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SUMMARY 

Coronary heart disease is the most common cause of death worldwide with an estimated 7 million 

deaths per year. The majority of these deaths are due to acute myocardial infarction (AMI) so the 

burden of illness and mortality from AMI worldwide is immense. Existing short-term risk assessment 

strategies in AMI are limited to Western patient populations. In this thesis we have proposed risk 

models for prediction of mortality after AMI based on the geographically diverse Hirulog and Early 

Reperfusion or Occlusion (HERO-2) trial. The HERO-2 trial randomised 17 073 patients to either 

unfractionated heparin or bivalirudin in conjunction with fibrinolytic therapy with streptokinase, for 

the treatment of ST-segment Elevation MI. Patients were recruited from 46 countries from Europe, 

North and Latin America and Asia, including Australia, New Zealand and Russia. We have developed 

a comprehensive risk model to identify significant predictors of 30-day mortality. This model was 

subsequently simplified to a basic risk index and predictive accuracy was compared. We have also 

proposed two new methods for directly comparing the calibration and ranking performance of two risk 

strategies. 

The geographical diversity of the HERO-2 trial also provided a unique opportunity to examine 

international differences in clinical outcomes following AMI. We have undertaken a comprehensive 

comparison of patient characteristics, treatment and outcomes across 5 pre-specified regions: Western 

countries, Latin America, Eastern Europe, Russia and Asia. We found that mortality rates were lower 

in Western countries and that these differences could not be attributed to patient case-mix, treatments 

or national health and economic statistics. 

An important issue in applying findings from randomised clinical trials is the procedure to estimate 

risk among members of other patient populations. Using the HERO-2 trial we compared methods for 

updating risk models for AMI. A variety of re-calibration and model revision strategies were 

compared with a global modeling strategy having a built-in region effect. The relative performance of 

these methods in the different geographical regions, which vary in sample size, was of primary 

interest. Model revision was found to only provide a slight improvement in predictive performance 

over the global model. We concluded that a global model with regional re-calibration is adequate. 

We also studied data from 5 additional multinational trials: GUSTO-1, GUSTO-2b, GUSTO-3, 

ASSENT-2 and ASSENT-3. We further explored the adequacy of applying simple re-calibration to 

update a model for the context of applying a previously developed model to a new trial. We found that 

new models do not need to be developed for risk assessment in new trials; prior models with re-

calibration will suffice. 
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CHAPTER 1: INTRODUCTION 

1.1  Risk factors for mortality following acute myocardial infarction 

The goal in this thesis is to investigate the benefits of globally estimated mortality prediction models 

for acute myocardial infarction (AMI), commonly known as heart attack. To date studies examining 

predictors of short- and long-term mortality following AMI have been based on predominantly 

Western data [1-11] and we aim to compare these with global models. Emergency room arrival is the 

most critical point in the clinical course for a patient suspected of having an AMI as urgent therapeutic 

decisions need to be made which can influence a patient’s chances of survival. We focus this 

investigation on the endpoint 30-day mortality, the most common outcome used in existing risk 

models in AMI.  

Models have been developed using clinical trial data [1, 3-4, 9] and disease registries [7, 10]. 

Prognostic factors selected for inclusion in risk assessment strategies are very consistent, even 

including studies using hospital or community registries. Risk stratification tools have also been 

developed for the general acute coronary syndrome (ACS) population [12-13] and exclusively in 

patients with unstable angina (UA) or Non-ST-segment Elevation MI (NSTEMI) [14-15]. There is a 

remarkable homology between patients with different AC syndromes as the same prognostic factors 

apply across the ACS spectrum (e.g., ST-segment Elevation MI (STEMI) versus UA). Furthermore 

risk factors for both short- and long-term mortality are very similar.  

Age, systolic blood pressure (SYSBP), heart rate and the severity of haemodynamic compromise as 

measured by Killip class are the key determinants of risk and virtually appear in all AMI models. In a 

recent model derived from the ASSENT-3 trial data set, age, SYSBP and heart rate accounted for 70% 

of the relative contribution to the prediction of mortality within the first 3 hours [9]. MI location is the 

next most influential risk factor and is generally included. The medical history variables prior MI, 

hypertension and diabetes are also commonly included. The variables which constitute a risk model 

also depend on the developers desired level of simplicity for that model. Other variables which have 

appeared in more comprehensive models include: weight, height, time to treatment, history of angina, 

smoking status, previous coronary artery bypass graft (CABG) surgery and history of cerebrovascular 

disease. Race and gender have also been found to be independently associated with mortality 

following AMI.  

The information that is available depends on the point in the clinical course that risk assessment is 

being performed. For example at early presentation baseline information is usually limited to the 

traditional risk factors described above. Once an electrocardiogram has been performed information 

on infarct location and other electrocardiographic (ECG) parameters can also be incorporated. The 

ASSENT-3 baseline risk model identified the ECG parameters ST-segment deviation and QRS score 

(i.e., index based on Q, R and S waves) as significant predictors of 30-day mortality [9]. QRS was also 
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identified as a predictor of 1-year survival among 30-day survivors in GUSTO-1 [6]. Selker et al [10] 

derived a risk model which included data on the amount of ST-segment elevation and Q waves. These 

ECG indices are difficult to calculate in clinical practice and hence are often not considered for 

inclusion in risk models. Fortunately the Selker et al model was programmed into an ECG machine 

with the patients’ expected risk and benefit from thrombolytic treatment printed at the top of the ECG 

output. 

Biomarker data has also been shown to provide prognostic information. For example in models 

developed from the Global Registry of Acute Coronary Events (GRACE) population of ACS patients, 

creatinine level, an indicator of renal function, was found to be an important predictor of both in-

hospital and 6-month post discharge mortality [12, 16]. This variable was also present in a mortality 

model derived from a Medicare database of elderly AMI patients [7]. This biomarker has received 

little attention in AMI risk model development as it is not systematically collected in AMI trials, 

which the majority of existing models are based on, and patients with known renal insufficiency are 

sometimes excluded from trials. Baseline hemoglobin level has also been shown to be an independent 

predictor of early mortality in AMI; Giraldez et al [17] combined this laboratory parameter with 

creatinine clearance to derive a laboratory index which offered additional risk stratification to the 

TIMI risk score which was developed in patients with STEMI from the InTIME-II trial [3]. Advances 

in biotechnology in the past decade have demonstrated several other prognostic biomarkers related to 

cardiovascular outcome, independent of bedside clinical factors. These include cardiac troponin, high 

sensitivity C-reactive protein, brain natriuretic peptide (BNP), and N-terminal pro β-type natriuretic 

peptide (NT-ProBNP), which are related to the underlying left ventricular dysfunction or the 

inflammatory process [18]. The most recent addition is Growth differentiation factor-15 (GDF-15) 

which is a member of the transforming growth factor-β cytokine superfamily, upregulated and secreted 

by cardiomyocytes during ischaemia and reperfusion [19]. GDF-15 prognosticated very well in a 

cohort of STEMI patients receiving fibrinolytic therapy; significant associations with 1-year mortality 

were demonstrated after adjustment for clinical variables, tropinin T, and NT-ProBNP, differences 

were already observed within 30 days [19]. However Woo [18] recently highlighted that the 

immunoradiometric method for GDF-15 assay needs to be further smoothed out for faster reporting in 

a shorter time. 

With the increasing adoption of primary percutaneous coronary intervention (PCI) as a preferable 

method for achieving reperfusion (i.e., continuous blood flow–and oxygenation through a vascular bed 

acutely compromised by vasospasm or thrombosis) [20] risk stratification indices have also been 

developed and validated exclusively in STEMI patients undergoing PCI, for instance the PAMI and 

CADILLAC risk scores [21-23]. The PAMI risk score can be easily applied at presentation, as it 

requires information only on age, Killip class, heart rate, diabetes, anterior STEMI and left bundle 

branch block. However the CADILLAC risk score can only be applied following an angiography 

performed after PCI as information on triple-vessel disease, final TIMI flow and left ventricular 
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ejection fraction is required. Therefore the CADILLAC score is mainly relevant to the latter period of 

hospitalisation which is a limitation as early decisions may be vital for the correct management of 

patients. Albeit the angiographic parameters included in this score appear to have important additive 

value to clinical variables as in a study by Lev et al [23] which compared the performance of risk 

scores using a registry of 974 consecutive patients with STEMI undergoing PCI in an Israel hospital 

the CADILLAC risk score outperformed, by a large margin, both PAMI and the TIMI risk score 

developed in patients treated primarily with thrombolytics. Corroborating this Brener et al [24] 

demonstrated that the angiographic parameter of reperfusion myocardial flow measured shortly after 

PCI was predictive of 90-day clinical outcomes. 

Later in the clinical course information from repeat ECG tests will become available. Further ECG 

testing also provides an indication of the success of early reperfusion treatment. Brener et al [24] 

demonstrated that STE resolution is independently associated with the 90-day composite outcome 

death/congestive heart failure/shock. The use of revascularisation procedures (i.e., PCI or CABG) 

which have proven benefit can also aid prediction. The occurrence of adverse events such as 

reinfarction, stroke etc, which are significantly detrimental to a patient’s chances of survival, can also 

be included in risk models. Recently models incorporating such data have been developed in the 

ASSENT-3 trial population and referred to as dynamic models [9]. 

We will restrict this investigation of AMI risk stratification tools to models which can be applied at 

early presentation and which contain traditional risk factors that are easily measured and readily 

available. This will also enable events occurring early in the clinical course to be used as patients do 

not have to survive long enough for data which is not immediately available to be measured or 

integrated into the assessment of risk e.g., biomarkers. This is relevant to both model development and 

application. 

1.2  Uses of risk indexes in AMI  

Risk models can assist clinicians in identifying patients at high risk for early mortality following AMI. 

This can help clinicians to make therapeutic decisions and efficiently allocate treatment recourses. For 

example a patient identified as at high risk could be considered for treatment with the more expensive 

and aggressive thrombolytic therapy tissue plasminogen activator (t-PA) instead of the standard 

treatment streptokinase [2]. Patients identified as being at low risk could be administered streptokinase 

and may not be considered for further interventions such as revascularisation. This is more cost-

effective since high-risk patients derive the largest absolute benefits from treatment with t-PA [2]. 

This strategy also minimises unnecessary treatment complications. Risk stratification may also help 

optimise admission and discharge decisions. 

Risk models also have other purposes. They provide prognostic information which is valuable 

information for doctors, patients and their families. A prediction probability or a risk score indicates 

whether a patient is at high or low risk thereby improving appreciation of the patient’s risk level. They 
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are also useful in understanding biological and causal pathways. Risk indexes are also required in 

statistical analyses. In clinical trials analyses they provide risk categories needed to examine 

heterogeneity in treatment effects according to level of risk. In epidemiological studies they are useful 

in adjusting for baseline risk, e.g., to assess variations in practice patterns or specific therapies 

between health centres casemix differences need to be adjusted for. Another important purpose is 

screening for high-risk patients for possible inclusion in or exclusion from clinical trials. 

Dynamic risk models aid decision-making later in the clinical course [9]. The enhanced assessment of 

risk provided by the integration of clinically relevant information unfolding during the hospital stay 

assists doctors in deciding upon further management, possible early discharge and the level of follow-

up care. Since patients must survive to a given time-point for this data to be available these models are 

based on landmark analysis and provide updated risk forecasts beyond this time-point. Dynamic 

models are also useful in gaining insights into the disease process and treatment mechanisms.  

In general after recovering from AMI, surviving patients remain vulnerable to cardiovascular events 

such as heart failure (HF), recurrence of angina, reinfarction, arrhythmia, and sudden cardiac death 

[18]. Risk models which can accurately predict these long-term outcomes are useful to identify high-

risk patients needing more intensive follow-up and care. 

1.3  Prediction methods 

There are a number of methods that can be used for prediction. The most commonly employed are the 

standard regression approaches, e.g., logistic and Cox regression, for which there is an abundance of 

statistical advice on how to derive prediction models to maximise model accuracy [25]. These 

methods are relatively simple and well established with statistical theory that supports and 

supplements their use (i.e., assessment of adequacy of model fit and verification of model 

assumptions).  

Bayesian model averaging is another approach which involves estimating a number of models and 

taking the weighted average of predictions from these models to estimate risk [26]. This approach is 

especially suitable when the training set is small as it accounts for model selection uncertainty. 

However with large datasets there is little to be gained when used in place of simple regression 

techniques.  

There are also a number of computer intensive classification methods. The most novel of these are 

classification and regression trees (CART) [27] and artificial neural networks (ANNs) [28]. These 

approaches are not widely used but have some distinct advantages; they are very flexible because they 

are non-parametric and allow arbitrary nonlinear relationships as they have no implicit assumptions 

regarding linearity. CART is an empirical statistical technique that is based on binary recursive 

partitioning analysis. A series of logical if-then conditions (tree nodes) is produced, and so the output 

from CART is quite easy for non-statisticians to interpret. One caveat of CART is the seemingly 

arbitrary selection of split points which may be more data driven than clinically meaningful. ANNs 
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have shown a lot of promise for diagnostic and prognostic purposes. This complex technique considers 

the ‘chaotic’ nature of biologic and pathophysiologic processes and operates by varying the values 

assigned to nodes and interconnections of a large network modeled in the computer’s memory. These 

values change with experience, and the output of the ANN gradually becomes more accurate as its 

“experience” increases. ANNs are an excellent complex pattern recognition tool; they have the 

advantage of detecting complex nonlinear relationships and interactions. The primary disadvantage of 

ANNs is its “black box” nature; the relationship between the input data and the output diagnosis is 

obscure. The methods flexibility has led to a lot of recent interest as researcher’s anticipated enhanced 

accuracy. However in a review by Sergeant [29], in large datasets (N>5000) the performance of ANNs 

and standard regression techniques (i.e., logistic or Cox regression) was equivalent. Additional 

drawbacks include the computational resources required and the lack of standard software. A major 

limitation of both CART and ANNs is that they do not allow inference through evaluation of fitted 

model coefficients.  

In AMI Negassa et al [30] derived a simple tree-structured risk stratification model to predict in-

hospital mortality for patients undergoing early PCI. The model included three key presenting 

features: cardiogenic shock, congestive HF, and age. The performance of the model was similar to the 

Mayo Clinic Risk Score developed to predict risk of major cardiovascular complication following 

urgent or emergent PCI (discriminatory capacity: 82% versus 80% respectively). 

Ennis et al [31] applied a battery of modern, adaptive non-linear learning methods including neural 

networks and classification trees to the large GUSTO-I database (N=41021). The GUSTO-I trial 

compared the efficacy of different intravenous thombolytic regimens for the treatment of AMI. 

Methods were used to predict 30-day mortality and performances were compared to the logistic model 

of Lee et al [1] also developed in this data set. None of the adaptive non-linear methods outperformed 

the logistic model. The authors concluded that these adaptive non-linear methods are probably most 

useful in problems with high signal-to-noise ratio, sometimes occurring in engineering and physical 

science. In human medical studies, the signal-to-noise ratio is often quite low (as it was in this study) 

and hence the modern methods may have less to offer. 

Despite the potential of these computer intensive methods, logistic regression remains the model of 

choice for prediction of short-term outcomes and so discussion herein will be limited to this method. 

1.4  Risk assessment strategies in AMI 

Several types of risk assessment approaches exist in AMI. The first approach is a multivariable logistic 

model which provides a probability prediction indicating the risk of the event of interest occurring 

within a specified time period. A linear predictor score is calculated by taking the linear combination 

of the regression coefficients with the values of the corresponding co-variables. This score is then 

substituted into the logistic transformation to obtain a probability prediction. Manual computation is 

laborious and complicated. An example is the GUSTO-I risk model developed in the GUSTO-I trial of 
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over 40000 patients [1]. This model predicts risk of 30-day mortality and is a complex risk algorithm 

containing both linear and cubic spline functions and requiring information from 15 input parameters. 

The availability of a preprogrammed computer or palm pilot is necessary for convenient, timely and 

correct application.  

Another approach is a clinical risk score also referred to as a simple risk index. A risk score is 

calculated by summing up integer weights assigned to a set of identified risk factors. Patients with a 

high score are said to be at high-risk and patients with low scores are said to be at low-risk. An 

example is the already mentioned TIMI Risk Score developed from patients in the InTIME-II trial 

(N=14114) [3]. The developers suggested that this index could be printed on a laminated card for use 

at the bedside. On the back of the card would be a table containing the odds ratio for mortality risk 

relative to average mortality risk associated with each score.  

Another similar approach is a nomogram. A nomogram is by definition a graphical calculating device; 

a two-dimensional diagram designed to allow the approximate graphical computation of a function 

which uses a coordinate system. A nomogram requires summation of risk points and allows the user to 

read off the associated risk probability. For ease of use nomograms are often constructed as tables; 

points are shown alongside specific categories of each prognostic factor with a look up table 

containing the final risk prediction corresponding to each obtainable overall score. An example is the 

GUSTO-I nomogram [2] which was developed by simplifying the GUSTO-I model. This nomogram 

provides the 30-day mortality risk with streptokinase treatment for patients with given characteristics 

and absolute mortality reduction that would result from substitution with accelerated t-PA treatment. 

A disadvantage of the latter two methods is that there is an associated loss of accuracy. 

1.5  Global burden of AMI 

Acute myocardial infarction, commonly known as a heart attack, occurs when the blood supply to part 

of the heart is interrupted [32]. This is most commonly due to blockage of a coronary artery following 

the rupture of a vulnerable atherosclerotic plaque, which is an unstable collection of lipids (like 

cholesterol) and white blood cells in the wall of an artery. The resulting ischemia (restriction in blood 

supply) and oxygen shortage, if left untreated for a sufficient period, can cause damage and/or death 

(infarction) of heart muscle tissue. 

Angina pectoris (chest pain) and myocardial infarction are symptoms of and conditions caused by 

coronary heart disease (CHD; accumulation of atheromatous plaques within the walls of the arteries 

that supply the myocardium). 

CHD is the leading cause of death worldwide and is on the rise due to an increasing incidence in 

developing and transitional countries [33-34]. This is partly as a result of increasing longevity, 

urbanisation and life-style changes. In many developed countries the incidence of this disease and 

specifically AMI is decreasing and case fatality rates have decreased in North America and many 

western European countries [33, 35]. This decline has been due to improved prevention, diagnosis, and 
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treatment, in particular reduced cigarette smoking among adults, and lower average levels of blood 

pressure and blood cholesterol. It is expected that 82% of the future increase in CHD mortality will 

occur in developing countries.  

1.6  Rationale for the thesis 

Existing models in AMI have been developed using largely Western patient populations; 80% of 

subjects in the InTIME-II trial, the basis of the TIMI Risk score, were recruited from Western 

countries [36] and with the exception of Poland all of the countries that partook in GUSTO-I were 

Western [37]. Furthermore in the ASSENT-3 trial, the basis for a series of dynamic risk models 

alluded to earlier, 87% of patients were recruited from Western countries [38]. Given the increasing 

incidence of CHD, which encompasses MI, it is especially important that risk models are applicable to 

developing and other non-Western countries. They must encapsulate the correct risk factors with 

appropriately assigned weights.  

We have available data from a large international trial, Hirulog and Early Reperfusion or Occlusion 

(HERO-2), performed in developed and developing countries [39]. The HERO-2 trial randomised 

17073 patients to one of two antithrombotic therapies, unfractionated heparin and bivalirudin in 

conjunction with fibrinolytic therapy with streptokinase, for the treatment of AMI. The trials’ primary 

endpoint was 30-day mortality. Patients were recruited from 539 hospitals in 46 countries, including 

Asia, and patients from Eastern Europe, Russia and Latin America were also well represented. 

Countries were grouped into five prospectively defined geographic regions: Western countries, Latin 

America, Eastern Europe, Russia and Asia.  

This data provides an excellent opportunity to assess the accuracy of existing AMI risk assessment 

strategies and to propose new models based on a geographically diverse sample. Given the huge 

sample size and broad spectrum of patients in HERO-2 we anticipate that these new models will have 

enhanced generalisability and so risk predictions may be improved in non-Western regions. We will 

ascertain whether the same risk factor effects apply in different regions or do models need to be 

revised for application to another region. Many findings we present may be applicable to other 

methods of risk stratification. 

1.7  Variations in risk by geographic region – other factors 

The HERO-2 clinical trial report [39] revealed large variations in mortality rates and other outcomes 

by region. If these variations are real, they are of particular concern as they raise a lot of questions 

concerning the state of health care systems among countries and geographical regions where outcomes 

were poor. The importance of regional diversity in findings adds to the significance of our evaluation. 

The structure of the HERO-2 data is hierarchical: patients are treated within hospitals, and hospitals 

are situated within countries, which in turn were classified into regions. This means there are 3 nested 

levels contributing to the overall variation. 
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Differences in patient case-mix factors are the first obvious source of confounding. Patient level 

factors encompass the traditional risk factors measured in all AMI trials (e.g., demographic 

characteristics, cardiac history, cardiac risk factors etc) which have proven association with mortality, 

and unmeasured confounding factors; for example socio-economic status, expressed as education, 

occupation, income or combinations of these has been shown to be associated with cardiovascular risk 

and mortality [40-42]. Lifestyle factors have also been shown to affect outcomes following AMI. 

Regular exercise is associated with a significant reduction in mortality [43-45]. Moderate alcohol 

consumption has been shown to provide a protective effect against post MI mortality [46], while binge 

drinking is associated with higher mortality [47]. Diet is also an important factor due to its effects on 

lipid levels which in turn are related to the incidence of CHD [48]. Ethnic origin has been 

demonstrated to be independently associated with post-MI mortality with non-caucasians having 

decreased survival [9]. Genetic factors (e.g., family history of CHD) may also play a part. 

Hospital-level covariates including number of beds, volume of cases, presence of on-site 

catheterisation, percutaneous transluminal coronary angioplasty and open-heart surgical facilities, 

academic affiliation, for-profit status, total number of physicians, nurses, residents, and other staff may 

also play a part. The level of utilisation of procedures has been demonstrated to be independently 

associated with post-MI mortality [49] and the use of evidence-based medicine is a crucial determinant 

of risk. 

Country-level factors such as life-expectancy, economic status and quality of the health care system 

can also play a role [49]. 

Another potential source of variation is physician-level factors. The outcomes of patients treated by 

cardiologists as opposed to by a general practitioner or family physician have been shown to be better 

[50]. Also the outcomes of patients treated by the same doctor may be correlated. In HERO-2 data to 

identify individual doctors is not available and so physician-level factors will not be considered. 

However in both NSTE ACS and STEMI most of the variation in patient outcomes has been 

demonstrated to be attributable to patient-level factors (>95%), leaving the remaining small fraction of 

variation due to physician, hospital and country-level factors [49-51]. 

Gupta et al [49] conducted a multi-level analysis using the ASSENT-2 trial database to examine the 

relationship between revascularisation and outcomes following AMI. After adjusting for patient-level 

characteristics there remained significant variation in 30-day mortality between countries. Further 

adjustment for country-level life expectancy accounted for much of this variation.  

Guigliano et al [52] examined variations in clinical outcomes across four geographical regions, namely 

Western Europe, North America, Eastern Europe and Latin America in the InTIME-II trial cohort. 

Despite considering a barrage of hospital-level variables such as those listed above and adjusting for 

differences in revascularisation rates regional mortality differences were unexplained.  
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The findings from these two studies are not consistent. Gupta et al [49] listed possible reasons 

including a smaller gradient in revascularisation rates across the four geographical regions in InTIME-

II and differences in analytical approaches employed; Guigliano et al employed standard logistic 

regression and did not consider country-level factors. Also non-Western patients were more highly 

represented in the InTIME-II trial as more countries from Eastern Europe participated (11 vs. 3) giving 

a more geographically diverse sample. Whether variations in outcomes in HERO-2 can be explained 

will be of key interest; the HERO-2 cohort is the most geographically diverse of any trial to date. 

To assess the representativeness of patients in each region enrolled in the HERO-2 study a screening 

log substudy was conducted. The aim was to ascertain the background patterns of care in the five 

regions and to compare the trial participants with those initially considered for the HERO-2 trial. The 

proportion of patients enrolled among those screened may be another factor. Higher risk patients are 

more often excluded so you would expect higher rates of enrollment to be correlated positively with 

mortality rates.  

1.8  Challenges for models based on randomised trials 

Randomised clinical trials (RCT) follow rigorous scientific principles and are not subject to many 

biases inherent in other designs such as observational or retrospective studies. Therefore they provide 

a rich source of information which, as required in the conduct of the RCT, is generally accurate and 

complete. However clinical trial cohorts may not be representative of ‘real world’ patients due to 

inclusion and exclusion criteria which restricts the range of patients enrolled in trials. Other factors 

which make data from clinical trials less realistic are: trial centres and physicians may not be 

representative of all centres or physicians, patient monitoring is not the same as normal monitoring in 

practice and health professionals may not act as they would in normal practice [53]. These factors 

affect the generalisability of clinical trial-derived risk models.  

Another difference between clinical trials and normal practice is that information systems and data 

gathering processes are not the same. This could have implications for the application of risk models. 

Clinical trials also have the disadvantage that often trial lengths are relatively short which may affect 

the generalisability of a risk model due to temporal effects. 

Disease registries have the advantage that the cohort of patients contained in them are more 

generalisable since they do not employ strict inclusion and exclusion criteria used in clinical trials and 

often register consecutive patients admitted to hospital with the disease of interest. However they may 

be limited in scope or data collection and may not have as stringent data quality, monitoring or 

endpoint assessment. Since they are non-randomised the formation of inferential statements 

concerning treatment effects is challenging. Although models developed from the GRACE database, 

mentioned earlier, appear to have good performance; excellent predictive accuracy was displayed 

when applied to validation datasets including a subsequent cohort of patients enrolled in GRACE and 

the GUSTO-IIb trial cohort [12]. 
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The strict inclusion and exclusion criteria imposed in clinical trials is the limitation most relevant to 

risk models. Clinical trial populations tend to be lower risk than the general population since patients 

with high-risk features are more often excluded. This reduces the prognostic significance of these 

variables. Mixed results have been reported for the performance of trial-based risk strategies applied in 

non-trial cohorts such as disease registries.  

In a study by Singh et al [54] which involved a community registry of patients with MI in Olmsted 

County, Minnesota, the performance of the TIMI risk score was lower compared to in its derivation 

cohort (discrimination: 73 vs. 78%). 

In the study by Lev et al [23], referred to earlier, the performance of various risk scores was compared 

in a real-life unselected AMI population undergoing PCI using a single-centre registry. The TIMI risk 

score again did not perform as well compared to in its derivation cohort (discrimination: 72 vs. 78%). 

However patients selected for PCI generally have fewer exclusion criteria compared with those treated 

with thrombolytic agents providing a more favorable setting for application of TIMI. The 30-day 

mortality rate was lower in this study compared to in the TIMI derivation cohort (3.6 vs. 6.7%), which 

may have hindered the performance of TIMI. The higher efficacy of PCI in establishing vessel patency 

and brisk epicardial flow compared to thrombolytic therapy would have contributed to this decreased 

mortality. Even though the GRACE risk score was developed from an ACS registry its performance in 

this study should be highlighted as it was poor (discrimination = 47%). This raises questions 

concerning its applicability in exclusively AMI populations.  

Rathore et al [55] assessed the performance of the Simple Risk Index, a prediction model 

encompassing just three predictors age, SYSBP and heart rate, in a community-based cohort of elderly 

patients (≥ 65 years of age) hospitalised with AMI. The discriminatory capacity of the model was poor 

compared to in its derivation cohort (71 vs. 78% for 30-day mortality).  

Gale et al [56] tested the performance of five risk prediction models derived from trial or registry 

populations in a national registry of acute hospitals in England and Wales. Models were refitted to 

derive updated coefficients with all the original variables retained regardless of significance. The 

discriminatory capacity of all models, including the Simple Risk Index above, was similar and as good 

as in their original derivation cohorts. This implies that the application of model revision [57] to 

models developed in trials adequately corrects for bias in regression coefficient effects thus allowing 

accurate application in non-trial cohorts. The performance of all models was lower in high risk groups. 

Finally, using a Canadian ACS registry Yan et al [58] compared the performance of the trial based 

PURSUIT model to the GRACE model in NSTE patients and found that both models showed similar 

and good discrimination (84 vs. 83% respectively). The GRACE model demonstrated good 

calibration, whereas risks predicted by the PURSUIT model were consistently over-estimated as the 

PURSUIT trial by design selected higher-risk patients. 
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There was no evidence for the performance of more comprehensive risk models (e.g., GUSTO-I) in 

STEMI community cohorts without the application of model updating methods. The evidence is 

limited but it appears that risk scores may not lend themselves to application in real-world cohorts as 

well as risk models. Their inherent simplicity may be part of the cause – they are derived by 

approximating regression model coefficients. Risk models are also more amenable to model updating 

methods such as re-calibration and model revision if needed [57].  

1.9  Objectives of the thesis 

AIM 1: To develop, using the HERO-2 dataset, new global risk assessment tools for AMI. These will 

include a comprehensive risk model, a reduced version and a clinical risk score. Of special interest is 

whether region needs to be included as a risk variable or will differences in mortality rates by region 

be explained by patient casemix factors. Patient characteristics, treatments and outcomes will be 

compared across the five geographical regions. Reasons for unexplained regional differences will be 

further explored using national health and economic statistics. 

AIM 2: To compare newly developed indexes to existing Western based strategies. These will include 

the GUSTO-I risk model and the TIMI risk score, two well known risk indexes developed from large-

scale clinical trials. The following questions will be addressed. Can Western based models be 

successfully (re)-calibrated for application in non-Western patient populations? If so, do the global 

HERO-2 indexes have a distinct advantage in non-Western patient groups? Conversely, do the 

Western based models perform better in Western patients? Discriminatory ability will be the main 

criterion for this comparison.  

AIM 3: Clinical risk scores, which are derived by simplifying risk models, are often used in risk 

stratification. This simplification can involve omitting less important risk factors and categorising 

continuous variables, the perils of which have been well documented [59]. The cost in predictive 

accuracy from the resulting loss of information will be assessed using the HERO-2 strategies and 

recommendations made. The predictive performance of the HERO-2 indexes will be compared and 

external validity assessed in the GUSTO-I dataset. 

AIM 4: Another major issue concerns the use of risk models in new patient populations. Specifically 

does a new model need to be built from scratch, or is it sufficient to apply simple updating methods to 

a pre-existing model? Steyerberg et al [57] used the GUSTO-I trial as the basis for a comparison of 

model updating methods in Western countries. Simple re-calibration methods were found preferable to 

more extensive model revision methods (re-estimating model coefficients, model extension with more 

predictors). We extend this evaluation by recalibrating from non-Western patient populations, to 

determine whether Steyerberg’s findings apply in HERO-2, particularly for different geographical 

regions. Explicitly is there a significant advantage in estimating region-specific coefficients or is a 

global model with or without the application of re-calibration sufficient? We will also apply model 

revision with shrinkage of region-specific regression coefficients towards global model coefficients.  
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AIM 5: To assess the robustness of risk models when applied in other trial populations. 

Recommendations made from AIM 4 will be confirmed for further application in other trials using 

data from the Virtual Coordinating Centre for Global Collaborative Cardiovascular Research 

(VIGOUR) project. Specifically what extent of model updating is required when applying a model in 

another trial? Data from four additional trials will be included: ASSENT-2 [60], ASSENT-3 [38], 

GUSTO-2b [61] and GUSTO-3 [62]. This will provide data for 42233 additional patients, although 

only 7% were recruited in non-Western countries; 1381 and 1451 patients in Latin America and 

Eastern Europe respectively.  

1.10  Outline of chapters 

Chapter 2 describes all relevant statistical methodology.  

Chapter 3 introduces the newly developed HERO-2 risk models and clinical risk score. Simple 

calibration is used to relate the HERO-2 and TIMI risk scores to outcome to obtain a risk probability 

for 30-day mortality following the guidelines for (re)-calibration proposed by Steyerberg et al [57]. 

The performance of the HERO-2 risk indexes are compared with each other and previously developed 

strategies (GUSTO-I model and TIMI risk score), within geographical regions. New statistical 

methods that directly compare the predictive performance of risk strategies are proposed. These 

include a calibration comparison measure (“entropy t-test”) and a method which allows comparison of 

error rates in ranking dead-alive pairs between indexes. The consistency of results from these and 

other methods for comparing the performance of two indices is also considered. The performance of 

the HERO-2 models and calibrated HERO-2 and TIMI scores is assessed on an external dataset using 

the GUSTO-I trial data. 

Chapter 4 provides a full documentary of regional differences in patient characteristics, patterns of 

care and clinical outcomes. Patterns of care include administration of protocol treatment, beta-

blockers, angiography, revascularisation, duration of hospital stay, CT/MRI scanning and autopsy 

rates. Outcomes compared include mortality, reinfarction, stroke and severe bleeding. The effect of 

treatment with bivalirudin versus unfractionated heparin on 30-day mortality and reinfarction 

outcomes is assessed within regional subgroups. To elucidate reasons for unexplained regional 

differences in clinical outcomes a multivariable analysis is undertaken which includes adjustment for 

country-level factors. These factors include national health and economic statistics obtained from 

external data sources; and rates of coronary revascularisation, durations of hospital stay and 

percentages of eligible patients enrolled based on the trial data for each country. A sensitivity analysis 

assessing regional effects will be undertaken using multi-level modeling with hospital and country 

variables included as random effects. The results of the screening log substudy are presented; patterns 

of care and patient characteristics are compared in the five regions between trial participants and those 

screened for possible inclusion in the HERO-2 trial. 
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Chapter 5 compares the performance of model updating methods in the five geographical regions. 

Methods are applied to the reduced version of the HERO-2 full model labeled the HERO-2 global risk 

model. Simple re-calibration (re-estimation of the intercept and slope of the linear predictor within 

regions) and model revision (re-estimation of all regression coefficients within regions) with and 

without shrinkage are compared. The relative performance of updating methods is compared across 

geographical regions. Bootstrap resampling is conducted to obtain optimism-corrected estimates of 

model performance. The performance of the global model with original weights and Western-specific 

weights (i.e., derived from the HERO-2 data) when applied in the GUSTO-1 data is compared. 

Chapter 6 compares the performance of various risk models across six trials from the VIGOUR 

project. This will provide information as to the generalisability of risk models when applied in other 

trial populations. Models to be tested will include the HERO-2 (Chapter 3), GUSTO-I [1] and 

ASSENT-3 [9] full models and a new model also developed in this chapter based on the ASSENT-2 

trial data. We will determine whether new models need to be developed from scratch, for a specific 

trial, or whether recalibrating existing models is adequate. The performance of models in their 

derivation datasets will be compared with the performance on the same data of models developed in 

other trials. 

The following subsidiary questions will also be contemplated. Do models have an advantage over 

other models when applied in later related trials given that similar sites participate in serial trials e.g., 

does the GUSTO-I model display an advantage in the later GUSTO trials? Does one model display a 

consistent advantage over other models? Data which is independent to all models will aid in this 

comparison. And finally do models containing simple risk factor information perform as well as 

models containing difficult to compute indices derived from ECG data?  

Further comparisons of the HERO-2 and TIMI risk scores will be conducted. The loss in predictive 

accuracy from using the HERO-2 risk score in place of the full model in external validation datasets 

will be studied for consistency with that observed in HERO-2; i.e., it is worth knowing whether the 

trade-off between simplicity and accuracy seen in HERO-2 extrapolates to other populations.  

Chapter 7 will provide a final summary and discussion of the overall findings. Comparisons with other 

studies will be made as well as recommendations for practical application. 
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CHAPTER 2: METHODS 

2.1  Model building approach 

2.1.1  Candidate predictors 

We have followed the model building approach proposed by Harrell [25] for developing predictive 

models as described herein. Choice of candidate covariables should be guided by external findings, 

prior studies and clinical knowledge. We have therefore only considered common risk factors used in 

prior studies, ignoring variables with little chance of being predictive or of being measured reliably. 

This ensures less over-fitting and greater generalisability. 

2.1.2  Missing data 

In some circumstances, deletion of cases with missing predictors may cause bias and increased 

variance in regression parameter estimates. Harrell [25] advocates imputing missing values as opposed 

to complete case analysis which should only be performed if the dataset is very large and offers no 

advantage apart from saving the analyst time. Harrell’s [25] rough guideline specifies that if the 

proportion of observations with any variables missing is less than 5% simple imputation methods are 

adequate. This involves imputing missings with the median nonmissing value; for categorical 

predictors the most frequent category can be used. Harrell [25] states that in this case it does not 

matter how missings are imputed or whether the variances of regression coefficient estimates are 

adjusted for having imputed. 

If the proportion of cases with missing data is between 5 and 15% the guidelines are as follows. If a 

predictor is unrelated to all of the other predictors, imputations can be done the same as above. If the 

predictor is correlated with other predictors, develop a customised model to predict the predictor from 

all other predictors. Then impute missings with predicted values. For categorical variables, 

classification trees, binary or polytomous logistic regression are good methods for developing 

customised imputation models. For continuous variables, ordinary regression can be used. This is 

referred to as the “best guess” imputation method which fills in missings with predicted expected 

values from using a multivariable imputation model based on non-missing data. Variances may need 

to be adjusted for imputation. This is conditional mean imputation which is probably adequate for this 

level of missing data, but multiple random-draw imputation may be preferred. 

Because new risk models are being developed in HERO-2 the approach for dealing with missing data 

is crucial. Fortunately the frequency of subjects with missing data was very low (<5%) so model 

parameters could be estimated with sufficient certainty and multiple imputation was not warranted. 

