An Ethnopharmacological Study of Medicinal Plants of the Kamilaroi and Muruwari Aboriginal Communities in Northern New South Wales

A thesis submitted for the degree of

DOCTOR OF PHILOSOPHY

at

MACQUARIE UNIVERSITY

by

QIAN LIU

Department of Chemistry and Biomolecular Sciences July, 2006

Declaration

The work presented in this thesis has not been submitted, either in whole or in part, for a higher degree to any other university or institution, and to the best of my knowledge is my own and original work, except as acknowledged in the text.

Qian Liu July 2006

Acknowledgements

I would like to thank my supervisors Dr Joanne Jamie, Dr Subramanyam Vemulpad and Dr James Kohen for involving me in this multidisciplinary project and letting me participate in all the different aspects of it, and for their support throughout this study.

I also would like to give my thanks to all the members of the Indigenous Bioresource Research Group at Macquarie University: David Harrington, John Hunter, Mathew Flower, Nynke Brouwer and Thomas Dzeha, and Professor Donna Craig and Chris Jones at the Centre for Environmental Law, for their collaboration and help during this study. I am very grateful to Mr and Mrs Roy and June Barker for sharing their customary medicinal plant knowledge with me. I also wish to thank Ms Alison Downing at the Herbarium of Macquarie University for identifying all the plant specimens.

My sincere acknowledgement goes to Professor Jianmin Yue at Shanghai Institute of Materia Medica, Chinese Academy of Sciences, for extending his research facilities to me for a part of this study, and for his support and guidance during my stay in his laboratory. I also want to thank his group members, especially Associate Professor Sheng-Ping Yang, for the helpful discussions on my research work during my overseas study.

I am very thankful for all those people who trained me on all of the instrumentation in the university. I thank Dr Andrew Piggott for the instructions on operating 2D NMR, Dr Isla Hains for the LCMS, Rama Nimmagadda and Mark Tran for the GCMS and Keith Tonkin and Thulasy Jeyendra for the IR and polarimeter.

I made a few very good friends during my study at Macquarie University in Sydney. Since I was away from my family, these friends have been an important part of my life. I would like to express my sincere gratitude to Mr Priambudi Kosim-Satyaputra for his always wise suggestions on the problems I encountered in my work and daily life. My special thanks go to Mr Simone Ciampi who proof read the first chapter of this thesis and helped to improve my English expressions. My thanks also go to Ms Ning Xu, Ms Qiang Xu, Ms Hong Yu, Dr Yabai He, Mr Hua Liu and Mr Dayong Jin, for their friendship and for always being there to cheer me up during my difficult times.

I give my heartfelt thanks to my parents, my parents-in-law, my husband and my daughter, for their love, care and patience. They sacrificed a lot for me during these three years while I was away from home for my PhD study. I couldn't have finished this study without their support and encouragement.

Finally, I thank the Australian government and Macquarie University for providing me with scholarships for this study.

Abstract

The overall objective of this study was to isolate and identify biologically active compounds from Australian medicinal plants with the assistance of customary (traditional and contemporary) medicinal knowledge of Aboriginal communities in northern New South Wales. This study consisted of three interrelated aspects, namely ethnobotanical research, biological studies, and bioassay-guided isolation and characterisation of bioactive constituents from Australian Aboriginal medicinal plants.

An ethnobotanical study of Australian medicinal plants used by the Kamilaroi and Muruwari Aboriginal communities was conducted with the cooperation of members of these communities. The customary medicinal plant knowledge of these two communities, along with scientific research data from published sources, of a total of 35 plants and 2 customary remedies were obtained through interviews and literature studies, and were documented as a database. The ethnobotanical database contributed to the preservation of customary medicinal knowledge of these communities. A series of educational activities were also conducted for Indigenous students as part of the relationship development and benefit sharing with Aboriginal communities in northern New South Wales. The ethnobotanical data were also used as a guide for targeted biological and chemical studies of two Australian medicinal plants, *Eremophila sturtii* and *Exocarpos aphyllus*.

Anti-inflammatory and antimicrobial assays were employed in this study for the evaluation of the biological activities of the selected medicinal plants according to their customary medicinal uses, and were applied throughout the bioactivity-oriented isolation of bioactive agents from these medicinal plants. The biological study also included optimisation and validation of a fluorescence-based antibacterial assay, the fluorescein diacetate (FDA) assay, to make it suitable for the screening of medicinal plants for antibacterial activity. Antimicrobial and anti-inflammatory activities of *Eremophila sturtii* and *Exocarpos aphyllus* were revealed in this biological study.

