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Abstract

This thesis investigates a class of optimal reinsurance contract problems in contin-

uous time. We use the principal-agent framework to incorporate the bargaining

between the insurer and the reinsurer. To this end, We extend the reinsurer’s

relative safety loading factor which is usually a pre-specified constant in the tradi-

tional expected value principle to be time-varying and to represent the reinsurance

premium.

Since the insurance companies should satisfy the regulators’ capital require-

ments and the computation of capital requirements is based on Value-at-Risk

(VaR) under Solvency II regime, we introduce the dynamic version of VaR and

impose a dynamic VaR constraint on the insurer. As for the reinsurer, we assume

that she is ambiguity-averse and aims to maximize the expected utility of her

terminal wealth under the worst-case scenario of the alternative measures. The

dynamic programming technique is applied to derive the principal’s Hamilton-

Jacobi-Bellman-Isaacs (HJBI) equation and the agent’s Hamilton-Jacobi-Bellman

(HJB) equation. Additionally, Karush-Kuhn-Tucker (KKT) conditions are uti-

lized to settle the constrained optimization problem of the agent. Explicit expres-

sions for the optimal retained proportional of the claims, the optimal reinsurance

premium and the corresponding value functions of the insurer and the reinsurer

are derived.

Finally, we analyze several numerical examples to illustrate economic intu-

ition. Our results show that the reinsurer’s ambiguity aversion and the insurer’s

risk constraint increase the optimal reinsurance premium, which decreases the

optimal reinsurance demand of the insurer.

Keywords Model ambiguity, dynamic Value-at-Risk (VaR), proportional rein-
surance, principal-agent problem, reinsurance premium
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Introduction

Insurance plays a significant role in many aspects of economic activities. An in-

dividual or a corporation who purchases an insurance policy may receive some

compensation or benefit from an insurance company if certain unexpected ad-

verse events covered by the policy occur. However, as evident in recent decades,

the severity and frequency of catastrophes such as natural disasters may result in

the sudden collapse of an insurance company within a few months. These events

highlight the importance of adopting proper methodologies in risk diversification

for insurance companies to manage their underwriting risks. Reinsurance has

been considered as a useful technique to avoid an insurance company’s possible

bankruptcy due to extreme events. Picard and Besson (1982) defined reinsurance

as follows:

”A reinsurance operation is a contractual arrangement between a reinsurer

and a professional insurer (called cedant), who alone is fully responsible to the

policy holder, under which, in return for remuneration, the former bears all or

part of the risks assumed by the latter and agrees to reimburse according to spec-

ified conditions all or part of the sums due or paid by the latter to the insured in

case of claims.”

We model the underlying risk faced by the insurer as a non-negative random

variable, say X, with a known distribution. If the insurer decides to purchase a

reinsurance contract, it means that f(X) would be the risk covered by the rein-

surer, while the insurer would pay the remaining loss X − f(X). The function

f : R+ → R+ is called ceded loss function and it defines a reinsurance contract.

We denote the reinsurance premium charged by the reinsurer for risk coverage
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as δf (X), which is a function of f(X). Under this model setting, the total loss

of the insurer is denoted by Tf(X) = X − f(X) + δf (X). According to the form

of the ceded loss function f, the reinsurance contracts can be classified into two

types: proportional reinsurance and non-proportional reinsurance. Two of the

most commonly applied forms of non-proportional reinsurance are excess-of-loss

reinsurance and stop-loss reinsurance, which deal with individual risks and ag-

gregate risks, respectively. In this thesis, we will only focus on investigating the

proportional reinsurance treaty which is the most simple structure of reinsurance,

wherein the reinsurer would cover a fixed share of the liabilities arising from the

original insurance contracts.

Generally speaking, the reinsurance premium is an increasing function of the

ceded loss, so there is a natural trade-off between the benefit of receiving indem-

nity and the cost of reinsurance premium. The problem in optimal reinsurance

design involves how risk should be shared between the insurer and the reinsurer,

as it aims to determine the optimal form of a reinsurance treaty under specific

optimization criteria. The commonly used optimization criteria in the literature

include minimizing the variance of an insurer’s total loss, minimizing an insurer’s

ruin probability or equivalently maximizing his survival probability, maximizing

the expected utility function of the terminal wealth of an insurance company and

minimizing the risk exposure quantified by risk measures such as Value-at-Risk

(VaR) and Conditional Value-at-Risk (CVaR).

Most of the existing investigation on optimal reinsurance design are from the

perspective of the insurer. However, a reinsurance treaty is an agreement between

the insurer and the reinsurer. Therefore, an optimal reinsurance policy that only

considers the insurer’s interest may be unacceptable to the reinsurer. Borch (1960)

was the first to study the optimal proportional and stop-loss reinsurance contracts

from both the perspectives of the insurer and the reinsurer by maximizing the

product of the expected utility functions of the two parties’ wealth. This thesis

applies principal-agent framework to formulate the interaction between the insurer

and the reinsurer. For this study, we extend the pre-specified positive constant

representing the reinsurer’s safety loading factor in the expected value principle

to be time-varying, which represents the reinsurance premium. In our study, the
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reinsurer is the principal and the insurer is the agent. Moreover, the optimal

reinsurance contract derived under this framework maximizes a combination of

the objective functions of the insurer and the reinsurer, thus considering mutual

benefits for both the insurer and the reinsurer. The optimal reinsurance contract

designed in this thesis is not only implementable for the insurer but also maximizes

the reinsurer’s utility.

With the recent huge prosperity of financial markets, practitioners and reg-

ulators pay more attention to risk management. Risk measures such as VaR and

CVaR have become increasingly popular for quantifying risk among insurance

companies. VaR is the maximum expected loss over a given horizon period at

a given confidence level. From a regulatory perspective, the insurance company

should satisfy solvency capital requirements, which provides a buffer for poten-

tial losses. Solvency II, a unified regime applicable to all insurance companies in

the European Union insurance market, suggests an insurer to compute his capi-

tal efficiency with VaR. In view of this, we impose in this thesis a dynamic VaR

constraint on the insurer to guarantee that he satisfies the capital requirements

at all times. The framework of Solvency II is specified in European Commission

(2009), and the determination of capital requirements is described as follows:

”The Solvency Capital Requirement should be determined as the economic

capital to be held by insurance and reinsurance undertakings in order to ensure

that ruin occurs no more often than once in every 200 cases or, alternatively, that

those undertakings will still be in a position, with a probability of at least 99.5

%, to meet their obligations to policy holders and beneficiaries over the following

12 months. That economic capital should be calculated on the basis of the true

risk profile of those undertakings, taking account of the impact of possible risk-

mitigation techniques, as well as diversification effects.”

In the subjective expected utility theory, the probability distribution and the

utility function are chosen by a rational decision maker. However, Ellsberg (1961)

violated the subjective expected utility theory with a paradox which can be ex-

plained by ambiguity aversion. In the traditional optimal reinsurance design, both

3



the insurer and the reinsurer are assumed to have complete confidence in their

models. But in reality the probability measures describing the real-world model

may have some small perturbations due to misspecification in areas such as data

collection or measuring errors. In this thesis, we assume that the principal is

ambiguity-averse and aims to seek robust decision rules under probability noises,

while the agent is assumed as not having model ambiguity. This is a reasonable

assumption because it is the insurer who collects the information of the policy-

holders and the reinsurer may doubt about the claim process estimated by the

insurer. Regarding the reinsurer who distrusts the model, we use the equivalent

probability measures of the reference measure under which the insurance market

is defined to capture model uncertainty, and these equivalent measures are called

alternative measures. The robust reinsurance contract is designed to maximize the

reinsurer’s expected utility in the worst-case scenario of the alternative measures,

subject to the insurer’s incentive constraint.

To the best of our knowledge, there is little literature incorporating risk con-

straint as well as ambiguity aversion attitudes in the optimal reinsurance contract

design. In this thesis, we aim to fill this gap and extend the results in the study

conducted by Hu et al. (2018b), by imposing a dynamic VaR constraint on the

insurer to guarantee his financial solvency. As did Hu et al. (2018b), we employ

the principal-agent framework to model transferring risk exposure through rein-

surance contracts and suppose that the reinsurer is ambiguous about the claim

process. We apply the Lagrange multiplier techniques to solve the agent’s con-

strained optimization problem. By solving the agent’s HJB equation and the

principal’s HJBI equation, we derive closed-form solutions to the robust optimal

reinsurance contract and the optimal value functions of the contracting parties.

The results show that our model is more general and can reduce to the uncon-

strained model considered by Hu et al. (2018b) when the parameters of the insurer

and the reinsurer satisfy specific conditions making the dynamic VaR constraint

inactive for the insurer. It is shown in our numerical examples that risk constraint

and ambiguity aversion have material impacts on the optimal reinsurance contrac-

t. Specifically, the reinsurer facing model uncertainty becomes more conservative

to the risk than an ambiguity-neutral reinsurer, which induces her to increase the
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reinsurance premium and so the insurer would decrease his demand for reinsur-

ance. This conclusion is also obtained in the work of Hu et al. (2018b). The

result that seems to be novel is that when the dynamic VaR constraint is active

for the insurer, the reinsurer offers a higher reinsurance premium than that of

inactive constraint case, which then makes the insurer retain more insurance risk.

The reason behind this phenomenon is that both the insurer and the reinsurer

should have higher levels of risk aversion to satisfy some conditions making the

risk constraint active on the insurer and the effect of the reinsurer’s risk aversion

parameter magnifies the effect of her attitude towards ambiguity. From this con-

clusion we can see that the reinsurer dominates over the insurer in reinsurance

agreements, which is in line with the existing literature, for example, Chen and

Shen (2018).

The remaining parts of this thesis are structured as follows. The next chapter

provides a brief literature review. In Chapter 2, we present the research methods

used in this thesis. Chapter 3 demonstrates how we formulate the model in this

thesis, and includes the definition of dynamic VaR, the problems of the princi-

pal and the agent, and the reinsurer’s ambiguity aversion attitudes. Chapter 4

provides the explicit solutions to the robust optimal proportional reinsurance con-

tracts and the optimal value functions when the VaR constraint is binding and

inactive for the insurer. In Chapter 5, we present special cases of our proposed

model. We thereafter analyze the reinsurer’s expected utility loss in Chapter 6.

Detailed numerical simulations are conducted in Chapter 7 to demonstrate the

results. Some concluding remarks and discussion of further research are made in

Chapter 8.
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Chapter 1

Review of the Literature

There exists a large collection of literature on the problems related to optimal

portfolio selection, where the main goal is to allocate the investor’s assets among

different financial securities for maximizing the total investment return of the

portfolio. In the pioneering work of Markowitz (1952), a measure of investment

risk was provided by adopting the definition of variance in probability theory. In

a single-period setting, Markowitz considered the trade-off between the mean and

the variance of the rate of return, which was the celebrated mean-variance ap-

proach. By applying stochastic optimal control techniques, Merton (1969) first-

ly gave a closed-form solution to the optimal portfolio selection problem in a

continuous-time framework, which opened the study for continuous-time finance

theory. The mean-variance portfolio allocation problem in dynamic settings was

originally solved by Zhou and Li (2000), where the stochastic linear-quadratic

control theory was employed. Some recent works on optimal portfolio selection

problems include the works of Elliott et al. (2010), Siu (2011), Fu et al. (2014) and

Zhang et al. (2017), amongst others. In recent years, insurance companies have

actively participated in the financial markets to increase their profits. The optimal

investment problems for an insurance company have been frequently studied in the

literature. For example, Browne (1995) obtained optimal investment strategies by

minimizing the insurer’s ruin probability and maximizing the expected exponen-

tial utility of its terminal wealth. Yang and Zhang (2005) derived an optimal

investment policy of an insurance company whose surplus process was described

by a jump-diffusion process with the help of stochastic control theory. Wang et

6



al. (2007) established an explicit solution to the optimal investment problem of an

insurer by applying the martingale approach. Badaoui et al. (2018) considered an

investment optimization problem of an insurer when the market was incomplete

and the volatility process of the risky asset was captured by an external factor

model.

On the other hand, reinsurance is an effective tool for the insurer to transfer

or avoid the underwriting risk. In some cases, large claims resulting from catas-

trophic events such as hurricanes or earthquakes may lead to bankrupt or ruin of

an insurance company. It is, therefore, imperative for the insurance company to

mitigate his risk exposure by buying an insurance from a third party, say a rein-

surance company. This provides a basic description for the concept of reinsurance.

To transfer part of insurance risks to a reinsurer, the insurer needs to pay a rein-

surance premium. Loosely speaking, the larger the insurance risk transferred to

the reinsurer, the more expensive the reinsurance contract becomes. This demon-

strates the trade-off between the cost of the reinsurance premium and retaining

risk. The goal of optimal reinsurance design is to find a specified form of the ceded

loss function to optimize such trade-offs according to some optimality criteria.

