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Abstract 

Methamphetamine (METH) remains one of the most abused illicit substances in 

Australia with only 10-20% of METH-users developing METH-addiction. Glutamate 

homeostasis and astrocyte-mediated neuroinflammation may be responsible for addiction 

behaviours. Therefore, this study aimed to distinguish between the role of astrocyte 

hypertrophy and glutamate activity in the neurocircuitry of addiction-vulnerable, compared to 

addiction-resistant animals. The study employed an intravenous self-administration (IVSA) 

addiction-phenotyping paradigm. 

Male Sprague-Dawley rats (n = 30) were scored on four addictive behaviours, cue-

induced METH-seeking, motivation to take-METH, habitual METH-seeking and resistance-

to-extinction to characterise rats as either addiction-vulnerable (AVul) or addiction-resistant 

(ARes). AVul, ARes and control (n = 5) rats then had their brains stained for calmodulin-

kinase-II-alpha (CaMKIIa), glial-fibrillary acidic-protein (GFAP), and synapsin-I. Glutamate 

activity, astrocyte quantity and morphology, and relationship between astrocyte-synapse 

connections and glutamate activity, at each level of each region investigated, were then 

measured.  

Results revealed decreased glutamate activity in the nucleus accumbens core (NAcc), 

central amygdala (CeA) and basolateral amygdala (BLA) in AVul rats, compared to controls. 

There was no difference in astrocyte proliferation in AVul or ARes rats compared to controls, 

except for a decrease in the CeA of AVul rats. There was a widespread increase in astrocyte 

hypertrophy in AVul compared to ARes and control rats, with METH-induced hypertrophy, 

independent of phenotype. Correlational analyses suggested changes in glutamate 

homeostasis throughout addiction neurocircuitry. 
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Findings from this study suggested dysregulation of glutamate homeostasis in the 

rostral NAcc and rostral-central BLA in AVul rats, regions involved in cue-induced relapse in 

humans and animals. Likewise, widespread astrocyte hypertrophy was found to be generally 

more severe in AVul, compared to ARes and control, rats. Therefore, it was posited that 

suppressed glial-glutamate release and increased neuroinflammatory mechanisms may be a 

factor in METH-addiction behaviours. These findings therefore highlight the potential of 

glutamatergic and astrocytic targets for relapse-prevention. 
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1. Introduction 

Drug addiction is a neuropsychiatric disease affecting approximately 31 million 

individuals worldwide (United Nations Office on Drugs and Crime, 2018). In the Diagnostic 

Statistical Manual-5 (DSM-5), “Substance Use Disorder”, including drug addiction, is 

defined as a habitual, compulsive drug-use disorder characterised by chronic relapse to drug-

seeking despite significant adverse consequences (American Psychiatric Association, 2013). 

This cycle of chronic drug relapse is maintained by aversive withdrawal symptoms and 

powerful cravings (Koob & Volkow, 2016; Robinson & Berridge, 1993) persisting for 

months to years despite protracted abstinence from drug exposure (Hyman, Malenka, & 

Nestler, 2006; Koob & Volkow, 2010). 

Illicit drug-use is common, with approximately 275 million consumers worldwide in 

2016 (United Nations Office on Drugs and Crime, 2016). However, drug addiction only 

occurs in a subset of drug abusers (Volkow & Morales, 2015; Wagner, 2002). Acutely, drugs 

of abuse often induce a hedonic state, which may reinforce drug-taking behaviours (Volkow 

& Morales, 2015). Although, a transition from impulsive drug-use to compulsive drug-abuse 

is required for the development of an addiction disorder (Piazza & Deroche-Gamonet, 2013). 

Following this transition, drug-use becomes uncontrollable, driven less by hedonism and 

more by cravings and withdrawal symptoms. Ultimately, this compulsion results in a chronic 

relapsing syndrome that holds addicts in a cycle of addiction (Koob & Volkow, 2016). The 

transition to chronic compulsive use is reflected in pathological dysregulation of the 

neurocircuitry typically involved in drug reward (Koob & Volkow, 2016; Volkow & 

Morales, 2015). Therefore, it is imperative that research investigates changes to the 
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neurocircuitry involved in this vicious relapse cycle to enable the development of effective 

treatments for this severely undertreated disorder (United Nations Office on Drugs and 

Crime, 2018).  

1.1 Methamphetamine. 

In Australia and overseas, amphetamine-based stimulants, including 

methamphetamine (METH), are the second most commonly abused illicit drug, after 

cannabis (Australian Institute of Health and Welfare, 2016; United Nations Office on Drugs 

and Crime, 2018). Approximately 1.4% of Australians have consumed METH within the last 

twelve months, with 57% of METH-users consuming the drug in its most potent form, “ice” 

or crystalline-METH. Recently, a sudden increase in METH-related fatalities and harms has 

been attributed to an increase in the use of “ice” and the intravenous administration method 

(Darke, Kaye, & Duflou, 2017; Degenhardt et al., 2017). Due to its potency and delivery 

route, crystalline-METH rapidly accesses the brain, resulting in an intense “high”, 

contributing to the development of addiction (Rose & Grant, 2008; Volkow & Morales, 

2015) and enhancing acute neurotoxicity, the leading cause of METH-associated deaths in 

Australia (Darke et al., 2017). Currently, there are no approved efficacious 

pharmacotherapies for METH-addiction (Morley, Cornish, Faingold, Wood, & Haber, 2017). 

 Pharmacology of METH. Methamphetamine (N-methyl-1-phenylpropane-2-

amine) is a potent psychostimulant and a synthetic derivative of another commonly abused 

drug, amphetamine, or “base” (Courtney & Ray, 2014). When compared, METH and 

amphetamine are structurally similar compounds, however METH is highly lipophilic and 

more easily penetrates the blood brain barrier (BBB), increasing the abuse potential of METH 

compared to amphetamine (Cruickshank & Dyer, 2009). METH induces the swift and 

efficient release of the monoamine neurotransmitters noradrenaline (NA), dopamine (DA) 

and serotonin (5-HT), listed in order of release efficacy (Rothman et al., 2001), via three 
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mechanisms (Courtney & Ray, 2014). The primary mechanism is the reversal of vesicular 

monoamine transporter-2 (VMAT-2), expressed on presynaptic terminals, leading to 

vesicular monoamine release into the cytosol. The second mechanism is the reversal of NA, 

DA and 5-HT transporters, funnelling monoamines from the cytosol into the synaptic cleft. 

The final mechanism is the suppression of monoamine oxidase, hindering the metabolism of 

these monoamines. These processes complement one another to encourage a spike of 

monoamine levels in the synapse, facilitating the activation of monoamine receptors, 

promoting the euphoria that is often associated with acute METH-use, in tandem with a suite 

of additional acute effects (Courtney & Ray, 2014; Elkashef et al., 2008). 

 Acute psychological and physiological effects of METH-use. Subsequent to 

use, METH-users report feeling euphoria with spikes in energy, heightened confidence, 

suppressed fatigue and hyper-sexuality (Elkashef et al., 2008). The euphoria experienced is 

believed to be onset by the amplified DA neurotransmission in the brain, rendering METH 

both rewarding and therefore highly reinforcing (Courtney & Ray, 2014). Enhancements in 

sustained and divided attention are frequently reported, in addition to improved reaction time, 

when METH is used for this intention (Cruickshank & Dyer, 2009). Aversive acute 

psychological effects of METH include irritability, depressive states, negative affect, 

paranoia, hallucinations and anxiety (Courtney & Ray, 2014; Darke, Kaye, McKetin, & 

Duflou, 2008), often related to withdrawal. Undesirable physiological symptoms include 

hypertension, hyperthermia, excessive sweating, dehydration, tachycardia and hasty breathing 

(Darke et al., 2008; Zorick, Rad, Rim, & Tsuang, 2008). At high doses, METH can also 

induce neurotoxicity, psychosis and occasionally even death (Cruickshank & Dyer, 2009; 

Mash, 2016). 

 Chronic psychological and physiological effects of METH-use. Certain acute 

psychological consequences of METH-use persist with chronic consumption, such as 
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depression and anxiety. Additionally, other symptoms arise after considerable, enduring 

METH-abuse, such as protracted fatigue, reduced psychomotor activity, dysregulated sleep 

patterns, psychosis and anhedonia (Darke et al., 2008; McKetin, Lubman, Baker, Dawe, & 

Ali, 2013). The more severe symptoms often fade after seven to ten days, however the more 

insidious symptoms, such as anhedonia, can endure for months to a year (McKetin et al., 

2013; Rose & Grant, 2008). Chronic METH-consumption may also result in the development 

of mild to severe neuropsychological impairments, such as diminished executive functions, 

poor impulse control, and a deficit in working memory (Darke et al., 2008; Panenka et al., 

2013). Following chronic METH-use, drug tolerance can often develop, leading to a required 

escalation of dose and potency to experience the same rewarding effects (Courtney & Ray, 

2014). A need for higher dosing is usually accompanied by a shift from less potent routes of 

administration, such as oral dosing, to more direct routes, such as intravenous injection. This 

transition quite often exacerbates the psychological and physiological consequences of acute 

and chronic METH use, predominantly those related to withdrawal, neurotoxicity and 

addiction (Cruickshank & Dyer, 2009).  

  Lack of treatments for METH-addiction. Despite the significant 

psychological and neuropsychiatric impacts of METH-addiction, and the burden it has on the 

world’s health systems and economy (Australian Institute of Health and Welfare, 2016; 

Degenhardt et al., 2017; United Nations Office on Drugs and Crime, 2018), no effective 

treatments exist (Courtney & Ray, 2014; Morley et al., 2017). Behavioural therapies show 

poor treatment efficacy at preventing METH-relapse (Morley et al., 2017) and effective 

neuropsychological programs have yet to be implemented. Some promising 

pharmacotherapies for treatment of this disease have surfaced, including methylphenidate 

(Rezaei et al., 2015), mirtazapine (Colfax et al., 2011) and topiramate (Rezaei, Ghaderi, 

Mardani, Hamidi, & Hassanzadeh, 2016). Unfortunately, none of these candidates have 
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demonstrated consistent efficacy to warrant use, and none have been approved for clinical 

applications (Morley et al., 2017). Due to the lack of effective treatment options available to 

METH-addicts, it is vital that novel targets for treatment are uncovered. For this to occur, 

understanding of the neurobiological consequences and mechanisms of METH-addiction 

needs to be advanced. 

1.2 Neurobiology of reward.  

The common neural pathway that is affected by the administration of drugs of abuse 

is intrinsic to most motivated behaviours; the DA reward pathway (Kalivas & Volkow, 2005; 

Volkow & Morales, 2015). Reward is an event that results in a pleasurable or emotionally 

positive psychological experience (Kalivas & Volkow, 2005). Importantly, experience of this 

reward leads to positive reinforcement which encourages the repetition of actions that lead to 

the reward (Koob, 2005). This process maintains drug-use in the initial stages of addiction 

(Hyman et al., 2006; Kalivas & Volkow, 2005), but is also essential to survival due to the 

reinforcement of adaptive rewarding behaviours, such as feeding and sex (Cannon & Bseikri, 

2004). Reward processes are orchestrated by the release of monoamines, such as DA, within 

the mesocorticolimbic system (Hyman et al., 2006; Koob & Volkow, 2010). The 

mesocorticolimbic pathway, originating in the ventral tegmental area (VTA) innervates 

several key brain regions of the addiction circuit, notably the nucleus accumbens (NAc), 

prefrontal cortex (PFC) and amygdala (Hyman et al., 2006; Koob & Volkow, 2010) (Figure 

1). Stimulation of DA-containing VTA projections induces DA release into the NAc which is 

known to draw an organism’s attention to the appearance of novel, salient stimuli (Fiorillo, 

Tobler, & Schultz, 2003; Ungless, 2004), and facilitate encoding of stimuli associations 

(Abler, Walter, Erk, Kammerer, & Spitzer, 2006; Jay, 2003).  
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Figure 1. Neurocircuitry of addiction.The neurocircuitry involved in the processing of methamphetamine 
(METH)-reward, relapse to METH-seeking, habitual drug-seeking, motivation to take-METH and incubation of 
METH-craving. This includes the mesocorticolimbic dopamine pathway involved in reward, as well as the 
frontostriatal circuitry involved in inhibiting drug-seeking behaviours. Purple circles indicate functionally 
distinct brain regions. Green arrows indicate glutamatergic projections, blue arrows indicate dopaminergic 
projections and red arrows indicate γ-amino butyric acid (GABA)-ergic projections. Dorsal striatum (DS), 
thalamus (Th), hippocampus (Hip), substantia nigra (SN), ventral tegmental area (VTA), amygdala (Am), 
ventral pallidum (VP), nucleus accumbens (NAc), dorsal striatum (DS), medial prefrontal cortex (mPFC), 
ventromedial prefrontal cortex (vmPFC), lateral orbitofrontal cortex (LOFC). Note not all connections have 
been included for clarity. 

 Acute drug-mediated neurotransmission in reward circuits.Acutely, drug-

administration activates reward circuitry that normally enhances the salience of natural 

rewards necessary for survival and procreation (Di Chiara et al., 2004). They induce rapid 

and supraphysiological DA release in the NAc, which stimulates DA-D1 receptors (D1Rs), 

the process believed to be responsible for the “high” associated with drug-reward (Volkow, 

Fowler, & Wang, 2003). METH-administration induces potent release of monoamines within 

the mesocorticolimbic pathway which in turn activates DAergic, 5-HTergic and NAergic 

systems within reward circuitry (Cruickshank & Dyer, 2009; Panenka et al., 2013). The 
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resulting intense hedonic state can promote METH-use over natural rewards, which are 

unable to induce such high levels of DA release when compared to METH’s pharmacological 

effects (Carelli & West, 2014; Courtney & Ray, 2014; Koob & Volkow, 2016; Volkow & 

Morales, 2015). These potent rewarding outcomes reinforce METH-seeking and METH-use, 

resulting in potentiated motivation to seek- and take-drugs (Edwards & Koob, 2010; Lominac 

et al., 2014).  

 Chronic drug-mediated plasticity in reward circuitry. Studies suggest 

widespread structural and metabolic modifications in the brain following chronic METH-

abuse (Chye et al., 2019; Mackey et al., 2019; Thompson et al., 2004). Vesicular stores of 

monoamines can be severely depleted after repeated METH-exposure, resulting in 

dysfunction of the mesocorticolimbic system (Courtney & Ray, 2014; Panenka et al., 2013). 

METH-induced neurotoxicity can include the degeneration of DA and 5-HT axons and 

terminals, and the suppression of DA and 5-HT transporter expression (Halpin, Collins, & 

Yamamoto, 2014; London, Kohno, Morales, & Ballard, 2015). Grey and white matter 

abnormalities have also been demonstrated in abstinent METH-users (Daumann et al., 2011; 

Tobias et al., 2010). As a potential mechanism for this process, METH elicits the 

upregulation of reactive oxygen species (ROS) and nitric oxide (NO) leading to oxidative 

stress within DAergic neurons which results in neuronal degradation and eventually apoptosis 

(Asanuma, Miyazaki, Higashi, Tsuji, & Ogawa, 2004; Thomas & Kuhn, 2005). Typically, 

antioxidant enzymes, such as monoamine oxidase, metabolise ROS in the central nervous 

system (CNS), however METH suppresses function of this oxidase, permitting a potentiation 

in the activity of these neurotoxic agents (Krasnova & Cadet, 2009). It is these neurotoxic 

consequences that are believed to underlie the neuropsychological deficits associated with 

chronic METH-consumption (Darke et al., 2008). 
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 Incentive sensitisation and reward circuitry pathology. METH-induced 

mesocorticolimbic system pathology are likely responsible for the development of 

neurological METH-sensitisation and heightened attentional-bias towards METH-related 

stimuli (Robinson & Berridge, 2008; Robinson & Berridge, 1993). The incentive-

sensitisation theory, by Robinson and Berridge (1993), stipulates that chronic 

mesocorticolimbic pathway activation results in compulsive attentional-bias towards drug-

cues. Repeated pairings of stimuli with drug-reward results in the classical conditioning of 

drug-cues to predict drug-reward (Robbins, 1976). When experiencing cravings, drug-cues 

act as a potent secondary reinforcer to motivate drug-seeking. On a neurochemical level, 

presentation of drug-cues induces DA and glutamate neurotransmission in the NAc (Kalivas, 

2000; Schultz, 1998). This suppresses inhibitory control over drug-seeking behaviours via 

stimulation of γ-amino butyric acid (GABA) projections to behavioural output regions 

(Baracz & Cornish, 2016; Koob & Volkow, 2016). Engagement of PFC-derived 

glutamatergic fibres synapsing on medium spiny neurons (MSNs) in the NAcc, likewise 

instigates METH-seeking (Parsegian & See, 2013; Rocha & Kalivas, 2010). This circuitry 

underlies cue-induced drug-relapse, however other equally important circuits are involved in 

METH-addiction. 

1.3  Key brain regions involved in drug addiction. 

 Role of the nucleus accumbens in addiction. Arguably at the epicentre of 

drug-reward circuitry, the NAc lies within the ventral striatum (Hyman et al., 2006), and 

contains predominantly (~90%) GABAergic MSNs (Smith, Lobo, Spencer, & Kalivas, 2013). 

Intra-striatal inhibitory tone is sustained by GABAergic interneurons which are impacted by 

DAergic, glutamatergic and cholinergic inputs from cortical and limbic regions (Yager, 

Garcia, Wunsch, & Ferguson, 2015). Functionally, projections from the NAc to the ventral 

pallidum (VP) modulate maladaptive or inappropriate behavioural outputs (Baracz & 
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Cornish, 2016; Hamani, SaintCyr, Fraser, Kaplitt, & Lozano, 2004), and, via connections 

with the motor system, information from limbic regions impacts on NAc-driven motivational 

processes (Koob & Weiss, 1992).  

The NAc is considered the major input area of the basal ganglia (Salgado & Kaplitt, 

2015b) as it receives direct innervation from the amygdala (McDonald, 1991), hippocampus 

(Yang & Mogenson, 1984), thalamus, ACC (Brog, Salyapongse, Deutch, & Zahm, 1993), 

PFC (Beckstead, 1979), VTA (Van Bockstaele & Pickel, 1995) and SN (Fallon & Moore, 

1978). In return, the NAc has major efferent projections to several regions in various circuits, 

including the VTA (Rahman & McBride, 2002), SN (Montaron, Deniau, Menetrey, 

Glowinski, & Thierry, 1996) and other brainstem regions, as well as the thalamus (Williams, 

Crossman, & Slater, 1977), globus pallidus (GP)(Yang & Mogenson, 1989), VP 

(Groenewegen & Russchen, 1984), lateral hypothalamus (Zahm & Heimer, 1993), amygdala 

(Russchen, Bakst, Amaral, & Price, 1985) and septum (Groenewegen & Russchen, 1984). 

The NAc receives the majority of its glutamatergic, cortical input from the medial PFC 

(mPFC), lateral orbitofrontal cortex (LOFC) and the ACC, and DAergic input from the VTA 

and SN (Haber & Knutson, 2010). 

In the context of drug-reward, acute drug-administration activates the 

mesocorticolimbic pathway by stimulating DAergic projections from the VTA to the NAc 

resulting in an influx of DA into the NAc (Di Chiara, 2002). In response, the NAc sends 

GABAergic projections to two major addiction circuits. The first involves inhibitory 

projections to the VP, impacting on maladaptive behavioural outputs via the subthalamic 

nucleus (STN) and GP (Hamani et al., 2004). The second involves inhibitory projections to 

the VTA and SN, which result in glutamatergic innervation of the PFC via DAergic 

projections to the mediodorsal thalamus (MDT)(Figure 1). This second feedback circuit 
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regulates the activity of the first circuit via glutamatergic modulation of NAc DAergic 

stimulation (Kalivas, 2000)  

Functionally, the primary role of the NAc is to respond to motivationally significant 

stimuli, such as food (Carelli, 2002), supraphysiological reinforcers such as drugs of abuse 

(Di Chiara et al., 2004), or aversive stimuli, such as non-appetitive food (Roitman, Wheeler, 

Wightman, & Carelli, 2008; Young, 2004), and emotional stimuli (Barrot et al., 2002). In the 

mesocorticolimbic pathway, the NAc serves two vital functions: to compel an organism to 

attend to salient, novel stimuli and encourage learning-induced neuroplasticity (Keitz, 

Martin-Soelch, & Leenders, 2003) and to predict the presentation of a learnt, motivational 

event via associations forged between the event and environmental stimuli (cues) predicting 

said event (Schultz, 1998). 

