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Abstract

The emergence of the Internet of Things (IoT) has already produced significant
changes in our everyday lives, where everything and anything can be connected
and communicated in the cyber-physical world. With the proliferation of smart
mobile devices, intelligent sensors, wearable devices, and ubiquitous Internet
and cloud computing, the use of the IoT is growing at an increasing rate.
However, this growth poses numerous challenges for the designers and users
of these systems. One significant challenge is the provision of security within
the IoT. The high mobility of things, the potential scale of the systems in the
number of things and users combined with dynamic network topology and
wireless communication mediums create a challenging environment. This is only
exacerbated by the limitations in device memory, battery-life and processing
capacity, arguing against the use of ‘heavy-weight’ security architectures.
In this thesis, we examine security mechanisms for large-scale IoT systems,
in particular, the need for access control, identity management, delegation of
access rights and the provision of trust within such systems. We propose an
access control architecture for the IoT. Our policy-based approach provides
fine-grained access for authorized users to services while protecting valuable
resources from unauthorized access. We use a hybrid approach by employ-
ing attributes, roles and capabilities for our authorization design. We apply
attributes for role membership assignment and in permission evaluation. Mem-
bership of roles grants capabilities. The capabilities which are issued may be
parameterized based on further attributes of the user and are then used to
access specific services provided by IoT devices. This significantly reduces the
number of policies required for specifying access control settings. The proposed
scheme is XACML driven.
We also propose an identity-less, asynchronous and decentralized delegation
model for the IoT leveraging the advantage of blockchain technology. We
describe system components, architecture and key aspects related to the
security of the system for both the access control and access control delegation
models. One significant issue of this thesis is the use of attributes for identifying
an entity rather than depending upon the unique concrete identity of that
entity. That said, we use attributes to validate an entity rather than depending
upon unique identities. We have implemented a proof of concept prototype of
the proposed access control architecture and provide a detailed performance
analysis of the implementation. Evaluation results show that our access



control approach requires minimal additional overhead when compared to
other proposals employing capabilities for access control in the IoT. For the
delegation of access rights, we demonstrate the feasibility of the model through
use-case examples and analyze the performance with a proof of concept testbed
implementation using Ethereum private blockchain. To better understand IoT
identity, we outline the foundations for building a formal model of IoT identity
based on attributes. We take the approach of attribute-based identity and
examine the notion of trust in an IoT context. We propose a trust model
for the IoT by considering the uncertainty that exists in such systems. The
contributions of the thesis shows that it is feasible to incorporate the use of
attributes in all the cases including access control, delegation of access rights,
management and modeling of identity and finally building the notion of trust to
achieve both fine-grained and flexible system design in large-scale IoT systems.
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Chapter 1

Introduction

The Internet of Things (IoT) [1] is a paradigm shift where anything and everything in
the physical and virtual worlds can be the part of the network. The term ‘IoT’ was
popularized by the innovative work of the Massachusetts Institute of Technology (MIT)
Auto-ID Centre. The first documented evidence of the use of the term ‘The Internet of
Things’ was by Kevin Ashton, the co-founder of the MIT Auto-ID Centre, in the year
1999 [2]. The IoT connects all the devices in a physical domain with the Internet to
communicate with each other for faster and easier service. The IoT represents a view in
which the traditional Internet extends into real-world objects (e.g. food, clothing, furniture,
paper, landmarks, monuments, etc.) and enables each the ability to gather, process and
act on information in a smarter way. These objects, acting as sensors or actuators, are
able to interact with each other in order to reach a common goal (e.g. quality and service)
by connecting all smart things to the current Internet. Therefore, the perspective for the
IoT is to deploy a ubiquitous society where the users (i.e. people) and the various objects
(i.e. everything that is addressable and communicable) will be connected over a network
platform to leverage the benefits for both society and technology on a large scale, so that
human users are unobtrusively assisted by technology in performing everyday activities [3].

The Internet is a compelling example of a scalable global network of computers that
inter-operates across heterogeneous hardware and software platforms. However, the IoT
is not merely the Internet and it does not rely solely on IP (Internet Protocol). It is a
new trend of connectivity for the next generation of connected users [4]. This has rapidly
impacted our everyday living through smart healthcare systems, smart city, smart retail
intelligent infrastructure and applications, wider communications and information sharing,
energy-saving applications and smart transportation, just to name a few areas [5] [6] [7] [8].
With these advances, it is now possible to connect the digital and physical world together

1



for transferring information and to build a ubiquitous system consisting of billions of things
with embedded computing and networking capabilities [9]. The IoT has extended the
principles of the Internet as a network organization concept to physical things, in which
everything has a unique identification, based on standard communication protocols [10].
This paradigm can be envisioned as a ‘things-connected’ network where the things are
likely to be connected with each other using a wireless medium.

IoT systems may deal with high volumes of data. This data can be particularly
sensitive, as it may include health, location and other highly personal information. IoT
systems are very large and dynamic in nature, and offer services that are related to human
users or other things that constitute such systems. We envisage a growth of the IoT
where it encompasses a significant range of human and social activities, e.g. commerce,
leisure, healthcare and transport. Activities that are currently not digitally enabled will be
supported and others expanded by the edge intelligence and ubiquity of the devices that
constitute the IoT. For example, shopping may be enhanced by services offered by things
deployed by the retailers, contacting user devices and offering information and discounts.
Current services, e.g. e-tickets, may be enhanced by sensors detecting e-ticket holders
and controlling physical access on that basis. Healthcare may be expanded by a range of
sensors attached to a person [7].

Situations e.g. those just described, and others left to the reader’s imagination, will
require an even greater number of things than are currently deployed, and users devices
that are likewise a part of the IoT. Devices and things may, over their lifetime, interact with
a vast range of other things. Such interactions may be fleeting and may only occur once
between a particular pair of things or be much more frequent and long term. Things will
likely be highly mobile, especially devices, moving from administrative domain to another
administrative domain. These domains will have to establish policies and mechanisms to
enable them to deal with devices and things about which they have very limited, if any,
previous information. This poses significant challenges in securing IoT systems [6].

This vision of the IoT implies that knowing the identities of individual entities before
an interaction is, in many cases, impractical. In a system like the IoT, where there may be
a large number of devices, being able to easily identify them, both uniquely and as groups,
is challenging. In an environment consisting of a multitude of users, each possessing a large
range of smart devices, questions of identity and access are paramount. Smart devices will
come in many forms and provide a vast range of services to both their users and other
entities within the IoT. Users will wish to maintain their privacy, efficiently manage their
devices and quickly and precisely obtain the services they require. The devices will, for the
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Figure 1.1: The Internet versus the Internet of Things.

foreseeable future, present relatively low-power capacities and solutions must be tailored
to this.

The IoT can be seen as a transformation rather than an evolutionary technological
advancement for both traditional and non-traditional application domains [11]. From a
logical point of view the IoT can be viewed as a collaborative and interconnected system
consisting of smart devices, e.g. intelligent wearable devices, that can share a common
objective. From a technological point of view, the IoT combines and adopts various
processing and communication architectures, technologies and design methodologies to
fulfil a common goal based on their target. The IoT integrates a vast range of technologies,
including sensory, communication, networking, Service-Oriented Architecture (SOA) and
intelligent information processing technologies [12]. The IoT is not the only name for this
development in connected systems, other equivalent terms are the ‘Internet of Everything’
(IoE) [13], the ‘Industrial Internet’ [14], ‘Smarter Planet’ [15] and the ‘Internet of Things
and Humans’ (IoTH) [16]. All refer to an environment where anything can be part of
the physical-digital eco-system. However, we emphasize that the IoT is not the IP or
a communication technology. It also should not be considered as an embedded device
or application over the Internet. In traditional Internet-based architectures, computing
devices communicate with each other over the Internet infrastructure, but in the case of
the IoT any physical or virtual object can be the part of the network (cf. Fig 1.1).

IoT implementations are commonly based on sensing and wireless communica-
tion technologies e.g. Radio Frequency Identification (RFID), Wireless Sensor Networks
(WSNs), WiFi, AdHoc Peer-to-Peer (P2P), 3G, 4G, IEEE 802.15.x communication stan-
dards e.g. ZigBee, Wireless Local Area Network (WLAN) and Wireless Body Area Network
(WBAN), etc [17]. The basic communication protocols for the IoT are predicated on
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the low power consumption of the devices. For example, PowerLine Communication
protocol (PLC), IPV6 Low Power Wireless Personal Area Network protocol (6LowPAN),
Routing Protocol for Low power lossy networks (RPL), ZigBee Smart Energy 2.0, EIST
M2M Architecture and Message Queue Telemetry Transport (MQTT) protocol [18] [19].
These technologies help the things in automatic identification of other things they are
communicating with. Further, with the development of IPV6, it is convenient to assign
unique digital identities and access to various digital information and services by the
things.

The IoT fuses the digital and physical worlds and by bringing together the concepts
and technical components of ubiquitous [20] and pervasive [21] computing. Both ubiquitous
and pervasive computing envisage a digital environment where general purpose machines
(e.g. personal computers and PDAs) are complemented by a large number of specialised
computers that are embedded into everyday objects, and that can be used for identifying,
sensing, networking and data processing. A typical application for this is the smart home,
whereby with the use of such technology we can control and monitor the lighting, thermostat
or even a microwave from our smart phone. These concepts deal with the question of how
users can interact in an environment that is physical but also enriched with computing, i.e.
digital functionality. Real-world objects in our everyday life are allowed to communicate
with one another via embedded microprocessors. Another example is smart meters, where
the meters send usage data over the Internet to the service providing companies [22].
The IoT extends these concepts by considering systems with a much greater scale, where
everyone (e.g. humans) and everything (e.g. applications and services) potentially form
part of the system. Therefore, along with the World Wide Web and mobility, the IoT
potentially enables both ubiquitous and pervasive computing scenarios [23].

The IoT has already made significant changes in our daily lives, with the enterprise,
social, technological and individual benefits only expected to increase with the proliferation
of IoT applications and services. At the same time the IoT poses new security and privacy
challenges for users, devices, systems and things [24]. Protecting IoT systems is difficult due
to the particular characteristics of IoT systems. These include extremely large numbers of
users and devices, many of the latter possessing low computing power and limited storage
capacity, the heterogeneous nature of these systems, the potentially transient nature of
relationships and other factors. [25]. In addition, the scale of the number of individual
devices, applications, services, etc., and the lack of common standards and architectures
increases the difficulty in employing traditional security approaches. Importantly, with
the vast range of users and entities, the issues of controlling access to resources and even
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identifying the communicating entities, access control and identity management are crucial
issues in providing secure and trustworthy IoT implementations. This is only heightened
by the likelihood of interacting entities originating from multiple distinct jurisdictions.

1.1 Significance

With the emergence of the IoT, there has been a tremendous growth in the use of intelligent
sensors and wearable devices. It is estimated that the number of devices connected to the
Internet will be 28.5 billion in 2022, up from 18 billion in 2017. On an individual basis
this will mean 3.6 networked connected devices per capita by 2022, compared to 2.3 in
2016. The average number of devices and connections per household and per Internet user
is predicted to increase by 51% by 2022. This trend will also increase the annual global
Internet traffic, which is predicted to reach 4.8 ZB (zetta-bit) per year by 2022 [26]. These
devices will generate a high amount of data, including a user’s personally identifiable
information (PII) and confidential health information as well as the contextual information,
e.g. location, date and time [27] [28].

In a large-scale and highly dynamic system like the IoT, how to protect such sensitive
information from unauthorized users and services is a significant issue. There is a tradeoff
between placing the access control at the edge of the network, making use of the intelligence
of the devices, and relying on centralized, but more easily managed, mechanisms [29].
On the one hand, low-powered devices, with limited memory capacity and restricted
processing power are often unable to support implementation of traditional security
mechanisms. On the other hand, centralization may have difficulty coping with the scale of
the systems. From the communication point of view, heterogeneous network environments,
wireless communication mediums, high mobility of things, dynamic network topology and
availability of infrastructure for communication also pose significant challenges [30]. These
limitations restrict where ‘heavy-weight’ security mechanisms can be applied directly into
edge IoT devices. This situation is exacerbated by the use of resource-heavy protocols
e.g. HTTP/HTTPS and TCP for communicating between devices. Different solutions are
needed for the protocol stack for use with such constrained resources, further inhibiting
the use of traditional security approaches. For example, the use of CoAP (Constrained
Application Protocol) [31] or DTLS (Datagram Transport Layer Security) [32] security
protocol over the 6LoWPAN based on IEEE 804.15.4 standard, could be an alternative.

As of today, there is no complete, coherent and fine-grained access control approach
that can be deployed for an IoT system [33]. This presents significant challenges in
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developing a secure, robust and scalable IoT system with secure applications and services.
Importantly, the present access control architectures are not prepared to fully integrate
with the different layers of an IoT system and do not adequately cover its dynamic and
autonomous communications characteristics. Traditional security and privacy challenges
are mostly related to information leakage and potential data loss and control over services.
However, they have now become more significant due to the range of threats and attacks [34].
Moreover, as noted above, the high level of heterogeneity in the IoT, combined with the
variety of technologies, systems and applications, mobility, dynamic network topology
and limited physical security of low power devices further introduces advanced security
risks that are growing concerns and need to be addressed for this kind of systems in
the future [35]. Hence, there is a significant need to revisit and rethink access control
approaches for developing an IoT system in a structured and comprehensive way.

1.2 Motivation

To explore the motivation of our research, we present a simple example scenario.

In the current large-scale IoT systems it is difficult to manage and track who (e.g.
user and device) is using the system and what (e.g. data and resource) they are connecting
to and accessing. This limits a wider deployment of such systems and indicates the
demand for developing a robust, scalable and secure IoT systems [36]. Now let us consider
an environment that is composed of a vast number of IoT devices, users, applications
and their associated services. For an example scenario, we select an IoT-enabled smart
healthcare system - one of the major application domains for the IoT. According to the
World Health Organization (WHO) Global Observatory for eHealth survey in 2015, there
were 121 countries with national eHealth strategies [37]. This illustrates the requirement
for integrated, systematic and electronic use of healthcare information by adopting enabling
policies and mechanisms for both the patients and healthcare providers. Moreover, with
the rapid expansion of the IoT, healthcare systems are expected to be easily accessible as
well as remotely available [38].

An important element of this is the increased use of a wide range of wearable devices,
including smart sensors, to enable automatic collection, storage and reporting of data and
its use in diagnosis [39]. For instance, In 2013, 15% of the population in the United States
owned a mobile phone-connected wearable device (e.g. Fitbit or smartwatch) [40] [41].
The number of applications compatible with wearable devices will only grow, with nearly
165,000 healthcare apps. available at present [42]. In Australia people can store their
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health records e.g. allergies, past and current conditions and treatments, medicine details,
pathology reports or diagnostic imaging scan reports using the MyHealthRecord [43]
online service. These reports can be seen by the appropriate doctors, specialists and
hospital staff online from anywhere at any time, for example, in an accident or emergency
condition or even in a regulation medical visit. Similarly, through the National Health
Portal (NHP) [44] in India, an initiative has been taken where citizens’ health records will
be integrated in a common network/grid for efficient monitoring of health entitlements by
both public and private healthcare providers. According to the European Commission, up
to 50% of European adults depend on online health information systems for searching and
managing their health information [45].

Now consider in such an IoT-enabled healthcare facility where patient monitoring
and possibly even treatment delivery is administered via smart things. Various wearable
devices and sensors will be attached to the patients and accessed by healthcare professionals
(and possibly others). The sensors and devices may be allocated to a patient on admission
or at any stage during their stay at the facility. When they (i.e. the things) are allocated
to a patient they will be registered in the system, including noting which patient they
are assigned to. Access to the sensors will depend upon the policies of the facility and
this may include different users having different levels of access to the same device (for
example, a nurse may have read only access to a drug delivery device whereas a doctor
may be able to alter the dosage).

The issue is how to identify all the entities in the system, provide a different level
of access to different actors to the patient’s medical sensors and to protect the patient’s
privacy. In a real-life hospital environment there may be hundreds of doctors, nurses,
possibly thousands of patients and millions of sensors. The number of possible relationships
in accessing a patient’s private information is considerable. Now imagine three simple
hypothetical scenarios as follows. Doctor A and Doctor B both work in a hospital H, as
does Nurse C. Doctor A is a cardiac specialist caring for patient Alice and Doctor B is a
cardiac specialist caring for patient Bob. Nurse C is appointed in the ward Y, where Alice
is admitted. Bob is assigned to a different ward, X. Doctor D is another cardiac specialist,
who is brought in to assist in an operation on Alice. From the access control perspective
some of the concerns are:

• To allow a doctor (e.g. a cardiac specialist) to access only their (particular) patient’s
things. We do not want a specialist to gain access to every patient’s medical things.
For example, cardiac specialist Doctor A for patient Alice is allowed to access the
cardiac-related medical things for Alice. Doctor A should not be allowed to access
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the same devices worn by Bob and may not even be allowed to access all devices
attached to Alice (for example, a location tracker). While the desired situation could
be achieved by authoring policies for every doctor-patient combination, this is not
scalable and also requires a-priori knowledge of all the system users.

• Similarly, a nurse who is assigned to a particular ward, is able to access the clinical
and related medical things of patients who are admitted in that particular ward. For
example, nurse C in ward Y can access some of patient Alice’s things. However, nurse
C is not able to access any of Bob’s things, as Bob is admitted in ward X. Likewise,
other appropriate policies and access control can be assigned for a patient’s family
and friends and other staff of the hospital. As patients move between wards of the
hospital we do not wish to constantly revise the policies to reflect this.

• Being able to rapidly grant Doctor D access to the devices attached to Alice. In the
event that an emergency arises and prompt action needs to be taken, D needs to
access the information and functionality of the things. There may be insufficient time
to enter D’s identity in the system. A solution where attribute-based credentials could
suffice for access would obviate the need for a-priori identity knowledge.

Thus, for the patients, healthcare providers and associated organizations it is a
significant need to keep their patients’ information confidential and secure the access of the
devices while managing the scale of devices, identities and the nature of relationships in the
IoT. An unauthorized access to these wearable devices (and connected medical equipment)
can breach a patient’s privacy and generate potential life-threatening attacks [46]. For
example, on the 12 May 2017, the‘WannaCry Ransomware’ attack [47] targeted around
200,000 computers across 150 countries. Amongst the targets were the UK’s National Health
Service (NHS) system including computers, MRI scanners, blood-storage refrigerators and
theatre equipment. Another attack called MedJack (Medical Device Hijack) [48] allowed
attackers to inject malware into medical devices and perform unauthorized activities, for
instance, remotely stopping an x-ray machine working. It can be seen that appropriate
access control and identity mechanisms are crucial in limiting the unauthorized actions
and operations that an attacker can perform.

1.3 Research Challenges

The IoT presents its own particular challenges in designing secure and trustworthy solutions.
Major issues for a wider deployment of IoT systems include: limited storage and processing
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capacity of the things, concerns regarding reliability in performance, availability in commu-
nication mediums, accessibility any-time and any-where, interoperability in a heterogeneous
environment, data management performance and security and privacy [49] [50] [51] [52].

In this thesis we intend to examine the significant security challenges of access control
for the IoT. Access control is one of the crucial aspects of security when considering the
characteristics e.g. scale and heterogeneity in devices, users, applications and services, of
an IoT system. It is used to control and regulate who (e.g. an entity) can view or use what
(e.g. a resource). Access control helps to satisfy the security properties of confidentiality,
integrity and availability [53].

There have been a number of proposals that discuss access control models and
mechanisms for use in IoT systems [54] [55] [56]. These include well-known access control
solutions e.g. Role-Based Access Control (RBAC) [57], Attribute-Based Access Control
(ABAC) [58] and Capability-Based Access Control (CapBAC) [59], just to name a few.
However, each of these mechanisms has its own advantages and disadvantages when
applied to the IoT. For instance, RBAC provides fine-grained access control over the
resources using explicit user-to-role mappings, however, RBAC itself is highly centralized
and requires the definition of each user-to-permission relation for each resource that a
user is to be allowed to access. This is challenging in a large and complex system like the
IoT [55]. The employment of ABAC improves policy management by using attributes (e.g.
name, age, location, etc.) rather than concrete identity. This is more flexible for the IoT
as policies can be written based on the context (e.g. current time or a location). However,
ABAC by itself provides no mechanism for controlling the number of policies required, e.g.
by grouping together policies with the same attribute requirements. This is an issue in
highly scalable systems e.g. the IoT [54].

CapBAC provides flexible access control. Users are provided with capabilities which
identify the resources and operations on that resource that a user is allowed to access.
This allows fine-grained access control. However, many of the existing (non-IoT) CapBAC
mechanisms are centralized when validating access rights of subjects. Distributed CapBAC
models e.g. [60] and [61] have been proposed for use in the IoT. In this model, validation
is performed inside the resource-constrained IoT devices (or a local management capacity)
without there being any contact with a centralized authority. This allows a distributed
approach, taking advantage of edge-intelligence, i.e. in-line with the nature of the IoT.
However, these systems do not address the problems of managing the number of capabilities
that will be required in a realistic IoT system, let alone the policy base needed to control
their creation and distribution. The policy base that will need to be defined is likely to be
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large and dynamic. The scale and diverse nature of the IoT makes it difficult to specify,
centrally and in advance, a complete set of access control policies.

Furthermore, most of the proposals are concerned with how identities can uniquely
identify a particular entity. In other words, entities are defined by the unique identities.
We argue that such an approach is not sufficiently flexible and fine-grained for a large
and highly dynamic system like the IoT. Further, when considering issues e.g. policy
management and delegation of access rights in the IoT, we need to be able to flexibly
handle questions of identity. It cannot always be known in advance which users will access
which services or devices or which devices will be available at the time when access is
requested.

In addition, the nature of the IoT requires a fine-grained approach to access control,
including in the handling of delegation. This means, just as with access control itself, the
delegation of access rights needs to be governed by policies. The scale and nature of the IoT
means that commonly used mechanisms by centralizing the control of delegation is likely to
be impractical. With the exponentially growing number of IoT services, applications and
devices, a fundamental issue is to ensure that only the entities that possess the appropriate
rights are able to access resources. The IoT requires a flexible and fine-grained delegation
model.

Returning to the use case scenario explained in Section 1.2, which is likely to be
common in an IoT-enabled healthcare setting. A number of medical sensors (e.g. to
monitor blood pressure, body temperature, etc.) are attached to a patient. The patient’s
doctors should be given access to the sensors to allow readings to be taken. Defining
policies which give access to each doctor for each sensor will be time-consuming and hard
to manage. Given the dynamic nature of both the IoT and healthcare situations, the
set of sensors is likely to change in unpredictable ways, making managing their access
particularly challenging. The problem of policy management, and particularly the number
of policies that must be authored, requires addressing.

In this thesis, we try to address the following two key research questions:

• Research Question 1: How to design an access control architecture for an IoT system
that is capable of handling security using a minimum number of policies and dynamic
identity management?

• Research Question 2: How to achieve such a fine-grained access control design leveraging
on the distributed nature of an IoT system?
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1.4 Thesis Statement and Contributions

We make the following thesis statement:

A partially decentralized capability-based access control architecture can be used for
authentication and authorization of users and resources in a large-scale IoT system and can
significantly reduce the number of policies required for such authentication and authorization
based on attributes, rather than depending upon unique identity of an entity.

To support our thesis statement, we make the following contributions. In specific,
this thesis develops a novel access control architecture for the IoT which implies the
development of the secure access control, efficient identity management and flexible access
right delegation. The contributions are listed in their chronological order.

• We propose a policy-based, fine-grained and partially decentralized access control
architecture for the IoT.

In the IoT, security is a significant concern, with access control being one of the
major issues. Towards this, we propose the design of a policy-based, fine-grained and
partially decentralized access control architecture that allows fine-grained access for
authorized users to services while protecting valuable resources from unauthorized
access. In the IoT, with its open technologies and resource constrained nature of these
devices (e.g. limited battery power, memory capacity and computational speed, etc.),
managing the resources and users of the system and enforcing appropriate policies
are difficult and challenging issues. The scale and diverse nature of the IoT makes it
difficult to specify, centrally and in advance, a complete set of access control policies
based on traditional access control mechanisms e.g. RBAC, ABAC, etc. To address
this issue, we design a hybrid access control model employing attributes, roles and
capabilities. We show that the proposed model can significantly reduce the required
number of policies for granting access to a service (or resource) in an IoT system. In
the design, the attributes are used for authentication and authorization of a legitimate
user and services, rather than depending upon a concrete identity of an entity. In other
words, in our model, the identity of an entity does not depend upon a unique concrete
identity. We use attributes to parameterize capabilities for accessing specific services
provided by IoT things. We apply attributes for role-membership assignment and in
permission evaluation. Membership of roles grants capabilities. The capabilities which
are issued may be parameterized based on further attributes of the user and are then
used to access specific services provided by IoT things. We discuss the practicability of
the proposed architecture with both symmetric and asymmetric key based approaches.
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• We describe a detailed implementation and evaluation of the proposed access control
architecture.

Recent proposals for IoT access control do not provide any implementation information
nor do they discuss the authorization process in detail. In this thesis, we provide a
detailed discussion of the development of the proposed access control architecture
using both symmetric and asymmetric key based approaches. We provide a detailed
performance analysis of the employed symmetric key based approach in comparison
with the asymmetric key based approach. We demonstrate that the proposed architec-
ture could easily work with either approaches. We intend to examine the employment
of the light-weight network authentication protocol for constrained IoT devices which
can be an alternative than enforcing heavy-weight security protocols for the IoT.

• We analyze the notion of identity in the context of the IoT, which in turn helps to
provide deeper insights into the different types of authentication and authorization
issues that can be used for IoT access control.

In the IoT, it is difficult to predict, in advance, which entities will interact and require
access to services and to precisely identify the exact services to which they will seek
access. Therefore, we argue that depending upon a concrete identity of an entity in the
IoT is not an ideal choice. Towards this, we address important questions concerning
the nature of identity and identity management for such IoT systems. In the state
of the art, there exist many approaches that discuss identity and its management,
however examination of identity in the context of the IoT is still in its infancy. We
introduce a formal model to represent IoT identity from a ‘things-centric’ approach.
Importantly, we employ attributes for the authorization and authentication of an
entity. We demonstrate that the use of attributes could be an alternative to represent
IoT identity without depending upon the concrete identities of the entities.

• We develop a dynamic and flexible delegation model to transfer access rights in an IoT
scenario.

In IoT, access right delegation is one of the significant issues when addressing security.
Access rights, in specific, governs who or what can view or use resources by the
allocation of rights specified by certain policy enforcement. In an IoT system, it
cannot always be possible to record in advance which users will wish to access
which services or resources, or which devices will be available at the time access is
requested.Entities still need some basis on which to determine whether to interact,
including the bestowal and acknowledgement of access rights. To date, most models
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for access right delegation in IoT systems are built on the commonly used access
control mechanisms e.g. RBAC and ABAC, which are not suitable to provide flexible
and dynamic access control for IoT systems. We examine the need for an identity-less,
asynchronous and decentralized delegation model for flexible and easy transfer of
access rights in the IoT. We demonstrate that blockchain technology can be used
to facilitate delegation of access rights to IoT systems governed by the generated
capabilities issued by the smart contracts without the involvement of any trusted third
party authentication. Significantly, we employ attributes to validate an entity in such
delegation rather than depending upon the unique identity of the entities.

• We examine the notion of the trust in the context of the IoT access control mechanisms
and propose a trust model supporting attribute-based identity.

Trust is an important aspect for establishing communication between different entities
in uncertain conditions. Given the dynamic characteristics in the IoT, it is important
to include mechanisms that can help in interactions between the things by overcoming
this uncertainty. However, there are several challenges that need to be overcome
including the resource constrained nature of the devices. In an IoT system billions
and potentially trillions of devices will be interconnected with one another which
make the system more challenging for developing a flexible and secure trust model for
the IoT systems. We propose a trust management model to reduce the uncertainties
based on the past interactions. This will help to reinforce the confidence in trust
value evaluation for the IoT. Our model employs subjective logic for modeling and
evaluation of trust. Subjective logic is used to examine the use of direct experiences
and recommendations to evaluate the final trust value for an entity in an IoT context.
Importantly, we use attributes for representing an entity rather than depending upon
their concrete unique identity in the trust management system. In other words, an
entity is evaluated based on the attributes that they posses. We demonstrate the
practicability of the proposed trust model with IoT-based real-world scenarios.

1.5 Thesis Outline

This thesis is structured as follows.

• In Chapter 2, we discuss the state of the art research background and related work. We
study the major concepts in the field, e.g. the IoT, its basic architecture and analyse
various security issues. We also list potential threats and attacks in the IoT. This
will lead us to derive the basic security needs for an IoT access control architecture.

13



This chapter includes a comprehensive survey of the related research works in IoT
access control. We discuss various access control mechanisms in detail and examine
their suitability in the IoT. We also introduce the importance of identity in an IoT
context. We discuss various approaches to access right delegation in the IoT. Finally,
we outline the notion of trust and its influence in the IoT.

• In Chapter 3, we present an access control architecture for the IoT. We propose
the design of a fine-grained and flexible access control architecture based on the
interactions between things and service discovery. This allows simplified and dynamic
policy management by applying attributes both in role-membership assignments and
conditions in permissions, effectively reducing the required number of policies for
granting access to a service or resource in an IoT system. We define the proposed
access control architecture and explain its different components in detail. We also
provide a formal specification of our model along with various potential access scenarios.
For a detailed performance comparison, we use both symmetric and asymmetric key
based approaches to our design.

• In Chapter 4, we present the detailed implementation and illustrate numerical eval-
uation of the proposed access control architecture. We perform the experiments in
a physical testbed. For a comprehensive analysis, we conduct the experiments using
both symmetric and asymmetric key based approaches.

• In Chapter 5, we discuss the notion of identity for the IoT. We provide a survey on
identity for the IoT. We outline the foundations for building a formal model of IoT
identity based on attributes. We demonstrate its applicability using different use-case
scenarios. Finally, we examine the feasibility to incorporate such an identity model to
achieve both fine-grained and flexible system design for large-scale IoT systems.

• In Chapter 6, we discuss the importance of access right delegation in the context
of the IoT. We devise a novel delegation model for the IoT using blockchain. We
discuss an identity-less, asynchronous and decentralized delegation model based on
blockchain technology. We describe system components, architecture and key aspects
related to the security of the system. Further, we demonstrate the feasibility of our
model through use-case examples and analyse the performance with a physical proof
of concept testbed implementation using Ethereum blockchain.

• In Chapter 7, we examine how the notion of trust can be used for access control in
the IoT. That said, we discuss the need for dynamic trust modeling for the IoT. We
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explicitly take into consideration the uncertainty that exists in an IoT system. We
derived the model using subjective logic. We also outline the basics of subjective logic
operations and its applicability to the proposed trust model. We use different use case
scenarios to explain the usefulness of the model in IoT environments.

• Finally, in Chapter 8, we conclude the thesis. In this, we summarize the major findings,
revisited the contributions and discuss the limitations of our current research. We list
a number of open research questions and provide insights for future research directions.
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Chapter 2

Background and Related Work

In this chapter, we present background and related work necessary to this thesis. We
intend to present an overview of the state of the art IoT paradigm and, in particular, an
examination of the available access control solutions in the existing literature. We also
provide insight on IoT security, identity, access right delegation and the notion of trust
when building an IoT access control architecture. The major objectives of this chapter
can be summarized as follows:

• To provide an outline of IoT architectures, characteristics, its various scopes of
applications and potential threat and attacks.

• To examine the design and provision of various access control mechanisms in the state
of the art IoT paradigm.

• To outline the basics of identity management, delegation of access rights and the
notion of trust in the context of the IoT.

The rest of the chapter is organized as follows. In Section 2.1, we provide a brief
discussion on IoT. We present a categorization for IoT security issues and threats based
on interactions between users and things, service discovery and communications. In
Section 2.2, We discuss the basics of access control. We provide the fundamentals of an
access control mechanism. We also list a number of available access control mechanisms for
the IoT. In Section 2.3, we include a detailed discussion on access control, in specific, focus
on the IoT characteristics. In Section 2.4, we outline identity management process and
list the various models used in identity management process. In Section 2.5, we explain
approaches to delegation. In Section 2.6 we provide a discussion on the notion of trust
used in computing systems. Finally, we give a summary of the chapter in Section 2.7.
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2.1 The IoT Paradigm

There are several definitions of the IoT that have been presented. For instance, according
to the Information Society and Media Directorate-General of the European Commission
(DG INFSO) and the European Technology Platform on Smart Systems Integration
(EPoSS), IoT is defined as [62]: “things having identities and virtual personalities operating
in smart spaces using intelligent interfaces to connect and communicate within social,
environmental, and user contexts”. This is a widely used IoT definition that follows a
things oriented architecture. Further, Atzori et al. [63] define things from three perspectives
e.g. middleware service, sensors and information.

Buyya et al. [12] present a user-oriented definition of the IoT regardless of communi-
cation protocols and IoT environments: “interconnection of sensing and actuating devices
providing the ability to share information across platforms through a unified framework, de-
veloping a common operating picture for enabling innovative applications. This is achieved
by seamless ubiquitous sensing, data analytics and information representation with cloud
computing as the unifying framework”.

Compared to [63] and [12], Tan and Wang [64] define the IoT from the viewpoint of
communication, social, environment and user contexts, as follows: “things have identities
and virtual personalities operating in smart spaces using intelligent interfaces to connect
and communicate within social, environment, and user contexts”.

Unlike the approaches of [63], [12] and [64], Haller et al. [65] define the IoT inde-
pendently of technology and platforms. This definition is derived from a mobility and
service integration perspective: “a world where physical objects are seamlessly integrated
into the information network, and where the physical objects can become active participants
in business processes. Services are available to interact with these ‘smart objects’ over the
Internet, query their state and any information associated with them, taking into account
security and privacy issues”. Unlike others, Davoli et al. [66] discuss the IoT from a
network point of view: “the IoT can be defined as a ‘network of networks’ of physical
devices connected in an Internet-like structure, thus enabling them to collect, exchange and
process data”. A list of other definitions for the IoT can be found in [67].

In summary, the IoT is not just a cyber-physical system for measuring state in-
formation and doing automatic computation. It is more a networking infrastructure
that combines the digital and physical worlds together. Therefore, when we address the
security characteristics of IoT, we need to consider a wider aspect of scenarios combining
architectures, users, communications, technologies and applications.
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2.1.1 Architecture

Various IoT architectures have been proposed in the literature, for example [68] [69] [17]
[70] [71]. Many of them proposed a three-layer architecture (e.g. [34] [72] [73]) composed of
application, network and perception layers. A few of them (e.g. [74]) propose a four-layer
architecture consists of sensing layer, network layer, service layer and application-interface
layer. However, there is no generic architecture for the IoT that has converged to a
commonly-used reference model. In contrast to the three and four layers architectures,
[17] argues for the support for a five-layer architecture for IoT applications and services.
The layers used there are, from bottom to top, objects, object abstractions, service
management, application and business. CISCO provides a reference architecture for the
IoT by enhancing the traditional three-level and five-level models which is composed of
seven layers [75]. In this architecture, the layers from bottom to top are physical devices
and controllers, connectivity, edge (fog) computing, data accumulation, data abstraction,
applications and, collaboration and processes.

We argue that the functional components of an IoT architecture should encapsulate
the diverse security requirements and various security issues of this context. The archi-
tecture should enable the achievement of security for devices, networks, data repository,
services, applications and users. Note, in order to explore various IoT security issues
and requirements for IoT security provisioning, throughout this thesis we use a four-layer
reference architecture that of [74] (cf. Fig 2.1). Next, we briefly describe each layer.

• Sensing Layer: The first layer is composed of smart IoT sensing devices e.g. smart
phones, RFID tags, sensors and actuators, etc. These components are able to auto-
matically sense, collect and measure the various physical parameters e.g. temperature,
humidity, location etc. Devices can store collected information inside themselves and
sensors can store information into predefined sensor hubs (e.g. a microcontroller unit)
to process them. The major functionalities of this layer are data sensing and data
acquisition. Standardized plug-and-play mechanisms can be used with the various
sensing devices. Furthermore, considering the scale of the number of things in an IoT
system, sensing devices may be deployed simultaneously or over time according to the
environmental context and practical requirements [76].

• Network Layer: The second layer is the network layer. This layer is composed
of different wired and wireless networks, cloud computing services and big data
repositories. Major functionalities of this layer include data aggregation, Quality of
Service (QoS), scheduling, etc. It is also responsible for transmitting data to the next

21



Sensing Layer 

Network Layer 

Service Layer 

Application-Interface Layer 

Sensor Hub Sensor Hub

DeviceDevice

Sensors

Wired/ Wireless Networks

Internet Gateway

Cloud
WSNs

Mobile Networks

WLAN

PANs

Big-Data

Event Processing

Service Decision

Service Division/
Integration

Analytics Decision

Smart City Smart Transport

Smart Home Smart Health

Service 
Composition

Figure 2.1: The functional layers of a four-layer IoT architecture.

IoT architectural layer. The networks in this layer potentially combine heterogeneous
equipment and help to transmit data among different components within this layer
(and to the next architectural layer) using technology including 3G, 4G, GSM (Global
System for Mobile Communication), UMTS (Universal Mobile Telecommunications
System), WiFi, Bluetooth, etc. The presence of cloud computing services and big
data repositories enable a variety of different technologies to perform seamlessly by
deploying, managing and scheduling of various network services [77]. Other commonly
used technologies in this layer are IPv6, 6LoWPAN (IPv6 over Low-Power Wireless
Personal Area Networks), and RPL (IPv6 Routing Protocol for Low-Power and Lossy
Networks). 6LoWPAN is a dedicated communication protocol that can fit well with
the resource-constrained IoT devices. 6LowPAN is designed for IPv6 over IEEE
802.15.4 and it is connected to the Internet via a gateway (typically WiFi or Ethernet).
Similarly to 6LoWPAN, RPL facilitates communication in a resource constrained
environment and specifically within constrained networks, e.g. WSNs [78].
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• Service Layer: This is the third layer. The major functions of this layer are
analysis and processing of data that is collected from the network management
layer. The service composition layer is built based on middle-ware technology that
assists with information exchange for IoT applications among heterogeneous objects
without any specific hardware and software requirements. It is intended to meet
the needs of applications, application programming interfaces (APIs) and various
service protocols [79]. The major functional component of this layer is the service
composition unit, which is responsible for event processing, creating service divisions,
service monitoring, service configuration and performing various decision analytics
according to the specific policy requirements and contextual information.

• Application-Interface Layer: The fourth layer is the application-interface layer
which provides smart IoT services to end users. The major functional components
of this layer are various applications which could be classified as, for example, smart
home, smart city, smart transport, smart commerce and smart health, etc. [79] [80] [81].
This layer is responsible for providing various services and at the same time determines
a set of message passing protocols at the application level [82]. This layer is also
responsible for data presentation, application maintenance, application access control
and updating software and security patches for those applications. Standard interfaces
using HTTP and HTTPS are widely deployed for this layer. However, more dedicated
resource contained application level protocols e.g. CoAP (Constrained Application
Protocol), Advanced Message Queuing Protocol (AMQP), eXtensible Messaging and
Presence Protocol (XMPP), etc. are also used in this layer [83] [84]. This layer exports
the system’s functionalities from the service layer to the end users. It may also use
standard Web services (both for service protocol and service composition) to distribute
the activities and services.

2.1.2 Characteristics

In this section, we outline some fundamental characteristics of an IoT system as fol-
lows [85] [17] [86]:

• Resources Limitation: IoT devices are, in general, more resource constrained in
nature than traditional networked devices. These devices have limited battery power,
memory capacity and/or processing speed [87]. These characteristics limit the ability
to deploy traditional (i.e. conventional) security approaches with the IoT devices. For
example, cryptographic mechanisms on these devices may need to be specially tailored
to avoid the need for overly high processing requirements.

23



• Scale: The scale of an IoT system is extensive. An IoT system may handle billions
(and potentially trillions) of devices, users and applications in real-time [88]. The
number of devices, users, applications, services and their associations make it more
complex when designing appropriate security measures for them.

• Heterogeneity: An IoT system is composed of numerous devices (e.g. sensors and
actuators) and users. The devices may have different operating systems, hardware
or technology compatibility (e.g. heterogeneous wireless communication technologies,
protocols for networking, etc). Furthermore, different hardware and software platforms
facilitate the collection of data from heterogeneous IoT devices. As of now, there is no
common standard for tagging and monitoring sensors in an IoT system [89].

• Mobility: The devices and users in IoT systems may be highly mobile in nature. While
this is crucial for the overall performance of IoT applications in supporting realistic
usage scenarios, it further complicates the provision of security solutions [90]. Some
applications may be spread over multiple jurisdictions and/or change their jurisdictions
within their life-cycle in the IoT system. They may lose network connectivity while
roaming across the networks. In addition, resource availability and communication
capabilities may vary throughout the networks.

• Dynamic: The interactions between entities may be many and highly varied. The
number of entities that each device or user encounters can potentially be very large in
number. Interactions may be very short in duration and pairs of entities may only
interact once over the life-time of the IoT system. From a secure access control point
of view, this is crucial when interactions may happen between entities that do not
know each other’s identities in advance [91].

2.1.3 Scope of Applications

In this section, we discuss example application areas for the IoT. There are numerous
applications and services that can be and have been employed in the IoT [6] [92]. However,
we only outline a few, detailed descriptions of them can be found in the cited works.

• Smart Healthcare: With the rapidly increasing deployment of WSNs, RFID, smart
wearable devices and sensors (e.g. Fitbit [93]), healthcare systems are relying more
and more heavily on IoT-enabled smart applications [94] [95] [96] [97] [98] [99]. In
such smart healthcare systems, patient monitoring and administration of appropriate
medication can be controlled and managed automatically without any direct human
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involvement. In the past, healthcare systems were a closed environment within a
secure network infrastructure. However, with the IoT they are now operating in an
open context [100]. For example, using wearable blood pressure monitoring systems,
a patient’s data (i.e. blood pressure) can be periodically transferred to the hospital
database and viewed by appropriate doctors. It could then be used for diagnosis and
treatment-plan purposes. For instance, using ‘BioStrap’ [101], a wearable wrist-band
and shoe clip to monitor heart rate, a user’s medical data (e.g. heart rate, blood
oxygen saturation level or sleeping analysis) can be monitored and stored appropriately.
This device can be controlled and monitored using smart phone applications.

• Smart Home and Buildings: Smart home is intended to provide a more flexible
and comfortable life-style with IoT-enabled home appliances [102] [103]. For example,
intelligent sensors can attempt to gauge a person’s emotional state from physiological
readings and change the environment of a room accordingly. A smart electronic heater
can adjust the temperature of a room automatically without any human intervention.
A smart electric meter can automatically send readings to the billing company. There
are many actual applications available in the market, for example, the ‘CURB’ [104]
energy intelligence system, which allows users to automatically adjust the temperature
of a home remotely. It can also detect which devices are turned on in a particular
time-frame and how much power they are using. Based on such data, it can predict
future utility costs. Another example is the ‘Philips Hue’ [105] wireless lighting system,
where a user can control the lights using their voice, adjust the brightness, set timers,
create routines or even can change colours using a mobile app.

• Smart Transportation: This is also referred to as the intelligent transportation
system. In addition to controlling or supporting the vehicles themselves, it helps
to monitor and control traffic data (between the vehicles and the transportation
infrastructure), compute and integrate this data in real-time, as well as communicate
with the transportation networks for analysis and evaluation purposes. It typically
involves GPS and RFID based tracking systems [106] [107] [108]. For instance, ‘B-
Scada’ [109], an IoT-enabled system-wide data management infrastructure used for
smart transportation systems, collects real-time data from different sources, performs
analysis and implements appropriate solutions, e.g. redirect traffic routes, etc. With
the IoT, scheduling and cargo distribution and fuel consumption can also be improved
in terms of efficiency and cost [110].

• Smart Grid: Smart grid is an example of smart infrastructure that supports electricity
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distribution, management and consumption. It includes a variety of operational and
energy measures including smart meters, smart appliances and various energy efficient
applications [111]. Smart grid systems encompass intelligent distribution and control
systems from the central core to the edge networks. This will help meet the demand
for improved energy efficiency via low cost and low powered IoT devices. Several
projects (e.g. [112]) are also aimed at reducing carbon emissions and achieving high
energy efficiency [113] [114] [115].

• Smart City: A smart city can be viewed as the ubiquitous systems of various IoT-
enabled applications and services (e.g. health, buildings, transportation, utilities, etc.)
that are combined to serve a large urban area [116] [117] [118] [119]. The vision is to
create an environment (incorporating information and communication technologies)
that will improve the quality of city-life for people living and working in the city and
provide improved interactions between various entities, systems and applications [106].
At the same time, it will help manage the economy, environment, mobility and
governance of city infrastructure and services [120]. There are several initiatives that
have been taken to provide IoT-enabled smart cities. For instance, ‘Smart Nation
Singapore [121], ‘Amsterdam Smart City’ [122] and ‘Barcelona Smart City’ [123].
These initiatives provide real-life smart city experiences through sustainable spatial
development, smart digital connectivity and enriched connected IoT services.

2.1.4 Potential Threats and Attacks

In this section, we examine the potential threats and attacks for the IoT, including the
various application scenarios that we discussed above (Section 2.1.3). There have been
several works that discussed IoT security and examined threats and attacks therein [124]
[125] [126] [127] [128] [129] [130]. Many works, e.g. [131] [132] [133] [74] [134] [135] [136] [137],
categorize potential threats and attacks based on the different layers of an IoT architecture.
Some of them (e.g. [138] and [30]) derive threats and attacks based on particular security
issues e.g. identity, access control, trust, middleware and mobility. A few of them (e.g. [139]
and [140]) also categorize threats and attacks based on the applications and specific use-
case scenarios. Furthermore, [141] categorizes various security issues in an IoT system
based on the nature of the IoT infrastructure e.g. centralized, collaborative, connected
and distributed IoTs. However, we argue that the classification is not clear and nor do
they address the differences between the various attack scenarios that exist in the IoT and
traditional distributed systems. Next, we address various aspects of the IoT environment
and categorize security threats and attacks that, in general, fall within those aspects.
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Figure 2.2: The devised threat and attack target categories.

In an IoT system attacks may target a wide range of vulnerabilities [142] [143] [144]
[145] [146]. These extend from the devices themselves, through the communication between
them to the services and applications provided. Users, and the inherently mobile and
dynamic nature of these systems also provide attack opportunities. As well as considering
the architectural characteristics of IoT systems in determining the security requirements
and appropriate security architecture, the various possible threats and attacks on these
systems need to be examined in arriving at an appropriate set of requirements and
resulting security architecture. Based on the characteristics of the IoT, we categorize the
possible threats and attacks into five areas. These are: communications, device/services,
users, mobility and integration of resources. In Fig. 2.2, we illustrate these categories.
Note, we use the term ‘services’ in a low-level sense, whereas the term ‘integration of
resources’ covers applications which draw on multiple devices and services to meet end-user
requirements. In this view, the IoT is comprised of communicating users and devices, the
devices providing a range of services. Devices and their services are composed (service
integration/division/composition) to meet end-user needs. Both devices and users may be
mobile. This address both the technical aspects of the definitions presented in the previous
section (i.e. Section 2.1), as well as the wider social, environmental and user aspects.

Communications covers the possible threats and attacks in wired and wireless medium
(e.g. routing channels and data transmission, etc). Device/services encompasses physical
IoT devices and their associated low-level services (e.g. battery, memory, data provision,
etc). Users covers threats and attacks (e.g. privacy and identity disclosures) on IoT users.
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Table 2.1: Devised threats and attacks categories and their brief description.

Category Brief Description

Communications Threats and attacks in wired or wireless mediums e.g. routing channels and data transmission.

Device/Services Threat and attacks for the physical IoT devices and associated low-level services e.g. battery.

Users Threats and attacks of the human being in an IoT system e.g. privacy and identity disclosure.

Mobility Threats and attacks exist in different network domains e.g. location-privacy and tracking.

Integration of Resources Threats and attacks exist in a heterogeneous infrastructure e.g. cascading services/resources.

Mobility consists of the threats and attacks (e.g. location-privacy and tracking, etc.) that
exploit the movement of things. Finally, the integration of resources explores the threats
and attacks (e.g. issues in cascading services/resources) that arise from the composition
of diverse services into end-user applications. In Table 2.1, we present an outline of these
categories.

The above categories take into consideration both the logical (e.g. edge intelligence,
smart collaborations, service and integration etc.) and technological (e.g. various processing
and communication architectures, design methodologies, mobility etc.) viewpoints of
an IoT system. The division between such categories is never clear. For example, a
communications attack may alter a packet with the intent of injecting malicious code that
will take control of a device. This example is an attack on two aspects of an IoT - the
communications and the devices. Many other such attacks involving multiple aspects exist.
Next, we provide a detailed discussion for these categories.

(1) Communications: Communication lies at the heart of the IoT, with the
connections between users and devices. Threats on this aspect of the IoT can be broadly
grouped into categories e.g. routing attacks, active data attacks, passive data attacks and
flooding.

In a routing attack, attackers target routing protocols and network traffic to either
disrupt the flow of information or redirect the routing path to an insecure destination.
They neither alter the contents nor attempt to gain information from the transmitted
packets. Common forms of these attacks include blackhole, wormhole and pharming [147].

Active data attacks alter or delete information by targeting valid data packets directly
rather than via subverting network routing. Examples of these attacks include channel
jamming and various forms of data tampering (modification, manipulation, etc.) which
may or may not result in valid packets. Active data attacks may target the payload,
header or both of a packet. Passive data attacks attempt to gain information without
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altering the contents of communications. Examples here include eavesdropping and traffic
analysis [30].

Flooding attacks introduce new packets into the network. Examples of this include
SYN flooding and DoS (Denial of Service) attacks. DoS attacks are of particular concern
for IoT systems due to the resource-constrained nature of many IoT devices. It may only
take a limited amount of bogus traffic before an IoT device is compromised by resource
and bandwidth consumption [141]. Moreover, in a heterogeneous and decentralized IoT
environment, the majority of IoT nodes (an IoT thing) perform networking functions
by themselves in whatever wireless networking environment they belong to. In such
non-trusted network environments, one common security issue can be the disclosure of
private information to an unauthorized user by a packet dropping attack [17].

(2) Device/Services: Threats on the devices and services of an IoT system can
be broadly categorized into physical attacks, device subversion attack, device data access
and device degradation. The vast majority of IoT devices operate in open environments,
where common security issues include device damage and disconnection. For instance, an
attacker can physically disconnect an IoT device (e.g. a computer, mobile phone, even an
air-conditioner) from the Internet, damage it beyond the point of serviceability or even
destroy it completely [148].

In a device subversion attack (e.g. node capture) an attacker assumes full or partial
control over a device. This can then be used to actively cause the device to either cease
functioning or to provide incorrect outputs. Taking control over IoT devices can be divided
into two categories i.e. controlling a single device and controlling many devices. In the
former case (i.e. controlling a single device), an attacker may, for example, penetrate a
user’s home network (either physically or virtually) and take control of a single device (e.g.
smart LEDs, refrigerator, etc). This can lead to its functionality being unavailable, or
even restricted or misused. The low power of IoT devices make them more vulnerable due
in part to the minimal (or non-existent) security protections that are embedded in such
devices. Moreover, these devices are often incapable of updating to the latest software
and security patches even when they have embedded security functionality. Importantly,
we argue that, these kinds of attacks are not unique to IoT devices, they are common
for any networked computing devices. However, the constrained nature of IoT devices
make them more vulnerable due in part to the minimal security protections that are
embedded in those devices. Which may make it infeasible to update the software or patch
to upgrade the latest security features against new threats and attacks [149]. In the latter
case (i.e. controlling many devices), an attacker may assume control of many IoT devices
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and manipulate services (things to human control), e.g. an attacker may disrupt a traffic
monitoring service by controlling large numbers of the underlying sensors or attack the
refrigerators in a retail store so that they will not cool their contents properly [150].

In a device data access attack, an attacker infects one or more IoT devices which
are then used by attackers to perform malevolent activities on sensitive (and private)
data without the user’s knowledge. For instance, stealing medical information by gaining
unauthorized access to a patient’s mobile device (or any smart sensor attached to a
patient’s body). Note that the device appears to be functioning normally, but the data
held by the device is available to the attacker [141].

Device degradation is a form of DoS attack intended to prevent access (by temporarily
or indefinitely disruption) to a service by attacking the functioning of the devices themselves
rather than the network’s ability to handle traffic. In a typical DoS attack the service is
overwhelmed by having to process bogus traffic but the individual nodes are unharmed.
But in the case of the IoT this situation is more crucial. With their limited memory
space and battery capacity, IoT devices can be attacked by memory exhaustion and
battery corruption. Thus a device degradation attack on these resource-constrained
devices in mass-scale can potentially unavailable resources and collapse the entire system’s
operations [100].

(3) Users: We divide potential security threats associated with users into four broad
categories i.e. trust, data confidentiality, identity management and behavioural threats.

With the potential scale of the IoT, trust is an even more pressing issue than is
traditionally the case. Interactions may be fleeting and things will interact with a high
number of previously unknown other things. Trust related attacks include self-promoting
(a malicious node providing good recommendation for itself), bad mouthing (an attacker
providing bad recommendation against a good node) and good mouthing (bad nodes
providing good recommendations for other compromised nodes) attacks with the other
peers located within the system [30].

The potential utility of the IoT lies in the richness of the data that it will contain.
This may include extremely sensitive user data, e.g. age, address and medical data. A
user’s privacy can be breached by any attack that accesses their personal information.
Attackers may manipulate or disclose such data or use it to impersonate the user [17].
User impersonation in the IoT is a critical issue due to the combination of heterogeneous
data sources coming from various IoT things, contexts and locations. This can be done
via identity spoofing, where attackers gain unauthorized access to IoT systems. One way
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to obtain a user’s confidential information is via a phishing attack, in which attackers
steal valuable and confidential personal details e.g. user-name and password or credit card
number. Others include attacks on anonymity supporting protocols [151].

With the IoT’s scale and heterogeneity and an expected user desire for privacy, it is
likely that users will maintain multiple identities [141]. This also multiplies the normal
vulnerabilities that attackers can exploit, due to the range of interactions of the systems
supporting these identities. In IoT systems, management of identities is a major concern
for authenticating and authorizing a legitimate thing (e.g. who and what is connecting to),
where the service provider and the service consumer may both try to keep their identities
hidden. Attackers may exploit the heterogeneous and multi-domain nature of the systems
supporting identity management in the IoT to subvert these systems. In personal and
social domains, users’ malicious or selfish behaviours can also be used to create attacks
through social engineering. For example, by downloading malicious software or being
tricked into revealing private information through phishing attacks [147].

(4) Mobility: We divide the various mobility related security issues into three
categories i.e. dynamic topology/infrastructure, tracking and location privacy and multiple
jurisdictions. As noted above, some threats can be viewed from multiple perspectives, for
example users’ mobility may increase the possibility of active and passive data attacks
(communications) and location tracking (mobility).

In the IoT, complex network structure and the characteristics of the system itself
present challenges e.g. changing topology and flow. Due to such a dynamic topology
and the resource constrained nature of the IoT devices, the routing for transmitting data
becomes crucial [152]. Commonly, in the IoT, nodes do not necessarily need to connect
over the Internet, but they can connect via any network e.g. WSN, WLAN or Personal
Area Network (PAN). In such an environment, when users and devices move (i.e. joining
and leaving the network), the network topology is dynamically modified. This could
generate security challenges of interdependencies (e.g. attacks on networked-car, electronic
medical devices and power stations) for the end-users. This could further evolve into
‘sinkhole’ attacks by attackers altering the network topology and traffic flow, and gaining
illegal access to a user’s data in a real-time situation [30] [153].

Smart IoT devices connected to the Internet could disclose a user’s geographical
location through time and space [154]. The location-based services can be categorized into
two types, namely, location tracking and position aware services [155]. In tracking and
location privacy, information (e.g. user’s current position, daily routine or certain activity)
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in an IoT system could be inherently vulnerable and a possible point for attackers to
target to breach personal privacy. On the other hand, position-aware services generate
vulnerabilities based on the device’s own knowledge of its position [156]. Thus, information
related to a user’s physical location and activities can bring considerable privacy risks for
both the users and the systems.

It may be also possible that several disjointed networks of things join to form inter-
domain collaborations and co-ordinations. It is likely that such collaborations will use
heterogeneous technology. Attackers may seek to exploit any mismatch in policy settings,
identity management or security technologies. For instance, in a traffic accident police
officers can communicate with emergency services to coordinate the well-being of the
driver or passengers. However, the management of this information over the jurisdictions
possess several challenges (both technical and legal) of data privacy due to the regulations
in different jurisdictions [157].

(5) Integration of Resources: In the IoT, from data collection to data processing,
storage and usage are highly dependent on diverse infrastructures in terms of reliability,
scalability and security [158] [159]. The data from individual devices, possibly in very
large numbers, are aggregated to provide integrated services and applications to the end
users. The components which co-operate and interact to provide end-user results may be
controlled by multiple different domains. Even when control resides within a single domain,
there are challenges in ensuring security at each stage of the composition. We divide
the threats in this area into three categories i.e. cross domain administration, cascading
resources and interoperability.

IoT systems may involve components from many different network domains. It was
reported that, according to the surveys of 439 million household’s network usage of WiFi
network connections, 49% of WiFi networks are insecure and 80% of households use their
default network passwords. Additionally, it has been observed that 89% of the public
hotspots are insecure due to the lack of a trusted network connection [160].

