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Abstract

The common envelope interaction scenario was first proposed by Paczynski (1976) to explain

the existence of cataclysmic variables. The interaction involves a binary system, where the

more massive primary star extends its gas envelope as it becomes a giant, engulfing its

companion. The companion star is believed to help with the expulsion of this envelope,

resulting in the post common envelope binaries that we observe today in cataclysmic variables

and central stars of planetary nebula. The existence of such systems can not be explained

without the need of a common envelope interaction, and for many decades this was the only

support for this interaction. A common envelope interaction is expected to be short, and

hence very difficult to observe. The duration of an event is on the order of the dynamical time

scale of the giant. Due to the short time scale of this event and how little the composition of

the giant is expected to change, it is ideal to simulate such an event using hydrodynamical

code.

As computers have become powerful enough to run common envelope simulations to suffi-

cient accuracy, many attempts have been made at simulating this. However these simulations

fall short in producing the characteristics of observed post common envelope binaries. In

particular, they do not succeed in unbinding much of the envelope, and the final separation

in the simulations are larger than what is observed in post common envelope binaries. It has

been propose that physics that has not been accounted for in simulations may be necessary

to reproduce observations, for example, recombination energy.

In this thesis we propose another mechanism to make up for the shortfall of previous

studies, and investigate it via simulations. As previous simulations have found that most
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viii Abstract

(≥ 60%) of the giant envelope is still bound to the system, our hypothesis is that the fall back

of bound gas onto the binary system can lead to a further reduction of the orbital separation

while unbinding more of the envelope gas. Our simulations show that the orbital separation

is effectively reduced by a fall-back event. However, only a small amount of mass is unbound.

We propose that a number of fall-back events are necessary (and likely inevitable) but that

another energy source may be needed to fully unbind the envelope.
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1
Introduction

Stellar evolution has been studied for decades and today a fairly sound understanding of

how a single star evolves has been achieved. However, it has been known for centuries that

stars can exist in systems where they are gravitationally bound to another star (a binary

star; Herschel 1802). The fraction of all stars that are members of binary systems depends

on the mass of the system. As shown in Figure 1.1 (Bouy, 2011) low mass stars (≤ 1.0 M�)

are more likely to be single and higher mass stars (≥ 1 M�) are more likely to be in binaries.

Sana et al. (2012) found 71% of O-type stars belonged in binary systems that will interact

as some point in the life of the system. Fifty percent of solar-type stars (with effective

temperature between 4800 and 6550K and luminosity between 0.2 to 3.0L�) are in binary

systems (Raghavan et al., 2010). Lower mass stars have a multiplicity of 30% (Lada, 2006).

If two stars in a binary system are sufficiently close together, interactions between the

two stars will occur. This will usually happen when one component evolves and expands
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2 Introduction

Figure 1.1: Multiplicity frequency as a function of Spectral Type found from a number of

different studies. (Bouy, 2011).

on to the red giant branch (RGB) or asymptotic giant branch (AGB). These interactions

may involve the stable transfer of mass between the components, or if one star overflows

and transfers more mass than the companion can accrete, a common envelope can occur

(common envelope formation will be discussed later).

Even if a star is solitary, it may harbour planetary companions (over 1000 stars have

been found to host close-in planets so far with the Kepler Space Telescope, and more are

being discovered every day). When these parent stars evolve and expand, they may engulf

or interact with their planets. This means that these stars are also likely to experience some

sort of interaction some time during their life. The influence of planets on the evolution of

stars and binary systems is discussed further in Section 1.1.4.
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While we have studied the evolution of stars extensively, it has often been under the

assumption that they are solitary. With our current understanding of binary stars and

planet populations, we should realise we have ignored scenarios that will lead to a larger

number of evolutionary pathways for a star: the interaction with a companion whether it be

stellar or planetary. Understanding these interactions is crucial for understanding a variety

of observed systems and events. Such events include outbursts, mass transfer and engulfing

of companions, all leading to poorly understood physical phenomena.

In this chapter we focus on the common envelope binary interaction and investigate the

envelope removal process which is a prerequisite to the survival of binary systems. First we

will briefly describe some astronomical phenomena that are best explained by this phase.

Particularly we will discuss cataclysmic variables (CVs), Type Ia supernovae and how the

common envelope may play a role in a relatively new class of phenomena known as interme-

diate luminous optical transient (ILOTs). CVs and Type Ia supernovae have been known for

decades, and have been studied extensively, however it is only recently that ILOTs have been

actively searched for and studied. This is partly due to recent time-domain surveys such

as the Catalina Real-time Transient Survey (CRTS), (Drake et al., 2009) and the Palomar

Transient Factory (PTF), (?), which are actively searching for these objects.

1.1 Compact, Evolved Binaries and Merger Products

There is a variety of systems and events that are best explained by binaries interacting or

having interacted, such as cataclysmic variables, X-ray binaries and Type Ia supernovae

progenitors. Some interacting binaries may result in a merger of the two stars into a single

star. Mergers have been proposed as an explanation for other stars and events, such as

ILOTs, R Coronae Borealis (RCB) stars, and massive WDs. Here we will describe the

common envelope binary interaction and how it explains systems such as those that have

been listed.
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1.1.1 Cataclysmic Variables

CVs are systems that increase in luminosity by a few orders of magnitude and may do so

multiple times, irregularly or semi-regularly in outburst events known as novae or nova-like.

These objects typically consist of a white dwarf (WD) primary, and a companion (usually

a main sequence star) that is transferring mass to it. In order for mass transfer to occur

between the stars the two components must be sufficiently close to each other, so these

variables have periods usually of the order of hours. It is impossible for a system like this

to have always existed, because the WD is an evolved star. Therefore it must have had a

radius larger than the current orbital separation of the system. Therefore, the companion

must have been farther away in the past than it is today. The question is then how did the

orbital separation shrink so much?

The unusually small separation of the binaries that produce CVs can be explained with

a common envelope in the following way (Paczynski, 1976). The binary initially had a

wider separation, wide enough that the system did not interact. However, when the primary

expanded during one of its giant phases, it filled its Roche lobe. At that point gas from the

primary would flow through the first Lagrangian point (the point between the primary and

secondary where the co-rotating gravitational potential forms a “saddle”) leading to mass

transfer onto the companion. If this mass transfer is sufficiently fast, the secondary may

not accrete it and eventually it may expand to fill its own Roche lobe. If this continues,

the mass overflows both Roche lobes resulting in a common envelope. In this envelope the

secondary and primary’s core orbit one another and lose angular momentum and energy to

the envelope gas due to gravitational drag, also known as dynamical friction (Ostriker, 1999).

What method of energy and angular momentum exchange dominates in these interactions

has been the matter of some debate (Ricker & Taam, 2008). The loss of angular momentum

and energy to the envelope results in the secondary and primary’s core falling into a tighter

orbit. The energy given to the envelope “lifts” it, increasing the luminosity of the system.

The envelope becomes unbound, it leaves behind the secondary and the primary core, which

is now a white dwarf, in the close orbit observed today. These types of systems with a WD

in a tight binary are called post-common envelope binaries.
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Paczynski (1976) proposed that if the envelope of the primary is lost in a common enve-

lope interaction, it may result in planetary nebula with a close binary in the center. The hot

WD in the center would be ionising the expanding envelope. With this prediction, Paczynski

proposed a simple observational test of this hypothesis: to look for a short period binaries

as a nuclei of planetary nebulae. Short period binaries as central stars of planetary nebulae

have been observed, with approximately 15-20% of all central stars being post common en-

velope binaries (Bond 2000; Miszalski et al. 2009), showing that 1 in 5 to 1 in 6 planetary

nebulae are ejected common envelopes. These binaries have periods between a few hours and

∼3 days. Further evolution of the period at the hand of magnetic breaking and gravitational

wave radiation is expected to reduce the periods to the values observed in CVs.

1.1.2 Type I Supernovae

Cataclysmic variables are not the only phenomena to be explained by Paczynski’s common

envelope hypothesis. The production of Type Ia supernovae also requires a common envelope

phase to produce their progenitors.

Type Ia supernovae were first classified based on their spectral features and light-curves.

Type I supernovae do not have hydrogen in their spectra. The Type Ia is distinguished

from types Ib and Ic because of singly ionised silicon lines in its spectrum. The current

understanding of the physical mechanism that generates Type Ia supernova is the growth

of a WD to the Chandrasekhar mass limit. There are currently two scenarios to achieve

this: in the first, the progenitor is a single degenerate, or a carbon-oxygen WD with a main

sequence or giant star companion. The second, is a double degenerate progenitor, or two

WDs in a close orbit (Webbink 1984; Nomoto et al. 1985, Iben & Tutukov 1999).

The single-degenerate scenario was proposed because Type Ia supernovae lack hydrogen

in their spectra and this implies that the progenitor must have lost its hydrogen envelope.

Additionally, the elements produced in this type of explosion result from the ignition of

degenerate material (Hoyle & Fowler, 1960). From these criteria a WD is an ideal candidate

as a progenitor. However, getting the WD to explode posed another problem, as there is no

reason a stable degenerate star should explode. Hence a close binary system was proposed,
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as it is capable of stripping a giant of its envelope and the components are close enough

that mass transfer onto a degenerate WD occurs. This progenitor is similar to the binaries

that go through CV outbursts. However, it is not the heated accreting mass, nor the surface

burning that creates the outburst in Type Ia Supernovae. Nomoto et al. (1985) describe

how the rate of mass accretion determines how the WD responds; accretion rates of less

than 10−8 M�yr
−1 will produce a strong hydrogen flash on the surface, ejecting accreted

material in a nova-like fashiom. Accretion rates larger than this value will instead produce

a weaker flash, leading to fusion into helium, increasing the WD mass. Even larger mass

transfer rates will not allow mass accretion onto the white dwarf and instead leads the Roche

lobe of the companion is filled. The weaker hydrogen flashes occur multiple times as mass

is accreted. Once the WD reaches the Chandrasekhar limit (≈ 1.4 M�) it explodes as a

Type Ia supernova. This explosion leaves no remnant star, unlike core-collapse supernovae,

but the companion star will remain. In the double-degenerate scenario the two WDs spiral

in towards each other and eventually merge. This scenario would leave no remnant star.

Some advocate this scenario because in several supernovae remnants the companion star

was absent (Schaefer & Pagnotta, 2012).

The ability to standardise supernova light-curves has made these objects pivotal in mea-

suring cosmological distances and hence contribute to our showing the accelerating expansion

of the universe (Riess et al. 1998, ?). However, despite the wide use of Type Ia supernovae,

there is still significant variation in their light-curve peaks, and duration, which are all de-

pendent on the progenitor of the supernova. Historically, these supernovae were believed to

be relatively consistent in luminosity and duration, as the progenitor is limited by the Chan-

drasehkar mass. However, the existence of sub-luminous, sub-Chandrasehkar detonations

and possible super-Chandrasehkar detonations and super-luminous Type Ia supernovae has

made the matter complex (Sullivan et al. 2011; Garca-Senz et al. 2007; Woosley & Weaver

1994). These variations in the progenitors translate into uncertainties in our extra-galactic

measurements using Type Ia supernovae. It has also been realised that our understanding

of binary stellar evolution and nuclear physics is badly lacking.

The rate of WD-WD mergers (1.4 × 10−13 yr−1M−1
� predicted using Monte Carlo simu-

lations; Badenes & Maoz 2012) is found to be similar to the total Type Ia supernova rates
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found observationally (1.1 × 10−13 yr−1M−1
� ; (Maoz & Mannucci, 2012)) for a galaxy like

the Milky Way. However this calculated rate does not distinguish between those merging

systems that detonate or not. For super-Chandrasekhar mergers, Badenes & Maoz (2012)

predicted the rate to be 1.0 × 10−14 yr−1M−1
� , which is significantly smaller than the over-

all calculated merger rate mentioned. As a result Badenes & Maoz (2012) concluded that

super-Chandrasekhar mergers cannot account for most of the Type Ia supernovae caused by

WD-WD mergers, hence sub-Chandrasekhar detonations must occur. The error bars of the

predicted rates tend to be ill defined and highly reliant on the prescription of the common

envelope interaction in the population synthesis codes.

With such uncertainty in the mechanism causing Type Ia supernovae, we need to calculate

accurate single and double degenerate supernovae rates. All these theoretical estimates

are affected by our ignorance of the common envelope interaction, which prevents us from

knowing the orbital separation after the common envelope: a smaller separation leads to a

shorter time to interaction. Predicting small separations leads to more binary mergers and

to larger estimated supernova Type Ia rates.

1.1.3 Intermediate Luminosity Optical Transients

Supernova and nova outbursts can be separated on a luminosity-time diagram. In Figure 1.2

we can see that there is a clear distinction between the two types of event (Soker & Kashi

2012; Kasliwal 2012). The supernovae have larger luminosities, starting at MV = −14 mag

for a period of a few tens of days to higher luminosities of < −17 mag. Novae fill a luminosity

band on the luminosity-time diagram between MV = −9 to MV = −7 mag, with durations

of a few days. This leaves a strip between the two events called the Optical Transient Strip

(OTS), which is populated by objects and events that do not fall into the supernova or nova

categories. These objects are classified as Intermediate Luminosity Optical Transients (or

ILOTs; also known as Red Novae, or Intermediate Luminous Red Transients). ILOTs are

characterised by their cool temperature and steady rise in luminosity. The duration of an

ILOT event is of the order of few weeks (∼10− 100 days; Kasliwal 2012).

Evidence is mounting that at least some ILOTs are the product of stars interacting
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Figure 1.2: Framework for optical transients in 2011. Note that until 2005 we only knew

of about three classes (denoted by grey bands). In the past six years, systematic searches,

serendipitous discoveries and archival searches have uncovered a plethora of novel, rare tran-

sients. Several new classes are emerging and the governing physics is being widely debated

(Kasliwal, 2012).

or merging. Examples include V838 Mon, M85 OT 2006 (Rau et al., 2007) and NGC300

OT2008 (Kashi et al., 2010). Here we shall focus on the example of V1309 Sco, whose

outburst was discovered in September 2008 (Figure 1.3) and is not only a perfect example

of an ILOT, but it also provides proof of having been caused by a merger between two stars.

V1309 Sco’s progenitor was observed before the outburst and its light-curve shows a

periodic variability with an amplitude of ∼0.2 mag and a period of ∼1.4 days (Tylenda
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Figure 1.3: The I-band light-curve of V1309 Sco from the OGLE-III and OGLE-IV projects:

Time in years is marked on top of the figure. At maximum light the object attained I =

6.8. (Tylenda et al., 2011).

et al., 2011). However, the variability behaviour observed in the outburst progenitor could

not be explained by a pulsating or a rotating single star. The classical nova scenario, which

involves stellar interactions, also failed as an explanation for the outburst as it results in a hot

compact object, instead of a cool giant observed in the case of the post-outburst V1309 Sco

and other events of this type (Tylenda & Soker, 2006). By chance this object was in the field
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Figure 1.4: V (open points) and I (asterisks) measurements obtained in JD 2 453 8802 453

910 (season 2006; Tylenda et al. 2011).

of the OGLE survey, meaning photometric data of the object had been collected since august

2001. By plotting the light-curve of the object over time (Figure 1.4), it was found that the

progenitor was a variable with a period of 1.4 days from the years 2002 to 2007. This period

was not constant, but slowly decreasing by 1.2% from the the first observations in 2002 up

until the outburst in 2008. The best explanation of the pre-outburst light behaviour is that



1.1 Compact, Evolved Binaries and Merger Products 11

the object was a contact binary, as the light-curves showed two different luminosities at the

peak of its sinusoidal behaviour (Figure 1.4). This is due to the companion interacting with

the envelope of the primary, such that gas curves around toward the back of the companion.

Here the gas is heated as it collides with other gas, producing a higher luminosity at the

leading edge. This translates to two different peak luminosities as the system orbits, a lower

peak luminosity when the companion moves towards us and a higher luminosity when it

moves away.

Looking at Figure 1.3, we see that the luminosity steadily increases between approxi-

mately 2003 and 2007. This is likely due to heating of the entire system as the components

interact. As the companion falls into the primary, the system losses angular momentum,

heating and lifting the envelope. This is likely to be the cause of the rise in luminosity from

the beginning of 2008, to the eruption in August. The final outburst is then the result of

the two cores merging into one star, bringing the maximum luminosity up to ∼3× 104 L�.

After the event a cool (∼3000 K) star is observed. During V1309’s eruption, it had released

∼1046 erg over one month (Soker & Kashi, 2012).

V838 Mon also had an outburst of around two months length, cooling to a temperatures

of ∼3000 K and releasing ∼1047 erg. M85 OT 2006 had an outburst lasting ∼70 days, with

a final effective temperature of ∼4000 K also releasing ∼1047 erg (Kulkarni et al., 2007).

The current consensus is that the V1309 Sco ILOT was the direct result of a common

envelope leading to a merger of two stars. Other ILOTs such as V838 Mon are similar to

V1309 Sco that it is plausible that it too would have been caused by a binary merger or

interaction. Other phenomena also populate the optical transient strip, such as luminous

blue variables and events such as brown dwarf and planet mergers (Bear et al., 2011). Only

further studies will tell whether some or all of the phenomena populating the diagram in

Figure 1.2 are also the result of stellar interactions.

1.1.4 Interactions Between Stars and Planets

For the past two decades exoplanets have been a hot topic for discussion and many surveys

have been carried out to search for them. Only recently have we realised that their presence
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offers the star an opportunity for an interaction.