We chose to preserve the whole sample and apply simple imputation for variables with less than 1% of 

values missing. For variables with greater than 1% of values missing the appropriate regression 

method was applied to predict the predictor from all other predictors where sensible (i.e., conditional 

mean imputation). Otherwise reduced models derived using backward selection was used to impute 
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missing values. Multivariable imputation models were derived in subjects with non-missing data for 

the predictors included in these models. The low rate of missing data also ensures that single 

imputation methods are sufficient to obtain reasonable predictions. 

In the case where the covariate Xj needs to be imputed for some subjects based on other variables that 

themselves were missing on the same subjects missing Xj the following algorithm was applied. First, 

for the variables considered more important all missing values were initialised to medians (modes for 

categorical variables). Then for the variables considered less important missing values were imputed 

using the derived prediction equation. And finally imputed values for the variables considered more 

important were updated using their respective prediction equations and imputed values for the 

variables considered less important obtained in the previous step. 

Refer to Chapter 3 for more information on missing data rates in HERO-2. In Chapters 3 and 5 the 

GUSTO-I dataset was used for external validation of the HERO-2 risk strategies. For simplicity 

simple imputation was applied for all predictors with missing data in GUSTO-I. This imputed dataset 

was later copied across for use in the cross-trial comparisons (Chapter 6). However for the other 

VIGOUR datasets missing data was imputed according to the same rules applied in HERO-2. 

Fortunately missing data rates for all the key predictor variables were very low across all trials. Refer 

to Chapter 6 for more information on missing data rates in VIGOUR. 

Harrell [25] states that if there are missing Y (i.e., the dependent variable) values on a small fraction of 

the subjects but Y can be reliably substituted by a surrogate response, use the surrogate to replace the 

response. In this setting the variable discharge status was useful for that purpose as most patients who 

were discharged alive survived until day 30. In any case the frequency of subjects with missing data 

for 30-day mortality status was very low (< 0.5%) across all trial datasets. Patients were assumed alive 

at 30 days unless there was information to suggest otherwise except in Chapters 3 and 5 where 

GUSTO-I patients with missing mortality status were deleted. 

2.1.3  Functional form 

We examined the relationship between continuous variables and mortality using generalised additive 

models since prior studies have unveiled non-linear effects for some variables particularly height, 

SYSBP, heart rate and time from symptom onset [1]. Generalised additive models, a flexible 

nonparametric model-fitting approach involving piecewise cubic polynomials, enable the user to 

determine visually from a plot the appropriate functional form whilst adjusting for other covariates 

[63-64]. Because of the large sample size of HERO-2 and number of events additional degrees of 

freedom could be devoted to continuous predictors whose functional form required additional terms. 

2.1.4  Interactions 

Because a prior study uncovered a significant interaction between Killip class and age [1] testing of 

this interaction was pre-specified. To assess whether other interactions were necessary as a first step 

global interaction tests were conducted for each variable before pursuing component interactions. This 
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involves, for each predictor separately, testing simultaneously the joint importance of all interactions 

involving that predictor. Significant interactions can manifest due to lack of model fit or multiple 

testing (type I error) and hence were only retained if considered biologically plausible. Also 

interactions which were statistically significant but not perceived as clinically significant were 

discarded. Only interactions between variables which were significantly associated with 30-day 

mortality in multivariable analysis were considered.  

2.1.5  Overfitting considerations 

The number of terms fitted or tested (counting non-linear and cross-product terms) in the modeling 

process relative to the number of events in the training dataset is an important consideration. For 

example if too many predictors are fitted the user may end up fitting not only real trends in the dataset 

but also peculiarities which exist in that particular dataset resulting in poor performance when the 

model is applied to new patients. Harrell [25] advocates that the predictor degrees of freedom should 

be no more than m/10, where for logistic regression m is the number of patients in the less frequent 

outcome category. If the predictor degrees of freedom is larger than this data reduction should be 

applied until the number of remaining free variables needing regression coefficients is tolerable. In 

HERO-2 there were 1850 patient deaths, so up to 185 predictor degrees of freedom was permitted for 

model development using the whole dataset. This was adequate for the approach taken to develop the 

HERO-2 full model which commenced with 19 candidate variables. 

2.1.6  Variable selection 

Harrell [25] advocates that the variables that are included in a prediction model should be pre-

specified as opposed to using stepwise procedures. The main arguments for this are: stepwise methods 

provide regression coefficients that are biased high in absolute value, yield standard errors biased low 

and confidence intervals that are falsely narrow. There are also severe multiple comparison problems 

leading to p-values that are too small. For ease of application we desired a parsimonious model and 

therefore only selected significant predictors for inclusion in the final model. We used the standard 

significance level for testing of hypotheses (α=0.05). Furthermore given the high power afforded by 

the large HERO-2 dataset, we were only interested in retaining variables which demonstrated a 

significant effect on the outcome. The caveat to this is that risk factors which are rare may be 

overlooked because of a lack of power. However the estimation of their effect may be unreliable 

anyway.  

Steyerberg [65] advocates that if the events per variable (EPV) ratio for a given dataset is very high 

(>50) application of stepwise procedures should still produce a valid model; the selection bias should 

be negligible. The HERO-2 dataset fulfills this criterion. 

Backward elimination is the recommended stepwise procedure as it usually performs better than 

forward stepwise methods, especially when collinearity is present; with the backward approach 

correlated variables may remain in the model, while none of them might enter the model with a 
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forward approach [65]. Also the modeller is forced to examine the full model fit, which is the only fit 

providing accurate standard errors, error mean square or explained deviance, and P-values. This also 

enables the effects of all candidate predictors to be judged simultaneously. 

2.1.7  Derivation dataset 

Harrell [25] advocates using the entire sample for model development as data are too precious to 

waste. To obtain an accurate assessment of predictive performance models need to be tested on a 

separate dataset or bias-corrected estimates on the training sample need to be calculated using 

bootstrapping. However with large sample sizes and event numbers (e.g., EPV ≥40), optimism in 

performance measures has been found to be small and apparent estimates of model performance are 

attractive because of their stability [66] and so bootstrapping was not indicated for our final model.  

For models fitted in subsections of the data (i.e., regions) bias-correction of model performance 

estimates was warranted and so bootstrapping was conducted. The specific details of this analysis are 

provided in Chapter 5. An explanation of the bootstrapping methodology is provided below (Section 

2.3). 

2.1.8  Simplifying the final model 

We also endeavored to approximate our full model to derive a more parsimonious version which 

requires less information to apply. Model simplification involves a bias-variance tradeoff. The full 

model requires predicted values to be conditional on all of the predictors, which can increase the 

variance of the predictions. A predicted value will have a higher variance if it is for a subject in a 

minority group for an included covariate compared to a model that excluded this covariate. Omission 

of relevant predictors introduces bias into predictions.  

When approximating full models one stops deleting variables when deleting any further variable 

would make the approximation inadequate. Harrell [25] suggests when the R2 for predictions from the 

reduced model against the original model drops below 95%. We applied this rule to derive the HERO-

2 reduced model also referred to as the HERO-2 global risk model. 

A succinct summary of the exact steps followed to derive the HERO-2 risk strategies is provided in 

Chapter 3. 

2.2  Predictive performance 

To assess predictive performance we used methods currently in wide use in medical journals as 

recommended by Steyerberg [65]. There are two aspects to consider: the discriminatory ability (a 

model’s ability to correctly rank patients), and calibration (how closely predicted probabilities agree 

with observed probabilities). 

Discriminatory ability is the primary requirement of a prediction model to identify a high risk group, 

or to perform covariate adjustment of a randomised controlled trial. Calibration is the primary 

requirement for informing patients and medical decision making. 
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To assess discrimination we used c statistics (identical to the area under the receiver operating 

characteristic (ROC) curve (AUC), ranging from 0 to 1) [67]. For calibration we used calibration plots, 

assessed calibration-in-the-large and the calibration slope and lastly performed an overall test of 

miscalibration.  

In calibration plots subjects are grouped by similar probabilities (quantiles) and the mean predicted 

probability is compared to the mean observed outcome. The choice of quantiles is important for the 

visual impression of calibration; if small groups are plotted, the variability will be large. A better 

discriminating model has more spread between such quantiles than a poorly discriminating model. 

Deciles of predicted risk were used to group subjects. Where deciles were not appropriate because of 

the discrete nature of the risk index or because too large a range of (high) predicted risks were 

included in the upper decile, categories were chosen so that total expected event counts exceeded 50. 

We also included in these plots smooth nonparametric calibration curves fitted to the data using 

lowess to show the correspondence between predicted probabilities and observed mortality for the 

entire range of the risk distribution. The range of the dotted/dashed line for these curves corresponds 

to the limit of the data. Because of low numbers of events at the low end of predictions we were 

mindful not to over-interpret the extremes of the data. Below each calibration plot histograms were 

also shown depicting the relative frequency distribution of predicted probabilities. Since calibration 

plots were constructed with logarithmic axes this meant that the plotted width of histogram bars were 

larger for lower probabilities and decreased as risk increased along the x-axis. This gave the false 

visual impression that there is more data at the low-risk end of the distribution than in actuality. To 

remedy this we adjusted the heights of the bars so that the area within each bar is indicative of the 

frequency of observations in that interval relative to other intervals. Calibration plots were constructed 

using a modified version of the function val.prob written by Harrell [68] and included in the Design 

library of S-PLUS version 8.0 for Windows. 

Calibration-in-the-large is the agreement between the average predicted risk and the average observed 

risk [69]. In model development this correspondence is guaranteed by the intercept in a generalised 

linear model and remains at internal validation with bootstrapping. However in external validation this 

correspondence may be less. The difference in average predicted and observed risk was tested for 

statistical significance by fitting logistic regression models for each risk model with the linear 

predictor included as an offset variable (i.e., the regression coefficient of the linear predictor was fixed 

at unity). The intercept was the only free parameter; it would be zero with perfect calibration-in-the-

large. 

The calibration slope, as originally proposed by Cox [70], assesses the average strength of the 

predictor effects. It is the regression coefficient β in a logistic model with the linear predictor (i.e., the 

combination of regression coefficients from the model and the predictor values in the new data) 

included as the only covariate: observed mortality logit = α + β linear predictor. A slope less than 1 

indicates that shrinkage is required as the model is providing too extreme predictions for low- and 
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high-risk subjects. Conversely a slope greater than 1 indicates inflation is required as predictions are 

too high and too low for the lowest- and highest-risk subjects respectively. At internal validation the 

calibration slope indicates how much we need to reduce or increase the effects of predictors on 

average to make the model well calibrated for new patients from the underlying population. Hence it 

can be used as a shrinkage or inflation factor for future use. At external validation, the calibration 

slope reflects the combined effects of two issues: overfitting on the development data and true 

differences in effects of predictors. 

The overall miscalibration test compares the deviance difference of a model with α and β above 

included as free parameters and a model with α = 0 and β = 1. The test has two degrees of freedom. 

The miscalibration test can pick up common patterns of miscalibration, i.e. systematic differences 

between the new data and the model development data, and overfitting of the effects of predictors.  

At external validation a smaller range in predictions may arise from a narrow selection of patients 

(homogeneous case-mix). A drop in discriminatory ability compared with the development setting can 

hence be explained by overfitting (calibration also poor), a more homogeneous case-mix, or 

differential effects in predictors. 

We also studied overall measures of performance such as Nagelkerke’s R2 [71] and the Brier score 

[72]. These measures incorporate both calibration and discrimination aspects. Nagelkerke’s R2 

provides a measure of explained variation of a fitted model and is calculated from the log-likelihood. 

This measure was proposed as a modification to an earlier more traditional definition in order to derive 

an R2 which ranges from 0 to 1. This is achieved by dividing by its maximum attainable value as 

follows:  

 R2 = 1-exp[-2/n{l(β̂ )-l(0)}], 

 max(R2) = 1-exp{2n-1l(0)}, 

and 

 

2R = R2/max(R2), 

where l(β̂ )=log L(β̂ ) and l(0)=log L(0) denote the log likelihoods of the fitted and the ‘null’ model 

respectively. The fitted model uses the risk model linear predictor as an offset, with no constant term. 

The Brier score uses a quadratic scoring rule and is calculated as ∑(yi – pi)2/n, where y denotes the 

observed outcome and p the prediction for subject i in the dataset of n subjects. For sensible models, 

the Brier score ranges from 0 (perfect) to 0.25 (worthless). A disadvantage of the Brier score is that the 

interpretation depends on the outcome. The Brier score is lower, at a lower outcome frequency, and so 

scores for the various risk strategies will only be compared for common patient populations (i.e., 

within regions). 
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Studying discriminatory ability and calibration is often more meaningful than an overall measure such 

as R2 or Brier score when we want to appreciate the quality of model predictions for individuals. 

Calibration is only considered at the region-level as opposed to country- or hospital-level adjustment 

which is beyond the scope of this thesis.Further details for the application of these methods are 

provided in the relevant chapter. Additional methods which are specific to each chapter are also 

described later.  

2.3  Internal and external validation 

In internal validation the validity of the prediction model is assessed for the setting where the 

development data originated from. There are numerous techniques for assessing internal validity. The 

techniques utilised in this work include apparent validation and bootstrapping which are now 

described.  

With apparent validation, model performance is assessed directly in the sample where it was derived. 

This procedure gives optimistic but stable estimates of performance. However, as mentioned above, 

(Section 2.1.7) optimism is small in large samples. 

Bootstrapping mimics the process of sampling from the underlying population [73]. Samples, of the 

same size as the original sample, are drawn with replacement from the original sample. For model 

validation, 100-200 bootstraps is often sufficient to obtain stable estimates; 200 was used in this thesis. 

The procedure involves developing a prediction model in each bootstrap sample and subsequently 

evaluating this model (e.g., using c statistics), separately, in both the bootstrap and original samples. 

The difference in performance indicates the optimism. The average optimism is subtracted from the 

apparent performance of the original model in the original sample. Bootstrapping has been 

demonstrated to perform better than other methods such as split-sample and cross-validation; 

optimism-corrected performance estimates are more stable, since samples of size N are used to both 

develop and test the model [66].  

In external validation the “transportability”/”generalisability” of the prediction model to populations 

that are “plausibly related” is assessed. The types of external validity considered in this work are now 

described. With temporal validation the validity of a model is assessed in more recently treated 

patients. For geographic validation, a predictive model is evaluated in patients from other sites. 

Spectrum transportability refers to testing in patients who are, on average, more (or less) advanced in 

their disease process, or who have a somewhat different disease. An example of this is validating a 

model developed in a randomised trial in a broader, less-selected sample such as in patients from a 

disease registry. 

There are many possible reasons for poor validity. Providing the quality of the prediction model as 

developed for the developmental setting is good, a model may miscalibrate due to systematic 

differences between the development and validation samples. Differences may involve encoding of 

predictors, missed predictors with different distributions, and truly differential effects [65]. 
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2.4  Updating prediction models for a new setting 

To apply a model in a new setting the model may need to be updated for local and/or contemporary 

circumstances. The updating strategies employed in this work are briefly explained here.  

Updating the intercept in a logistic regression model corrects calibration-in-the-large; i.e., the 

correspondence between the mean observed mortality in the new setting and the mean of the predicted 

outcome. This intercept adjustment corrects for differences between settings in other aspects not 

captured by the predictors. 

Logistic calibration involves fitting a model in the new setting with the linear predictor based on the 

previously developed model included as the only covariate. This calibration model has two free 

parameters, intercept α and calibration slope βoverall. The updated model will have a new intercept α 

and new regression coefficients based on multiplication of the original coefficients with βoverall. 

Model revision involves re-estimation of all regression coefficients in the new setting.  

Model revision with additional shrinkage involves re-estimation of regression coefficients in the new 

setting with the additional application of shrinkage of revised coefficients towards their original 

values.  

The first two strategies described are re-calibration methods, the latter two are model revision. 

Specific details for the application of these methods are provided in Chapter 5. 

2.5  Software 

All analyses were performed using SAS v. 9.1 (SAS Institute Inc.), S-PLUS v. 7-8 (Insightful Corp.) 

and Stata v. 9.1 (StataCorp LP) statistical software. 
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CHAPTER 3: RISK MODELS FOR ACUTE MYOCARDIAL INFARCTION 
BASED ON A GEOGRAPHICALLY DIVERSE TRIAL POPULATION 

3.1  Introduction 

The validity of risk stratification models beyond the populations in which they were formed is an 

empirical question of great interest. Results of the large international trial, HERO-2, performed in 

developed and developing countries, allow the accuracy of existing AMI indexes that predict mortality 

risk of individuals following MI to be studied and their performance compared with new indexes 

developed in this trial. Risk stratification is often based on simplified clinical indexes, but there 

remains some divergence between clinical and statistical commentaries about appropriate variable 

coding and model selection methods. Derived indexes resulting from model selection can omit 

relevant prognostic indicators in forming a minimal set of risk factors. This can introduce bias in risk 

estimates [74]. Disadvantages of categorising continuous variables have been well documented in the 

literature [75]. In the research area of model development for the purpose of risk prediction there are 

several pertinent issues. First, categorisation results in a substantial loss of statistical power to detect 

relations with outcome [59] and second, implies the false assumption of a piecewise flat relationship. 

A third issue is how to determine cutpoints. Choice may depend on clinical considerations, prevalence 

in the population, results in other published studies or on outcome-orientated statistical techniques that 

select the cutpoint that results in the most significant relation with outcome. These ‘Optimal’ cutpoint 

methods have serious drawbacks such as inflated type I error rates due to multiple testing [76], over-

estimated parameter estimates [76-77] and confidence intervals which are too narrow [78]. Methods 

have been proposed which correct for these limitations [76-78], but they are cumbersome. The 

dependence of these modeling approaches on the sample composition, outliers and other variables 

included in the model should also be contemplated. Therefore the effectiveness of models simplified 

by model reduction and simple risk scores containing only categorical variables with integer weights 

will also be studied. 

To reiterate, the HERO-2 trial was a large multi-national randomised trial of two antithrombotic 

therapies, unfractionated heparin and bivalirudin in conjunction with fibrinolytic therapy with 

streptokinase, for the treatment of AMI. The primary endpoint was 30-day mortality. In this chapter 

risk strategies developed from the HERO-2 data (i.e., a multivariable model with continuous variables, 

a reduced version of this model and a simple risk score) and previously developed TIMI Risk Score 

[3] and GUSTO-I [1] risk model which were also developed using data from large RCTs are 

compared. 

HERO-2 recruited patients from 539 hospitals in 46 countries, including Asia, and patients from 

Australia and New Zealand, Eastern Europe, Russia and Latin America were also well represented. 

We will assess whether the risk predictions from the HERO-2 based strategies are as accurate for 

Western patients as those from TIMI and GUSTO-I, which were derived predominantly from Western 

populations. We determine, using the TIMI Risk Score, whether a Western based risk strategy can be 
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calibrated for application to Russia, Eastern European, Latin American and some Asian countries. 

External validation will be performed using GUSTO-I [37] trial data. GUSTO-1 was a trial of 4 

thrombolytic strategies for AMI measuring 30-day mortality in 41 021 mainly Western subjects.  

We apply simple calibration methods as in Steyerberg et al [57] who previously reported encouraging 

results in a study comparing the performance of simple re-calibration methods to more extensive 

model revision.  

Selected statistical measures for assessing predictive performance in validation data sets and for 

comparing risk indices are presented. Additionally we propose two new methods to compare the 

performance of competing risk models. These include a method for comparing the performance of 

indexes in ranking dead-alive pairs and a calibration comparison measure (“Entropy t-test”). The 

consistency of results from the various methods is assessed. 

3.2  Methods 

3.2.1  HERO2 trial 

The HERO-2 trial was an open-label, prospective, randomised, multicentre trial. The design and data 

collection methods have been described in detail previously [39]. A brief summary is provided here 

including details needed to provide context for this thesis. 

3.2.1.1 Study population 

The HERO-2 trial enrolled 17 073 patients with acute ST-elevation MI (within 6 hours of symptom 

onset) between November 27, 1998, and May 1, 2001. Patients of any age were eligible if they 

experienced chest discomfort lasting more than 30 minutes and ST-elevation or left bundle branch 

block on the qualifying ECG. Exclusion criteria included: active bleeding or known haemorrhagic 

diathesis, previous stroke, transient ischaemia attack within 6 months, current warfarin therapy, major 

surgery or trauma within 6 weeks, recent non-compressible vascular puncture, blood pressure of more 

than 180/110 mm Hg, low-molecular-weight heparin therapy within 12 hours, an activated partial 

thromboplastin time of at least 50 seconds in patients who had previously received heparin, and 

previous treatment with streptokinase. There were 1850 (10.8%) patient deaths by 30 days.  

3.2.1.2 Treatments 

All patients were given aspirin and then randomised via a centralised automated telephone response 

system to receive either bivalirudin or unfractionated heparin. Bivalirudin was given as a bolus of 0.25 

mg/kg followed by an intravenous infusion for 48 hours. Heparin was given as a bolus of 5000 units 

followed by an infusion for 48 hours. Streptokinase was infused over 30 to 60 minutes, immediately 

after the bolus infusion of bivalirudin or heparin. Intravenous beta-blocker therapy was recommended 

for patients without contraindications, and other medications were used at the treating physician's 

discretion. 
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Data on administration of study treatments, use of aspirin or beta-blockers, coronary revascularisation 

and time in hospital was collected.  

3.2.1.3 Geographical regions 

Table 3.1 lists the 46 countries that participated in HERO-2 grouped according to their regional 

classification. Countries were grouped prospectively on the basis of their geographical boundaries,  

 

Table 3.1 Countries participating in the HERO-2 trial 

Region or country* No. patients Region or country No. patients 
Russia 6057 Western countries† 2563 
  New Zealand 534 
Eastern Europe 5877 Australia 462 
Georgia  1153 United Kingdom  217 
Poland 1108 Turkey 209 
Bulgaria 867 Germany 203 
Croatia 517 Netherlands 186 
Ukraine 512 Belgium 170 
Romania 494 Greece 164 
Hungary 399 Spain 119 
Czech Republic 223 France 94 
Belarus 199 Canada 50 
Latvia 181 Italy 49 
Slovakia 168 South Africa 36 
Estonia 54 United States  35 
Lithuania 2 Ireland 24 
  Finland 7 
Asia 756 Portugal 3 
India 565 Austria 1 
Malaysia 108   
Hong Kong 47 Latin America 1820 
Singapore 15 Argentina 1033 
Philippines 13 Mexico 298 
Thailand 8 Venezuela 227 
  Chile 144 
  Columbia 43 
  Dominican Republic 41 
  Panama 32 
  Paraguay 2 

*Eastern Europe, Russia and Asia together are sometimes referred to as ‘Eastern regions’ or ‘Eastern countries’ 
in the text. 

†Western Countries included those countries in western Europe together with South Africa, Turkey, Australia, 
New Zealand, Canada and United States. 
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similar to the groupings used in other large trials (e.g., PURSUIT [79]), but Western countries were 

grouped together (as in InTIME-II [52] and MAGIC [80]). South Africa and Turkey were included in 

Western countries, and a sensitivity analysis was undertaken with these two countries excluded. 

6057 (35.5%) patients were randomised in Russia, 5877 (34.4%) in other Eastern European countries, 

2563 (15%) in Western countries (i.e., western Europe, Australia, New Zealand, South Africa, Turkey, 

Canada and the United States), 1820 (10.7%) in Latin America, and 756 (4.4%) in Asia. This method 

of categorising countries into regions was used throughout. Thirty-day mortality rates varied 

significantly according to region: Western countries (6.7%), Latin America (10.8%), Eastern Europe 

(10.2%), Russia (13.2%) and Asia (11.0%); P<0.001. 

3.2.2  RISK MODELING 

3.2.2.1 Baseline clinical information 

Baseline characteristics available and considered for inclusion in the HERO-2 full multivariable risk 

model included age, sex, diastolic and systolic BP, heart rate, weight, height, and time from symptom 

onset to randomisation. Data were collected on an array of medical history variables including 

previous MI, stroke or transient ischemic attack (cerebrovascular disease), CABG or PCI, and angina. 

Data were also available on Killip class at entry, location of infarction by electrocardiogram, diabetes, 

hypertension and smoking status. Randomised treatment and region were also considered for inclusion 

in the model. 

3.2.2.2 Missing data 

Rates of missing data for the baseline variables in HERO-2 were very low (≤0.1% for all except Killip 

class, 1.2% missing, and height, 2.0%). Missing data occurred in 576 (3.4%) patients for at least one 

of the candidate baseline predictor variables. This rate was higher in Western countries (14.9%) due to 

increased missing data for Killip class and height. Height was not a significant factor in risk prognosis. 

The 30-day mortality rate was slightly higher in the subset of patients with missing data compared to 

patients with complete data (12.5% vs. 10.8%; P=0.19).  

Simple imputation rules were used as described in Methods Section 2.1.2. For medical history 

characteristics no history was assumed. Missing Killip class and height values were estimated on the 

basis of multiple logistic and linear regressions, respectively, on values of all the other predictor 

variables. Only 11 patients had missing 30-day mortality status, of which 9 were known to have 

survived the index hospital admission. All 11 patients were assumed alive at 30 days. 

3.2.2.3 Risk model development 

For the 17 073 patients enrolled in HERO-2, univariate and multivariable analyses based on chi-square 

and logistic regression modeling were performed to identify predictor variables of 30-day mortality. 

Generalised additive models were applied in both univariate and multivariable contexts, to assess the 
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shape and strength of the relationship between continuous clinical variables and 30-day mortality. 

Consequently heart rate was fitted with a non-linear transformation applied; values below 70 bpm 

were truncated at 70, since the spline relationship between death and heart rate was constant for these 

values and values above 100 bpm were truncated at 100 since the increasing risk relationship 

plateaued. A backward stepwise logistic regression model was employed to identify independent 

predictors of 30-day mortality [81]. All eighteen baseline variables entered the initial model and were 

maintained if P<0.05. Two-way interaction effects were assessed for variables that remained in the 

model. To ascertain whether regional adjustment contributes significant explanatory information after 

adjusting for patient case-mix, the region variable was considered for inclusion in the model after 

independent predictor variables, and interactions between them, had been identified. Interactions 

between region and the baseline characteristic variables were subsequently tested to uncover 

differential effects in risk factors by region. The derived model is labeled the HERO-2 full risk model 

(HPI-FULL). The risk model linear predictor or estimated logit is calculated by taking the linear 

combination of regression coefficients and values of the covariables for each patient.  

( )1 1 2 2
ˆ ˆˆLP ....x xα β β= + + +  

For the convenience of clinicians a more practical and easily applied model was desirable. To obtain a 

more parsimonious model, we approximated the risk predictions supplied by the full risk model. 

Firstly Killip class categories III-IV and location of MI groups inferior and 'Other' were amalgamated. 

It has been established (above) that region is a significant predictor. This implies that at least simple 

calibration using region-specific intercepts is warranted. Furthermore, estimation of coefficients based 

on a model stratified by region was preferred. Stratification by region provides parameter estimates 

whilst controlling for the effects of region and is achieved by including region as a covariate in the 

model. Backward selection was then applied, with region forced into the model. Predictors were 

deleted (one by one) until no less than 95% of the original prognostic information was retained. In this 

context, R2 statistics were evaluated as the ratio of the global χ2 statistic (i.e., explained deviance) for 

reduced models compared with the full model. The 95% level proved to be appropriate as a sizeable 

break in R2 values occurred below the 95% level (i.e., the removal of any additional variables would 

have sacrificed substantial prognostic information). The information explained by region was 

accounted for when calculating R2 statistics for reduced models: only the extra deviance explained by 

non-regional/patient risk factors over that explained by region was considered. The resulting model is 

referred to as the HERO-2 reduced model (HPI-CTS). 

A risk index (HPI-CAT) was then developed by grouping (in categories) all continuous variables and 

substituting estimated group effects. It was developed from the HERO-2 reduced model above, in 

consultation with clinicians to capture meaningful clinical variables and provide an index that may be 

readily calculated at the bed side. To derive this prognostic index, the adjusted log-odds ratio of each 

risk factor was divided by the smallest significant adjusted log-odds ratio, and this was rounded to the 

nearest integer to provide risk points associated with each risk factor. HPI-CAT produces an integer 
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score defined as the sum of the risk points corresponding to any given risk factor profile and classifies 

level of risk of death, at 30 days post MI, for a patient. 

3.2.2.4 Internal validation 

To enable measuring predictive performance of the HERO-2 risk strategies on independent data and to 

facilitate the assessment of calibrating the TIMI Risk Score in a new population we considered use of 

split-sample validation and resampling approaches. As stated in Methods Section 2.1.7 for EPV ≥40 

optimism in performance measures has been found to be small and apparent estimates of model 

performance are attractive because of their stability, so these internal validation approaches were not 

indicated. 

3.2.2.5 Risk estimation from a risk index 

To estimate 30-day risk from HPI-CAT we performed a weighted logistic regression of mortality 

versus HPI–CAT stratified by region, to derive a risk assessment equation. Stratification by region was 

achieved by including region as a covariate thereby allowing region-specific adjustment of the 

intercept. The derived equation predicts the log odds of death; the following formula is applied to 

obtain the predicted risk probability: Prob[Death | HPI-CAT] = 1/[1+exp(-LP)], where LP = αR + β 

HPI-CAT is the linear predictor (LP) derived from the regression coefficients αR and β. The 

parameters αR and β linearly rescale HPI-CAT before translation to the logit risk scale. In this form of 

simple calibration, the risk index and region adjustments when the coefficient β is common to all 

regions, are additive. This procedure was repeated using the HERO-2 data to relate the TIMI risk score 

to outcome. 

3.2.2.6 Predictive performance 

Table 3.2 lists a battery of methods applied in this chapter that directly compare the performance of 

two risk assessment strategies. A detailed description of each method now follows. 

C statistics were calculated using a Wilcoxon statistic [67] which provides the same quantity as that 

obtained by calculating the area under the corresponding ROC curve using the trapezoidal rule. This 

requires forming all possible pairs of events and non-events, and counting pairs in which a risk index 

correctly orders the pair to derive the probability of a correct ranking. Ties are scored 0.5. 

These same event non-event pairs were used to provide a further assessment of concordance and 

discordance between different risk indexes. Concordant results are defined as those pairs in which the 

HPI-CAT and TIMI indexes agree on the ordering (whether correctly or not), while discordant results 

were split into TIMI errors and HPI-CAT errors depending on the observed outcomes (dead or alive). 

When tied scores on a specific index occurred for the dead-alive individuals of any pair, the result for 

that index was randomly assigned as correct or incorrect.         (1) 

The difference in c statistics obtained for the HPI-CAT and TIMI indexes was evaluated and tested for 

significance using the test proposed by DeLong et al [82], as implemented in Stata v9.1.     (2) 
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Table 3.2 Methods for comparing the predictive performance of risk assessment strategies 

No. Method Aspect of 
performance 

Basis Reference 

1 Concordant/discordant 
pairs 

Discrimination Errors in rankings of dead/alive 
pairs 

Novel 

2 Difference in c 
statistics 

Discrimination AUC approximated by Wilcoxon 
statistic. 

[67], [82] 

3 Net reclassification 
improvement 

Discrimination Risk level classification [83] 

4 Integrated 
discrimination 
improvement  

Discrimination Average sensitivity and specificity  [83] 

5 “Entropy t-test” Calibration Scores calculated from deviance 
residuals 

[84] 

6 R2 statistics on log-
likelihood scale 

Overall 
performance 

Deviance explained by fitted 
models including risk scores as 
covariates. 

[85] 

 

Recently two new measures have been proposed to assess the improvement in model performance 

offered by the incorporation of a new biomarker. These measures are the net reclassification 

improvement (NRI), which is based on reclassification tables, and the integrated discrimination 

improvement (IDI), which is based on integrated sensitivity and specificity [83]. The NRI requires that 

there exist risk categories with a priori meaning for decision making (e.g., 0-6, 6-20, >20 percent 10-

year risk of CHD based on the Third Adult Treatment Panel risk classification [86]). Individuals are 

classified based on risks predicted using models with and without the new marker and the two 

classifications are then cross-tabulated, separately for event and non-event subjects. The amount of 

“reshuffling”, from using one model over another, is then assessed. The IDI is a continuous analogue 

of the NRI, i.e., no “cut-offs” are used. These measures supplement information provided by c 

statistics. 

The NRI is calculated by considering the correct movement in risk categories from using one model 

over another – upwards for events and downwards for non-events. The improvement in reclassification 

is quantified as a sum of differences in proportions: the proportion of individuals moving up minus the 

proportion moving down for subjects who develop events; and the proportion of individuals moving 

down minus the proportion moving up for subjects who do not develop events. These methods were 

applied to compare the HPI-CAT and TIMI risk scores, calibrated, with HPI-CAT substituted as the 

model containing the new biomarker. So the events component of NRI was calculated as the 

difference in proportion of individuals assigned a higher risk category by HPI-CAT than by TIMI and 

the proportion classified higher for TIMI compared to HPI-CAT. The non-events component is the 

difference in the proportion of individuals classified lower for HPI-CAT compared to TIMI and the 

proportion classified lower for TIMI compared to HPI-CAT: 
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( ) ( ), , , , , , , ,ˆ ˆ ˆ ˆ .HPI up events TIMI up events HPI down nonevents TIMI down noneventsNRI p p p p= − + −
      (3) 

A simple asymptotic test is used to determine the significance of the improvement, separately for 

event and non-event individuals and combining the two groups (NRI). 

To calculate the NRI measure we chose categories 0-<6, 6 - <20 and ≥20 per cent 30-day risk of death. 

Mortality in Killip class I patients, at low-risk, is around 5% in Western populations and above 30% in 

Killip classes III-IV, at high-risk. So the chosen categories align with the Killip class risk stratification 

system. 

The IDI does not require categories, and focuses on the new models ability to improve integrated 

(average) sensitivity (IS) without sacrificing integrated (average) specificity. Sensitivity (also called 

recall rate in some fields) measures the proportion of actual positives which are correctly identified as 

such (e.g. the percentage of sick people who are identified as having the condition). Specificity 

measures the proportion of negatives which are correctly identified (e.g. the percentage of well people 

who are identified as not having the condition). The integration is over all possible cut-offs. Thus the 

IDI quantifies jointly the overall improvement in sensitivity and specificity. The area under the 

sensitivity curve can be estimated by the mean of predicted probabilities of an event for those who 

experience events, and the area under the ‘one minus specificity’ curve by the mean of predicted 

probabilities of an event for those who do not experience events. The differences between ISs and ‘one 

minus specificities’ for the new and old model are taken: 

( ) ( ), , , ,ˆ ˆ ˆ ˆ .HPI events TIMI events HPI nonevents TIMI noneventsIDI p p p p= − − −
        (4)

 

A simple asymptotic test of significance is also available for this measure. Individual components of 

the IDI assessing improvement separately for IS and integrated specificity can be tested using the 

approach of paired samples.  

The IDI and improvement in AUC are related in the sense that both are corrected average sensitivities 

– the IDI is corrected by the subtracted factor assessing the undesirable increase in ‘one minus 

specificity’, and the AUC by weighting the sensitivities of the two models of interest by the 

corresponding derivatives of specificities. 

A second (new) calibration comparison measure (“entropy t-test”) of two risk models was calculated 

[84]. This approach calculates a paired t-test to assess significance of differences in scores of two risk 

estimates provided by two risk models. Scores are based on the squares of deviance residuals. 

Residual refers to the measured discrepancy between a predicted probability and the outcome, no 

further model estimation is involved. Specifically, the score for individual i when ascribed the risk 

probability pi was -2 log pi if that person experienced an event (alternatively, for a non-event -2 log(1-

pi)). These risk scores can be accorded an entropy (or surprise) interpretation; the score is 0 when the 

prediction ascribes probability 1 to the observed event outcome, otherwise a positive score is returned. 
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Smaller average scores correspond to smaller observed deviance for the risk predictor and better 

prediction accuracy.              (5) 

As our final approach to compare risk models we constructed a grouped binary dataset, grouping by 

unique combinations of HPI-CAT and TIMI risk score categories and the variable region. Logistic 

regression models which included combinations of the HPI-CAT, TIMI risk scores, and region as 

explanatory variables were then fitted. Model deviances were subsequently used to calculate R2 

statistics permitting comparison of different prognostic indexes. The log-likelihood is used to provide 

the proportion of the null deviance explained by the fitted model (i.e., 1 – residual deviance/null 

deviance). These statistics were calculated for both individual and group perspectives using equations 

(5.10) and (5.11) of Hosmer and Lemeshow [85]. The R2 statistics for grouped data are larger than for 

individuals, as the model is judged according to its ability to correctly predict group outcomes for the 

categories but need not correctly identify individual outcomes. 

Individual and group R2 statistics differ only in the definition of the saturated model, affecting the 

denominator. When R2 is calculated at the individual level, the ‘ideal’ model would predict every 

person perfectly; that is, the predictions would be 1 and 0 for actual events and non-events. The log-

likelihood of this ‘ideal’ model is the log-likelihood of the fitted saturated model, denoted here by l(s), 

whereby the number of covariate patterns J equals the number of individuals n, and so l(s) = 0. R2 in 

this individual context is calculated as: R2=1-l(β̂ )/l(0) where l(β̂ ) and l(0) denote the log-likelihoods 

of the fitted and null models respectively. For the case J< n, the R2 based on grouped data is 

calculated. This R2 is computed as: R2=[l(0)-l( β̂ )]/[l(0)-l(s)]. Observed rates are compared with 

predicted rates within risk index group categories and regions. The perspective is that of a clinician 

providing a survival risk estimate for a member of a homogeneous group, defined by risk 

characteristics. Either R2 measure requires not only relative ordering of risk (“ranking”) according to 

different attributes, but also agreement (“calibration”) of the absolute risk estimates and the observed 

number of events in a homogeneous risk group. 