Moreover, in a decentralized IoT environment the majority of the IoT nodes perform
networking functions by themselves in whatever wireless networking environment they
belong to [161]. Here again, attackers may seek to exploit any mismatch in policy settings,
identity management or security technologies.

End-user applications in the IoT can potentially draw upon a vast range of things
and services. Any security breach at the low-level may cascade up and affect higher level
services and applications that depend on the compromised component. For instance,
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Table 2.2: Devised threats and attacks categories and related security mechanisms.

Category Threats and Attacks Mechanisms

Communications Routing attack Blackhole
Wormhole
Pharming

Active attack Jamming channel
Passive attack Eavesdropping

Traffic analysis
Flooding DoS/DDoS

SYN Flooding
Routing table overflow

Device/Services Physical attack Device disconnected or damage
Device subversion Device control/capture
Devices data access Replay attack

Identity spoofing
Devices degradation State manipulation

Battery exhaustion
Heat stroke attack
DoS/DDoS

Users Trust Self promoting
Bad mounting
Good mounting

Data confidentiality User impersonation
Identity spoofing
Phishing

Identity management Subversion attacks
Behavioural threats Malicious users

Social engineering
Free riding attack

Mobility Dynamic topology/infrastructure Trust related attacks
Network/device related attacks

Tracking and location privacy Device tracking
Tag tracking

Multiple jurisdictions Attacks on policy settings
Data privacy

Integration of resources Cross domain administration Attacks on policy settings
Identity management

Cascading resources Malicious node manipulation
User’s privacy
Information security

Interoperability Data privacy

an attacker can penetrate a user’s mobile network and make a modification to their
home automation system and compromise a motion sensor. If the system is set to open
windows or doors when motion is detected the attacker may be able to gain access to
the building [137]. As another example, an attacker may introduce malicious code into a
poorly protected device (i.e. poorly secured). The code is then passed up as data through
applications and used to infect user devices. Furthermore, the large volume of data in
the system can create threats to the user’s privacy and information security. In such
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attacks, the attacker gathers a large amount of information (of service, user and resources)
and may perform automated data-mining without being noticed by the user and service
provider [139].

Interoperability relates to attacks based on the need for multiple systems to work
together and the ability of attackers to exploit any potential issues in an IoT system.
Such systems can consist of a combination of cloud computing, fog computing, social
networks, mobile computing and industrial networks [162] [163]. The security settings and
policies of such systems may not easily integrate, leaving vulnerabilities as data is moved
and communicated between components. For instance, in a smart healthcare system, a
patient’s data (e.g. blood pressure) is collected, analysed and transferred to the patients by
the doctors, which may depend upon several of these dynamic networks and components.
Therefore, at any of these stages an attacker can breach a patient’s private information by
penetrating the networks between the infrastructures [164].

In Table 2.2, we precisely illustrate these various threats and attacks categories and
related mechanisms discussed above.

2.2 Basics of Access Control

In this section, we aim at providing a basic introduction to access control technology.
Our intention is to give an outline of the available access control mechanisms in general
computing systems. This will help us to understand the concepts of access control
mechanisms and its effective and valuable adaptation to IoT - the major focus of this
thesis. Next, in Section 2.2.1, we present some definitions of access control followed by its
working principle in Section 2.2.2. In Section 2.2.3, we provide a brief description of the
available access control mechanisms, and discuss some available languages in Section 2.2.4.

2.2.1 Definition

Access control is a security mechanism that ensures the reliable access of resources by
the authorized entities. Commonly, an access control mechanism describes how users and
systems can communicate and interact with one another (or other systems and resources)
governed by the employed policies [165]. According to the Cambridge dictionary [166],
access control is defined in two different perspectives. They are, (i) “ways of controlling
who can enter a building or area, usually involving electronic technology” and (ii) “ways
of controlling who can see or enter information on a computer system”. These definitions
include the wider aspects of access control both physical and digital systems.
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In [167], the definition of access control is that it “constrains what a user can do
directly, as well as what programs executing on behalf of the users are allowed to do”.
In [168] it is stated that “access control determines what one party will allow another to do
with respect to resources and objects mediated by the former, access control usually requires
authentication as a prerequisite”. In [169], access control is described as the “security
features that control how users and systems communicate and interact with other systems
and resources”.

Access ResponseAccess Request

Authorizations

Access Control 
Policies

Objects DecisionsSubjects

Figure 2.3: Major components of an access control process.

Commonly, in a computer system, access control determines whether a subject
(e.g. process, device, human user, etc.) is allowed to perform an operation (e.g. read,
write, update, etc.) on an object (e.g. a database, file, service, etc.) based upon specific
policies [170]. In other words, it governs who (e.g. a device or a user) or what (e.g. an
application or a service) can view or use resources. In Fig. 2.3, we illustrate the main
components of an access control process. Access control, in general, preserves the following
properties [165]:

• Confidentiality: The information can be viewed by the authorized users and information
must be kept private.

• Integrity: The authorized users can only write over information and information must
be protected from being tampered with and altered by others.

• Availability: The information must be available upon request for use, which refers to
the ability of a user to access a resource.

2.2.2 Working Principle

In Fig. 2.4, we illustrate a simple access control process. Where subjects (denoted as Sub)
are trying to perform certain operations (denoted as Ope) over the objects (denoted as
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Obj) based on the specified access control policies (denoted as Pol). If the corresponding
policies satisfy requirements, then the appropriate access will be granted otherwise the
access will be denied.

(Pol_1, Pol_2)

{Ope_1, Ope_2}
Sub_1

Sub_2

Obj_1

Obj_2

Figure 2.4: A simple access control process.

Now let us consider a real-life example. Suppose a user Alice (i.e. subject in this
case) wants to access online books (i.e. objects in this case) from University library. If
the authorization credential satisfies the associated policies for that access, Alice will be
permitted to access the desired resources. Eventually, there are various steps involved in
an access control mechanism. When a subject requests an action to a certain object, the
request must satisfy some conditions (i.e. attributes, contexts, etc.) based on the access
control policies before the access permission is processed. In this case, we assume that the
appropriate conditions are checked by the dedicated servers controlled by the University.

Potentially, access control can be achieved in two ways, direct access control and
indirect access control. In direct access control, a subject can perform an action to an
object directly. For instance, in the above example, Alice can access online books from the
University library directly based on her student credentials. In an indirect access control,
a subject can further transfer some of the access rights to another subject, who is then
able to perform the intended action to the specified object. For instance, Alice wants to
go for a holiday and wants to give some specific access permission (e.g. entering garden
and garage) to her friend Bob to perform certain activities. To execute such access control,
Alice can create and then transfer a ‘capability’ (also known as a token) [59] embedded
with the specific access rights. This process of transferring access rights is called delegation.
In general, access control can be done both physically and digitally. However, when we
refer to the IoT, we refer digital access control. Throughout the thesis, when we refer to
access control this will refer to a digital access control.

Depending upon the specific access control scenario and the information required
for authorization to the resources, different access control architectures can be imple-
mented [171] [172] [173]. However, this depends upon the system’s requirements and the
designer’s choice.
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2.2.3 Mechanisms

In this section, we detail commonly available access control mechanisms for general
computing systems.

• Mandatory Access Control: The Mandatory Access Control (MAC) model restricts
access of any subject to an object based on the sensitivity level (e.g. secret, top
secret, confidential, etc.) of access information of the object and authorization of
the subject based on the authorization-rules [174]. These rules are governed by a
central administration that is commonly known as security policy administrator. The
sensitivity level is determined based on the system classification, configuration and
authentication. Therefore, the security clearance of the subject and the security
classification of the objects are bounded by the relationship of the subject-object pair
and is stored in the security levels. In MAC, subjects cannot override or modify the
security policies which allow the central administration to enforce strict security levels
specific to their choices, where only the central administration can control all the tasks.
As such, the end users have no control over any privileges. MAC is simple to enforce
as it takes a hierarchical procedure (i.e. restrict the flow of information from more
secure levels to less secure level) to employ access control policies to the resources.
However, MAC is highly centralized in nature where for each access, a subject needs
to obtain permission from the central administration. In this perspective, MAC relies
on the system to control access and it does not provide a fine-grained access control
to the resources in a large-scale system.

• Discretionary Access Control: The Discretionary Access Control (DAC) model
allows access control based on the object ownership principle [175]. In other words,
DAC allows access according to the discretion of the owner where the owner of the
object specifies access control policies for each subject to access specific resources from
specific objects. It allows an individual user complete control over any object they
own. Unlike MAC, a subject that is allowed a discretionary access to a resource is
able to transfer their access rights to another subject within the same group under the
provision of an administrative policy. Interestingly, in DAC, access control is specified
based on the identity of each subject or groups to which they belong. This is commonly
achieved using Access Control Lists (ACL). The ACL is a tabular representation of
an access control matrix of subjects that are mapped to specific resources belonging
to specific objects. For example, the triple of {S,O,AR} is an access control matrix
where S is a set of subjects, O is an object and AR is a set of access rights. The
set of access rights could be {read,write,execute}. Using DAC, a fine-grained access
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control can be provisioned but it is difficult with the growing scale of the system (i.e.
where subjects and their access rights to specific objects increases).

• Role-Based Access Control: The elements of a Role-Based Access Control (RBAC)
system are the users, roles and permissions - the central is the use of the role [57]. In
RBAC, each user is assigned to a specific set of roles and permissions (i.e. authorized
actions) are assigned to role(s) based on the policy decisions. A role defines a function
within the system in a hierarchical order. The relationship between users and roles
is a many-to-many relationship mapping, where a user can be assigned to multiple
roles and a role can have multiple users. Similarly, the relationship between roles to
permissions follows a many-to-many relationship mapping. In RBAC, if the role of a
user changes, then the corresponding permissions available to that user change. This
means that user access can be adjusted by re-assigning role membership and without
changing permission assignment. This provides greater flexibility in facilitating security
administration for large organizations that need to manage their resources based on a
user’s responsibility and qualifications. Further, RBAC is well-suited for ‘separation
of duty’ requirements, where all permissions are not assigned to one user for making a
decision.

• Attribute-Based Access Control: In Attribute-Based Access Control (ABAC)
access control permissions are assigned based on attributes [58]. These attributes
can be seen as the properties that describe specific features of subjects, objects,
environments, conditions, etc. For instance, name and age are subject attributes where
time and location are environmental attributes. Policies are written to assign access
permissions based on the attribute settings. Note that ABAC thus enables creation of
access rules without creating explicit user to permission mappings. This can provide a
significant degree of flexibility when compared to RBAC. In ABAC, access decisions
can change between requests simply by altering the attribute values. There is no need
to change predefined subject and object relationships.

• Capability-Based Access Control: In Capability-Based Access Control (CapBAC)
access control permissions are assigned in the form of a capability (which can also be
referred as a token, ticket or key) [59]. A capability can be defined as a communicable,
unforgeable token of authority assigned to specific users for performing certain activities.
A classic capability defines a resource and a set of access rights defining the operations
allowed on that resource. In CapBAC, a user (i.e. subject) gets access to a resource
(i.e. object) if the requested access (conditions) matches the contents of the supplied
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capability. The classical capability-based model was enhanced by Gong [176] who
proposed the Identity-Based Capability System (ICAP), where a capability also
includes the identity of the subject allowed the access. Identity-based CapBAC
systems can avoid the centralization of standard RBAC and ABAC implementations.

• Protocol-Based Access Control: In a Protocol-Based Access Control (ProBAC)
model, access control decision is examined in terms of the network and communication
protocols used to deliver the authentication and authorization information. ProBAC
depends upon the protocol choices of an access control architecture. For instance,
access control based on Datagram Transport Layer Security (DTLS) protocol [177],
access control framework based on Open Authorization (OAuth) [178], etc.

• Hybrid Access Control: In a Hybrid Access Control (HyBAC) model, two or more
access control models are combined to serve system specific requirements.

In Table 2.3, we summarize the aforementioned access control mechanisms with a
brief description for each of them.

Table 2.3: Various available access control mechanisms.
Access Control Mechanisms Brief Description

MAC Access control policies are determined by the system.

DAC Access control policies are decided by the object owners.

RBAC Users are assigned to particular roles and roles are mapped to certain permissions.

ABAC Access control decisions are determined based on certain attributes of the entities.

CapBAC Capability (also known as access token) is used for making an access control decision.

ProBAC Access control system is implemented based on protocols and frameworks.

HyBAC Access control system is made on two or more different access control mechanisms.

2.2.4 Language

One of the challenging issues in access control is specifying and enforcing security policies
that regulate the interactions between two parties e.g. subjects and objects. The basic
concept of writing access control policies is the languages, commonly known as the access
control policy languages [179] [180]. An access control policy language can be seen as
a specific set of grammar, syntax rules (logical and mathematical) and operators that
provides access control specifications combining subjects, objects and actions (i.e. the
operations) [181]. This combines rules for authorization of certain actions. The operators
use the attributes of the subjects and objects. With the increasing need for the flexible
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provision of the access control decisions, various access control policy languages are
proposed. Next, we provide an outline of some commonly used access control policy
languages.

• eXtensible rights Markup Language (XrML): It is used to define access con-
ditions, rights and other related access control information related to a digital con-
tent [182]. In other words, it is a proposed language for standard Digital Rights
Management (DRM). XrML is based on the standard XML (eXtensible Markup
Language). In Fig. 2.5, we depict a simple policy expression. Where the license tag
contains the inventory and keyholder tags, where the rights are managed and resources
are given.

<license xmlns:dsig=‘http://www.w3.org/2000/09/xmldsig#’>
<inventory>

<keyHolder licensePartId="123456">
<info>
<dsig:KeyValue> 123456 </dsig:KeyValue>

</info>
</keyHolder>

</inventory>
</license>

Figure 2.5: A simple XrML policy.

• eXtensible Access Control Markup Language (XACML): It is an open stan-
dard XML-based policy language for Web services. This is used to define and write
general access control requirements followed by OASIS (The Organization for the
Advancement of Structured Information Standards) standardization [183]. It has the
ability to enhance the standard extension points for defining new functions, data types
and policy combining logic.

We now provide an XACML-based policy specification to discuss how flexible autho-
rization can be achieved. XACML implements ABAC as per NIST (The National
Institute of Standards and Technology) guidelines and attributes are in the central role
in XACML [184]. Policy sets are situated at the top of the hierarchy in an XACML
document. Policy sets provide a means to combine other policy sets and (or) policies
through policy combination algorithms. A policy is mainly composed of access rules
and an indication on how to resolve the effects of these rules using rule combination
algorithms. Rules are the primary elements that contain conditions regarding when
an access shall be permitted or denied. This is where all the low-level logic regarding
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attributes are implemented and where the actual policy evaluation starts. An XACML
rule contains four major parts:

1. Effect: Specifies the outcome of the rule when fully evaluated - either Perimt or
Deny.

2. Target: Specifies the context in which this rule shall apply. For example, a rule
specific to unlock doors requires at least an action attribute.

3. Condition: This is a constraint that shall be satisfied at the time of evaluation if
the outcome is to take effect. For instance, it can constrain the rule to a set of
specific resources.

4. Obligation: Describes a post-processing that shall be executed after a successful
evaluation. For example, a capability shall be used before January 1st, 2019.

<Policy RuleCombiningAlgId="..:first-applicable" Version="3.0">
<Rule Effect="Permit" RuleId="..:1">

<Target>
<AnyOf>

<Match MatchId="..:string-equal">
<AttributeDesignator AttributeId="..:act"/>
<AttributeValue DataType="..#integer">read</AttributeValue>

</Match>
<Match MatchId="..:string-equal">

<AttributeDesignator AttributeId="..:act"/>
<AttributeValue DataType="..#integer">write</AttributeValue>

</Match>
</AnyOf>

</Target>
<Condition>

<Apply FunctionId="..:string-equal">
<AttributeDesignator AttributeId="..:trg"/>
<AttributeValue DataType="..#integer">Doc</AttributeValue>

</Apply>
</Condition>
<ObligationExpressions FulfillOn="Permit" ObligationId="time">

<AttributeAssignmentExpression AttributeId="..:until">
<AttributeValue DataType="..#string">
[[TIME<01-01-2019 12:00:00]]
</AttributeValue>

</AttributeAssignmentExpression>
</ObligationExpressions>

</Rule>
<Rule Effect="Deny" RuleId="..:2"/>

</Policy>

Figure 2.6: A simple XACML policy.
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A simple policy document is illustrated in Fig. 2.6. According to the policy, when a
request arrives at the PDP (Policy Decision Point), the target of each rule is evaluated
sequentially and the first one that is applicable to the request is fully evaluated. Note,
in Fig. 2.6, Rule 1 applies for read and write actions. Any other requests will be denied
as per Rule 2. Rule 1 contains a condition which specifies this rule is imposed on a
document Doc. The target and condition blocks must involve static attributes only.
The policy described in Fig. 2.6 has one obligation which shall be fulfilled on permit
(i.e. 01-01-2018 12:00:00).

• JACPol: JSON (JavaScript Object Notation) based access control policy language [185].
It is scalable and simple to use for policy specification in an expressive way. Note,
JACPoL uses a fine-granular and hierarchically nested policy structure similar to
XACML standard. It enforces a traditional ABAC system in a much more flexible
and fine-grained way. JSON is a light-weight standardized format for storing and
transporting data as text over a network.

• PTaCL: It is known as the ‘Policy Target and Composition Language’ [186]. It is
an expressive policy-based access control language that provides authorization policy
semantics which helps to understand the meaning of a policy for a certain request of
attribute-based authorization policies. PTaCL is composed of the two sub-languages,
named, Policy Target Language (PTL) and Policy Composition Language (PCL). PTL
helps for target specification and PCL is used for policy specification. Note that the
PTaCL is commonly used for the ABAC policy expressions that are used to evaluate
access requests based on attributes associated with subjects, objects and actions.

2.2.5 Cryptography

Cryptography is a mathematical equation (or algorithm) that transforms simple data
(i.e. ordinary plain text) into a complex and unreadable form (i.e. an unintelligible text)
where only the intended users can read and process it [187]. It can be seen as the process
of storing and transferring confidential information from one entity to another in a way
that the other entities are unable to view and modify the content of the information. In
other words, the authorized users can only view the document. The core objectives of a
cryptography process lies in various aspects in information security e.g. confidentiality,
authentication, integrity, non-repudiation and to deliver anonymity to the communications.

The word ‘cryptography’ came from the Greek word kryptos, which means hidden.
The origin of cryptography is considered to have been established as far back as 2000
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BC. The first documented use of cryptography was seen by Julius Caesar (100 BC to
44 BC) who used to employ such a process using the Roman alphabet - one of the first
modern ciphers. With the improvements of modern computing systems and the Internet
technology, protecting data becomes a crucial issue and the use of cryptography plays an
important part in this field.

Basic Terminologies: In Fig. 2.7, we illustrate an outline of a simple cryptography
process. The most common process of cryptography is to encrypt the plain text and
decrypt the cipher text using keys. Next we present the commonly used terminologies [188].

Plain Text Plain TextCipher Text

Encryption Decryption

Figure 2.7: An overview of cryptography process.

• Plain Text: It is the original message (e.g. a text file) that an entity wishes to share
with another entity. It can be defined as an information that is pending input into
cryptographic algorithms.

• Cipher Text: It is the encrypted message that cannot be seen or modified by anyone
other than the receiver of the message. In other words, a cipher text is unreadable
output of a plain text.

• Encryption: It is the method of transferring (i.e. encodes a message) a plain text into
cipher text using encryption algorithms and keys. Note, this process takes place at
the sender’s side.

• Decryption: It is the method of transferring a cipher text into plain text using
description algorithms and keys. Note, this process takes place at the receiver’s side.
Therefore, it is simply the inverse of an encryption method.

• Key: It is a numeric or alpha-numeric text (e.g. a string of bits) that is used for the
encryption and decryption processes used by a cryptographic algorithm. Importantly,
the length of the key is a major factor in a cryptography process.

Classification of Cryptography: There are two basic classifications of encryption
algorithms. These are, (i) symmetric key cryptography and (ii) asymmetric key cryptogra-
phy [189].
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• Symmetric Key Cryptography: In this process, both the sender and the receiver use
the same key, i.e. a single key is used for both encryption and decryption. The sender
encrypts the message with a key and the same key is distributed to the receiver to
decrypt the message. The keys can be shared using a secure communication channel
between the two parties [190].

There are various algorithms available to develop a symmetric key crypto system, for
instance, Blowfish, DES, AES, etc. Blowfish is a well-known symmetric key block
cipher, designed in 1993, that uses a 64 bit block size and a variable key length ranging
from 32 bits to 448 bits [191]. The DES (known as the Data Encryption Standard) was
popular in the 1970’s adopted by the US government as an official Federal Information
Processing Standard (FIPS). It uses a standard block size (i.e. the key length) of
64-bit. The DES was enhanced by the more advanced form of algorithm, the AES
(known as the Advanced Encryption Standard). It is a symmetric block cipher that is
capable of using 128 bit blocks with various key sizes ranging at 128, 192 and 256 bits,
commonly known as AES-128, AES-192 and AES-256 [192].

• Asymmetric Key Cryptography: In this process, two separate keys (public and private
keys) are used by the sender and receiver of the message. The receiver uses a ‘public’
key to encrypt the message and the received uses a ‘private’ key to decrypt the message.
Note, for every public key there is a corresponding private key. The key used by
the sender is known to everyone and therefore it is called the public key. On the
contrary, the receiver’s key is not shared to others and remains private. Asymmetric
key cryptography is also known as the public key cryptography [193].

There are various algorithms available to develop an asymmetric key crypto system,
for instance, Diffie-Hellman, RSA, ECC (Elliptic Curve Cryptography), etc. Diffie-
Hellman key exchange is one of the most important developments in asymmetric
key cryptography. It is used to safely developing and exchanging keys between the
sender and receiver of a message over an insecure (e.g. public) channel. This process
allows exchange keys between two parties without the prior knowledge of each other
to jointly establish a shared secret key over an insecure channel. In other words, this
method helps two parties to share a secret key in a way that the key cannot be seen
by observing the communication [194].

RSA (known as the ‘Rivest-Shamir-Adleman’ algorithm - the developers of the algo-
rithm) is one of the first and most popular crypto systems used in asymmetric key
cryptography. The public and private keys in RSA is composed of two numbers, where
one number is multiplication of two long prime numbers, along with an auxiliary value.
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The main idea behind RAS is that it is difficult to factorize a large integer. It can
handle keys size typically of 1024 or 2048 bits long. This significantly improves the
security in encryption strength in the cryptosystem [195].

ECC is another commonly used asymmetric key crypto system that uses algebraic
structure of elliptic curves over finite fields. ECC uses elliptic curve equation to
generate keys. Compared to RSA, it requires smaller keys while providing the same
security, saying that a 256-bit ECC is equal to 3072-bit RSA key. The major motivation
of making the shorter key size is the compatibility of the algorithm with low-powered
and limited storage devices [196].

2.3 Access Control in the IoT

In this section, our aim is to examine the use of various access control mechanisms,
discussed above (cf. Section 2.2.3), in the IoT. In an IoT system access control is employed
with the context of the application and services that a user or device may wish to perform.
The functionality of an IoT system is dependent upon the building blocks of the IoT and
for each of them a different level of access control may apply [197].

In Section 2.3.1, we briefly outline available architectures for IoT access control.
In Section 2.3.2, we discuss basic requirements for IoT access control and finally, in
Section 2.3.3 we discuss the existing works in detail. We provide an extensive survey in
the state of the art access control mechanisms for the IoT those are related to this thesis.

2.3.1 Architecture

In [61], the authors present a discussion of the potential approaches to IoT access control
architecture. They provide a categorization based on the externalized access control logic,
collection of contextual information and location of their processing.

• Centralized: In this approach, the access control logic is externalized into a central
entity (e.g. a Policy Decision Point located in a centralized server) that is responsible
for making a decision based upon the authorization policies. Notably, this entity
could be placed as a gateway that can facilitate communication to the devices or
it could be seen as another entity located in a different location. The edge IoT
devices act as passive entities and play a limited role as information providers. In this
approach, the access control logic is located in a resourceful central entity. The users
requesting for an access, need to be connected to the APIs provided by the central
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entity. However, this architectural approach suffers from the traditional drawbacks
of a centralized architecture including a single point of failure and unavailability of
contextual information.

• Centralized and Contextual: Contextual information (e.g. location, time, envi-
ronmental status, etc.) related to the end-device are immensely important for a highly
dynamic system like the IoT. In this mode of architecture, an access control decision is
made based on the authorization policies located at a central entity as well as taking
the contextual information from the edge IoT devices. Therefore, the edge IoT devices
perform as an active entity. Note, in this case an extension of the end-devices is
required by which the contextual information request can be transferred to the central
system, e.g. the use of CoAP. Once again, this approach suffers from the limitations of
a centralized architecture. In addition, issues e.g. delays, overhead in communication
between the devices and the central entity is crucial. Further, the end-to-end security
cannot be achieved.

• Distributed: Notably, in this mode of architecture, there is no central entity involved.
The access control logics are embedded inside the edge IoT devices. The devices
are fully responsible to obtain, process and transfer information to other services or
entities. This mode of architecture offers several benefits over the previously discussed
architectures, e.g. the devices own full control to manage their information and the
end-to-end security can be provisioned by the removal of the intermediate entities.
While this approach outperforms more than the centralized approach, the obvious
drawback is the resource constrained nature of the edge IoT devices to store and
process the access control logics inside these devices.

• Distributed Capability-Based: In order to provide light-weight authorization
mechanisms and to avoid the processing of complex access control policies, distributed
capability-based access control architecture is proposed. It inherits the traditional
characteristics of a CapBAC approach to a more fine-grained level. Inside the capability,
access control permissions and other conditions of access (e.g. location, time, etc.)
are embedded. Therefore, in this mode of architecture, when an entity receives the
capability it already knows the level of access that has been granted to the service
requester. This simplifies the authorization mechanisms involved by the centralized
access control system and it addresses the resources-constrained nature of the edge IoT
devices by avoiding the processing of complex access control policies. This approach
also supports the delegation by distribution of access rights through capabilities.
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2.3.2 Requirements

In an IoT system, it is essential to know the system specific requirements before employing
an access control mechanism. There are several works that propose the requirements for
IoT access control focused on architectures and the systems themselves. In this section,
we list some of the common requirements when addressing IoT access control [198] [199].
However, we argue that these requirements may vary based on the characteristics and the
specific needs of an IoT system.

• An access control architecture must consider the scale of the system. In other words,
an access control architecture must consider an open environment where the number
of devices, applications and services are not fixed.

• The access control mechanisms (and systems) should be easy to use and maintain for
both the experts in engineering and the non-specialists.

• Access control should consider the nature of architecture when possible. The trade off
between the distributed access control and centralized access control must be balanced.
The client-based architectures [200] may be contemplated.

• The access control architecture should be flexible to adapt to the different contexts
based on the system’s deployment and consider the communities that share common
attributes (e.g. location, mission, resource capability, etc).

• The access control mechanism should consider the continual control where an access
has a duration. It should be autonomous and self-contained.

• The access control system must support the dynamic attributes (both subjects and
objects) and give the choice to update and/or change them at anytime, and users can
personalize event-based scenarios. Systems based on concrete identity of a thing can
be avoided. Towards this, identities of access things can be made attribute-centric.

• The access control system must reinforce the integration with various third parties.
Towards this, the architectural design should be taken into account, an open framework
to accommodate compatible components.

• Access control in IoT must be light-weight in essence, given the resource constrained
nature of the IoT devices. The traditional cryptographic methods introduce a heavy
computation overhead for the device involving complex key distribution and flexible
data management.
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2.3.3 Existing Works

In this section, we examine three commonly used access control mechanisms (RBAC,
ABAC and CapBAC outlined in Section 2.2.3) for the IoT that are significant to this
thesis. We also examine two emerging access control approaches, namely blockchain and
fog computing, for the IoT.

• Examining Access Control in IoT Based on RBAC: There are several ap-
proaches that use RABC to address access control issues in IoT. For instance, Kulkarnin
and Tripathi [201] discuss a Context-Aware RBAC (CARBAC) model for pervasive com-
puting systems. The motivation of the model is to build RABC models and systems
for pervasive computing systems where context information is provisioned for making
access control decisions. In this model, users’ memberships are mapped to the roles and
permissions are executed by the role members with the context-based dynamic integration
of services, in a specific environment. The contexts can be a user’s physical location,
the device being used, network in which the devices are connected or the user’s current
activities. The use of context facilitates the revocation of access rights by failing specific
condition within a given context. The proposed CARBAC is dynamic in nature when
making an access control decision within a context.

Zhang and Tian [202] discuss an access control approach that uses context informa-
tion and RBAC for large-scale systems like the IoT. This is an extension of the traditional
RBAC model where operations on objects are converted to services and the permission
for accessing resources by the subjects are given based on a set of contextual information
that are collected from the system. Services are referred to as a set of functionalities that
a device should offer to the system. In this model, a centralized security administrator
assigns appropriate permissions to roles on the basis of the characteristics and context of
physical objects, and specify an appropriate range of the users according to the function of
the role. In general, the context is described as any information that can be used for char-
acterization the situation of an entity. The model is composed of the following components:
{U,R,P,C,Ser} they are: users, roles, permissions, contexts and services respectably. An
access decision can be checked on the following set, for example, where a user (e.g. a student
Alice) can access a University parking spot between 9am and 5pm on weekdays as fol-
lows {Alice,Student,ParkingInWeekdaysOncampus,9am− 5pm,ParkingCar}. With
similar objectives to [201], the proposed approach in [202] discusses the integration of
RBAC in context information for dynamic systems. However, the model discussed in [201]
is more flexible than [202] in various ways, e.g. some context-based conditions must be
satisfied before admitting a user to role, and also for granting a user-role membership and
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personalized role permission is introduced which allows different role members to access
different active space services within a given context.

Zhang and Parashar [203] discuss a dynamic RBAC approach for pervasive applica-
tions e.g. for a smart home. Similar to the concepts of [201] and [202], the proposed model
is able to make access control decisions dynamically based on the contextual information.
It extends the traditional RABC model and dynamically adjusts the role assignments and
permission assignments to the specific roles based on context information. In this model,
each user is assigned a role subset and resources have permission subsets for each role that
will access the resource. However, unlike [201] and [202], in this case, a state machine is
maintained for delegated access control agents at the subject (to navigate the role subset)
and the object (to navigate the permission subset). The state machine maintains the
role-permission subset to react to changes within the given context.

Kalam et al. [204] discuss an access control model from an organizational point
of view namely Organization Based Access Control (OrBAC). This is an extension of
RBAC, where the role is defined by a group of users performing a particular task within
an organization. In a common access control mechanism, e.g. DAC, the basic relation is
constituted as a triple {subject,action,object}, in OrBAC, this is abstracted to a more
generalized level, which consists of the triple {role,activity,view}. Where, role is a set
of subjects, activity is a set of actions and view is a set of objects, within a particular
context. A subject can be either an active entity (i.e. a user) or an organization. In this
model, the specification of security policies are parameterized by the organization which
provides flexibility in handling several access security policies that are associated with
various organizations. Unlike, [201] and [202], this model is centralized in nature when
considering the role-membership assignment for a specific organization. However, this
model is not restricted to permission and includes the possibility to specify prohibitions,
obligations and recommendations that apply to subjects, objects and actions.

Pasquier et al. [205] enhance the concept of OrBAC [204] to the IoT and propose
a Smart Organization Based Access Control (Smart OrBAC). This attempts to extend
OrBAC for an IoT environment with a set of security and performance requirements
that respects the characteristics and the constraints on the smart objects in an IoT
system. Unlike the previous approaches, e.g. [201] and [204], this approach addresses the
authorization and access control issues in the context of distributed, cross-domain systems
that potentially consists of resource-constrained IoT devices that perform autonomously
without any direct human interventions. Compared to [201], where interactions between
various devices are considered between various organizations, this model focuses on a single
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constrained device and its communication between several other devices from different
organizations or domains. Similar to [202], this model facilitates a distributed-centralized
approach where authorization decisions are made upon the local conditions within a given
context. Moreover, Smart OrBAC model is conceived through an abstraction layer design.
It partitions access control process in different functional layers of an IoT architecture, given
the fact that every device is not constraint uniformly to every layer. Unlike, OrBAC [204],
this model addresses the concept of collaborative interaction within a given context. This
is handled at the ‘collaboration layer’ where two organizations can communicate seamlessly.
The collaboration is done by making a prior agreement between the involved organizations
where both of them can jointly define access control policies.

Freudenthal et al. [206] present a distributed RBAC (dRBAC) model. This is
an extended version of RBAC that supports collaboration among large-scale coalition
environments. The traditional RBAC systems depend upon a central trusted computing
base administered by a single authority. dRBAC extends traditional RBAC to support
for multiple trust relationships for access control using systems like Simple Public Key
Infrastructure (SPKI) [207]. This leverages the features of RBAC and trust-management
systems to create a system that offers both administrative ease and a decentralized scalable
implementation. It is a decentralized access control mechanism for large-scale systems that
span over multiple administrative domains. dRBAC utilizes Public Key Infrastructure
(PKI) based infrastructure for managing identities of entities to establish trust over the
multiple administrative domains. Roles are defined by controlled activities. Unlike [205], in
this model, permissions are assigned and distributed across domains in terms of delegation.

Liu et al. [208] discuss an access control model for an IoT system based on ECC
and RBAC. RBAC is enhanced for authorization for IoT devices using their (i.e. device’s)
particular role and applications that are associated in IoT systems. ECC is used for key
establishment during entity authentication and RBAC is used for specifying access control
policies. Unlike, [202] and [205], this paper provides a detailed security analysis of the
system. However, this paper only outlines the approach and how this approach will work
in real-life IoT scenarios is not discussed. Further, no implementation is given. In [209],
Liu et al. present an access control architecture for resource sharing in large-scale IoT
systems employing RBAC. The subjects are given specific roles and roles are assigned to
permissions according to security policy specifications of a central administration authority.
Like [205], this model also focuses on collaborative environments for access control between
subjects and objects. Unlike, [205], this model sets up a formal model for RBAC safety
policies.
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Other approaches e.g. Jindou et al. [210] and Barka et al. [211] use RBAC for the
Web of Things (WoT) [212]. In the WoT, physical things can be accessed and controlled
via the Web. For example, people can share a collection of things e.g. temperature
measurement sensors, air conditioning machines, music players, monitors and lamps in a
smart home, notification of an event, etc. These approaches enhance RBAC to control
access to things on the Web. [210] integrates SNS (Social Network Structure) into RBAC
to allow dynamic policy of access control to support flexible access control on IoT things.
The SNS enables users to share things with other users who they know and trust based on
user profile and social links. Similar to [210], proposal [211] presents an architecture that
utilizes the features of the RBAC for maintaining access control policies for the WoT, and
cryptographic operations are used to enforce such access control policies. The proposed
architecture integrates properties of RBAC (e.g. data abstractions) to specify the access
control policies to the WoT. Unlike [210], this proposal does not include dynamic contexts
of the environment and the SNS structure when making an access control decision.

• Examining Access Control in IoT Based on ABAC: There are several
proposals that discuss the use of ABAC in IoT. These models take into consideration
different attributes, for example, user’s name, location, context information, proximity,
behaviour or even activity. For instance, Zhang and Liu [213] present an ABAC model
that provides for fine-grained access control for IoT systems. The proposed model allows
permissions to be assigned to a user for accessing resources based on user attributes,
resource attributes, environment attributes and current tasks. It introduces the use of
service-oriented computing to address IoT access control using contextual information and
directly interacting with the objects. This model allows for the dynamic characteristics
of the things in an IoT system, supporting the principle of least privilege and dynamic
separation of duties. However, it requires policies to be written on an individual user basis.

Similar approaches for using ABAC for the IoT can be seen in [213] and Bezawada
et al. [214]. They apply ABAC for securing IoT-enabled smart home environments where
diverse and independent computing devices provide many services to the users. Various
entities in the home IoT environment are categorized as either subject or object, and
then assigned corresponding attributes. The attributes are described as to the formal
entities in ABAC e.g. subject, object, resource, and user. These attributes are obtained by
real-life lab testing of device characteristics and from manufacturer specifications. Then
appropriate policies are written for different categories of subjects and objects within the
home IoT environment. This is a conceptual model and no implementation is provided.
Unlike [213], this approach considers a closed IoT system (i.e. a home environment).
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Unlike [213] and [214], that address access control in core network level in IoT, Ye
et al. [215] present an access control model for the perception layer of an IoT architecture.
In this model, ABAC is used for access control decisions enhancing the fine-grained access
control aspects of ABAC implementation for complex system or dynamic extension of
large-scale users. For mutual authentication and secure key establishment between the
users and IoT devices, ECC is employed. Mutual authentication ensures the security in
the communication between the users and edge IoT devices.

Touati and Challal [216] present an Activity-Based Access Control model for IoT.
Here the term activity is referred to as the context-information (as an attribute) that is
taken into consideration for an access control decision. This model allows a fine-grained
and context-aware access control that takes into consideration user’s context evolution and
leverages the advantages of an ABAC system in an IoT system. The model is implemented
in a finite-state machine and an asymmetric encryption mechanism namely Ciphertext-
Policy Attribute-Based Encryption (CP-ABE) is used to achieve a real-time access policy
adaptation following users and system context evolution.

Sciancalepore et al. [217] present an ABAC scheme for federated IoT systems. The
proposed scheme features distributed and decoupled mechanisms for authentication and
authorization services in heterogeneous and federated IoT systems. With ABAC, this
scheme also leverages the advantages of token-based authorization techniques e.g. using
JSON Web Tokens (JWTs). The access control decision is based on policy specifications
by the standard ABAC engine and the decision is transformed to the users via web tokens.
This scheme integrates several IoT platforms that belong to heterogeneous resources. All
resources are registered with a trusted mediator which offers mechanisms for enabling
platform interoperability and distributed resource access. No implementation is given to
support the scheme in real-world IoT scenarios.

Similarly to the concept of using context information as discussed in [216], Lang and
Schreiner [218] present an Proximity-Based Access Control (PBAC) model for IoT. However,
unlike [216], in this case, proximity is used as an attribute. The access control decisions
are made based on the proximity between attributes associated with two (or more) entities.
The proximity (e.g. the distance between the subjects and objects) is used as an attribute
with an extended ABAC. These enhanced access control approaches can implement flexible,
proximity-based, dynamic, contextual access for large-scale dynamic systems e.g. the IoT.
This model derives from ABAC and Model Driven Security (MDS) [219] to express and
enforce security and privacy requirements of the access control. The proximity is measured
by a distance calculation function. Notably, the proximity is not only limited to distance, it
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can hold other attributes as e.g. geospatial location, organizational, operational, temporal,
business process, etc. The model provides more controlled ability to define and implement
better user privacy but it also suffers from a lack of available attribute information sources
which is a challenge in this access control model.

The UCON (Usage CONtrol) model [220] encompasses traditional access control,
trust management and digital rights management (DRM). It allows authorization involving
both rights-related and obligation-related authorization rules as well as conditions. UCON
is a generalization of access control where the authorization process is based on the
subject attributes and object attributes. These attributes can be identities, security labels,
properties, capabilities, etc. Along with these attributes authorizations, obligations, and
conditions need to be evaluated for making a usage decision [221]. In a traditional ABAC
model, the subject and object attributes can only be changed before the access request.
However, in the UCON model, these attributes could be changed not only before the access
request but also during and after the access request and this will affect the access granted.
This change will affect the permission decision in the subject’s next access behaviour.
Guoping and Wentao [222] use the UCON model for access control in IoT to meet the
needs for security authorization and control. The authors propose a framework based on
a network layer design. A mapping of UCON abstractions and IoT entities is provided
in detail. For example, an entity (e.g. subject(S)) is defined as the Device(D). The
attribute(S) of UCON in IoT for the subject represented by the Att(Device). Similarly,
the condition(C) of UCON in IoT is decided by the access control policies e.g. trust
value. The oBligation(B) of UCON in IoT is according to the needs of the wireless sensor
network. The Authorization(A) of UCON in IoT is set by the needs of usage control,
and decided by the device and the service. An outline of theoretical experiments is given
with an assessment model based fuzzy theory, however, no proof of the concept prototype
is presented. Therefore, the proposal [222] discuss an access control model based on
fuzzy theory the abstraction of UCON model. However, this approach provides a limited
discussion on the effectiveness of using UCON for IoT, and no implementation is supported.

• Examining Access Control in IoT Based on CapBAC: There are several
access control mechanisms that are derived from the fundamental concept of CapBAC and
employed in IoT systems. For instance, Gusmeroli et al. in [59] and [223] discuss a CapBAC
approach for the IoT. CapBAC systems use capabilities to manage access control processes.
Recall, a capability can be defined as a communicable, unforgeable token of authority.
This refers to a value which can be associated with an object (uniquely identified) with
some set of access rights to obtain the resources and required permissions. The access
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control permissions are embedded inside the capabilities and the access decisions are made
inside the edge IoT devices at the time of an access. These approaches facilitate systems
that enterprises, or even individuals, can use to manage their own access control processes
to services and information. These systems are implemented so that capability checking is
decentralized as the capabilities are signed by the capability issuers. These signatures can
be checked by the edge devices. This is a major advantage in an IoT system. Another
advantage of the use of a CapBAC approach is the employment of an encrypted capability
chain for secure capability delegation which is immensely important in highly dynamic
systems like the IoT. While the proposed delegation models overcome the shortcomings of
the centralized system, it does not solve the problem of delegation at a fine-grained level
of policy management. The system-generated capability can be delegated to anyone by
the owner of the capability. The only restriction is the depth of delegation.

Similar to [223], Hernandez-Ramos et al. [61] discuss a Distributed CapBAC model
for IoT. In this model, the traditional CapBAC is enhanced with the distributed approach
in which the edge IoT things are capable of making authorization decisions by themselves
(at the time of an access) without the need of a centralized server. The authorization
decisions are made based on the available local conditions within a given context offering
context-aware access control which is significant for an IoT system. The access control
decision is done at the presentation of a capability to the edge IoT things. This approach
presents a cryptographic solution that supports the standard certificates based on ECC
against insider threats through the Distributed CapBAC. A highly optimized version of
Elliptic Curve Digital Signature Algorithm (ECDSA) is implemented inside the thing (i.e.
the resource constrained devices) for ensuring an end-to-end authentication, integrity and
non-repudiation which does not involve any intermediate entity for computing computation.
Proof of the concept prototype is detailed and experiment results are depicted to support
the feasibility of the model in an IoT environment. This approach is superior to a
completely centralized system that suffers from a single point failure, and addresses the
issues of scalability and end-to-end security, which cannot be fulfilled by traditional access
control approaches discussed above.

The work in [224], is similar to the research presented in [61]. The concept in [224]
also uses the distributed nature of an IoT infrastructure. The proposed model is based
on the design of a light-weight token that is used for accessing CoAP Resources. An
optimized implementation of ECDSA is employed inside the edge IoT devices where the
devices themselves are capable of performing the access control decisions. In both of these
approaches, the authorization tokens are written in JSON and are sent to the target edge
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IoT resources (i.e. the things) using CoAP. Moreover, these approaches are developed
based on the public key cryptography which is not an ideal base for constraint IoT devices.

Similar to [61] and [224], where access control decisions are made inside the edge
IoT devices, Hernandez-Ramos et al. [225] present a set of light-weight authentication and
authorization mechanisms in order to support smart objects during their life cycle. Un-
like [61] and [224], in [225], the authorization and authentication mechanisms are integrated
and extended with other standard technologies that address the various security planes
in an IoT device life cycle within the scope of an ARM (Architectural Reference Model)
compliant security framework [226]. The ARM is built to optimize the interoperability
issues between isolated IoT applications to create a global ecosystem of services under
common understanding that is achieved through a set of specific tools and guidelines.

In [227], Zhou et al. discuss a flexible and fine-grained access control approach
for the IoT. The motivation of this study is to provide granularity and techniques for
supporting large scale operations to make flexible interactions between the entities in an
IoT system. A decentralized strategy and data centric network techniques are used to
enhance the model. This proposal only outlines the principles of the proposed approach
and gives an indication of using CapBAC for flexible access control and their management
in a decentralized way. In [228], Zhou et al. extend the approach of [227] with the
complete system design and its implementation. The approach consists of a three-tier
architecture (namely, back-end, resource-rich objects and resource-constrained objects)
to provide centralized policy management and distributed execution of access rights for
large scale enterprise environments. When users need an access to a resource, the users
must register themselves to the back-end server in order to get a capability for the specific
resources. This proposal also highlights the essence of access right delegation for the
resource constrained IoT devices. A detailed system design and implementation is provided
to support the proof of the concept architecture. Similar to [225], capabilities are used for
access to resources and once the capability is obtained, the access is no longer involved
with the central entity (i.e the back-end server in this case). However, unlike [225], in this
approach, it is assumed that the objects are largely static once installed in the environment.
Also, it is assumed that the back-end server, subject devices and objects are synchronized
in a timely manner. The subjects and the objects are characterized by their unique identity
(for instance, with a device id or a serial number) or with the predefined attributes that
are stored in the central entity during the registration of the subjects and the objects.

Anggorojati et al. [229] discuss a Capability-based Context Aware Access Control
(CCAAC) model for a federated IoT network. The proposed access control model is based
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on a centralized administration that is maintained by heavy-weight Web-based applications.
This model also considers the context of the environment when processing a delegation
request. While the model can provide a fine-grained policy control of delegation, it is
highly centralized in nature, which is not an ideal choice for the IoT. The proposed model
incorporates identity-based capability and dynamic context information.

Xu et al. [230] discuss a Federated CapBAC approach for access control in IoT. In this
model, traditional CapBAC model is used for delegating access rights over a federated IoT
networks spread across multiple jurisdictions. This is achieved by means of the capability
propagation and incorporating the context information within the delegation. Once
again, this model is highly centralized. It brings an identity-based capability management
strategy which involves registering, propagation and revocation of the access authorization.
Unlike [61] and [224], this model addresses the issues of capability revocation and delegation
considering the granularity and context-awareness of an IoT system. Similar to [59], this
model provides a light-weight solution for access control for IoT edge devices, however,
unlike [59], this model considers a multiple federated domains for capability propagation.

Mahalle et al. [231] discuss an Identity Establishment and CapBAC (IECAC) scheme
for the IoT. The protocol for capability verification by optimized and scalable ECC
authentication and access control protocol. The protocol is divided into two parts: a one
way authentication, and mutual authentication and integration with traditional CapBAC
solutions. This model improves the security assertions of Gong’s model [176] for creation
and propagation of capability.

• Examining Access Control in IoT Based on Emerging Approaches: In
addition to the commonly used access control mechanisms discussed above, there are some
other emerging approaches that projected to be used for addressing access control issues
for the IoT. We present a brief outline for two of them as follows:

(1) Blockchain Technology: The emergence of blockchain technology for IoT
has gained remarkable consideration in recent years. There are various proposals that
discuss the integration and use of IoT with blockchain technology and explore several
applications [232] [233] [234] [235] [236] [237].

Blockchain was originated as a tool for developing crypto-currency (a new form of
virtual currency). It is the mechanism that is used for transactions to be verified with a
group of actors that are not trusted. It provides a distributed and auditable ledger that
hold the various blocks of previous transactions (records within a blockchain are linked by
cryptographic hashes), in the form of chain of blocks and whose data are shared between
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the various peers within the network [238]. In other words, blockchain is a distributed
database of verifiable records. Fundamentally, every user (or node) in the network has the
exact same ledger which ensures a complete consensus from all users (or nodes) for the
transactions in the blockchain. Blockchain technology can enrich the IoT by providing a
platform for sharing information in a trust-less environment, where information is reliable
and translations are traceable that provide the ability to identify sources at any time. In
other words, the use of blockchain is able to track, coordinate and perform transactions
for a large amount of devices without the need for a centralized (trusted) system, which
complements the IoT in various ways including reliability, security and scalability [239].
Furthermore, blockchain supports fully distributed access control with a high degree of
trust, integrity and resiliency. Several blockchain-based IoT have been proposed. For
example, Bosch XDK (Cross Domain Development Kit) [240] for collecting real-time cross
domain data, Hyundai Digital Asset Company (HDAC) [241] for quick authentication and
data storage between IoT devices, just to name two.

Note that there are some drawbacks associated with blockchain in providing efficient
access control functionalities. Employing blockchain to implement an access control
mechanism based on attributes, e.g. the one presented in this thesis, would likely require
attributes to be stored in the blockchain. Storing of attributes to the blockchain raises
questions of adequate privacy as all users can see all entries in the blockchain. A fully-
featured ABAC system is able to handle the policy management and identity of an entity
to a more flexible and fine-grained level based on attributes. There is no support for an
XACML implementation of ABAC for blockchain. Note, in this thesis, we desire to achieve
decentralization at the edge level, which can be achieved without any blockchain networks.
There are also some non-trivial issues that need to be addressed before we can implement
a secure access control mechanism using blockchain, for instance, smart contracts are not
designed to execute expensive functions e.g. an encryption algorithm. We provide more
technical detail on blockchain technology and its use in IoT access control in Chapter 6.

(2) Fog Computing: Several works propose the use of the fog computing [242] and
the need for efficient management of IoT access control [243] [244] [162]. Fog computing
can be seen as an extension of cloud computing which provides a highly scalable and
dynamic visualized platform for processing, strong and networking services between the
cloud and the edge network [245]. Traditional cloud computing technology is widely used
for aggregating, processing and analyzing heavy network traffic and workload. However,
in the case of IoT devices, cloud computing seems not a preferred platform in terms of
responsiveness and intermediate processing of the IoT data. This further reinforces the
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resource constrained nature of the IoT devices. In such case, fog nodes can be seen as a local
controller that is placed in close proximity to the edge IoT devices (e.g. geo-distributed fog
servers) and it is primarily responsible for the local aggregation, processing and analyzing
the IoT data. In such, the fog architecture provides an intermediate layer between the
edge IoT nodes and cloud servers. Moreover, fog provides an efficient, delay-sensitive and
location-aware services for the edge IoT devices.

Kafhali and Salah [246] discuss an architecture for efficient and dynamic scaling
of fog nodes for IoT devices. The architecture is composed of three distinct physical
tiers, namely Tier 1 (consists of physical sensors and IoT devices), Tier 2 (consists of fog
computing devices) and Tier 3 (consist of cloud computing nodes). The fog nodes are
located as close as possible to the edge IoT devices and collect the traffic and workload for
aggregation, processing and analysis of IoT workload performed either in fog or cloud nodes.
Almadhoun et al. [247] discuss the concept of blockchain-enabled fog nodes that are used
with the IoT devices to provide a more flexible access control. This leverages flexibility
to access control by considering resource constrained nature of the IoT devices. The fog
nodes are used to enhance the scalability of the system where the heavy computational
takes related to authentication and communicating with the blockchain network is carried
out by the fog nodes. This improves the performance of the IoT devices. Fundamentally,
the fog nodes interface to Ethereum smart contracts to authenticate the legitimate users
to access resources (i.e. IoT devices). The proposed architecture is able to manage a
vast amount of IoT devices and provide a decentralized feature of access control that
connects a high number of IoT devices. The access control policies are enforced based on
blockchain technology overcoming the bottleneck of a single centralized authority that
manages the access control decisions. In this model, the edge IoT devices do not connect
to the blockchain network directly, instead they are connected to the blockchain using one
or more management hubs. These hubs are distributed over the blockchain and potentially
connected in different ways to the IoT devices which significantly provide a considerable
flexibility in the overall access control management. In a similar vision to [247], Farhadi
et al. [248] discuss a blockchain-enabled fog architecture for providing data security in IoT
application. In this work, IoT data security is outlined with the following five dimensions:
confidentiality, integrity, authenticity, non-repudiation and availability.

Other works, e.g. Riabi et al. [249] discuss an approach for distributed access control
over fog computing for the IoT systems. In this approach, IoT nodes are connected
to a local controller (i.e. a fog controller) which is able to perform heavy computation
processing and synchronizes with the cloud servers. Proposals [250] and [251] discuss the
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fog architecture that uses ABAC. Proposal [250] discusses fog and ABAC integration for
protecting electronic medical records. Where the fog nodes implement the ABAC at the
edge of the network. Users are authenticated based on the supplied attributes and access
is given based on the policy specification. Proposal [251] presents the idea of integration
of fog and ABAC for intelligent transportation system. In this system, different services
are managed and monitored for traffic conditions.

In summary, the massive scale of the integration of heterogeneous devices and services
in an IoT system means that none of these aforementioned access control approaches (e.g.
RBAC, ABAC and CapBAC), in isolation, can achieve efficient management of access
control policies. Recall, RBAC provides rights to specific roles and users are made members
of appropriate roles, rather than giving rights directly to the users. This simplifies policy
management. However, to explicitly identify and assign users to roles is difficult in a
dynamic and large-scale system e.g. the IoT. RBAC systems are complex and not easily
implemented in constrained devices. RBAC is also inherently static (with role membership
needing to be defined a priori), and typically highly centralized in their implementation
and the adjudication of access. This makes an unmodified implementation of RBAC
unsuited for IoT systems. ABAC makes access control decisions based on the ‘attributes’
of system entities. ABAC can also provide a context-aware approach based on properties
e.g. location and time. ABAC can support fine-grained access control, but at the cost
of significant complexity, both in number of policies and details of policy expressions.
CapBAC approaches provide fine-grained access control by supplying a capability which
precisely specifies the access allowed to a resource (e.g. a thing). While capabilities can
provide a fine-grained approach to access control, defining the policies that will provide
a capability to each user for every resource they may access is not scalable without the
addition of significant machinery for policy management.

Access control for IoT systems needs to be scalable, flexible, usable and recognize
the inherently decentralized nature of such systems. Moreover, the intrinsic features of
traditional access control approaches may be difficult to implement within the resource-
constrained IoT devices. There is a requirement that, whatever access control mechanism
is employed, it should be usable as well as sufficient to protect the privacy, integrity and
confidentiality of the system and its components. In general, in an IoT system, information
can be available and open to everyone. However sensitive and confidential information
should be protected allowing only authorized users to control and manipulate that data.
The issues noted above around the existing approaches to access control mean that further
consideration of access control for the IoT is merited.
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2.4 Representing Identity

The concept of identity has been widely discussed in industries and academia. With
the emergence of the Internet and various communication technologies this became an
important issue. In computing systems, an identity is the basis of the assignment of
privileges that are verified through dynamic data. To represent an identity, information
and communication systems generally use various identifiers for identification and data
transmission over a communication channel [252].

Identity represents the fact who it is. Identity can be an entity’s physical parameters
(e.g. name, age) or digital information (e.g. credit card number) that uniquely identify
an entity within a given context. The entity can be a human, device or an organization.
There are various representations of identity, for example, using attributes, claims and
partial identities. It is discussed in [253] that “authentication is the binding of an entity to
a subject”. Authentication governs the processes of obtaining ‘authentication information’
from an entity, analyzing the data and ensuring whether the information is associated
with that entity. In digital systems, this highlights the fact that a computer system must
store certain information about that entity. This information can be represented as the
identity of the said entity within a given context. In other words, an entity must bind to a
specific identity that uniquely represent that entity within the given context.

As noted earlier the IoT will include a very high numbers of users, things and
resources. There will be a need to identify these elements. In our particular case, as the
subjects and objects of policy. Various characteristics of the IoT mean that a simplistic
approach to identity will be insufficient. Addressing each entity individually will require
a vast number of policies and reduces finesse in policy expression while increasing the
number of polices that need to be created and managed. A more sophisticated approach
to identity will allow multiple entities to be referenced by a single identity. This situation
is further complicated by the nature of the IoT, e.g. device diversity, broad scope of
interactions, different communication mediums and dynamic characteristics of the devices,
services and applications. In particular, it is difficult to ensure in advance what and when
an entity will interact with another entity. There is a need for addressing IoT identity
in a systematic way that will help to enable identity management for billions of things
which can access and be accessed in a heterogeneous environment. This will in turn assist
to develop a scalable, dynamic and flexible IoT access control architecture. Identity, its
meaning and expression needs to be addressed in arriving at a flexible solution to access
control in the IoT. In Chapter 5, we discuss the notion of identity in the context of the
IoT in a comprehensive and systematic way.
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2.4.1 Identity Establishment

The identity establishment process determines the identity of an entity based on some
identification factors. This enhances the fact that the entity must provide certain infor-
mation that helps to enable the system to confirm the identity of that entity. Identities
are created and managed by a management authority, known as the identity manager or
identity provider. Note, only providing an identifier as an identity information is often
insufficient to prove a claimant. Identity establishment is closely associated with the entity
authentication and authorization.

• Entity Authentication: Recall, authentication provides an assertion to verify an entity.
An authentication procedure comes in terms of one or more of the following [253]:

(a) What the entity knows: In this case, an entity possess knowledge which identifies
the entity. Commonly used types are password or any secret information that
belongs to the entity.

(b) What the entity has: In this case, the systems verify certain information that
an entity holds. Commonly used forms are a security token, a key fob or an identity
card where the information is securely stored.

(c) What the entity is: In this case, an entity’s identity is verified using some
unique features. For instance, biometric information (e.g. fingerprints, retinal and
facial characteristics) that is unique to an entity.

(d) Where the entity is: In this case, an entity’s current geographical location and
time in a specific terminal is considered for identity verification process. Therefore,
this process is context dependent.

• Entity Authorization: Although authentication provides reliability between the com-
municating parties, authorization is needed to provide secure access to private and
confidential information only to specific users. Recall, authorization is the procedure
of specifying access rights to certain resources based on the employed policies. To
this end, identity is crucial in an access control mechanism. Note, in Section 2.2.3, we
provide a detailed discussion of various access control mechanisms.

