). Similar
0 [22], during the process of transmission and detection, the OAM sorters can be used
to block all outgoing states that are non-Lucas numbers, i.e., not in |L,,s), protecting
against possible problems such as turbulence-induced OAM changes.

The OAM conservation law in collinear SPDC implies that L,, + L,, = L, 2 (a pump
photon is incident on a nonlinear crystal and decays into two photons with less energy from
SPDC, usually called “signal” and “idler”), where L, L, ,L, o are the Lucas numbers
of signal beam, idler beam and pump beam respectively. Together with Lucas recurrence

relation and the restriction to outgoing values in £, collinear SPDC forces L,, and L, to

be the two Lucas numbers immediately preceding L, o, where L, is the signal value and
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L, is the idler value. But signal (or idler) value can be in signal (or idler) beam. Hence,

the result is the following OAM-entangled outgoing state

Z{‘Ln+1>|Ln> + [Ln)|Lnt1) } aB- (3.5)

Note that if pump values L, 2 between 18 and 76 are used, then only values of L,
and L, between 11 and 47 should appear.

Before presenting the protocol, we list the assumptions made.

3.2.4 Four Cases for Alice’s and Bob’s Detectors

The beam splitter in Alice’s (Bob’s) laboratory sends the entangled photon to either

L or D sorter at random. So, there are four possible cases:

e The beam splitters in both Alice’s and Bob’s laboratories send the entangled photon
to the L sorters.

e The beam splitter in Alice’s laboratory sends the entangled photon to the L sorters,
and the beam splitter in Bob’s laboratory sends the entangled photon to the D
sorters.

e The beam splitter in Alice’s laboratory sends the entangled photon to the D sorters,
and the beam splitter in Bob’s laboratory sends the entangled photon to the L
sorters.

e The beam splitters in both Alice’s and Bob’s laboratories send the entangled photon

to the D sorters.
For the first three cases, Alice and Bob can establish a key with the following steps.

Step 1 Alice and Bob share a small sequence S of length | (whose length grows sublin-

early in the number of channel uses [105]), such as
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{0,01,0,1001,10,10,1011,01,00, - -- ,1010}. Note that the division to S is flexible.

1 bits
When it changes, Alice/Bob informs Bob/Alice by sending the positions of the bits

in S via an authenticated classical channel.

Step 2 Assume an entangled state with OAM in £ (take | = L, .5 = Lg as an example).
The setup in Figure 3.1 is arranged so that the two OAM values Alice and Bob
obtain must be the two Lucas numbers preceding that of the pump (L, ; = Lg and
L, = L7 in our example). However, which goes to Alice and which goes to Bob is
undetermined (see Figure 3.2). Hence, the exchange of classical messages is needed
to remove the uncertainty between Alice and Bob via an authenticated classical

channel.

Step 3 After both of them receive a photon from SPDC, Alice (Bob) records the sorter
that the photon goes to and the definite OAM value detected. Finally, Alice (Bob)

publicly announces them with the degrees and positions of S to Bob (Alice).

With the pre-shared source files between Alice and Bob and the degrees and positions
of the source files sent by each other, Alice and Bob can use the obtained encoding
packets, to know the each other’s sorters and the type of the entangled states and the
values k and m for key generation and eavesdropping detection with the following

agreements.
(1) 0, then either the beam splitter in Alice’s (Bob’s) laboratory sends the entan-

gled photon to the D sorter or Alice’s (Bob’s) detected Lucas values are even.

(2) 1, then either the beam splitter in Alice’s (Bob’s) laboratory sends the entan-

gled photon to the L sorter or Alice’s (Bob’s) detected Lucas values are odd.
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Figure 3.2: Possible outcomes for the example of the pump value [ = 7,11, 18, 29.

(3) 10, then the beam splitter in Alice’s (Bob’s) laboratory sends the entangled
photon to the L sorter, and the detected Lucas value is the smaller of the two
odd Lucas numbers that Alice (Bob) speculates.

(4) 11, then the beam splitter in Alice’s (Bob’s) laboratory sends the entangled
photon to the L sorter, and the detected Lucas value is the larger of the two

odd Lucas numbers that Alice (Bob) speculates.

However, the Eve cannot know exact sorters or Alice’s (Bob’s) detected Lucas values
without the pre-shared sequence S. The security of our protocol is based on the
following fact: when one of the parties detects a particular Lucas number, it is not
certain what number the other party would detect (see Figure 3.2). For example,
if Alice measures value L,,; = Lg, then the value Bob measures can be either

Ln+2 = Lg or Ln = L7.

Step 4 After receiving the degrees and positions of the pre-shared sequence S, Alice and
Bob can remove the uncertainty in terms of (1)-(4) in Step 3. Therefore, Alice and
Bob can obtain the pump value Lg by recovering each other values and adding them

to their received and measured values.
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According to the coding rules, Alice and Bob can further obtain Tg(%) and two-
bit key information from Ty(%), and zg,--- ,z; using equations 2i "T,,(%) = Ly,
and & = zy9 = cos(k X arccos(zs)), respectively. Meanwhile, Alice sends the de-
grees and positions of the set of source files S for getting the values k£ and m to
Bob via an authenticated classical channel. Finally, both of them can compute
To(zj,) To(xjy), To(xjy), - -+, To(xj,,) using (9 x k)mod m! with their obtained ¢ and
k and m, and the binary numbers for Ty(z;, ), To(xj,), To(xj,), - -+ , To(xj, ) can be

similarly obtained in terms of Equations (9) and (10).

Step 5 Once the sorting has been done and the corresponding digital OAM values have
been converted into binary numbers, the analysis of error rates, error correction,
and privacy amplification are similar to those involved in other proposed QKD

protocols [8].

Case 4. When both Alice and Bob choose the D sorters, they will both receive super-
position states, they randomly choose the degrees and positions for generating encoding
packet 0, and send it to let each other know those information via an authenticated classi-
cal channel. As a result, the pump value is still a superposition state, and Alice and Bob

cannot uniquely determine the pump value. In this case, they will discard the instance.

3.2.5 Eavesdropping

Suppose that an adversary Eve is eavesdropping on the quantum channel between
Alice and Bob. Clearly, she does not know, which type of detection measurement (D or
L) is going to be chosen by Alice or Bob. So, Eve has no choice but to guess. If she
chooses the D sorter when Alice chooses the L sorter or she chooses the L sorter when
Alice chooses the D sorter, then the Alice measurement is going to be erroneous with

the probability % The Eve activity is going to be detected by Alice and Bob when they
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compare their protocol transcripts.

More precisely, assume that Eve makes

1. a D-type measurement on a photon, which is actually in the eigenstate |L, ). Then
she will detect one of the two superpositions |L,2) + |Ly) or |L,y2) 4+ |Lpy4), with
probability %, respectively. She can send a copy of it to Alice. If Alice receives one
of these superpositions and makes an L-type measurement, she will read out one of
the values L,,, L, 2, or L,.4, with respective probabilities of %, %, %. However, she

should obtain |L,5) with probability 1 if there is no eavesdropper.

2. an L-type measurement on a photon, which is actually in the superposition state
|Lpi2) 4+ |Ly). She will detect one of the two eigenstates L,, L, 2, with probability
%, respectively. Eve may send a copy of it to Alice. If Alice receives one of these
eigenstates and makes a D-type measurement, she will obtain one of the superposi-
tions |Lyy2) + |Ly) or |Lpio) +|Lnta) or |Ly) + | Ly—2), with respective probabilities

of . However, she should only obtain |L, )+ |L,) with probability 1 if there

=

1
) 29

=

is no eavesdropper.

In both cases, when Alice compares her results with Bob’s, Alice and Bob will find that

their outcomes are inconsistent a fraction f of the time, where

f = (fraction of times Eve inter feres)
X (fraction of times Eve guesses wrong basis)

X (fraction of times wrong basis leads to error)

1 1
X — X —
2 2

~S S

(3.6)

which is exactly the same as that for the Simon et al. protocol.
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3.2.6 Exchange of classical messages

As discussed in 3.2.4, the protocol needs to exchange the classical information to let
Alice and Bob know each other’s chosen sorters and their detected values, and the values
k and m for key generation. Meanwhile, this must be done in such a way that the Eve
cannot do much better than to randomly guess the encoding packets even if she obtains the
exchanged classical information. Fortunately, we can use the idea of combining the locking
of classical information [106] and fountain codes [84] with privacy amplification [107] to
achieve it.

On one hand, Guha et al. [108] state that the cryptographic applications of classical
information locking in quantum key distribution are applicable if the distribution of the
message is completely random from the perspective of the adversary. In our protocol, the
degrees and positions are used for letting Alice and Bob know the each other’s chosen
sorters, and the type of the entangled states and the values & and m in our protocol are
chosen completely randomly. On the other hand, our method actually is also privacy
amplification [107]. Hence, a pre-shared sequence with a small number of bits is sufficient
for encrypting a long message in quantum cryptography. This is because the method of
privacy amplification [107] can be used where in case Eve may have some information
about the key, a shorter key is extracted so that Eve has little information about the new
key. These imply that the method that we use to obtain the information for knowing the
chosen sorters and detected OAM value by Alice and Bob and &k and m is secure.

This is because with the way to prepare exchanged classical messages, Alice just
randomly chooses the degrees and positions of the source files and sends them to Bob via
an authenticated classical channel without transmitting the encoding packets (see Figure
2.1). That is, without the shared source files, Eve cannot obtain any useful information
about the values k,s and m,s, where k,,m, > 2 ,a = 1,2,--- ,n. Moreover, for every

entangled photon, the corresponding k, and m, (i.e., the degrees and positions of the
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source files) are always updated. To obtain the information on k,s and m,s, Eve can
guess the shared source files with maximum probability 22%, which is negligible. Eve can

also guess kq, ko, - - -, k, and my, ma, - - -, m,. The chance to obtain all the values k,s and

1
k1 Xmq XX kp XMy,

MeS 18 . The chance is also negligible, even if n is small, say 50, because

ko, mo > 2, a=1,2,--- ,n. Likewise, for the each other’s chosen sorters, and the type
of the entangled states, the Eve can guess them with probabilities of % ,i respectively
without the shared source files.

Most importantly, the m,s which are also obtained with the degrees and positions of
the source files can be chosen flexibly in terms of the quality of the quantum channel. To
be exact, if the use of [ values can lead to extremely low error rates, the values m,s can
be large, otherwise, they should be small.

We remark that our protocol is a modification of the Simon et al. protocol with
Fibonacci numbers replaced with Lucas numbers, aiming at extending the performance

of the protocol, i.e., achieving the consecutive and flexible key expansion using the close

relationship between Chebyshev-map values and Lucas numbers.

3.2.7 Features of our proposed protocol

Though we just replace the Fibonacci numbers in the Simon et al. protocol with Lucas
numbers, the following six features can be obtained because of the relationship among

Chebyshev maps, k-Chebyshev maps and Lucas numbers observed.

1. Key expansion property. The most significant improvement of our modified
protocol based on Simon et al.’s protocol lies in the key expansion. In Simon et al.’s
protocol, the information capacity can be doubled by using positive and negative
Fibonacci OAM values. By contrast, since Chebyshev-map values that correspond
to Lucas numbers are used, it is followed by the key expansion using k-Chebyshev

maps. That is, not only can our proposed protocol double with positive and negative
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Lucas OAM values or even multiply the information capacity per photon, but also
much fewer OAM values are needed. This is because the information capacity of
a photon in our protocol can be increased from log, N to (logy N 4+ mlog, m). In
other words, our protocol has the key expansion property, which plays a key role
in reducing the number of particles that are used for preparing entangled particles.
As a result, the key expansion property allows to achieve secure generation of long

keys from much fewer photons.

2. Lower-dimensional high-capacity property. Due to the key expansion prop-
erty, our protocol can achieve lower-dimensional high-capacity with larger value m

and fewer Lucas values used.

3. The flexible key expansion. Due to the coding rules used in our proposed
protocol, the value m can be chosen flexibly, making the flexible key expansion

possible.

4. Selective property. Due to the key expansion property, some consecutive and
proper Lucas values can be chosen to encode entangled states in our proposed pro-

tocol. This achieves both the longer distances and lower error rates simultaneously.

5. Less turbulence and measurement errors. In our protocol, the type of OAM
entangled two-photon source in Simon et al.’s protocol also works, so, the analysis
on the effects from turbulence and measurement errors in Simon et al.’s protocol
also holds, i.e., though the use of high-/ values can contribute to extremely low error
rates, the transmitted distances is short, while lower values of [ can travel longer
distances but error rates are higher. However, due to the above “selective property”,
it is possible to choose proper Lucas values to lessen turbulence and measurement
errors (that is, to travel longer distances with smaller error rates) under the same

conditions.
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6. No limit of spiral and OAM bandwidths. In our proposed protocol, the key
expansion property allows to achieve secure generation of long keys from much
fewer photons just by choosing a larger positive integer m, avoiding the addition
of more detectors and beam splitters and images superimposed on a hologram in
Simon et al.’s protocol [22]. Hence, there is no limit of spiral and OAM bandwidths
for enhancing the information capacity in our protocol, which in turn makes our

protocol more practical.

3.3 High-capacity QKD against a collective noise

In this section, we consider two QKD protocols with the advantages referred to in [40—
48] (that is implementable and efficient), mainly using the 2-extended unitary operations
based on a collective-dephasing noise to improve Li et al.’s protocol [45] with the aim
of increasing the qubit efficiency while at the same time reducing the number of Bell

measurements. We first review Li et al’s protocol and then propose our improved protocol.

3.3.1 Unitary operations based on a collective-dephasing noise

Next, we introduce some basic definitions for the extended unitary operations based
on collective-dephasing noise. These definitions are from [45].

Definition 1. An entangled state based on a collective-dephasing noise [45].

B*) 45 = %(omomg 1) al1e) ), (U5 a5 = %uomw = 1)al00)s).  (3.7)

Note that the subscript L means the logical qubit, consisting of a few physical qubits,
which are subjected to the same noise. Since these physical qubits have a certain rela-
tionship between them, the constructed logical qubits are free from the effect of noise as

well.
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Definition 2. A collective-dephasing noise [45]. A collective-dephasing noise can

be described as

Uap|0) = 10), Ugp|1) = €|0). (3.8)

where ¢ is the noise parameter which varies with time.
A logical qubit made of two physical qubits with antiparallel parity will have the same
phase factor €, and it is therefore free from collective-dephasing noise [45]. The two

physical qubits are given as follows:

02) = [01),[1) = [10). (3.9)

Definition 3. Four entangled logical states for a collective-dephasing noise
[45].
j: ].
|®gp) BB, = %(\OM\OU&& + (1) 4[10) 5,8, ),

| (3.10)
|\Iliitp>ABle = E(|O>A‘10>3132 + |1>A|01>3132)'

where the logical qubit B consists of two physical qubits By and Bs. They are such GHZ
states used in [45] and our protocol.

Definition 4. Four unitary operations for a collective-dephasing noise [45].

Qoo = =1L R 1,01 =Q, =U,1 ® Iy,
(3.11)

Q10 = Qx = le X Uz?aﬂll = Qy = Uyl X Ux?-

where the subscript 1 denotes that the photon By is encoded using the unitary operation.
So does the meaning of subscript 2.

Moreover, when the four unitary operations over a collective-dephasing noise are used
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to transform one of the states {|<I>fl[p>, |\I/2Ep>}, the following results can be obtained [45].