The NAc can be divided into two subregions, the dorsolateral core (NAcc) and the 

ventromedial shell (NAcs), based on distinct differences in functionality and circuitry (Di 

Chiara, 2002; Salgado & Kaplitt, 2015a). For example, the NAcs is involved in the initial 

stages of addiction as it is responsible for the rewarding sensation associated with reinforcing 

stimuli (Di Chiara, 2002) whereas the NAcc is involved in attending to learnt drug-cue 

associations as presentation of drug-associated cues stimulates the NAcc (Sellings & Clarke, 

2003). With many glutamatergic efferents projecting to the NAc from the mPFC (Kalivas & 

Volkow, 2005; Scofield et al., 2016b), the NAc and the PFC are highly interconnected 

leading to close functional relationships between the two regions. An increase in DA release 

in the NAc can result in potentiated glutamatergic activity within the PFC, hippocampus and 

VTA, which, under optimal conditions, works to attenuate stimulation of inhibitory 

GABAergic projections from the NAc to motor output regions (Baracz & Cornish, 2016; 

Koob & Volkow, 2010). However, following chronic METH-exposure, the mPFC to NAcc 

pathway has been found to be responsible for cue-induced drug-seeking (Rocha & Kalivas, 
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2010; Siemsen et al., 2019). This positions the NAc as a crucial element in the addiction 

neurocircuitry. 

 Role of the prefrontal cortex in addiction. The PFC is a functionally 

heterogenous region involved in various executive functions, such as impulse control and 

decision-making (Goldstein & Volkow, 2011b). These functions are all impacted by drug 

addiction which has led to interest in its study. At a cellular level, the PFC is made up of 

predominantly glutamatergic pyramidal neurons, with roughly 20-30% GABAergic 

interneurons (Garcia, Nakata, & Ferguson, 2018; Koella, 1981) which maintain an important 

balance of excitatory and inhibitory activity. The pyramidal neurons project to various 

downstream brain regions such as the NAc, hippocampus, VTA, dorsal striatum (DS), STN 

and autonomic regions (Ding, Gabbott, & Totterdell, 2001; Garcia et al., 2018; Koob & 

Volkow, 2010; Maurice, Deniau, Glowinski, & Thierry, 1998a).  

Hyper-responsiveness of the PFC to drug-cues has been linked to behavioural drug-

cue reactivity (Childress et al., 1993; Droungas, Ehrman, Childress, & O'Brien, 1995; 

Franklin et al., 2007; Garavan et al., 2000). Cocaine addicts that viewed cocaine-related 

videos demonstrated greater PFC activation to cocaine-cues over and above novel cues 

compared to controls (Garavan et al., 2000). Interestingly, measures of activity in the PFC 

following cue exposure in addicts is likely a more sensitive method of detecting group 

differences in conditioned responses to drug-cues, as alcoholics demonstrate no difference in 

valence, arousal ratings or autonomic reactivity (Grusser et al., 2004) compared to controls, 

despite a difference in PFC activation. In addition, PFC reactivity is correlated with drug-

craving (Brody et al., 2002) and lifetime drug-intake (Yalachkov, Kaiser, & Naumer, 2009), 

and predicts performance on primed emotion recognition tasks (Artiges et al., 2009) and later 

drug-use (Grusser et al., 2004), highlighting the clinical relevance of PFC activity in 

addiction.  
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Debate exists surrounding the validity of translating findings in the PFC of rodents to 

those in humans, however there is a general consensus in neuroscience that there is 

significant overlap between analogous brain regions in the rodent PFC and human PFC 

(Ongur & Price, 2000). In the realm of addiction, similarities are also seen in the functional 

role of the PFC in addiction behaviours (Goldstein & Volkow, 2011a; Volkow & Morales, 

2015). Two particular mPFC subregions demonstrate pronounced control over drug-seeking 

behaviours. 

 The medial prefrontal cortex in addiction. The mPFC is located in the 

medial portion of PFC. Its major input regions are the hippocampus, basolateral amygdala 

(BLA), various thalamic subregions and the VTA (Hoover & Vertes, 2007; Hyman et al., 

2006). Primary efferent projections from the dorsal mPFC, the prelimbic cortex (PrL), are the 

ventral-dorsomedial striatum (DMS) and the NAcc. The ventral mPFC (vmPFC), or 

infralimbic cortex (IL), projects primarily to the NAcs and BLA (Heidbreder & 

Groenewegen, 2003; McDonald, Mascagni, & Guo, 1996). The dense NAc projections are 

predominantly glutamatergic, innervating GABAergic MSNs which modulate motivational 

and reward behaviours (Di Chiara et al., 2004; Kalivas & Volkow, 2005)(see 1.3.1). The 

mPFC regulates the rewarding effects of administered drugs learnt associations between 

drugs and neutral environmental stimuli (Konova et al., 2019), and context and cue-induced 

relapse to drug-seeking (Bossert et al., 2011; Rocha & Kalivas, 2010). 

The rodent-equivalent of the mPFC, the PrL, has been implicated in compulsive drug-

seeking behaviours, which signal the switch to addiction (American Psychiatric Association, 

2013). Interestingly, pharmacological inactivation of the PrL reduced suppression of 

conditioned aversion to cocaine-seeking (Limpens, Damsteegt, Broekhoven, Voorn, & 

Vanderschuren, 2015). Concurrently, researchers found that pharmacological PrL 

inactivation prevented cue-induced and METH-primed METH-seeking (Rocha & Kalivas, 
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2010). Intriguingly, the PrL was the only brain region commonly activated by cue-induced 

relapse to cocaine-seeking and heroin-seeking, in a poly-drug intravenous self-administration 

(IVSA) model (Rubio et al., 2019). Therefore, these studies imply that the PrL plays a 

common major role in drug-seeking behaviours between different drug classes. Due to the 

potential universality of PrL activity to drug-seeking behaviours (Kalivas, 2009; Rocha & 

Kalivas, 2010; Rubio et al., 2019), it is essential to understand how the PrL, and the mPFC 

more broadly, fits into the neurocircuitry of these addiction behaviours. 

The vmPFC, or IL in rodents, is implicated in the neuropathology of addiction. 

Traditionally, activation of the IL is believed to suppress drug-seeking behaviours, whereas 

PrL activity has been associated with driving drug-seeking behaviours (Gourley & Taylor, 

2016), however this dichotomy has recently been challenged with growing evidence 

suggesting a more complex functional conceptualisation for the two regions (Moorman, 

James, McGlinchey, & Aston-Jones, 2015; Rocha & Kalivas, 2010). Importantly, there 

appears to be a functional disparity between the role of the IL in relapse to cocaine-seeking 

and METH-seeking (Rocha & Kalivas, 2010). Activation of the IL has been repeatedly 

shown as vital to the suppression of cocaine-seeking behaviours (Cameron, Murugan, Choi, 

Engel, & Witten, 2019; Peters, LaLumiere, & Kalivas, 2008). Due to its important role in 

extinguishing conditioned fear responses (Milad et al., 2007; Quirk & Mueller, 2007), it has 

been hypothesised that this suppression occurs via the enhancement of learning-associated 

plasticity. In contrast, inactivation of the IL has shown no effect on METH-primed 

reinstatement to drug-seeking, yet attenuated cue-induced METH-seeking (Rocha & Kalivas, 

2010). This demonstrates potentially divergent roles of the IL cocaine compared to METH-

relapse triggers, warranting further inquiry into the role of the IL in METH-addiction 

circuitry.  
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 The lateral orbitofrontal cortex in addiction. The LOFC is located in the 

ventrolateral PFC. It receives major afferent projections from olfactory, gustatory, visual, 

parietal, somatosensory and perirhinal cortices, the BLA, and MDT (Ongur & Price, 2000; 

Reep, Corwin, & King, 1996). Major efferents from the LOFC project to the BLA, NAcc, 

MDT and hypothalamus (Carmichael & Price, 1995; Haber, Kunishio, Mizobuchi, & Lynd-

Balta, 1995; Ongur, An, & Price, 1998). Importantly, the OFC is the only PFC sub-region to 

receive all modalities of sensory information (Wallis, 2011) which, along with its connections 

to the basal ganglia and limbic system, allows it to appraise affective stimuli based on a 

multitude of sensory information. 

The LOFC is believed to be vital to cue-induced drug-seeking (Schoenbaum, Roesch, 

& Stalnaker, 2006). Cocaine-addicts demonstrate increased blood flow to the OFC, as well as 

the BLA, following exposure to representations of drug-associated cues (Goldstein & 

Volkow, 2002). In rats, GABA-A/B receptor-mediated pharmacological inhibition of the 

LOFC attenuated cue-induced relapse to cocaine-seeking (Fuchs, Evans, Parker, & See, 

2004). Importantly, optogenetic inhibition of LOFC neurons expressing a Cre-dependant 

viral-vector that project to Cre-recombinase expressing neurons in the BLA, but not 

projections in the opposite direction, inhibited cue-induced relapse to cocaine seeking 

(Arguello et al., 2017). This would suggest that the LOFC-BLA circuit is vital to cue-induced 

drug-relapse, however no study has of yet investigated this effect in METH nor whether 

addiction-phenotype mediates functioning of this circuit, warranting investigation of the 

LOFC and amygdala. 

 Role of the amygdala in addiction. The amygdala is situated in the medial 

temporal lobe. It is comprised of predominantly glutamatergic principal projection neurons 

with some inhibitory GABAergic interneurons to maintain inhibitory-excitatory balance 
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(Duvarci & Pare, 2014). Importantly, two highly interconnected subregions, the BLA and 

central amygdala (CeA) have both been implicated in distinct addictive behaviours.  

 The basolateral amygdala in addiction. The BLA-complex includes the 

lateral, basal and basomedial nuclei, and receives strong, input from the thalamus, mPFC, 

OFC and VTA (Albanese & Minciacchi, 1983; Janak & Tye, 2015). It has reciprocal 

projections to the thalamus and PFC as well as largely unidirectional projections to the 

hippocampus, NAc, and hypothalamus (Cardinal, Parkinson, Hall, & Everitt, 2002; 

McDonald, 1991; Pitkänen, Pikkarainen, Nurminen, & Ylinen, 2000). The BLA has been 

characterised as an integrator of the value, consequences and past experiences of reward 

(Wassum & Izquierdo, 2015). This means that the BLA codes for distinct and temporally 

flexible outcome representations which are modified following prolonged drug-abuse. 

As mentioned above (see 1.3.2.2), the LOFC and BLA form a circuit that is crucial to 

the expression of cue-induced drug-seeking (Arguello et al., 2017; Everitt et al., 1999). 

Indeed, bilateral lesioning of the BLA blocks cue-induced relapse to cocaine-seeking in rats 

(Meil & See, 1997) which is likely due to the BLA gating the Pavlovian stimulus-response 

(S-R) mechanism to gain influence over volitional behaviour (Burns, Robbins, & Everitt, 

1993; Everitt & Robbins, 2000). Not only this, the BLA is involved in learning drug-cue 

associations, as lesions to the BLA block the acquisition and maintenance of cue-induced 

drug-seeking (Everitt, Cardinal, Parkinson, & Robbins, 2003; Whitelaw, Markou, Robbins, & 

Everitt, 1996). Interestingly, just as DA activity in the NAc of drug-users corresponds with 

cue-presentation (Schultz, 1998), not drug-reward, DA release in the BLA is necessary for 

cue-induced drug-seeking behaviours (Di Ciano & Everitt, 2004; See, Kruzich, & Grimm, 

2001). This may implicate the BLA-NAc projections in the development of drug-cue 

associations and motivating behavioural responses to these behaviours (Everitt et al., 2003). 
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 The central amygdala in addiction. The CeA is a subregion of the extended 

amygdala and shares many local circuit connections with the BLA (LeDoux, 2007). Within 

the CeA, there are two subdivisions, the medial CeA (mCeA) and the lateral CeA (lCeA), 

with the lCeA receiving input from the amygdaloid complex (Pitkänen et al., 1995; Savander, 

Go, Ledoux, & Pitkänen, 1995). The mCeA sends information to the lCeA via unidirectional 

GABAergic projections (Pitkänen et al., 2000) with the lCeA also receiving direct 

glutamatergic, and indirect GABAergic, innervation from the BLA (Krettek & Price, 1978; 

Royer, Martina, & Paré, 1999). The lCeA is the major output area of the CeA sending 

GABAergic projections to the VTA and extended amygdala to affect behavioural and 

physiological responses to emotionally salient events (Pape & Pare, 2010; Pitkänen et al., 

2000).  

The role of the CeA in METH-addiction is not as well characterised as many other 

regions in the addiction circuitry, however it seems to be involved in the incubation of 

METH-craving and other psychostimulants (Funk et al., 2016; Li, Zeric, Kambhampati, 

Bossert, & Shaham, 2015). Two weeks after a 12 day period of 2-hour METH IVSA 

sessions, rats demonstrated a significant increase in Fos expression, a marker of neuronal 

activity (Chung, 2015), in the CeA, as well as the DS, OFC and NAc (Funk et al., 2016). 

Importantly, pharmacological inactivation of the CeA blocked METH-craving in rats that 

underwent ten 9-hour METH IVSA sessions before 1-month of extinction (Li et al., 2015). 

Additionally, no association with vmPFC activation and incubation of METH-craving was 

found, contradicting previous findings implicating this region in incubation of cocaine-

craving (Koya et al., 2009). This indicates the mechanisms for drug-craving may be different 

between cocaine and METH, warranting further investigation into the role of the CeA in 

METH-craving. 
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 Role of the dorsal striatum in addiction. The DS is a major processing hub of 

the basal ganglia, responsible for executing motor movements (Malvaez & Wassum, 2018). It 

comprises the dorsomedial striatum (DMS) and the dorsolateral striatum (DLS) based on 

functional and neurocircuit differences. The DMS receives major afferent projections from 

the PrL, ACC, OFC, and motor cortices (McGeorge & Faull, 1989; Wall, De La Parra, 

Callaway, & Kreitzer, 2013). The DLS receives major afferent projections from motor and 

somatosensory cortices (Alloway, Lou, Nwabueze-Ogbo, & Chakrabarti, 2006; Haber & 

Knutson, 2010). Both subregions have major efferent projections to the GP and SN (Haber, 

2014; Perez-Costas, Melendez-Ferro, & Roberts, 2010).  

The DMS, or associative striatum, is necessary for goal-directed behaviour and 

action-outcome motivated behaviours (Everitt & Robbins, 2013b). As such, the DMS has 

been implicated in the initial stages of drug addiction as drug-seeking (action) is motivated by 

drug-reward (outcome)(Koob & Volkow, 2016; Smith & Laiks, 2018; Volkow & Morales, 

2015). In contrast, the DLS, or sensorimotor striatum, is responsible for executing habitual 

behaviours (McNamee, Liljeholm, Zika, & Doherty, 2015; Tricomi, Balleine, & O'Doherty, 

2009). As such, the DLS is responsible for S-R motivated behaviours (Tricomi et al., 2009; 

Vanderschuren, Di Ciano, & Everitt, 2005), implicating this brain region in the automated, 

habitual drug-seeking (HDS) characteristics of the later stages of addiction (American 

Psychiatric Association, 2013). Indeed, following 28 days of chronic METH-exposure, 

researchers found decreased glutamate transporter and receptor expression in the rodent 

DMS, which correlated with habitual food-seeking (Furlong, Corbit, Brown, & Balleine, 

2018). Likewise, similar METH-exposure in rats induced structural plasticity in the DMS 

which also correlated with habitual food-seeking (Jedynak, Uslaner, Esteban, & Robinson, 

2007). These studies suggest that prolonged METH-exposure may decrease glutamatergic 

activity in the DMS, which could be responsible for the suppression of goal-directed 
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behaviour. Of importance to this understanding of potentially pathological glutamatergic 

activity within the METH-addiction circuitry, is the role of astrocytes in METH-addiction. 

1.4 Astrocytes. 

Astrocytes are star-shaped glial cells that are crucial to many neurological processes, 

notably synaptic functioning (Allen & Barres, 2009; Frank, 2013; Parpura et al., 2012). 

Astrocytic processes create tripartite synapses, releasing neuroactive molecules to regulate 

neurotransmission (Araque et al., 2014; Perea, Navarrete, & Araque, 2009). Modulation of 

these neuroactive molecules has demonstrated impacts on circuit-level functions and 

behavioural outcomes (Oliveira, Sardinha, Guerra-Gomes, Araque, & Sousa, 2015). 

Astrocyte morphology is vital to synaptic regulation as greater astrocytic process 

proliferation and branching form more tripartite synapses and provide more support for 

neurotransmission compared to smaller, simpler astrocytes (Medvedev et al., 2014; 

Oberheim, Goldman, & Nedergaard, 2012). 

Astrocyte morphology is dramatically altered under pathological states, where 

processes become thicker and ramify further into the interstitial space with greater structural 

complexity, termed astrocyte hypertrophy. Astrocytes also migrate to and proliferate at the 

site of injury (Hol & Pekny, 2015; Nash et al., 2011; Oberheim et al., 2012). These processes 

fall under what is known as astrogliosis, which is a mechanism that is designed to 

compensate for neuronal injury and varies with severity (Sofroniew, 2015). Mild-moderate 

astrogliosis results in minimal astrocyte hypertrophy whereas severe astrogliosis results in 

pronounced astrocyte hypertrophy (Sofroniew, 2015). Importantly, chronic METH-abuse is 

linked to neuronal cell damage and can induce astrogliosis (Krasnova et al., 2010a; Zhang, 

Gong, Feng, Zhang, & Li, 2017)  

 Astrogliosis, neuroinflammation, neurotoxicity and METH. Studies have 

demonstrated that reactive astrogliosis is linked to METH-associated neuroinflammation and 



Introduction  19 

neurotoxic apoptosis (Krasnova, Justinova, & Cadet, 2016). Astrogliosis has been defined 

here as any process that results from CNS injury or disease (Sofroniew, 2015). Following 

astrogliosis, astrocytes release pro-inflammatory cytokines and chemokines (Ramesh, 

MacLean, & Philipp, 2013; Ransohoff & Brown, 2012) which bind to receptors in microglia, 

increasing the release of neurotoxic agents, including reactive oxygen species (ROS)(Rocha, 

Cristovão, Campos, Fonseca, & Baltazar, 2012), and the further release of pro-inflammatory 

cytokines (Asanuma et al., 2004; Ramesh et al., 2013), which induce glial and neuronal 

apoptosis (Greenlund, Deckwerth, & Johnson, 1995; Shah, Kumar, Simon, Singh, & Kumar, 

2013). Additionally, hyper-reactive astrogliosis, indicated by overexpression of S100β, a 

marker of astrocytic activation, increased neuronal apoptosis via astrocytic release of nitric 

oxide (Hu, Ferreira, & Van Eldik, 1997). These neurotoxic and neuroinflammatory processes 

have been linked to the chronic relapse and socio-emotional symptoms associated with 

METH-addiction, even after protracted abstinence (Yang et al., 2018). These studies 

highlight the remediation of these processes as a potential-treatments for METH-induced 

psychological symptoms and warrants better understanding of the relationship between 

METH-addiction and reactive astrogliosis. 

The relationship between METH-addiction and astrogliosis has recently begun to 

emerge. Following experimenter-driven METH-exposure in rats, astrocyte proliferation 

occurs within addiction-related brain regions, such as the cortex and striatum (Granado et al., 

2011; Robson et al., 2014). Measured 7 days after forced abstinence, Krasnova et al. (2010b) 

found extended access to METH (15-hours/day) resulted in an increase in the DS and cortex 

of glial-fibrillary acidic-protein (GFAP)-expression, a marker of reactive astrogliosis 

(Oberheim et al., 2012; Yang & Wang, 2015). Crucially, more research is needed in this area 

as understanding of the role of astrogliosis in METH-addiction remains poorly understood 

and may provide important targets for future therapies. One aspect of astrocyte-synapse 
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interactions that has become of interest to the field of addiction, particularly psychostimulant 

addiction, is glutamate homeostasis of astrocytes. 