By examining the existing literature, a substantial part of the research has

been devoted to the derivation of the optimal ceded loss functions under different

assumptions. The actuarial methods of problems in reinsurance optimization can

be classified into two categories. In the first category, one aims to find the form

of the optimal ceded loss function within a family of general and broad ceded loss

functions (i.e., satisfying specific properties). With respect to these problems, the

seminal work is attributed to Borch (1960), in which it was shown that stop-loss

reinsurance was optimal under the criterion of minimizing the variance of the

insurer’s retained loss. Arrow (1963) aimed to maximize the expected utility of

the insurer’s terminal wealth under the expected value principle and obtained the

result that stop-loss reinsurance was also optimal. More recently, Chi and Tan

(2011) assumed that the reinsurance premium principle satisfied three basic con-

ditions: distribution invariance, risk loading and preservation of stop-loss order.

Under these assumptions, they showed that the layer reinsurance was optimal un-

der both VaR and CVaR criteria. Chi (2012) investigated the optimal reinsurance
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strategies by minimizing the risk-adjusted value of an insurer’s liability where cap-

ital at risk was calculated by VaR or CVaR risk measure, and he showed that it

was best for the insurer to cede two separate layers under a more general reinsur-

ance premium principle assumption. Chi and Zhou (2016) investigated an optimal

reinsurance model under a mean-variance reinsurance premium principle from the

perspective of an insurance company who has a general mean-variance preference,

and they demonstrated that any admissible reinsurance policy would be domi-

nated by a change-loss reinsurance or a dual change-loss reinsurance. Some other

models belonging to this category can also be found in the works of Cai et al.

(2008), Cheung (2010) and Chi and Meng (2014).

The second category of problems in optimal reinsurance design is to deter-

mine the optimal parameters for a given form of the ceded loss function. The

commonly used forms of the reinsurance treaty include proportional, quota-share,

excess-of-loss, stop-loss, change-loss, etc. Højgaard and Taksar (1998) studied

an optimal proportional reinsurance policy by maximizing a discounted return

function. Yuen et al. (2015) derived an optimal proportional reinsurance strate-

gy by maximizing the expected exponential utility when the dependence between

different classes of insurance risks existed. With the widespread popularity of

risk measures that quantify risk and set regulatory capitals, Cai and Tan (2007)

derived optimal retentions for the stop-loss reinsurance under the optimization

criteria of minimizing the VaR and the conditional tail expectation (CTE) of the

total risks of an insurer. Tan et al. (2009) extended the results of the research

conducted by Cai and Tan (2007) and examined the optimality of the quota-share

and the stop-loss reinsurance arrangements under general reinsurance premium

principles. Hu et al. (2015) determined an optimal retention in a stop-loss rein-

surance treaty wherein the information of the total loss was incomplete. The

objective function in their paper was chosen as minimizing an upper bound for

the VaR of the insurer’s total loss.

Besides, the investigation of the insurer’s optimal investment and reinsur-

ance strategies simultaneously has attracted considerable attention in the area

of actuarial science. For example, Bai and Guo (2008) considered the optimal

investment-reinsurance problem by maximizing the expected exponential utility
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of the terminal wealth under the no-shorting constraint. Shen and Zeng (2015)

applied the mean-variance criterion to derive the insurer’s optimal reinsurance and

investment strategies. Zhang et al. (2016) aimed to seek the optimal reinsurance

and investment strategies by minimizing the probability of run, where the rein-

surance premium is calculated through the generalized mean-variance principle.

For more literature, the reader may refer to Gu et al. (2012), Guan and Liang

(2014), Zhao et al. (2016) and Sun and Guo (2018), just to name a few.

Along with the proliferation of the risk measures such as VaR and Tail Value-

at-Risk (TVaR) in banking and insurance industries, some risk-measure-based

constraints have been formulated and imposed on the classical reinsurance and/or

investment optimization problems for practical consideration. In this aspect, Yiu

et al. (2010) considered the optimal portfolio selection problem when the model

parameters changed according to the states of an underlying economy by max-

imizing the expected discounted utility, subject to the maximum Value-at-Risk

(MVaR) constraint. They also employed some numerical methods to solve the

Hamilton-Jacobi-Bellman (HJB) equations. Chen et al. (2010) incorporated the

dynamic VaR constraint into investigating the optimal reinsurance and invest-

ment strategies of an insurance company to minimize its ruin probability. Liu et

al. (2013) imposed the maximal conditional Value-at-Risk (MCVaR) constraint on

the optimal investment-reinsurance problem of an insurer whose risky investment

security was governed by a Markovian regime-switching model. Liu and Yiu (2013)

studied a family of stochastic differential reinsurance and investment games be-

tween two competing insurance companies subject to risk constraints. Guan and

Liang (2016) studied the optimal investment problem of defined contribution (D-

C) pension plans under the loss aversion and VaR constraint. Zhang et al. (2016)

studied the optimal proportional and excess-of-loss reinsurance strategies under

dynamic VaR constraint by maximizing the insurer’s survival probability.

In the traditional settings of optimal reinsurance and/or investment problems,

the decision makers believe with certainty in the models that describe the real-

world probability. However, it should be noted that there exist many uncertainties

in the financial markets and insurance industries. Because it is controversial to

determine which model is completely true so as to represent the real-world prob-
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ability and be used in the optimization problems. Thus, we should take model

uncertainty or ambiguity into account. According to Knight (1921), unlike risk

which referred to a variable having a known probability distribution, the uncer-

tainty due to lack of information on the probability measure referred to ambiguity.

Based on the experimental results, Ellsberg (1961) showed the inadequacy of the

subjective expected utility theory and argued that decision makers are ambiguity-

averse. Another reason for us to consider model uncertainty is that the parameters,

especially the drift parameters, are difficult to estimate with precision. Thus, it is

reasonable to assume that the decision maker is concerned about model misspeci-

fication. In the literature, one popular approach to describe model ambiguity was

proposed by Anderson et al. (2003), and they studied asset pricing problems in

stochastic continuous-time settings by incorporating the investor’s consideration

of model misspecification. Under their assumption, the investor regarded the spe-

cific probability measure as their reference measure and could then find robust

strategies that work over the nearby measures known as alternative measures.

The deviation between the reference measure and an alternative measure was de-

termined by relative entropy which had a wide application for model detection in

statistics and econometrics. Specifically, the relative entropy was used to construct

a penalty term in the robust optimization problems. Since then, due to its analyt-

ical tractability, the formulation of the robust optimization procedures conducted

by Anderson et al. (2003) has been adopted in portfolio selection, asset pricing

and optimal reinsurance-investment problems. For example, Maenhout (2004)

obtained the optimal portfolio decision for an investor with ambiguity aversion

attitudes. Zhang and Siu (2009) considered an optimal reinsurance-investment

problem in the presence of model uncertainty and formulated the problem into a

zero-sum stochastic differential game between the insurer and the market. Pun

and Wong (2015) discussed the robust optimal reinsurance-investment problem

for a general class of utility functions when the risky asset followed a multiscale s-

tochastic volatility (SV) model. Li et al. (2018) articulated the optimal investment

and excess-of-loss reinsurance problem for an insurer with model ambiguity con-

cerning the diffusion and jump components arising from financial and insurance

markets. Wang and Li (2018) incorporated ambiguity aversion into an optimal
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investment problem for a DC pension plan, where stochastic interest rate and

stochastic volatility were introduced to describe the financial market consisting of

a risk-free asset, a rolling bond and a stock. Gu et al. (2018) investigated a robust

optimal investment and proportional reinsurance problem for an ambiguity-averse

insurer who could invest his surplus into one risk-free asset, one market index and

a pair of mispriced stocks.

In the aforementioned literature, the optimal reinsurance problems are sole-

ly treated from the insurer’s point of view and the interests of the reinsurer are

neglected completely, whereas a reinsurance contract is supposedly a mutual a-

greement between the insurer and the reinsurer. As pointed out by Borch (1969),

an optimal reinsurance treaty for an insurer might not be optimal and even be

unacceptable for a reinsurer. Therefore, it would be more reasonable and inter-

esting to analyze the reinsurance problem from the perspectives of an insurer and

a reinsurer. Motivated by this concept, Cai et al. (2013) designed the optimal

quota-share and stop-loss reinsurance policies by maximizing the joint survival

and profitable probabilities of the insurer and the reinsurer under different pre-

mium principles. Cai et al. (2016) took the goals of the insurer and the reinsurer

into account in the design of the optimal reinsurance contract by minimizing the

convex combination of the VaR risk measures of both the insurer’s and the rein-

surer’s losses. Lo (2017) proposed a unifying approach to develop the optimal

reinsurance treaties in the presence of practical constraints and studied three mo-

tivating models, one of which employed minimizing the distortion risk measure

of the insurer’s total risk exposure and considered the reinsurer’s risk constraint

to make the reinsurance arrangement mutually acceptable. Zhang et al. (2018)

developed the optimal quota-share reinsurance agreements by applying the opti-

mization criteria and utility increment constraints that reflected the consideration

of mutual beneficiary.

Although the consideration of the optimal reinsurance contracts that bene-

fit two parties in the agreements is extensive in the discrete-time single-period

settings, there exists rare literature that focuses on designing the reciprocally op-

timal reinsurance treaty in dynamic settings. The two-party agreement nature

of reinsurance suggests that it is natural to model this relationship between the
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insurer and the reinsurer as principal-agent relationship, where the insurer is the

agent and the reinsurer is the principal. The detailed surveys of the dynamic

contracting problems under principal-agent framework in continuous time can be

found in the work conducted by Cvitanić and Zhang (2012). According to the

amount of information available to the principal and the agent, there are three

categories of contract problems that have been studied in the literature, and they

are Risk Sharing (RS), Hidden Action (HA) (also called moral hazard) and Hid-

den Type (HT) (also called adverse selection), and the contracts obtained under

these three cases are called first best solution, second best solution and third best

solution, respectively. Cvitanić et al. (2006) applied the stochastic maximum prin-

ciple to derive the necessary and sufficient conditions for the first-best contracts

when the agent and the principal had complete information. Miao and Rivera

(2016) introduced the principal’s robustness preference into the contracting prob-

lem under the agent’s hidden action in continuous time. Sung (2005) considered

a principal-agent problem in the presence of moral hazard and adverse selection

with a risk-neutral principal and a risk-averse agent. Along the direction of the

principal-agent framework, Hu et al. (2018a,b) designed the robust proportional

reinsurance and excess-of-loss reinsurance contracts by maximizing the expected

exponential utility in the worst-case scenario of the alternative measures. More-

over, game theory provides us with mathematical views to study the interactive

decision situations. Some scholars apply game theory to investigate the interac-

tive roles played by the insurer and the reinsurer in reinsurance agreements. For

instance, Chen and Shen (2018) formulated the optimal proportional reinsurance

problem under the stochastic Stackelberg differential game framework and applied

backward stochastic differential equation (BSDE) approach to derive the reinsur-

er’s optimal reinsurance premium and the insurer’s optimal retained proportion

of the insurance risk.

In the following chapters, the utilized methods, constructed model and ob-

tained results will be presented.
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Chapter 2

Methodology

In this thesis, a continuous-time model is considered to investigate a class of rein-

surance contract problems. Mathematically, this is formulated as a stochastic

optimal control problem. There exist several approaches to discuss stochastic op-

timal control problems. Three approaches are mentioned here. The first approach

is dynamic programming principle and HJB equation, and the second approach is

martingale approach which is based on equivalent martingale measure and martin-

gale representation theorem. The third approach is based on backward stochastic

differential equation (BSDE). In this thesis, we apply the first approach and the

main results in that direction would be presented in Section 2.1. Considering that

the reinsurance arrangements are basically contracts, we can adopt the methods

in economic contract theory to study the optimal reinsurance problems. This may

hopefully provide a new perspective to look at the problems. The use of principal-

agent framework for designing optimal reinsurance does not seem to have been

well-explored in the literature, and this framework will be introduced in Section

2.2. Another main element of the problem in this thesis is the incorporation of

the risk constraints. Solvency II which has come into effect on 1 January 2016

requires the insurance companies in Europe to hold adequate capitals to with-

stand or reserve risks, and certain risk measures have been regarded as important

tools to determine the regulatory capitals for the insurers. On account of this,

we impose a risk constraint based on Value-at-Risk on the insurer to reduce the

chance of insolvency, which leads us to the insurer’s constrained optimization

problem. In Section 2.3 we will review the popular KKT conditions, and we usu-
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ally employ them to solve the optimization problems with inequality constraints.

