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Abstract
Inferring characteristics of authors from their textual data, often termed authorship profiling, is
typically treated as a classification task, where an author is classified with respect to characteristics
including gender, age, native language, and so on. This profile information is often of interest
to marketing organisations for product promotional reasons as well as governments for crime
investigation purposes.

The thesis focuses on the specific task of inferring the native language of an author based on
texts written in a second language, typically English; this is referred as native language identifica-
tion (NLI). Since the seminal work of Koppel et al. in 2005, this task has been primarily tackled
as a text classification task using supervised machine learning techniques. Lexical features, such
as function words, character n-grams, and part-of-speech (PoS) n-grams, have been proven to be
useful in NLI. Syntactic features, on the other hand, in particular those that capture grammatical
errors, which might potentially be useful for this task, have received little attention. The thesis
explores the relevance of concepts from the field of second language acquisition, with a focus on
those which postulate that constructions of the native language lead to some form of characteristic
errors or patterns in a second language.

In the first part of the thesis, an experimental study is conducted to determine the native lan-
guage of seven different groups of authors in a specially constructed corpus of non-native English
learners (International Corpus of Learner English). Three commonly observed syntactic errors
that might be attributed to the transfer effects from the native language are examined — namely,
subject-verb disagreement, noun-number disagreement, and misuse of determiners. Based on the
results of a statistical analysis, it is demonstrated that these features generally have some predictive
power, but that they do not improve the level of best performance of the supervised classification,
in comparison with a baseline using lexical features.

In the second part, a second experimental study aims to learn syntax-based errors from syntac-
tic parsing, with the purpose of uncovering more useful error patterns in the form of parse struc-
tures which might characterise language-specific ungrammaticality. The study demonstrates that
parse structures, represented by context-free grammar (CFG) production rules and parse reranking
features, are useful in general sentence grammaticality judgement. Consequently, adapting these
syntactic features to NLI, with the use of parse production rules in particular, a statistically signif-
icant improvement over the lexical features is observed in the overall classification performance.

The final part of the thesis takes a Bayesian approach to NLI through topic modeling in two
ways. Topic modeling, using a probabilistic CFG formulation, is first taken as a feature clustering
technique to discover coherent latent factors (known as ‘topics’) that might capture predictive
features for individual native languages. The topics, rather than the word n-grams that are typical
of topic modeling, consist of bi-grams over part of speech. While there is some evidence of topic
cluster coherence, this does not improve the classification performance. The second approach
explores adaptor grammars, a hierarchical non-parametric extension of probabilistic CFGs (and
also interpretable as an extension of topic modeling), for feature selection of useful collocations.
Adaptor grammars are extended to identify n-gram collocations of arbitrary length over mixtures
of PoS and function words, using both maxent and induced syntactic language model approaches
to NLI classification. It is demonstrated that the learned collocations used as features can also
improve over the baseline (lexical) performance, although success varies with the approach taken.

xiii
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Chapter 1

Introduction

Back in the 19th century, the work of Mendenhall (1887) marked the beginning of the field of

stylometry (in which statistical approaches are used for stylistic analysis), attempting to discover

the true author of Shakespearean works through frequency distribution of varying word lengths.

Following the authorship study on the twelve disputed Federalist Papers by Mosteller and Wallace

(1964), a substantive number of pieces of research have emerged to explore various statistical and

computational approaches to stylistic analysis, also commonly known as authorship analysis (Sta-

matatos, 2009; Koppel et al., 2009). A particular subfield that emerged from this broader research

area is the attempt to profile authors with respect to their characteristics or personal traits (such

as gender, age, native language, and so forth), typically under circumstances where no known

candidates are available. Profile information as such is often of interest to, for example, market-

ing organisations for product promotional reasons as well as governments for crime investigation

purposes.

Stylistic behaviours and characteristics of authors can be gauged from their compositions (both

texts and speeches). To give some insight, we present a few notable examples. Revisiting the clas-

sic disputed Federalist Papers, it was discovered that words such as enough, while, and upon

appear to be the unique markers for Alexander Hamilton, while the word whilst seems to be ex-

clusively used by James Madison (Mosteller and Wallace, 1964), as seen in Table 1.1. These are

evident in the two excerpts (Figures 1.1 and 1.2)1 illustrating how often upon and whilst occur in

the corresponding papers produced by Hamilton and Madison, respectively.

Author gender, for instance, is predictable through a selection of keywords as investigated in

Argamon et al. (2003), in which the extent of use of pronouns and certain types of noun modi-

fiers (such as determiners and quantifiers) have been shown to differ between male- and female-

1The Federalist Papers are available at http://thomas.loc.gov/home/histdox/fedpapers.html.

1

http://thomas.loc.gov/home/histdox/fedpapers.html
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Table 1.1: Occurrence rates per 1,000 words in the Federalist Pa-
pers (Mosteller and Wallace, 1964)

enough while whilst upon Total words in
1,000’s

Hamilton 0.59 0.26 0 2.93 45.7
Madison 0 0 0.47 0.16 51.0
Disputed 0 0 0.34 0.08 23.9
Joint 0.18 0 0.36 0.36 5.5

Figure 1.1: An excerpt from the Federalist Paper No.7 which was known to be written by Hamilton

Figure 1.2: An excerpt from the disputed Federalist Paper No.57 which was shown to be written
by Madison
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Table 1.2: Scores of feminine and masculine keywords by The
Gender Genie