To facilitate comparison of residual deviances between models fitted to grouped and individual level 

data, deviances from models fitted to individual level data were rescaled by subtracting a constant. 

This constant is the -2LogLikelihood value for the saturated model fitted to the grouped binary dataset.

                 (6) 

3.2.2.7 External validation 

The performance of the HERO-2 risk strategies and TIMI risk score (LP, calibrated using HERO-2 

data) when applied to an external dataset was assessed using the intravenous–subcutaneous heparin + 

streptokinase arms of the GUSTO-I trial [37]. Eighty-nine patients with missing death status were 

excluded, resulting in a dataset containing 20 162 patients all from Western countries, except 182 

patients from Poland (classified Eastern Europe). We also applied the GUSTO-I risk model to the 
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HERO-2 database. Application was limited to the heparin arm since the GUSTO-I model contains a 

term for forms of thrombolytic therapy which are incompatible with treatment with bivalirudin. 

3.3  Results 

3.3.1  HERO2 multivariable models and risk score 

In multivariable analysis, many of the variables that were significant in univariate analysis remained 

important. An exception was smoking, classified as current, past or non smoker. Current smoking was 

strongly associated with age and sex, and after adjustment for these variables the relative risks of 

smoking categories did not differ significantly. Variables excluded in backward elimination included 

diastolic BP, weight, height, smoking status, history of cerebrovascular disease, randomised treatment 

and history of CABG or PCI. There was a strong interaction between baseline variables Killip class 

and age. This corroborated a finding of the GUSTO-I risk model [1]: the prognostic effect of age is 

reduced among patients with a higher Killip class at entry. While region is statistically significant for 

patient outcome, no interactions of clinical importance were found between region and other risk 

factors. Therefore an additive model suffices, allowing the variable coefficients to be determined 

independent of region, by stratified regression. The model HPI-FULL introduces history of angina and 

sex effects, not used in the GUSTO-I model. 

Variables excluded in further backward elimination were prior MI, angina, hypertension, diabetes and 

time from onset to randomisation. These variables were excluded because of small contributions to R2 

-- together they contributed less than 5% of total variation explained. Age was centered at 65 years to 

provide Killip class main effect parameter estimates at age 65. This reduced model, HPI-CTS, is 

presented in Table 3.3, together with the model HPI-FULL. 

Scores for the further simplified HERO-2 prognostic index, HPI-CAT, range from 0 to 13. The 

weights are shown in Table 3.4 accompanied by the TIMI risk score, which ranges from 0 to 14. Note 

the omission of risk points for region and the non-differentiation of Killip classes II-IV in TIMI. Also 

notice the declining effect of age in HPI-CAT with increasing Killip class, as compared to risk points 

for TIMI. 

3.3.2  TIMI risk score and HPICAT risk equations  

The equation used to obtain a predicted probability of death within 30 days in Western Countries from 

the total HPI score is Prob[Death | HPI-CAT] = 1/[1+exp(-LP)], where LP = -4.226+0.404HPI-CAT. 

The corresponding prediction equation for the TIMI risk score, is Prob[Death | TIMI risk score] = 

1/[1+exp(-LP)] where LP = -4.341+0.439TIMI. Even though the range of attainable scores is greater 

for TIMI than for HPI-CAT, the derived coefficients are similar, indicating HPI differentiates more 

between individuals. To adjust for observed geographical variation in risks a regional coefficient is 

added to the LP. 

Adjustments necessary for region are summarised in Table 3.5, for all risk strategies, and were 

calculated relative to the reference class, Western countries. 
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Table 3.3 Coefficients of the HERO-2 full (HPI-FULL) and reduced models (HPI-CTS) 

 Parameter Estimate (SE) 
Variable HPI-FULL HPI-CTS 
Intercept: -3.079 (0.260) -2.920 (0.248) 
Regional adjustment:   

Western countries - - 
Latin America 0.562 (0.120) 0.641 (0.119) 
Eastern Europe 0.320 (0.098) 0.402 (0.097) 
Russia 0.279 (0.100) 0.452 (0.096) 
Asia 1.012 (0.155) 1.018 (0.154) 

Killip class*:   
I - - 
II 0.685 (0.065) 0.740 (0.065) 
III 1.306 (0.123) 1.647 (0.097) 
IV 2.019 (0.158) 1.647 (0.097) 

Slope of age (yrs):   
Killip class:  I 0.077 (0.004) 0.080 (0.004) 

    II 0.050 (0.005) 0.052 (0.005) 
    III 0.019 (0.010) 0.013 (0.008) 
    IV 0.010 (0.013) 0.013 (0.008) 

Systolic BP (mm Hg)  -0.018 (0.001) -0.019 (0.001) 
Heart rate (bpm)† 0.030 (0.002) 0.032 (0.002) 
MI location:  Anterior - - 

    Inferior -0.509 (0.058) -0.465 (0.055) 
    Other‡ -0.306 (0.118) -0.465 (0.055) 

Female 0.411 (0.060) 0.445 (0.058) 
Diabetes 0.270 (0.070) - 
Hypertension 0.130 (0.061) - 
Prior MI 0.249 (0.070) - 
Prior angina 0.229 (0.062) - 
Time from onset to rx (hrs) 0.038 (0.022) - 

Rx denotes randomisation 
*Killip class effects at age 65 
†For heart rate, values <70 are truncated at 70 and values >100 are truncated at 100 
‡“Other” MI location refers to posterior, lateral, apical, left bundle branch block or right bundle branch block 
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Table 3.4 HERO-2 (HPI-CAT) and TIMI risk scores [3] 

Variable HPI weight TIMI weight 

Age:  <65 * 0 
  65-74 * 2 
  75+ * 3 

Killip class:  I * 0 
    II * 2 
    III-IV * 2 

Systolic BP <100 mm Hg 3 3 

Heart rate >100 bpm 1 2 
Anterior STE 1 1† 
Female 1 – 
Diabetes or hypertension or angina – 1 
Weight <67 kg – 1 

Time to treatment >4 hours – 1 
*Risk points depend non-additively on Age and Killip class, apply points in Table below. 
†Anterior STE or left bundle branch block 

 

Risk points for Killip class by Age 

 HPI TIMI 
Killip class: I II III-IV   I II III-IV  
Age:           

<65  - 3 6   - 2 2  
65-74  3 5 7   2 4 4  
75+  5 6 7   3 5 5  

 

Table 3.5 Region adjustments 

 Parameter Estimate (SE) 
Risk Model: HPI - Full HPI - CTS HPI - CAT TIMI 
Western countries* 0 0 0 0 
Latin America 0.562 (0.120) 0.641 (0.119) 0.672 (0.116) 0.473 (0.116) 
Eastern Europe 0.320 (0.098) 0.402 (0.097) 0.427 (0.095) 0.348 (0.095) 
Russia 0.279 (0.100) 0.452 (0.096) 0.491 (0.093) 0.388 (0.093) 
Asia 1.012 (0.155) 1.018 (0.154) 1.068 (0.149) 0.558 (0.148) 

*Reference 
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3.3.3  Comparison of the predictive performance of risk strategies applied in HERO2 

The c statistic of the full multivariable model was 0.82, reflecting excellent discriminatory ability. 

Predictive performance results for various performance measures are shown by region in Table 3.6. 

Model performance was marginally lower in Asia. 

 

Table 3.6 Apparent performance of Risk Models* 

Performance 
statistic 

Overall Western 
Countries 

Latin 
America 

Eastern 
Europe 

Russia Asia 

c statistic†       
HPI - FULL 0.818 0.813 0.828 0.803 0.825 0.766 
HPI - CTS 0.813 0.807 0.823 0.798 0.821 0.759 
HPI - CAT 0.792 0.800 0.804 0.772 0.795 0.743 
TIMI  0.781 0.787 0.794 0.761 0.780 0.761 

R2 (Nagelkerke’s), %       
HPI - FULL 26.9 21.2 29.5 23.5 29.8 18.8 
HPI - CTS 26.0 20.2 28.6 22.5 29.1 18.1 
HPI - CAT 22.4 19.3 24.9 18.7 24.6 16.3 
TIMI  20.1 17.0 23.2 16.5 21.6 18.2 

Brier score       
HPI - FULL 0.080 0.056 0.076 0.078 0.091 0.086 
HPI - CTS 0.080 0.056 0.077 0.079 0.092 0.086 
HPI - CAT 0.083 0.056 0.080 0.082 0.095 0.087 
TIMI  0.085 0.057 0.081 0.083 0.098 0.086 

Calibration slope 
(SE)       

HPI - FULL 1 
1.06 

(0.081) 
1.10 

(0.077) 
0.98 

(0.042) 
0.99 

(0.036) 
0.91 

(0.115) 

HPI - CTS 1 
1.04 

(0.081) 
1.11 

(0.078) 
0.96 

(0.042) 
1.01 

(0.037) 
0.89 

(0.113) 

HPI - CAT 1 
1.14 

(0.090) 
1.11 

(0.080) 
0.94 

(0.043) 
0.99 

(0.038) 
1.01 

(0.130) 

TIMI  1 
1.07 

(0.086) 
1.13 

(0.083) 
0.93 

(0.044) 
1.00 

(0.040) 
1.11 

(0.138) 
*Apparent performance applying risk models to regions, within the data on which the coefficients were obtained. 
†Standard errors less than 0.01 overall (in Eastern Europe and Russia ≤0.01, in Western countries and Latin 
America <0.02, in Asia 0.03). 

 

The loss in predictive performance due to simplification of the full multivariable model was minor. 

Predictions of individual risk provided by the full and reduced multivariable models were compared 

for individuals (Table 3.7). Results indicate superior predictive accuracy for the full model in Eastern 

Europe and Russia, but failure to achieve statistical significance in other regions. However differences  
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Table 3.7 Entropy t-test results 

Model 
Comparison: 

HPI - FULL vs.         
HPI - CTS 

HPI - CTS vs.          
HPI - CAT 

 HPI - CAT vs. 
TIMI  

  Mean  P Mean  P  Mean  P 
Overall  -0.005 <0.001 -0.020 <0.001  -0.013 <0.001 
Western countries  -0.004 0.065 -0.004 0.460  -0.010 0.028 
Latin America  -0.005 0.116 -0.021 0.005  -0.010 0.115 
Eastern Europe   -0.005 0.005 -0.020 <0.001  -0.012 0.003 
Russia  -0.005 0.013 -0.028 <0.001  -0.019 <0.001 
Asia  -0.004 0.413 -0.009 0.532  0.010 0.365 

 

in statistical significance appear to be attributable to sample size as the mean score differences were 

very similar across all regions. 

The performance of the further simplified prognostic index, HPI-CAT, was marginally lower 

compared to the multivariable models but still demonstrated good calibration accuracy and 

discriminatory ability. Entropy t-tests indicate that individual risk predictions of the reduced 

multivariable model were superior in Latin America, Eastern Europe and Russia compared to 

predictions of HPI-CAT. 

HPI-CAT performed better than the TIMI risk score in all regions with the exception of Asia. HPI-

CAT individual risk predictions were superior to those of TIMI overall (P<0.001). The differences 

were not significant in Latin America and favored TIMI in Asia, although not significantly. 

Estimates of calibration slope did not differ significantly from 1 for any risk strategy in any region, 

providing evidence that the relationship between assessed risk and outcome was common to all 

regions. 

Figure 3.1 shows the calibration of model predictions according to deciles of predicted risk for HPI-

CAT and TIMI. HPI-CAT performed better for lower risk patients. 

Concordance and discordance rates between HPI-CAT and TIMI orderings of dead-alive pairs are 

shown in Table 3.8. Overall, error rates favor HPI, 4.3% in error, over TIMI, 5.4%. There is a high 

level of agreement between the two indexes, but in Western countries and Russia, particularly, HPI 

has a smaller error rate than TIMI. The TIMI risk score performed better in Asia. 

Results for NRI are shown in Table 3.9. The Net Gain in Reclassification Proportion (NGRP) for 

subjects who experienced an event was not significant; 190 individuals were classified up when using 

HPI-CAT instead of TIMI and 184 were classified down (P=0.756). For non-event subjects, 

classification improved using HPI-CAT for 1860 patients, and for 850 it became worse, giving a 

NGRP of 0.066, significantly greater than zero (P<0.001). The NRI was estimated at 0.07 meaning 

that classification is improved for a net of 7% of individuals when using HPI-CAT in place of TIMI, 
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Figure 3.1 Observed vs. predicted mortality rates for the HPI-CAT (triangles) and TIMI (crosses) 

indexes when applied to HERO-2. The solid diagonal line reflects perfect calibration of 

the model predictions. Fitted smooth nonparametric lowess calibration curves are also 

shown (HPI = dotted line, TIMI = dashed line). 
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Table 3.8 Rates of agreement and disagreement of TIMI and HPI-CAT 

 orderings of dead-alive pairs, in HERO-2 

 Rate, % 
Region Discordant Concordant 
 HPI Error TIMI Error Diff  
Overall 4.31 5.44 -1.13 90.3 
Western countries 4.15 5.45 -1.30 90.4 
Latin America 3.98 4.96 -0.98 91.1 
Eastern Europe  4.67 5.78 -1.11 89.6 
Russia 4.04 5.52 -1.48 90.4 
Asia 7.60 5.75 1.85 86.7 

 

Table 3.9 Net reclassification improvement results for HPI-CAT vs. TIMI (calibrated) 

 Events Non-events  Overall 
Region  NGRP P NGRP P  NRI P 
Overall  0.003 0.756 0.066 <0.001  0.070 <0.001 
Western countries  -0.029 0.353 0.021 0.006  -0.008 0.797 
Latin America  0.015 0.590 0.060 <0.001  0.075 0.013 
Eastern Europe   0.028 0.155 0.050 <0.001  0.078 <0.001 
Russia  0.000 0.999 0.090 <0.001  0.090 <0.001 
Asia  -0.108 0.072 0.184 <0.001  0.076 0.234 

Note: Positive values favor HPI-CAT, negatives values favor TIMI. 

 

which is highly significant. The magnitude of NRI was consistent across all regions except in Western 

countries, where there was no difference. There was a significant advantage with using HPI-CAT in 

non-event patients across all regions. In Asia the magnitude of this improvement was much larger 

however this was negated by a drop in classification accuracy among event patients; TIMI classified 

event patients marginally better than HPI-CAT. In the other regions there was no difference in 

performance in event patients. 

Table 3.10 shows the results for IDI. Overall there was a statistically significant improvement offered 

by using HPI-CAT instead of TIMI. IDI was estimated at 0.017, mainly due to a 7% increase in IS 

(0.239 vs. 0.224 for HPI-CAT and TIMI, respectively; P<0.001). Within regions HPI-CAT performed 

significantly better in Eastern Europe and Russia. Again this improvement was mainly due to superior 

sensitivity for HPI-CAT over TIMI. In Asia the direction of the IDI estimate favored TIMI however 

the level of evidence for superiority of TIMI over HPI-CAT is weak (P=0.810). 

Table 3.11 shows estimates of the difference in c statistics obtained for the HPI-CAT and TIMI 

indices and corresponding tests for significance. For the overall population this difference was highly 
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Table 3.10 Integrated Discrimination improvement results for HPI-CAT versus TIMI 
(calibrated) 

 Events Non-events  Overall 
Region  ISHPI-ISTIMI P IPTIMI-IPHPI P  IDI  P 
Overall  0.015 <0.001 0.002 <0.001  0.017 <0.001 
Western countries  0.006 0.176 0.0005 0.512  0.007 0.152 
Latin America  0.011 0.107 0.001 0.253  0.012 0.075 
Eastern Europe   0.013 <0.001 0.001 0.024  0.014 <0.001 
Russia  0.021 <0.001 0.003 <0.001  0.024 <0.001 
Asia  -0.002 0.824 -0.0002 0.921  -0.002 0.810 

Note: IS denotes integral of sensitivity over all possible cut-offs; IP integral of “one minus specificity”. 
IDI = (ISHPI-ISTIMI) - (IPHPI-IPTIMI). Positive values favor HPI-CAT, negatives values favor TIMI. 

 

Table 3.11 Comparison of c statistics for HPI-CAT versus TIMI (calibrated) 

  c statistic    
Region  HPI TIMI Difference P  
Overall  0.792 0.781 0.011 <0.001  
Western countries  0.800 0.787 0.013 0.173  
Latin America  0.804 0.794 0.010 0.266  
Eastern Europe   0.772 0.761 0.011 0.043  
Russia  0.795 0.780 0.015 <0.001  
Asia  0.743 0.761 -0.018 0.322  

 

significant favoring HPI. In all regions except Asia c statistics increased with the use of HPI-CAT by a 

magnitude ranging from 0.01 in Latin America to 0.015 in Russia. This increase was significant in 

Eastern Europe and Russia. In Asia a decrease in discriminatory ability resulted with the use of HPI-

CAT in place of TIMI; the magnitude of the difference in performance was largest for this comparison 

(i.e., 0.018), however was not significant.  

The grouped binary dataset, generated by cross-classifying HPI-CAT, TIMI risk score categories and 

the variable region, produced a dataset with 358 unique observations. The results of logistic regression 

models, which included combinations of the HPI-CAT, TIMI risk scores, and region as explanatory 

variables, are summarised in Table 3.12. It is evident that overdispersion (lack of fit) is significantly 

less in models including HPI-CAT, compared with models with TIMI instead. As anticipated, 

including a region effect significantly improves the fit of both risk indexes, indicating that regional 

adjustment is necessary. The inclusion of an interaction term, allowing the risk score coefficient to 

vary by region, did not improve fit. This indicates that the strength of the association of risk with risk 

score does not vary according to region. TIMI, used in conjunction with HPI-CAT, adds significantly 



39 

to prediction, but only provides a small adjustment. The improvement offered by the addition of HPI-

CAT to TIMI is much larger. Furthermore, models were fitted to individual level data including the LP 

from the multivariable model, HPI-CTS, (but excluding regional adjustments). The residual deviances 

of these models, which include a predictor derived from continuous and categorical variables, were 

substantially lower than models which included risk scores generated only from categorical variables. 

 

Table 3.12 Results of logistic regression models, which include various combinations of the 
HPI-CAT, TIMI risk scores and the HERO-2 reduced model LP as explanatory 
variables, plus region, fitted to the HERO-2 dataset 

Model DF Residual 
Deviance 

P for 
dispersion 

Test of nested 
models: P [model 

comparison]* 

Group 
R2, % 

Individual 
R2, % 

1. TIMI 17071 665.19 <0.001  72.7 15.1 
2. TIMI+Region 17067 639.90 <0.001 0.008 [2 vs. 1]  73.7 15.3 
3. TIMI+Region+ 
TIMI×Region 

17063 633.88 <0.001 0.508 [3 vs. 2] 74.0 15.4 

4. HPI-CAT 17071 486.62 <0.001  80.0 16.7 
5. HPI-CAT+Region 17067 423.20 0.005  <0.001 [5 vs. 4] 82.6 17.2 
6. HPI-CAT+Region+ 
HPI-CAT×Region 

17063 417.06 0.006 0.275 [6 vs. 5] 82.9 17.2 

7. HPI-CAT+TIMI 17070 460.67 <0.001 <0.001 [7 vs. 1, 4]† 81.1 16.9 
8. HPI-CAT+Region+TIMI 17066 407.78 0.020 <0.001 [8 vs. 7] 83.3 17.3 
9. HPI-CAT+Region+TIMI+ 
HPI-CAT×Region 

17062 401.96 0.022 0.285 [9 vs. 8] 83.5 17.4 

10. HPI-CTS+Region 17067 76.69 NA  NA 20.2 
11. HPI-CTS+Region+ 
HPI-CTS×Region 

17063 72.50 NA 0.381 [11 vs. 10] NA 20.2 

12. HPI-CTS+Region+TIMI 17066 60.34 NA <0.001 [12 vs. 10] NA 20.3 
13. HPI-CTS+Region+TIMI 
+HPI-CTS×Region 

17062 56.58 NA 0.439 [13 vs.12] NA 20.3 

Notes: Models 1-9 are based on grouped binary data (see methods); models 10-13 are based on individual level data. 
HPI-CTS LP was fitted excluding regional adjustments. 

*P-values for model comparisons were calculated using methods in section 6.5 of Collet [81]. 
†P<0.001 for tests comparing models 7 and 1, and 7 vs. 4. 

 

3.3.4  Summary of HPICAT and TIMI risk score performance in HERO2 

The results of the comparisons of predictive performance were very consistent with both 

discrimination and calibration performance measures indicating modest gains in performance when 

using HPI-CAT over TIMI for the overall sample. Where tests of significance were available these 

gains were always highly significant (P<0.001). 
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The “entropy t-test”, NRI, IDI and improvement in c statistic all indicated significant improvement in 

performance when using HPI-CAT over TIMI in Russia and Eastern Europe. The gains in model 

performance noted with the use of HPI-CAT were largest in Russia for all measures, meaning that the 

advantage of HPI-CAT over TIMI is at its most when applied in this region. 

All methods (albeit only in “event” patients for NRI) trended towards superiority of TIMI in Asia, 

however results were inconclusive as the level of evidence was poor. 

3.3.5  External validation in GUSTOI trial 

Table 3.13 shows the results of applying the risk strategies to the GUSTO-I data. The predicted 

mortality rate when the HERO-2 full model was applied was 7.2%, close to the observed rate of 7.3%. 

The c statistic of 0.81 is close to that within HERO-2. 

HPI-CTS performed as well as HPI-FULL in terms of discriminatory ability but underestimated the 

mortality rate (6.9% vs.7.3%). Statistical assessment of individual risk predictions indicated HPI-

FULL was significantly more accurate (Entropy t-test: mean score difference = -0.004; t = -4.36, 

P<0.001). 

Figure 3.2 shows plots demonstrating the calibration of the model predictions according to deciles of 

predicted risk for HPI-FULL and HPI-CTS. The points fall very close to the line of identity between 

observed and expected rates for both models, slightly more for the full model, demonstrating excellent 

calibration. 

The TIMI risk score performed better than HPI-CAT in estimating the overall mortality rate and was 

as accurate as the multivariable model HPI-CTS. However tests of calibration-in-the-large indicated 

risk predictions were on average too low for all of these approaches. The discriminatory ability of 

HPI-CAT was higher than TIMI based on the c statistic difference (P=0.002) and also explained a 

slightly higher proportion of variation (see Table 3.13). Estimates of calibration slope did not differ 

significantly from 1 for all risk strategies indicating neither shrinkage nor inflation of risk predictions 

is necessary. 

The rate of concordance of HPI-CAT and TIMI orderings of dead-alive pairs was 90.6%. Among the 

discordant pairs the comparison of error rates favored HPI, 4.2% errors, over TIMI, 5.2%. 

In terms of predicting individual risk a significant loss in predictive accuracy occurred when using 

HPI-CAT as an alternative to HPI-CTS (“entropy t-test”: mean score difference = -0.01; t = -5.13, 

P<0.001). HPI-CAT performed significantly better than TIMI (mean score difference = -0.007; t = -

3.80, P<0.001). 

The NRI and IDI indexes were also applied to compare the HPI-CAT and TIMI risk scores and to 

assess consistency with other performance measures. Among subjects not experiencing an event the 

net gain in reclassification proportion was 0.026 favoring HPI-CAT (P<0.001). However for subjects 

experiencing an event the net gain in reclassification proportion favored TIMI and was estimated at -
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0.050 (P<0.001). The NRI was estimated at -0.024 and was not significantly different from zero 

(P=0.06). 

 

Table 3.13 Predictive performance of risk models applied to GUSTO-1 

Performance statistic Overall 
Observed mortality, % 7.3 
Predicted mortality, %  

HPI - FULL 7.2 
HPI - CTS 6.9 
HPI - CAT 6.7 
TIMI  6.9 

c statistic*  
HPI - FULL 0.809 
HPI - CTS 0.804 
HPI - CAT 0.787 
TIMI  0.777 

R2 (Nagelkerke’s), %  
HPI - FULL 22.4 
HPI - CTS 21.5 
HPI - CAT 19.1 
TIMI  17.6 

Brier score  
HPI - FULL 0.059 
HPI - CTS 0.059 
HPI - CAT 0.060 
TIMI 0.061 

Calibration slope† (SE)  
HPI - FULL 1.03 (0.027) 
HPI - CTS 1.02 (0.026) 
HPI - CAT 1.01 (0.027) 
TIMI  1.02 (0.027) 

Calibration-in-the-large: Intercept‡ (P)  
HPI - FULL 0.012 (0.681) 
HPI - CTS 0.071 (0.014) 
HPI - CAT 0.101 (<0.001) 
TIMI  0.073 (0.011) 

*Standard error is 0.006 for each c statistic. 
†Both intercept and slope included as free parameters. 
‡Intercept given that the slope of the linear predictor is fixed at unity. 
An intercept >0 reflects that predictions were on average too low.  
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HPI-CAT performed significantly better for both components of IDI. The average sensitivity was 

0.163 for HPI-CAT vs. 0.159 for TIMI (P=0.03) and ‘one minus specificity’ (i.e., the complement of 

specificity) was 0.060 vs. 0.062 (P<0.001). The IDI was estimated at 0.006 and was statistically 

significant (P=0.002); this can be interpreted as the increase in the proportion of event subjects 

predicted as 30-day deaths, from using HPI-CAT over TIMI, given no changes in specificity. 

 

 

 

 

Figure 3.2 Graphs showing observed mortality vs. predicted mortality probability according to the 

HERO-2 multivariable full and reduced risk models when applied to the GUSTO-I data. 

The solid diagonal line reflects perfect calibration of the model predictions. The dotted 

line represents the fitted smooth nonparametric lowess calibration curve. 
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Figure 3.3 shows the calibration of model predictions for HPI-CAT and TIMI. In general there was 

little discernible difference. 

 

 

Figure 3.3 Observed vs. predicted mortality rates for the HPI-CAT (triangles) and TIMI (crosses) 

indexes when applied to the GUSTO-I data. Fitted smooth nonparametric lowess 

calibration curves are also shown (HPI = dotted line, TIMI = dashed line). 
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The GUSTO-I model, when applied to the HERO-2 dataset, underestimated mortality rates for the 

non-Western regions (Table 3.14). With the exception of Asia (c = 0.718), c statistics were similar in 

all regions and similar to those obtained for the full HERO-2 model. 

 

Table 3.14 Predictive performance of the GUSTO-I model applied to 

  the HERO-2 heparin treatment arm (n=8557) 

 Mortality rate, %  
c statistic Region Observed Predicted 

Overall 10.9 8.5 0.806 
Western countries 6.7 6.5 0.828 
Latin America 10.3 7.3 0.822 
Eastern Europe  9.6 7.7 0.789 
Russia 13.7 10.7 0.813 
Asia 13.7 5.8 0.718 

 

3.4  Discussion 

We have developed a number of risk strategies for predicting 30-day mortality following hospital 

admission for MI. These risk assessment tools vary according to their precision of risk indication and 

ease of application. Choice of which index to use will depend on the setting, purpose and available 

resources. The risk strategies are consistent with previous risk assessment approaches including 

GUSTO-I [1-2], TIMI [3] and GISSI [4]. However regional differences were identified. The HERO-2 

multivariable prediction model HPI-FULL, was superior at ranking risks among Asian patients 

compared to the GUSTO-I model [1]. This and other findings suggest that the generalisability of the 

HERO-2 model may be superior to that of its competitors. Also the HERO-2 model has the advantage 

that it is less complex and requires fewer inputs than the GUSTO-I model. The HERO-2 model itself 

performed very well in all aspects of predictive capability when applied to an external population (i.e., 

GUSTO-I). 

Simplifying this multivariable model to produce HPI-CTS led to very little loss in predictive power in 

internal validation. Despite the higher rate of missing data in the Western region the HERO-2 models 

were successful in predicting risk in the Western GUSTO-I dataset. Excellent discriminatory ability 

was displayed, although the reduced model somewhat under-estimated the GUSTO-I observed 

mortality rate. Closer examination suggested the removal of the variables prior MI, angina and 

diabetes contributed to this underestimation. Omitting factors under-represented in the study 

population can lead to poorer ability to generalise to other populations. In HERO-2 the rates of prior 

MI (10%), angina (28%) and diabetes (13%) in Western countries were lower than in GUSTO-I (16%, 

37%, and 15% respectively). As a consequence, re-calibration should be considered for risk 

evaluations in any new patient population, even within a single geographical region. A necessary 
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caveat in any use of predictive models is that extrapolation, i.e., prediction of values outside of or 

beyond the range of the data used to estimate the model, is not recommended. 

Further simplification led to formulation of the clinical risk score HPI-CAT which can also be 

translated to a probability estimate. This approach was found to substantially reduce prognostic ability 

(R2 statistics). The entropy t-test confirmed these findings: the largest absolute mean score differences 

arose from comparisons of HPI-CTS with HPI-CAT. Nevertheless, the loss in predictive accuracy may 

be considered acceptable as performance measures remained good. Loss in predictive accuracy might 

be expected as a multivariable model produces a risk probability on a continuum, from 0 to 1, whereas 

a risk index produces discrete values. 

We have demonstrated the ability of the TIMI risk score, developed on mainly Western patients 

(78%), to generalise to other populations. This index performed well, when calibrated, to predict 

mortality rates in the HERO-2 population. 

The HERO-2 study population differed from those used to develop the GUSTO and TIMI risk 

strategies. The 30-day mortality rate of 10.8% seen in HERO-2 is higher than the GUSTO-I [37] and 

InTIME-II [36] trials. Greater proportions of patients in HERO-2 were women and had anterior MI or 

Killip class II-IV heart failure. The time to treatment was also longer. However, the mortality rate seen 

in Western countries was similar. These differences were also evident when comparisons were made 

with other recent trials [38, 60]. 

Simple calibration of risk scores depends on absence of interactions of clinical importance between 

region and other risk factors in the population of interest, as was the case in this study. The 

relationship between risk assessment scores and observed mortality was consistent across geographical 

regions and was transportable to the GUSTO-I population. This suggests that when a risk model is 

(re)-calibrated for application to new populations it is only necessary to incorporate regional-specific 

intercepts which adjust the absolute level of expected risk. This is in agreement with the evaluation of 

model revision methodology of Steyerberg et al [57] which found that re-calibration of an existing 

index for a new environment can be as effective as more complex statistical approaches. We have 

deliberately not included risk points for region in HPI-CAT. Instead, simple calibration is applied in 

each particular region. Consequently, the risk score can be calibrated and applied elsewhere. 

Both TIMI and HPI-CAT provide a large number of categories, approaching a continuum in the 

assessment of individual risks. This may be compared with the other extreme of a simple dichotomy of 

patient population into high- and low-risk, for example. However a dichotomy such as this will 

involve arbitrary cut-points and be difficult to calibrate in another population, where average levels of 

risk may change. 

Risk prediction is improved by measuring age, systolic BP and heart rate precisely, rather than in 

categories. This was anticipated, as categorisation implies a constant effect for subjects who fall within 

the same category, when in fact there may be a significant gradient in response for subjects across the 



46 

category. However, discrimination or risk prediction accuracy was not substantially compromised. We 

felt that, when using categorisations in HERO-2, the use of clinical considerations and previous 

research results was a sufficient basis to determine cutpoints. By comparison, outcome-orientated 

methods are highly data-dependent and require further analysis to correct for multiple testing. 

Statistical assessment, using deciles of the relevant variable, showed the clinical cutpoints chosen to be 

consistent with changes in outcome rates. Potential statistical loss of power caused by categorising did 

not lead to important risk factors being omitted, as the risk factors which constitute the risk index were 

determined before this step. Despite the difficulties the approximation of the HERO-2 full model by 

simplified risk measures, such as cumulating risk factor “points”, is useful for prognostic clinical 

decision making. 

Statistical methods for comparisons of the discriminatory ability and calibration of two indexes have 

been introduced in this chapter. The tabling of concordances and discordances and the “entropy t-test” 

are novel and provide new information, not otherwise available. Both indicated an advantage when 

using HPI-CAT over TIMI. Furthermore c statistics were significantly higher for HPI-CAT compared 

to TIMI, but what constitutes a clinically important increase is unclear. Therefore we applied the 

recently developed measures NRI and IDI, as Pencina [83] advocates that all three quantities (i.e., 

improvement in c statistic, NRI and IDI) should yield the same conclusions to declare better 

performance of one model over another. The NRI and the IDI were in agreement with the c statistic 

finding in HERO-2 but, in external validation, results were less consistent, as the direction of the NRI 

estimate favored TIMI but was inconclusive. 

The HERO-2 risk score has demonstrated that it does provide some modest improvement in predictive 

performance over TIMI. This improvement may be partly due to the inclusion of an age by Killip class 

interaction term in HPI-CAT. Further analysis revealed that the TIMI risk score over-predicted in the 

lowest (age<65 and Killip class I) and highest risk (age≥65 and Killip class II+) age (<65 yrs, ≥65) by 

Killip class (I, II/III/IV) subgroups. More detailed modeling (such as including the interaction) allows 

more accurate prediction than simplified modeling (such as TIMI). 

To evaluate an index the recommended approach is to assess risk (on a logit scale) by a gold standard 

measure (here the LP of the full model) and by the pragmatic index (e.g., HPI-CAT). Model 

comparisons and test procedures are then available to indicate whether any statistical loss in prediction 

will result when the pragmatic index replaces the full model LP. 

Since developing a risk model involves many steps such as defining categories, determining functional 

form, variable selection and pre-specifying and testing for biologically plausible interactions, 

validation of the resulting model in independent data is well warranted. The full procedure can be 

validated internally, by split-sample methods, but current research suggests this is unnecessary with 

large event counts [66], and so we have presented apparent estimates of predictive performance and 

evaluated risk models in an external, independent dataset. We conducted bootstrap resampling to 
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derive estimates (not included) of the expected optimism in apparent performance measures for the 

HERO-2 reduced model. As expected, over-optimism was negligible. 

The HERO-2 risk strategies have been well validated internally, on the HERO-2 dataset, and 

externally, on the GUSTO-I dataset. The data necessary for external validation, however, was 

available only for Western populations. Since the HERO-2 strategies are based on risk factors and 

weightings that pertain to a global sample, we would expect high generalisability, even to non-trial 

settings. Calibration in each new setting using ongoing data collection is appropriate. 
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CHAPTER 4: INTERNATIONAL DIFFERENCES IN CLINICAL OUTCOMES 
AFTER ACUTE MYOCARDIAL INFARCTION 

4.1  Introduction 

As described in Section 1.5, worldwide mortality from acute STEMI is high [33]. This is despite 

treatment for this disease having improved over the last 25 years with the development of new 

interventions, resulting in declining fatality rates in Western countries [33, 87-93]. The HERO-2 

clinical trial report revealed startling variations in 30-day mortality rates across geographical regions 

[39]; rates for non-Western regions were at least 50% higher compared to Western countries. Given 

the increasing incidence of coronary heart disease in developing countries this is concerning [33, 90, 

94-96].  

Using the HERO-2 trial in this chapter we explore in detail possible explanations for differences in 

short-term clinical outcomes between geographical regions. Since variation in mortality might be 

explained by differences in patient characteristics or in the use of evidence-based medicines [97-98], 

firstly patient characteristic data and patterns of care will be compared comprehensively across 

geographical regions. Secondly, randomisation rates using the HERO-2 screening log substudy will be 

compared; sites which randomise higher proportions of screened patients tend to have higher mortality 

as high-risk patients are more likely to be excluded than lower risk patients. Lastly, mortality is 

associated with country-level factors such as gross national income (GNI) and national health indices 

[49, 99]. These factors in turn are correlated with the level of development in a country and are lower 

in developing countries and so will also be studied by region. 

The strength of the relationship between mortality and risk factors such as procedure utilisation, length 

of hospital stay, randomisation rates and national health and economic indicators is examined. To 

determine whether regional differences in mortality can be explained by these factors, the HERO-2 

risk model was extended by including these factors in addition to patient characteristics. Differences in 

other short-term outcomes such as reinfarction, stroke and severe bleeding were also evident and 

hence are examined. Heterogeneity in the treatment effect for bivalirudin therapy versus 

unfractionated heparin according to geographical region is also studied. 

Findings from the HERO-2 screening log substudy enabled assessment of the generalisability of the 

HERO-2 trial results and observed regional differences. Data on patient characteristics, treatments 

received, in-hospital mortality, randomisation status and reasons for ineligibility was recorded for 

1743 patients screened for the HERO-2 trial. 
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4.2  Methods 

4.2.1  Clinical outcomes 

As already stated the primary outcome for the HERO-2 trial was mortality over 30 days. Data on other 

outcomes was also collected which are analyzed here. These included mortality over 24 hours, 

reinfarction within 96 hours, in-hospital reinfarction, stroke, and bleeding. Reinfarction within 18 

hours was defined as ischemic chest pain lasting ≥30 minutes with new ST-elevation of ≥1 mm. 

Reinfarction occurring after 18 hours and unrelated to PCI or surgery required an elevation of creatine 

kinase to twice normal or a rise in the creatine kinase-MB level above the normal range, with an 

enzyme level at least 50% higher than the prior baseline level, or new Q waves of ≥30 ms, distinct 

from the enrolment MI. All reinfarctions and strokes were confirmed by clinical events committees 

blinded to randomised therapy. 

4.2.2  Statistical analysis 

Comparisons of geographic regions in baseline characteristics, treatments and outcomes were based on 

chi-square tests for categorical data and analysis of variance for continuous data. The Kruskal–Wallis 

test was used for non-normal data. The effect of regional differences on clinical outcomes used logistic 

regression. Covariates included in logistic models were any variables identified as significant 

predictors of 30-day mortality or other major outcomes. For 30-day mortality this was simply the 

HERO-2 full risk model. For the other clinical outcomes adjustment variables were selected by 

performing a backward stepwise logistic regression including the same patient-level candidate 

variables considered for the HERO-2 full model (as listed in Chapter 3 Methods Section 3.2.2.1). 