Qoo|q):l_p> = |q);li_p>5901|q):l_p> = |(I)c?p>’910|¢;li_p> = |\Ilgi‘—p>’ Qll‘@(—i‘—z) = ‘\Ij(;p>
Qool®y,) = |24,), Q1| ®g,) = [4,), QolPg,) = [Tg,), Qu1|Dg,) = [T5,). (3.12)
QOO‘\I}L) = |qj;p>7901‘\1}jp> = ‘\Ijgp>’ﬂlo|qjj{p> = ’©;p>911’qj¢;p> = ‘q)(;p>

QOO|\IJ(;p> = |\I]c;p>’901‘\pt;p> = |\D(—Z)>,Qlo|\1};p> = |q)(;p>’911‘\pt;p> = |(p;i‘rp>

3.3.2 2—extended unitary operations based on a collective-dephasing

noise

We construct 2—extended unitary operations in a general way where each operation

is the result of the tensor product of two unitary operations, defined as follows:

Qo000 = Q00 @ Qao, Qo001 = oo @ Qo1, Loo10 = Loo @ 210, Qo011 = Qoo @ Q1

Qo100 = Q01 @ Qoo, Qo101 = Qo1 ® Lo, Qo110 = L01 @ 10, Qo111 = Qo1 @ Qi (3.13)
Q1000 = Q10 ® oo, R1001 = Q10 ® Lo, L1010 = R10 @ 10, Q1011 = Q1o @ Qi1

Q1100 = Q11 ® Qoo, Q1101 = Q11 @ o1, L1110 = 11 @ Lo, L1111 = Q11 @ Q.

The 2—extended unitary operations can be used to transform one of the states

{|(I>jtp>, |\I/jp>} into any {\Cbip), \\Ildip)} as follows:

Qoooo| ®,) = Qo101|P7,) = Quo10]®y,) = Q1| Py,) = Qoo|P,) = [P7)
Qo001 |®,) = Q0100|P,) = Qo[ Py,) = Q10| ) = Q| Py,) = [24,), (3.14)
Qoo10|®5,) = Qo1n|Pg,) = Qooo| @5,) = Qu101|®y,) = ol Pg,) = 195,

Qoo11|®g,) = Qo110/Pg,) = Quoot|P,) = Quioo| D) = Qui|Pg,) = [Ty,).
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And they are abbreviated as follows:

QOOOO = Q0101 = QlOlO = Q1111 = QOOa
QOOOI = Q0100 = QlOll = Q1110 = QOla

(3.15)
QOOIO = QOIII = QIOOO = QIIOI = QlOa

Q0011 = Q0110 = Q1001 = Q1100 = Q11-

Definition 5. Transition operations and ultimate operations based on a
collective-dephasing noise. If O, 4, 5,6, (W) = Oy, 5, (W), w € {\@fp), \‘I/;tp)}, where
bi biybi,b;, and bj, b, represent any two sequences of 4— and 2—bit values respectively,
then ijlbh is called the transition operation of Qbilbigbigbi4' Meanwhile, (21,1.11,1,2,,1.351,4 is
called the ultimate operation of ijlbjz‘

For example, according to Definition 5, for 2—extended unitary operations, (g is the
transition operation of ultimate operation 2909, and 2gggo is the ultimate operation of
transition operation 2.

Definition 6. Control bits based on a collective-dephasing noise. For given
2—extended unitary operations, when all the four 2—extended unitary operations are
used to transform an identical state which is in {|<I>fp>, |\I’fp>}, there are four 2—extended
unitary operations having the same outcomes. The four 2—extended unitary operations
are listed with matching sequence numbers that are denoted by the bit values. The bit
values are called the control bits.

Then Table 3.1 can be obtained in terms of (3.15) and Definitions 5 and 6.

Definition 7. Corresponding classical bits based on a collective-dephasing
noise. The bit values obtained by applying XOR to the bit values from the subscript of

the transition operation and the control bits are called the corresponding classical bits.
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Table 3.1: Collation table based on a collective-dephasing noise for n = 2.

Control bits

BQO 00 01 10 11

Qoo Qoooo Qo101 Q1010 1111

Qo1 Qooor Qo100 Qio1r L1110

Qo Qooto Qo111 Qiooo Liio1

Qi1 Qoorr Qoo Qioor L1100

BQO denotes basic unitary operation based on a collective-dephasing noise.

3.3.3 2—extended unitary operations based on a collective-rotation

noise

Definition 8. A collective-rotation noise [45].

U,|0) = cos0|0) + sinf|1), U,|1) = —sinH|0) + cosb|1). (3.16)

where the parameter 6 is determined by the noise and time together. As above, with such
collective-rotation noise, |¢) and [1)7) are free from the effect of noise. Logical qubits

can be chosen as

02) = [¢7), [1L) = [¢7). (3.17)

Definition 9. An entangled state based on a collective-rotation noise [45].

D) a5, = %uomwm N
U5 4,5, — %uowvm (1) l6") us).

(3.18)
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Definition 10. Four unitary operations for a collective-rotation noise [45].
The four unitary operations {Ogg, ©p1, O19,©11} over a collective-rotation noise can

be written as

O =0r=1R®1,00 =0, =U,; ® L.,

(3.19)
O10 =0, =U,1 ®Uy;2,011 = 0, =1 ® Up.
The four unitary operations can be used to transform one of the states
{|®2), [¥F)} into any {|®F), |¥E)} as follows [45]:
Ooo|®,) = [2), On|®)7) = [®,), O10[@,) = |¥7), O11[D) = |¥,).
Ouo|®, ) = 2, ), 00| ®, ) = [®), O10|P,) = |[¥,), On| @, ) = [T]). (3.20)

G0 ¥,") = |2,), 001 |T)) = @), O10 ;) = [2), On[T)) = [D,).
Ouo| ¥, ) = [9,), 0|V, ) = [U)7), O30 ¥,) = @), On[¥,) = |€]7).
The 2—extended unitary operations based on a collective-rotation noise can be con-

structed in the same way as in (3.13) and the similar outcomes can be obtained.

3.3.4 Review of Li et al.’s protocol

In this subsection, we give a brief review of Li et al.’s protocol, together with the main
steps as follows:

Step 3.3.4.1. Alice first prepares a sufficient number of entangled states based on
a collective-dephasing noise, which are in [® ) ap, B, = %(\OM\OU&BQ + |1)4]10) B, B,)-
Then she divides these entangled states into two photon sequences, S, and Sg, where Sy
is made up of all the logical qubits A and Sg all the logical qubits B with physical qubits
B; and Bs.

Step 3.3.4.2. Then Alice keeps the sequence S, and transmits the sequence Sp to
Bob.
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Step 3.3.4.3. After Bob receives the sequence S, he first analyzes the error rate
by choosing some of the logical qubits Sp randomly. And the remaining logical qubits
constitute the message sequence Spjs for key generation. Bob measures each logical
qubit in the sample by using either the base 08 = 051 @ 082 or the base 02 = 08 @ 052,
Moreover, Bob informs Alice about the chosen samples from the logical qubits. Through

performing the two bases, the entangled states prepared by Alice can be transformed as

|(I)71Lp>ABle = %(‘O>A‘01>3132 + |1>A|1O>BlB2)
= %["’)A( ++)—|— =B+ |—)all —+) = |+ =))BB,) (3.21)

If the outcomes obtained by Alice and Bob satisfy the equations when the same bases
are chosen for their logical qubits, then there are no eavesdroppers, and they continue to
the next step. Otherwise, they abort this operation.

Step 3.3.4.4. After confirming that the quantum channel is secure, Bob encodes each
logical qubit from Sy, with any of the following unitary operations {Qqo, Q01, 210, 211}
The subscripts of € denote the codes {00,01,10,11}. The states operated by Bob are
also free from the effect of noise when they are transmitted to Alice through a quantum
channel with the collective-dephasing noise. After performing the unitary operations, Bob
sends the encoded sequence S%,, to Alice over a collective-dephasing noise channel.

Step 3.3.4.5. Alice chooses each entangled state based on a collective-dephasing
noise from the two-photon sequences S%,, and Say (San consists of the logical qubits
corresponding to the logical qubits in Sgjs). For the two photons AB;, Alice performs a
Bell-state measurement on them. For the photon By with X = o, basis, Alice performs a
single-photon measurement on it. By doing so, the states \@fp)ABl B, and |\I/§p> AB, B, Can
be discriminated, which are denoted as follows:

%5 4005, = (1645, © 1405, = 6% am, © [,

|\Ijiltp>ABlB2 - %(|¢i>1431 ® |+>B2 - |77D:F>A31 ® |_>32)‘

(3.22)
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Where |£) = %(\0) + 1)) are two eigenvectors of Pauli operator o,. It can be easily seen
that, from (3.10), Alice can distinguish the four three-photon GHZ states and determine
the operations performed by Bob on the logical qubits B with these two measurement
outcomes.

Step 3.3.4.6. Alice can check the security of the transmission from Bob by error
rate analysis by choosing a subset from the measured outcomes on the three-qubit states
operated on by Bob and asking Bob to tell her his operation on the chosen subset. If the
error rate is within a preset value, she tells Bob that their quantum communication is
secure; otherwise, they abort the operation and repeat the QKD from the beginning.

Step 3.3.4.7. If the quantum channel is secure, Alice is able to obtain the key with

the classical error correction codes and message authentication codes [8].

3.3.5 High-capacity QKD against a collective-dephasing noise

The steps in our improved protocol are similar to those in Li et al.’s protocol [45] but
with several critical differences. Our improved quantum key distribution protocol against
a collective-dephasing noise is based on 2—extended unitary operations which can be seen
in Figure 3.3. Another critical difference between our improved protocol and that of Li
et al. [45], is that Bob prepares the entangled states and initiates the protocol rather
than Alice. For the sake of the completeness of the thesis, we describe the steps for our
improved protocol as follows:

Step 3.3.5.1. Bob prepares n entangled states over a collective-dephasing noise,
which are in |9} ) ap,5, = %(|O)A|Ol>3132 +11)4]10) B, B,). All of the 1st particles of n
entangled states are to form an ordered photon sequence S, and all of the 2nd and 3rd
particles of n entangled states are to form an ordered photon sequence Sg.

Step 3.3.5.2. Then Bob keeps the sequence S4 and transmits the sequence S to
Alice.
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Alice Bob
[0) 0. = V73000100, +[1),10),.,)
S (Sn ) ;l)
R

-
-

Alice randomly chooses a subset from S,
and detects eavesdropping using bases
o, =0, ®0; 0y =0y ®oy

The chosen subset

o

A% e, = YA+, #) (=4~ + D]

Public discussion

B i it e e -
After confirming the quantum channel over
collective-dephasing noise is secure, Alice
encodes using 16 extended unitary operations on Sy
The encoded sequence Sy » 1. Bob performs Bell measurement on §},,and S,

X =0, basis.
2 Than according to tha ghtainad trangition anerationg and
5. 11N acCoraing 1o tne 6otainea wansition operations ana
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COoNiro: OIS, 500 CNECKS TN 1aniC and o2iains and K€y messages

— denotes quantum channels.

——» denotes classical channels.

Figure 3.3: The process of the proposed protocol I.

Step 3.3.5.3. When Alice receives the sequence Sp, she chooses a subset Sj of
photons from S at random, which are used for analyzing the error rate, and Sy =
Sp/ S} for message sequence for producing the key. The rest of the step is similar to that
in Step 3.3.4.3. Note that here, Alice should be replaced by Bob, and vice versa.

Step 3.3.5.4. After confirming that there are no eavesdroppers, Alice encodes each
logical qubit from the message sequence Spgy, with one of the sixteen unitary opera-
tions {0000, 0001, 20010, 00115 * * 5 21100, 21101, L1110, 21111 }- The subscripts of 2 denote
the codes {0000,0001,0010,0011,---,1100,1101,1110,1111}. The obtained states af-
ter applying the sixteen unitary operations are still free from the effect of noise. After
the extended unitary operations are performed on Sy, Alice transmits the encoded se-
quence S%,, and the corresponding classical bits to Bob over a quantum channel against

collective-dephasing noise and a classical channel respectively.
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Step 3.3.5.5. Bob chooses each entangled state for collective-dephasing noise from the
two-photon sequences S%,, and Sy (San consists of the logical qubits which correspond
to the logical qubits in Sgjps). The rest of the step is similar to that in Step 3.3.4.5. Note
that here, Alice should be replaced by Bob, and vice versa.

For example, if Bob obtains the transition operation 217, which represents 11, he can
figure out the control bits 10 by applying 11 XOR 01 that are the corresponding classical
bits. Finally, Bob deduces the ultimate operation 1901 (that is, the key message 1001)
using the control bits 10 and €2;; in terms of Table 3.1.

Step 3.3.5.6. Bob can check the security of the second transmission (from Alice to
Bob) in the similar way as in Step 3.3.4.3. He can choose any subset of the outcomes of
Alice’s measurements on three-qubit states for analyzing the error rate. He can detect
eavesdropping of the second transmission by himself as long as Alice informs him about
her corresponding operation on the particle in his chosen subset. If the error rate is within
a preset value, he tells Alice that their quantum communication is secure. Otherwise, they
will abort this operation and start from the beginning.

Step 3.3.5.7. This step is similar to Step 3.3.4.7. But Alice should be replaced by
Bob.

3.3.6 High-capacity QKD against a collective-rotation noise

Similar to Li et al.’s protocol with a collective-rotation noise, a high-capacity quan-
tum key distribution against a collective-rotation noise can be obtained with the similar
changes on the protocol presented in Section 3.3.5. There are main two differences, which

are as follows:

1. The four states {|<I>;tp> AB1 By |\Ilffp) AB1B, } are replaced with

{|9F) 4B B2 |95) ABLB, }-
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Alice

Bob
|¢:)AB._B: = yﬁqo)! ¢T>mﬂ: +| I>-!|V_>r;._ﬂ\.)
(S;; vS 1,)
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Alice randomly chooses a subset from S,
and detects eavesdropping using bases
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The chosen subset

-
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After confirming the quantum channel over
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16 extended unitary operations Sy .
The encoded sequence Sy _ Bob performs Bell
] ] measurement on S
____________ Corresponding classical messages ________ 5 4pd 5, -

Then according the obtained transition operations and
control bits, Bob checks the table and obtains and key
messages.
—»  denotes quantum channels.

—— denotes classical channels.

Figure 3.4: The process of the proposed protocol II.

2. Unlike Steps 3.3.5.5 and 3.3.5.6, before Alice takes a Bell-state measurement on By
and A and a single-photon measurement on the photon By, a Hadamard operation

is first performed on B; as follows.

1 1
0) = EOO) +[1),[1) = EOO) — 1) (3.23)

Moreover, the four GHZ states based on a collective-rotation noise can be trans-

formed into (3.11) after performing the Hadamard operation.

93,5, = —=(6") a5, ® [+ [0 )am, ©[-)5.),
a5 = (1074 © 1405, £ 16 am, ©)5,)

&I

(3.24)
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The setup of our improved high-capacity quantum key distribution against a collective-

rotation noise is given in Figure 3.4.

3.3.7 Security and performance analysis
Security analysis

We mainly use the 2-extended unitary operations based on collective noise to improve
the protocols of Li et al. [45], aiming at increasing the qubit efficiency and reducing the
times of Bell measurement to half. The key techniques used in our proposed protocol are
the same as those in [18]. The security of the protocols proposed by Li et al. [45] therefore

carries over to our proposed protocols. The detailed security analysis is given in [45].

Performance analysis

In this section, we compare the performance of our proposed protocols with those of
other proposed protocols. Table 3.2 compares traditional fault tolerant QKDs and our
proposed protocol, using several important features such as the type of entanglement
used, the direction of quantum communication, the qubit efficiency and the number of
Bell measurements. The first column in the table refers to the considered fault-tolerant
QKD protocols [40-46].