Austen’s Milton’s
Feminine Masculine Feminine Masculine

with 208 around 0 with 0 around 0
if 94 what 0 if 47 what 70
not 81 more 0 not 135 more 0
where 0 are 56 where 0 are 84
be 102 as 46 be 102 as 299
when 34 who 0 when 0 who 38
your 0 below 0 your 0 below 0
her 135 is 8 her 0 is 24
we 16 these 0 we 32 these 0
should 0 the 168 should 14 the 126
she 78 a 72 she 0 a 114
and 60 at 30 and 60 at 6
me 0 it 24 me 0 it 18
myself 0 many 0 myself 0 many 6
hers 0 said 0 hers 0 said 0
was 7 above 0 was 2 above 0

to 28 to 18
815 432 392 803

authored texts. Using an online gender prediction system, The Gender Genie2, with a short excerpt

from the two classical texts — Jane Austen’s Northanger Abber (Figure 1.3) and John Milton’s

Aeropagitica (Figure 1.4)3 — it is evident that Austen and Milton used certain keywords that re-

flect their gender. Table 1.2 presents the scores assigned to the feminine and masculine keywords

used by each author; it is apparent that Austen has a higher score ratio of feminine over masculine

while the opposite holds for Milton.

The type of authorship analysis that most closely relates to the studies set out in this thesis is

to uncover the native background of an author. Considering the following two sentences:

(1.1) a. This is a very difficult to solve problem. (Swan and Smith, 2001)

b. This is a very difficult problem to solve.

It is obvious that the first sentence as opposed to the second is not native-like and is ungrammatical

with respect to standard English grammar. The noun modifier in 1.1a appears at the position

before the head noun which violates the language system of English which typically uses post-

modifiers. The ungrammatical feature indicates that the first sentence is most likely to be produced

2The Gender Genie was implemented using the algorithm developed by Argamon et al. (2003) and is available at
http://bookblog.net/gender/genie.php.

3Both Milton’s and Austen’s texts were obtained from http://www.teachit.co.uk/armoore/lang/
gender.htm#spotting.

http://bookblog.net/gender/genie.php
http://www.teachit.co.uk/armoore/lang/gender.htm#spotting
http://www.teachit.co.uk/armoore/lang/gender.htm#spotting
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Figure 1.3: An excerpt from Jane Austen’s Northanger Abber (1818) analysed by The Gender
Genie

by one whose native language uses pre-modifiers; in this regard, Chinese and Japanese are possible

candidates.

Of many of the author characteristics that are of interest, the task of inferring authors’ native

language has been one gaining much attention in recent years. Native language identification

(NLI) is the task of determining the native language (often referred to as the first language) of an

author (or a writer) based on texts written in a second language, most commonly English.4 The

task is to discover different features through comparisons of texts written by authors of different

native language backgrounds. Since the seminal work of Koppel et al. (2005), the approaches

taken to address this have been primarily as a text classification task using various supervised

machine learning techniques. Lexical features, such as function words, character n-grams, and

part-of-speech (PoS) n-grams, have been proven to be useful in the NLI paradigm by Koppel et al.

(2005) and other subsequent works that followed (Estival et al., 2007; Tsur and Rappoport, 2007).

Syntactic features, on the other hand, in particular those that capture grammatical errors, which

4We note that one’s native language can be inferred from spoken utterances in a second language (in the form of speech
transcripts) as demonstrated in an early work by Tomokiyo and Jones (2001). However, only written texts in a second
language — English to be precise — is the central focus of this thesis.
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Figure 1.4: An excerpt from John Milton’s Aeropagitica (1644) analysed by The Gender Genie

might potentially be useful for this task, have not received similar degree of attention; Koppel et al.

(2005) suggested that they could potentially be useful but left their exploration for future work.

The underlying idea that syntactic features — and in particular syntactic errors — might cap-

ture characteristics of a particular native language is drawn from the fundamental assumption of

one of the early theoretical frameworks of second language acquisition (SLA) put forward by Lado

(1957) more than half a century ago. Taking the weaker form of Lado’s Contrastive Analysis Hy-

pothesis (CAH), it is postulated that constructions of the native language, to some extent, may be

reflected in some form of characteristic errors or patterns in second language constructions. The

influence of the native language on second language productions can also manifest in other ways,

such as overuse (overproduction) or avoidance (underproduction) of particular constructions in the

second language (Odlin, 1989; Ellis, 2008). Non-native speakers of a particular second language

tend to resort to more simple sentence constructs (and hence overuse) to avoid using those that they

perceive as complicated and less confident with. It is these sorts of syntactic characteristics that

this thesis intends to explore, and the extent to which they serve as helpful clues for identifying

the native language of the writers based on their written compositions in a second language.

General problem statement. The broad intention of this thesis is to investigate whether syntax,

in the form of syntactic errors and other manifestations, as inspired by second language acqui-

sition (SLA) theories of cross-linguistic influence, is at all useful in the task of native language
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identification (NLI).

1.1 Use Cases

As well as the innate interest of investigating the nature of cross-linguistic influence, there are

potential applications. We briefly discuss two of them.

Second language learning. Within the paradigm of second language acquisition (SLA) studies,

understanding the native language of second or foreign language learners is undoubtedly crucial in

identifying the challenges faced by learners of diverse native language backgrounds (Ellis, 2008;

Gass and Selinker, 2008). With better knowledge about which of the errors are indeed the effects

of a specific native language and which are consequences of the more general process of learning

a language, more informed pedagogy that better suits the learners can be applied accordingly.