Significant predictors of outcomes were age, sex, systolic and diastolic BP, heart rate, time from 

symptom onset, Killip class, age by Killip class interaction, MI location, height, weight, smoking 

status, randomised treatment allocation and a history of MI, angina, hypertension, diabetes, 

cerebrovascular disease or coronary revascularisation. Variations in outcomes by region were 

expressed as odds ratios, with 95% confidence intervals, for each region in relation to Western 

countries as the reference region. The adjusted event rates were calculated for non-Western regions by 

application of the corresponding region group effect odds ratio obtained from the adjusted logistic 

regression analysis to the observed event rate.  

Patterns of care and randomisation rates were included in models as country-level covariates to 

examine possible sources of regional variation in 30-day mortality. We calculated rates of coronary 

revascularisation (i.e., PCI or CABG), median durations of hospital stay and percentages of eligible 

patients enrolled, based on the trial data for each country. In addition, national health and economic 

statistics also measured at a country level were examined: GNI (estimated in US dollars per 1000 

population) [100], overall health performance, and disability adjusted life expectancy (DALE) at 60 

years. The latter two were based on national statistics from the World Health Report 2000 [101]. 

Overall health performance measures the efficiency of each country’s health system and is defined as 
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the ratio between the actual level of health achieved in terms of gains in DALE and the maximum 

potential gains in DALE achievable with the available per capita health expenditure. DALE at 60 

years was calculated as the average of statistics for men and women for each country, weighted in 

proportion to the number of men and women enrolled for that country. The strength of relations with 

30-day mortality of these country-level variables was assessed unadjusted, with adjustment for patient 

risk factors and finally with adjustment for region and risk factors. Regional effects were examined 

with and without adjustment for these other variables and were considered in a multivariable model 

with individual risk factors and the most significant country-specific variable. 

An additional analysis assessing regional effects was undertaken by using multilevel modeling to 

validate the findings of the conventional single-level logistic regression analysis. Hospital and country 

variables were also included in the model as random effects [102]. Multilevel modeling incorporates 

the hierarchical nature of the data which is structured into several levels: patient, hospital and country, 

and takes into account data that are correlated within patient subgroups. This also allows the effect of 

higher-level characteristics on outcomes to be assessed validly as imputing characteristics measured at 

higher levels to the patient-level artificially inflates the amount of available information on these 

variables [50]. Splus v6.1.2 for Windows was used to perform multilevel modeling. 

The relative treatment effects of bivalirudin versus unfractionated heparin on mortality and on 

reinfarction were examined by logistic regression. Evidence of heterogeneity of treatment effect across 

geographic regions was examined by testing for any treatment–region interaction. 

4.2.3  HERO2 screening log substudy 

We assessed a random sample of patients screened for possible enrolment in HERO-2. The aim was to 

ascertain the background patterns of care in the 5 regions and to compare the trial participants with 

those initially considered for the HERO-2 trial.  

4.2.3.1 Data collection and patient population 

All active sites were sent an information package inviting participation. Each site agreeing to 

participate was randomly assigned a period for prospective data collection during the 6 month period 

from September 1st 2000 to March 1st 2001. This time period was randomly assigned so that not all 

logs were completed during the same weeks. To provide an adequate sample for Western countries 

each participating site from North America, western Europe, Australia, New Zealand and South Africa 

were required to complete logs over a 4 week period. All other sites were only required to complete 

the screening log over a 2 week period. If there were major practical issues during this time period, 

sites were given the option of choosing a time period adjacent to the allocated time period, e.g. the 2/4 

weeks immediately prior to or after. 

All patients presenting during the specified period with suspected acute evolving STEMI were 

recorded on the log regardless of the treatment the patient subsequently received. 
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Information was collected on patient demographics (i.e., age and sex) and treatment received (i.e., 

reperfusion and anti-thrombin therapies administered). For patients randomised to HERO-2 the study 

number was recorded. For patients not randomised a coded reason was provided. For those patients 

whose reason was exclusion criteria met, the actual criteria met were also noted. Discharge mortality 

status was also recorded. 

4.2.3.2 Sample size 

Based on a recruitment rate of 150 patients per week it was envisaged that the substudy should provide 

approximately 300 randomised patients and 500-800 non-randomised patients worldwide. A study size 

of 1000 patients would enable differences in proportions of 10% to be detected with at least 80% 

power. The eventual sample size was 1743 screened patients of which 274 were randomised. 

4.2.3.3 Analysis 

Patients who were admitted outside of the correct screening dates were excluded from all analyses. For 

the sites which did not conduct the screening log during the allocated time period or during an 

adjacent period, patients who were screened after the 2/4 weeks from the date the site commenced 

screening were excluded. This was necessary for comparisons of screening and recruitment rates (not 

reported here). 

The HERO-2 trial database was used to fill in missing data on the screening log for randomised 

patients. 

4.3  Results 

4.3.1  Baseline characteristics 

Table 4.1 shows baseline characteristics by region. Of the variables considered the most clinically 

important a higher proportion of elderly patients (age ≥75 years) were recruited in Western countries 

however patients in this region presented earlier (less with symptom onset >4 h) and were less likely 

to have anterior MI. 

Higher proportions of females and patients with higher Killip class (i.e., ≥II) were recruited in Eastern 

Europe and Russia. Russia was also associated with higher proportions of patients having a history of 

cardiovascular disease, specifically a prior MI or angina. 

The prevalence of hypertension was higher in Latin America, Eastern Europe and Russia. 

Patients from Asia were significantly smaller (by weight or height) and strikingly younger and less 

likely to be female than those from other regions. Accordingly lower proportions of patients had 

suffered a prior MI or angina. 

Overall risk in Western countries, as measured by the GUSTO-I [2], and TIMI [3] risk scores was 

similar to, or as high as, that in other regions. 
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Table 4.1 Characteristics of HERO-2 patients, by region* 

Region Western Countries Latin America Eastern Europe Russia Asia 

No. 2563 1820 5877 6057 756 
Age (years)‡ 63 (53-73) 60 (51-69) 62 (52-70) 63 (52-71) 55 (46-62) 

Age ≥75 years (%) 18 10 12 13 3.8 

Female (%) 25 22 29 33 14 
Previous history (%)      
 angina 28 38 44 63 22 
 myocardial infarction 10 8.9 13 23 2.7 
 cerebrovascular disease 2.3 1.3 0.9 1.5 0.8 
 coronary revascularisation 5.5 4.4 1.0 0.6 0.7 
Risk factors       
 current smoker (%) 43 47 43 43 51 
 hypertension (%) 36 51 52 62 28 
 diabetes (%) 13 19 16 10 22 
 anterior MI (%) 32 43 44 51 51 
 symptom onset >4 hours (%) 20 32 26 32 40 
 weight (kg) ‡ 76 (69-85) 76 (68-85) 78 (70-87) 75 (67-84) 60 (55-68) 
 height (cm) ‡ 170 (165-176) 168 (162-174) 170 (165-176) 169 (163-175) 160 (157-167) 
Hemodynamics‡      
 systolic blood pressure (mm Hg)  134 (120-150) 130 (120-150) 138 (120-150) 131 (120-150) 130 (113-150) 
 diastolic blood pressure (mm Hg) 80 (70-90) 80 (70-90) 80 (72-90) 80 (75-90) 80 (70-90) 
 heart rate (beats/min) 72 (61-84) 76 (65-88) 77 (66-90) 76 (66-88) 82 (71-92) 
Killip class II (%) 12 12 16 24 13 
Killip class III or IV (%) 1.4 1.9 3.3 6.7 1.2 
GUSTO-I risk score‡§ 60 (50-70) 58 (48-68) 61 (51-71) 62 (51-74) 55 (46-64) 
TIMI risk score‡¶ 3 (1-4) 3 (2-4) 3 (1-5) 4 (2-5) 3 (2-4) 

   *P<0.0001 for regional differences in all variables. ‡Median (interquartile range). §See Califf et al [2]. ¶See Morrow et al [3]. 
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4.3.2  Patterns of care 

The quality of therapy was high for all regions: 99% of patients received their treatment according to 

the protocol, and its duration was 48 hours for most (Table 4.2). Intravenous beta-blocker therapy was 

given to a minority and was highest in Western countries and Latin America. Other concomitant 

medications were not recorded. 

Large disparities existed by region in the use of procedures and other care. The rates of angiography 

and PCI were low overall however use of these procedures was much higher in Western countries and 

very low in Eastern Europe and Russia. 

The median duration of hospital stay and the autopsy rate was higher in Eastern Europe and Russia, 

particularly in Russia. In contrast, the use of CT scanning and MRI machines among patients suffering 

stroke was much lower in Russia. 

4.3.3  Clinical outcomes by region 

As stated the overall thirty-day mortality rate was 10.8%, but was significantly lower in Western 

countries, at 6.7%, than in the other regions (Figure 4.1). This was higher by 4.1% (95% confidence 

interval (CI) 2.4%–5.8%) in Latin America, 3.5% (95% CI 2.3%–4.8%) in Eastern Europe, 6.5% (95% 

CI 5.2%–7.8%) in Russia, and 4.3% (95% CI 1.9%–6.7%) in Asia.  

Adjustment for prognostic factors reduced these differences for Eastern Europe and Russia as shown 

by the adjusted event rates; however the increased mortality was still significant as the odds ratio CIs 

were entirely above 1. For Latin America and Asia the effect of the adjustment was the reverse; for 

Asia the adjusted event rate increased by roughly 50%.  

In summary the variation in mortality by region was unexplained by differences in known patient risk 

factors. After adjustment for baseline risk factors regional variation was still highly significant 

(P<0.001) with all non-Western regions having significantly increased mortality relative to Western 

countries. 

A similar pattern was displayed for 24-hour mortality. 

Rates of reinfarction, during the in-hospital period and within 96 hours of randomisation, varied across 

regions. Rates were significantly higher in Western countries than in Latin America, Eastern Europe 

and Russia, even after adjustment for baseline risk factors. Again the event rate for Asia increased 

dramatically after adjustment but was not significantly different compared to Western countries. 

Adjusted odds ratios for reinfarction within 96 hours and during hospital stay were similar. 

The overall variation in stroke rates by region was significant, even after adjustment for baseline risk 

factors (P=0.02). Rates in Russia and Asia were higher, while rates in Western countries and Eastern 

Europe were lower. 

The variation in severe bleeding rates by region was significant (P<0.001). Compared to Western 

countries rates were significantly lower in Eastern Europe and Russia and significantly higher in Asia. 
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Table 4.2 Patterns of care and protocol treatment by region in the HERO-2 trial* 

Region 
Western  

Countries 
Latin  

America 
Eastern  
Europe 

 
Russia Asia 

No. 2563 1820 5877 6057 756 
Drug administration      
Time from randomisation to thrombolytic 
treatment (min)‡ 

15 (11-23) 19 (13-27) 12 (10-17) 13 (10-18) 15 (10-22) 

Duration of thrombolytic treatment (min)‡ 58 (40-60) 51 (39-60) 60 (45-60) 45 (37-58) 55 (40-60) 
Duration of antithrombin (hours)‡ 48 (48-49) 48 (48-48) 48 (48-49) 48 (48-48) 48 (48-49) 
Streptokinase (%) 98 99 100 100 99 
Aspirin (%) 99 99 99 99 100 
Intravenous beta-blocker (%) 16 16 13 11 11 
Other care      
Angiography (%) 35 26 6.7 1.4 20 
PCI (%) 18.3 10.3 3.4 0.3 9.9 
CABG (%) 2.7 1.8 0.2 0.1 0.8 
Duration of hospital stay (days)‡ 7 (5-11) 7 (6-11) 13 (10-17) 22 (18-26) 6 (4-8) 
CT or MRI (% of stroke patients)  100 85 73 34 92 
Autopsy rate (% of in-hospital deaths) 6 7 46 79 3 

*P<0.0001 for regional differences in all variables. ‡Median (interquartile range). PCI=percutaneous coronary intervention also known  
as angioplasty; CABG=coronary artery bypass grafting; CT=computed tomography; MRI=magnetic resonance imaging. 
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Figure 4.1 Clinical outcomes by geographic region: Western countries, Latin America, Eastern 

Europe, Russia and Asia. Adjusted rates are expressed as relative to the rate for Western 

countries, adjusted for baseline prognostic factors. P-values are for the regional effect 

from a multivariable model adjusted for those prognostic factors that were significant for 

each outcome (from the following: age, sex, systolic and diastolic BP, heart rate, time 

from symptom onset, Killip class, age by Killip class interaction, MI location, height, 

weight, smoking status, randomised treatment allocation, and a history of MI, angina, 

hypertension, diabetes, cerebrovascular disease or coronary revascularisation).  
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4.3.4  HERO2 screening log substudy results 

Of the 538 sites in the HERO-2 study 268 (50%) agreed to participate in the screening log substudy. 

Of these, logs were received from 222 sites. For 12 sites zero patients were screened. A total of 1774 

patients were screened, of which 277 (16%) were randomised. 

Fifteen sites screened patients after or before the correct screening period; 31 patients have been 

excluded as a result, 3 of which were randomised. This leaves 1743 screened patients at 222 hospitals 

(42% of all sites and 74% of all countries) for analysis, of which 274 were randomised. Of screened 

patients 699 met all inclusion and none of the exclusion criteria and hence were classified as eligible 

for the trial. 

Table 4.3 summarises characteristics for screened patients (N=1743), eligible patients (N=699) and 

reasons patients were not randomised (N=1469). 

For screened patients the pattern of regional variation was similar to in the whole HERO-2 trial. 

Eastern Europe and Russia had higher proportions of females and patients from South America and 

Asia were younger. Western countries had a much lower mortality rate compared to all other regions 

(P<0.001). Rates of utilisation of reperfusion therapy were substantially lower in Eastern Europe and 

Russia (less than 50%). Lastly higher proportions from Eastern Europe and Russia than from Western 

countries were randomised (P<0.001).  

Trends by region were similar for eligible patients. The use of PCI and other lytics was more common 

in Western countries and Latin America, which partly explains the lower rates of randomisation in 

these regions. The significant regional variation in mortality was again evident (P=0.005).  

Patients in Eastern regions were more often not randomised due to not meeting the eligibility criteria; 

these patients presented late (>6 hours) more often than patients from Western countries and Latin 

America. 

4.3.5  Other explanatory regional variables 

Table 4.4 shows the results of univariate and multivariable analysis examining the association between 

country-specific factors and region with 30-day mortality. Table 4.5 shows summary statistics for 

national health indicator variables by region. 

In univariate analysis countries with higher GNI, overall health system performance and DALE at 60 

were associated with lower 30-day mortality (each P<0.001), as were countries with higher rates of 

coronary revascularisation (Tables 4.4 and 4.5). Countries with longer hospital stays and higher rates 

of eligible patients randomised were associated with increased mortality. After adjustment for 

individual baseline risk factors only DALE at 60 remained significant; for each year increase in life 

expectancy the odds of death decreased by 4%. Further adjustment for region produced nonsensical 

results, particularly for overall health system performance. This is probably related to the strong 

association between overall health system performance and region. 
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Table 4.3 Characteristics and outcomes of a sample of patients recruited and screened in the HERO-2 trial (N=1743) 

Region* Western Countries Latin America Eastern Europe Russia Asia 

n = 507 112 464 589 71 
Age: median (lower quartile - upper quartile)  67 (55-76) 59 (51-68) 65 (56-72) 66 (55-74) 59 (50-69) 
Female (%) 28 29 36 40 21 
Reperfusion therapy (%)      
 thrombolysis 61 47 36 26 68 
 acute PCI 6 14 2 0 0 
 neither 33 39 62 74 32 
Randomised (%) 7 10 20 21 15 
Died in hospital (%)  7.3 16.4 12.3 16.5 14.3 
Eligible patients (N = 699, 40%); n = 262 59 165 183 30 
Age: median (lower quartile - upper quartile)  66 (54-74) 58 (50-68) 63 (53-72) 62 (52-72) 60 (52-70) 
Female (%) 25 20 33 32 20 
Reperfusion therapy (%)      

 streptokinase 42 46 69 77 90 
 other lytic 40 15 7 0 0 
 acute PCI 10 19 3 1 0 
 none 8 20 21 22 10 
Randomised (%) 13 19 56 69 37 
Died in hospital (%)  8.5 20.7 14.3 16.9 26.7 
Reasons 1469 patients not randomised (%) 
No pain or ECG criteria 10 16 8 30 2 
Onset >6 hours 26 27 48 38 52 
Exclusion criteria 16 9 24 20 15 
Eligible: decision of doctor or patient 37 31 17 8 28 

Eligible: other reason‡ 11 17 3 4 3 
*P<0.001 for all regional differences except among eligible patients: sex (P=0.1), age (P=0.01) and deaths in hospital (P=0.005). ‡Other reasons were logistical 
reasons, enrolled in other trial, or early death or cardiac arrest. PCI=percutaneous coronary intervention.  
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Table 4.4 Effect of risk score and country factors on 30-day mortality and regional variation in the HERO-2 trial 

 
Univariate analysis Adjusted for risk factors 

Adjusted for region and risk 
factors 

Country-specific factors* Odds ratio (95% CI) P Odds ratio (95% CI) P Odds ratio (95% CI) P 

GNI (÷ 1000) 0.97 (0.97-0.98) <0.001 0.99 (0.98-1.00) 0.07 1.02 (1.00-1.04) 0.05 
Overall health system performance (x 100) 0.99 (0.98-0.99) <0.001 1.00 (1.00-1.01) 0.49 1.02 (1.01-1.03) <0.001 
DALE at 60 years 0.92 (0.89-0.94) <0.001 0.96 (0.93-1.00) 0.03 1.03 (0.96-1.12) 0.41 
Revascularisation rates 0.98 (0.98-0.99) <0.001 1.00 (0.99-1.01) 0.98 1.01 (1.00-1.01) 0.28 
Duration of hospital stay 1.03 (1.02-1.04) <0.001 1.00 (0.99-1.01) 0.64 1.03 (1.01-1.05) 0.01 
Randomisation rate (% eligible)† 1.01 (1.00-1.01) <0.001 1.00 (1.00-1.00) 0.10 1.00 (0.99-1.00) 0.01 

 Univariate analysis Adjusted for risk factors 
Adjusted for country-specific  

factors and risk factors‡ 
Region Odds ratio (95% CI) P Odds ratio (95% CI) P Odds ratio (95% CI) P 
Western Countries 1.0 <0.001 1.0 <0.001 1.0 <0.001 
Latin America 1.69 (1.36-2.09)  1.76 (1.39-2.23)  2.37 (1.81-3.11)  
Eastern Europe 1.59 (1.34-1.90)  1.38 (1.14-1.68)  2.07 (1.60-2.67)  
Russia 2.13 (1.79-2.53)  1.33 (1.09-1.61)  2.80 (1.92-4.08)  
Asia 1.73 (1.31-2.27)  2.82 (2.08-3.82)  4.72 (3.24-6.88)  

*Odds ratios for country-specific factors are expressed per unit change of each variable. For example, 0.97 for GNI (÷ 1000) corresponds to a 3% reduction in the odds  
 of 30-day mortality for each $1000 increase in GNI. 
†Calculated from assessment of patients recruited and screened (Table 4.3). 
‡Multivariable model including region, patient risk factors and single most significant country-specific factor: overall health system performance. 
 GNI = Gross national income per capita; DALE = disability-adjusted life expectancy at age 60 (average of values for men and women weighted by enrolment of each  
 sex in each country).
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Table 4.5 National health statistics by region. Weighted average of national health statistics and trial variables by region 

Factor 
Western 

Countries 
Latin 

America 
Eastern 
Europe Russia Asia 

Gross national income (per capita, $US)* 18053 6138 2538 1690 2959 
Overall health system performance (x100)† 87.4 75.1 70.5 54.4 64.7 
Disability-adjusted life expectancy at birth 
(years) † 

69.3 64.7 63.5 59.5 55.1 

Disability-adjusted life expectancy at 60 (years) † 16.3 15.2 13.4 11.9 10.8 
*World Bank, 2002[100] 

 †World Health Report, 2000[101]
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A series of models was also performed which included region and each country-specific variable; 30-

day mortality still varied significantly across the 5 regions (each P<0.001). Regional variation also 

remained highly significant after adjustment for all patient risk factors and any of these country-

specific variables (P<0.001). 

4.3.6  Multilevel modeling  

Table 4.6 shows results for the above analysis repeated using multilevel models with hospital and 

country variables included as random effects. As expected the strength of associations with mortality 

for country-specific variables reduced as the amount of available information on these variables was 

no longer inflated as they were incorporated correctly into the model as variables measured at the 

country-level not at the patient-level as in the single-level analysis. In univariate analysis only GNI, 

coronary revascularisation and percent randomised remained significant with smaller effect estimates 

compared to in the standard logistic analysis. A much larger proportion of the variability in mortality 

was attributed to variation between hospitals as shown by the inter-hospital and inter-country 

variances. 

After adjustment for patient risk factors none of these variables remained significantly associated with 

mortality and the allocation of residual variance attributed to unmeasured characteristics at the hospital 

and country levels changed. The variability in outcome attributed to hospital variation decreased by 

around 38% and the inter-country variances increased 2-3 fold becoming larger than the inter-hospital 

variances.  

After adjusting for region almost all of the variation in mortality between countries was accounted for. 

Health system performance was significantly associated with mortality however as in the standard 

logistic analysis the direction of the effect was not consistent with prior expectations. 

Regional variation remained highly significant in univariate analysis and after adjustment for patient 

risk factors and country-specific factors (P<0.001). Effect sizes for region group effects were similar 

in the standard logistic analysis although CIs were wider as multilevel models take into account the 

correlated nature of the data. Notwithstanding, all non-Western regions were still associated with 

significantly higher odds of mortality compared to Western countries as CIs did not overlap one. 

4.3.7  Treatment effects by region 

The 30-day mortality event rates were similar between the bivalirudin and heparin treatment arms for 

the overall cohort (Odds ratio (OR) = 0.96 (95% CI 0.86-1.07), P=0.46). Within regions there was a 

significant benefit with the use of bivalirudin instead of heparin in Asia (P=0.02), however the overall 

test for heterogeneous treatment effects across regions was not statistically significant (Figure 4.2). 

Bivalirudin was associated with a lower rate of adjudicated reinfarction than heparin for both the 96 

hour endpoint (OR = 0.70 (95% CI 0.56-0.87), P=0.001), and during the hospital stay (OR = 0.77 
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Table 4.6 Multilevel modeling results: effect of risk score and country factors on 30-day mortality and regional variation in the HERO-2 trial 

 Univariate analysis  Adjusted for risk factors  Adjusted for region and risk factors 
Country-specific 
factors* 

 Variance   Variance   Variance 
OR (95% CI) P Hospital Country  OR (95% CI) P Hospital Country  OR (95% CI) P Hospital Country 

GNI (÷ 1000) 0.98 (0.97-0.99) 0.01 0.115 0.021 0.99 (0.97-1.00) 0.15 0.072 0.069 1.02 (0.99-1.04) 0.06 0.079 0.0001 

Overall HSP (x 100) 0.99 (0.99-1.00) 0.11 0.116 0.026 1.00 (0.99-1.01) 0.82 0.071 0.082 1.02 (1.01-1.03) <0.001 0.063 0.00005 
DALE at 60 yrs 0.96 (0.91-1.01) 0.13 0.115 0.032 0.96 (0.90-1.02) 0.17 0.071 0.066 1.10 (0.99-1.21) 0.06 0.085 0.0008 
REVAS rates 0.99 (0.98-0.99) 0.04 0.115 0.032 1.00 (0.99-1.01) 0.54 0.071 0.083 1.00 (0.99-1.01) 0.36 0.077 0.0001 
LOS 1.02 (0.99-1.04) 0.07 0.113 0.028 0.99 (0.97-1.02) 0.70 0.070 0.083 1.02 (0.99-1.05) 0.07 0.069 0.00005 
RX rate (% eligible)† 1.00 (1.00-1.01) 0.03 0.116 0.035 1.00 (0.99-1.01) 0.65 0.070 0.086 1.00 (0.99-1.00) 0.11 0.070 0.00005 

 Univariate analysis  Adjusted for risk factors  
Adjusted for country-specific  

factors and risk factors‡ 
Region 

OR (95% CI)  P 
Variance  

OR (95% CI) P 
Variance  

OR (95% CI) P 
Variance 

Hospital Country  Hospital Country  Hospital Country 
Western Countries 1.0 <0.001 0.108 0.00005 1.0 <0.001 0.078 0.0001 1.0 <0.001 0.063 0.00005 
Latin America 1.68 (1.32-2.15)     1.75 (1.36-2.26)    2.36 (1.76-3.16)    
Eastern Europe 1.56 (1.27-1.92)     1.43 (1.16-1.77)    2.08 (1.56-2.76)    
Russia 1.90 (1.53-2.36)     1.28 (1.01-1.59)    2.67 (1.73-4.12)    
Asia 1.73 (1.22-2.44)     2.85 (1.99-4.02)    4.67 (3.06-7.13)    

*Odds ratios for country-specific factors are expressed per unit change of each variable. For example, 0.98 for GNI (÷ 1000) corresponds to a 2% reduction in the odds of 30-day mortality for each 
$1000 increase in GNI. 

†Calculated from assessment of patients recruited and screened (Table 4.3). 
‡Multivariable model including region, patient risk factors and single most significant country-specific factor: overall health system performance. 
 GNI = Gross national income per capita; HSP = health system performance; DALE = disability-adjusted life expectancy at age 60 (average of values for men and women weighted by enrolment of each 
sex in each country); REVAS = revascularisation; LOS = length of hospital stay; RX = randomisation; OR = Odds Ratio. 
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(95% CI 0.65-0.92), P=0.004). The treatment effects were similar across all regions for both 

outcomes. 

There was no evidence of heterogeneity in treatment effects across regions for the outcomes stroke 

(P=0.70) and severe bleeding (P=0.63). 

 

 

Figure 4.2 Effects of bivalirudin versus heparin according to region. Odds ratio of treatment effect, 

with adjustment for baseline prognostic factors. 
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4.4  Discussion 

In the HERO-2 trial we observed large variations in 30-day mortality rates across regions. We were 

unable to explain the differences using patient characteristics, patterns of care and national health and 

economic statistics. Significant variations were also observed for other outcomes such as reinfarction, 

stroke and severe bleeding which were also not explained. Our findings provide strong evidence that 

regional variation in the outcomes of AMI is real as we recruited large numbers in non-Western 

regions, more than in all previous studies. This work has not only confirmed earlier studies for regions 

previously studied [52, 80] but has extended them due to the added geographical diversity of the 

HERO-2 sample. The diversity in outcome rates is more extensive than previously realised with 

poorer outcomes also evident in Asia.  

The 30-day mortality rates seen in HERO-2 were similar to other trials in Western countries and Latin 

America both in trials of streptokinase and the newer thrombolytic agents [37-38, 52, 60-62]. Only 

two other trials in AMI have also recruited large numbers in Eastern Europe and Russia, namely 

InTIME-II [52] and MAGIC [80]. For these regions mortality was around 3% higher in MAGIC than 

in HERO-2, however MAGIC patients were on average six years older and only 20% received 

reperfusion treatment (i.e., thrombolytics or PCI) compared to 100% in HERO-2. In InTIME-II 

mortality was lower (7.3%) however patients had lower risk-factor profiles. The GUSTO-3 trial 

recruited 886 patients in Eastern Europe with similar risk-factor profiles to patients in HERO-2. The 

corresponding mortality rate was more similar to HERO-2 although not as high (8.7 vs. 10.2%). 

Similar regional trends were observed for other outcomes in InTIME-II. Bleeding rates varied 

significantly and were lowest in Eastern Europe and highest in Latin America. Non-fatal reinfarction 

rates were also highest in Western countries and lowest in Latin America. 

There were differences in patient risk factor profiles across regions; similar trends were seen in the 

MAGIC trial [80]. Most notably Western patients were on average older but this was negated by more 

favorable risk factors such as earlier presentation time and non-anterior MI. Also of critical clinical 

relevance there were more patients with Killip class ≥II in Eastern Europe and Russia. However 

differences in known risk factors did not account for the regional variation as these factors were 

adjusted for in the multivariable analysis. There may be differences in unknown risk factors not 

measured in HERO-2 such as ethnicity, lifestyle or genetic factors which may have contributed to the 

observed variation.  

There were differences in the patterns of care across geographical regions. Most relevant the use of 

revascularisation was substantially lower in non-Western regions and more delayed (data not shown) 

in Eastern Europe and Russia, consistent with other studies [52, 80]. We adjusted for differences in the 

use of revascularisation at the country level (i.e., rates of revascularisation by country), but this also 

did not account for the regional variation. This variable was not a strong predictor of mortality in 

HERO-2 as after adjustment for patient risk factors it was no longer significant as in Giugliano et al 

[52] who found no clear, simple relationship between revascularisation and short to medium-term 
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survival in InTIME-II. Conversely in another AMI trial, ASSENT-2, a significant relationship with 

30-day mortality was demonstrated after adjustment for baseline variables [49]. However the overall 

rate of revascularisation was higher in ASSENT-2 (30% compared to 6.2 and 24% in HERO-2 and 

InTIME-II respectively). Most importantly, in that study adjustment for country-level 

revascularisation rates in multilevel modeling did not eliminate the inter-country variation, as was the 

case in HERO-2. In HERO-2 adjustment for country-level median length of hospital stay also did not 

explain the variation.  

Domanski et al [80] was unable to explain the geographical variation in mortality in the MAGIC trial 

using baseline prognostic risk factors and individual treatments including concomitant drug use and 

attempted reperfusion. 

Another potential contributing factor was the higher rates of enrolment of screened patients into the 

HERO-2 trial in non-Western regions, particularly in Eastern Europe and Russia where the 

randomisation rate was 3-fold higher compared to in Western countries. Consequently there were 

more high-risk patients in these regions on the trial as shown by the increased number of patients with 

Killip class ≥II. However the disparity in mortality rates across regions was already evident in the 

sample of patients included in the screening log substudy; in-hospital mortality was around 2-fold 

higher in non-Western regions despite Western patients being the eldest group. In this sample large 

variations in treatment were also apparent with much lower use of reperfusion therapy in Russia and 

Eastern Europe. Mortality was still markedly higher in Latin America and Asia compared to Western 

countries despite similar rates of reperfusion therapy. In the overall trial adjustment for differences in 

enrolment rates at the country level (i.e., % randomised of eligible patients in each country) did not 

help to explain the regional variation.  

Regional differences in mortality were not due to dissimilarity in the completeness of follow-up as 

death status at 30 days was obtained for 99.9% of all patients. Regarding the major secondary endpoint 

reinfarction, for which Western countries had the highest incidence rate, regional differences were not 

due to a failure to identify events from the medical records as an independent audit showed that 

reporting of events was of a high standard across all regions. Also the same criteria needed to be met 

for a suspected reinfarction to be counted as a confirmed event and one independent committee 

adjudicated all suspected events. So it seems that the variation may be at least partially due to a 

difference in the detection of events; i.e., differences in sites monitoring practices such as performing 

enzyme and electrocardiogram checks.  

The multilevel analysis confirmed the findings of the single-level analysis for regional effects and 

enabled a valid assessment of the association between factors measured at the country-level and 30-

day mortality. The strength and statistical significance of associations between country-level variables 

and mortality was over-stated in the conventional logistic analysis consistent with Austin et al [50] 

who compared the two analytic strategies in patients hospitalised with AMI for the prediction of 1-

year mortality. Our method of adjusting for patterns of care differed to that used in MAGIC and 
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InTIME-II where patient-level variables were used for therapies such as concomitant drug use, 

attempted reperfusion and revascularisation. The drawback of this approach is that these variables are 

not measured at baseline and patients must survive long enough to be administered these therapies. 

Hence we preferred to adjust for differences in the average use of revascularisation between countries. 

The alternate approach did not explain the regional variation in MAGIC or InTIME-II. Multilevel 

analyses were not attempted in these trial datasets. 

In the multilevel modeling analysis none of the national health and economic variables explained the 

significant region effect or the country-level variation. The final inclusion of region in the model did 

explain the remaining variation due to unmeasured characteristics at the country level. This was 

contrary to the analysis in the ASSENT-2 data where country-level life expectancy was sufficient to 

explain virtually all of the remaining country-level variation [49]. In that analysis tests of significance 

were available as a specialised multilevel modeling software package was used; the country-level 

variance was highly significant (P<0.001) until life expectancy was adjusted for (P>0.5). However 

HERO-2 is substantially more geographically diverse; 85% compared to 7% of patients in ASSENT-2 

were recruited in non-Western countries. In HERO-2 region is a proxy for factors pertinent to country 

not already included in the model.  

The hospital-level variance in HERO-2 was never explained and was estimated at 0.063 in the final 

model. In ASSENT-2 the hospital-level variance was never significant and for the final model was 

very similar to in HERO-2 (i.e., 0.062; P=0.287). Our multilevel analysis had the limitation that we 

did not include physician- and hospital-level characteristics as this information was not available. A 

sensitivity analysis was done which included a variable on hospital volume constructed by classifying 

the participating hospitals into quartiles according to the number of patients enrolled; results were 

unchanged. However Austin et al [50] demonstrated that the level of unexplained variation attributable 

to variations between physicians and hospitals for 1-year mortality is small (2.8 and 0.6% 

respectively). Furthermore in that paper the effect of teaching hospital and on-site revascularisation 

capacity was not significant. The latter result accords with work by Llevadot et al [103] who 

demonstrated in InTIME-II that the availability of 24-hour on-site catheterisation facilities was not 

associated with 30-day and 1-year mortality outcomes. 

This study has a number of limitations. The grouping of countries into regions, although pre-specified, 

was somewhat arbitrary, based on geographical, racial or ethnic similarities. Selective recruitment may 

have contributed to the observed regional differences. For instance the availability of on-site 

catheterisation facilities may have influenced the recruitment of patients onto the trial. Also an 

increased use of fibrin-specific thrombolytics (i.e., alteplase, reteplase etc) was noted among Western 

screened patients (data not shown) suggesting an increased availability of these more advanced 

treatments in Western countries. This may have also effected recruitment as the trial protocol 

stipulated thrombolytic treatment with streptokinase. Evidently in Western countries doctor or patient 

preference was more often cited as the reason for not randomising patients. Another limitation is that 



 

66 

mortality was higher among non-participants than participants and recruitment was higher in non-

Western regions. However as stated earlier the regional variation was already evident among screened 

patients and differences in patient characteristics were adjusted for. Another issue concerns how 

representative were the hospitals that participated in the trial. Most likely participating hospitals 

included those that administer the best quality care. If this is so mortality may be even higher and 

more disproportionate. 

Given the prior evidence the observed differences are unlikely to be due to the play of chance. 

Processes of care issues are highlighted by the shorter time to treatment in the countries with the 

greatest use of revascularisation (i.e., Western countries). In Eastern Europe, Russia and Asia the most 

common reason for not randomising was ineligibility due to late presentation (i.e., time since symptom 

onset >6 hours). We also conducted a landmark analysis including only patients who survived the first 

24 hours (data not shown). The pattern of regional variation was consistent both before and after 24 

hours. This suggests if differences in processes of care within the first 24 hours explain part of the 

variation then these differences persist after 24 hours. The longer hospital stays in Eastern Europe and 

Russia are questionable and indicate perhaps more cost-effective use of health resources is needed. 

The large gap in survival rates from AMI between Western and non-Western regions needs to be 

closed. The cause of this discrepancy may be multi-faceted i.e., a combination of patient elements 

(e.g., lifestyle differences) and diversity in health care systems across regions. The results have 

elucidated differences in practices between regions and suggest that there is potential for improvement 

in the treatment of AMI in non-Western countries. 
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CHAPTER 5: RISK OF MORTALITY AFTER ACUTE MYOCARDIAL 
INFARCTION: PERFORMANCE OF MODEL UPDATING METHODS FOR 
APPLICATION IN DIFFERENT GEOGRAPHICAL REGIONS 

5.1  Introduction 

Randomised clinical trials follow rigorous scientific principles and are not subject to many biases 

inherent in other designs such as observational or retrospective studies [104]. Therefore they provide a 

rich source of information which, as required in the conduct of the RCT, is generally accurate and 

complete. Thus risk prediction models can be developed from such information for integration into 

clinical practice. However as mentioned earlier clinical trial-derived risk models may not generalise to 

real-world patients [58]. There are numerous potential reasons for limited generalisability; 

considerations include patient selection, geographical differences and temporal trends [105]. As a 

result a risk model may need to be updated for application to an external patient population. 

Steyerberg et al [57] used the GUSTO-I trial as the basis for an extensive evaluation of methods for 

updating risk models for AMI in Western countries. Re-calibrations and other methods were applied in 

samples of study subjects from 7 US regions and 6 other groupings (Belgium, Netherlands–United 

Kingdom, middle Europe, Israel, Canada, Australia–New Zealand). Simple re-calibration methods 

(i.e., re-estimation of the intercept or both intercept and slope of the linear predictor) were found 

preferable to more extensive model revision methods (re-estimation of some or all regression 

coefficients, model extension with more predictors) which only performed better when applied to large 

datasets in combination with shrinkage.  

This chapter compares methods for updating risk models in the HERO-2 trial. We extend the 

evaluation of Steyerberg et al [57] by applying methods to non-Western patient populations such as 

those of Russia, Eastern European, Latin American and some Asian countries. Simple re-calibration 

(re-estimation of the intercept and slope of the linear predictor within regions) and model revision (re-

estimation of all regression coefficients within regions) with and without shrinkage are compared to 

risk assessed using a global additive model with built-in region adjustments (i.e., the HERO-2 reduced 

model derived in Chapter 3 which is relabeled here the HERO-2 global risk (HGR) model, since the 

coefficients, the β’s, are common to all regions). The relative performance of methods in different 

geographical regions is of primary interest. 