To provide increased security to a system, the activities of an entity (e.g. interaction
time, resource accessed, etc.) are tracked and recorded. This process is known as accounting.
Authentication, authorization and accounting are often provided by a dedicated server,
called the AAA server.
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2.4.2 Identity Management Models

Identity management is the process of managing, controlling and maintaining of identi-
ties [254]. The process consists of one or a set of events for the creation, usage and the
formulation of identities for the said management in a particular domain. The process of
identity management can be done both physically and digitally.

The core components in an identity management system are the clients (i.e. the
users), service providers and identity providers [255]. The service providers allow services
to the clients. They also store the clients identifies and authorization credentials for
authentication purposes. Finally, the identity providers are responsible for registration,
verification of a client’s credentials and the creation of identities. The commonly used
identity management models are [256]:

• Isolated Identity Management Model: In this model, an entity must register to a
service provider. Each entity possesses an identifier for accessing an isolated service.
This model is mostly flexible for the service providers where the service providers act
as both the identity and credential providers for their clients. In other words, the
service providers act both as the service provider and identity provider, where identity
storage and entity’s operations are performed by a signal service provider.

• Centralized Identity Management Model: This model is used for most identity man-
agement systems. This model separates the functions of service provider and identity
provider. The identity storage (of an entity) and its authentication are performed
within the identity provider server. In this model, a single identifier and credentials
are used by each service provider. In other words, all service providers use the global
unique identity provider. For example, a PKI based infrastructure where a Certificate
Authority (CA) issues certificates to the users.

• Federated Identity Management Model: In this model, agreements for authentication
are established between the service providers (that trust each other) so that the
identities from different service providers in specific identity domains are recognized
across all domains. An entity belongs to a particular service provider is able to access
services provided by a different service provider over a federated-group using a single
identifier. In other words, when an entity is authenticated to one service provider
using one of its identifiers, subsequently the entity is considered as an identified
and authenticated entity by the other service providers. This simplifies the account
management problem between two different service providers. However, from an
entity’s perspective, it may still need to remember multiple identities and credentials.
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2.5 Approaches to Delegation

Delegation is an important part of access control mechanisms. Recall, access control
governs who or what can view or use resources by the allocation of rights based on the
policies specified. Initially rights are bestowed by the owner of a resource. Delegation
allows entities to transfer those rights to other users. The scale of and dynamic nature
of the IoT means that it requires flexibility in its approach to policy management. Such
systems may generate massive amounts of data, much of which may be sensitive (e.g.
government or health related information). As we indicated earlier, protecting this data
from unauthorized users and services requires proper access control. Enforcing appropriate
access control is an important part of securing these systems. An important feature
of access control systems to deal with flexibility is delegation and it has been included
in existing proposals for IoT access control. However, delegation is usually framed by
explicitly identifying the recipient of the delegation. As noted under the discussion of
identity, such an approach is not necessarily suited to general IoT usage. The nature and
implementation of delegation within IoT access control deserves further examination. In
Chapter 6, we provide a detailed discussion on delegation of access rights in the IoT.

2.5.1 Definition

According to [257], delegation “is the assignment of any authority to another person
(normally from a manager to a subordinate) to carry out specific activities”. Fundamentally,
a delegation states that how an active entity (e.g. user, device, etc.) can transfer and
grant some of their permissions (i.e. access rights) to one or more entities for accessing
one or more resources. Therefore, delegation can be seen as a process by which an entity
can transfer one or a set of access rights to one or a set of other entities. In a delegation,
the entity that transfers the access rights is called the delegator and the receiving entity is
known as the delegatee.

2.5.2 Architecture

Next we use an example scenario to demonstrate the delegation process. Let us assume
Doctor A and Doctor B work for the same health care provider, i.e. are located in the
same network domain (e.g. working for the same health care provider). Alice is under the
care of Doctor A. Doctor A is going to be absent for a short period of time and Doctor B
will provide care in Doctor A’s absence. Changing the underlying policies, and changing
them back on Doctor A’s return, is inefficient. Delegation provides a simpler and flexible
short-term option. The following are some commonly used delegation architecture.
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• Centralized Checking on Issuance: In a centralized issuance delegation architec-
ture (e.g. [258]), delegation is handled by a central administration entity. In this case,
the delegator contacts the central administration with the request for a delegation to
the delegatee. This request will include the rights to be delegated and possibly other
information, e.g. the requested duration for the delegation. The central administration
will typically hold policies which will govern the delegation and enable a decision as
to whether the delegation is allowed. If it is allowed, the delegatee is granted the
delegated rights.

Doctor A

Delegation 
Request

Central 
Administration

Database
Doctor B

Delegation 
Response

Medical Records

Access Access

Figure 2.8: Centralized checking on issuance of delegated access rights.

Fig. 2.8 illustrates the centralized issuance delegation architecture. In this case, Doctor
A requests the central system administration to create a delegation for Doctor B. If the
relevant policies are satisfied, then the central system grants the delegation to Doctor
B. Now, Doctor B is able to see relevant medical details of patient Alice and provide
care. While the centralized approach allows a fine-grained, policy-based, approach
to the management of delegation, it requires the active participation of the central
administration entity. This will not always be practical in the IoT context.

• Centralized Checking on Access: In this case, a delegator issues delegated cre-
dentials directly to a delegatee (e.g. [259]). In contrast to the previous approach, the
delegation is only checked when the delegatee attempts to exercise their delegated
rights. As shown in Fig. 2.9, when the delegatee wishes to use the credentials they
are checked by a central component of the system (e.g. an authorization authority)
before access to the resource is allowed. Like the previous approach, the centralized
component may contain fine-grained policies that govern the delegation.

Centralized systems have the advantage of easily allowing a policy-based approach to
delegation. However, a major disadvantage is that they require the active participation
of a central component either when the delegation is authorized or delegated rights
are used. While this is reasonable in a wide range of application scenarios, it is not
suitable for highly dynamic systems like the IoT.
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Figure 2.9: Centralized checking on use of delegated rights.

• Distributed: In a distributed delegation architecture (e.g. [59]), credentials for access
(e.g. capabilities) are issued to the users. These credentials are checked on access
requests. Like the previous approach a delegator issues delegated credentials directly
to a delegatee. As shown in Fig. 2.10, the delegatee presents the credentials on access.
The service provider (e.g. things) checks that the delegation is genuine as the delegated
credential either includes or is accompanied by a complete authorization chain to
enable validation to occur.
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Figure 2.10: Distributed delegation of rights.

Distributed approaches to delegation have the advantage of not requiring the involve-
ment of a central component. This assists in distributing the management of the
authorization process, as advocated by [59]. However, they do place extra require-
ments on the service providers. This is a well-known trade-off between centralized and
distributed approaches. On the one hand, too much decentralization risks a loss of
control and vulnerabilities occurring in the independent components. On the other
hand, too much centralization risks the creation of unscalable solutions. Distributed
approaches also have difficulty in providing fine-grained, policy-based control over
delegation, typically leaving all (or at least most) decisions over whether or not a
delegation is valid to the delegator.

Other delegation approaches are possible, e.g. policy-based delegation, rule-based
delegation, etc. However, for the purposes of the IoT, they can be placed in the above
mentioned architectures.
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2.6 The Notion of Trust

Trust is one of the most important features in our everyday life. Trust provides many
practical benefits including safe and inexpensive basis that enables cooperation between
two or more entities when uncertainty and risks exist [260]. Commonly, a question can
arise, whether we can trust an entity and if so in what aspect. This is fundamental in
every aspect of our lives where we need to adjust decisions accordingly. Let us consider
the following situation where Alice trusts Bob for service X, but not for the service Y. So
Bob is trustworthy in the context of service X but not in the context of service Y. Trust is
context sensitive, subjective and may vary in different ways based on the social issues.

In this section, we first discuss the concept of trust from a general point of view
and then outline the trust modeling process. Next, we present two mechanisms for trust
evaluation that are related to this thesis. Finally, we provide an outline to two categories
to calculate trust.

2.6.1 Trust Concept

The notion of computational trust dates back to the early nineties. In the past decades,
there have been many areas where trust is widely discussed and measured [261]. These
areas include physiology, sociology and computer science, just to name a few. There are
many definitions for trust and some examples are discussed below. Commonly, the entity
who trusts another entity is known as the trustor and the other entity that is being trusted
by the trustor is known as the trustee. The mathematical or logical relation between these
two entities (i.e. trustor and the trustee) is known as the trust relationship. The trust
relationship is measured by the trust assessment. The trust assessment is the process that
is used to measure a trust value within a specific context and the period. Typically, trust
can be observed as a metric that is gathered by the interactions and observations based
on the actors involved in a system.

There is no universally accepted definition for trust [262]. In different disciplines
trust can be referred as to the honesty, truthfulness or even the reliability of a trustee.
It always varies in different context and the way it is used. Next, we provide a short
discussion of trust in two specific areas.

• Trust in Social Sciences: Trust in social science integrates the idea of social
influence. This comes from characteristics and the behaviour of an individual and can
be measured as the honesty, cooperativeness and their willingness to offer help within a
social setup. There are wider definitions for describing trust in social sciences. According
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to [263], “in psychology, trust is believing that the person who is trusted will do what is
expected”. It starts at the family and grows to others. This indicates the relationship
between the persons in a person’s life. This defines the aspect of trust from an internal
phenomenon (of a person) that helps to maintain a normal relationship between individuals.
Rousseau et al. [264] discuss trust as “a psychological state comprising the intention to
accept vulnerability based upon positive expectations of the intentions or behaviour of
another”. Deutsch [265] defines trust as follows: “an individual may be said to have trust
in the occurrence of an event if he expects its occurrence and his expectations to lead to
behaviours which he perceives to have greater negative consequences if the expectation is not
confirmed than positive motivational consequences”. This measures the physiological state
of a trustor within a specific context and time. The definition provides specific context of
the human mind and their functions. The trust relationship in these cases are measured
by the behaviour of the actors in a given context.

In sociology, trust is evaluated by the relationship between the social actors. Mcknight
and Chervany [170] define trust as the “extent to which one party is willing to depend on
something or somebody in a given situation with a feeling of relative security, even though
negative consequences are possible”. This definition indicates the nature of diversity in the
involved social relationship among the entities. Jøsang and Stéphane [180] define trust
as “the extent to which one party is willing to depend on somebody, or something, in a
given situation with a feeling of relative security, even though negative consequences are
possible”. This definition indicates the subjective nature of the trust that is dependent
upon the willingness and relative security. In a social domain, Lewis and Weigert [266]
describe trust as the follows: “from a sociological perspective, trust must be conceived as
a property of collective units (ongoing dyads, groups, and collectivities), not of isolated
individuals. Being a collective attribute, trust is applicable to the relations among people
rather than to their psychological states taken individually”. This emphasizes the presence
of each entity or their symbolic representations for trust value measurement.

• Trust in Computing Systems: In the area of computing and information
technology, the notion of trust is used in different areas including networking, security,
artificial intelligence, human computer interaction, e-commerce, just to name a few [260].
In computer systems trust can be represented based on subjective belief [267]. Instead of
depending upon the context for a specific trust value, some proposals discuss the concept
of trust independently. The core concept of trust in computing systems is derived from
the social sciences. In general computing systems, trust can be decomposed into various
aspects e.g. device trust, entity trust and data trust [268]. Cho et al. [269] define trust as
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a subjective belief, as follows: “an agent’s trust is a subjective belief about whether another
entity will exhibit behaviour reliably in a particular context with potential risks. The agent
can make a decision based on learning from past experience to maximize its interest (or
utility) and/or minimize risk”.

Similar to the concept of [269], Jøsang et al. [270] define trust “as the subjective
probability by which an individual expects that another performs a given action on which
its welfare depends”. Mui et al. [271] also define trust as “a subjective expectation an agent
has about another’s future behaviour based on the history of their encounters”. This is
to note that, the formal definitions of trust in social sciences can also be extended to
computer science. Kimery et al. [272] discuss trust for online systems, in this trust is
defined as “a consumer’s willingness to accept vulnerability in an online transaction based
on their positive expectations regarding an e-retailer’s future behaviors”. This definition
denotes the predicted behaviours of the users in an online system. Cynthia et al. [273]
define trust as “an attitude of confident expectation in an online situation of risk that
one’s vulnerabilities will not be exploited”. In this case, the authors consider research on
trust between users and online systems (e.g. transaction websites).

Fundamentally, in a computer system, to establish trust is a challenging issue due
to the requirements of the specific rules and security policies that are governed by the
trustor. If a process stratifies the basic security requirements of a system then the process
can be called a ‘trusted process’. These policy based mechanisms allow an individual to
build trust through the exchange of credentials e.g. digital signatures [274]. The other
way of building trust is reputation. Artz and Gil [275] define reputation as: “reputation is
an assessment based on the history of interactions with or observations of an entity, either
directly with the evaluator (personal experience) or as reported by others (recommendations
or third party verification)”.

With the introduction of the concept of distributed computing systems and services,
the notion of trust becomes a crucial issue due to the pervasive nature of the environ-
ments [276]. In such distributed sysytems, the trusted authorities were introduced to
manage the trust issues. This is further challenging as the concept of user authentication is
not limited to a single domain anymore. Service are available at anytime and anywhere and
users require a trusted platform. The Trusted Computing Group (TCG), was formed in
2003, to develop standards and promote security specifications for computers and networks.
The TCG introduced Trusted Platform Module (TPM), a hardware chip (microcontroller)
integrated with cryptographic keys. It also assess the trustworthiness of a computing
system by securely storing artifacts employed to authenticate the platform [277].
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2.6.2 Trust Modeling

In this section, we outline the process of trust modelling trust in general computing
systems [278]. Trust modeling can be seen as the specific mathematical techniques that
are used for modeling trust. In other words, trust modelling comprises a set of rules
and languages that are required to establish trust among entities in an automatic or
semi-automatic way [279]. Note, when we discuss trust modelling, we consider trust
issues both in the social sciences and computing systems. This is due to the interactions
between the human users and computing systems which are sometimes essential in many
circumstances, or even sometimes unavoidable. For instance, communication between the
servers and the human users for some specific application.

In Fig. 2.11, we illustrate a general trust modelling process [280] [281]. It is composed
of the following five steps, they are: i) information collection, ii) model section, iii) trust
evaluation, iv) trust dissemination and v) trust update. We briefly outline these steps as
follows:
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Figure 2.11: The trust modeling process.
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• In the first step, information is gathered from the nodes (i.e. information is collected
by the trustor about the trustee). This can be done in two different ways i.e. direct
observation or indirect recommendation [282].

• In the second step, appropriate trust models are used to process the gathered data [283].
Two widely used trust models for this purpose are, decision model and evaluation
model. Decision models are typically a policy based approach that restricts the access
to resources by means of certain policies [284]. The evaluation models are based on
specific attributes of the specific entities. The intention of these trust models are to
evaluate readability (the said attributes) by measuring certain factors that have an
influence on trust [285].

• In the third step, graph-based or history-based based models are used to calculate
the trust value. Sometimes a hybrid based trust method is also used for trust value
evaluation [286].

• In the fourth step, two different processes can be used for trust dissemination. First,
recommendation models can be used for further recommending trust to other entities
in the system. Second, visualization models are used to visualize the trust values [279].

• In the fifth step, trust values are periodically updated. Different methods can be used
e.g. event driven (in this case, trust values are updated as soon as the event occurs),
time driven (in this case, trust values are updated periodically for all nodes) and
continuous update (in this case, the updating of trust values are done based on the
integrity protection and verification) [287].

Commonly, there are four widely used trust models available for computing sys-
tems. They are statistical trust, machine learning-based trust modelling, heuristical trust
modelling and behaviour-based trust modelling [288] [289]. In statistical trust modeling,
mathematical calculations are used for the trust value calculation. There are two popular
trust models available in this case, Bayesian model and belief model. For the former,
the interactions between the entities are defined as a binary rating [290] [291]. For the
later, an entity’s belief about any statement is translated into rating which is further
transformed into an actual trust. In the machine learning-based trust modeling, various
machine learning-based algorithms are used to determine a node’s behaviour [292]. Heuris-
tical trust modelling is based on the heuristic classification methods which is simple to
understand [293]. Finally, in behaviour-based trust modelling, entities communication
frequencies, friendliness and cooperation are used [294].
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2.6.3 Mechanisms

Now we briefly introduce two commonly used mechanisms for the trust evaluation process
that we employ in this thesis.

2.6.3.1 Belief Theory

It is also known as Dempster-Shafer Theory (DST) or evidence theory introduced by
Dempster in the 1960s [295]. It is a general framework for reasoning of traditional
probability theory that allows for priori (incomplete) knowledge i.e. with uncertainty. In
other words, it assigns a way to measure reasoning under uncertainty using probability,
possibility and plausibility with upper and lower bounds. Later in the 1970s, Dempster
enhanced this theory by incorporating the notion of evidence from different sources. The
evidence is the claim that supports the actual state of an entity (e.g. today’s temperature
is below freezing). These evidences are collected (both direct and neighbouring of the
system) to form a mathematical reasoning to believe the system. The basic idea of DST
is the numerical measures of degree of belief from different entities in uncertainty using
subjective probability and then combine these beliefs to construct a single belief. The
uncertainty is measured by belief and plausibility (i.e. neither belief nor disbelief) rather
than pointing to a single value as in the traditional probability theory. Note that the
generalized form of the Bayesian theory of subjective probability can be seen as the belief
theory [296].

Definition 2.1 (Belief and Plausibility): The amount of evidence in favour of
a proposition (a) is denoted as belief (Bel) within a range of 0 and 1, where, 0 represents
no evidence and 1 represents uncertainty. Then the relationship between the plausibility
(Pl) and belief (Bel) can be denoted as follows:

Pl(a) = 1−Bel(a) where Bel(a)≤ Pl(a) (2.1)

Definition 2.2 (Dempster’s Rule of Combination): It defines the combina-
tion of two or more independent set of belief functions [297]. For instance, assume x1 and
x2 are the two independent sets of belief functions, then the combination can be defined
as follows:

x1,2(A) = (x1⊕x2)(A) =
∑

B∩C=A 6=φ
(x1(B)x2(C)) 1

1−K (2.2)
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where, A ,B and C are the sets of belief functions. K is the conflict, where, K =∑
B∩C=φ(x1(B)x2(C)) and x1,2(φ) = 0.

2.6.3.2 Subjective Logic

Jøsang [298] defines subjective logic as follows: “subjective logic is a calculus for subjective
opinions which in turn represent probabilities affected by degrees of uncertainty”. The
subjective logic is one type of probabilistic logic that explicitly considers uncertainty during
trust evaluation. The arguments of subjective logic are called opinions. An opinion is
denoted as AωX , where A is the source of the said opinion and X represents the state
of the variable in which the particular opinion exists. These subjective opinions help to
construct the arguments of the subjective logic, where each opinion represents the degree of
uncertainty and analysis situations that are consisted of relatively unreliable sources. Each
opinion in subjective logic is equivalent to the binomial opinion of the beta distribution
function. These functions are employed to calculate the success rate of an event based on
the previous knowledge of interactions. A beta distribution function can be represented
by f(∂|α,β) and denoted as follows:

f(∂|α,β) = τ(α+β)
τ(α)τ(β)∂

α−1(1−∂)(β−1) (2.3)

where, α and β are the evidence parameters, ∂ is the probability variable, α > 0, β > 0
and 0 ≤ ∂ ≤ 1, ∂ 6= 1 if α < 1 and ∂ 6= 1 if β < 1.

Now we discuss how subjective logic can be used for domains containing uncertainty.
Let us consider that p and q represent positive and negative experiences of any past
interactions, and it is represented as: α = p+ 1 and β = q+ 1. Now, using values for p
and q in the equation 2.3, we can create a mapping between the potability distribution
function and the priori experiences.

In subjective logic, the term opinion represents a belief. In addition, it includes
the concepts of disbelief and uncertainty. Note, in this thesis, we use the notion of belief,
disbelief and uncertainty as follows:

• Belief (b): Represents a specified entity’s belief for a certain proposition is true.

• Disbelief (d): Represents a specified entity’s belief for a certain proposition is not true.

• Uncertainty (u): Represents a specified entity’s uncertainty (i.e. neither belief nor
disbelief) for a certain proposition.
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The relationship among the parameters belief (b), disbelief (d) and uncertainty (u)
can be represented as follows:

b+d+u= 1, where b,d,u ∈ [0,1] (2.4)

If γ is the mapping between the Bayesian and belief theories, then γ can be obtained
using the following relationship:

γ =



b= p

p+ q+ 2
d= q

p+ q+ 2

u= 2
p+ q+ 2

2.6.4 Category

Broadly there are two ways to calculate trust, direct observations and indirect recommen-
dations [299] [300]. The concepts of trust and reputation are closely related for any trust
management systems. The term reputation signifies the opinion of any trustor towards a
trustee. This can be measured by the past experiences and the interactions between the
trustor and the trustee.

• Direct Observations: In this case, the direct observation of an entity about other
entities is taken for calculating a trust value (i.e. trustworthiness of interaction partners
is observed). For instance, user Alice wants to access a specific service from a service
provider, Bob. Alice can trust Bob based on their previous interactions or other
positive experiences. This enhances a direct trust between them as them. The direct
trust is typically measured and calculated over the reputation. Note, it is not always
necessary that the entities know one another directly or have had previous interactions.
This leads to the indirect recommendations discussed below.

• Indirect Recommendations: In this case, one entity takes information or trust recom-
mendations of another entity through other entities. For instance, user Alice wants
to access a service from a service provider Bob. They do not have any previous
interactions. In this situation, Alice can take a recommendation from her friend
John who had a positive interaction in the past with Bob. This is a transitive trust
calculation process where the trust value computation between Alice and Bob is based
on two separate processes i.e. Alice’s trust with John and John’s trust with Bob.
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2.7 Summary

In this chapter, we have discussed background and related work on the state of the art
IoT and its access control issue. We have presented a detailed analysis of the available
threats and attacks in the IoT. We observed that the security solutions for the IoT need
to be designed for their intended context and by addressing the characteristics of such
systems. We argue that enforcing security policies and developing appropriate security
requirements for the IoT has not only become an essential issue but also an obligation.
Our study indicated the need to protect IoT systems and resources from potential threats
and attacks not only in internal networks but also originating from networks that span over
multiple domains. With the sensitive nature of the IoT and its dynamic characteristics,
many of these issues cannot be addressed with a simple software patch or commonly used
security measures.

We have noticed that the need for IoT access control is to ensure appropriate security
foundation for the system. Attacks on IoT systems are fundamentally different from
traditional security and privacy related attacks and threats. In IoT, attacks are becoming
more sophisticated in terms of their mechanisms and the way they infect the system.
This is not simply limited to penetrate a network layer with malicious codes or divert
a network traffic to another insecure destination without the knowledge of the users. It
is more pronounced where an IoT-enabled medical device (e.g. an insulin pump) can
be compromised and controlled remotely by the attacker. We argue that the research
in access control for IoT is still in its infancy without enough attention is being paid to
access control governed by the security, identity, delegation and trust. Therefore, there is
significant need for appropriate access control mechanisms to ensure a secure IoT system.
We further argue that the, IoT goes beyond to the Internet and the traditional Internet
architecture is not enough to handle the access control mechanisms for the IoT. In such,
things need to be configured for its operating conditions, criteria, sensitivity that are then
used for controlling the entire system operation. We summarize our findings as follows:

• We provided an outline of IoT paradigm along with a detailed discussion of different
elements in an IoT architecture.

• We examined and mapped the various threats and attacks to an IoT system and
guided the derivation of unique security requirements for the IoT.

• We proposed five distinct categories of issues and threats for an IoT system, namely,
communications, device/services, users, mobility and integration of resources. Our
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approach considers both the technological and architectural point of views of an IoT
system.

• We provided a detailed discussion on the importance of access control in such IoT
systems.

• We presented the various access control mechanisms available in general computing
system and then conducted a detailed examination of applying these mechanisms for
IoT in a comprehensive and systematic way.

• We discussed the importance of identity management, access right delegation, and
the notion of trust for the IoT systems along with the available architectures and
approaches.

In the next chapter (Chapter 3), we plan to discuss the design and development of
an access control architecture for large-scale IoT systems. Our intention is to examine
how to manage the vast amount of users, heterogeneous devices, applications and their
associated services in an IoT system, especially to different requirements and access control
issues (e.g. efficient and fine-grained policy management and their enforcement) that we
discussed in this chapter.
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Chapter 3

Developing an IoT Access Control
Architecture

In the previous chapter (Chapter 2), we noted that the IoT, smart sensors and mobile
wearable devices have the potential to provide a better services to the end users. These
services will be more ubiquitous, smarter, faster and more easily accessible to the users.
However, security is a significant concern for the IoT, with access control being one of the
major issues. In this chapter, our motivation is to discuss the development of an access
control architecture for resource constrained IoT devices. We will demonstrate how to
manage policies in a manner that is both scalable and flexible for such IoT systems. We
introduce a policy-based approach that provides fine-grained access for authorized users
to services while protecting valuable resources from unauthorized access. We use a hybrid
approach by employing attributes, roles and capabilities for our authorization design. We
apply attributes for role membership assignment and in permission evaluation. Membership
of roles grants capabilities. The capabilities which are issued may be parameterized based
on further attributes of the user and are then used to access specific services provided by
IoT devices. We employ a use-case of a smart healthcare system to show feasibility of the
proposed approach in real-world scenario. We are motivated by the following questions:

• How to design a light-weight access control architecture for highly dynamic systems
like the IoT?

• How to develop and implement such a design leveraging on the distributed nature of
an IoT system?

• How to achieve a fine-grained access control for the IoT devices and applications with
the proposed system?
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The rest of the chapter is organized as follows. In Section 3.1, we discuss the problem
statement and list our contributions. In Section 3.2, we present background of the work.
We discuss a smart IoT system in brief. We examine three commonly used access control
mechanisms in the context of the IoT, those that are relevant to our present chapter. We
also discuss current limitations in access control using these mechanisms. In Section 3.3,
we describe a practical use case example scenario. Section 3.4 presents our proposed access
control architecture, its different components and an overview of the system operation
in detail. We also provide a formal specification of our model. We describe different
access scenarios for our proposed access control architecture in Section 3.5. In Section 3.6,
we present a detailed discussion of the system design based on a symmetric key based
approach, followed by the system design based on an asymmetric key based approach in
Section 3.7. In Section 3.8, we provide a brief discussion on policy management in multiple
administrative domains. Finally, we provide a summary of the chapter in Section 3.9.

3.1 Introduction

The growing number of IoT devices and smart applications in use has created significant
potential both for consumers and businesses. But in the wider context of the IoT, it
is difficult to manage authorization and authentication both for users and applications.
Authorization is the process of granting access rights/privileges to resources and authenti-
cation is the act of confirming the identity of an entity. For instance, to unlock a smart
door using a mobile phone, the system (and the home-owner) must be reassured that the
user is authorized to do so that has preceded by a successful authentication. However, as
described in Chapter 1, it is fundamentally challenging for entities in the IoT to always
know in advance the identities of other entities with whom they will be interacting.

The challenge is not simply to develop mechanisms and standards to authenticate IoT
actors, it is more to authenticate a user or device considering the specific characteristics and
the context of such systems. Previously, many computing applications and services were
designed within a particular system environment, protected and operated by a dedicated
network infrastructure. With the IoT, such systems become open and easily accessible,
with users employing their own devices to access system resources e.g. sensors, devices and
data [301]. With the increasing number of IoT devices (as it is predicted that the Internet
will include 50 billion connected devices by 2020 [302]), there will be an impact on a wide
range of application sectors as it moves from a network-centred approach to an open one,
for example, with remote monitoring of smart sensors, data collection and analysis and
seamless device integration surrounding users and their various operations [303].
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Consider a practical example of connected healthcare devices in an IoT-enabled
smart healthcare system. The use of the IoT has led to a reduction in the strain on
medical professionals and improved the patients’ well-being while being treated at medical
facilities or via remote health monitoring [304]. Specific applications can be seen in many
areas from wearable devices to connected beds. For example, the ‘NHS test beds’ [305]
are IoT-enabled smart connected-beds that are used in the UK’s National Health Service
(NHS) that monitor patients and track data. This is effective in enabling elderly patients
to monitor their long-term health conditions while admitted to a hospital. Another IoT-
enabled device named ‘QardioCore’ [306], a wearable ECG monitor, can provide continuous
medical-grade data of a person to the health centres that monitor conditions e.g. diabetes
and heart troubles. Similarly, ‘Zanthion’ [307] is an IoT-enabled smart medical device that
is used to track a patient’s movement. It generates alerts if a patient remains motionless
for too long a period of time. However, all these applications generate significant amounts
of sensitive and private data.

From tablets, smartphones to thermostats and smart metres, the question lies in
building secure authentication and authorization systems that in turn will make the data
more secure. Demand for the use of IoT-enabled solutions is only likely to grow, with
users relying on this technology for efficient and secure access to personal data.

3.1.1 Problem Description

While such a convergence of digital-physical systems can provide better services, reduced
cost of applications and improved user experience, it also leads to numerous challenges
in security and privacy [308] [309] [310]. Attacks on IoT systems are becoming more
sophisticated [311] [312]. This is not limited to simply infecting network traffic with
malicious code. IoT-enabled devices can be compromised and controlled remotely by the
attackers. For example, a patient’s pacemaker can be used to generate a fatal shock or a
drug infusion pump (e.g. insulin or antibiotics) can be controlled by an attacker to change
the drug dosage [313]. Unfortunately, the characteristics of the IoT, e.g. low-powered
devices, small memory capacity and limited processing power, are major issues that impact
on the creation of secure IoT systems [314]. This means that it is impractical to enforce
heavy-weight security mechanisms in these devices while the scale of the systems argues
against fully centralized solutions. From a communication point of view, heterogeneous
network environments, wireless communication mediums, high mobility of things, dynamic
network topology and availability of infrastructure for communication present significant
issues [63]. Further, from the access point of view there are several use cases that need to
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be considered. For instance, a user wants to access an operation from a thing for the first
time or many times for the same operation. An access could also be made for different
operations at the same time or in a certain interval of time. Given the dynamic and the
high mobility in such IoT systems, an access control framework should address such issues
with proper authorization and authentication.

In a large-scale IoT system, with its open technologies and resource-constrained
IoT devices (with limited battery power, memory capacity and computational speed,
etc.), managing the resources and users of the system and enforcing appropriate policies
are complex and challenging issues [315]. IoT systems can be very dynamic with ever-
evolving environments. These systems can also not afford single point of failure risks
from over-centralization but conversely require high-levels of security due to the sensitive
and mission-critical nature of these systems and the scale of data to be handled. These,
and other characteristics, necessitate solutions that are specifically designed for the IoT
arena. In particular, identity, access control and privacy have been identified as pressing
issues in this context [316]. IoT systems will need policies and mechanisms to support
authorization (i.e. determining whether an entity can access a resource) and authentication
(i.e. identifying an entity). With the range and scale of users, applications and data in an
IoT setting, the scale of the policies required for access control, and the management of
those policies, must be considered.

As we discussed in Chapter 2, a number of well-known access control models and
mechanisms have been proposed for use in the IoT. In this section, we quickly recap
three of the major access control mechanisms that are related to our research, RBAC [57],
ABAC [58] and CapBAC [59]. As noted in the previous chapter, each of these mechanisms
has its own advantages and disadvantages when applied to the IoT. RBAC provides
fine-grained access control over the resources using explicit user-to-role mappings, however,
RBAC itself is highly centralized and requires the definition of each user-to-permission
relation for each resource that a user is to be allowed to access. This is challenging in
a large and complex system like the IoT [55]. ABAC improves policy management by
using attributes (e.g. name, age, location, etc.) rather than concrete identity. This is
more flexible for the IoT as policies can be written based on the context (e.g. current
time or a location). However, ABAC by itself provides no mechanism for controlling the
number of policies required, e.g. by grouping together policies with the same attribute
requirements. This is an issue in highly scalable systems e.g. the IoT [54]. CapBAC
provides flexible access control. Users are provided with capabilities which identify the
resources and operations on that resource that a user is allowed to access. This allows
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fine-grained access control. However, many of the existing (non-IoT) CapBAC mechanisms
are centralized when validating access rights of subjects. Distributed CapBAC models
e.g. [60] and [61] have been proposed for use in the IoT. In Distributed CapBAC models,
validation is performed inside the resource-constrained IoT devices (or a local management
capacity) without there being any contact with a centralized authority. This allows a
distributed approach, taking advantage of edge-intelligence, i.e. in-line with the nature of
the IoT. However, these systems do not address the problems of managing the number of
capabilities that will be required in a realistic IoT system, let alone the policy base needed
to control their creation and distribution. The policy base that will need to be defined is
likely to be large and dynamic. The scale and diverse nature of the IoT makes it difficult
to specify, centrally and in advance, a complete set of access control policies.

Now, let us consider the following example situation, which is likely to be common in
an IoT-enabled healthcare setting. We use healthcare as an example as it is a representation
of a dynamic IoT environment, with a large concentration of devices and highly sensitive
data. A number of medical sensors (e.g. to monitor blood pressure, body temperature,
etc.) are attached to a patient. The patient’s doctors should be given access to the sensors
to allow readings to be taken. Defining policies which give access to each doctor for each
sensor will be time-consuming and hard to manage. Given the dynamic nature of both the
IoT and healthcare situations, the set of sensors is likely to change in unpredictable ways,
making managing their access particularly challenging. The problem of policy management,
and particularly the number of policies that must be authored, requires addressing. In
short, in the context of the IoT the common problem with the aforementioned access
control mechanisms is that, in isolation, they are not explicitly designed or suitable for
addressing scalability, whether it is in terms of devices, users or policies.

3.1.2 Contributions

The aim of this chapter is to present the design of an access control framework for the
IoT and at the same time to reduce the number of policies required for authenticating
a legitimate user within the system that may include thousands of users and things. In
particular, we make the following contributions:

• We design a policy-based, fine-grained and partially decentralized access control
architecture based on attributes, roles and capabilities.

• We use attributes to parameterize capabilities for accessing specific services provided
by IoT things.
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• We provide a detailed architecture, system design, formal model, implementation and
evaluation of the system prototype.

• We examine the use of light-weight network authentication protocol (e.g. symmetric
key based approach) for resource constrained IoT devices.

• We provide a detailed discussion of the employed symmetric key based approach in
comparison with the asymmetric key based approach. Note that the architecture could
easily work with either approach.

3.2 Background

In Chapter 2, we provided a detailed discussion of access control issues and mechanisms
and a comprehensive analysis of access control in the IoT. In this section, we outline
a few existing proposals for IoT access control [95] [317] [96] [97]. For instance, Sahi
et al. [318] discuss the technical requirements for secure and controlled access control
in smart IoT environments. Yeah et al. [319] propose a fine-grained health information
access control framework for light-weight IoT devices. Gandhi et al. [320] present a
detailed survey on intelligent access control for healthcare systems using the IoT. Other
contributions have surveyed specific areas and technologies related to IoT and smart
healthcare systems [321] [322] [323] [324] [325]. Our intention is not to discuss IoT-enabled
smart healthcare systems in detail. We simply exploit this use case to demonstrate the
usefulness and popularity of IoT-enabled systems, as one of the examples, in real-world
scenario. In this section, we quickly recall an architecture for IoT in which our proposed
access control framework would perform. Next we provide a brief discussion to the use
of RBAC, ABAC and CapBAC for the IoT. Then we outline the current limitations of
access control to an IoT system.

3.2.1 IoT-Enabled Smart Systems

The vision of an IoT-enabled smart system is to operate autonomously while seamlessly
connecting the various devices, sensors and human users [326]. The use of technology and
communications are however varied according to the system’s requirements and designer’s
choice. A typical IoT-enabled smart system consists of wearable sensors, advanced
communication techniques and diverse network connections [327]. This can be seen as
a multi-layer architecture. Recall, from Chapter 2, the various reference models for the
IoT. In this section, we adopt a simple four layer architecture composed of a sensing layer,
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network layer, service layer and application interface layer. In Fig. 3.1, we depict these
four layers. In the sensing layer, sensors are used to automatically detect an environment’s
condition and collect data from different physical devices. The major sources are RFID
tags and intelligent wireless sensors. The network layer connects the various sensors
with different networking connections and is capable of transferring information from the
sensing layer to the service layer. The service layer provides a cost-effective middleware
platform for service aggregation, service composition and service division, etc. In this
layer advanced algorithms can be used to process data and analyse them according to
the end-user requirements. Finally, the application interface layer helps users to access
services using Application Program Interfaces (APIs) or apps.

Sensing Layer 

Network Layer 

Service Layer 

Application Interface layer

RFID Tags RFID Tags

SensorSensor

Wired/ Wireless Networks

Internet Gateway

Cloud
WSNs

Mobile Networks

WLAN

PANs

Event Processing

Service Decision

Service Division/
Integration
Analytics Decision

Service 
Composition

Nurse PatientDoctor Doctor Friend Doctor

Figure 3.1: A layer view of an IoT-enabled smart healthcare architecture.

Refer to our use case example of an IoT-enabled smart healthcare system, sensors
(wired or wireless) are attached to patients to monitor their health data and periodically
collect them and transmit this information in real-time (sensing layer). The collected data
are then stored in a healthcare-facility database via a suitable communication protocol to
a gateway e.g. via Personal Area Networks (PAN) or WSN protocols (network layer). The
stored data are analyzed, evaluated and sent to suitable entities for further action (service
layer). Finally, authorized staff (e.g. doctors, nurses, etc.) can view the appropriate
patient’s data (interface layer).
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3.2.2 Current Limitations

Recall, in Section 2.3.3 of Chapter 2, we described commonly used access control mecha-
nisms e.g. RBAC, ABAC and CapBAC for the IoT in detail. In this section, our aim is to
examine the limitations of existing approaches from two perspectives, first, flexible and
fine-grained policy management and second, securing communication and authentication,
given the resource constrained nature of the IoT things.

3.2.2.1 Flexible and Fine-Grained Policy Management

Access control in the IoT requires the inclusion of proper policy enforcement mechanisms,
which must define how the system should interact with other systems and entities. Recall,
policies can be seen as the operating rules that regulate data management, data consistency
and security in general. This is achieved by the underlying security policies determined by
the policy decision component of the system. This can vary from system to system. Policy
management in the IoT is crucial due to the dynamic nature of the IoT and federation of
cross domain architecture. For instance, enforcing policies across domain boundaries or
over multiple domains. This further enhances the specific requirements of the domains
and their policy settings. For example, in an IoT-enabled smart healthcare setting that is
spread over multiple domains, cooperation and communication between different actors,
clinical establishments and hospital management are crucial when communicating with
one another. Policy management in the IoT has not received significant attention in the
existing literature.

Further, each of the aforementioned mechanisms (i.e. RBAC, ABAC and CapBAC),
in isolation, has its drawbacks when enforcing policies for a large-scale dynamic system
like the IoT [328] [329]. RBAC provides effective policy management but it is dependent
on a highly centralized system. It also typically requires explicit user-assignment to roles,
and supports only predefined and static policies. This is inflexible in a highly dynamic
context like the IoT. ABAC improves flexibility in policy management as explicit user
identities are not specified in the policies, rather users are identified based on attributes
they possess. The use of attributes in ABAC assists in the enforcement of fine-grained
access control policies in real-time [330]. However, there are questions around how many
policies are required and where they are evaluated. If one set of attributes is to give access
to multiple resources, and this evolves over time, either multiple policies, or significant
policy re-writes, will be required. The resource-constrained and highly distributed nature
of the IoT raises questions of where the attribute policy base is stored, and its policies
checked and how many copies of those mechanisms may be required if the users’ attributes
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need to be consulted on each access to a resource. CapBAC simplifies the distribution of
permissions and is decentralized by nature. However, previous proposals for the use of
CapBAC in the IoT have ignored the question of policy management at a fine-grained level.
Further, the issues of capability propagation and revocation are two major challenges in
large-scale IoT systems.

3.2.2.2 Securing Communication and Authentication

Several approaches have discussed communication and authentication issues for IoT-enabled
smart systems. For instance, approaches e.g. [331] and [332] discuss user’s anonymity and
the use of two-factor user authentication to prevent security vulnerabilities e.g. replay
attack and password data disclosure. However, both of these contributions are highly
centralized and use PKI-based system, which are not ideal bases for IoT systems. The
characteristics of IoT devices impose challenges where heavy-weight security mechanisms
cannot be employed directly [333].

From the protocol point of view, there are multiple options that could potentially
be adopted in resource-constrained IoT networks. On the one hand, new communication
protocols can be implemented for the IoT on top of the IPv6 infrastructure. On the other
hand, existing light-weight protocols could be used to provide interoperability with the
existing infrastructure. The latter provides flexibility when integrated into the existing
architectures [334]. We argue that, to achieve light-weight authentication by verifying the
identities of principles for the IoT, protocols e.g. Kerberos [335], could be an alternative.
It provides a light-weight protocol (using symmetric-key cryptography) that achieves both
authentication as well as authorization (without using public key cryptography). Kerberos
uses access tokens (commonly known as tickets) to authenticate clients and servers and
grant access to services [336]. It resolves authentication, digital signature and encryption
in a single sweep. Since the IoT things are ephemeral, a Kerberos-like communication
protocol could be suitable for various related applications. It could also be integrated with
a light-weight application level protocol e.g. CoAP [31]. However, extensive efforts are
lacking on how to employ light-weight protocols for achieving authentication in large-scale
IoT systems.

3.3 An Example Scenario

In this section, we discuss a practical use-case scenario. In a healthcare context, IoT
devices can be used to monitor, collect, view and analyse patient medical data in real-time
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and control and monitor access to the data, patient services (e.g. drug administration) and
the physical building. The devices may communicate with each other. As examples, some
devices would collect patient data and make them available to appropriate parties. Other
devices, e.g. those carried or worn by patients, staff and visitors, would allow authorized
access to data and to building facilities. In Fig. 3.2 we depict a generalized IoT-enabled
healthcare system where several actors are involved. The following actors appear in our
scenario:

Patients with attached IoT thingsDoctor Nurse

Access point

Analysis, reporting and 
notofication

Family

Access control

Internet
Policy management

D
ata

 co
llectio
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Figure 3.2: Different actors and the flow of information in an IoT-enabled smart healthcare
system.

• Patient: A person who seeks a medical treatment.

• Doctor: A medical practitioner who provides general medical treatment.

• Specialist: Specialized medical practitioners, e.g. cardiologists, who have training in,
and provide treatment for particular medical conditions.

• Nurse: Clinical personnel who provide care and treatment of patients.

• Staff: Technical staff of the healthcare institutions, e.g. IT support.

• Family: Relatives, friends and other visitors of the patient.

Actors within the system may require repeated access to a resource. For example,
nurses and doctors attending a patient are likely to require continued access to the sensors
attached to the patients. All actors will have parts of the building and its infrastructure
(e.g. the doors, lighting and air-conditioning of rooms) to which they have authorized
access and will repeatedly access those parts through the devices that control such access.
It would be preferable if the access to such devices could be authorized locally, without
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recourse to repeated communication with a central access control system. Note also that
much of this access will be to classes of users (e.g. nurses, doctors, patients) and not
adjudicated on the basis of individual identity. Authoring and managing policies on an
individual basis would be unwieldy. Even on an attribute basis, separately specifying
access to different resources based on the same attributes (e.g. doors, lights and the sensors
of patients in a particular ward) would lead to an unwanted number of policy expressions.

Staff at the facility may be assigned rotating duties, for example, nurses may cycle
through different wards. Rather than explicitly modifying the assignment of permissions
to users (which may, in policy terms, be expressed as role membership), the change could
be reflected by an update in the recorded attributes of the actor. The attributes then
grant appropriate access, by being used to judge role membership. If the requirements for
role membership (and hence the actual membership) change then this can be expressed as
a single change (in the attribute assignment) rather than multiple changes (in the user to
role assignment), simplifying policy management.

Specialized staff will require access to specialized equipment as well as devices
attached to certain patients. For example, a cardiologist should be given access to the
output of the heart monitors of the patients under their care, and no others. Simply giving
all cardiologists membership of an appropriate role (e.g. cardiologist) which grants access
to devices of type heart_sensor grants unnecessary access, as members of the role will be
able to access all such devices. Creating a role for each patient (e.g. cardiologist_of_Bob)
and mapping the cardiologists as needed would needlessly multiply roles (policies) and
increase the difficulty of policy management. By recognizing the doctor-patient assignment
as an attribute it is possible to ensure that the access provided (via a capability) is only
to the appropriate patient. This could still be achieved via a single cardiologist role, if
the capabilities obtained through membership of the role are tailored (parameterized)
according to the doctor-patient relationship (as defined by the relevant attributes). We
can allow access for the cardiologist to only their patient’s sensor with a small number of
policies. This approach also allows for rapid allocation of staff to patients and for changes
in the sensors attached to the patient, as only the attributes of the actors require updating
and not the access control policy expressions themselves.

During their time in the healthcare institution patients are likely to change ward. For
the most part this is similar to the case above that dealt with rotation of staff. However,
many patients will have friends and family who visit them. The hospital would allow these
registered visitors access to the patient’s room, and possibly other appropriate parts of
the facility. The required access changes as the patient’s status within the institution

87



changes. If the visitors have an attribute with the meaning ‘visitor of patient Bob’ this
can be used both to grant them membership of an appropriate role (e.g. visitor) and to
tailor the capabilities with which they are provided based on the status of patient Bob.
Note that the access then granted to visitors varies as attributes settings of the patients
vary (assuming appropriate policy settings in role visitor) without any changes to either
the visitors’ attributes or any policy settings. This again simplifies policy expression and
management. In Fig. 3.3, we show an example of the different users and their various
access permissions to various resources.

Doctor A

Users

Nurse B

Friend C

Permissions

Patient A
view ECG

view MRI

control insulin 
pump

view ECG

Access lounge 
room

Enter Patient 
B’s room

Staff D

Access staff 
printer

Patient B

Lounge 

Printer
Access lounge 

room

Resources

Figure 3.3: The vision of a fine-grained and controlled access control scenario for different
actors in a healthcare system. Where a user with an appropriate permission can only view
or control a subset of resources. For instance, Staff D can access both the lounge and
printer, but Friend C is only allowed to access the lounge room while visiting Patient B.

The above use cases, and similar considerations, lead to our proposed design. Access
is provided by granting capabilities. Capabilities can be checked locally, by the smart
devices or their local management, without recourse to the central system, and can be
used repeatedly, again helping to limit reliance on a central system. Attributes provide a
powerful method of specifying access policies in a flexible and fine-grained manner. Using
attributes to define role membership, with role membership specifying which capabilities
are available, reduces the number of policies that have to be created by allowing a single
attribute expression to provide access to multiple resources. Finally, by using user attributes
to tailor the capabilities issued different members of the same role can be provided with
access to different resources, again reducing the number of policies required and simplifying
policy management.
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3.4 Proposed Access Control Architecture

In this section, we discuss our proposed access control architecture. First, we outline a list
of assumptions and then illustrate architectural components in detail. We present a formal
specification of our model followed by a discussion on the core modules of the system. We
also present the capability structure and the process for its instantiation.

3.4.1 Assumptions

To develop our access control architecture, we make the following assumptions specific to
our design.

• Users have a smart device.

• Smart devices broadcast services to the other users and devices.

• Devices are not being hacked or compromised by attackers.

• Users (e.g. employees in a certain organization) do not disclose or lose their unique
ids generated by the administration.

• Users supply appropriate and correct policies based on the principles of the system
administration.

• Attributes are properly assigned to the things.

• User and device attributes are not miss-assigned.

3.4.2 System Functionality

Before we provide a detailed discussion of the proposed access control architecture, let
us consider how the system would function. In Chapter 1, we have noted that in an
IoT system, communications between things can involve various device types (e.g. smart
phones and Internet-aware devices), routing protocols (e.g. RPL, etc.) and interaction
patterns. We argue that the information interchange between IoT things can be initiated
in different ways. In our case, we assume that the things broadcast services, within a
close proximity. In other words, the service that the things provide to users and other
devices are physically present in a short distance. The Google Beacons [337] platform is an
example of such technology. It broadcasts location and service information by typically in
the form of a Bluetooth Low Energy (BLE) beacon. Note, nearby notifications help users
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discover the services and applications that surrounded them, by surfacing location-specific
notifications for apps and websites. In such cases, sometimes a receiving app is required.
In this chapter, we focus on abstracting the usability, service discovery and interactions
patterns between the users and the things. Note, we reference Google Beacons to exemplify
the potential interaction patterns between the users and the things in various architectural
approaches.

Let us assume that the things are registered in the system via a central management
system (e.g. a central registration server). They (i.e the things) broadcast services with
the list of possible APIs for users within a communication range. The user receives the
list of APIs (on their mobile devices) and wants to perform one of the operations from
the list. To perform the desire operation, the user requires a valid capability. To obtain
the capability, the user communicates with a central management system and checks
whether it is allowed to access that particular service. The user also informs the central
management system of the identity of the thing and the operation the he/she wishes to
perform on the thing. After receiving the request from the users, the central management
system determines the user’s role-membership based on attributes. It also checks if the
thing’s registration is valid. If the thing’s registration (including the requested operation)
and required attributes are valid, then the central management system proceeds towards a
capability generation stage based on the policies. Otherwise (i.e. if thing’s registration or
attributes are not valid), it terminates the service request. The capability is issued from
the capability templates for the requested operation with the user’s identity embedded.
The issued capability is now forwarded to the user. The user is now able to present the
capability to the thing. If the capability is valid (including testing any conditions included
with the capability), then the thing grants the requested operation. Otherwise (e.g. the
capability is not valid), the service request will be terminated.

Note, the notion of attribute is central to ABAC systems e.g. ours. We mainly
distinguish two types of attributes depending upon when they are required to have well
defined values.

• Static Attributes: In ABAC, the evaluation of a policy ultimately depends upon
attributes that are known at the time of processing the access request and in particular,
during the policy evaluation. We refer to these as static attributes [338]. Commonly,
the values of a static attribute are set once within a given context and such values
either do not change afterwards or the values have a very long lifetime. Examples
of static attributes include unique identifiers, RFID card number, name, age, phone
number, resource id, date and time of a request, etc.
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• Dynamic Attributes: If an attribute cannot be assigned to a fixed value at the evaluation
of the policy then we refer to it as a dynamic attribute [339]. These attributes play an
important role in CapBAC. A dynamic capability is a capability that depends upon
one or more dynamic attributes1. Access time is an obvious example of a dynamic
attribute. Another example is the access location e.g. a capability that unlocks a door
of a patient’s room must be used within a close proximity to that door. Such a condition
can be built using a proximity-attribute which can be implemented using a proximity
challenge2. Dynamic conditions cannot be evaluated at the time of authorization or
evaluation of the policies that govern issuing of capabilities.

3.4.3 Granting Different Level of Access

In our use case scenario (discussed in Section 3.3), we argue that we want to provide
different actors with different levels of access to the patient’s medical sensors and the data
they provide while protecting the patient’s privacy. For simplicity, we consider that the
things for different patients may have different associated access control policies and that
these policies are stored inside a centralized system. However, enforcement is handled
locally at the edge devices. This may either be within the things themselves or a local
management device if the things have insufficient functionality for the task. This both takes
advantage of the edge-intelligence of such systems and avoids performance bottlenecks in
the central system.

Consider, a real-life hospital environment, where there may be hundreds of doctors,
nurses and other staff and possibly thousands of patients with each patient having multiple
sensors attached. No one medical professional should have access to all sensors on all
patients. Conceivably, no medical professional may be able to access all the sensors on a
single patient and even if they could the levels of access may vary from medical professional
to medical professional. Consider two examples of the complexities derived from the
aforementioned use case:

• Medical specialists, e.g. cardiologists, should only be able to access the relevant
information for patients under their care. If Doctor A is treating patient Alice and
Doctor B is treating patient Bob then A should only be able to access the readout
from Alice’s heart sensor and B should only be able to access the readout from Bob’s
heart sensor.

1Capability conditions are the standard implementation of dynamic capabilities.
2Intuitively, the resource checks how close the requesting subject is located (i.e. to determine its

proximity) by sending a challenge to the subject. The solution to this challenge may require short range
communications or even a physical interaction.
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• Nurses may be assigned to a particular ward. Each patient in the ward may have a
standard set of sensors attached, in addition to ones that may be particular to their
condition. Nurses should be able to access the standard sensors for all patients in
their ward, but not for patients in other wards.

3.4.3.1 Policy Management

Within this general system description above there remains a question as to how to
formulate and distribute capabilities while maintaining the minimum number of access
control policies. Consider how policies may be written, and permissions granted (i.e.
capabilities distributed). A number of alternatives exist:

1. A simplistic solution would be to create a role ‘cardiologist’ which provides its members
with a capability that grants access to all sensors of type ‘heart monitor’. This would
allow every cardiologist to access every patient’s heart monitor, violating patient
privacy.

2. Each capability could have associated with it a test, evaluated on access, that ensures
the patient is under the care of the specialist presenting the capability. This would
increase the processing and bandwidth requirements on the things. The relevant
credential, proving the relationship between specialist and patient, would have to be
provided to the things and any signature on it checked. Signature checking is the most
time-consuming activity involved so any such extra requirements on the things should
be avoided, especially as the check would need to occur on every access.

3. Patient-specific roles, e.g. ‘cardiologist of Alice’ and ‘cardiologist of Bob’, could be
created, which would only confer access to the sensor(s) of the particular patient. This
would fulfil the requirements for specialists to only be granted access to the sensors
of their patients. However, it would be difficult and time-consuming to manage and
produce a large number of similar policies. It may also be difficult to assemble this
information a priori (given both the large number and dynamic nature of doctor-patient
combinations).

None of these alternatives provides us with the required level of flexibility and
fine-grained access without creating a needlessly high number of policies to be authored
and maintained.

A preferable alternative is to take the first option above, but provide additional
information, e.g. a credential proving the relationship between specialist and patient, to the
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capability issuing system. The capability generated and returned to the user would then
only grant access to the nominated patient. In effect, the capabilities are parameterized by
the additional information provided, in a manner analogous to the role parameterization
of [340]. While the signature on the attribute credentials may still have to be checked,
this is superior to option two as the signature is only checked once (on capability issuance,
not on every use) and by the central policy management system, which will have superior
processing power compared to the individual things. The things would only have to check
the signature on the capability, not on both the capability and the attribute credential.

The solution also fulfils the requirements of the second example given, although here
the information provided for parameterization would be a credential affirming assignment
of a nurse to a particular ward. In both cases the things would need to be registered with
the central system, along with such attributes as the patient they are assigned to and that
patient’s current ward.

Note that in effect the capability issuing system stores capability templates as defined
by the relevant policies. Most CapBAC systems for IoT access control would effectively
store capability templates at least in a simplistic manner. For example, the capabilities
of [59] include expiry time and identity of the user to whom the capability is issued. These
would be place-holder values in capability template stored by the policy manager and
filled in when the actual capability is instantiated for distribution. We extend this idea
to the identity of the resource to which the capability allows access. For example, the
template might note that the capability allows to devices of class ‘heart_sensor’ but that
the issued capability can only give access to the heart sensor of a patient under the care
of the requesting actor. Proof of this relationship between specialist and patient would be
an attribute credential demonstrating its existence. The heart sensors would be registered
by the system as being assigned to the patient. From this information and the capability
template an appropriate capability can be generated and issued.

The effect of this approach is analogous to that of Schwartmann [341], who was
also concerned with providing fine-grained access within a healthcare system. However,
Schwartmann’s approach involved predefining activation contents for each patient on a
per-role basis. This does not scale well as the number of patients increases, as the policy
expression for each patient must be handled independently.

As we demonstrate in Section 3.4.6, by relying on attributes attesting to the rela-
tionship we can abstract such policy settings into a minimal number of actual policies.
Further differences between our system and that of [341] include the reliance of the latter
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on explicit user assignment to roles and its centralized approach to permission checking
(i.e. the central system is consulted on every access) rather than employing capabilities.

3.4.3.2 Capability Management

Note that in effect the capability issuing system stores capability templates as defined by
the relevant policies. On issuance, the templates are filled in with relevant information, e.g.
validity time, and the appropriate parameterization information. Details on the different
fields of a capability and their instantiation are discussed in Section 3.4.7. Here we only
outline a general discussion on how a capability is issued.

Policy database

(5) Creates 
capability

(3a) Deny access (3) Policy decision

(2) Checking policies

(4) Use capability 
templates

Stored capability 
templates

(6) Send a capability

(1) Request for a capability

User

Capability 
Issuer

Figure 3.4: Issuing of a capability from a capability template.

Fig. 3.4 illustrates a simple outline of a capability issuing process using a capability
template. When a request for a capability reaches to the capability issuer (step 1), it checks
the corresponding access policies from the policy database (step 2) and if satisfied (step
3) it uses appropriate capability templates (step 4) to instantiate a capability from the
corresponding capability template storage (step 5). Finally, it sends the issued capability to
the user (step 6). If the corresponding policies do not match, then the request terminates
at the first instance and a response sends back to the user (step 3a).

3.4.4 Overview of the Architectural Components

In Fig. 3.5 we depict our proposed access control architecture. The proposed architecture
consists of the following main components: User Devices (UD), Things (TH), Central
Management System (CMS) and Things Registration Repository (TRR). The CMS consists
of the Role Manager (RM), Capability Generator (CG), User-Attribute Database (UAD)
and Policy Management Unit (PMU). The PMU includes an Evaluation Engine (EE) and
Policy Database (PD). The CG contains the Capability Database (CD). The TRR holds
the Things Database (TD).
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Figure 3.5: The proposed access control architecture.