Bioassay-guided fractionations of these Aboriginal medicinal plants led to the isolation of two novel compounds, 3,8-dihydroxyserrulatic acid and serrulatic acid, and six known compounds, β -sitosterol, sesamin, 3,6-dimethoxy-5,7-dihydroxyflavone, betulin, betulinic acid and oleanolic acid. The structures of the isolated compounds were elucidated using nuclear magnetic resonance (NMR) and mass spectrometric (MS) techniques. Both novel compounds demonstrated antibacterial activity against *Staphylococcus aureus* and anti-inflammatory activity against cyclooxygenase-1 and cyclooxygenase-2 (COX-1 and COX-2). All known compounds demonstrated anti-inflammatory activity against COX-1, COX-2 and 5-lipoxygenase (5-LO). The biological activities of these compounds were consistent with the customary medicinal applications of these Aboriginal medicinal plants. This is the first time that any of these compounds have been isolated from *Eremophila sturtii* and *Exocarpos aphyllus*.

List of Publications

Liu, Q., Harrington, D., Kohen, J. L., Vemulpad, S., Jamie, J. F., 2006. Bactericidal and cyclooxygenase inhibitory diterpenes from *Eremophila sturtii*. Phytochemistry 67(12), 1256-1261.

Brouwer, N., **Liu**, **Q.**, Harrington, D., Kohen, J., Vemulpad, S., Jamie, J., Randall, M., Randall, D., 2005. An ethnopharmacological study of medicinal plants in New South Wales. Molecules 10(10), 1252-1262.

Wanandy, S., Brouwer, N., **Liu, Q.**, Mahon, A., Cork, S., Karuso, P., Vemulpad, S., Jamie, J., 2005. Optimisation of the fluorescein diacetate antibacterial assay. Journal of Microbiological Methods 60(1), 21-30.

Conference Abstracts

Liu, Q., Wanandy, S., Harrington, D., Kohen, J. L., Vemulpad, S., Jamie, J. F., Ethnopharmacological studies of Australian Aboriginal medicinal plants. The Fifth International Chemical Congress of Pacific Basin Societies (Pacifichem), Honolulu, the United States of America, December 2005.

Liu, Q., Harrington, D., Kohen, J. L., Vemulpad, S., Jamie, J. F., *Eremophila sturtii* – an ethnopharmacological investigation of an Australian Aboriginal medicinal plant. Royal Australian Chemical Institute 2005 Natural Products Annual Symposium, Sydney, Australia, September 2005.

Liu, Q., Wanandy, S., Harrington, D., Kohen, J. L., Vemulpad, S., Jamie, J. F., Chemical and biological investigations of Australian Aboriginal medicinal plants. Royal Australian Chemical Institute Connect 2005 International Conference, Sydney, Australia, July 2005.

Liu, Q., Dzeha, T., Brouwer, N., Harrington, D., Flower, M., Hunter, J., Kohen, J. L., Vemulpad, S., Jamie, J. F., Maclean (Yaegl) Land Council, Research Partnerships in Aboriginal Bush Medicine. Royal Australian Chemical Institute 2004 Natural Products Group Annual Symposium, Lismore, Australia, September 2004.

Brouwer, N., Liu, Q., Harrington, D., Kohen, J. L., Vemulpad, S., Jamie, J. F., Ethnopharmacological study of Medicinal Plants in New South Wales. International Conference of Indigenous Knowledge and Bioprospecting, Sydney, Australia, April 2004.