1.5 Glutamate homeostasis hypothesis of addiction. 

It has become apparent that the traditional focus on DAergic activity in the 

mesocorticolimbic pathway in the field of addiction, despite its central role in instigating and 

maintaining drug-use, is likely insufficient to understand addiction neurocircuitry and 

associated behavioural outputs. Indeed, over the past two decades an emerging theory 

attempting to delineate the neural substrates of drug-relapse has suggested that glutamatergic 

pathways from the mPFC to the striatum are essential for cue-induced drug-relapse (Kalivas, 

2000, 2009; Spencer, Scofield, & Kalivas, 2016). This is a potentially crucial mechanism to 

leverage with pharmacotherapies, as clinicians site drug-relapse as the most vital component 

of addiction for remediation of the addiction disorder (Morley et al., 2017). 

 Glutamate and astrocytes in the nucleus accumbens during drug-relapse. 

As previously mentioned (see 1.3.1, 1.3.2), glutamatergic pyramidal neurons in the PrL and 

IL contain dense projections to the NAcc and NAcs, respectively (Ding et al., 2001; Maurice, 

Deniau, Glowinski, & Thierry, 1998b) and synapse onto GABA MSNs that express various 

glutamate receptors (Blaha, Yang, Floresco, Barr, & Phillips, 1997; Maldonado-Irizarry, 

Swanson, & Kelley, 1995). Chronic exposure to cocaine reduces glutamatergic tone in the 

NAc (McFarland, Lapish, & Kalivas, 2003), and chronic METH attenuates basal extracellular 

glutamatergic activity in the NAc (Parsegian & See, 2013). Following drug-primed and cue-

induced relapse, researchers have demonstrated a marked influx of glutamate into the NAcc, 

which when pharmacologically blocked prevents cue- and drug-induced relapse to METH-

seeking (Parsegian & See, 2013). Likewise, GABAergic inhibition of the PrL prevented 
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relapse to METH or cocaine-seeking (Cannella et al., 2013; Rocha & Kalivas, 2010). This 

suggests that this PFC-NAc glutamatergic pathway is vital to drug-relapse. 

Important to this process is the regulation of glutamate uptake by glutamate 

transporters and other molecular structures located on astrocytes. Substantial evidence 

indicates that glutamate release from the presynaptic bouton is regulated by astrocyte 

reuptake of glutamate (Cassé et al., 2012; Parpura & Zorec, 2010; Verkhratsky & Parpura, 

2016), 90% of which occurs via the glutamate transporter-1 (GLT-1) which is highly 

expressed in astrocytes (Danbolt, 2001; Williams et al., 2005)(Figure 2). Glutamate is then 

converted into glutamine and released into the synapse for uptake into presynaptic boutons to 

be synthesised into glutamate and packaged into vesicles for synaptic release (Albrecht, 

Sidoryk-Wegrzynowicz, Zielinska, & Aschner, 2010). Likewise, astrocytes also release 

glutamate via multiple alternative mechanisms, such as hemichannels, anion-channels, 

ionotropic purinergic receptors, calcium-ion (Ca2+)-dependent vesicular release, cystine-

glutamate antiporter (Xc-)-mediated glutamate exchange, and GLT-1 reversal (Kalivas, 2009; 

Malarkey & Parpura, 2008; Warr, Takahashi, & Attwell, 1999). This glutamate regulation 

occurs in the extrasynaptic space surrounding the synapse with the concentration of 

extrasynaptic glutamate modulating activity at inhibitory metabotropic glutamate receptor-2 

and 3 (mGluR2/3)(Moussawi & Kalivas, 2010; Schwendt, Reichel, & See, 2012). Crucially, 

binding to these receptors inhibits synaptic glutamate release, prevents long-term-potentiation 

and reduces subsequent binding to excitatory ionotropic glutamate receptors (iGluRs), an 

effect which has been pharmacologically manipulated with mGluR2/3 agonists to prevent 

cue- and drug-induced relapse to METH-seeking (Schwendt et al., 2012). 

Perisynaptic astrocytic processes (PAP)s are fine, highly-plastic process tips that are 

the primary source of astrocyte-synapse contact in the CNS (Scofield, 2018), and arguably 

are responsible for the greatest amount of glutamate reuptake across the astrocyte. The close 
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proximity of PAPs also allows for synaptic-sheathing, which prevents glutamate spill-over 

into the extracellular space (Rusakov, 2001). These astrocyte-synapse connections are also 

important for glial glutamate release as they are generally the closest access point for 

glutamate to bind with inhibitory presynaptic mGluR2/3s which regulate neuronal glutamate 

neurotransmission (Lavialle et al., 2011; Xi, Baker, Shen, Carson, & Kalivas, 2002). 

Under ideal conditions, glutamate homeostasis is maintained by astrocytic glutamate 

regulation, however following acute and chronic drug-use, the integrity of these regulatory 

mechanisms fails (Kalivas, 2009)(Figure 2). Acute drug-exposure, across drug-classes, 

demonstrates a marked reduction in the expression of GLT-1 (Gipson et al., 2013; Sari & 

Sreemantula, 2012) as does chronic cocaine exposure (Fischer-Smith, Houston, & Rebec, 

2012). Chronic cocaine and nicotine have shown a reduction in the expression of the catalytic 

subunit of the Xc- (Kau et al., 2008; Knackstedt et al., 2009). As the Xc- is responsible for 

more than 50% of glial glutamate release, this effect is a possible mechanism through which 

low basal levels of extracellular glutamate are seen after chronic drug-exposure (Baker et al., 

2003; McFarland et al., 2003; Parsegian & See, 2013).  

During drug relapse, there is an influx of mPFC-derived glutamate into the NAcc 

which cannot be regulated by the impaired astrocytic regulatory system (Parsegian & See, 

2013; Scofield et al., 2016b; Siemsen et al., 2019). As well, due to lack of synaptic glutamate 

clearance, there may be glutamate spill-over into the extrasynaptic space that could activate 

mGluR5s and GluN2B containing NMDA receptors (Pomierny-Chamiolo et al., 2015; Shen, 

Scofield, Boger, Hensley, & Kalivas, 2014). Activation of these receptors increases the 

intracellular concentration of Ca2+ leading to synaptic potentiation (Yashiro & Philpot, 2008) 

and drug-seeking behaviour (Kalivas, 2009). Coupled with reduced mGluR2/3 mediated 

inhibition of synaptic glutamate release (Hao, Martin-Fardon, & Weiss, 2010; Lu, Uejima, 

Gray, Bossert, & Shaham, 2007; Moussawi & Kalivas, 2010), these conditions facilitate an 
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increase in glutamate neurotransmission in the NAcc, thought to drive relapse to drug-

seeking behaviours (Cornish & Kalivas, 2000).  

 

 

 

Figure 2. Glutamate homeostasis: the tripartite synapse. Depiction of a tripartite synapse in the nucleus 
accumbens core (NAcc) of a drug-addicted animal during cue induced relapse to drug-seeking. Here, the 
terminal of a pre-synaptic glutamatergic medial prefrontal cortex (mPFC) projection neuron is synapsing with a 
post-synaptic dendrite of a γ-amino butyric-acid (GABA)ergic medium spiny neuron (MSN) and an astrocyte 
process. Hourglass figures represent metabotropic glutamate receptors (mGluRs). Yellow stars signify glutamate 
and black arrows indicate direction of glutamate travel at glutamate transporter-1 (GLT-1) and of Ca2+ influx at 
AMPAR and NMDARs. Black crosses indicate lack of function or downregulation due to chronic drug-
exposure. Yellow lightning bolts represent activity as a result of excitatory post-synaptic potentials at the pre- 
and post-synaptic terminals. Xc- = cystine-glutamate exchanger/antiporter. (a) During a healthy state, astrocyte 
processes regulate glutamate transmission via GLT-1 mediated glutamate reuptake, Xc-mediated glutamate 
reuptake and release. Glial-derived glutamate also binds to mGluR2/3s and mGluR5s to inhibit and potentiate 
glutamate activity, respectively. Following chronic drug-exposure, GLT-1, Xc- and mGluR2/3 expression is 
reduced, reducing the efficacy of glutamate regulation. (b) During exposure to drug-paired cues, glutamate 
neurotransmission is potentiated due to chronic METH-use reducing expression of GLT-1, Xc- and mGluR2/3s, 
resulting in failure of glutamate homeostasis regulatory mechanisms. Adapted from Scofield et al. 2014. 
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Despite concurrence between the findings in METH and cocaine, in regard to the 

glutamate homeostasis hypothesis, this hypothesis has never been examined in the context of 

addiction-phenotyping. It is therefore still unknown if there is a difference in glutamatergic 

activity within the METH-addiction neurocircuitry in METH addiction-vulnerable, compared 

to addiction-resistant animals and humans. Importantly, drug-addicts, in humans and rats, 

represent only 10-20% of those that use drugs (Australian Institute of Health and Welfare, 

2016; Deroche-Gamonet, Belin, & Piazza, 2004b; Wagner, 2002). Therefore, it is likely that 

certain aspects of brain function that are specific to this subset of drug-users may explain the 

development of addiction in these individuals. As astrocytes regulate synaptic and 

extrasynaptic glutamate as well as release glutamate in a brain-region specific manner 

(Malarkey & Parpura, 2008), it is vital to understand the interaction between METH-

addiction and astrocytes to understand the complex relationships between glutamate activity, 

astrocyte morphology and METH-addiction within the frontostriatal circuitry and beyond. In 

order for researchers to probe and expand on the nature of these mechanisms, preclinical 

models of addiction play an important role. 

1.6 Preclinical models of addiction. 

Currently, the only way to investigate the causal relationship between neurocircuitry 

and drug addiction is through the use of animal models of addiction. With control over 

environmental factors impacting on the animal, causal inferences can be drawn by the 

researcher, whereas human drug addicts each have unique experiences, and therefore the 

aetiology of the neural-behavioural relationship remains unknown. One of the most common 

species used in addiction models is the rat (Panlilio & Goldberg, 2007). Rats and humans 

both have very similar physiology (Dolenšek, Rupnik, & Stožer, 2015; Mestas & Hughes, 

2004; Papadimitriou, Xanthos, Dontas, Lelovas, & Perrea, 2008) and importantly, there is 

considerable structural and neurobiological overlap in the brain (Everitt, Giuliano, & Belin, 
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2018; Hoover & Vertes, 2007; Moorman et al., 2015). Given these apparent similarities and 

the experimental advantages over human subjects, rats are commonly employed in animal 

models of addiction to investigate neurobiological correlates with addictive behaviours. 

 The self-administration paradigm. Preclinical addiction models can 

encompass a wide range of paradigms (Belin-Rauscent, Fouyssac, Bonci, & Belin, 2016; 

Everitt et al., 2018). Some models, such as conditioned place preference (CPP) and 

locomotor sensitisation, assay the effects of acute or short chronic periods of drug-exposure 

on behaviours associated with the initial stages of drug-use. However, for many years the 

drug self-administration paradigm has been considered the gold standard for preclinical 

models of addiction (Everitt et al., 2018) as it demonstrates better ecological and face validity 

compared to models such as CPP and locomotor sensitisation (Cox et al., 2017). In the self-

administration model, rats are trained to press a lever for drug-delivery (Everitt et al., 2018; 

Weeks, 1961). The underlying assumptions of this paradigm stem from the principles of both 

operant and classical conditioning (Everitt et al., 2018). In terms of operant conditioning, 

drug-contingent operant responding results in delivery of a drug-reward, which reinforces 

these drug-taking behaviours. In terms of classical conditioning, neutral stimuli are presented 

preceding, simultaneous to, or following drug-delivery to endow these conditioned stimuli 

with certain properties. In terms of the drug-paired conditioned stimulus, this is normally a 

prominent light or sound that is presented concurrent with drug-delivery. Importantly, in 

humans, only a subset of those that chronically take drugs become addicted to them 

(Australian Institute of Health and Welfare, 2016; United Nations Office on Drugs and 

Crime, 2018; Wagner, 2002) which reduces the ecological validity of most self-

administration studies as all rats that acquire METH self-administration are generally 

considered METH-addicted. Consideration of this phenomenon led to the incorporation of 

addiction-phenotyping into the self-administration model (Belin, Mar, Dalley, Robbins, & 
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Everitt, 2008; Brown, Flynn, Smith, & Dayas, 2011; Deroche-Gamonet et al., 2004b; Jadhav 

et al., 2018).  

1.7 Addiction-phenotyping.  

In rats and mice, the ratio of human users transitioning to addiction has been mirrored 

in preclinical paradigms that assay addictive behaviours aligning with the DSM-5 criteria for 

drug dependence (Belin & Deroche-Gamonet, 2012; Brown et al., 2011). In the first report of 

this procedure, Deroche-Gamonet et al. (2004b) assessed the propensity for a rat to respond 

on a drug-paired lever in three contexts designed to distinguish distinct addictive behaviours. 

Rats responding above the 66th percentile for all three behaviours were then considered to be 

addicted. They confirmed that these behaviours predicted and correlated with cue-induced 

relapse to drug-seeking, a critical addictive behaviour predictive of treatment efficacy 

(DeJong, 1994), and demonstrated via factor analysis that together all three behaviours 

loaded onto a single latent variable.  

A variety of permutations of the phenotyping model have since arisen, with one 

notable example being that of Brown et al. (2011). These researchers incorporated cue-

induced relapse to drug-seeking as one of their criterion for the addiction-vulnerable 

phenotype, preserving two of the criterion previously employed by Deroche-Gamonet et al. 

(2004b). The three context-specific addictive behaviours employed in this study reflect 

distinct criteria described in the DSM-5 (American Psychiatric Association, 2013), which is 

important as meeting a predetermined number of criteria is the current clinical method for 

diagnosis of addiction. As such, adoption of the criterion-based approach known as addiction-

phenotyping provides even greater face validity than a simpler drug self-administration 

paradigm that assumes that chronic drug-taking is sufficient for the development of addiction. 

The criteria employed by Brown et al. (2011), high motivation to take drugs, cue-induced 
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relapse to drug-seeking, and habitual drug-seeking (HDS), are vital characteristics of the 

addiction disorder (American Psychiatric Association, 2013). 

 Modelling motivation for drug-taking. To model motivation to take drugs in 

an IVSA paradigm, the schedule of reinforcement is incrementally increased gradually across 

self-administration sessions (Panlilio & Goldberg, 2007). The schedule of reinforcement 

refers to the pattern of responding necessary for drug-delivery (Everitt et al., 2018). Once rats 

acquire the drug-lever associations, rats are introduced to the progressive ratio (PR) schedule 

where, within a session, the number of responses after each subsequent infusion increases 

according to a function (Richardson & Roberts, 1996). A PR schedule is employed so that the 

economic value of consecutive infusions rises until drug-seeking is forsaken. This point of 

cessation is known as the breakpoint and is the operationalised measure of the effort the 

animal is prepared to expend to obtain a given dose of a rewarding drug (Panlilio & 

Goldberg, 2007). The breakpoint as a measure of motivation is independent of the rate of 

responding, which is modulated by reinforcing drugs themselves which confounds the 

interpretation of motivation (Panlilio & Goldberg, 2007). Therefore, using the breakpoint is a 

methodological strength of the PR schedule. This paradigm permits the addicted animal to 

replicate the high motivation to take rewarding drugs seen in the addiction-phenotype in 

humans (American Psychiatric Association, 2013). Humans that suffer from an addiction 

disorder are highly motivated to seek out drugs of abuse and are willing to spend 

considerable time and effort in their procurement and preparation. As such, the PR schedule 

most frequently used in preclinical models may require rats that are highly motivated to take 

drugs to lever press hundreds, if not thousands, of times to receive a single drug reward. 

These rats that expend such extraordinary amounts of effort for a small drug-reward are likely 
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to also demonstrate other addictive behaviours (Belin et al., 2008; Deroche-Gamonet, Belin, 

& Piazza, 2004a). 

 Modelling cue-induced relapse to drug-seeking. Arguably the most 

ecologically valid measure of the addictive phenotype is relapse to drug-seeking induced by 

drug-cues (Everitt et al., 2018; Kalivas & Volkow, 2005). Relapse maintains and reinforces 

the addictive cycle and has been identified as the crucial addiction behaviour for remediation 

of drug addiction (Kalivas & Volkow, 2005; Koob & Le Moal, 2001; Koob & Weiss, 1992). 

Generally, during drug self-administration, simultaneous to delivery of the drug-reward, one 

or more salient cues are presented, such that over time these stimuli gain reinforcing 

properties independent of drug-availability (Panlilio & Goldberg, 2007). Once rats have been 

given sufficient time to become addicted to the rewarding drug, rats are then trained to 

extinguish the drug-lever association over a given period. Here, the drug-paired cues would 

not be presented and lever pressing results in no consequence. Despite a decrease in lever 

pressing in the absence of drug-reward signalling and availability, the drug-cue association 

persists. Following the extinction period, rats are then exposed to the drug-paired cue and 

lever responding is recorded, typically with each lever press resulting in drug-cue 

presentation and no additional consequence. Importantly, this paradigm assesses the 

reinforcing efficacy of the drug-paired cue itself, which is an indirect measure of the drug-

cue’s effect on drug-seeking behaviours. Drug-cues are well-documented triggers of relapse 

to drug-seeking and taking in humans (Kalivas & Volkow, 2005), therefore using cue-

induced relapse has strong ecological validity and high potential for translatability (Everitt et 

al., 2018). Another key component of the addiction-phenotype is that of HDS. 

 Modelling habitual drug-seeking. Drug addiction can be characterised as a 

habitual drug-taking disorder, and this is especially true for the later stages of addiction 

(Koob & Volkow, 2016; Volkow & Morales, 2015). Habitual drug-seeking behaviours 
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therefore indicate the transition from reward to addiction (American Psychiatric Association, 

2013; Koob & Volkow, 2010). One model of HDS, requires that rats that have already 

acquired self-administration undertake training in a cyclic drug-available/drug-free paradigm 

(Brown et al., 2011; Deroche-Gamonet et al., 2004a; Fuchs, Higginbotham, & Hansen, 2019). 

These periods are purposefully signalled by drug-availability cues and as such, rats recognise 

that responding during this period will not yield a drug-reward. The measure of HDS is lever 

pressing during the non-drug available (NDAv) periods throughout the session as rats with 

strong habit formation are more likely to continue responding during this period, despite 

learnt drug unavailability (Deroche-Gamonet et al., 2004b). HDS is a vital component of the 

addiction-phenotype as following the transition to addiction, drug-seeking becomes 

automated and driven by habit (American Psychiatric Association, 2013; Volkow & Morales, 

2015). This habit formation is related to the loss of control over drug-seeking, where addicts 

are unable to prevent themselves from partaking in drug-seeking behaviours due to the 

formation of a robust and powerful habit (Clemens & Holmes, 2018; Everitt & Robbins, 

2013a) that is unable to be inhibited by a dysfunctional PFC (Lominac et al., 2016).  

This model has not yet been employed in a METH self-administration paradigm and 

therefore it is unknown whether rats will demonstrate this type of HDS and if this correlates 

with other addictive behaviours. Interestingly, Torres et al. (2017) found that rats that 

demonstrated greater foot-shock-mediated compulsive drug-seeking, defined as drug-taking 

that is maintained despite adverse consequences, also showed greater cue-induced relapse 

scores after incubation of drug-craving. Currently, no other studies investigating METH-

addiction have employed an addiction-phenotyping paradigm in a preclinical self-

administration model.  

1.8 Aims and research question. 
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To date, no studies have employed a METH-addiction-phenotyping procedure, similar 

to that developed for cocaine by Deroche-Gamonet et al. (2004a), that investigate neural 

correlates across separate phenotypes. Therefore, the neural circuitry associated with the 

METH addiction-phenotype, above and beyond substantial METH-exposure, are currently 

unknown. This study aims to uncover which brain regions demonstrate an association with 

glutamatergic activity, reactive astrogliosis and astrocyte proliferation, and METH-addiction 

vulnerable rats. It also aims to reveal which regions, if any, demonstrate a relationship 

between astrocyte-synapse interactions and glutamate activity, and METH addiction-

vulnerable rats. Due to the lack of research investigating the neural substrates of the METH 

addiction-vulnerable rats, many brain regions within the characterised addiction circuitry will 

be assayed. These are chosen based on their involvement in circuits relevant to the addiction 

behaviours assessed, notably motivation to take drugs (mPFC, NAc, BLA), cue-induced 

drug-relapse (mPFC, NAc, BLA, LOFC, CeA) and HDS (DS, mPFC). 