The first exoplanet was discovered around an evolved star: a pulsar (Wolszczan & Frail,

1992). Though most surveys have found planets around main sequence stars, to date a

few exoplanets have been discovered around evolved stars such as giants (Sato et al. 2008;

Jones et al. 2014; Mitchell et al. 2013) and recently around white dwarfs (Marsh et al.,

2014). The existence of planets in small orbits around evolved stars may suggest that

the planets survived the expansion of their parent star. Alternatively these planets are

second generation planets formed from debris disks created due to stellar interactions such

as a common envelope (Volschow et al., 2014). Both proposed explanations require some

interaction to have occurred.

The influence of planets on stellar evolution and their engulfment has been recently

considered (Siess & Livio 1999a; Siess & Livio 1999b; Villaver & Livio 2007; Alikutty et al.

2011; Mustill & Villaver 2012). It is likely that these planets would interact with their parent

star when it expands and this may lead to a common envelope phase. Planets are probably

not capable of unbinding the envelope, however it may fall into a tighter orbit with the

core, or likely evaporate. The engulfment of a planet may also cause some pollution in the

atmosphere of the parent giant star. Adamow et al. (2012) uses this reasoning to explain

a giant star with very high lithium abundance and the presence of a planet in a highly

eccentric orbit as indicators for a possible recent engulfment of a second planet. Exoplanets

tend to have low eccentricities around giants due to tidal interactions (Villaver & Livio,

2009), hence this planet with high eccentricity must have achieved this via the orbital decay

and engulfment of another planet in the system.

Another possible system is described by Charpinet et al. (2011). This system consists

of two Earth-sized bodies orbiting a hot B subdwarf star KIC 05807616, at distances of 1.2

and 1.6 R�. Subdwarf B (sdB) stars are believed to be the core of RBG stars that suffered

a mass loss event that stripped most of their envelope. It is possible that significant mass

loss was caused by an interaction with a companion. Approximately two thirds of sdB stars

are in binary systems (Saffer et al., 2001). However, for the other third of stars, interaction

with planets may provide another avenue to their formation (Soker, 1998). The 2 planets

around KIC 05807616 may have survived such processes (Charpinet et al. 2011; Passy et al.
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2012).

In recent years characterisation of exoplanets using planetary disks around white dwarfs

has also become a very precise science. White dwarfs with atmospheres polluted by relatively

large abundances of metals are believed to be caused by the accretion of planetesimals

(Zuckerman et al., 2007). By studying the metal abundances in the atmospheres of these

polluted white dwarfs, the composition of the engulfed asteroids or planetary bodies can be

determined. It is even possible to deduce whether swallowed bodies have been gravitationally

differentiated (Melis et al. 2011; Zuckerman et al. 2010).

More complex planetary systems have also also been discovered. For example planets

around main sequence binary stars (?; ?). These planets tend to be orbiting binaries which

are in tight orbits. All of these circumbinary planets have been found around main sequence

binaries until very recently, when a planet has been found around the post common envelope

binary NN Serpentis (Marsh et al., 2014). The discovery of planets around post common

envelope binaries suggests that the common envelope event may lead to the production of

second generation planets. This idea is briefly address in our research.

1.2 Epilogue

In this chapter we have highlighted that we should not consider all stars as solitary objects

and their evolution is likely to involve interactions with companions, be they stellar or

planetary. In particular we focused on the need for a common envelope interaction to explain

many of the mentioned phenomena.

The common envelope phase is a crucial event in the evolution of binaries. However, our

understanding of this event is very poor. This lack of understanding translates into difficulty

in determining Type Ia SNe rates, the rates of mergers or understanding if and when planets

can disturb stellar evolution. Here we aim to investigate this phase. One avenue to research

the common envelope phase is via computer simulations and this is the approach we have

taken. The history of common envelope simulations will be described further in Chapter 2.

No simulation to date (e.g., Rasio & Livio 1996, Sandquist et al. 1998, Ricker & Taam

2008, Ricker & Taam 2012, Passy et al. 2012) has been able to successfully reproduce the
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entire event that leads to a close binary, namely an unbound envelope and small binary sep-

aration to match those observed (Paczynski, 1976). Common envelope simulations typically

end with most of the primary’s envelope still bound albeit lifted to large distances from the

core. Because of this, we decided to investigate what might happen in the event that the

bound gas returns to the binary system forming a disk. After all the bound gas is bound to

fall back!

A fall-back interaction phase between the core, the companion and the gas may provide

a new opportunity for renewed energy and angular momentum transfer from the stars to the

gas (Kashi & Soker, 2011). This would result in more gas gaining energy and potentially

becoming unbound, while the core and companion fall into a tighter orbit. This fall-back

event may occur multiple times with varying efficiencies, eliminating the entire envelope and

converging to separations as found in observations.



2
Theoretical and Numerical Background

The idea of the common envelope (CE) interaction was first proposed by Paczynski (1976)

to explain the existence of cataclysmic variables and has since been extensively studied both

via the use of simulations and observations of post common envelope binaries, amongst

which some are the central stars of planetary nebulae (PNe). In the past two decades

computers have become powerful enough to run complex, 3D hydrodynamic simulations

of astronomical events and this has contributed to our knowledge and our understanding

of binary interactions and the common envelope phase. In this chapter we describe the

theoretical underpinning of the common envelope interaction, the simulation techniques that

have been used to model this interaction and, finally, the past attempts at simulating the

interaction.

15
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2.1 The Theoretical Underpinning of the Common En-

velope Interaction

It was briefly described in Chapter 1 how a common envelope interaction is thought to occur.

Here we will discuss it in more detail. It is understood that Roche lobe overflow can lead to

a common envelope. We also think that via some mechanism energy and angular momentum

are transferred from the core and companion to the giant envelope and that the result is

an unbound envelope. van den Heuvel (1976) originally formulated the assumption that

the post common envelope orbital separation of the giant’s core and companion could be

determined by equating the change in orbital energy and the binding energy of the envelope

as shown in Equation (2.1) (Webbink 1984, de Kool 1992):

−GM1M1,e

λR1,L

= αCEG

[
M1,cM2

2Af
− M1M2

2Ai

]
, (2.1)

where M1,M1,c,M1,e and M2 are the primary, the primary’s core, the primary’s envelope

and the companion masses, respectively. R1,L is the radius of the primary’s Roche lobe at

the onset of the mass transfer, where λ depends on the mass distribution of the primary’s

envelope. Ai and Af are the initial and final separation of the system, respectively. Finally,

αCE is the unbinding efficiency of the common envelope. This equation is expected to hold

irrespective of the energy transfer mechanism. This mechanism assumed the conversion of

gravitational potential energy to the kinetic energy of the envelope, however this ignores

other reservoirs of energy such as the recombination energy of the gas.

Gravitational drag is currently thought to be the major contributor to the decay in

orbital separation during a common envelope event (Ricker & Taam, 2008). This “drag”

force has nothing to do with the hydrodynamic drag experienced by a body moving through

a medium. Rather, it works on the basis that as a body travels through a medium, the

gravitational force from the wake produced from the interaction slows down the mass. The

strength of this drag depends on whether the mass is subsonic or supersonic. Analytically,

Ostriker (1999) found the gravitational drag force is strongest at speeds close to the speed

of sound.
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Many simulations of the common envelope phase have been carried out and will be

discussed in Section 2.2. A simulation of a common envelope event is best conducted using 3-

dimensional hydrodynamics codes. This is because the interaction is inherently asymmetric.

There are two main methods of simulating fluid dynamics in astrophysics: Eulerian grid codes

and Lagrangian Smoothed Particles Hydrodynamics (SPH). Both these methods solve the

fluid dynamic equations. These equations describe the changes in density, momentum and

energy for a particular volume of fluid using the appropriate conservation laws and fluxes of

quantities through the surface of the volume. The fluid equations are the continuity equation

(Equation 2.2), the momentum equation (Equation 2.3) and the energy equation (Equation

2.4):

∂ρ

∂t
+∇ · (ρv) = 0, (2.2)

∂v

∂t
+ (v · ∇)v = −1

ρ
∇P −∇φ, (2.3)

∂e

∂t
+ v · ∇e = −1

ρ
∇ · (Pv)− v · ∇φ, (2.4)

where, ρ is the density, v is the velocity of the fluid, P is the pressure, φ is the gravitational

potential, e is the specific total energy of the fluid and t is time. We have included the

gravitational potential in our equations because in common envelope simulations self-gravity

needs to be accounted for. One could optionally include magnetic fields or other physical

phenomena such as radiative transfer of energy, heating and cooling. However this comes

at the expense of computation time. Any suitable equation of state can be used. In our

simulations we have assumed the gas is ideal, hence the equation of state is:

P = nkbT, (2.5)

where n is the gas number density, T is the temperature of the fluid and kb is the Boltzmann

constant,(kb = 1.38× 10−16 erg K−1). The specific total energy of the gas is the sum of the

specific internal and kinetic energies, i.e.,:
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e = u+
v2

2
(2.6)

where u is the specific internal energy u is given by:

u =
1

γ − 1

P

ρ
, (2.7)

where, in our work, we have adopted an adiabatic index γ = 5/3. In adiabatic hydrody-

namic simulations where cooling is ignored, the composition of the gas is irrelevant. Many

simulations do not even specify temperature, preferring to work with specific total energy.

Only when temperature is plotted, does the composition need to be specified.

2.2 Simulation Techniques and Codes

SPH, invented by Lucy (1977) and Gingold & Monaghan (1977), uses a Lagrangian approach

to fluid dynamics, which means the code follows a parcel of fluid as it moves. SPH uses mass

coordinates, where each parcel of fluid corresponds to a “particle” or, rather, an interpolation

point. Each particle is defined by a particular mass so these particles change separation, or

the interpolation points can become more or less rarefied. This means the resolution of the

simulation is sensitive to the density of the fluid, having higher resolution in higher density

regions. In low density regions the number of particles in a volume may be very low, making

it difficult to gather detailed information on the evolution of gas in these regions. SPH also

requires two to three times as more particles than the number of cells in a grid simulation

to produce to same resolution of physics such as shocks (Hubber et al., 2013). These are

some downsides of using SPH, however there are some advantages in using this technique.

The particles in SPH are defined by mass, hence this method intrinsically conserves mass,

and angular momentum. As SPH simulations do not constrain the size of the computational

domain, mass can be tracked up to large distances. This is a useful characteristic in simu-

lating the common envelope phase where the gas quickly gets pushed outwards. This would

be a phenomenally useful characteristic for our project and could allow us to simulate a full

fall-back event, something that our grid code did not allow (see Chapter 3).
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The other hydrodynamic method which is also the technique we have used, is the grid

method. This method uses a Eulerian approach to fluid dynamics. We have used the

grid code Enzo (?), using the ZEUS hydrodynamic method (Stone & Norman, 1992). Other

hydrodynamic methods are available in Enzo, such as the piecewise parabolic method (Colella

& Woodward, 1984). Passy et al. (2012) (in private communication) had tested ZEUS against

PPM and found they return similar results however the ZEUS method was faster, hence

why we have selected to use the same method for our simulations. The Eulerian approach

to fluid dynamics uses volume coordinates instead of mass coordinates, which is basically a

grid. This method advects mass and other quantities through grid cells, and the resolution

is not affected by the density of the gas, but it is affected by the size of the cells. Techniques

such as nested grids (e.g. Sandquist et al. (1998)) or adaptive mesh refinement (AMR, e.g.

Ricker & Taam (2008)) have been developed to help improve resolution where needed.

The grid method is limited by the size of the grid, which means if mass leaves the grid, it

cannot return. Also, with this method, there are losses due to cell boundary approximations.

This leads to local non-conservation of energy and momentum. Re-zoning algorithms with

AMR can also contribute to this non-conservation, if they are not implemented carefully (?).

The nested grid technique has some disadvantages in that the regions of higher resolution

must be pre-defined, for example, the central region near the core and companion in a

common envelope simulation (Sandquist et al., 1998). As long as regions that need higher

resolution remain in the nested regions, the simulation can produce accurate data. However,

the center of mass may wander in and out of the highest resolution regions resulting in loss

of information. In our simulations using Enzo, we do not implement any nested grids, or

AMR techniques, but use a simple uniform grid.

Hydrodynamic codes use the fluid dynamics equations by discretising them. In each fluid

dynamic equation, there is only one quantity time derivative. For the continuity equation,

this is the density, for the momentum equation, this is the velocity, and for the energy

equation this is the internal energy. As velocity is a vector in three dimensions, the full set

includes 5 equations. When discretising equations, differential equations become difference

equations.

Using the discretised fluid equations, simulations of fluids can be carried out, where the
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resolution is dependent on ∆x, i.e., on the size of each cell in the grid, and ∆t, i.e., the

time steps taken. The time step is itself dependent on the spatial resolution via the Courant

condition given in Equation (2.8):

∆t < fCour
∆x

|v + c|
, (2.8)

where v is the velocity of the parcel of fluid, c is the sound speed of the fluid, and fCour is

Figure 2.1: The final separation of the core and companion from a number of common

envelope simulations of systems with varying mass fraction. The small black dots indicate

separations found with SPH simulations, while the blue dots and red triangles are from fluid

simulations of resolution 1283 and 2563 respectively. Figure 15 from Passy et al. (2012).
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the Courant factor. The Courant condition determines the upper limit for a time step in

numerical calculations such that sufficient information can be gathered for a wave travelling

through some spatial step (in our case ∆x). We see from Equation (2.8) that the time

step is dependant on the size of cells, therefore a improvement in spatial resolution of two

implies a factor of two smaller time step, so will take two times longer to calculate the flow

of quantities. In 3D this increase in spatial resolution by two will take sixteen times longer

to run. Generally, the smaller ∆x is, the smaller the necessary ∆t is.

Figure 2.1, shows figure 15 of Passy et al. (2012) where they demonstrate the dependence

of final orbital separation on the resolution, found from SPH and a grid code. To determine

an appropriate resolution for simulating a common envelope event, the orbital separation

should converge to a certain value for increasing values of the resolution. Passy et al. (2012)

(Figure 2.1), using a combination of 500 000 particle SPH simulations and 1283 and 2563 cell

grid simulations deemed 2563 cells to be sufficient for their simulations.

2.2.1 Mapping Stellar Evolution Models to Hydrodynamic Simu-

lation

The common envelope simulations in Passy et al. (2012) are between a giant and a more

compact star. The structure of the giant must be calculated separately by a computer code

able to include much more physics than would be possible in our hydrodynamic simulations.

The primary star must be pre-calculated by a stellar evolution code such as STARS (Eggle-

ton, 1972), as used by Sandquist et al. (1998) and Ricker & Taam (2012), or EVOL (Herwig,

2000) as used by Passy et al. (2012). Another publicly available code is the versatile and

accurate 1D stellar evolution code MESA (Paxton et al. 2011; Paxton et al. 2013).

EVOL is a one dimensional stellar evolution code and in the work of Passy et al. (2012)

it was used to evolve a 1 M� main sequence star to a 0.88 M� red giant star with a radius

of 83 R� and 0.392 M� core. As this stellar model is in one dimension and the Enzo fluid

simulations are in three dimensions, the model must be mapped under the assumption that

the star is initially spherically symmetric. As giant stars typically have a very large radius

(∼ 100 R�) and large diffuse envelope, and the core is very small (∼0.01 R�) and dense
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in comparison, the core is modelled as a point mass particle. The same is done for the

companion, which also has a relatively small radius (∼0.5 R�) in comparison to the radius

of the giant star. Modelling the core and companion as point mass particles is rather non-

physical. This can affect the gravitational drag, but one can insure that the effect is minimal

by carrying out convergence tests. Treating the core and companion as particles is the only

way to carry out these computations, which are already very demanding due to the large

range in size and time scales.

Due to a much lower resolution of the 3D hydrodynamic code compared to the 1D stellar

evolution code and to the different equations of state used, the mapped star is slightly out

of hydrostatic equilibrium. In order to make the star hydrostatically stable once the star

is mapped into the 3D code it is allowed to evolve for a few dynamical times (∼0.1 year

for the RGB star of Passy et al. (2012)), while initially damping the velocities to reach an

equilibrium state. This process usually results in an RGB star coming into an equilibrium

state with a slightly larger radius of 91 R�. The extent of this expansion is dependent on

the resolution of the fluid simulation.

This is the mapping process used by Passy et al. (2012) and is adopted commonly by

3D common envelope simulations. Once the giant star has been mapped and stabilised, the

companion is introduced either on the surface of the giant (Passy et al., 2012), or at some

distance (Sandquist et al. 1998; Ricker & Taam 2012). Once the companion is introduced,

the system is allowed to evolve. These simulations are reviewed in the next section.

2.2.2 Past Simulations of the Common Envelope Interaction

Simulations of the common envelope phase have been carried out as computers became

powerful enough to run them with sufficient resolution. All simulations (e.g., Meyer &

Meyer-Hofmeister 1979, Rasio & Livio 1996, Sandquist et al. 1998, Ricker & Taam 2008,

Ricker & Taam 2012, Passy et al. 2012) replicate only what is known as the fast in-spiral
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phase, when orbital energy and angular momentum are transferred to the envelope gas,

aiding in its removal. It is impractical to run simulations for much longer than these initial

stages partly because the gas leaves the computational domain (for grid simulations) and

partly because simulating longer time scales means having to add physics such as cooling.