On the one hand, in the protocols in [40,41,43,44,46], four- and six-photon entangle-
ments are used. Up to now, it is not easy to prepare multi-photon entangled states [49],
since it will increase the difficulty of the implementation of such a QKD protocol with the
current techniques. However, in our protocols, GHZ states are used, which are easier to
implement. Moreover, in Yan and Hwang’s protocol [46], 2C' times of Bell measurements
are needed, C' times in Li and Li’s protocol, % times in Li et al.’s protocol [45], and only
c

7 in our proposed protocol. It is worth noting that Bell measurements always present a
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technical difficulty [45]. Hence, fewer the number of Bell measurements needed, the more
feasible the protocol is.

On the other hand, as it can be easily seen from Table 3.2, four- and six-photon
entanglements are not used in [42,45], but the qubit efficiency of their protocols is very
low, at 6.25% and 8.33% respectively. The detailed analysis follows a similar analysis
presented in [46].

The qubit efficiency (QE) of a quantum protocol is given by the formula n = < where ¢
denotes the number of shared classical bits and ¢ the number of generated qubits. In the
performance analysis of many protocols, an assumption is made that during the public
discussion stage, half of the transmitted qubits are used for checking for eavesdropping ,
and that half of the transmitted qubits are used for checking for Trojan horse attacks like
in [46]. In Boileau et al.’s, Li et al.’s and Sun et al.’s protocols [41-43], each 4-particle
state prepared by Alice can just carry one-bit key message. Also, one round of public
discussion is needed. Hence, the QE of their protocols is - x % = é = 12.5%. Similarly,
in Xiu et al.’s protocol [42], each 6-particle state can just carry one-bit key message as
well and one round of public discussion between Alice and Bob is needed. Hence, the
QE of Xiu et al.’s protocol is 2% x i = % = 16.67%. In Li and Li’s protocol [42] and

6n " 2
Li et al.’s protocol [45], Alice generates n Bell states and n GHZ states respectively, and
each of them can carry one- and two-bit key messages in Li and Li’s QKD. There are
two rounds of public discussions, and half of the transmitted qubits are used for checking
for Trojan horse attacks. Therefore, the QE of Li and Li’s and Li et al.’s protocols are

n
2nX X

N[ =

X =2 =6.25% and 2* x

_ 1,11 _
== X 3 X 5 =35 = 8.33%.

1
2

N[

Though the QE of Yan and Hwang’s protocol [46] is highest, at 6n2]:4n = % = 20%, the
times of Bell measurements needed is the most, at 2C.

In our proposed QKD protocols based on extended unitary operations over a collective-

dephasing noise channel, Alice has to generate n GHZ states, and each GHZ state can
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Table 3.2: Performance comparison of QKD based on collective noise.

Protocols 4-p state 6-p state B state GHZ state QC QE TBM CB
Li et al.’s [40] Yes No No No one-way 125% 0 0
Boileau et al.’s [41] No Yes No No one-way 125% 0 0
Sun et al.’s [43] No Yes No No one-way 125% 0 0
Xiu et al.’s [44] No Yes No No one-way 16.67% 0 0
Li and Li’s [42] No No Yes No two-step 6.25% C C
Li et al’s [45] No No No Yes two-step 8.33% & 0
Yan and Hwang’s [46] No No No Yes one-way 20% 20 0
Our protocol [50] No No No Yes two-step 16.67% £ <

4-p state: 4-particle state; 6-p state: 6-particle state; B state: Bell state; QC: Quantum communication; QE:

qubit efficiency; TBM: The times of Bell measurements; C'B: Classical bits; C: The total number of classical

bits needed.

carry four-bit key message. There are two rounds of public discussions between Alice

and Bob, and half of the transmitted qubits are used to check for Trojan horse attacks.

Therefore, the QE of our protocol is

1

2

1
X3

16.67%. Hence, based on the

QE and the available techniques, our protocol is more feasible.

3.4 Summary

By the use of extended unitary operations from collective noise together with quantum

dense coding, it is possible to encode many bits of information onto an entangled state.

Based on this idea, we have proposed two fault-tolerant high-capacity QKD protocols over

a collective-noise channel. The proposed protocols are not only easier to implement, but

also have a higher qubit efficiency. Moreover, we have proposed a lower-dimensional high-

capacity QKD protocol with the consecutive and flexible key expansion using Chebyshev
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maps, which is a significant additional step added to the previous Fibonacci protocol
while taking advantage of Lucas numbers being in close relation to Chebyshev maps.
We use the properties of Chebyshev maps corresponding to Lucas numbers to avoid the
physical limitation for high-capacity QKD. Moreover, on one hand, our protocol is easy to
implement by just using the experimental setup in Simon et al.’s protocol. On the other
hand, it optimizes Simon et al.’s protocol by addressing the limitation of spiral and OAM
bandwidths. Moreover, our coding rules are not complicated, and the used Lucas values
can be chosen to encode signal entangled states in our proposed protocol. This achieves

both longer distances and lower error rates simultaneously.



Chapter 4

Quantum secret sharing protocols of

secure direct communication

In this chapter, we consider quantum secret sharing, particularly, quantum secret
sharing of secure direct communication. We first prove that the simplest nontrivial case,
namely, a (2,3) discrete variable threshold quantum secret sharing protocol of secure direct
communication can also be achieved using the same devices as in BB84. Then, generalized

(n,n) quantum direct secret sharing based on distributed fountain codes is presented.

4.1 Introduction

Recently, a new concept, namely, quantum secure direct communication (QSDC) was
proposed by Beige et al. [79]. QSDC aims at transmitting secret messages directly instead
of first establishing a key to encrypt them. Moreover, Bostroem and Felbinger [18] and
Deng et al. [109] have already shown that QSDC can be used in some particular settings.
Since their seminal work [18,109], a growing number of researchers have been interested in
QSDC, and relative improvements and analysis of QSDC [110-114] have been proposed.

In 2005, Zhang [78] generalized the work in [18,110] into the quantum secret sharing
o7
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regime, and proposed a new concept, i.e, quantum secret sharing of secure direct commu-
nication. Thereafter, Wang et al. [115] generalized Zhang’s idea to the high-dimensional
case via quantum super-dense coding. Unlike these protocols [110,115] using entangle-
ment, Han et al. [116] proposed a multiparty quantum secret sharing of secure direct
communication using single photons. They applied the random phase shift operations
(RPSOs) to achieve the sharing controls, aiming at enhancing the security. Nonetheless,
owing to the effect of the RPSOs, their proposed protocol requires a quantum memory
to store the resulting states so that the participants are able to recover the shared secret.
To address this issue, Du et al. [117] presented a quantum secret sharing of secure direct
communication using one-time pad without the use of quantum memory.

Moreover, Li et al. [118] generalized Zhang’s protocol and proposed a (¢,n) threshold
QSS-SDC protocol, in which any ¢ or more participants can recover a secret. However, in
Li et al.’s protocol, ¢ must be determined in advance rather than arbitrary ¢, and Cleve et
al. [17] pointed out it is hard to implement (¢,n) threshold quantum state sharing, even
the simplest (2,3) threshold quantum state sharing protocol. This is because it depends
on having three qutrits available and the capability of universal transformations on these
qutrits while qubits and higher order qudits are hard to create and manipulate. However,
Tyc and Sanders [80] have shown it is feasible to achieve the (2,3) threshold quantum state
sharing with continuous variables. In 2002, Lance et al. [81] extended their protocol by
utilizing an electro-optic feedforward technique and gave two further protocols. For their
first protocol, a pair of optically entangled beams and two phase sensitive amplifiers are
used for the reconstruction of the secret state, while a pair of optically entangled beams
and an additional electro-optic feedforward loop are used in the second protocol.

In this chapter, with the help of distributed fountain codes, we propose a discrete
variable (2,3) threshold quantum secret sharing protocol for secure direct communication

and then a generalized (n,n) quantum direct secret sharing protocol [119] with the same
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security as those proposed in [3]. The fountain codes can be generated on-line, the number
of the used source symbols can be quite small, the way of encoding with the source symbols
is very simple, and encoding symbols are generated as few or as many as needed. Due
to the randomness and flexibility of control codes, our protocols can be implemented in
a simpler and more effective way. In (2,3) threshold quantum secret sharing protocol
every particle can on average carry up to 1.5-bit messages and the participants can detect
eavesdropping by themselves without exchanging classical information. In the generalized
(n,n) quantum direct secret sharing protocol, the idea of producing fountain codes has
been applied to produce control codes and the positions of the inserted nonorthogonal
state particles, aiming at achieving eavesdropping-detection, authenticating Alice’s and
participants’ identities and resisting a variety of attacks effectively even over lossy or noisy

quantum channels.

4.2 Recursive (2,3) threshold quantum direct secret
sharing

Our new protocol is based on the following three assumptions.

(1) The adversary Eve can intercept the quantum communication and perform block
processing of quantum data on the quantum channel. She can listen to all the messages
but cannot modify them on the classical channel.

2,...,s1} among 3 participants Boby,

(2) Alice intends to share a secret s = {sl!l, sl
Bob,y, Bobs, where sl € {0,1},n = 1,2,...,1, where s denotes the n'* bit in 5. More-
over, at least two of the Bobs can recover s.

(3) Alice uses 3 values, say, p1 = 0, p» = 1 and p3 = 2 to encode each bit of the classical

secret. Alice and Bob,, Boby, Bobs agree that py, ps, ps encodes bit 0 if p; = ps = p3, and

p1, P2, p3 encodes bit 1 if p; # psy # p3. Hence, 000, 111, or 222 can be used to encode
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bit 0, while 021, 012, 102, 120, 210, or 201 can be used to encode bit 1. Note that the
module 3 sum of the three values is 0, that is, (p; + ps + p3) mod 3 = 0. Meanwhile, three
different particle states |0), |1), |2) are used to represent the corresponding encoding of

bits.

4.2.1 Preparation and precomputation

We assume that the length of the shared secret meets the requirement [ = Zle 31 ke
N and £ > 1. However, if [ does not meet the requirement, the following encoding and
decoding processes are still effective by dividing the secret into smaller chunks, each of
which meets the requirement. For instance, if the length of secret s is [ = 18, it can be
divided into three smaller chunks of 1 bit, 4 bits and 13 bits with the length of I; = 1,
lb=>7 3 Yand Iy = 30, 3! respectively. In this case, Alice and the Bobs share the
secret by applying the recursive method to each of the chunks separately.

In the following, the symbol s represents the secret (or a chunk of it determined
as above) which satisfies the length requirement. Before producing the quantum secret
shares p;, |, ps, , and pg, Alice prepares s 1, Sg2 and sy 3 by the recursive way defined as
follows. First of all, each secret share s; (for j = 1,2, 3) is the result of the concatenation
of smaller pieces of sy, ..., S, built using recurrence

k

S5 = .Hl Sij (fOI’j = 1, 2, 3)

By the requirement given in assumption (3) above, the modulo 3 sum of the corre-

sponding values in the three shares equals zero:

3
(ngn]) mod 3=0 (forn=1,...,1)
=1

[

where s denotes the n'* value in share s;.
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The encoding process

Base case. For i = 1, the first secret piece (the first secret bit) is encoded into three
smaller pieces of sy, $12, s1,3 by assumption (3).
Recursive case. For i > 1, assume that pieces s,_11, Si—12, S;—1,3 are encoded al-

ready. Then pieces s; 1, s;2, s;3 are encoded as follows:

Si1=Si—11 | 3" 2values || 3 *values
i = 3 *values || si_12 || 3" values
si3 = 3" *values || 3" *values | s;_1.3

Here the corresponding values in the three smaller pieces of s; i, s; 2, S;3 encode one
piece of the secret as per assumption (3) above.

More intuitively, for each corresponding bit of the secret message, one encoding symbol
is already determined by the previous (i — 1)** step. If the bit has value 0, Alice copies
the same encoding symbol (0,1 or 2) to the other two. If the bit has value 1, Alice decides
on the other two encoding symbols randomly out of two possible combinations based on
the already determined encoding symbol where the sum of the encoding symbols will be

3.

The decoding process

Assume that Bob;’s, Boby’s and Bobs’s shares that are converted from quantum secret
shares ps, |, ps,, and p, , are sg 1, sp2 and sg 3, then any two participants, say Bob, and
Bobs, can recover the secret using si 2 and sy 3 as follows:

Forn=1,...,3*1,

si =2 €{0,1,2}

where SL"}Q + 3% + 2 mod 3 = 0.



62 Chapter 4. Quantum secret sharing protocols of secure direct communication

Now, Boby, and Bobs also have s 1. So Boby and Bobs can just line up S 1, Sg2 and
sk,3 and read out each bit of the secret determined by the three corresponding encoding
symbols in sg1, sk2 and si3. They can recover the secret message by applying the
recursive method in the reverse direction as follows:

For2<i<k

13177
Si—1,1 = ;1

_[(87241)—2x3172)
Si—1,2 = 89

i—2 i—2
5i1s = S£E§x3 +1)—3x312]
where the notation sI™>" represents a substring of s from the m** to the n* bits. At

each step, they line up s;_1,1, si—12 and s;_; 3, and read out the corresponding bits of the

secret.

4.2.2 The proposed (2,3) threshold quantum secret sharing pro-

tocol
Sharing secret messages

We now demonstrate our protocol by giving an exact example of encoding and sharing
a secret s, say 1010110101101011011010110110011100101101, following the recursive way.
The length of the message is [ = .7, 31 = 30 4 3! + 32 + 33.

(1) For i = 1, we encode the first bit of the secret (boxed below) by the base case as

follows:

s = 010110101101011011010110110011100101101
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S1,1 = 0
S12 = 2
s13 =1

Note that to encode “0”, we arbitrarily choose one of the six combination of “0”, “2”,
4(17’ .
(2) For i = 2, we encode the next three bits of the secret (boxed below) by the recursive

case as follows:

s =1 110101101011011010110110011100101101

S21 = 011
§22 = 021
S23 = 001

(3) For ¢ = 3, we encode the next nine bits of the secret (boxed below) by the recursive

case as follows:

s =1010{110101101|011011010110110011100101101

s31 = 011122102
$3.2 = 121021200

53,3 = 201220001
(4) For i = 4, we encode the last 27 bits of the secret (boxed below) by the recursive

case as follows:

s =1010 110101101 ‘011011010110110011100101101
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84,1 = 011122102011101221001121202
s42 = 020101122121021200101022100

543 = 002110112201211212201220001

Then Alice allocates the quantum secret shares to Boby, Boby, Bobs in terms of s41,
84,2 and sy 3, which is as follows:

(5) Alice converts the largest of the classical shares, that is, s41, s42 and ss3 into
corresponding particle states p,, , = {|0),[1),...,[0),|2)}; ps,, = {]0),[2),...,10),]0)}
and o, , = {10910, ., 0}, [1)}.

(6) For Boby, Alice then produces sufficiently many nonorthogonal state particles with
base B; and value V; in terms of the control codes (which are generated by the established
sequence S like in BB84) in terms of Figure 2.1 as decoy particles. In By, 0 represents base
@ and 1 represents base ®. In base @, 0 denotes state | —), 1 denotes state | 1); In base ®,
0 denotes state | ), 1 denotes state | ). For example, if B; = 01100101, V; = 10110100,
then the states of these nonorthogonal state particles are | 1) | ) | N\ | 1) | =) | N\
| =) | /). Moreover, Alice and Bob; agree that in the control codes, “0” denotes that

? should be used and “1” denotes that the measurement base

the measurement base “®
“®” should be used.