A UD is a smart mobile device (e.g. smart phones, tablets, PDAs, etc.) belonging
to a system actor (user). We assume that users are authenticated (using appropriate
attributes) to their corresponding UDs, i.e. the UD knows who the user using it is. The UD
also stores capabilities issued to its user. The generation of attributes is out of the scope
of this research and we assume that the attributes are generated by a trusted authority.
TH includes both the smart IoT things (e.g. a heart monitor sensor) and local security
management devices. For example, smart sensors attached to the patient’s body. We
assume that THs, or their local controllers, have the ability to store the long-term key
associated with the TH and to check supplied capabilities. Importantly, in our architecture,
a TH is unaware of the user’s roles and attributes. This improves the user’s privacy and
limits the functionality required of edge security devices.

In our design, the CMS is a centralized component. The CMS acts as a central server
that provides local area networking services to multiple users at a time. It could be one or
a combination of multiple high-speed computers for storing and processing data files which
can be shared by different users. The major functions of the CMS include role assignment,
role authorization, permission authorization and issuance of capabilities and provision of
session’s keys for communication between the UDs and THs. It is infeasible to widely
distribute copies of the CMS within the resource-constrained IoT devices, therefore, we
situate the CMS in the central server. The RM holds the role hierarchy and coordinates
the activities of the other components of the CMS. The PMU is used to verify these
expressions against the actual attributes of a user, retrieved from the UAD, to determine
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if the user should be allowed the access specified by the role. The EE evaluates a user
request by locating the attribute rules that must be satisfied for role membership. The EE
holds attribute rules which grant role membership and define capability parameterization.
The policies are stored based on a policy language, e.g. XACML. Recall, XACML is an
XML-based general purpose access control policy decision language for managing access
to resources.

Access to TH’s is represented as permissions associated with appropriate roles.
These permissions are capability templates, which can be instantiated with appropriate
information to form actual capabilities for distribution to users. Role membership is
specified as an attribute expression, not by explicit user assignment. The CD stores the
capability templates, whose instantiation can be governed by policies managed by the
PMU, and the mapping of capability templates to roles. Capabilities are generated from
the capability templates. This will include, for example, inserting the user identity into
the capability and the issuance and expiry times. More details of capability generation are
given in Section 3.4.7. The CD also stores the revoked capability lists. Lastly, the TRR
manages the valid registrations (e.g. identities, etc.) and attributes of the THs (stored in
the TD). It is dynamically updated when a new TH joins or when an existing TH leaves
the network.

3.4.5 Core Modules of the System

In this section, we discuss the core modules and functioning of the system (i.e. the core
modules of the CMS). In Fig. 3.6, we depict the core modules of the system. Importantly,
Fig. 3.6 expands upon Fig. 3.5, illustrating the modules of the CMS.
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Figure 3.6: The core modules of the system design.
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Role Manager (RM): This module is responsible for mapping role membership based
on the attributes. Note that users are not directly assigned to roles, their membership
is judged on the attributes they possess when an access request is made. The roles are
typically ordered hierarchically. This is particularly important when writing a policy that
should be inherited by other roles (e.g. a doctor can access everything a nurse is allowed
to access).

Database Servers: This includes the UAD, PD, CD and the TD. These databases can be
managed on possibly different servers. They can be in the form of conventional relational
databases (for policies and THs) as well as specialized storage e.g. Active Directory for
user management.

The PD stores policies in the form of serialized XACML policies and the associated
metadata. XACML is a widely used modern standard for writing fine-grained access
control policies. The PEP (Policy Enforcement Point) and PDP (Policy Decision Point)
engines described below communicate through the publication of XACML requests and
responses. The PD also contains auxiliary resource tables that store templates required for
the generation of these XACML messages. The UAD stores user attributes e.g. name, ID,
hashed password, phone number, etc. The PEP engine uses this database to authenticate
and verify the user’s attributes. The TD stores attributes of currently enabled and deployed
THs. As noted above, the CD stores the capability templates. A template can be referred
to as the default pre-build module that is used in the generation of an actual capability
(i.e. instantiation of capability) and is composed of specific fields as needed.

Policy Management Unit (PMU): The PMU has the standard XACML architecture
to provide a cross-platform solution while satisfying interoperability. The following
components are part of the EE and responsible for creating, evaluating and responding to
requests based on the policies [183].

1) Policy Enforcement Point (PEP): This engine translates queries into syntactically
correct XACML requests. This is achieved by combining the stored user attributes (from
the UAD) and service request details with the details of the addressed resources, contextual
data, and in particular timestamp (step a of Fig. 3.6). The contextual details are accessed
using the PIP (Policy Information Point) module described below. The XACML request
is then forwarded to the PDP engine for evaluation (step b of Fig. 3.6). The response
from the evaluation engine is in the form of an XACML response (step c of Fig. 3.6). This
response is translated by the PEP into a format that is understood by the CG (step d of
Fig. 3.6).
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2) Policy Decision Point (PDP): This engine receives the XACML request from the
PEP and evaluates it against the access control policies. The active policies are loaded
from the PD. The PDP consults the PD to determine which role(s) gives access to the
requested resource. Stored with the role is the attribute policy which governs membership
of that role. That policy is also retrieved at this point. The evaluation process then
evaluates the policy against the attributes in the XACML request. When multiple rules
apply to the request then a combining algorithm is required to resolve any conflict arising.
In our example implementation system, we use ‘Deny Override’ to provide a very restrictive
access control but this is highly configurable at the policy level. The result is then sent
back to the PEP for enforcement in the form of an XACML response.

3) Policy Information Point (PIP): The PIP connects the PEP (and possibly the
PDP) to the underlying sources of attributes (i.e. the attribute values). This functionality
can be implemented implicitly within the PEP engine which communicates with the UAD
and the TRR.

4) Policy Administration Point (PAP): Note, most ABAC implementations also use
a PAP to create, manage and edit the authorization policy or policy sets. This can be an
external application designed to facilitate and secure the management of policies. The
mechanics of policy administration are out of the scope for this research.

Note, the PDP of an XACML system usually responds to requests with permit,
deny, indeterminate or not applicable. Not applicable means that the request attributes do
not satisfy the rule target and indeterminate means the condition evaluation failed at an
intermediate step. These are categorical responses and do not convey much information
regarding how the capability shall be utilized. Moreover, information about the usage
of the capability must be encoded within the policy files themselves so that they can
be maintained by the policy administrators. Interestingly, XACML policies allow the
encoding of post-decision conditions using obligations and it is up to the PEP of an
XACML system to interpret and enforce such a side condition. In our case, the PEP
enforces such conditions by adding them into the capability conditions.

Capability Generator (CG): This module is responsible for generating capabilities
for positive XACML responses (negative responses will be reported as an authorization
failure to the requesting user). The CG stores the capability templates inside the CD.
Recall, an actual capability is issued from an appropriate capability template. The CD
also stores a list of revoked capabilities. However, the revocation of a capability is outside
the contribution of this chapter.
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3.4.6 A Formal Specification of the Model

Our proposed model has the following components: R, A, Capt, Cap, U , T , O, Cla and E
(roles, attributes, capability templates, capabilities, users, things, operations, classes
and environment respectively). We represent a Cla as an extensible programme that
creates objects for designing and building applications. We define the following mappings:

• RCapt :R×Capt, a many-to-many role to capability template assignment relation.

• ClaO : Cla×O, a many-to-many class to operation assignment relation.

• ClaT : Cla×T , a one-to-many class to things assignment relation.

• CaptT : Capt×T , a many-to-many capability template to things assignment relation.

• CaptO : Capt×O, a many-to-many capability template to operation assignment
relation.

• CaptCap : Capt×Cap, a one-to-many capability template to capability assignment
relation.

• UCap : U ×Cap, a one-to-many user to capability assignment relation.

Note that equivalents to CaptT and CaptO, CapT and CapO, exist, which map
capabilities to things and operations. CapO inherits directly from CaptO, with capabilities
mapping to the operations defined by CaptO for the capability template from which
they were derived. The things that a capability maps to via CapT is a subset of the
corresponding mapping in CaptT , as defined by the parameterization rules and supplied
attributes.

• UAk(1≤ k≤K), TAm(1≤m≤M) and EAn(1≤n≤N) are the pre-defined attributes
for users, things and environments, respectively. Where K is the number of user
attributes, M is the number of things attributes and N is the number of environment
attributes. We follow the approach of [58].

• The attribute assignment relations (ATTR) for user u, things t and environment e
are ATTR(u), ATTR(t) and ATTR(e) respectively. Where,

ATTR(u)⊆ UA1×UA2×·· ·×UAK

ATTR(t)⊆ TA1×TA2×·· ·×TAM

ATTR(e)⊆ EA1×EA2×·· ·×EAN
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• We use the following four attribute-based Policy Rules for our model.

(1) Role Membership Rule: A boolean function of the user and environment attributes
f(ATTR(u),ATTR(e)). This exists for each role for role− to−user mapping, and
specifies what attributes a user (u) must possess to become a member of the role in a
specific environment (e). This can be denoted as follows:

Policy Rule :Role_Membership (u,e)←
f(ATTR(u),ATTR(e))

(2) Capability Parameterization Rule: A rule which specifies which things can be
accessed using a capability generated from a capability template (Capt) given the
provided user attributes. This can be denoted as follows:

Policy Rule : Capability_Parametization (u,Capt)←
f(ATTR(u),Capt)

(3) Condition Rule: This is a boolean function of the things and environment at-
tributes f(ATTR(t),ATTR(e)). It decides whether a user (u) can access a thing (t)
in a specific environment (e). This can be denoted as follows:

Policy Rule : Condition (t,e)←
f(ATTR(t),ATTR(e))

(4) Delegation Rule: A boolean function of the user and environment attributes
f(ATTR(u),ATTR(e)). This attribute rule specifies what attributes a user (u) must
possess if that user is to be eligible to employ a delegated capability. This can be
denoted as follows:

Policy Rule :Delegation (u,e)←
f(ATTR(u),ATTR(e))

Now we see how these four policy rules would work. Let us consider an application
in the IoT where service providers make available certain products to groups of users
without identifying them individually. For instance, a shop may make specials discounts
to particular customer based on their attributes e.g. age, suburb and interests. In such
case, the Role Membership Rule could easily be employed without the need for unique
identification of each user visiting the store. For example, age=35, suburb=epping and
interest=video games. In Chapter 5, we provide a more detailed discussion on the use
of attributes to identify an entity rather than depending upon their unique concrete
identification.
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The Capability Parameterization Rule defines the creation of an actual capability
from a capability template. Typically, a Capability Parameterization Rule specifies
the required amount of information that must be contained to form an actual capability
(discussed in Section 3.4.8). This information could be the details about a user, capability
issue time, a Condition Rule, etc.

The Condition Rule denotes the specific conditions that must be followed at the
time of an access to a resource. Conditions are an integral and crucial part of a capability.
Conditions expressed by the initial creator of a capability may be defined as applying to all
users of that capability, i.e. when it is used by the entity to which it is initially issued and
when it is used by any entity to which the capability is delegated. Conditions may also
be defined which apply only to uses of capabilities delegated from the initial capability.
Capability conditions can be expressed as logical predicates over attribute variables and
values. For instance, conditions within a capability that allows user A to operate door D
(for certain action lock and unlock) before 01-06-2019 00:00:00 hours, can be summarized
as follows:

[src:{A},trg:{D},act:{unlock},act:{lock},time:{01-06-2019 00:00:00}]

Recall, in Chapter 2, we discussed the basics of XACML and noted that an XACML
rule contains four major parts, namely, effect, target, condition and obligation. In Fig. 3.7,
we provide an XACML based policy document to illustrate how flexible authorization
and delegation can be achieved using the Condition Rule. According to the policy, when
a request arrives at the PDP, the target of each rule is evaluated sequentially and the
first one that is applicable to the request is fully evaluated. Note, in Fig. 3.7, Rule 1
applies for locking and unlocking actions. Any other request will be denied as per Rule
2. Rule 1 contains a condition which specifies this rule is imposed on door D. The target
and condition blocks must involve static attributes only. The policy described in Fig. 3.7
has one obligations which shall be fulfilled on permit. This side condition implements a
validity date before 01-06-2019 00:00:00 hours.

Note that when users want to delegate some access rights to others, they need to gen-
erate a new capability from a capability providing that right based on the Delegation Rule
discussed above. Therefore, the delegated capability must adhere to the Delegation Rule
specified in the policy expression. To achieve this in the delegation, first the user uses
appropriate Capability Parameterization Rule to generate the initial capability then del-
egation is performed. Note that delegated capability may contain the conditions specified
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<Policy RuleCombiningAlgId="..:first-applicable" Version="3.0">
<Rule Effect="Permit" RuleId="..:1">

<Target>
<AnyOf>

<Match MatchId="..:string-equal">
<AttributeDesignator AttributeId="..:act"/>
<AttributeValue DataType="..#integer">unlock</AttributeValue>

</Match>
<Match MatchId="..:string-equal">

<AttributeDesignator AttributeId="..:act"/>
<AttributeValue DataType="..#integer">lock</AttributeValue>

</Match>
</AnyOf>

</Target>
<Condition>

<Apply FunctionId="..:string-equal">
<AttributeDesignator AttributeId="..:trg"/>
<AttributeValue DataType="..#integer">D</AttributeValue>

</Apply>
</Condition>
<ObligationExpressions FulfillOn="Permit" ObligationId="time">

<AttributeAssignmentExpression AttributeId="..:until">
<AttributeValue DataType="..#string">

[[TIME<01-06-2019 00:00:00]]
</AttributeValue>

</AttributeAssignmentExpression>
</ObligationExpressions>

</Rule>
<Rule Effect="Deny" RuleId="..:2"/>

</Policy>

Figure 3.7: A simple XACML policy document with access conditions. Note, the XACML
syntax has been simplified to improve readability but this is a fully functional policy
document.

by the initial creator of the capability, including any conditions that only apply to the
delegated capability. This can easily be achieved by employing conditions as illustrated
in Fig. 3.7. In other words, a Delegation Rule can be seen as an additional condition
imposed on top of the Condition Rule. We provide a detailed discussion on access right
delegation and Delegation Rule in Chapter 6.

3.4.7 Capability Structure

Recall, an actual capability is issued from a capability template. We will show a capability
instantiation process in the next section (cf. Section 3.4.8). In this section, we illustrate
the following capability structure that we have used in our model.
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Capability Structure: < Capid,Uid, Issid, Isstime,Exptime, t,o,Sig,CoR >

where,

• Capid : Capability ID is the unique identity of each capability.

• Uid : User ID is the unique identity of the specific user to which the capability has
been granted.

• Issid : Issuer ID is the unique identity of the entity issuing the capability.

• Isstime : The time at which the capability was issued to the user.

• Exptime : The time at which the issued capability will expire.

• t : This identifies either a class ID (cl ∈ Cla) or a set of related THs ID, where all the
THs are instances of the same class. Note, t⊆ T and,

t=


clid | clid ∈ Cla

{tid1 , tid2 , tid3 , . . . , tidn} | ∃ clid ∈ Cla→

∀tidi ∈ {tid1 , tid2 , tid3 , . . . , tidn} tidi ∈ ClaT (clid)

• o : This identifies a set of operations that can be performed on the TH(s) to which
the capability allows access. This is to note that, o⊆O and,

o= {oid1 ,oid2 ,oid3 , . . . ,oidn} | ∃ clid ∈ Cla→ o⊆ ClaO(clid)

Note that the class ID (clid) here is the same class ID which we discussed above for t.

• Sig : This is the digital-signature of the issuer of the capability. This protects the
integrity of the capability from being forged or tampered with.

• CoR : An optional set of condition rules that must be satisfied for access to be allowed.
It is at the discretion of the THs how to interpret multiple rules (e.g. whether all
must be satisfied or only one). Importantly, the CoR may reference local contexts.
For example, the TH’s location (e.g. a particular room in a building) or the date and
time. Note, we are aiming for a minimal, but non-trivial, set of properties but other
features can be added for domain specific applications.

Compared to the other capability structure e.g. [59], which follow a heavy-weight
XML structure, we use JSON.
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3.4.8 Capability Instantiation

Now we discuss how a capability is constructed by the capability instantiation process.
The capability instantiation process generates an actual capacity from an appropriate
capability template. A capability template can be seen as a ‘frame’ which specifies how a
capability is constructed. Importantly, a capability template consists of the same fields
as a capability, with the addition of the Capability Parametrization Rule. The value of
some fields in the capability template will only be defined on actual capability generation.
The Issid, t and o fields are fixed at the time of the creation of the capability template.
The Capid,Uid, Isstime,Exptime and Sig fields are blank in the template and are filled in
an actual capability at the time of capability generation. The CoR field will be partially
defined in a capability template, its final ‘value’ is determined by the application of the
Capability Parametrization Rule. In Fig. 3.8, we illustrate a conceptual construction of
a simple capability template using JSON. Note, { } represents the place holders for the
corresponding information which will be filled-up at the time of a capability generation
and others are the actual values.
{
"Cap_id" : {"~"},
"U_id" : {"~"},
"Iss_id" : "Hospital#H",
"Iss_time": {"~"},
"Exp_time": {"~"},
"t" : "sensor",
"o" : "read",
"Sig" : {"~"},
"CoR" : [{

"~"
}]

"CPR" : [{
"user_attribute : ward_assigned"
"thing_attribute : ward"

}]
}

Figure 3.8: A capability template. CPR denotes the Capability Parametrization Rule.

Now let us consider the above mentioned capability template of Fig. 3.8 to show
how an actual capability is issued using appropriate Capability Parameterization Rule.
As noted above, the encoding of information between different entities in our system can
easily be achieved using JSON. The parameterization of a capability template to an actual
capability will add some extra conditions on the THs to which the capability allows access
by extending the CoR field that is held by the capability template. For instance, the class
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specified by the ‘t’ field of the capability template could be the ‘Lights_in_Building_E6A’
and the capabilities produced from this template could be parameterized to only give
access to lights on certain floors. In this case, the parameterization adds one extra ‘rule’
to the CoR. So, for example, the CoR could have added to it ‘floor=floor_2’ where all
the lights in the building have an attribute ‘floor’.

Another example would be a policy which allows doctors access to sensors attached
to patients. Note that this example is related to the capability template illustrated in
Fig. 3.8. Doctors are only to be allowed access to the patients of the ward to which they
are assigned. So the ‘t’ field of the capability template would hold the value ‘sensor’, a
class to which all sensors attached to patients would belong. The parametrization rule
would require the ward of assignment of the doctor. Assume a doctor is assigned to
‘ward_2’ and has a corresponding attribute. Then the CoR field of a capability issued to
that doctor would include the rule ‘ward=ward_2’. This assumes that all the sensors have
an attribute ‘ward’ and that is set appropriately. Then the doctor in this example would
only have access to sensors where the ‘ward’ attribute is set to ‘ward_2’.

A parameterization rule consists of the name of an attribute that must be held by
the user requesting access and the name of an attribute of the TH (or more properly class
of TH) to which access is being requested. The CMS requests from the user the value of
the nominated attribute. In the simplest form of the process the CMS forms the CoR field
in the capability by taking the CoR field in the capability template and adding to it a
new rule of the form:

′thing_attribute′ : val(′user_attribute′)

In brief, such a rule ensures that TH has an attribute with the same value as that of
the user. As the values of the attributes held by different users may differ, the capabilities
produced for different users will have different rules and are thus parameterized. More than
one attribute can be specified in the parameterization rule, allowing for more fine-grained
access control. More generally, the rule could be of the form:

′thing_attribute′ = f(val(′user_attribute′1),(′user_attribute′2), . . . ,(′user_attribute′n)

That is, rather than simply copying the value of the user attribute in to the extension
of the CoR field, a function can be used to create a value, which is the value that the
attribute of TH must hold if access is to be granted using the generated capability.
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Next, we give an example of how the aforementioned process happens using a
capability template depicted in Fig. 3.8. Note, for simplicity, the capability template for
this example holds no pre-set conditions in the CoR field.

Suppose, Doctors in Hospital ‘H’ are assigned to particular wards. Each Doctor
will wish to access the output of sensors attached to the patients in their assigned ward.
Each Doctor will have an attribute ‘ward_assigned’, which holds the value of the ward
to which they are assigned. Each sensor will have an attribute ‘ward’. This attribute
holds the name of the ward to which the patient has been admitted. We assume that the
appropriate capability template is assigned to a role and that the doctor in the following
example has other attributes which prove their right to be a member of that role.

Assume Doctor A is assigned to ‘ward_2’ and wishes to obtain a capability giving
them access to the sensors of patients admitted to ‘ward_2’. When Doctor A first attempts
to access such a sensor their user device will not hold an appropriate capability. After
contacting the sensor, the Doctor A’s device contacts the CMS. The CMS locates the
appropriate role and capability template (permission) and notes that there is a capability
parameterization rule for that template. When the CMS informs the user device of the
attributes required for role membership, it also includes the user attributes included in
the capability parameterization rule. The values of these attributes are then provided to
the CMS by Doctor A’s user device.

In the particular example from Fig. 3.8, for purposes of capability parameterization,
the relevant attribute is ‘ward_assigned’. In the case of Doctor A, the value of this
attribute is ‘ward_2’. As noted in the capability parameterization rule the TH has the
attribute ‘ward’. The CMS, in generating a capability from the capability template adds
to the CoR field the condition:

ward : ward_2

This condition means that, for access to be allowed, the TH must have the value of
its ‘ward’ attribute be ‘ward_2’. This is checked by the TH (or its manager) on access, as
is the case for all other conditions in the CoR

The actual capability generated by the Capability Parametrization Rule is shown
in Fig. 3.9. Note that if the user had a different value of the attribute ‘ward_assigned’
then the value of the CoR field would correspondingly vary. In other words, the capability
would not allow a user to access to sensors with (for example) the attribute value pair
‘ward : ward_3’.
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{
"Cap_id" : "jXEPy0UFLzC4oa4ROYTCRTP39",
"U_id" : "SN#12348484",
"Iss_id" : "Hospital#H",
"Iss_time": "050619120000",
"Exp_time": "150619120000",
"t" : "sensor",
"o" : "read",
"Sig" : "JhbGciECEF0OSQVMiLC0eXAPS",
"CoR" : [{

"ward : ward_2"
}]

}

Figure 3.9: An issued capability.

Next, we provide a brief discussion of the capability instantiation process using a
capability template in our proposed architecture.

User
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Figure 3.10: The process of instantiating a capability from a capability template.

In Fig. 3.10, we illustrate the capability instantiation process. When a request for
a capability reaches the PMU via the RM (steps 1 and 2 of Fig. 3.10), the EE checks
the corresponding access policies from the PD (step 3 of Fig. 3.10) and sends back the
evaluation results to the EE (step 4 of Fig. 3.10). If at least one policy is satisfied, the EE
contacts the CG (step 5a of Fig. 3.10). The CG then contacts the CD where capability
templates are stored (step 6 of Fig. 3.10) to instantiate a capability from the appropriate
capability template (step 7 of Fig. 3.10). Finally, the CG sends the issued capability to
the user (step 8 of Fig. 3.10). Note, if the corresponding policies do not match, then the
request terminates, and a response is sent back to the user (steps 5b and 5c of Fig. 3.10).

In Fig. 3.11, we depict the use of attributes in role membership and capability
instantiation. Recall, a capability template is composed of the fields needed to generate
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Figure 3.11: From attributes to a capability instantiation.

an actual capability. Some fields, e.g. the operations the capability provides access to (e.g.
read, write, etc.) and conditions to be evaluated on capability use, may be pre-defined.
Others, e.g. capability and user identity, expiry time and the exact THs the issued
capability will allow access to, will be specified based on policies and other information
stored in the system and attributes supplied by the requesting user. This means that
different capabilities can result from the same capability template, even to the extent of
allowing access to different THs.

This checks patient’s identity 
and other conditions

Actual capability issued from 
the capability template

Access request includes  TH’s 
id and appropriate attributes

Cardiologist Capability Bob’s heart sensor

Figure 3.12: Using a capability for accessing a TH.

Capability templates may differ in how much variance they allow in instantiation.
For example, a capability template may simply provide users with a capability for all
doors of class ‘Public_Access’. All capabilities instantiated from such a template will
grant access to the same set of resources. In other cases, a capability will provide more
fine-grained access as defined by the parameterized rule. For example, referring to Fig. 3.3,
a doctor with a role ‘cardiologist’ (e.g. Doctor A) wants to access the heart sensor of a
patient (e.g. Bob). In this case, Doctor A sends a request along with attributes satisfying
role membership and attesting to their status as the ‘cardiologist of Bob’. The capability
template will state that it allows access to the THs of class ‘heart_sensor’ attached to
a patient for whom the user is the doctor. The instantiated capabilities will then only
include the identity of heart sensors registered to patients for whom the requester has
provided attributes attesting that they are the cardiologist of that patient. In this way
multiple access situations can be governed by a single policy expression. In Fig. 3.12, we
depict the use of a capability in obtaining access of a TH.
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3.5 Different Access Scenarios

In this section, we explore different potential access scenarios for our proposed access
control architecture. We return to the use case example that we discussed in section 3.3,
and outline different access scenarios based on the issued capability, different access
operations on THs and various conditions associated with an access.

Scenario 1 - First Access: In this scenario, a user (i.e. the UD in our architecture)
receives APIs from a TH. The UD communicates with the CMS requesting a specific
service from a specific TH. The UD needs a capability to perform an operation and we
assume that the UD does not have an appropriate capability. The UD needs to send
appropriate attributes to the CMS to satisfy the role-membership. If satisfied, the CMS
issues the capability. The UD requests access to the operation from the TH and presents
the capability. The TH checks that the capability authorizes the requested access, via the
algorithm (either Algorithm 1 or Algorithm 2) that we discussed below. If the algorithm
returns ‘granted’ the UD is allowed access. For example, Doctor A can access Bob’s clinical
sensors with a valid capability.

Scenario 2 - Subsequent Accesses, Same ‘Thing’, Same Operation: In this
scenario, a UD wishes to repeat an operation on a TH for which the user has already
obtained an appropriate capability. As the UD already has an appropriate capability it
makes the access request directly to the TH, presenting the capability. The TH again
checks that the capability authorizes the requested access, via appropriate algorithm. If the
algorithm returns ‘granted’ the UD is allowed access. Note that the CMS is not involved
in this scenario and that the UD did not need to obtain a new capability. For example,
Doctor A can access Bob’s cardiac sensors several times after obtaining a capability without
consulting the CMS after the first access.

Scenario 3 - Subsequent Accesses, Same ‘Thing’, Different Operation:
Capabilities may allow access to multiple operations, and such capabilities can be used
to access operations other than that for which the capability was initially requested. If a
capability that the UD holds allows the access, refer to scenario 2.

Scenario 4 - Access to Multiple ‘Things’ with a Single Capability: Capa-
bilities may allow access to multiple THs. With the first access, the capability is obtained
as in scenario 1. For subsequent accesses the UD contacts the new TH, identifies that it
already holds an appropriate capability by searching the database of capabilities stored
on it. It then presents the capability along with the access request as in scenario 2. For
example, a nurse is allowed to access the body temperature and blood pressure sensors of
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multiple patients (e.g. Bob and Alice) using a single capability. Note that if the capability
allows access to multiple THs and multiple operations on those THs, then access to a
different TH may involve a different operation to the initial access.

Scenario 5 - Invalid Issuer of the Capability and/or Signature on Request:
This scenario, in particular, important for an asymmetric key based approach (discussed
in Section 3.7). A UD has a capability and wants to perform a desired operation. However
the capability has not been provided by an issuer (in this case the CMS) that the TH
recognizes. The UD presents the capability to the TH along with the access request. When
the TH checks the signatures on the capability and the request it will reject the request
(Algorithm 2 returns ‘refused’) and the access will not be allowed.

Scenario 6 - Capability has Expired: A UD has a capability that allows access
to certain THs but the capability has expired. If the UD detects this, then refer to scenario
1. If the UD presents it to the TH anyway then TH checks the capability and discovers
that the time of expiration of the capability has been reached. Either Algorithm returns
‘refused’. If the UD wishes to obtain access they need to request a new capability for the
particular access required, which may be obtained as per scenario 1.

Scenario 7 - Validating Local Conditions: A capability may contain condition
rules which must be validated by the TH before access is granted. Conditions can involve
context e.g. correct date and time, location, etc. or properties of the TH itself, e.g.
available storage, remaining battery power and any other conditions related to the state of
the TH itself. Thus, when the UD sends a capability to the TH, along with all the checks
mentioned above (cf. scenario 1) the TH checks the ‘Condition Rule’ in the capability. If
the Condition Rule (i.e. the CoR) are successfully validated, the access is allowed (in this
case either Algorithm returns ‘granted’) otherwise access is refused.

3.6 System Operation: Symmetric Key Approach

In this section, we describe one implementation of our design, employing a symmetric
key approach. This will help us to examine the suitability of light-weight cryptographic
techniques for resource constrained IoT devices. In Fig. 3.13, we illustrate the design of
the system using symmetric key based approach.

Note, the users and the THs must be registered in the system. Access to a TH begins
when a UD detects a service that its user wishes to access. Assuming that the UD does
not already hold an appropriate capability, this is followed by a request for an appropriate
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Figure 3.13: The functioning of the system using a symmetric key based approach. Note,
the steps discussed here represents the same communication that are depicted in Fig. 3.14,
however, in more detail. The intermediate steps 2a, 2b, 2c and 2d depict the same functions
as discussed in Fig 3.6 (i.e. steps a, b, c and d).

capability and then by access to the requested resource. Fig. 3.14, shows an overview of
the communication protocol for an access request.
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CMS UD TH
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Figure 3.14: The communication associated with a symmetric key based approach.

3.6.1 Registration

Any new user and THs must be registered with the system. On registration they are
provided with long-term symmetric-keys for communication with the central part of
the system. Recall, the symmetric key based approach uses cryptographic algorithms
that use the same keys for both encryption of plain text and the decryption of cipher
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text. The encryption key can be created and stored on a key management server. In our
architecture, this could be situated inside the CMS. These keys can be distributed mutually
or automatically between two parties by the key management server. The details of this
are outside the scope this thesis but would follow the normal processes for registration.
Attributes of both users and THs are stored. For users, storage is in the UAD, for THs, it
is in the TRR. User attributes include name, age, role membership, etc. TH attributes
may include location, function, patient or ward assignment, etc. Attributes that apply to
a registered user may be supplied by that user, assigned by the CMS or obtained from
a trusted third party. Policies are written based on these attributes, not on concrete
user identity. Users are provided with a password which is hashed and securely stored by
the CMS3. This password hash is then used to generate a secret key KUD to encrypt a
message containing the session key to be used for the communication between the UD
and the CMS. The ability to decrypt this message authenticates the UD to the CMS and
ultimately prove its identity to the TH. As part of a TH’s registration the TRR generates
a secret key KTH which is stored locally. That secret key is given to the TH. Thus, the
registration process creates a bidirectional trust between the TRR and the TH. Group
keys may also be provided to the TH. For example, the THs governing the lights on a
given building floor may share a group key for communication with the CMS.

As KUD, KTH and possible group keys are long-term keys they should be used
sparingly. Shorter term keys may be periodically refreshed using the long-term keys and
employed for actual communication between the central system and registered entities.
However, such key management issues are outside the scope of this chapter and in the
following KUD and KTH are used for convenience.

3.6.2 Generating a Capability

Note that the following steps may be implemented in a variety of communication protocols;
we have generally omitted the sender and receiver identities, as they are assumed to be
included in such protocols, except where they are needed to address security issues or for
clarity. As such the following steps are meant to illustrate the implementation flow and
not represent a fully detailed, secure, protocol (cf. Appendix B).

• TH → Broadcast: THID, {OpeID}

The TH broadcasts its identity and the set of services (operations) it provides to
UDs located in proximity using IEEE 804.15.4 BLE beacon or a similar protocol (step 1

3Note that another hash of this password may be stored on some other part of the system, e.g. an
LDAP server, for supplementary service access.
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of Fig. 3.14). If the UD possesses an appropriate capability (assume that the UD already
holds one valid capability), then the communication proceeds immediately to step 6 of
Fig. 3.14, otherwise the UD needs to contact the CMS.

• UD → CMS: UID,{UID,THID,OpeID,TUD,NUD}KUD

When a user wishes to access a service, the UD requests a capability from the CMS
by sending the identity of the user, the TH and the operation required (step 2 of Fig. 3.14).
This is encrypted under KUD/CMS, the key the UD shares with the CMS to prevent
eavesdroppers identifying which service is being requested. A timestamp (TUD) and nonce
(NUD) are also included for freshness purposes.

• CMS → UD: {Cap,KUD,TH ,TUD,NUD,{Cap,KUD,TH ,TTH ,NTH}KTH}KUD

Upon receiving the request, the CMS uses the RM to determine what role(s) give
access to the TH and what attributes must be supplied for role membership. The UAD
supplies the attributes associated with the user. If the UAD supplied attributes match
the attribute expression for role membership, the requested capability (denoted as Cap) is
instantiated and generated by the CG, along with a session key for use between the UD
and the TH. Then the CMS contacts the TRR for a long-term key associated with the
TH so that the capability can be encrypted (step 3 of Fig. 3.14). The TRR performs the
necessary encryption and sends the encrypted capability to the CMS (step 4 of Fig. 3.14).
The communication between the CMS and the TRR must be performed over a secure
medium and preferably using end-to-end encryption4.

The CMS then sends the capability and the session key (KUD,TH), encrypted under
a key shared with the UD, to the UD (step 5 of Fig. 3.14). This information is also
encrypted under the key the TH shares with the TRR (KTH/TRR). The latter will enable
the TH to check the validity of any request. The capability includes the identity of the
TH as one of its fields, enabling the UD to determine which request to the CMS this was
a response to.

3.6.3 Processing an Access Request

After receiving the capability from the CMS, the UD may now send an access request to
the TH (step 6 of Fig. 3.14). The communication between the UD and the TH represents
the most resource-constrained aspects of the system, because of the potentially limited

4Public key cryptography is an option here as the CMS and TRR are hosted on non-resource-
constrained hardware. Note, in Section 3.7, we provide a public key based approach for implementation
to show the differences in the performances.
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capacities of the THs. Recall, in our proposed access control architecture a capability is
checked by the edge devices upon access.

• UD →TH: {Cap,KUD,TH ,TTH ,NTH}KTH ,{UID,OpeID,T ′UD,N ′UD}KUD,TH

An access request is composed of the following two pieces of encrypted data:

1. Capability: This remains encrypted using the key KTH and contains the permissions
assigned to the user.

2. Access Token: Created by the user. It is encrypted using the session key KUD,TH . It
also contains: {UID,OpeID,T ′UD,N ′UD}. A new timestamp (T ′UD) and nonce (N ′UD)
are included to help protect against replay attacks.

Upon receiving this message, the TH can decrypt the capability using the key shared
with the TRR. It can then obtain the session key and decrypt the remainder of the message.
Finally, the TH checks the capability as outlined in Algorithm 1.

Algorithm 1: Capability authorization process (a symmetric key approach)
1: receive(encCapability, encAccessToken)
2: capability, KUD,TH ← decrypt(encCapability, KTH)
3: access ← decrypt(encAccessToken, KUD,TH)
4: if capability.ThingID = this.ID and access.ThingID = this.ID
5: and access.UserID = capability.UserID
6: and access.OperationID in capability.OperationID
7: and access.Condition ⊂ capability.Condition
8: and capability.ValidFrom ≤ access.Timestamp ≤ capability.ValitUntil
9: then
10: result ← ‘granted’
11: else
12: result ← ‘refused’
13: end
14: send(encrypt(result, KUD,TH))

The TH checks a number of conditions that are listed in the capability. It ensures
that the current time is within the period defined by the issued and expiry fields of the
capability. It also verifies that the requested TH’s ID matches with the specific TH’s
identity to which the access request is made. The user ID also verifies by the TH to
ensure that the issued capability is granted to the specific user. The operation ID on
the capability need to be the same that of the access request. The TH also verifies that
the any other conditions contained within the capability are satisfied. Conditions can
involve context e.g. correct date and time, the location, etc., or properties of the TH itself,
e.g. available storage, remaining battery power and any other conditions related to the
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state of the TH itself. These conditions are listed in a capability and are evaluated locally
within the THs. Algorithm 1 returns a decision on whether the access request is granted
or refused. The TH generates the access decision (step 7 of Fig. 3.14).

As only the UD to whom the capability was issued and the TH knows the key
KUD,TH , only that UD would be able to formulate the message. Intuitively, the capability
specifies the summary of policy rules applicable to the TH and the UD given the context
while the access token specifies the actual action that the user wants to perform on a
specific TH.

3.7 System Operation: Asymmetric Key Approach

In this section, we describe another implementation of our design, employing asymmetric
key approach. In general, symmetric key encryption algorithms are much faster in
computation and therefore need relatively less computational power than asymmetric
encryption algorithms, but their main weakness is key distribution. Especially, the
symmetric key based approach is useful to apply when speed and computing power are
the primary concerns [189]. We argue that a system that is built upon a symmetric key
based approach can easily be built based on the asymmetric key based approach.
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(4) Attributes for role membership 

and capability parameterization

{user’s attributes}

(5) Capability response

{capability, sigCMS}

(6) Access request

{Capability, sigCMS, sigUD, 

TH_ID,U_ID,Ope_ID}

(7) Access response

{granted, refused}

CMS

(2) Capability request

Figure 3.15: The communication associated with an asymmetric key based approach.

Note, the architectural components (cf. Section 3.4.4) of the proposed access control
architecture remain the same. The users need to supply required attributes at the time of
an access request made to the CMS. In Fig. 3.15, we illustrate the protocol for satisfying
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a user request using an asymmetric key based approach. Note, unlike Fig 3.14, in this
case, the TRR is not involved in the communication when generating a capability.

3.7.1 Registration

The THs must be registered with the central part of the system. Note, in this case, the
TH’s registration is only required for authorization purposes. The authorization decisions
are handled by the access control policies. In the previous approach (i.e. systemic key based
approach), the TH’s registration is required for both the authentication and authorization.
Authentication is done by sharing the keys in a secret way. However, in an asymmetric key
based approach, this is avoidable as this is performed by the public key of the CMS. Recall,
in an asymmetric key based approach (also known as the public key cryptography) two
different keys are employed for encryption and deception. The public key is used to encrypt
the plain text and the private key is used to decrypt the cipher text. Fundamentally, these
keys are simply large numbers that have been paired together using specific cryptographic
algorithms but are not identical. For sharing the public key, secure SSH connection can be
used. Public key can be freely shared with everyone, while the private key must need to be
kept secret. Once again, the details of the generation of keys is outside the scope of this
thesis but would follow the normal processes for registration. User’s attributes are stored
in the UAD or some other location accessible by the PIP and for the THs, it is stored in
the TRR. User attributes include name, age, role membership, etc. TH’s attributes may
include location, function, patient or ward assignment, etc. In this case, attributes that
apply to a role membership must be supplied by the corresponding user. Recall, in our
proposal, policies are written based on the attributes not on concrete user identity.

3.7.2 Generating a Capability

Once again, note that the following steps are meant to illustrate the implementation flow.
This should not be seen as the representation of a fully detailed, secure, protocol.

• TH → Broadcast: THID, {OpeID}

Like the previous case (cf. Section 3.6.2), here we also assume that the TH broadcasts
the services (operations) it provides to UDs located in proximity using IEEE 804.15.4
BLE beacon or a similar protocol (step 1 of Fig. 3.15). If the UD possesses an appropriate
capability, then the communication proceeds to step 6 (of Fig. 3.15). Otherwise, the UD
communicates with the CMS, specifying the TH and service it wishes to access, in order
to obtain an appropriate capability.
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• UD → CMS: {THID,OpeID,TUD,NUD}

The UD requests a capability from the CMS by sending the identity of the TH
and the operation (Ope) required (step 2 of Fig. 3.15). A timestamp (TUD) and nonce
(NUD) are also included for freshness purposes. We assume that all of the communications
between the CMS and the UD are performed over a secure medium and preferably using
end-to-end encryption.

• CMS → UD: {Attr,UID}

Upon receiving the request from the UD, the CMS contacts to the RM to determine
what role(s) give access to the TH and what attributes (Attr) the user must supply for
role membership. Then the CMS contacts to the UD with the required attributes. In
particular, the CMS uses the RM and CD to locate the appropriate capability template
and extracts the necessary rules from the PD. This is used to inform the particular UD of
the attributes that must be presented (step 3 of Fig. 3.15).

• UD → CMS: {Attr,UID}

These attributes are those required to obtain role memberships and (if specified)
further attributes required for capability parameterization. Assuming that the UD holds,
on behalf of the user, attributes that will satisfy the requirements it sends them, and the
user identity, to the CMS (step 4 of Fig. 3.15).

• CMS → UD: {Cap,CMSSig}

Upon receiving the required attributes, the CMS checks that the supplied attributes
satisfy the requirements for role membership. The CMS can also get some extra attributes
from other sources, if required (e.g. from the PIP). It then creates a capability (Cap) for
the requested thing/operation pair, by filling in the capability template with the user’s
identity, any necessary time stamps (e.g. beginning and end times for capability lifespan)
and any parameterization information. The user’s identity is required to ensure that the
capability is not passed to an unauthorized user. At this stage, the capability is encrypted
with the signature of the CMS (CMSSig - i.e. the public key of the CMS), and is then
sent to the UD from where the specific access request has made (step 5 of Fig. 3.15).

3.7.3 Processing an Access Request

The UD may now present the capability to the TH for accessing a specific resource with
the issued capability. Recall, this is the most resource-constrained aspects of the system.
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• UD → TH: {{Cap,CMSSig}UDSig ,UID,OpeID,T ′UD,N ′UD}

The UD further encrypts the capability received from the CMS by signing the request,
i.e. using UD’s signature(UDSig - i.e. the public key of the UD), to the TH (step 6 of
Fig. 3.15). This is important because it helps to verify the sender of an access request.
Recall, the CMS’s signature helps to verify the issuer of the capability. Upon receiving
the access request, the TH will check the capability, as outlined in Algorithm 2, including
checks on the CMS’s signature on the capability (using the private key of the CMS) and
the UD’s signature on the request (using the private key of the UD) and reply to the UD
(step 7 of Fig. 3.15). Note, the TH needs to decrypt two signatures associated with the
capability, one from the CMS and the other from the UD. The access request also contains
UID, OpeID, T ′UD and N ′UD. A new timestamp (T ′UD) and nonce (N ′UD) are included to
help protect against replay attacks.

Algorithm 2: Capability authorization process (an asymmetric key approach)
1: receive(encCapability, encAccessToken)
2: capability, ← decrypt(encCapability, SigUD)
3: access ← decrypt(encAccessToken, SigCMS)
4: Decision ← ‘refused’
5: if capability is not Null then
6: if valid (time stamp) then
7: if userid = capabilityuser then
8: if THid in capabilityTH then
9: if opereq in capabilityope then
10: if CoR = true then
11: if valid UDsig and valid CMSsig then
12: Decision ← ‘granted’

Algorithm 2 takes the capability supplied by the user, the operation requested, the
user’s identity, the identity of the TH and the signatures on the request (of the UD) and
capability (of the CMS). It checks that the current time is within the period defined by
the issued and expiry fields of the capability, that the user making the request was the one
to whom the capability was granted, the capability allows access to the requested TH and
operation, that any condition rules contained within the capability are satisfied and that
the signatures are valid. Signature checks are left to last as they are the most-consuming
operation. Conditions can involve context e.g. correct date and time, the location, etc. or
properties of the TH itself, e.g. available storage, remaining battery power and any other
conditions related to the state of the TH itself. These conditions are listed in a capability
and are evaluated locally within the THs. The algorithm returns a decision on whether
the requested operation is granted or refused.
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3.8 Discussion

In the foregoing discussion we have focused on a single CMS and how it governs access to
IoT devices registered with it. In the real-world, a single CMS would not be practical for
the entirety of the IoT. The IoT will consist of multiple administrative domains, each with
their own policies, resources and THs. Our design can easily be extended to a multiple
domain situation. Each administrative domain would have its own CMS, which would
hold the access control policies for that domain and with which the THs in that domain
would register. More precisely, the THs would register with the TRR associated with the
CMS of that domain and be governed by the access control policies stored in the CMS.
The CMS would issues capabilities for THs registered with its associated TRR. A domain
then consists of the THs registered with the TRR and the CMS of the domain. As policies
are held within the CMS, each domain can have its own policies.

Users are not required to register within a particular domain. The CMS of a domain
would recognize certain attribute providers. To access THs in the domain of the CMS
users would need to hold attributes supplied by attribute providers accepted by the CMS
of the domain. For example, as illustrated in Fig. 3.16, the UD wishes to access the TH.
The UD receives attributes from the attribute provider (labelled as ‘AP’). These attributes
are recognized and accepted by the CMS of the domain and, assuming all other conditions
are met, access is allowed. Note that the CMS may not have been aware of the existence of
the UD until access is requested. The CMS will have been aware of the attribute provider,
and what attributes it can provide, but not to what users they are provided. A CMS
may accept attributes supplied by multiple attribute providers. The sets of attributes
supplied by these attribute providers may or may not overlap. Which attribute providers
are acceptable to a CMS is determined entirely by the administrative policies of that
domain.

A user may have the same attribute attested by multiple attribute providers. This
is necessary as the CMS of different domains may recognize different attribute providers
but reference the same attribute in their policies. In our design, it does not matter
which attribute provider supplies a user with an attribute, merely, that the user has the
attribute supplied by a recognized attribute provider. A CMS can advertise, as part of its
service, which attribute providers it recognizes. The UD can then supply the appropriate
attributes, attested by a recognized attribute provider. Users can then interact with any
domain, providing they have attributes supplied by an attribute provider recognized by
that domain. Capabilities will only be valid in the domain in which they are issued, as the
THs will only accept capabilities from the CMS of their domain.
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Figure 3.16: A multiple domain scenario.

Note that the CMSs of different domains do not need to communicate with each
other, as they are responsible solely for access within their own domain. A CMS is free
to choose which attribute providers it will recognize, allowing them to accept attributes
only from trusted attribute providers. While there is some burden imposed on UDs in
holding attributes from multiple providers, this will be lessened if attributes providers are
recognized by multiple CMSs.

3.9 Summary

The massive scale of the integration of heterogeneous devices and services in an IoT system
means that none of the commonly used access control approaches (e.g. RBAC, ABAC
and CapBAC), in isolation, can achieve efficient management of access control policies
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and enforcement of authorization decisions. Moreover, the intrinsic features of traditional
access control approaches may be difficult to implement within the resource-constrained
IoT devices. There is a requirement that, whatever access control mechanism is employed,
it should be usable as well as sufficient to protect the privacy, integrity and confidentiality
of the system and its components. In general, in an IoT system, information should easily
be available and accessible to the legitimate users. However, they (i.e. information) should
be protected allowing only authorized users to control and manipulate the data. Thus,
there is a need for rethinking the requirements of an IoT access control architecture that
achieves fine-grained access control requiring minimum mechanisms for policy enforcement
and their management, that enables secure access control for billions (and possibly trillion)
of things which can access and be accessed in a heterogeneous environment. This in turn,
will help to develop an efficient, scalable, dynamic and flexible access control architecture
for the IoT.

With the growing size and presence of IoT systems an important question is how
to manage policies in a manner that is both scalable and flexible. In this chapter, we
have outlined the design of a general access control system for the IoT that combines
elements of attributes, roles and capabilities to achieve streamlined policy management.
This provides a flexible framework on which to build an access control architecture in
a smart environment. Our design employs attributes for role management, capabilities
for access right implementation, and attributes for fine-grained policy decisions based on
capabilities. We also propose a partially decentralized architecture for real-time decision
making, which can help to achieve better performance for IoT systems using light-weight
security mechanisms. Access rights are embodied in capabilities. The capabilities are
provided to users on request, based on the attributes of users and the roles which those
users give them membership of. Once a capability is obtained, the user attributes do
not need to be checked again while the capability remains valid. The edge devices (i.e.
the things) need only to check the capability, avoiding any communication with a central
system at that point, including any need for repeated attribute evaluations. To minimize
the policy expressions required the capabilities issued to users as a result of a single policy
may differ, based on the attributes possessed both by the user and the target devices.

With a number of use cases, we showed the practicability of proposed access control
solutions that can efficiently provide the required policy management for different situations.
In our proposed access control model, role membership is specified using attributes, not
explicit user to role assignment. This provides a greater level of flexibility and conciseness
in role management as updates to individual role membership do not have to be noted.
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It also allows a consistent and easily managed approach to which users will be members
of which roles. By employing roles, rather than a direct mapping between attribute
expressions and permissions, we do not have to needlessly duplicate attribute expressions.
It also allows us to take advantage of the power of the role-hierarchies of RBAC. We used
capabilities as credentials to govern access to things. Capabilities are distributed to users
and presented to the edge devices (i.e. things) for access. This reduces the centralization of
the system and eliminates a potential performance bottleneck. We summarize our findings
as follows:

• We have proposed a partially decentralized access control architecture based on
attributes, roles and capabilities for IoT-enabled smart systems.

• In our model, attributes are used for both role membership decisions and for param-
eterizing capabilities, allowing fine-grained access control with a minimal of policy
specification.

• The proposed architecture is flexible, as role membership is based on attributes, not
a priori knowledge of which roles the users are assigned to. This allows a degree of
flexibility and conciseness in policy specification unachievable in most other proposed
systems.

• Our system extends upon the previous capability-based access approaches. We reduce
the number of capabilities required in the system by allowing capabilities to grant
access to more than one thing. In previous proposals capabilities were device-specific.
More importantly, we discuss how users obtain capabilities.

• We provide a detailed system description, discuss different architectural components
and present a formal specification of the proposed model.

• We outline a list of potential access scenarios of the devised access control model,
which contains various conditions and issues related to the access of an IoT resource.

• We examine the suitability of designing the proposed access control architecture with
both symmetric and asymmetric key based approaches, and detail the contamination
between the various components based upon these two approaches.

In the next chapter (Chapter 4), we will demonstrate the feasibility of the proposed
architecture with a practical proof of concept prototype implementation. As we discussed,
our intention would be to employ both the light-weight key management protocol (i.e.
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symmetric key cryptography) and the PKI-based approaches (i.e. asymmetric key cryp-
tography) for authentication and secure communication. We also intend to compare our
findings with existing approaches and to provide a comprehensive adversary analysis. In
addition, we aim at providing a comparison of number of policy expressions required in
our case with the available approaches.
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Chapter 4

System Implementation and
Evaluation

In this chapter, we provide a detailed description of the implementation of the proposed
access control architecture that we presented in Chapter 3. Our aim is to show how
the proposed architecture can achieve significant improvement by reducing the number
of policies required for specifying access control settings while providing efficient access
control in an IoT environment. In our policy setting, we employ a scheme based on
standard XACML [183], which is a declarative fine-grained, ABAC policy language. We
have implemented a proof of concept prototype using a physical testbed experiment to
demonstrate the feasibility of our proposed approach and provide a detailed performance
analysis of the implementation. Importantly, we intend to examine the system’s operations
with both symmetric and asymmetric key cryptography based approaches (as discussed in
Chapter 3) and to note the variance in the performances. The major contributions of this
chapter can be summarized as follows:

• We provide a detailed proof of concept implementation of the proposed access control
architecture discussed in Chapter 3.

• We use both symmetric and asymmetric key based approaches to show the feasibility
of our architecture in both cases.

• We present a detailed numerical comparison of the achieved performances with the
existing approaches. We also show the comparison of the number of policy expressions.

• We detail an advisory analysis to examine the practicability of the proposed solution
to mitigate different attacks in practical scenarios.
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The rest of the chapter is organized as follows: In Section 4.1, we discuss the testbed
development and methodology. We discuss the achieved experimental results in Section 4.2.
We discuss performance analysis based on both symmetric and asymmetric key based
approaches. In Section 4.3, we provide a comparison of the numerical results with the
existing approaches. We also provide a comparison of the number of policy expressions
in Section 4.4. In Section 4.5, we include an adversary analysis. Finally, we provide a
summary of the chapter in Section 4.6.

4.1 Introduction

The aim of our implementation is to demonstrate the feasibility of the proposed access
control architecture using a physical experimental platform. In this section, first, we discuss
the testbed development and then we explain the employed methodology for evaluation.
We employ the same notations that we used to discuss various architectural components
in Chapter 3.

4.1.1 Testbed Development

To conduct the proposed experiment in a physical testbed, we need to develop three
major components of the system, namely, the resourceful server (i.e. the central system),
the client (i.e. the user devices) and the resource-constrained server (i.e. IoT devices).
In Fig. 4.1, we illustrate the testbed set up. The CMS (i.e. the resourceful server) is
implemented on a MacBook Pro powered with a dual core 2.4 GHz Intel processor and 4
GB of DDR3 RAM running the latest High Sierra MacOS. All components of the CMS
are developed in C# using Microsoft’s .NET development framework. The authentication
and authorization platform runs as services in the background and replies to requests from
multiple sources including direct TCP connection or MQTT [342].

Note that, the implementation could be achieved using various communication
protocols e.g. HTTP, MQTT, CoAP, bare TCP, etc. [343] [344], however, in this experiment
we have mainly used MQTT. HTTP is document-centric while MQTT is data-centric. We
have chosen MQTT for the communication with the THs as it is light-weight and easily
scalable using its publish/subscribe messaging protocol suitable for resource-constrained
devices. The MQTT protocol also ensures high delivery guarantees with its three levels QoS.
In contrast, HTTP uses lengthy headers (using text message format) that are unnecessary
for our use case. MQTT includes of a short message header as the smallest packet message
size is 2 bytes [345]. CoAP is widely used for IoT protocols, but MQTT is a many-to-many
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Figure 4.1: A sample psychical testbed used for the experiments.

communication protocol where CoAP is a one-to-one protocol. While CoAP has a lower
protocol overhead, MQTT’s design is more attractive for large deployment as it readily
improves scalability and robustness (redundancy can be achieved by simply using multiple
MQTT brokers in bridge mode). A thorough comparison of CoAP versus MQTT can be
found in [346].

For implementing the PDP, we use the open source project abc.xacml [347] which
provides a ready to use .Net library. We customize the implementation for the PEP
by writing the policies as per the requirements specific to the use-case. To achieve a
generic and light-weight implementation, we use MySQL databases to store persistent
data (e.g. policies, user and resource information, attributes, and similar). In contrast to
the other capability designs presented in the literature (e.g. [59]), which typically follow a
heavy-weight XML structure, we use JSON to represent and store the capabilities.

For the purpose of our experiments the clients representing UDs are installed directly
on the same hardware as the CMS to reduce unnecessary communication through the
network. Note that, the clients can also be run on mobile devices e.g. smartphones or
tablets. For the resource TH (i.e. the resource-constrained device), we use a ESP8266-12E
microcontroller (cf. Fig. 4.2). These are low cost devices that allow mass production of
connected devices for general consumer use (one microcontroller costs around 2.5 Australian
Dollars). They are highly optimized to guarantee a moderate level of performance with
low power and low memory consumption. The ESP8266-12E has a ready to use WiFi
connection and fully supports the TCP/IP stack. It consists of a 32-bit RISC CPU
with scalable speed, 60-160MHz, 42KB of RAM and 4MB of flash memory. Each TH is
running a domain specific software on top of NodeMCU [348], a ‘Lua’-based interpreter
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Light  

Figure 4.2: ESP8266-12E used for the experiments.

for the ESP8266-12E. Lua is a high-level language which greatly facilitates design and
implementation but the code it produces will not be optimized, so the results obtained are
conservative. We use AES-CBC (128 bits key size) for secure communication.

4.1.2 Methodology

The tests measure both the time from when a UD requests a capability from the CMS
(after detecting a broadcast signal from a TH) to when the TH responds to the access
request after the UD provides the capability and important segments of that process. The
experimental setup uses a database that contains 1000 random users, each associated
with specific permissions, and 5000 THs registered in the TRR. In order to demonstrate
the feasibility of our model, and to ensure reliable data, we ran each test 100 times. All
tests involving the TH were sequential (i.e. the same test repeated 100 times where
request parameters have been randomized) because the networking capabilities of the
ESP8266-12E micro-controller is moderately limited. The communication between the
UD and the CMS are mostly concurrent which demonstrates the ability of the CMS to
handle multiple requests at the same time. On each test, the UD randomly select the TH
to access to guarantee no impact of caching, etc., within the databases. This allows us to
demonstrate the load/delay in our implementation. The UD sends access requests that
turned on and off a physical light controlled by the TH that can be seen in Fig. 4.2. All
times are measured in milli-seconds (ms).
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4.2 Results

In this section, we detail the obtained results for our experiment based on the following
two approaches, i.e. symmetric key based approach (cf. Section 4.2.1) and asymmetric
key based approach (cf. Section 4.2.2).

4.2.1 Performance Analysis: Symmetric Key Approach

Now we present a detailed performance analysis of the system that we described in
Section 3.6 of Chapter 3. The results include the following phases: (1) full communication
from a capability request to a resource access, (2) performance of the CMS and (3)
processing of an access request by the TH. These steps are depicted in Fig. 3.14 of
Chapter 3. The compiled Lua program installed on the TH occupies 18KB of ROM and
uses about 26KB of RAM. The amount of RAM used depends on the state of the TH and
more RAM is used while processing requests or publishing messages via MQTT. Recall,
that the ESP8266-12E has 42KB of RAM in total. Importantly, for this experiment, we
use a valid capability.
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Figure 4.3: Processing of 100 access requests each with a fresh capability. The X axis
represents the message_id and the Y axis represents the time (ms).