All simulations of the dynamical in-fall phase have found that most of the envelope is still

bound to the system by the time the orbital separation stabilises. Rasio & Livio (1996) using

SPH with 5 × 104 particles found 90% of the gas was still bound. Sandquist et al. (1998),

using a stationary nested grid method found approximately 60% of the envelope was still

bound to the system. Ricker & Taam (2012) improved on this simulation by using an AMR

grid code and with this method they found that 75% of the envelope remained bound to

the system. Passy et al. (2012), comparing single grid and SPH simulations concluded that

approximately 85% of the envelope remains bound to the system. In all simulations most

of the envelope is lifted to large distances away from the orbiting cores, but remains mostly

bound to them.

The final outcome of the common envelope interaction in nature must be the total removal

of the envelope or else we would not observe post common envelope binaries. Whether this

discrepancy is physical and the first fast in-spiral phase truly does not unbind the envelope,

or whether the simulations ignore some physics, is to be determined. Missing physics is likely

as these simulations include only self gravity. Han et al. (1995) and more recently Ivanova

et al. (2014) suggested that the giant star uses some of the energy in its chemical and atomic

bonds to help unbind its envelope. When the gas recombines upon expanding it recombines

and this energy is released as radiation. If this energy is released within optically thick layers

it can transfer momentum to the gas and help unbind it. In addition, molecules and grains

may form increasing the optical thickness. The combination of grains and ionisation energy

being released is calculated to be of the order necessary to unbind the remaining bound gas

found in simulations (Webbink 2007; Harpaz 1998; Passy et al. 2012).

Though recombination may contribute to a more efficient removal of the envelope, it

would not help to reduce the final separations obtained in simulations. To date the separa-

tions measured in binary central stars of planetary nebulae are significantly smaller (≤ 4R�;
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Zorotovic et al. 2010; De Marco et al. 2011; Schreiber & Gnsicke 2003) than what the sim-

ulations give at the end of the fast in-spiral phase (between 27 R� to 6 R�; Passy et al.

2012). As the simulations find, the rapid in-fall phase varies between systems, with systems

with larger q = M2/M1 resulting in larger separations (see Figure 2.1), but this trend is not

reflected in the observations. Looking at figure 17 of Passy et al. (2012), which compares

the simulation separations of Figure 2.1 with observed post common envelope binaries, we

see that few systems have mass ratios M2

M1
≥ 0.5. Simulations showed that the lower mass

ratio systems resulted in smaller separations. However, these separations remain generally

larger than observed separations. In the simulations, the system stops in-spiralling when

the density around the core and companion decreases below a certain threshold and energy

and angular momentum transfer stops. This seems to happen at larger orbital separations

for larger mass ratios, q. The time taken to reach orbital stability also varies, with systems

with a lower mass ratio taking more time to reach the plateau in the orbital decay.

With these discrepancies between observations and simulations in mind we wonder why

the simulations are failing to remove the envelope completely. We have already discussed

within this section that alternative energy sources, such as recombination energy, not ac-

counted for in simulations could lead to envelope ejection. However in this thesis we argue

that there could be another way to unbind the remaining envelope and bring the core and

companion closer together. What happens when the bound gas falls back onto the binary

system? Logically, a new interaction should take place and the binary separation should

decrease further and more of the envelope should become unbound. These are the questions

that we try to answer in this thesis. Our hypothesis is that the fall-back of the gas will allow

the core and companion to lose more angular momentum via the interaction with the gas.

This transfer of angular momentum will shrink the orbit further and provide the gas with

more orbital energy to allow it to escape the system.
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2.3 Analysis of the Simulation Outputs

As briefly mentioned previously, the code we use for our simulations is Enzo, which is a

Eulerian grid code. We have not applied any grid refinement but used a simple uniform grid

with 2563 cells.

The outputs from our simulations are analysed using yt, version 2.6 (Turk et al., 2011),

which is written in python. The software yt reads the Enzo data cubes and produces useful

visualisations. Enzo fields are values of quantities at each location (grid cell center) in the

computational domain. Enzo uses a number of basic fields (e.g., density, pressure, velocity,

gravitational potential, total energy) from which other fields can be derived. There are many

pre-constructed, derived fields (e.g., number density, pressure, sound speed, etc.)1. Custom

derived fields can also be constructed within yt. An example is the temperature field (see

code in Appendix A.1.1.).

We derive the temperature of the gas using its internal energy by substituting Equa-

tion (2.5) into Equation (2.7), which gives:

T =
(γ − 1) ρU

nkB
. (2.9)

When creating this field, some values can be input manually such as γ, which is 5/3 as we are

in an adiabatic regime. These values can also likely be read directly from the Enzo setup file.

This setup file contains information on the simulation options (such as time step, data dump

times, grid dimensions, etc.), as well as input data about the fluid (e.g., adiabatic index,

mean molecular mass) and options for including certain physics such as radiative transfer

and cooling or dust formation.

We can also read and manipulate data from subregions of the entire domain. These

regions have to be predefined within the box. An example is the codes used to determine

the amount of gas falling onto our binary system (see code in Appendix A.2.1) in Chapter

3. In this case a region with x, y and z dimension of 1.0, 1.0 and 0.3 of the full length of

the computational domain is defined. This region is centred on the center of the box, and is

used to monitor the total mass falling into the orbital plain.

1A full list of all fields can be found at http://yt-project.org/docs/2.6/reference/field list.html
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We can also read in individual cell data. This is used numerous times in the code to

determine the center of mass, the angular momentum of gas, the bound and unbound mass

within the grid, fall-back time of gas and Mach number in selected cells (see Appendix A.2.2

to A.2.6). The Enzo gravitational potential field only returns the potential of the gas on

itself. Enzo obviously does recognise the presence of the particles and accounts for their

gravity when running the simulation. However, the particle’s potential is just not considered

when returning the gravitational potential of the gas. The potential of the particles on the

gas had to be calculated manually. This is done by simply reading through all cells, iterating

through all three dimensions, using nested for-loops. The range of the x, y, and z dimensions

is the grid dimension, read in from the setup file.

2.4 Epilogue

In this chapter, we have reviewed the theoretical underpinning of the common envelope

phase in binary interactions and the tools that have been used to study this phase. We have

highlighted some of the issues with our current understanding of this phase and some of the

downfalls of simulations. In particular we have described the problem all simulations have

in unbinding the envelope bringing the core and companion to within observed separations.

We have proposed that lifted, bound material will fall back onto the core and companion

providing a new opportunity to reduce the orbital separation and unbind further the envelope

gas. Next we will look at the setup for the simulations we have run to test our hypothesis

of the fall-back disk.



3
Simulation Setup

In the previous chapters we have reviewed the significance of the common envelope phase,

the studies conducted to better understand this phase and the tools used. We have then

explained how a fall-back of bound envelope gas may help resolve some of the outstanding

issues found in simulations. Here, we lay out the basis for our simulations and the iterations

conducted to produce a successful fall-back disk.

3.1 Initial Conditions

The set up for our simulations is based on the finishing conditions of the simulations of

Passy et al. (2012). Passy et al. (2012) conducted a series of common envelope simulations

between a red giant and a main sequence star for varying mass fractions q = M2

M1
with

different computational methods and different resolutions. The simulations resulted in the

27
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envelope being lifted, but only a small amount of the envelope mass being unbound. The

separation between the core of the RGB star and the main sequence star stabilised, so no

more orbital energy would be injected into the system from a decaying orbit, and therefore

no more mass can be unbound. The envelope is therefore destined to fall back. We decided

to produce a fall-back disk that would be the logical continuation of Passy et al. (2012)’s

simulation of a system with a mass fraction of q = 0.6. In Section 2.2.1 we described the

mapping of the evolved giant star from the 1D stellar evolution code to the 3D fluid dynamic

simulation. In that section we justified modelling the core of the giant and the companion

as point mass particles. In the system that we simulate the companion is a point mass with

0.6 M�, and the core is a point mass with 0.392 M�. At the end of their simulation, Passy

et al. (2012) found that the system stabilised with a separation of ∼20 R� and that 0.44 M�

of the envelope, which has mass of 0.48 M�, remained bound. Our simulation begins with

the core and companion point mass particles with a separation of 20 R� and aims to have

approximately 0.44 M� fall back onto the system.

Looking at the end of the simulation of Passy et al. (2012), the final density of the gas

within an AU of the core and companion was approximately 5 × 10−7 g cm−3. The final

temperature was found to be 50 000 K. The size of the domain we simulated is 1013 cm on

a side, which corresponds to approximately 144 R�. This length is a third of that used by

Passy et al. (2012), which allows a better resolution of the core and companions’ immediate

surroundings. For most of our simulations we have selected a resolution of 2563, which results

in cells having an approximate dimension of 0.5 R� on a side.

Now that we have described the initial conditions needed for our simulation, we will

explain our approach to simulating the fall-back of gas.

3.2 Our Fall-back Setup

The initial simulation setup was designed such that the gas would fall onto the core and

companion as a disk coplanar with the orbital plain. This decision was made as previous

studies of common envelope interactions show that most of the mass is expelled preferentially

along the orbital plain (e.g., Sandquist et al. 1998, Passy et al. 2012, Ricker & Taam 2012,
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who found that gas left within 30◦ of orbital plain). It is therefore reasonable to assume that

the gas would fall back along this plain.

We attempted to set up a disk with the required parameters, but found it impossible

to generate a stable configuration. To overcome this, the computational domain was filled

with a diffuse constant density gas and the initial velocities were imposed such that the gas

above and below the orbital plain would be evacuated quickly, while the gas near the plain

would fall onto a disk. In the 3-dimensional grid, a column of grid points going through the

orbital plain (i.e., with the same x and y value, but variable z value), had constant initial

velocity, which was initialised to be a given fraction of the keplerian velocity on the orbital

plain. This would create concentric, vertical cylinders of gas centred in the middle of the

grid, moving with the same rotational velocity. The velocity was selected such that the gas

in these cylinders nearer the orbital plain would be sub-keplerian and hence fall onto the

core and companion, while farther above and below the plain it would be super-keplerian

and escape. This allowed to, essentially, create a fall-back disk that has the correct mass,

angular momentum and energy (checks comparing angular momentum and energy to Passy

et al. (2012) are discussed in the next chapter). The fall back disk acts as if the bound gas

lifted to large distances in the simulations of Passy et al. (2012) were to return towards the

binary.

This set up is explained in Figures 3.1 and 3.2. In Figure 3.1 we see, in the left panel,

the keplerian velocities above and below the orbital plain for x and y values, such that√
x2 + y2 = 70 R�. As expected, the keplerian velocity decreases above and below the

orbital plain (z = 0). Along the same column, the velocity is initialised to be constant as

shown in the middle panel of Figure 3.1. As a consequence the gas within approximately

±15 R� of the orbital plain is initially sub-keplerian as is demonstrated on the right panel

of Figure 3.1, where the red dashed line marks where the velocity is keplerian. The sub-

keplerian gas will fall onto the core and companion. At larger |z| positions, the gas is initially

super-keplerian. However, this does not mean that this gas will leave the box immediately.

Some of this gas may fall onto the core and companion in elliptical orbits.

The keplerian velocity throughout the grid was calculated by using the gravitational

potential of the core and companion:
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Figure 3.1: Initial velocity values for gas at positions of varying z coordinate for a column

that passes perpendicularly through the orbital plain at a distance of ∼70 R� from the

center of the grid. The left panel shows the keplerian velocity at that distance. The middle

panel shows the initial velocity given to the gas. The right panel shows velocity relative

to keplerian velocity. The red dashed line marks boundary between super-keplerian and

sub-keplerian gas.
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Figure 3.2: Initial velocity of the gas for a cross section along the orbital plane passing

through the positions of the core and companion. The top panel shows the keplerian velocity.

The middle panel shows the velocity given to the gas at t = 0. The bottom panel shows

velocity relative to the keplerian value.
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vkep =
√
− (φcore + φcomp), (3.1)

where φcore and φcomp are the potentials of the core and companion, respectively. The

potential due to the gas itself was not considered. If it had the resulting velocities would

have been larger and we would have needed a smaller fraction of the keplerian velocity

to obtain the desired fall back mass. What mattered in our setup was the outcome, not

necessarily how to was achieved.

Due to the large value of the potential near the core and companions, the keplerian

velocity is expected to be very high. This is shown in Figure 3.2, where a column of gas

lying on the orbital plain connecting the core and companion has been displayed. In the top

panel of this figure the keplerian velocity at the varying positions away from the core and

companion along the orbital plain is shown. Here we see two large spikes near the positions

of the core and companion. The middle panel shows the velocity values at these distances.

The bottom panel shows the velocities relative to the keplerian values. In this example

we have selected the velocities on the plain to be 0.5vkep. As demonstrated by Figure 3.1,

sub-keplerian velocities along the plain translate to super-keplerian velocities at a certain

distance above and below the plain.

3.3 Preliminary Simulations

Now that we have established our initial conditions and fall-back set up we will review

the simulations that were run to achieve the best fall-back disk. That simulation will be

discussed in Chapter 4. The initial parameters of all simulations that were attempted have

been summarised in Table 3.1.

All simulations were run by Jan Staff. The set up configuration was determined in col-

laboration with Orsola De Marco and Jan Staff. Changes in setup parameters were decided

by myself following the analysis of the simulations’ outputs.
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3.3.1 Non-rotating Simulations

Before establishing that a fall-back disk was best represented by rotating gas, we ran sim-

ulations that were not initially rotating. For the first of these simulations (nonrot hot in

Table 3.1) the grid was filled with diffuse gas with a constant density of 10−6 g cm−3 and

zero initial velocity. This density was selected because the density near the core and com-

panion at the end of the simulation in Passy et al. (2012) was of the same order of magnitude

(5 × 10−7 g cm−3). In addition, this density resulted in a total mass of ∼0.29 M � falling

back onto the core and companion. Another simulation with higher density was also run

(nonrot highden in Table 3.1). These simulations allow us to adjust the amount of mass

falling onto the core/companion system and allowed us, in theory, to test the dependences

of the results on density and total mass.

We also run another simulation with an initial density of 10−6 g cm−3, but with a lower

temperature (nonrot cool). In hindsight there was no clear reason for this extra simulation,

although, pre-empting the work presented in Chapter 5, nonrot hot and nonrot cool can

provide some insight into the effect of temperature on the fall-back mass.

To measure the mass of the fall-back gas we measured the mass of gas in each of 3 sections

of the computational domain (See Appendix A.2.1). The middle section is defined by a box

that spans 30% of the z-axis (∼ 43 R�) and is centred on the orbital plain. The regions

above and below are the remaining two sections. By creating a mass time series for each of

these three regions we can estimate the fall-back disk mass as the largest value in the central

region. We apply this to the nonrot hot and nonrot cool simulations shown in Figures 3.3a

and b, respectively. Both of these systems have the same initial density, but have different

temperature. We see that nonrot cool has a greater mass of fall back into the central region

(∼0.29 M�), compared to nonrot hot (∼0.22 M�). This is expected as more gas in the hotter

simulation expanded away leaving the computational domain before managing to fall into

the system.

Comparing nonrot hot with nonrot highden we again see that the higher density simula-

tion has a larger fall-back mass (Figure 3.3c). The high density simulation has a fall-back

mass of 100 M�, which is unrealistically high. Nonetheless, comparing all three simulations
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(a) For nonrot hot simulation. (b) For nonrot cool simulation.

(c) For nonrot highden simulation.

Figure 3.3: The middle panel of (a), (b) and (c) shows the total mass within 30% of the

z-axis centred on the origin (i.e., 0.35 ≤ z ≤ 0.65, where 1.0 is the full length of grid). Top

and bottom panels show the mass above and below the central region.
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we see in Figure 3.4, that the higher the fall-back mass, the greater the in-spiral. This is

expected, because if there is more mass around the core and companion to interact with,

then there will be greater drag.

Figure 3.4: Separation evolution for the nonrot hot (solid black line), nonrot cool (dashed

blue line) and nonrot highden (dotted red line) simulations. The oscillation in the separation

of the core and companion is sure to eccentricity in their orbit.

3.3.2 Rotating Simulations

Next, we implemented the velocity structure discussed in Section 3.2 to produce a disk.

These simulations were all calculated with an initial density of 10−6 g cm−3. At this time

we had not given much thought to the initial temperature, such that rot hot was given the

same internal energy, and hence the same temperature, as nonrot hot. The nonrot hot and

rot hot simulations provide a simple comparison between mass falling in from all directions
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and mass falling into a disk and its effect on the in-spiral of the system.

A comparison of the separation over the course of the rotating and non-rotating simula-

tions is shown in Figure 3.5. We see that in both simulations there is a decrease in separation,

but the decrease is significantly smaller in the rotating simulation. This is likely due to the

fact that the gas can fall further into the center of the system for non-rotating setups, cre-

ating a higher density environment around the core and companion, leading to higher drag.

With the rotating simulation the gas has angular momentum making it difficult for the gas

to fall into the centre to create a higher density environment. Also with this initial velocity

Figure 3.5: Separation time series for two simulations (nonrot hot and rot hot ; Table 3.1).

The solid black line shows the separation of the core and companion in the simulation with

gas having been given an initial rotational velocity (rot hot). The dashed blue line shows

the separation of the core and companion in the simulation where gas was given no initial

velocity (nonrot hot).
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there is a lower velocity contrast between the core and companion and the gas, which results

in less gravitational friction as shown by Ostriker (1999).

It was decided that the initial temperature of the gas was unjustifiably high (this is

discussed further in Section 5.1). As such the temperature was decreased. This simulation is

called rot cool in Table 3.1 and the initial velocity along the orbital plain was set to 0.5 vkep.