Since the introduction of computer-assisted language learning (CALL) (Levy, 1997), there

has been a growing interest in automated error detection and correction research aiming to assist

second or foreign language teaching and learning. An abundance of studies exploring various

approaches, ranging from rule-based to statistical approaches, to detecting as well as correcting

learner errors have constantly emerged at least for the last two decades. Leacock et al. (2010)

provides an extensive survey on many of the related works, in particular those that target aspects

that are amongst the most challenging of the English language system for non-native learners —

namely, articles, prepositions, collocations, and orthography (spelling). In relation to this, there

has been a recurring workshop, Building Educational Applications (BEA) (Tetreault et al., 2012)

and a recent shared task, Helping Our Own (HOO) (Dale et al., 2012) devoted to this field of

research. Development of end-to-end CALL systems, such as Criterion5 by Educational Testing

Service (Burstein et al., 2004) (Figure 1.5) and ESL Assistant by Microsoft Research (Gamon

et al., 2008), as well as writing assistance systems (Hermet and Désilets, 2009; Chen et al., 2012)

has also been underway.

Many of the previous studies have not been widely taking the learners’ native language into

account for the tasks of detecting and correcting the learner errors. Only in recent years, the

knowledge of the native language has started gaining in importance and being incorporated into

detection and correction mechanisms (Hermet and Désilets, 2009; Tetreault and Chodorow, 2009;

Gamon, 2010; Han et al., 2010; Dahlmeier and Ng, 2011; Rozovskaya and Roth, 2011). In this

regard, our work presented in this thesis can be complementary. Through native language identifi-

cation informed by cross-linguistic effects, different types of ungrammatical error and unidiomatic

5The demonstration of Criterion is available at http://www.ets.org/criterion/higher_ed/demo/.

http://www.ets.org/criterion/higher_ed/demo/
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Figure 1.5: A screen shot of the interface of Criterion by Educational Testing Service

construction in a second language produced by learners of diverse native language backgrounds

can be gauged with a fair degree of confidence. It is likely that learners whose first langauge is

similar to the second language (e.g. French versus English) produce certain sorts of errors that are

different from those whose the first language is unrelated to the second language (e.g. Chinese ver-

sus English). As for instance, native English speakers normally refer to take medicine in contrast

to Chinese learners of English who tend to say eat medicine. Likewise, Japanese speakers would

naturally use drink medicine with the influence of their cultural background. These expressions

are regarded as unidiomatic given that they do not exhibit native-like constructions, although they

are syntactically acceptable.6

Phishing profiling. A less direct possible application is that of phishing profiling. A phishing

medium (such as e-mail or a website) is designed to deceive victims (primarily Internet users) into

giving away personal confidential details through social engineering techniques (Myers, 2007).

An example of a phishing e-mail is given in Figure 1.6.

There have been some research efforts focusing on authorship profiling in the forensic context

specifically by utilising various forms of stylometric features, ranging from lexical to structural

and content-specific, serving as individual stylistic discriminators (de Vel et al., 2001; Zheng et al.,

2003; Fette et al., 2007; Abbasi and Chen, 2008). These research efforts have demonstrated the

6From the perspective of SLA, idiomaticity is in connection with the ability to express fluently and accurately at the
same time Robinson (2013).
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Figure 1.6: A example of a phishing e-mail

potential of authorship analysis in identifying criminal suspects where convincing results are not

implausible, in which high level of accuracies up to 95% are achievable under the supervised

learning setting with the availability of sufficient amount of training data and potential suspects

(de Vel et al., 2001; Abbasi and Chen, 2008). However, under the worst case scenario when neither

training data nor potential suspects are available such as the case of phishing attacks, unsupervised

learning is more appropriate. There have been a number of recent studies which attempt to profile

phishing texts using various types of clustering methods (Ma et al., 2009; Layton and Watters,

2009; Layton et al., 2010; Iqbal et al., 2010).

The sorts of syntactic characteristics particular to a native language, as investigated in this

thesis, could potentially contribute useful features to this task. Although phishing e-mails gener-

ally aim to be formal, they are often flawed with grammatical and orthographic errors as well as

unidiomatic (non-native like) expressions and malapropisms (such as the phrase of the bonafied

owner in the given figure) (Schaffer, 2012). By only identifying the native language, this might

not suffice in pinning down the real attackers (i.e. the phishers). Nonetheless, such information

could potentially be useful to law enforcement agencies and could be used in conjunction with

other clues to assist investigation by narrowing down potential suspects.
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1.2 The Sub-Problems and Approaches

As stated above, the broad intention of this thesis is to investigate whether syntax, in the form of

syntactic errors and other manifestations, as inspired by second language acquisition (SLA) theo-

ries of cross-linguistic influence, is at all useful in the task of native language identification (NLI).

The overall framework for identifying the writers’ native language rests on the typical supervised

machine learning techniques to text classification. We specifically investigate the classification

of written texts with respect to the writers’ native language through exploiting different syntactic

patterns manifested in second language productions, which include grammatical errors as well as

overuse and avoidance of certain syntactic constructions.

The first of the three approaches taken is an exploratory study to investigate whether syntactic

features — syntactic errors to be precise — are at all potentially useful for NLI. Three commonly

observed syntactic errors that may be attributed to the transfer effects from the native language

are investigated — namely, subject-verb disagreement, noun-number disagreement, and misuse of

determiners. A descriptive statistical analysis is performed to gauge the extent to which the number

of errors manifested by writers of different native language backgrounds differ. Subsequently, the

distributions of the three selected errors are used as features in a supervised machine learning-

based classification to identify the writers’ native language. The contributions of these syntactic

features are then compared with those lexical features (i.e. function words, character n-grams,

and PoS n-grams) that have been proven useful in previous work (Koppel et al., 2005; Tsur and

Rappoport, 2007; Estival et al., 2007). As a preliminary study, this approach is limited to only

three possible types of syntactic error that are manually identified.