 Hypotheses. 

 

1. It was hypothesised that baseline glutamatergic activity will be reduced in the PrL, IL, 

LOFC, BLA, CeA, NAcc, NAcs, DLS, aDMS and pDMS demonstrated by less 

CaMKIIa fluorescence, in addiction-vulnerable, compared to addiction-resistant rats. 

 

2. It was hypothesised that astrocyte proliferation will be increased in the PrL, IL, 

LOFC, aDMS, pDMS, DLS, NAcc, NAcs, BLA and CeA, measured by a greater 

number of GFAP-stained nuclei, in addiction-vulnerable, compared to addiction 

resistant rats. 
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3. It was hypothesised that astrogliosis will be increased in the PrL, IL, LOFC, NAcc, 

NAcs, aDMS, pDMS, DLS, BLA and CeA, measured as increased ring intersections, 

number of processes, and longer primary processes, in addiction-vulnerable, 

compared to addiction-resistant rats. 

 

4. It was hypothesised that baseline glutamate activity, measured by intensity of 

CaMKIIa fluorescence, in the PrL, LOFC, BLA, NAcc and NAcs, will positively and 

significantly correlate with astrocyte-synapse interactions, measured by the GFAP-

synapsin-I colocalisation coefficient, in addiction-vulnerable rats, and that this 

correlation will be stronger and opposite in valence when compared to addiction-

resistant rats. 

 

5. It was hypothesised that baseline glutamate activity, measured by intensity of 

CaMKIIa fluorescence, in the IL and CeA will negatively and significantly correlate 

with astrocyte-synapse interactions, measured by the GFAP-synapsin-I colocalisation 

coefficient, in addiction-vulnerable rats, and that this correlation will be stronger and 

opposite in valence when compared to addiction-resistant rats.
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2.  Methods 

2.1 Animals 

Male Sprague-Dawley rats (n = 40) were born at the PC2-Certified Central Animal 

Facility at Macquarie University (North Ryde, NSW) from six dams purchased from the 

Animal Resource Centre (Perth, WA). Their holding room remained on a 12h light-dark 

cycle (lights on at 0400h or 0600h) at a constant temperature (21±ºC) and 40-65% humidity. 

Subsequent to weaning, rats were pair-housed in wire-covered plastic cages 

(629x400x310mm) lined with bedding, except following surgery where they were single-

housed (see 2.2). Rats were supplied wooden blocks, straws, sunflower seeds, and shredded 

paper for environmental enrichment. During the early postnatal period, they were left largely 

undisturbed with minimal handling until 8-9 weeks postnatal. Subsequently, rats were 

handled by the primary researcher daily for one week. Rats’ tails were tagged with permanent 

marker. Food was available ad libitum until 8-9 weeks of age, following then a minimum of 

20g of chow per rat was administered to each cage daily to restrict excessive weight gain 

across the length of the experiment (Carroll, France, & Meisch, 1981; Osborne & Olive, 

2008). Water was available ad libitum throughout, except during experimental sessions. All 

experiments were conducted during the light cycle.  

2.2 Surgery 

Following handling, rats underwent jugular-vein catheter implantation surgery to 

allow chronic drug-delivery. The surgical procedures used have been previously described 

(Baracz, Everett, McGregor, & Cornish, 2016) and involved insertion of a catheter into the 

righthand jugular vein, externalised at the back and sealed with a plastic and brass cap. For 

catheter assembly see Appendix A. Each rat was monitored closely throughout surgical 
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procedures (see Appendix B). Rats were anaesthetised with 2.5% isoflurane (2-chlor-2-1, 1, 

1-trifluoroethyl difluoroethane) in oxygen (2L/min). Once anaesthetised, they were given 

Carprofen (5mg/kg/mL, subcutaneous) analgesia. Following surgery, catheters were flushed 

with 0.2mL of cephazolin solution (100mg/mL). The antiseptic betadine was applied to 

wounds, and 0.9% saline (2ml, subcutaneous) was injected into the left flank for hydration. 

Rats were then placed in individual cages inside a heating chamber (27ºC) and monitored for 

45-minutes with access to water, then single-housed with restored access to food and water. 

 Post-operative care. For 5-7 days following surgery, rats were weighed daily 

and received betadine treatment. For the first 2 days after surgery, rats also received 

Carprofen (5mg/kg, subcutaneous) analgesia and catheters were flushed with 0.2mL of 

cephazolin solution (100mg/mL). Subsequently, rats were pair-housed with their original 

cage mates, dependent on recovery. Throughout the remainder of the experiment, catheters 

were flushed daily with 0.2mL of heparinised (60IU) cephazolin solution to prevent catheter 

occlusion. 

2.3 Drugs 

Methamphetamine hydrochloride (99.8±1.3% pure, METH) was obtained from the 

Australian Government Analytical Laboratories (Pymble, NSW). For intravenous self-

administration (IVSA), METH was dissolved in 0.9% saline at a concentration of 

0.1mg//kg/0.05mLinfusion, based on average rat weight, then passed through a Millipore 

syringe filter (0.22µm). METH solutions for IVSA were made on a weekly basis. 

2.4 Intravenous self-administration of METH 

 Self-administration apparatus. Behavioural experiments were undertaken in 

20 standard operant chambers (32x25x34cm; Med Associates, VT, USA) within sound-

attenuating boxes. Each chamber had a right and left lever with a bright cue-light above and 

house-light. A 10mL syringe of METH set in an infusion pump was connected to PE 
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infusion-line tubing, which ran through a swivel and spring connector to connect to the 

catheter back mount. Active and inactive lever location was counterbalanced across the 

chamber side to control for location preference. A tone generator was situated over a 

perforated slat on the chamber exterior. 

 Self-administration procedure. Prior to each IVSA session, infusion lines 

were disinfected with ethanol (70%) before loading with METH. Catheters were flushed with 

0.1mL heparin solution (10IU) before sessions. IVSA sessions were completed at the same 

time every day for 3 hours. Rats began on a fixed ratio-1 (FR1) schedule of reinforcement, 

where presses on the active-lever resulted in a 3-second infusion of METH 

(0.1mg/kg/infusion). Drug-delivery was paired with a compound-cue, consisting of a 3-

second cue-light illumination, a distinct 5-second tone (70dB, 2900hZ, rise-fall duration 

10ms) and the mechanical infusion-pump sound. Subsequently, there was a 17-second 

timeout before drug and compound-cue availability were restored. This prevented excessive 

binge consumption and METH-induced toxic overdose. Rats were limited to 120 infusions, 

upon which the session would end. 

 Acquisition of METH self-administration. Rats ac quired METH IVSA for 

14 days on an FR1 schedule of reinforcement. Acquisition criteria were met when active-

lever presses had escalated and were significantly greater than inactive-lever presses by the 

end of FR1 acquisition.  

 Habitual Drug-Seeking. Following acquisition on a FR1 schedule, rats 

acquired 3-hour habitual drug-seeking (HDS) sessions. During HDS sessions, each hour was 

divided into 2 distinct periods based on previously reported methods (Brown et al., 2011). 

During the first 40 minutes, METH was available via active-lever depression. During the 

preceding twenty minutes, all lever presses had no consequence. Therefore, each HDS 

session consisted of three drug-available (DAv) and three non-drug-available (NDAv) 



Methods  35 

periods. Each period was signalled by distinctive cues. During the DAv period, a white-noise 

was played (except during compound-cue presentation and the timeout period, whereas 

during the NDAv period a house-light was illuminated. Rats acquired FR1 HDS sessions for 

3 days, then FR3 sessions for 2 days, then FR5 for 3-5 days. This schedule-escalation is a 

standard procedure used to facilitate transition to harder schedules of reinforcement, such as a 

progressive-ratio (PR) schedule. A FR5 schedule in HDS sessions is also standard for 

addiction-phenotyping paradigms (Brown et al., 2011; Deroche-Gamonet et al., 2004b) as it 

increases inter-animal response variability, facilitating the assessment of addiction-resistant 

(ARes) and addiction-vulnerable (AVul) phenotypes. 

Following completion of the HDS acquisition protocol, rats were tested for HDS over 

5 identical test-sessions (Figure 3). HDS scores were calculated from the number of active-

lever presses during NDAv periods, averaged across sessions. 

 Motivation to take-METH. Following the 5-day HDS test period, rats acquired 

the PR schedule over 2 sessions. They were then tested for motivation to take-METH over a 

further 3 sessions. PR is the same as FR, however rewards are received contingent on an ever 

increasing number of responses, according to this function: Response ratio (nearest integer) = 

5e(injection numberX0.2) – 5 (Richardson & Roberts, 1996). From this, a 3-hour breakpoint (BP) for 

each animal can be calculated. A BP is defined as the point at which a subject is unwilling to 

expend further effort to seek a discrete reward (Panlilio & Goldberg, 2007). In the current 

study, this is operationalised as the amount of active-lever presses the animal is willing to 

make to obtain the last drug-infusion, in 3-hours. Rats’ average BP was calculated from the 

BP values over the 3 PR test-sessions; this value constituted their motivation to take-METH 

score. Aft the final PR session, rats undertook one FR5 HDS session. This final session 
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ensured that rats’ final METH-session was on a FR schedule to facilitate extinction training 

(Brown et al., 2011; Nevin, 2012). 

 Relapse to drug-cues. Following the final day of METH IVSA, active-lever 

responding was extinguished over 31-32 days during 1-hour extinction (Ext) sessions, except 

on Ext day-1 (3-hours) and Ext day-2 (2-hours). During Ext sessions, responding on either 

lever had no consequence. Additionally, the compound-cue was withheld, and the house-light 

remained off. Rats were considered to have extinguished when their active-lever presses were 

20 or less over 3 consecutive sessions. Once extinguished, rats were exposed to the 

compound-cue during one session with no METH-access. Rats had one non-contingent cue 

presentation, 30-seconds after lever protraction (pump on for 3-seconds, compound-cue on 

for 5-seconds). Subsequently, rats could press for compound-cue presentation over the 

remainder of the 60-minutes, with no timeout, following the preceding compound-cue 

presentation. A normalised cued-relapse score was calculated from the total active-lever 

presses during the relapse session minus the active-lever presses during the final Ext session 

(Atkins, Mashhoon, & Kantak, 2008; Kim et al., 2015) and was used to phenotype rats as 

either relapse-vulnerable or relapse-resistant.  

2.5 Forced abstinence and sacrifice 

Following the IVSA protocol, rats remained in home-cages for one week, to minimise 

any cue-relapse effects before sacrifice. For cull day, rats were given a lethal intraperitoneal 

injection of the barbiturate pentobarbital sodium (200mg/kg at 46.25mg/mL). Animals’ 

consciousness was assessed with a firm tail or toe pinch. Upon no response after at least 3 

pinch-tests and once breathing ceased, rats underwent perfusion fixation via intracardiac 

puncture.  
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Figure 3. A timeline of the intravenous self-administration (IVSA) paradigm.Preparation and post-IVSA period 
(grey), acquisition, stabilisation and extinction sessions (red) and the test sessions assessing addictive 
behaviours (purple). 

 Perfusion. Rats’ chest cavities were opened with surgical scissors and the heart 

was exposed. An incision was then made from the opening down to the urethra to facilitate 

removal of the colon for analyses outside of this study. Either end of the colon was clamped 

before surgical removal. A blunt 18G needle was inserted into the aorta and 1mL of heparin 

solution (1000IU) was then injected intracardially. Finally, a small incision was made at the 

left atrium, then the rat was perfused with ice-cold heparinised saline (10IU/200mL) over 6-

minutes followed by 200-250mL of 4% paraformaldehyde (PFA) for a further 6-8 minutes.  

2.6 Immunohistochemical procedure 

 Histology Preparation. Brains were then removed and post-fixed in 4% PFA 

overnight at 4qC. They were then transferred to a graded protocol of sucrose phosphate-

buffered saline (PBS; 24-hours 10% sucrose, 24-hours 20% sucrose, and 48-hours 30% 

sucrose). Subsequently, brains were preserved in cryoprotectant solution (30% ethylene 

glycol, 30% sucrose and 2% polyvinylpyrrolidone dissolved in 0.1M PBS) and kept at -20qC 

until sectioning. Using a 1mm graticule, brains were coronally sectioned rostral to the 

cerebellum and mounted rostral-side up. Brains were then sectioned coronally (50Pm thick, 

1:4 serial slices) with a vibrating microtome (VTS1200S; Leica) then placed in pots of 

cryoprotectant solution. 

 Immunohistochemistry. Immunohistochemistry was employed to visualise 

astrocytes (glial-fibrillary acidic protein [GFAP])(Lu et al., 2019), synapses (synapsin-1) 

(Scofield et al., 2016b) and glutamate activity at α-amino-3-hydroxy-5-methyl-4-

Habituation Surgery + 
Recovery
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HDS 
Training

HDS 
Testing PR Testing Final HDS 

Session Extinction Cued 
Relapse

Abstinence 
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     Day           1-7              7-12                   13-26                 27-32    33-37                 38-42                  43           44-74                   75          76-81 
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isoxazolepropionic-acid receptors (AMPARs)(calmodulin-kinase-II-alpha 

[CaMKIIa])(Larsson, 2017). It was employed for analysis the six AVul, six ARes, and five 

yoked-saline rat brains (one Yoked excluded due inadequate perfusion). GFAP is widely used 

to visualise astrocytes (Sampedro-Piquero et al., 2014; Siemsen et al., 2019), therefore it was 

used here. CaMKIIa regulates AMPAR activity and was used to chemogenetically modulate 

glutamate activity (Zhang et al., 2019), and was therefore used here.  

Firstly, tissue slices were washed thrice for 30-minutes in Tris phosphate-buffered-

saline (TPBS; Tris-HCl 10mM + sodium phosphate buffer 0.1M + 0.9% NaCl), followed by a 

30-minute wash in Tris (10mM, pH 10) and Tween 20 (0.01%) at 80qC to enhance antigen 

retrieval. Samples were then cooled at room temperature for 1-hour before a further three 5-

minute washes in TPBS. The slices were then pre-incubated with TPBS and 0.05% 

merthiolate (TPBSm) and 10% normal-horse-serum (NHS) for 1.5 hours. Subsequently, 

tissue sections were incubated with primary antibodies for 8-hours at room temperature and 

40 hours at 4qC. The primary antibodies used for detecting astrocytes was goat anti-GFAP 

(1:1000 dilution, Abcam, ab53554), glutamate activity was mouse anti-CaMKIIa (1:1000, 

Thermo-Fischer, pa519128), and synapses was rabbit-anti synapsin-I (1:500, Abcam, ab8). 

Following three 30-minute washes post-incubation, slices were pre-incubated in TPBSm and 

10% NHS for 1.5 hours before incubation with secondary antibodies (dilutions 1:500 for all, 

Cy™3 donkey anti-goat, Alexa Fluor 647 donkey anti-mouse and Alexa Fluor 488 donkey 

anti-rabbit, Jackson Immunoresearch) for 24 hours at 4qC. Slices were washed with TPBS 

thrice then mounted on glass slides and cover-slipped with Dako-fluorescence mounting-

media with DAPI (Agilent Technologies). 
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Figure 4. Non-reactive vs. hypertrophied astrocytes. Glial-fibrillary acidic protein (GFAP)-stained astrocytes in 
the prelimbic cortex of a (a) yoked and (b) addiction-vulnerable sample. White arrows indicate an astrocyte. (a) 
As can be visualised, in astrocytes of yoked rats there are minimal nodes with fewer long processes.  (b) 
Addiction-vulnerable astrocytes had greater hypertrophy with more, longer processes. 

 Microscopy and image analysis. Ten brain slices (ranging from AP +3.72 to -

3.48mm from Bregma; Figure 6) were imaged using epifluorescence with a Zeiss Axioimager 

Z2 microscope (Carl Zeiss Microscopy) via Zen 2.0 2011 imaging software (Zeiss). Tiled 

images of sections were acquired at 20x magnification at a constant exposure time for each 

channel, then stitched. Brightness and contrast were modified consistently across images. The 

total number of GFAP positive (GFAP+) astrocytes was quantified whilst the experimenter 

was blind to treatment employing ImageJ software (Beauquis et al., 2013). The mean 

intensity of CaMKIIa fluorescence was quantified for each region using the same software 

Hartig (2013). A co-localisation coefficient for GFAP+ astrocytes and synapsin-1 was 

quantified using the Coloc-2 ImageJ plugin (Pompey, Michaely, & Luby-Phelps, 2013).  

A modified Sholl analysis (Dall’Oglio, Gehlen, Achaval, & Rasia-Filho, 2008; 

Sampedro-Piquero et al., 2014; Saur et al., 2014) was performed on 6 randomly-selected 

astrocytes per region per image using the Sholl Analysis ImageJ plugin for 6 rats (2 random 

controls, ARes, and AVul each). The morphology of n = 864 astrocytes within a total of 24 

a. b. 
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ROIs (Figure 6) across 10 sections per animal was analysed. Briefly, the number of astrocyte 

process-ring intersections was quantified manually following overlay of a maximum 25 

concentric-rings at 3.91µm intervals (Saur et al., 2014)(Figure 5). The longest-process length 

was measured for each astrocyte and the total node-number was quantified by summing 

points from which processes arose (Sampedro-Piquero et al., 2014). Only randomly selected 

GFAP+ astrocytes that were uniformly stained, relatively isolated and located completely 

within the ROI were analysed. 

 

Figure 5. Sholl analysis image. Sholl rings overlaid on an astrocyte for analysis of hypertrophy. Intersections are 
highlighted with dots automatically by the ImageJ plugin Sholl Analysis, then confirmed by experimenter 
during data collection. The number of nodes are then manually quantified and the length of the longest process 
is measured with a tracing tool. 

2.7 Statistical analyses 

Lever presses and infusions were recorded using MED-PC-V software (Med-PC, VT, 

USA), then statistically analysed using SPSS v20. Significance level was set at D = 0.05. 

Whenever the assumption of sphericity was not met, the Greenhouse-Geiser correction was 

used. Whenever the assumption of homoscedasticity was not met for a one-way ANOVA, the 

non-parametric Kruskal-Wallis test was used followed by the use of non-parametric planned 

contrasts.  
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Figure 6. Regions of interest used for all brain regions at 10 bregma levels. Map of sections used (measured as 
mm from Bregma) with labels of all regions examined. PrL = prelimbic cortex; IL = infralimbic cortex; LOFC = 
lateral orbitofrontal cortex; NAcc = nucleus accumbens core; NAcs = nucleus accumbens shell; aDMS = 
anterior dorsomedial striatum; DLS = dorsolateral striatum; pDMS = posterior dorsolateral striatum; CeA = 
central amygdala; BLA = basolateral amygdala. 
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 Exclusions. Two rats were excluded from analyses (one died from a stroke of 

unknown origin; one did not acquire on FR1 IVSA). A further 3 rats were not included in the 

phenotyping analyses as two did not acquire the HDS paradigm and the third’s brain was 

inoperable. Therefore n = 35 rats were included for analyses. 

 Acquisition of self-administration. The assumptions of the IVSA model were 

first tested. Escalation of METH-intake and METH-seeking behaviour were assessed with a 

repeated-measures analysis of variance (ANOVA) with a planned contrast comparing day 1 

and 14 of the FR1 acquisition period. Acquisition of an operant lever-drug association was 

assessed with a paired-samples t-test, comparing active and inactive lever presses on the final 

FR1 acquisition session. To ensure this association persisted following acquisition of the 

HDS paradigm, a paired-samples t-test was conducted, comparing the active and inactive 

lever presses on the final day of the HDS acquisition period. Additionally, to assess learning. 

of period-specific cues, the white-noise and house-light, a paired-samples t-test was used to 

compare the DAv period active-lever presses to the NDAv active-lever presses on the final 

HDS acquisition session. Finally, to confirm the lever-drug association persisted into PR 

sessions, a paired-samples t-test was used to compare the active to inactive-lever presses 

during the second and final PR acquisition session.  