In Fig. 4.3, we depict the overall processing time (the black curve, labelled as
‘Duration’) of the system from when a UD requests a capability to when it obtains
access to a TH (we assume that in this case the request is evaluated as a valid request).
The average time taken is 1010ms (with a standard deviation, denoted as σ, of 200ms).
Returning to Fig. 3.14 (cf. Chapter 3), steps 2 to 7 are executed in this case. One hundred
access requests are sent from UD to turn on and off a physical light controlled by the TH.
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Interestingly, we observed that there are large fluctuations in the time taken. We
examined these fluctuations and found that they are neither from the ESP8266-12E nor
network latency as we initially suspected. Instead, they are due to the database access
required during each capability request evaluation to collect attributes. We use a standard
installation of MySQL without any specific optimization. The red curve in Fig. 4.3, labelled
by ‘Decryption’, shows the amount of time each TH spends on decryptions alone. On an
average, for a single access request, each TH spends 561ms (σ = 13ms) decrypting the
capability and access tokens. The shape of the curve illustrates that the measurement
is very stable. It can be seen that this operation is the largest single contributor to the
overall time.
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Figure 4.4: Processing of 100 capability requests by the CMS. The X axis represents the
message_id and the Y axis represents the time (ms).

In Fig. 4.4, we show the time taken for each of the 100 capability requests to be
processed by the CMS (‘Duration’ in black curve). Note that this is a portion of the
time shown in Fig. 4.3. The average time taken in this case is 40ms (σ = 16ms). This
includes receiving a capability request (i.e. an incoming message) from the UD, performing
a lookup on the database for attributes, generating and evaluating an XACML request
from these attributes, generating a capability, composing and encrypting the message and
finally, sending the capability within the encrypted reply message to the UD. Returning to
Fig. 3.14 (cf. Chapter 3), steps 2 to 5 are evaluated in this case. The ‘Processing’ in the
red-curve of Fig. 4.4 illustrates the actual processing of an XACML request starting from
the collection of the attributes to the evaluation within the PDP engine. The processing
can last from 18ms to 92ms. However, we noticed that, once all required attributes have
been collected it then takes an average 7ms for processing concurrent XACML requests.
In practice, this will also reduce the overall processing time of the CMS.
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Note, there is a strong correlation between the processing time and the total duration
of (the round-trip) communication for a capability request. The most expensive task
during the processing is the generation of the XACML requests where attributes need to be
collected from multiple sources, which is a MySQL server in our case. Fig. 4.3 furthermore
demonstrates the fact that this can substantially affect the overall processing time.
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Figure 4.5: Requests processed by the CMS over time. The X axis represents time
in seconds and the Y axis represents the cumulative number of requests received and
processed. “Req CMS” (resp. “Req UD”) is the cumulative number of requests (resp.
reply) received by the CMS (resp. UD). “Linear (Req UD)” is a linear fit over “Req UD”.

In Fig. 4.5, we show the cumulative number of processed requests. The figure
illustrates that the requests are processed almost as soon as they arrive at the CMS
because the curves ‘Req CMS’ and ‘Req UD’ are almost indistinguishable. The linear
trend-line shows that, given this particular hardware, the server is able to fully process
around 38 requests per second1.

In Fig. 4.6, we illustrate the total duration from when a UD sends a request to the
TH and receives a reply from the TH (‘Duration’ in black-curve) for the situation where
the UD already holds an appropriate capability. Returning to Fig. 3.14 (cf. Chapter 3),
steps 6 and 7 are evaluated in this case. The average time taken in this case is 877ms (σ
= 34ms). This time-span covers the following three phases: (1) network communication

1Note, this is the performance on a consumer grade computer and we can get much better performance
running the exact same setup on more powerful hardware. Also, we have implemented a synchronous
TCP server that handles requests submitted to the CMS. An asynchronous implementation would also
boost the performance considerably. These improvements are however out of the scope of our contribution
in this chapter.
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Figure 4.6: Processing of 100 access requests by the TH with a cached capability held by
the UD. It starts from when a UD sends a request to the TH and receives a reply back
from the TH. The X axis represents the message_id and the Y axis represents the time
(ms).

latency between the UD and the TH, (2) encryption and decryption of messages by both
the UD and the TH, and (3) processing of a decrypted request by the TH. A major portion
of the overall 877ms is however used on cryptographic computations by the TH. Note, in
this case, we start with a cached capability within the UD and reuse this for each and
every access request.

Once again, for an overall time comparison, in Fig. 4.6, we show the decryption
time taken by the TH (‘Decryption’ in red-line). Note that the difference between the
decryption times shown in Fig. 4.3 and Fig. 4.6 are due to the use of a cached capability
for Fig. 4.6 whereas a new capability is generated for each request in Fig. 4.3. Hence, there
is a lack of fluctuation seen in Fig. 4.6 compared to Fig. 4.3. However, it can be seen that
the operations are taking very similar time. Again, it can be noticed that the decryption
is the most time-consuming operation.

The network capability of the ESP8266-12E is largely responsible for the fluctuation
observed in the black curve of Fig. 4.6, although the variation is not as acute as seen in
Fig. 4.3. Recall, we use the MQTT protocol for communication between the UD and the
TH. Still, the system is spending an average 102ms simply processing TCP/IP packets
and most of this time is spent on the TH. Note, encryptions and decryptions are also
performed by the UD but this device (i.e. the UD) is reasonably powerful and therefore
these operations only make up a small fraction of the overall time shown in the figures.
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Figure 4.7: Processing of 100 decrypted access requests by the TH (i.e. parts of the
Algorithm 1 of Chapter 3). The X axis represents the message_id and the Y axis
represents the time (ms).

In Fig. 4.7, we illustrate the processing time for different parts of Algorithm 1
(discussed in Chapter 3) excluding the decryption and encryption stages (i.e. execution of
only steps 4 to 8 of Algorithm 1). It takes an average 9ms for the TH (σ = 2.5ms). In
this case, a request is evaluated as successful and the state of the light attached to the
ESP8266-12E is changed depending upon the access request.

We observed that, if the state of the light does not need to change, then it takes an
average 6ms to process an access request. If the state of the light needs to be changed,
then it takes an average 11.5ms to process the request because the TH must physically
change state. We argue that this extra delay is particularly important for physical sensors,
e.g. temperature or pressure sensors, because it usually takes more than a few tens or
hundreds of milliseconds to accurately measure these quantities. In our experiment, the
requested state for the TH is chosen randomly.

4.2.2 Performance Analysis: Asymmetric Key Approach

We argue that light-weight cryptosystems are likely most suitable for resource constrained
IoT devices. Therefore, in the previous section (Section 4.2.1), we discussed the employment
of a light-weight protocol that relies on symmetric key cryptography and provided a detailed
discussion of suitability of using a symmetric key based approach for our proposed access
control architecture. However, in Chapter 3, we also noted that our architecture can be
implemented using either symmetric or asymmetric key cryptosystems. To show that the
proposed architecture could easily work with either approach, in this section, we used
public key cryptography for guaranteeing the authenticity of information between different
components within the architecture. Recall, implementing public key cryptosystems on
IoT devices can be challenging due to the resource-constrained nature of the devices. But
it can provide adequate security where resource limitation is not an issue [189].
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Now we present a detailed performance analysis of the system that we designed in
Section 3.7 of Chapter 3. In Fig. 4.8, we show the overall processing time (the black curve,
labelled as ‘Duration’) of the system from when a UD requests a capability to when it
obtains access to a TH with a valid request. We noted that the average time taken is
8457ms (σ = 8ms). Returning to Fig. 3.15 (cf. Chapter 3), steps 2 to 7 are executed in
this case. One hundred access requests are sent from UD to access the TH. The red curve
in Fig. 4.8, labeled by ‘Signature Checking’, illustrates the amount of time each TH spends
on the signature checking alone. Note, in this case, two signatures one from the CMS and
another from the UD are checked. On an average, for a single access request, each TH
spends 7984ms (σ = 9ms) for signature checking. The difference (in time) between the
black curve (labelled as ‘Duration’) and the red curve (labelled as ‘Signature Checking’) is
all the other required operations e.g. the CMS creating and signing the new capability and
the TH checking the decrypted capability. These operations take approximately 460ms.
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Figure 4.8: Processing of 100 access requests each with a fresh capability. The X axis
represents the message_id and the Y axis represents the time (ms).

Note that this result is obtained using an RSA key size of 64-bit. We observed that
in Fig. 4.8 this higher amount of time taken due to the resource constrained nature of the
ESP8266-12E. However, we argue that it is not a practical and secure implementation (we
provide more discussion in Section 4.3). We only try to demonstrate the practicality of the
implementation in a physical testbed. In this particular experiment (i.e. asymmetric key
based implementation), we are most interested to see the performance of constrained IoT
devices rather than focusing on the overall processing time (i.e. the round-trip time) of
the system. Importantly, this design can easily be implemented where resource limitation
is not a decisive factor.
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Therefore, we present the results of the performance evaluation of the most relevant
parts of our system - the communication between the UD and the TH and the evaluation
of a capability by a TH. As the THs are the most resource-constrained elements of the
system it is important to ensure that the requirements of our architecture do not pose an
unmanageable load upon them. That said, we exclude signature checking for the following
evaluation results.

We examine a number of scenarios, from those described in Section 3.5 of Chapter 3,
including both when access is granted and when it is refused and involving the TH checking
a varying number of conditions. Recall, in order to demonstrate the feasibility of our
model, each test was run 100 times to ensure reliable data. To demonstrate the time taken
by our proposal, all considerations which are extraneous are excluded, e.g. delays due
to other network traffic. This allows us to demonstrate the load/delay created by our
proposal. For every success and fail, an appropriate message (e.g. granted or refused) is
sent to the UD. Once again, note that all times are shown in milli-seconds (ms).
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Figure 4.9: The capability authorization time for an invalid capability. In this case, the
time stamp (ts) is not valid, therefore, the capability is rejected at the very first instance
without checking other fields.

Fig. 4.9 shows the case where the capability fails on the initial test of Algorithm 2
(discussed in Chapter 3), whether the current time falls within the valid period defined by
the issued and expiry time fields of the capability. This represents the minimum time for
a response by a TH once a UD presents it with a capability. The results show that the
median time taken for this stage is 0.542ms (σ = 0.003).
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Figure 4.10: The capability authorization time for an invalid capability. ‘Fail(CapThings)’
denotes that the capability does not apply to the TH. ‘Fail(OpeThings)’ denotes that the
capability does not allow a valid operation on the TH. Note, in both the cases the time
stamp is valid, i.e. the capability is valid for a certain period of time.

Fig. 4.10 shows two results (i) when the time stamp is valid but the capability does
not apply to the TH. The median time taken for this stage is 0.564ms (σ = 0.003). And
(ii) when the time stamp is valid, the capability applies to the TH but the capability does
not allow the requested operation on the TH. The median time taken for this stage is
0.577ms (σ = 0.003). These results are only slightly longer than those in Fig. 4.9. The
second result is longer than the first as the test for the capability applying to TH must be
carried out and passed before the test on whether the requested operation is allowed by
the capability is applied.

In Fig. 4.11, we illustrate the results of checking a single condition. The right-hand
result is when the condition is failed, the left hand result is when the condition is passed.
For comparison purposes signature checking was excluded. All comparable approaches
use signature checking, typically the same number of checks. Signature checking is time
consuming and therefore heavily affected by device power. Recall, to focus on the more
relevant parts of our design, we exclude signature checking at this point. We highlight
that this time here is considerably longer than the previous cases, although still only
a handful of milli-seconds, as there is some setup involved in condition checking. The
condition checked here was whether the location of the TH, represented as a string stored
in the TH, satisfied the requirement expressed in the ‘Condition Rule’ that we discussed
in Section 3.4.6 of Chapter 3. The median time required when the condition evaluates to
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Figure 4.11: The capability authorization time for condition success and failure. ‘Suc-
cess(ts,con)’ represents the time taken when condition returns true after all previous checks
have succeeded. Similarly ‘Fail(ts,con)’ represents the time taken when the condition is
not valid but all previous checks succeeded.

true is 2.87ms (σ = 0.003) and when the condition evaluates to false is 2.87ms (σ = 0.003).
That the results are the same (at least to the precision shown here) is to be expected, as
all other fields must be checked before this test and whether a condition succeeds or fails
will require much the same operations. The median RAM and ROM required for the both
cases are 15KB and 9.2KB respectively.

Fig. 4.12 shows the results when the number of conditions to be checked are varied
between one and four. In other words, we use different number of conditions in the
capability to see the overall performance of the TH. For the simplicity to the experiment,
in all cases, all conditions returned true to enable checking to complete. Note that the
first condition is the same as in Fig. 4.11 for comparison purposes. The second condition
checked whether the current time was within a period specified in the ‘Condition Rule’
(as discussed in Section 3.4.6 of Chapter 3), the third condition checked the date and the
fourth condition involved checking the remaining battery power in the TH. Note that
checking of extra conditions after the first added very little time, the set up being the
same in all cases. We have observed that the median time required for the one condition
checking is 2.87ms (σ = 0.003), two conditions is 2.87ms (σ = 0.003), three conditions
is 2.88ms (σ = 0.003) and for the four conditions is 2.89ms (σ = 0.003). Recall, as we
discussed above, we have excluded signature checking. We have noted that, the total time
for a response to the UD is less than three milli-seconds.
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Figure 4.12: The capability authorization time for a valid capability i.e. the time stamp
and condition(s) are valid. In this case we vary the number of conditions from one to four.

4.3 Comparison with Existing Approaches

In the above experiments, we used both symmetric key cryptography and asymmetric
key cryptosystems. Partly this was done as no comparable results for a symmetric
key approach exist in the literature. Indeed, even where timings are given for other
approaches comparisons are difficult, due to the vastly different power of the THs used
in the experiments. This will affect the speed at which operations are performed, and is
particularly noticeable in the cryptographic operations, which are typically the most time
consuming steps.

The situation was further complicated by the paucity of asymmetric key cryptographic
implementations for the ESP8266-12E. Given its resource constrained nature the only
implementation available employs a 64-bit key size. This does not support practical and
secure implementations. Therefore, to gain some comparison, we tested our data structures
with both RSA and AES on a relatively high speed platform (a MacBook Pro, dual core
2.4 GHz Intel processor and 4 GB of DDR3 RAM running the latest High Sierra MacOS).
On that platform, we tested the cryptographic operations using the same messages and
data structures as in our symmetric key implementation. We ran 1000 samples, using an
RSA key size of 2048-bit, AES key size of 128-bit and SHA256 Hashing.

We detail our results in Table 4.1. Note the difference in the two rightmost columns
in the table (i.e. AES(SA) and AES(FA)). This difference is explained by the caching of
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Table 4.1: Comparison of RSA and AES implementation. Where, msgL=message
length, RSA(En)=RSA(Encrypt), RSA(De)=RSA(Decrypt), RSA(Sg)=RSA(Sign),
RSA(Ve)=RSA(Verify), AES(SA)=AES(Successive Access), AES(FA)=AES(First Ac-
cess). All times are measured in ms.

msgL RSA(En) RSA(De) RSA(Sg) RSA(Ve) AES(SA) AES(FA)
128 1.691 29.467 28.693 2.084 0.0061 1.701
245 3.179 58.173 27.927 2.024 0.0073 —
256 3.299 55.875 27.971 2.018 0.0085 —
1024 11.062 134.74 27.971 2.051 0.0243 2.001

the operations. Columns 3 and 4 (i.e. RSA(Sg) and RSA(Ve)) are included for comparison
purposes only, as they represent the time taken by operations that would occur on the CMS
(composition and signing of the encrypted messages). The most important comparisons
are then between the totals of columns 1 and 4 (i.e. RSA(En) and RSA(Ve)), the recovery
of the signed hash and the hashing of the received message respectively and, conservatively,
column 6. This gives a ratio of between 2 and 6 for the asymmetric to symmetric approaches.
Given the time shown in Fig. 4.3 and Fig. 4.6 for cryptographic operations on the TH, we
can see that the time saving on constrained devices for the symmetric approach can be
considerable.

We acknowledge that this time saving decreases as the power of the TH increases.
While there are a number of other proposals for IoT access control based on CapBAC,
only one, [60], to our knowledge, gives detailed timing results for an implementation. That
proposal is based on asymmetric key cryptography. In [60], the statement is made “the time
required for the whole mechanism was 1205.83ms” of which approximately half is taken up
by signature checks on the TH (i.e. approximately 600ms). Note that these results were
obtained on a more powerful TH than the one used for our experiment. If our approach
was implemented on the hardware used in [60], we would expect a significant time saving.
More importantly, note that the ‘non-signature’ checking portion of our implementation
takes approximately 460ms (cf. Fig. 4.8) while that of [60] takes approximately 600ms, a
significant saving considering that our TH hardware is less powerful.

Proposal [60] involves two checks, one for the UD’s signature on the request and
another for the CMS (or equivalent) signature on the capability. The best times in the
literature for these signature checks uses ECC. Including the time period for two such
checks in our results would mean the signature checks, which are not the focus of our
asymmetric key based implementation, would completely overshadow the time taken by
the functions of our proposal. This does show that our proposal using an asymmetric
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key cryptography adds no significant time to the basic signature checks required by all
CapBAC proposals for the IoT.

4.4 Comparison of Number of Policy Expressions

In this section, we provide a comparison of the number of policy expressions required in
our proposed approach in a real-world scenario with the existing approaches. To illustrate
the reduction in the number of policies flowing from our approach, we consider a use
case example of IoT-enabled smart healthcare facility where serval actors are involved (cf.
Section 3.3 of Chapter 3). In such a scenario there are many patients, doctors, nurses and
corresponding medical devices are attached to the patients. We assume that on average
there are 10 to 15 devices connected per bed [349]. These devices can be of many types
e.g. blood pressure sensors, blood analyzers, body pressure sensors, etc [350]. A typical
hospital will employ one nurse for every four beds and one doctor for every three nurses
(or twelve beds) [351]. If we consider a facility with 1200 beds, there will be approximately
300 hundred nurses and 100 doctors [352].

In a typical hospital, nurses and doctors are assigned to wards. Let us assume, for
the sake of argument that the ward size is twenty beds, nurses are assigned to individual
wards and doctors cover two wards or equivalent.

Access could simply be granted to all staff to all sensors of all patients and currently
this approach is often adopted for lack of an alternative. However, this is not fine-grained
and risks patient privacy and confidentiality. Addressing these issues require a fine-grained
approach to ensure that staff only have access to the data of patients under their care. In
the absence of any mechanism for managing policies, the policies would have to be written
on a one-to-one basis. That is, each staff member would have to be given access to the
sensors on an individual basis. Given the above figures, the number of policies would be
given by:

(a) 20 (number of patients per ward) × 10 (number of sensors per patient) × 300
(number of nurses) = 60,000

(b) 20 (number of patients per ward) × 10 (number of sensors per patient) × 2
(number of wards allocated to each doctor) × 100 (number of doctors) = 40,000

That is, fine-grained access control in the scenario described above would require
100,000 individual policy expressions in the absence of any policy management. Not only
would this be almost impossible to compose, it would be very hard to manage when
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patients or staff are moved from ward to ward or when the sensors attached to a patient
are altered. Note that, the above is a conservative estimate. The number of sensors per
patient could soon reach as high as 65 [353].

Now consider the alternative under our proposal. Each sensor is registered in the
system, with an attribute identifying the patient to whom it is attached. Doctors, nurses
and patients also have attributes identifying their status and ward.

Each job function within the organization (e.g. registrar, different types of specialist
e.g. cardiologist, neurologist, anaesthetist, nurse, senior nurse. etc.) will have a correspond-
ing role. The number of such roles may be in the order of a dozen or so. Each role will need
a ‘Role Membership Rule’, based on the attributes of the potential member. As noted
above, the devices attached to patients will come in a number of different forms. Each role
can be given a rule covering each type, to allow tailoring to the available operations of the
different types. Policy management can be achieved by employing capability templates and
parameterization as described in Section 3.4.7 of Chapter 3. Capability templates specify
the type of device and the operations conveyed by role membership. Recall, capabilities
are issued from the appropriate capability templates. The operations will vary from role to
role, but this does not affect the number of overall policies, so is ignored here. For example,
consider a rule governing ‘heart sensors’. We would then have a capability template of the
form e.g.,

(Type: Heart Sensors; Operation: Read; Parameterization Rule: If Device.Patient.Ward = User.Ward)

That is, a user that has fulfilled the role membership requirements will be granted a
capability for the sensor attached to a patient if the role member’s ward matches the ward
of the patient to whom the sensor is attached.

One such rule could be provided for each type of sensor. As noted, this will allow
the available operations to be tailored to the precise device type and role of the user. The
number of policies required is then:

(a) One ‘Role Membership Rule’ for every role

(b) One ‘Parameterization Rule’ for every sensor type for every role

Assuming, as above, twelve roles and, for example, ten sensor types, we have a total
of 132 policy expressions. This is significantly less than the alternative. Note also that
updates are significantly easier as patients and staff assignment to wards change; all that
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is required is changes to the attribute assignment. Access will then flow from there. In
the alternative case, individual alteration to numerous policies will be required.

We note that the above is an example only, as there other methods of structuring
the attribute assignment (for example, doctor assignment to patients rather than wards)
however, the savings would also be significant in that case.

4.5 Adversary Analysis

Any IoT system presents a large attack surface to potential adversaries [354] [355]. As
we discussed earlier (in Section 2.1.4 of Chapter 2) possible vulnerabilities extend from
the devices themselves, through the communication between them to the services and
applications provided. Users, and the inherent characteristics of IoT systems, also provide
threat opportunities. However, a detailed analysis on IoT threats and attack modelling
is out of the scope of this chapter. In this section, we follow the approach of [356] and
outline a few adversary scenarios and their countermeasures that overlap with our use-case
as outlined in Section 3.3 of Chapter 3.

Example Scenarios: The possible ways for an adversary to misuse the system include
impersonating the end user, unauthorized access to THs, unauthorized use of attributes,
etc. Now we discuss that an attacker or an authorized user could attempt the following:

• Scenario 1: An adversary attempts to use attributes that have not been assigned to
them in an attempt to access a resource.

• Scenario 2: An adversary attempts to gain access to a resource in violation of the
capability conditions.

• Scenario 3: An adversary attempts to use a capability that is not assigned to them in
an attempt to access a resource.

• Scenario 4: An adversary attempts to modify a capability.

• Scenario 5: An adversary attempts to gain access to a TH that is not authorized by
the capability.

Addressing the Scenarios: We argue that asymmetric key cryptography can provide
better security compared to a symmetric key cryptography. However, implementing public-
key cryptosystems on IoT devices is challenging due to the resource-constrained nature of
the devices. Therefore, in this adversary analysis, we examine the use of a light-weight
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<Policy xmlns="" RuleCombiningAlgId="rule-combining-algorithm:deny-overrides"
PolicyId="policy1">
<Rule Effect="Permit" RuleId="read-resource:rule1">

<Description>
Doctors can only read their patient’s heart sensor.

</Description>
<Target>

<AnyOf>
<AllOf>

<Match MatchId="function:string-equal">
<AttributeValue DataType="string"> get </AttributeValue>
<AttributeDesignator AttributeId="action:action-name" Category="action"
DataType="string"/>

</Match>
<Match MatchId="function:string-equal">

<AttributeValue DataType="string"> heart sensor </AttributeValue>
<AttributeDesignator AttributeId="resource:type" Category="resource"
DataType="string"/>

</Match>
</AllOf>

</AnyOf>
</Target>
<Condition>

<Apply FunctionId="function:integer-at-least-one-member-of">
<AttributeDesignator AttributeId="resource:patient-id" Category="resource"
DataType="integer"/>
<AttributeDesignator AttributeId="subject:patient-ids" Category="subject"
DataType="integer"/>

</Apply>
</Condition>

</Rule>
<Rule Effect="Deny" RuleId="deny-everything-else"/>
</Policy>

Figure 4.13: A simple XACML policy that depicts the permission assignment to appropriate
users. Note, the XACML syntax has been simplified to improve readability but this is a
fully functional policy document.

protocol that relies on symmetric key cryptography (cf. Section 3.6 of Chapter 3). Recall,
our proposed access control architecture could easily work with either approach. We
further assert that, a system that is developed based on a symmetric key cryptography
can easily be built using an asymmetric key cryptosystem.

We also provide a policy-based approach to address the adversary. Let us consider a
simple XACML policy that we illustrate in Fig. 4.13. The policy covers access of doctors
to the output of heart sensors attached to patients. The policy contains two rules and the
first rule that is applicable to the request is evaluated as per the rule combining algorithm
attribute. The first rule applies to “get” actions on “heart sensors”. This is specified in
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the target section of the rule. The condition for this rule is that the patient-id attribute
associated with the resource (i.e. the name of the patient on which the sensor is attached)
must appear in the list of patient-ids associated to the subject (i.e. the list of patients
handled by the requesting doctor). If this condition evaluates to false, then the access is
denied. The second rule simply returns “deny” if the first rule is not applicable.

If there is no authorization, any doctor can see the sensor-related output of any
patient, which in obvious is not an ideal condition. At the very least it jeopardizes patient
privacy. To address the authorization issues, XACML policy specifications and their
enforcement is necessary. Now we address how our proposed access control architecture
deals with the aforementioned adversary scenarios.

• Scenario 1: In our proposed access control architecture, the RM verifies the roles of
the user based on the attributes recovered from the UAD. If satisfied, the RM consults
the appropriate policies with the PMU and then desired capability is issued by the
CG. A user cannot claim attributes that have not been registered in the system.

• Scenario 2: Recall, that the Condition Rule (illustrated in Section 3.4.6 of Chapter 3)
is written within the conditions specified in the XACML policy. These conditions are
checked by the TH upon presenting an access request by the UD. For a capability
that can only be used between 9am and 5pm, this will be explicitly mentioned in the
condition. The condition will be checked by the TH and access only allowed at the
proper times.

• Scenario 3: In Section 3.6.3 of Chapter 3, we showed that when an access request
arrives at the TH, it decrypts the capability using the key shared with the TRR. The
TH also obtains the session key (i.e. KUD,TH) and decrypts the remainder of the
message, and check the authenticity of the UD to whom the key was issued, thus
assuring that the correct UD is the one making the request. As the unique UD to
whom the capability was issued and the TH are the only entities that know the key
KUD,TH , only the correct UD would be able to formulate the message.

• Scenario 4: In Section 3.6.2 of Chapter 3, we discussed that when a capability is
generated, the entire information is encrypted under the key the TH shares with the
TRR (i.e. KTH). This key is unavailable to the adversary and therefore the capability
that is supplied to the TH with the request cannot be modified.

• Scenario 5: As illustrated in the above XACML policy specification (cf. Fig. 4.13),
if an entity wants to access a resource then the resource must match the identity of
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a TH listed in the capability. If the entity attempts to use a capability to access
a TH not listed in the capability, such access will be denied. Returning to the use
case example of Section 3.3 of Chapter 3, where an authorized user, e.g. Doctor A,
wants to see heart-related medical records of all the patients that are admitted to a
particular hospital, not just the patients under his care.

4.6 Summary

In this chapter, we have provided the implementation details and performed an evaluation
of the achieved results of the access control architecture that we depicted in Chapter 3.
We observed that, previous works do not incorporate the advantages of RBAC, ABAC
and capabilities to the extent of our proposal. This is especially true when considering
capability management and in taking full advantage of the flexibility offered by attributes.
Moreover, our proposal extends on previous works that are highly centralized in nature by
leveraging the edge intelligence of the IoT through locally evaluating authorization requests
by capability evaluation. Importantly, a number of the works cited in Section 2.3.3 of Chap-
ter 2, especially those with similar aims to ours, do not provide extensive implementation
information.

We evaluated the performance of the proposed architecture using symmetric key
cryptography. Our proposed system improves upon the performances (of using asymmetric
key cryptography) as it does not depend upon a PKI-based system for authentication. Note
that the results in Fig. 4.3 represent a worst-case scenario (i.e. the most time consuming).
As discussed in Section 3.6 of Chapter 3, if the user already holds a suitable capability
then communication with the CMS, and the time represented in Fig. 4.4 is not required.
The majority of the time in this case is taken by the decryption operations in the TH, for
the capability and access token. Importantly, with a more powerful TH this figure may
decrease significantly. Even as it stands, with the TH in our setup implemented on a cheap
commodity device, the times are comparable to other proposals as discussed above. Our
results also showed that the use of role membership based on attributes is practical and
useful while considering the scale of the number of users and the provision of fine-grained
access to resources. It can be easily incorporated with symmetric key cryptography with a
full-fledged ABAC engine. We argue that a symmetric key based approach is realistic in a
context, e.g. a hospital, where pre-registration of the actors is feasible.

We also evaluated the performance of the proposed architecture in the context of
asymmetric key cryptography. The performance is comparable with the existing CapBAC
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architectures e.g. [60] and [61]. To the best of our knowledge, those are the two previous
works that provide both a conceptual framework and implementation evaluation with
results for a CapBAC architecture for the IoT. However, these two proposals do not
include the capability generation process, whereas we provide an extensive discussion and
implementation for a capability generation process along with its implementation and
evaluation. In our case, a capability is generated from XACML policy rules. Note, unlike
our approach, proposals [60] and [61] used highly optimized ECC and a more powerful
microcontroller which contains 128KB of ROM and 128KB of RAM. The limiting factor
remains signature checking, with the time requirements of the unique features of our
system that do not involve signature checking being two orders of magnitude less than
state of the art in signature checking employing ECC. While our system still requires such
checks, we are not adding significant extra resource requirements in providing flexible and
fine-grained access control.

It is also worth noting that communication between the user device and central
management system will not be necessary in many cases, as our capabilities can provide
access to more than one smart thing without loss of security. We summarize our findings
as follows:

• The proposed access control architecture that we discussed in Chapter 3 has been
implemented and successfully tested.

• We used both symmetric and asymmetric key cryptography for authentication and se-
cure communication. Our evaluation highlighted that the proposal has clear advantages
in performance compared to other CapBAC mechanisms.

• The symmetric key based design depends upon pre-registration of the user device
and the things with the central management system. To avoid this would require the
use of asymmetric key cryptography which would increase the round-trip time in the
communication.

• The use of asymmetric key based approach may be especially time consuming if
the user has to supply the required attributes which are signed by other authorities.
The signatures on these attributes would then need to be checked by the central
management system.

• Our results suggested that the proposed style of distributed authorization system for
resource constrained IoT devices can be an alternative to fully centralized authorization
systems for large-scale systems e.g. the IoT.
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• We also observed that the use of such a decentralized authorization system for
IoT-enabled healthcare systems can provide reasonable response times even on very
low-powered devices.

• Our results are limited by the processing power of the things used. It is clear that a
more advanced microcontroller would produce better performances.

In the next chapter (Chapter 5), we plan to investigate the notion of identity and its
management for the IoT. This will in turn help to understand the use of attributes for
identifying an entity rather than using a predefined concrete identity of that entity, which
is immensely important in case of a large-scale and dynamic system like the IoT.
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Chapter 5

Modeling and Management of
Identity

In Chapter 3, we proposed an IoT access control architecture, and in Chapter 4, we
described a detailed implementation and evaluation of the model. We argue that the
factors e.g. the scale, the diverse range of devices and communication mediums employed,
the dynamic and temporary nature of interactions, and the dynamic characteristics
of services and applications in the IoT, mean that it is difficult to ensure that only
authenticated and authorized entities can access the appropriate resources. In the IoT, it
is difficult to predict, in advance, which entities will interact and require access to services
and to precisely identify the exact services to which they will seek access. Therefore, we
highlight that depending upon a concrete identity of an entity in such systems is not an
ideal basis. This raises important questions concerning the nature of identity and identity
management for such IoT systems. There exist many approaches to digital identity and
digital identity management, however examination of these questions in the context of the
IoT is still in its infancy. Fundamentally, a formal model of IoT identity covering all its
aspects is still lacking. Towards addressing this research gap, in this chapter, we provide
a detailed discussion on modeling and management of identity for the IoT. The major
objectives of this chapter can be summarized as follows:

• To analyze, appraise and classify the various representations of digital identities in a
detailed and comprehensive manner, and examine their suitability in the context of
an IoT system.

• Based on the findings, outline the requirements and characteristics for IoT identity
and provide a formal model of IoT identity.
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• To employ the model and illustrate specific use-case examples to demonstrate the
suitability of our proposal in real-world IoT systems.

The rest of the chapter is organized as follows. In Section 5.1, we briefly outline
the significance of identity and identity management in IoT context. In Section 5.2, we
provide a detailed discussion of the core concepts of identity and examine its various
representations in detail. In Section 5.3, we present our approach of IoT identity, discuss
the importance of attribute-based identity and illustrate a formalization for IoT identity.
In Section 5.4, we discuss specific use-case examples to derive the proposed approach in the
real-life scenarios. Finally, we summarize the chapter and list our findings in Section 5.5.

5.1 Introduction

Identity management plays an important role in many application contexts. For instance,
e-commerce, e-government, online marketing, just to name a few areas. There are a variety
of approaches and their representation for management of these identities and their secure
distributions. Identity is often a crucial concern for interoperability (e.g. in surveillance
contexts) and privacy (e.g. personal data protection in a healthcare application) [357].
When it comes to the IoT context, identity and its management plays a significant role
due to the characteristics of these systems (cf. Chapter 2). Therefore, with the widespread
expansion of the IoT, among others, the creation, management and usage of digital
identities is one of the prime issues [128]. More and more identities and credentials will be
generated, making their management both important and challenging for service providers
and users. In the IoT, it is no longer sufficient to simply manage the identity of a person or
device that is connected to an application or service. It is more to manage where an entity
may possibly be connected to a large number of interconnected heterogeneous things.

5.1.1 Problem Description

In Chapter 2, we noted that digital identity is considered as one of the major bases for
authenticating and authorizing devices, their management and data flows in an online
system. Digital identity and identify management have been studied for some time [256].
The majority of previous work, understandably, addresses the issue of digital identity
for general computing systems without considering the needs of the IoT. In particular,
these identity models typically consider only user identity [358], although some do address
service provider identity. In the IoT, identity also needs to capture all the constituent
things. Identity has been defined and represented in various ways e.g. as globally unique
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identifiers, a combination of user characteristics [359], a set of attributes of the users [360]
or even a set of claims [361], just to name a few approaches. However, when it comes to the
IoT, the majority of approaches do not address the issues of identity and its management
precisely, keeping in mind the correlation between the dynamic nature and scale of the
number of things. The issue of unreliable identification of subjects and objects, concerns
for security, especially the reliable propagation of sensitive information, emphasises the
importance of an appropriate approach to identity (and its management) in the IoT.
For instance, Glässer and Vajihollahi [362] discuss identity with different approaches but
they do not consider the IoT issues. While Anggorojati et al. [258] take account of IoT
issues and their management by incorporating identity-based capabilities and contextual
information, they do not examine the issues of IoT identity in a comprehensive manner.
We provide a detailed representation of these approaches in Section 5.2.

Most studies are concerned with how identities can uniquely identify a particular
entity. For example “a single identity cannot be associated with more than one entity” [256].
This is true even when identity is based on attributes (e.g. name, age, location, etc). We
argue that such an approach is not sufficiently flexible for a large and highly dynamic
system like IoT. When considering issues e.g. policy management and delegation in the
IoT, we need to be able to flexibly handle questions of identity. Recall, we already discussed
in the previous chapters, that in the IoT, it cannot always be known in advance which
users will access which services or devices or which devices will be available at the time
when access is requested.

Further, from the above we can observe that there are significant challenges that
still need to be addressed for identity management for the IoT. A few frameworks have
been proposed (cf. Section 5.2.2), and some that have drawn from work in other contexts.
However, it has not been demonstrated that they adequately address the particular nature
of the IoT, including its scale and heterogeneous context. Moreover, we argue that, identity
management for the IoT is not just the use of a unique ‘identifier’ allocated to each user,
device, thing or service. It should deal with the issues of attributes and information that
can be uniquely used for an access control process that allows a legitimate user to perform
an authorized operation. In the IoT, many things may conform to the same identity and
one identity may refer to a set of things performing different operations. Therefore, it is
unlikely that representing the identity of each thing based on their concrete unique identity
will be sufficient. For instance, specifying rules based on the identity of each individual
light in a building is not feasible in an IoT context. An alternative could be to represent
‘the lights of building E6A’. Any approach should also account for the ability to address
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collections of entities, and a given collection may be made up of users, services and things.
This requires dealing with both the scale and dynamic nature of the IoT.

5.1.2 Contributions

To address the aforementioned issues of IoT identity and its modeling, in this chapter, we
examine the notion of identity from IoT perspective in a systematic and comprehensive
manner. In particular, we make the following contributions.

• We study the core concept of digital identify and present a novel idea of IoT identity
from the things perspectives.

• We propose a formal model of IoT identity and discuss its feasibility in real-world IoT
scenarios using practical use case examples.

• We employ attributes for the authorization and authentication of an entity, and it
does not depend upon the concrete identities of the entities.

There are a variety of approaches available to identity management [359], including
centralized identity management, federated identity management, isolated identity man-
agement [363], etc. The choice of such an approach is typically a separate question to
the nature of the identities supported. We note that identity and identity management
are closely associated, however, the scope of this chapter is limited to identity and does
not consider an architecture for identity management. For simplicity, our proposal can
easily be adopted to any of the available digital identity management frameworks that we
discussed in Section 2.4 of Chapter 2.

5.2 Core Concepts

In this section, first we discuss and define identity in detail and then provide a comprehen-
sive analysis of the various representation of identities.

5.2.1 Identity

There is no unique definition of identity, it is subjective and depends upon the applied
environments. Commonly, the identity of an entity, subject or object, refers to the fact of
who it is. Usually the identity of an entity is represented as a set of identifiers [359]. The
identifiers can be referred to as the characteristic elements of that entity, that are used
for identification process. Thus, each identity is reflected by a set of identifiers. Notably,
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the number of identifiers is greater than the number of identities, which is again larger
than the number of entities. Each identity is mapped to one entity, but an entity can have
more than one identity mapped to it. Identity can be permanent or temporary depending
upon the system’s context. The identity has the ability to distinguish between various
entities when performing a common action within a specific scope in which they are valid
and explicit. To this regard, identity is dynamic and may change upon the context and
purpose. Even in a single scope, an entity may have multiple identities, which signifies the
fact that the identity is not unique [364].

Identity (and its management) is crucial for the IoT to ensure that only authorized
users access the system and the information it contains. In a system where users may
have a large number of devices, being able to easily identify them, both uniquely and
as groups, is vital in ensuring ease of use, security, privacy and trust. Recall, identity
management enables verifying the identity of a legitimate user and the resources that
the user is attempting to access [54]. Identity management in the IoT encompasses the
creation and usage of digital identities for users, devices, things and systems.

Therefore, an identity can be seen as the unique representation of an entity with
certain characteristics that can be easily specified using a set of properties. Notably, digital
identity differs from the physical identity in terms of its usability and presentation [365].
In a physical identity management process, a person’s identity can be their name, age and
employee registration number, which uniquely identifies the person within the organization
represented by a token e.g. a work identity card. Recall, when we refer to identity for the
IoT, we generally refer to the digital identity. A digital identity can be defined as “a form
of identity resulting from the digital codification of identities in a way that is suitable for
processing and interpretation by computer systems” [359].

5.2.2 Representation of Identity

Now we provide a comprehensive discussion on different representation of digital identity.
We examine the term identity in a broader scope not limited only to the IoT and its
associated services and applications. We classify these various characterization based on
their representation and properties.

Identity is a Set of ‘Partial Identities’: Clauß and Köhntopp [366] represent
identity as the combination of personal data that are associated to a user (i.e. a human
user). The identity of the person is denoted as the set of combinations of a ‘partial identity’
that are used for certain contexts. Depending upon the situation and the context, a person
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Figure 5.1: The use of partial identities in different contexts.

may be represented by different partial identities. For instance, the partial identity of
Alice may vary between her bank and her study-place. In Fig. 5.1, we illustrate the partial
identities for Alice in two different contexts. In such, for bank, a partial identity may be
composed of name, date of birth and bank account number. Where, for university, the
partial identity of Alice may be composed of name, date of birth and her student identity
card number. However, even though a user may have a multitude of partial identities, the
emphasis here is on linkability and uniqueness, allowing for example, the repeated use of a
partial identity to build up a reputation.

Such et al. [367] formalize such partial identities as follows: given a finite set of
attributes A= {a1, . . . ,an} each one with finite domain Vai = {v1, . . . ,vk}, a set of entities
E and the entity e ∈ E, a partial identity of the entity e is a vector Ie = (i1, . . . , in),
satisfying ij ∈ Vaj and ∀d[d ∈ E \{e}→ ∀Id(Id 6= Ie)]. Here, Va is denoted as the value of
each attribute a (a ∈ A) and the set of entity E (e ∈ E) are context dependent. Further,
the authors argue that an identity of an entity is composed of many partial identities of
the said entity. The formalize identity of the an entity e is: Ie = ⋃

Ije . Here, identity of
entity e, denoted as Ie, is the union of all partial identities (denoted as Ije ) of e.

Similar to the concept of [367], Ferdous and Poet [368] represent identity as a set
of partial identities and they formalize the partial identity and identity as follows: for
a domain (d), the partial identity of a user (u), where u ∈ Ud within d, can be denoted
as, parIdentud = {(a,v)|a ∈ Ad,atEntToV ald(a,u) is defined and equals v}. Where, Ud
denotes a set of users, a is a single attribute of u, and v is the value of a. Notation
atEntToV ald is represented as a function of attribute-value pair of an entity in domain
d. This function returns the corresponding value of the attribute in domain d and is
represented as: Ad×Ud→ AVd, where, Ad is a set of attributes. A domain is referred to
as an environment in which an entity exists and works. The authors further argue that, if
there are n number of attribute-value pairs for a user u in a domain d, then partial identity
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can also be represented as follows: parIdentud = {(a1,v1),(a2,v2),(a3,v3), . . . ,(an,vn)}.
Finally, the identity of user u is represented as the combination of all partial identities in
a domain d, as follows: Identu = ⋃{(d,partIdentud)|d ∈D such that u ∈ Ud}, where D is
a set of domains.

Identity is a Set of Attributes: Some authors directly consider the identity of
an entity to be built from attributes without the use of partial identities. For instance,
Dabrowski and Pacyna [369] constitute identity as a set of attributes (e.g. name, bank card
number, passport number, etc.) belonging to a particular entity that uniquely distinguishes
that entity from another. The entity can be a person, a device or a network service that
exists in real-life. The authors argue that the identity can be temporary or permanent
based on the identity management. Identity management here includes attestation of
entity genuineness and trust establishment through the identity authentication. Similar
to [369], Gomez-Skarmeta et al. [370] represent identity as a set of attributes that can
uniquely identify a person, machine or service that may have many attributes. The authors
further propose that each identity is managed by a trusted entity of its corresponding
home domain. The home domain is viewed as a domain where each identity is unique.

An attribute set can be denoted as a variable that describes the various char-
acteristics of an entity. The attributes can be presented formally as follows [371]: if
attrei represents the ith value of entity e, then the attribute set can be defined as:
ATTRe = {attre1,attre2, . . . ,attren} that contains with n number of attributes of entity
e. For instance, the attribute-based identity of student Alice can be represented as follows:
Alicestudent = {Studentid + Name + Phone Number + Date of Birth + Subjectcode + Department}

Alpár et al. [360] also represent identity as a set of attributes. These attributes form
the identity of an entity that is limited within a specific scope. The authors use attribute-
based credential technology for a flexible and privacy-preserving authentication of the said
entity. The said attributes can be ‘identifying’ and ‘non-identifying’, i.e. some attributes
hold for a single individual and some attributes hold for many people. For instance, for
the former, ‘bank account of Alice’ identifies the sole holder of the account, where for the
former, say attribute ‘female’ in general does not identify a specific entity [372].

Identity is a Set of Pseudonyms: Bichsel et al. [373] represent identity as a
preferred combination of user’s credentials and ‘pseudonyms’ chosen by the user. These
combinations are governed by a set of policies that the user must satisfy before accessing
a resource. In this case, the pseudonym is the equivalent of the user’s public key. The
authors posit that, “unlike public keys of which there is only one for every secret key,
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however, users can generate an unlimited number of unlinkable pseudonyms for a single
secret key. Users can thus be known under different pseudonyms with different verifiers,
yet authenticate to all of them using the same secret key” [373]. However, this still assumes
a unique link between pseudonym and user.

As discussed by Hansen et al. in [364], for a user, except for their real-name, anything
can be regarded as the pseudonym, even if they belong to hardware or software in the
individual’s possession. The pseudonym can be represented as an identifier where only the
entity that assigned the pseudonym knows the real-life identity behind it. The pseudonym
can be self-assigned or defined by a trusted third-party [256]. Importantly, the use of
pseudonyms as identifiers helps to protect anonymity in an identity management process.

Identity is a Representation of an Entity: El-Maliki and Seigneur [374] consti-
tute identity as the representation of an entity in a specific context. Chen et al. comprise
identity as the representation of an entity within a specific application domain [254].
Similar to [374] and [254], Jorns et al. [375] also construct identity as the representation of
an entity in a specific context or dedicated application domains.

L’Amrani et al. [376] represent identity as an entity that is combined with context
and characteristics. The entity can be a person, organization or resource. The context is
the environment for which the identity is defined, and if the context changes the associated
identity can change. The characteristics can be defined implicitly (e.g. manually) or
inherits naturally (e.g. fingerprints, voice, biometrics, etc).

Identity is an Individual Characteristic: Jøsang et al. [359] discuss identity of
a person consisting of the individual characteristics by which that person is recognized.
For instance, Alice in an organization can be identified as the unique combination of name,
address, nationality and passport number. This further argues the definition of [360]
that represents identity as the set of user’s attributes. Angin et al. [377] also constructs
identity as a set of unique characteristics of an entity that is used to identify the entity
with identifier.

Identity is a Set of Claims: Cameron [361] represents identity as a set of ‘claims’
made by one digital subject about itself or another digital subject. The claims can be
any identifier or a set of identifiers. For instance, for a student, claims can be the student
number provided by the university or a set of identifies e.g. name, address, date of birth
and nationality. This further argues the use of attributes for the identity as in [369].
Where these claims can be denoted as unique (or a set of) user’s attributes for a specific
purpose, in this case to identify a student within the university.
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Formally a claim can be seen as a statement about a user, similar to an attribute
assertion in Security Assertion Markup Language (SAML) 2.0, expressed and signed by the
identity provider. However, for obtaining such claims, the users need to be authenticated
themselves to the identity provider [378].

Identity is a Statement: Fongen [379] refers to identity as a ‘statement’, similar
to a public key certificate in the sense that it attests a binding between a public key and
the identity information of the ‘owner’ of the private key. The identity statement is issued
by an identity provider similar to a Certificate Authority (CA) like service. Formally,
the identity statement of principal x signed by the identity provider of a Communities of
Interests (COI) a can be denoted as (Idx)a and is represented as follows:
(Idx)a = Namex + PublicKeyx + Attributesx + Timestamp + Serialnumber + Signaturea, where,

Attributesx is the set of name-value pairs and Signaturea is the signature of the identity
provider of COI a. The COI represents the group of similar interests within a domain.
For each COI there is one unique identity provider. Here, the domain is a unit of trust,
authority and administration with some specific properties [380].

Identity is a Set of Credentials: Cao and Yang [255] consider identity as the
representation, proofs and credentials of user entity which should allow the user the desired
services and applications. This is bounded by a specific context. The credential could be
the digital certificates (e.g. X.509), One Time Password (OTP) or Personal Identification
Number (PIN).

Identity is an Instrument: Torres et al. [381] represent identity as an instrument
that can be used for providing information to a system about itself. It is associated with
an entity or generally formed by a unique identifier. The authors argue that the identity
is a virtual concept and does not exist in real-life.

A number of the authors mentioned above highlight the importance of supporting
privacy in the context of a shift to a digital society. To this end it is worth considering
approaches to identity management that focus on privacy. For example, Camenisch et al.
propose a privacy-aware identity management system ‘PRIME’ (PRivacy and Identity
Management in Europe) which focuses on giving users control of their personal data [364].
The system employs cryptographic mechanisms to provide secure and anonymous com-
munication and to support various forms of identity including pseudonyms (i.e. conceal
a user’s or system’s identity). The primary goal of ‘PRIME’ is the maintaining of the
users privacy and accountability in an electronic transaction. The system architecture
includes users, service providers and certification authorities. Users are the entities who
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are requesting service from the service providers. Service providers are the computing
systems that provide services to the users by means of transactions. Finally, a certification
authority is a special type of service provider which can issues certificates that are signed
digitally by them. While promising, its applicability to the IoT is uncertain as it relies on
a centralized database that holds certificates and uncertified data of entities, as well as
policies. Even if this proves unsuitable for the IoT, the emphasis on privacy is notable.

Entities Identities Attributes

Figure 5.2: Standard relationship between entities, identities and attributes.

In summary, what these approaches typically have in common is an emphasis on
being able to link identities (even partial entities and pseudonyms) uniquely to a particular
entity, as can be seen in Fig. 5.2 above, and also Fig. 1 from [366]. This is not sufficient
for a general IoT context. Even grouping users together (for example in groups and
roles) still requires unique identification of those users. It is difficult to predict, in a
general IoT situation exactly which users may interact with which devices. Therefore
unique identity is not the ideal basis for identities from a policy management point of
view. Similarly, identifying the targets (e.g. connected LED lighting systems) of policy
by (for example) unique device identity can result in inflexible and overly-detailed policy
expressions. Many of the existing solutions rely on attributes, or related concepts, but
still insist upon uniquely identifying entities.

We build upon and extend the previous approaches and their use of attributes, where
users are identified by sets of attributes (e.g. name, age, location, etc). Significantly, in
ABAC, access control permissions are assigned based on the policies that are governed
by the attributes. These attributes can be seen as the properties that describe specific
features of users, resources, contexts and conditions. The attributes of the user and those
of the resource together determine the set of operations (based on the policies) that can
be performed in a specific context. However, in Section 3.4.3.1 of Chapter 3, we discussed
that in ABAC, while multiple users may be referred to by an attribute set in a policy (i.e.
using a set of rules), typically there is no concept of such a set constituting an identity or
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being able to be referred to as a distinct grouping (so, for example, being able to be used
in multiple policy expressions), nor is the idea extended to the targets of the policy.

5.3 An Approach to IoT Identity

In this section, we present our approach to IoT identity. First, we discuss the notion of
IoT identity. Second, we provide the requirements and properties that can be considered
when modeling an IoT identity. Third, we illustrate our approach for IoT identity based
on the thing’s perspective. Finally, we give a formal specification of the model.

5.3.1 IoT Identity

Now we examine identity for the IoT from the lessons learned. Some contributions have
discussed IoT identity and its management. For instance, Chen et al. [254] present an
identity management framework for IoT. In this, identity is represented as a set of general
information of an entity e.g. identifier, access information, etc. Thus, in this case, identity
is predefined and uniquely assigned to each entity. Fongen [382] presents a view of identity
management and integrity protection in the IoT. In this, the concept of identity is denoted
by the unique device identity. Sarma and Girão [383] present a discussion on identity in
the IoT with ‘identinet’ and ‘digital shadow’. The identinet represents each end-point (e.g.
user, device etc.) with a unique identity. Digital shadow represents the information that
an entity uses. Once again, this approach leads identity to a device level. Further, despite
the flexibility promised by these concepts, issues of scalability, interoperability and identity
management in their implementation in a heterogeneous IoT system are not addressed.

Similar to [383], Thuan et al. [384] present an identity management system for the
IoT that is user centric and allows device authentication and authorization based on unique
user identity. Trnka and Cerny [385] and Santos et al. [386] discuss identity management
for a collection of devices in an IoT system. Mahalle et al. identify a number of challenges
for identify management in the IoT [387]. These include the preservation of privacy of
identity and the need for single sign-on (SSO) facilities to handle the scale of interaction
in the IoT. While they outline a framework for identity management in the IoT, it is only
briefly described. Once again, in these approaches, identity is represented as the unique
user or device identity.

A major challenge in the IoT is device identification i.e. what the device is, and
authentication i.e. is the device the one it claims to be. Cryptographic protocols can
be a solution, however, the resource-constrained nature and scale of IoT systems makes
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it infeasible to apply them directly to the IoT. To address this issue, recent proposals
e.g. [388] and [389] argue that the device’s behavioural fingerprinting can be used to
solve both of these problems effectively. Device behavioural fingerprints are built up by
observation of the device, e.g. via its network traffic and effectively consist of dynamic
attributes of the device. Machine learning techniques are applied to determine whether the
device is behaving within acceptable norms. The major aim of behavioural fingerprinting
is to detect any malicious activity by periodically observing and validating against an
ideal behavioural profile of the device.

Besides device fingerprinting, the majority of the above contributions rely on unique
identities, typically based on unique device characteristics. Device fingerprinting has not,
so far, been used for wider identity purposes, but does depend on more general attributes.

5.3.2 Requirements and Considerations

We notice that, most of the aforementioned proposals (cf. Section 5.2.2) for IoT identity
build upon a concrete identity-definition (i.e. knowing the subjects and objects in advance),
which is unsuitable for a large and highly dynamic system like IoT. We argue that the
IoT identity should support the characteristics of an IoT system to provide a flexible and
fine-grained identity modeling [17] [127], for instance, identity construction must consider
the characteristics of an IoT system (cf. Section 2.1.2 of Chapter 2). For a quick recap,
we highlight them as follows:

• The scale of the system, where potentially billions of things are interconnected with
one another.

• The highly dynamic nature of the system, where interactions between the things may
be flitting and happen only once.

• The heterogeneity of devices, systems and applications. This may contain various
operating platforms, network technologies and communication protocols.

• The resource-constrained nature of IoT devices, that are limited to processing speed,
memory capability or even battery power.

• The high number of management domains where integration of services and application
can have a crucial issue, just to name a few characteristics.

However, the design choice depends fully upon the specific environment, system
requirement and designer’s preferences. Given the dynamic base of such IoT systems, we

160



observe that identity management should react to the change in entity attributes over
time and context. We propose the following properties which can be considered when
modeling an IoT identity.

• An identity consists of a set of attributes, and their values, the members of the set
varying in the different contexts of an IoT system (e.g. different service provision or
different layers of the architecture).

• An identity can refer to a collection of things that function in a specific context (e.g.
location awareness).

• An identity should have a purpose e.g. to provide a set of services (e.g. to supply data
from physical objects).

• An identity should be treated uniformly across heterogeneous platforms (e.g. identity
of an entity can easily be noted across the domains).

• The values of attributes in an identity can be dynamic and these can change with the
membership of identity collection (e.g. attribute-based identity credentials).

This results in a situation where entities may share identities on a dynamic basis.
This remains under the control of the system authority that creates the identity, as
they define the attributes and values that constitute the identity. As the interactions
with the IoT may be spontaneous, short-lived and, in quantity, large-scale, it is easier
to manage them on the basis of attribute sets (i.e. partial identities) which define the
intended participants (e.g. users, devices, etc.) in the interactions, rather than the concrete
identities. Towards this, in the next section, we discuss our approach for IoT identity.

5.3.3 Our Approach: Things-Centric Identity

We argue that the scope and nature of an IoT system mean that insisting on definitive,
unique, identity in every case is overly restrictive. While in some circumstances such
unique identification will be required, in other cases less defined identities will suffice
for the needs of application functionality and policy specification. Unique identities will
not always be known in advance (for example, which customers may enter a shop or
purchase a movie ticket), however partial identities (e.g. age) may be able to be defined in
advance. We further contend that such partial identities are best represented as sets of
attributes. This is in accord with the majority of previous work on identity, as summarized

161



Entities Identities AttributesPartial Identities

Figure 5.3: The proposed vision of IoT identity and its relations with entities, partial
identities and attributes.

in section 5.2.2, however we differ from previous work in moving away from an insistence
on unique identification of users as the core purpose of identity.

Identity functions within a context, e.g. an application domain. Identity itself
consists of the total sum of the attributes of the entity within that domain and can be
viewed as the set of partial identities of the entity (or thing) within that context. The
thing can, for example, be a device, an application, a human user or even an organization.
Partial identities consist of one or more attributes. In other words, an attribute (or a
set of attributes) identifies and distinguishes a thing within a specific context from other
things to a greater or lesser extent. This can be seen as things-centric identity for the
IoT. Note that identity then exists within a certain context and things will likely have
different identities (and partial identities) within different contexts. This is a deliberately
functional approach to identity, identity for us only matters when it serves to identify
a thing within a particular context. A thing’s identity consists of all the attributes it
possesses which are applicable within a particular context. A partial identity is then
a subset of those attributes and again partial identities only have meaning within the
particular context(s) in which those attributes are recognized. Just as things may have
more than one partial identity within a context, more than one thing may share the same
partial identity (cf. Fig. 5.3). For example, multiple people may share the partial identity
(age=‘47’, credit_rating=‘good’). We recognize that the chosen attribute set of a thing
may not be sufficient to uniquely identify it within a certain context, however not all
use-cases require unique identity (cf. section 5.4).

5.3.4 Use of Attributes

In Chapter 3, we discussed that the things in an IoT system can be represented by a set
of attributes rather than depending upon their concrete identity (for example, all the
lights in a dwelling rather than the individual low-level addresses of the devices controlling
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such lights). We also argued that the use of attributes can reduce the overhead on the
system by avoiding the need to store and specify policies based on the identity of each
entity. In other words, the authentication of an entity should not be dependent upon the
concrete identity of the entity. As noted above, our design uses attributes. Attributes are
a well-known mechanism for use with security and access control. Attributes describe an
aspect of an entity or context, e.g. age, job title, location or function.