We found, by looking at the fall-back disk of rot cool, that an initial velocity of 0.5 vkep on

the orbital plain was not enough to make mass escape the grid. This also showed that the

gas fell into the binary along highly eccentric orbital paths and was not able to produce

a disk before interacting with the core and companion. Because of this, we increased the

initial velocity to 0.75 vkep in Cool and all following simulations. This velocity distribution

appeared to produce a shallower fall-back which will be looked at in Chapter 4. The mass

of the fall-back disk was ∼0.42 M�, which is very close to our target fall-back mass.

3.4 Production Simulations

The Cool simulation satisfactorily produced a fall-back disk, and it was this simulation which

was further analysed. This velocity distribution was also used in the simulations Hot1, Hot2

and Hot3 which were run to study the effects of temperature on the fall-back outcome. These

hot simulations will be discussed in Chapter 5. Ideally resolution convergence tests should

be run for all our production simulations. However, due to time constraints only one test

was run. This simulation was called HighRes, and will also be analysed in Chapter 5. We

felt justified in taking this short cut by the fact that our resolution was the highest used by

Passy et al. (2012) who did carry out a convergence test.
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3.5 Epilogue

The initial simulations of this chapter have been used to optimise our production simulations,

the first of which, the Cool simulation, will be analysed in detail in the next chapter. These

preliminary simulations have provided some basic insight on the in-spiral efficiency and

its dependence on fall-back mass. These simulations also informed us on the relationship

between temperature of gas and fall-back mass.
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4
Simulating a Cool Fall Back Disk

The simulations described in Chapter 3 aimed to test a range of conditions to produce a

suitable fall-back disk. Here, we will analyse in detail one of the simulations of a successful

fall-back event. This simulation that we analyse is Cool as described in Table 3.1. This

chapter and the one that follows are being prepared as a paper manuscript.

4.1 The Disk’s Mass and Angular Momentum

The simulations’ setup discussed in Chapter 3 appear to satisfactorily produce a disk falling

onto the core and companion. Figure 4.1 shows the first 0.03 years of the fall-back event. In

the top right panel of this figure we show a contour that indicates the positions where the

gas velocity is equal to the keplerian velocity. Within the cones outlined by these contours

the gas is super-keplerian, while outside the cone it is sub-keplerian. The gas within the

41
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Figure 4.1: Density slices along the orbital plain (left panels) and perpendicular to orbital

plain (right panels). Time steps 0.0 (top row), 0.01 (second row), 0.02 (third row), 0.03 yrs

(last row). From the right panels we can see that we essentially obtain a disk falling onto

the orbital plain.
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cones is rapidly evacuated as seen at 0.01 years. Meanwhile, the initially sub-keplerian gas

falls onto the orbital plain and towards the core and companion, as seen at 0.01, 0.02 and

0.03 years in Figure 4.1. By 0.03 years the density along the orbital plain is approximately

4 orders of magnitude higher than above and below the plain, so we can confidently say we

have created a disk.

The box shape at the edge of the computational domain seen in the left panels of Fig-

ure 4.1 as the the gas falls towards the centre is an artefact that results from our chosen

boundary condition. The boundary condition applied to our domain is the outflow boundary

condition designed for the ZEUS method. These condition does not allow the inflow of gas

from outside the box. As a result, when gas falls inward towards the center and there is

no gas entering the box filling the region that the in-falling gas has just evacuated, a low

density region on the boundary develops. This artifact is quickly overwhelmed by the out

flowing gas caused by the particles as see at time 0.03 years.

We estimate the mass of the fall-back disk (Figure 4.2) by dividing our grid into 3

sections, as explained in Section 3.3.1. The middle section is defined by a box that spans

30% of the z-axis and is centred on the orbital plain. The regions above and below contain

the remaining computational domain. By creating a mass time series for each of the three

regions we can estimate that the fall-back disk contains 0.38 M�, as this is the total mass

in the central region shortly after the initial evacuation of gas from the grid at 0.04 years.

This value is very close to the 0.44 M� of bound mass found by Passy et al. (2012), which

is expected to fall back.

Throughout this thesis, time series figures will have 10 vertical reference lines. The blue

dashed line indicates what we call the “unbinding event”. This corresponds to the time

of 0.06 years, determined in Figure 4.7(i). The black solid lines indicate 3 major mass

loss events over the course of the simulation. These correspond to times 0.01, 0.04 and

0.1 years, which are determined in Figure 4.7(iv). The red dotted lines each indicate times

of 0.02, 0.03, 0.05, 0.07, 0.08 and 0.09 years. This is to allow easy comparison between figures.

Passy et al. (2012) calculated that, the total z-component of the angular momentum for

the bound gas and core and companion at the end of their simulation was 1.5×1052 g cm2 s −1

and 0.6 × 1052 g cm2 s −1. In our simulations, the total angular momentum of the gas and
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Figure 4.2: Total gas mass within three regions in the grid. The middle panel shows the

mass within the 30% of the orbital plain (i.e., 0.35 ≤ z ≤ 0.65, where 1.0 is the full length

of grid). Top and bottom panels show the mass above and below the central region. The

vertical lines are time reference points and are described in Section 4.1.

core and companion begins at 1.5 × 1052 g cm2 s −1 and 0.6 × 1052 g cm2 s −1 respectively

(see Figure 4.3; see Appendix A.2.3 and A.2.4 for relevant scripts). This is in very good

agreement with Passy et al. (2012).

At the end of the simulations of Passy et al. (2012) the total energy of the system was

−0.4 × 1047 ergs. In our simulations, the total energy of the system begins with −0.4 ×

1047 ergs (Figure 4.4). Concerning the core and companion, we aimed to have them begin

with a kinetic energy of 0.3 × 1047 ergs and a potential energy of −0.5 × 1047 ergs. In our

simulation the core and companion begin with a kinetic energy of ∼0.2 × 1047 ergs, and

a potential energy of ∼ − 0.4 × 1047 ergs. While not in exact agreement, the total energy

(kinetic + potential energy) of the core and companion is the same between both simulations.
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Concerning the energy of the gas, in our set up our gas has approximately ten times the

final kinetic and potential energy of the bound envelope in Passy et al. (2012). We are able

to have the same total energy as the simulations of Passy et al. (2012) because our initial

thermal energy is about 170 times smaller than that Passy et al. (2012). The consequence

of our lower internal energy is addressed in Chapter 5.

Figure 4.3: The evolution of the total angular momentum throughout the simulation. The

solid black line is the total angular momentum of the system. The green dashed line is the

angular momentum of the gas and the red dotted line is the angular momentum of the core

and companion. The broken black line is the corrected angular momentum for losses from

the box. The angular momentum does not remain constant as much gas is flowing off the

grid taking angular momentum with it. The vertical lines are time reference points and are

described in Section 4.1.
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Figure 4.4: Total energies within the box. Plotted are the total energy (solid black line),

total energy corrected for mass loss from the box (dashed black line), thermal energy (blue

line), kinetic energy of core and companion (dotted green line), gas (dashed green line), the

sum of both (solid green line), the potential of the core and companion with respect to each

other (dotted red line), the gas on itself (dashed red line), core and companion with respect

to the gas (dash-dot red line) and total potential energy (solid red line). The vertical lines

are time reference points and are described in Section 4.1.

The energies and angular momenta of Passy et al. (2012) were taken from their figures

8 and 9 and were calculated for their SPH simulations carried out with the same initial set

up, and with the same final outcomes as with their grid simulations used here as reference.
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4.2 Results

The results of the simulation show promise in that the separation of the core and companion

decrease significantly and gas becomes somewhat unbound due to the interaction.

4.2.1 The Separation of the Particles

The interaction resulted in the decrease in orbital separation by∼30% as shown in Figure 4.5.

However, before the decrease in separation occurs, there is an initial increase. This increase

in separation occurs over ∼1.5 orbits. This is determined by the orbital periods given by

Figure 4.5: The separation of core and companion over time. Over the course of the sim-

ulation we see a ∼30% decrease in the separation of the core and companion. The initial

increase in separation is due to the increase in eccentricity and is discussed in the text. The

vertical lines are time reference points and are described in Section 4.1.
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Figure 4.6. This increase in separation is likely due to the sudden eccentricity the system

develops due to the highly asymmetric fall back of the mass into the binary. The initial

increase in orbital separation may also be due to the relative velocity of the particles and the

gas resulting in a gravitational drag that is non uniform in intensity or direction during the

early part of the simulation. The extent to which this occurs is discussed further in Chapter

5. We measure the amount of in-spiral from the initial separation of 20 R�.

Figure 4.6: The time to apastron at each data output is shown in the top panel. The middle

panel shows the orbital period of the system, and the bottom panel shows the eccentricity

of the system.
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4.2.2 The Determination of Unbound Material

Whether gas has been unbound is determined by summing the potential, kinetic and thermal

energies. The bound and unbound gas within the grid is shown in Figure 4.7(i). There we

see a peak in unbound mass within the box at 0.06 years. Using the fraction of unbound

Figure 4.7: All plots show mass within certain regions. (i) Mass within the box, (ii) cumu-

lative mass out of the box, (iii) total mass in the simulation, (iv) mass lost per data output.

In all graphs, the black line shows total mass. Red and green lines indicate the bound and

unbound mass, respectively. The unbinding event is defined as the peak unbound mass

within box as indicated in (i). The major mass loss events are defined by the peaks in (iv).

The vertical lines are time reference points and are described in Section 4.1.
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mass in a layer one cell thick at the edge of the grid, and the mass lost at the time of

each output, the unbound mass leaving the grid was estimated, assuming the unbound ratio

remained constant between outputs. The bound and unbound gas out of the grid are shown

in Figure 4.7(ii). The mass-loss per data output is shown in Figure 4.7(iv). From these

plots we see that the unbound mass from the unbinding event appears to leave the grid

0.01 to 0.02 years later. Summing together the unbound gas fraction within the box and

the mass that has left the box (see Figure 4.7(iii)) we see that the unbound gas fraction

levels off to around 4% of the total mass of the gas system. This translates to 5% of the

fall-back disk mass becoming unbound. How we measure unbinding efficiency is discussed

in detail in Chapter 5. The decreases in the total unbound mass in the system as seen in

Figure 4.7(iii) seems unusual, as it would be assumed that once mass becomes unbound

it remains unbound. This is due to our decision of including the thermal energy in the

calculation of whether mass is bound or not. The consequence of this inclusion of thermal

energy is a parcel of unbound gas will dissipate its energy to the surrounding bound gas and

on average result in bound material.

4.3 Energy and Angular Momentum

The energy conservation is reasonable (Figure 4.4). The increase in energy by 8.5× 1045erg

or 21% is due to the loss of bound gas from the grid. This loss was estimated by calculating

the average specific energy over the entire grid boundary layer (i.e, the layer one cell thick on

all 6 domain faces). We refined our analysis further by determining what amount of energy

was lost perpendicular to the orbital plain (the faces of the domain above and below the

orbital plain), and along the plain (the other four box faces). The fraction of the total mass

within the 4 box boundary faces perpendicular to orbital plain, fperp, and the fraction of

the mass within the two box faces parallel to the orbital plain, fplain, were then calculated

(fperp + fplain = 1). Assuming these mass and energy fractions remained relatively constant

over the period between data outputs, the energy lost perpendicular and parallel to the

orbital plain were estimated in the following way:
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Eloss,perp = Espec,perp × fperp ×Mloss, (4.1)

Eloss,plain = Espec,plain × fplain ×Mloss, (4.2)

where Mloss is the lost mass between data outputs. This gives the energy loss at the time of

each data output to be that shown in Figure 4.8. From this we see that most of the energy

leaves the system along the orbital plain. This is likely because most of the gas leaves along

the orbital plain, as observed by Passy et al. (2012) and Sandquist et al. (1998), which would

carry a large amount of energy. Adding the energy lost calculated with this method to the

energy within the box, brings the total energy to a fairly constant value (the black dashed

line in Figure 4.4), with a maximum excursion ∼5% from the initial total energy. This is

comparable to the degree of conservation seen in Sandquist et al. (1998) and Passy et al.

(2012).

Next we considered the conservation of angular momentum. Only the z-component of

the angular momentum was considered, due to the rotation of the system, this component is

representative of the total angular momentum. This also provides an easy comparison with

the work of Passy et al. (2012), who also calculated this. The angular momentum (L) was

calculated using:

L = r× p (4.3)

which is simply the cross product of r, the location of the parcel of gas from the center of

mass and p, the linear momentum of that mass. Figure 4.3 shows the core and companion

increase in angular momentum until the unbinding event (blue dashed reference line), then

decreases to a plateau. It is expected that the core and companion gain angular moment

because as we see in Figure 4.5, the separation of the core and companion increase. The

increase in angular momentum of the core and companion must come from the in-falling gas,

but this is difficult to see in Figure 4.3, as mass loss from the computational domain is also

carrying a lot of angular momentum out.
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Figure 4.8: Energy loss per data output as estimated using Equation (4.1) and Equa-

tion (4.2). The vertical lines are time reference points and are described in Section 4.1.

We can still get an idea of when the major mass loss events occur as the gradient of

angular momentum loss for the gas is greatest during these events. We can also see that the

gradient of gas momentum loss is at its most shallow at the time of the unbinding event,

where the core and companion begin to lose angular momentum to the gas. Ideally the

angular momentum of the gas should increase at the time of unbinding, but the simulations
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is still losing significant mass at that time, so this is poorly captured.

We calculate angular momentum loss similarly to the calculation of energy loss from the

grid. The specific angular momentum per cell was calculated for each face of the computa-

tional domain. This method assumed that the angular momentum lost between data outputs

is relatively constant. The resultant angular momentum loss is added to the total angular

momentum shown in Figure 4.3. We see that even the corrected total angular momentum is

still decreasing, with a maximum excursion of ∼5% from the initial total angular momentum.

This is probably due to the assumption that angular momentum loss is constant between

data outputs, also angular momentum is not explicitly conserved with our chosen simulation

method.

4.4 Time to the Next Fall-Back

We showed in Section 4.2.2 that most of the fall-back mass remained bound to the system

by the end of the simulation. As is the case with the initial common envelope simulations,

this bound gas is also bound to come back to the system. It was indeed unlikely that a

single fall-back event would completely unbind the remaining bound envelope, and more

likely that a series of fall-back events would occur. This is discussed further in Chapter

6. However, suspecting that the gas will return to the system several times, it may be

desirable to simulate another fall-back event. When to begin simulating another fall-back

event would be determined by the time taken for the gas from this fall-back event to return

to the computational domain.

Here we decided to calculate the time for gas to fall back into the computational domain

for our fall-back event. For each data output, we determined the velocity of the gas in each

cell along the border of the grid (see Appendix A.2.5). It was assumed that the majority

of the gas within the border was leaving the grid, hence had a positive radial velocity.

The fall-back time was calculated numerically using simple projectile motion. Looking at

Equation (4.4), the change in distance (∆r) from the center of the computational domain

for the mass in a cell was calculated over a time step of ∆t = 1 week, where v is the velocity

of the parcel of mass. The acceleration was taken to be only due to core and companion
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(Mcore + Mcomp) as calculated in Equation (4.5). At each step the velocity and position of

the mass was updated, until the mass would fall back into the computational domain.

∆r = v∆t+
1

2
a (∆t)2 (4.4)

agrav = −G (Mcore +Mcomp)

r2
(4.5)

This calculation is meant to give an estimate of the fall-back time of the bound gas.

This was carried out for all the cells on the border of the computational domain. We have

plotted the estimated fall-back time to the computational domain vs. the mass in each at

0.08 years in Figure 4.9. This time was selected because, looking at panel (iv) in Figure 4.7,

this appears to be the time when the gas from the unbinding event leaves the grid.

From Figure 4.9 we see that the return time to the computational domain has a large

spread from a few weeks, to more than two years. Determining when the bulk of the gas

from this interaction will return is uncertain. We see that the cells have lower mass above

and below the orbital plain (blue triangles in Figure 4.9), and this is expected as the density

is very low in these regions. This low mass gas appears to have a wide range of fall-back

times from a few weeks to over 2 years. Along the orbital plain the gas is generally denser,

hence the cells have a higher mass. With this understanding, we can treat the cells with

high mass as that which is expelled along the orbital plain, and this mass has a generally

shorter fall-back time of ≤ 10 weeks. Some intermediate mass cells that leave the domain at

some angle appears to have been lifted further and fall-back times for this gas is as high as

one year.

With this large spread in fall-back times of the gas, determining when the next fall-back

event would take place requires some careful thinking.
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Figure 4.9: The estimated fall-back time to return to the grid for each cell on the border

of the computational domain at time 0.08 years vs. the mass in the cell. The fall-back

time for the gas on the orbital plain faces are shown by red circles, and for the gas on the

perpendicular faces, by blue triangles.

4.5 Conclusions

Our simulation of a fall-back disk supports this as a mechanism to unbind additional envelope

gas while decreasing the orbital separation. The fall-back disk produced a decrease in binary

separation by ∼30% (From 20 R� to 14 R�), while unbinding about 5% of the fall-back gas

(approximately 0.022M�). This single fall-back event is clearly not sufficient to reproduce the

observations, but multiple fall-backs may result in the system converging to the separations

observed in post common envelope binaries, while at the same time unbinding the envelope.
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4.6 Epilogue

This simulation indicated some characteristics which need further investigation. The conse-

quence of our lower internal energy was the initial temperature of the gas in our simulation

was 350 K. This resulted in major shock heating of the system very early in the simulation.

This issue will be addressed in Chapter 5.