 Phenotyping analysis. To be considered for the AVul phenotype, rats needed to 

have a normalised cued-relapse score equal to or above the 60th percentile and an HDS score 

or motivation score equal to or above the 66th percentile. In other words, they needed to meet 

the relapse criterion for addiction, as well as either the motivation or HDS criterion. Their 

motivation and HDS scores had to also be above the 33rd percentile, with one exception. If a 

rats’ relapse score and motivation score met AVul criteria, however their HDS score was 

below the 33rd percentile, their resistance to extinction score was considered (Chesworth & 

Corbit, 2017; Dell et al., 2007). This was calculated as the number of days taken to meet 
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extinction criteria. Of these rats, those scoring equal to or above the 66th percentile for 

resistance to extinction were considered to be AVul. This procedure was adopted as it was 

difficult to interpret the lack of responding during NDAv periods, as psychostimulants 

facilitate the development of strong drug-cue associations (see 4.3.1). This is evidenced here 

by strong cue-induced relapse to METH-seeking amongst rats considered for the AVul 

phenotype (see Figure 7). This resulted in n = 6 rats in the AVul phenotype. 

Criteria for the ARes phenotype was set at: a relapse score equal to or below the 40th 

percentile and a motivation or HDS score equal to or below the 33rd percentile. This resulted 

in n = 6 rats in the ARes phenotype. 

 Analysis of addiction behaviours and neural markers. For each bregma 

level, per region, the average CaMKIIa intensity, total number of immunoreactive GFAP+ 

astrocytes, ring-intersections, nodes, and longest-process length were analysed using five 

one-way ANOVAs with three levels to test the main effect of phenotype on the number of 

astrocytes, CaMKIIa expression, and degree of astrocyte hypertrophy in AVul, ARes and 

yoked rats. Two planned a priori contrasts were then employed. To test the mean difference 

per bregma level, per region, per marker, between AVul rats, and ARes and Yoked rats, 

separately, two a priori contrasts were used, whereas for comparing ARes to Yoked rats, 

parametric Tukey HSD and non-parametric Games Howell post-hoc tests were used. The 

colocalisation coefficient for GFAP+ astrocyte-synapsin-I colocalisation was correlated with 

average CaMKIIa intensity to assess the relationship between astrocyte-synapse connections 

and glutamate activity. 
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3. Results  

3.1 Acquisition of METH IVSA 

Rats successfully acquired METH IVSA on a FR1 schedule of reinforcement, 

demonstrated by escalation of intake over the FR1 acquisition period, F(3.12,93.5) = 11.49, p 

< 0.001 (Figure 7a). Planned contrasts revealed a significant increase in active lever presses 

when comparing FR1 acquisition day 1 and 14, F(1,30) = 8.76, p = 0.006. Rats learnt the 

lever-drug association, demonstrated by significantly greater active compared to inactive 

lever presses on day 14 of FR1 acquisition, t(29) = 17.53, p < 0.001. This association 

persisted following training on a FR5 schedule during HDS sessions, t(29) = 11.7, p < 0.001 

(Figure 7b). Rats were also able to distinguish between the DAv and NDAv periods of the 

HDS paradigm, demonstrated by significantly greater active presses during the DAv period 

on the last day of HDS acquisition, t(29) = 11.34, p < 0.001 (Figure 7b/c), compared to the 

NDAv period. The drug-lever association persisted into the PR phase, demonstrated by 

significantly greater active (M = 725.4, SEM = 187.68) compared to inactive presses (M = 

45.33, SEM = 82.77) on the final day of PR acquisition, , t(29) = 3.62, p = 0.001. 

3.2 Addiction-phenotype and addiction behaviours 

Addiction-vulnerable (AVul) rats (n = 6) demonstrated significantly greater active 

presses during the cued relapse session, t(10) = 4.48, p = 0.001 (Figure 8a), a significantly 

greater average breakpoint across the last 3 motivation test sessions, t(10) = 5.37, p < 0.0005 

(Figure 8c), and a significantly greater number of days taken to reach extinction criteria, t(10) 

= 2.33, p = 0.042 (Figure 8d), compared to ARes rats (n = 6). Excluding the two AVul rats 

that demonstrated a lack of HDS, AVul HDS-positive rats (n = 4) were found to have 

significantly greater NDAv active presses averaged across the 5 HDS test sessions compared 
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to ARes rats, t(8) = 1.97, p = 0.033 (Figure 8b). No significant difference in lifetime METH-

intake, measured as mg/kg, was found when comparing AVul (M = 125.05, SEM = 14.88) to 

ARes (M = 132.65, SEM = 14.2) rats, t(10) = 0.37, p = 0.719. 

 

Figure 7. Acquisition of methamphetamine (METH) intravenous self-administration. (a) Acquisition on a fixed-
ratio (FR)-1 schedule of reinforcement, measured by active and inactive lever presses, and infusions per session. 
(b) Acquisition on the habitual drug-seeking paradigm, transitioning from a FR-1 to FR-3 to FR-5, measured by 
active and inactive lever presses, and infusions per session. (c) Demonstration of continued distinction between 
the active and inactive lever during non-drug available periods by the end of acquisition. (d) and (e) 
Demonstration of the similarities in acquisition of METH self-administration between the vulnerable and 
resistant groups. Marks/numbers on the x-axis indicate the session number. 

3.3 METH IVSA reduced the number of GFAP-positive astrocytes in the central CeA 

There was no main effect of phenotype on the number of GFAP+ astrocytes in the 

PrL, IL, LOFC, aDMS, DLS, pDMS, NAcc, NAcs, BLA or CeA, at any of the bregma levels 

assayed (see Appendix X). As a priori contrasts were planned, they were examined. Contrasts 

performed on the number of astrocytes between groups in the PrL, IL, LOFC, aDMS, DLS, 

pDMS, NAcc, NAcs and BLA demonstrated no significant differences between groups (see 

Appendix X). In the CeA however, it was found that at -2.52mm bregma, AVul rats had 

fewer astrocytes compared to Yoked rats, t(13) = 2.544, p = .024, however no significant 

difference was found when comparing to ARes rats, t(13) = 1.815, p = .093 (Figure 7c), 

suggesting that METH-exposure affected AVul and ARes groups equally.  
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Figure 8. Addiction behaviours in addiction-vulnerable and addiction-resistant rats. (a) Active lever presses 
during cue-induced relapse to methamphetamine-seeking behaviours, (b) active lever presses during the non-
drug available periods of the habitual drug-seeking paradigm in subset of AVul (n = 4) compared to ARes rats, 
(c) three-hour breakpoint averaged across three progressive-ratio test sessions, and (d) the number of days 
needed to meet extinction criteria were used as criteria for addiction-phenotyping. * Significance level is set at p 
< .05. 

3.4 METH IVSA reduced glutamatergic activity in the NAcc, BLA, and CeA 

There was no main effect of phenotype on CaMKIIa fluorescence as an index of 

glutamate activity in the PrL, IL, LOFC, aDMS, DLS, pDMS, NAcc, NAcs, BLA or CeA 

(see Appendix X) at any of the bregma levels assayed. However, since contrasts were 

planned, a priori contrasts were examined. 

Contrasts performed on the amount of CaMKIIa fluorescence between groups in the 

PrL, IL, LOFC, aDMS, DLS, pDMS and NAcs found no significant difference between 

Yoked, ARes and AVul groups. However, it was found that AVul rats had less CaMKIIa 

fluorescence compared to Yoked rats in the NAcc at +2.72mm bregma, t(13) = 2.243, p 

= .043 (Figure 9b), BLA at -2.52mm bregma, t(14) = 2.519, p = .025 (Figure 9c), and CeA at 
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-2.52mm bregma, t(14) = 2.398, p = .031 (Figure 9d). There was no significant difference in 

CaMKIIa fluorescence between AVul and ARes rats, nor ARes and AVul rats in the NAcc, 

BLA and CeA (see Appendix X). 

 

Figure 9. Astrocyte proliferation and baseline glutamate activity in AVul, ARes and yoked rats. The number of 
glial fibrillary acidic protein (GFAP)-positive astrocytes and mean calmodulin kinase-II alpha (CaMKIIa) 
expression at bregma levels of regions demonstrating a significant main effect of phenotype. (a) Number of 
astrocytes at -2.52mm bregma in the central amygdala, and the mean CaMKIIa expression in the (b) nucleus 
accumbens core at +2.72mm bregma, (c) basolateral amygdala at -2.52mm bregma, and (d) central amygdala at 
-2.52mm bregma. * Significance level is set at p < .05 

3.5 Addiction-phenotype and METH IVSA mediated astrocyte hypertrophy in various 

brain regions 

Each index of morphology, astrocytic branching, astrocyte node-number and longest 

process length, will be described in turn, starting with main effects, followed by the effect of 

METH IVSA on astrocyte morphology, finishing with changes in astrocyte morphology 

specific to groups. 

 Main effect of phenotype on astrocyte branching. There was a significant 

main effect of phenotype on the number of astrocyte process-ring intersections as a measure 
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of astrocyte branching in the PrL at +3.72mm, +3.24mm, and +2.76mm bregma, IL at 

+3.72mm, +3.24mm, and +2.76mm bregma, LOFC at +3.72mm and +3.24mm bregma, NAcc 

at +2.28mm bregma, NAcs at +2.28mm bregma, BLA at -2.04mm, -3mm, and -3.48mm 

bregma, and CeA at -2.52mm bregma (Table 1). There was no significant main effect of 

phenotype in the LOFC at +2.76mm bregma, NAcc at +2.76mm, +1.8mm, and +1.32mm 

bregma, NAcs at +2.76mm, +1.8mm, and +1.32mm bregma, BLA at -2.52mm bregma, and 

CeA at -2.04mm and -3mm bregma (Table 1). Planned contrasts were performed on all 

bregma levels of each brain region, however post-hoc tests were only performed on those that 

found significant main effects. 

Table 1. Analyses of astrocyte branching between groups 
Region & 

Bregma Level 
AVul 

M ± SEM 
ARes 

M ± SEM 
Yoked 

M ± SEM 
Statistic 
(F, t, chi) 

df p-value 

IL +3.72 50.75 ± 6.32 29.33 ± 3.01 18.5 ± 1.06 15.628 2,30 < .0005* 
 • •  3.058 15.754 .008* 
 •  • 5.032 11.603 < .0005* 
  • • - - .012* 

IL +3.24 37.17 ± 1.62 38.17 ± 3.1 20.75 ± 1.49 29.421 2,27 < .0005* 
 • •  -0.341 27 .736 
 •  • 6.856 27 < .0005* 
  • • - - .003* 

IL +2.76 40.75 ± 7.16 33.75 ± 2.39 20.83 ± 2.33 8.052 2,30 .018* 
 • •  0.927 13.413 .370 
 •  • 2.644 13.127 .020* 
  • • - - .005* 

PrL +3.72 66.5 ± 6.51 41.42 ± 2.83 23.17 ± 2.1 18.974 2,30 < .0005* 
 • •  3.531 15.014 .003* 
 •  • 6.329 13.101 < .0005* 
  • • - - < .0005* 

PrL +3.24 49.25 ± 2.76 40.17 ± 2.06 23.58 ± 1.75 35.288 2,27 < .0005* 
 • •  2.407 27 .023* 
 •  • 8.33 27 < .0005* 
  • • - - < .0005* 

PrL +2.76 53.33 ± 8.63 34.17 ± 3.88 17 ± 1.29 21.103 2,30 .005* 
 • •  2.026 15.273 .061 
 •  • 4.164 11.485 .001* 
  • • - - .003* 

LOFC +3.72 52.58 ± 8.46 37.5 ± 4.5 22.83 ± 4.59 7.524 2,30 .023* 
 • •  1.574 16.772 .134 
 •  • 3.092 15.475 .007* 
  • • - - .093 

LOFC +3.24 45.92 ± 4.41 30.5 ± 3.84 31.92 ± 2.58 8.417 2,30 .015* 
 • •  2.639 15.016 .019* 
 •  • 2.742 17.751 .014* 
  • • - - .950 

LOFC +2.76 49.42 ± 7.4 34.33 ± 2.39 27 ± 2.1 5.107 2,30 .078 
 • •  1.939 13.272 .074 
 •  • 2.914 12.659 .012* 
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Region & 
Bregma Level 

AVul 
M ± SEM 

ARes 
M ± SEM 

Yoked 
M ± SEM 

Statistic 
(F, t, chi) 

df p-value 

NAcc +2.76 43.75 ± 5.78 37.5 ± 6.1 28.83 ± 3.81 1.248 2,27 .303 
 • •  0.805 27 .428 
 •  • 1.569 27 .128 

NAcc +2.28 43.25 ± 6.48 31.83 ± 4.37 23.5 ± 2.08 8.478 2,36 .014* 
 • •  1.461 19.274 .160 
 •  • 2.901 13.233 .012* 
  • • - - .227 

NAcc +1.8 43.25 ± 6.48 33.17 ± 2.32 35.75 ± 3.74 0.787 2,27 .465 
 • •  1.25 27 .458 
 •  • 0.753 27 .548 

NAcc +1.32 48.92 ± 4.22 45.75 ± 6.34 41.75 ± 3.17 0.569 2,27 .572 
 • •  0.47 27 .295 
 •  • 1.064 27 .557 

NAcs +2.76 45.92 ± 11.38 49.92 ± 10.3 22.67 ± 4.45 1.345 2,27 .278 
 • •  -0.286 27 .186 
 •  • 1.357 27 .123 

NAcs +2.28 52.75 ± 6.2 35.5 ± 1.93 28.17 ± 3.21 9.71 2,36 .008* 
 • •  2.652 13.099 .020* 
 •  • 3.508 16.649 .003* 
  • • - - .158 

NAcs +1.8 34.5 ± 5.15 33.33 ± 3.31 33.67 ± 3.39 0.02 2,27 .981 
 • •  0.198 27 .889 
 •  • 0.141 27 .945 

NAcs +1.32 43.25 ± 4.88 45.42 ± 4.04 32 ± 3.57 2.946 2,33 0.66 
 • •  -0.365 33 .717 
 •  • 1.896 33 .067 

BLA -2.04 57.33 ± 6.11 42.92 ± 4.59 28.17 ± 5.44 7.251 2,33 .002* 
 • •  1.882 33 .069 
 •  • 3.808 33 .001* 
  • • - - .147 

BLA -2.52 41.92 ± 5.34 41.5 ± 4.02 29.5 ± 2.7 2.871 2,33 .071 
 • •  .071 33 .944 
 •  • 2.11 33 .043* 

BLA -3 38.67 ± 3.45 44.33 ± 2.4 31.25 ± 3.04 4.803 2,33 .015* 
 • •  -1.338 33 .190 
 •  • 1.752 33 .089 
  • • - - .011* 

BLA -3.48 37.92 ± 3.77 28.42 ± 2.44 54 ± 6.2 9.296 2,27 .001* 
 • •  1.958 27 .061 
 •  • -2.707 27 .012* 
  • • - - .001* 

CeA -2.04 49.5 ± 4.26 43.25 ± 3.56 31.67 ± 8.27 3.725 2,36 .155 
 • •  1.125 21.321 .273 
 •  • 1.916 16.459 .073 

CeA -2.52 43.17 ± 4.66 39.75 ± 2.98 23.25 ± 2.78 12.371 2,33 .002* 
 • •  0.618 18.694 .544 
 •  • 3.673 17.945 .002* 
  • • - - .001* 

CeA -3 40.75 ± 4.64 43.83 ± 6.23 32.25 ± 3.82 1.44 2,33 .252 
 • •  1.202 33 .238 
 •  • -0.436 33 .666 

Note: AVul = addiction-vulnerable; ARes = addiction-resistant; IL = infralimbic cortex; PrL = prelimbic cortex; 
LOFC = lateral orbitofrontal cortex; NAcc = nucleus accumbens core; NAcs = nucleus accumbens shell; BLA = 
basolateral amygdala; CeA = central amygdala. • denotes the groups that were included in a contrast or post-hoc 
test. Pale yellow cells highlight a significant main effect. Red cells with white writing highlight a significant 
difference between AVul and ARes astrocytes. Orange cells highlight a significant difference between AVul and 
Yoked astrocytes. Green cells highlight a significant difference between ARes and Yoked astrocytes. * p > .05
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 METH IVSA increased astrocytic branching in the IL, LOFC, NAcs, BLA 

and CeA. Planned contrasts demonstrated AVul, compared to Yoked, astrocytes had 

significantly more process-ring intersections in the IL at +3.24mm and +2.76 bregma, LOFC 

at +3.72mm and +2.76mm bregma, NAcc at +2.28mm bregma, BLA at -2.52mm bregma, 

and CeA at -2.52mm bregma (Table 1). A similar trending increase was found in the BLA at 

-3mm bregma (Table 1). Post-hoc tests indicated ARes, compared to Yoked, astrocytes had 

significantly more process-ring intersections in the IL at +3.24mm and +2.76mm bregma, 

BLA at -3mm bregma, and CeA at -2.52mm bregma (Table 1). Neither AVul nor ARes, 

compared to Yoked, astrocytes showed a significant difference in process-ring intersections 

in the LOFC at +3.72mm bregma and NAcc at +2.28mm bregma (Table 1). In the LOFC at 

+2.76mm bregma, and BLA at -2.52mm bregma, there was no main effect hence post-hoc 

tests were not performed.  

AVul, compared to ARes, astrocytes had no significant difference in process-ring 

intersections the IL at +3.24mm and +2.76mm bregma, LOFC at +3.72mm and +2.76mm 

bregma, NAcc at +2.28mm bregma, NAcs at +1.32mm bregma, BLA at -3mm bregma, and 

CeA at -2.52mm bregma (Table 1). Planned contrasts revealed no significant difference 

between AVul, ARes and Yoked astrocytes, in the NAcc at +2.76mm, +1.8mm, and 

+1.32mm bregma, NAcs at +2.76mm, +1.8mm and +1.32mm bregma, and CeA at -2.04mm 

bregma (Table 1). 

 Addiction vulnerability resulted in increased astrocytic branching in the 

LOFC, NAcs, and BLA. Planned contrasts revealed AVul, compared to ARes, astrocytes had 

significantly more astrocyte process-ring intersections in the LOFC at +3.24mm bregma and 

NAcs at +2.28mm bregma, and a trend for an increase in the BLA at -2.04mm bregma (Table 

1). AVul, compared to Yoked, astrocytes had significantly more process-ring intersections in 

the LOFC at +3.24mm bregma, NAcs at +2.28mm bregma, and BLA at -2.04mm bregma 
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(Table 1). Post-hoc tests revealed no significant difference in process-ring intersections 

between Yoked and ARes astrocyte in in the LOFC at +3.24mm bregma, NAcs at +2.28mm 

bregma, and BLA at -2.04mm bregma. 

 Addiction vulnerability resulted in exacerbated astrocytic branching in the 

PrL and IL. Contrast tests revealed AVul, compared to ARes, astrocytes had significantly 

more process-ring intersections in the PrL at +3.72mm and +3.24mm bregma, and IL at 

+3.72mm bregma (Table 1). AVul, compared to ARes, astrocytes had a close non-significant 

increase in process-ring intersections in the PrL at +2.76mm bregma (Table 1). Additionally, 

AVul, compared to Yoked, astrocytes had significantly more process-ring intersections in the 

PrL at +3.72mm, +3.24mm, and +2.76mm bregma, and IL at +3.72mm bregma (Table 1). 

Post-hoc tests revealed ARes, compared to Yoked, astrocytes had significantly more process-

ring intersections in the PrL at +3.72mm, +3.24mm, and +2.76mm bregma, and IL at 

+3.72mm bregma (Table 1). 

 METH IVSA reduced astrocytic branching in the BLA. Planned contrasts 

revealed AVul, compared to Yoked, astrocytes had significant less process-ring intersections 

the BLA at -3.48mm bregma (Table 1). Tukey HSD post-hoc tests revealed a significant 

decrease in process-ring intersections in ARes, compared to Yoked, astrocytes in the BLA at 

-3.48mm bregma (Table 1). There was a non-significant trending increase in process-ring 

intersections between AVul and ARes astrocytes (Table 1).  

 Effect of phenotype on astrocyte node-number. There was a significant main 

effect of addiction-phenotype on node-number in the PrL at +3.72mm, +3.24mm, and 

+2.76mm bregma, IL at +3.72mm, +3.24mm, and +2.76mm bregma, LOFC at +3.72mm, 

+3.24mm, and +2.76mm bregma, NAcc at +2.28mm bregma, NAcs at +1.32mm bregma, 

BLA at -2.04mm, -3mm, and -3.48mm bregma, and CeA at -2.04mm bregma (Table 2). 

There was no significant main effect of addiction-phenotype on node-number in the NAcc 
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+2.76mm, +1.8mm and +1.32mm bregma, NAcs at +2.76mm, +2.28mm, and +1.8mm 

bregma, BLA at -2.52mm bregma, and CeA at -2.52mm, and -3mm bregma (Table 2). 