Shrinkage is a general technique to improve an estimator so that better calibrated predictions result 

when the model is applied elsewhere [25]. When a calibration plot (i.e., plot of observed versus 

predicted responses) is constructed from the same dataset used to fit the model parameters, the 

estimation process forces the calibration slope (i.e., slope of observed versus predicted values) to be 

one. However, when the model is applied to an independent dataset, over-fitting will cause the slope 

of the calibration plot to be less than one, a result of regression to the mean. The bias in predictive 

accuracy measures that results from over-fitting in the final model fit is referred to as optimism [25]. 
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We applied shrinkage using penalised maximum likelihood estimation which executes the shrinkage 

during the estimation of model coefficients. This method also has the advantage that it can 

differentially shrink predictors and has been demonstrated to be less optimistic compared to heuristic 

and bootstrap shrinkage [106]. The method was applied to shrink estimated region-specific regression 

coefficients towards the global model coefficients. 

Simple re-calibration methods are attractive because of their stability; however their disadvantage is a 

potential for bias in the individual regression coefficients. Model revision, an alternative approach to 

risk calculations for a new population is expected to lead to less bias but higher variance in the 

updated model coefficients and predictions. The aims of this work are to determine whether region-

specific model revision provides worthwhile improvements in predictive accuracy over simple re-

calibration. If so, interactions between the level of improvement and geographical region may exist. 

The extent of improvement will depend on both the data information available in a region and the 

extent of true heterogeneity in risk factor effects by region (interactions). We will also assess whether 

shrinkage provides any benefit in the smaller regions where it is likely to be most effective. 

It is expected that, in the regions with large sample sizes, model revision with and without shrinkage 

will provide little benefit over simple re-calibration since these regions contribute much of the 

prognostic information to the global model. However, with Asia contributing little data to the trial, 

model revision in this region may improve prediction accuracy since it contributed less to the 

estimation of coefficients in the global model. 

We deemed it appropriate to base this study on the reduced version of the HERO-2 model as opposed 

to the full model as it may be more common to use such a reduced model in practical application. 

5.2  Methods 

5.2.1  Model updating methods 

We applied simple re-calibration involving region-specific estimation of the intercept and slope. A 

region-specific slope permits the estimate for the association between the LP of the logistic regression 

and outcome to vary by region. For this re-calibration, using the HGR model, we first formed, for 

every study participant, the LP that would be appropriate for them were they a Western patient, by 

subtracting the corresponding regional adjustment from the LP for subjects in non-Western regions. 

Designate the resulting “Westernised LP” to be LPW. Next we fitted a logistic model within each 

region with this Westernised LP included as the only covariate i.e. LPR = αR+βR LPW. 

The incorporation of regional adjustments into the HGR model is, effectively, simple re-calibration via 

regional updating of the intercept. These constants are reproduced by fitting a logistic regression 

model containing Westernised LP as an offset and the variable region i.e. LPR = αR+LPW. 

Model revision requires estimating region-specific coefficients. To do this, logistic regression models, 

containing the patient risk factors from the HGR model, were fitted for each region. Model revision 
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with additional shrinkage was applied using penalised maximum likelihood estimation in S-PLUS 7.0 

using functions from the Hmisc and Design libraries [68]. Shrinkage of estimated region-specific 

regression coefficients towards the global model coefficients was achieved by fitting models to each 

region, including the HGR model LP as an offset term. The syntax and further explanation is shown in 

Appendix A. 

5.2.2  Internal validation 

With EPV ≥40, optimism in the apparent estimates of model performance is small [66]. Accordingly, 

the optimism in Russia and Eastern Europe should be negligible, but in the other regions, especially 

Asia, the apparent model performance estimates may be overestimated. To obtain optimism-corrected 

estimates of model performance, bootstrap resampling was conducted [73]. 200 bootstrap samples of 

size 17073 were drawn with replacement from the original sample. Samples were drawn with 

stratification by region so as to retain the original regional distribution. Models as estimated in the 

bootstrap sample (with simple re-calibration or model revision with and without shrinkage applied) 

were evaluated in the bootstrap sample (bootstrap performance) and in the original sample (test 

performance). For test performance the value of the LP was calculated for each patient in the original 

sample as the linear combination of the regression coefficients as estimated in the bootstrap sample 

with the values of the covariables in the original sample, and if applicable, with simple re-calibration 

applied using parameters (e.g. αR, βR) estimated from the bootstrap sample. The difference between 

bootstrap and test performances is averaged to obtain a stable estimate of the optimism in apparent 

performance, since bootstrap performance is apparent performance in each bootstrap sample. The 

mean optimism is then subtracted from the apparent performance (i.e., performance of models derived 

from and tested on the original sample) to give the optimism-corrected estimate of performance.  

This procedure was followed for all but the calibration slope. The calibration slope, as estimated in 

each bootstrap sample, provides an apparent indication of miscalibration which could be overly 

optimistic. However, in the context of optimism and bootstrapping the calibration slope is the 

“uniform shrinkage factor” and the mean of the bootstrap estimates of test performance (‘slopes’) 

provide a stable and realistic estimate of the shrinkage factor. This uniform shrinkage factor, when 

multiplied by the estimated regression coefficients, provides predictions which calibrate better in 

future patients [107]. 

5.2.3  External validation 

The performance of the HGR model (LP) with original weights and with the application of model 

revision (i.e., Western and Eastern European specific weights derived from the HERO-2 data) was 

assessed in the GUSTO-I trial dataset used in Chapter 3. 
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5.3  Results 

The HGR model is displayed again in Table 5.1 for easy reference. 

 

Table 5.1 Coefficients of the HERO-2 global risk model 

Variable Parameter Estimate (SE) 
Intercept: -3.385 (0.240) 
Regional adjustment:  

Western countries - 
Latin America  0.641 (0.119) 
Eastern Europe  0.402 (0.097) 
Russia  0.452 (0.096) 
Asia 1.018 (0.154) 

Killip class*:  
I - 
II  0.740 (0.065) 
III-IV 1.647 (0.097) 

Slope of age:  
Killip class: I 0.080 (0.004) 

II 0.052 (0.005) 
III-IV 0.013 (0.008) 

Systolic BP  -0.019 (0.001) 
Heart rate† 0.032 (0.002) 
Anterior STE 0.465 (0.055) 
Female 0.445 (0.058) 

*Killip class effects at age 65. 
†For heart rate, values <70 are truncated at 70 and values >100 are truncated at 100.  

 

5.3.1  Performance of HGR model and simple recalibration 

In Table 5.2 we show the apparent performance estimates of the HGR model and results obtained after 

correcting for the expected over-optimism yielded from the bootstrapping procedure. 

The apparent discriminatory value of the HGR model when applied to the overall HERO-2 dataset was 

0.813, as measured by the c statistic, reflecting excellent discriminatory ability. Presented with two 

patients the multivariable model would correctly rank these patients 81% of the time. The same high 

ability to discriminate applied similarly within each region, except in Asia where the discrimination 

was marginally less. 

The calibration of model predictions, as indicated by the apparent calibration slope, was excellent in 

Western countries, Eastern Europe and Russia. In Asia and Latin America adjustments to the LP of 

about 11% in different directions were indicated. 
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Table 5.2 Bootstrap results for the HERO-2 global risk model 

 Western 
Countries 

Latin 
America 

Eastern 
Europe 

Russia Asia 

Apparent performance     
c statistic 0.807 0.823 0.798 0.821 0.759 
R2 (%) 20.2 28.6 22.5 29.1 18.1 
Brier score 0.056 0.077 0.079 0.092 0.086 
Calibration slope 1.04 1.11 0.96 1.01 0.89 

Bootstrap performance*     
c statistic 0.809 ± 0.015 0.824 ± 0.015 0.799 ± 0.009 0.821 ± 0.007 0.761 ± 0.030 
R2 (%) 20.4 ± 2.2 28.6 ± 2.6 22.6 ± 1.4 29.1 ± 1.4 18.2 ± 4.6 
Brier score 0.056 ± 0.003 0.076 ± 0.004 0.079 ± 0.003 0.092 ± 0.003 0.085 ± 0.007 
Calibration slope 1.05 ± 0.08 1.11 ± 0.07 0.96 ± 0.03 1.01 ± 0.03 0.89 ± 0.12 

Test performance*      
c statistic 0.807 ± 0.002 0.823 ± 0.001 0.798 ± 0.000 0.820 ± 0.001 0.758 ± 0.003 
R2 (%) 20.1 ± 0.3 28.5 ± 0.3 22.4 ± 0.1 28.9 ± 0.1 17.7 ± 0.6 
Brier score 0.056 ± 0.000 0.077 ± 0.000 0.079 ± 0.000 0.092 ± 0.000 0.086 ± 0.001 
Calibration slope 1.03 ± 0.02 1.10 ± 0.03 0.95 ± 0.02 1.01 ± 0.02 0.88 ± 0.03 

Expected optimism*     
c statistic 0.002 ± 0.015 0.001 ± 0.015 0.001 ± 0.009 0.000 ± 0.007 0.003 ± 0.030 
R2 (%) 0.3 ± 2.2 0.2 ± 2.6 0.2 ± 1.4 0.1 ± 1.4 0.5 ± 4.7 
Brier score 0.000 ± 0.003 0.001 ± 0.005 0.000 ± 0.003 0.000 ± 0.003 0.001 ± 0.007 
Shrinkage factor 1.03 ± 0.02 1.10 ± 0.03 0.95 ± 0.02 1.01 ± 0.02 0.88 ± 0.03 

Optimism-corrected performance     
c statistic 0.805 0.822 0.798 0.820 0.756 
R2 (%) 19.9 28.4 22.3 28.9 17.6 
Brier score 0.057 0.077 0.079 0.092 0.087 
Calibration slope 1.03 1.10 0.95 1.01 0.88 

*Mean ± SEB 

 

Overall performance, as indicated by R2 statistics, was highest in Latin America and Russia. 

The optimism-corrected estimates of performance measures were very similar to the apparent 

estimates as the expected optimism estimates were negligible. The average calibration slope on test 

estimated in the bootstrapping procedure were very consistent with the apparent performance 

estimates of the calibration slope, and the standard deviation of test performance was no more than 3% 

in any region. 

Applying simple re-calibration via region-specific re-estimation of intercept and slope is an 

alternative to the inclusion of regional indicators in the HGR model, and can be applied in other 

population groups. This approach gave an unchanged overall c statistic of 0.813 (0.812 after 

optimism-correction). By definition the c statistics for each region were unchanged. Calibration slopes 

obtained from the bootstrapping procedure were all very close to 1. Apparent measures of overall 

performance were again very similar to the HGR model results and optimism-corrected performance. 
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5.3.2  Performance of model revision 

Table 5.3 shows the apparent performance (and bootstrapping results) for application of model 

revision without shrinkage. Compared to simple re-calibration improvement in the apparent 

discriminatory ability was most noted in Asia. Only slight improvement was evident in Western 

countries and Latin America and no improvement in Eastern Europe and Russia. Adjustment for over-

optimism however lessened any apparently worthwhile gains from model revision. The overall 

apparent c statistic was 0.817 which after optimism-correction decreased to 0.812, no better than the 

performance of simple re-calibration. The same optimism occurred in the R2 statistic and Brier score, 

which after optimism correction showed no benefit from model revision. In Asia a 5.5% absolute 

increase was noted in the apparent R2 estimate, however the optimism-corrected estimate was 

markedly lower than that in simple re-calibration. In all regions except Asia the application of 

shrinkage produced virtually identical predictive performance results. In Asia the optimism-corrected  

 

Table 5.3 Bootstrap results for model revision (without shrinkage) 

 Western 
Countries 

Latin 
America 

Eastern 
Europe 

Russia Asia 

Apparent performance     
c statistic 0.818 0.831 0.798 0.822 0.788 
R2 (%) 21.6 30.2 22.8 29.2 23.6 
Brier score 0.056 0.075 0.079 0.092 0.081 
Calibration slope 1 1 1 1 1 

Bootstrap performance*     
c statistic 0.822 ± 0.013 0.833 ± 0.015 0.799 ± 0.008 0.823 ± 0.007 0.799 ± 0.028 
R2 (%) 22.5 ± 2.2 30.9 ± 3.0 23.0 ± 1.4 29.3 ± 1.4 25.9 ± 4.6 
Brier score 0.055 ± 0.003 0.074 ± 0.005 0.079 ± 0.003 0.092 ± 0.003 0.079 ± 0.007 
Calibration slope 1 1 1 1 1 

Test performance*      
c statistic 0.814 ± 0.003 0.827 ± 0.003 0.797 ± 0.001 0.821 ± 0.001 0.776 ± 0.010 
R2 (%) 20.7 ± 0.6 29.2 ± 0.5 22.5 ± 0.1 29.0 ± 0.1 18.3 ± 7.5 
Brier score 0.057 ± 0.000 0.076 ± 0.001 0.079 ± 0.000 0.092 ± 0.000 0.084 ± 0.001 
Calibration slope 0.95 ± 0.07 0.96 ± 0.07 0.99 ± 0.04 0.99 ± 0.03 0.85 ± 0.17 

Expected optimism*     
c statistic 0.008 ± 0.013 0.006 ± 0.016 0.002 ± 0.009 0.001 ± 0.007 0.024 ± 0.028 
R2 (%) 1.8 ± 2.4 1.7 ± 3.2 0.6 ± 1.4 0.4 ± 1.4 7.6 ± 9.1 
Brier score 0.001 ± 0.003 0.002 ± 0.005 0.001 ± 0.003 0.000 ± 0.003 0.005 ± 0.007 
Shrinkage factor 0.95 ± 0.07 0.96 ± 0.07 0.99 ± 0.04 0.99 ± 0.03 0.85 ± 0.17 

Optimism-corrected performance     
c statistic 0.810 0.825 0.796 0.821 0.764 
R2 (%) 19.8 28.5 22.2 28.8 16.0 
Brier score 0.057 0.078 0.079 0.092 0.086 
Calibration slope 0.95 0.96 0.99 0.99 0.85 

*Mean ± SEB 
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c statistic (0.768) showed slight improvement from model revision with application of shrinkage and 

the R2 statistic increased moderately (optimism-corrected R2 = 19.3%). 

Figure 5.1 summarises bootstrap resampling validation results for Asia, comparing the various model 

updating strategies. The test dataset is the observed HERO-2 dataset. The figure shows that, whatever 

criterion is used, the optimism of model revision, particularly without shrinkage, provided a biased 

result suggesting a better performance than will be realised. (Compare median bootstrap with median 

test performance for (c) and (d).) Comparing solid lines, optimism-corrected performance, the 

application of shrinkage (d) more consistently provided a slight optimism-corrected benefit over the 

performance of the HGR model (a) and simple re-calibration (b). 

Calibration slopes, for the test data, are shown in Figure 5.2 for all regions and model updating 

methods. The variability in estimates decreased with increasing regional sample sizes and was greatest 

in Asia. The performance of model revision improved marginally in Asia with the application of 

shrinkage (average calibration slope on test: (c) 0.85 vs. (d) 0.92). 

In summary, for the sample as a whole, applying updating methods to the HGR model made little or 

no difference (Table 5.4). Overall results did not concur with the Asia region where model updating 

did affect predictive performance and in some instances was detrimental. A small advantage was 

obtained when model revision was applied with shrinkage. 

 

Table 5.4 Updating methods considered for the HGR model and summary of performance 
measures (optimism-corrected) calculated for the overall HERO-2 dataset and only 
the Asia region 

No. Updating method Parameters 
estimated 

c statistic R2 (%) Brier score 

   Overall Asia Overall Asia Overall Asia 
1 No adjustment: 

HGR model; LP = αR+β1..9 
0 0.812 0.756 25.8 17.6 0.080 0.087 

2 Simple re-calibration: 
LP = αR+βRLPW 

10 (5 × 2) 0.812 0.756 25.7 17.3 0.081 0.087 

3 Model revision: 
LP = αR+βR,1..9 

50 (5 × 10) 0.812 0.764 25.6 16.0 0.081 0.086 

4 Model revision + shrinkage: 
 LP = αR+β1..9+λR+γR,1..9 

50 (5 × 10) 0.812 0.768 25.8 19.3 0.081 0.086 

Subscript R denotes region-specific estimate. In method 2 LPw is the linear predictor that would be appropriate for a 
Western patient. Method 4 involves estimating region-specific deviations (γ) from the HGR model coefficients with 
shrinkage applied. An adjustment to the intercept (λ) is required in order to have the overall mean of the shrunken 
model equal to the sample mean. See Methods Section 5.2.1 and Appendix A for further details. 

 

5.3.3  External validation in GUSTOI trial 

On application to GUSTO-I data the HGR model performed well and calibrated better than regional 

estimation of coefficients (model revision); predicted mortality rates were 6.9 and 6.2%, respectively, 
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Figure 5.1 Box-plots are shown for the bootstrap resampling validation results for Asia, comparing 

the HGR model and the updating strategies. The dashed and solid lines indicate the 

apparent and optimism-corrected performance estimates respectively. 
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Figure 5.2 Box-plots are shown for test performance estimates of the calibration slope obtained in 

the bootstrap resampling validation procedure comparing the HGR model and updating 

strategies. 
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compared with the observed rate of 7.3%. Results for all performance measures are summarised in 

Table 5.5. The HGR model explained a marginally higher proportion of the variability in observed 

mortality (R2). 

 

Table 5.5 Application of the HGR model and region-specific coefficients to GUSTO-I 

 HGR model Region-specific model revision 
c statistic 0.804 0.799 
Brier score 0.059 0.060 
R2 (%) 21.5 19.9 
Miscalibration: α = 0.11, β = 1.02 α = 0.02, β = 0.92 
P-value 0.04 <0.001 
 

5.4  Discussion 

Our risk estimates are derived from a trial based global model of 30-day mortality risk developed from 

international data. This model had excellent apparent discrimination overall, according to c statistics, 

and good agreement with data (R2 and Brier scores) within the trial population. However, because of 

different sample sizes, some regions contributed more information than others. As expected, estimated 

over-optimism was negligible in the regions which were well represented.  

In order to study the effects of model selection, we conducted an additional analysis where we applied 

backward selection to the full HERO-2 risk model in bootstrap samples. This strategy takes into 

account the uncertainty in the model selection process. In 71% of the bootstrap samples the model 

selected included the same risk factors that comprise the HGR model. This indicates that there was a 

model, consistently chosen, as might be anticipated given the high EPV -- at least 97 [26]. Given the 

consistency of this model selection, it is unlikely that an alternative modeling strategy for determining 

risk (for instance, Bayesian model averaging) would lead to much departure from HGR model 

predictions. Updating methods were then applied as before to the newly derived set of predictors in 

each bootstrap sample. All Tables and other results were virtually unchanged. 

The important recent evaluation of model revision methodology of Steyerberg et al [57] suggests that 

re-calibration of an existing model for a new environment can be as effective as more complex 

statistical approaches. Steyerberg compared the performance of different model updating methods 

applied to a previously published model (TIMI-II, n=3339) in samples from the GUSTO-I population 

of over 40 000 patients ranging from small (n=200) to large (n=10 000). In their study, extensive 

model revision methods only performed better than simple re-calibration for samples of size at least 

2000 and, even then, the gains achieved in discrimination and overall performance (i.e., Brier score) 

were very small. However, when the TIMI-II model was refitted in a smaller development sample 

(n=500), model revision did provide worthwhile gains for validation samples n≥500. Shrinkage 
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provided further improvement and was necessary to achieve a calibration slope near 1. This suggests 

model revision is more effective for models developed in small samples or specialised patient groups. 

This is plausible as the generalisability of these models would be questionable. 

In the above paper, Steyerberg et al compared updating methods using a Western based model in 

patients chosen from Western countries. Our study extends this earlier study for application outside 

the West. We further found that estimation using region-specific coefficients (i.e., model revision) was 

unnecessary. Whether a model is generally applicable is a practically important question. The results 

here were consistent across regions; model revision did not provide worthwhile gains over simple re-

calibration in both large and small regions and was often out-performed. 

The lack of clinically significant interactions with region in the full HERO-2 model provides an 

important simplification of HGR model risk estimates. However, it should be noted that the sample 

size for the trial was determined to adequately power a comparison of treatment groups, and may not 

be large enough to provide power for tests of interactions between region and individual risk factors, 

particularly for rare conditions. Indeed, testing calibration slope may provide a more sensitive test of 

regional consistency in association of actual and predicted level of risk. 

There were slight apparent improvements in predictive performance when model revision was applied 

in Asia. However due to small sample size most apparent gain was lost after adjustment for over-

optimism, though shrinkage did retain a small advantage. The Asia region provided the most 

interesting results as patients from this region seemed the most unlike others. The majority of patients 

from this region were recruited in India (n=565) and Malaysia (n=108). Only 62 patients were 

recruited from countries with Western-style health care systems, such as Singapore and Hong Kong. 

A more diverse study population with more events may have provided better information concerning 

risk factors thus potentially affording the HERO-2 risk models enhanced generalisability. However 

generalisability of risk factor effects may be hampered in the following situations. Temporal changes 

in the effects of predictors may occur as a result of new treatments emerging. For example the benefit 

of a new treatment may be dependent on certain patient characteristics. Differences in the definitions 

of predictors or in correlations between predictors in the development sample and the new setting may 

mean that some individual coefficients no longer apply [57]. And finally, true heterogeneity in effects 

of predictors may exist because a risk factor may not be measured. 

Our study differed to that of Steyerberg et al in two major respects. Firstly we did not update a model 

developed in a previous study. This is because no globally based risk models for 30-day AMI 

mortality, up to now, exist. Further an important question is whether the accuracy of globally based 

risk model predictions can be further improved by estimating region-specific coefficients. Secondly, in 

internal validation we did not test updated models on independent data by partitioning regions into 

separate training and test set portions. We preferred to utilise all available data to estimate updated 

models as reliably as possible. Bootstrapping was employed to obtain optimism estimates to correct 
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apparent performance measures. As anticipated, given the large sample size and event numbers, in 

most regions, the over-optimism was small. 

In Chapter 3 we examined various predictive models in HERO-2 and demonstrated that simplification 

resulted in little loss in predictive performance across all geographical regions. Therefore we expect 

that the results obtained here, in this investigation of updating strategies for the HGR model, would 

also apply to the full HERO-2 risk model. 

In this study simple re-calibration in regions by updating of the intercept has no effect since the HGR 

model already involves region. Simple re-calibration is more generally applicable when the target 

population is different, or when there is the possibility of interactions depending on levels of risk in 

the population, where re-calibration of slope is informative. 

What is the best basis for risk prediction? Augustin et al [26] compared approaches such as Bayesian 

and bootstrap model averaging to commonly used methods. These included risk prediction based on 

the full model (where all available covariates were included) and a single model selected using 

backward elimination (as applied here). They found that with sufficient events per variable (i.e., EPV 

≥10) the model averaging approaches did not improve predictions. However the Bayesian and 

bootstrap model averaging procedures provide posterior probabilities and inclusion frequencies, 

respectively, for both models and variables and therefore are useful for obtaining a better 

understanding of the data and for judging the certainty attached to a selected model. The full model, 

whilst it ensures that all relevant prognostic information is captured, has the disadvantage that it 

requires information on more risk factors; this may present difficulty if the model is applied in another 

study. As well, for models developed in small studies, parsimonious models may be more reliable. 

Sample size should be a major consideration when selecting a model development strategy. The 

decision of whether to apply a comprehensive model or a reduced form will depend on the setting and 

ease of application. However the potential for systematic over- or under-estimation resulting from 

omitting practically significant risk factors should not be overlooked. 

The point might be made that a model is useful for a new country, or for a new population of patients 

within a country, if and only if it does not need re-calibration, that is, is stable across a range of 

countries. The model itself should explain the inter-country differences - in principle at least - not just 

represent them by geographical parameters. More commonly, models developed for use in prediction 

of AMI in new populations will not be effective without re-calibration. In Chapter 4 we attempted to 

explain international differences in mortality rates using patient risk factors, treatments and economic 

statistics. The variation in mortality and other clinical outcomes across geographic regions was not 

adequately explained. Differences in the characteristics of patients not captured through measurement 

of traditional risk factors may be part of the explanation of the need for regional adjustment. For 

example genetic factors, ethnic origin or lifestyle may contribute, but were not measured in the trial. 

We prefer to include in risk models only risk factors that prove themselves in stratified analysis - i.e., 

with proven association to mortality within regions - not proxy factors that correlate with such 
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unknown characteristics of the population. Simple re-calibration with proven risk factors then remains 

appropriate in new populations. 

Of further interest is whether risk models for acute ST-elevation MI can be successfully re-calibrated 

to predict outcomes for patients with other acute coronary syndromes (e.g., UA or non-Q-wave AMI). 

An alternative would be more extensive model revision, with consideration of additional variables. 

Granger et al [12] derived a simple model to assess risk for in-hospital mortality for the entire 

spectrum of ACS using a global registry. External validation was performed using the GUSTO-IIb 

dataset of 12 142 patients with the full spectrum of ACS; the model performed well in both the ST-

segment and the non-ST-segment elevation subgroups. Furthermore the model identified risk factors 

which were similar to those of other AMI mortality models suggesting that simple re-calibration of 

existing models is appropriate for evaluation in patient populations with other acute coronary 

syndromes. This is however beyond the scope of this work. 

In conclusion, this chapter supports the findings of Steyerberg et al [57] that extensive model revision 

should only be attempted with relatively large validation samples in combination with shrinkage. 

Simple re-calibration in each new setting, requiring local data collection, is otherwise appropriate. At 

present model revision is only indicated for models developed on small samples or specialised patient 

groups. 
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CHAPTER 6: CROSSTRIAL COMPARISONS OF RISK MODELS 

6.1  Introduction 

Virtual Coordinating Centre for Global Collaborative Cardiovascular Research (VIGOUR) is a global 

collaboration of coordinating centres and investigators experienced in the conduct of large 

cardiovascular clinical trials [108]. It developed from a collaboration of investigators participating in 

the large, international Global Utilisation of Streptokinase and tPA for Occluded Coronary Arteries 

(GUSTO-I) trial, which began in 1990 [37]. The VIGOUR collaboration has a number of interests 

some of which include: examining mechanistic insights into how new diagnostic and therapeutic 

strategies exert their effects, examining processes of care and effects on patient outcomes, and 

evaluating international differences and practice patterns and their effects on outcomes. VIGOUR has 

accumulated large databases from serial trials to address key temporal trends, overviews, and 

subsidiary questions of importance to patients, care providers, sponsors, and regulators.  

Through the Clinical Trial Centre’s involvement in VIGOUR we have acquired data for four 

additional trials involving AMI patients. These trials include ASSENT-2 [60], ASSENT-3 [38], 

GUSTO-2b [61] and GUSTO-3 [62]. For this chapter we will use these trials, together with HERO-2 

and GUSTO-I, to readdress the issue of simple-calibration versus model revision by adapting and 

modifying approaches taken in earlier chapters, particularly Chapter 5. This additional data brings the 

combined database to almost 90,000 patients and will allow some additional questions of interest to be 

examined. Before going further we recap earlier material which is relevant to this chapter. 

In Chapter 3 we developed the HERO-2 model using a geographically diverse population and found 

that it performed well when applied to the GUSTO-I trial a Western patient population. However 

when we applied the GUSTO-I model to the HERO-2 heparin treatment arm we found that it had 

lower discriminatory ability in Asia and underestimated risk in non-Western patients. In Chapter 4 we 

explored differences in mortality rates between regions and found that there were no risk covariates 

available that fully explain the regional variation. This means that existing models developed in one 

region exhibit some bias, with resulting lack of accuracy, when applied to patients in other regions. 

This is a caveat in the recommendation for existing models, necessitating the need for model updating 

[57]. In Chapter 5 we conducted a study which compared simple calibration with model revision when 

both approaches are applied to a fitted reduced model, within regions of the HERO-2 dataset. This 

analysis investigated whether a global model or a model introducing region-specific weights was 

preferable. A limitation of this study was that independent data was not used to compare performance, 

so there was limited gain to be expected in regions which contributed most of the data. 

In this chapter we will continue with the comparison of simple calibration versus model revision, 

however we will consider it at the trial level. The question to be addressed is whether new models 

need to be developed from scratch, for a specific trial, or whether existing models with or without 

recalibration, can be applied. Chapter 3 touched on this issue, but this chapter will conduct a more 
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thorough investigation. We will compare the performance of models in their derivation datasets with 

the performance on the same data of models developed in other trials. Additional trials also enable us 

to validate and compare existing models on entirely independent data. In this instance, no model will 

have the advantage of being derived on the test dataset. The analysis will provide further validation of 

existing models. 

Models compared will include the HERO-2, GUSTO-I [1] and ASSENT-3 [9] models. As described 

earlier, the ASSENT-3 model is a dynamic risk assessment model which incorporates clinically 

relevant information unfolding during the hospital stay allowing risk assessment over the following 

forecasting periods beginning at day 0 (baseline), 3 h, day 2 and day 5. We will only consider the 

baseline model which incorporates variables based on electrocardiographic data. Such data are not 

commonly included in trial databases since they are complicated to summarise. Variables included ST-

segment deviation and QRS score [109]. Comparison of this model with the others, which contain 

more traditional and simple patient risk factor information, will establish whether or not it is 

worthwhile incorporating such variables. Since these variables are not available in the other trials, 

comparisons with the ASSENT-3 model will be limited to its derivation dataset with estimates of 

apparent performance obtained for each model. 

Since no model incorporating only simple risk factor information has been developed using the 

ASSENT data we will also derive a new model based on the ASSENT-2 trial data. The same candidate 

variables considered for inclusion in the HERO-2 model and modeling approach will be used to 

develop this model. In effect, this is application of a more extensive version of model revision [57] to 

the HERO-2 model in the ASSENT-2 trial.  

In addition we will examine how models perform when applied to later related trials and whether there 

is an advantage. Since similar sites participate in serial trials, patients are more similar. For example, 

does the ASSENT-2 model have an advantage over the HERO-2 and GUSTO-I models when applied 

to the ASSENT-3 trial population? In relevant work König et al [110] compared the performance of 

validation approaches using a logistic regression model developed to predict functional independence 

in stroke patients. Internal validation approaches including ten-fold cross-validation (CV) and leave-

one-clinic-out CV were employed to determine how well they estimate the temporal and geographical 

transportability of the model. For temporal validation, models are applied to patients recruited in the 

same clinics but during a later time period. Geographical transportability, also referred to as external 

validation, involves applying models to patients recruited from different clinics to those used for 

model building. Accuracy in actual temporal validation data was well predicted from ten-fold CV; 

however when predicting geographical transportability all approaches had difficulties. In temporal 

validation the model was not well calibrated, however neither shrinkage nor inflation of regression 

estimates was indicated. However in external validation calibration was low and predictions were too 

extreme indicating that both re-calibration and shrinkage was required. 
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Consequently we anticipate that calibration may be an issue when applying models to later related 

trials, due to temporal differences. However since similar hospitals take part in serial trials, patients 

will be similar, and therefore we expect the relationship between risk factors and death, projected by 

models, to hold.  

However when applying models to other geographical regions, hence ensuring different hospitals, 

miscalibration involving the need for shrinkage or inflation of model coefficients will be of interest. 

Decreases in discrimination, suggesting model revision (i.e., re-estimation of regression coefficients) 

may be of benefit, will be noted. The difference here compared with Chapter 5 is that a model 

developed in one or more specific regions will be assessed in another separate region, as opposed to 

comparing the performance in each region of a global model and a model with coefficients estimated 

in that region.  

After the application of simple calibration to a risk score that risk score may prove as good as the full 

model when applied in other populations. It is worth knowing, in selected validation datasets, the loss 

from using the HERO-2 risk score (HPI) in place of the full model. Comparisons will also be made 

with the previously developed TIMI risk score [3]. 

To summarise the aims are: 

• To determine whether new models need to be developed for new trials or whether recalibration 

of existing models is sufficient. Comparison of the performance of the HERO-2, GUSTO-I 

and ASSENT-2 models in respective derivation datasets will address this. 

• To compare the performance of models in entirely independent data. This will also provide 

further external validation. 

• To develop a new model based on the ASSENT-2 data. 

• To compare the performance of the ASSENT-3 model to models only containing traditional risk 

factors (i.e., no ECG indices). 

• To determine whether models display an advantage when applied in serial trials. 

• To gauge temporal and geographical validity – including assessment of whether the results 

concur with König et al [110] and the earlier chapters. 

• To examine the relative performance of the HERO-2 full model and risk score outside of 

HERO-2. 

• To compare the performance of the HPI and TIMI risk scores in independent data. 

6.2  Methods 

6.2.1  Trials and included patients 

Table 6.1 lists all VIGOUR trials with the six trials included in this chapter bolded. For these six trials 

patients came from 55 countries and have been grouped into the same geographical regions used in 

HERO-2. There were three additional countries that did not participate in HERO-2 for which 

discussion was required regarding the appropriate classification. These included Iceland, Israel and the 
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United Arab Emirates which were categorised as Western countries on the basis of their economic 

standing. 

 

Table 6.1 VIGOUR trials: trials included in this chapter are bolded 

Trial Sites Patients Countries Description 
ASSENT-II 1021 16,949 29 Tenecteplase vs. alteplase for acute MI 

ASSENT-III 575 6116 26 
Tenecteplase/IV heparin ± abciximab vs. 
tenecteplase/enoxaparin for acute MI  

ASSENT-III Plus 88 1639 12 
Tenecteplase + IV heparin or enoxaparin in 
prehospital setting for acute MI 

GUSTO-I 1081 41,021 15 Four thrombolytic strategies for acute MI 
GUSTO-IIa 227 2564 12 Hirudin vs. heparin in ACS 
GUSTO-IIb 373 12,142 13 Hirudin vs. heparin in ACS 
GUSTO-III 807 15,060 15 Reteplase vs. alteplase for acute MI 
GUSTO-IV ACS 458 7825 24 Abciximab vs. Placebo for ACS 
GUSTO-V AMI 820 16,588 20 Reteplase ± abciximab for acute MI 

HERO-II 539 17,073 46 
Bivalirudin + Streptokinase vs. IV heparin 
+ Streptokinase for acute MI 

PARAGON-A 279 2282 21 Lamifiban vs. heparin in ACS 
PARAGON-B 388 5225 30 Lamifiban vs. heparin in ACS 

SYMPHONY 670 9233 33 
Sibrafiban vs. aspirin, secondary prevention 
in ACS 

2nd SYMPHONY 625 6671 35 
Sibrafiban ± aspirin vs. aspirin alone, 
secondary prevention in ACS 

 

All of these trials compared therapies for the treatment of suspected MI with the exception of GUSTO-

2b which included patients with all types of acute coronary syndromes. In the GUSTO-2b clinical trial 

report patients were stratified according to the presence (n=4131) or absence (n=8011) of ST-segment 

elevation on the baseline electrocardiogram and considered to have non-Q-wave MI or unstable angina 

respectively. Analysis of all endpoints was stratified this way. For the sake of simplicity and since the 

subject matter here is risk assessment models for MI, only patients in the non-Q-wave MI stratum of 

GUSTO-2b are included in this work. 

For analysis purposes patients were classified according to whether they received streptokinase or the 

more modern fibrinolytic therapies known as tissue plasminogen activators. These include drugs such 

as alteplase, reteplase and tenecteplase which have proven to provide additional survival benefit 

compared to streptokinase [37]. 

The GUSTO-I trial compared four treatment strategies: streptokinase and subcutaneous heparin, 

streptokinase and intravenous (IV) heparin, accelerated t-PA and IV heparin, and both t-PA and 

streptokinase with IV heparin. To ease the application of other models to the GUSTO-I trial, the t-PA 

+ streptokinase combination treatment arm has been excluded from this chapter. 
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In all trials except GUSTO-I randomised treatment arms were pooled as no significant difference 

between treatments for their effect on 30-day mortality was demonstrated. 

6.2.2  ASSENT2 model development 

The model development procedure used to derive the HERO-2 model was followed for the ASSENT-2 

model. The same candidate predictors were considered with the caveat that the predictor variables 

angina and history of cerebrovascular disease were not available as the ASSENT trials did not 

collect this information. To reiterate: for the 16 949 patients enrolled in ASSENT-2, generalised 

additive models were applied in both univariate and multivariable contexts, to assess the shape and 

strength of the relationship between continuous clinical variables and 30-day mortality. Consequently 

systolic BP was fitted with a non-linear transformation applied; values above 140 were truncated at 

140, since the spline relationship between death and SBP was constant for these values. Backward 

stepwise logistic regression was performed; sixteen baseline variables entered the initial model and 

were retained if P<0.05. Interactions were assessed for variables that remained in the model; only 

significant interactions which were also deemed clinically important were retained. The variable 

region was considered for inclusion in the model after independent predictor variables, and 

interactions between them, had been identified. Interactions between region and the baseline 

characteristic variables were assessed starting with a global test of additivity [25]. The derived model 

is referred to as the ASSENT-2 model. 

6.2.3  Application of risk models 

When applying the HERO-2 full model to the ASSENT trials the effect of angina was not taken into 

account since this variable was not available. This means that the linear predictor was calculated as the 

linear combination of the regression coefficients for the HERO-2 full model and values of the 

covariables for each patient in the ASSENT datasets ignoring the angina variable. However given that 

in any model the magnitude of explanatory variable coefficients depend on the presence of other 

correlated variables in the model [25], simply applying the HERO-2 full model ignoring the angina 

term may result in miscalibration. To gauge the extent of this dependency in this context we refitted 

the HERO-2 full model to the HERO-2 dataset, excluding angina, to investigate whether the 

parameter estimates for the other predictors change when the effect of angina is not adjusted for. 