Table of Contents

Declaration	iii
Acknowledgements	v
Abstract	vii
List of Publications	ix
Table of Content	xi
List of Figures	xvi
List of Tables	xvii
List of Schemes	xviii
List of Abbreviations	xix

Chapter 1. Introduction	
1.1. Aims and scope of this study	1
1.2. Plants for human healthcare	2
1.3. Medicinal plants and drug discovery	4
1.3.1. Ethnobotany and ethnopharmacology	6
1.3.2. Ethnobotanical approach in drug discovery	7
1.3.3. Antimicrobial and anti-inflammatory agents from medicinal plants	9
1.3.3.1. Anti-inflammatory agents	9
1.3.3.2. Antimicrobial agents	11
1.4. Ethnobotanical and ethnopharmacological research in Australia	13

Chapter 2. An Ethnobotanical Study with the Kamilaroi and MuruwariAboriginal Communities and Relationship Building17

2.1. Introduction	17
2.2. Ethnobotanical study of medicinal plants of Kamilaroi and Muruwari Aboriginal communities	19

2.2.1. Literature study of plants of the Kamilaroi Aboriginal community	22
2.2.2. Interviews with elders of the Muruwari Aboriginal community	22
2.2.3. Ethnobotanical database for the Kamilaroi and Muruwari Aboriginal communities	25
2.2.4. Plants selected for biological and chemical investigations	29
2.2.4.1. Ethnobotanical research on Eremophila sturtii	30
2.2.4.2. Ethnobotanical research on Exocarpos aphyllus	33
2.3. Approaches towards ensuring best ethical practices and benefit sharing	35
2.3.1. Relationship Building	35
2.3.2. Contributions to Aboriginal communities' education	38
2.4. Conclusions and future directions	44
Chapter 3. Biological Assay Methods and Optimisation	47
3.1. Introduction	47
3.2. Inflammation mechanisms and anti-inflammatory assays	48
3.2.1. Cyclooxygenase pathway	51
3.2.2. Lipoxygenase pathway	53
3.2.3. Targeted enzymes and anti-inflammatory assays	55
3.2.3.1. COX inhibitor screening assay	56
3.2.3.2. 5-LO inhibitor screening assay	58
3.3. Microbial infections and the need for new antimicrobial agents	59
3.3.1. Infectious diseases	59
3.3.2. Drug resistance	60
3.3.3. Targeted microorganisms and causes of infections	61
3.4. Optimisation of the fluorescein diacetate (FDA) antibacterial assay	63
3.4.1. Growth curve of <i>E. coli</i>	65
3.4.2. Optimising the incubation time	68
3.4.3. Optimising the inoculum density	70
3.4.4. Validation of the optimised FDA antibacterial screening assay	72
3.4.5. Studies on solvent effects	73
3.5. Broth microdilution method for <i>Candida albicans</i>	75

3.6. Possible interferences in the determination of MIC values of medicinal plant substances by the FDA assay 77	
3.7. Resazurin antibacterial assay	79
3.8. Conclusions and future directions	82
3.9. Experimental	83
3.9.1. Reagents and equipment	83
3.9.2. Microorganisms and inoculum preparation	83
3.9.3. Medium preparation for antimicrobial assays	84
3.9.4. Growth of <i>E. coli</i> in 1/10 BPYN and Mueller-Hinton broth	84
3.9.5. Growth curve of <i>E. coli</i> in 1/10 BPNY with or without gentamicin	85
3.9.6. Determination of inoculum density	85
3.9.7. Optimised FDA assay procedure	86
3.9.8. Resazurin assay procedure	86
3.9.9. Validation of the optimised FDA assay	87
3.9.10. Broth microdilution assay procedure	87

Chapter 4. Ethnopharmacological study of <i>Eremophila sturtii</i>	89
4.1. Introduction	89
4.2. General review of <i>Eremophila</i> species	90
4.3. Bioassay-guided chemical and biological investigations of E. sturtii	96
4.3.1. Antimicrobial and anti-inflammatory activities of the crude extract and fractions of <i>E. sturtii</i>	96
4.3.2. Characterisation of the novel bioactive compounds	103
4.3.3. Biological activities of the novel compounds	109
4.3.4. Biological activities of known compounds	113
4.3.5. Antimicrobial activity of customary preparation of <i>E. sturtii</i>	114
4.4. Comparison of the FDA and resazurin antibacterial assays	115
4.5. Conclusions and future directions	116
4.6. Experimental	118
4.6.1. General	118
4.6.2. Plant material	119