Planned contrasts were performed on all bregma levels of each brain region, however post-

hoc tests were only performed on those that demonstrated significant main effects. 

 METH IVSA increased the astrocyte node-number in the PrL, IL, LOFC, 

NAcs, BLA and CeA. Planned contrasts revealed a significant increase in node-number in 

AVul-group, compared to Yoked-group, astrocytes, in the PrL at +3.72mm and +2.76mm 

bregma, IL at +3.24mm and +2.76mm bregma, LOFC at +3.72mm and +2.76mm bregma, 

NAcs at +1.32mm bregma, BLA at -2.04mm bregma, and CeA at -2.04mm bregma (Table 2). 

Post-hoc tests revealed in ARes astrocytes, a significant increase in node-number, compared 

to Yoked-group astrocytes, in the PrL at +3.72mm and +2.76mm bregma, IL at +3.24mm and 

+2.76mm bregma, and LOFC at +3.72mm and +2.76mm bregma (Table 2). There was a non-

significant trending increase in node-number in ARes, compared to Yoked, astrocytes in the 

BLA at -2.04mm bregma (Table 2). There was no significant difference in node-number 

between ARes and Yoked astrocytes in the NAcs at +1.32mm bregma and CeA at -2.04mm 

bregma (Table 2). 

 

Table 2. Analyses of the node-number between groups. 
Region & 

Bregma Level 
AVul 

M ± SEM 
ARes 

M ± SEM 
Yoked 

M ± SEM 
Statistic 
(F, t, chi) 

df p-value 

IL +3.72 16.33 ± 2.01 10.67 ± 1.35 6.67 ± 0.21 8.506 2,30 .014* 
 • •  2.344 19.209 .030* 
 •  • 4.786 11.241 .001* 
  • • - - .032* 

IL +3.24 11.42 ± 0.53 13 ± 0.93 7.17 ± 0.51 24.375 2,27 < .0005* 
 • •  -1.674 27 .106 
 •  • 5.504 27 < .0005* 
  • • - - < .0005* 

IL +2.76 12.83 ± 1.89 11.58 ± 0.45 7 ± 0.93 10.447 2,30 .005* 
 • •  .643 12.251 .532 
 •  • 2.768 15.037 .014* 
  • • -  .006* 

PrL +3.72 23.42 ± 3.29 17 ± 0.85 7.17 ± 0.65 14.414 2,30 .001* 
 • •  1.889 12.473 .082 
 •  • 4.847 11.847 < .0005* 
  • • - - < .0005* 
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Region & 
Bregma Level 

AVul 
M ± SEM 

ARes 
M ± SEM 

Yoked 
M ± SEM 

Statistic 
(F, t, chi) 

df p-value 

PrL +3.24 15.17 ± 0.65 12.33 ± 1.48 8.42 ± 0.69 20.17 2,27 < .0005* 
 • •  2.171 27 .039* 
 •  • 6.335 27 < .0005* 
  • • - - .015* 

PrL +2.76 16.25 ± 2.31 12.67 ± 1.55 6.5 ± 0.89 10.427 2,30 .005* 
 • •  1.288 19.278 .213 
 •  • 3.947 13.819 .001* 
  • • - - .009* 

LOFC 3.72 16.75 ± 2.9 12.83 ± 1.01 6.83 ± 0.98 9.326 2,30 .009* 
 • •  1.276 13.611 .223 
 •  • 3.239 13.276 .006* 
  • • - - .002* 

LOFC 3.24 12.92 ± 1.21 8.33 ± 0.88 8.33 ± 0.5 8.203 2,27 .002* 
 • •  3.109 27 .005* 
 •  • 3.698 27 .001* 
  • • - - 1.000 

LOFC 2.76 14.5 ± 1.97 11 ± 0.67 7.83 ± 0.31 7.922 2,30 .019* 
 • •  1.683 13.548 .115 
 •  • 3.348 11.528 .006* 
  • • - - .002* 

NAcc 2.76 13.92 ± 2.07 9.25 ± 1.05 8.83 ± 1.37 2.927 2,27 .071 
 • •  2.141 27 .041* 
 •  • 1.904 27 .068 

NAcc 2.28 11.42 ± 1.36 7.67 ± 0.81 6.75 ± 0.75 5.995 2,33 .006* 
 • •  2.626 33 .013* 
 •  • 3.268 33 .003* 
  • • - - .798 

NAcc 1.8 10.67 ± 1.09 11.5 ± 9.75 9.75 ± 0.76 1.275 2,27 .296 
 • •  -.620 27 .540 
 •  • .683 27 .500 

NAcc 1.32 14 ± 1.17 15.17 ± 10.68 12.83 ± 0.87 0.412 2,36 .814 
 • •  -.496 17.565 .626 
 •  • .799 20.268 .434 

NAcs 2.76 13.83 ± 2.9 12.25 ± 2.64 6.33 ± 1.02 1.515 2,27 .238 
 • •  0.444 27 .661 
 •  • 1.718 27 .097 

NAcs 2.28 13.58 ± 1.43 10.83 ± 0.37 9.83 ± 1.09 3.244 2,36 .198 
 • •  1.866 12.439 .086 
 •  • 2.091 20.539 .049* 

NAcs 1.8 10.5 ± 0.72 8.5 ± 0.67 9.42 ± 0.96 1.125 2,33 .339 
 • •  1.479 27 .151 
 •  • 0.801 27 .430 

NAcs 1.32 13.58 ± 1.32 12.17 ± 1.08 9.17 ± 0.89 4.125 2,33 .025* 
 • •  0.902 33 .374 
 •  • 2.813 33 .008* 
  • • - - .152 

BLA -2.04 17.08 ± 1.94 13.33 ± 1.17 8.5 ± 1.49 7.539 2,33 .002* 
 • •  1.692 33 .100 
 •  • 3.873 33 < .0005* 
  • • - - .089 

BLA -2.52 12.42 ± 1.29 13.08 ± 1.53 8.92 ± 1 2.993 2,33 .064 
 • •  -.364 33 .718 
 •  • 1.913 33 .064 

BLA -3 11.58 ± 1.18 14.33 ± 1.04 10.08 ± 0.78 4.526 2,33 .018* 
 • •  -1.919 33 .064 
 •  • 1.047 33 .303 
  • • - - .015* 
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Region & 
Bregma Level 

AVul 
M ± SEM 

ARes 
M ± SEM 

Yoked 
M ± SEM 

Statistic 
(F, t, chi) 

df p-value 

BLA -3.48 13.25 ± 1.36 9.83 ± 0.69 18 ± 1.57 9.553 2,27 .001* 
 • •  2.225 27 .035* 
 •  • -2.526 27 .018* 
  • • - - .001* 

CeA -2.04 14.08 ± 0.83 12.5 ± 0.91 8.67 ± 2.05 6.913 2,36 .032* 
 • •  1.287 21.821 .212 
 •  • 2.453 14.524 .027* 
  • • - - .233 

CeA -2.52 8.5 ± 1.49 11.42 ± 0.98 7.5 ± 0.81 5.784 2,36 .055 
 • •  -1.635 19.024 .118 
 •  • .589 17.033 .563 

CeA -3 13.08 ± 1.61 14.5 ± 1.58 11.33 ± 1.07 1.208 2,33 .312 
 • •  -.694 33 .492 
 •  • .858 33 .397 

Note: AVul = addiction-vulnerable; ARes = addiction-resistant; IL = infralimbic cortex; PrL = prelimbic cortex; 
LOFC = lateral orbitofrontal cortex; NAcc = nucleus accumbens core; NAcs = nucleus accumbens shell; BLA = 
basolateral amygdala; CeA = central amygdala. • denotes the groups that were included in a contrast or post-hoc 
test. Pale yellow cells highlight a significant main effect. Red cells with white writing highlight a significant 
difference between AVul and ARes astrocytes. Orange cells highlight a significant difference between AVul and 
Yoked astrocytes. Green cells highlight a significant difference between ARes and Yoked astrocytes. * p > .05 

Planned contrasts revealed no significant difference in the node-number between 

AVul and ARes astrocytes in the PrL at +3.72mm and +2.76mm bregma, IL at +3.24mm and 

+2.76mm bregma, LOFC at +3.72mm and +2.76mm bregma, NAcs at +1.32mm bregma, 

BLA at -2.04mm bregma, and CeA at -2.04mm bregma (Table 2). Interestingly, post-hoc 

tests revealed a significant increase in the node-number in ARes compared to Yoked 

astrocytes in the BLA at -3mm bregma (Table 2). In contrast, planned comparisons revealed a 

non-significant trend for a decrease in nodes in AVul compared to Yoked astrocytes in the 

BLA at -3mm bregma (Table 2). There was no significant difference in node-number in AVul 

compared to ARes astrocytes in the BLA at -3mm bregma (Table 2). Along with no main 

effect of phenotype, planned contrasts revealed there was no significant difference in node-

number between AVul-group, ARes-group and Yoked-group astrocytes, in the NAcc at 

+1.8mm and +1.32mm bregma, NAcs at +2.76mm and +1.8mm bregma, BLA at -2.52mm 

bregma, and CeA at -2.52mm and -3mm bregma (Table 2). 

 Addiction vulnerability resulted in an increase astrocyte node-number in 

the LOFC, NAcc, and NAcs. Planned contrasts revealed a significantly greater node-number 

in AVul, compared to ARes, astrocytes in the LOFC at +3.24mm bregma, NAcc at +2.76mm 



Results  55 

and +2.28mm bregma (Table 2). A non-significant trending increase between AVul and 

ARes astrocytes in node-number was found in the NAcs +2.28mm bregma (Table 2). When 

comparing AVul with Yoked astrocytes, planned contrasts revealed a significant increase in 

node-number in the LOFC at +3.24mm bregma, NAcc at +2.28mm bregma, and NAcs at 

+2.28mm bregma (Table 2). There was a non-significant trend for an increase in node-

number in AVul, compared to Yoked, astrocytes in the NAcc at +2.76mm bregma (Table 2). 

Post-hoc tests revealed that there was no significant difference between ARes and Yoked 

astrocytes in node-number in the LOFC at +3.24mm bregma and NAcc at +2.28mm bregma 

(Table 2). No post-hoc tests were performed on node-number in the NAcc at +2.76mm 

bregma, and NAcs at +2.28mm bregma due to no main effect of phenotype. 

 Addiction vulnerability resulted in exacerbation of astrocyte node number 

in the PrL and IL. When comparing AVul, to ARes astrocytes, planned contrasts revealed a 

significant increase in node-number in the PrL at +3.24mm bregma and IL at +3.72mm 

bregma (Table 2). There was a significant increase in node-number in AVul, compared to 

Yoked, astrocytes in the PrL at +3.24mm bregma, and IL +3.72mm bregma (Table 2). Post-

hoc analyses revealed a significant increase in node-number in ARes, compared to Yoked, 

astrocytes, in the PrL at +3.24mm bregma and IL at +3.72mm bregma (Table 2). 

 METH IVSA reduced astrocyte node-number in the BLA. In AVul 

astrocytes, compared to Yoked, planned contrasts revealed a significant decrease in node-

number in the BLA at -3.48mm bregma (Table 2). Post-hoc tests revealed a significant 

decrease in nodes in ARes, compared to Yoked, astrocytes in the BLA at -3.48mm bregma 

(Table 2). Interestingly, planned contrasts demonstrated a significant increase in node-

number in AVul compared to ARes astrocytes (Table 2). 

 Main effect of phenotype on longest-process length. There was a significant 

main effect of addiction-phenotype on longest-process length in the PrL at +3.72mm, 
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+3.24mm, and +2.76mm bregma, IL at +2.76mm bregma, LOFC at +3.72mm bregma, NAcc 

at +2.28mm bregma, NAcs at +2.28mm bregma, BLA at -2.04mm bregma, and CeA at -

2.04mm, -2.52mm, and -3mm bregma (Table 3). There was no significant main effect of 

addiction-phenotype on longest-process length in the IL at +3.72mm and +3.24mm bregma, 

and LOFC at +3.24mm and +2.76mm bregma, NAcc at +2.76mm, +1.8mm and +1.32mm 

bregma, NAcs at +2.76mm, +1.8mm and +1.32mm bregma, and BLA at -2.52, -3mm, and -

3.48mm bregma (Table 3). Planned contrasts were performed on all bregma levels of each 

brain region, however post-hoc tests were only performed on those that demonstrated 

significant main effects. 

 Addiction vulnerability results in increased longest-process length in the IL 

and BLA. Planned contrasts demonstrated a significant increase in longest-process length in 

AVul, compared to ARes, astrocytes in the IL at +3.24mm bregma and BLA at -2.04mm 

bregma (Table 3). Likewise, there was a significant increase in longest-process length when 

comparing AVul to Yoked astrocytes in the BLA at -2.04mm bregma (Table 3). There was 

no significant difference between AVul and Yoked astrocytes in the IL at +3.24mm (Table 

3). Post-hoc analyses revealed no significant difference in longest-process length between 

ARes and Yoked astrocytes in the BLA at -2.04mm bregma (Table 3). Due to non-significant 

main effects, post-hoc analyses, comparing longest-process length in ARes and Yoked 

astrocytes in the IL at +3.2mm bregma, were not performed. 

Table 3. Analyses of the longest-process length between groups. 
Region & 

Bregma Level 
AVul 

M ± SEM 
ARes 

M ± SEM 
Yoked 

M ± SEM 
Statistic 
(F, t, chi) 

df p-value 

IL +3.72 33.53 ± 2.01 29 ± 2.86 25.74 ± 1.34 2.201 2,27 .130 
 • •  1.421 27 .167 
 •  • 1.989 27 .057 

IL +3.24 35.51 ± 2.1 30.95 ± 3.26 28.67 ± 2.51 2.242 2,27 .126 
 • •  1.14 27 .264 
 •  • 2.095 27 .046* 

IL +2.76 31.93 ± 3.1 31.6 ± 1.8 56.37 ± 2.61 13.582 2,30 .001* 
 • •  0.95 17.669 .929 
 •  • -6.035 15.263 < .0005* 
  • • - - < .0005* 
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Region & 
Bregma Level 

AVul 
M ± SEM 

ARes 
M ± SEM 

Yoked 
M ± SEM 

Statistic 
(F, t, chi) 

df p-value 

PrL +3.72 39.42 ± 1.98 36.82 ± 3.17 27.04 ± 2.93 4.045 2,27 .029* 
 • •  0.724 27 .476 
 •  • 2.806 27 .009* 
  • • - - .087 

PrL +3.24 35.84 ± 2.33 34.86 ± 2.35 26.72 ± 1.45 6.519 2,27 .005* 
 • •  0.298 27 .768 
 •  • 3.407 27 .002* 
  • • - - .050 

PrL +2.76 42.36 ± 4.77 36.82 ± 3.64 57.02 ± 1.34 7.477 2,30 .024* 
 • •  0.923 20.583 .367 
 •  • -2.961 12.623 .011* 
  • • - - < .0005* 

LOFC +3.72 41.05 ± 2.57 34.21 ± 2.12 25.09 ± 2.4 8.559 2,27 .001* 
 • •  2.154 27 .040* 
 •  • 4.104 27 < .0005* 
  • • - - 0.66 

LOFC 3.24 37.79 ± 2.01 33.56 ± 1.67 34.21 ± 3.86 1.716 2,30 .424 
 • •  1.619 15.331 .126 
 •  • 0.823 16.561 .422 

LOFC 2.76 34.21 ± 2.37 35.51 ± 34.21 30.95 ± 3.411 0.713 2,27 .499 
 • •  -0.417 27 .680 
 •  • 0.851 27 .402 

NAcc 2.76 31.6 ± 2.21 29.65 ± 3.06 36.82 ± 2.18 1.381 2,27 .269 
 • •  0.553 27 .585 
 •  • -1.205 27 .239 

NAcc 2.28 40.4 ± 2.97 35.51 ± 2.04 26.39 ± 2.06 8.796 2,33 .001* 
 • •  1.441 33 .159 
 •  • 4.132 33 < .0005* 
  • • - - .029* 

NAcc 1.8 40.07 ± 6.5 41.38 ± 2.87 36.49 ± 2.69 0.611 2,27 .550 
 • •  -0.236 27 .815 
 •  • 0.648 27 .522 

NAcc 1.32 36.16 ± 2.72 39.42 ± 4.03 36.49 ± 1.87 0.357 2,33 .703 
 • •  -0.767 33 .449 
 •  • -0.077 33 .939 

NAcs 2.76 32.91 ± 3.92 38.12 ± 4.34 33.56 ± 6.52 0.423 2,27 .659 
 • •  -0.872 27 .391 
 •  • -0.089 27 .930 

NAcs 2.28 44.63 ± 3.31 39.42 ± 2.04 30.95 ± 3.56 5.141 2,33 .011* 
 • •  1.21 33 .235 
 •  • 3.177 33 .003* 
  • • - - .136 

NAcs 1.8 32.91 ± 4.91 32.25 ± 1.43 31.93 ± 1.02 0.320 2,30 .852 
 • •  0.127 5.865 .903 
 •  • 0.195 5.433 .853 

NAcs 1.32 34.86 ± 1.97 38.77 ± 1.85 44.07 ± 4.64 2.3 2,36 .317 
 • •  -1.444 21.913 .163 
 •  • -1.826 14.861 .088 

BLA -2.04 40.40 ± 3.05 29.65 ± 1.40 25.09 ± 2.47 10.682 2,33 < .0005* 
 • •  3.16 33 .003* 
 •  • 4.501 33 < .0005* 
  • • - - .383 

BLA -2.52 41.7 ± 6.64 34.54 ± 2.41 29.32 ± 2.33 2.4 2,36 .301 
 • •  1.014 13.853 .328 
 •  • 1.759 13.669 .101 

BLA -3 32.25 ± 2.2 31.93 ± 1.83 28.34 ± 1.92 1.192 2,33 .316 
 • •  0.116 33 .908 
 •  • 1.392 33 .173 
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Region & 
Bregma Level 

AVul 
M ± SEM 

ARes 
M ± SEM 

Yoked 
M ± SEM 

Statistic 
(F, t, chi) 

df p-value 

BLA -3.48 31.93 ± 2.23 28.02 ± 1.63 32.91 ± 2.97 1.412 2,27 .261 
 • •  1.396 27 .172 
 •  • -0.285 27 .778 

CeA -2.04 43.98 ± 4.59 37.47 ± 7.55 27.04 ± 4.71 4.566 2,33 .018* 
 • •  1.152 33 .258 
 •  • 2.996 33 .005* 
  • • - - .171 

CeA -2.52 39.1 ± 3.49 34.54 ± 2.55 25.74 ± 3.02 4.973 2,33 .013* 
 • •  1.059 33 .297 
 •  • 3.102 33 .004* 
  • • - - .118 

CeA -3 34.21 ± 2.06 32.58 ± 1.37 25.41 ± 1.77 7.108 2,33 .003* 
 • •  0.656 33 .516 
 •  • 3.543 33 .001* 
  • • -  .018* 

Note: AVul = addiction-vulnerable; ARes = addiction-resistant; IL = infralimbic cortex; PrL = prelimbic cortex; 
LOFC = lateral orbitofrontal cortex; NAcc = nucleus accumbens core; NAcs = nucleus accumbens shell; BLA = 
basolateral amygdala; CeA = central amygdala. • denotes the groups that were included in a contrast or post-hoc 
test. Pale yellow cells highlight a significant main effect. Red cells with white writing highlight a significant 
difference between AVul and ARes astrocytes. Orange cells highlight a significant difference between AVul and 
Yoked astrocytes. Green cells highlight a significant difference between ARes and Yoked astrocytes. * p > .05 

 Addiction-vulnerability exacerbates METH-induced increase in longest-

process length in the LOFC. Planned contrasts revealed a significant increase in longest-

process length in AVul, compared to ARes, astrocytes in the LOFC at +3.72mm bregma, and 

compared to Yoked astrocytes (Table 3). Post-hoc tests revealed a non-significant increase in 

longest-process length between ARes-group, compared to Yoked-group, astrocytes in the 

LOFC at +3.72mm bregma (Table 3). 