(7) Then Alice first produces a new particle sequence p’%1 by inserting her prepared
nonorthogonal state particles into p,, , = {[0),]1),...,[0),]2)} and recodes each insertion
position. Then Alice sends the new sequence p’%1 to Bob, via a quantum channel. Mean-
while, degrees and positions are used to generate the control codes for detecting eaves-
dropping and to obtain the positions of nonorthogonal state particles to Bob; through a
classical channel.

(8) After receiving pf, | from Alice, Bob; first obtains the positions of the nonorthog-

onal state particles using the degrees and positions of the source symbols sent by Alice.
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Then Bob; produces the control codes in terms of the degrees and the positions of the
source symbols. Bob; is able to detect eavesdropping according to the nonorthogonal
state particles and the control codes without sending classical messages to Alice. If the
error rate of the nonorthogonal state particles exceeds the threshold they agree in ad-
vance, they abort this protocol. Otherwise, Alice and Bob; can conclude that there is no
eavesdropping in this communication and Alice is a trusted dealer, then Bob; continues
to the next step.

(9) Bob, filters the nonorthogonal state particles and obtains his quantum secret share
0), [1), -, [0), 2)

(10) Alice transmits py, ,, ps, , to Bobs and Bobs respectively in the same way that is

used in (5) and (7).

Message recovery

Any two of the three participants can recover the secret, say Boby and Bobs. They con-
vert their quantum secret shares p, , = {|0), [2),...,0),|0)} and p,, , = {[0),|0),...,]0),[1)}
into corresponding encoding symbols s4 o = 020101122121021200101022100, s43 = 002110112
201211212201220001. Then, according to the encoding rule, Bobs and Bobs can obtain
the share of Bob,, which is p,,, = {|0),[1),...,]0),|2)} with its corresponding encoding
symbols s4 1 = 011122102011101221001121202.

Having obtained all of s41, 42, 543, Boby and Bobs can then recover the secret message
by applying the recursive method in the reverse direction in a step-wise fashion.

(1) Boby and Bobs line up the three pieces and obtain the bits 14—40 in s (denoted

by 8[14—>40] )
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84,1 = 011122102011101221001121202
s42 = 020101122121021200101022100

84,3 = 002110112201211212201220001

st4=401 —1011011010110110011100101101 |

(2) Then Bob, and Bobs extract s31, 53,2, S3.3 and line them up to obtain the bits 5—13

in s (denoted by s>~13]).

s31 = 011122102
s3.2 = 121021200

s3.3 = 201220001

s~ = 1110101101

(3) Then Boby and Bobs extract Sa1, S22, S2,3 and line them up to obtain the bits 2—4

in s (denoted by sl274).

S21 = 011

S22 = 021

523 = 001
s =

(4) Finally, Boby, and Bobs extract s;1,S1,2,51,3 and line them up to obtain the first

bit in s (denoted by s).
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8171:0
81’2:2
S1.3 = 1

)

sl —
Hence, Boby and Bobs recover the secret s = 101011010110101101101011011001100
101101.
Although we have presented our protocol by way of an example, a general presentation
of the (2,3) threshold quantum secret sharing scheme of secure direct communication can

be easily achieved in the same way.

4.2.3 The efficiency and security analysis

In this section, we analyze the efficiency and security of our proposed protocol from

the following aspects.

Efficiency

We show that by the use of the recursive method, the efficiency of secret sharing in our
proposed protocol has been greatly improved. The specific analysis is made as follows.

The qutrit efficiency is:

_ 9
gt

NE

where ¢, denotes the Alice’s shared secret bits, and ¢; is the total number of the photons
of the secret share of every participant in the protocol. For a secret with the length of

[=F 371 i>1, as [ goes to oo, the qutrit efficiency is
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. 14343 +...+31 ’ 3F—-1 3
e = k-1 T hhm 231 9

That is to say, every particle can on average carry up to 1.5-bit messages rather than
at most 1 bit message in existing relevant quantum secret sharing protocols.

It is worth noting that, as is mentioned in 4.2.1, if the length of a secret does not
meet the formation I = 32%  3i~1 it can be divided into smaller chunks such that these
smaller chunks satisfy the formation before applying the recursive method. For the same

example in 4.2.1, for a secret of 18 bits, we first cut the secret into three chunks, s! of

1 bit, s275 of 4 bits and sl6718] of 13 bits, and then encode them as above. The qutrit

18 __ 18
1+3+9 — 13"

efficiency is
Hence, we can obtain the following theorem.

Theorem 1. For a secret with any length [ = Ele x; 23:1 3/~!, where Ele 3t

<l< Zfill 3i=! in our proposed recursive (2,3) threshold quantum secret sharing, the
qutrit efficiency is 1 < ng < %

Proof. We first consider the following two particular cases.

(1) When z; = 1,2, 3, according to the definition of ng, ng = 1 for each case.

(2) When z; = 0,s = 1,2,...,k — 1,z = 1, the recursive method works, then the

. . . . 2 k-1 . k
maximum ng can be obtained, that is, np = lim H3t3 55— — Jim Sy = 5.
[ee]

k—o0

(3) Then we prove the general case.
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When i = 2, let M = 2 Z=200 % then My, = 2. Hence, (15)min = 1+ 5k =
T

m2+...+3k_1mk

4xotx
3za+x1’

According to the above-mentioned cases (1), (2) and (3) in this proof, we can obtain
1<ng< %

Meanwhile, we make a table (see Tab. 4.1) to compare the qubit or qutrit efficiency
in the recent well-known protocols, including Bennett and Brassard [3], Bennett [6] and
Ekert [7].

Also, due to the shared sequences between Alice and Bobs, Bobs can detect eaves-
dropping by themselves without sending classical messages to Alice. Instead, Bobs only

need to ascertain whether the error rate of the detection particles, i.e., nonorthogonal
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Table 4.1: The comparison of qubit or qutrit efficiency.

Protocols bs 4 be R
our protocol [82] ~15 1 0 =15
Bennett and Brassard’s protocol [3] 1 1 2 3
Bennett’s protocol [6] 1 2 0 0.5
Ekert’s protocol [7] 2 2 2 05

state particles, is larger than the preset value or not. As a result, the process of secret
sharing is more efficient.

Moreover, our proposed protocol can be easily generalized to (2, n) threshold quantum
secret sharing of secure direct communication. When more participants are involved, more

particles can be saved.

Dynamics

Due to the way of encoding each bit of the message in assumption (3), there are three
different choices (000, 111, or 222) to encode bit 0 and six different approaches (021, 012,
102, 120, 210, or 201) to encode bit 1. When a participant leaves and a new participant
joins, we just change the encoding, for example, before that we use 000 to decode bit 0,
after that we use 222 to do so; similarly, before that we use 012 to encode bit 1, but after
that we use 210. Though the secret stays unchanged, the secret shares change. The secret

share of the participant who has left is useless.

Security analysis

We now discuss the security of our proposed protocol. The security of the protocol is
based on quantum no-cloning theorem and the disordered photons by inserting nonorthog-

onal state particles. Quantum no-cloning theorem guarantees that an eavesdropper, Eve,
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is not able to make certain of the initial states of the transmitted particles prepared by Al-
ice, as in the BB84 protocol [3]. The difference between the BB84 protocol (here, we take
BB84 because our protocol is derived from it) and our protocol is that the communicating
parties choose the measurement base randomly for keeping Eve from eavesdropping in the
former, while nonorthogonal state particles are inserted to prevent Eve from obtaining the
Alice’s secret sharing in the latter. Assume that Eve intercepts the photons from Alice
to Bob;, (i = 1,2,3) and resends her prepared photons to Bob;, (i = 1,2, 3). However, she
cannot extract Alice’s secret message without disturbing the process of secret sharing.
This is because, on the one hand, she does not know the positions of inserted nonorthog-
onal state particles, which are identified by the degrees and the positions of the shared
sequence between Alice and Bob;, (i = 1,2,3). On the other hand, she does not know
which measurement base should be used, as the measurement base is also identified by the
control codes that are produced by the degrees and the positions of the shared sequence.
Moreover, the positions of inserted nonorthogonal state particles and the control codes
are generated in the way of preparing fountain codes, which can be generated on-line and
have the features of flexibility and randomness. In this case, Eve can just obtain a series
of useless data.

Besides, in our (2,3) threshold quantum secret sharing protocol, any two or more
participants can reconstruct the secret, but any single participant cannot derive the secret
message from his share alone with a non-negligible probability. Because each individual
share is always a random quantum state sequence consisting of |0), |1) and |2) and the
probability of a successful guess of the other two codes from a single known code is % This
is in fact less than the probability of a successful guess of one bit of the secret message.

Most importantly, the most common attack, that is, the Trojan horse attack is useless
in our protocol. The Trojan horse attack strategy is normally involved in the invisible

photon eavesdropping (IPE) attack. Whether Eve is Bob;(i = 1,2, 3) or an outside eaves-
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dropper, she may consider such attack strategies firstly when she attempts to recover the
secret. Now, we analyze the IPE attack in detail. Eve prepares a sequence of invisible
photons with a special wavelength in advance, which is close to the legitimate one. In
this case, she can add invisible photons to the photons that are sent to the other two par-
ticipants before Alice. However, as the photons in our proposed protocol are transmitted
once, Trojan horse attacks are avoided automatically. Therefore, Eve cannot obtain any
useful messages using invisible photons, that is, our protocol is free from Trojan horse

attacks.

4.3 (n,n)threshold quantum direct secret sharing based
on fountain codes

In this section, we describe our proposed (n, n) threshold quantum direct secret sharing
protocol [119]. In the protocol, Alice and every Bob first establish a sequence that is
considered as the source symbols in advance like in BB84, which is unknown to Eve.
These source symbols are used to prepare the control codes and obtain the positions of
the inserted nonorthogonal state particles in terms of Figure 2.1. Next, nonorthogonal
state particles are produced to detect eavesdropping according to the prepared control
codes. Finally, Bobs and Alice send the particle sequences and encoded particle sequences

after inserting nonorthogonal state particles into them to each other.

4.3.1 The proposed protocol

We first list the following three assumptions:
1) The same as (1) of 4.2.1.
2) Alice intends to share a secret s4 = {s}, %, ..., s} } among n participants Bob,, Bob,,

.., Bob,, where s € {0,1},k = 1,2,...,1. She will first split s, into n secret shares
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SByySByy---,SB, Where sp. = {Sp,,SBy,..-,S8, (1 = 1,2,...,n), which will later be
delivered to Boby, Bobs, ..., Bob, respectively. Only if all Bobs collaborate with their
shadows, can Alice’s secret s, be recovered.

3) Alice and Bob;(i = 1,2,...,n) agree on that each of the unitary operations denote a
two-bit classical message, i.e., Uy, Uy, Uy, Us correspond to 00, 01, 10 and 11, respectively.
Alice and Bob;(i = 1,2,...,n) establish S;(i = 1,...,n) using the same way in BB8&4.
Then S;(i = 1,...,n) is used as source symbols in producing fountain codes which are
used for control codes in the following protocol.

The process of our protocol is as follows:

Step 1. Bob;(i = 1,2,...,n) prepares é EPR pairs and each EPR pair is supposed to
be [2%)n, 4, = T5(10)n,,

1,2,..., %) are to form an ordered photon sequence H;(i = 1,2,...,n) and all of the 2nd

0>ti1 + |]‘>hi1

1>ti1) . All of the 1st particles of each |‘I)+>hi1t¢1 (i, =
particles of each [®¥), ; —are to form an ordered photon sequence T;(i = 1,2,...,n).
The latter is for encoding secret shares.

Step 2. Bob;(i =1,2,...,n) produces sufficiently many nonorthogonal state particles
for detecting eavesdropping using the same way in (6) of 4.2.2.

Step 3. Bob;(i = 1,2,...,n) randomly inserts his prepared nonorthogonal state
particles into the ordered photon sequence T;(i = 1,2,...,n) and records each position
(only Bob;(i =1,2,...,n) knows the positions of these nonorthogonal state particles and
he keeps them secret until the communication is completed). We denote the sequence
that is composed of nonorthogonal state particles and T;(i = 1,2,...,n) with T/(i =
1,2,...,n). Then Bob;(i = 1,2,...,n) sends photon sequence T/(i = 1,2,...,n) via
a quantum channel. Meanwhile Bob;(i = 1,2,...,n) clearly tells Alice which degrees
and positions are used to the generate control codes for detecting eavesdropping and
which are used to obtain the positions of nonorthogonal state particles (of course Alice

needs to convert the binary bit values into decimal numbers when the positions of the
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nonorthogonal state particles are involved) via a classical channel.

Step 4. After receiving T} from Bob;(i = 1,2,...,n), Alice first finds the positions
of the nonorthogonal state particles using degrees and positions of the source symbols
from Bob;(i = 1,2,...,n). Then Alice produces the control codes in terms of the degrees
and the positions of the source symbols from Bob;(i = 1,2,...,n). Alice is able to
detect eavesdropping according to the nonorthogonal state particles and her generated
control codes. If there is no eavesdropping, the outcomes should be completely unanimous.
After that, if the error rate exceeds the threshold they preset, they abort this protocol.
Otherwise, Alice and Bob;(i = 1,2,...,n) can conclude that there is no eavesdropping in
this communication and Alice continues to the next step.

Step 5. Alice first encodes the shadow (that is, the share) sequence {sp,,, SB;y, - - -, B, } (i =
1,2,...,n) onto T;(i = 1,2,...,n) which is contained in 7} using one of the four unitary
operations (U, Uy, Us, Us). Consequently, the state |®T) of each particle is transformed
into one of [®T), |®7), [T), [7), respectively. These operations correspond to 00, 01,
10, and 11. The encoded sequence is denoted by 7/ (i = 1,2...,n). Then Alice pro-
duces sufficiently many nonorthogonal state particles for detecting eavesdropping with
base B! and value V; in the same way as that are used in (6) of 4.2.2. Likewise, Alice
and Bob;(i = 1,2,...,n) agree that in the control codes, “0” denotes that measurement
base“@®” should be used and “1” denotes that measurement base “®” should be used.

Step 6. Alice randomly inserts her prepared nonorthogonal state particles into the
ordered photon sequence T}'(i = 1,2, ...,n) and records each position (only Alice knows
the positions of these nonorthogonal state particles and she keeps them secret until the
communication is completed). We denote the sequence that is composed of the nonorthog-
onal state particles and T}'(i = 1,2,...,n) with 7/"(i = 1,2,...,n). Then Alice sends
the photon sequence T!”(i = 1,2,...,n) via a quantum channel to Bob;(i = 1,2,...,n).

Meanwhile Alice clearly tells Bob;(i = 1,2,...,n) which degrees and positions are used
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to generate control codes for detecting eavesdropping and which are used to obtain the
positions of the nonorthogonal state particles (of course Alice needs to convert the binary
bit values into decimal numbers when the positions of the nonorthogonal state particles
are involved) to Bob;(i = 1,2,...,n) via a classical channel.

Step 7. When receiving 77" (i = 1,2,...,n), Bob;(i = 1,2,...,n) first finds the posi-
tions of the nonorthogonal state particles using degrees and positions of the source symbols
from Alice. Then Bob;(i = 1,2,...,n) produces control codes in term of the degrees and
the positions of the source symbols from Alice. Bob;(i = 1,2,...,n) is able to detect
eavesdropping according to the nonorthogonal state particles and his generated control
codes. If there is no eavesdropping, the outcomes should be completely unanimous. After
that, if the error rate is smaller than a preset threshold, Alice and Bob;(i = 1,2,...,n) can
conclude that there is no eavesdropping in this communication, and Bob;(i = 1,2,...,n)
continues to next step. Otherwise, the process is aborted.