Finally, we hold the view that it is the insurer who collects the information from

the policyholders and the reinsurer seldom deals with the customers directly. The

asymmetric information between the insurer and the reinsurer may lead the rein-

surer to distrust the claim process estimated by the insurer. To articulate this

situation, we incorporate the reinsurer’s ambiguity aversion attitudes into the

model, and this is why the reinsurance contract designed in this thesis is called

robust. When formulating robust contracts, we have to answer the question on

how to describe model uncertainty or ambiguity. In Section 2.4, we shall review

the change of measure techniques, and in the later chapters these techniques will

be applied to describe how the reinsurer does not believe the approximating model

and considers the alternative models.

2.1 Dynamic programming principle and HJB

equation

In this section, we will discuss the dynamic programming principle and HJB equa-

tion, which play important roles in the stochastic optimal control problems. We

borrow the notations and conclusions from Pham (2008), and omit the proofs of

the theorems in the following part. Other works on this topic include, for example,

Yong and Zhou (1999), Fleming and Soner (2006) and Schmidli (2008).

Assume that T ∈ (0,∞) is a finite horizon, and we consider the following

controlled diffusion system:

dX(s) = b (X(s), α(s)) ds + σ (X(s), α(s)) dW (s), (2.1.1)

where X(s) is the state of the system at time s, and W (s) is a d-dimensional

Brownian motion. The control α(·) is a progressively measurable process valued in

a convex set A. The measurable functions b : Rn×A → Rn and σ : Rn×A → Rn×d

satisfy a uniform Lipschitz condition, i.e., for ∀ x, y ∈ Rn, ∀ a ∈ A, we have

|b(x, a)− b(y, a)|+ |σ(x, a)− σ(y, a)| ≤ C|x− y|,

for some non-negative constant C. We use A to denote the set of control processes
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satisfying

E

[∫ T

0

|b(0, α(t))|2 + |σ(0, α(t))|2dt
]
< ∞.

For ∀ (t, x) ∈ [0, T ]× R, A(t, x) collects the elements in A such that

E

[∫ T

t

|f (s,Xt,x(s), α(s)) |ds
]
< ∞.

where Xt,x(s) is the strong solution to the stochastic differential equation (2.1.1)

starting from state x and time t. Let f : [0, T ]× Rn ×A → R and g : Rn → R be

two functions, and we suppose that

(i) g is lower-bounded, or

(ii) g satisfies a quadratic growth condition:

|g(x)| ≤ K
(
1 + |x|2

)
, ∀ x ∈ Rn,

for some constant K independent of x.

For all (t, x) ∈ [0, T ]×Rn and a ∈ A(t, x), we can then define the gain functional

as follows:

J(t, x;α(·)) := E

[∫ T

t

f (s,Xt,x(s), α(s)) ds+ g(Xt,x(T ))

]
. (2.1.2)

The standard stochastic optimal control problem is usually stated as follows:

Problem P1. For given (t, x) ∈ [0, T ]× Rn, maximize (2.1.2) subject to (2.1.1)

over A(t, x).

In order to solve Problem P1, we first define the associated value function

V (t, x) := sup
α∈A(t,x)

J(t, x;α(·)),

and we say that α∗ ∈ A(t, x) is an optimal control if V (t, x) = J(t, x;α∗(·)). The
value function V (t, x) will play an important role in obtaining the optimal controls,

which will be seen in the later chapters. Based on the previous assumptions, we

present the following standard theorem, which is called the dynamic programming

principle.

Theorem 2.1.1 (Dynamic programming principle) For any (t, x) ∈ [0, T ]× Rn,

V (t, x) = sup
α∈A(t,x)

E

[∫ θ

t

f (s,Xt,x(s), α(s)) ds+V (θ,Xt,x(θ))

]
, ∀ 0 ≤ t ≤ θ ≤ T.

(2.1.3)
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Remark 2.1.1 The dynamic programming principle is originated in the early

1950s by Bellman, the key idea of which is to consider a family of optimal control

problems having varying initial states and times. Although we have already known

that the value function should satisfy the dynamic programming equation (2.1.3), it

is uneasy to solve the value function from (2.1.3) directly because of the complicated

operation involved. So we will give a further exploration in the next theorem.

We define C1,2([0, T ] × Rn) := {f : [0, T ] × Rn → R|f(t, · ) is once continuously

differentiable on [0, T ] and f( · , x) is twice continuously differentiable on Rn}. The
following theorem states that solving the stochastic optimal control problem P1

can be converted to solving a certain partial differential equation (PDE) when the

value function satisfies some conditions.

Theorem 2.1.2 Assume V (t, x) ∈ C1,2([0, T ]×Rn), then V (t, x) is a solution to

the following terminal value problem of a first-order PDE:

{
−∂V

∂t
(t, x)−H(t, x,DxV (t, x), D2

xV (t, x)) = 0, ∀ (t, x) ∈ [0, T )× Rn,

V (T, x) = g(x), ∀ x ∈ Rn,

(2.1.4)

where for (t, x, p,M) ∈ [0, T ]× Rn × Rn × Sn,

H(t, x, p,M) = sup
α∈A

[
b(x, α)p+

1

2
tr (σ(x, α)σ′(x, α)M) + f(t, x, α)

]
,

with tr(·) denoting the trace of a matrix, Sn the set of symmetric n× n matrices,

Dx the gradient vector and D2
x the Hessian matrix of a function.

We call the PDE in (2.1.4) the Hamilton-Jacobi-Bellman (HJB) equation, and

V (t, x) solves (2.1.4) is a classical solution to the HJB equation.

2.2 Principal-agent framework in reinsurance con-

tract

In the principal-agent problem, our goal is to determine the optimal contract

between two parties, namely the principal and the agent. We will henceforth also

call the principal ”she” and the agent ”he”. Whether the actions of the agent

are observable/contractable or not plays decisive roles in what form of contract is
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optimal. If the agent and the principal share the same set of information, we will

get the first best case, or risk sharing. In this case, the agent has to implement the

contract that the principal offers to maximize her objective function, otherwise

the agent would be penalized for his dysfunctional behavior. However, in many

realistic examples, we can see that sometimes it is costly or even impossible for the

principal to monitor the agent’s action, she cannot order the agent to perform the

actions she prefers and will only be able to attain the second best solution, or moral

hazard. Finally, if the type of the agent is hidden, we will obtain the third best case

or adverse selection. We only study the first type of principal-agent problem in

this thesis. For further details of contract theory and its applications, the reader

is referred to Bolton and Dewatripont (2005) and Cvitanić and Zhang (2012),

which are excellent works and devoted to discrete-time models and continuous-

time models, respectively.

In our optimal reinsurance contract problem the reinsurer is the principal

and the insurer is the agent. One reinsurance contract consists of two important

components, i.e., the reinsurance demand and the reinsurance premium. If we

consider the models in continuous time, we might as well use a(t) to denote the

retention in the case of proportional reinsurance and reinsurance level in the case

of non-proportional reinsurance at time t. Moreover, we suppose that the reinsurer

offers a reinsurance premium b(t) at time t. Note that a(t) reflects the reinsurance

demand and b(t) reflects the reinsurance premium. Under these assumptions, we

know that a reinsurance contract is determined by (a(t), b(t)), and we aim to find

the optimal reinsurance contract (a∗(t), b∗(t)) under a certain optimization criteri-

on. From the mathematical perspective, we can describe the strategic interactions

between the insurer and the reinsurer as the following two steps:

(1) For a given reinsurance premium b(t), we first find an a∗(t) = α∗(t, b(t)) to

solve the agent’s optimization problem:

JA(α
∗(t, b(t)), b(t)) := sup

a(t)

JA(a(t), b(t)), (2.2.1)

where JA(·, ·) denotes the agent’s objective function.

(2) Then we come to solve the principal’s optimization problem: find a b∗(t) such
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that

JP (α
∗(t, b∗(t)), b∗(t)) := sup

b(t)

JP (α
∗(t, b(t)), b(t)),

where JP (·, ·) denotes the principal’s objective function.

The pair (a∗(t), b∗(t)) = (α∗(t, b∗(t)), b∗(t)) is then called the optimal reinsurance

contract. Following Hu et al. (2018a), we call (2.2.1) the incentive compatibility

constraint, and a reinsurance contract is incentive compatible if and only if the

retained risk level a(t) satisfies (2.2.1). From the above procedures, it can be

seen that under our framework, the principal indirectly influences the agent to

select an optimal reinsurance demand by offering an appropriate reinsurance pre-

mium subject to the agent’s incentive compatibility constraint instead of directly

ordering the agent to undertake the actions she prefers.

2.3 KKT conditions in the constrained optimiza-

tion problems

The constrained optimization problems which are usually referred to as mathemat-

ical programming models have a wide range of applications in economic decision

makings. The Karush-Kuhn-Tucker (KKT) conditions are important instruments

in qualitative economic analysis. It appears that Karush (1939) has been the

first to discuss optimization problems with inequalities as side constraints. Since

Kuhn and Tucker (1951) further used the optimality conditions to deal with the

nonlinear programming problems, the KKT conditions have spurred a significant

amount of interest in optimization problems in the presence of inequality con-

straints. The classical optimization problems usually have constraints in equation

forms, which can be solved by applying the Lagrange-multiplier approach. Since

equality constraints can be considered as special cases of inequality constraints,

the optimization problem with inequality constraints is an extension of the clas-

sical optimization problem and KKT conditions are generations of the Lagrange

theorem. In this section, we shall review the KKT necessary optimality conditions

and these results can be found in Bazaraa et al. (2013) and Luptáčik (2010).

Let f : Rn → R and gi : R
n → R, for i = 1, 2, . . . , m, be some functions. We

consider the following nonlinear programming problem:
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Problem P2.

{
min f(x),

subject to gi(x) ≤ 0, for i = 1, 2, . . . , m.

Definition 2.3.1 Let X be a nonempty open set in Rn. A vector x ∈ X satisfying

all the constraints is called a feasible solution to Problem P2.

Assume that point x∗ is a feasible solution of Problem P2, and denote by I(x∗) =

{i : gi(x∗) = 0} the set of binding (or active, or tight) constraints.

Definition 2.3.2 We say that feasible solution x∗ satisfies the linear indepen-

dence constraint qualification (LICQ) if the set of gradients of the active con-

straints at x∗, denoted by ∇gi(x
∗), for i ∈ I(x∗), are linearly independent.

Theorem 2.3.1 (KKT conditions) Assume that f and gi, for i ∈ I(x∗), are

differentiable at x∗ and that LICQ holds at feasible solution x∗. Then there exist

scalars λi, for i ∈ I(x∗), such that KKT conditions hold at x∗ if f attains minimum

at point x∗ : 



∇f(x∗) +
m∑

i=1

λi∇gi(x
∗) = 0,

λigi(x
∗) = 0, for i = 1, 2, . . . , m,

gi(x
∗) ≤ 0, for i = 1, 2, . . . , m,

λi ≥ 0, for i = 1, 2, . . . , m,

(2.3.1a)

(2.3.1b)

(2.3.1c)

(2.3.1d)

where ∇f and ∇gi denote the gradient vectors (the vectors of first-order partial

derivatives) of f and gi, respectively.

The scalars in Theorem 2.3.1 are called Lagrange multipliers, since the optimal

point x∗ minimizes f over X, and hence the subdifferential of f at x∗ must equal 0,

and (2.3.1a) is called the stationarity condition (SC); the requirement in (2.3.1b)

is referred to as the complementary slackness (CS) condition; the restriction in

(2.3.1c) implying that x∗ is feasible to Problem P2 is known as the primal feasi-

bility (PF) condition; finally (2.3.1d) is called the dual feasibility (DF) condition.

Any point x∗ for which there exists a Lagrange multiplier λ∗ such that (x∗, λ∗)

satisfies the KKT conditions is called a KKT point. Theorem 2.3.1 tells us that

the KKT conditions summarized in (2.3.1a)-(2.3.1d) are necessary conditions for
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an optimal solution to Problem P2, and we remark here that the KKT con-

ditions are also sufficient when Problem P2 is a convex optimization problem

where the objective function and the constraint functions are convex functions.

The related details are referred to Boyd and Vandenberghe (2004).

2.4 Change of probability measures

In this section we shall see how to change the original probability measure to an

equivalent one. The main instrument in change of measure for stochastic process

is Girsanov’s theorem. The materials presented here are standard in stochastic

analysis. We begin with a completed probability space (Ω,F ,P) and a filtration

{Ft}t∈[0,T ], where T is a fixed terminal time. Let {W (t)}t∈[0,T ] be a standard

Brownian motion, and β be a measurable function on [0, T ]× Ω.

Definition 2.4.1 We say two probability measures P and P̃ are equivalent, de-

noted as P ∼ P̃, if they have the same null sets, i.e., P(A) = 0 if and only if

P̃(A) = 0.

Definition 2.4.2 P̃ is called absolutely continuous with respect to P, denoted as

P̃ ≪ P, if P̃(A) = 0 whenever P(A) = 0. P̃ and P are called equivalent if P̃ ≪ P

and P ≪ P̃.