To further explore the usefulness of syntactic features, the second approach taken uses sta-

tistical parsers, with the purpose of uncovering more useful error patterns in the form of parse

structures and distributions over parse structures which might characterise language-specific un-

grammaticality. Parse structures, represented by context-free grammar (CFG) production rules and

features used for parse reranking (Charniak and Johnson, 2005), are first tested on a more general

task for judging the grammatical status of sentences to see whether they can detect grammatical

errors at all. Subsequently, these syntactic features are adapted to the task of NLI. As compared

to the first approach addressing only three syntactic error types, such an approach may capture

other syntactic productions in addition to errors — overproduction and underproduction of certain

syntactic constructions, in particular.

The third and last approach to be investigated in this thesis explores unsupervised learning. It

takes a Bayesian approach to NLI through topic modeling in two ways. Adopting the probabilis-

tic context-free grammar (PCFG) formulation of Johnson (2010), topic modeling is first taken as



10 CHAPTER 1. INTRODUCTION

a feature clustering technique to discover coherent latent factors (often known as ‘topics’ under

a typical topic modeling setting) that might capture predictive features for individual native lan-

guages by grouping distributions of parse structure components into possibly interpretable topics.

The second method explores an extension of topic modeling — adaptor grammars (a hierarchical

non-parametric extension of PCFGs) — for feature selection of characteristic collocations. For the

purpose of NLI, adaptor grammars are extended in a number of ways to discover n-gram colloca-

tions of arbitrary length over the purely PoS type as well as mixtures of PoS and function words.

In a sense, these are approximations to the syntactic structures used in the previous approach in

the thesis. The NLI classification task with n-gram collocations as features is then tackled through

conventional machine learning-based classification techniques and also syntactic languange mod-

eling ideas.

1.3 The Corpus

All the native language identification tasks in this thesis are performed on written texts extracted

from the International Corpus of Learner English (ICLE) compiled by Granger et al. (2009), the

purpose of which is to examine the English writings of non-native English learners of diverse

backgrounds. All the contributors to the corpus were university students in their third- and fourth-

year of undergraduate studies and were claimed to possess similar levels of English proficiency,

ranging from intermediate to advanced. It is worth mentioning that English to the contributors is

a foreign rather than a second language given that English is learned in a non-English speaking

country and primarily in a classroom setting.

The first initial version of the corpus consists of 11 sub-corpora of English essays contributed

by the university students from various countries whose native languages are mostly from the Eu-

ropean and Slavic groups — namely, Bulgarian, Czech, Dutch, Finnish, French, German, Italian,

Polish, Russian, Spanish and Swedish. The second extended version includes five other native

languages, including two Asian languages — Chinese and Japanese in addition to Norwegian,

Turkish and Tswana. In this extended version, there are 6,085 essays with a total number of 3.7

million words and each essay has an average length of 617 words. The majority of the essays are

argumentative (up to 91%) and the remaining is literary.

Taking Koppel et al. (2005) as a point of reference, the native languages to be investigated

throughout this thesis include the five Indo-European languages as examined by them — Bulgar-

ian, Czech, Russian, French, and Spanish, along with the only two Asian languages from the newer

version of the corpus (the second version) — Chinese and Japanese. The latter two languages are

of particular interest given that they are of different language family groups as compared to the
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others, and they also appear to be somewhat understudied in the context of native language iden-

tification.

1.4 Outline of the Thesis

The remainder of the thesis is organised into five chapters as follows.

• Chapter 2: This chapter introduces the key concepts and reviews the related work of the

main topics of interest in this thesis: firstly on authorship analysis; and followed by the

central focus of the thesis, native language identification. The last section of this chapter

pays its attention to the concepts of second language acquisition that attempt to account for

cross-linguistic effects in particular.

• Chapter 3: The first of the three approaches investigated in this thesis is presented in this

chapter, after replicating the work of Koppel et al. (2005) for use as a baseline. This ex-

ploratory chapter first examines the potential usefulness of three manually identified syntac-

tic errors through statistical analysis and subsequently use them as features for the classifi-

cation task of NLI.

• Chapter 4: This chapter covers the approach of exploiting parse structures as classification

features through syntactic parsing. This chapter is structured into two sections. In the first

part, it presents the more general task of examining the degree of usefulness of parse struc-

tures for sentence grammaticality judgement. The second part incorporates parse structures

into the NLI task.

• Chapter 5: This chapter discusses the adaptation of topic modeling into NLI classification:

first as a form of feature dimensionality reduction technique (clustering) and then as a form

of feature selection to discover n-gram collocations of arbitrary length. The latter idea is

realised through the extension of adaptor grammars.

• Chapter 6: This concluding chapter brings together the results of the three main compo-

nents of the thesis, and reflects on various limitations and possible extensions.





Chapter 2

Literature Review

In this chapter, we will first discuss the broader problem of authorship analysis and its subfields

which include the widely studied tasks of authorship attribution and authorship profiling. We will

then dive into the main focus of the thesis — native language identification (NLI) — which can

be seen as a specific subtask of authorship profiling. Finally, we will review both some founda-

tional and more recent work in second language acquisition (SLA), which this thesis draws on in

developing the approaches to NLI of the subsequent chapters.

2.1 Authorship Analysis

Authorship analysis, in a broader sense, is a process of investigating the unique characteristics of

a created work in order to derive conclusions on its authorship. It is rooted in a field of linguistic

research — stylometry — in which statistical methods are used for literary style analysis (Holmes,

1998). In a more specific sense, the study of authorship analysis can be categorised into three major

subfields according to the past literature: authorship identification, authorship characterisation,

and similarity detection (Gray et al., 1997; Zheng et al., 2006; Stamatatos, 2009).