5
Investigation of the Role of Temperature on

Fall-Back Disk Dynamics

The simulations presented in Chapter 4 aimed to reproduce a fall-back disk that would have

the appropriate parameters such as mass and angular momentum. Of all the parameters

that could be varied, temperature is one that may make a difference to the fall-back event.

We base this statement on the observation that shocks develop readily in our simulation of

Chapter 4 (called Cool in Table 3.1) and that these may alter the in-fall since the strength of

the gravitational drag changes substantially for supersonic motions (Ostriker, 1999). Here we

therefore investigate how the initial temperature of the gas falling back affects the outcome

of the fall-back event.

57
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5.1 The Thermal Energy of the Fall-Back Disk

In the simulation of Chapter 4 the initial temperature of the gas was a cold 350 K. This

was calculated using the method described in Section 2.3. The simulations carried out by

Passy et al. (2012) end with gas temperatures of ∼50 000 K in a box 2 AU on a side centred

around the core and companion. In our Cool simulation initial shocks develop because the

sound speed is very low (see Figure 5.1) and heat up the gas to temperatures of ∼50 000 K,

close to the final temperature reached in the simulations of Passy et al. (2012) because that

is the virial temperature of them system.

According to Tocknell et al. (2014) the fall-back of bound gas in the Passy et al. (2012)

simulation would take ∼2 − 14 years, starting from an average distance of 4.5 × 103 R�.

Would this time be sufficient for the gas to cool? Or would the gas still be hot when it falls

back onto the core and companion? The expanding common envelope is expected to cool

adiabatically and will heat back up adiabatically during the in-fall. The question is whether

it would have time to cool radiatively when it reaches maximum expansion?

To estimate this we first calculate the temperature of the envelope when it expands to

4.5 × 103 R�. If we expect the gas to expand adiabatically, the final temperature can be

estimated using:

Tf = Ti

(
Vi
Vf

)γ−1

, (5.1)

where Ti and Tf are the initial and final temperature, and similarly Vi and Vf are the initial

and final volumes. γ is the adiabatic index, which in our case is 5
3
. We assume the final

volume to be a sphere of radius 4.5×103 R�, which gives a volume of Vf = 3.8×1011 R3
�. It

is not entirely clear what the initial volume would be. Assuming the radius of the gas volume

expands at a constant rate, and using the estimated fall-back time to also be the time taken

to expand to 4.5 × 103 R�, we can estimate the initial volume. As the calculated fall-back

time for gas from a mean distance of 4.5× 103 R� is 2− 14 years, we take a mean expansion

time of 8 years. The simulation of Passy et al. (2012) stabilises after half a year, therefore

half a year of the full expansion time is approximately 1/16. We can estimate the volume

at the end of the simulation of Passy et al. (2012) to have a radius approximately 1/16 of
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Figure 5.1: In both panels, the dashed green line shows the sound speed in the sphere around

the core and companion. The red dotted line shows the speed of the core and companion,

relative to its surrounding gas. The values of the speed are indicated on the left axis. The

solid blue line shows the Mach number of the core and companion. The values are indicated

on the right axis.

the final radius. This gives an initial radius of 281 R�, which corresponds to a volume of

Vi = 9.3 × 107 R3
�. We take Ti = 50 000 K, as it is the final temperature of the remaining

gas in the simulation of Passy et al. (2012). With these values, the temperature of the gas

at maximum expansion is found to be ∼ 195 K.
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Using this value of temperature and assuming isotropic expansion we can estimate the lu-

minosity and the thermal (or Kelvin-Helmholtz) time scale of expanded gas. The luminosity

is calculated by using the Stefan-Boltzmann law:

L = 4πR2σT 4
eff , (5.2)

where R is the radius of the emitting surface, Teff is the effective temperature and σ is the

Stefan-Boltzmann constant. With the radius of the expanded gas being R = 4.5 × 103 R�

and the adiabatically cooled temperature of 195 K, we find the luminosity of this object to

be approximately L = 26 L�. The thermal time scale is then found using:

τtherm =
U

L
, (5.3)

where U is the internal energy of the envelope of gas. Looking at figure 9 of Passy et al.

(2012), we find that U = 1046 ergs at the end of their simulation. Some of this energy is

used to expand the gas to 4.5 × 103 R�, but we find this amount to be negligible, and we

therefore take U to be 1046 ergs also at this larger volume. Using our calculated luminosity

the thermal time scale of the expanded gas is found to be ∼3100 years. Given the calculated

fall-back time of the common envelope gas is at most a couple of decades it would seem that

the envelope would not have enough time to radiate away a significant amount of energy

before returning to the binary system. However, this calculation assumes that the expanding

envelope is optically thick, hence only radiating thermally from the outer layers. If the gas

is optically thin, more energy can be radiated as it expands, producing different results.

Our calculation of the temperature of the expanded envelope may not be accurate. We

used the initial temperature of 50 000 K as this is the final temperature of the simulations of

Passy et al. (2012), but at this stage there has been significant mass loss from the grid that

could also carry away thermal energy. Also, the initial volume is not very well constrained

due to our lack of knowledge of the gas outside of the computational domain. Nonetheless,

using our calculations, the expanded gas would radiate away its internal energy in the space

of a decade if it had a luminosity of L = 8000 L�. Maintaining a radius of R = 4.5×103 R�,

the gas would need a temperature of ∼820 K to achieve this luminosity. This temperature
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seems reasonable. There are many unknown factors in determining the thermal time scale

of the common envelope gas making it difficult to determine whether the gas will return to

the system cold or hot.

Initially the core and companion have high Mach numbers (M > 40) as shown in Fig-

ure 5.1. Mach numbers were calculated using the sound speed of the gas surrounding the

core and companion (see Appendix A.2.6). This was calculated by making a 1 R� sphere

around the core and companion and taking the average sound speed within that sphere. We

also used a second method because we considered that the gas in front of the particle had

not interacted with the particle yet, while the gas behind the particle had. With this in

mind, we calculated the sound speed of the gas using a box of 33 cells, centred on a cell

located two cells in front of the cell containing the particle. In Enzo, the position of the

particle is not necessarily at a cell’s centre. The particle’s actual position could be on the

boundary of two cells, hence the presences of the particle may be felt equally by the gas

in both cells. So instead of taking the cell right in front of the rounded off cell position of

the particle, we chose the next cell in front of the particle, just to be sure we selected gas

that had not interacted with the particle.1 Also when calculating the Mach number of the

core and companion, the velocity of core and companion was corrected to be relative to the

velocity of gas used to calculate the sound speed. This was done simply by subtracting the

bulk velocity of the gas from the velocity of the particle.

The initial Mach numbers of the 0.39 M� giant core and 0.6 M� companion in the

Cool simulation wereM = 79 andM = 43, respectively. These high Mach numbers caused

dramatic shock heating of the gas in the box (shown in Figure 5.2), as we have explained. The

Passy et al. (2012) simulations end with a gas temperature within the box of approximately

50 000 K. If the gas ejected from the computation domain was hot, and it did not have time

to cool before it fell back, then maybe it would still be hot. We therefore wondered whether

starting with a hot gas would alter our conclusions.

1this is strictly correct only for supersonic particles. However choosing one or two cells in front did not

change our conclusions appreciably
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Figure 5.2: Left panels show the temperature evolution on a slice along the orbital plain

and the right panels show the temperature evolution on a slice perpendicular to the orbital

plain. Time steps 0 yrs (top row), 0.01 yrs (second row), 0.02 yrs (third row), 0.03 yrs (last

row).
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5.1.1 Setup for Hotter Simulations

The falling gas may still be hot when it falls back. We therefore ran 3 additional simulations

with higher initial temperature, but maintained the same initial density of 10−6 g cm−3 and

initial velocity setup (see Section 3.2). Maintaining the same velocity distribution results

in less fall-back mass with higher temperature. Despite not changing this velocity, these

simulations provided the opportunity to investigate general relationships between the tem-

perature of the gas and evolution of the system. These simulations were called Hot1, Hot2

and Hot3, and they are listed alongside the other simulations in Table 3.1. Below we discuss

them further, and in Section 5.2 we carry out a comparison of the hot simulations with the

cool, along with a resolution test.

The Hot1 Simulation

This simulation has an initial constant temperature of 1.7×104 K calculated from a value of

U = 3.6×1045 erg with the same initial mass and number density as the Cool simulation. The

main goal of increasing the initial temperature of the simulation was to bring the core and

companion into a subsonic regime and to prevent the initial shock heating. With hindsight

we could have pre-calculated the target temperature. However, initially we had not zeroed

in on the required criteria and were more generally interested in understanding the effects

of a higher initial temperature on the results. Hence we calculated 3 “hot” simulations.

The Mach number evolution of the core and companion is shown in Figure 5.3a. The

initial Mach numbers of the core and companion are M = 6 and M = 11, respectively,

so this system also experienced initial shock heating. The amount of mass falling onto the

orbital plain is less than for the Cool simulation of Chapter 4, being approximately 0.33 M�

(shown in Figure 5.3b, cf. 0.38 M� and Figure 4.2, depicting the Cool simulation). This is

expected because hot gas has a higher pressure and expands away.
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(a) (b)

Figure 5.3: (a) The dashed green line shows the sound speed of the gas for the Hot1 sim-

ulation.. The red dotted line shows the speed of the core and companion, relative to its

surrounding gas. The values of the speed are indicated on the left axis. The solid blue line

shows the Mach number of the core and companion. The values are indicated on the right

axis. (b) The middle panel shows the mass within the 30% of the orbital plain. Top and

bottom panels show the mass above and below the central region. The vertical lines are time

reference points and are described in Section 4.1.

The Hot2 Simulation

In this simulation, we doubled the internal energy of the system, hence doubling the initial

temperature. Therefore Hot2 was set up with an initial temperature of 3.5 × 104 K. This

temperature is still lower than the final temperature of the simulations of Passy et al. (2012),

and also resulted in shock heating. The initial Mach numbers of the core and companion were

M = 5 andM = 10, respectively. The Mach number evolution of the core and companion is

shown in Figure 5.4a. The fall-back disk mass is shown in Figure 5.4b, with the disk having

approximately 0.28 M�.
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(a) (b)

Figure 5.4: (a) The dashed green line shows the sound speed of the gas for the Hot2 sim-

ulation. The red dotted line shows the speed of the core and companion, relative to its

surrounding gas. The values of the speed are indicated on the left axis. The solid blue line

shows the Mach number of the core and companion. The values are indicated on the right

axis. (b) The middle panel shows the mass within the 30% of the orbital plain. Top and

bottom panels show the mass above and below the central region. The vertical lines are time

reference points and are described in Section 4.1.

The Hot3 Simulation

The core and companion in the simulations Hot1 and Hot2 were initially supersonic despite

the larger temperatures of the gas. We therefore decided to increase the temperature further.

This time we increased the internal energy tenfold compared to the Hot1 simulation. This

resulted in an initial temperature of 1.7×105 K. This temperature is a factor of 3 higher than

the 50 000 K of Passy et al. (2012), but with this initial temperature the Mach numbers of the

core and companion areM = 0.6 andM = 1.0, respectively. The Mach number time series

is shown in Figure 5.5a. Despite these very high temperatures the system is not completely
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subsonic. With these initial higher temperature, much gas expands away and even less mass

falls into the disk (see Figure 5.5b), with the fall-back disk having about 0.18 M�. Below we

examine the outcome of these three simulations and compare them to the Cool simulation.

(a) (b)

Figure 5.5: (a) The dashed green line shows the sound speed of the gas for the Hot3 sim-

ulation. The red dotted line shows the speed of the core and companion, relative to its

surrounding gas. The values of the speed are indicated on the left axis. The solid blue line

shows the Mach number of the core and companion. The values are indicated on the right

axis. (b) The middle panel shows the mass within the 30% of the orbital plain. Top and

bottom panels show the mass above and below the central region. The vertical lines are time

reference points and are described in Section 4.1.
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5.2 Results and Comparisons

These simulations provided the opportunity to investigate the dependence of the evolution

of the system on the initial gas temperature.

5.2.1 The Evolution of the Orbital Separation

Comparing the separation evolution of each of these three hot simulations with that of the

Cool simulation in Chapter 4, we see that the core and companion in the cold simulation

in-spiral the farthest (see Figure 5.6). Orbital separation changes depend on the force expe-

rienced by the core and companion. This force is primarily due to gravitational friction or

drag (Ricker & Taam, 2012). Gravitational friction depends on the ambient density and the

Figure 5.6: Evolution of the orbital separation for simulations with different initial temper-

atures. (Cool : 350 K, Hot1 : 17 500 K, Hot2 : 35 000 K, Hot3 : 175 000 K).
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(a)

(b)

Figure 5.7: Comparison (a) mass and (b) average density of the gas enclosed within the core

and companions’ orbits for Cool (350 K, dark blue line), Hot1 (17500 K, green line), Hot2

(35000 K, red line) and Hot3 (175000 K, light blue line).
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relative velocity of the core and companion and the gas (Ostriker, 1999). It is also possible

that the orbital in-fall would depend on the density gradient, something we would like to

study further (see Chapter 6). Our three hot simulations result in lower mass disks, com-

pared to the Cool simulation. Although there is no reason to think that the initial force on

the core and companion is different in the four simulations (densities and relative velocities

are the same), the ambient parameters change rapidly. Below we investigate the effects of

density and velocity on the separation evolution.

We first compare the mass enclosed within the orbit (see Figure 5.7a). The Cool simu-

lation has core and companion with a comparatively smaller separation and hence a smaller

volume within the orbit. Despite this, more mass is enclosed in the orbit. This is probably

expected because the mass of the fall-back disk was the largest in the Cool simulation, so

there is more mass that might provide greater drag due to greater ambient density. The av-

erage density enclosed within the orbit for the four simulations is shown in Figure 5.7b, once

again demonstrating a trend of higher values for the Cool simulations. In the Cool simula-

tion we see an oscillation in the average density within the orbit over time. This is because

of the orbital eccentricity that develops preferentially in the cooler simulations and is due

to the density gradient: as the volume enclosed increases when the core and companion are

near apastron, the amount of extra mass enclosed does not increase as much and therefore

the average density within the orbit decreases. In conclusion, although all simulations show

a decrease in separation due to fall back of mass, we conclude that the higher the mass of

the fall-back disk, the greater the in-spiral.

All simulations also show an initial increase in separation with the cooler one showing

the largest increase. For the colder simulations this was interpreted in Chapter 4 as due to

the system acquiring an eccentricity. The hot simulations display a smaller initial separation

increase, the hotter they are. We conjecture that the acquisition of an early eccentricity

may be due to the fall-back disk mass. The disk mass distribution is not symmetric so

an eccentricity is expected. Such eccentricity may therefore be more pronounced for more

massive disks. This is supported by Figure 5.8, where we show that the hotter simulation

Hot2 develops a far smaller eccentricity than Cool (see Figure 4.6). In all cases the orbit

seems to circularise with time.
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Figure 5.8: Top panel: time to apastron; middle panel: orbital period evolution; bottom

panel: eccentricity evolution for the HighRes simulation, which is the high resolution coun-

terpart of the Hot2 simulation.

We conjecture that orbital in-spiral is also promoted by the presence of a density gradient.

We think that in the presence of a density gradient the gravitational drag vector will point

slightly towards the centre, where there is more mass (i.e., higher density). We attempt

to show this in Figures 5.9 and 5.10. In Figure 5.9 density profiles were created for each

of the production simulations at time 0.09 years. This time was selected because looking

at Figure 5.6, the simulations appear to have the steepest in-fall around this time. We see

that fitted density gradient becomes shallower, dropping by two orders of magnitude as we

move to hotter simulations, which experienced less in-fall. The density profiles were created
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by binning the averaged density up to a radius of 50 R�. The gradients of the profile were

determined by taking the central density and the binned density at 20 R�, and fitted the

line. The gradient of this line is taken to be the gradient of the density profile.

(a) Cool (b) Hot1

(c) Hot2 (d) Hot3

Figure 5.9: Density profiles for a sphere with radius of 50 R� centred on the center of

computational domain, taken at time 0.09 years. The blue dotted lines indicate the position

of the core and companion. The red dashed line is fitted to the profile with gradient (a)

−1.4× 10−6, (b) −5.5× 10−7, (c) −3.9× 10−7 and (d) −8.4× 10−8 g cm−3 R−1
�
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Time series of the gradients of the red dashed lines in Figure 5.9 are shown in Figure 5.10.

Each simulation reaches the steepest density gradient ∼ 0.01 years before the peak separa-

tion is reached. When the gradient is at its steepest the gravitational drag force becomes the

greatest, and counters the out-spiral of the core and companion due to the eccentric orbit.

This leads to an orbital decay. We see that the density gradient is consistently steeper as

(a) Cool (b) Hot1

(c) Hot2 (d) Hot3

Figure 5.10: Density gradient time series for our production simulations. The gradients are

those of the red dotted line, as described in Figure 5.9. The time of the minimum gradient

is (a) 0.06, (b) 0.04, (c) 0.05 and (d) 0.02 years
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the temperature decreases, and the density gradient vanishes as the simulations stabilise.

Since we concluded that the orbital separation increase is due to an acquired eccentric-

ity and the orbital decay is due to the presence of a density gradient across the core and

companion, we decided to measure the orbital reduction starting from an initial separation

of 20R�. Thus We find that in the Cool, Hot1, Hot2 and Hot3 simulations, the reduction of

the orbital separation is 30%, 23%, 20% and 8%, respectively.