Most of the resulting model coefficients were very similar to the HERO-2 full model. However there 

were some differences which may not seem large but have an influence. The prior MI coefficient 

increased from 0.249 to 0.320, the hypertension coefficient increased from 0.130 to 0.164, and the 

region adjustment for Russia increased from 0.279 to 0.345. For the continuous variables the 

parameter estimate for age in Killip class I increased from 0.0772 to 0.0776; in the higher Killip 

classes even larger increases in the effect of age were observed (data not shown). The heart rate 

parameter estimate increased from 0.0301 to 0.0303. The increased effects for these continuous 

variables seem small but make a difference as they affect all patients. 
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Consequently both the original HERO-2 full model (ignoring the angina term) and this alternate 

model, which excludes angina, were applied to the ASSENT trials. This alternate model was also 

applied to the other trials to compare its performance with the complete HERO-2 model when 

information on angina is available. 

In this chapter the GUSTO-I model will be applied to both the heparin and bivalirudin treatment arms 

of the HERO-2 dataset; in Chapter 3 the bivalirudin group was excluded because its treatment term 

does not allow for bivalirudin. However there was no difference in 30-day mortality according to 

randomised treatment in the HERO-2 trial, so we have chosen to extend the inclusion criteria here. 

Accordingly the risk coefficient for the streptokinase + IV heparin treatment term in the GUSTO-I 

model will be applied to bivalirudin patients. 

The risk factor history of cerebrovascular disease will not be taken into account when applying the 

GUSTO-I model to ASSENT trial patients; as stated earlier this information was not collected. The 

resulting bias would be negligible as the typical proportion of patients with this risk factor is very 

small (<2.5%) [1, 39, 61-62]. 

6.2.4  Missing data 

Trials exhibited low rates of missing data on all variables other than time from symptom onset (17% 

missing in GUSTO-I), height (6 – 12% missing in all trials except HERO-2 (2%)) and location of MI 

(11% missing in GUSTO-2b). For all other variables missing rates were less than 3%. In GUSTO-I, 

where simple imputation was applied throughout, other variables with missing value rates above 1% 

included pulse (2.2%), SYSBP (2.0%) and weight (2.4%). The rules and methods applied for 

imputing missing data are described in Methods Section 2.1.2. 

Rates of missing data for 30-day mortality were very low across all trials (<0.5%) and all patients with 

unknown mortality status were assumed alive. 

One unusual case was removed from the GUSTO-2b dataset; this patient was characterised by a very 

large outlier for time from symptom onset to randomisation (>1 month). 

6.2.5  Treatment offset 

To assess how well models perform without recalibration, when applied to other trials, it is necessary 

to adjust for differences in the type of fibrinolytic therapy used. These adjustments can be made by 

using an offset term [81]. An offset can be thought of as a variable that is included in the model but 

whose coefficient, β̂ , is not estimated but rather is forced to be equal to 1. When calculating LP scores 

including an offset term a predetermined amount is added to the linear predictor. 

As stated earlier in GUSTO-I t-PA therapy was demonstrated to provide additional survival benefit 

over streptokinase. In other trials treatment effects were absent. The HERO-2 trial used streptokinase 

for fibrinolytic therapy, so to apply the HERO-2 model to trials using t-PA therapies an offset needs to 

be incorporated otherwise risk predictions will be over-estimated. Based on the results of the GUSTO-
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I trial a risk reduction of 14% was assumed for the effect of therapy with t-PA relative to 

streptokinase. This means that 0.151 is subtracted from the calculated LP when applying the HERO-2 

models to patients treated with t-PA therapies. Conversely if applying the ASSENT-2 model to 

HERO-2 patients 0.151 is added to the LP score since the ASSENT-2 patients were administered 

either tenecteplase or alteplase (i.e., t-PA).  

Patients in the GUSTO-2b trial with ST-segment elevation received t-PA (52%), streptokinase (22%), 

or neither, at the attending physician’s discretion for fibrinolytic therapy. Based on the GISSI trial 

[111] an 18% risk reduction was assumed for the effect of streptokinase versus no fibrinolytic therapy. 

So for patients treated with no fibrinolytic therapy values of either 0.349 or 0.199 were added to the 

model LP, which correspond to increases of 42% and 22% in the odds of death relative to patients 

treated with t-PA and streptokinase respectively. 

The GUSTO-I model incorporates adjustment for treatment with t-PA or streptokinase, so further 

adjustment of the calculated LP was only necessary for GUSTO-2b patients treated with no 

fibrinolytic therapy. The adjustment for no fibrinolytic therapy versus t-PA described above was 

applied, as the reference group for the GUSTO-I model treatment term is accelerated t-PA and IV 

heparin. 

6.2.6  Approach to chapter objectives 

6.2.6.1 Comparison of trials  

Firstly the characteristics of the trials included in this chapter will be documented. Then patients will 

be compared between trials. This will involve examining geographical, demographic and clinical 

characteristics. To assess differences in the overall risk profiles of patients, prognostic indices will be 

used including the HPI and TIMI risk scores. Following this 30-day mortality rates will be compared 

between trials both overall and stratified by region. 

6.2.6.2 Comparison of models 

Models will be compared by considering selected predictors, coefficient values and the relative 

amount of prognostic information contributed by predictors. The last listed aspect will employ the 

global χ2 statistic from the logistic model and a comparison of this index from the full model 

containing all variables with a reduced model excluding the predictor of interest [81]. The difference 

indicates the independent contribution of each variable after adjustment for all other factors and 

demonstrates the importance of a given predictor. A likelihood ratio test can be performed to obtain a 

P-value. 

6.2.6.3 Recalibration 

Models will be applied as they are, i.e., without re-calibration, to whole trials unrestricted by region 

and within regions. Subsequently trial-level re-calibration will be applied by fitting the following 

model: logit(observed mortality) ~ αTRIAL +βTRIAL(LP+offset). LP refers to the model linear predictor 
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as described in Chapter 3 and offset is the adjustment for fibrinolytic treatment described above. The 

performance of trial-level calibration will be assessed for trials overall and subdivided by region. 

In addition trial-region level re-calibration will be applied. This will involve estimating trial-region 

specific intercepts and trial specific slopes according to the following model: logit(observed mortality) 

~ αTRIAL, REGION +βTRIAL(LP+offset). Hence within each trial, region specific intercepts will be estimated 

which will correct for regional differences but a common slope will be assumed for the relationship 

between the LP and mortality. The effect on R2 of this additional level of calibration will be of main 

interest. 

6.2.6.4 Calibration of prognostic indices and comparison with HPIFULL 

Prognostic indices including the HPI and TIMI risk scores (refer to Chapter 3 for details on included 

risk factors and weights) will be calibrated by trial and region by fitting the following model: 

logit(observed mortality) ~ αTRIAL, REGION+(βTRIALRisk score)+offset. The offset will only be applicable 

in GUSTO-I as this was the only trial to demonstrate a significant effect of fibrinolytic treatment; i.e., 

the offset constant will be zero in the remaining trials since adjustment for treatment is not necessary. 

This is equivalent to including a term for treatment in the model except the effect of treatment is 

forced based on published results (described above in Section 6.2.5) as opposed to re-estimating it 

from the data. 

To facilitate a fair comparison of the risk scores with a risk model, trial-region level re-calibration will 

be applied to the HERO-2 full model in this comparison. 

The predictive performance of these risk assessment strategies will then be assessed in trials overall 

and subdivided by region. The need for region specific slopes when applying simple calibration to risk 

scores is also considered. 

6.2.6.5 Predictive performance 

Predictive performance measures will be calculated for each trial both overall and within regions. 

The application of trial-level re-calibration by definition will not change c statistics. For trial-region 

level re-calibration overall results may change.  

To assess calibration we used the intercept and slope framework as described in Methods Section 2.2. 

To reiterate the following logistic model is fitted: observed mortality ~ α +β linear predictor. Well 

calibrated models have an intercept α of zero and a slope β of one meaning no adjustment to risk 

forecasts is required. After recalibration is applied overall results will not be useful as by definition the 

intercept will be zero and the slope one. Results within regions will still provide information. After 

trial-region level re-calibration the calibration slope will only be useful as by definition calibration-in-

the-large will be perfect overall and within regions. 

Because in this approach the estimate of the intercept depends on the estimated slope, the adjustment 

to patient risk levels to correct calibration-in-the-large is only uniform when the slope is 1. 
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6.3  RESULTS 

6.3.1  Trial characteristics 

Characteristics of the trials included in this chapter are described in Appendix B Table A1. The 

GUSTO trials ran from 1990 through to 1997 and were followed by ASSENT-2, HERO-2 and then 

ASSENT-3 which began recruiting in May 2000. All of these trials were multinational and compared 

either fibrinolytic or antithrombotic therapies for the treatment of AMI or unstable angina. 

The eligibility and inclusion criteria for the 6 trials were very similar except for GUSTO-2b which 

enrolled patients with chest discomfort within 12 hrs as opposed to the 6 hour cut-off used in other 

trials. Also less severe symptoms needed to be exhibited on the baseline electrocardiogram since the 

target population was all ACS and not exclusively AMI.  

All trials had 30-day mortality as their primary outcome or at least as a component if this were a 

composite endpoint. 

Only the GUSTO-I trial established a significant difference according to randomised treatment for 30-

day mortality. This trial found that the combination of accelerated t-PA with heparin provided a 

survival benefit over previous standard thrombolytic regimens including streptokinase administered 

with either intravenous or subcutaneous heparin. 

6.3.2  Patient characteristics by trial 

As already discussed the representation of patients from non-Western countries in HERO-2 was high. 

In comparison the ASSENT and GUSTO trials recruited predominantly from sites in Western 

countries (Table 6.2). 

 

Table 6.2 Regional distribution of VIGOUR patients 

    Region, n (%) 

Trial  Overall, N  West EE Russia LA Asia 
GUSTO-1†  30647 30375 (99) 272 (1) - - - 
GUSTO-2b‡  4130 4130 (100) - - - - 
GUSTO-3  15059 14052 (93) 886 (6) - 121 (1) - 
HERO-2  17073 2563 (15) 5877 (34) 6057 (36) 1820 (11) 756 (4) 
ASSENT-2  16949 15754 (93) 475 (3) - 720 (4) - 
ASSENT-3  6095 5465 (90) 90 (1) - 540 (9) - 

†Excludes t-PA + streptokinase + IV heparin treatment arm; ‡ST-segment elevation stratum only. 
West = Western countries; EE = Eastern Europe; LA = Latin America. 

 

Table 6.3 documents patient demographic and clinical characteristics. There were higher proportions 

of females, patients with hypertension and patients classified as Killip class II or higher in HERO-2. 

The proportion of patients in HERO-2 having a previous revascularisation was smaller than in the 
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other trials. There was substantial variation in the delay from symptom onset to randomisation 

across the trials; the proportion of patients receiving treatment more than 4 hours after symptom onset 

varied from 12% in GUSTO-I to 35% for the AMI stratum in GUSTO-2b. 

 

Table 6.3 Characteristics of VIGOUR patients, by trial*. Numbers are percentages unless 
indicated otherwise. 

   Demographics: 

Trial: N  Age (yrs)§ Age 75+ yrs Female Weight (kg)§ Height (cm)§ 

GUSTO-1† 30647  62 (52, 70) 12 25 78 (70-89) 172 (165-178) 
GUSTO-2b‡ 4130  63 (53, 71) 15 24 77 (68-86) 170 (165-177) 
GUSTO-3 15059  62 (52, 71) 16 27 78 (70-87) 171 (165-177) 
HERO-2 17073  62 (52, 70) 13 28 75 (68-85) 170 (164-175) 
ASSENT-2 16949  61 (52, 70) 15 23 78 (69-87) 170 (165-177) 
ASSENT-3 6095  61 (52, 70) 14 24 78 (69-88) 170 (165-176) 

  Risk Factors:  Cardiovascular history:  Treatment: 

  Current 
smoker 

Diabetes HTN  Angina Prior 
MI 

Prior 
CVD 

Prior 
Revasc 

 symptom 
onset >4 

hours

GUSTO-1†  43 15 38  37 17 2.0 8  12 
GUSTO-2b‡  41 16 40  48 17 1.7 10  30 
GUSTO-3  41 16 39  41 18 2.5 8  18 
HERO-2  44 14 52  47 15 1.3 2  29 
ASSENT-2  45 16 38  - 16 - 8  19 
ASSENT-3  46 18 41  - 14 - 8  19 

  Presenting characteristics: 

  Anterior MI  SYSBP 
(mm Hg)§ 

DIABP 
(mm Hg)§ 

Heart rate 
(bpm)§ 

Killip class: 

II III or IV 

GUSTO-1†  39 130 (112-144) 80 (70-90) 73 (62-86) 13 2.1 
GUSTO-2b‡  44 130 (115-148) 80 (70-90) 74 (64-86) 10 1.6 
GUSTO-3  48 135 (119-150) 80 (70-90) 73 (62-86) 12 1.9 
HERO-2  45 134 (120-150) 80 (70-90) 76 (65-88) 18 3.9 
ASSENT-2  40 133 (120-150) 80 (70-90) 72 (62-85) 10 1.6 
ASSENT-3  39 132 (119-150) 80 (70-90) 73 (62-85) 10 1.5 

*P-value<0.001 for all comparisons by trial. †Excludes t-PA + streptokinase + IV heparin treatment arm. ‡ST-segment 
elevation stratum only. §Median (IQR). CVD = cerebrovascular disease; Revasc = revascularisation; HTN = 
hypertension; DIABP = diastolic blood pressure. 

 

Overall risk, measured with the HPI and TIMI risk scores, is summarised in Table 6.4. Patients in the 

ASSENT trials were associated with lower average risk profiles. HERO-2 patients had the highest 

overall risk however this is because of a high representation of Russian patients who had higher 

average risk profiles. 
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Table 6.4 Risk scores by trial and region  

   Region  
Trial  Overall  West EE Russia LA Asia P‡ 
HPI risk score   Mean (SD)  

GUSTO-1*  2.7 (2.6)  2.8 (2.6) 2.4 (2.5) -  - 0.021 

GUSTO-2b†  2.8 (2.5)  2.8 (2.5) - -  - - 

GUSTO-3  3.0 (2.6)  3.0 (2.6) 2.9 (2.6) - 2.8 (2.5) - 0.167 

HERO-2  3.0 (2.7)  2.8 (2.5) 2.9 (2.6) 3.4 (2.9) 2.5 (2.5) 1.9 (2.1) <0.001 

ASSENT-2  2.7 (2.5)  2.7 (2.5) 2.5 (2.5) - 2.3 (2.5) - <0.001 

ASSENT-3  2.6 (2.5)  2.6 (2.5) 3.3 (2.7) - 2.5 (2.5) - 0.014 

All trials  2.8 (2.6)  2.8 (2.6) 2.9 (2.6) 3.4 (2.9) 2.5 (2.5) 1.9 (2.1) <0.001 

TIMI risk score  Mean (SD)  

GUSTO-1*  3.0 (2.2)  3.0 (2.2) 2.9 (2.2) -  - 0.548 

GUSTO-2b†  3.3 (2.2)  3.3 (2.2) - -  - - 

GUSTO-3  3.2 (2.2)  3.2 (2.2) 3.3 (2.2) - 3.4 (2.2) - 0.468 

HERO-2  3.4 (2.3)  3.0 (2.2) 3.3 (2.2) 3.8 (2.4) 3.2 (2.2) 3.2 (1.9) <0.001 

ASSENT-2  2.8 (2.2)  2.8 (2.2) 2.7 (2.2) - 2.9 (2.1) - 0.273 

ASSENT-3  2.8 (2.1)  2.7 (2.1) 3.5 (2.3) - 3.0 (2.1) - <0.001 

All trials  3.1 (2.2)  3.0 (2.2) 3.2 (2.2) 3.8 (2.4) 3.1 (2.2) 3.2 (1.9) <0.001 

*Excludes t-PA + streptokinase + IV heparin treatment arm. †ST-segment elevation stratum only. ‡P-value for chi-
squared test of association between region and 30-day mortality. West = Western countries; EE = Eastern Europe; LA 
= Latin America. SD = Standard deviation. 

 

6.3.3  Mortality by trial 

Table 6.5 shows 30-day mortality rates by trial and region. Overall mortality in HERO-2 was higher 

due to high recruitment in non-Western countries. In the other trials mortality was also generally 

higher in the non-Western regions, more so in Latin America. In Western countries crude mortality 

rates were lowest in ASSENT-3 (5.7%) and highest in GUSTO-3 (7.3%), which correlates with 

average overall risk (Table 6.4). 

Aside from differences in overall risk levels variations in mortality may also be attributable to 

differences in the type of fibrinolytic therapy used, as considered earlier. Also there were differences 

in eligibility and inclusion criteria; the MI’s suffered in the ST-segment elevation stratum of GUSTO-

2b may have been less severe and as a result there were fewer deaths. 

The mortality rate for Eastern Europe in HERO-2 appears to be an outlier. Average risk profiles for 

these patients were no higher than GUSTO-3 and ASSENT-3 patients in this region. The HERO-2 

mortality rate for this region should be considered as reliable as it is based on almost 6000 patients, 

which is substantially more than the other trials. 
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Table 6.5 Thirty-day mortality by trial and region 

    Region   

   Overall  West EE Russia LA Asia   

Trial N  Deaths %  Deaths (%)  P‡ 

GUSTO-1* 30647  2128 6.9  6.9 8.8     0.22 
GUSTO-2b† 4130  250 6.1  6.1      - 
GUSTO-3 15059  1113 7.4  7.3 8.7  12.4   0.03 
HERO-2 17073  1850 10.8  6.7 10.2 13.2 10.8 11.0  <0.001 
ASSENT-2 16949  1045 6.2  6.0 5.9  10.4   <0.001 
ASSENT-3 6095  364 6.0  5.7 6.7  8.9   0.01 
All trials 89953  6750 7.5  6.6 9.7 13.2 10.4 11.0  <0.001 

*Excludes t-PA + streptokinase + IV heparin treatment arm. †ST-segment elevation stratum only. ‡P-value for chi-
squared test of association between region and 30-day mortality. West = Western countries; EE = Eastern Europe; LA 
= Latin America. 

 

6.3.4  Comparison of models 

Table 6.6 shows a comparison of the HERO-2, ASSENT-2 and GUSTO-I model coefficients. The 

ASSENT-3 dynamic model is shown in Appendix B Table A2. There is a notable similarity in the 

effect of coefficients across the trials. The HERO-2 model re-calculated with the angina term omitted 

is presented to show the effect on the remaining regression coefficients of not adjusting for angina 

(see Methods Section 6.2.3). 

The derived ASSENT-2 model is very similar to the HERO-2 model but fewer variables were 

selected; diabetes and time from onset to randomisation were eliminated in the backward step-down 

procedure. Confirming the findings of the HERO-2 model, significant region effects were also found, 

with non-Western patients associated with increased mortality risk.  

Compared to the HERO-2 model the effect of SYSBP was estimated as larger in GUSTO-I and 

ASSENT-2 (for SYSBP below 120 and 140 respectively). Conversely the effect of heart rate in 

GUSTO-I and ASSENT-2 was smaller, at least in the 70-100 range. For the GUSTO-I model the age 

by Killip class interaction involved less attenuation of the age effect in higher Killip classes than in 

HERO-2 and ASSENT-2. 

The increased risk associated with the risk factors prior MI and hypertension was estimated as larger 

in GUSTO-I and ASSENT-2 respectively. 

A smaller effect for female gender was inferred by the ASSENT-2 model compared to HERO-2. 

The increased risk associated with increasing time from symptom onset to randomisation was 

estimated as larger in GUSTO-I compared to HERO-2 for times above 2 hours.  

The GUSTO-I model encompasses several effects not included in the HERO-2 model. These include 

smoking status, prior CABG, cerebrovascular disease, height and weight. To gauge whether or not 
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Table 6.6 Models as developed within each separate trial 

*Values outside range truncated. †Linear spline with 1 knot at 50 (subtracted 1.968 from GUSTO-I model intercept). 
CVD = cerebrovascular disease; SK = streptokinase; SC = subcutaneous; rx = randomisation; HT = height; HTN = 
hypertension. 
   

Model: Variable: 
   Region:  
 Intercept  Western 

countries 
Latin 
America 

Eastern 
Europe 

Russia Asia  

HPI-FULL -8.099  0 0.562 0.320 0.279 1.012  
 -minus angina -8.089  0 0.576 0.351 0.345 1.004  
ASSENT-2 -6.364  0 0.750 0.091 - -  
GUSTO-1 1.844  0 - - - -  
  Killip class:   Slope of age (yrs):  
  I II III IV   I II III IV  
HPI-FULL  0 2.450 5.071 6.414   0.077 0.050 0.019 0.010  
 -minus angina  0 2.452 5.056 6.379   0.078 0.051 0.020 0.011  
ASSENT-2  0 3.150 5.102 5.947   0.082 0.045 0.023 0.023  
GUSTO-1  0 2.080 3.623 4.039   0.076 0.055 0.041 0.044  

 Systolic BP (mm Hg) Heart rate (bpm) Time to rx (hrs) Female 
HPI-FULL -0.018 0.030 (70-100)* 0.038 0.411 
 -minus angina -0.018 0.030 (70-100)* 0.038 0.412 
ASSENT-2 -0.027(≤140)* 0.018 - 0.225 
GUSTO-1 -0.040(≤120)* 0.018 (50+)† 0.093 (2+)* - 

  MI location:   Smoking status:  
  Anterior Inferior Other   Never Ex-smoker Current  
HPI-FULL  0 -0.509 -0.306   - - -  
 -minus angina  0 -0.512 -0.312   - - -  
ASSENT-2  0 -0.399 -0.255   - - -  
GUSTO-1  0 -0.536 -0.260   0 -0.213 -0.219  
  History:   
  Angina CABG CVD MI  Diabetes HTN 
HPI-FULL  0.229 - - 0.249  0.270 0.130 
 -minus angina  - - - 0.320  0.276 0.164 
ASSENT-2  - - - 0.227  - 0.239 
GUSTO-1  - 0.352 0.341 0.412  0.250 0.165 
  Fibrinolytic therapy:  
  Accelerated t-PA SK+IV heparin SK+SC heparin t-PA+SK+IV 

heparin 
 

GUSTO-1  - 0.214 0.197 0.140  
 Weight (kg) Height (cm) 
GUSTO-1 -0.0074 -0.03972HT+0.0001835(HT-154.9) 3

+ -0.0008975(HT-165.1) 3
+

+0.001587(HT-172.0) 3
+ -0.001068(HT-177.3) 3

+ +0.0001943(HT-185.4) 3
+  
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these variables were dropped from the HERO-2 model due to lesser power or just weaker associations 

we refitted the HERO-2 model including these extra factors. The estimated effect for prior 

cerebrovascular disease was almost as large (OR = 1.41 vs. 1.37). For smoking status there was no 

independent association, although when gender is omitted from the model this predictor becomes 

significant (P=0.01) and further the coefficients are very similar to the GUSTO-I model. This suggests 

that smoking status was included in the GUSTO-I model because gender was not adjusted for. For 

the other variables relations with mortality were much weaker. 

In view of the apparent differences in some coefficient effects we compared the relative importance of 

predictors between models. To do this we ranked predictors according to how much prognostic 

information they independently contributed to each model. These results are shown in Table 6.7. In 

general all models identified age, SYSBP, Killip class, heart rate, location of MI and the age by 

Killip class interaction as the most significant independent predictors of mortality. Discrepancies 

included prior MI and time to treatment which were more important in the GUSTO-I model, 

consistent with their larger effect estimates in this model. Also hypertension ranked more highly in 

the ASSENT-2 model, consistent with its larger effect size. Lastly gender was more important in the 

HERO-2 model than in ASSENT-2 and its effect size was double the magnitude. 

It is well known that coefficients (and their strength) are affected by the other explanatory/risk 

variables included in the model. For example a variable may have a stronger coefficient in one model 

because it is a proxy for other correlated effects which were not adjusted for but were included in the 

comparison model. This means that models can only be compared in the context of the variables 

which were adjusted for. This may be an explanation as to why prior MI was a much stronger 

predictor in the GUSTO-I model, as angina was not adjusted for which is correlated with prior MI. 

Also hypertension had a much stronger effect in the ASSENT-2 model, which is also correlated with 

angina a risk factor not considered for this model. 

The issue remaining:  

Despite models differing in their assessment of risk factors and their importance, are predictors of risk, 

depending on the model adopted, substantially different among participants in different trials and 

regions. Further, can re-calibration to the target population make models better applicable? 
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Table 6.7 Independent contribution of each variable to each model. Variables are ranked in order of importance in terms of how much they  

 contribute after adjustment for all other factors in the list. 

 GUSTO-1*  HERO-2  ASSENT-2  
 Variable Adjusted χ2 Rank  Variable Adjusted χ2 Rank  Variable Adjusted χ2 Rank  
 Age, y† 717 1  Age, y† 541 1  Age, y† 501 1  
 SYSBP, mm Hg 550 2  SYSBP, mm Hg 218 2  SYSBP, mm Hg 180 2  
 Killip class† 350 (3 df) 3  Heart rate, bpm 151 3  Heart rate, bpm 110 3  
 Heart rate, bpm 275 (2 df) 4  Killip class† 101 (3 df) 4  Killip class† 55 (3 df) 4  
 Location of MI 143 (2 df) 5  Location of MI 78 (2 df) 5  Age-by-Killip-class 35 (3 df) 5  
 Prior MI 64 6  Age-by-Killip-class 57 (3 df) 6  Location of MI 31 (2 df) 6  
 Age-by-Killip-class  29 (3 df) 7  Gender 47 8  Region 25 (4 df) 7  
 Height, cm 31 (4 df) 8  Region 48 (4 df) 7  Hypertension 12 8  
 Time to treatment, h 23 9  Diabetes 15 9  Gender 9 9  
 Diabetes 21 10  Angina 14 10  Prior MI 7 10  
 Weight, kg 16 11  Prior MI 12 11      
 Smoking  22 (2 df) 12  Hypertension 5 12      
 Thrombolytic therapy 15 (3 df) 13  Time to treatment, h 3 13      
 Previous CABG 16 14          
 Hypertension 14 15          
 Prior CVD 10 16          

*Taken from Lee et al [1]. 
†The likelihood ratio tests for age and Killip class were conducted following the same approach taken in the GUSTO-I model publication, i.e., the age-by-
Killip-class interaction was not dropped from the reduced model. We also conducted the tests for these variables by removing both the main effect and 
interaction term and found that age and Killip class were still among the five most important predictors in both the HERO-2 and ASSENT-2 models. 
CVD = cerebrovascular disease. 
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6.3.5  Performance of models 

6.3.5.1 Discriminatory ability 

Discriminatory ability results for “HPI-FULL – angina” were very similar to HPI-FULL and so are 

shown in Appendix B. 

Table 6.8 shows the overall results for the discriminatory ability of models in each VIGOUR dataset. 

Discrimination was excellent as c statistics were around 0.81 for all models. There is no evidence of 

row or column effects; no model performed consistently better and performance was not better in any 

one trial or group of trials. At the cell level it can be seen that within a particular trial dataset (column) 

the model that was developed on that dataset generally performed best, although only a little better 

than other models. Comparing across trials (rows), models achieved the best results in the dataset they 

were developed on, however their performance was almost the same in other datasets. Differences in 

average performance by model were very slight. 

 

Table 6.8 Overall c statistic results  

  Population dataset   

Model  HERO-2 ASSENT-2 ASSENT-3 GUSTO-I GUSTO-2 GUSTO-3  Med‡ 

HPI-FULL*  0.818 0.809 0.807 0.811 0.817 0.818  0.814 
GUSTO-1†  0.812 0.808 0.803 0.819 0.809 0.825  0.811 
ASSENT-2*  0.809 0.813 0.809 0.811 0.820 0.821  0.812 
Median  0.812 0.809 0.807 0.811 0.817 0.821  0.812 

*Treatment offset incorporated. 
†GUSTO-1 LP calculated ignoring history of cerebrovascular disease in ASSENT trials. 
‡Median. 

 

The results by region are shown in Appendix B Table A3. There is no consistent evidence of an 

advantage of a particular model or models in a particular region, hence no evidence of an interaction 

between model and region. 

Since the performance of models within each trial-region subset was very consistent we have 

summarised these results by taking the median model c statistic (Table 6.9). There were particular trial 

effects; c statistics increased to around 0.86 in GUSTO-3 for Latin America and in ASSENT-3 for 

Eastern Europe. In HERO-2 all models suffered a decline in performance when applied to Asian 

patients; c statistics dropped to around 0.76. This may be evidence of the importance of region to 

performance independent of model within a particular trial dataset. However the increases observed in 

GUSTO-3 and ASSENT-3 may be consistent with chance as patient numbers were small. 

On independent datasets from a later related trial the related models most often performed best, 

however only minor gains in discriminatory capacity were observed. For example, the ASSENT-2 and 
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Table 6.9 Median c statistics (3 models), by region  

  Population dataset   

Region  HERO-2 ASSENT-2 ASSENT-3 GUSTO-I GUSTO-2 GUSTO-3  Med* 

Western  0.813 0.810 0.806 0.813 0.817 0.822  0.813 
EE  0.797 0.788 0.863 0.744  0.805  0.797 
Russia  0.822       0.822 
LA  0.824 0.786 0.799   0.859  0.812 
Asia  0.766       0.766 

Western = Western countries; EE = Eastern Europe; LA = Latin America. 
*Median. 

 

GUSTO-I models performed best overall and in all regions except Latin America when applied in 

ASSENT-3 and GUSTO-3 respectively. 

The results also demonstrate that models developed in primarily Western patients, i.e. the GUSTO-I 

and ASSENT-2 models, hold up well in Eastern Europe and Russia. Conversely, as demonstrated by 

the HERO-2 model, a model developed in predominantly Eastern Europe and Russia holds up well 

when applied in the West. Concerning the discriminatory ability of the ASSENT-3 dynamic model at 

day 0 (i.e., baseline version of the model), a c statistic of 0.82 was reported for apparent performance 

[9]. The discriminatory performance of the models here when applied in ASSENT-3 was only slightly 

less. Furthermore the performance of the HERO-2 and GUSTO-I models in their development datasets 

was very similar to the ASSENT-3 model. 

The application of trial-region level recalibration allows patient pairs from different regions to be 

ranked more accurately. Accordingly slight improvements were observed mainly for the GUSTO-I 

model since this model includes no region effects (Table A4). The general pattern remained consistent 

with results for un-calibrated models. 

6.3.5.2 R2 comparisons 

R2 results for “HPI-FULL – angina” were very similar to HPI-FULL and so are shown in Appendix B.  

Overall R2 results before the application of recalibration are shown in Table 6.10. There is evidence of 

a column (trial) effect as the performance of models was similar within trials but there was variation 

between trials. In HERO-2 and GUSTO-3 increases in explained variability were noted across all 

models as reflected in the higher median R2 values. There is no convincing evidence of a row (model) 

effect; the performance of models was similar on average. 

At the cell level, looking within columns, again the model that was developed on or related to a 

particular trial achieved the best R2. An exception was the poor performance of the GUSTO-I model in 

GUSTO-2b. The similar GUSTO-2b and ASSENT-2 trial mortality rates partially explain the 
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superiority of the ASSENT-2 model in GUSTO-2b. Comparisons within rows are not meaningful 

because of the apparent trial effect. 

 

Table 6.10 Overall R2 statistics (%) for un-calibrated models 

  Population dataset
Model  HERO-2 ASSENT-2 ASSENT-3 GUSTO-I GUSTO-2 GUSTO-3 Med‡

HPI-FULL*  26.9 20.6 20.4 22.6 20.1 23.6 21.6
GUSTO-1†  23.6 19.5 19.7 24.0 14.6 24.0  21.7 
ASSENT-2*  24.4 21.3 21.2 22.7 22.4 24.0  22.6 
Median  24.4 20.6 20.4 22.7 20.1 24.0  21.7 

*Treatment offsets incorporated in all models.  
†GUSTO-1 LP calculated ignoring history of cerebrovascular disease in ASSENT trials. 
‡Median. 

 

Table A5 in Appendix B shows the results within regions. There were some minor deviations from the 

overall results pattern concerning models performing better in unrelated trials; for example in HERO-2 

the GUSTO-I model performed best in Western patients. However there was no consistent evidence 

for a model having an advantage in a particular region. 

In general models performed similarly within trial-region subgroups so we have summarised results by 

taking medians (Table 6.11). One major exception to this was in Asia where the performance of the 

GUSTO-I and ASSENT-2 models was poor compared to the HERO-2 model. Within regions (row) 

there were rises and falls in average performance across trials, however there was a suggestion of 

enhanced performance in Latin America as the overall median was high. Average model performance 

was highest and lowest in Russia and Asia respectively, but these trends are unsubstantiated as only 

one trial recruited patients in these regions. 

 

Table 6.11 Median (3 models) R2 statistics (%) for un-calibrated models, by region  

  Population dataset   

Region  HERO-2 ASSENT-2 ASSENT-3 GUSTO-I GUSTO-2 GUSTO-3  Median 

Western  21.2 20.2 20.0 22.8 20.1 24.0  20.7 
EE  21.5 20.3 29.3 14.4  21.4  21.4 
Russia  27.3       27.3 
LA  28.4 23.0 20.3   34.0  25.7 
Asia  10.8       10.8 

Western = Western countries; EE = Eastern Europe; LA = Latin America. 

 

Explained variability in independent datasets improved after trial-level recalibration and within trial 

differences between models reduced (Table 6.12). Results by region are shown in Appendix B Table 
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A6. Due to the recalibration performance declined for some models in particular trial-region subsets. 

In HERO-2 Western patients the GUSTO-I and ASSENT-2 model R2’s decreased by 1.9 and 1.2% 

respectively. HERO-2 model performance decreased slightly (<0.5%) in Eastern Europe across all 

trials that recruited in this region. Large differences remained in Asia with the ASSENT-2 model still 

performing substantially worse. 

 

Table 6.12 Overall R2 statistics (%) after trial-level recalibration 

  Population dataset   

Model  HERO-2 ASSENT-2 ASSENT-3 GUSTO-I GUSTO-2 GUSTO-3  Med‡ 

HPI-FULL*  26.9 20.7 20.4 22.7 21.8 23.7  22.3 
GUSTO-1†  25.1 19.8 19.9 24.0 18.6 24.3  22.0 
ASSENT-2*  25.3 21.3 21.2 22.7 23.2 24.2  23.0 
Median  25.3 20.7 20.4 22.7 21.8 24.2  22.3 

*Treatment offsets incorporated in all models before recalibration.  
†GUSTO-1 LP calculated ignoring history of cerebrovascular disease in ASSENT trials. 
‡Median. 

 

Table 6.13 shows median model results for each trial-region subset. The pattern is very similar to that 

observed prior to recalibration. 

 

Table 6.13 Median (3 models) R2 statistics (%) obtained after trial-level recalibration, by region 

  Population dataset   

Region  HERO-2 ASSENT-2 ASSENT-3 GUSTO-I GUSTO-2 GUSTO-3  Median 

Western  20.6 20.3 20.1 22.8 21.8 24.2  21.2 
EE  22.5 20.5 28.8 14.2  21.7  21.7 
Russia  28.9       28.9 
LA  26.9 23.5 21.2   34.0  25.2 
Asia  17.1       17.1 

Western = Western countries; EE = Eastern Europe; LA = Latin America. 

 

Table 6.14 shows overall results after the application of trial-region calibration. Within trial 

differences diminished further. Notwithstanding, the remarks made earlier for uncalibrated models still 

hold: e.g., within trials the model that was developed on or is related to a trial performed best. 

Table A7 in Appendix B shows results by region. Again differences between models within trial-

region subgroups decreased. Despite the regional adjustment which places all models on an even 

playing field, usually the model that was developed from or was related to that trial-region subset still 

performed best. So no model displayed a consistent advantage in a particular region. Interestingly the 
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Table 6.14 Overall R2 statistics (%) after trial-region level recalibration  

  Population dataset   

Model  HERO-2 ASSENT-2 ASSENT-3 GUSTO-I GUSTO-2 GUSTO-3  Med‡ 

HPI-FULL*  26.9 20.7 20.4 22.7 21.8 23.7  22.3 
GUSTO-1†  25.5 20.1 20.2 24.1 18.6 24.4  22.2 
ASSENT-2*  26.1 21.3 21.3 22.8 23.2 24.2  23.0 
Median  26.1 20.7 20.4 22.8 21.8 24.2  22.3 

*Treatment offsets incorporated in all models before recalibration. 
†GUSTO-1 LP calculated ignoring history of cerebrovascular disease in ASSENT trials. 
‡Median. 

 

GUSTO-I model performed best in Latin America of both ASSENT trials and in Asia; it was not 

derived from these regions. Perhaps the additional variables it includes afford it this extra explanatory 

ability. 

There were a few instances where explained variability was slightly lower than for un-calibrated 

models. This relates to the original coefficient effects being more optimal than the recalibrated 

coefficients in certain regions. The updated coefficients are the product of the calibration slope and the 

original coefficient values [57]. For example the GUSTO-I model coefficients are based on Western 

patients. Recalibration in the HERO-2 trial means these coefficients are updated using a global 

sample. In HERO-2 Western patients this updated model did not perform quite as good as the un-

calibrated model. 

In Asia the performance of all models was now consistent. 

Table 6.15 shows median model results for each trial-region subset. Average performance increased 

across the board. The overall pattern remains consistent with that observed prior to recalibration. 