Theorem 2.4.1 (Radon-Nikodym) If P̃ ≪ P, then there exists a random variable

Λ, such that Λ ≥ 0, the expectation of Λ under probability measure P, written as

EPΛ, equals one, and the following formula holds for any measurable set A :

P̃(A) =

∫

A

ΛdP. (2.4.1)

Conversely, if there exists a random variable Λ having the above properties and P̃

is defined by (2.4.1), then P̃ is a probability measure such that P̃ ≪ P.

The random variable Λ in Theorem 2.4.1 is called the Radon-Nikodym derivative

of P̃ with respect to P, and is denoted as
dP̃

dP
. The proof of Theorem 2.4.1 can be

found in Klebaner (2005).
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Lemma 2.4.1 We define

Z(t) = exp

[∫ t

0

β(u)dW (u)− 1

2

∫ t

0

β2(u)du

]
, (2.4.2)

and so that Z(t) is a martingale under (Ft,P).

Remark 2.4.1 A sufficient condition which is known as Novikov’s condition for

Z(t) to be a martingale is as follows:

EP

[
exp

(
1

2

∫ T

0

β2(t)ds

)]
< ∞,

where EP[ · ] denotes the expectation under probability measure P.

Theorem 2.4.2 (Girsanov’s theorem) Define a new probability measure on FT

by putting

P̃(A) =

∫

A

Z(T, w)dP, for all A ∈ FT ,

then P̃ is a probability measure on (Ω,FT ). Furthermore,

W̃ (t) = W (t)−
∫ t

0

β(u)du, 0 ≤ t ≤ T

is a Brownian motion in the probability space (Ω,FT , P̃) with respect to the filtra-

tion {Ft}t∈[0,T ].

From Girsanov’s theorem we know that P̃ is equivalent to P, and the form of

Radon-Nikodym derivative of P̃ with respect to P is given by (2.4.2). For the

proofs of Lemma 2.4.1 and Theorem 2.4.2, please see Shreve (2004) and Elliott

and Kopp (2005).
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Chapter 3

Formulation

Let (Ω,F ,P) be a complete probability space which is equipped with a filtration

{Ft}t∈[0,T ], where T > 0 is a positive constant denoting the time horizon for

investment and reinsurance. We start from the classic Cramér-Lundberg model,

in which the risk process of the insurer is described as:

U(t) = u0 + pt−
N(t)∑

i=1

Zi,

where u0 ≥ 0 is the initial surplus, p is the constant insurance premium rate,

the claim arrival process {N(t)}t∈[0,T ] is a Poisson process with constant intensity

λ > 0, and the claim sizes Zi, i = 1, 2, . . . , are i.i.d. random variables independent

of N(t). Suppose that the claim size has finite first and second moments defined as

µ1 and µ2, respectively. The insurance premium rate p is for simplicity determined

by the expected value principle, i.e., p = (1 + θ)λµ1, where θ > 0 is the relative

safety loading factor of the insurer.

To manage the risk exposures, an insurance company could purchase reinsur-

ance protection. Specifically, we let f(Zi) denote the portion of the claim retained

by the insurer for an incoming claim Zi. That is, the insurer cedes Zi − f(Zi) to

the reinsurer. In return, the insurer needs to allocate the corresponding fraction of

his insurance premium rate to the reinsurer, which is called reinsurance premium

rate and denoted as pf . Then, after considering reinsurance the insurer’s surplus

at time t changes to

Uf (t) = u0 +

∫ t

0

(p− pf(s))ds−
N(t)∑

i=1

f(Zi). (3.0.1)
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The reinsurance premium is also calculated via the expected value principle, in

contrast to the existing studies where the relative safety loading factor of the

reinsurer is a pre-specified and positive constant at all times, we assume that the

reinsurer’s safety loading could be adjusted according to the reinsurance demand,

i.e.,

pf(t) = (1 + η(t))EP( · ), (3.0.2)

where EP denotes the expectation under probability measure P. Unlike charging

the same premium per unit exposure per unit time in the traditional expected

value principle, the assumption (3.0.2) has the advantage to show the bargain-

ing process between the insurer and the reinsurer. From (3.0.2) we can see that

the reinsurance premium pf(t) depends on the safety loading factor η(t), and

η = {η(t) > 0 : 0 ≤ t ≤ T} is the choice variable of the reinsurer. In the

setting considered here, once the safety loading factor is determined, the rein-

surance premium is determined. For convenience, we may use these two terms

interchangeably unless otherwise stated. Thus, the reinsurance premium payable

to the reinsurer at time t is

pf(t) = (1 + η(t))EP




N(t)∑

i=1

(Zi − f(Zi))




= (1 + η(t))λ (µ1 − EP(f(Zi))) ,

and the net premium rate for the insurer becomes

p− pf(t) = (1 + θ)λµ1 − (1 + η(t))λ(µ1 − EP(f(Zi)))

= (θ − η(t))λµ1 + (1 + η(t))λEP(f(Zi)).

According to Grandell (1990), (3.0.1) can be approximated by the following

diffusion process:

Uf (t) = u0 +

∫ t

0

[(θ − η(s))λµ1 + λη(s)EP(f(Zi))] ds+

∫ t

0

√
λEP(f(Zi))2dW (s),

where {W (t)}t∈[0,T ] is a standard Brownian motion.

In this thesis, we focus on proportional reinsurance policy, and leave the

study on non-proportional reinsurance treaty such as excess-of-loss reinsurance to

our future research. Under the proportional reinsurance, we have f(Zi) = q(t)Zi,

where {q(t)}t∈[0,T ] is {Ft}t∈[0,T ]-adapted. Besides the reinsurance exchange, the
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insurer and reinsurer are allowed to invest all their surpluses in one risk-free asset

continuously compounded with risk-free interest rate r > 0. The price process

S(t) of the risk-free asset is given by the following ordinary differential equation

(ODE):

dS(t) = rS(t)dt.

Therefore, under the proportional reinsurance strategy q = {q(t) ∈ [0, 1] : 0 ≤
t ≤ T} and the investment opportunity, the insurer’s controlled surplus process is

governed by

dXq(t) = rXq(t)dt + [λµ1(θ − η(t)) + λµ1η(t)q(t)] dt +
√
λµ2q(t)dW (t)

= rXq(t)dt + λµ1(θ − η(t) + η(t)q(t))dt+
√

λµ2q(t)dW (t).
(3.0.3)

Similarly, the surplus process of the reinsurer is expressed as follows:

dY η(t) = rY η(t)dt + (1 + η(t))λ(µ1 − µ1q(t))dt− λµ1(1− q(t))dt

+
√

λµ2(1− q(t))dW (t)

= rY η(t)dt + λµ1η(t)(1− q(t))dt+
√

λµ2(1− q(t))dW (t).

(3.0.4)

3.1 Dynamic VaR constraint

Solvency II, which is referred to as ”Basel for insurers”, is a major regulatory

framework for capital adequacy for the insurance industry in the European Union

(EU) region. As pointed out by Asimit et al. (2016) and Weber (2018), one of

the main aspects of Solvency II is that the insurance company should satisfy

the Solvency Capital Requirement (SCR) and the Minimum Capital Requirement

(MCR). These requirements are helpful to promote the solvency of the insurance

company and the stability of the insurance market. Considering that VaR is one of

the most commonly used risk measures in risk management and that it is used to

compute the capital requirements under Solvency II, we apply VaR to determine

the necessary capitals that an insurance company must hold to withstand risks in

our model setting.

Applying the Itô’s formula, SDE (3.0.3) admits a solution

Xq(s) = er(s−t)Xq(t) +

∫ s

t

er(s−l)λµ1(θ − η(l) + η(l)q(l))dl

+

∫ s

t

er(s−l)q(l)
√

λµ2dW (l).

(3.1.1)
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For a small enough h > 0, taking s = t+ h, and for any l in the interval [t, t+ h),

inspired by Yiu et al. (2010), we approximate q(l) by q(t), i.e., q(l) + q(t), for

∀ l ∈ [t, t+ h). This is a reasonable approximation because the reinsurance policy

can only be adjusted at discrete time and the decision is made based on the surplus

at time t. Hence, (3.1.1) becomes

Xq(t+ h) + erhXq(t) +
erh − 1

r
[λµ1(θ − η(t) + η(t)q(t))]

+
√

λµ2q(t)

∫ t+h

t

er(t+h−l)dW (l).

Following Chen et al. (2010), we define the loss in interval [t, t+ h) by

∆Xq(t) := erhXq(t)−Xq(t+ h).

For a given probability level α ∈ (0, 1) and a given time horizon h > 0, the VaR

at time t, denoted by VaRα,h
t , is defined by

VaRα,h
t : = inf{L ≥ 0 : P(∆Xq(t) ≥ L|Ft) < α}

= (Qα,h
t )−,

where

Q
α,h
t := sup{L ∈ R : P(−∆Xq(t) ≤ L|Ft) < α}.

We denote x− = max{0,−x}, Φ(·) the cumulative distribution of a standard

normal random variable, and Φ−1(·) the inverse function of Φ(·).

Proposition 3.1.1 Given time interval h and probability level α ∈ (0, 1), we have

VaRα,h
t =

[
−erh − 1

r
λµ1(θ − η(t) + η(t)q(t))− Φ−1(α)q(t)

√
e2rh − 1

2r
λµ2

]+
.

Proof. The proof is standard, please see Appendix A.

Then the constraint that the level of dynamic VaR is subject to a constant

R > 0 at all times is given by

[
−erh − 1

r
λµ1(θ − η(t) + η(t)q(t))− Φ−1(α)q(t)

√
e2rh − 1

2r
λµ2

]+
≤ R. (3.1.2)
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3.2 Agent’s problem

In most of the literature, the relative safety loading of the reinsurer is often as-

sumed to be fixed whatever the amount of reinsurance purchased by the insurer is,

which does not seem to reflect well the strategic interaction between the reinsurer

and the insurer. Under our assumption, the risk loading factor in the reinsur-

ance premium principle is time-varying, as described in Section 2.2, which aims

to provide flexibility to analyze the optimal risk sharing and reinsurance pricing in

the principal-agent modelling framework. In this section we describe the agent’s

problem, and we would move on to the principal’s problem in the next section.

In order to derive explicit results, we suppose that the insurer has an expo-

nential utility, i.e.,

UI(x) = −1

n
e−nx,

where n > 0 is the insurer’s constant absolute risk aversion (CARA) coefficient.

The insurer’s objective is to maximize the expected utility of his terminal surplus

by choosing the optimal risk retention level q(t) for a given reinsurance premium

η(t), that is, his value function is defined as

V I(t, x) := sup
q

EP

[
−1

n
exp (−nXq(T ))

]
,

where q(t) is supposed to satisfy the solvency requirement (3.1.2).

Assumption 3.2.1 In the current thesis, we assume that the insurer’s value

function, denoted by V I(t, x), satisfies the following two conditions:

∂V I(t, x)

∂x
> 0,

∂2V I(t, x)

∂x2
< 0.

We define an operator

LqV I(t, x) := [rx+ λµ1(θ − η + ηq)]V I
x (t, x) +

1

2
λµ2q

2V I
xx(t, x),

where V I
x (t, x) and V I

xx(t, x) represent the first-order and second-order partial

derivatives of V I(t, x) with respect to x, respectively. Applying the stochastic

dynamic programming method presented in Section 2.1, we can derive the follow-

ing HJB equation that V I(t, x) should satisfy

−V I
t (t, x)− sup

q

LqV I(t, x) = 0, (3.2.1)
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subject to the terminal condition V I(T, x) = − 1
n
e−nx, where V I

t (t, x) is the first-

order partial derivative of V I(t, x) with respect to t. Here, we require that the

value function V I(t, x) and its partial derivatives V I
t (t, x), V

I
x (t, x), V

I
xx(t, x) are

continuous on [0, T ]× R. Consequently, a classical solution to the HJB equation

for V I(t, x) in (3.2.1) is considered. Therefore, the agent’s optimization problem

can be formulated as follows:




sup
q

LqV I(t, x),

subject to

{
−erh−1

r
[λµ1(θ − η + ηq)]− Φ−1(α)q

√
e2rh−1

2r
λµ2 ≤ R,

(Xq(t), q) satisfy (3.0.3).