Step 8. Finally, Boby, Bob,, ..., Bob, obtain T}'(i = 1,2,...,n) which is contained in
the T} and measure all the particles in {(Hy,1}), (H2, T3 ), ..., (Hy,,T))} in their hands
respectively and the corresponding measurement outcomes are {sg,, sp,, - .., Sg, - Hence,
when Boby, Bob,, ..., Bob, collaborate with each other, they can recover the secret s, =

s, ®sp, D...DspB,-

4.3.2 Security analysis

In this section, we analyze the security of our proposed protocol against inside and
outside attacks and under noisy and lossy quantum channels.
Insider attacks

For computer systems, insider attacks are the primary hazard. Insiders are probably

to have legitimate access to the system with specific goals and objectives. Normally,
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insiders can plant Trojan horse attacks with the file system.

Trojan horse attacks. For such attacks, suppose that Eve is any participant, say
Bob,, who wants to estimate the states of the photons the minute Alice extracts the
secret message. In this case, she can add invisible photons to the photons that are sent
to the other n — 1 participants before Alice. However, in our proposed protocol, on
the one hand, Bobs, ..., Bob, and Alice insert nonorthogonal state particles into T;(i =
2,...,n) and T/"(i = 2,...,n) in terms of the control codes (which are generated by
Si(i = 2,...,n)). On the other hand, the generated control codes and the positions
of inserted nonorthogonal state particles are obtained according to the sent degrees and
positions of the source symbols in the pre-shared sequence between Bob;(i = 2,...,n) and
Alice. Consequently, without knowing the pre-shared sequence between Bob;(i = 2,...,n)
and Alice, Eve cannot tell whether the particles are from EPR pairs or from nonorthogonal
state particles, i.e., Eve cannot obtain any useful information using invisible photons, and

our protocol is free from Trojan horse attacks.

Outside attacks

Suppose that Eve is an outside eavesdropper who intends to steal Alice’s secret mes-
sage. In this situation, Eve can try to estimate the states of the photons immediately
before or after Alice’s operation to extract the secret message. She adds invisible photons
to the photons from Alice to Bob;(i = 1,2,...,n) before Alice. Similar to the Trojan
horse attacks’ analysis, Eve cannot obtain Alice’s secret message either.

Eavesdropping attacks. We detect eavesdropping by the way (no-cloning principle)
that is used in the BB84 protocol [3], that is, any measurement will certainly disturb the
quantum state except when the quantum state is the measuring device’s eigenstate. The
nonorthogonal state particles, in our protocol, are used to check whether there exist

eavesdroppers in terms of their produced control codes. Therefore, its security is equal to
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that in the BB84 protocol.

Intercept-measure-resend attacks. In this attack, Eve wants to estimate the states
of the photons immediately before or after Alice’s operation to extract the secret mes-
sage. Hence, Eve first intercepts the photons from Alice to Bob;(i = 1,2,...,n). Then
she measures these photons before Bob. Finally, she re-sends the intercepted photons to
Bob;(i = 1,2,...,n). In this way, Eve cannot extract Alice’s secret message with this
attack without knowing the control codes and the positions of the inserted nonorthogonal
state particles, but will disturb the process of secret sharing. Therefore, in detecting eaves-
dropping and authentication phase, this attack will be discovered using their produced
control codes easily.

Cheating attacks. Alice and Bob;(i = 1,2,...,n) can authenticate each other by
detecting the error rate on the quantum channel using the control codes generated from the
shared source symbols S;(i = 1,2,...,n). In ideal conditions, their measured outcomes
should be unanimous. Moreover, only the degrees and the positions of the source symbols
are transmitted between Alice and Bob;(i = 1,2,...,n), so Eve cannot obtain S;(i =
1,2,...,n). Therefore, it is not possible for Eve to impersonate Alice/Bob;(i = 1,2,...,n)
and distribute false information to Bob;(i = 1,2,...,n)/Alice.

Dense coding attacks. Dense coding attacks are effective in sending an ordered
photon sequence [120]. However, in our proposed protocol, the ordered photon sequence
is disordered by the inserted nonorthogonal state particles, and Eve cannot obtain the
positions of the inserted nonorthogonal state particles because Alice/Bob;(i = 1,2,...,n)
just transmit the degrees and positions of the source symbols(that is their pre-shared
sequences) without these source symbols. Therefore, our proposed protocol can resist

dense coding attacks.
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Noisy and lossy quantum channels

In most of the existing quantum secret sharing protocols, the quantum channels are
supposed to be ideal (i.e., noiseless and lossless). However, even if quantum channel is a
noisy or a lossy, our proposed protocol is still robust. Here, we assume that Eve is able
to establish an ideal channel with every Bob. The case of noisy and the lossy quantum
channels are discussed separately as follows.

Case 1. Noisy quantum channels. Eve may attempt to hide her attack behavior
in the noise of the quantum channel. Obviously, it is impossible to detect an attack if
the quantum bit error rate (QBER) 7 of noise (which according to [68] is approximately
within 2 ~ 8.9% depending on the channel situation such as distance, etc.) is higher than
the preset eavesdropper check threshold €. However, in step 4 of our protocol, we can set
the threshold € in our protocol to be 0.1 ~ 0.2 since the eavesdropping detection rate of
each decoy photon (nonorthogonal state particles) is i (25%). It is obviously higher than
7, so Eve will not be able to hide her attack behavior in the noise of the quantum channel.

Case 2. Lossy quantum channels. In practical settings, quantum channels are
lossy. When the transmission occurs over a lossy quantum channel, some of the photons
might be lost. Fortunately, our protocol employs the idea of generating fountain codes
which can solve the lossy quantum channel issue. That is to say, the participants are
able to inform the sender about which particles have been received and which particles
lost during the transmission process using the classical channel (the reason is the same
as that in Case 1). The participants just use the received photons to perform the public
discussion. This is because the lost photons and their corresponding particles will be
eventually discarded. Moreover, from those lost photons, Eve cannot extract any useful

information about the shared key. Hence, our protocol is still secure under this case.
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4.3.3 Features of our protocol

Compared with the existing quantum direct secret sharing protocols, our protocol has

the following features.

1. In our protocol, the nonorthogonal state particles are used to detect eavesdropping
in terms of the control codes generated from the shared sequence S;(i = 1,2,...,n)
between Alice and Bob;,i = 1,2,...,n, and the efficiency of detecting eavesdropping
is 100% under the ideal conditions compared with 50% in [3]. Moreover, due to the
use of the control codes. Alice and Bobs can detect eavesdropping by themselves
instead of sending classical messages to Alice. Hence, our proposed protocol is more

efficient than [78,109-112].

2. Our protocol makes use of the property of quantum physics to realize authentication.
Instead of using classical methods and transmitting classical information, we use
nonorthogonal state particles and entanglement. Entangled states are applied to
transmitted secret shares, nonorthogonal state particles are employed to ensure the
security of the communication, and identity authentication is based on the control

codes generated from the shared source symbols S;(i = 1,2,...,n).

3. Because the control codes and the positions of inserted nonorthogonal state particles
are generated on-line through the exclusive-or of i;(i; = 1,2,...,p) bits from the
shared sequence S;(i = 1,2,...,n) between Alice and Bob;,i = 1,2, ..., n, the size
of S;(i =1,2,...,n) can be small and used limitlessly. Moreover, as shown above,

our protocol is able to resist a variety of attacks effectively.
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4.4 Summary

In this chapter, we first have developed a (2,3) threshold quantum secret sharing
protocol for secure direct communication by utilizing fountain codes and a recursive secret
encoding method, in which we reduce the amount of quantum data involved and enhance
the efficiency of secret sharing. Because of the use of a recursive method and the use
of fountain codes, every particle can on average carry up to 1.5-bit messages and the
participants can detect eavesdropping by themselves without sending classical messages
to Alice. Moreover, the proposed protocol can be easily implemented using the same
devices as in BB84. Then the idea of producing fountain codes has been applied in the
proposed (n,n) quantum direct secret sharing protocol to produce control codes and the
positions of the inserted nonorthogonal state particles, aiming at achieving eavesdropping-
detection, authenticating Alice’s and participants’ identities and resisting a variety of
attacks effectively even over lossy or noisy quantum channels. Moreover, the EPR pairs
are prepared by Bobs rather than Alice, and consequently, the sequence H;(i = 1,2,...,n)
in our protocol is not transmitted over the quantum channel, greatly reducing the risk of

secret leakage.



Chapter 5

Hybrid quantum cryptography with

extended unitary operations

Taking the advantages of both classical (easy and cheap to implement) and quantum
(able to resist the appearance of quantum computers) protocols into account, in this chap-
ter, we propose one hybrid quantum key distribution protocol and two hybrid quantum

secret sharing protocols by the virtue of constructing extended unitary operations.

5.1 Introduction

Nascimento et al. [24] proposed the first hybrid quantum secret sharing protocol.
That is, let |1) be a quantum state consisting of n particles and K (a random sequence of
classical bits of length 2n), then assign to each particle of |1) two classical bits of K that
determine which transformation is performed on the respective particle. For instance, 00
corresponds to applying the identity mapping I, 01 to the Pauli X operator, 10 to the
Pauli Z operator and 11 to the Pauli Y operator. After this encryption, the resulting state

—

|1) is a complete mixture and no information can be gained from it. Only if one has the

—~

classical key K, can the original state |1)) be obtained from |¢). Later on, Singh et al. [69]
81
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extended and improved Nascimeto et al.’s protocol, and further proposed some approaches
for sharing a quantum secret in a hybrid way, that is, certain participants have only
classical shares and the remaining participants have (possibly multiple) quantum shares.
In 2011, Fortescue et al. [70] proposed a construction for perfect quantum secret sharing
protocols based on imperfect “ramp” secret sharing combined with classical encryption, in
which the individual participants’ shares are split into quantum and classical components,
allowing the former to be of lower dimension than the secret itself, and hence reducing the
communication cost of quantum secret sharing. However, the total amount of quantum
data allocated is not necessarily decreased in these three hybrid quantum secret sharing
protocols [24, 69, 70].

As we know, an important issue existing in hybrid quantum secret sharing protocols
is the amount of data that is allocated to the participants. The smaller the amount of
allocated data, the better the performance of a protocol. Furthermore, as quantum data
is very difficult and costly to cope with, it is desirable to use as little quantum data as
possible. To address the issue, we first extend the four basic local unitary operations
to 22" n > 2, n-extended unitary operations that are still composed of the four basic
local unitary operations (from 2.17 to 2.20). Extended unitary operations are then used
in the design of two hybrid quantum secret sharing protocols. In fact, in 2012, Chou
et al. [71] extended the four basic local unitary operations to 16 unitary operations and
further proposed an enhanced multiparty quantum secret sharing of classical messages
to enhance the transmission efficiency of the whole protocol. Later, Chou et al. [72]
considered using GHZ-State for multiparty quantum secret sharing without a code table
associated with the same idea used in [71].

Inspired by Nascimeto et al., Singh et al., Fortescue et al. and Chou et al. [24, 69—
72], we propose two dual compressible hybrid quantum secret sharing (HQSS) protocols

[122] and a hybrid quantum key distribution (HQKD) protocols using extended unitary
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operations, which aim at reducing the number of particles and quantum participants
and the size of classical shares while maintaining the security of hybrid quantum secret
sharing. In our proposed HQSS protocols, we stipulate that there is only one unique
quantum participant called Bob; he first prepares A + 1 EPR pairs (where ) is the
number that can provide an analysis of the error). All of the 1st particles from each EPR
pair are to form a photon sequence Sy and all of the 2nd particles from each EPR pair are
to form a photon sequence S7. Then Bob keeps the sequence Sy and sends the sequence
St to Alice via a quantum channel. After confirming that the quantum channel is secure,
Alice performs the correct transition operation on a particle from an EPR pair and sends
the encoded particle to Bob (here, we assume that only Alice and Bob know the measured
basic operations corresponding to particular transition operations respectively as all the
extended unitary operations boil down to the four basic unitary operations corresponding
classical bits are transmitted to classical participants in various ways via the classical
channel.

For HQKD protocols, we make full use of fountain codes that are used in Chapter 4
to produce control codes and corresponding classical bits. Similarly, control codes can be
used to enhance the efficiency of eavesdropping detection and test whether participants
are legitimate. Moreover, the n-extended unitary operations can be chosen in a flexible
way.

When comparing with Fortescue et al.’s [70], Nascimeto et al.’s [24] and Singh et
al’s [69] protocols, our protocols have the following four advantages:

(1) In our proposed protocols, even if Eve can obtain all the transmitted classical data
and quantum data, she is not able to obtain any information about the shared secrets.
Because, first, she does not know the second particles which are always kept by Bob;
second, she does not know which basic unitary operations correspond to which transition

operations.
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(2) Due to (1), our protocols are more secure in the face of various attacks such as
the photon number attack, the entangle-measure attack, the Trojan horse attack and the
faked states attack.

(3) Quantum shares and classical shares do not have a direct relationship with the
shared secret, but can determine the secret cooperatively. Moreover, owing to the com-
pressibility of quantum data, our protocols are easier, cheaper and more practical to
implement in real life.

(4) Not only can our HQSS protocols reduce the number of quantum participants, but
also the number of particles and the size of classical shares. To be exact, the number of
particles that are used to carry quantum data is reduced to 1 while the size of classical
secret shares is also reduced to % based on ((m + 1,n')) threshold hybrid quantum
secret sharing and to l;—f (where 75 is the number of maximum unqualified sets) based
on an adversary structure. Consequently, our proposed protocols can greatly reduce the

cost and difficulty of generating and storing EPR pairs and lower the risk of transmitting

encoded particles. Also, our protocols can enhance the efficiency of secret sharing.

5.2 Extended unitary operations

In this section, we present the definition of extended unitary operations and their
properties.
Assume that we have n basic unitary operations, where n > 2. Then it is possible to

construct 22" unitary operations according to the following equation [121,122]:
Ub1b2b3b4~--b2n—lb2n = Ub1b2 X Ub3b4 ... Ub2n—1b2n’ (51)

where the sequence by . . . by, represents an arbitrary 2n-bit value. Note that if Equation
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(5.1) is used to transform an EPR pair |[¢)7) 45, the outcome can be written as

U£b2b3b4...b2n71b2n|¢_>AB = Ulébz ® (Ul;;lb4 & ( . (Ul;:n,lbgnhp_)AB)))' (52)

To illustrate the operations, consider the following example for n = 2. We use the basic
unitary operations Uy, Upy, U1g, U11 and build 2-extended unitary operations as shown

below:

Usooo = Upo ® Upo

Usoor = Upo ® Uy

Ui = Un®Un

The operations can be used to transform Bell states according to the following relations

Ugpool ) ap = Uy @ Ugp|v ™) ap = Uggl™ Yap = [¢ ™) as,
Ugpor|¥ ) as = Ugy @ Ust [ ) ap = Ugglv ) an = [¢¥) as,
Uil ) as = Uy @ U{p| ™) ap = Ugylo ) an = |6 ) ap,

UiV Yap = Uy @ Ui [v Y ap = Ugylo ) ap = |0 ) s,

Utool ) a = Uit ® Ugo| ™) ap = Ui |7 ) a = 1¢7) 4B,
Ul )as = U @ Us[$ ) ap = Uit [¢F ) ap = [67) as,
Utiol ) a = Uiy @ UiglY ™) ag = Ui |67 ) as = [¢7) as,
Ul )as = U @ Ui [Y ) ag = Ui |67 ) as = [¢7) as-

Basing on their outcomes, the 2-extended unitary operations can be clustered into the
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following four groups:

Ugbool¥ ™) aB = Uil ™) aB = Ufbiol ™) ap = Uil |¥ ™) ap = Ul ™) aB = %) as,
Usoor|v ™) aB = Ugiool¥ ") as = Uio1 | ) as = Ut1ol¥ ") ap = Ul ) as = [¢ ) s,
Ughiol¥ " Yas = U111 )a = Uit ) as = Uil ¥ ") aB = Ufp | ) an = ¢ ) as,

Ugo11¥ Y as = Ugl1ol¥ ") as = Ui [ ") aB = Uflgol ") as = U1 ¥ )an = [¢) as.