In our proposal, attributes are used for the authorization and authentication of an
entity rather than depending upon their concrete identities. In essence, the attributes can
be used to group things together. For instance, an attribute assigned to ‘all lights in my
house’. When policies are expressed, they can refer to the attributes of the entities, rather
than their individual identities. This is, in particular, useful when composing policies
for all members of the group. With such an approach, users can easily express policies
which, for example, give all guests access to all lights in their house, rather than having
to laboriously specify individual policies for each potential guest and light. Users of the
system do not have to remember who all their ‘guests’ are (or, more precisely, who all the
other users are to which they have allocated the attribute ‘guest’) but can easily write
policies specifying the rights provided to ‘guests’. This approach allows a more flexible
view of identity, reflecting the dynamic nature of the IoT. By conceptualizing identity
based around attributes, the linking of entities to identities can dynamically change as
their associated attribute values change.

The use of attributes thus provides a powerful method of specifying access policies
in a flexible and fine-grained way that is particularly useful in an IoT system. In the
previous chapters (Chapter 3 and Chapter 4), we show how using attributes, we can flexibly
define role-membership, which in turn specifies the available permissions. This reduces
the number of policies that must be created by allowing a single attribute expression to
provide access to multiple resources. We argue that the same attributes may have different
values in different contexts. For instance, let us consider the attribute ‘qualified’ which
may exists in two contexts e.g. ‘a taxi driver’ and ‘a plane pilot’. In other words, in this
case, the attribute ‘qualified’ may have the value ‘true’ in the context of a taxi driver but
‘not true’ in case of a plane pilot.

5.3.5 A Formal Specification

Now we illustrate a formal model of our proposal. In specifying a formal model of IoT
identity we follow the approaches discussed in [367], [368] and [378]. The model has the
following components: E, Cnt, A, AV , PId and Id (sets of entity, sets of context, sets of
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attribute, sets of attribute values, sets of partial identity and sets of identity respectively).
Where, e ∈ E, cnt ∈ Cnt and a ∈ Acnt. We can formally represent an IoT identity as
following tuple: IoT_Identiy_Model = {E,Cnt,A,AV,PId,Id}, where:

Definition 5.1 (Entity): The set of entities is represented by E. It is a thing,
which could be, for example, a user, device, services and applications. An entity may be
either an individual or an organization that has a distinctive existence in a physical or
logical sense. Note, E is the set of entities. It can be denoted as follows:

E = {e1, e2, . . . , en−1, en}

For instance, consider, E denotes the set of all entities. The sets of users are defined
by U , sets of organizations are defined by O and sets of devices are given by D, then the
union of all sets constitute the entire set of entities. This can be seen as:

E = U ∪O∪D, where,

U ∩ (O∪D) = ∅

O∩D = ∅

Definition 5.2 (Context): The set of contexts is represented by Cnt. It can be
defined as a specific application domain where an entity exists and operates. In a context
an entity is represented and identified by its attributes. This identification may or may
not be unique. Context can be of different types e.g. personal context, place context, time
context, etc. A context set is composed of a set of context elements, as follows:

Cnt= {C1,C2,C3, . . . ,Cn−1,Cn}, (n ∈N)

Each context element can be composed of various attributes and the attribute values.
This can be seen as: Context Element : {attribute_name,attribute_value}, for example,
{organization,coordinate} represents a location context. The context information plays
an important role for making an access decision, as it can hold the identity of an entity.

Definition 5.3 (Attribute): The set of attributes is represented by A. An
attribute is a variable associated with an entity within a given context. It is a distinct,
measurable property of the entity in a specific context and associated with a value that is
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used to identify (not necessarily uniquely) the entity within the context. All entities must
have at least one attribute that can be understood within a certain context for that entity
to have an identity within that context. Note, in this chapter, when we refer to attributes
we are referring to the attributes of things. An attribute set can be denoted as follows:

A= {a1,a2, . . . ,an−1,an}

Note that the set of attributes in different contexts may overlap. For instance, for
two different contexts cnt1 and cnt2 (where, cnt1, cnt2 ∈ Cnt), the following does not
automatically hold: Acnt1 ∩Acnt2 = ∅.

Definition 5.4 (Attribute Value): An attribute’s value can be generated by the
entity or can be provided by a third party, and associated with a data type that defines
the values an attribute can take. How this is done is out of the scope of this chapter. Note,
AV is the set of attribute values. It can be denoted as follows:

AV = {av1,av2, . . . ,avn−1,avn}

Note that the values of the attributes are dependent upon the context. In such,
AVcnt ⊆ AV is the attribute values in context cnt (cnt ∈ Cnt).

Definition 5.5 (Partial Identity): It is represented by PId. A partial identity
of an entity in a given context is a subset of the attributes and their values that are
associated with that entity in that context. A partial identity may correspond to a number
of entities. That is a given partial identity may not uniquely identify an entity. This allows
multiple entities to be addressed by the use of a single partial identity. In other words,
a partial identity may not be sufficient for all application functions with a context. For
example, given a context where all entities have the attributes ‘age’ and ‘credit_rating’
then a partial identity within this context consisting only of ‘age’ may not be sufficient for
all functions within the context. If the attributes that make up a partial identity are all
valid in more than one context then that partial identity is valid in all such contexts. It
can be denoted as follows: For an entity e (e ∈E), in a given context cnt (cnt ∈ Cnt), the
partial identity of e can be denoted as follows:

PIdecnt = {(a,e)|a ∈ A,(av,e)|e ∈ E}

Definition 5.6 (Identity): It is represented by Id. The identity of an entity
within a given context can be represented as the union of all its partial identities within
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that context. An identity must uniquely identify the entity within the context. For an
entity e (e ∈ E), in a given context cnt, the identity of e can be denoted as follows:

Idecnt = ∪{PIdecnt|e ∈ E,cnt ∈ Cnt}

Partial identities can be used to identify groups of related entities, for example by
referring to them by such a partial identity in the specification of policies. We explicitly
allow for a partial identity of two or more separate entities in one context to be the same.
While the ‘linkability problem’ [367] may occur for partial identities, it does not apply
to identity under our model. Our intention is to create an identity model that serves
application and policy specification needs and these do not always require unique identity
specification. We present the following relationship mappings:

• AE : A×E, a many to many attributes to entity assignment relation. This mapping
specifies all the attributes that each entity possesses.

• ACnt : A×Cnt, a many to many attributes to context assignment relation. This
mapping specifies the corresponding attributes that an entity may possess within that
context. An entity must possess at least one of these attributes to have an identity
within that context.

• APId : A×PId, a many to many attribute to partial identity assignment relation.
This mapping specifies the corresponding attributes that constitute the partial identity
of an entity in a given context.

• AId : A× Id, a many to many attributes to identity assignment relation. This
mapping specifies the corresponding attributes that constitute the identity of an entity
in a given context.

• PIdId : PId× Id, a many to many partial identities to identity assignment relation.
This mapping specifies the corresponding partial identities that constitute the identity
of an entity in a given context.

• EId : E× Id, a many to many entity to identity assignment relation. This mapping
specifies that an entity should hold at least one identity in a given context.

• (AAV )cnt : (A×AV )cnt, a many to many attributes to attribute-value pairs assignment
relation within a particular context. This mapping specifies that attributes to a specific
context are matched to a specific value.
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5.4 Use-Case Examples

In this section, we enhance the use-case example of an IoT-enabled smart health care
system that we discussed in Section 3.3 of Chapter 3. Our intention is to outline some
specific instances to demonstrate the use of our proposed model of identity for large-
scale IoT systems. To demonstrate this, we choose three distinct examples that combine
end-device, user and, user and end-device point of view. Our choice of these three cases
indicatively covers the users, devices and their associated applications and services present
in an IoT context.

Scenario 1 - End Device’s Partial Identity: Suppose, Alice is a doctor treating
patient Bob. Bob may have many IoT-enabled sensors attached providing real-time
information about Bob’s condition to Alice and other staff (e.g. blood pressure, heart
rate, body temperature and blood glucose level). As Bob’s condition evolves further
sensors may need to be activated. Rather than Alice requiring separate credentials for
each sensor, the credential that allows Alice access to Bob’s sensors may simply specify
access to sensors with the attribute ‘Attached_to_Bob’ or similar. Note, this can be
achieved in our design by using a capability template and Parameterization Rule that
creates a capability allowing access to sensors attached to Bob defined by the appropriate
attributes (cf. Chapter 3). Then, as new sensors are given that attribute and brought
into service Alice has immediate access. This will also apply if one sensor breaks and
needs to be replaced. This avoids the need to deal with unique sensor identity. In this
case, we address the identity of the sensors that are attached to Bob. It represents the
sensors’ partial identity by which they can be referred to. However, in this case, Alice can
be uniquely identified by a full identity.

Scenario 2 - User’s Partial Identity: Refer back to the example discussed in
Section 3.4.6 of Chapter 3, there are applications in the IoT where service providers
wish to make services available to groups of users without individually, and uniquely,
identifying each user. For example, a shop may make specials offers and discounts to
particular customer segments, identifying them by ranges of such attributes as age, address
and interests. Sets of these attributes would form partial identities without uniquely
identifying the users, e.g. age, suburb in which they live, previous purchases in shop, etc.
As commercial entities usually wish to attract new customers and not limit their customer
pool, unique identification does not serve their purpose in this case. In such cases, the
targets of the policy could be definitively identified. For instance, the ‘Role−Membership’
based on age and suburb of a resident can be seen as a partial identity according to the
partial identity definition expressed using the attribute definition discussed above.
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Scenario 3 - User’s and End Device’s Partial Identities: Now consider the
following use case, where many doctors may have access to the sensors of a patient. It is
inefficient to individually refer to each of the doctors, especially as the doctors treating the
patient may change over time. Instead, we can identify the doctors treating the patient
by giving all of them an attribute ‘Doctor_of_Bob’. In this case, a partial identity is
formed from the attribute ‘Doctor_of_Bob’ and possibly other attributes. These partial
identities do not need to uniquely identify a single doctor. This allows many doctors to
access the multiple sensors attached to the patient.

Similarly, suppose, in a building the administration wished to give certain staff
members (e.g. accounting staff) the ability to control all the lights on the third floor. This
could be achieved by giving each of lights attributes that identified them as lights and as
being placed on that floor. They may also have further attributes, e.g. the ‘type_of_light’
and the ‘room’ in which they are located. However, credentials given to the users for the
purpose outlined only need to specify that the policy targets have the partial identity of
being lights on the third floor. In this case, many lights share the same partial identity,
simplifying credential management. The partial identity of the security staff members
includes the attribute ‘security-staff’.

5.5 Summary

In this chapter, we examined various available approaches and outlined the foundations for
building a formal model of IoT identity. We observed that with the rapid growth of IoT
and smart objects, security becomes an important factor when deploying an IoT system.
Due to the characteristics of such systems, it is difficult to predict, in advance, which
entities will interact and require access to services from which entity. This introduces
an important question on how to precisely identify the exact services to which they will
seek access. An identity can be regarded as a representation of an entity that is used
for a specific application context to uniquely define an element (e.g. user, device, etc).
Identity can be temporary or permanent. The characteristics of the element can be called
an ‘identifier’ that helps in the ‘identification process’. Identity management can involve
authentication, authorization, access control and policy enforcement both physically or
digitally.

Several proposals have specified identity based on ‘a set of partial identities’, ‘claims’
or even the ‘process of representing an entity’. It is important to note that the identity
of an entity in one community can be different to their identity in another community.
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For example, an organization holds certain individual characteristics (e.g. name, address,
location of their office, post holds, etc.) by which a person can be recognized uniquely.
However, the same person may have a different identity for their online banking account.
In other words, the identity of an entity (the person in this case) is valid under the scope
of some specific context. Furthermore, identities are dynamic in nature. For example,
the age of a person changes and perhaps their role in an organization changes over time.
Therefore, we argue that the identity management should react to the change in entity
attributes over time.

We have investigated various representation of digital identities and its suitability
when addressing identity in an IoT context. This lead us to build an identity model for
the IoT. Our proposed model of IoT identity is based on attributes, rather than depending
upon a concrete identity of an entity. For example, users may wish their friends or family
to be able to access certain devices or their output. By allocating the attribute ‘friend’ to a
group of users, policies can be formulated based on that attribute. The system can record
who has been allocated that attribute allowing the user to easily comprehend policies
and avoiding the need to ensure that every friend is included in policy specification. This
ease of use of policies will assist in giving them both actual control and a sense of control.
Redundancy will also be catered for, as redundant devices can be referred to by a common
set of attributes. We summarize our findings as follows:

• We have presented a novel idea of IoT identity from the things perspectives. We have
illustrated a formal model of IoT identity based on the different components of an
identity management framework in a more systematic fashion.

• In our model, the foundation for building a formal model of IoT identity is based on
attributes, and does not depend upon unique identities of the entities. This helps to
address the issue of scalability in an IoT system.

• We have provided an extensive discussion on different representation of an identity,
which assisted for establishing a foundation of our model of IoT identity keeping the
fundamental view of wider identifying concepts.

• Significantly, in our proposal, partial identities may identify single entities or groups
of entities. Using various specific use-case examples we demonstrated the applications
of the proposed model in real-life situations.

• Our study showed that it is feasible to incorporate such an identity model to achieve
both fine-grained and flexible system design in large-scale IoT systems.
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• Our model can easily be applied to define different identity management frameworks
that are commonly used for the IoT e.g. federated identity management framework,
etc. However, this contribution is out of the scope of this chapter.

In the next chapter (Chapter 6), we plan to enhance the notion of identity that
we discussed in this chapter to a practical testbed to investigate delegation issues (i.e.
transferring of access rights from one entity to another) in an IoT context. Our plan is to
constitute the ‘properties’ of identity that we devised in this chapter. We further intend
to show the use of attributes (to composite an identity) and its flexible and ease use to an
access right delegation.
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Chapter 6

Delegation of Access Rights

We have noted in Chapter 1 one significant challenge in the IoT is the need for security,
in particular access control solutions, that are designed to meet the characteristics of
these systems. Recall, access control is a security mechanism that allows authorized users
to access a certain resource based on the defined policies. In Chapter 3, we proposed
the design of an access control architecture for the IoT and in Chapter 4, we described
its detailed implementation and performance evaluation. In Chapter 5, we discussed an
approach to IoT identity based on attributes for efficient access control management. In
this chapter, we intend to discuss the critical issue of transferring access rights from one
entity to another in an IoT context. The process of transferring such access rights is
commonly known as delegation. It is a significant component of an access control system.
There have been considerable works in the area of delegation but much of it assumes a
centralized, well-resourced, system and these solutions have limited applicability in the
context of the IoT. Where delegation models for the IoT have been proposed they typically
provide only coarse-grained control over the delegation of rights. Moreover, many of them
require a centralized trusted authority, which can suffer from being a single point of failure.
We argue that the IoT requires a secure, flexible and fine-grained delegation model. The
major objectives of this chapter can be summarized as follows:

• To examine an identity-less, asynchronous and decentralized delegation model for
flexible and ease transfer of access rights in the IoT.

• To employ attributes to validate an entity in such delegation rather than depending
upon the unique identity of the entities.

• To demonstrate the feasibility of the system design using a proof of concept testbed
implementation and to discuss its suitability in real-life scenarios.

171



The rest of the chapter is organized as follows: In Section 6.1, we define the problem
statement and list our contributions. In Section 6.2, we discuss background material. This
includes a short description of the delegation process, an outline of blockchain networks
and related works on IoT delegation using blockchain technology. We provide a practical
example in Section 6.3. We present our proposed delegation architecture in Section 6.4,
along with the delegation properties, architectural components and communication protocol
in detail. In Section 6.5, we describe the implementation details and discuss the evaluation
results in Section 6.6. In Section 6.7, we present a discussion. Finally, we provide a
summary of the chapter in Section 6.8.

6.1 Introduction

In IoT, amongst other areas, access right delegation is one of the major concerns when
addressing security issues [54]. Recall, access rights, in specific, govern who or what can
view or use resources by the allocation of rights based on the policies specified. Initially
rights are bestowed by the owner of a resource. Delegation allows entities to transfer those
rights to other users based on certain policies. In Section 2.5 of Chapter 2, we showed how
an active entity (e.g. user, device, etc.) can transfer and grant some of its permissions
(i.e. access rights) to one or more entities for accessing one or more resources [390]. In
large-scale and dynamic systems, e.g. the IoT, delegation is crucial in ensuring flexible,
fine-grained and responsive access to resources by allowing users to propagate access
in a controlled fashion [391]. The resource-constrained nature of the IoT (e.g. limited
battery power, memory capacity, processing power, etc.) and other characteristics (e.g.
dynamic nature of the system, mobility in interactions, etc.) make it difficult to employ
traditional centralized delegation models. With the exponentially growing number of
services, applications and devices, a fundamental issue is to ensure that only the entities
that possess the appropriate rights are able to access resources. For the flexible and
dynamic management of resources in a collaborative environment, delegation plays an
important role in ensuring for the correct distribution of access rights and permissions.
Further, the scale and diverse nature of the IoT makes it difficult to specify, centrally and
in advance, a complete set of access control policies.

Examples of delegation scenarios for the IoT and/or capability-based systems that
have been presented in the literature include a friend being given rights so that they can
carry out housekeeping tasks while the house owner is away, a mechanic being granted
rights to a car’s systems to be able to carry out maintenance as directed by the car’s owner
and the delegation of access to medical records in the event of a patient emergency [59] [392].
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As pointed out by [59], access control for the IoT needs to meet the “dynamicity present
in everyday life”. The nature of the IoT requires a fine-grained approach to access control,
including in the handling of delegation. This means, just as with access control itself,
the delegation of access rights needs to be governed by policies. We reiterate that the
scale and nature of the IoT means that solutions which centralize the control of delegation
while depending upon concrete unique identity of the entities are likely to be impractical.
Therefore, there is a need for a delegation model that overcomes the limitations of a
centralized system and at the same time considers the dynamic characteristics of the IoT.

6.1.1 Problem Description

Previously in this thesis, we have argued that in a highly dynamic system like the IoT, the
interactions between the things may be for a very short period of time and may happen
only once. It cannot always be known in advance which users will wish to access which
services or resources, or which devices will be available at the time access is requested. In
other words, the unique identity of the entities that are interacting with one another may
not be known in advance, which creates challenges for secure distribution of access rights
between those entities. Furthermore. the characteristics of an IoT system e.g. scalability,
heterogeneity, mobility, etc. brings new challenges in ensuring the basics of access control,
i.e. that only the entities that possess appropriate rights and privileges are able to access
desired resources.

Entities still need some basis on which to determine whether to interact, including the
bestowal and acknowledgement of access rights. Consider the nature of delegation within
the context of the size and scale of the IoT. First, it should not be assumed that entities
are constantly in communication with each or the wider system. Secondly, delegation
should not depend upon a single central manager. A single control point would run the
risks of single point of failure, amongst others. Lastly, in line with other proposals of
this thesis, it should not be assumed that entities making a delegation know the concrete
identity of the entities they wish to delegate to.

This last is probably the most unusual assumption that we are making. However,
let us consider a non-IoT example. The chair of a committee has to take urgent leave
and wishes to delegate their rights to an acting chair. However, the acting chair is not
appointed before the chair departs. If the delegation system depended on concrete identity,
a delegation could not be made. However, if the delegation system allowed the recipient of
a delegation to be defined by attributes, then a delegation could be made on the basis that
recipient held the attribute ‘acting_chair’. Now consider an example from the IoT. A home
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owner going on holiday may wish to delegate to their friends control of the automated
watering system for their garden. Rather than specifying each friend by concrete identity,
delegating control to anyone who holds the appropriate ‘friend’ attribute would be a more
flexible and convenient solution. Note also that in both cases it would be preferable if the
entity making the delegation and the entity receiving the delegation did not have to both
be simultaneously connected to the system.

From the above discussion we can derive three characteristics that we see as being
central to delegation in the IoT.

• Asynchronous: The approach to delegation should not require the delegating and
receiving entities to be simultaneously active and connected to the system. The
delegating entity should be able to specify the delegation and the receiving entity
should be able to access the delegation at an arbitrary later time.

• Distributed: The system should be distributed and not depend on a single, trusted
central point. Any such system would not be scalable to the level required of the IoT.

• Attribute-Based Identity: The system should allow entities making delegations to
specify the recipients of delegations by listing the values of attributes that the recipients
must hold. This allows for more flexibility in specifying delegation.

The first characteristic allows delegation in the IoT to not be bounded by the
simultaneous online presence of two entities. In other words, at the time a delegation is
made the delegatee may be offline and at the time a delegation is accepted the delegator
may be offline. This is practical and reasonable given the dynamic base of the IoT systems
where two entities may be interacting for a short period of time and significantly without
any previous communications.

As we discussed above, in an IoT system, interactions between the entities may
be fleeting, and may occur without any prior knowledge. We contend that centralized
architectures are, in general, unsuitable for the IoT as they do not scale to handle the
number of devices, users and their associated applications and services to a fine-grained
level. This is due to the resource constrained nature of the IoT devices that lack a high
volume of processing and storage capacities. At the same time, as discussed earlier, the
centralized systems also represent a single point of failure, are heavy-weight in nature
and do not necessarily handle heterogeneity in an efficient way [393]. We note that a
decentralized approach to IoT delegation can solve several issues discussed above. It has
the potential to reduce the costs associated with installing and maintaining such highly

174



centralized server based applications. Instead, we contend that the delegation in the IoT
must follow the decentralized nature of the system. This approach will help to achieve
interoperability and at the same time will be able to address the scale of an IoT system.

The third characteristic implies that the entities participating in a delegation may
not know one another before an interaction occurs. However, an entity wishing to delegate
must be able to define characteristics (i.e. attributes) of the entity receiving the delegation.
In other words, the delegation should be identity-less in nature, which argues for the use of
non-unique identities in the delegation. Such a delegation will be more practicable in the
context of the extremely large-scale and heterogeneous nature of the IoT than approaches
which depend upon concrete identity. In a highly dynamic and large-scale system, like the
IoT, it is impractical to know in advance the identities of interacting entities. Note that
delegation to particular concrete identities is still possible, through the appropriate choice
of attributes specifying the delegation.

Let us now consider some further examples. Recall, the entity that transfers the
access right is called the delegator and the receiving entity is known as the delegatee. Now
consider the following two situations.

In the first case, assume, Bob wants a clogged plumbing system in his home to be
fixed. He asks for a plumber to come over and inspect the situation. Since Bob works during
the day, he needs to setup access for the plumber. This access must be restricted to specific
resources (e.g. the front door) and under certain condition (e.g. during working hours).
At the same time, he wants to restrict the access to sensitive equipment (e.g. controlling
a fire alarm). One solution is to create a single “guest-account” with a predetermined
right (and condition) and ask each and every guest, including the plumber, to use this
account to access the specific resources in the home. This is however not fine-grained
(as it is likely, in this case, to include far more permissions than the plumber requires)
and cannot cope with the increasing scale of devices, users and applications as the IoT
facilities in the home evolve. Another option to have a predefined set of ‘guest categories’
but again tailoring them, in advance, to meet the precise requirements is difficult and such
situations may not occur often enough to warrant the creation and maintenance of multiple
guest accounts1. In this situation, Bob can delegate some of his access rights to John (e.g.
a plumber) electronically. The right transfer is done dynamically and from within the
context of the current rights of Bob. It can be achieved, at a granular level, to transfer

1Note, creating and maintaining accounts for every user to every access for all sort of scenarios (e.g. a
guest account for regular guests, house keeper, maintenance contractors, delivery services, unexpected
visitors, etc.) is a difficult and complex task. As new IoT devices are introduced into the system, access
from these accounts need to be maintained individually which greatly impede scalability.
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exactly the required rights to John. John can in turn delegate some of these delegated
rights to some other users if necessary. This process must be conducted in a flexible and
secure manner which can be achieved through the following idea access right delegation
must be monotonic, i.e. the delegatee shall have at most the rights of the delegator.

In the second case, we consider an IoT-based large-scale e-commerce model. Assume,
Alice (delegator in this case) has some access right to print a certain number of pages from
a dedicated printer. Alice wants to sell her access right to someone who needs the same
facility. Suppose Ron (delegatee in this case) is interested in acquiring such an access right
for his own printing. However, the entities (i.e. Alice and Ron in this case) do not know
one another and do not have any previous interactions. Allowing this is desirable in an
extensive system like the IoT where the entities do not have any prior knowledge of one
another.

To date, most models for access right delegation in IoT systems are built on the
commonly used access control mechanisms e.g. RBAC, ABAC and CapBAC. In Sec-
tion 3.2.2 of Chapter 3, we discussed that these mechanisms have their own advantages
and disadvantages when applied to IoT systems. For instance, RBAC provides fine-grained
access control over the resources using explicit user-to-role mappings, however, RBAC
itself is highly centralized and so is any associated delegation mechanism. ABAC improves
policy management by using attributes (e.g. name, age, location, etc.) but at the same
time increases the cost of operation when deploying it for a highly scalable system like IoT.
CapBAC provides flexible access control. Where a user with an appropriate capability
is allowed to perform certain activities over a resource. However, many of the existing
CapBAC mechanisms are centralized when validating access rights of subjects. To achieve a
more controlled approach to access control, distributed CapBAC models are proposed (e.g.
‘DCapBAC’ [60]). In this model, validation is performed inside the resource-constrained
IoT devices without being any contact to the centralized authority. However, this is in
particular challenging for the resource-constrained nature of these IoT devices. In addition,
these devices are not always fully trusted and can easily be compromised by the attackers.
Delegation in CapBAC systems typically provides for little or no control by the initial
owner of the resource. The proposal in [60] does not include an explicit trust model. This
means that there is only implicit trust in the distribution and use of capabilities and
delegations. There is no means by which entities that are unfamiliar with each other can
securely track the progress of delegation through chains of entities. We observe that the
establishment of trust in the IoT is challenging as the resource-constrained IoT devices
cannot store a large history of transactions. Other issues in building trust mechanisms
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for such systems include the lack of central trusted authority and the potentially fleeting
nature of interactions. Note, in the next chapter (i.e. Chapter 7) we present a detailed
discussion on the notion of trust for IoT access control.

We noted in the previous chapters that the scale and diverse nature of the IoT makes
it difficult to specify, centrally and in advance, a complete set of access control policies.
While delegation allows one entity to grant some of their rights and privileges to another
entity, who can then carry out functions allowed by those rights and privileges, it is difficult
to establish trust in an IoT environment on a one-to-one basis. Further, the scale of the
IoT means that subjects and targets of access control policies are best specified using
attributes rather than identities (cf. Chapter 5). This can be extended to delegation, where
the possessor of an access right can specify the entities who can receive the delegation by
their attributes, not their concrete identity. The IoT requires a fine-grained approach to
delegation, including in the handling of delegation in a decentralized environment. On
the one hand, this means, just as with access control itself, the delegation of access rights
needs to be governed by policies to achieve a distributed and trustworthy access control.
On the other hand, the scale and characteristics of the IoT means that centralizing the
control of delegation is likely to be impractical. Some additional drawbacks for many
centralized systems are high cost of establishment and other privacy issues [394].

6.1.2 Contributions

To overcome the aforementioned issues of transferring access rights, in this chapter,
we propose a decentralized, trust-less and fine-grained delegation architecture for IoT
using blockchain [395]. Blockchain has been seen to have the potential to play a major
role in managing, controlling and securing IoT devices with decentralized control, data
transparency and auditability. It is tamper-proof where data cannot be manipulated by a
malicious actor.

Our primary intention is to facilitate managing and accessing IoT resources without
the need for a trusted authority. In particular, we propose and analyze a novel capability-
based delegation model for large-scale IoT systems using blockchain. We will show
that a blockchain platform provides all the necessary support to implement a delegation
process that is identity-less, asynchronous and decentralized by nature. The basic idea
is to use capabilities to propagate access rights and use blockchain for communication
between various entities. Our design employs attributes for fine-grained access policies
and capabilities for access rights transfer. The capabilities are provided to users on
request, based on possessed attributes. The delegated capabilities are checked by the IoT
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things upon access. To the best of our knowledge, our proposal is the first one to use
capability-based access for the delegation of access rights in IoT using blockchain without
relying upon concrete identity. The motivation of our research is also driven by the need
for efficient privilege management and policy enforcement in delegation in a large-scale
IoT system spanning multiple jurisdictions. Previous work, discussed in the next section
(i.e. Section 6.2), has not addressed the question of how the potentially vast set of policies
in an IoT system (considering the number of devices and the number of users that may
wish to access each device) can be managed. We argue that specifying these policies on
an individual user/device basis, especially if a priori user identification is required, is not
sustainable. Further, we intend to employ attributes for representing an entity and do not
consider concrete identity of that entity. The major contributions of this chapter can be
summarized as follows:

• We propose a flexible decentralized delegation model for transferring access rights in
IoT using blockchain.

• We use blockchain events as capabilities to facilitate access control delegation to IoT
devices whereby the generated capabilities are issued by the smart contracts without
the involvement of any trusted third-party authentication.

• We provide a detailed description of the system including the architectural design,
different interaction patterns between the different entities and the smart contracts.

• Our design is based on attributes and does not depend upon a concrete identity of the
IoT things, this provides significant flexibility when managing resources at scale.

• Our proposal takes advantage of the decentralized nature of blockchain networks and
is asynchronous in nature.

• We demonstrate a detailed proof of concept prototype implementation with Ethereum
private blockchain and provide an experimental study of the performance of the
proposed model.

6.2 Background

In Section 2.2.3 of Chapter 2, we introduced blockchain technology and discussed the
emergence of blockchain in IoT access control. In this section, we first discuss the
core concepts of delegation related to this thesis (Section 6.2.1). Then we briefly recap
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the fundamental of blockchain technology (Section 6.2.2). Finally, we present available
proposals to IoT delegation using blockchain (Section 6.2.3).

6.2.1 Core Concepts

Before going to a detail analysis to the blockchain based delegation, in this section, we
discuss the essence of delegation in general. We provide the core concepts of delegation
and give an example of how it works based to our proposed access control architecture
presented in Chapter 3. This will help us to understand the basics of delegation that we
suggest in this chapter.

Capability-Based Access: In this thesis, we used capability for access control and
in this chapter, we employ capability for transferring of access rights from one entity to
another. Recall, in CapBAC, a capability is the building block of the system’s security.
It is conceptually similar to a physical key that is used to unlock a door and access the
house. There are various significances for the use of capability. We note that, a capability
contains four explicit properties: communicable, verifiable, secure and unforgeable2 [59].

• Communicable: Since the right has to propagate from the delegators, to the delegates
and then to the resources, it should be communicable.

• Verifiable: The system should contain enough information about the rights and
associated conditions.

• Secure: The system must ensure authentication, i.e. capabilities can only be used by
the intended user to access the specified resources.

• Unforgeable: This indicates that only known and trusted (group of) authorities can
produce genuine capabilities.

Whenever we refer to a capability, we always assume (or prove) that it possesses at
least these four distinct properties. In Section 6.4.1, we present a discussion on how these
properties can be achieved with our proposal.

From Attributes to a Capability: Recall, access policies denote the permission
rules that permit or deny user access to specific resources under certain conditions. The
policies and conditions are written by policy administrators referencing various attributes
about the users, resources, services and the environment. This means that access rights are

2Note that these are only the principal properties. In practice, we also require a capability to be
ephemeral and revocable.

179



associated to attribute sets rather than identities (cf. Chapter 5). The point is attributes
can be shared while identities are unique to each user. In Section 3.4 of Chapter 3, we
demonstrated how these attributes are used to generate capabilities for the users.

Delegation Process: Now, we illustrate a simple process of delegation. For
simplicity, we recap the example of light-weight key based approach (i.e. symmetric key
based approach) that we discussed in Section 3.6 of Chapter 3. For instance, a user who
wants to delegate a right, needs to generate a new capability from a capability providing
that right. The generated capability must adhere to the four properties of a capability we
outlined above (i.e. unforgeable, communicable, secure and verifiable). The delegation
process can be seen as follows:

delegated_capability = {K1,capability1}

where,
capability1 = {K1,delegatedcap}KS

and delegatedcap contains the extra conditions that the capability owner imposes on the
delegated right. This is the essence of the Delegation Rule that we described in Chapter 3.
Note that it also contains the conditions specified by the initial creator of the capability,
including any conditions that only apply to the delegated capabilities. The new session key
K1 is generated by the delegator, shared with the delegatee and used as the authentication
mechanism associated to the delegated_capability. KS represents a session key.

JSON Implements Capability: Recall, in Section 3.4.7 of Chapter 3, we show
how a capability is generated using JSON. In this chapter, we use similar JOSN string for
our capability. We use the templates in Fig. 6.1 to show an example on how to encode
capabilities and encrypted messages.

// request, capability or delegation template
{ "attr": <attributes>

"cond": <condition> }

// encrypted message template
{ "data": <encrypted request, capability or delegation>

"capability": <instance of encrypted capability template> }

Figure 6.1: Simple message templates.

These templates show that a message (which can be a request or a capability) has a
very simple structure which captures the full expressiveness of other works that use overly
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complex capability structure e.g. [396] [397]. This structure can be exploited differently
depending upon the kind of information to be encoded. A capability uses the field cond to
implement the capability conditions. This can capture broad features ranging from time
of validity to extra delegation conditions.

In Fig. 6.2 and Fig. 6.3, we illustrate two examples of access requests based on the
conditions depicted in Condition Rule discussed in Section 3.4.6 of Chapter 3.

// Access request without delegation
{ "data":{"attr":{"src":"A","trg":"D","act":"unlock"}}_KS,

"capability":{
"data":{

"attr":{"key":KS},
"cond":[[src=A],[trg=D],[act=unlock,act=lock],
[TIME<01-06-2019 00:00:00]]

}_KTH
}

}

Figure 6.2: An example of an encrypted message without delegation.

// Access request with delegation
{ "data":{"attr":{"src1":"P","trg":"D","act":"unlock"}}_K1,

"capability":{
data:{
"attr":{"src":U,"key":K1},
"cond":[[src1=P],[act=unlock],[DEPTH<2]]

}_KS,
"capability":{

"data":{
"attr":{"key":KS},
"cond":[[src=A],[trg=D],[act=unlock,act=lock],
[TIME<01-06-2019 00:00:00]]

}_KTH
}

}
}

Figure 6.3: An example of an encrypted message with delegation.

Fig. 6.2 does not contain a delegation request and Fig. 6.3 contains one delegation
request. The extra condition [DEPTH<2] in Fig. 6.3 implies that the delegated right cannot
be delegated furthermore. This further emphasises the importance of Delegation Rule
employed in our access control model. Note, for both of the figures, KS represents a session
key, KTH represents the key belongs to an IoT thing and K1 represents a newly generated
session key.
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6.2.2 Blockchain Technology

Blockchain is a tamper-evident, shared and distributed digital ledger of transactions for
crypto-currency systems (e.g. Bitcoin [398]). The ledger stores the records permanently in
a sequential chain of cryptographic hash-linked blocks. In Fig. 6.4 we illustrate a simple
view of blockchain. Every block contains a hash of the previous block. The first block in a
blockchain is known as the genesis block. It can be seen as block number ‘zero’ and it
does not hold any reference (e.g. a hash value) of a previous block. Instead of having a
central ledger with data of the whole system, in a blockchain, every block contains all the
necessary data. This enhances the concept of distributed ledger rather than simply creating
a centralized one. These blocks are organized by logical time stamps and synchronized
among other member nodes within the network.

Block One Block Two Block ThreeGenesis Block
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Figure 6.4: A simple view of formation of blocks in the blockchain.

In blockchain, blocks have a set of transactions (i.e. an agreement or contract) that
can be denoted as a small unit of task that is stored in public records. A transaction can
be seen as the transfer of values (as price, asset and ownership) between different entities
that is broadcast to the network and collected into blocks. These transactions are visible
to every node in the blockchain. In other words, transactions are simply the public records
of all the executions of data that have ever been performed on blockchain. By design,
blockchain does not require any third-party entity to conduct and validate transactions.
Everyone participating in the blockchain can validate and verify transactions [399].

Blockchain draws its security from the immutability of the public ledger whose
contents are decided via a consensus protocol [400]. Consensus is a fault-tolerant mechanism
that ensures that each block in the blockchain agrees on the same state at the time of
validating a transaction within it in a dynamic way. The fundamental requirement to
achieve a consensus is the uniform acceptance among the nodes on the blockchain of a
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single data value. Thus, it ensures secure transactions between users in a trust-less network
environment.

A blockchain can do more than store blocks of transactions. It can also contain smart
contracts which are code blocks that can be executed ‘on’ the blockchain. This opens
new possibilities as blockchain then provides a distributed storage and computational
framework on which arbitrary programs can be executed. Some of the important properties
of blockchain are summarized as follows [401]:

• No Central Authority: Blockchain is able to handle the fast growing number of devices
and systems (and their operations) in a distributed and decentralized manner. This
will assist in addressing the scalability issues around the IoT. It also eliminates the
need for a central, trusted, third-party authority.

• Consensus: In a blockchain, for every transaction to be accepted and recorded properly
in the ledger, every participant must agree. This is known as consensus. This allows
participants to trust the contents of the ledger.

• Immutable, Irreversible and Tamper-Proof: These properties of the blockchain ensure
that after a transaction is recorded on the ledger, no participant in the network can
modify it, as any changes made to the contents of the block will change the hash of
the block. It is therefore considered permanent.

• Accessibility: In a blockchain, any entity that is a part of the network can read or
view any data recorded in the ledger. This enhances the accessibility of data at any
time, any place.

• Auditability: In a blockchain, auditability of a transaction is provided by the recording
of the entity that generated a block. This in turn allows each user in the network to
confirm the identity of the source of an entry in the ledger.

Fundamentally, blockchain technology offers a secure and safe way to record and track
a list of transactions for large number of devices in a highly transparent, auditable and
efficient way by maintaining a peer-to-peer network. This is beneficial when overcoming
the limitations of a centralized system for storing information. Transactions in a blockchain
are relayed over the P2P network and peers (called as the miners) collect these transactions
into a data structure - the blocks. The mining technique is called as ‘Proof-of-Work’ (PoW)
which ensures that all blocks miners produce contain valid transactions. As noted above,
in blockchain, important components are the data and the hash. Data is collected inside
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the blocks and the hash is the function that converts an input string of any length (e.g.
number or letters) to an output of a fixed length by a hashing encryption algorithm. This
improves the security and auditability and in conjunction with the PoW algorithm makes
the blockchain immutable. Each block must contain a PoW to be considered valid in the
blockchain. Every minor verifies the PoW every time they receive a block. Note, for every
transaction the miners are paid a transaction fee [402].

6.2.3 Delegation in IoT using Blockchain

Several proposals address the specific needs of IoT access control by employing a blockchain
network [233] [236]. For instance, Novo [403] presents an access control architecture for
scalable management of IoT devices. The architecture is fully distributed in nature leverage
the properties of blockchain technology. The access control policies are enforced within
the blockchain. The proposed design operates a single smart contract which reduces the
communication overhead among the nodes. It also provides access control in real-time
to the edge IoT devices. Note, all entities in the system are the part of the blockchain
network except the IoT devices. This is due to the resource constrained nature of the
IoT devices, where the devices cannot store the heavy-weight blockchain information.
The proposed architecture is able to manage a vast amount of IoT devices and provide
a decentralized feature of access control that connects a high number of geographically
distributed sensor networks. The access control policies are enforced based blockchain
technology overcoming the bottleneck of a single centralized authority that manages
the access control decisions. In this model, the edge IoT devices do not belong to the
blockchain network, they are connected to the blockchain using one or more management
hubs. These hubs are distributed over the entire blockchain network and potentially
connected in different ways to the IoT devices which significantly provide a considerable
flexibility in the overall access control management. Further, this model considers the
resource-constrained nature of IoT devices and provide an easier way of integration of
the current IoT devices to adapt to the proposed system. However, it does not address
delegation at a fine-grained level.

Xu et al. [404] present an access control model for IoT using capability-based access
to the resources, called ‘BlendCAC’. Based on a blockchain network, a capability-based
delegation mechanism is suggested for propagation of access control permissions, where
the authorization mechanism of delegation is computed inside the blockchain. The focus
on this framework is to build a decentralized framework that overcomes the weaknesses
in today’s access control mechanisms for the IoT, which are highly dependent upon a

184



centralized authorization server. However, this model’s approach to delegation is based on
concrete identity, as the recipient of the delegation must be specified when the delegation
is created. In [405], the authors further enhance the model discussed in [404] to build an
efficient access control system for space situation awareness (SSA) using blockchain. Once
again, this approach to delegation is based on the unique identity of an entity.

Manzoor et al. [406] propose a blockchain based proxy re-encryption scheme for
secure IoT data sharing in the cloud. The system stores data in a distributed cloud after
encryption and to share collected data, the system establishes a run-time dynamic smart
contract between the IoT devices and users. This eliminates the involvement of a trusted
third party. However, while it refers to delegation it is in the sense of information sharing,
not access right sharing and again employs concrete identities. Almoadhoun et al. [247]
present a user authentication scheme of IoT devices using blockchain-enabled fog nodes.
It improves on the proposal of [406], where fog nodes are used to provide more scalability
to the system (by deploying localized computing and processing facilities into the edge
of the network) given the resource-constrained nature of the IoT devices. This scheme
uses a hybrid architecture of combining blockchain networks involving users, IoT devices
and fog nodes. However, these approaches do not discuss the propagation of access right
delegation at scale.

Zhang et al. [407] present a smart contract based access control framework for IoT
using blockchain. It includes multiple ‘access control contracts’ for access control between
users and resources. In addition, one ‘judge contract’ is employed to monitor any user for
misbehaviour. Finally, one ‘register contract’ is deployed for controlling the management
of both access control and judge contracts. Similarly to our approach, this framework
employs blockchain for distributed and trust-less access control for IoT, but unlike our
approach, it does not consider the delegation issue at a fine-grained level nor does it
envision how to handle identity at scale for delegation. In addition, similar to [404], it
does not consider the resource-constrained nature of IoT devices.

With a similar view of [407], Ouaddah et al. [408] present a blockchain-enabled
‘token-based’ distributed access control framework for the IoT, called ‘FairAccess’. In
this framework, blockchain is used as a decentralized access control manager. Access
control tokens are used for transferring of access rights from one peer to another through
a transaction. Significantly, during the transfer of an access token, the appropriate access
rights policies are embedded by the users inside the token in the ‘locking scripts’ (a snippet
of code that specifies the type of authorization required for a future transaction) of the
transaction output. Thus, when a peer receives the token it must unlock the locking scripts
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and process the token. However, it uses a public key cryptography-based system for token
authorization, which is not an ideal basis for use with constrained IoT devices. Further,
the computing capability of the locking scripts are significantly limited.

Tapas et. al. [409] discuss a blockchain-based model for authorization and delegation
for IoT-cloud services. In this model, authorization is performed inside the cloud and
the access control delegation is transferred in terms of a capability. This model enables
users to audit the authorization operations without completely trusting the cloud. Similar
to [407], this approach does not scale well and once again, entities are explicitly defined by
their concrete identities.

Maesa et al. [410] present an approach to creating, managing and enforcing access
control policies by exploiting blockchain. In this approach, policies are published on
the blockchain and the access right is transferred from one entity to another through
a blockchain transaction. The access control policies and the associated access rights
exchange are publicly visible over the blockchain networks which provide a transparency
where any user can see the policy paired with a resource and the subjects who currently
holds the rights to access the resource but this does pose privacy issues. Unlike [409], it
does not use capabilities for access right delegation and depends upon a highly centralized
XACML reference architecture.

Ali et al. [411] discuss an approach of permission-based delegation and access control
for blockchain-based IoT systems. The proposed approach leverages the decentralized
nature of blockchain for permission delegation between the entities within the system. The
main motivation of this study is to establish trust between the entities while removing the
central trusted authority to maintain the trust degrees for each entity. This is achieved by
the use of PoW - the consensus mechanism of blockchain. To provide a light-weight solution,
access right delegation is assigned to a node with a minimum number of permissions. No
proof of concept implementation is detailed.

Nuss et al. [412] present a blockchain based identity and access management frame-
work for large-scale IoT systems. This proposal first investigates the current challenges of
identity and access management issues in IoT and then employs blockchain to examine
how those challenges can be controlled. The proposal addresses the increased demand for
secure and comprehensive identity and access management issues in IoT as well as discuss
the question of interoperability between heterogeneous and resource constrained devices
using blockchain technology. Further, it addresses the scalability issue in terms of network
and storage consumption. However, the actual design and implementation is not provided.
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Shafagh et al. [413] present a blockchain-based design for the IoT systems that brings
a distributed access control and data management. The authors identify three requirements
that are essential for such design, they are: secure data storage, IoT compatibility and
decentralized access control management. The design enhances blockchain technology to
manage ownerships and data sharing between the owners and the IoT devices. Owners can
create new transactions to the blockchain that contains the identifier of the data stream
and the service’s public key. When a user wants to revoke an access right from a specific
user, it changes the encryption key and shares the new key with all authorized services
over the blockchain network, except the one is revoked. Once again, no implementation
detail of the design is provided.

Le and Mutka [414] present an IoT access control mechanism, named ‘CapChain’.
This allows users to share and delegate their access rights efficiently and seamlessly to
IoT devices in public but still maintain privacy and user’s identity by secure distribution
of keys leveraging the use of blockchain transactions. It uses capabilities for access right
delegation over the blockchain networks. Here, every IoT device in the network contains
at least one owner who has a full control over the device and is capable of generating
capabilities based on the access control policies specified by the system. The capabilities
are then transferred to one device to another via transactions. An experimental setup is
provided with evaluation results to support the design.

While there have been several works that discuss access control issues in IoT using
blockchain networks, we observe that the specific issue of delegation is overlooked. While a
few initial approaches discuss the issue of delegation at a primitive level, they do not consider
the specific characteristics of an IoT system, nor do they provide any implementation
detail.

6.3 A Motivating Scenario

In this section, we illustrate a practical use-case example of a delegation scenario for
transferring of access rights. In Chapter 3, we employed a use-case scenario of smart
healthcare. However, to show the robustness of our proposal and IoT application domains,
in this chapter, we employ a scenario of an Internet business model where the core of the
model are third parties, commonly known as the brokers. The brokers bring buyers and
sellers together and perform an online transaction according to the policies. Note, our
proposal could easily be incorporated into any typical smart healthcare scenario, or any
other situation where funds transfer is not involved (discussed in Section 6.7).
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Figure 6.5: The process of delegating an access right. Owner contacts consumers for
selling of access rights. Owner delegates an access right in the form of a token to a broker
(Delegation_1) which further issues another token (Delegation_2) to a specific consumer.
Now the consumer is able to access a resource (e.g. a printer) with the delegated token
issued by the broker.

Now, let us consider the following case where three parties are involved, namely,
owner (owner of a resource), broker (facilitates access to a resource) and consumer (who
wants to access a resource). In Fig. 6.5, we depict the use-case. Suppose, the owner has
a business that rents on-site printers in a particular university and can provide access
rights for printing documents on any of the deployed printers. This business wishes to
transfer (by selling) some access rights of printing to a consumer (for instance, a student
at the university). The business advertises this information and a broker (e.g. a student
association) buys the rights which are then resold based on their business policies. In
both cases, the owner and the broker charge fees to at least one party involved in the
transaction. In this case, the owner charges to the broker and the broker charges to the
consumers. Next, we explore why delegation is a good solution for this scenario.

The owner still retains full access and ownership of the deployed printers and provides
access rights to a broker by generating a capability (i.e. an access token). The broker, in
turn, will delegate the provided access rights to the consumers (using an access token).
This is where two significant properties of our delegation approach (i.e. identity-less and
asynchronous communication) and the use of blockchain, are most useful. Firstly, the
broker will not know in advance to whom he or she is going to delegate the access to
the printer. In a traditional access control framework, the delegation process is usually
initiated by the delegator knowing the identity of the delegatee but this approach does
not work in our case. The broker cannot know in advance who all its customers are
and allowing individual access on request requires synchronous communication and a
multiplicity of access policies. Thus, the access control rules must be written in a way that
is independent of explicit user identities. In addition, the rules for delegation are stored
within the blockchain which means that every party can check and audit the contracts.
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In this use-case example avoiding the use of concrete identities by employing attributes
could be beneficial as it avoids the need to specify the customer’s identity in advance. The
access control policies are evaluated based on such characteristics as access time, location,
age, student enrolment status, etc. Next, the delegation process must be asynchronous
as it is initialized by the delegatee. Precisely, the broker needs only to setup an initial
‘delegation service’ and the access right will be delegated on demand without any further
interactions. This can be achieved if the ‘delegation service’ is written as a smart contract
on the blockchain. Finally, this particular scenario ultimately requires the automatic
handling of financial transactions which is the primary use of blockchains e.g. Bitcoin,
Ethereum, etc [399]. Using crypto-currencies, the students are able to send appropriate
access fees to the broker’s smart contract which will in turn delegate access to the printer
and forward any required access fee to the printer owner’s account. Note, a smart contact
can be viewed as a special account consisting of functions (i.e. code) and data (i.e. its
state). Thus, a blockchain-based delegation will possess the properties that we propose as
well as other important features e.g. the decentralization of the system, and the ability to
intrinsically process financial transactions.

6.4 Proposed Delegation Architecture

In this section, we discuss our proposed delegation architecture. First, we discuss the
basic properties of a delegation that are supported by the architecture. Second, we discuss
the essence of secure right delegation. Third, we present an overview of the architectural
components. Finally, we illustrate the communication protocol satisfying an access request.

6.4.1 Delegation Properties

A delegation process must allow the control of two fundamental properties, namely, the
right to delegate and the delegation of right.

The right to delegate controls the transfer of rights from the delegator to the delegatee.
This includes restrictions e.g. the delegatee’s ability to delegate the delegated right up
to a certain depth (i.e. the number of delegations). An obvious example in our use-case
is that the consumers who bought a right to print should not be allowed to delegate (or
resell) that access right any further. In practice, this property is important to verify deep
delegation chains as it ensures the termination of the validation of the right transfers.

The delegation of right controls the transfer of the rights from one entity to another.
In practice, this is achieved through delegation conditions which must satisfy certain
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monotonicity properties to safeguard from possible attacks e.g. privilege escalation. These
monotonicity properties must be verified at delegation or access time and this ensures
the correctness (or security) of the delegation process. The delegation of rights is quite
distinct from traditional delegation because, in our setting, the delegators do not know
in advance to whom they will delegate the access rights they possess. Hence, the best
means to achieve this is by imposing certain delegation conditions that are at the same
time generic and granular. In addition to a controlled delegation, it is also necessary
that a delegation process satisfy the practical and security properties (i.e. communicable,
verifiable, secure and unforgeable) that we discussed in Section 6.2.1.

In a traditional implementation of a token-based access control mechanism, e.g.
CapBAC, the capability token possesses these four properties [59]. However, as noted
above, CapBAC does not provide other properties that we require (i.e. ephemeral and
revocable). In this chapter, we use blockchain for delegation, which is employed as the
medium to generate, communicate and verify these properties. Specifically, access control
tokens (delegated or not) are implemented as events. In a blockchain network, an event is
a special form of transaction that is generated and linked to a smart contract. The fact
that each event inherently comes from a given smart contract is crucial in implementing
an efficient verification of the delegation. An event inherits all the important security
properties of a blockchain transaction e.g. ownership (i.e. it is owned by the smart contract
which generates it), immutability (i.e. the deeper the block containing the event is in the
blockchain, the harder it is to alter) and shared (i.e. it is automatically accessible to all
parties involved in the blockchain network).

The ownership and immutability alone ensure that events are also unforgeable and
secure. In fact, an event generated by a smart contract will be securely attached to that
contract. If the address (public key) of a delegatee is recorded inside of that event and
since that event is immutable, then only the delegatee can use that event by proving that
he or she owns that public key. An event is obviously communicable since it resides on the
blockchain and everyone can access it. Finally, it is also verifiable by simply checking that
the event is issued by a ‘valid’ smart contract and the delegatee address recorded in that
event can be trusted as well because it is immutable. In a delegation chain, verification is
achieved by traversing the chain in a backward manner.

6.4.2 Secure Right Delegation

Given the uncertainty in interactions present in an IoT system, our intention is to use access
delegation to transfer rights without any prior trust establishment between a third-party
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and the central system or the resources. Intuitively, the system trusts a right holder
and some of that trust can be transferred to a third-party who is trusted by the later.
The transferred trust implicitly propagates through the system making the delegatee
indistinguishable from any other registered user.

Similar to dynamic attributes (discussed in Section 3.4.2 of Chapter 3), delegation
happens after a capability is generated since a delegator usually does not know in advance
to whom they will delegate some right to. More precisely, the decision as to whether a
capability can be delegated or not can be inferred during the authorization process but the
act of delegating an access right occurs well afterwards. If the delegation is allowed, the act
of delegation itself must be initiated by the rights holder and a capability encapsulating
the delegated right must be generated for use by the third party. The generation of that
capability must follow a critical property of delegation, namely monotonicity. This property
must be satisfied and verified by the central authority or the resource at access time,
depending upon the implementation. In essence, we need to ensure that the delegation
process must generate a capability which follows the four properties discussed above,
namely unforgeable, communicable, secure and verifiable and the generation process itself
must adhere to some monotonic delegation rules. The capability associated with a delegated
right is functionally indistinguishable from any other capability circulating in the system.

A monotonic delegation process ensures that capabilities are generated safely in
order to avoid security issues e.g. privilege escalation. This form of delegation has been
rigorously formalized in other works. For instance, [415] provides simple logical rules that
governs monotonic delegation of roles which are summarized as follows: (a) the preset
delegation depth decreases through nested delegation process, (b) weaker roles can be
delegated by holders of stronger roles and (c) stronger conditions can be imposed when
delegating roles.

Note, one of the major differences between our approach and that of [415] is that
they are delegating static roles while we are delegating access rights associated to dynamic
capabilities.

6.4.3 Overview of the Architectural Components

In Fig. 6.6, we illustrate the proposed delegation architecture. It consists of the following
components:

• Brokers: Users who sell an access right. Brokers can be an individual or a group of
users. Brokers can be seen as the delegator.
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Figure 6.6: The proposed architecture of blockchain-based delegation process.

• Buyers: Users who is willing to buy a delegation right from a broker. Buyers can be
seen as the delegatee.

• User Device: It remains the same that we discussed in Section 3.4.4 of Chapter 3.
Recall, it is the smart mobile device carried by the human user (e.g. smart phones,
laptops, tablets, etc.). These devices can be used to access a resource, deploy smart
contracts and communicate between the users.

• Attribute Provider: It is a storage repository. It stores attributes (e.g. student
enrolment status, class, age, year, etc.) corresponding to a principal and supplies
attributes associated with the specific user addresses for authorization. Since this data
will be stored on the blockchain, it can be as simple as a key-value mapping for each
attribute class.

• Resource: A device (or a group of devices) that offers specific services, and therefore is
able to perform some operations once receive a user’s command. They reside outside
the blockchain network and connected to a resource manager. In our running example,
we do not specifically distinguish between the resource and the resource manager.

• Resource Manager: One or a group of entity responsible for managing access permis-
sions of a set of IoT devices. In other words, it manages one or a group of resources
(e.g. printers) where several devices are connected. In general, the resource managers
are considered light-weight nodes in our architecture. Note, they do not store the
blockchain information or do not verify the blockchain transactions as the miner
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nodes perform. Significantly, they also do not need to be connected to the blockchain
network constantly. All the registered IoT devices in the system must belong to at
least one registered resource manager, and an IoT device may belong to multiple
resource managers at the same time. A resource manager is connected directly with
a blockchain network. One resource manager can hold many resources, or many
resources can be connected to one resource manager.

• Blockchain Network: We choose a private blockchain for the purpose of testing and
evaluating the system. This will allow us to get more consistent, controlled and reliable
evaluation results. In practice, the blockchain would be a public network that any
peer can join in order to request delegation and access controls.

• Smart Contract: It is a self-executing piece of code that represents an agreement
between two or more parties. Unlike the commonly known contracts that depend upon
the reputation of counter parties, a smart contract can be created by untrusted and
anonymous users. The smart contracts are the source of autonominty in the network
as successful transactions will trigger other smart contracts or generate a network
wide event from which peers can react accordingly. Note, the delegation architecture
that is discussed in this chapter is governed by the operations defined in two smart
contracts triggered by the blockchain transactions.

The user device (for broker and buyer) is able to generate and communicate to
the (delegation) smart contacts reside in blockchain. The attribute provider is capable
of communicating directly to the (delegation) smart contacts. Importantly, the buyers
and the resource manager hold their corresponding Ethereum account for transactions.
Notably, the communication between the buyers and the resource manager is executed
outside the blockchain network.

6.4.4 Communication Protocol

Now we discuss how the various components in the architecture would interact. In
Fig. 6.7, we illustrate the protocol for satisfying a user request. It highlights a two-stage
communication protocol, where the first stage (steps 1 to 5) consists of the delegation
process itself and the second stage (steps 6 to 8) captures the access to a resource. Note,
in this communication, an entity can be seen as both the delegator and the delegatee. For
example, a broker can be a delegator and a delegatee based on the actions it performed.
Therefore, to avoid confusion in the representation of the delegation process, we use the
following, resource owner as the delegator, broker as the delegatee and customer/end-user

193



(3) Access resource

Owner’s Smart 

Contract (R)
Broker’s Smart 

Contract (D)

Consumer’s 

User Device

{transaction}

(2a) Root event

{capability}

(4a) Request attribute

{consumer’s address}

(8) Query event chain

(6) Access request

{grant, deny}

(9) Access response

Event List

(2) Delegation smart 

contract

Resource
Attribute Provider’s 

Smart Contract (A)

{transaction}

{attributes}

(4b) Response attribute

(5) Generate event

{capability} {address of D, 

printing documents}

(7a) Challenge

{enc(nonce, PKU)}

{nonce }

(7b) Response

Figure 6.7: The communication associated with an access request. The horizontal dotted
lines denote accessing or generating an event.

as the user. Indeed, a user is a delegatee. Next, we provide a detailed discussion of various
communication steps.