5.2.2 Unbound Mass

The analysis to determine the fraction of unbound gas was carried out in the same fashion as

described in Chapter 4. To determine whether gas in a cell was unbound we calculated the

total energy of that cell. To determine whether gas that left the computational domain was

unbound, we determined the fraction of unbound gas at the computational domain boundary

for every code output and multiplied it by the mass that left the domain between outputs.

Total mass time series similar to Figure 4.7 were created for the hot simulations, shown

in Figure 5.11(a), (b) and (c). Looking at panel (i) in all of these figures, it can be seen

that the hotter the initial temperature the more mass leaves the box. This is expected as

more gas expands away out of the box in the initial time steps in the hotter simulations.

In the Hot3 simulation much of the gas is initially unbound due to the high temperature.

In the colder simulations, on the other hand, most of the gas begins in a bound state. We

remind the reader that the initial setup is an artificial configuration aiming to create a disk

with characteristics consistent with what we expect based on the final conditions of Passy

et al. (2012). We are therefore not interested in whether the gas in the box at time zero is

bound or not. We just care about the amount of gas that becomes unbound as a result of

the renewed interaction between core and companion and gas caused by the fall-back event.

For the Cool, Hot1 and Hot2 simulations, minor unbinding events occur after the in-

falling gas starts to interact with the core and companion. To show these events more

clearly, the percentage of unbound gas within the box is plotted in Figure 5.12. From this

figure we can see that the Cool and Hot1 simulations appear to have an unbinding event at

0.06 years. The Hot2 simulation does not seem to have a clear unbinding event, and in the
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Hot3 simulation the gas expands away before any significant unbinding can occur.

Judging by the total unbound mass at the end of the simulation and the mass of the

fall-back disk, these events appear to have very poor unbinding efficiencies. To calculate

unbinding efficiencies we cannot simply subtract the initial unbound mass within the box

from the final unbound mass as we would obtain a negative number for all the hot simulations.

This is because adiabatic cooling decreases the internal energy of the gas converting some

of the unbound gas into bound gas. However, we note that in the hot simulations more

of the initially unbound mass resides within the cone of super-keplerian gas, and therefore

leaves the box almost immediately. Hence, a more accurate measurement of the unbinding

efficiency would be to only account for the gas that falls back. Looking at Figure 5.12, the

Cool, Hot1 and Hot2 simulations reach a minimum unbound mass in box at 0.02 years (the

first red dashed line). This point is interpreted as the moment when most of the initially

unbound gas has left the box and the fall-back disk is beginning to interact with the core

and companion.

(a) For Hot1.
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(b) For Hot2.

(c) For Hot3.

Figure 5.11: (i) Mass within the box, (ii) cumulative mass out of the box, (iii) total mass

in simulation, (iv) mass loss per data dump. The black line shows the total mass. The red

and green lines indicate the bound and unbound mass, respectively. The vertical lines are

described in the caption of Figure 4.7.
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With this in mind, we decided to start the unbound mass analysis after 0.02 years. We

take the overall gas that becomes unbound due to the fall-back and the final amount of

unbound mass in the simulation (i.e., the value of the green line in (iii) in Figure 4.7 and

Figure 5.11(a), (b) and (c)). The mass of the fall-back disk is determined by measuring

the mass that falls within 30% of the orbital plain as shown in Figures 4.2, Figure 5.3b,

Figure 5.4b and Figure 5.5b. We calculated the unbinding efficiency by dividing the total

unbound mass (inside and outside of the box, panels (iii) in Figures 4.7, Figure 5.11(a) and

(b)) by the mass of the fall-back disk. The efficiencies thus calculated are 5% for Cool, 3%

for Hot1 and 5% for Hot2. This calculation cannot be carried out for the Hot3 simulation.

Figure 5.12: Unbound gas as percentage of the total gas mass in the box at current time for

the Cool (350 K, dark blue line), Hot1 (17500 K, green line), Hot2 (35000 K, red line) and

Hot3 (175000 K, light blue line) simulations.



5.2 Results and Comparisons 77

In that case the amount of initial unbound mass is so large that any unbinding at the hand

of the orbiting core and companion is confused. Despite the difficulties of estimating the

unbinding action of the core and companion for the hotter simulations, the conclusion is

that not much mass is unbound before the core and companion in-spiral levels off again,

signalling that the interaction is effectively over. If this persists in further fall-back episodes,

the inevitable conclusion is that the core and companion would merge before the entire

envelope is unbound. We discuss this further in Chapter 6, where we also propose further

tests.

Figure 5.13: Evolution of the average temperature over the entire grid for different initial

temperature simulations. Vertical lines are described in the caption of Figure 4.7.
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Figure 5.14: Temperature slices in the orbital (columns 1 and 3) and perpendicular (columns

2 and 4) plains for the Cool (columns 1 and 2) and Hot3 (columns 3 and 4) simulations.

From the top row to the bottom row, the times correspond to 0.0, 0.03, 0.1, 0.3 and 0.5

years.
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5.2.3 Temperature Evolution

In this chapter we aim to compare the impact of varying the initial temperature on the fall-

back disk effectiveness. Irrespective of the initial gas temperature of each simulation, three

simulations heat up (Cool, Hot1 and Hot2 ) and one cools down (Hot3 ) to approximately

50 000 K. We show this behaviour by plotting the average temperature in the box as a

function of time for each simulation in Figure 5.13. To show this behaviour more clearly,

we also show temperature slices for the Cool and Hot3 simulations in Figure 5.14. In

this figure we can see that, by the end of the simulations, both simulations become virtually

indistinguishable in terms of temperature. However, the evolution to this temperature is very

different. From the first few snapshots, we see that the Cool simulation heats up significantly

due to shock heating, with the gas around the core and companion jumping very quickly

from a few hundred degrees to around 50 000 K. However, in the Hot3 simulation the gas

quickly expands away and cools down to 50 000 K. The final temperature converged towards

the system’s virial temperature.

5.3 Resolution Test

Ideally throughout this thesis resolution tests should have been conducted on all production

simulations. We rely primarily on the resolution tests of Passy et al. (2012). However, here

we present one resolution test for the Hot2 simulation.

All simulations were conducted on a grid with 2563 cells, arranged in a cube 143 R� on

a side. Therefore, each cell had a length of approximately 0.5 R�. With this resolution test,

the Hot2 simulation was run again on a grid of 3843 cells. We call this simulation HighRes

on Table 3.1.

A comparison of the separation evolution for the two resolutions is shown in Figure 5.15.

Both simulations end at approximately 16 R�, but it would be important to determine

whether this value actually converges by carrying out a third test with a 5123 grid. Judging

by these two simulations the agreement is relatively good. The separation increased less for

HighRes in the early part of the simulation. The lower resolution of the Hot2 simulation
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Figure 5.15: Separation time series for the Hot2 simulation (resolution: 2563 cells) and its

high resolution counterpart, HighRes (resolution: 3843 cells).

probably amplified the effect of the sudden increase in eccentricity due to the fall-back. The

other minor difference is the final eccentricity, which is three times smaller (e = 0.013) for

HighRes than for Hot2 (e = 0.05, see Figure 5.8 and compare it with Figure 4.6). On the

other hand both these values are quite low and their difference is not of much consequence.

The mass evolution of the two resolutions is also very similar. The mass of the fall-back

disk for HighRes is also 0.28 M� and there is very little difference in the amount of unbinding

in the the box. The mass in and out of the box varies slightly, but by very small amounts

usually smaller than 0.007 M�, which corresponds to ∼0.4% (see Figure 5.16). The HighRes

simulation appears to retain some more mass within the box after 0.1 years, ∼0.4%. By

the end of both simulations, the HighRes simulation unbound about 0.04% more mass than

its lower resolution counterpart. This is very small and does not affect the efficiency of the

unbinding, which was also 5% for the HighRes simulation.
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Figure 5.16: This figure is equivalent to Figure 5.11b. However, for each panel we show the

difference in mass between the Hot2 and HighRes simulations, where HighRes is the higher

resolution version of Hot2. As with Figure 5.11b, (i) corresponds to the mass inside the box,

(ii) to the mass outside the box, (iii) to the total mass in the simulation, and (iv) to the

mass leaving the box per output. Black lines show the total mass, while red and green lines

show the bound and unbound mass, respectively. Vertical lines are described in the caption

of Figure 4.7.
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Overall, although a more rigorous resolution convergence test would be desirable, the

lower resolution simulation Hot2 produced similar results to the HighRes simulation. As-

suming the other simulations to have similar behaviour, this test shows that there is no

significant variation in terms of unbinding efficiency and in-spiralling of the system with

increased resolution.

5.4 Conclusions

In this chapter we carried out three “hot” simulations because of the realisation that the

fall-back gas may be hotter than the temperature we had used initially (see simulation Cool

in Chapter 4) and because the gas that is still in contact with the core and companion at

the end of the simulation of Passy et al. (2012) had a temperature of 50 000 K. We were

also suspicious of the high Mach numbers of the core and companion at the beginning of the

Cool simulation, which resulted in high levels of shock heating. Such strong shocks can be

problematic of their own right in hydrodynamic calculations.

Increasing the temperature resulted in different amounts of fall-back gas, which altered

the parameters of the fall-back disk. This may have contributed more than anything else

to the different results we have observed in the four simulations. Despite these differences,

the mass unbound by the interaction between the fall-back gas and the core and companion

remains low, while the amount of in-spiral does vary somewhat with the hottest simulation

exhibiting the least amount of in-spiral.

5.5 Epilogue

Here ends the analysis of our four production simulations. In Chapter 6 we will discuss

further how the reduction of the separation and the unbinding of mass work together towards

a successful common envelope event, where mass is unbound and a close binary survives. At

that time we will also discuss how to fine tune the simulations to gain the most insight out

of the current set up.



6
Conclusion

After running a series of simulations to produce a fall-back disk, we summarise our results,

critique our methods and generally comment on the efficiency of a fall-back event for un-

binding further common envelope gas and decrease further the orbital separation.

In this thesis we aimed to address a major issue in our understanding of the common

envelope binary interaction phase. Previous studies could not simulate a common envelope

phase that is capable of unbinding the RGB or AGB stars’ envelopes nor did they result in

orbital separations comparable to those observed in post common envelope binaries. In all

simulations, most of the envelope remains bound to the system although it is lifted to large

distances from the binary, so we hypothesised that this bound gas returns to the system and

provides a new opportunity to unbind more gas and reduce further the orbital separation of

the core and companion.

In this work we have attempted to simulate such a fall back of bound gas. We based our
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simulations’ initial conditions on the final conditions of the SPH2 simulation of Passy et al.

(2012). Of all the simulations we have run (Table 3.1), four are particularly meaningful.

We have referred to them as Cool, Hot1, Hot2, and Hot3 and we have discussed them in

Chapters 4 and 5.

6.1 The Orbital Separation of the Core and Compan-

ion During the Fall Back Event

In all our simulations there was a decrease in the orbital separation. The amount of in-

spiral varied for each case, but the cooler the initial temperature, the greater the in-fall.

We hypothesize this is due to the cooler simulations having a larger fall-back disk mass,

hence more gas was available to interact with the core and companion rather than the

temperature itself.1 Ideally, we should have compensated for the lower fall-back mass of the

higher initial temperature simulations by adjusting the initial gas velocity, so as to obtain

disks with approximately the same mass in all simulations. Doing so would have given a

better understanding of the influence of temperature of the fall-back gas on the amount of

in-spiral.

In none of our simulations do we observe sufficient in-spiral to bring the core and com-

panion to within the observed separations, but if a number of fall-back events occur after a

common envelope phase the separation would be reduced further. Below we calculate the

number of fall-back events necessary for the orbital separation of the core and companion

to decrease to within the observed range of ∼< 4 R�. This number is based off the work

of Zorotovic et al. (2010) and De Marco et al. (2011) who found, from a survey of 61 post

common envelope binaries, that 87% of them had a separation of ∼< 4 R�. In order to

calculate the number of necessary fall-backs, we noticed that the relative orbital reduction

appears to be larger, the greater the mass of the fall-back disk. This is shown in Figure 6.1,

where based on our simulations the relationship between in-fall efficiency and fall-back mass

is demonstrated.

1while applying corrections we have conducted further simulations of fall back events and found this

interpretation to be correct.
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Figure 6.1: Relative separation reduction for different fall-back disk masses, based on our

four main simulations. This fits an approximate linear relationship: y = 107x− 11.

However, to account for the a variable mass of subsequent fall-back events, we would need

to know the fall-back mass for every successive fall-back event. Determining the fall-back

mass of successive fall-back events requires a calculation of the unbound mass, something

that we tackle in Section 6.2. For now, we attempt to estimate a lower limit on the number

of necessary fall-back events by assuming that all events are equally efficient in reducing the

orbit, as opposed to a decreasing efficiency. With this assumption the orbital separation

after n fall-back events is given by:

Rn = R0(1− ein)n, (6.1)

where R0 is the initial orbital separation, which in our case is 20 R�, ein is the efficiency with



86 Conclusion

which the fall-back makes the core and companion in-spiral, or in other words, the amount

of in-spiral divided by the separation at the beginning of each event, n is the number of

fall-back events and Rn is the orbital separation after n fall-back events. Rearranging this

for n, we can calculate the lower limit for the number of fall-back events using:

n =
log Rn

R0

log(1− ein)
. (6.2)

Using a target final separation of 4 R�, the ratio Rn

R0
= 0.2. Now, using our simulations we

can calculate an approximate number of fall-back events. For the Cool simulation which

has an orbital reduction of ∼30%, at least 5 fall-backs are needed. For Hot1, which has an

orbital reduction of ∼22%, then at least 7 fall-backs are needed. For Hot2, which has an

orbital reduction of ∼20%, then at least 8 fall-backs are needed. Finally, although we could

not calculate the unbinding efficiency for Hot3 the orbital reduction of Hot3 is ∼7%, then

we find that at least 23 fall-backs are needed to bring the orbital separation to 4 R�.

As we have determined in Chapter 4, the fall-back time is short, of the order of weeks to

months. For example, using the velocity of the bound gas leaving the computational domain,

the return time to the center of the domain is estimated (see Figure 4.9). For the Cool

simulation, at the time that mass from the unbinding event appears to leave (approximately

0.08 yrs, or the 5th red dashed reference line, in Figure 4.7), the gas has a fall-back time

ranging from weeks to years, but the denser gas had a fall-back time of approximately 7

weeks. Common envelope ejection events are dynamical, therefore of the order of months to

years for RGB or AGB stars. Adding the interaction time of a few months, say 20 weeks, 4

events will take place in approximately 2 years. From the point of view of orbital separation

reduction, all our simulations show great promise that fall-back events can help significantly

decrease the orbital separation in a short time.
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6.2 Unbinding of Gas

The simulations have successfully produced some significant in-spiral. However, none of them

resulted in a great deal of unbound gas. As mentioned in Chapter 5, the unbinding efficiencies

of all simulations were of the order of a few percent, with Cool unbinding approximately 5%

of the fall-back mass.

Each unbinding event may have varying efficiency, but based on our simulations there

does not seem to be any clear trend between any of the variables and unbinding efficiency,

with all simulations unbinding a small fraction of the fall-back envelope. However, the closer

the core and companion get, the more the orbital energy that will be released. This is

because the potential of the core and companion grows steeper the closer they are to each

other. Therefore it may be argued that successive fall-backs may result in a higher unbinding

efficiency.

As in the previous section, below we make the assumption that the unbinding efficiency

is constant for each fall-back. Then the fall-back mass of event number n is given by:

Mn = M0(1− eub)n, (6.3)

where M0 is the mass of the initial fall-back disk, eub is the unbinding efficiency of the event,

n is the number of fall-back events, and Mn is the mass of the remaining bound gas after n

fall-back events. Similarly to the previous section, we can calculate the number of fall-back

events necessary to achieve a certain Mn value using:

n =
log Mn

M0

log(1− eub)
. (6.4)

To carry out the calculation we require a final bound mass value. We adopt Mn = 0.1 M�,

on the assumption that some final amount of envelope will remain in a circumbinary disk,

and in Figure 6.1 we estimate fall-back mass of 0.1 M� will not produce any further orbital

reduction for this system.

For the Cool simulation, the initial fall-back mass is 0.38 M� and had an unbinding

efficiency of 5%, therefore this simulation requires an estimated 26 fall-back events. For

Hot1, the initial fall-back mass is 0.33 M� and unbinding efficiency is 3%, which gives 39
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events. Finally for Hot2, the initial fall-back mass is 0.28 M� and the unbinding efficiency of

5%, which required 20 fall-back events. Although the unbinding efficiency could change for

further events, it does at present appear that the number of fall-backs required to eliminate

the envelope would be larger than the number required to reduce the orbital separation to the

required values. This would indicate that common envelope interactions result in mergers.

It does appear that for the fall-back mechanism to work we need fine tuning, resulting

in approximately the same final separation no matter how massive the envelope is. If a

mechanism that results in tuning is not implicit within the gravitational drag that drives the

energy exchange, then we will have to appeal to additional physical mechanisms that can

mine energy out of the stellar envelope. In Section 6.4 we discuss further these possibilities.

6.3 The Effect of Temperature and the Strength of the

Interaction

In Chapter 5 we have investigated the effect of temperature on the fall-back event. The

temperature of the fall-back gas matters because as Ostriker (1999) evaluated analytically,

the maximum gravitational drag experienced by a perturber occurs at M ' 1. As the

temperature dictates the sound speed, it should affect the strength of the interaction between

the core and companion, and the gas. The investigation was initiated when we realised that

the stabilisation temperature of the simulation of Passy et al. (2012) was 50 000 K within

1 AU of the core and companion. This temperature is significantly hotter than the initial

temperature of our Cool simulation (∼350 K), which showed strong shocks at the onset of

the fall-back event. It was then considered that the gas from the common envelope event

would not have enough time to cool significantly in the short return time scales as calculated

by Tocknell et al. (2014) and hence would come back as hot as when it started expanding

away. If so, it would avoid shock heating.