(3.2.2)

We say a reinsurance contract is incentive compatible if and only if the insurer’s

risk retention level q solves the constrained optimization problem (3.2.2). In order

to solve (3.2.2), we first rewrite

sup
q

{
LqV I(t, x)

}
= inf

q

{
−LqV I(t, x)

}
,

and then introduce the Lagrange function

L(q, λ̃) = − [rx+ λµ1(θ − η + ηq)]V I
x (t, x)−

1

2
λµ2q

2V I
xx(t, x)

+λ̃

{
−e

rh − 1

r
[λµ1(θ−η + ηq)]−Φ−1(α)q

√
e2rh−1

2r
λµ2−R

}
,

where λ̃ is the Lagrange multiplier. By the Karush-Kuhn-Tucker (KKT) condi-

tions introduced in Section 2.3, we have




∂L(q, λ̃)

∂q
= −λµ1ηV

I
x (t, x)− λµ2qV

I
xx(t, x)

+ λ̃

[
−erh − 1

r
λµ1η − Φ−1(α)

√
e2rh − 1

2r
λµ2

]
= 0,

λ̃

{
−erh − 1

r
[λµ1(θ − η + ηq)]− Φ−1(α)q

√
e2rh − 1

2r
λµ2 −R

}
= 0,

− erh − 1

r
[λµ1(θ − η + ηq)]− Φ−1(α)q

√
e2rh − 1

2r
λµ2 − R ≤ 0,

λ̃ ≥ 0.

(3.2.3a)

(3.2.3b)

(3.2.3c)

(3.2.3d)

We discuss the following two possible scenarios to find the candidate optimal

points.
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(I) If the VaR constraint is binding, i.e., λ̃ > 0, the insurer’s optimal response

to a given η can be obtained from (3.2.3b) :

q∗ =
C2 + λµ1(θ − η)

C1 − λµ1η
, (3.2.4)

where {
C1 = −Φ−1(α)

√
rλµ2(e2rh−1)
2(erh−1)2

,

C2 =
Rr

erh−1
.

Accordingly, we can calculate the derivative of q∗ with respect to η as

follows:
∂q∗

∂η
=

λ2µ2
1θ + λµ1(C2 − C1)

(C1 − λµ1η)2
. (3.2.5)

(II) If the VaR constraint is inactive, i.e., λ̃ = 0, (3.2.3a) reduces to

−λµ1ηV
I
x (t, x)− λµ2qV

I
xx(t, x) = 0,

which implies that the insurer’s optimal risk retention level q responding to

reinsurance premium η is given by

q∗ = −µ1ηV
I
x (t, x)

µ2V I
xx(t, x)

. (3.2.6)

Recalling Assumption 3.2.1, we know that the insurer’s optimal retained pro-

portion q∗ of the risk in (3.2.6) is linearly increasing with respect to the given

reinsurance premium η. This conclusion is in line with the economic intuition

that the insurer determines the optimal reinsurance demand when he is given the

information about the reinsurance premium, and the optimal reinsurance demand

1 − q∗ should be decreasing with respect to the reinsurance premium, which is

equivalent to that the optimal risk retention proportion q∗ is an increasing func-

tion of the reinsurance premium η. This appears to be consistent with the law of

demand in economic theory. To guarantee that the expression of q∗ in (3.2.4) also

has this property, we require that the expression in (3.2.5) is positive, i.e.,

λ2µ2
1θ + λµ1(C2 − C1)

(C1 − λµ1η)2
> 0,

which is equivalent to

λµ1θ + C2 − C1 > 0. (3.2.7)
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3.3 Principal’s problem

We also assume that the reinsurer has a CARA utility function denoted as

UR(y) = − 1

m
e−my,

where m > 0 represents the risk preference of the reinsurer. In the classical

frameworks of the optimal reinsurance contract problems, the reinsurer is also

assumed to be ambiguity-neutral in her decision, which implies that she completely

believes that the model provided by statistical estimation in probability measure

P is the true model; in this thesis we call this model as the reference model.

Under this setup, the ambiguity-neutral reinsurer (ANR) aims to seek the optimal

reinsurance premium η∗ to maximize the expected utility of her terminal wealth

Y η(T ), which is expressed as the following optimization problem:

sup
η

EP

[
− 1

m
exp (−mY η(T ))

]
. (3.3.1)

However, in a realistic environment, there may exist some misspecification er-

rors in the model parameters, which induces that the reinsurer doesn’t have full

confidence in the reference model. For this reason, it is interesting to take mod-

el uncertainty into account and study the optimal reinsurance contract problem

when the reinsurer is ambiguity-averse.

In this thesis, we adopt the diffusion model to approximate the true claims

model, where the latter is often described by a Poisson jump model. So the

reinsurer actually has ambiguity aversion attitudes towards the approximating

claim process under the probability measure P, and she would like to evaluate her

expected utility under the alternative probability measures. We define a class of

probability measures which are equivalent to P :

Q := {Q|Q ∼ P}.

According to Girsanov’s Theorem stated in Section 2.4, for ∀ Q ∈ Q, there exists

a measurable real-valued process ν(t) such that

dQ

dP
= ν(t),
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where

ν(t) = exp

{∫ t

0

l(s)dW (s)− 1

2

∫ t

0

l2(s)ds

}
(3.3.2)

is a
(
{Ft}t∈[0,T ],P

)
-martingale. Following Miao and Rivera (2016), we call l(t)

the density generator which satisfies the Novikov’s condition

EP

[
exp

(
1

2

∫ T

0

l2(t)dt

)]
< ∞.

Under a new probability measure Q, the stochastic process {WQ(t)}t∈[0,T ] satisfy-

ing

dWQ(t) = dW (t)− l(t)dt

is a standard Brownian motion. Accordingly, the reinsurer’s surplus process under

the measure Q is governed by the following stochastic differential equation (SDE):

dY η(t) = rY η(t)dt+
[
λµ1η(t)(1− q(t)) +

√
λµ2(1− q(t))l(t)

]
dt

+
√

λµ2(1− q(t))dWQ(t).

We use the concept of ambiguity aversion proposed by Maenhout (2004) in

such a way that the reinsurer aims to find the robust reinsurance contract by

looking for the optimal reinsurance premium η under the worst-case scenario of

the alternative measures. Thus, the reinsurer’s value function in the presence of

robustness preference is given by

V R(t, y) := sup
η

inf
Q

EQ

[
− 1

m
exp(−mY η(T )) + P (P‖Q)

]
,

where EQ denotes the expectation under the alternative probability measure Q,

and P (P‖Q) ≥ 0 is a penalty function measuring the divergence of Q from P. In

the perspective of an ambiguity-averse reinsurer (AAR), the model under prob-

ability measure P is an estimation of the true model in the real world, and she

is sceptical about this reference model because of the misspecification error and

aims to consider the alternative models under probability measure Q. In the case

of P (P‖Q) → ∞, the reinsurer is convinced that the reference model is the true

model and any alternative models deviating from this reference model will be

heavily penalized. On the other hand, if P (P‖Q) → 0, i.e., the penalty function

term vanishes, the reinsurer will not penalize any deviation from the reference
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model, which implies that the decision maker is extremely ambiguous. With a

view to deriving a closed-form solution of the optimal reinsurance contract, we

apply the assumption in Maenhout (2004) and use a relative entropy to measure

the deviation of alternative measure Q from reference measure P. In Appendix B,

it can be seen that the increase in relative entropy form t to t+ dt equals 1
2
l2(t),

under this circumstance, the state-dependent penalty function is defined as

P (P‖Q) :=

∫ T

t

Ψ (s, l(s)) ds,

with

Ψ (s, l(s)) = −ml2(s)V R(s, y)

2β
,

where β ≥ 0 is the ambiguity aversion coefficient of the reinsurer, which describes

the degree of her ambiguity attitude with respect to the diffusion risk. When

β = 0, P (P‖Q) → ∞ and the reinsurer is ambiguity-neutral towards the diffusion

risk.

According to the dynamic programming principle, the Hamilton-Jacobi-Bellman-

Isaacs (HJBI) equation satisfied by the value function V R(t, y) of the reinsurer

can be derived as

sup
η

inf
l

{
Lq∗,η,l − ml2V R(t, y)

2β

}
= 0, (3.3.3)

with boundary condition V R(T, y) = − 1
m
e−my, and the operator Lq,η,l is defined

as

Lq,η,lV R(t, y) := V R
t (t, y) +

[
ry + λµ1η(1− q) +

√
λµ2(1− q)l

]
V R
y (t, y)

+
1

2
λµ2(1− q)2V R

yy(t, y).

The reinsurer designs the reinsurance contract to meet her own objectives, but also

wants the contract to be attractive for the insurer. Hence, she recommends the

risk retention level q∗ that satisfies the incentive compatibility constraint (3.2.2)

and the reinsurance premium η∗ that solves the optimization problem (3.3.3).
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Chapter 4

Robust proportional reinsurance

contract

In this chapter, we shall derive the robust optimal reinsurance contract by solv-

ing the insurer’s HJB equation and the reinsurer’s HJBI equation. Firstly, the

insurer’s value function V I(t, x) is assumed to have the following form

V I(t, x) = −1

n
exp

{
−nxer(T−t) + f(t)

}
,

where f(t) is a deterministic function with f(T ) = 0. This is a trial solution to

the value function of the insurer. By some straightforward calculations, we have





V I
t (t, x) =

(
rnxer(T−t) + f ′(t)

)
V I(t, x),

V I
x (t, x) = −ner(T−t)V I(t, x),

V I
xx(t, x) = n2e2r(T−t)V I(t, x).

(4.0.1)

Similarly, we conjecture that the reinsurer’s value function V R(t, y) has the fol-

lowing form

V R(t, y) = − 1

m
exp

{
−myer(T−t) + g(t)

}
,

where g(t) is a function to be determined with g(T ) = 0. This is, again, a trial

solution to the value function of the reinsurer. Note that the conjectured forms

of the value functions for the insurer and the reinsurer are imposed based on the

form of the exponential utility function. A direct calculation also yields





V R
t (t, y) =

(
rmyer(T−t) + g′(t)

)
V R(t, y),

V R
y (t, y) = −mer(T−t)V R(t, y),

V R
yy(t, y) = m2e2r(T−t)V R(t, y).

(4.0.2)
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If we insert the derivatives in (4.0.1) into (3.2.1), we can get the HJB equation of

the insurer as follows

sup
q

{
f ′(t)− ner(T−t)λµ1 [θ + η(q − 1)] +

1

2
λµ2n

2q2e2r(T−t)

}
= 0. (4.0.3)

4.1 Case I: VaR constraint is binding for the in-

surer

Substituting the expression of q∗ in (3.2.4) and the corresponding derivatives in

(4.0.2) to the HJBI equation (3.3.3), we can solve the robust optimal reinsurance

premium when the dynamic VaR constraint is active for the insurer. The HJBI

equation turns into

sup
η

inf
l

{
g′(t)− mer(T−t) (C1 − C2 − λµ1θ)

C1 − λµ1η

(
λµ1η +

√
λµ2l

)

+
1

2
λµ2m

2e2r(T−t)

(
C1 − C2 − λµ1θ

C1 − λµ1η

)2

− ml2

2β

}
= 0.

(4.1.1)

We first concentrate on the minimization part in (4.1.1). Fixing η and letting the

first-order derivative of the left-hand side of (4.1.1) with respect to l equal zero,

we obtain

−mer(T−t)
√

λµ2
C1 − C2 − λµ1θ

C1 − λµ1η
− ml

β
= 0,

which implies that the worst-case density generator is given by

l∗ = −er(T−t)β
√
λµ2

C1 − C2 − λµ1θ

C1 − λµ1η
. (4.1.2)

Inserting (4.1.2) into the HJBI equation (4.1.1), we get

sup
η

{
g′(t)− λµ1ηmer(T−t)C1 − C2 − λµ1θ

C1 − λµ1η

+
1

2
mλµ2e

2r(T−t)(β +m)

(
C1 − C2 − λµ1θ

C1 − λµ1η

)2
}

= 0.

(4.1.3)

Then the first-order optimality condition for η gives that the maximum of the left

hand side of HJBI equation is attained at

η∗(t) =
C2

1 − λµ2e
r(T−t)(β +m)(C1 − C2 − λµ1θ)

C1λµ1

. (4.1.4)
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Plugging (4.1.4) back into (3.2.4), we can obtain the following expression of q∗(t)

q∗(t) = 1− C1

λµ2er(T−t)(β +m)
. (4.1.5)

Substituting (4.1.4) into (4.1.2) yields the worst-case density generator as follows

l∗(t) = − C1β√
λµ2(β +m)

.

In the following, we will first derive the reinsurer’s value function. Putting the

expression of η∗(t) in (4.1.4) back into (4.1.3), we get the ODE that g(t) should

satisfy as follows:

g′(t) +m(C1 − C2 − λµ1θ)e
r(T−t) − mC2

1

2λµ2(β +m)
= 0. (4.1.6)

Recalling the terminal condition g(T ) = 0, we have that the solution to (4.1.6) is

g(t) =

∫ T

t

m(C1 − C2 − λµ1θ)e
r(T−s)ds−

∫ T

t

mC2
1

2λµ2(β +m)
ds

=
m(C1 − C2 − λµ1θ)

r

(
er(T−t) − 1

)
− mC2

1 (T − t)

2λµ2(β +m)
.