Authorship identification, also known as authorship attribution within the linguistic commu-

nity, determines the author of a given anonymous work (such as a written text), by comparing other

work produced by the same author. A predefined set of candidate authors is usually assumed. This

subfield of authorship analysis originated from the attribution work of Mendenhall dating back to

the mid 19th century, which studied the authorship of Shakespearean works attributed to Bacon,

Marlowe, and Shakespeare based on the hypothesis of the British logician, Augustus de Morgan,

suggesting that authorship problems can be settled through comparison of authors’ average word

length in composition (Mendenhall, 1887). A more recent prominent example of authorship iden-

13
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tification is that of the analysis of the twelve disputed Federalist Papers claimed variously to be

written by Madison and Hamilton (Mosteller and Wallace, 1964). Through several statistical meth-

ods including Bayesian inference (essentially the Naïve Bayes classification at present), Mosteller

and Wallace (1964) concluded that the most likely author of the disputed papers was Madison,

which agreed with the findings of historians. Since then, this seminal work has served as the

benchmark for all the subsequent works investigating the Federalist Papers. While these histori-

cally important documents became a common test bed for authorship analysis in the early years,

various other domains have been explored ranging from classic literature (Ledger and Merriam,

1994; Gamon, 2004) and biblical studies (García and Martín, 2007; Koppel et al., 2011a) to scien-

tifiic works (Bergsma et al., 2012; Feng et al., 2012) and social media (Schler et al., 2006; Rao and

Yarowsky, 2010). On the whole, authorship identification remains the most active research area

compared to the other subfields of authorship analysis, as presented in a comprehensive summary

compiled by Zheng et al. (2006).

In contrast to authorship identification, authorship characterisation is when there is no known

candidate set available. This challenging subfield of authorship analysis exploits the sociolinguis-

tic observation that predicts the characteristics or traits of different classes of authors in order to

generate author profiles, which can then be used to predict an author’s identity. It is therefore

also called authorship profiling. Estival et al. (2007) categorise author traits (attributes) as either

demographic or psychometric. Demographic traits include gender, age, country of origin, level of

education, as well as native language; psychometric traits for Estival et al. (2007) cover charac-

teristics such as the commonly known ‘Big Five’ personality traits: openness, conscientiousness,

extraversion, agreeableness, as well as neuroticism. Most research into authorship profiling mainly

focuses on the prediction of a small subset of these traits with gender and age being the two widely

studied ones (de Vel et al., 2001; Koppel et al., 2002; Burger and Henderson, 2006; Schler et al.,

2006); the study by Estival et al. (2007) predicted the largest number of traits: up to ten in total.

Another similar piece of research by Argamon et al. (2006), looked at fewer traits (these include

age, gender, and native language, as well as neuroticism); their work identified the most discrimi-

nating features for each predicted trait based on the measure of information gain. In recent years,

there has been growing interest in other author attributes: for instance, to investigate whether an

author is a native or non-native speaker of English (Garera and Yarowsky, 2009; Bergsma et al.,

2012) and also the ethnicity of the author (Eisenstein et al., 2011; Rao et al., 2011).

A third subfield of authorship analysis — similarity detection — compares multiple pieces of

anonymous work and evaluates the degree of similarity between them. This task of authorship

analysis does not necessarily conclude by identifying the author(s) in question. An instance of this

has been investigated by Koppel et al. (2011b) where they found that similarity-based methods
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are helpful for situations in which the set of known candidates is extremely large and also when

the actual author might not be covered. Similarity detection has been used to assist humans in

plagiarism detection which attempts to detect whether a piece of work is a replica of an original

piece (Gray et al., 1997). The issue of plagiarism has been extensively studied such as the works

of Clough (2003) and zu Eissen and Stein (2006) and many approaches for automatic plagiarism

detection are being explored. Compared with the other two subfields of authorship analysis, simi-

larity detection is regarded as the least studied area, argue Abbasi and Chen (2008).

Below, we first look at the features used in authorship analysis, and followed by the classifica-

tion techniques that use these features.

2.1.1 Linguistic Features for Authorship Analysis

A typical approach to authorship analysis essentially involves defining a relevant set of stylis-

tic features (so-called style markers). In the view of the survey study for authorship analysis

conducted by Stamatatos (2009), feature selection is the essence of authorship analysis in which

unique stylistic features serve as effective discriminators for authorship. Most of the previous

studies in the field of authorship analysis assume, implicitly or explicitly, that the writing style for

a given author is distinguishable by a set of stylistic features that usually remain constant across

a large number of writings produced by the same author. Based on a review of literature, stylis-

tic features can generally be classified as lexical, syntactic, semantic, structural, content-specific,

and idiosyncratic (Zheng et al., 2006; Abbasi and Chen, 2008; Stamatatos, 2009). The following

subsections detail each of these features.

Lexical features. In many of the studies on authorship analysis, lexical features are commonly

adopted. Lexical features were introduced to complement primitive measures used in the early

work on authorship for text complexity analysis (Stamatatos et al., 2001; Koppel et al., 2009). The

most common primitive measures are average word length (in terms of letters or syllabus), and av-

erage number of words per sentence (or sentence length). In view of the unreliability of primitive

measures, lexical-based measures involving type-token ratio and number of words occurring with

a specific frequency were introduced; this is termed vocabulary richness. Some formal statistical

measures for vocabulary richness which have been proposed by researchers in the field of quan-

titative linguistics include Yule’s K-measure, Simpson’s D-measure, Sichel’s S-measure, Brunet’s

W-measure, and Honoré’s R-measure (Tweedie and Baayen, 1998). For example, K-measure is

defined by Yule (1944) as below:
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with N as the number of tokens, V (i,N) as the number of types which occur i times in a sample

of N tokens, and v as the highest frequency of occurrence.