Guessing the temperature of the falling back envelope turned out to be difficult, as shown

by our attempt in Chapter 5. This is because there are a number of factors to consider.

These factors include whether the envelope gas is optically thin or thick, and the cooling
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time function. Though the gas near the core and companion was very hot at the end of the

simulations of Passy et al. (2012), it is possible that the gas farther out would have cooled

adiabatically, so there is probably a temperature gradient over the extended envelope. In

our simulations we only considered the gas being all hot or all cold.

We calculated the initial sound speed of gas in the finishing conditions of Passy et al.

(2012). Using an initial temperature of 50 000 K initial density of 5 × 10−7 g cm−3, mean

molecular mass of µ = 0.6 and adiabatic index γ = 5
3

as we treat the gas as adiabatic, the

sound speed of the gas would be cs = 3.38× 106 cm s−1. With the initial velocity of the core

and companion being 3.82 × 106 cm s−1 and 5.89 × 106 cm s−1, respectively, the core and

companion would begin supersonic. So even if we started at the temperature of 50 000 K,

with either our density of 10−6 g cm−3, or the finishing density of Passy et al. (2012) of

5 × 10−7 g cm−3, the core and companion would be supersonic, and hence it appears some

shock heating would occur anyway.

One peculiarity that was found is that all four production simulations reached the same

final temperature of ∼50 000 K, which is the same as the stabilisation temperature of the

simulation of Passy et al. (2012). It was also found that, the manipulation of the initial

temperature had a large effect on the fall-back mass. By changing the initial temperature

we aimed to investigate the changing gravitational drag on the system. We do find that

the simulations that started more super-sonic showed a greater in-spiral, however it is not

certain whether it was the greater fall-back mass or the higher temperature that were the

main contributors to this. To better understand the relationship between temperature of

the envelope gas and the fall-back event evolution, the fall-back mass should be better con-

strained by changing the initial velocity distribution to allow the same amount of mass to fall

back into the system with varying temperature. Doing so would allow us to carry out a more

thorough study on the strength of the gravitational drag in hydrodynamic computations. It

would also give us the opportunity to determine whether the analytical study of Ostriker

(1999) is representative of our simulations.
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6.4 Conclusions and Future Work

The question we asked in this thesis was whether the return of bound gas from a common

envelope event would provide another opportunity for further energy and angular momentum

transfer from the core and companion to the gas, resulting in a smaller orbital separation and

more unbound gas. Concerning the orbital separation, it does appear that fall-back events

provide another opportunity for further orbital separation reduction, and the reductions we

have witnessed in our fall-back simulations are significant and leading to the conclusion that

a handful of events would reduce the separation to within observed values. However, only a

small fraction of the bound gas becomes unbound in the fall-back process. Assuming that

the unbinding efficiency remains the same, it would take a much larger number of fall-backs

to unbind the entire envelope than to reduce the orbital separation to zero. This would

imply that this common envelope event would result in a merger.

Why do our simulations fail to significantly unbind gas? As suggested in previous studies

(Han et al. 1995; Ivanova et al. 2014), accounting for recombination of the gas may provide

the energy to unbind most of the envelope. We should also consider that dust likely forms

in the expanding common envelope as observed by Tylenda et al. (2011) and Nicholls et al.

(2013) for the only witnessed common envelope event, V1309 Sco. Such dust can help transfer

momentum from the radiation field to the envelope. We know, however, that the solution

to the problem cannot be only an extra energy source, such as ionisation energy. Such extra

energy may unbind the envelope but it will not necessarily reduce the orbital separation in

anything it would widen it due to the high unbinding efficiency of the interaction. On the

other hand a fall-back event, or multiple fall-back events, can reduce the orbital separation

and unbind further envelope gas. However, if our results hold, then even in the presence of

a fall-back event some extra energy source in addition to orbital energy would be needed.

We should repeat our hot simulations and modify the velocity distribution to obtain the

same fall back mass in all simulations only so we would determine whether the temperature

(and hence the Mach number of the core and companion) plays a role in the interaction.

Modifying the velocity distribution may alter the angular momentum of the system, therefore

we should approach this problem carefully.
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With our hydrodynamic simulation code Enzo we had difficulties setting up a disk, and

controlling the amount of mass falling onto the core and companion. As producing fall-

back disks have proven to be difficult it might be desirable to simulate a fall-back disk

with smoothed particle hydrodynamic code. This would provide us with an opportunity to

determine whether our results for a fall-back event can be confirmed via other computational

methods and whether our initial set up may have influences our calculations.

Further resolution tests would also be necessary to verify our results even if Passy et al.

(2012) have carried out several convergence tests with parameters similar to ours. As it is,

we have only carried out resolution tests for the hotter simulations. From these tests we

have concluded that with a higher resolution the eccentricity that develops at the beginning

of the Cool simulation might not be so severe. A further increase in resolution may decrease

it further.

Concerning shocks in our simulations, a better understanding of gravitational drag would

be desirable. This would be carried out by comparison with analytical values of Ostriker

(1999). This will help better understand where the major contributions to gravitational drag

come from in our simulation. Concerning drag force and particle dynamics, magnetic fields

are likely very important in this process and should be considered in future work. We expect

that kilo-Gauss magnetic fields would permeate the gas by the end of the common envelope

in-spiral (Regos & Tout 1995; Tocknell et al. 2014). During the expansion the magnetic

field strength would locally decrease, but likely increase again during the in-fall. This would

make the gas more buoyant than simulated by us with a resulting different dynamic and

drag force on the particles.

Simulating a second fall-back may be insightful. Simulating consecutive fall-back events

may produce an understanding on how the in-fall and unbinding efficiency evolves with the

system. This can be used to confirm whether the assumptions made in Sections 6.1 and 6.2

for estimating the number of necessary fall-back events were valid.

After carrying out a series of simulations of fall-back disks with grid code, we conclude

that our hypothesis is partially confirmed. The results of our simulations found that a fall-

back event does decrease separation of the core and companion. A single fall-back event is

not capable of producing the separations observed in post common envelope binaries, but
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multiple fall-back events will likely continue to shrink the orbital separation to the observed

values. Our results also show that this event does not significantly unbind more gas from the

binary system. Other energy sources, such as that due to recombination, may still be required

to further unbind the envelope. While the envelope energetics need to be studied further,

extra energy alone would not solve the problems of large simulated final separations. One

or more fall-back events are likely needed to bring the binary system closer and we therefore

conclude that these events likely play an important role in the life of a common envelope

interaction.



A
Appendix

In this appendix I report all the Python codes with yt libraries that I have written to analyse

the outputs of the Enzo simulations.

A.1 Derived Fields

A.1.1 Temperature

Our custom temperature field. The temperature is determined using Equation 2.16.

def _Temperature(field, data):

#This find the temperature, assuming the gas is ideal (ie gamma = 5./3.)

#Thermal energy is given in erg/g,

#Density is given in g/cm^3
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#Number density is given in cm^{-3}

gamma = data.pf[‘Gamma"]

Boltzmann_constant = 1.3806488e-16 #erg/K

top= (gamma - 1.) * data["Density"] * data["ThermalEnergy"]

bottom = data["NumberDensity"] * Boltzmann_constant

temperature = top / bottom

inf = np.all(np.isfinite(data["NumberDensity"]))

return temperature

add_field("Temperature", function=_Temperature, units=r"K")

A.2 Analysis Codes

A.2.1 Fall-Back mass

#!/usr/bin/env python

# This script determines the mass of the fall back by simply

# monitoring the mass that falls within the central

# 30% (approximately 43Rsun) of the z-axis, about the orbital plain.

from yt.mods import *

# Import all the time steps for the series:

pf = load("Data Directory")

ts = TimeSeriesData.from_filenames("Data Directory")

# Define arrays:

time = [] # Time in years in the simulation

fall_back_mass = 0.0 # Peak mass within orbital plain region

Total_Mass_above = [] # Total mass in the regions
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Total_Mass_plain = []

Total_Mass_below = []

# Find region bounds:

center = 0.3 # Thickness of central slab in grid units. Set to 30%

lower_upper_bound = 0.5 - center / 2.

upper_lower_bound = 0.5 + center / 2.

lower_center = lower_upper_bound / 2.

upper_center = 1. - (upper_lower_bound / 2.)

it = 0

for pf in ts:

if it < 100:

dd = pf.h.all_data()

# Get current time:

time.append(pf.current_time * pf["years"])

# Define regions in orbital plain and above the plain:

region_above = pf.h.region([0.5, 0.5, upper_center],

[0.0, 0.0, upper_lower_bound], [1.0, 1.0, 1.0])

region_plain = pf.h.region([0.5, 0.5, 0.5],

[0.0, 0.0, lower_upper_bound], [1.0, 1.0, upper_lower_bound])

region_below = pf.h.region([0.5, 0.5, lower_center],

[0.0, 0.0, 0.0], [1.0, 1.0, lower_upper_bound])

# Find the total mass in these regions:

total_mass_above_value = sum(region_above["CellMassMsun"])

total_mass_plain_value = sum(region_plain["CellMassMsun"])

total_mass_below_value = sum(region_below["CellMassMsun"])
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if total_mass_plain_value > peak:

fall_back_mass = total_mass_plain_value

# Append to mass arrays:

Total_Mass_above.append(total_mass_above_value)

Total_Mass_plain.append(total_mass_plain_value)

Total_Mass_below.append(total_mass_below_value)

it = it + 1

print("Fallback disc mass = %s Msun" % fall_back_mass)

# Create Plot

A.2.2 Center of Mass

#!/usr/bin/env python

# Calculates the position of the center of mass (CoM)

# Uses the total mass in the box

from yt.mods import *

import csv

# Import Data

ts = TimeSeriesData.from_filenames("Data Directory")

pf = load("Data Directory")

f = open("coms.csv","r+")

f.write("time, CoM:x, y, z\n")

# Define values:

dim = pf.domain_dimensions[0]
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lu = pf["LengthUnits"] # Length of the box in cm

gl = lu / dim # Length of a cell in cm

#Find the mass of the particles:

dd = pf.h.all_data()

pm1 = dd["ParticleMass"]

for pf in ts:

time_val = pf.current_time

dd = pf.h.all_data()

# Find the position of the particles:

# Multiple the position but the length of the grid

# to give the position in cm, not grid units

pp1 = [dd["particle_position_x"][0] * lu,

dd["particle_position_y"][0] * lu, dd["particle_position_z"][0] * lu]

pp2 = [dd["particle_position_x"][1] * lu,

dd["particle_position_y"][1] * lu, dd["particle_position_z"][1] * lu]

# Set counters:

# The CoM is found by (sum(mass * position)) / (total mass)

# hence the _top variables are summing the (mass * position)

TM = pm[0] + pm[1]

x_top = pm[0] * pp1[0] + pm[1] * pp2[0]

y_top = pm[0] * pp1[1] + pm[1] * pp2[1]

z_top = pm[0] * pp1[2] + pm[1] * pp2[2]

# Get the grids in the data output:

g = pf.h.grids[0]
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# Now calculate CoM of gas:

# This for-loop scrolls through all cells in the grid

for x in range(dim):

for y in range(dim):

for z in range(dim):

# We multiple the cell coordinates by the length of a cell in cm

# We also add half a cell length so the position is

# taken from the center of a cell.

pos = [(x + 0.5) * gl, (y + 0.5) * gl, (z + 0.5) * gl]

mass = g["CellMass"][x, y, z]

# Sums total mass in the box:

TM = TM + mass

x_top = x_top + mass * pos[0]

y_top = y_top + mass * pos[1]

z_top = z_top + mass * pos[2]

# Calculates the position of the CoM for total mass in the box:

x_pos = (x_top / TM)

y_pos = (y_top / TM)

z_pos = (z_top / TM)

com = [x_pos, y_pos, z_pos]

f.write(str(time_val) + "," + str(com[0]) + "," + str(com[1]) +

"," + str(com[2]) + "\n")

A.2.3 Angular Momentum Conservation

#!/usr/bin/env python
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# Calculate the z-components of angular momentum for the simulation,

# using Equation 4.3

from yt.mods import *

import matplotlib.pyplot as plt

import csv

def linear_momentum(mass, velocity):

# Calculates linear momentum p=mv

# Everything should be in cgs

# mass in grams

# velocity in cm/s

# return in gcm/s

px = mass * velocity[0]

py = mass * velocity[1]

pz = mass * velocity[2]

p = [px, py, pz]

return p

def rel_position(pos1, pos2):

# Finds the relative position of the cell position to the CoM.

# Output units are the same as input units.

# This is just to work out the sign of the linear momentum.

x = pos1[0] - pos2[0]

y = pos1[1] - pos2[1]

z = pos1[2] - pos2[2]

rel = [x, y, z]

return rel
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def z_momentum(rel_position, momentum):

# Works out the z-component of the angular momentum

# Using the cross product of radius and linear momentum

# i.e., L = r x p

# Everything in cgs

Lz = rel_position[0] * momentum[1] - rel_position[1] * momentum[0]

return Lz

# Load data:

pf = load("Data Directory")

ts = TimeSeriesData.from_filenames("Data Directory")

#Define values:

dim = pf.domain_dimensions[0]

lu = pf["LengthUnits"] # length units in cm

gl = lu / dim # cm in grid length

#Define lists:

time = [] # Time in simulation

L_tot = [] # Total L_z momentum in box

L_p = [] # Total L_z momentum of particles

L_g = [] # Total L_z momentum of gas

coms = [] # Center of mass of system

header = 0

with open("coms.csv", "r+") as f:

reader = csv.reader(f)

for row in reader:

if header != 0:

x = float(row[1])
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y = float(row[2])

z = float(row[3])

com_val = [x,y,z]

coms.append(com_val)

else:

header = 1

# Find the mass of the particles

dd = pf.h.all_data()

pm1 = dd["ParticleMass"]

it = 0

for pf in ts:

# Reset counters

L_z = 0.

Lp = 0.

Lg = 0.

time_val = pf.current_time

time.append(time_val)

dd = pf.h.all_data()

# Find the position of the particles:

pp1 = [dd["particle_position_x"][0] * lu,

dd["particle_position_y"][0] * lu, dd["particle_position_z"][0] * lu]

pp2 = [dd["particle_position_x"][1] * lu,

dd["particle_position_y"][1] * lu, dd["particle_position_z"][1] * lu]

# Find velocity of the particles:

pv1 = [dd["particle_velocity_x"][0],
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dd["particle_velocity_y"][0], dd["particle_position_z"][0]]

pv2 = [dd["particle_velocity_x"][1],

dd["particle_velocity_y"][1], dd["particle_position_z"][1]]

# Get the center of mass position

com = coms[it]

# Calculate angular momentum of the particles:

p1 = linear_momentum(pm[0], pv1)

p2 = linear_momentum(pm[1], pv2)

rel1 = rel_position(pp1, com)

rel2 = rel_position(pp2, com)

L1 = z_momentum(rel1, p1)

L2 = z_momentum(rel2, p2)

Lp = L1 + L2

L_p.append(Lp)

# Get the grids in the data dump

g = pf.h.grids[0]

# Calculate angular momentum of the gas

for x in range(dim):

for y in range(dim):

for z in range(dim):

pos = [(x + 0.5) * gl, (y + 0.5) * gl, (z + 0.5) * gl]

mass = g["CellMass"][x, y, z]

velocity = [g["x-velocity"][x, y, z],

g["y-velocity"][x, y, z], g["z-velocity"][x, y, z]]

p = linear_momentum(mass, velocity)

rpos = rel_position(pos, com)
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L = z_momentum(rpos, p)

# Adds up all the z-components

# to find the total angular momentum of gas

L_z = L_z + L

# Appends total angular momentum of the gas

Lg = L_z

L_g.append(Lg)

# Calculates total angular momentum of system:

# This is done by summing the particle and gas momentum

Lt = Lg + Lp

L_tot.append(Lt)

it = it + 1

# Create plots

A.2.4 Energy Conservation and Determining Bound and Unbound

Mass

#!/usr/bin/env python

# Calculates the total energy components.

# Also calculates bound and unbound gas within the box.

from yt.mods import *

# Define distance function

def distance(point1, point2):
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# Uses Pythagorus theorem to calculate distance between two points

# Output units are the same as input units

x_diff_sq = (point1[0] - point2[0]) ** 2.

y_diff_sq = (point1[1] - point2[1]) ** 2.

z_diff_sq = (point1[2] - point2[2]) ** 2.

result = (((x_diff_sq) + (y_diff_sq) + (z_diff_sq)) ** (0.5))

return result

# Define Gravitational Potential Energy function:

def Grav_Pot(Mass, cellMass, distance):

# Takes in the masses in g and the separation in cm

# gives energy in erg

top = -6.67259e-8. * Mass * cellMass

bottom = distance

result = top / bottom

return result

# Define Kinetic Energy function:

def Kinetic_Energy(mass, velocity):

# Takes in mass in g and the velocity in cm/s

# gives energy in ergs

result = 0.5 * mass * (velocity ** 2.)

return result

# Define lists:

time = [] # Time in simulation

bound = [] # Bound percentage of gas

unbound = [] # Unbound percentage of gas

KE_g = [] # Kinetic energy of gas

KE_p = [] # Kinetic energy of particle
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KE = [] # Total kinetic energy in box

TE = [] # Thermal energy of gas (Particles carry no thermal energy)

GPE_g = [] # Gravitational potential of gas

GPE_pg = [] # Gravitational potential of particles on gas

GPE_pp = [] # Gravitational potential of particles

GPE = [] # Total gravitational potential energy

Total = [] # Total energy in box

# Import Data:

ts = TimeSeriesData.from_filenames("Data Directory")

pf = load("Data Directory")

# Find size of domain

dim = pf.domain_dimensions[0]

# Define values:

lu = init_pf["LengthUnits"] # Length of box in cm

gl = lu / dim # Length of a cell in cm

# Find the mass of the particles

dd = pf.h.all_data()

pm = dd["ParticleMass"]

for pf in ts:

time_val = pf.current_time

time.append(time_val)

dd = pf.h.all_data()

# Find the position of the particles:
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pp1 = [dd["particle_position_x"][0] * lu,

dd["particle_position_y"][0] * lu, dd["particle_position_z"][0] * lu]

pp2 = [dd["particle_position_x"][1] * lu,

dd["particle_position_y"][1] * lu, dd["particle_position_z"][1] * lu]

# Find velocity of the particles:

pv = (((dd["particle_velocity_x"]) ** 2. +

(dd["particle_velocity_y"]) ** 2. + (dd["particle_position_z"]) ** 2.) ** 0.5)

# Find kinetic energy of particles:

KEp1 = Kinetic_Energy(pm[0], pv[0])

KEp2 = Kinetic_Energy(pm[1], pv[1])

TotalKEp = KEp1 + KEp2

KE_p.append(TotalKEp)

# Find kinetic energy of gas

# The Kinetic Energy field gives energy/volume,

# hence why we multiply by the cell volume

KEg = dd["KineticEnergy"] * dd["CellVolume"]

TotalKEg = sum(KEg)

KE_g.append(TotalKEg)

# Calculate total kinetic energy in box:

TotalKE = TotalKEp + TotalKEg

KE.append(TotalKE)

# Find gravitational potential energy of the particles on each other

pp_sep = distance(pp1, pp2)

TotalGPEpp = Grav_Pot(pm[0], pm[1], pp_sep)

GPE_pp.append(TotalGPEpp)
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# Find gravitational potential energy of the gas:

# Gravitational potential field returns the specific energy

GPEg = dd["Grav_Potential"] * dd["CellMass"]

#divide by two to avoid doubling up the potential measured between points.