4.6.3. Extraction and isolation	119
4.6.3.1. Isolation of 3,8-dihydroxyserrulatic acid (4.1)	119
4.6.3.2. Isolation of serrulatic acid (4.2)	120
4.6.3.3. Isolation of β -sitosterol (4.3)	121
4.6.3.4. Isolation of sesamin (4.4)	122
4.6.3.5. Isolation of 3,6-dimethoxy-5,7-dihydroxyflavone (4.5)	122
4.6.4. Preparation of customary decoction	123
4.6.5. Antimicrobial assays	123
4.6.6. Anti-inflammatory assays	124
4.6.6.1. Cyclooxygenase inhibitor screening assay	124
4.6.6.2. Lipoxygenase inhibitor screening assay	125
Chapter 5. Ethnopharmacological study of <i>Exocarpos aphyllus</i>	127
5.1. Introduction	127
5.2. General review of <i>Exocarpos</i> species	128
5.3. Prior studies of chemical constituents and antibacterial activity of <i>E. a</i>	aphyllus 132
5.4. Bioassay-guided investigation of bioactive constituents of <i>Exocarpos a</i>	phyllus 134
5.4.1. Characterisation of antimicrobial components of <i>E. aphyllus</i>	134
5.4.2. Isolation and characterisation of anti-inflammatory compounds of E .	aphyllus 138
5.4.2.1. Anti-inflammatory activity of pure compounds	144
5.5. Conclusions and future directions	147
5.6. Experimental	148
5.6.1. General	148
5.6.2. Plant material	148
5.6.3. Extraction and isolation	148
5.6.3.1. Betulin (5.1)	150
5.6.3.2. Betulinic acid (5.2)	150
5.6.3.3. Oleanolic acid (5.3)	151
5.6.4. Separation of the <i>n</i> -butanol fraction	151
5.6.5. Detection of phenolic compounds	152

5.6.6. Antimicrobial and anti-inflammatory assays	152
Chapter 6. General Conclusions	153
Appendices	156
Appendix 1.The ethnobotanical database for the Kamilaroi and Muruwari A communities	Aboriginal 156
Appendix 2. ¹ H and ¹³ C NMR of 3,8-dihydroxyserrulatic acid (4.1)	194
Appendix 3. ¹ H and ¹³ C NMR of serrulatic acid (4.2)	195
Appendix 4. Journal article in Phytochemistry (2006)	196
Appencdix 5. Journal article in Journal of Microbiological Methods (2005)	203
Appendix 6. Journal article in Molecules (2005)	215
References	229

List of Fugures

Figure 2.1.	Kamilaroi country	21
Figure 2.2.	Kamilaroi and Muruwari Aboriginal communities in northern New South Wales	21
Figure 2.3.	Ruby Saltbush: Enchylaena tomentose R. Br.	24
Figure 2.4.	Nardoo: Marsilea hirsute R. Br.	24
Figure 2.5.	<i>Eremophila sturtii</i> at Lightning Ridge, New South Wales from where the pla specimens were collected	ant 32
Figure 2.6.	Collected specimen of Exocarpos aphyllus	34
Figure 2.7.	Media coverage of the Yarrawarra workshop	37
Figure 2.8.	Media coverage of the Macquarie University Open Day 2005	40
Figure 2.9.	Media coverage of the Chemistry Road Show at the Casino High School	42
Figure 2.1(D. Media coverage of the Chemistry Road Show at the Maclean High School	43
Figure 3.1.	The arachidonic acid cascade through the cyclooxygenase pathway	50
Figure 3.2.	The arachidonic acid cascade through the 5-lipoxygenase pathway	54
Figure 3.3.	Reaction scheme for the COX inhibitor screening assay.	58
Figure 3.4.	Fluorescein diacetate hydrolysis.	64
Figure 3.5.	Growth of <i>E. coli</i> in 1/10 BPYN medium and Mueller-Hinton broth.	66
Figure 3.6.	Effect of incubation time on the fluorescence produced by E. coli.	67
Figure 3.7.	Difference in fluorescence levels produced from FDA by <i>E. coli</i> with or without the presence of gentamicin.	69
Figure 3.8.	Solvent effects on bacterial growth.	74
Figure 3.9.	Reduction of resazurin to resorufin and hydroresorufin.	79
Figure 4.1.	HMBC correlations of the aromatic moiety of compound 4.1 .	104
Figure 4.2.	COSY correlations of the proton ($\delta_{\rm H}$ 4.07) of compound 4.1 .	104
Figure 4.3.	nOe correlations of compound 4.1 .	106
Figure 5.1.	Fruit of <i>Exocarpos aphyllus</i> .	128