Unfortunately, vocabulary richness measures are highly dependent on content as well as text

length. As such they might not be applicable for discriminating authors across various contexts.

Most of the evaluation results in previous studies showed that vocabulary richness measures gen-

erally perform worse than other lexical features such as function word counts as discussed below

(Tweedie and Baayen, 1998; Zheng et al., 2006; Grieve, 2007).

Function words,1 which are commonly recognised to be context-independent, then came into

play in authorship studies. For a (function) word to be context-free and a good stylistic indicator,

its occurrence would follow a Poisson distribution, claimed Damerau (1975) (cited in Tweedie

et al. (1996)). Function words were proven to be reliable (and also context-free) for the first time

when Mosteller and Wallace (1964) successfully attributed the twelve disputed Federalist Papers

to Madison with the use of frequency probabilities of the most frequent function words (such

as prepositions, conjunctions, and articles). The conclusion derived from this seminal work of

theirs was found to be in agreement with the historical findings (Coulthard and Johnson, 2007).

Many subsequent authorship studies further confirmed the efficacy of function words as a good

discriminator (Merriam and Matthews, 1994; Holmes and Forsyth, 1995; Tweedie and Baayen,

1998; de Vel et al., 2001; García and Martín, 2007).

Various sets of function words were selected in these studies; but it is unclear exactly how the

selection was conducted. The most frequent function words were used in Holmes and Forsyth

(1995) and Tweedie and Baayen (1998); the former extracted 50 function words from the Feder-

alist Papers and the latter extracted 100 function words from a work of children’s literature —

Alice’s Adventures in Wonderland. Merriam and Matthews (1994) and García and Martín (2007)

have employed function words in the form of a ratio to content words in two different contexts:

literary texts of Shakespeare and Marlowe for the first study, gospels for the second one. 122 func-

tion words were proposed by de Vel et al. (2001) for e-mail authorship attribution. It is uncertain

whether function words are credible when dealing with online texts as unconvincing results were

observed by Zheng et al. (2006). The inclusion of function words as the part of the feature set

for the English dataset used in Zheng et al.’s study demonstrated insignificant improvement on

1de Vel et al. (2001) and Zheng et al. (2006) both classified function words as ‘syntactic’ claiming that such word usage
determines how a sentence is formed; but they are referred to as ‘lexical’ here.
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accuracy.

Other lexically-based approaches have adopted distributions over n-grams. Two n-gram-oriented

authorship studies were conducted at the byte level (Keselj et al., 2003) and the character level

(Peng et al., 2003). With the use of simple features like byte-level and character-level n-grams,

non-trivial natural language processing analysis can be avoided since these features seem to be

fairly language-independent. Three types of languages were investigated in these two studies,

namely English, Greek, and Chinese. Although improvement in performance (ranging between

10-20%) was observed in Keselj et al. (2003) and Peng et al. (2003) particularly for the Greek data

set as used in the previous related work (Stamatatos et al., 2000), their approaches deserve further

evaluation with a wider range of languages in order to justify whether n-grams are truly language-

dependent. Nonetheless, the use of character n-grams was first introduced by Kjell (1994) back in

the mid nineties. In his work, only letter pairs of alphabetic characters were used for the authorship

analysis task on the Federalist Papers.

Syntactic features. Using lexical-based features results in quite a shallow analysis. For deeper

linguistic analysis, one could consider features that can reflect some form of syntactic or semantic

information. Part-of-speech (PoS) n-grams (Stamatatos et al., 2001; Diederich et al., 2003; Arg-

amon et al., 2006) and punctuation symbols (de Vel et al., 2001; Baayen et al., 2002), have been

applied in authorship research as syntactic features; but they do not truly reflect syntactic structure

per se. A more sophisticated work of authorship research that explicitly investigates the syntactic

structure in texts is that of Baayen et al. (1996), which made use of the frequencies of the syn-

tactical rewriting rules for each sentence. Each sentence is represented by a semi-automatically

produced parse tree. Syntactical rules derived from the parse tree are rewritten by adding func-

tional meaning to each constituent. For instance, a syntactic rule representing a noun phrase

(such as the article) comprising two constituents: [NP → DTP + N] is rewritten as [OD:NP →

DT:DTP + NPHD:N],2 where the label to the right of the colon denotes the syntactic category

and the label to the left of the colon denotes the corresponding functional meaning. Baayen et al.

(1996) highlighted that their syntactic-based approach potentially performs better compared to

purely lexical-based features since the use of syntactic rules is generally less variable within texts

than the use of words.

Contra to this, Hirst and Feiguina (2007) argued that the approach of Baayen et al. (1996) suf-

fers from a large space of rewriting rules, and it was assumed to be only applicable on large texts.

As an attempt at improvement, syntactic-label bigrams were proposed for authorship attribution

2In this rewritten syntactical rule, NP (noun phrase), DTP (determiner phrase), and N (noun) are the syntactic labels;
whereas OD (direct object), DT (determiner), and NPHD (noun phrase head) are the functional labels. Note that these labels
are based on the TOSCA annotation scheme (Oostdijk, 1991).
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of short literary texts (as short as 200 words). In the approach of Hirst and Feiguina (2007), an

output of the Cass partial parser (Abney, 1996) is transformed into an ordered stream of syntactic

labels. For instance, a noun phrase such as a good article would produce a stream of labels [NX

DT JJ NN] denoting a noun phrase consists of a determiner, an adjective, and a noun. Bigrams

are then extracted from this stream of syntactic labels to represent syntactic features for attribution

analysis. Such an approach achieved a reasonably convincing result with close to 85% accuracy

using syntactic-label bigrams alone for short texts of 200 words.