(5.3)

When we simplify the notation, we can write the groups as follows:

Uoooo = U101 = Uio10 = U1 = Uno = |0)(0] + [1)(1],
Uooo1 = Uoioo = Uio11 = U110 = Uni = [0)(0] — [1)(1],
Uoo10 = Uoi11 = Uiooo = Union = Uso = |1){0] + [0)(1],
Uoo11 = Uoi1o = Uroor = Uri00 = Uy = [1)(0] — [0)(1].

For 3—extended unitary operations, the following groups can be obtained.

Uo00000 = Uooo101 = Uoo1010 = Uoo1111 = Uopio001 = Up1o100 = Uo11011 = Uopr1110

= UlOOOlO = U100111 = UlOlOOO = U101101 = U110011 = U111001 = U110110

= U111100 = UOOOO = UOIOl = UlOlO = Ullll = UOO = |0> <0| + |1><1‘ (54)

UOOOOOl = UOOOlOO = U001011 = U010101 = UOllOlO = U011111 = U100011 = U100110

= UlOlOOl = U101100 = U110010 = U110111 = U111000 = UlOllOO = U111101

= Un10000 = U011 = U100 = U110 = Ugoor = Uo1 = [0)(0] — |1)(1]| (5.5)

UOOOOlO = U000111 = U111110 = UOOlOOO = U001101 = UOlOOll = UOlOllO = UOllOOl

= U011100 = UIOOOOO = UIOOIOI = U101010 = U101111 = U110001 = U110100

= U111011 = UllOl = UOOlO = UlOOO = UOlll = UlO = |1><0| + |O><1‘ (56)
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Table 5.1: Collation table for n = 2

Control bits
BUO 00 01 10 11
Uw  Uoooo Uoior Uiowo Uiin

UOl UOOOI UOlOO U1011 U1110
UIO UOOIO U0111 UlOOO U1101
Ull UOOll UOl 10 U1001 Ul 100

U000011 = UOOOIIO = U001001 = UOOIIOO = UOIOOIO = U010111 = UOIIOOO = UOIHOI

= UlOOOOl = UlOOlOO = U101011 = U101110 = UllOOOO = UllOlOl = U111010

= U111 = Uo110 = Uroo1 = Ugor1 = U100 = U1 = [1)(0] — |0) (1] (5.7)

Definition 1. FEztended Unitary Operations. [122] Given an integer n, where n > 2. A
unitary operation that satisfies Equations (5.1) and (5.2) is called an n-extended unitary

operation.
The following corollaries can be formulated.

Corollary 1. [121,122] When n-extended unitary operations are used to transform one
of the Bell states, then the final outcome falls into one of the groups obtained by using

the four basic local unitary operations, where n is an integer and n > 2.

Corollary 2. [121,122] Assume that Bell states are transformed using a collection of
227=2 p_extended unitary operations. Then the obtained outcomes are the same when the
Bell states are transformed using the collection of all 22" n—extended unitary operations,

where n is an integer and n > 2.

Definition 2. Transition operations and ultimate operations. [121,122] Given an integer
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Table 5.2: Collation table for n = 3.

Control bits

BUO 0000 0001 0010 0011 0100 0101 0110 0111

1000 1001 1010 1011 1100 1101 1110 1111

Uoo Uoooooo  Uooo101  Uoo1010  Uoo1111 Uoiooor  Uoioioo  Uoiio11  Uobii1io

Uiooo10  Uioo111 Uiorooo  Uio1101 Uitoo11 Uirtoor Uitor1o Uiiiioo

Uo1 Uooooo1  Uooo1oo  Uoo1011  Uopioio1  Uoiioio  Uoii111 Uiooo11  Uiooiio

Ui01001  Uio1100  Uiiooo  Uiro111 Uitiooo  Uioii00  Uiirtior Uoioooo

Uio Uoooo1o  Uooo111 Uiii1i0  Uoowooo  Uooiio1  Uoioo1r  Uoioiio  Uoiio01

Uoi1100 Uiooooo  Uiooio1  Uiowoi0  Uio1111 Uiiooo1  Uitoioo  Uiiloin

Ui Uoooo11  Uooo110  Uooio01  Uoo1100  Uoiooio  Uoio111  Uoiiooo  Uoiiio1

Ui00001  Uiooioo  Uioio11 Uio1110 Uirocooo  Uiioro1r Uirroio  Uriiin

n;n > 2. If
A — _ 77A —
UbilbiQ--~bi2n71bi2n |¢ >AB - Ub]-] bj2"'bj2n—3bj2n—2 |¢ >AB7
where the sequences b;,b;, . .. bi,, ,bi,, and b, bj, ... bj,. ,bj, , represent 2n-bit and (2n —

2)-bit values, respectively, then

o U, is called a transition operation of Ubilb@. b and

b =Pigp 1

b

jon—30i2n 2 b

51952 -+ iom,

o U, biyo-biy, 1 biy. is called the ultimate operation of Ubjlbjz- b

bjon_30;

i1 2n—2"

Definition 3. Control bits. [121,122] According to Corollary 2, a collection of 22
n—extended unitary operations can be listed (see Tables 5.1 and 5.2) in the order given

by their (2n—2)-bit values ¢j,¢j, . - . ¢j,,_5Cjy,_, from 0000 - - - 0000 to 1111 --- 1111, These

2n—2 2n—2
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bit values are called the control bits.

Definition 4. Corresponding classical bits. [121,122] Given two binary sequences

bj,bj,...b

J1%g j2n73bj2n72 and Cj1Cjy - - - Cjan_3Cjan_a

described in Definitions 3 and 4. Then the binary sequence obtained by bitwise XOR
operation

bj by - jy ubjs o B CjiCly - Clr 5Clan s
is called the sequence of classical bits.

To illustrate the notions and definitions, consider 2-extended unitary operations. Uy
is a transition operation of the ultimate operation Ugyygg. The unitary operations given
by Equation (5.3) are Upogo, Uo101, Ut010, U1111 with control bits 00, 01, 10, 11. The cor-
responding classical bits 00, 01, 10, 11 can be obtained by applying XOR to 00 from
transition operation Uy, and control bits 00, 01, 10, 11.

We use an algorithm called build_tables (in MATLAB) to generate a collation table
for a given n > 2. The basic idea of the algorithm is as follows. First we generate a
collection of 22" n-extended unitary operations. Next we divide them into four groups of
2272 elements in each group (see Corollary 2). Each group creates a single row of the
table. The (four) rows are indexed by the basic unitary operations (BUO) Upgg, Ug1, Usg
and Uy;. They constitute the first column of the table. The pseudocode of the algorithm

is given as follows.

Algorithm: build_tables

input: n; output: collation table Q

for all 27(2+n) n—extended unitary operations;

s=cell(1,2"(2xn));
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for i=1:2"(2#n)
s(i) = {num2str(dec2bin(i—1,2%n))};
for j=1:n
str=char(s(i));
x(j)=bin2dec(str((2%j—1):2%j));
for j=1:n—1
[yl=fun(x(j),x(j+1));
x(j+1)=y;
(i) =x(n);
A=sym(zeros(1,2"(2«+n—2))); atr=1; B=sym(zeros(1,2"(2«n—2))); btr=1;
C=sym(zeros(1,2"(2«n—2))); ctr=1; D=sym(zeros(1,2" (2xn—2))); dtr=1;
for i=1:2"(2x*n)
if z(i)==
A(1,atr)=sym([‘U’,num2str(dec2bin(i—1,2*n))]);
atr=atr+1;
elseif z(i)==
B(1,btr)=sym([‘U’,num2str(dec2bin(i—1,2%n))]);
btr=btr+1;
elseif z(i)==2
C(1,ctr)=sym([‘'U’,num2str(dec2bin(i—1,2*n))]);
ctr=ctr+1;
elseif 7(i)==3
D(1,dtr)=sym(['U’ num2str(dec2bin(i—1,2%n))]);
dtr=dtr+1;
P=[A;B;C;D]; M=sym(zeros(4,2"(2«n—2)+1)); for i=1:4
M(i,1)=sym([‘U’,;num2str(dec2bin(i—1,2))]);
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for j=2: 2" (2+n—2)+1

M(i,§)=P(ij—1);
Q=sym(zeros(1,2"(2xn—2)+1));
len=length(num2str(dec2bin(2"(2«+n—2)—1))); Q(1,1)=‘BUO’; for j=2:
2°(24n—2)+1

Q(1,j)=sym([num2str(dec2bin(j—2,len))]);

return Q

5.3 Hybrid QKD based on extended unitary opera-
tions and fountain codes

In this section, we describe the applications of the extended unitary operations and
distributed fountain codes used in Chapter 4 to design a hybrid quantum key distribution

by dense coding in detail.

5.3.1 Assumptions

We assume that the following facts hold.

1. An adversary Eve is powerful enough to intercept the quantum communication and
to perform block processing of quantum data transmitted via the quantum channel.
Besides, she can listen to all messages transmitted via the classical channel but

cannot modify them (without being detected with a very high probability).

2. Alice and Bob agree beforehand on a binary sequence S = {aq,as,...,ay}, where

(a; € {0,1};i = 1,..., N) using the Bennett-Brassard protocol from [3]. The se-
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quence is used as the set of source symbols to produce the corresponding classical
bits and the indices of the positions of the particles (see Figure 2.1). Next they
design an appropriate fountain code, which is used to prepare classical bits from
the source symbols. As Eve does not know the exact number of the source symbols,
the number of the source symbols can be quite small, say 50. Even if Eve is able
to determine (somehow) the degrees and the positions of the source symbols (see
Figure 2.1), she has no information about the generated classical bits. For Eve, the
classical bits are just a random sequence, so she has no choice but to guess them
one by one. The fact that when the number of generated classical bits is large, such

2—200

as 200, the probability of a successful guess is , which is negligible.

. Alice is using the first two classical bits bby to verify the correctness of the following

equation

A - A -
Ubilbi2bi3bi4...bi2n_3bi2n_2|77[} )aB = Uy, [ ) aB

Note that the equation holds when Alice chooses an appropriate selection of tran-
sition operations. Moreover, the first bit b; can be used as control codes, that is,
Alice and Bob agree that if “b; = 0” denotes that measurement base“®” should
be used and “b; = 1”7 denotes that measurement base “®” should be used. Conse-
quently, the bits b; and b1by can be used to detect eavesdropping and authenticate
Alice’s identity respectively, while our proposed protocol works over noisy and lossy

quantum channels.

. Alice and Bob agree that each of the four basic unitary operations corresponds to a

particular transition operation for different extended unitary operations in advance.

For example, for 3-extended unitary operations, Uy = Ujio111-
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Classical Channel

The degrees and positions of S producing
the corresponding classical bits for Sy

Figure 5.1: The schematic illustration of our hybrid QKD protocol

5.3.2 Hybrid QKD protocol

The steps of our protocol are described below (see Figure 5.1).

Step 1 Bob prepares m (which is determined in an actual situation) EPR pairs and
each EPR pair is supposed to be [¢)7)a,p, = %(|0)Aj|1>3j — [1)4,|0)B,), where
j=1,2,...,m. All first particles of each EPR pair are to form an ordered photon
sequence S4 and all second particles of each EPR pair are to form an ordered photon

sequence Spg.

Step 2 Bob keeps the sequence Sg, shuffles at random S, to obtain a new sequence S’

and sends it to Alice via a quantum channel.

Step 3 After receiving the sequence S’;, Alice randomly chooses an ultimate operation
for every particle in S', say Uy, bobsbs..bon_1bans 7 > 2, (the subscript represents 2n
bits of key information). Next Alice picks up its transition operation in such a way

that Assumption 3 holds. For instance, she selects UbilbiQ bigbiy b

b . Knowing
2n—3

bign_2
the control bits ¢;,¢;,CisCiy - - - Ciy,_5Cin,,_, from the collation table, she computes the

corresponding classical bits

bi1 biz bi3bi4 B bi2n73bi2n72 D ¢ Ciy CizCiy - - - Cigp_3Cign_o-
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Finally, Alice performs the transition operation sz‘lbizbisbu---biz Jbiy, _, OL particle
n— n—

Aj;7=1,2,...,m. According to Corollary 1, the state can be changed into one of

the following possibilities:

Uplbibs oy v 008, = Ui [0 ) a5, = 107 )5,
Uity by iy 008, = Ul [0 ) a5, = [0F) 4,8,
Uity iy a8, = Ui [0 ) a,m, = [67) a5,
Uit ey 0 s, = U [0 ) a5, = 6 a5,

where the superscript A; denotes the photon on which transition operation is per-

formed.

Step 4 Alice also shuffles at random the encoded S’ and obtains a new sequence S’}.

The sequence S’; is sent to Bob via a quantum channel. At the same time, Alice
sends the degrees and positions of the set of source symbols S to Bob via a classical
channel. The set is used to produce the corresponding classical bits and the indices

of positions of the particles in S’.

Step 5 Using the received degrees and positions of the set of source symbols S, Bob

obtains the right positions of particles in S’ and the corresponding classical bits.
According to them and Assumption 3, Bob can use the same measuring basis as
Alice’s to measure the corresponding photons in the S’} and checks with the results
of Alice’s. If no eavesdropping exists, their results should be completely opposite,

e., if Alice gets 0 (1), then Bob gets 1 (0). Next knowing S’ and Sg, Bob can
read out the basic local operations corresponding to the Alice transition operations
performed. According to Assumption 3, Bob tests whether the subscripts of the
basic local operations are equal to the first two bits from the corresponding classical

bits. If the test does not hold, Bob aborts the operation. Otherwise, Bob concludes
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that Alice is honest and there is no eavesdropper. As Assumptions 3 and 4 hold, Bob
knows the transition operations and calculates their subscripts. Then he obtains the
control bits by applying XOR to the corresponding classical bits and the subscript

of the transition operation (that is, b;, b;,0i,0i, . . - biy,_3bis, ,)-

Step 6 Bob produces the table using the algorithm build_tables to obtain the key mes-

sage.

To illustrate the construction of our protocol and its steps, consider an example.
Suppose Alice wants to communicate the key messages 0010, 000111, 110000 to Bob.
Note that the messages are equivalent to Upgio, Unoo111; U110000 (see Tables 5.1 and 5.2).
She needs to perform Uiy, Uigeo(= Uio) (see Eq (5.6)), Uiipo(= U11) (see Eq (5.7)) on

three particles {p1, p2, ps} from S’;, which are

Ajy o — _
U10J|¢ >Aij = ‘¢ >Aij7

Aj - Ajy _
U1000|1/’ >Aij = Uy |¢ >Aij = |¢ >A]-B]-a
Aj - Ajy—
Us1ool¥ >Aij = Uy >Aij = |¢+>Aj3j-

Next Alice shuffles {p},p},p4} and obtains a new sequence {p/,p%,p5}. The sequence
is sent to Bob via a quantum channel. The degrees and positions of source symbols for
generating corresponding classical bits 10 (106600), 1001 (00016 1000), 1111 (001141100)
and the indices of the correct positions of the three encoded particles are sent to Bob via
a classical channel.