 METH IVSA increased the longest process length in the PrL, NAcc, NAcs, 

and CeA. In AVul, compared to Yoked, astrocytes there was a significant increase in longest-

process length in the PrL at +3.72mm and +3.24mm bregma, NAcc at +2.28mm bregma, 

NAcs at +2.28mm bregma, and CeA at -2.04mm, -2.52mm, and -3mm bregma (Table 3). 

There was likewise an increase in longest-process length in ARes, compared to Yoked, 

astrocytes in the NAcc at +2.28mm bregma (Table 3). There was a non-significant trend for 

an increase in longest-process length in ARes, compared to Yoked, astrocytes in the PrL at 

+3.72mm and +3.24mm bregma, NAcs at +2.28mm bregma, and CeA at -2.04mm bregma 

(Table 3). Furthermore, there was no significant difference in the CeA at -2.52mm or -3mm 
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bregma (Table 3). Planned contrasts revealed no significant difference between longest-

process length in AVul and ARes astrocytes in the PrL at +3.72mm and +3.24mm bregma, 

NAcc at +2.28mm bregma, NAcs at +2.28mm bregma, and CeA at -2.04mm, -2.52mm, and  

-3mm bregma (Table 3). 

Planned contrasts demonstrated no significant difference in longest-process length 

between AVul, ARes and Yoked astrocytes in the IL at +3.72mm bregma, LOFC at +3.24mm 

and +2.76mm bregma, NAcc at +2.76mm, +1.8mm, and +1.32mm bregma, NAcs at 

+2.76mm, +1.8mm, and +1.32mm bregma, and BLA at -2.52mm, -3mm, and -3.48mm 

bregma (Table 3). 

 METH IVSA reduced astrocyte longest-process length in the PrL and IL. 

Planned contrasts showed a significant decrease in longest-process length in AVul, compared 

to Yoked, astrocytes in the PrL at +2.76mm bregma and IL at +2.76mm bregma (Table 3). 

Likewise, post-hoc tests revealed a significant reduction in longest-process length in ARes, 

compared to Yoked, astrocytes in the PrL at +2.76mm bregma and IL at +2,76mm bregma 

(Table 3). There was no significant difference in longest-process length between AVul and 

ARes astrocytes in the PrL at +2.76mm bregma and IL at +2.76mm bregma (Table 3). 

3.6 Glutamate homeostasis varies between addiction-phenotypes. 

In AVul rats there was a significant, very strong negative correlation between 

CaMKIIa fluorescence and GFAP-synapsin-I colocalisation in the BLA at -2.04mm bregma, 

r = -.961, p = .009 (Figure 10d) suggesting decreased synaptic contact between glutamatergic 

synapses and astrocytes. In the ARes group, there was a significant, very strong positive 

correlation between CaMKIIa fluorescence and GFAP-synapsin-I colocalisation in the IL at 

+3.72mm bregma, r = .935, p = .020 (Figure 11a) suggesting increased synaptic contact 

between glutamatergic synapses and astrocytes. In the Yoked group, there was a significant, 

very strong positive correlation between CaMKIIa fluorescence and GFAP-synapsin-I 



Results  60 

colocalisation in the LOFC at +3.72mm bregma, r = .971, p = .029 (Figure 12b), and a very 

strong negative correlation in the BLA at -2.52mm bregma, r = -.969, p = .007 (Figure 12g), 

suggesting increased glutamatergic synapse-astrocyte contact in the LOFC and decreased 

contact in the BLA. 

There were no other significant correlations between CaMKIIa fluorescence and 

GFAP-synapsin-I colocalisation in regions measured in AVul rats. Some notable non-

significant positive correlations above r = .600 were found in the IL at +2.76 bregma, r 

= .619, p = .190, NAcc at +2.28mm bregma, r = .735, p = .096, BLA at -2.52mm, r = .761, p 

= .061, and -3.48mm bregma, r = .645, p = .167 (Figure 10). A notable non-significant 

negative correlation was found in the IL at +3.72mm bregma, r = -.619, p = .190 (Figure 

10a). In the ARes group, all other regions had no significant correlations between CaMKIIa 

fluorescence and GFAP-synapsin I colocalization. Some notable non-significant negative 

correlations below r = -.600 were found in the NAcs at +2.76mm bregma, r = -.800, p 

= .056 , BLA at -2.52mm, r = -.714, p = .111, and -3.48mm bregma, r = -.725, p = .103 

(Figure 11). A notable non-significant positive correlation was found in the LOFC at 

+3.72mm bregma, r = .641, p = .170 (Figure 11b). In the Yoked group, all other regions had 

no significant correlations between CaMKIIa fluorescence and GFAP-synapsin I 

colocalization. Some notable non-significant positive correlations above r = .600 were found 

in the NAcc at +2.28mm bregma, r = .639, p = .361, and NAcs at +2.28mm bregma, r = .819, 

p = .181 (Figure 12). A notable non-significant negative correlation was found in the IL at 

+3.24mm bregma, r = -.673, p = .213, LOFC at +2.76mm bregma, r = -.802, p = .198, BLA 

at -2.04mm, r = -.863, p = .059, and CeA at -2.52mm bregma, r = -.663, p = .223 (Figure 12). 
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Figure 10. Correlational analyses: addiction-vulnerable. Strong to very strong correlations between calmodulin-
kinase-II alpha (CaMKIIa) fluorescence and glial fibrillary acidic protein (GFAP)-synapsin I colocalization in 
distinct levels of various brain regions in the addiction vulnerable group. (a) Infralimbic cortex at +3.72mm, and 
(b) +2,76mm bregma. (c) Nucleus accumbens core at +2.28mm bregma. (d) Basolateral amygdala at -2.04mm, 
(e) -2.52mm, and (f) -3.48mm bregma. Yellow highlights significant correlations. 

 

Figure 11. Correlational analyses: addiction-resistant. Strong to very-strong correlations between calmodulin-
kinase-II alpha (CaMKIIa) fluorescence and glial fibrillary acidic protein (GFAP)-synapsin I colocalization in 
distinct levels of various brain regions in the addiction resistant group. (a) Infralimbic cortex at +3.72mm 
bregma. (b) Lateral orbitofrontal cortex at +3.72mm bregma. (c) Nucleus accumbens shell at +2.76mm bregma. 
(d) Basolateral amygdala at -2.52mm, and (e) -3.48mm bregma. Yellow highlights significant correlations. 
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Figure 12. Correlational analyses: yoked. Strong to very-strong correlations between calmodulin-kinase-II alpha 
(CaMKIIa) fluorescence and glial fibrillary acidic protein (GFAP)-synapsin-I colocalization in distinct levels of 
various brain regions in the yoked group. (a) Infralimbic cortex at +3.24mm bregma. (b) Lateral orbitofrontal 
cortex at +3.72mm, and (c) +2.76mm bregma. (d) Nucleus accumbens (NAc) core at +2.28mm bregma, and (e) 
NAc shell at +2.28mm bregma. (f) Basolateral amygdala at -2.04mm, and (g) -2.52mm bregma. (h) Central 
amygdala at -2.52mm bregma. Yellow highlights significant correlations. 
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4. Discussion 

4.1 Summary and hypotheses 

The aim of this study was to investigate whether METH addiction-phenotype had an 

effect on glutamate activity, and astrocyte proliferation and hypertrophy within addiction 

neurocircuitry. This study also aimed to reveal associations between astrocyte-synapse 

connections and glutamate activity in METH addiction-vulnerable rats within addiction 

neurocircuitry. Glutamate activity was found to be reduced in the NAcc, CeA and BLA of 

AVul rats, whereas only the CeA of AVul rats demonstrated a significant decrease in 

astrocyte proliferation, when compared to yoked controls. Astrocyte hypertrophy was 

potentiated in all measured brain regions in AVul rats when compared to yoked rats. 

Interestingly, there was also a general increase in astrocyte hypertrophy in ARes, compared 

to yoked, rats suggesting that commonalities between these groups, such as METH-exposure 

or a protracted extinction, may explain this effect. Intriguingly, astrocytes in the mPFC, 

LOFC, rostral NAcc and BLA showed a particularly high level of hypertrophy in AVul rats, 

compared to ARes and control rats, with most sections demonstrating either increased or 

exacerbated hypertrophy. Finally, correlational analyses suggested a dysregulation of 

glutamate homeostasis in the NAcc and BLA. 

 Addiction-phenotyping in a METH IVSA model. An assumption of the 

addiction-phenotyping model is that in a given population of animals a subset of these are 

vulnerable to addiction (Deroche-Gamonet et al., 2004b; Wagner, 2002). In this study, 

roughly 18% of METH-exposed rats met criteria for the addiction-vulnerable phenotype, with 

the same proportion meeting criteria for addiction-resistant. Surprisingly, upon initial 

examination, only two ARes rats and one AVul rat met criteria for all three addiction 
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behaviours, therefore amended phenotyping criteria were utilised, similar to Jadhav et al. 

(2018). Here, rats demonstrated significant differences in the addictive behaviours of cue-

induced relapse, motivation to take-METH, and resistance to extinction training. A subset of 

n = 4 HDS AVul rats also demonstrated significantly greater HDS compared to ARes rats. 

Crucially, there was no significant difference in the amount of mean lifetime METH-intake 

between AVul (132.65mg/kg) and ARes rats (125.05mg/kg). These groups therefore 

represented an AVul phenotype and an ARes phenotype that was independent of the amount 

of lifetime METH-consumption. 

 Astrocyte proliferation in METH addiction-vulnerable rats.  It was 

hypothesised that astrocytes would proliferate in the PrL, IL, LOFC, DS, NAc, BLA and CeA 

in AVul, compared to ARes and Yoked, rats. In contrast, the CeA, at -2.52mm bregma, 

contained significantly less astrocytes in AVul rats, compared to controls, indicating an 

AVul-specific effect. However, as no significant differences in astrocyte populations were 

measured between AVul, ARes and control rats in the PrL, IL, LOFC, DS, NAc and BLA, 

this may be an artefact, with abnormally high astrocyte numbers at this level in controls. 

Nevertheless, it is still possible that in METH-exposed rats, astrocytes experienced apoptosis 

in the CeA, as this has been observed in METH-affected animals previously (Shah et al., 

2013). Globally however, results indicated that neither addiction-phenotype, nor METH 

IVSA, altered the number of astrocytes within the addiction neurocircuitry. These data 

suggest that astrogliosis previously reported in METH-affected rodents (Granado et al., 2011; 

Krasnova et al., 2010b; Raineri et al., 2012) is likely the result of upregulated GFAP-

expression, measured using fluorescence intensity, rather than astrocyte proliferation, 

measured by quantifying GFAP+ nuclei.  

Most studies employ experimenter METH-delivery, which may explain these 

differing results. Two exceptions to this are Krasnova et al. (2010b), where rats undertook 10 
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extended-access IVSA sessions and 7-days of forced abstinence (average ~96mg/kg/rat) and 

Friend and Keefe (2013), who employed a neurotoxic METH-regimen and 30-days of forced 

abstinence (40mg/kg/rat). They found increased GFAP-expression in the striatum and cortex, 

and striatum, respectively. Rats in this study experienced longer abstinence and greater 

METH-intake compared to both studies; therefore, it is possible that astrocytes proliferate in 

the shorter term with less METH. Although, as GFAP-expression remained elevated at 30 

days after an acute 40mg/kg METH-dose (Friend & Keefe, 2013), this is unlikely. 

Importantly, Sofroniew (2015) have categorised astrogliosis into mild-moderate, severe 

diffuse (Sev-1) and severe with scar tissue (Sev-2), with astrocyte proliferation a permanent 

feature, characteristic of Sev-2. Therefore, the results of this study suggest that astrogliosis as 

a result of METH-toxicity is unlikely to reach Sev-2, which is associated with severe 

neuroinflammation and apoptosis (Voskuhl et al., 2009; Wanner et al., 2013).  

 Baseline glutamate activity in METH-addicted rats. It was hypothesised that 

glutamatergic activity will be potentiated in the PrL, LOFC, NAc, DLS, pDMS, BLA and 

CeA, and attenuated in the IL and aDMS, in AVul, compared to ARes, rats. However, it was 

found that AVul and ARes rats had a significant reduction in CaMKIIa fluorescence at one 

level of each of the NAcc, BLA and CeA, compared to controls, which indicates a METH-

induced reduction in baseline glutamate activity at the respective levels of these regions. No 

significant differences in CaMKIIa expression between AVul, ARes and control rats in all 

other regions were found, indicating no effect of addiction-phenotype, nor METH-IVSA, on 

baseline glutamate activity in the PrL, IL, LOFC, NAcs and DS. 

Previously, there have been few studies that have investigated the baseline glutamate 

levels of METH-affected animals (Parsegian & See, 2013), with none in rats phenotyped as 

METH-addicted. Using microdialysis, one study reported that rats who had undergone short-

access METH IVSA sessions for two weeks, followed by 10 days of extinction, had reduced 
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glutamate levels in the NAc and PrL at baseline (Parsegian & See, 2013). METH-addicts are 

highly likely to relapse to METH-seeking even after protracted abstinence (DeJong, 1994; 

Wang et al., 2013), therefore it is likely that there are permanent alterations to their 

neurobiology that explain persistent craving to relapse. Hyperreactivity of the PFC to cue-

exposure is a well-documented phenomenon in humans (Goldstein & Volkow, 2011a; 

Konova et al., 2019) and a similar effect is seen in rats exposed to drug-cues with a 

simultaneous METH-prime (Parsegian & See, 2013). Therefore, the current study has 

demonstrated, in rats that are highly reactive to cues have decreased glutamate activity in the 

NAcc, BLA and CeA of AVul rats. While a reduction in glutamate levels may seem 

counterintuitive to PFC hyperactivity in AVul rats, the current measures were taken at 

baseline and not following a relapse event. 

 

Figure 13. Neurocircuitry of AVul vs ARes rats. Diagram depicts the astrocyte morphology results organised 
into their relevant brains regions for AVul compared to ARes rats. Boxes represent regions, with green regions 
containing predominantly glutamatergic afferents, and orange containing J-amino butyric-acid (GABA)ergic 
afferents. Arrows within boxes indicate the direction of any difference in astrocyte hypertrophy or glutamate 
activity. Arrows represent regional connections. An equal sign indicates no significant difference. Symbols 
following backslashes indicate an effect that was only found in one index of astrocyte hypertrophy, whereas 
those in front of backslashes were found in two indices. Lone symbols indicate the same effect was found in all 
three indices. Numbers indicate the bregma level (mm) at which the effect below was discovered. 
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Figure 14. Neurocircuitry of AVul vs Yoked rats. Diagram depicts the astrocyte morphology and baseline 
glutamate activity results organised into their relevant brains regions for AVul compared to Yoked rats. Boxes 
represent regions, with green regions containing predominantly glutamatergic afferents, and orange containing 
J-amino butyric-acid (GABA)ergic afferents. Arrows within boxes indicate the direction of any difference in 
astrocyte hypertrophy or glutamate activity. Arrows represent regional connections. An equal sign indicates no 
significant difference. Symbols following backslashes indicate an effect that was only found in one index of 
astrocyte hypertrophy, whereas those in front of backslashes were found in two indices. Lone symbols indicate 
the same effect was found in all three indices. Numbers indicate the bregma level (mm) at which the effect 
below was discovered. Glu = glutamate.  

 Astrocyte hypertrophy in METH addiction-vulnerable rats. It was 

hypothesised that AVul rats, compared to ARes and control, will demonstrate an increase in 

the number of astrocyte-ring intersections, nodes and longest-process length in the PrL, IL, 

LOFC, NAcc, NAcs, BLA, and CeA. In a subset of randomly chosen AVul, ARes and 

control rats (n = 2 each), Sholl analyses of astrocyte morphology suggested a global increase 

in astrocyte hypertrophy due to METH IVSA, with some regions demonstrating an increase 

in AVul rats, particularly in the mPFC and BLA.  

Previous studies have demonstrated increased astrogliosis in METH-exposed rodents, 

operationalised as increased GFAP-expression (Granado et al., 2011; Krasnova et al., 2010b; 

Raineri et al., 2012; Robson et al., 2014). A recent study by Siemsen et al. (2019) 

demonstrated no difference in green fluorescent protein (GFP)-stained astrocyte morphology 

in the NAcc between short-access METH and saline IVSA trained rats following a 10-day 
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extinction period. This is in contradiction to the results of the present study, however there 

are a few differences between these studies that may explain these conflicting results. First, 

astrocyte morphology was only investigated in the NAcc in the study by Siemsen et al., 

whereas the current study investigated a number of addiction-relevant brain areas. Secondly, 

the current study has phenotyped rats based on addictive behaviours, and found differential 

effects between the phenotypes, with ARes rats demonstrating, at the majority of the bregma 

levels, less astrocyte hypertrophy compared to AVul rats. Siemsen et al. did not categorise 

their rats. Thirdly, the current study demonstrated a gradient of changes to astrocyte 

hypertrophy across the rostral-caudal axis of the NAcc, where more caudal regions did not 

show differences between AVul or ARes rats. As Siemsen et al. (2019) only measured 

astrocytes in more caudal areas of the NAcc, this may explain their negative findings.  

 Baseline glutamate and astrocyte-synapse connections in METH addiction-

vulnerable rats. The final hypothesis posited that baseline glutamate activity would 

significantly and positively correlate with astrocyte-synapse connections in AVul rats in the 

PrL, LOFC, BLA, NAcc and NAcs, and that this correlation would be stronger and opposite 

in valence when compared to ARes rats. Results indicate a potential dysregulation of 

glutamate homeostasis in the rostral NAcc and central BLA of AVul rats, however not within 

the PrL, LOFC and NAcs. Astrocytes regulate glutamate neurotransmission, and this 

neurotransmitter has been involved in the neurocircuitry responsible for the expression of 

addictive behaviours (Cornish & Kalivas, 2000; Parsegian & See, 2013). In both the NAcc 

and BLA, there was reduced glutamate activity and a strong positive correlation between this 

activity and astrocyte-synapse connections, suggesting that astrocytic regulation of synaptic 

glutamate may be downregulated in the NAcc and BLA of AVul rats. Together, all of the  

current findings have significant implications for the regulation of glutamate homeostasis and 

reactive astrogliosis in METH-addiction.  
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4.2 Implications 

Following from the results of this study there are two main implications to the 

neurobiology of METH-addiction. Firstly, addiction vulnerability may be related to 

dysregulation of glutamate homeostasis in the NAcc and BLA. Secondly, widespread 

astrocyte hypertrophy in AVul rats may be related to the exacerbation of reactive astrogliosis 

in METH-affected rats, particularly in the mPFC. 

 Glutamate homeostasis in the NAcc of the AVul rats within addiction 

neurocircuitry. In the rostral NAcc, a strong positive relationship between glutamate activity 

and astrocyte-synapse connections in AVul rats was found, coupled with a significant 

reduction in baseline glutamate activity. This reduction in baseline glutamatergic activity may 

reflect baseline hypoactivity of this pathway in AVul rats, which could prime these rats to 

dysregulation of glutamate homeostasis during relapse following re-exposure to drug-

associated cues. Indeed, previous researchers have used in-vivo microdialysis to reveal low 

baseline glutamate levels in the NAc of METH short-access IVSA trained rats after 10 days 

of extinction (Parsegian & See, 2013). As well, Parsegian & See (2013) found that following 

cue-exposure, glutamate activity significantly increased, which is in line with previous 

research implicating glutamate transmission in the NAc in drug-relapse (Cornish & Kalivas, 

2000). This may suggest that increased glutamate neurotransmission in the NAcc following 

cue-exposure increased METH-seeking behaviours in AVul rats. 

As mentioned, coupled with low baseline glutamate activity, correlations between 

astrocyte-synapse colocalisation and glutamate activity suggested there was a similar 

decrease in astrocyte synapse connections in the rostral NAcc. This may confer further 

dysregulation of the astrocytic glutamate homeostasis mechanism. Siemsen et al. (2019) 

found that perisynaptic astrocytic processes (PAPs) had decreased contact with synapses in 

the NAcc of rats following METH short-access IVSA and ten days of extinction, although no 



Discussion  70 

overall difference in astrocyte morphology was observed (see 4.1.4). As mentioned 

previously (see 1.5.1), PAPs are responsible for the majority of astrocytic glutamate reuptake 

and release which regulates glutamate neurotransmission (Lavialle et al., 2011). An increase 

in PAP-synapse contact is therefore believed to represent an increase in the ability of the 

astrocyte to regulate glutamate homeostasis. Although in the current study, PAPs were not 

measured, the changes to the number of astrocyte-synapse connections indicate that the 

reduced glutamate activity in the rostral NAcc may be due to withdrawal of PAPs and a 

reduction in glial-derived glutamate. 