Nonetheless, syntactic features adopted by Gamon (2004) in another authorship attribution

study are much deeper in comparison, where distributional differences in context-free grammar

(CFG) productions were explored. With the use of the parser provided by the Microsoft NLP

system NLPWin, context-free grammar production rules of each sentence were extracted. An

example is the prepositional phrase, represented as [PP → PP DETP NOUN] in NLPWin. For

each observed production, the per-document frequency of each production is measured and is

used as the feature for classification analysis. Gamon (2004) tested his ideas on literary texts by

the three Brontë sisters — Charlotte, Anne, and Emily — with a total of 1441 documents of 20

sentences each. A high accuracy close to 98% is achievable when other deep linguistic features

such as semantics are taken into account as the style markers.

More recently, sophisticated ideas utilising syntactic information have emerged for stylometric

analysis and authorship attribution. Raghavan et al. (2010) posit that the writing style of each au-

thor could be considered as a ‘distinct’ language on its own and proposed learning a probabilistic

context-free grammar (PCFG) for each of 23 authors to be examined for an authorship attribu-

tion task on five different datasets, comprising of news articles and poetry. Each test document is

then attributed with respect to the author whose PCFG produces the highest likelihood score for

that document. Instead of relying on single-level CFG production rules as used in Gamon (2004),

Bergsma et al. (2012) and Feng et al. (2012) both simultaneously attempted different approaches

to capture more characteristic syntactic patterns. Tree fragments returned from Tree Substitution

Grammar (TSG) were demonstrated to be helpful by Bergsma et al. (2012) for distinguishing

native and non-native English writers by capturing syntactic structures where CFG alone are inca-

pable of. For instance, a tree fragment such as [NP → (DT that)], representing a stand-alone

noun phrase with a determiner, is indicative for non-native writing; such syntactic pattern cannot

be obtained through CFG rules as this is broken down into two separate CFG rules: [NP → DT]

and [DT → that]. Similarly, Feng et al. (2012) attempted to construct similar syntactic patterns

by augmenting CFG rules with the ‘grandparent’ nodes and the augmented rules are found to be

often performing better than simple CFG rules in their authorship attribution tasks. Taking the

previous example, an augmented CFG rule would look like [DTˆNP → that].



2.1. AUTHORSHIP ANALYSIS 19

Semantic features. Semantic features, as compared to both lexical and syntactical features, are

greatly understudied. As far as semantics is concerned, Gamon (2004) extracted two kinds of

semantic information from the semantic dependency graphs: binary semantic features and se-

mantic modification relations. (There is no information provided as to how semantic dependency

graphs are produced; this is probably through the NLPWin system.) Some examples of binary

semantic features include number and person features on nouns and pronouns, as well as tense

and aspectual features on verbs. There were 80 such semantic features extracted in total. Seman-

tic modification relations describe the semantic relations between a node and all its descendants

within a semantic graph. One of the common modification structures according to Gamon is a

nominal node with a pronominal possessor, represented as [Noun Possr Pron]. Similarly, the

per-document frequency of all the modification structures are measured; approximately 9400 such

structures were observed. Despite semantic features in isolation not performing as well as other

feature types, in combination with syntactic features (CFG rules as above) they resulted in error

reduction rates within the range of 10–30% in relation to lexical-based features (function words

and PoS tri-grams).

A brief review of the literature has demonstrated the potential of syntactic and semantic fea-

tures as significant stylistic markers for authorship discrimination. These features are worth further

investigation, in particular for syntactic features — analysis of long-distance grammar dependen-

cies between constituents (such as subject-verb agreement and verb-adverb placement) can possi-

bly be explored for authorship analysis.

Structural features. Another potential style marker — structural features — is more applicable

to authorship analysis of online texts as well as software source code. Text composition and layout

(such as sentence structure, paragraph length, use of indentation, use of signature, and choice of

font as well as its size) can be highly author-dependent. Individual composition style is evident

from these features. de Vel et al. (2001) proposed a set of structural features specifically for e-mail

authorship identification, and achieved a 4% higher accuracy over purely linguistic features. In

other related work, structural features appear to be a good stylistic discriminator between authors

for online texts (e-mails, for example) in the authorship studies by Zheng et al. (2006) and Estival

et al. (2007). However, it should be noted that structural features may be constrained by genres

depending upon the intentions of the authors. The stylistic degree of freedom can be negligible

when composing a restricted text as opposed to an unrestricted one. In some circumstances, struc-

tural features could not be gainfully exploited as they might turn out to be artifacts of the study.

This is particularly true if restrictions are imposed on the structure of as well as the topic of the

writing, in which individual stylistic markers would not be easily recognised.
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Content-specific features. Some important thematic keywords and phrases may emerge to be

useful discriminators in certain contexts of authorship analysis although they are inherently context-

dependent and are widely assumed to be unreliable. Nonetheless, there were some promising

studies in authorship attribution with the use of keywords and phrases in terms of word-based

n-grams. For instance, content-specific words were used in the cybercrime context (Zheng et al.,

2003) where certain content-specific words were helpful in improving the overall attribution per-

formance. ‘Topical’ words have been found useful by Bergsma et al. (2012) for stylometric tasks in

the domain of scientific writing, distinguishing between top-tier conference papers and workshop-

styled papers. They also demonstrated that gender prediction on scientific writers can take ad-

vantage of topical words as different genders tend to embark on specific areas of research. Since

content-specific features are usually in the form of word-based n-grams, intensive efforts are re-

quired to identify word and phrase boundaries in the texts of different languages. Furthermore,

word and phrase segmentations per se remains as a difficult disambiguation task in Asian lan-

guages particularly (such as Chinese and Japanese) as argued by Keselj et al. (2003) and Peng

et al. (2003).