After having received the information, Bob first computes the corresponding classical
bits 10, 1001, 1111, and the indices of the correct positions of the three encoded particles.
According to the right positions of particles in {p}, p4, p4} and the first bit from 10, 1001,

1111, Bob can use the same measuring basis as Alice to measure the corresponding photons

in the {pY, p§, p5} and checks with the results of Alice’s. If no eavesdropping exists, their
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results should be completely opposite, i.e., if Alice gets 0 (1), then Bob gets 1 (0). Then he
uses Sg and {p7, p4, ps } and their correct positions to discover the basic unitary operations,
and detect whether the bit values from the subscript of the basic unitary operations is
equal to 10,10,11 (which are the first two bits from the corresponding classical bits 10,
1001, 1111). If the check holds, he concludes that there is no eavesdropper and Alice
is honest. According Assumption 4, Bob can obtain the correct transition operations,
then he uses XOR to the subscripts of these transition operations and the corresponding
classical bits 10, 1001, 1111 to obtain the control bits. Finally, Bob produces the collation

table using the algorithm build_tables to obtain the key messages 0010 000111 110000.

5.3.3 Security analysis of our hybrid QKD protocol

In this section, we analyse the security of our proposed protocol.

We assume that Eve knows the details of Bob’s measurement device but she does not
know the set of source symbols S, which is agreed beforehand by Alice and Bob using the
Bennett-Brassard protocol. Consequently, Eve does not know the indices of the correct
positions of the encoded particles and the corresponding classical bits. If Eve wants to
eavesdrop, intercept or replace the transmitted photons, she is going to disturb the states
when she chooses a wrong measurement basis (the same occurs in the Bennett-Brassard
protocol) (also see Step 5). This is easily detected by Bob in terms of the set of source
symbols S. Thus, S plays a triple role in our protocol: (1) to authenticate the identity
of Alice; (2) to detect eavesdropping; (3) to determine the key message. So our protocol
enforces the physical conditions that are necessary to satisfy the no-cloning principle for
quantum key distribution protocols. Therefore, our protocol is immune against cheating,
man-in-the-middle and intercept-resend attacks.

Note that the particle sequence sent from Bob to Alice and the particle sequence sent

from Alice to Bob are shuffled. The original sequences are kept secret by their respective
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owners Alice and Bob. As the result, our protocol can effectively resist Trojan horse
attacks (the specific proof can be found in [20, 68,123, 124]) and dense coding attacks
(see [120]). Most importantly, S’ and the degrees and positions of source symbols can be
transmitted on-line simultaneously to Bob through quantum and classical channels (see
Assumptions 3 and 4). Even if quantum channels are noisy and lossy, Bob can still obtain
the key messages.

Here we must stress that, unlike the existing quantum key distribution protocols, where
the key messages are determined exclusively by quantum data, our protocol obtains the
key messages using simultaneously quantum and classical data. Although in our protocol,
a photon carries many more bits of key messages than in other general protocols, the task
of Eve to discover them seems to be no easier than guessing them. Alternatively, Eve can
(successfully) guess both the transition unitary operations and the corresponding classical
bits with the same probability of success 22727

Note that for the corresponding classical bits, as they are generated by using the pre-
shared sequence S between Alice and Bob in a flexible and random way, Eve has no means
of decoding the source symbols. As the result, without S, Eve cannot do much better than
to randomly guess it with the probability of 222", Moreover, without the corresponding
classical bits, the probability of guessing the transition operation is 2272". Because the

probability of guessing the basic unitary operation is 41. So the overall probability of
guessing ultimate unitary is 272". For instance if n = 100, then the probability of guessing
is 27200,

According to the security analysis of the Bennett-Brasard protocol [3], even if Eve
can guess the operation from the classical data, then she obtains no useful information
without knowing the correct transition unitary operations. So our protocol is free from

the photon number attack [125] and the entangle-measure attack [68].

To emphasize again, the pre-shared sequence is very important in our protocol. We
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should also stress that due to the flexible and random way of generating classical data,
the number of source symbols that is used to prepare classical data can be very small,
and hundreds of blocks are enough for many purposes. Because, unlike in classical cryp-

tography, Eve cannot decode the encoding symbols just from their positions and degrees.

5.3.4 Features of our hybrid QKD protocol

High-capacity — the protocol uses extended unitary operations to make a photon trans-
port as many or as few classical bits of the key message. The number of classical
bits depends on a particular need and compares favourably with other protocols
where the number is equal to 2 (see [126] for instance). Moreover, the key messages
in the protocol not only depend on the transition operations, but also on the corre-
sponding classical bits. The protocol works over noisy and lossy channels. While a
photon can carry as many key messages as in [22,23], the key will be destroyed over
noisy and lossy quantum channels. Most importantly, the protocol demonstrates

that classical cryptography and quantum cryptography can be combined.

Authentication with physical mechanism - classical key distribution cannot address
the problem of eavesdropping. Moreover, the security of classical key distribution
is based on intractability assumptions of some computational problems. Some of
these problems are proved to be easy on quantum computers. The protocol addresses
both the mutual authentications of the parties and eavesdropping detection simul-
taneously. This is done by combining operations on classical bits with no-cloning

principle for quantum bits.

Efficiency — the protocol allows a photon to carry an arbitrary number of classical bits

instead of two in most existing protocols. This dramatically improves its efficiency.
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Recall that the information-theoretic efficiency is defined in [127] as

q+ b

n

where b, is the number of secret bits received by Bob, ¢; is the number of qubits
used, and b; is the number of classical bits exchanged between Alice and Bob during
the quantum key distribution protocol. The number of classical bits used for the
detection of eavesdropping in our protocol is negligible. As shown in [127], for the
Bennett-Brasard protocol, b, = 0.5, ¢; = 1 and b; = 1. Hence, the efficiency of the
Bennett-Brasard protocol is 25%. After similar calculations, we can conclude that
the efficiency of the EPR protocol is 50% [7]. However, in our protocol, b, = 2n,

g: = 1 and b; = 2n, so, the efficiency approaches 100% when n — +oco.

It is worth noting that the implementation of our protocol requires Bell-state measurement
only, which has been implemented in an experiment described in [128]. Due to the use of
fountain codes, the classical data is obtained by a simple XOR operation. Clearly, this

does not increase the complexity of the protocol.

5.4 Hybrid QSS protocols using extended unitary op-
erations

In this section, we first provide some definitions, and then the corresponding protocols
are presented.

Definition 5. [122] A QSS is said to be hybrid only when a sufficient number of
quantum participants with their quantum shares and enough classical participants with
their classical shares together can recover a secret.

In hybrid quantum secret sharing (HQSS) protocols, the secret shares are composed

of quantum and classical shares. We name the former g-shares and the latter c-shares. A
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participant who holds only c-shares is called a c-participant and a participant who holds

only g-shares is named a g-participant.

5.4.1 ((m+ 1,n)) threshold hybrid QSS protocol

In this subsection, we present a definition and a theorem for hybrid quantum secret
sharing based on ((m + 1,n')) threshold, that is, there are exactly one g-participant and
n' — 1 c-participants. Moreover, only when the g-participant and at least m < n’ — 1

c-participants cooperate, the secret can be recovered.

A definition and a theorem based on ((m + 1,n')) threshold

Definition 6. [122] A HQSS achieving ((m + 1,n')) among a set of participants
P = {P,,P,,...,Py} is said to be dual compressible threshold HQSS if only one -
participant with one g-share and at least m c-participants with c-shares with the size of
ﬁ can share a secret cooperatively, where [ is the length of the shared secret.

According to definition 6, we can obtain the following theorem. It formalizes the
scenario when new participants join in.

Theorem 1. [122] A ((m + 1,n'))-HQSS can be inflated only conformally, i.e., to
threshold protocols having the form ((m + A + 1,n' + X)) where A (A € N) are all new
c-participants.

Proof. As the given conformally-HQSS meets the no-cloning theorem, then obviously
does the ((m + A\, + 1,7 4+ A\))-HQSS, where \,,, > Ay > 0and m+ A, +1 < n' + A\,
Moreover, according to Lemma 1 of Ref [69], a restriction of the ((m-+A,+1, 7'+, ))-QTS
by A c-participants necessarily yields a conformally reduced, ((m+\,+1—X,n'+ A, —\))-
QTS. The restricted scheme has a different access structure from ((m + 1,n')) unless

Am = A = A. Hence, just a conformal inflation of ((m + 1,7n'))-HQSS is possible, where

it is inflated to a ((m + A+ 1,n’ + X))-HQSS by the addition of A c-participants.
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The proposed protocol

In this subsection, we propose a dual compressible ((m+1,n')) hybrid quantum secret
sharing protocol in which we assume that: 1) Bob is the g-participant and Charliey, ...,
Charlie, 1 are n' — 1 c-participants. 2) Alice and Bob agree that each of the four basic
unitary operations corresponds to a particular transition operation in advance. 3) The
shared secret is s4 = {s},5%,...,84},1 = 2n,5"t € {0,1},4; = 1,2,...,1. 4) Classical
channels are supposed to be authenticated classical channels.

(1) Bob first prepares ' + 1 EPR pairs (where )\ is the number that can provide
an analysis of the error.) Every EPR pair is supposed to be [¢)7)p,s;, = \/ii(|0>hj|1>tj —
|1)1,]0);,). All of the 1st particles of each EPR pair are to form a photon sequence Sy
and all of the 2nd particles of each EPR pair are to form a photon sequence Sy. Then
Bob keeps the sequence Sy and sends the sequence St to Alice via a quantum channel.

(2) After receiving the sequence St from Bob, Alice first finds the correct n—extended

unitary operation in terms of the shared secret s, = {sl,s%,...,s4}, which can be

b and control bits. Then

determined by the transition operation Ubilbizbi bi b -
o n—

30ig %o _3

Alice performs the transition operation Ubilbi2 bigbig-biy.
o n—.:

bi,, , On particle t;. Under the

transition operation, this state can be changed to one of the following states according to

(2.21) in Chapter 2:

Ifflbi2bi3bi4 biy, 3 bin,, 2|¢ ) = Ugpl™) = 1¢7);
If:lbi2bi3bi4 big, _5b |¢ >:U01|1/’ )= v");
Uy bbb ey by, |87) = Undlo™) = [67);
bbby bis biy 2|¢ ) = Upily™) = [¢*).

where the superscript ¢; denotes the photon on which unitary operation is performed.
(3) In order to check eavesdropping in this transmission, Alice randomly chooses some
particles from remaining St to detect eavesdropping and performs one of the four basic

unitary operations on them at random. Then Alice transmits these encoded particles to
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Bob while telling him the positions of these particles and the type of the basic unitary
operations on them. Bob performs Bell-basis measurement on the encoded particles and
their counterparts from Sy. Bob computes the error rates by checking the EPR pairs
from which Alice chooses particles. If the error rates of the chosen EPR pairs are lower
than the predefined value, Alice transmits the encoded particle t;- to the g-participant
Bob via a quantum channel. Otherwise, Alice continues to check the quantum channel in
the same way until the qubit #; encoded by the transition operation is sent to Bob safely.

(4) Then Alice allocates the corresponding classical bits obtained by applying XOR
to the bit values from the subscript of the transition operation and the control bits with
the size of 2n — 2 to the n’ — 1 c-participants Charliey, ..., Charlie, _; through a classical
channel in the following way.

(5) Let ¢ denote the corresponding classical bits, Alice allocates ¢ in the way that used
in [129], which is as follows:

1. Alice cuts the corresponding classical bits into m — 1 pieces. These pieces are
denoted as ¢1,¢o,...,cm1 and c=cy11ca 1l ... 1l ¢y Where each ¢;,,70 =1,2,...,m — 1,
is the binary representation of a decimal number.

2. Alice allocates the corresponding classical bits in the following way:

2.1 Choose a prime p, p > max(cmnaz,n — 1), where ¢na = maz{cy,ca, ..., Cm_1}.

2.2 Randomly and uniformly choose a number a; € Z, and generate a polynomial:
filz) = a1z + ;1.

2.3 Sample fi(z) at two points A,; = fi(1) and A, 2 = f1(2) which represent two
shares of ¢;.

2.4 Do for 2 < iy < (m —1).

(a) Generate a polynomial

fir(@) = Acy i + A (ip-1) T -+ Ay

(b) Sample f;,(x) to create new shares.
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i. If io <m — 1, sample at i + 1 points such that

Acyt = [in (1), Ao = fi,(2), -+ Acy(ia11) = fin (12 + 1).
ii. If i9 = m — 1, sample at n’ — 1 points such that

Ay = fi,(1), Ay = [,(2), ..., Apy = fi,(n' = 1)

(c) Delete old shares: A, 1, Ac;y i

2.5 The final n' — 1 shares are given by (is, A;,), for 1 < iy <n’ —1.

(6) A group of the g-participant and any m c-participants together are able to re-
construct the secret. First, the g-participant measures (hj,t;) to obtain the transition
operation in terms of their agreement. Then, the m c-participants interpolate their m
shares (iy, A;,) to generate the polynomial of degree m — 1 and thus obtain the corre-
sponding classical bits.

f(x) =cap_ 8™+ Copp ™2+ Cay T F Co -

Hence, the control bits can be obtained by applying the XOR operation on the cor-
responding classical bits and bit values knowing from the subscript of the transition
operation. Finally, they can recover the ultimate operation by checking the algorithm
build_table in Appendix A, that is, Alice’s secret s, = {s},s%,...,s4}.

It is worth noting that the dual compressible threshold hybrid quantum secret sharing
protocol can be easily converted into a ((m+1,n')) threshold hybrid quantum multi-secret

sharing protocol. But ¢y, cs, ..., ¢;n_1 should be replaced with sy, ss,...,s,_1. The rest of

the processes remain unchanged.

5.4.2 Hybrid QSS protocol based on adversary structure

In this section, a dual compressible hybrid quantum secret sharing protocol based on
adversary structure is presented, in which all participants from any minimal qualified set

can recover the secret.
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Definitions and a theorem based on access structure and adversary structure

Let P={P, P,,..., Py} be the set of participants. Let a C P. « is called a qualified
set if the g-participant and any designated c-participants in o together can recover the
secret; otherwise, it is called an unqualified set. An access structure, denoted by T, is a
collection of qualified subsets of P satisfying the monotone ascending property: for any
A eTand A € 2%, A C A implies A € T. An adversary structure, denoted by A, is
a collection of unqualified subsets of P satisfying the monotone descending property: for
any A" € A and A € 2F, A C A’ implies A € A.

By the definition of qualified and unqualified subsets, for any given access structure
I' and adversary structure A over P, we have that I' N A = (). Because of the monotone
properties, for any access structure I' and any adversary structure A, it is sufficient to

consider the minimum access structure:
Cpin={A€l |VBC A= B¢T},
and the maximum adversary structure:
Amaz ={BEA|VADB= A¢gA}.

In this thesis, we consider the complete situation, that is A |JT = 2¥ [130].
Based on the above-mentioned concepts, Definition 3 and Theorem 2 are presented as
follows.