Similar to solving the reinsurer’s value function, we need to solve the function f(t)

in the insurer’s value function. (4.1.4) and (4.1.5) readily imply that the insurer’s

HJB equation in (4.0.3) becomes

f ′(t) +
1

2
λµ2n

2e2r(T−t) − ner(T−t)

(
C1 − C2 +

C1n

β +m

)

+
nC2

1

λµ2(β +m)
+

C2
1n

2

2λµ2(β +m)2
= 0,

(4.1.7)

with the terminal condition f(T ) = 0. Solving the ordinary differential equation

(ODE) in (4.1.7), we have

f(t) =

∫ T

t

1

2
λµ2n

2e2r(T−s)ds−
∫ T

t

ner(T−s)

(
C1 − C2 +

C1n

β +m

)
ds

+

∫ T

t

(
nC2

1

λµ2(β +m)
+

C2
1n

2

2λµ2(β +m)2

)
ds

=
λµ2n

2
(
e2r(T−t) − 1

)

4r
− n

(
C1 − C2 +

C1n

β +m

)
er(T−t) − 1

r

+
2nC2

1(β +m) + C2
1n

2

2λµ2(β +m)2
.
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After solving the insurer’s value function V I(t, x), we proceed to determine the

Lagrange multiplier λ̃. From (3.2.3a), we have

λ̃ =
λµ1η

∗(t)V I
x (t, x) + λµ2q

∗(t)V I
xx(t, x)

−erh−1
r

λµ1η∗(t)− Φ−1(α)
√

e2rh−1
2r

λµ2

. (4.1.8)

Substituting η∗(t), q∗(t) and the related derivatives of V I(t, x) into (4.1.8), we

derive λ̃ in the following form

λ̃ =
−A1(t)ne

r(T−t)V I(t, x) + A2(t)n
2e2r(T−t)V I(t, x)

C3 − erh−1
r

A1(t)
, (4.1.9)

where 



A1(t) = C2
1 − λµ2e

r(T−t)(β +m)(C1 − C2 − λµ1θ),

A2(t) = λµ2C1 − C2
1

er(T−t)(β+m)
,

C3 =
(Φ−1(α))

2
λµ2(e2rh−1)

2(erh−1)
.

We need to impose some additionally restricted conditions to guarantee that the

Lagrange multiplier λ̃ is positive, and these conditions are presented in the fol-

lowing theorem.

Theorem 4.1.1 The parameters in (4.1.9) should satisfy anyone of the following

conditions:

(1)

ner(T−t)A2(t) < A1(t) <
rC3

erh − 1
,

and

λµ1θ + C2 − C1 > 0.

(2)
rC3

erh − 1
< A1(t) < ner(T−t)A2(t),

and

λµ1θ + C2 − C1 > 0.

Proof. Normally, we take 0 < α < 1
2
, and hence C1 is always positive. Addition-

ally, to ensure η∗(t) in (4.1.4) is positive, we must have A1(t) > 0. Since q∗(t)

should be within [0, 1], we have

0 ≤ λµ2e
r(T−t)(β +m)− C1

λµ2er(T−t)(β +m)
≤ 1,
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which is equivalent to

0 ≤ λµ2C1 −
C2

1

er(T−t)(β +m)
≤ λµ2C1,

and this implies A2(t) ≥ 0. It is obvious that C3 is positive and accordingly, it is

sufficient to require the numerator and the denominator in (4.1.9) to be positive

and negative at the same time to make a positive λ̃.

Therefore, we have two possible cases:

(1) {
−A1(t)ne

r(T−t)V I(t, x) > −A2(t)n
2e2r(T−t)V I(t, x),

C3 >
erh−1

r
A1(t),

which is equivalent to

ner(T−t)A2(t) < A1(t) <
rC3

erh − 1
,

and

(2) {
−A1(t)ne

r(T−t)V I(t, x) < −A2(t)n
2e2r(T−t)V I(t, x),

C3 <
erh−1

r
A1(t),

which is equivalent to

rC3

erh − 1
< A1(t) < ner(T−t)A2(t).

Finally, combining with the condition in (3.2.7), we complete the proof.

We now summarize the main results of this case in the following theorem.

Theorem 4.1.2 When the VaR constraint is binding for the insurer, the robust

optimal reinsurance contract is given by

{
q∗(t) = 1− C1

λµ2er(T−t)(β+m)
,

η∗(t) =
C2

1−λµ2e
r(T−t)(β+m)(C1−C2−λµ1θ)

C1λµ1
,

(4.1.10)

and the worst-case density generator is

l∗(t) = − C1β√
λµ2(β +m)

. (4.1.11)
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Under this robust optimal reinsurance contract, the reinsurer’s optimal value func-

tion is given by

V R(t, y) = − 1

m
exp

{
−myer(T−t) + g1(t)

}
, (4.1.12)

where

g1(t) =
m(C1 − C2 − λµ1θ)

r

(
er(T−t) − 1

)
− mC2

1 (T − t)

2λµ2(β +m)
,

and the insurer’s optimal value function is

V I(t, x) = −1

n
exp

{
−nxer(T−t) + f1(t)

}
,

where

f1(t) =
λµ2n

2
(
e2r(T−t) − 1

)

4r
− n

(
C1 − C2 +

C1n

β +m

)
er(T−t) − 1

r

+
2nC2

1(β +m) + C2
1n

2

2λµ2(β +m)2
.

The Lagrange multiplier is given by (4.1.9), and the parameters in it should satisfy

one of the conditions in Theorem 4.1.1.

4.2 Case II: VaR constraint is inactive for the

insurer

Inserting the expressions of V I
xx(t, x) and V I

x (t, x) in (4.0.1) into (3.2.6), we have

that the optimal risk retention level for the insurer when the VaR constraint is

inactive is given by

q∗ =
µ1η

µ2ner(T−t)
. (4.2.1)

If we put (4.2.1) and the associated derivatives in (4.0.2) back into (3.3.3), the

HJBI equation for the reinsurer becomes

sup
η

inf
l

{
g′(t)− m

(
µ2ne

r(T−t) − µ1η
)

µ2n

(
λµ1η +

√
λµ2l

)

+
λm2

(
µ2ne

r(T−t) − µ1η
)2

2n2µ2

− ml2

2β

}
= 0.

(4.2.2)

Fixing η and according to the first-order conditions, we can easily obtain the

minimum point l∗ given by

l∗ = −β
√
λ
(
µ2ne

r(T−t) − µ1η
)

n
√
µ2

. (4.2.3)
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Substituting (4.2.3) into HJBI equation (4.2.2), we get the following maximization

problem with respect to η(t),

sup
η

{
g′(t)− m(µ2ne

r(T−t) − µ1η)

µ2n

(
λµ1η −

βλ
(
µ2ne

r(T−t) − µ1η
)

n

)

+
λm(m− β)

(
µ2ne

r(T−t) − µ1η
)2

2n2µ2

}
= 0.

(4.2.4)

Applying the first-order conditions over η yields the optimal robust reinsurance

premium as follows

η∗(t) =
µ2n(m+ β + n)

µ1(m+ β + 2n)
er(T−t), (4.2.5)

correspondingly, inserting (4.2.5) into (4.2.1) and (4.2.3) yield the optimal rein-

surance strategy

q∗(t) =
m+ β + n

m+ β + 2n
(4.2.6)

and the worst-case density generator

l∗(t) = −β
√

λµ2e
r(T−t) n

m+ β + 2n
.

Now we can solve the optimal value functions of the insurer and the reinsurer.

In order to solve the optimal value function of the reinsurer, we need to solve

the function g(t) first. Plugging the expression of η∗(t) in (4.2.5) into (4.2.4), we

obtain the ODE that g(t) should satisfy

g′(t)− λmn2µ2e
2r(T−t)

2(m+ β + 2n)
= 0.

Combining with the terminal condition g(T ) = 0, we get

g(t) = −
∫ T

t

λmn2µ2e
2r(T−s)

2(m+ β + 2n)
ds =

λmn2µ2

4r(m+ β + 2n)

(
1− e2r(T−t)

)
.

Putting (4.2.5) and (4.2.6) back into the insurer’s HJB equation (4.0.3), we obtain

the following ODE that f(t) should satisfy

f ′(t)−λµ1θne
r(T−t)+

λµ2n
3(m+β +n)e2r(T−t)

(m+β +2n)2
+
λµ2n

2e2r(T−t)

2

(
m+β +n

m+β +2n

)2

= 0.
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Combining with the boundary condition f(T ) = 0, we get

f(t) = −
∫ T

t

λµ1θne
r(T−s)ds+

∫ T

t

λµ2n
3(m+ β + n)e2r(T−s)

(m+ β + 2n)2
ds

+

∫ T

t

λµ2n
2e2r(T−s)

2

(
m+ β + n

m+ β + 2n

)2

ds

=
λµ1θn

r

(
1− er(T−t)

)
+

λµ2n
2(m+ β + n)(m+ β + 3n)

(
e2r(T−t) − 1

)

4r(m+ β + 2n)2
.

Additionally, the robust optimal reinsurance contract (q∗(t), η∗(t)) should satisfy

the VaR constraint (3.2.3c), and so we have

−erh − 1

r

[
λµ1

(
θ − µ2n(m+ β + n)

µ1(m+ β + 2n)
er(T−t) +

µ2n(m+ β + n)2

µ1(m+ β + 2n)2
er(T−t)

)]

− Φ−1(α)
m+ β + n

m+ β + 2n

√
e2rh − 1

2r
λµ2 − R ≤ 0,

which is equivalent to

λ
(
θµ1(m+ β + 2n)2 − µ2n(m+ β + n)(m+ β + 2n)er(T−t)

+ µ2n(m+ β + n)2er(T−t)
)
− C1(m+ β + n)(m+ β + 2n) + C2(m+ β + 2n)2 ≥ 0.

(4.2.7)

Finally, summing up the previous calculations, we arrive at the following theorem

of this case.

Theorem 4.2.1 When the VaR constraint is inactive for the insurer, the robust

optimal reinsurance contract is given by
{
q∗(t) = m+β+n

m+β+2n
,

η∗(t) = µ2n(m+β+n)
µ1(m+β+2n)

er(T−t),

and the worst-case density generator is

l∗(t) = −β
√

λµ2e
r(T−t) n

m+ β + 2n
. (4.2.8)

Under this robust optimal reinsurance contract, the reinsurer’s optimal value func-

tion is given by

V R(t, y) = − 1

m
exp

{
−myer(T−t) + g2(t)

}
,

where

g2(t) =
λmn2µ2

4r(m+ β + 2n)

(
1− e2r(T−t)

)
,
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and the insurer’s optimal value function is

V I(t, x) = −1

n
exp

{
−nxer(T−t) + f2(t)

}
,

where

f2(t) =
λµ1θn

r

(
1− er(T−t)

)
+

λµ2n
2(m+ β + n)(m+ β + 3n)

(
e2r(T−t) − 1

)

4r(m+ β + 2n)2
.

Furthermore, the condition in (4.2.7) should be satisfied due to the solvency capital

requirement.

Remark 4.2.1 It should be worth noting that if the dynamic VaR constraint on

the insurer to set up capital requirement is not imposed, and under this case the

condition in (4.2.7) would be discarded, then the results in Theorem 4.2.1 coincide

with the Theorem 1 in Hu et al. (2018b), i.e., our model extends the robust optimal

reinsurance contract in Hu et al. (2018b) to the situation where the risk constraint

is present.

Remark 4.2.2 From Theorem 4.1.2, when the VaR constraint is active for the

insurer, the premium rate of reinsurance is given by

(1 + η(t))λµ1 = λµ1 +
C2

1 − λµ2(β +m)(C1 − C2 − λµ1θ)e
r(T−t)

C1
.

On the other hand, according to Theorem 4.2.1, the premium rate of reinsurance

when the VaR constraint is inactive for the insurer is

(1 + η(t))λµ1 = λµ1 +
λµ2n(m+ β + n)er(T−t)

m+ β + 2n
.

From these two expressions, we can see that the extended expected value premium

principle not only encompass the advantages of the net premium principle, the

variance premium principle, and the zero utility premium principle, but also in-

corporate the effects of the time value of money because they contain the discounted

term er(T−t). In particular, when the risk constraint is binding, the premium rate

of reinsurance is also influenced by the parameters arising from the risk constraint

such as the confidence level and the capital allowance level.

Theorem 4.2.2 The optimal reinsurance premium η∗(t) given in Theorem 4.1.2

and Theorem 4.2.1 solve the maximization problem in HJBI equation (3.3.3) when

VaR constraint is active and inactive for the insurer, respectively.
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Proof. We gather the term of η in the left-hand side of HJBI equation (3.3.3) and

define

h(η) :=
[
λµ1η(1− q)+

√
λµ2(l − ql)

]
V R
y (t, y)+

1

2
λµ2(1−q)2V R

yy(t, y)−
ml2V R(t, y)

2β
.