• Step 0: We assume that the attribute providers are already deployed into the blockchain
network in the form of smart contracts acting as attribute storages. In their simplest
form, they contain key-value pairs of account addresses and attribute values.3

• Step 1: The delegator deploys a smart contract which will become the root of all
delegations of rights to access a resource. This smart contract stores the ‘trusted’
addresses of attribute providers and accepts transactions for access or delegation.

• Step 2: The delegatee deploys a delegation smart contract with the address of the
root smart contract and requests a delegation right by sending a transaction to the
delegator’s smart contract. If granted, the smart contract of the delegator generates
an event (Step 2a). This ‘proves’ that the delegatee has access to a resource under
certain conditions. This condition reflects the right that the delegator holds when
accessing or delegating access to the resource.

• Step 3: User wants to access a resource, and therefore the user requests access via
delegation from the smart contract of the delegatee by triggering a transaction.

3Note, there is no privacy whatsoever regarding these attributes since we assume that they are publicly
available. Thus, anyone can cross-compile all attributes associated to a given address. There are ways
around this using more involved blockchain constructs but this is specific to the blockchain implementation
itself.
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• Step 4: The delegation smart contract issued by the delegatee in Step 2, requests
attributes held by the user from a trusted attribute provider (Step 4a), by executing
another smart contract. This later smart contract is one of the attribute provider
smart contracts available within the blockchain network as discussed in Step 0. The
attribute provider smart contract returns the requested attributes to the delegation
smart contract of the delegatee (Step 4b).

• Step 5: The delegation smart contract of the delegatee executes logic that checks
the fetched user attribute values. If all the required attributes are valid and the
(static) delegation condition holds then a new event is generated by the delegatee
smart contract. This event signifies that the user can employ the delegated rights.

• Step 6: At this point, the user should be aware whether his/her access request has
been granted or denied by observing the generation of the above event. If successful,
the user finally requests an access directly to the resource. This request contains the
address of the delegatee’s smart contract.

• Step 7: The resource verifies that the public key used to sign the request belongs to
the requesting user by ensuring that the latter possesses the private key associated
with that public key. This can be implemented as a simple cryptographic challenge
response (Steps 7a and 7b).

• Step 8: The resource scans through the events generated by the delegatee’s smart
contract. It then finds the most recent one reflecting the user’s address, verifies that
the access condition holds, and recursively applies the same verification to the events
of any parent smart contract until a root event is reached.

• Step 9: The user is now able to access the desired resources.

Now consider the example of accessing a printer (i.e. a resource in this case) that
we discussed in Section 6.3. Consult Appendix C for sample code listings. We assume
that the attribute providers are already deployed into the blockchain network. Suppose, a
resource owner deploys a smart contract ‘R’ into the blockchain network (cf. Appendix C).
In our case, it is the root (smart contract) of all delegations of rights to access the printer.
Therefore, R stores the ‘trusted’ addresses of attribute providers and accepts transactions
for access or delegation. Now, a resource broker deploys a delegation smart contract ‘D’ (cf.
Appendix C) with address 0x01 and requests a delegation right by sending a transaction
to R by generating an event as shown in Fig 6.8. The conditions (denoted as <cond>) in
Fig 6.8 could be a specific Delegation Rule similar to that discussed in Section 6.2.1.
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event printer_access_request(
address requester (0x01),
address parent (0x00),
bytes conditions (<cond>)
);_0x00

This event is emitted through the smart contract code:
emit printer_access_request(requester,get_authority(),conditions);

Figure 6.8: An event generated by the smart contract ‘R’.

This piece of code shown in Fig. 6.8 states that the broker has access to certain
printers under certain conditions. This condition reflects the right that the broker holds
when accessing or delegating access to the printer. In particular, these conditions may
implement the right to delegate together with some additional conditions e.g. colour and
B&W printing, etc. We call this event (of Fig. 6.8) a root event. Root events are always
generated by the resource owners.

Now let us consider, a user (e.g. a student), with account address 0x02 wants to use
a printer, and therefore requests access via delegation from smart contract D by triggering
a transaction (using his/her own mobile device). In this case, the delegation smart contract
D requests attributes from a trusted attribute provider, which is another smart contract
‘A’ (cf. Appendix C). The later smart contract (i.e. A) must have been pre-deployed
and available within the blockchain network. One the request arrived to the attribute
provider, the attribute provider returns the requested attributes to D. The delegation
smart contract D executes logic that are employed to checks the fetched attribute values.
If all the required attributes and conditions are valid then a new event is generated by D
as shown in Fig. 6.9.

event printer_access_request(
address requester (0x02),
address parent (0x00),
bytes conditions (<cond>)
);_0x01

This event is emitted through the smart contract code:
emit printer_access_request(requester,get_authority(),conditions);

Figure 6.9: An event generated by the smart contract ‘D’.

In this situation, the user should be aware whether his/her access request has been
granted or denied by observing the generation of the above event (of Fig. 6.9). If successful,
the user finally requests an access directly to the printer by submitting an access request
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containing the address 0x01 of the smart contract D along with the documents to be
printed. As noted earlier, the resource (i.e. the printer) verifies that the address (i.e.
public key) belongs to the requesting user by ensuring that the latter possesses the private
key associated with that public key. This can be implemented as a simple cryptographic
challenge where the printer encrypts a nonce (enc(nonce,PKU)) with the public key
(PKU) of the user and asks the user to decrypt it. In general, this step involves a two-way
authentication. Since this is achieved outside of the blockchain network, a TLS connection
can be firstly established between the printer and the connecting user device which validates
the identity of the printer. Then, the cryptographic challenge can be conducted to verify
the identity of the connecting user device. The resource scans through the events generated
by the smart contract D. The resource then finds the most recent one addressed to the
user’s address, verifies that the access condition holds, and recursively applies the same
verification to the events of any parent smart contract until a root event is reached (we
provide a sample python code for this process in Fig. 6.10). Finally, the user is able to
access the desired printer.
def get_trail(req_addr, contract_addr):
event = get_latest_event(req_addr,contract_addr)
if event is None:

raise Exception("No event!")
attrs = get_attributes(event[’args’][’recipient’])
if not satisfy(attrs, event[’args’][’cond’]):

raise Exception("Condition violated!")
if contract_addr == w3.toChecksumAddress(address):

return [event]
parent = event[’args’][’parent’]
trail = get_trail(event[’address’],parent)
trail.append(event)
return trail

Figure 6.10: Function that verifies an access to a resource (e.g. a printer).

6.5 Implementation

In this section, we provide a detailed description of the implementation for our proposed
delegation architecture. To demonstrate the feasibility of the architecture, we have
implemented the design using a private Ethereum blockchain. Ethereum is a distributed
computing platform and operating system that provides smart contract functionality.
Ethereum fundamentally is a public blockchain network, however, it offers a simple and
elegant development environment that allows for the testing of applications built on
Ethereum. When it is used to create a private testing blockchain network, it can be seen as
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a decentralized generalized transaction ledger that provides access to a distrusted virtual
machine and smart contracts. Our prototype was built on a 2.2Ghz Core 2 Duo MacBook
pro with 16GB of memory. We have deployed three nodes consisting of one Ether miner
and two peers. The network was deployed and managed with Geth v1.8.13 and the smart
contracts were compiled with solc 0.5.0 (i.e. Solidity version 0.5.0). Some of the client
scripts are written in python 3.7 where we have used the Web3 package version 4.8.3 to
interact with the blockchain.

Solidity is an object oriented programming language that is designed to be executed
on the Ethereum Virtual Machine (EVM) [416]. It provides a high level language through
which the logic governing smart contract accounts can be written with ease. The solidity
program is compiled into binary codes that the EVM executes ‘on top’ of the blockchain
network4. Solidity is a Turing complete language, meaning that it can emulate all
computable functions. However, executing an arbitrary function on the blockchain can be
difficult and expensive so it is important that the smart contract is governed by simple core
logics and any extra processing be done outside of the blockchain network. In particular,
though theoretically possible, encrypting or decrypting cipher texts in a smart contract is
not advised while computing and verifying hashes are already implemented natively and
efficiently. The smart contracts should try to be as simple as possible in order to minimize
cost to users and resource owners. Smart contracts are best utilized as ‘smart’ storage
containers that can perform logic operations on the data it has stored. It can also perform
simple verification processes on incoming data before it is stored. As smart contracts can
be deployed in a public blockchain network. We provide the delegation smart contracts
(in Solidity) that are discussed in this section in Appendix C.

The first component in our implementation is the smart contract R which is deployed
by the resource owner. It maintains a list of trusted attribute providers that are used to
collect attribute values when processing access or delegation requests. When a request
arrives, the corresponding attributes are queried from the attribute providers and the
access and delegation conditions checked. In Fig. 6.11, we show a simple implementation
of such a process using Solidity. The condition() function should not contain any
computationally expensive segments because, in Ethereum, each atomic operation is paid
for in gas (it is the execution fee for each operation made and decided by the miners).
If the collected attributes satisfy the condition then a new transaction is fired (e.g. the
access or delegation fee is forwarded to the resource account) and an event is emitted.
This event records the address of the requestor req and the condition cond of access. The

4In reality, the binary code is firstly executed by a single miner which manages to mine the next block
in the blockchain. When that block is propagated, each node will also execute that function locally.
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event that is emitted can be registered by off-chain systems and processed accordingly. In
the context of a delegation system the event generated by a smart contract giving a user
resource access can be found by the resource to verify that access is legitimate. However,
in theory, these events can be used to generate off chain transactions or trigger other smart
contracts. Events are also how most multi-layered blockchain networks handle inter-chain
communications.
function access_request(address req) payable public {

attrs = attr_provider.get_attributes(req);
if (condition(attrs)) {

printer.transfer(msg.value);
emit access_event(req,address(this),cond);

}
}

Figure 6.11: A smart contract function that is executed when providing access or delegation.

Recall, we discuss among others, two distinctive properties of our delegation process
are, identity-less and asynchronous. That is, the delegator does not know in advance to
whom (and when) the acquired rights will be delegated. To achieve this, the delegator (i.e.
the broker in this case) creates the smart contract D and requests access by triggering
the function access_request() (as shown in Fig. 6.11) of the smart contract R. The
event emitted by R above will serve as a proof that D is indeed valid. The smart contract
D exists on the blockchain waiting for consumers (e.g. students) requiring access to a
resource. When a resource access is requested through D, it runs a similar function (cf.
Fig. 6.11) except that the event emission instruction is replaced with:

emit access_event(req,get_authority(),cond);

where req is the address of the consumer requesting the access. This line of code instructs
the smart contract to generate an event where the parent field is populated by the address
of the ‘parent’ smart contract that proves the validity of D. This address is fetched by
the function get_authority(). A crucial observation here is that the delegation contract
must use a subset of the attribute providers trusted by the parent smart contract. This will
ensure the important security properties provided by the monotonic delegation (discussed
in Section 6.1.1).

Finally, at access time, the consumer must be sure that D has successfully emitted
an event recording its address. The consumer submits the address of D and his crypto
currency account address to the resource. The resource verifies that the consumer is
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indeed the owner of that account via an extra cryptographic challenge discussed earlier. If
positive, then the resource scans all events emitted by D and finds the most recent one
addressed to the user. If this event is found and it is not a root event, then the printer
will scan the events of the contract with address event.parent for the most recent one
reflecting to D, and so on. Note, this is a simple recursive lookup with time complexity
Θ(n×k) where there are k contracts in the delegation chain and each contract contains
on an average n events. In practice, the number of events per contract n is much larger
than the delegation depth k so that looking for the most recent event only provides some
early optimization. In our prototype, this recursive lookup is implemented in python and
executed by the resource or resource manager (as shown in Fig. 6.10 of Section 6.4.4).

Note, in our implementation we employed an Ethereum private blockchain network
for generating and distributing smart contracts. However, our conceptual framework can
be implemented using any blockchain network that supports a sufficient level of smart
contract execution. However, the design could not be directly supported by a ‘Bitcoin’
blockchain platform as Bitcoin does not support smart contract functionality. Note, in
our proposal, we assume the use of a private blockchain to ensure a level of protection
for the attributes as compared to storing them on a public blockchain. However, a public
blockchain could be used if privacy is not seen as a priority or if there is no private
information stored in the delegation system at all.

6.6 Evaluation

In this section, we present the evaluation of the proposed implementation. In Fig. 6.12,
we illustrate the achieved results. Times are measured in both milli-seconds (ms) and
seconds (sec) respectively. The median value of time taken for processing steps 1 to 5
(of Fig. 6.7 discussed in Section 6.4.4) of the delegation process is 6ms with the majority
of proof of access events are generated within 3.7ms of that time. We note that this
speed is not entirely surprising given the fact that in our controlled environment, the
two transactions producing that event are mined almost immediately. However, in a live
blockchain environment, blocks containing new transactions are mined in certain period
of time. In a public Ethereum blockchain, the default difficulty of the proof of work is
set so that blocks are mined about every 15sec. Thus, in our particular case, user would
need to wait at least 30sec for the event to be generated. It is usually more prudent to
wait for a few extra blocks to ensure that the transactions events are deep enough within
the blockchain which increases the certainty that these new objects do not live on a stale
branch.
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Figure 6.12: Time taken to verify delegated accesses. The X axis represents the average
number of events generated by each delegation contract and the Y axis represents the
time spent (in ms) to verify the delegation chain.

The verification of access (step 8 of Fig. 6.7) takes 1.25ms for a direct access (i.e.
without delegation) where we assume that there are 500 root events (and the event giving
the access is the oldest). This time, however, increases with the number of events and the
depth of delegation. In Section 6.4.4, we stated that the verification process (of Fig. 6.10)
has a run-time proportional to the product of the delegation depth and the average number
of events attached to each delegation contract involved in the chain. This statement is
supported by our evaluation results illustrated in Fig. 6.12. For instance, with a delegation
depth 0, average time taken to generate 50 events is 0.17ms and for 500 events it is 1.25ms.
Similarly, with a delegation depth 3, average time taken to generate 50 events is 1.65ms
and for 500 events it is 5.61ms. We observe that the effect of deep delegation on the access
time is more pronounced i.e. the slope of the curves become steeper with increased depth
of delegation. In practice, the number of events is much larger than the delegation depth
but a delegation of depth k will still result in an access time that is k-fold larger than an
undelegated access to the resource. However, we expect that finding the most recent event
only may provide some optimization.

The evaluation results reinforce the feasibility of our design in a practical situation.
In particular, we can implement a delegation process satisfying our devised properties
which include identity-less, asynchronous and distributed. Note, in this chapter, we do
not explicitly discuss the issue of access rights revocation. However, this can be added on
the top of our framework by using standard restrictions e.g. temporal access conditions.
A more aggressive revocation can also be implemented as a list of revoked delegation
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Table 6.1: Comparison of the proposed blockchain-based delegation approach with the
existing approaches.

Properties Ramos et al. [60] Xu et al. [404] Xu et al. [405] Tapas et al. [409] [Current]

Non-unique identity X

Asynchronous X X X

Decentralized X X X X

Monotonic X X

Auditability X X X X

Use of capability X X X X X

contracts which the resource manager keeps track of. Thus, in addition to verifying the
delegation chain, the resource can also perform a lookup on the current smart contract
addresses to ensure that they are still allowed to delegate an access. This would invalidate
all events relying on a revoked smart contract, even if they are not issued by the same
smart contract. However, this solution is not fully ideal since the owner of the revoked
smart contract may simply create a new delegation as long as the owner still possesses the
required attributes. Emphatically, the identity-less property limits the power of revocation
as access is not attached to identities any more.

In our design, we do not use the blockchain to provide the access control functionality.
We used a fully-featured ABAC system that is able to handle the policy management and
identity of an entity to a more flexible and fine-grained level based on attributes. Without
the use of the ABAC system, the root smart contract can record access control rules based
on the attributes, but the access policy management is very limited. Another limitation is
that there is no support for an XACML implementation of ABAC for blockchain. More
importantly, we did not want to tie our delegation model to a particular method of
managing the capabilities. Our approach can be used with both blockchain-based and non
blockchain-based access control models.

Our proposal improves upon previously proposed access right delegation approaches
for the IoT. In Table 6.1, we provide a brief summary comparison of our proposal with
previous work on delegation in the IoT. We compare it both with both blockchain-based
and non blockchain-based approaches. We use a few characteristics for comparison e.g.
non-unique identity, asynchronous, decentralized, monotonic, auditability and use of
capability. Notably our proposal is identity-less and used attributes to authenticate a
legitimate user in the system for distribution of access right delegation. As discussed
earlier, these are highly beneficial in an IoT context.

202



6.7 Discussion

Now we provide a general discussion on how our proposal would work in different use-case
scenarios apart from the Internet-based business model that we discussed in Section 6.3.
Let us consider the following use-case. Gusmeroli et al. [59] describe a situation where
Bob, a car owner, wishes to have his car serviced by Dave, a mechanic. Access to the car
engine data requires a capability which has been issued to Bob by the car manufacturer.
Now Bob can create a delegated capability for Dave. In Gusmeroli et al.’s system [59],
the only limits on delegation are whether the capability may be delegated and the length
of the delegation chain. There is nothing in the system of [59] that the car control unit
can do to ensure that Dave is a qualified mechanic. Unlike that system, in our proposal,
the Delegation Rule can contain a test to ensure that Dave possesses the appropriate
attributes or other conditions (discussed in Section 6.2.1). Dave passes this attribute,
along with the delegated capability, to the car control unit, proving that Dave is authorized
to perform the operations required.
event car_access_request(

address requester,
address owner,
bytes conditions
);

Figure 6.13: Format of event for giving a mechanic access.

Our delegation model can adapt to this as an overseeing mechanic institution could
act as the attribute provider and provide the appropriate attributes that proves that Dave
is qualified. These attributes can be trusted as they come from a validated source in the
institution. This can be achieved using a similar event depicted in Fig. 6.13, and the
corresponding attributes can be recorded as depicted in Fig. 6.14. Note, in blockchain a
capability is processed as an event.

int[] certificates;
string[] mechanics;
string[] cars-owners;
string[] cars;
mapping(mechanics => certificates) proof-of-mechanic;

Figure 6.14: A simple outline for recording attributes.

The next use-case is drawn from [392]. In this example Alice is a patient of general
practitioner Fritz, who works in clinic C. Fritz determines that Alice needs to be referred to
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hospital H. At the hospital Alice is examined by George, a doctor working for the hospital.
Fritz wants to allow George access to Alice’s medical records held by the clinic. George
determines that Alice is need of surgery and consults with Hilary, a surgeon employed by
the hospital. Alice is admitted and Hilary wishes to give Fritz access to her diagnosis and
treatment plans. Delegation is necessary in this case, as the medical records and treatment
plans are dynamic and therefore passing copies around would produce a difficult to control
version problem. To allow the doctors in the hospital access to Alice’s file from the clinic,
Fritz creates a delegated capability and passes it to George, who may then pass it to
Hilary. Here is where Fritz would create an event on our framework, showing that George
and Hilary have access to the files. Similarly, Hilary can create a delegated capability for
Alice’s diagnosis and treatment files and pass that to Fritz. Hilary creates an event to give
Fritz access to her files. In our proposal, Fritz would have included delegation rules in the
delegated capability ensuring that Alice’s files can only be viewed by doctors from the
hospital who are assigned to Alice’s case. In Fig. 6.15, we show a simple example outline
about who maintains and controls the attributes.

event medical_record_access(
address requester,
address owner,
bytes conditions
);

Figure 6.15: Format of event for delegating medical record access.

The doctors would prove their valid use of the capability by possession of the
appropriate attributes (doctor or surgeon at the hospital and assignment to Alice’s case).
In the proposal of [392], Fritz simply delegates the capability to George without any further
restrictions. There is no way for Fritz to ensure that only doctors assigned to Alice receive
access. Unlike in [392], for our proposal, the delegation rules specified by Fritz can be used
to restrict access as desired. Also, the proposal [392] requires centralized checking of the
delegation on access where ours does not. A similar situation would apply if Alice’s care in
the clinic was passed from Fritz to another doctor. Our system would store attributes in
the following format depicted in Fig. 6.16. This allows doctors to store official documents
and at the same time permit the system to request them when necessary. In this case,
may be multiple attribute providers are required that can provide attributes from different
sources for validating identity of an entity. However, we leave this for a future work.

Note that the current implementation of this chapter is based on Solidity and the
Ethereum blockchain, however the framework is generalized and can be implemented on
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string[] patients;
string[] doctors;
mapping(doctors => patients) assignments;
int[] certificates;
mapping(doctors => certificates) proof-of-capabilities;

Figure 6.16: A simple outline for recoding attributes.

any blockchain technology that supports smart contract execution. The implementation
can easily be adapted to various use-case scenarios, e.g. that we discussed above. The
programming code does not need to change to a higher extent to support a delegation.
That said, the delegators and the delegatees can be any entities and they all rely upon
certain attributes.

Note, in our system, security lies within the use of a blockchain network. This gives
the system immutability of transactions, verifiable data, smart contracts and allows the
system to be deployed in a decentralized environment. The environment removes the single
point of failure found in similar centralized systems and makes the system overall more
robust. Immutability and verifiable data ensure auditable and transparent transactions and
attribute information stored within the system. They also give resource owners insurance
that only verified users are given access. Additionally, the use of a blockchain gives the
system access to smart contracts. These contracts give all users, including the resource
owners, access to every request made through this system. Delegators, both the initial
recipient of access and later delegates, may use smart contracts in the blockchain to specify
conditions on further delegation. The use of smart contracts and requiring that all access
requests be made through a root contract connects all legitimate contracts. This links all
delegators and delegates. This allows for conditions to be compiled on top of each other
as a request is made further down the chain meaning that all previous conditions must
also be adhered to. Recall, in Section 6.2, we outline how the security properties of a
blockchain (e.g. the immutable and verifiable data) are used to implement a delegation
capability that are secure, verifiable and unforgeable. One crucial element that we use is
ownership. The blockchain transactions and events tell us who generated and owns these
events which, due to immutability, allows us to trust the context of their creation (when
were they created in logical time and what are their purposes). Therefore, like regular
capabilities, events give us the ideal solution to record distributed delegations and accesses.

One potential issue with our system is that it only guarantees pseudo anonymity.
Attribute providers store attribute information on the blockchain which is linked to the
user’s Ethereum account address (wallet). This means that sensitive attributes pose the
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risk of privacy breach when stored on the system because a combination of these attributes
may be used to de-identify a particular user and break the pseudo anonymity provided by
the crypto-currency account address. This is not simply limited to attribute information.
Every other curious user within the network will also know that a certain address has
access to a certain resource. This imposes some limitations to our system, however, in
this chapter we focus more on achieving the identity-less, asynchronous and decentralized
properties and leave this issue for another future work.

6.8 Summary

IoT systems generate massive amounts of data, many of them may be sensitive (e.g. health
related information), that comes from numerous devices, applications and services. This
demands reliable connectivity and network scalability. Among others, protecting such data
from unauthorized users and services requires proper security. In the previous chapters,
we have noted that a significant security challenge for the IoT is the need for appropriate
access control solution that are designed to meet the characteristics of these systems.
To develop a secure access control model for the IoT, the propagation of access right
delegation is a major issue. We have noticed that there are several issues that restrict a
secure adaptation of access right delegation in IoT systems. For instance, the resource
constrained nature of the IoT devices (e.g. limited memory capacity, battery power and
computational processing capability) makes it difficult where the traditional access control
mechanisms cannot be applied directly. The need for a delegation model leveraging the
characteristics of an IoT system and at the same time to provide resiliency and flexibility
in access right delegation are highly important. Furthermore, we observed that there is a
need for the delegation of access control rights in IoT systems to be scalable, controlled in
a fine-grained manner and recognize the inherently decentralized nature of such systems.
Towards this, in this chapter, we used blockchain technology leveraging the distributed
nature of access rights delegation for the large-scale IoT systems.

We have noted that the current models of delegations are based on the concrete
identities of the users and the resources. In Chapter 5, we noted that the use of concrete
identity for an entity in an IoT system is not an ideal condition. Previous approaches
to delegation in the context of the IoT are mostly static in nature and do not consider
the distributed essence of IoT systems. Moreover, they consider a highly resourceful
environment for delegation. Most of the existing works that use RBAC and ABAC are
highly centralized and can either grant or transfer operations (i.e. access rights) based
on user-role or role-permission basis. When users and their various associations grow in
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a system, for example a large-scale IoT system, it is not an ideal choice to implement
delegation mechanisms that depend solely upon either RABC or ABAC. While CapBAC
addresses the issues of centralization by providing a decentralized nature of interactions,
it is infeasible to define policies for each individual user. We observed that the highly
centralized systems have the advantage of implicitly handling the capability transfer with
simplicity and transparency, however once again, they are not dynamic in nature when
distributing the delegation rights. We highlighted the use of attributes for authentication
and authorization of entities in our system and did not consider the concrete identity of
an entity. The attributes are used in smart contracts that are deployed on a blockchain,
which helps in transforming the policy evaluation process to a fully distributed smart
contract execution. Furthermore, in our model, a delegator can assign access conditions
over the delegation process to a delegatee.

To investigate the significant features in our delegation e.g. identity-less, asyn-
chronous and decentralized nature of communication, the examination of the integration
of blockchain technology with IoT was the major scope of this chapter. We have seen
that blockchain technology offers a secure and safe way to record and track a list of
transactions for large numbers of devices in a highly transparent, auditable and efficient
way by maintaining a P2P network. This is beneficial when overcoming the limitations of a
centralized system for storing information. The use of blockchain technology also provides
adequate support for data security in a distributed way which is suitable to employ with
the IoT systems. We summarize our findings as follows:

• We have proposed a novel access right delegation architecture for the IoT using
blockchain.

• The proposed a delegation architecture leverage the property of identity-less, asyn-
chronous and distributed nature of communications. This is achieved with the integra-
tion of blockchain technology to the proposed approach.

• Our delegation approach does not depend upon a concrete identity of an entity but
based on attributes. This showed pronounced improvement to the management of IoT
things at scale.

• We have provided a proof of concept prototype implementation of the system, discussed
detailed architectural components and described the communication protocol associated
with an access request. We used Ethereum private blockchain to demonstrate the
feasibility of our model.
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• The evaluation of the achieved experimental results demonstrated the theoretical and
practical feasibility of the proposed model for a secure, fine-grained and flexible access
right delegation for the IoT.

In the next chapter (Chapter 7), we intend to investigative the notion of trust in
access control for the IoT. This will further help to enhance the delegation issues that
we discussed in this chapter with the presence of uncertainty in the interactions between
different entities in an IoT system.
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Chapter 7

Integrating Trust to IoT Access
Control

In the previous chapters, we have noted the importance of access control, identity man-
agement and transfer of access rights in an IoT context. We have argued that in the IoT,
things must interact with one another often in unknown and uncertain circumstances.
Therefore, in such systems, it is important to include mechanisms that can help in such
interactions by overcoming this uncertainty. We argue that the notion of trust can assist
in addressing such issues. Trust mechanisms allow entities to decide whether or not to
interact with other entities. However, the concept of trust is used with different meanings
and in various contexts. Research into the metrics and methods for establishing trust in
dynamic IoT systems is still in its early stages. Implementing trust in an IoT system
is challenging due to the nature of the IoT systems themselves. We have noted that
the IoT consists of a large number of entities (e.g. users and devices) and applications
connected through a communication infrastructure. In such systems, the fundamental
issue is whether one entity can securely communicate with another and if so, then to what
extent. We observe that one of the significant prerequisites of access control mechanisms
is the notion of trust. The major objectives of this chapter can be summarized as follows:

• To examine a trust management framework that can improve access control mechanisms
easing the decision making process under uncertainty.

• To introduce a well-defined trust model for IoT supporting attribute-based identity
without the need for unique concrete identification of an entity.

• To develop a theoretical foundation for a trust model that can support our decision
making work on access control in large-scale IoT systems.
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In Section 7.1, we discuss the problem statement and detail our contributions. In
Section 7.2, we present background and related work in IoT trust issues. We present
the context of our proposed trust management model in Section 7.3. This includes the
characteristics of our trust model and preliminaries of basic subjective logic operators. In
Section 7.4, we describe our proposed trust management model in detail. In Section 7.5,
we discuss the trust evaluation process, followed by trust comparison mechanisms in
Section 7.6. We discuss different use case scenarios in Section 7.7. Finally, in Section 7.8,
we present a summary of the chapter.

7.1 Introduction

In the IoT, things are expected to interact with one another, often autonomously. However,
this poses some fundamental challenges for the security of IoT systems as the communication
between the things often cannot be predicted in advance. In many cases, the interactions
happen without the things that are communicating with one another directly possessing
extensive information about each other. This information is based on the individual
behaviour of the device, service or application. It can be supplemented by information
provided by other things that have interacted with the entity in question. In access control
decisions ‘trust degree’ plays an important role in both whether access is requested and
whether it is granted [417].

The trust degree can be calculated in various ways. This may be based on a
user’s trust, device’s trust or a system’s trust. It may depend upon the context and the
requirements of the system. The trust degree can be considered as a computational value
that quantifies the relationship between the trustor (i.e. who is trusting) and the trustee
(i.e. who is being trusted) within a specific context [418]. This further highlights the
contextual information affecting in a communication. Trust management is a significant
issue for an IoT user to be confident when accessing an IoT service.

7.1.1 Problem Description

In Chapter 2 we discussed a range of issues that affect the development of trust in an
IoT system. The heterogeneity and scale of the number of IoT devices, services and
applications mean that previously unknown entities may often be encountered. Further,
the nature of communications and other dynamic characteristics, make the IoT vulnerable
from a security point of view. The interaction between the entities may be for a very short
period of time and the entities may be interacting only once for their entire life-time. In
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other cases, the interactions may be very frequent and may be for a longer period of time.
Further, IoT devices are in general resource constrained. They have limited battery power,
memory capacity, processing speed, etc [419]. Therefore, it is often not possible to store
extensive interaction history or employ traditional heavy-weight security mechanisms in
those devices for trust evaluation. Despite this there is still a need to measure how and
when to trust an entity in the IoT. It could be argued that, given the potentially highly
unpredictable nature of interactions in the general IoT, the need for trust mechanisms is
even greater in such systems. However, in many cases, employing a centralized trusted
authority is not feasible in the IoT [420].

The scale of the IoT systems make it necessary to question certain aspects of
traditional approaches to trust management. Typically, trust management addresses
the opinion that one entity (e.g. user, device, resource, thing) has of another singular
entity. Given the scale of the IoT and the potential for sparse interaction patterns
between individual things, holding trust information on a one-to-one basis appears both
unsustainable and ineffective. It may be unsustainable in terms of the sheer amount of
trust information and values that need to be maintained and it may be ineffective in that
things may often encounter other things about which they have no information. Contextual
information must be also taken into consideration at the time of trust value verification
and update, further complicating the situation. Previously, in this thesis, we have argued
that basing policy decisions and identity handling on attributes, rather than singular
concrete identity, is a potential method for dealing with the nature of the IoT. This can
also apply to trust management. In summary, rather than assessing trust on an individual
thing, trust can be assessed on a set of attributes, and then applied to things that possess
those attributes.

7.1.2 Contributions

In this chapter, we present a novel subjective logic based trust model for the IoT. In
the model, the IoT things explicitly represent and manage ignorance as uncertainty in
their trust relationship with other things. The major contributions of this chapter can be
summarized as follows:

• We take uncertainties in an IoT system into consideration and propose a dynamic
trust model for the IoT systems.

• We show that the proposed model is able to determine whether an IoT entity can be
trusted for a specific service.
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• We employ attributes to represent a set of services. In our model, an entity is validated
based on attributes, rather than depending upon their concrete identities.

• We provide a detailed discussion of the trust management process and present different
use cases to examine of the proposed model in real-world IoT scenarios.

7.2 Background

There are several proposals that have discussed the use of trust in an IoT context [289]
[279] [421]. The trust degree (also referred as to the trust value) can be captured in
various ways and based on the trust value computation, different design choices can be
made [301] [422].

For instance, Bernabe et al. [423] propose a flexible trust-aware access control
system for the IoT (TACIoT). This model is intended to serve as an end-to-end and
reliable security mechanism for the edge IoT devices. In this model, trust values are
calculated based on reputation, quality of service, security considerations and devices’
social relationships, and calculated using fuzzy logic. The proposed model is composed of
three main components, namely smart objects, authorization manager and trust manager.
Smart objects are the smart IoT devices (e.g. sensors, actuators, etc.) that maintain
social relationships composing different kinds of areas (e.g. personal, office, community,
etc). These smart objects can act as both CoAP client and server offering services (e.g.
temperature, location, etc.) in an IoT environment. Every area has its own authorization
manager which is responsible for creating authorization credentials (in terms of tokens)
for the related smart objects. The PDP regulates the policy decision (based on XACML
policies) for the authorization manager, and a ‘Token Manager’ generates the authorization
credentials according to the authorization decisions made by the PDP. Every smart object
is connected to a ‘Trust Manager’ which is responsible for assessing the trustworthiness
degree of an entity. Given the resource-constrained nature of these smart objects, the
‘Trust Manager’ is treated as a separate network element, for example, a more powerful
smart mobile phone. The ‘Trust Manager’ calculates trusts for both the service requester
and the target. For the former, it determines the most trusted target for a specific service
that is offered by many targets. For the latter, it determines the trust of a requester
from the previous transactions. Finally, based on the trust value and the authorization
credentials, an access decision is made. A detailed implementation is provided to support
the proof of concept prototype. However, trust in this approach is tracked and calculated
at the individual device level, impacting on the design’s scalability.
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Mahalle et al. [424] present a fuzzy approach to Trust Based Access Control (F-
TBAC) with the notion of trust levels for identity management. The fuzzy approach for
trust calculations is presented with the linguistic information of devices to address access
control in the loT. A simulation based study is presented to demonstrate the proposed
approach. Similarly to [423], in this model, trust is calculated based on experience,
knowledge and recommendations. Finally, the proposed F-TBAC framework calculates
the trust score and the trust score is then mapped to permissions to achieve an access
control to a resource.

Saied et al. [425] propose a trust management framework for the IoT. The authors
design a context-aware and multi-service trust management system that uses past ex-
periences of interactions when calculating the trust value. The proposed solution takes
into consideration the various resource capabilities of the things in a heterogeneous IoT
architecture in order to establish a community of trusted elements that respect the objec-
tives of the operation of a set of collaborative services. The trust management system is
controlled and governed by a trust manager. The overall trust management and access
control decisions follow five steps. First, the trust manager gathers information about
the trustworthiness of the other nodes located in close distance for a service requesting
node. Second, the trust management system issues recommendations about nodes to a
service requesting node that intends to set up a collaborative service. Third, the service
requesting node make a request for recommendations from the nearby nodes. Fourth, the
service requesting node assesses the quality of each individual recommendation collected
from the nearby nodes and a decision is made. Finally, the trust management system
updates the information. A simulation based study is conducted to show the performance
of the proposed system in managing trust and enforcing collaboration between the nodes.

Wang et al. [426] present a distributed trust management mechanism for the IoT.
The authors extract three basic elements namely, service (i.e. defines the role of the
trust management system), decision-making (i.e. making a decision to deliver a service)
and self-organizing (i.e. selecting a decision by the trust management system), of trust
management and then, based on a service model, a trust management framework is
established for the IoT. Unlike the previous approaches, e.g. [423], [424] and [425], in
this framework, trust is employed based on the three core layers in an IoT architecture.
These layers are the sensor layer (composed of smart IoT sensors and actuators), core
layer (composed of networking and communication technologies) and application layer
(composed of users’ applications). For instance, trust in the sensor layer can be defined as
a vector, as follows: TS = {Xs,TSX ,TStar,TScon}. Where, Xs denotes the set of nodes
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{X1,X2, . . . ,XN}, TSX denotes a specific context, TStar denotes a specific target and
TScon denotes control information e.g. energy consumption or perception efficiency, etc.
Similarly, trust can be calculated for core and application layers. Like [423] and [424], a
fuzzy approach is employed for trust value calculation.

Bao et al. [427] [428] [429] present several works on trust management for the IoT.
In [427] a distributed and dynamic trust management protocol for IoT systems is presented.
This deals with dynamic behaviour of nodes and detects misbehaving (i.e. both malicious
and socially uncooperative) nodes status changes dynamically. The aim of this protocol
is to dynamically adjust trust design parameter settings when the environment changes,
therefore it is adaptive to changing environment conditions. This is measured after a
trust assessment is done by each node, and the nodes maintain their own trust assessment
for the other nodes. The proposed trust management protocol is encounter and activity
based, i.e. after an encounter or interaction the trust value is updated. Two nodes in an
encounter or interaction can directly observe each other and update their trust assessment
accordingly. They can also recommend trust evaluation results to other nodes. Similarly
to concepts in [423] and [425], in this case, each node maintains various trust properties e.g.
honesty, social cooperativeness and community interest. A formal model and simulation
based experimental result are provided with a detailed attacks evaluation of the protocol.

In [428], authors extend the proposed work of [427] and show its adaptation in
application to service composition in IoT context. In this approach, each device evaluates
trust for a limited set of devices that holds the same interest using both direct observations
and indirect recommendations. In [429], the authors extend the work presented in [428] in
particular focused on community of interest (CoI) based social IoT systems where nodes
can dynamically join and leave the system at any time. Where a group of nodes form a
community based on their own interests. The major contributions of this proposal are
the dynamic adaptation and scalability management of the trust management protocol
in the IoT context. Dynamic adaptability property is demonstrated by showing that a
new node in the community can quickly build its trust relationship with other nodes with
desirable accuracy and convergence behaviour. To demonstrate the scalability, an efficient
storage management strategy is introduced keeping the view of limited storage space of
IoT nodes. In a storage space, each node can keep the corresponding trust information
towards a subset of nodes according to their interest and storage space. A similar concept
of trust management system is presented by Chen et al. in [283].

Sharma et al. [287] present a generic framework to manage trust for IoT systems
considering qualitative and quantitative parameters. Similarly to concepts in [425], in
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this framework, the trust management encompasses multiple phases that are dedicated
to perform different activities. Unlike [425], which consists of five phases, this framework
contains four phases. They are information gathering, trust computation, trust dissemina-
tion and update and maintenance. No implementation is given to support the framework.
Moreover, no contextual information is taken into consideration for trust computation.

There are several other works that discuss the modeling and design choice for how
to incorporate trust in an IoT environment. For instance, Gago et al. [279] propose a
theoretical approach for modelling of trust dynamics framework for IoT. The authors
emphasize on the privacy and identity requirements for establishing trust in the IoT. No
implementation is given to support the model. The trust evaluation is not dependent
upon the feedback between the phases to ensure verification and traceability. Ferraris
et al. [430], enhances the model presented in [279] and discuss a trust by design framework
for an IoT entity considering the feedback from all the phases of the life-cycle of an IoT
system. However, this approach is limited only to the theoretical framework and no details
of the different phases and the transversal activities of the framework is given.

Trust and reputation in information and communication technologies have been
considered as one of the prime factors for successful communication between two entities.
For instance, Leister and Schulz [431] discuss a model for a trust indicator for the IoT.
The authors use the concept of a priori and posteriori trust to give an indicator of how
much a user in an IoT system can trust or distrust information that is provided by an
IoT thing. Based on the trust indicator the user can decide the potential interactions to
the IoT things. However, the model is highly centralized when evaluating the trust value
indicator which is not an ideal base for IoT systems.

Wang et al. [432], discuss a trust model for access control in IoT that employs
traditional ABAC systems that helps to consider the dynamic attributes of the entities
in an IoT system. This model is composed of three main parts, namely, authentication,
trust evaluation and access decision modules. The authentication module uses an identity-
based authentication mechanism for restricting the illegal users in the system. The trust
evaluation module uses specific trust threshold levels (e.g. good, normal and malicious) that
are compared against the users’ calculated trust values. Finally, based on the comparison
of the cumulative trust value, an authorization is given by the access decision module.
Note, this model is flexible in access control policy implementation that depends upon the
traditional ABAC system. However, this model does not focus on how to build a trust
model considering the trust relationship of two IoT entities for a given property under a
specific set of contexts.
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In summary, most of the trust management proposals discussed above are not an
ideal base in the context of an IoT system given the resource constrained nature, dynamic
characteristic in interactions and the presence of uncertainty when interacting with one
another in an unknown situation. Unlike the aforementioned approaches, in this chapter,
we consider various characteristics of an IoT system and use subjective logic for trust value
evaluation. Recall, the employment of subjective logic is beneficial as it explicitly take
uncertainty into consideration.

7.3 Context of the Model

Before going to the detailed discussion of our proposed trust management model, we first
provide the characteristics of the model (cf. Section 7.3.1) and then present the basics of
various subjective logic operators (cf. Section 7.3.2).

7.3.1 Characteristics

• Recall, in an IoT context, an entity may not know the identity of an interacting entity
in advance. Therefore, in our trust model, we do not define a trusted entity by its
unique concrete identity. We base our trust in an entity on a set of attributes rather
than the entity’s unique identity (cf. Chapter 5). Note, a device or a set of devices
can be defined by one or a set of attributes. As discussed in the previous chapters of
this thesis, this is beneficial given the dynamic characteristics of an IoT system.

• We assume that there are device managers who manage the devices. One device can
be managed by multiple device managers or multiple devices can be connected to a
single device manager.

• The way managers manage the devices can lead to a hierarchy. There may be a chain
of device managers who are managing the devices.

• To handle uncertainty in interactions to an IoT context, we employ subjective logic
for our trust model.

7.3.2 Preliminaries

As noted above, the proposed trust model is constructed using subjective logic [433]. Recall,
subjective logic is a probabilistic logic that explicitly takes uncertainty and belief ownership
into account. It can be seen as a belief-reasoning calculus that is ideal for modeling
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and analysing situations involving uncertainty and relatively incomplete knowledge (cf.
Chapter 2). Fundamentally, subjective logic uses special belief functions known as opinion
and an opinion metric is given by w = (b,d,u) where b, d and u denote belief, disbelief
and uncertainty respectively. The corresponding values of b,d,u ∈ [0,1] and b+d+u= 1.
The usefulness of subjective logic is the application of logic operators that allow the
combination of different opinions into a combined single opinion.

Next, we briefly outline some basic subjective logic operation sets in the context of
our trust model. We follow the notations used in [434].

Definition 7.1 (Evidence to Opinion Mapping): Let us consider an entity
A requesting a service from another entity B. In this case, A would like to determine
whether B satisfies a set of propositions x. Based on the past experiences of how B has
satisfied x, A constitutes its opinion of B. If previously x was satisfied by B, then A

marks this as a positive experience (pos). If x is not satisfied by B, then A marks this
a negative experience (neg). Finally, if A is not able to determine whether B satisfies x
or not, then A marks this an uncertain experience (unc). Note, as the experiences are
individually marked as an evidence, the sum of the total pos, neg and unc would be equal
to the total number of transactions between A and B. In such, A would then form its
opinion using equation 7.1 below. AbxB represents A’s belief on B about x, AdxB represents
A’s disbelief on B about x and AuxB represents as the A’s ignorance on B about x.

AωxB = {AbxB,AdxB,AuxB} (7.1)

AbxB = AposxB/{AposxB,AnegxB,AuncxB}

AdxB = AnegxB/{AposxB,AnegxB,AuncxB}

AuxB = AuncxB/{AposxB,AnegxB,AuncxB}

Definition 7.2 (Conjunction of Opinions): The conjunction operator allows
the merging of two opinions about a proposition into a single new opinion. It can be seen
as the ‘AND’ operation and is represented by the � notation. Now consider, A has two
opinions AωxB and AωyB of the entity B, for example, in two different contexts x and y.
The conjunction AωxB

,y of the opinions AωxB and AωyB represents A’s opinion of B across
both x and y and can be represented by equation 7.2. AbxB,y denotes A’s belief in B in
both x and y. Similarly, AdxB,y shows A’s disbelief in B in both x and y and AuxB

,y shows
A’s uncertainty about B in both x and y.

217



AωxB
,y = AωxB�AωyB (7.2)

This can also be written as:

AbxB
,y,AdxB

,y,AuxB
,y = AωxB�AωyB where,

AbxB
,y = AbxB

AbyB

AdxB
,y = AdxB +AdyB−AdxB

AdyB

AuxB
,y = AbxB

AuyB +AdxB
AuyB +AuxB

AuyB

Note that, if A generates an opinion for x at two different intervals of time (e.g. t1
and t2), then the conjunction of A’s opinions for x at those times intervals represents its
opinion at an imaginary time interval that represents both the time intervals t1 and t2.

Definition 7.3 (Consensus of Opinions): Consensus of opinions is defined as
follows: “the consensus rule for combining independent opinions consists of combining two
or more independent opinions about the same proposition into a single opinion” [435]. It
is represented by the ⊕ notation.

Let us consider, A forms an opinion AωxB on B for certain proposition x and C forms
another opinion CωxB on B for the same proposition x. Then, the consensus of these two
opinions is given by equation 7.3.

A,CωxB = AωxB⊕CωxB (7.3)

This can also be written as:

A,CbxB,
A,CdxB,

A,CuxB = AωxB⊕AωyB where,

A,CbxB = (AbxBCuxB +CbxB
AuxB)/ξ

A,CdxB = (AdxBCuxB +CdxB
AuxB)/ξ

A,CuxB = (AuxBCuxB)/ξ

Here, ξ = (AuxB +CuxB−AuxB
CuxB) such that, ξ 6= 0. If (AuxB,CuxB)→ 0, then A,CωxB

can be denoted as follows:
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A,CbxB = (ξAbxB +CbxB)/ξ+ 1

A,CdxB = (ξAdxB +CdxB)/ξ+ 1

A,CuxB = 0 where,

ξ = AuxB/
CuxB

Definition 7.4 (Discounting of Opinions): Let us consider the following
situation, where A has an opinion for B and B has an opinion for C with a proposition x.
Then, A’s opinion for C can be obtained by discounting B’s opinion for C with the A’s
opinion for B. If AωxB = (AbxB,AdxB,AuxB) and BωxC = (BbxC ,BdxC ,BuxC), then AωxC represents
the discounted opinion of AωxB and BωxC , as denoted in equation 7.4. It is represented by
the ⊗ notation.

AωxC = AwxB⊗BwxC (7.4)

This can also be written as:

AbxC ,
AdxC ,

AuxC = AwxB⊗BwxC where,

AbxC = (AbxBBbxC)

AdxC = (AbxBBdxC)

AuxC = (AdxB +AuxB +AbxB
BuxC)

Definition 7.5 (Disjunction of Opinions): If A has an opinion for B and B
has an opinion for C. Then assume, A’s opinion for C can be obtained by disjunction
of B’s opinion for C with the A’s opinion for B. If AωB = (AbB,AdB,AuB) and BωC =
(BbC ,BdC ,BuC), then AwB∨C represents the disjuncted opinion of AωB and BωC , as
denoted in equation 7.5.

This is equivalent to the logical ‘OR’ operation and it is represented by the ∨
notation. Note, this operation is commutative and associative.

AωB∨C = AωB ∨AωC (7.5)

This can also be written as:
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(AbB∨C ,AdB∨C ,AuB∨C) = AωB ∨AωC where,

AbB∨C = AbB +AbC −AbB
AbC

AdB∨C = AdB
AdC

AuB∨C = AdB
AuC +AuB

AdC +AuB
AuC

Definition 7.6 (Negation of Opinions): The negation of opinions is defined
as follows: “a negation of an opinion about a proposition consists of inverting the belief
and disbelief components while keeping the ignorance component unchanged” [435]. Let
us consider that Aωx = (bx,dx,ux) is A’s opinion for an entity B about a proposition x
(when x is true). Then the negation of opinion can be defined as equation 7.6. It can be
seen as the equivalent to the logical unary operation ‘NOT ’ and it is represented by the ¬
notation.

Aω¬xB = (Ab¬xB ,Ad¬xB ,Au¬xB ) (7.6)

where, Ab¬xB = AdxB, Ad
¬x
B = AbxB, Au

¬x
B = AuxB

7.4 Proposed Trust Model

In this section, we present our proposed Trust Model (TM) and discuss its formalization.
The trust model TM can simply be defined as TM = (E,TR,OP ). Where, E denotes the
set of entities that share one or more trust relationships, TR represents the set of trust
relationships between the entities under a certain set of conditions and OP denotes the set
of operations that manages the TR. As noted earlier, there are many ways to define trust,
however, in the context of our model, we follow the proposal discussed in [434]. Next, we
present a formal definition for each component of the model.

7.4.1 Entities

Definition 7.7 (Entities): Consists of different members of the model that share one
or many trust relationships with one another.

In our model, we employ two types of entities. First, who is trusting (trustor) and
second what is being trusted (trustee). These are all things within an IoT system. The
trustor is the entity that is attempting to determine the level of trust. Amongst other
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possible examples it might be a user device attempting to determine whether to request a
service or it might be a service-providing device attempting to determine whether to trust
a requestor. The trustee is the target of the trust enquiry. Trust evaluation can be carried
out before making a decision as to whether to make or accede to an access request.

7.4.2 Trust Relationship

Definition 7.8 (Trust Relationship): It is defined by the following tuple,

TR = (A,B,Rel,M,pos,neg,unc,T,Cnt,Cat,Θ) (7.7)

The tuple TR represents that an entity (A) trusts another entity (B) in a certain
trust relationship (Rel) with the total number of opinions with positive (pos), negative
(neg), uncertain (unc) experiences calculated by an evidence mapping function (M) with
certain trust type (T ) in a given context (Cnt) and category (Cat) at a given time (Θ).

• A is an individual entity. In our model, it is an entity that is determining its trust in
another entity.

• B is the entity that is being trusted by the entity A. Note, in our model, B is
represented by a set of {attribute,value} pairs. Multiple actual things may conform
to the attribute set B and be trusted at the same level. The trusting entity A must
decide what sets to keep and to record trust information against.

• Rel is the relationship between the trustor and the trustee. For example, one or a set
of devices that are managed by one or a set of different device managers. In other
words, the relationship between a device D1 and a device manager DM1, where the
D1 is managed by the DM1. This can be used to distinguish particular sets of entities
with the same attribute sets.

• M is the evidence mapping operation for a certain trust relationship TR. The mapping
operator takes the collected evidence (pos, neg and unc experiences) and forms an
opinion as per equation 1 above.

• pos is the total number of positive experiences associated with a certain trust relation-
ship TR.

• neg is the total number of negative experiences associated with a certain trust rela-
tionship TR.
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• unc is the total number of uncertain experiences associated with a certain trust
relationship TR.

• T is the trust type. For example, direct trust, recommended trust or derived trust.

• Cnt represents the context of the trust evaluation. It is defined by a specific instance
in which trust is evaluated. Similar to other uses of context, in this thesis, it can be
seen as the set of environmental attributes. For example, a certain time and location
or both of them, or certain devices that are present in a specific location.

• Cat is the specific category of trust. For example, the level of satisfaction in an
interaction or certain certification that is trusted by the entity A.

• Θ is the set of time stamps at which the different trust types (e.g. direct, recommended
and derived) and trust experience values (e.g. pos, neg and unc) were last updated
for a certain trust relationship TR.

7.4.3 System Operation

In this section, we explain how our proposed trust model would function. Imagine an IoT
system that is composed of a number of user devices, devices and device managers. All of
these are things. Devices and device managers exist within a particular domain. Devices
must be connected to at least one device manager. However, a device can be connected to
multiple device managers. Each device manager may be connected to one or more devices.

When a device (user device or other thing) wants to access a device (thing), it
needs to communicate with the device manager of that resource. First it determines its
trust level in the device, or, more precisely, in a set of attributes the values of which
conform to those held by the device. As multiple devices may all hold the same attribute
values this avoids the need of maintaining individual trust values for each device. For
example, the user device may record trust against the set (class = ‘light’, location = ‘E6A
building’). That is, all the lights in the E6A building. As noted, the user device does
then not need to individually track its trust in each such light. It could, if it prefers,
track trust in a more fine-grained manner, for example, adding another attribute to the
set (e.g. ‘floor’) and individually tracking trust in the group of lights in each floor. One
advantage of this approach is that as lights are added to a location (e.g. floor) the user
device automatically has a level of trust in that new device. This may be useful in other
situations, where, for example, a device manager is managing a set of sensors located in
an outdoors environment, some of which are located in a dry area and some in a swamp.
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Assume that the user device is able to distinguish between these two locations by the value
of the device’s ‘location’ attribute and that devices in the swamp are typically unreliable
due to degradation caused by the environment. The user device could maintain two trust
values, one for devices in the swamp and one for devices in the dry area. New devices
added would be trusted according to their ‘location’.

The device manager also evaluates its overall trust value in the requesting device in
order to grant or deny the requested service. As with the requesting device, the device
manager does not need to maintain individual trust values in the user device, but instead
can base its trust on the attributes possessed by the user device.

The attributes possessed by a device (user device, device manager, device) may be
any physical or functional properties of an entity (e.g. location, date, time, or all of them
together). This allows, for example, the requesting user device to assess its trust in the
device based on its previous experience of devices with those attributes and similarly for
the device manager’s trust in the requesting device. This will simplify trust management
by reducing the number of separate records that need to be maintained.

In our approach, an important aspect is attribute-based identification of devices.
That is, we identify devices in terms of the attributes they satisfy. Hence, within a domain
a device manager DM1 manages a collection of devices that satisfy a given set of attributes.
In other words, DM1 manages devices which are characterized by a set of attributes. We
can now say, DM1 = an entity and D1 = {sets of attributes}.

Let us now consider the situation more formally. For simplicity, assume there are
two domains (Dom1 and Dom2), Dom1 is managed by the device manager DM1 and
Dom2 is managed by the device manager DM2. Device D1 belongs to Dom1 and therefore
controlled by the DM1. Similarly, device D2 belongs to Dom2 and controlled by the
DM2. Assume further that D1 and D2, through their device managers, are offering similar
services and possess a set of attributes in common. In Fig 7.1, we illustrate the system
model. Note, each user device and domain manager maintains their own trusted authority
(labeled as TA). Each TA consists of a trust manager (labeled as TM) and an evidence
database (labeled as ED). TM is responsible for overall trust value calculation and ED is
responsible for storing the collected evidences.

Assume a user device UD1 requests services from D1 through D1’s manager DM1.
The trustor (i.e. UD1 in this case) decides what attributes are relevant for a certain
evidence mapping operation (M) and therefore what set of attributes are required. Call
this set of {attribute,value} pairs AV1. The evidence mapping operation on a certain
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Figure 7.1: A simple system model for trust management.

TR denotes the opinion of one entity on another entity. In our case, it represents UD1’s
opinion on D1 based on the total number of positive (pos), negative (neg) and uncertain
(unc) experiences on the set of attributes it holds to which D1 conforms, that is AV1.
UD1 wants to see whether there are past interactions with this attributes set AV1 (more
properly, with devices which conform to AV1). UD1 collects the total number of opinions
e.g. pos,neg and unc on AV1 for the evaluation mapping function (M). This gives the
direct trust.

The specific value returned by the evidence mapping function (M) is dependent
upon the context (cnt) and category (cat) of the TR between UD1 and D1. For instance,
the values of opinions (pos,neg,unc) can be varied based on context x and context y. UD1

may also gather recommendations from other devices for the attributes value set AV1. It
can then calculate the derived trust from the direct and recommended trusts.

UD1 needs to consider the particular time stamp (Θ) at which direct, recommended
and derived trusts were evaluated. In addition, UD1 needs to take into account the specific
time stamps at which pos, neg and unc were recorded. Therefore, UD1 evaluates the
trustworthiness of D1 by evaluating the TR for AV1. DM1 can calculate its trust in UD1

similarly.

Over time a number of successful interactions occur and trust builds up between the
interactors. UD1 will associate its trust with D1 with the attributes D1 possesses - AV1.
At a later point UD1 requests services from D2 through D2’s manager DM2. Assume D2

also has the attributes and values specified by AV1. As D2 has the same attributes as
D1, UD1’s direct trust in D1 is extended to D2. Note that the user device UD1 selects
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which attribute sets to hold and measure trust in. The user device can be as fine or
coarse-grained in this decision as it wishes. This means that it can ensure that its trust is
not applied too broadly but only to entities that are sufficiently similar and related to
those with which it has previously interacted. Note that trust experience is recorded based
on individual contexts, which also assists in managing trust relationships.

DM2 may wish to evaluate trust in UD1 in determining whether to allow access to
the service provided by D2. It may base this, in part on recommendations from DM1

and from its own interactions with other devices with a set of attributes held by UD1.
Note that the latter case would be direct trust and, again, the trusting device is in control
of which attributes a device must hold to be considered under that collection of trust
evidence.

7.4.4 Summary of Trust Types

Our proposal employs three types of trust, namely, direct trust, recommended trust and
derived trust, as discussed in Section 7.5. In this section, we provide a summary outline of
the way that these trust types function in our system based on the aforementioned system
operation.

• Summary of Direct Trust:

(a) In our framework, a device is characterized by its attributes, therefore, UD1’s
trust on D1 is characterized based on the attributes of D1.

(b) UD1’s trust on D2 is same as UD1’s trust on D1 as long as both the D1 and
D2 have the same set of {attribute,value} pairs and the context, category and
relationship value are the same.

(c) UD1’s trust on D2 can be different from that of D1 if any of context, category
and relationship is different, even if both D1 and D2 have the same set of attributes.