TotalGPEg = sum(GPEg) / 2.0

GPE_g.append(TotalGPEg)

# Find thermal energy of gas:

# Again, thermal energy field returns the specific energy.

TE_val = dd["ThermalEnergy"] * dd["CellMass"]

TotalTE = sum(TE_val)

TE.append(TotalTE)

# Get the grids in the data dump

g = pf.h.grids[0]

# Calculate GPE of particles on gas:

TotalGPEpg = 0

for x in range(dim):

for y in range(dim):

for z in range(dim):

position = [(x+0.5)*gl,(y+0.5)*gl,(z+0.5)*gl]

mass = g["CellMass"][x,y,z] #in grams

#Calculate GPE in grid:

radius1 = distance(position, pp1)

radius2 = distance(position, pp2)

GPE1 = Grav_Pot(pm[0], mass, radius1)

GPE2 = Grav_Pot(pm[1], mass, radius2)
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GPEpg_val = GPE1 + GPE2

TotalGPEpg = TotalGPEpg + GPEpg_val

GPEpg.append(GPEpg_val)

# Append total gravitational potential of the gas to list:

GPE_pg.append(TotalGPEpg)

# Calculate total gravitational potential energy in box

TotalGPE = TotalGPEpp + TotalGPEpg + TotalGPEg

GPE.append(TotalGPE)

# Now calculate the total energy of the gas:

totalg = KEg + GPEg + GPEpg + TE_val

# Counter for bound and unbound mass

bound_mass = 0

unbound_mass = 0

# Find unbound mass:

for i in range(totalg.size):

if totalg[i] < 0:

bound_mass = bound_mass + dd["CellMass"][i]

else:

unbound_mass = unbound_mass + dd["CellMass"][i]

bound_percentage = (bound_mass/(sum(dd["CellMass"]))) * 100.

unbound_percentage = (unbound_mass/(sum(dd["CellMass"]))) * 100.

bound.append(bound_percentage)

unbound.append(unbound_percentage)

#Finally calculate the total energy

TotalE = sum(totalg) + TotalKEp + TotalGPEpp
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Total.append(TotalE)

#Create Plots

A.2.5 Fall-Back Time

# !/usr/bin/env python

# Calculates fall back time of gas from edge of grid

# uses Equations 4.4 and 4.5

from yt.mods import *

# Defines function:

def g_accel(mass, radius):

# Takes mass and radius in cgs and returns value in cgs

g_top = (-6.67259e-8) * mass

g_bot = (radius) ** 2.

g = g_top / g_bot

return g

def projectile_height(velocity, time_step, acceleration):

# Finds the change in height for a projectile over a time step.

# All units given in CGS

first_term = velocity * time_step

second_term = 0.5 * acceleration * (time_step ** 2.)

h = first_term + second_term

return h

def velocity(initial_velocity, acceleration, time_step):
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#Calculates the velocity over a given time step. All units given in CGS.

v = initial_velocity + acceleration*time_step

return v

def escape_vel(mass, radius):

# All units are in CGS

v = ((2. * 6.67259e-8 * mass) / radius) ** 0.5

return v

def distance(point1, point2):

#Takes in the position as cm and give the separation in cm

x_diff_sq = (point1[0] - point2[0]) ** 2.

y_diff_sq = (point1[1] - point2[1]) ** 2.

z_diff_sq = (point1[2] - point2[2]) ** 2.

result = (((x_diff_sq) + (y_diff_sq) + (z_diff_sq)) ** (0.5))

return result

def center_of_mass(mass1, mass2, position1, position2):

# Everything in cgs

x_top = mass1 * position1[0] + mass2 * position2[0]

y_top = mass1 * position1[1] + mass2 * position2[1]

z_top = mass1 * position1[2] + mass2 * position2[2]

bot = mass1 + mass2

x = x_top / bot

y = y_top / bot

z = z_top / bot

com = [x, y, z]

return com

# Load data:
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pf = load("Data Directory")

# Define values:

lu = pf[’LengthUnits’] # Length of box in cm

dim = pf.domain_dimensions[0]

edge = [0.0, dim-1]

gl = lu / dim # Length of a cell in cm

dt = 60. * 60. * 24. * 7. # Time step of a week given in seconds

# Find the mass of the particles:

dd = pf.h.all_data()

pm1 = init_dd["ParticleMass"][0]

pm2 = init_dd["ParticleMass"][1]

pmass = pm1 + pm2

#Get the grids in the data dump:

g = pf.h.grids[0]

dd = pf.h.all_data()

#Define Arrays:

cmass = [] # Mass of gas in cell (in grams) leaving along orbital plain

time = [] # Time for gas to fall back into the box

cmass_perp = [] # Mass of gas leaving perpendicular to orbital plain

time_perp = [] # Time for this gas to fall back into the box.

pp1 = [dd["particle_position_x"][0] * lu,

dd["particle_position_y"][0] * lu, dd["particle_position_z"][0] * lu]

pp2 = [dd["particle_position_x"][1]*lu,

dd["particle_position_y"][1] * lu, dd["particle_position_z"][1] * lu]

com = center_of_mass(pm1, pm2, pp1, pp2)
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#Left and right edge:

for x in edge:

for y in range(dim):

for z in range(dim):

position = [(x + 0.5) * gl, (y + 0.5) * gl, (z + 0.5) * gl]

r = distance(position, com)

v_x = g["x-velocity"][x,y,z]

v_y = g["y-velocity"][x,y,z]

v_z = g["z-velocity"][x,y,z]

v_rad = (v_x ** 2. + v_y ** 2. + v_z ** 2.) ** 0.5

ve = escape_vel(pmass, r)

# Only selects bound gas to calculate fall-back time

if v_rad < ve:

t = 0.

cell = g["CellMass"][x, y, z]

cmass.append(cell)

# Sets initial radius to the edge of the box for the cell

r_0 = r

a = g_accel(pmass, r)

# While the gas is outside the computational domain

while r > r_0:

height = projectile_height(v_rad, dt, a)

r = r + height

v_rad = velocity(v_rad, a, dt)

a = g_accel(pmass, r)

t = t + dt

time.append(t / dt)

#Front and back edge:
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print "For front and back edge"

for x in range(dim):

for y in edge:

for z in range(dim):

position = [(x + 0.5) * gl, (y + 0.5) * gl, (z + 0.5) * gl]

r = distance(position, com)

v_x = g["x-velocity"][x,y,z]

v_y = g["y-velocity"][x,y,z]

v_z = g["z-velocity"][x,y,z]

v_rad = (v_x ** 2. + v_y ** 2. + v_z ** 2.) ** 0.5

ve = escape_vel(pmass, r)

# Only selects bound gas to calculate fall-back time

if v_rad < ve:

t = 0.

cell = g["CellMass"][x, y, z]

cmass.append(cell)

# Sets initial radius to the edge of the box for the cell

r_0 = r

a = g_accel(pmass, r)

# While the gas is outside the computational domain

while r > r_0:

height = projectile_height(v_rad, dt, a)

r = r + height

v_rad = velocity(v_rad, a, dt)

a = g_accel(pmass, r)

t = t + dt

time.append(t / dt)

#Top and bottom edge:

print "For top and bottom edge"
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for x in range(dim):

for y in range(dim):

for z in edge:

position = [(x + 0.5) * gl, (y + 0.5) * gl, (z + 0.5) * gl]

r = distance(position, com)

v_x = g["x-velocity"][x,y,z]

v_y = g["y-velocity"][x,y,z]

v_z = g["z-velocity"][x,y,z]

v_rad = (v_x ** 2. + v_y ** 2. + v_z ** 2.) ** 0.5

ve = escape_vel(pmass, r)

# Only selects bound gas to calculate fall-back time

if v_rad < ve:

t = 0.

cell = g["CellMass"][x, y, z]

cmass_perp.append(cell)

# Sets initial radius to the edge of the box for the cell

r_0 = r

a = g_accel(pmass, r)

# While the gas is outside the computational domain

while r > r_0:

height = projectile_height(v_rad, dt, a)

r = r + height

v_rad = velocity(v_rad, a, dt)

a = g_accel(pmass, r)

t = t + dt

time_perp.append(t / dt)

# Create Plot
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A.2.6 Mach Number Calculations

# !/usr/bin/env python

# Find the velocity and Mach number of the particles, and local sound speed.

# Define lists:

time = [] # Time in the simulation

grids_1 = [] # Selected grids around particle 1 to calculate sound speed

grids_2 = [] # Selected grids around particle 2 to calculate sound speed

mach_1 = [] # Mach number of particle 1

mach_2 = [] # Mach number of particle 2

ss_1 = [] # Local sound speed of gas around particle 1

ss_2 = [] # Local sound speed of gas around particle 2

v_1 = [] # Corrected velocity of particle 1 for bulk velocity

v_2 = [] # Corrected velocity of particle 2 for bulk velocity

# Import data:

ts = TimeSeriesData.from_filenames("Data Directory")

pf = load ("Data Directory")

# Define values:

dim = pf.domain_dimensions[0]

lu = pf["LengthUnits"] # Length of the box in cm

gl = lu/dim # Length of a cell in cm

for pf in ts:

time_val = pf.current_time

time.append(time_val)

dd = pf.h.all_data()
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g = pf.h.grids[0]

# Find the position of the particles:

# Round of particle position to nearest cell:

pp1 = [int(round(dd["particle_position_x"][0] * dim)),

int(round(dd["particle_position_y"][0] * dim)),

int(round(dd["particle_position_z"][0] * dim))]

pp2 = [int(round(dd["particle_position_x"][1] * dim)),

int(round(dd["particle_position_y"][1] * dim)),

int(round(dd["particle_position_z"][1] * dim))]

# Find velocity of the particles:

pv1 = [dd["particle_velocity_x"][0],

dd["particle_velocity_y"][0], dd["particle_velocity_z"][0]]

pv2 = [dd["particle_velocity_x"][1],

dd["particle_velocity_y"][1], dd["particle_velocity_z"][1]]

# Find maginitude of velocity (i.e. speed)

ps1 = ((pv1[0]) ** 2. + (pv1[1]) ** 2. + (pv1[2]) ** 2.) ** 0.5

ps2 = ((pv2[0]) ** 2. + (pv2[1]) ** 2. + (pv2[2]) ** 2.) ** 0.5

pv_1.append(ps1)

pv_2.append(ps2)

# find center of box around the particles with which the sound speed

# is calculated based on the velocity vector of particle.

# We want to select the cells IN FRONT of the particle.

# For particle 1:

if pv1[0] > 0.0:

cc1x = pp1[0] + 2

cc1xn = pp1[0] + 1
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elif pv1[0] < 0.0:

cc1x = pp1[0] - 2

cc1xn = pp1[0] - 1

else:

cc1x = pp1[0]

cc1xn = pp1[0]

if pv1[1] > 0.0:

cc1y = pp1[1] + 2

cc1yn = pp1[1] + 1

elif pv1[1] < 0.0:

cc1y = pp1[1] - 2

cc1yn = pp1[1] - 1

else:

cc1y = pp1[1]

cc1yn = pp1[1]

if pv1[2] > 0.0:

cc1z = pp1[2] + 2

cc1zn = pp1[2] + 1

elif pv1[2] < 0.0:

cc1z = pp1[2] - 2

cc1zn = pp1[2] - 1

else:

cc1z = pp1[2]

cc1zn = pp1[2]

cc1 = [cc1x, cc1y, cc1z]

cc1n = [cc1xn, cc1yn, cc1zn]

# For particle 2:

if pv2[0] > 0.0:

cc2x = pp2[0] + 2



118 Appendix

cc2xn = pp2[0] + 1

elif pv2[0] < 0.0:

cc2x = pp2[0] - 2

cc2xn = pp2[0] - 1

else:

cc2x = pp2[0]

cc2xn = pp2[0]

if pv2[1] > 0.0:

cc2y = pp2[1] + 2

cc2yn = pp2[0] + 1

elif pv2[1] < 0.0:

cc2y = pp2[1] - 2

cc2yn = pp2[0] - 1

else:

cc2y = pp2[1]

cc2yn = pp2[0]

if pv2[2] > 0.0:

cc2z = pp2[2] + 2

cc2zn = pp2[2] + 1

elif pv2[2] < 0.0:

cc2z = pp2[2] - 2

cc2zn = pp2[2] - 1

else:

cc2z = pp2[2]

cc2zn = pp2[2]

cc2 = [cc2x, cc2y, cc2z]

cc2n = [cc2xn, cc2yn, cc2zn]

# Get the relevant grids, the sound speed, and bulk velocities:

ssg_1 = []
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ssg_2 = []

bvx_1 = []

bvy_1 = []

bvz_1 = []

bvx_2 = []

bvy_2 = []

bvz_2 = []

# For particle 1:

for x in range(cc1[0] - 1, cc1[0] + 2):

for y in range(cc1[1] - 1, cc1[1] + 2):

for z in range(cc1[2] - 1, cc1[2] + 2):

if [x, y, z] != cc1n:

ssg1 = g["SoundSpeed"][x,y,z]

ssg_1.append(ssg1)

bvx = g["x-velocity"][x,y,z]

bvx_1.append(bvx)

bvy = g["y-velocity"][x,y,z]

bvy_1.append(bvy)

bvz = g["z-velocity"][x,y,z]

bvz_1.append(bvz)

# Find average sound speed and bulk velocity of gas around particle 1

ss1 = sum(ssg_1) / len(ssg_1)

ss_1.append(ss1)

bvx1 = sum(bvx_1) / len(bvx_1)

bvy1 = sum(bvy_1) / len(bvy_1)

bvz1 = sum(bvz_1) / len(bvz_1)

bv1 = [bvx1, bvy1, bvz1]

# For particle 2:

for x in range(cc2[0]-1, cc2[0]+2):
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for y in range(cc2[1]-1, cc2[1]+2):

for z in range(cc2[2]-1, cc2[2]+2):

if [x,y,z] != cc2n:

ssg2 = g["SoundSpeed"][x,y,z]

ssg_2.append(ssg2)

bvx = g["x-velocity"][x,y,z]

bvx_2.append(bvx)

bvy = g["y-velocity"][x,y,z]

bvy_2.append(bvy)

bvz = g["z-velocity"][x,y,z]

bvz_2.append(bvz)

# Find average sound speed and bulk velocity of gas around particle 2

ss2 = sum(ssg_2) / len(ssg_2)

ss_2.append(ss2)

bvx2 = sum(bvx_2) / len(bvx_2)

bvy2 = sum(bvy_2) / len(bvy_2)

bvz2 = sum(bvz_2) / len(bvz_2)

bv2 = [bvx2, bvy2, bvz2]

# Correcting velocity of particles for bulk velocity of the gas

v1 = ((pv1[0] - bv1[0]) ** 2. + (pv1[1] - bv1[1]) ** 2. +

(pv1[2] - bv1[2]) ** 2.) ** 0.5

v2 = ((pv2[0] - bv2[0]) ** 2. + (pv2[1] - bv2[1]) ** 2. +

(pv2[2] - bv2[2]) ** 2.) ** 0.5

v_1.append(v1)

v_2.append(v2)

m1 = v1/ss1

m2 = v2/ss2

mach_1.append(m1)
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mach_2.append(m2)
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