List of Tables

Table 2.1	I. Summary of plants documented in the ethnobotanical database with medicinal information from Kamilaroi and Muruwari communities and literature.	al 27
Table 3.1	 Comparison of MIC results from FDA assay and NCCLS broth microdilution method. 	n 73
Table 3.2	2. Comparison of MIC results from the FDA and resazurin assays.	81
Table 4.1	Antibacterial activities of the ethanol crude extract and partition fractions of <i>E. sturtii</i> .	98
Table 4.2	2. COX inhibitory activities of <i>E. sturtii</i> crude extract and partition fractions.	99
Table 4.3	3. Antibacterial activities of column chromatography fractions of ethyl acetate fraction of <i>E. sturtii</i> .	100
Table 4.4	I. NMR data assignments of compounds 4.1 and 4.2.	107
Table 4.5	5. Minimum bactericidal concentrations (MBCs) and minimum inhibitory concentrations (MICs) of compound 4.1 and 4.2 against <i>S. aureus</i> .	110
Table 4.6	5. Inhibitory activities of compound 4.1 and 4.2 against inflammation pathway enzymes.	110
Table 4.7	7. Anti-inflammatory activity of β -sitosterol (4.3), sesamin (4.4) and 3,6- dimethoxy-5,7-dihydroxyflavone (4.5).	114
Table 5.1	Antimicrobial activity of the crude extract and partition fractions of <i>E. aphyl.</i>	<i>lus</i> . 135
Table 5.2	2. Antibacterial activity of fractions from the <i>n</i> -butanol partition of <i>E. aphyllus</i> .	136
Table 5.3	3. Cyclooxygenase inhibitory activity of the crude extract and partition fraction of <i>E. aphyllus</i> .	s 139
Table 5.4	1. 5-Lipoxygenase inhibitory activity of the crude extract and partition fractions <i>E. aphyllus</i> .	s of 139
Table 5.5	5. Anti-inflammatory activity of column chromatography fractions of the ethyl acetate partition of <i>E. aphyllus</i> .	140
Table 5.6	5. 13 C NMR data assignments of compounds 5.1, 5.2 and 5.3.	143
Table 5.7	Anti-inflammatory activities of pure compounds isolated from <i>E. aphyllus</i> .	145

List of Schemes

Scheme 3.1. Enzyme immunoassay in the COX inhibitor screening assay.	57
Scheme 4.1. Bioassay-guided fractionation of Eremophila sturtii.	102
Scheme 5.1. Bioassay-guided fractionation of <i>E. aphyllus</i> .	141

List of Abbreviations

[α] _D	Specific Optical Rotation
1/10 BPYN	Bacterial growth media containing 10 mM BES buffer, peptone 0.2%, yeast extract 0.1% and NaCl 0.1% (w/v)
¹³ C NMR	Carbon Nuclear Magnetic Resonance Spectroscopy
¹ H NMR	Proton Nuclear Magnetic Resonance Spectroscopy
2D NMR	Two-Dimensional Nuclear Magnetic Resonance Spectroscopy
BES	N,N-Bis(2-hydroxyethyl)-2-aminoethanesulfonic acid
BuOH	<i>n</i> -Butanol
CFU	Colony Forming Unit
COSY	(Proton – Proton) Correlation Spectroscopy
COX	Cyclooxygenase
DEPT	Distortionless Enhancement by Polarisation Transfer
DMSO	Dimethyl Sulphoxide
EtOAc	Ethyl acetate
FDA	Fluorescein diacetate
HMBC	Heteronuclear Multiple Bond Correlation
HPLC	High Performance Liquid Chromatography
HREIMS	High Resolution Electron Impact Ionisation
HSQC	Heteronuclear Single Quantum Correlation
IR	Infrared
LO	Lipoxygenase
LREIMS	Low Resolution Electron Impact Ionisation
LT	Leukotriene
m.p.	Melting Point
MBC	Minimum Bactericidal Concentration
MIC	Minimum Inhibitory Concentration

MS	Mass Spectrometry
NCCLS	National Committee for Clinical Laboratory Standards
nOe	Nuclear Overhauser effect
PG	Prostaglandin
r.p.m.	Revolution per Minute
ROESY	Rotating Frame Overhauser Effect Spectroscopy
TLC	Thin Layer Chromatography
UV	Ultraviolet