Definition 7. [122] A HQSS achieving the minimum access structure I',,;, = {1, a9,

.oy, } (where @, 71 = 1,2,...,7 is a minimal qualified set of participants) with its
maximum adversary structure Ao, = {01, 02,...,0r} (Where §j,,52 = 1,2,...,7ry is a
maximal unqualified set of participants) among a set of participants P = {P,, P,, ..., P}

is said to be dual compressible if only one g-participant with one g-share and all c-
participants from o« (j1 = 1,2,...,71) who hold the c-shares with the size of lr_—f can

share a secret cooperatively.
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According to definition 7, we can obtain the following theorem 2. It formalizes the
scenario when new participants join in.

Theorem 2. [122] A HQSS achieving the minimum access structure I';,;, = {1, ag, . . .,
a,, } (where o, 51 = 1,2,...,r, is a minimal qualified set of participants.) among a set

of participants P = { Py, P», ..., P} can be always inflatable.

Proof. Suppose that m new c-participants P, 1, Pyyo, ..., Py are added into P to
formP' = {Py, P,, ..., Pyim}. The new minimum access structure I, ;. = {a}, o, ..., o,
can be achieved by adding any new c-participants to any of the «;,,51 = 1,2,..., 7.

The corresponding classical bits are shared among n' + m — 1 c-participants in terms
of the classical scheme performing I'. To recover the secret, the g-participant from
aj,j1 = 1,2,...,r1 can obtain the transition operation and all the c-participants from
aj,j1 = 1,2,...,r can reconstruct the corresponding classical bits. The shared secret
is obtained through the g-participant’s and c-participants’ collaboration. Hence, the new

scheme HQSS (I") is an inflatable one of the given scheme HQSS (T').

Notations

In this dual compressible hybrid quantum secret sharing, we use the following nota-
tions.

Alice: a trusted dealer who wants to share the corresponding classical bits among the
c-participants;

P: P={P,P,,..., Py} is the set of all the participants;

c: the corresponding shared classical bits;

Toin: Timin = {1, a9, ..., } is the minimum access structure corresponding to ¢ ;

Apae: Dnae = {61, B2y - - -, Bry } is the maximum adversary structure corresponding to

C1,Ca, . .., Cry: the pieces of ¢;
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T9: To = |Apmaz|, that is; the number of elements in A,

The Alice’s phase

The first three steps (1)-(3) in the protocol are the same as those in (section 5.3.1) as
they just involve Alice and Bob. Steps (4)-(6) are similar that used in [130], which is as
follows:

(4) Alice selects H: a suitable strongly collision-free hash function, which takes as
input a binary string of an arbitrary length, and produces as output a binary string of a
fixed length ¢, where ¢ is the length of the pieces of the corresponding classical bits, and
computes H(c;,).

(5) Alice computes:

r1=c1 D H(cy), o =0co® H(c3), ..., Tpy1 = Cry1D H(Cpy), Ty = H(x1) ® H(x2) B

B H (1) B Cry-

Then Alice generates n’ — 1 identical arrays H;, = {x1,za,..., 2.}, forig=1,2,...,
n' — 1.

(6) Alice allocates c-shares in such a way that each participant in 5; has no secret share
x1, each participant in (s has no secret share z,, ..., and each participant in (., has no
secret share x,,. Then Alice distributes the remaining c-shares in H;, to the c-participant
P, foriz=1,2,...,n — 1, secretly.

Note that even if the number of participants is large, it is still possible to obtain
the minimum access structure and the maximum adversary structure using linear codes

(see [131]).

The recovery phase

Suppose a group of participants from «;, want to recover the secret.

C-participants from «;, delete the redundant z;,, for i3 = 1,2,...,7ry and compute:
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Cro = H(z1) D H(29)®... ®H(Xpy 1) BXpyy Crym1 = Tp1 D H(Cpy),y .., o = 29D H(c3),
¢ =11 ® H(c).

So, the c-participants from «;, recover ¢ = ¢y 11 ¢ 1l --- 1l ¢py—1 1l ¢p, While the g-
participant obtains the transition operation by measuring (h;,t;). Consequently, they
can recover the ultimate operation by checking the algorithm build_table in Appendix A,
that is, Alice’s secret s4 = {s,s%,...,s4}.

Likewise, it is worth noting that the dual compressible quantum secret sharing protocol
based on adversary structure can be easily converted into a hybrid quantum multi-secret
sharing protocol based on on adversary structure. The protocol can be realized by just

regarding every piece of classical bits of a secret in section 5.3.1 as the classical bits of

every single secret.

5.4.3 The security analysis and the features of hybrid QSS pro-

tocols

As is known, on the one hand, classical secret sharing protocols cannot address the
problem of eavesdropping and their security is guaranteed by the difficulty of computation,
which might be susceptible to the strong ability of quantum computation. Fortunately,
quantum secret sharing can address this issue and eavesdropping detection simultaneously.
On the other hand, quantum data is much more prohibitive and difficult to cope with
than classical data. Hence, we have proposed two dual compressible hybrid quantum
secret sharing protocols, which make full use of the advantages of classical secret sharing
protocols and quantum secret sharing protocols. These protocols can be surprisingly easy
to implement because they just need to perform the correct transition operation on an
EPR pair and to allocate the corresponding classical messages. Though collation tables
are required in our protocols, this is easily achieved by an algorithm.

Recursion is used to implement dual compressible hybrid quantum secret sharing based
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on ((m+ 1,n')) threshold and adversary structure. That is to say, just one g-participant
with g-shares and at least m c-participants (or all participants from any minimal qualified
set with c-shares with the size of 1;—22) with c-shares with the size of % can share one
secret in a secure way. The obvious merit of the protocols is that they can curtail the
cost of generating, transmitting and storing EPR pairs and classical bits. Moreover, a
hybrid quantum multi-secret sharing protocol can be designed in the same way, i.e., one
g-participant and any m or over m c-participants can share m — 1 secrets simultaneously.

In our hybrid protocols the shared secret is determined by classical data and quantum
data simultaneously, that is, the shared secret cannot be obtained by either classical data
or quantum data alone. On the other hand, in our hybrid protocols, it is much simpler
and faster to allocate shares without weakening the security in contrast to quantum secret
sharing. Compared with the existing hybrid quantum secret sharing protocols [24,69,70],
not only does the number of also the number of particles needed and the size of c-shares
reduce. Most importantly, even if Eve is able to obtain all the classical obtain all the
classical messages, our proposed protocols are still secure. Because in our protocols, the
c-participants do not know the used transition operations by Alice. Then, if these c-
participants want to obtain the secret, they have to guess the used transition operation
and the basic unitary operation. The probability of a successful guess is 22%2 X 2% = 22%
which is in fact equal to the probability of conventional quantum secret sharing protocols.
Moreover, the distribution of g-shares is the same as that in quantum secret sharing
protocols. That is to say, the security of transmitting one particle can match that of n
particles. Therefore, when conventional quantum secret sharing protocols are secure, our
proposed hybrid quantum secret sharing protocols are also secure.

Moreover, we present a table (see Tab. 5.3) to compare the performance among Nasci-

mento et al.’s [24], Singh et al.’s [69], Fortescue et al.’s [70] and our proposed protocols.
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Table 5.3: Performance comparison of HQSS.

Protocols Nascimento et al.’s [24] Singh et al’s [69] Fortescue et al’s [7T0] Our protocol [50]
Threshold Yes Yes Yes Yes
Adversary structure No No No Yes
Access structure Yes Yes No No
Imperfect “ramp” No No Yes No
Termed inflation No Yes No Yes
dual compression No No Yes Yes
Twin-thresholding No Yes No Yes
one quantum participant Yes No No Yes
one quantum share Yes No No Yes

5.5 Summary

Distributed fountain codes and extended unitary operations can be used to perform ef-
ficient, authenticated and high-capacity hybrid quantum key distribution with the present
technology. It is worth mentioning that the discovery of security of determining key dis-
tribution by transition operations and corresponding classical bits simultaneously and the
repeated use of a short sequence of source symbols to generate classical bits is crucial. It
enables quantum key distribution to be achieved in a more secure, efficient and practical
way. Also, based on the extended unitary operations, two dual compressible hybrid quan-
tum secret sharing protocols have been proposed. Compared with the other proposed
hybrid quantum secret sharing protocols, the main contributions of the hybrid protocols
are that: 1) Not only can they reduce the number of g-participants, but also the number

of particles and the size of c-shares, which is a very important issue in hybrid quantum
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secret sharing. 2) The corresponding classical bits and the transition operations that are
used to determine the shared secret jointly do not have a direct relationship, which, to
some extent, makes our protocols more secure. 3) The prepared EPR pairs can be reused
in our hybrid quantum secret sharing protocols. 4) Our protocols are more feasible to

implement in a practical setting.



Chapter 6

Conclusions and Future Work

This chapter provides a summary of the main contributions of the thesis and discusses

several future research directions.

6.1 Summary of the contributions

As quantum computers develop, the requirements for secure protocols are becoming
more and more demanding. As a result, it is necessary and significant to make adjustments
on the existing secure models. In this thesis, the research work has concentrated on the
design and analysis quantum key distribution protocols. We have studied high-capacity
quantum key distribution and quantum secret sharing of secure direct communication,
HQKD and HQSS, and have obtained the following results.

In Chapter 3, with the relationship among Lucas numbers, Chebyshev maps and
k-Chebyshev maps observed, we have found that a more efficient high-capacity QKD
protocol can be achieved based on Simon et al.’s work [22]. To be exact, we encode
key messages with the Chebyshev-map values corresponding to Lucas numbers, and then
use k-Chebyshev maps to achieve consecutive and flexible key expansion, and apply the

locking of classical information and fountain codes to privacy amplification to solve the

111
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security of the exchange of classical information via the classical channel. Consequently,
our lower-dimensional high-capacity protocol can be also without the limitation of or-
bital angular momentum and down-conversion bandwidths, and meet the requirements
for longer distances and lower error rates simultaneously. In Chapter 3, we have also
studied high-capacity QKD protocols in noisy settings. We have extended the four ba-
sic unitary operations to sixteen 2-extended unitary operations based on collective noise.
With sixteen 2-extended unitary operations based on collective noises used, we proposed
a high-capacity QKD protocol against a collective-dephasing noise and one against a
collective-rotation noise. Both are easier to implement and have higher qubit efficiency
compared to those in [40,41,43,44,46] and [42,45].

Furthermore, we studied QSS, which is the generalization of quantum key distribution
to more than two parties in Chapter 4. We mainly focus on quantum secret sharing pro-
tocol of secure direct communication. In a detailed analysis in 1999, Cleve et al. pointed
out that it was unlikely for (2,3) threshold quantum state sharing to be achieved. How-
ever, in 2001, Tyc and Sanders [80] showed explicitly how to achieve a continuous variable
(2,3) threshold quantum state sharing protocol. In 2002, Lance et al. [81] extended Tyc
and Sanders’ protocol by utilizing an electro-optic feedforward technique and further pro-
posed two protocols. When recurrence is used, we have proved that, a (2,3) discrete
variable threshold quantum secret sharing protocol of secure direct communication can
also be achieved using the same devices as in BB84. Besides, we use the idea of dis-
tributed fountain codes to let participants know the positions of inserted nonorthogonal
state particles and the control codes for the implementation of no-cloning principle for
eavesdropping-check and authentication. The proposed protocol is inherently immune to
Trojan horse attacks. Moreover, every particle can on average carry nearly up to 1.5-bit
messages because the shares of smaller secret pieces are all accumulated into the shares

of the largest secret piece, and Bobs can detect eavesdropping by themselves without
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exchanging classical messages due to the generated control codes, thereby enhancing the
efficiency of quantum secret sharing. Moreover, we have generalized the (2,3) discrete
variable threshold quantum secret sharing protocol of secure direct communication to
non-threshold quantum secret sharing protocol. The proposed protocol uses the proper-
ties of fountain codes to allow a realization of the physical conditions necessary for the
implementation of no-cloning principle for eavesdropping-check and authentication.
Finally, with applications of n-extended unitary operations used, a hybrid quantum
key distribution and two hybrid quantum secret sharing protocols have been proposed
in Chapter 5. Distributed fountain codes and extended unitary operations can be used
to perform efficient, authenticated and high-capacity hybrid quantum key distribution
with the present technology. It is worth mentioning that the discovery of security of
determining key distribution by transition operations and corresponding classical bits si-
multaneously and repeated use of a short sequence of source symbols to generate classical
bits is crucial. It enables quantum key distribution to be achieved in a more secure,
efficient and practical way. Also, based on the extended unitary operations, two dual
compressible hybrid quantum secret sharing protocols have been proposed. Compared
with the hybrid quantum secret sharing protocols proposed in [24,69, 70|, the main con-
tributions of the hybrid protocols are that: 1) Not only can they reduce the number of
g-participants, but also the number of particles and the size of c-shares, which is a very
important issue in hybrid quantum secret sharing. 2) The corresponding classical bits
and the transition operations that are used to determine the shared secret jointly do not
have a direct relationship, which, to some extent, makes our protocols more secure. 3)
The prepared EPR pairs can be reused in our hybrid quantum secret sharing protocols.

4) Our protocols are more feasible to implement in a practical setting.
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6.2 Future work

In the future, we plan to work towards: enhancing the performance of practical quan-
tum key distribution protocols. Further improvements, both in key rate, message capacity
rate and secure transmission distances, are required for most applications.

In order to defend against the possible attacks from quantum computers, quantum
cryptography has been proposed [3,6-21]. However, it is hard and expensive to prepare
single photons and entangled states and quantum information is fragile (here it means
that it is easy to be broken physically) in nature. We think that high-dimensional and
hybrid ways may provide two good solutions. Though there are many high-dimensional
QKD protocols have been proposed, their efficiency is not high. This is because that Alice
and Bob choose polarisation bases for each photon with equal probability randomly and
independently, which causes Alice and Bob to use different bases half of the times; and
all the accepted data are put together and a single error rate is computed.

However, Lo et al. [132] (originally submitted to arXiv on 14 Nov 2000 (v1), last
revised 8 Jul 2005 (this version, v3)) have shown that the efficiency of the BB84 protocol
can be asymptotically close to 100% by choosing the rectilinear basis and diagonal basis
with substantially different probabilities. In 2002, Xue et al. [133] proposed a two-user
QKD protocol with three nonorthogonal states, which incorporates Lo et al.’s idea. The
efficiency of Xue et al.’s protocol can also be asymptotically close to 100%. In their two-
user protocol (in which there are three participants, i.e., the center Alice and the users Bob
and Carol), Alice prepares a sequence of photon pairs that are in one of the three states
|BC)1, |BC)s, |BC); with probabilities of 152, =% and € respectively, and Bob and
Carol choose two types of measurements with probabilities of 1 — €5 and €5 respectively.
Moreover, Xue et al. have shown that their protocol is secure using similar arguments to
those applied by Shor and Preskill [134] in their proof of security of the modified version

of Lo et al.’s protocol (see [135]).
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In our future work, we will consider an efficient and flexible lower-dimensional high-
capacity quantum key distribution and controllable quantum private queries based on [22].
In such protocols, entangled particles that are produced using the recurrence relation
L,.o = F, .1+ F, ; are used for key generation or key query with the probability of 1 —¢;
and Chebyshev-map values corresponding to Lucas numbers for key expansion. Entangled
particles that are produced using the recurrence relation F, o = F, 1 + F, are used for
eavesdropping detection with the probability of €;. Alice and Bob also choose two types of
measurements with probabilities of 1 — €5 and €9, respectively. Also, it may be worthwhile
to design a pseudo-random sequence generator, which can allow Alice and Bob to produce
the corresponding classical bits with the pre-shared sequence synchronously and make the

classical channel unnecessary in sending quantum data in hybrid QKD protocols.
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