Furthermore, we have

h′(η) =

[
λµ1(1− q)− λµ1η

∂q

∂η
+
√

λµ2(1− q)
∂l

∂η
−
√

λµ2l
∂q

∂η

]
V R
y (t, y)

− λµ2(1− q)
∂q

∂η
V R
yy(t, y)−

mlV R(t, y)

β

∂l

∂η
,

and

h′′(η) =

[
− 2λµ1

∂q

∂η
− λµ1η

∂2q

∂η2
+ (1− q)

√
λµ2

∂2l

∂η2
− 2
√
λµ2

∂l

∂η

∂q

∂η

−
√

λµ2l
∂2q

∂η2

]
V R
y (t, y) + λµ2

(
∂q

∂η

)2

V R
yy(t, y)− λµ2(1− q)

∂2q

∂η2
V R
yy(t, y)

− mlV R(t, y)

β

∂2l

∂η2
− mV R(t, y)

β

(
∂l

∂η

)2

.

(4.2.9)

1. When VaR constraint is inactive for the insurer, inserting q∗ in (4.2.1) and

l∗ in (4.2.3) into (4.2.9), we have

h′′(η) =

[
− 2λµ2

1

µ2ner(T−t)
− 2λβµ2

1

µ2n2er(T−t)

]
V R
y (t, y)+

λµ2
1V

R
yy(t, y)

µ2n2e2r(T−t)
−mβλµ2

1V
R(t, y)

n2µ2

= V R(t, y)

[
2λµ2

1m

µ2n
+

λµ2
1m(β +m)

µ2n2

]
.

Since V R(t, y) < 0, it is obvious that h′′(η) < 0 for any reinsurance premium.

2. When VaR constraint is active for the insurer, inserting η∗ and q∗ in (4.1.10),

and l∗ in (4.1.11) into (4.2.9), we obtain

h′′(η∗) =
V R(t, y)

(C1 − λµ1η∗)4
(C2 − C1 + λµ1θ)

2(β +m)mλ3µ2
1µ2e

2r(T−t) < 0.

These results indicate that the second-order partial derivatives at the optimal rein-

surance premium obtained by the first-order optimality conditions are negative.

In other words, the obtained optimal reinsurance premium in Theorem 4.1.2 and

Theorem 4.2.1 indeed solves the maximization problems and gives the reinsurer

an optimal reinsurance premium strategy.
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Chapter 5

Special cases

This chapter provides some special cases of our model: the reinsurer completely

trusts the approximating distribution of the claim process, which implies that the

reinsure’s ambiguity aversion coefficient β equals 0. In other words, it is supposed

that the reinsurer is ambiguity-neutral. Then, the reinsurer’s wealth process un-

der probability measure P is expressed by (3.0.4), and the robust optimization

problem degenerates into the traditional optimization problem (3.3.1) without

the consideration of ambiguity aversion. Denote the reinsurer’s value function

under this circumstance by

Ṽ R(t, y) = sup
η̃

E

[
− 1

m
exp (−mY η(T ))

]
.

The corresponding HJB equation is

sup
η̃

{
Ṽ R
t + [ry + λµ1η̃(1− q∗)] Ṽ R

y +
1

2
λµ2(1− q∗)2Ṽ R

yy

}
= 0,

where Ṽ R is a short notation for Ṽ R(t, y) with the terminal condition Ṽ R(t, y) =

UR(y).

Corollary 5.0.1 (1) When the reinsurer is ambiguity-neutral, and the VaR con-

straint is binding for the insurer, the optimal reinsurance contract is given

by {
q̃∗(t) = 1− C1

λµ2mer(T−t) ,

η̃∗(t) =
C2

1−λµ2mer(T−t)(C1−C2−λµ1θ)

C1λµ1
.

Correspondingly, the reinsurer’s value function is given by

Ṽ R(t, y) = − 1

m
exp

{
−myer(T−t) + g̃1(t)

}
,
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where

g̃1(t) =
m(C1 − C2 − λµ1θ)

r

(
er(T−t) − 1

)
− mC2

1 (T − t)

2λµ2m
,

and the insurer’s optimal value function is

Ṽ I(t, x) = −1

n
exp

{
−nxer(T−t) + f̃1(t)

}
,

where

f̃1(t) =
λµ2n

2
(
e2r(T−t) − 1

)

4r
−n

(
C1 − C2 +

C1n

m

)
er(T−t) − 1

r
+
C2

1n(2m+ n)

2λµ2m2
.

(2) When the reinsurer is ambiguity-neutral, and the VaR constraint is inactive

for the insurer, the optimal reinsurance contract is derived as
{
q̃∗(t) = m+n

m+2n
,

η̃∗(t) = µ2n(m+n)
µ1(m+2n)

er(T−t).

The reinsurer’s value function is given by

Ṽ R(t, y) = − 1

m
exp

{
−myer(T−t) + g̃2(t)

}
,

where

g̃2(t) =
λmn2µ2

4r(m+ 2n)

(
1− e2r(T−t)

)
,

and the insurer’s value function is

Ṽ I(t, x) = −1

n
exp

{
−nxer(T−t) + f̃2(t)

}
,

where

f̃2(t) =
λµ1θn

r

(
1− er(T−t)

)
+

λµ2n
2(m+ n)(m+ 3n)

(
e2r(T−t) − 1

)

4r(m+ 2n)2
.

Proof. We can see that the worst-case density generator l∗(t) equals 0 if we set

β = 0 in (4.1.11) and (4.2.8). Therefore, Setting β = 0 in Theorem 4.1.2 and

Theorem 4.2.1 immediately gives us the results of this corollary. This completes

the proof of this corollary.

Letting β = 0 in Theorem 4.1.1 and inequality (4.2.7), we easily obtain the

conditions showing the effects of risk constraints for the two different cases, re-

spectively. Accordingly, we can obtain the following corollary.
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Corollary 5.0.2 (1) When the reinsurer is ambiguity-neutral, and the VaR con-

straint is binding for the insurer, anyone of the following conditions should be

satisfied:

(a)

ner(T−t)Ã2(t) < Ã1(t) <
rC3

erh − 1
,

and

λµ1θ + C2 − C1 > 0.

(b)
rC3

erh − 1
< Ã1(t) < ner(T−t)Ã2(t),

and

λµ1θ + C2 − C1 > 0,

where {
Ã1(t) = C2

1 − λµ2mer(T−t)(C1 − C2 − λµ1θ),

Ã2(t) = λµ2C1 − C2
1

mer(T−t) .

(2) When the reinsurer is ambiguity-neutral, and the VaR constraint is inactive

for the insurer, the following condition should be satisfied:

λ
(
θµ1(m+ 2n)2 − µ2n(m+ n)(m+ 2n)er(T−t) + µ2n(m+ n)2er(T−t)

)

− C1(m+ n)(m+ 2n) + C2(m+ 2n)2 ≥ 0.
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Chapter 6

Expected utility loss of a

suboptimal reinsurance contract

This chapter discusses the expected utility loss of an ambiguity-averse reinsurer.

To this end, we assume that the reinsurer is ambiguous about the claim process,

but she doesn’t take the optimal reinsurance contracts given in Theorem 4.1.2 or

Theorem 4.2.1. Instead, she designs a reinsurance contract as if she is ambiguity-

neutral, i.e., she follows the contract given in Corollary 5.0.1. Under this case, we

define the reinsurer’s suboptimal value function by

V̂ R(t, y) := inf
l
EQ

{
−
∫ T

t

ml2V̂ R(s, y)

2β
ds+

[
− 1

m
exp

{
−mY η̃∗(T )

}]
}
.

It should be noted that the reinsurance contract is now pre-specified, by which the

worse-case density generator l(t) is endogenously determined. Following Hu et al.

(2018b) and Li et al. (2018), we define the expected utility loss of the reinsurer

under the suboptimal reinsurance contract as follows

UL(t) := 1− V R(t, y)

V̂ R(t, y)
, (6.0.1)

where V R(t, y) given in Theorem 4.1.2 and Theorem 4.2.1 under different cases is

the robust optimal value function of the reinsurer.

The suboptimal value function V̂ R(t, y) associated with the optimal reinsur-

ance contract (q̃∗(t), η̃∗(t)) solves the following infimum problem

inf
l

{
V̂ R
t (t, y) +

[
ry + λµ1η̃

∗(1− q̃∗) +
√

λµ2(1− q̃∗)l
]
V̂ R
y (t, y)

+
1

2
λµ2(1− q̃∗)2V̂ R

yy(t, y)−
ml2V̂ R(t, y)

2β

}
= 0.

(6.0.2)
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Differentiating (6.0.2) with respect to l, we find that l∗(t) is given by

l∗(t) =
β
√
λµ2(1− q̃∗(t))V̂ R

y (t, y)

mV̂ R(t, y)
. (6.0.3)

When the VaR constraint is active for the insurer, we try to find the solution to

(6.0.2) having the following form

V̂ R(t, y) = − 1

m
exp

{
−myer(T−t) + ĝ1(t)

}
. (6.0.4)

Plugging the relative derivatives of V̂ R(t, y), (6.0.3) and (q̃∗(t), η̃∗(t)) in the first

case of Corollary 5.0.1 into HJB equaion (6.0.2), we obtain

ĝ′1(t) +
βC2

1

2mλµ2
+m(C1 − C2 − λµ1θ)e

r(T−t) − C2
1

2λµ2
= 0.

Incorporating the boundary condition ĝ1(T ) = 0, we have

ĝ1(t) =
m(C1 − C2 − λµ1θ)

r

(
er(T−t) − 1

)
+

(β −m)(T − t)C2
1

2mλµ2
.

Substituting (6.0.4) and (4.1.12) into (6.0.1), we get the expected utility loss due

to ignoring model ambiguity in an explicit form:

UL1(t) = 1− eg1(t)−ĝ1(t),

where

g1(t)− ĝ1(t) = − β2C2
1(T − t)

2λµ2m(β +m)
.

Similarly, when the VaR constraint is inactive for the insurer, we assume that the

solution to (6.0.2) has the following form

V̂ R(t, y) = − 1

m
exp

{
−myer(T−t) + ĝ2(t)

}
.

The ODE that ĝ2(t) should satisfy becomes

ĝ′2(t) +
mn2λµ2e

2r(T−t)

(m+ 2n)2

(
β

2
− m

2
− n

)
= 0, (6.0.5)

combining with the terminal condition ĝ2(T ) = 0, we then obtain the solution to

(6.0.5) is given by

ĝ2(t) =
λµ2mn2(β −m− 2n)

(
e2r(T−t) − 1

)

4r(m+ 2n)2
.
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Therefore, the expected utility loss of the suboptimal reinsurance contract is given

by:

UL2(t) = 1− eg2(t)−ĝ2(t),

where

g2(t)− ĝ2(t) =
λmn2µ2

(
1− e2r(T−t)

)

4r

(
1

m+ β + 2n
+

β −m− 2n

(m+ 2n)2

)
.
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Chapter 7

Numerical examples

In this chapter, we conduct some numerical experiments to provide sensitivity

analysis for the robust optimal reinsurance contract and the reinsurer’s expected

utility loss in two different scenarios. In Case I the VaR constraint is active for

the insurer, and the model parameters as our benchmark are shown in Table

7.1. It can be verified that the condition (2) in Theorem 4.1.1 is satisfied in this

parameter setting. In Case II the VaR constraint is inactive for the insurer, and

the parameters are the same as that of Case I except that m changes to 0.2 and n

becomes 0.3. It is also can be verified that the condition in (4.2.7) is satisfied in

this parameter setting. In each of the following figures, we vary the value of one

parameter and study the sensitivity of robust optimal reinsurance contract and

the reinsurer’s expected utility loss with respect to the change of that parameter.

It has been ensured that condition (2) in Theorem 4.1.1 for Case I and condition

(4.2.7) for Case II are correspondingly satisfied when the parameters that we are

interested in vary in specific ranges.

Table 7.1: Model parameters

t T r R h α β

0 4 0.05 4.5 0.25 0.05 0.1

θ m n λ µ1 µ2

0.25 2 5 6 3 7

Figure 7.1 depicts the effects of the reinsurer’s ambiguity aversion coefficient

on the optimal reinsurance contract when the VaR constraint is active for the in-

surer. We note that q∗(0) and η∗(0) are both increasing functions of β. The results
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in this figure coincide with our intuition in the sense that the reinsurer is prone to

increase the reinsurance premium when her level of ambiguity aversion increases

in order to offset the adverse effects of model misspecification. In response, the

insurer reduces the optimal reinsurance demand due to an increase in the reinsur-

ance premium. And equivalently, the insurer’s retained proportion of the claims

would increase. Furthermore, for a fixed ambiguity aversion level, the reinsurance

premium increases with the growth of the reinsurer’s risk aversion parameter m in

the exponential utility function. This is because the more risk-averse the reinsurer

is, the less the insurance risk she would like to bear, and so she tends to increase

the reinsurance premium, which leads to an increase in the insurer’s retention

level of the claims. In other words, the optimal reinsurance demand of the insurer

decreases. It should be noted that the insurer’s risk aversion parameter n takes no

effects on the robust optimal reinsurance contract when VaR constraint is active.