 

Table 6.15 Median (3 models) R2 statistics (%) obtained after trial-region level recalibration, by 
region  

  Population dataset   

Region  HERO-2 ASSENT-2 ASSENT-3 GUSTO-I GUSTO-2 GUSTO-3  Median 

Western  21.2 20.3 20.1 22.8 21.8 24.2  21.5 
EE  22.5 20.5 30.3 14.2  22.0  22.0 
Russia  29.1       29.1 
LA  28.7 24.4 22.5   34.6  26.6 
Asia  18.8       18.8 

Western = Western countries; EE = Eastern Europe; LA = Latin America. 

 

The magnitude of the R2 statistics obtained here are similar to those reported by Steyerberg et al [66] 

who, using the GUSTO-I dataset, studied interval validation procedures for logistic regression 
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predicting 30-day mortality following AMI. By conducting repeated sampling the apparent and test 

performance of an eight-predictor model was assessed in data sets with 5 to 80 events per variable. 

Average R2 values of around 20% were obtained for datasets with EPV’s of at least 20. The R2 for this 

model when fitted to the total GUSTO-I dataset was also 20%. 

6.3.5.3 Intercept and calibration slope assessment 

Overall results for model performance using the intercept and slope assessment are shown in Table 

6.16 for un-calibrated models. 

The HERO-2 model HPI-FULL calibrated well in all trial datasets except GUSTO-2b, however all 

models significantly miscalibrated in this dataset. Downward adjustment of the average risk predicted 

by both HERO-2 models would be sufficient to rectify this, as calibration slope estimates were close 

to one.  

Omission of the risk factor angina from the HERO-2 model caused significant underestimation of risk 

in GUSTO-3. In GUSTO-I the overall test of miscalibration for this model was not significant, 

although the calibration slope was significantly higher than one (i.e., OR = 1.04; 95% CI, 1.00-1.09). 

This indicates that inflation of the expected relationship between the covariables and risk would 

improve predictions. The effect of inflation is to make predictions more extreme as coefficients are up 

weighted. 

 

Table 6.16 Intercept (α) and calibration slope (β) for un-calibrated models 

  Population dataset 
  HERO-2 ASSENT-2  ASSENT-3 

Model  α = β = P  α = β = P   α = β = P 

HPI-FULL*  -0.005 1.00 0.98 0.055 0.99 0.06  0.014 0.99 0.73 
HPI-FULL*†  -0.008 1.00 0.95 -0.064 0.98 0.68  -0.105 0.97 0.61 
GUSTO-1‡  0.139 0.91§ <0.001 -0.221 0.87§ <0.001  -0.141 0.91 0.06 
ASSENT-2*  0.184 0.97 <0.001 0.000 1.00 0.99  -0.025 1.01 0.70 
  GUSTO-I GUSTO-2  GUSTO-3 
Model  α = β = P α = β = P  α = β = P 
HPI-FULL*  0.078  1.04  0.15 -0.368  0.99  <0.001  0.122  1.03  0.08 
HPI-FULL*†  0.092 1.04§ 0.13 -0.324 0.99 <0.001  0.145 1.03 0.03 
GUSTO-1‡  -0.037 0.98 0.49 -0.862 0.76§ <0.001  0.042 0.96 <0.001 
ASSENT-2*  0.056 1.04 0.13 -0.066 1.08 0.002  0.216 1.05 0.002 

*Treatment offsets incorporated in all models.  
†HPI-FULL re-estimated excluding angina. 
‡GUSTO-1 LP calculated ignoring history of cerebrovascular disease in ASSENT trials. 
§Calibration slope estimate significantly different from 1 indicating either shrinkage or inflation is required. 
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The GUSTO-I model miscalibrated significantly in all independent data except in ASSENT-3, 

although the corresponding p-value was borderline significant. In most cases shrinkage of regression 

coefficients was indicated to correct this miscalibration, even in GUSTO-2b a related trial. The 

ASSENT-2 model performed somewhat better as it calibrated adequately in ASSENT-3 and GUSTO-

I, but was not as good as HPI-FULL. HPI-FULL was the only model to pass the test of miscalibration 

in GUSTO-3. 

The significant over-estimation of risk by all models in GUSTO-2b appears to be due to patients 

having suffered less severe MI’s which stems from this trial having a less stringent eligibility criteria. 

Table 6.17 shows this assessment for trial-region subgroups which demonstrates that in some cases 

miscalibration is due to regional effects. For example in HERO-2 the GUSTO-I and ASSENT-2 model 

predictions were highly inaccurate for the whole sample, as may be expected based on the trial 

population, but performed very well in Western patients. The accuracy of the ASSENT-2 model was 

also satisfactory in Latin America. 

The accuracy of HPI-FULL predictions was preserved in all regions with the possible exception of 

Western countries in GUSTO-3; the p-value reached borderline significance (P=0.05). The same was 

true for HPI-FULL with angina excluded. 

Calibration slopes were very similar for the HERO-2 and ASSENT-2 models across the board 

indicating these models project a similar relationship between patient risk factors and mortality. In 

GUSTO-I Western patients the slope estimates for the HERO-2 models indicated inflation was 

needed. The corresponding ASSENT-2 model slope was not significant, but was of similar magnitude.  

For the GUSTO-I model shrinkage of coefficients was indicated in Eastern Europe and Russia in 

HERO-2 as slope estimates were significantly less than one. Similar slope estimates were obtained in 

the other trials for this region, excluding ASSENT-3 which recruited a small number in Eastern 

Europe. Shrinkage factors of around 0.88 were obtained meaning that regression coefficients need to 

be shrunk by 12% to obtain better calibrated predictions. The same amount of shrinkage is indicated 

for this model in Western patients of both ASSENT trials.  

The slope results suggest the association between patient risk factors and mortality is stronger in 

GUSTO-I. 

The application of trial-level recalibration was not satisfactory as problems still occurred within some 

regions as shown in Table 6.18. In HERO-2 the upward adjustment of risk predicted by the GUSTO-I 

and ASSENT-2 models resulted in significant over-estimation in Western patients. Risk prediction 

was also inaccurate in the other HERO-2 regions; the GUSTO-I model failed in Asian patients and 

worse still the ASSENT-2 model calibrated poorly in all regions except Eastern Europe. The GUSTO-

I model also underestimated risk in Latin American patients of both ASSENT trials. In all cases slope 

estimates were not significantly different from one. This means the application of trial-level 

recalibration requires region-specific intercepts but region-specific slopes are not warranted. 
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Table 6.17 Intercept (α) and calibration slope (β)§ results for un-calibrated models within regions 

Population: 
Western countries:                

HERO-2 ASSENT-2 ASSENT-3 GUSTO-I GUSTO-2 GUSTO-3 
Model: α = β = P α = β = P α = β = P α = β = P α = β = P α = β = P 
HPI-FULL* 0.119 1.06 0.76 0.052 0.99 0.10 0.077 1.01 0.59 0.085 1.05 0.11 -0.368 0.99 <0.001 0.145 1.03 0.05 
HPI-FULL*† 0.111 1.06 0.78 -0.064 0.98 0.71 -0.044 0.99 0.91 0.098 1.05 0.10 -0.324 0.99 <0.001 0.168 1.04 0.02 
GUSTO-1‡ 0.111 1.05 0.81 -0.260 0.87 <0.001 -0.209 0.90 0.13 -0.035 0.98 0.61 -0.862 0.76 <0.001 0.022 0.96 0.003 
ASSENT-2* 0.125 1.07 0.70 0.006 1.00 0.99 0.055 1.03 0.85 0.061 1.04 0.08 -0.066 1.08 0.002 0.224 1.06 0.005 

Population: 
Eastern Europe:             Russia:  

HERO-2 ASSENT-2 ASSENT-3 GUSTO-I GUSTO-3 HERO-2 
Model: α = β = P α = β = P α = β = P α = β = P α = β = P α = β = P 
HPI-FULL* -0.045 0.98 0.86 -0.159 0.99 0.78 0.331 1.37 0.56 -0.402 0.77 0.45 -0.188 0.92 0.73 -0.021 0.99 0.95 
HPI-FULL*† -0.050 0.98 0.83 -0.314 0.98 0.41 0.101 1.34 0.44 -0.347 0.78 0.45 -0.143 0.94 0.83 -0.020 0.99 0.96 
GUSTO-1‡ 0.077 0.87 <0.001 -0.118 0.91 0.77 -0.123 1.01 0.96 0.005 0.79 0.06 0.180 0.91 0.01 0.115 0.89 <0.001 
ASSENT-2* 0.169 0.95 <0.001 0.094 1.04 0.97 0.649 1.42 0.63 -0.241 0.74 0.14 0.119 0.94 0.15 0.333 0.98 <0.001 

Population: 
Latin America:          Asia:    

HERO-2 ASSENT-2 ASSENT-3 GUSTO-3 HERO-2    
Model: α = β = P α = β = P α = β = P α = β = P α = β = P    
HPI-FULL* 0.166 1.10 0.39 0.148 0.95 0.17 -0.266 0.88 0.65 0.498 1.23 0.65 -0.161 0.91 0.74    
HPI-FULL*† 0.157 1.10 0.41 0.028 0.94 0.48 -0.365 0.87 0.44 0.437 1.18 0.72 -0.172 0.90 0.71    
GUSTO-1‡ 0.466 0.97 <0.001 0.475 0.90 <0.001 0.435 0.96 0.009 1.192 1.22 0.06 0.670 0.94 <0.001    
ASSENT-2* -0.063 1.07 0.07 -0.089 0.95 0.90 -0.337 0.95 0.27 0.327 1.25 0.70 0.794 0.90 <0.001    

*Treatment offsets incorporated in all models.  
†HPI-FULL re-estimated excluding angina. 
‡GUSTO-1 LP calculated ignoring history of cerebrovascular disease in ASSENT trials. 
§Calibration slopes significantly different from 1 are shown in bold.
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Table 6.18 Intercept (α) and calibration slope (β) results for recalibrated (trial-level) models, within regions 

Population: 
Western countries:                

HERO-2 ASSENT-2 ASSENT-3 GUSTO-I GUSTO-2§ GUSTO-3 
Model: α = β = P α = β = P α = β = P α = β = P α = β = P α = β = P 
HPI-FULL* 0.124 1.06 0.77 -0.003 1.00 0.99 0.062 1.02 0.90 0.006 1.00 0.99 0.000 1.00 1.000 0.022 1.01 0.95 
HPI-FULL*† 0.119 1.06 0.78 -0.001 1.00 0.99 0.063 1.02 0.90 0.006 1.00 0.99 0.000 1.00 1.000 0.022 1.01 0.95 
GUSTO-1‡ -0.051 1.16 <0.001 -0.040 1.00 0.58 -0.069 0.99 0.70 0.002 1.00 0.97 0.000 1.00 1.000 -0.020 1.00 0.80 
ASSENT-2* -0.079 1.11 0.001 0.006 1.00 0.99 0.080 1.02 0.80 0.005 1.00 0.97 0.000 1.00 1.000 0.007 1.01 0.95 

Population: 
Eastern Europe:             Russia:  

HERO-2 ASSENT-2 ASSENT-3 GUSTO-I GUSTO-3 HERO-2 
Model: α = β = P α = β = P α = β = P α = β = P α = β = P α = β = P 
HPI-FULL* -0.040 0.98 0.86 -0.214 1.00 0.54 0.311 1.39 0.51 -0.459 0.73 0.34 -0.297 0.90 0.42 -0.015 0.99 0.96 
HPI-FULL*† -0.042 0.98 0.85 -0.251 1.00 0.46 0.245 1.37 0.48 -0.415 0.74 0.34 -0.275 0.91 0.46 -0.011 0.99 0.98 
GUSTO-1‡ -0.057 0.96 0.71 0.112 1.04 0.97 0.034 1.11 0.88 0.035 0.80 0.07 0.141 0.95 0.15 -0.022 0.98 0.90 
ASSENT-2* -0.012 0.99 0.90 0.094 1.04 0.97 0.685 1.41 0.66 -0.281 0.72 0.09 -0.073 0.89 0.32 0.147 1.02 0.02 

Population: 
Latin America:          Asia:    

HERO-2 ASSENT-2 ASSENT-3 GUSTO-3 HERO-2    
Model: α = β = P α = β = P α = β = P α = β = P α = β = P    
HPI-FULL* 0.172 1.10 0.39 0.095 0.96 0.41 -0.279 0.89 0.65 0.351 1.20 0.76 -0.156 0.91 0.74    
HPI-FULL*† 0.166 1.10 0.42 0.089 0.96 0.45 -0.270 0.90 0.67 0.270 1.15 0.84 -0.164 0.90 0.71    
GUSTO-1‡ 0.317 1.07 0.06 0.701 1.02 <0.001 0.585 1.06 0.03 1.139 1.27 0.12 0.525 1.03 0.002    
ASSENT-2* -0.267 1.11 <0.001 -0.089 0.95 0.90 -0.313 0.94 0.38 0.072 1.18 0.71 0.622 0.93 <0.001    

*Treatment offsets incorporated in all models. 
†HPI-FULL re-estimated excluding angina.  
‡GUSTO-1 LP calculated ignoring history of cerebrovascular disease in ASSENT trials. 
§All patients in this trial were from the Western region so by definition estimates of intercept and calibration slope are perfect after re-calibration is applied. 
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By definition the application of trial-region level recalibration corrected the remaining bias in risk 

estimates due to regional differences (data not shown); therefore average expected risk matches 

observed risk in all regions for all models. Calibration slope estimates were roughly equivalent to that 

obtained for trial-level recalibration, as expected. 

6.3.5.4 Calibration plots 

The following plots depict observed versus predicted mortality according to deciles of predicted risk 

for each model, uncalibrated, and applied to each trial. The solid diagonal line reflects perfect 

calibration of the model predictions; the dashed line is the fitted smooth nonparametric lowess 

calibration curve. 

The results are consistent with the analysis of intercept and calibration slope. 

In HERO-2 both HERO-2 models over-estimated mortality in the lowest risk decile. Thorough 

scrutiny of this lack of agreement revealed zero deaths among Western patients in this risk decile for 

both models. Therefore the over-estimation was in Western patients but predictions were on average 

accurate for non-Western patients. The ASSENT-2 model predictions are under-estimated by a 

consistent amount (except in extreme low-risk patients) suggesting intercept adjustment is sufficient to 

rectify the bias. This accords with the intercept and slope analysis as the slope estimate was not 

significantly different from 1. For the GUSTO-I model the bias in risk probabilities was not as 

uniform across risk deciles. 

In ASSENT-2 “HPI-FULL – angina” performed better than HPI-FULL as the fitted calibration curve 

followed the line of perfect calibration more closely. This is in agreement with the better 

miscalibration test result for “HPI-FULL – angina” (P=0.68 vs. 0.06). The GUSTO-I model generally 

under-estimated risk but the bias was worse in the lowest risk decile. This concurs with the slope 

estimate of 0.87 indicating that shrinkage is needed to make predictions less extreme. 

In ASSENT-3 a very similar pattern was displayed by all models. Calibration was good except at the 

low-risk end of the distribution: in the lowest quintile mortality was under-estimated; in the third 

lowest decile mortality was over-estimated. The GUSTO-I model performed worst as also indicated by 

the test of miscalibration (P=0.06). 

In GUSTO-I a similar pattern was displayed by all models; risk was under-estimated in the lowest risk 

decile but performance otherwise was very good. 

In GUSTO-2b all models over-estimated risk. This over-estimation appeared more uniform for the 

HERO-2 models, an observation supported by slope estimates of approximately one. For the GUSTO-

I model the observed bias was less for the lowest risk patients. Incidentally for this model the intercept 

and slope estimates were substantially less than 0 and 1 respectively. Therefore recalibration will 

affect the higher risk patients more as the effect of the shrinkage on the lowest risk LP scores will be 

largely offset by the large negative intercept, which concords with the plot. 
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In GUSTO-3 all of the models under-estimated risk apart from in the middle area of the distribution. 

The HERO-2 model displayed the best calibration which is confirmed by the only non-significant 

result for the test of miscalibration. 

 

 

 

 

Figure 6.1 HERO-2, GUSTO-I and ASSENT-2 models applied as they are (i.e., un-calibrated) in 

HERO-2 data. 
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Figure 6.2 HERO-2, GUSTO-I and ASSENT-2 models applied as they are (i.e., un-calibrated) in 

ASSENT-2 data. 
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Figure 6.3 HERO-2, GUSTO-I and ASSENT-2 models applied as they are (i.e., un-calibrated) in 

ASSENT-3 data. 
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Figure 6.4 HERO-2, GUSTO-I and ASSENT-2 models applied as they are (i.e., un-calibrated) in 

GUSTO-1 data. 
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Figure 6.5 HERO-2, GUSTO-I and ASSENT-2 models applied as they are (i.e., un-calibrated) in 

GUSTO-2b data. 
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Figure 6.6 HERO-2, GUSTO-I and ASSENT-2 models applied as they are (i.e., un-calibrated) in 

GUSTO-3 data. 
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6.3.6  Performance of prognostic indices 

6.3.6.1 Discriminatory ability 

Table 6.19 shows c statistics for HPI-FULL and the TIMI and HPI risk scores, calibrated by trial and 

region. There is no evidence of a column effect, i.e., average performance is no better in any one trial 

or trials. However there is evidence of a row effect; the performance of the risk scores was lower 

compared to HPI-FULL. The difference in performance between the risk scores themselves was less. 

No risk strategy demonstrated a strong advantage in a particular trial; the relative difference between 

them was generally consistent across trials.  

The loss in discriminatory ability observed in HERO-2 from using the HPI risk score in place of HPI-

FULL was no worse in the other trials. The same degree of benefit observed in HERO-2 from using 

HPI-CAT in place of TIMI was not observed in all the other trials, although HPI-CAT was never any 

worse than TIMI. 

 

Table 6.19 Overall c statistic results for HERO-2 full model, HPI and TIMI risk scores* 

  Population dataset   

Model  HERO-2 ASSENT-2 ASSENT-3 GUSTO-I GUSTO-2 GUSTO-3  Med§ 

HPI-FULL†  0.818 0.809 0.807 0.811 0.817 0.818  0.814 
HPI-CAT‡  0.792 0.792 0.784 0.791 0.809 0.801  0.792 
TIMI‡  0.781 0.791 0.784 0.783 0.794 0.798  0.788 

Significant differences in c statistics: HPI-FULL vs. HPI-CAT P<0.001 in all trials except GUSTO-2b (P=0.39); HPI-
CAT vs. TIMI P<0.001 in HERO-2 and GUSTO-I, P>0.05 in remaining trials.  
*All risk strategies calibrated by trial and region. 
†Treatment offset incorporated prior to re-calibration. 
‡Treatment offset only incorporated for application in GUSTO-I. 
§Median. 

 

The results by region are shown in Table 6.20. Because the majority of patients were recruited in 

Western countries, excluding HERO-2, results for this region were very similar to the overall results. 

As anticipated the HERO-2 strategies displayed a noticeable advantage in HERO-2 regions. In both 

ASSENT trials there was very little difference in performance between all approaches in Latin 

America. In GUSTO-3 the increased discrimination noted earlier for models in Latin America (Table 

6.9) was also apparent with the risk scores. 

There is a suggestion that HPI-CAT is superior to TIMI in Eastern Europe, although in independent 

data patient numbers were small.  

The loss in discrimination from using a risk score instead of a risk model is no worse in any particular 

region. 
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Table 6.20 c statistic results for HERO-2 full model, HPI and TIMI risk scores, by region* 

Model/Dataset HERO-2 ASSENT-2 ASSENT-3 GUSTO-I GUSTO-2 GUSTO-3 

Western countries:       
HPI-FULL† 0.813 0.810 0.806 0.812 0.817 0.818 
HPI-CAT‡ 0.800 0.791 0.780 0.792 0.809 0.799 
TIMI‡ 0.787 0.791 0.782 0.783 0.794 0.796 
Latin America:       
HPI-FULL† 0.828 0.783 0.785   0.874 
HPI-CAT‡ 0.804 0.784 0.783   0.881 
TIMI‡ 0.794 0.784 0.787   0.847 
Eastern Europe:       
HPI-FULL† 0.803 0.788 0.863 0.744  0.801 
HPI-CAT‡ 0.772 0.790 0.849 0.735  0.798 
TIMI‡ 0.761 0.775 0.778 0.711  0.814 
Russia:       
HPI-FULL† 0.825      
HPI-CAT‡ 0.795      
TIMI‡ 0.780      
Asia:       
HPI-FULL† 0.766      
HPI-CAT‡ 0.743      
TIMI‡ 0.761      

*All models calibrated by trial and region. 
†Treatment offset incorporated prior to re-calibration. 
‡Treatment offset only incorporated for application in GUSTO-I. 

 

6.3.6.2 R2 results 

Table 6.21 shows overall R2 results for HPI-FULL and the TIMI and HPI risk scores, calibrated by 

trial and region. There is evidence of a row (i.e., model) effect; HPI-FULL performed better than the 

risk scores and HPI-CAT out-performed TIMI except in ASSENT-3. As expected the HERO-2 

strategies performed best when applied in HERO-2 and the advantage from using HPI-CAT over TIMI 

was generally less outside of HERO-2. A small column effect is also shown as minor fluctuations in 

average explained variability were noted across the trials; results were lower in ASSENT. 

Table 6.22 shows results by region. There were some deviations from the overall pattern but nothing 

consistent to conclude heterogeneity in performance according to region.  

In HERO-2 Western countries R2 values decreased from the overall results in a uniform fashion for all 

prediction methods. As expected, results changed little in the other trials. 

In Latin America results were more heterogeneous: HPI-CAT outperformed HPI-FULL in GUSTO-3 

and in ASSENT-3 both risk scores performed better than HPI-FULL.  
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In Eastern Europe all approaches suffered a decline in performance in GUSTO-I. In ASSENT-3 

performance increased considerably for the HERO-2 strategies but stayed roughly consistent for TIMI. 

In GUSTO-3 both risk scores performed better than HPI-FULL with TIMI doing best. 

 

Table 6.21 Overall R2 statistics (%) for HERO-2 full model, HPI and TIMI risk scores* 

  Population dataset
Model  HERO-2 ASSENT-2 ASSENT-3 GUSTO-I GUSTO-2 GUSTO-3 Med§

HPI-FULL†  26.9 20.7 20.4 22.7 21.8 23.7 22.3
HPI-CAT‡  22.4 18.5 17.5 19.6 21.4 21.1  20.4 
TIMI‡  20.1 17.3 17.7 18.0 18.7 20.2  18.4 
Median  22.4 18.5 17.7 19.6 21.4 21.1  20.4 

*All models calibrated by trial and region. 
†Treatment offset incorporated prior to re-calibration. 
‡Treatment offset only incorporated for application in GUSTO-I. 
§Median. 

 

Table 6.22 Nagelkerke's R2 statistics (%) for the HERO-2 full model, HPI and TIMI risk scores* 

Model/Dataset HERO-2 ASSENT-2 ASSENT-3 GUSTO-I GUSTO-2 GUSTO-3 

Western patients:       
HPI-FULL† 21.2 20.3 20.1 22.8 21.8 23.6 
HPI-CAT‡ 19.3 17.9 16.6 19.6 21.4 20.8 
TIMI‡ 17.0 16.7 17.0 18.1 18.7 19.8 
Latin America:       
HPI-FULL† 29.5 23.9 19.2   35.0 
HPI-CAT‡ 24.9 23.1 20.9   38.6 
TIMI‡ 23.2 22.8 20.2   33.0 
Eastern Europe:       
HPI-FULL† 23.5 20.5 30.5 14.2  21.5 
HPI-CAT‡ 18.7 19.9 28.1 12.4  21.7 
TIMI‡ 16.5 16.1 19.1 9.7  23.3 
Russia:       
HPI-FULL† 29.8      
HPI-CAT‡ 24.6      
TIMI‡ 21.6      
Asia:       
HPI-FULL† 18.8      
HPI-CAT‡ 16.3      
TIMI‡ 18.2      

*All models calibrated by trial and region. 
†Treatment offset incorporated prior to re-calibration. 

‡Treatment offset only incorporated for application in GUSTO-I. 
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In summary the loss of explained variability from using a risk score instead of a model is no worse in 

any particular region. HPI-CAT generally performed better than TIMI in all regions, except in Asia, 

however this result is unsubstantiated. 

6.3.6.3 Calibration slope 

Results for the assessment of calibration slope are shown in Table 6.23. Overall results are not shown 

as by definition intercept and slope estimates will be 0 and 1 respectively. Also since trial-region level 

calibration was performed, calibration-in-the-large will be accurate leaving the intercept entirely 

dependent on the slope. Therefore the intercept is not meaningful and is not presented. 

In HERO-2 this analysis is establishing whether a globally based estimate of the relationship between 

risk scores and mortality applies in individual regions. In the other trials whether a Western based 

estimate of this relationship holds in non-Western regions is largely being determined. 

There were no instances in any region of slope estimates being significantly different from one. Hence 

trial based estimates of the association between LP or risk index scores with mortality held across 

regions. 

 

Table 6.23 Calibration slope results for the HERO-2 full model, HPI and TIMI risk scores* 

Model/Dataset HERO-2 ASSENT-2 ASSENT-3 GUSTO-I GUSTO-3 

Western patients:      
HPI-FULL† 1.06 (0.90-1.22) 1.00 (0.94-1.07) 1.01 (0.90-1.12) 1.00 (0.96-1.05) 1.01 (0.95-1.07) 

HPI-CAT‡ 1.14 (0.96-1.31) 1.00 (0.94-1.06) 0.99 (0.88-1.11) 1.00 (0.96-1.05) 1.00 (0.94-1.06) 

TIMI‡ 1.07 (0.90-1.24) 1.00 (0.93-1.06) 1.00 (0.89-1.11) 1.00 (0.96-1.05) 0.99 (0.93-1.05) 
Latin America:      
HPI-FULL† 1.10 (0.95-1.25) 0.96 (0.74-1.18) 0.88 (0.62-1.15)  1.20 (0.64-1.76) 

HPI-CAT‡ 1.11 (0.95-1.26) 0.99 (0.77-1.22) 1.01 (0.72-1.30)  1.68 (0.87-2.49) 

TIMI‡ 1.13 (0.96-1.29) 1.10 (0.85-1.35) 1.02 (0.72-1.32)  1.51 (0.79-2.24) 
Eastern Europe:      
HPI-FULL† 0.98 (0.89-1.06) 1.01 (0.65-1.37) 1.38 (0.40-2.36) 0.74 (0.39-1.08) 0.89 (0.69-1.10) 

HPI-CAT‡ 0.94 (0.86-1.03) 1.03 (0.67-1.39) 1.51 (0.35-2.67) 0.78 (0.40-1.16) 0.97 (0.75-1.19) 

TIMI‡ 0.93 (0.85-1.02) 0.92 (0.58-1.27) 1.02 (0.20-1.84) 0.74 (0.35-1.12) 1.12 (0.87-1.37) 
Russia:      
HPI-FULL† 0.99 (0.92-1.06)     

HPI-CAT‡ 0.99 (0.92-1.07)     

TIMI‡ 1.00 (0.92-1.08)     
Asia:      
HPI-FULL† 0.91 (0.68-1.13)     

HPI-CAT‡ 1.01 (0.76-1.26)     

TIMI‡ 1.11 (0.84-1.38)     

*All models calibrated by trial and region. 
†Treatment offset incorporated prior to re-calibration. 
‡Treatment offset only incorporated for application in GUSTO-I. 
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In Western countries TIMI performed slightly better than HPI-CAT and as good as HPI-FULL in 

HERO-2. In the other trials slope estimates were all close to 1 since these patients contributed most of 

the data. 

In other regions there were no consistent patterns to imply an advantage from using a particular risk 

strategy in a specific region. Sometimes the risk scores performed similarly or results were similar for 

the HERO-2 strategies. Nevertheless confidence intervals were wide and there is no indication that 

risk scores, calibrated at the trial-region level, are any less applicable within region subgroups than a 

full risk model. 

6.3.6.4 Calibration plots  

The following plots show observed versus predicted mortality according to deciles of predicted risk 

for the HERO-2 full model and the HPI and TIMI risk scores, all calibrated by trial and region. The 

solid diagonal line reflects perfect calibration of the model predictions; the dashed lines are fitted 

smooth nonparametric lowess calibration curves. 

The relative frequency histograms demonstrate clearly the reduction in the range of prediction 

probabilities from using a discrete method of prediction compared to a continuous model. Also 

note there is more spread between plotted points for the full model compared to the risk scores 

which means that the full model discriminates better. 

In HERO-2, as discussed in Chapter 3, it is evident that HPI performs better than TIMI. There is 

no visible difference in performance between HPI-CAT and the HERO-2 full model. All 

approaches over-estimate risk for low-risk patients. 

In ASSENT-2 it is clear that the full model does better than the risk scores as its plotted points 

are much closer to the line of perfect calibration. HPI displayed a similar pattern of 

miscalibration compared to TIMI but the magnitude of inaccuracy was less.  

In ASSENT-3 for patients classified in the lowest risk deciles the risk scores appear to do better 

than the full model however they are not the same patients and the full model has identified 

patient groups with lower average mortality compared to the average mortality of patients in the 

lowest risk score deciles. There is little difference between TIMI and HPI. 

In GUSTO-I clearly TIMI performs the worst of all approaches. The full model is very accurate 

except in the lowest risk patients. 

In GUSTO-2 none of the strategies maintained good accuracy. Outside of HERO-2 the 

performance of the full model deteriorated the most in GUSTO-2. 

In GUSTO-3 HPI-FULL performs the best however all approaches do very well with the 

exception that HPI-CAT over-estimated risk substantially in the second lowest risk decile. 

In summary the risk scores do reasonably well compared to the risk model and the relative 

performance seen in HERO-2 of TIMI and HPI was not noticeably dissimilar in the other trials. 
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The decrease in accuracy associated with the use of a risk score instead of a model did not 

appreciably worsen outside of HERO-2.  

This analysis is assessing the ability of risk strategies to predict average risk in large groups of 

homogeneous patients. In smaller groups the HERO-2 full model would display a larger 

advantage as its predictions are more refined. However based on the c statistic and R2 findings it 

is unlikely that this advantage would be appreciably larger outside of HERO-2. 

 

 

 

Figure 6.7 HERO-2 full model and the HPI and TIMI risk scores (all calibrated by trial and region) 

applied in HERO-2. 
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Figure 6.8 HERO-2 full model and the HPI and TIMI risk scores (all calibrated by trial and region) 

applied in ASSENT-2. 
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Figure 6.9 HERO-2 full model and the HPI and TIMI risk scores (all calibrated by trial and region) 

applied in ASSENT-3. 
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Figure 6.10 HERO-2 full model and the HPI and TIMI risk scores (all calibrated by trial and region) 

applied in GUSTO-1. 

   

 

 

HPI
TIMI

Predicted Probability

O
bs

er
ve

d 
Pr

ob
ab

ili
ty

0.001 0.005 0.050 0.500

0.
00

1
0.

00
5

0.
05

0
0.

50
0

Risk Scores
GUSTO-1 Data

Predicted Probability

O
bs

er
ve

d 
Pr

ob
ab

ili
ty

0.001 0.005 0.050 0.500

0.
00

1
0.

00
5

0.
05

0
0.

50
0

 

 

HPI Risk Score Relative Frequency Distribution

 

 

TIMI Risk Score Relative Frequency Distribution

Predicted Probability
O

bs
er

ve
d 

Pr
ob

ab
ili

ty

0.001 0.005 0.050 0.500

0.
00

1
0.

00
5

0.
05

0
0.

50
0

HPI-FULL

 

 

HPI-FULL Relative Frequency Distribution



 

120 

 

 

 

 

 

Figure 6.11 HERO-2 full model and the HPI and TIMI risk scores (all calibrated by trial and region) 

applied in GUSTO-2b. 
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Figure 6.12 HERO-2 full model and the HPI and TIMI risk scores (all calibrated by trial and region) 

applied in GUSTO-3. 
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6.4  Conclusion 

These results have demonstrated that when applying risk models to a new trial a new model may not 

need to be developed from scratch and existing models will often suffice. This is with the caveat that 

simple calibration may be needed to correct for a discrepancy between the average predicted risk and 

actual risk in the population. Concerning discriminatory ability all of the models are as good as each 

other: the performance of models applied in another trial was not much worse than the apparent 

performance of a model developed in that trial; in data independent to all models there was little 

difference in performance.  

Furthermore no model demonstrated an advantage in a particular region. The GUSTO-I model was 

developed in Western patients but did not perform consistently better in this region. The TIMI risk 

score, also developed predominantly in Western populations, was not superior to HPI-CAT in this 

region. The HERO-2 strategies, based largely on Eastern European and Russian patients, did not 

display a major advantage in these regions. This suggests that new models do not need to be developed 

for application in other regions, although re-calibration may be needed. All models suffered a decline 

in performance in Asia, although this is unsubstantiated as only one trial i.e., HERO-2, enrolled 

patients in this region and it was small.  

Previously the HERO-2 strategies had only been validated in Western data using the GUSTO-I 

database. This VIGOUR collection of trials provided the opportunity to test the HERO-2 models in 

independent non-Western data. Since these strategies are based on a global sample, performance was, 

as expected, good. 

Many factors may have contributed to the large differences observed in mortality rates across trials. 

The obvious include differences in patient casemix, patterns of care and available resources. Despite 

accounting for differences in thrombolytic treatment, re-calibration was still needed. GUSTO-3 

Western and Latin American patients had more negative prognostic features on average compared to 

patients in these regions in other trials. Fittingly the highest mortality for these regions was observed 

in GUSTO-3 and this trial had the second highest overall mortality. The HERO-2 model captured this 

increased risk in GUSTO-3 most effectively, with the other models significantly under-estimating the 

overall rate. Nevertheless there may be additional unmeasured characteristics that contributed to the 

increased risk. 

HERO-2 Russian patients had the highest overall risk profile of all trial-region subgroups as evidenced 

by the HPI and TIMI risk scores. One reason for this is that a higher proportion of screened patients 

were randomised in this region, as determined from the HERO-2 screening log substudy (Chapter 4). 

Consequently this group was more representative of the true patient population in this region.  

Even though GUSTO-2b patients were a different group clinically, owing to a less severe eligibility 

and inclusion criteria, models still performed well after re-calibration.  
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Initially we applied simple calibration at the trial level to update models. This corrects calibration-in-

the-large and adjusts the relationship between risk factors and mortality projected by the model to 

match the overall relationship in the trial. This was adequate in the regard that no further shrinkage or 

inflation of regression coefficients was indicated within region subgroups. However calibration-in-the-

large within these subgroups was often inaccurate indicating the need for region-specific intercepts, as 

consistent with earlier chapters, but not region-specific slopes. 

The relationship between risk factors and mortality appeared stronger in GUSTO-I, a Western 

population. This discrepancy is not an artifact of regional differences because there was no consistent 

evidence that the need for inflation or shrinkage of coefficients is dependent on region (as shown in 

Table 6.17). Rather updating of coefficients is more a function of trial. These results correspond with 

the findings of Chapters 3 and 5 where region-specific coefficients were not indicated. 

Another important aspect to consider when comparing risk models is the risk factor information that 

they encapsulate. The GUSTO-I model includes several predictors which were considered for 

inclusion in other models but were not selected. Despite this the discriminatory ability of these other 

models was almost as good in GUSTO-I. Comparisons with the ASSENT-3 model showed that 

supplementing traditional risk factor information with complicated electrocardiographic data provides 

little improvement. It appears that there is a set of core variables which contain most of the vital 

information needed to predict survival and that the addition of other variables adds little. 

When models were applied to later related trials the size of the advantage displayed over other models 

in discriminatory ability was small, although not all sites participated in later trials and new sites were 

activated. We examined the Australian and New Zealand sites that participated in these VIGOUR 

trials and found overlap in site participation across all six trials further diminishing the value of this 

comparison. Putting aside these shortcomings, results for the GUSTO-I model relevant to temporal 

validity were not as hypothesised as shrinkage of model coefficients was indicated in GUSTO-2b; 

other unrelated models required only intercept adjustment. Conversely the ASSENT-2 model 

displayed good temporal validity when applied in ASSENT-3 as neither intercept or slope correction 

was indicated. 

Where geographical transportability could be contemplated, good discrimination was displayed by all 

models. The ASSENT-2 model performed very well in other geographical regions such as Russia and 

Asia as intercept adjustment was only required. The GUSTO-I model required shrinkage in Eastern 

Europe and Russia however as stated above there appears to be an underlying trial effect. Hence it is 

fair to conclude that results relevant to geographical transportability are in line with earlier chapters. 

There are many reasons as to why a model may not demonstrate temporal or geographic 

transportability. In temporal validation, structural differences between datasets might arise from 

temporal changes; for example revised diagnostic criteria or different referral schemes in the hospital 

[110], although these factors may be less relevant is this setting. In external or geographical validation 

even if the same inclusion criteria are employed there are many sources for structural differences 
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between the two populations including training of the treating physicians, available equipment, 

cultural and ethnic differences [110]. Geographical regions may deviate with regard to population 

structure, health-political issues, socio-economic and genetic factors [110]. The external validation 

considered here additionally included a temporal shift.  

As already stated the mis-calibration assessment results suggest the relationship between risk factors 

and mortality is stronger in GUSTO-I. A major contributor to this would be the stronger age effect in 

the higher Killip classes in GUSTO-I, i.e., the age by Killip class interaction was weaker. We studied 

this interaction in Western patients across trials and found the same trend in HERO-2 but not 

elsewhere. This lacking of consistency is unresolved. Perhaps the availability and utilisation of 

treatments play a part in how strong the age effect is in the higher Killip classes, i.e., most sick 

patients. Other differences between models may also relate to patterns of care. Determination of this is 

beyond the scope of this thesis. 