• Summary of Recommended Trust:

(a) If UD1 asks for a recommendation forD1 from UD2 this will be based on a set of
{attribute,value} pairs. If UD2 has interacted withD1 then it will have experiences
recorded against the {attribute,value} set and can make a recommendation.

(b) If UD1 asks for a recommendation for D1 from UD2 this will be based on a set
of {attribute,value} pairs. If UD2 has not interacted with D1 but has interacted

225



with one or more other devices that conform to that {attribute,value} set then it
will have an experience with that set of attributes and can make a recommendation.

(c) If UD2 has not interacted with D1 or with any other device possessing the
relevant {attribute,value} then it cannot make a recommendation.

• Summary of Derived Trust:

(a) In all cases, derived trust is calculated from direct and recommended trust as
described below in Section 7.5. Note, in the absence of direct trust the derived
trust is equal to the recommended trust. Similarly, in the absence of recommended
trust the derived trust is equal to the direct trust.

7.5 Trust Evaluation

In this section, we discuss the trust evaluation process for our proposed trust model. In
our model, we use the representation of trust as an opinion metric. The opinion metric
is denoted by ω = (b,d,u), where b denotes belief, d denotes disbelief and u denotes
uncertainty for a given trust relationship TR.

Definition 7.9 (Evidence Mapping): The evidence mapping operator M for a
certain trust relationship TR represents the opinion of one entity about another entity. In
our case, it can be seen as the opinion of one entity about a set of attributes. The opinion
is collected in the form of positive (pos), negative (neg) and uncertain (unc) experiences
of the collected evidence based on the previous interactions. Recall, the evidence mapping
operation is given in equation 7.1.

Definition 7.10 (Opinion Decay): It is a function that represents the dynamic
nature of trust. Over a given time frame, the value of trust for a certain entity varies
based on certain factors e.g. context, category, relationship, etc. The opinion decay helps
to represent the trust as time progresses. Note that the decay function (Ψk,∆) is used
to calculate new opinion (ωnew) after decay from an old opinion (ωold). This can be
represented as in equation 7.8.

ωnew = Ψk,∆[ωold] (7.8)

where, k represents the decay rate and 0< k ≤ 1. ∆ represents the time difference
at which trust is evaluated and the opinion was last updated for a certain entity.
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Ψk,∆ can be represented as:

bnew = bold[1− e−(k.∆)]

dnew = dold[1− e−(k.∆)]

unew = uold+ [(bold+dold)− (bnew +dnew)]

Ψk,∆ should be chosen so that ωnew does not decay too rapidly. The value of Ψk,∆

may need to be capped to avoid extreme decay in the event of long periods between
updates.

Definition 7.11 (Total Opinion): The total opinion of an entity A about a set
of attributes B for a given context cnti, category catj and relationship relk is given by
the combined evidence collected for that context, category and relationship.

Now let us assume, (AposB(cnti,catj ,relk),
AnegB(cnti,catj ,relk),

AuncB(cnti,catj ,relk)) rep-
resents the evidence associated with the trust relationship TR of an entity A for a set of
attributes B for the given context cnti, category catj and relationship relk. Based on the
collected evidence, the evidence mapping function M is used to calculate the opinion of
the TR at time θ. This can be represented as in equation 7.9.

AωθB(cnti,catj ,relk) = {AbθB(cnti,catj ,relk),
A dθB(cnti,catj ,relk),

AuθB(cnti,catj ,relk)} (7.9)

This can be regarded as the opinion calculated over all evidence collected. That is
evidence collected between time θ and system start time 0 (zero). Opinion can also be
calculated over evidence collected in a specified time period, e.g. between time θ and time
θ− t. This can be written as in equation 7.10.

Aωθ,θ−tB(cnti,catj ,relk) = {Abθ,θ−tB(cnti,catj ,relk),
A dθ,θ−tB(cnti,catj ,relk),

Auθ,θ−tB(cnti,catj ,relk)} (7.10)

Equation 7.9 could then be re-written with θ replaced by θ,0, but for convenience
we will retain the formation as in equation 7.9.

Definition 7.12 (Direct Trust): Direct trust is the belief that an entity A

holds on a set of attributes B for a given context, category and relationship based on its
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past experiences with B. The direct trust in a certain context cnti, category catj and
relationship relk is calculated based on the opinion held at the time of service request θ
and the total opinion prior to service request at time (θ− t). This can be represented as
in equation 7.11.

A−dirωB(cnti,catj ,relk) =A ωθ,θ−tB(cnti,catj ,relk)�Ψk,t[Aωθ−tB(cnti,catj ,relk)] (7.11)

where, Aωθ,θ−tB(cnti,catj ,relk) and
Aωθ−tB(cnti,catj ,relk) are, respectively the opinion calculated

at time θ based on evidence collected since the last update, i.e. (θ− t), and the opinion
calculated at the time of the last update (θ− t), based on all evidence collected up to that
time. The latest opinion at time θ is combined with the all previous experiences before
the time θ, where, θ,(θ− t) ∈Θ. The opinion at time (θ− t) is decayed to emphasize more
recent experiences.

Definition 7.13 (Recommended Trust): It is the belief that an entity A

holds on a set of attributes B for a certain context, category and relationship based on
the recommendations obtained from its peer entities’ past experiences. The notation
A−recωB(cnti,catj ,relk) represents the overall recommended opinion of an entity A on B

computed from the individual opinions of A’s recommenders for the particular context,
category and relationship. This can be represented as in equation 7.12.

A−recωB(cnti,catj ,relk) = (FR1
⊗Ψk,t1 [R1ωθ−t1

B(cnti,catj ,relk)])⊕·· ·⊕ (FRm
⊗Ψk,tm [Rmωθ−tm

B(cnti,catj ,relk)])
(7.12)

Note, a decay function is applied to every recommended opinion. For each decayed
opinion of a recommender, a critical factor F is introduced to the corresponding recom-
mendations. It signifies how much the entity A values each recommendation. The F of
FR1 . . .FRm are attached to the decayed opinions of recommenders R1 . . .Rm respectively
using a discounting operator. Note that the value of t used for the decay of each recom-
mendation is different as each recommender may have updated its opinion at a different
point in the past.

Definition 7.14 (Derived Trust): It is the belief an entity A builds on a set
of attributes B for a given context, category and atomic trust relationships e.g. direct
and recommended. The derived opinion for a given context cnti, category catj and the
relationship relk is the combination of direct and recommended opinions for these context,
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category and relationship. This can be represented as in equation 7.13. For example, a
user device wishing to obtain a service from a thing may obtain a recommendation from
that thing’s manager. The relationship value here will be different between the users
device and the manager due to their different relationships with the device. The user
device can include the manager’s recommendation as just outlined, with an appropriate
weighting value.

A−derωB(cnti,catj ,relk) =A−dir ωB(cnti,catj ,relk)⊕A−recωB(cnti,catj ,relk) (7.13)

Note that the derived trust is the combination of both the direct and recommended
trust. Therefore, it can be obtained by the combination of equations 7.11 and 7.12
together. Importantly, as we discussed above, in the absence of a direct trust, the derived
trust is equal to the recommended trust. Similarly, in the absence of a recommended trust,
derived trust is equal to the direct trust.

Definition 7.15 (Total Derived Trust): It is the belief an entity A builds on
a set of attributes B for all contexts, categories and relationships.

In calculating the derived trust in another entity the trustor may not wish to limit
itself to a particular, context, category or relationship. This may be, for example, in
the case where the amount of evidence is limited. Instead, the trustor may use wider
information. For example, the total derived trust over all contexts for a particular category
and relationship can be represented as in equation 7.14.

A−derωB(catj ,relk) =A−der ωB(cnt1,catj ,relk)⊕A−der ωB(cnt2,catj ,relk)⊕·· ·⊕A−der ωB(cntI ,catj ,relk)

(7.14)

where, I is the total number of contexts. The total derived trust can also be written as:

A−derωB =⊕(A−derωB(cnti,catj ,relk)),∀1≤ i≤ I,∀1≤ j ≤ J,∀1≤ k ≤K (7.15)

This idea can also be used in the calculation of either or both of direct and rec-
ommended trust. For example, trustors may not wish to limit the recommendations
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they receive to one set of values for context, category and relationships. The approach
taken in equation 7.14 and equation 7.15 for forming a consensus of opinions across a
range of contexts, categories and relationships can then be used to assemble a variety of
recommendations.

7.6 Trust Comparison

The major intention of using trust in the IoT context is to reduce the uncertainty in the
communication and secure authorization of the resources. The trust model presented in
this chapter is based on opinion metrics. The comparison of opinion metrics is used in
order to make an authorization to a certain service. For instance, the derived trust of a
platform should be higher than an expected opinion threshold by which a request will be
serviced. In Section 7.7, we provide practical examples. Next, we represent the comparison
operator as follows:

Definition 7.16 (Comparison of Opinions): An opinion comparison operator
≥ope for two given opinions ope1 and ope2, where ope1 ≥ope ope2, holds if b1 > b2, d1 < d2

and u1 < u2. In such case, we can say that a trust value for ope1 is higher than the
threshold trust value presented by the ope2.

When an entity A receives a request from another entity B for a certain service, A
may wish to determine whether B should be provided with that service. To determine this,
A computes its direct trust for the B using equation 7.11 for the relevant values of context,
category and relationships. A also gathers recommendations for B for the same context,
category and relationship and possibly for other contexts, categories and relationships as
well. Note, each recommended opinion is decayed for the time elapsed from when the last
recommendation was recorded. The decay time ∆ may vary for each recommender. It
can also be possible that the different decay rate k is used for each recommender by A.
The recommended trust is calculated using equation 7.12. The derived trust then can be
computed combing the direct and the recommended trust using equation 7.13, possibly
extended as described under total derived trust. For every service that is provided, A
assigns authorization policies which includes a threshold value opeth. This can be seen
as an opinion constant for a given context, category and trust relationship. Using the
comparison operator ≥ope, A now compares the derived opinion with the threshold opinion.
If the derived opinion is greater than the threshold opinion, A trusts B and the request
will be serviced. Note, in the reverse case, B deciding whether it should trust A for the
provision of a service, the calculation proceeds in the same manner.
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7.7 Use Case Scenarios

In this section, we discuss two example scenarios to show the potential where our trust
evaluation framework would function.

7.7.1 Scenario 1

In Chapter 1, we noted that implantable IoT-enabled medical devices can be a potential
vector for attackers to breach a patient’s private information or even damage the patient’s
health. For instance, attacks made on a pacemaker can cause cardiac arrest [313].

Suppose, in a smart home, a patient’s health is periodically measured and com-
municated to a hospital where the patient is treated. Now consider, the pacemaker of
a patient suddenly sends an urgent notification regarding the cardiac condition of the
patient (e.g. a cardiac arrest). This information arrives at the central response serve) that
is managed and maintained by the hospital. We assume that this server includes a trust
management module that now evaluates the overall trust between the pacemaker and the
server. This will help to determine the seriousness of the situation and corresponding
actions to be taken. For this, the sensor module must be satisfied with a certain threshold
of the calculated trust value before a decision is made (discussed in Section 7.6). The
direct trust can be calculated based on the interactions between the pacemaker and the
server. In case of the recommended trust, the server collects recommendation information
from other IoT smart devices that have previous interaction with the pacemaker. In our
proposed trust model, the server is the trustor and the pacemaker is the trustee. Now
consider the following two cases.

Case 1: In this case, let us assume that there is no recommender available. In other
words, the weight for the recommended trust is zero. Therefore, the derived trust is equals
to the direct trust. We assume that the time of the decision making is March 20, 2019 at
18:00:00 hours and opinion at the sensor module was last updated 20 days prior to request.
The following trust relationship is available:

(A,B,Rel,Cnt,Cat,March 20 2019,18 : 00 : 00, [0.42,0.32,0.26],8,6,5)

Therefore, the direct trust can be seen as follows:

Ψ1,20/365.
Aωθ−20

B(cnti,catj ,relk) = (0.17,0.55,0.22)
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Case 2: In this case, the hospital management module collects some recommendations
from other devices that have previous interactions with the pacemaker. We consider two
devices (i) smartphone of the doctor who installed the pacemaker (denoted as R1) and (ii)
an IoT-enabled smart device of the manufacturer of the pacemaker (denoted as R2). In some
other cases, it could also be possible that other IoT devices can provide recommendations
about the particular pacemaker. For example, an ECG monitoring device situated in the
patient’s home that has previous interactions with the pacemaker. For simplicity, we only
consider the above mentioned two devices in this case and that values of context, category
and relationship all match. It is important to note that the trust calculation will make
use of the most recent recommendations. Typically, the previous recommendations can be
stored in a hospital database server. Therefore, in this case, the derived trust is calculated
from the direct and the recommended trust. Let us assume that there are one direct
interaction and two recommendations (one from smartphone and one from manufacturer’s
IoT smart device). The following trust relationships are available. We consider the direct
trust as in case 1 discussed above. Opinions are decayed at the rate of 100% and the
recommendations are collected in the past 6 and 10 days. The following trust relationships
are available:

(R1,B,Rel,Cnt,Cat,March 24 2019,18 : 00 : 00, [0.26,0.72,0.00],5,14,0)

(R2,B,Rel,Cnt,Cat,March 20 2019,18 : 00 : 00, [0.22,0.67,0.11],4,12,2)

The recommended opinions and decayed recommended opinions of recommenders
R1 and R2 based on previous experiences are:

R1ω
θ−6/365
B(cnti,catj ,relk) = (0.26,0.72,0.00), Ψ1,6/365.

Aω
θ−6/365
B(cnti,catj ,relk) = (0.13,0.36,0.50)

R2ω
θ−10/365
B(cnti,catj ,relk) = (0.22,0.67,0.11), Ψ1,10/365.

Aω
θ−10/365
B(cnti,catj ,relk) = (0.11,0.32,0.55)

Therefore, The total recommended trust from the R1 and the R2 is (0.16,0.47,0.36).
Now, if we calculate the derived trust in this case, it is (0.19,0.60,0.16), where, Ψ = 0.49.

7.7.2 Scenario 2

In this scenario, we consider an indoor hospital environment. In a particular ward there
are several patient monitoring devices installed. For example, IoT-enabled devices are
attached to the patient’s bed. These devices can periodically send information to the
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hospital database regarding a patient’s physical and clinical information e.g. blood glucose
level, heart rate, blood pressure, location within the ward, etc. Any malicious activities
in one of these devices can cause potential threat to the patient’s health. For instance,
unauthorized control to a patient’s insulin pump and alter the dose of the medicine or
similar activities [313]. Doctors and nurses carry IoT-enabled portable devices that are able
to communicate to these various IoT devices within the ward and the hospital database.

Now suppose, an insulin pump sends a critical signal e.g. low level of blood glucose
of a patient admitted in a certain ward. In this case, the information is transmitted to
the hospital central server from where the patient monitoring control is managed and
maintained. Therefore, in this case, the insulin pump is the trustee and the hospital
central server is the trustor. Before taking an action in this situation, the central server
wants to ensure the seriousness of the situation. In such, it performs a trust evaluation on
the insulin pump from where the request is received. Similar to the previous scenario (i.e.
Scenario 7.7.1), there are two cases possible:

Case 1: In this case, there is no recommender is available, so the weight for the
recommendation trust is zero. Hence, the derived trust is equals to the direct trust. We
assume that the time of the decision making is June 10, 2019 at 18:00:00 hours and
opinion at the central server was last updated 5 days prior to request. The following trust
relationship is available:

(A,B,Rel,Cnt,Cat,June 10 2019,18 : 00 : 00, [0.47,0.37,0.16],9,7,3)

Therefore, the direct trust can be seen as follows:

Ψ1,5/365.
Aωθ−5

B(cnti,catj ,relk) = (0.20,0.59,0.15)

Case 2: In this case, the central server collects some recommendations from other
devices that are able to provide recommendations for that particular insulin pump. Assume
five are available (i) an IoT-enabled smart device (denoted as R3) of the doctor who is
treating the patient, (ii) and (iii) two IoT-enabled smart devices (denoted as R4 and R5)
of two nurses who controls the dose of the medicine in different shifts and (iv) and (v)
two nearby patient monitoring devices (denoted as R6 and R7) to the insulin pump. Once
again, we consider the direct trust as discussed in case 1 above. Opinions are decayed at
the rate of 100% and the recommendations are collected in the past 2, 8 and 12 days. The
following trust relationships are available:
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(R3,B,Rel,Cnt,Cat,June 10 2019,18 : 00 : 00, [0.30,0.60,0.10],6,12,0)

(R4,B,Rel,Cnt,Cat,June 02 2019,18 : 00 : 00, [0.31,0.62,0.08],4,8,1)

(R5,B,Rel,Cnt,Cat,June 02 2019,18 : 00 : 00, [0.33,0.56,0.11],3,5,1)

(R6,B,Rel,Cnt,Cat,May 30 2019,18 : 00 : 00, [0.45,0.45,0.09],5,5,1)

(R7,B,Rel,Cnt,Cat,May 30 2019,18 : 00 : 00, [0.46,0.38,0.15],6,5,2)

The recommended opinions and decayed recommended opinions of recommenders
R3 to R7 based on previous experiences are:

R3ω
θ−2/365
B(cnti,catj ,relk) = (0.30,0.60,0.10), Ψ1,2/365.

Aω
θ−2/365
B(cnti,catj ,relk) = (0.29,0.58,0.10)

R4ω
θ−8/365
B(cnti,catj ,relk) = (0.31,0.67,0.11), Ψ1,8/365.

Aω
θ−8/365
B(cnti,catj ,relk) = (0.30,0.60,0.08)

R5ω
θ−8/365
B(cnti,catj ,relk) = (0.33,0.56,0.11), Ψ1,8/365.

Aω
θ−8/365
B(cnti,catj ,relk) = (0.33,0.54,0.11)

R6ω
θ−12/365
B(cnti,catj ,relk) = (0.45,0.45,0.09), Ψ1,12/365.

Aω
θ−12/365
B(cnti,catj ,relk) = (0.44,0.44,0.09)

R7ω
θ−12/365
B(cnti,catj ,relk) = (0.46,0.38,0.15), Ψ1,12/365.

Aω
θ−12/365
B(cnti,catj ,relk) = (0.45,0.37,0.15)

Therefore, The total recommended trust collected from theR3 toR7 is (0.31,0.28,0.39).
Now, if we calculate the derived trust in this case, it is (0.26,0.56,0.12), where, Ψ = 0.48.

We consider that a trustor will provide a service if the derived trust on the trustee
is in the following threshold opinion of (0.60,0.30,0.10). In other words, the derived trust
value is compared against the above mentioned threshold opinion. In the first scenario,
we noted that the derived trust is (0.19,0.60,0.16) and in the second scenario the derived
trust is (0.26,0.56,0.12). Therefore, in both cases, the trustor is not satisfied with given
threshold opinion of the trustee.Therefore, the trustor will not provide a service to the
trustee. This also highlights that the trustor is able to detect the falsified claims from the
devices in the proposed trust model.

7.8 Summary

In this chapter, we have proposed a theoretical framework for a trust model for the IoT
considering the highly dynamic nature and other distinct characteristics of such systems.
We have noted that trust is an important factor for establishing communication between
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different entities in uncertain conditions. This very true in the case of the IoT, as the
interacting entities may not know each other’s identities in advance or may not encounter
each other before. Trust can help address this lack of certainty. This may come from
direct interactions between these entities or any other recommendation that comes from a
trusted third party. We argued that in the IoT the things must have the ability to make
decisions autonomously without any human intervention. This end trust in IoT has been
recognized as an important issue for processing and handling of data.

The establishment of trust and to define a flexible trust management system for the
IoT is in its infancy. In most of the cases, the interactions between the entities in an IoT
system occur without enough knowledge of the interacting entities. The information of
the entities in an application may not only come from its behaviors but also the device
properties in a certain context. In addition, the trustworthiness of the different layers in
an IoT architecture play a crucial part to the overall trust management due to the need
for reliable communication among the layers. This reinforces the need for interoperability,
robustness and dynamicity for the IoT trust modelling.

There are several trust management proposals that discussed the centralized trust
management systems for the IoT. These models aim at collecting trust values from the
entities and process them in a central system, based on the employed trust modelling
framework (cf. Section 2.6 of Chapter 2). The centralized trust management mechanisms
can provide a sustainable means towards the trust management in the IoT. However,
the centralized approach to IoT trust management is not an ideal solution due to the
characteristics of the IoT. Furthermore, the central systems are not always efficient enough
to capture the trust values of the misbehaving nodes according to different contexts.
To overcome the limitations of a centralized trust management system, dynamic trust
management systems are proposed. In this approach, an individual IoT entity is capable
of performing the trust evaluation at runtime and autonomously. A few other approaches
consider the social aspects in trust management systems based on social relationships e.g.
cooperativeness, honesty, community interests, etc. This paradigm is also known as the
Social IoT (SIoT).

In our proposed trust model, an entity can make an authorization decision using
different trust types, e.g. direct trust, recommended trust and derived trust. Significantly,
we used derived trust as the default design of trust comparison computed with the direct
and recommended trusts. Our model can efficiently adopt uncertainty present in an IoT
system using subjective logic for trust value calculation. We argued that every trust
management system should have some threshold that must be satisfied before a trustor
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offers a service to the trustee. Therefore, we demonstrated the practicability of our
proposed model using real-world use case scenarios where trust valued are evaluated based
a threshold. We summarize our findings as follows:

• We have proposed a theoretical framework of a trust model for the IoT given the
uncertainties in such system. We have also considered the dynamic characteristics of
the IoT system into account when designing the trust model.

• We employed subjective logic for our trust model which explicitly take uncertainty
into account. We use belief, disbelief and uncertainty to calculate trust values of an
entity based on direct, recommended and derived trusts.

• We used attributes to represent an entity in our model. That said, in our model, an
entity is validated based on the attributes it possesses, rather than depending upon
its concrete unique identity.

• We provided a comprehensive discussion of the proposed trust model based on various
subjective logic operators and examine their applicability in the overall trust value
(i.e. the derived trust) calculation to our model.

• We presented a list of use case scenarios based on real-world IoT applications and
demonstrated the practicability of applying our proposed trust model in such scenarios.

In the next chapter (i.e. Chapter 8), we will conclude the thesis. We intend to
present a summary of the research findings of this thesis, discuss open research questions
and outline our future work.
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Chapter 8

Conclusion

The emergence of the IoT has already produced significant changes in our everyday lives,
where everything and anything can be connected and communicated in the cyber-physical
world. With the proliferation of smart mobile devices, intelligent sensors, wearable devices,
ubiquitous Internet and cloud computing, the use of the IoT is growing at an increasing
rate. However, we noted that this growth poses numerous challenges for the designers and
users of these systems. One significant challenge is the provision of security within the IoT.
The high mobility of things, the potential scale of the systems in the number of things
and users combined with dynamic network topology and wireless communication mediums
create a challenging environment. This is only exacerbated by the limitations in device
memory, battery-life and processing capacity, arguing against the use of ‘heavy-weight’
security architectures.

The IoT promises a marked increase in both the scale and complexity of connected
systems even when compared to existing examples. With a significant increases in the
number of users and things, and the potential for high mobility producing numerous
transient relationships, issues of identity (both of users and things) and access to services
require increased focus. Other features of the IoT, e.g. heterogeneity of device technology,
incremental deployment and the need for end-to-end security only serve to reinforce the
need for an examination of these issues within the particular context of the IoT.

We found that the massive scale of the integration of heterogeneous devices and
services in an IoT system means that none of the commonly used access control mechanisms
(e.g. RBAC, ABAC, CapBAC, etc.), in isolation, can achieve efficient management of access
control policies and enforcement of authorization decisions. Moreover, the intrinsic features
of traditional access control approaches may be difficult to implement within the resource
constrained IoT devices. There is a requirement that, whatever access control mechanism
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is employed, it should be usable as well as sufficient to protect the privacy, integrity and
confidentiality of the system and its components. In an IoT system, information should
easily be available and accessible to the legitimate users. However, the information should
be protected, allowing only authorized users to control and manipulate the data.

In this thesis, we assert that there is a need for rethinking the requirements of an
IoT security architecture that achieves fine-grained access control requiring minimum
mechanisms for policy enforcement and their management, that enables secure access
control for billions (and possibly trillion) of things which can access and be accessed in a
heterogeneous environment. This in turn, will help to develop a scalable, dynamic and
flexible access control architecture for the IoT. We have examined the following thesis:

A partially decentralized capability-based access control architecture can be used for
authentication and authorization of users and resources in a large-scale IoT system and can
significantly reduce the number of policies required for such authentication and authorization
based on attributes, rather than depending upon unique identity of an entity.

To test the thesis, we have considered and answered the following research questions:

• Research Question 1: How to design an access control architecture for an IoT system
that is capable of handling security using a minimum number of policies and dynamic
identity management?

• Research Question 2: How to achieve such a fine-grained access control design leveraging
on the distributed nature of an IoT system?

To address the first question, in Chapter 2, we surveyed the state of the art IoT
paradigm in short and examined available mechanisms for IoT access control. We also
outlined the challenges in access control when employing traditional mechanisms within
the IoT. In Chapter 3, we proposed a novel access control architecture for the IoT. We used
a hybrid approach by employing attributes, roles and capabilities for the authorization
design. We used attributes for authentication and authorization of a legitimate user within
the system rather than depending upon unique identities of the entities.

To address the second question, in Chapter 4, we tested the practicability of the
proposed access control architecture using physical testbed experiments. We tested both
symmetric and asymmetric key based approaches employed in our model. We demonstrated
that the architecture could easily work with either approach. In Chapter 5, we examined
the use of attributes for modeling and management of IoT identity at scale. We outlined
the requirements and characteristics for IoT identity and provided a formal model of

238



IoT identity. In Chapter 6, we analyzed the use of attributes to validate an entity in an
IoT-based access control delegation (for transferring of access rights). Once again, we
overshadowed the need for the unique identities of the entities. Finally, in Chapter 7, we
examined the notion of trust and demonstrated its applicability to IoT access control. We
proposed a dynamic trust model that can easily be incorporated to our proposed access
control architecture.

8.1 Thesis Summary

This thesis presents a new and practical approach to the use of attributes for authentication
and authorization of entities for an IoT system. It develops the concept of an access
control architecture for large-scale IoT for flexible and fine-grained policy management. In
this thesis, we have made several contributions.

In Chapter 2, we have discussed related work related to this thesis. We have examined
various threats and attacks to an IoT system and guide the derivation of unique security
requirements for the IoT. We proposed five distinct categories of issues and threats for
an IoT system, namely, communications, device/services, users, mobility and integration
of resources. This helped us to better understand the core security requirements for
each layer of an IoT architecture. This is in particular helpful when designing an access
control architecture leveraging the fine-grained access control requirements that can fully
address the security provisioning of an IoT system. Our contributions considered both the
technological and architectural point of views of an IoT system. This included a wider
view of access control issues and their potential integration to IoT and provided a detailed
discussion of the IoT security requirements in a systematic way. We also briefly introduced
the notion of identity, access control delegation and the significance of trust in an IoT
context.

In Chapter 3, we raised an important question of how to build a secure access control
architecture based on the identified access control requirements in the context of the IoT.
To answer the question, we used a use-case of smart healthcare system where several
actors are involved and proposed an access control architecture for IoT. We emphasized
that fully centralized control over an IoT system is not an ideal base for providing QoS in
many ways, including fault tolerance, distribution of access rights or event the support
for heterogeneity. We have outlined the design of a general access control system for the
IoT that combines elements of attributes, roles and capabilities to achieve streamlined
policy management. We noted that traditional access control mechanisms which, in
isolation, incapable of providing fine-grained and flexible access control for the IoT. The
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proposed design is partially decentralized, which helped to achieve better performance
for IoT systems using light-weight security mechanisms. In our system, access rights are
embodied in capabilities. The capabilities are provided to users on request, based on
the attributes of users and the roles which those users give them membership of. Once
a capability is obtained, the user attributes do not need to be checked again while the
capability remains valid. Significantly, the edge devices need only to check the capability,
avoiding any communication with a central system at that point, including any need
for repeated attribute evaluations. We intended to see the use of light-weight security
protocols (e.g. symmetric key based approach) and their potential applicability to the
constrained IoT devices. At the same time, we compared the employment of asymmetric
key based approach to the developed architecture.

In Chapter 4, we demonstrated the feasibility of the proposed access control archi-
tecture using a physical experimental setup. We used commodity hardware for building
the constrained IoT devices. We employed ESP8266-12E microcontroller in terms of price,
performance, connectivity and ease of use. With numerical results, we showed how our
proposal significantly improved the performances leveraging the advantages of RBAC,
ABAC and capabilities to a fine-grained level. We used RBAC to improve the relationship
between the user and policies by using specific roles. ABAC improved the fine-grained
access control by reducing the number of policies required for the identification process.
Finally, the use of capabilities improved the proliferation of user’s identity without requir-
ing heavy-weight policy management. We conducted both symmetric and asymmetric
key based experimentation and listed the differences. Indeed, the asymmetric key based
approach of implementation delivers better security than a symmetric key based approach,
but there is a trade-off between the resource constrained nature of IoT devices and the
need for security provisioning. Our experimental results confirmed the suitability of the
light-weight security protocol within the architecture. However, the symmetric key based
design depends upon pre-registration of the user device and the things with the central
management system. To avoid this would require the use of asymmetric key cryptography
which would increase the round-trip time. Our results suggested that the proposed style
of distributed authorization system for constrained IoT devices can be an alternative to
fully centralized authorization systems for large-scale systems e.g. the IoT.

In Chapter 5, we examined the core concept of digital identity and its provisioning
to IoT identity. We further enhanced the findings to analyze the requirements for an IoT
identity model supporting attribute based identity. We answered the importance question
of how to precisely identify the exact services to which many entities will seek access. In
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a large-scale system like the IoT, it is challenging due to the characteristics of the IoT
systems, where it is difficult to predict, in advance, which entities will interact and require
access to services from which entity. The technical question was how to build a formal
model of IoT identity based on attributes, rather than depending upon a concrete identity
of an entity. Another major concern was the presentation of minimum attributes for an
identification while keeping confidential the other related information. To achieve this,
we have investigated various representations of digital identity and its suitability when
addressing identity in an IoT context. Given the analysis, this led us to build an identity
model for the IoT where we have presented a novel idea of IoT identity from the thing’s
perspectives. The thing can, for example, be a device, an application, a human user or
even an organization. We have further illustrated a formal model of IoT identity based
on the different components of an identity management framework in a more systematic
fashion. Our proposal was also supported by specific use-cases examples.

In Chapter 6, we investigated the significant issues of transferring access rights
through delegation in an IoT context. This is important, because in large-scale and
dynamic systems, e.g. the IoT, delegation is crucial in ensuring flexible, fine-grained and
responsive access to resources by allowing users to propagate access in a controlled fashion.
We noted that the previous approaches to delegation in the context of the IoT are mostly
static in nature and do not consider the distributed essence of IoT systems. This led us to
proposed an identity-less, asynchronous and decentralized delegation model for flexible and
ease transfer of access rights in the IoT. To achieve this, we used blockchain technology.
Our prime goal was to demonstrate how to facilitate managing and accessing IoT resources
without the need for a central trusted authority. We proposed and analyzed a novel
capability-based delegation model for large-scale IoT systems using blockchain. We showed
that a blockchain platform provides all the necessary support to implement a delegation
process that is identity-less, asynchronous and decentralized by nature. The basic idea
was to use capabilities to propagate access rights and use blockchain for communication
between various entities. The delegated capabilities were checked by the edge IoT things
upon access. Once again, our design was based on attributes and does not depend upon
a concrete identity of the IoT things, this provides significant flexibility when managing
resources at scale. Furthermore, we demonstrated how our proposal took advantage of
decentralized nature of blockchain networks and support the asynchronous nature in
communication.

In Chapter 7, we proposed a trust model for the IoT. We used the dynamic notation
of trust to examine access control in such IoT systems. We showed how to improve
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access control mechanisms easing the decision-making process under uncertainty. We used
subjective logic for the proposed trust model and introduced a well-defined trust model
for IoT supporting attribute-based identity. As to the main focus of this thesis, we did
not use unique concrete identification of an entity. That said, our proposal was based on
attributes where entities are represented by the attributes they hold. We employ various
subjective logic operators to define the proposed model. We showed how trust can be
calculated based on opinions in an uncertain situation. We demonstrated the usefulness of
the proposed model using different real-world IoT scenarios. Our finding showed that it
is possible to build such a trust model by considering the dynamic characteristics on a
large-scale IoT system.

8.2 Open Research Questions

In this thesis, we have discussed access control, identity management, secure access right
delegation and the notion of trust for the IoT systems. However, there are several open
research questions and issues which future research would need to address. In this section,
we highlight some such potential open research questions.

Support for Heterogeneity: Given the massive scale of the number of devices in the
IoT and the range of available network mediums (including both wireless and wired),
heterogeneity must be accepted and supported in an IoT system [436]. For wxample,
wearable devices, and will continue to come, in a wide variety of forms, depend on a range
of technologies and offer a plethora of services. A key requirement for an IoT system
is that it should have the ability to integrate the various types of devices, users, things
and their associated service and applications [437]. At the device level there should be
support for diverse communication technologies (e.g. CoAP, 6LoWPAN, etc.), mobility
and flexibility in handling various low-powered and low-memory devices [438]. At the
service level, the system should support the required bandwidth, latency, reliability, etc.,
as well composition of services. In addition, support for usability throughout the life cycle
of a things is also necessary [439]. Towards this, an important open research question is:

• How do access control and identity management in the IoT provide uniform and easy
to manage solutions across the range of technologies that are deployed in the IoT?

It cannot be assumed that single standardized solutions and interfaces will be
available. Interoperability will be the key, with diverse systems needing to communicate
and co-operate. Policy specification, for both access control and identity management,
will need to be compatible across a large number of domains, even if implemented using
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very disparate technologies. Each user and their wearable devices may constitute a single
administrative domain. Standard interfaces and specification languages, and ontological-
based approaches, may assist here.

Managing the Scale of ‘Things’ and Systems: The number of IoT devices are
increasing day by day [440]. Smart wearable devices are becoming increasingly available at
decreasing cost. Along with this comes an increasing number of applications and services
that make use of, and depend on, wearable devices. The increasing scale of the numbers
of things and users are prime concerns when considering secure access control and identity
management [56]. IPV6 addressing is promising in providing addressing to the scale
required [441]. However, even it may not be sufficient in an environment where not all
devices are IP-capable. Given the scale of things, efficient policy management becomes a
pressing issue. In terms of access control, we cannot afford to manage policies on a per
device basis. Similarly, users will wish to access services which are supported by a vast
number of wearable devices. The mapping of low level device identity to the high level
users’ identities in tight coordination is challenging due to the mobility in interactions,
unreliability in mediums and channel related dynamics [49]. Identity cannot exist solely
on the individual device basis, but must be flexible enough to encompass collections and
communities of devices, users and systems. Further complicating these questions is the
high mobility potentially available to devices worn by a user. Relationships in the IoT
may be transient, with users expecting communication and interoperability upon initial
contact. Open research questions in this area include:

• How should identity within the IoT be formulated to account for the scale of entities
involved and the dynamic and transient nature of relationships?

• How is efficient policy management achieved, both in terms of the size of the policy
database and ability to manage newly encountered users and devices?

Policy mechanisms will need to be flexible and employ new levels of abstraction.
While capabilities, to consider access control, may provide the fine-grained control required
for a vast range of wearable devices, other mechanisms may also need to be employed to
deliver efficient policy management. Identity in the IoT will likely be a more fluid and
diverse concept than in previous digital incarnations, but will still need to be precise to
allow for accountability.

Centralized versus Distributed: The lack of computing, battery and storage power in
devices, especially wearable ones, may initially appear to argue for centralized solutions
to access control, identity management and other security issues. However, the scale of
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the IoT, already discussed, is likely to make such approaches impractical. On the other
hand, resource constrained devices will be unable to individually support sophisticated
policy management. Users may well wish to have significant levels of control over their
suite of wearable devices, again arguing against heavily centralized solutions. We would
argue that, the system should situate the security components as close as to the local IoT
devices by developing a scalable and structured security infrastructure for the IoT [30].
An open research question is:

• How to balance the need for effective and secure security provisioning against the low
resource provisioning of devices and likely user requirements ?

Given the edge intelligence present in many IoT systems and their potentially large
scale, the security provisioning should be placed as close as possible to the point of need,
while allowing for resource constrained devices. To address these issues, a distributed
decentralized IoT security architecture, e.g. [442], focused on core issues of privacy for users,
confidentiality of data and third-party dependability, that supports scalability and usability
issues, will need to be employed. Further, enhancing light-weight security mechanisms
for authentication, e.g. [61], could potentially fit into the IoT things that are located
at the edge of the network. This will likely take the form of decentralized management
responsible for clustered portions of the system, possibly even at the level of each user
and their wearable devices constituting a separate administrative domain [443].

Privacy Preservation: The wearable devices of a user may hold and have access to a
vast range of potentially sensitive information about that user. Users will likely wish to
preserve the privacy and confidentiality of their information. Access control and identity
management are critical concerns in protecting user privacy [444]. The information
(possibly in the form of ‘attributes’) that is required to identify an entity vary depending
upon the circumstances, including the needs of specific applications [364]. For instance,
as discussed in Chapter 5, a bank may asks for such attributes as name, age, phone
numbers and the account number for a payment purpose. However, in a shopping mall
the membership-card application may ask only the name, address and phone number. A
movie theatre may only require age when selling tickets.

From a data safety point of view, keeping personal data confidential and only
supplying the minimally necessary amount of information is the desired goal. This
is challenging in the present state of the IoT [254]. While privacy-preserving identity
management systems exist, for example [364], they tend to be heavy-weight and rely on
significant centralized components. There is also the question of whether wearable devices
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will have the intelligence required for selective release of information. The obvious research
question is:

• How to achieve privacy, especially in the form of selective, user-controlled, release
of personal data, specifically identity-related data, in the context of resource limited
devices?

If this cannot be achieved at the device level, approaches may need to be adopted
where more capable devices are used to control the remainder of the user’s suite of wearable
devices. This may mesh with the concept touched on above of each user and their wearable
devices constituting a separate administrative domain. Each user will then require at least
one device capable of assisting in managing the domain and, in this context managing the
release of the minimal information required for access control and identity management
functions.

Anonymous Communications and Accountability: In the IoT, with the high mo-
bility accompanying wearable devices, a vast range of interactions are possible. It is likely
that users will wish at least some of their communications to be private and anonymous.
Anonymous communication refers to the case where the communication originating from
an entity contains no information that can link that communication to the underlying
identity of the entity. It may involve totally de-identified communications or the use
of pseudonyms. Release of a user’s identity may not only be through the inclusion of
information directly relating to the user’s identity in the communication packets, but also
from the IP or MAC address of the device being revealed and linked to the entity [151].

The flipside of anonymous communication is accountability. Even if the user’s
identity is protected, it may still be desirable to hold them accountable for their actions.
For example, a service provider can ask a trusted third party, in certain circumstances, to
decrypt a user’s identity from a credential that the user supplied to the service provider [151].
Thus, the system should consider the verifiable identification and the ownership of the
credential, and only disclose a user’s personal identities to a legitimate user to under
controlled circumstances, while recognizing that this does not provide true anonymity.
Open research questions in this area include:

• How to provide light-weight solutions for anonymous communication while protecting
user privacy and identity?

• How are identities in the IoT and for wearable devices formulated to allow for account-
ability while protecting privacy?
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Solutions to this will require approaches e.g. anonymous credential systems and
certificateless public key cryptography [397]. Other mechanisms include ‘light-weight’ key
agreement protocol, e.g. [445], Identity Based Encryption (IBE) and Pseudonym Based
Encryption (PBC).

Federation of Administrative Domains: In an IoT system, users, devices and things
may traverse and interact with multiple domains. As noted in Section 3.8 of Chapter 3,
it is possible that each user and their set of wearable devices may constitute a separate
administrative domain. The devices worn by users will potentially interact with devices
from many other domains as their users move about their environment, encountering other
new devices, both wearable and fixed. The policies governing identity and access control
across these domains will likely be specified and implemented in a range of technologies.
While the issue of multiple administrative domains is far from new in the security realm,
the IoT poses unique challenges. Domains composed of a single user and their wearable
devices are smaller in scale, and the number of such domains will be larger, than in existing
systems. As a user, and their devices, is highly mobile, a single domain may likely directly
interact with multiple other domains. Even in mobile network systems, it is often the
device, and not the domain itself, that is mobile. This means that domains tend to directly
interact with a small, relatively fixed, number of other domains. This will not be true
in the wearable device context, where the domain corresponding to a user is constantly
encountering other, new, domains. This poses new conceptual, technological and legal
challenges. A significant open research question is:

• How to design domain administration mechanisms that can cope with a rapidly
changing set of other administrative domains, with potentially transient relationships?

To address this issue, the necessity for an adequate legal framework for underlying
IoT technology, e.g. [157], should be considered. Users will need adequate guidelines in
navigating and managing the evolving digital world. Architectural solutions will need to
encompass the scale and nature of domains, with attention given to the use abstractions
to handle the issues of size and interaction outlined above.

Light-Weight Solutions and Edge Intelligence: One significant feature of the IoT is
the vast number of devices of which it consists. This brings advantages and disadvantages.
A primary drawback is the resource limited nature of many of these devices, especially
wearable ones which cannot be permanently linked to a mains power source. Battery life
therefore becomes a concern. Bandwidth, storage and computer power are also limited.
Light-weight solutions are therefore needed in all aspects of the IoT, including its security.
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One advantage the number of devices brings is in the cumulative power available, although
this scale is also a drawback in terms of the number of system entities that need to be
managed and protected.

An IoT access control architecture should support the minimum policy requirements
when giving access to a resource to a legitimate entity [365]. There is a tradeoff, mentioned
above, between the distributed and centralized architectures for enforcing the policy
decision server/unit [141]. Another issue is whether light-weight solutions provide sufficient
flexibility and functionality to achieve the desired level of security. We observed that
resource constrained IoT devices are capable of performing some level of authorization
decisions by themselves [61]. This can be harnessed to reduce the need for centralized
control. In this context, the open research questions include:

• How to harness the ability of resource-limited devices to provide, in concert with each
other, sophisticated security solutions?

• How to reach a balance between light-weight solutions and adequate provision of IoT
security?

To address this, existing solutions, e.g. capabilities and light-weight cryptography,
can be applied. For example, [60] uses light-weight optimized ECC for the design and
implementation of an access control mechanism for IoT devices. It is ‘light-weight’ and
flexible meaning it can easily be embedded on resource constrained devices. However, it
lacks sophisticated policy management. Any such solution must be tailored to the unique
context of a wearable device environment.

Transiency: One of the unique features of a wearable device environment is the transience
of relationships. The devices worn by a user will, as noted above, be highly mobile,
encountering a large number of other devices and domains with which they have no
previous relationship. Many of these relationships will have a short lifespan, devices
encountering each other ‘on-the-fly’ and then never interacting again. This means that
solutions involving heavy-weight relationship setups must be avoided. Even the devices
themselves, as they become consumer electronics, may have a limited lifespan, a user
acquiring and discarding devices at a rate previously unknown in user-centric digital
systems. Like heterogeneity and scalability, this touches on many of the issues discussed
above. One important research question is:

• How to provide policy management in a context where the interacting entities were
previously unaware of each other and may interact on a once-only basis?
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Few authors have addressed this characteristic of the IoT in the context of security
without the need for highly centralized components, e.g. certificate authorities and key
distribution centres. Significantly, It remains an important open issue.

8.3 Future Work

In the context of this thesis, we outline the following avenues for continuous and future
work. In this thesis, the achieved results for the proposed access control model are limited
by the processing power of the microcontroller used. We note that a more advanced
microcontroller could produce better performances. Therefore, in future we are looking to
build the prototype using a more powerful microcontroller. The revocation of capabilities
is another piece of future work that needs to be investigated further in the context of
our proposed access control architecture. In our proposed development of the blockchain
based access control delegation we situate attribute providers in a public blockchain
infrastructure. To provide adequate privacy for the attributes further investigation may
be conducted. Finally, further developments of the proposed trust model, and detailed
simulations based upon it, need to be investigated.
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Appendix A

List of Acronyms

IoT Internet of Things
MQTT Message Queuing Telemetry Transport
PDA Personal Digital Assistant
CoAP Constrained Application Protocol
RBAC Role-Based Access Control
ABAC Attribute-Based Access Control
XACML eXtensible Access Control Markup Language
WSNs Wireless Sensor Networks
PKI Public Key Infrastructure
XML Extensible Markup Language
API Application Program Interface
RPL Routing Protocol for LLNs
BLE Bluetooth Low Energy
RFID Radio Frequency Identification
ECC Elliptic-Curve Cryptography
SNS Social Network Structure
CapBAC Capability-Based Access Control
ECDSA Elliptic Curve Digital Signature Algorithm
DTLS Datagram Transport Layer Security
TCP Transmission Control Protocol
QoS Quality of Service
IP Internet Protocol
P2P Peer-to-Peer
WLAN Wireless Local Area Network
6LowPAN IPv6 over Low-Power Wireless Personal Area Networks
PDA Personal Digital Assistant
PII Personally Identifiable Information
SAML Security Assertion Markup Language

249



MAC Media Access Control
PAN Personal Area Network
HTTP Hypertext Transfer Protocol
JSON JavaScript Object Notation
SAML Security Assertion Markup Language
OTP One Time Password
LED Light Emitting Diode
SSO Single Sign On
EVM Ethereum Virtual Machine
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Appendix B

Process Authorization

This is an example outline of the process authorization that we discussed in Section 3.6.2
of Chapter 3.

public
byte[] ProcessAuthorizationRequest(byte[] payload)
{
DateTime startTime = DateTime.UtcNow;
var json = Encoding.UTF8.GetString(payload);
var enc_message = JsonConvert.DeserializeObject<EncryptedMessageV2>(json);

Dictionary<string,
string> attr =
new Dictionary<string,
string>();
var token = Execute(enc_message,
out attr);

MessageV2 ack =
new MessageV2();
ack.attr = new
Dictionary<string,
string>();
ack.attr["org"] = _acName;
ack.attr["src"] = _id.ToString();
ack.attr["trg"] = attr["src"];
ack.attr["time"] = DataUtils.ToUnixTime(startTime).ToString();

if (attr.ContainsKey("sessKey"))
ack.attr["key"] = attr["sessKey"];

ack.attr["ptime"] = ((int)(DateTime.UtcNow - startTime).TotalMilliseconds).ToString();
EncryptedMessageV2 reply = ack.Encrypt(DataUtils.HexToByteArray(attr["userKey"]));
if (token !=
null)
reply.token = token;
reply.head = new
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Dictionary<string,
string>();
reply.head["src"] = _id.ToString();
reply.head["trg"] = attr["src"];
reply.head["cmd"] =
"ack";
reply.head["id"] = attr["id"];
return Encoding.UTF8.GetBytes(reply.Serialize());
}

private
EncryptedMessageV2 Execute(EncryptedMessageV2 enc_message,
out
Dictionary<string,string> attr)

{
attr = new
Dictionary<string,
string>();
attr["id"] = Crypto.RandomString(10);
if (enc_message.head.ContainsKey("id"))
attr["id"] = enc_message.head["id"];
MessageV2 token =
null;
if (enc_message.head["cmd"] ==
"req")

{
int key_owner = Convert.ToInt32(enc_message.head["trg"]);
var message = enc_message.Aggregate(Data.GetNodePrivateKey(key_owner));
if (message ==
null)

return
null;

var attributesForRequest =
new
AttributeRequest(message.attr);

var cap = _pepEngine.Evaluate(attributesForRequest);
if (cap.Status ==
1)
{
token = new
MessageV2();

token.attr = new
Dictionary<string,
string>

{
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{"id", cap.TokenID.ToString()},
{"key", DataUtils.ByteArrayToHex(cap.SessionKey)},
{"from", DataUtils.ToUnixTime(cap.ValidFrom).ToString()},
{"until", DataUtils.ToUnixTime(cap.ValidUntil).ToString()},
};

token.cond = new
List<List<List<string>>>();
token.cond.Add(new
List<List<string>> {
new
List<string> {
"src", "=", message.attr["src"] } });

token.cond.Add(new
List<List<string>> {
new
List<string> {
"trg", "=", message.attr["trg"]} });

token.cond.Add(new
List<List<string>> {
new
List<string> {
"act", "=", message.attr["act"] } });

token.cond.AddRange(AbstractPEPEngine.GenerateCondition(cap));
attr["sessKey"] = token.attr["key"];
}
attr["src"] = message.attr["src"];
attr["trg"] = message.attr["trg"];
attr["userKey"] = DataUtils.ByteArrayToHex(Data.GetUserPrivateKey
(Convert.ToInt32(message.attr["src"])));
return token?.Encrypt(Data.GetNodePrivateKey(Convert.ToInt32(attr["trg"])));
}

if (enc_message.head["cmd"] ==
"agg")
{
int key_owner = Convert.ToInt32(enc_message.head["trg_node"]);
var message = enc_message.Aggregate(Data.GetNodePrivateKey(key_owner));
if (message ==
null)

return
null;

token = message;
attr["src"] = message.attr["src"];
attr["trg"] = message.attr["trg"];
attr["sessKey"] = token.attr["key"];
attr["userKey"] = token.attr["key"];
attr["id"] = Crypto.RandomString(10);
if (message.attr.ContainsKey("id"))
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attr["id"] = message.attr["id"];
return token.Encrypt(Data.GetNodePrivateKey(Convert.ToInt32(attr["trg"])));
}

return
null;

}
Token aggregation in MessageV2.cs
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Appendix C

Solidity Implementation for
Delegation

This is an example outline of the delegation system implemented in Solidity as discussed
in Chapter 6. Note that this is an example implementation of what the delegation system
would look like implemented on the Ethereum blockchain. The attributes have been
changed to string types to facilitate understanding, however, the system used for bench
marking employed integers and a mapping system to process attributes. Also note that
the implementation here assumes that attributes are stored on a separate blockchain and
attribute maintainers listen to events in order to serve the attributes.

/*Smart Contract A*/

pragma solidity ^0.5;
contract Attributes {

/*Contract Variables*/

// Attribute mapping
mapping(address => string) roles;

// Owner of the attributes contract
address owner;

// Debug string
string last_transaction;

// Function Modifer that means only the wallet at address ’owner’ -
// - can execute this function
modifier only_owner() {

require(msg.sender == owner,
"User is not the owner of the contract.");

_;
}
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// Set owner and Debug statement
constructor() public {

owner = msg.sender;
last_transaction = "New Deploy Success";

// Hard code roles for testing purposes
roles[0x1147494773a0769c652Ec0404A654F46022a5AD4] = "staff";
roles[0xa87C00750BAbF601C2B8d21ff3ed85544d75ed32] = "student";

}

// Returns attribute based on public_key
function get_role (address public_key) public returns (string) {

last_transaction = "RETURNING ROLE";
return roles[public_key];

}

// Set Attribute for public_key
function set_role(address public_key, string new_role) public only_owner{

roles[public_key] = new_role;
}

// Return the debug string
function GLT () public view returns (string memory) {
return last_transaction;

}
}

/*Smart Contract D*/

pragma solidity ^0.5;

// Interface for Delegation contract
interface Delegator_interface {

function request_delegation(address requester,bytes calldata conditions) external payable;
//function get_address() external returns(address);
function get_attributes(address requester,address original_contract) external;

}

contract Delegator {

/*Contract Variables*/

// Address of wallet that deployed this contract
address payable private owner;

// List of all contracts that have been given delegation control
address[] public delegators;

// Address of a printer this contract can delegate access to
Delegator_interface authority;
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// Address of the attribute provider.
address payable attribute_provider;

// Debug string you can check to see the last transaction the SC executed.
string private last_transaction;

// Event to broadcast requester has access
event printer_access_request (

address requester,
address parent,

bytes conditions
);

event attribute_access_request (
address requester,
bytes attribute,
address contract_address

);

// Function Modifer that means only the wallet at address ’owner’ can -
// - execute this function
modifier only_owner() {

require(msg.sender == owner,
"User is not the owner of the contract.");

_;
}

// Set owner
constructor() public {

owner = msg.sender;
attribute_provider = 0x1147494773a0769c652Ec0404A654F46022a5AD4;
last_transaction = "New Deploy Success";

}

// Set and get the address of this contracts authority (delegator)
function set_authority(address _addy) public only_owner {

authority = Delegator_interface(_addy);
authority.request_delegation(address(this),"Requesting Access to Delegate");
last_transaction = "Submitted request for delegation";

}

// Set the authority - contract that delegated access to this contract
function get_authority() public view returns (address) {

return address(authority);
}

// Let other contracts request delegation control from this contract
function request_delegation(address requester,bytes memory conditions)
public payable {

delegators.push(requester);
emit printer_access_request(requester,get_authority(),conditions);
last_transaction = "Emitted event to give a requester delegation control";

}
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// Return list of addraddresssses this contract has given delegation control to
function get_delegators() public view returns (address[] memory) {

return delegators;
}

// Function used to emit printer access event when a request is successful
function access_printer(address requester,bytes memory conditions, string memory role)
public payable {

// If only thing needed is role then:
// 1. Get role from attributes contract
// 2. Check role == "student"
// 3. Make an event that shows the access info

// This will need to be changed to compile in solidity.
// Working Implementation
if (role == "student") {

// Send remaining value of transaction to printer wallet
owner.transfer(msg.value);
emit printer_access_request(requester,get_authority(),conditions);

// Debug String
last_transaction = "Last Request Was Successfull";

} else {
// Debug String
last_transaction = "Last requester was too young";

}
}

// Function to call when a user initally requests access.
function request_access(address requester) public payable {

get_attributes(requester,address(this));
}

// Function used to access attributes from private blockchain
function get_attributes(address requester,address original_contract) public {

// Needs to emit an event to signal that the private attribute blockchain
// needs to be accessed by the off chain network

// address(authority).transfer(msg.value);
authority.get_attributes(requester,original_contract);

}

// Function to call when a user initally requests access.
function request_access_case_2(address requester) public payable {

get_attributes_case_2(requester,address(this));
}

// Function used to access attributes from private blockchain
function get_attributes_case_2(address requester,address original_contract)
public payable {

// Needs to emit an event to signal that the private attribute blockchain
// needs to be accessed by the off chain network

attribute_provider.transfer(msg.value);
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emit attribute_access_request(requester,"role",original_contract);
}

/* Generic Functions */

function() external payable {
// Fallback function to accept funds into contract address

}

// Get the last transaction string. Used for debuggin -- CAN IGNORE --
function GLT () public view returns (string memory) {

return last_transaction;
}

}

/*Smart Contract R*/

pragma solidity ^0.5;
contract Printer {

/*Contract Variables*/

// Address of wallet that deployed this contract
address private owner;

// Address of a printer this contract can delegate access to
address payable private attribute_provider;

// List of all contracts that have been given delegation control
address[] public delegators;

string last_transaction;

// Event to broadcast requester has access
event printer_access_request (

address requester,
address parent,

bytes conditions
);

event attribute_access_request (
address requester,
bytes attribute,
address contract_address

);
// Function Modifer that means only the wallet at address ’owner’ can -
// - execute this function
modifier only_owner() {

require(msg.sender == owner,
"User is not the owner of this contract.");

_;
}
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// Set owner and debug string
constructor() public {

owner = msg.sender;
attribute_provider = 0x1147494773a0769c652Ec0404A654F46022a5AD4;
last_transaction = "Deploy is successful";

}

/*. DONT NEED ATTRIBUTE RELATED FUNCTIONS ANYMORE
// Set and get the address of the attribute contract
function set_address(address _addy) public only_owner {
att_address = Attributes_interface(_addy);

}

// Return the address of the contract supplying the attributes
function get_address() view public returns (address) {
return address(att_address);

}
*/

// Function used by users to request access to the printer
function access_printer(address requester, bytes memory conditions, string memory role)
public payable {
// If only thing needed is role then:
// 1. Get role from attributes contract
// 2. Check role == "student"
// 3. Make an event that shows the access info

if (role == "student") {
// Send remaining value of transaction to printer wallet
// printer.transfer(msg.value);
// Emit event giving requester access
emit printer_access_request(requester,address(this),conditions);

// Debug String
last_transaction = "Last Request Was Successfull";

} else {
// Debug String
last_transaction = "Last Request failed";

}
}
// Function used by delegator’s contracts to request delegation access to the printer
function request_delegation(address requester,bytes memory conditions)
public payable{

// 1. Get required attributes to check for delegation access
// 2. If the requestor passes the tests, give access
// 3. Emit event showing that this requester has access to delegate with
// corresponding conditions.

// Check attributes & conditions and emit event
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// Add the contract to list of contracts given access.
delegators.push(requester);
// Emit event giving the requester access
emit printer_access_request(requester,address(this),conditions);

}

// Return list of addresses this contract has given delegation control to
function get_delegators() public view returns (address[] memory) {

return delegators;
}

// Function to call when a user initally requests access.
function request_access(address requester) public payable {

get_attributes(requester,address(this));
}

// Function used to access attributes from private blockchain
function get_attributes(address requester,address original_contract)
public payable {

// Needs to emit an event to signal that the private attribute blockchain
// needs to be accessed by the off chain network
attribute_provider.transfer(msg.value);
emit attribute_access_request(requester,"role",original_contract);

}

/* Generic Functions */

function() external payable {
// Fallback function to accept funds into contract address

}

// Get the last transaction string. Used for debuggin -- CAN IGNORE --
function GLT () public view returns (string memory) {
return last_transaction;

}
}
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