One possible explanation would be that the risk constraint offsets the impact of

the insurer’s risk aversion parameter. So we do not intend to study the responses

of q∗(0) or η∗(0) to n in this case.

Figure 7.2 reveals that the insurer’s risk aversion parameter n takes effects

on the robust optimal reinsurance contract in Case II. The analysis for the effects

of β and m on the robust optimal reinsurance contract is the same as that in

Figure 7.1. Regarding the insurer’s risk aversion parameter, a larger n implies

that the insurer is more risk averse, and he tends to decrease his respect retention

level of insurance risk and acquire more reinsurance protection.

Figure 7.3 displays the influence of α on the insurer’s optimal risk retention

level when the dynamic VaR constraint is binding. Most of the literature fixes the

confidence level α at a relatively small number. In this experiment, we vary the

value of α from 0.05 to 0.15. It can be seen that the optimal retained proportional

of the claims is significantly affected by α. A larger α corresponds to an insurer

who is less conservative about risk, and so he reduces the amount of insurance

risk transferred to the reinsurer. Moreover, for a fixed probability level, as the

reinsurer’s risk aversion parameter grows the reinsurer becomes less willing to

undertake the ceded insurance risk and hence increases the reinsurance premium.

This then induces the insurer to retain more insurance risk.
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In Figure 7.4, we show the effects of the reinsurer’s ambiguity aversion pa-

rameter β on the expected utility loss ULi(0), for i = 1, 2, in two different cases.

We find that ULi(0) increases significantly as β varies. The expected utility loss

reaches up to about 95% in the first case and 85% in the second case. These

results indicate that if a reinsurer with less information about the reference mea-

sure P ignores ambiguity aversion, she would suffer greater expected utility loss.

Moreover, for a fixed ambiguity aversion level, a higher-risk-averse reinsurer ig-

noring the impact of model uncertainty would select more conservative premium

strategy, and hence she will incur less expected utility loss.

Figure 7.5 illustrates that ULi(0) has remarkable upward trend as the hori-

zon time T extends. One possible explanation would be that the reinsurer faces

a higher level of model uncertainty when the reinsurance horizon T is longer.

Therefore, it seems to be essential for the reinsurer to consider ambiguity aversion

if she wants to develop a medium and long-term cooperative relationship with the

insurer. The explanations for the effects of the reinsurer’s risk aversion parameter

on the expected utility loss may be similar with those in Figure 7.4 and, thus, we

don’t repeat them here.

Figures 7.6-7.7 compare the optimal reinsurance contract when the reinsurer

is an ambiguity-averse reinsurer (AAR) and an ambiguity-neutral reinsurer (ANR)

for Case I and Case II, respectively. We can see that the reinsurer’s ambiguity

aversion not only influences the reinsurance premium but also affects the optimal

reinsurance demand. Specifically, considering that model uncertainty makes the

reinsurer more conservative to the risk and so she will reduce her exposure to

potential insurance risk by increasing the reinsurance premium, which may in

turn induce the insurer to increase his own risk retention by ceding less risk to the

reinsurer. The result shown in the first subfigure of Figure 7.7 is in accordance

with our intuition that as the insurer becomes more risk-averse, he tends to retain

less insurance risk.

Figure 7.8 demonstrates the effects of risk constraint and ambiguity aversion

on the optimal reinsurance contracts. As analyzed in Figure 7.7, in Case II an

AAR charges a higher reinsurance premium than an ANR, which in turn leads

the insurer to purchase less reinsurance protection and retain a higher level of

50



insurance risk. On the other hand, in the optimization problems studied from the

insurer’s perspective, keeping other factors unchanged the dynamic VaR constraint

often makes the insurer more conservative to the risk and retain less insurance

risk, see, for example, Liu and Yiu (2013). However, from Figure 7.8, it can be

seen that the insurer would retain more risk when the VaR constraint is active

than that of when the VaR constraint is inactive. This result may indicate that

the VaR constraint seems to have the same effect as the ambiguity aversion of the

reinsurer. Recalling the expression of the optimal reinsurance premium in (4.1.10)

of Theorem 4.1.2, we know that the risk constraint imposed on the insurer also

influences the reinsurer’s decision making through the parameters C1 and C2.

Specifically, from the second subfigure in Figure 7.8, it can be seen that the VaR

constraint induces the reinsurer to offer a higher reinsurance premium since she

has a greater risk-aversion parameter in Case I than that of Case II, and this is

how risk constraint magnifies the effect of ambiguity aversion of the reinsurer.

In other words, different from the optimization problems that only consider the

insurer’s objective, under our principal-agent modelling framework, the dynamic

VaR constraint makes the insurer more risk-seeking due to the strategic interaction

between the insurer and the reinsurer.
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Figure 7.1: Effects of the reinsurer’s ambiguity aversion parameter β on the robust
optimal reinsurance contract in Case I.
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Figure 7.2: Effects of the reinsurer’s ambiguity aversion parameter β on the robust
optimal reinsurance contract in Case II.
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Figure 7.4: Effects of the reinsurer’s ambiguity aversion parameter β on the rein-
surer’s expected utility losses in two cases.
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Chapter 8

Concluding Remarks and Further

Research

This thesis investigates an optimal reinsurance contract problem with risk manage-

ment and model uncertainty consideration from the principal-agent perspective.

We apply stochastic optimal control theory to derive the insurer’s HJB equation

and the reinsurer’s HJBI equation. We have discussed two possible scenarios

that the VaR constraint is active or inactive for the insurer by adopting KKT

conditions. Solving the HJB and HJBI equations, we derive the robust optimal

reinsurance contracts under different cases, and we also obtain the corresponding

value functions of the insurer and the reinsurer explicitly.

The main results in this thesis are as follows. First, in both of cases wherein

VaR constraint is active and inactive for the insurer, the presence of the rein-

surer’s ambiguity aversion attitudes makes her increase the optimal reinsurance

premium, and this in turn decreases the insurer’s optimal reinsurance demand.

Furthermore, in each case, a more risk-averse reinsurer would offer a higher opti-

mal reinsurance premium and a more risk-averse insurer tends to purchase more

reinsurance protection to spread risks, which are in accordance with the results

in Hu et al. (2018a,b).

Second, if we don’t employ the dynamic VaR to determine the required capi-

tals for the insurer, the model in this thesis can reduce to that in Hu et al. (2018b).

Thus, the unconstrained robust reinsurance contract problem is a special case of

our model. From the results in Theorem 4.1.2 and Theorem 4.2.1, it can be seen

that the parameters representing the characteristics of both the insurer and the
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reinsurer are required to satisfy specific conditions to make the dynamic VaR con-

straint for the insurer active or inactive. From the numerical experiments, we can

see that the insurer and the reinsurer need to have larger risk aversion parameters

when the VaR constraint is active than those when the VaR constraint is inactive

for the insurer, thus indicating that the risk constraint makes the insurer and the

reinsurer more risk-averse. A quite surprising finding is that the VaR constraint

induces the insurer to be more risk-seeking. This is because a reinsurer with a

higher level of risk aversion would increase the reinsurance premium, and this is

magnified by the effect of the reinsurer’s ambiguity aversion attitude, which makes

the insurer tend to retain more risk. This result also implies that the effect of

the VaR constraint imposed on the insurer offsets the effect of his risk aversion

parameter. Moreover, when the VaR constraint is active, a higher confidence level

leads the insurer to transfer less risk to the reinsurer.

The final insight is that an ambiguity-averse reinsurer would greatly suffer

expected utility loss if she ignores the effect of model uncertainty on the optimal

proportional reinsurance contract. This result demonstrates the importance of

incorporating model ambiguity in the optimal reinsurance design problems. Ad-

ditionally, we find that the expected utility loss of the reinsurer increases with

respect to her level of ambiguity aversion and the reinsurance horizon. These

results seem to be in line with some of the existing studies, for example, Hu et al.

(2018b) and Li et al. (2018).

Several possible extensions of this thesis deserve further investigation. In

this thesis, we only allow the insurer and the reinsurer to invest their surpluses in

one risk-free asset. Therefore, the first extension is to consider more complicated

investment activities of the insurer and the reinsurer. For instance, we can allow

them to further invest in stock and defaultable bond to investigate the robust

optimal reinsurance and investment problems. It would be interesting to study

this kind of problems if the price of the stock is modelled by constant elasticity

of variance (CEV) model or Heston’s stochastic volatility (SV) model, as the

assumption on constant volatility of the risky asset is unrealistic.

Excess-of-loss is a typical type of non-proportional reinsurance treaty, under

which the insurer would bear all the claim up to a fixed retention level, while
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all exceeds that level would be paid by the reinsurance company. It has been

shown that under some model settings, the excess-of-loss reinsurance is more

profitable than the proportional reinsurance for an insurance company. Thus,

another interesting extension is to apply the framework in this thesis and study

the interaction between the insurer and the reinsurer when they arrange an excess-

of-loss reinsurance treaty .

Finally, in this thesis we assume that the insurer and the reinsurer aim to

maximize their expected utilities of their wealth at terminal time. In the future

research, other optimization criteria such as mean-variance can be taken into ac-

count. Under this circumstance, analytically optimal reinsurance contracts may

be unavailable due to complex objective functions. Nevertheless, numerical ap-

proximation methods can provide a viable alternative and help us obtain useful

economic insights to the contracting parties.

62



Appendix A

Proof of Proposition 3.1.1

Proof. We have

P(Xq(t+ h)− erhXq(t) ≤ L|Ft)

= P

(
q(t)

√
λµ2

∫ t+h

t

er(t+h−l)dW (l) ≤ L− erh − 1

r
λµ1(θ − η(t) + η(t)q(t))

∣∣∣Ft

)

= P

(
q(t)

√
λµ2

∫ t+h

t
er(t+h−l)dW (l)

q(t)
√

e2rh−1
2r

λµ2

≤ L− erh−1
r

λµ1(θ − η(t) + η(t)q(t))

q(t)
√

e2rh−1
2r

λµ2

∣∣∣∣∣Ft

)

= Φ

(
L− erh−1

r
λµ1(θ − η(t) + η(t)q(t))

q(t)
√

e2rh−1
2r

λµ2

)
,

where the last equality follows from the fact that the random variable

q(t)
√
λµ2

∫ t+h

t

er(t+h−l)dW (l),

conditionally on the filtration Ft, is normally distributed with zero mean and

variance
e2rh − 1

2r
λµ2q

2(t).

Thus,

P(−∆Xq(t) ≤ L|Ft) < α ⇔ Φ


L− erh−1

r
λµ1(θ − η(t) + η(t)q(t))

q(t)
√

e2rh−1
2r

λµ2


 ≤ α

⇔ L ≤ erh − 1

r
λµ1(θ − η(t) + η(t)q(t)) + Φ−1(α)q(t)

√
e2rh − 1

2r
λµ2,

which implies that

Q
α,h
t =

erh − 1

r
λµ1(θ − η(t) + η(t)q(t)) + Φ−1(α)q(t)

√
e2rh − 1

2r
λµ2.
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Therefore,

VaRα,h
t = (Qα,h

t )− =

[
−erh − 1

r
λµ1(θ − η(t) + η(t)q(t))− Φ−1(α)q(t)

√
e2rh − 1

2r
λµ2

]+
.
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Appendix B

Derivation of relative entropy

Given the reference probability measure P and an alternative measure Q, the

relative entropy of Q with respect to P is defined as the expectation under the

alternative probability measure of the log Radon-Nikodym derivative defined in

(3.3.2). A lower relative entropy implies that it is harder for the reinsurer to

distinguish P from Q in statistic sense. Using Itô formula, we obtain

d ln ν(t) = l(t)dW (t)− 1

2
l2(t)dt

The relative entropy over the interval from t to t+ ε is given by

EQ

[
ln

ν(t+ ε)

ν(t)

]
= EQ

[∫ t+ǫ

t

l(s) (dWQ(s) + l(s)ds)− 1

2

∫ t+ǫ

t

l2(s)ds

]

= EQ

[
1

2

∫ t+ǫ

t

l2(s)ds

]

Let ǫ → 0 and we obtain the continuous-time limit of the relative entropy given

by 1
2
l2(t)dt.
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