The HERO-2 full model re-estimated excluding angina calibrated better in ASSENT-2 than the 

original version applied whilst ignoring the angina term. There was no difference in discriminatory 

ability. After re-calibration the original model was no worse than the re-estimated model in all aspects 

of performance. This shows that if all of the information required to calculate a model’s score is not 

available, re-calibration can correct any resulting bias.  

The ASSENT-3 model demonstrated that race is a predictor of post MI 30-day mortality [9] although 

region was not considered for inclusion in this model and race is highly correlated with region. 

ASSENT-3 recruited in Latin America and Eastern Europe in addition to Western countries. In 

exploratory analysis we found that region is a stronger predictor than race and that adjustment for race 

adds little information in addition to region. This is consistent with the GUSTO-I model as race was 

not selected as an independent predictor in Western patients [1]. 

The risk scores performed well compared to the HERO-2 full model. HPI-FULL has several 

advantages including an enhanced range of prediction, inclusion of additional prognostic information, 

and greater refinement as outcome is predicted on a continuous scale (i.e., no rounding is employed). 

However in some of the smaller subgroups this added precision was detrimental when both ranking 

patients (c statistic) and predicting outcomes (R2). In GUSTO-3 HPI and TIMI performed better than 

HPI-FULL in Latin America (n=121) and Eastern Europe (n=886) respectively. The calculation of R2 

involves comparing observed versus expected numbers of events in homogenous risk groups [81]. 

Numbers in these groups would be smaller for HPI-FULL hence there may be more noise when 

sample size is small. 

The mortality predicted by HPI-FULL and HPI-CAT in their corresponding deciles of lowest risk 

appeared less accurate for HPI-FULL (i.e., on the log scale) in HERO-2, ASSENT-3 and GUSTO-I. 

However HPI-FULL is more effective at identifying low risk patients; mortality in the HPI-FULL 

lowest-risk decile was roughly half the respective rate for HPI-CAT. A cross-tabulation of the HPI-

FULL and HPI-CAT deciles of risk groups showed major disagreements in risk classification. If HPI-
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FULL is considered the gold standard there is inherent heterogeneity in patients’ risk levels within 

HPI-CAT decile groups. 

As stated earlier the HERO-2 mortality rate for Eastern Europe appears to be an outlier as it was much 

higher than in the other trials for this region. However in pairwise comparisons this increased rate was 

only significantly higher than ASSENT-2 (P=0.003) and after adjusting for the HERO-2 model 

predictors the significance was borderline (P=0.052). The use of revascularisation procedures does not 

further eliminate this difference. Other differences in care or unknown risk factors may have 

contributed. The huge sample size for Eastern Europe in HERO-2 compared to the other trials should 

be kept in mind (N=5877). 

In Chapter 3 the GUSTO-I model was found to discriminate poorly (c = 0.718) in Asia contradicting 

findings here. That previous analysis was based only on the HERO-2 heparin treatment arm as the 

GUSTO-I model precludes treatment with Bivalirudin. Additional analysis showed that all of the 

models perform this poorly when only applied in the heparin group. In the Bivalirudin group c 

statistics for all models were around 0.84 and for the two groups combined 0.77. This instability is 

most likely due to the smaller sample size. The result using both treatment arms should apply.  

In conclusion these risk stratification tools are all very consistent in terms of performance across trials 

and regions. New prediction methods do not need to be developed for application in new trials or other 

regions. The risk scores are useful and do well compared to the full models, but their limitations 

should be borne in mind. If precision is integral a full model should be applied. To our knowledge this 

is the most extensive comparison of risk models ever undertaken based on a database of 90,000 

patients. We have compared the performance of four comprehensive multivariable risk models and 

two risk scores across six large international clinical trials which recruited in diverse geographical 

areas. 
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CHAPTER 7: DISCUSSION 

7.1  Overall findings 

The first major finding is that there was no evidence to suggest the effects of risk factors vary by 

geographical region, even with substantial information from different regions. This is an important 

message as despite the disparities in the quality of health care systems around the world and patient 

differences concerning ethnicity, lifestyle and other factors the effects of traditional risk factors on 

outcome seem to remain constant. The GUSTO-I, HERO-2 and ASSENT-2 models performed 

satisfactorily in all regions and no particular model displayed a clear-cut advantage in any particular 

region. Models developed mainly in Western patients extrapolated to non-Western regions and the 

HERO-2 model based predominantly on Russia and Eastern Europe held up in other regions. Formal 

tests of interaction also confirmed no heterogeneity in risk factor effects according to region. 

Nevertheless, there is a need to adjust by region. We could not explain regional differences in 

mortality using patient characteristics, treatments, or national health and economic statistics. 

Differences in unmeasured genetic factors, ethnic origin or lifestyle, and other non-traditional risk 

factors may be part of the explanation. It is also possible that our adjustments for patient care were not 

sufficient to capture real differences in the timing and utilisation of drugs and procedures. 

Another major finding is that there was no strong evidence to suggest differential coefficient effects in 

different trials. This consistency even extends to consistency of interactions between the covariates – 

such as the interaction between age and Killip class across at least three of the studies. Thus we have a 

high degree of confidence that the HERO-2 risk strategies and other VIGOUR models can predict in 

different contexts. There is the caveat that calibration may be required. New models do not need to be 

developed from scratch. When models were applied to later related trials a slight advantage was 

displayed suggesting that in clinical trials analyses it may be optimal to choose a model related to the 

trial at hand for risk stratification, however the effect is slight. 

Another important finding of the VIGOUR analysis is that no model developed for other studies was 

clearly superior. Models performed best in the data set they were developed on but there was not much 

difference across the trials and in data independent to all models performance was similar. This 

analysis has provided additional external validation of these risk models.  

This work has also demonstrated that inclusion of complicated indices based on ECG data in risk 

assessment strategies, as in the ASSENT-3 dynamic model, does not provide worthwhile gains in 

discriminatory performance as demonstrated by the comparison of c statistics. Risk assessment based 

on only traditional risk factor information is adequate. 

We have also found that simple risk scores derived by approximating multivariable risk model 

coefficients do provide good risk stratification; there was some degree of loss of information but 

performance measures were still very good. For example c statistics of approximately 80% were 

obtained on average for the HERO-2 and TIMI risk scores across the VIGOUR trials. 
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7.2  Model updating 

Calibration is critical when applying risk models. However our analysis in Chapter 5 confirmed 

Steyerberg’s [57] findings that extensive model revision is not worthwhile when applying risk models 

in other populations which are “plausibily related” and that simple recalibration is adequate. The 

proviso is that the model was well developed in a large sample and that the validation sample is large 

enough to judge that the model is useable. Steyerberg recommends that the relevance of the model 

should be supported by reasonable validity in the sample from the new setting, i.e. some correlation 

should be present between predictions and outcomes [65]. If this is not the case development of a new 

model should be considered. In the context of HERO-2, the application of model revision to the global 

model was not worthwhile in large and small regions; only regional intercept adjustment is needed. 

This is in harmony with conclusions above. In the context of VIGOUR, simple recalibration of 

existing models was sufficient to achieve predictive accuracy in new trials. 

The degree of benefit from model revision depends on whether there is evidence of interaction in risk 

factor effects according to population, which in this setting was absent. However, it should be kept in 

mind that estimates of coefficients in different settings are subject to variability and any differences 

may just be random variation. One may be estimating coefficients from the same underlying 

distribution as pointed out by Steyerberg [65]. Obvious reasons as to why the variability in the effects 

of predictors was small in HERO-2 include: predictors were registered according to uniform 

definitions, were relatively objective characteristics with limited measurement error, and the quality of 

the data collection was controlled well in the trial. This pertains also to the VIGOUR investigation 

(Chapter 6). 

Model updating is a formal approach to using prior knowledge. One must be comfortable with 

assuming that a prior model is valid for a new setting. We preferred not to update or adapt previously 

developed models and to take full advantage of the high quality HERO-2 data to derive a new AMI 

risk prediction model. This model is unique as it is based on a geographically diverse sample. We have 

also avoided the pitfalls of model updating as described by Steyerberg [65]. First, important new 

predictors may be missed. This was unlikely here as we did not consider potential predictors that have 

not been tested before. Second, you do not discover new knowledge; only combine it with what is 

already known. We have used empirical data to learn about patterns in this international population, 

and to derive a model that can provide predictions for new subjects from this population. Thus the 

uniqueness of the dataset at hand is another consideration in the decision to derive a new risk model or 

update a prior strategy. 

7.3  Generalisability 

Generalisability is a key attribute of a model as it determines how broadly applicable it will be. 

Generalisability depends on the quality of the prediction model as developed for the development 

setting (internal validity), and on characteristics of the population where the model is applied (validity 
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of regression coefficients and distribution of predictor values) [65]. Determinants of external validity 

related to case-mix include: differences in the distribution of the predictors between the development 

and validation setting; differences in the distributions of missed predictors, and design differences 

which affect the outcome and hence may influence case-mix indirectly [65]. The last listed 

determinant is relevant to GUSTO-2b as the selection criteria for this trial was different, resulting in 

lower mortality than predicted by risk models. However discriminatory ability was still very good 

meaning coefficient effects were still applicable. At least for the HERO-2 and ASSENT-2 models, 

calibration-in-the-large was the only issue as estimates of calibration slope were close to one. The 

baseline characteristics of patients in GUSTO-2b were similar to the other trials implying there were 

differences in other characteristics (probably related to the severity of the MI), not measured. 

When applying a model developed in a trial population to a broader patient group, extrapolation of 

model predictions in the validation data (e.g., registry) beyond observed predictor values in the 

development data should be considered [65]. More heterogeneity in case-mix in the validation data 

translates into higher discriminatory ability. Conversely a more homogeneous validation sample will 

result in less discriminatory ability. 

Examples from the literature of ACS risk strategies applied in external populations will now be 

discussed. Recently Rathore et al [112] applied the TIMI risk score to a community-based cohort of 

almost 50000 elderly patients (aged ≥65 years) admitted with STEMI in US hospitals. It was claimed 

that the cohort represented the majority of hospitalisations and deaths from STEMI. The performance 

of TIMI was poor (c = 0.67). There was a near 3-fold difference in 30-day mortality rates between the 

TIMI derivation cohort (i.e., the study InTIME-II) [3] and the community cohort reflecting the 14-year 

higher median age and increased comorbidity in the community cohort. The authors concluded that 

TIMI demonstrated poor spectrum transportability. A more severe case-mix in the validation setting is 

associated with somewhat less spread in predictions, and hence a lower c statistic as declared above. 

This would be part of the explanation for the poor discriminatory performance. The study had 

limitations as patients experienced their MI more than 10 years ago (i.e., 1994-1996) and the treatment 

received may not have been contemporary; only 37% received reperfusion therapy. The most critical 

shortcoming was the 65 year age cutoff used which severely reduced the representativeness of the 

cohort. The proportion of patients suffering MI in general populations aged <65 years is substantial. 

The average age for a first heart attack is 66 for men and 70 for women in the United States [113]. In 

the Singh et al study [54] which involved a community registry of patients with MI in Olmsted 

County, Minnesota, the average age of patients was 67 years.  

TIMI’s discriminatory ability improved considerably in the Singh study [54], but as mentioned in 

Chapter 1 was sub-optimal compared to in InTIME-II (c = 0.73 vs. 0.78). In this study patients were 

older with more risk factors than in InTIME-II and mortality was higher (12 vs. 6.7%). The 

differences in patient characteristics compared with InTIME-II did not compare with that seen in the 

Rathore study. In the Lev et al study [23], described in Chapter 1, the performance of TIMI was 
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similar (c = 0.724). Recall that, the setting in this study was a single-centre registry of patients 

undergoing PCI. Mortality was lower (3.6%) than in InTIME-II but risk factor rates were not 

consistently higher or lower. When TIMI was applied to a trial population of patients undergoing PCI 

its performance deteriorated (c = 0.70) [21]. This is plausible as mortality in this trial was even lower 

(2.7%). Risk factor rates were lower than in the real-life PCI cohort but generally similar to in 

InTIME-II. These examples illustrate how differences in patients’ risk levels and characteristics, 

between the development and validation settings, can influence a models performance. 

The Cadillac risk score, mentioned in Chapter 1, was derived in a trial population of patients 

undergoing PCI. This score maintained performance as in its derivation cohort when applied to a real-

life cohort (c = 0.83 in derivation vs. 0.82) [21, 23]. The increase in mortality and particularly risk 

factor rates in going from the Cadillac trial to the real-life cohort was small (30-day mortality: 2.1 vs. 

3.6%). 

The representativeness of the HERO-2 sample is now considered. Based on a screening log substudy, 

the level of purported generalisabiltiy varied according to region; patients in Russia and Eastern 

Europe were more representative as higher proportions of patients entering hospitals were enrolled. 

Mortality was higher among non-participants than participants, and screened patients were on average 

3-4 years older than those randomised. This discrepancy does not rival the 3-fold and 14-yr differences 

in observed mortality and median age, respectively, between the development (i.e., InTIME-II) and 

validation settings in the Rathore paper. We anticipate far better translation of the HERO-2 risk 

strategies to general populations. Further research is required to precisely assess this. 

As remarked in Chapter 1 the GRACE risk score performed very poorly when applied to a real-life 

AMI cohort undergoing PCI [23]. Further elaboration and discussion of this is warranted. GRACE was 

derived in both STEMI and non-STEMI/UA patients. Lev et al provided a number of possible reasons 

as to why the score performed so poorly. Firstly, three of its components were irrelevant in their 

cohort; patients with cardiogenic shock were excluded (cardiac arrest) and all patients had ST-segment 

deviation and increased cardiac enzymes. Secondly, the score does not include location of infarct, a 

key risk factor in AMI. The score does encapsulate the key risk factors Killip class, age, heart rate and 

SYSBP and prior models incorporating just age, heart rate and SYSBP (i.e., Simple Risk Index) have 

performed well [56]. Perhaps the points scoring scheme is not suitable for AMI. The GRACE 

developers stated that their risk score was developed to perform equally well in STEMI and NSTEMI 

and had a high level of generalisability as it was derived using a multinational registry which also 

allowed variables which are not commonly collected in clinical trials to be identified as important 

prognosticators [12]. It appears that this score may not be adequate for application in exclusively AMI 

populations. It would be interesting to know how the full model the risk score was derived from would 

have performed. 
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7.4  Simplified risk scores 

In this work we have found that whilst there is some loss of information with using a simple risk score 

in place of a full multivariable model they still perform well. Our findings appear not to accord with 

some other studies and further examination of this is warranted. Gale et al [56] concluded that simpler 

risk models performed as well as more complex models when they refitted five ACS models using 

data from a national registry in England/Wales. However models were not compared across the same 

patients and outcomes and the simpler models provided predictions on a continuous scale, i.e., they 

were not discrete scores. It was stated that findings contrasted to those of Yan et al [114] who found 

that the TIMI risk score for UA/NSTEMI ACS discriminated poorly for in-hospital mortality (c = 

0.68) compared to the GRACE (c = 0.81) and PURSUIT scores (c = 0.80) when applied to patients 

with NSTEMI in a Canadian ACS registry. This TIMI score is very simple containing only 7 

dichotomous variables (range 0-7), whereas GRACE (range 1-372) and PURSUIT (range 0-25) use a 

combination of semi-continuous and categorical variables. The TIMI score was developed to predict a 

composite endpoint (i.e., death/(re-) infarction or urgent revascularisation through 14 days after 

randomisation), although it demonstrated better discrimination for death alone in its derivation and 

validation cohorts (c = 0.65 and 0.61 respectively for composite endpoint vs. c = 0.78 and 0.72 for all-

cause mortality) [15]. It appears that too large a tradeoff has been made between simplicity and 

accuracy. Furthermore the score does not incorporate the hemodynamic variables heart rate and 

SYSBP. 

Another risk score PREDICT (range 0 to 24) [13] was applied in the Singh et al [54] study above and 

performed well (c = 0.81 for STEMI). The authors concluded that the inclusion of comorbidity in this 

index was instrumental to its enhanced discrimination compared to the TIMI risk score for STEMI. 

The scores larger range would also be a factor. PREDICT was developed in a population-based ACS 

cohort (i.e., UA and AMI) aged 30 to 74 years, assembled in a similar manner to the Olmsted county 

cohort. Whilst PREDICT is a score, it is rather comprehensive; its components and points scoring 

scheme fill two A4 pages. Further, it requires more information and is more difficult and timely to 

compute than the HERO-2 score. The choice of which index to prefer may depend on the desired level 

of simplicity. The other benefits of HPI are that it was based on a purely AMI population with no age 

constraint. 

7.5  Other issues 

The feasibility and usefulness of risk assessment tools in AMI for clinical practice will now be 

addressed. Regression formulas can be programmed into mobile devices, electronic patient records 

etc, however entering the required input data takes time and consequently the feasibility of using risk 

assessment strategies in the acute phase of MI has been questioned. The clinical usefulness of indexes 

with regard to aiding in treatment decisions has also been questioned. In an editorial in the American 

Heart Journal [115] Veronique Roger stated “the treatment of STEMI is largely standardised and 

based on evidence from large-scale reperfusion clinical trials, such that little change in management 
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can be expected to arise from such scoring systems”. Despite this concern nevertheless there has been 

considerable development in the literature. Kent et al [11] very recently developed a mathematical 

model that predicts mortality in patients with STEMI if treated with PCI and if treated with 

thrombolytic therapy. The model, labeled PCI-TPI, was adapted for incorporation into a conventional 

computerised ECG, with the purpose of supporting physicians considering the risks and benefits of 

PCI with some delay compared with more immediate thrombolytic therapy. The highest risk tertile of 

patients accounted for virtually all the mortality benefit from PCI, consistent with earlier work [116]. 

The authors considered that in clinical practice, if installed in ECGs, the PCI-TPI may be useful in 

targeting PCI to patients who might benefit most, especially in circumstances where there were 

substantial barriers in implementing a strategy of PCI for all. Despite the growing evidence that 

angioplasty yields better outcomes, thrombolytic therapy remains the most common form of 

reperfusion therapy in AMI because of limited capacity for PCI at most hospitals as asserted by Kent 

et al [116]. 

The recent clinical trial CARESS-in-AMI [117] randomised patients with STEMI treated by 

thrombolytics and abciximab at a non-interventional hospital to immediate transfer for PCI, or to 

standard medical therapy with transfer for rescue angioplasty. This illustrates that the use of PCI is a 

current treatment dilemma in STEMI and provides a situation in which risk assessment tools would be 

clinically useful. The trial showed that immediate transfer for PCI improves outcomes in high-risk 

patients. 

In a study by Yan et al [114] in which risk scores (i.e., TIMI, GRACE and PURSUIT) were applied to 

patients with NSTE ACS, study physicians were asked to rate patients risk as low, moderate or high 

on the case report form. The risk scores conferred independent and greater prognostic information 

compared with physicians’ risk assessment for prediction of 1-year mortality, even after adjusting for 

treatment differences.  

Given the difficulties noted above risk assessment strategies may find appropriate use more frequently 

during the later period of the hospitalisation or for prediction of longer-term outcomes. Other 

important uses include case-mix adjustment, and risk stratification in clinical trials analyses and inter-

hospital comparisons. In provider profiling analysis hospitals are ranked according to performance. 

This analysis plays a role in quality improvement; hospitals with a poor ranking are given an incentive 

to review their processes of care delivery and improve. Case-mix adjustment is very important, as 

some hospitals may treat more severe patients; this confounding needs adjustment [65].  

We have focused our evaluation on the endpoint of 30-day mortality. In the editorial mentioned above 

Roger [115] also asserted that more focus should be placed on longer-term outcomes following AMI, 

such as HF and recurrent ischemic events, “as these outcomes have not declined over time in ways 

commensurate to the large declines in short-term case fatality rates observed in clinical trials”. We did 

not have long-term data available. Whether our findings extrapolate to long-term outcomes including 

survival is another line of research. 



 

132 

Biomarkers have many uses. They can be used to categorise disease severity, to guide the use of 

targeted therapies, to monitor the efficacy of therapy and to predict disease course, including 

recurrence and response to therapy [118]. However the use of many biomarkers for rapid risk 

assessment in the emergency department or at the bedside is infeasible as this information is often not 

immediately available [118]. Perhaps biomarkers should be concentrated more towards the prediction 

of long-term outcomes. For example a tool has been developed called the TIMI HF risk score which 

assesses the risk of developing post-ACS HF leading to hospitalisation [119]. The score, developed in 

UA or NSTEMI, can accurately predict patients at highest risk for the development of HF up to 10 

months following the initial event. The score incorporates basic clinical findings as well as a 

biomarker BNP which enhanced its discriminatory capacity. However, the inclusion of biomarkers as 

prognosticators in risk models will preclude direct application when this data is not available. If 

collection of such data were to become standard practice, the applicability of the findings here to 

biomarkers would need to be examined. 

The variability in external validation performance measures depends on the size of the development 

and validation samples. The large trial datasets in this study have afforded large power to detect 

invalidity in prediction models and provided reliable estimates of performance measures. This is a 

major strength of this research. 

7.6  Summary 

We have developed a multivariable risk model based on a geographically diverse trial population and 

simplified this to form a reduced model and a simple risk score. Our risk strategies may be preferred 

for use in geographically diverse samples. The HERO-2 reduced model miscalibrated in GUSTO-I due 

to omitted factors which were underrepresented in HERO-2. Simple recalibration addressed this and is 

recommended even within the same geographical region. The HPI risk score performed a little better 

than TIMI most of the time. There is some loss of information associated with using discrete risk 

scores, but they still provided very good risk assessment in this study. In application, it is important to 

contemplate the suitability of existing risk scores for the patient population in the new setting. 
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APPENDIX A 
Example Splus code for shrinkage of region‐specific regression coefficients in Asia 

##Fit Global model† 

HGR<-lrm(DEATH~REGION+AGESTD*KILGRP+BPSYS+PULT+SEX+ANT,maxit = 25,data=all, x=T, 

y=T, linear.predictors=T)  

##Copy linear predictor to dataset 

all$lpg<-HGR$linear.predictors 

##Estimate adjustments to global regression coefficients to derive revised coefficients for application 

in Asia 

AsiaLP<-lrm(DEATH~AGESTD*KILGRP+BPSYS+PULT+SEX+ANT+offset(lpg), 

subset=c(REGION==5), data=all, maxit=25, x=T,y=T) 

##Apply shrinkage – adjustments are shrunk towards zero 

Asiapen<-pentrace(AsiaLP, 1, method='optimize', maxit=25)  

Asiashrunk <- update(AsiaLP, penalty=Asiapen$penalty, maxit=25) 

##Create matrix to store updated coefficients for Asia 

Asiafinal<-

matrix(nrow=1,ncol=10,dimnames=list(NULL,c("Intercept","AGESTD","KILLIP2","KILLIP34

","SYSTOLIC","PULT","SEX","ANT","AGESTD.KILLIP2","AGESTD.KILLIP34"))) 

##Calculate region-specific shrunk coefficients for Asia 

Asiafinal["Intercept"] <-

HGR$coefficients["Intercept"]+HGR$coefficients["REGION=5"]+Asiashrunk$coefficients[

"Intercept"] 

Asiafinal[2:10]<- HGR$coefficients[6:14] + Asiashrunk$coefficients[2:10] 

 

†KILGRP=3 includes Killip classes 3 and 4. 
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APPENDIX B 

TABLE A1: Trial characteristics 

Trial Sample 
size 

No. 
hospitals 

No. 
countries 

Trialing Randomised treatments Additional therapy 

GUSTO-1 41021 1081 15 Fibrinolytic/ 
Antithrombotic therapies 

SK + SC heparin vs SK + IV heparin vs 
accelerated t-PA + IV heparin vs t-PA + SK + 
IV heparin 

aspirin 

GUSTO-2b 12142 373 13 Antithrombotic therapies hirudin vs heparin aspirin, use of SK/accelerated t-PA in 
STE decision of treating physician  

GUSTO-3 15059 807 20 Fibrinolytic therapies reteplase vs accelerated alteplase aspirin, heparin 
HERO-2 17073 539 46 Antithrombotic therapies bivalirudin vs heparin streptokinase, aspirin 
ASSENT-2 16949 1021 29 Fibrinolytic therapies tenecteplase vs alteplase aspirin, heparin 
ASSENT-3 6095 575 26 Antithrombotic therapies Enoxaparin (max 7 days) vs low dose 

unfractionated heparin ± abciximab 
tenecteplase 
(half or full dose), aspirin 

 Recruitment Blinding  Patients Trial design Primary Outcome 

GUSTO-1 DEC90-FEB93 Open label AMI Efficacy Death 30 d 
GUSTO-2b MAY94-OCT95 Double blind Unstable angina/non Q-wave AMI Efficacy Death/ReMI/MI 30 d 
GUSTO-3 OCT95-JAN97 Open label AMI Efficacy Death 30 d 
HERO-2 NOV98 – MAY01 Open label AMI Efficacy Death 30 d 
ASSENT-2 OCT97-NOV98 Double blind AMI Equivalence Death 30 d 
ASSENT-3 MAY2000-APR2001 Open label AMI Non-inferiority Death 30 d/in-hospital ReMI or refractory ischaemia 

 Other Outcomes Eligibility, inclusion criteria. Primary 
analysis 

Adjudicated 
endpoints 

Results 

GUSTO-1 Death/stroke, death/ICH, death/disabling 
stroke, death 24 h, stroke and bleeding. 

Onset symptoms within 6 h, chest pain lasting ≥ 20 m and STE 
of ≥ 0.1 mV in ≥ 2 limb leads OR ≥ 0.2 mV in ≥ 2 contiguous 
precordial leads. 

ITT Stroke Accelerated t-PA 
significantly better 
survival + NCB. 

GUSTO-2b Death/ReMI/MI/stroke disability, stroke, 
death/ReMI/MI 24 h, bleeding and ICH. 

Chest discomfort within 12 h associated with transient or 
persistent STE or STD >0.5 mm OR persistent, definite T-wave 
inversion >1 mm. 

ITT ReMI/MI Hirudin significantly 
better at 24 hrs, effect 
dissipated over time. 
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Abbreviations: SK, Streptokinase; IV, intravenous; SC, subcutaneous; ITT, intention to treat, STE, ST-segment elevation; STD, ST-segment depression; LBBB, left bundle branch block; 
CHF, congestive heart failure; ICH, intracranial haemorrhage; NCB, net clinical benefit. 
 
 

 Other Outcomes Eligibility, inclusion criteria. Primary 
analysis

Adjudicated 
endpoints

Results 

GUSTO-3 Stroke, ICH, death/disabling stroke, 
death/stroke, ReMI, CHF, death 24 h and 
bleeding. 

Onset symptoms (>30 m) within 6 h and had (based on 12-lead 
ECG) STE of ≥ 1 mm in ≥ 2 limb leads OR ≥ 2 mm in the 
precordial leads OR BBB. 

ITT Stroke No difference. 

HERO-2 Death/ReMI, ReMI, ReMI 96 h, death 24 
h, stroke, bleeding and ICH. 

Onset symptoms (>30 m) within 6 h, STE of ≥ 1 mm in ≥ 2 
contiguous leads OR ≥ 2 mm in 2 contiguous precordial leads in 
V1-V3 OR LBBB. 

ITT ReMI, 
Stroke 

No difference in 
death 30 d, 
significant difference 
in ReMI. 

ASSENT-2 Death/stroke, stroke 30 d, in-hospital 
nonfatal cardiac events (inc. ReMI) and 
bleeding. 

18+, onset symptoms within 6 h, STE of ≥ 0.1 mV in ≥ 2 limb 
leads OR ≥ 0.2 mV in ≥ 2 contiguous precordial leads OR 
LBBB 

ITT Stroke Equivalence for death 
30 d. 

ASSENT-3 Above endpoint + ICH/major bleeding, 
readmission, stroke 30 d and bleeding. 

18+, onset symptoms within 6 h, STE of ≥ 0.1 mV in ≥ 2 limb 
leads OR ≥ 0.2 mV in ≥ 2 contiguous precordial leads OR 
LBBB 

ITT Stroke Significant effect for 
primary + major 
secondary. 
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TABLE A2: ASSENT3 day 0 30day mortality model [9] 

Risk factor: χ2 Parameter estimate (SE) 

Age (years): 156  
≤65  0  
65-74  0.94 (0.15) 
>74  1.84 (0.15) 

Race: non-Caucasian 7 0.43 (0.15) 
Hypertension 15 0.45 (0.12) 
Previous MI 4 0.30 (0.15) 
Killip class: 32  

I  0 
II  0.57 (0.15) 
III-IV  1.33 (0.27) 

Systolic BP (mm Hg): 75  
<120  1.14 (0.18) 
120-132  0.55 (0.19) 
133-150  -0.11 (0.20) 
>150  0 

Heart rate (bpm): 39  
≤62  0 
63-73  0.29 (0.19) 
74-85  0.36 (0.18) 
>85  0.97 (0.17) 

Anterior MI 6 0.30 (0.13) 
QRS score: 33  

0-1  0 
2-4  0.33 (0.21) 
>4  0.52 (0.21) 
ECG confounders  0.97 (0.20) 

Total ST-segment deviation (mm) 16  
<12  0 
12-17  0.36 (0.16) 
>17  0.59 (0.16) 
ECG confounders  -0.01 (0.20) 

BP, blood pressure; bpm, beats per minute; ECG, electrocardiogram; MI, myocardial 
infarction; SE, standard error. There was a significant interaction between age and Killip 
class (P=0.001). 
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TABLE A3: c statistics by region for uncalibrated models 

Model/Dataset HERO-2 ASSENT-2 ASSENT-3 GUSTO-I GUSTO-2 GUSTO-3 

Western countries:       
HPI-FULL* 0.813 0.810 0.806 0.812 0.817 0.818 
HPI-FULL- angina*† 0.813 0.810 0.806 0.813 0.816 0.819 
GUSTO-1‡ 0.826 0.810 0.803 0.820 0.809 0.826 
ASSENT-2* 0.813 0.814 0.808 0.813 0.820 0.822 
Latin America:       
HPI-FULL* 0.828 0.783 0.785   0.874 
HPI-FULL- angina*† 0.827 0.783 0.788   0.867 
GUSTO-1‡ 0.817 0.794 0.802   0.859 
ASSENT-2* 0.824 0.786 0.799   0.857 
Eastern Europe:       
HPI-FULL* 0.803 0.788 0.863 0.744  0.801 
HPI-FULL- angina*† 0.802 0.788 0.865 0.748  0.805 
GUSTO-1‡ 0.795 0.783 0.825 0.746  0.815 
ASSENT-2* 0.797 0.803 0.865 0.725  0.805 
Russia:       
HPI-FULL* 0.825      
HPI-FULL- angina*† 0.825      
GUSTO-1‡ 0.820      
ASSENT-2* 0.822      
Asia:       
HPI-FULL* 0.766      
HPI-FULL- angina*† 0.764      
GUSTO-1‡ 0.769      
ASSENT-2* 0.760      

*Treatment offset incorporated. 
†HPI-FULL re-estimated without angina. 
‡GUSTO-1 LP calculated ignoring history of cerebrovascular disease in ASSENT trials. 
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TABLE A4: Overall c statistic results after trialregion level recalibration  

  Population dataset 

Model  HERO-2 ASSENT-2 ASSENT-3 GUSTO-I GUSTO-2 GUSTO-3 

HPI-FULL*  0.818 0.809 0.807 0.811 0.817 0.818 
GUSTO-1†  0.814 0.810 0.805 0.819 0.809 0.826 
ASSENT-2*  0.814 0.813 0.810 0.812 0.820 0.821 

*Treatment offset incorporated. 
†GUSTO-1 LP calculated ignoring history of cerebrovascular disease in ASSENT trials. 
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TABLE A5: Nagelkerke's R2 statistics (%) for uncalibrated models 

Model/Dataset HERO-2 ASSENT-2 ASSENT-3 GUSTO-I GUSTO-2 GUSTO-3 

Overall:       
HPI-FULL* 26.9 20.6 20.4 22.6 20.1 23.6 
HPI-FULL- angina*† 26.7 20.7 20.3 22.8 20.5 23.6 
GUSTO-1‡ 23.6 19.5 19.7 24.0 14.6 24.0 
ASSENT-2* 24.4 21.3 21.2 22.7 22.4 24.0 
Western patients:       
HPI-FULL* 21.2 20.2 20.0 22.7 20.1 23.5 
HPI-FULL- angina*† 21.1 20.3 20.1 22.8 20.5 23.5 
GUSTO-1‡ 22.5 19.2 19.2 24.1 14.6 24.1 
ASSENT-2* 20.8 20.8 20.7 22.8 22.4 24.0 
Latin America:       
HPI-FULL* 29.5 23.0 19.2   34.5 
HPI-FULL- angina*† 29.3 23.5 19.1   34.0 
GUSTO-1‡ 23.9 19.1 20.3   28.5 
ASSENT-2* 28.4 24.4 21.6   34.0 
Eastern Europe:       
HPI-FULL* 23.5 20.2 29.3 14.6  21.5 
HPI-FULL- angina*† 23.3 19.4 27.9 15.1  22.3 
GUSTO-1‡ 20.0 20.3 24.3 14.4  21.4 
ASSENT-2* 21.5 22.4 29.7 12.8  21.4 
Russia:       
HPI-FULL* 29.8      
HPI-FULL- angina*† 29.7      
GUSTO-1‡ 26.4      
ASSENT-2* 27.3      
Asia:       
HPI-FULL* 18.8      
HPI-FULL- angina*† 18.7      
GUSTO-1‡ 10.8      
ASSENT-2* 4.0      

*Treatment offset incorporated. 
†HPI-FULL re-estimated without angina. 
‡GUSTO-1 LP calculated ignoring history of cerebrovascular disease in ASSENT trials. 
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TABLE A6: Nagelkerke's R2 statistics (%) after triallevel recalibration 

Model/Dataset HERO-2 ASSENT-2 ASSENT-3 GUSTO-I GUSTO-2 GUSTO-3 

Overall:       
HPI-FULL* 26.9 20.7 20.4 22.7 21.8 23.7 
HPI-FULL- angina*† 26.7 20.7 20.4 22.8 21.8 23.7 
GUSTO-1‡ 25.1 19.8 19.9 24.0 18.6 24.3 
ASSENT-2* 25.3 21.3 21.2 22.7 23.2 24.2 
Western patients:       
HPI-FULL* 21.2 20.3 20.1 22.8 21.8 23.6 
HPI-FULL- angina*† 21.1 20.3 20.1 22.9 21.8 23.7 
GUSTO-1‡ 20.6 19.5 19.4 24.1 18.6 24.2 
ASSENT-2* 19.6 20.8 20.7 22.8 23.2 24.2 
Latin America:       
HPI-FULL* 29.5 23.5 19.2   34.9 
HPI-FULL- angina*† 29.3 23.5 19.4   34.4 
GUSTO-1‡ 26.9 20.5 21.2   30.2 
ASSENT-2* 26.2 24.4 21.9   34.0 
Eastern Europe:       
HPI-FULL* 23.5 19.8 28.8 14.2  21.3 
HPI-FULL- angina*† 23.3 19.6 28.3 14.7  22.0 
GUSTO-1‡ 21.9 20.5 23.9 14.8  22.6 
ASSENT-2* 22.5 22.4 30.0 12.1  21.7 
Russia:       
HPI-FULL* 29.8      
HPI-FULL- angina*† 29.7      
GUSTO-1‡ 27.9      
ASSENT-2* 28.9      
Asia:       
HPI-FULL* 18.8      
HPI-FULL- angina*† 18.7      
GUSTO-1‡ 17.1      
ASSENT-2* 10.3      

*Treatment offset incorporated. 
†HPI-FULL re-estimated without angina. 
‡GUSTO-1 LP calculated ignoring history of cerebrovascular disease in ASSENT trials. 
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TABLE A7: Nagelkerke's R2 statistics (%) after trialregion level recalibration 

Model/Dataset HERO-2 ASSENT-2 ASSENT-3 GUSTO-I GUSTO-2 GUSTO-3 

Overall:       
HPI-FULL* 26.9 20.7 20.4 22.7 21.8 23.7 
HPI-FULL- angina*† 26.7 20.7 20.4 22.8 21.8 23.8 
GUSTO-1‡ 25.5 20.1 20.2 24.1 18.6 24.4 
ASSENT-2* 26.1 21.3 21.3 22.8 23.2 24.2 
Western patients:       
HPI-FULL* 21.2 20.3 20.1 22.8 21.8 23.6 
HPI-FULL- angina*† 21.1 20.3 20.1 22.9 21.8 23.7 
GUSTO-1‡ 22.2 19.5 19.4 24.1 18.6 24.2 
ASSENT-2* 20.8 20.8 20.7 22.8 23.2 24.2 
Latin America:       
HPI-FULL* 29.5 23.9 19.2   35.0 
HPI-FULL- angina*† 29.3 23.9 19.5   34.4 
GUSTO-1‡ 27.4 25.6 23.7   34.6 
ASSENT-2* 28.7 24.4 22.5   34.4 
Eastern Europe:       
HPI-FULL* 23.5 20.5 30.5 14.2  21.5 
HPI-FULL- angina*† 23.3 20.4 30.4 14.8  22.2 
GUSTO-1‡ 21.9 20.5 24.4 18.0  23.4 
ASSENT-2* 22.5 22.4 30.3 13.9  22.0 
Russia:       
HPI-FULL* 29.8      
HPI-FULL- angina*† 29.7      
GUSTO-1‡ 27.9      
ASSENT-2* 29.1      
Asia:       
HPI-FULL* 18.8      
HPI-FULL- angina*† 18.7      
GUSTO-1‡ 20.0      
ASSENT-2* 18.6      

*Treatment offset incorporated before recalibration. 
†HPI-FULL re-estimated without angina. 
‡GUSTO-1 LP calculated ignoring history of cerebrovascular disease in ASSENT trials. 