   A potential mechanism for driving this cue-induced relapse to METH-seeking 

comes from relatively recent findings that astrocytic glutamate release in the NAcc reduces 

cocaine- and METH-seeking behaviours (Scofield et al., 2015; Siemsen et al., 2019). Scofield 

et al. (2015) employed an excitatory Gq-designer receptor exclusively activated by designer 

drugs (DREADDs) to activate astrocytes and release glial-derived glutamate in the 

extrasynaptic space. This reduced cue-induced relapse to cocaine-seeking via activation of 

mGluR2s, which regulate the pre-synaptic release of glutamate. Crucially, pharmacological 

and Gq-DREADD-mediated glial-glutamate release in METH IVSA-trained rats reduced 

cue-induced METH-seeking (Siemsen et al., 2019). Interestingly, the administration of the 

mGluR2/3 agonist, LY379268, has been shown to reduce cue-induced reinstatement in 

cocaine AVul rats (Cannella et al., 2013). These researchers also showed that this effect was 

mediated by mGlu2R agonism alone, suggesting that glutamate homeostasis may be specific 

to the addiction-vulnerable. Understanding this, it is likely that if synaptic glutamate activity 

is reduced at baseline and astrocytes have withdrawn from glutamatergic synapses in AVul 

rats, rapid efflux of PrL-derived glutamate into the synapses of NAcc MSNs would activate 

NAc to ventral pallidum projections which indirectly drive METH-seeking behaviours (see 

Figure X). 
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 Glutamate homeostasis in the BLA of the AVul within the addiction 

neurocircuitry. In the BLA of AVul rats, there was a strong, positive correlation between 

glutamate activity and astrocyte-synapse connections at the rostro-central level, contrasting 

with strong negative correlations between these two processes in ARes and yoked rats. In the 

lateral amygdala, it has been shown that astrocyte-synapse connections decrease as learning-

induced synaptic-strength increases, suggesting a negative relationship between astrocyte-

synapse interactions and learning-induced synaptic strengthening (Ostroff, Manzur, Cain, & 

Ledoux, 2014). This could suggest that in the BLA of AVul rats, where there is less 

glutamate activity, there would be less astrocytic regulation of glutamate, whereas in ARes 

rats the opposite would be expected. This suggests that this system becomes dysfunctional or 

altered in AVul rats, whereas no such modification occurs in ARes and yoked rats. However, 

caution should be taken when interpreting these results, as at the rostral-most level of the 

BLA, AVul rats demonstrated a very strong negative correlation between glutamate activity 

and astrocyte-synapse connections, in contradiction to the three more-caudal levels which all 

demonstrated weak to strong positive correlations. It may be that this dysregulation of the 

baseline glutamate homeostasis in AVul rats occurs only in the central and caudal portions of 

the BLA, where decreased baseline glutamate was measured in AVul rats. 

In the context of addiction neurocircuitry, the BLA is in a prime position to drive cue-

induced METH-seeking. Indeed, previous studies have demonstrated that glutamatergic 

inputs from the LOFC into the BLA (Arguello et al., 2017; Lasseter, Wells, Xie, & Fuchs, 

2011; Stefanik & Kalivas, 2013) mediate cue-induced cocaine-seeking. It is thought that the 

BLA projections to the NAc via the CeA, regulate drug-seeking behaviours and are likely 

responsible for cue-induced drug-seeking (Di Ciano & Everitt, 2004). This circuit is therefore 

potentially engaged during cue-induced relapse to METH-seeking in AVul rats, as regulatory 

extrasynaptic glutamatergic tone is likely reduced following the withdrawal of astrocytic 
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processes from synapses, facilitating hyperexcitability of these LOFC glutamatergic 

projections to upregulate BLA to NAc-driven drug-seeking behaviours. It must be noted 

however that this circuitry is yet to be tested in METH-exposed or METH-addicted animals 

and research is needed to test this preliminary hypothesis. 

It is possible that these astrocytic processes remain somewhat preserved in the BLA 

of ARes rats, whereas AVul rats demonstrate a failure in the compensatory mechanisms of 

astrogliosis. Indeed, ARes rats had a strong negative correlation between synaptic glutamate 

activity and astrocyte synapse connections in the central and caudal BLA (Figure X). 

Concurrently, astrocyte hypertrophy in the rostral BLA was also increased in ARes rats 

compared to controls. This supports the idea that despite a trend for a reduction in basal BLA 

glutamate levels following chronic METH-exposure, when comparing ARes to controls 

(Figure X), astrocyte processes may have remained more available at synapses. During 

neurotransmission, high synaptic availability may allow for greater synaptic glutamate 

clearance and the release of synaptogenic and neurotrophic molecules (Bylicky, Mueller, & 

Day, 2018). Whereas in AVul rats, the relationship is likely reversed, as there were less 

astrocyte-synapse interactions and exacerbated astrocyte hypertrophy. Therefore, 

pathological astrogliosis in response to chronic METH-induced neurological injury may 

reduce the ability of astrocytes to regulate excessive glutamate neurotransmission, which is 

believed to drive METH-seeking behaviours (Furlong et al., 2018; Parsegian & See, 2013) 

 Astrocyte hypertrophy is exacerbated in the addiction-vulnerable. Findings 

from this study suggest that compensatory mechanisms attempting to re-establish a balance in 

glutamate homeostasis may function in ARes rats but fail in AVul rats. Astrocyte processes 

increasingly interact with synapses and neurons in response to CNS injury (Kim, Nabekura, 

& Koizumi, 2017). Therefore, if there is global hypertrophy of astrocytes in AVul rats, which 

has been shown in METH-addicted humans (Zhang et al., 2017), it is possible that the 
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compensatory astrogliosis, likely arising to protect against METH-induced neurotoxicity and 

glutamatergic excitotoxicity, becomes pathological. Importantly, increased GFAP-expression, 

a marker of the initial stages of astrogliosis, has been found up to 30 days after an 

experimenter-administered chronic-METH regime in rodents (Friend & Keefe, 2013). 

Interestingly, GFAP-expression was also found to increase following acute-METH, however 

chronic-METH then acute-METH after abstinence, did not exacerbate this increase in GFAP-

expression. This suggests the upregulation of GFAP-expression was due to the initial 

chronic-METH exposure. Similarly, a more recent study found increased astrocyte 

hypertrophy in the parietal lobe of METH-addicts (Zhang et al., 2017), compared to controls, 

and linked this effect to long-term METH-abuse, rather than acute METH-use. Interestingly, 

they also demonstrated “fraying” of PAPs in METH-addicts, and subsequent research has 

found downregulation of PAPs in the NAcc of METH IVSA trained rats (Siemsen et al., 

2019). This latter study however demonstrated no change in baseline astrocyte morphology 

or baseline glutamate reuptake. Therefore, as there was a marked increase in astrocyte 

hypertrophy in AVul rats compared to ARes rats in at least one level of all regions assayed, 

this may suggest that chronic METH-use results in persistent, stable astrogliosis that is likely 

a compensatory mechanism employed to regulate the neuroinflammatory and excitotoxic 

effects of METH-abuse, which may be exacerbated in AVul rats.  

One potential mechanism that could explain the differing responses of astrocytes in 

AVul and ARes rats may lie in the classifications and consequences of astrogliosis. 

Sofroniew (2015) developed three categorises of astrogliosis, as mentioned above (see 4.1.2), 

with mild-moderate and Sev-1 astrogliosis the two least advanced. Mild-moderate 

astrogliosis corresponds to an increase in GFAP-expression and some degree of astrocyte 

hypertrophy. Sev-1 astrogliosis results in significant GFAP-expression and ubiquitous 

hypertrophy resulting in significant semi-permanent tissue reorganisation. In the context of 
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this study’s findings, the substantial increase/exacerbation of astrocytes in various AVul brain 

regions may indicate severe diffuse astrogliosis, whereas the less pronounced astrogliosis 

observed in ARes rats may correspond to a more moderate form of astrogliosis. This 

distinction is crucial as the level of astrogliosis determines whether the process engaged by 

astrocytes are neuroprotective, usually in the mild-moderate cases (Wilhelmsson et al., 2006), 

or neuroinflammatory and neurotoxic, predominantly in Sev-1/2 astrogliosis (Barnabe-Heider 

et al., 2010; Voskuhl et al., 2009; Wanner et al., 2013).  

What is still unclear from the current study, therefore, is when astrocytes hypertrophy 

in METH-addicted, rather than METH-exposed individuals, if this is associated with an 

increase in neuroinflammatory and neurotoxic processes. Astrocytes release pro-

inflammatory cytokines and chemokines following CNS injury (Ramesh et al., 2013). They 

have also been shown to release proinflammatory cytokines, such as interleukin (ILe)-1 beta, 

ILe-6, and tumour necrosis factor-alpha in response to acute and prolonged METH-exposure 

(Gonçalves et al., 2008; Zhang et al., 2017). In contrast, during astrogliosis, astrocytes also 

release glial-derived neurotrophic factor (GDNF) and other growth factors (Sofroniew, 2015) 

which promote neuronal cell growth and prevent neurotoxicity (Rocha et al., 2012). 

Intriguingly, GDNF-suppressed mutant-mice have shown increased vulnerability to METH-

addiction with increases in motivation to take-METH and cue-induced METH-seeking (Yan 

et al., 2007). Upregulation of the GDNF-gene in mice has also been shown to reduce METH 

IVSA and cue-induced reinstatement (Yan et al., 2013). Therefore, it may be that mild-

moderate astrogliosis in ARes rats results in neuroprotective processes, whereas severe 

astrogliosis in AVul rats results in neurodegenerative processes. This study could have 

measured neuroinflammation via plasma cytokine levels to indicate whether specific pro-

inflammatory cytokines were upregulated, and whether this effect was specific to AVul rats 

to indicate whether the observed astrogliosis in this group was neuroprotective or 
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neuroinflammatory. This unveils a promising avenue for future research and more 

importantly, a potential new treatment for METH-addiction. 

4.3 Strengths, limitations and future research. 

 Measuring habitual drug-seeking in METH-addicted rats. This study 

employed a modified version of the addiction-phenotyping protocol (Deroche-Gamonet et al., 

2004a) in an IVSA model of METH-addiction. It was the first to employ an addiction-

phenotyping procedure incorporating both habitual drug-seeking (HDS) and resistance to 

extinction as criteria for an addiction-phenotype in a METH-exposed rat population. Using 

this methodology, a sub-set of rats phenotyped as AVul and ARes were able to be compared 

to investigate the neural substrates specifically altered in AVul rats. The methodology for this 

study aimed to model three distinct behaviours in a METH IVSA paradigm. Two of the three 

models, the cue-induced relapse model and progressive ratio model, have been repeatedly 

demonstrated as valid and reliable models of their respective constructs, motivation to take-

METH- and cue-induced relapse to METH-seeking (Belin-Rauscent et al., 2016; Everitt et 

al., 2018). Interestingly, out of the n = 33 rats that undertook training for METH IVSA, only 

one rat met criteria for all three addictive behaviours. This suggests that a particular 

limitation to this paradigm may have been its ability to measure HDS in all animals, rather 

than just a subset.   

When a rat engages in active lever pressing during the non-drug available (NDAv) 

periods of the HDS paradigm, this behaviour is suggestive of HDS. However, when a rat does 

not press the active lever during the NDAv period it is difficult to know whether the rat has 

learnt to attend to the cues (tone and light) which are salient during the drug-available period, 

or whether they have not developed HDS behaviours. Sign-tracking is a reliable predictor of 

the development of cue-induced relapse (Fitzpatrick et al., 2013; Robinson & Flagel, 2009; 

Tomie, Grimes, & Pohorecky, 2008), and as such, rats that become addicted to drugs, are 



Discussion  76 

likely more attentive to the presence or absence of drug-cues. A future study may benefit 

from employing the Pavlovian conditioned approach task prior to METH IVSA, to determine 

which rats are sign-trackers and which are goal-trackers. This may provide a plausible 

explanation for the subset of rats that demonstrated strong cue-induced relapse behaviour but 

did not meet criteria for HDS. This was surprising as these behaviours have been 

demonstrated in cocaine-addicted rats (Belin et al., 2008; Brown et al., 2011; Deroche-

Gamonet et al., 2004a; Kasanetz et al., 2010), and as cocaine is a psychostimulant like 

METH, cocaine-addiction shares many similarities with METH-addiction, notably high cue-

reactivity (Ciccocioppo, Sanna, & Weiss, 2001; Price et al., 2010) and binge-like behaviours 

(Kuczenski, Segal, Melega, Lacan, & McCunney, 2009; Ward, Haney, Fischman, & Foltin, 

1997). One study did however fail to demonstrate HDS and compulsive drug-seeking in their 

entire rat population, when undertaking an IVSA model of cocaine addiction (Waters, 

Moorman, Young, Feltenstein, & See, 2014). They suggest that only certain rat populations 

may be vulnerable to demonstrating habitual and compulsive drug-seeking behaviours which 

may be responsible for the smaller proportion of HDS amongst AVul rats. 

 CaMKIIa as a marker for glutamate activity at AMPARs. In this study, the 

marker CaMKIIa was used for indicating baseline glutamate levels as it has been repeatedly 

shown to regulate AMPAR activity (Herring & Nicoll, 2016; Lisman & Zhabotinsky, 2001). 

AMPARs are predominantly located at post-synaptic terminals and are responsible for rapid 

glutamatergic excitatory neurotransmission (Gouaux, 2004). CaMKIIa has been shown to 

increase the efficacy of AMPARs (Cai, Gu, Zhong, Ren, & Yan, 2002; Mao, Jin, Xue, Chu, 

& Wang, 2014). However, cocaine and morphine has been shown to interact with CaMKIIa 

gene expression (Liu et al., 2014; Liu, Zhang, Liu, & Yu, 2012; Wang et al., 2010), 

particularly in the NAc, potentially confounding the interpretation of CaMKIIa expression as 

a glutamate marker. The mechanism through which this upregulation occurs has not yet been 
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elucidated, therefore it is possible that glutamate neurotransmission in the NAc following 

drug and drug-cue exposure, may be responsible for this increase of CaMKIIa, as AMPA 

receptors are expressed on pyramidal glutamate neurons in the PFC (Baumbarger, 

Muhlhauser, Zhai, Yang, & Nisenbaum, 2001; Cai et al., 2002; Li, Yan, Wilson, & 

Swartzwelder, 2010; Myme, Sugino, Turrigiano, & Nelson, 2003; Vickers et al., 1993), 

pyramidal and GABA interneurons in the amygdala (Farb, Aoki, & Ledoux, 1995; Mahanty 

& Sah, 1998), and on GABA MSNs in the NAc (Wolf, 2010; Wolf & Ferrario, 2010). Future 

research may benefit, however, by measuring glutamate directly, using microdialysis, to 

avoid this potential confound. 

 Immunohistochemistry as a probe of neurocircuitry protein expression. 

Immunohistochemistry as a tool has been used to investigate neural substrates for many 

decades (Brandtzaeg, 1998), however as with any technique, there are limitations to using 

this approach. Compared to other neurobiological assays, such as quantitative polymerase 

chain reaction, microarrays, proteomics and flow cytometry, immunohistochemistry does not 

allow for high-throughput analyses with more than three markers in a given sample. 

Additionally, it does not allow for measurement of in-vivo functional properties, such as in 

the case of fibre photometry or in-vivo microdialysis. It does, however, allow for ex-vivo 

measurements of structural populations of cells within a region and allows for the 

identification of intra-regional fluctuations in a given biomarker, as tissue is not 

homogenised. It also allows for cellular phenotyping and colocalisation analyses which are 

essential for all brain regions, as the CNS contains a heterogenous population of cells 

(Capogna, 2014; DeFelipe, 1993; Tepper et al., 2018; Walsh & Han, 2014), as well as 

subpopulations of cell-types. In this study, colocalisation of astrocytes and synapses allowed 

for an understanding of the proportion of astrocyte-synapse interactions. To investigate this 
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with any of the other neurobiological assays mentioned above would not be possible. This 

highlights the value of this technique as an essential, and effective neuroscientific tool. 

 Analytical tools and methodology for astrocyte morphology. This study 

employed, for the first time, a Sholl analysis technique on astrocytes in METH IVSA-trained 

rats with the added level of addiction-phenotype. However, only a small sample-size (n = 2 

rats/group) was used for analyses of astrocyte hypertrophy, with some levels only containing 

n = 6 astrocytes in a group due to lack of viable sections. Similar sample sizes have been used 

previously (Gzielo et al., 2017) and were chosen in this study due to the substantial amount of 

data received from a single sample and the considerable time required for manual Sholl 

analyses. Importantly, as Sholl analyses were performed on only two-dimensional slices with 

no three-dimension reconstructions of astrocyte made, the measure of astrocyte hypertrophy 

employed here is likely to be conservative. Therefore, small to moderate effect sizes may be 

indicative of large effects. Three-dimensional analyses using open-access tools have been 

developed (Tavares et al., 2017), however the high-magnification confocal microscopy 

required, along with the subsequent detailed Sholl analyses are timely endeavours. Therefore, 

this data should in future be examined using confocal images to determine whether similar 

effect sizes are found. 

 GFAP and synapsin-I colocalisation as a measure of astrocyte-synapse 

connections. Also used in this study, the marker GFAP has been used extensively for 

analysis of astrocyte morphology due to its essential role in astrocyte structural integrity 

(Yang & Wang, 2015). However, it is often predominantly expressed in major astrocytic 

processes, to a lesser extent in the fine PAPs (Lavialle et al., 2011). Therefore, colocalisation 

of GFAP+ processes and synapses is limited to major processes, reducing the sensitivity of 

this technique. Previous research has employed green-fluorescent-protein to stain astrocyte 

membranes in order to more precisely quantify the number of astrocyte-synapse connections, 
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therefore future researchers may benefit from leveraging this technique (Scofield et al., 

2016a; Siemsen et al., 2019).  

 Further future research. Two additional avenues for research may be borne 

from the results of this study. Firstly, an important continuation of this research would be to 

investigate the changes in real-time glutamatergic activity following an acute challenge, such 

as drug-cue exposure, in the brains of AVul rats, when compared to ARes controls. It would 

be expected that glutamate activity in the mPFC and NAcc would spike following exposure 

to drug-paired cues (Kalivas, 2009; Parsegian & See, 2013), however no research to date has 

investigated this in rats demonstrating significant addictive behaviours revealed through 

phenotyping. To relate this effect to the addiction-phenotype is crucial to forwarding 

understanding of the METH-addicted brain, compared to the METH-affected brain. 

Secondly, in this study, it was revealed that astrocyte hypertrophy was increased 

throughout major regions of the addiction neurocircuitry of AVul rats, compared to ARes rats 

and controls. It is still unknown, however, whether addiction-vulnerability is associated with 

neuroprotective factors, associated with mild-moderate astrogliosis, or neuroinflammatory 

and neurotoxic factors associated with severe astrogliosis (Sofroniew, 2015). Markers of 

neuroprotective (e.g. GDNF), neuroinflammatory (e.g. IL-6), and neurotoxic (e.g. nNOS, 

ROS) processes should be coupled with astrocyte morphological analyses in assays of 

METH-addicted rat brains and/or plasma to investigate this possibility. 

4.4 Conclusion 

The use of addiction-phenotyping in preclinical addiction research is still relatively 

new, with novel models appearing year after year (Belin-Rauscent et al., 2016; Everitt et al., 

2018). Here, this study was able to leverage this model to uncover a reduction in baseline 

glutamate in the NAcc, CeA and BLA of METH-AVul rats, as well as no change to astrocyte 

populations, apart from in the CeA. Crucially, this study revealed widespread increases in 
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astrocyte hypertrophy in major regions of addiction neurocircuitry within METH-AVul rats, 

suggesting a role for astrogliosis in the addiction-vulnerable phenotype. Likewise, results 

suggested a potential dysregulation of glutamate homeostasis in the NAcc and BLA of 

METH-AVul rats at baseline. Future research may benefit from employing more detailed 

mapping of astrocytic processes, including markers for neuroprotective and 

neuroinflammatory processes of astrogliosis, and measuring real-time glutamate changes to 

further understanding of glutamate homeostasis and neuroinflammation in addiction. 
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