Idiosyncrasies. In the conventional way for authorship analysis, human experts like forensic

linguists usually seek for idiosyncratic usage of a given author that serve as the unique finger-

prints (perhaps the ‘writeprints’) of that author (Koppel et al., 2005; Li et al., 2006). The stylistic

idiosyncrasies may encompass orthography, grammar, as well as neologisms (usage of unusual

words and multiword expressions — not necessarily collocations). The idiosyncratic usage ap-

pears to be useful particularly for authorship profiling in identifying author classes that share a

common native language as these features essentially exhibit cultural differences and deliberate

choices of the authors (Koppel et al., 2005). In somewhat related work (Garera and Yarowsky,

2009), features drawn from socio-linguistic literature (such as frequency of pronoun, passive, and

filler word usage) appear to be helpful in gender prediction for conversational speech transcripts.

As a summary, there is a myriad of features that have been exploited for authorship analysis.

It is evident that there is no single best feature set that is plausible for various contexts of au-

thorship discrimination. In order to achieve high accuracy of performance, feature sets are to be

incorporated with classification methods of relatively high computational capability.

2.1.2 Authorship Classification Techniques

Ever since the first kind of authorship-related problem was proposed in the late 19th century

(Mendenhall, 1887), there has been an enormous number of approaches applied to authorship
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analysis. According to the literature, classification techniques for authorship analysis can be cat-

egorised either along one dimension as statistics-based and machine learning-based (Zheng et al.,

2006; Koppel et al., 2009); or along another dimension as supervised and unsupervised (Abbasi

and Chen, 2008). Within the statistics-based approaches, further division is possible, where ap-

proaches can be univariate and multivariate. Taking these together, approaches to authorship anal-

ysis being discussed here are divided into three classes: univariate statistical approaches, multi-

variate statistical approaches, and machine learning approaches.

Univariate statistical approaches. In the early days of authorship analysis, most of the stud-

ies revolved around the task of identification or attribution. The analytical approaches adopted

were primarily univariate, in which a single numerical feature of a text is used to discriminate

between authors. Typically, authorial styles are distinguished based on the probability distribu-

tion of word usage. The early work of Mendenhall (1887) was merely based on characteristic

curves depicting relationships between different word lengths and their corresponding frequency

of occurrence. Mendenhall’s idea of using word-length distribution did not turn out to be a useful

discriminator (Holmes, 1998), in part because the visualisation of the significant differences be-

tween characteristic curves are somewhat subject to individual interpretations. This gave way to

more objective statistical measures, such as Yule’s K-measure (Yule, 1944), with the assumption

that the occurrence of a particular word is largely by chance and can be modelled by a Poisson

distribution.

Around the same time, cusum statistics — based on cumulative sum charts representing the

deviations of the measured variable — were adopted for authorship analysis (Farringdon, 1996).

The idea of cusum analysis was used by Morton and Michaelson (1990) in an authorship test in

the early 1990s (Holmes, 1998). The underlying assumption is that every individual possesses

a unique set of personal styles — habits — which are consistent throughout that individual’s

utterances; and these habits form statistically identifiable patterns in his or her sentences. This

statistical technique was the first to find its way into linguistic forensics and had been used in

several high-profile court cases (Coulthard and Johnson, 2007). According to Holmes (1998),

several later independent studies found that cusum analysis was unreliable and concluded that it

should not be used as a definitive indicator for authorship.

Multivariate statistical approaches. By and large, univariate statistical approaches are of lim-

ited capability in handling multi-dimensional features. This demanded a shift to multivariate sta-

tistical methods, in which discriminant analysis is used on multiple numerical features — referred

to as stylistic features here. The essence of these methods is to find the most plausible attribution
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by assigning an anonymous text to the (supposedly) known author whose texts are closest to it in

relation to some similarity or dissimilarity measures. One of the earliest adoptions of multivari-

ate approach to authorship analysis was the Bayesian classification model used by Mosteller and

Wallace (1964) during their seminal work on the disputed Federalist Papers. Their legacy was

to demonstrate that the Bayesian classifier could produce significant discrimination results where

frequency counts of function words are employed as the variables for multivariate analysis. As

mentioned earlier, the outcome of this study yielded a conclusion that is in agreement with the

prevailing views reached by historians (Coulthard and Johnson, 2007).

The success of Mosteller and Wallace’s work has encouraged many subsequent research efforts

to explore other forms of multivariate techniques in the field of authorship analysis. One such

method is principal components analysis (PCA) — first employed by Burrows (1989) on a large

set of function word frequencies. PCA is capable of capturing deviations across high-dimensional

observed features by projecting them into a reduced dimensional space spanned by the principal

components in order to find a good separation between texts known to be written by different

authors. PCA has since been adopted in numerous other authorship studies with promising results.

For instance, Baayen et al. (1996) used it with the syntactical rewriting rules and Holmes and

Forsyth (1995) revisited the Federalist Papers by applying PCA with vocabulary richness (see

details on vocabulary richness in Section 2.1.1 under lexical features).

Since then, a few other multivariate methods have been established. Clustering analysis was

introduced by Ledger and Merriam for the authorship attribution of plays written by Shakespeare

and Fletcher (Ledger and Merriam, 1994). More recently, linear discriminant analysis was ex-

plored by Baayen et al. (2002) and Chaski (2005) for multi-genre texts and digital evidence in-

vestigation, respectively. These techniques were suggested as an attempt to improve PCA in view

of the limitations posed by PCA. It was argued that loss of important information (such as salient

indicators distinguishing between individual authors’ stylistic properties) may happen in PCA as

a result of data reduction (Ledger and Merriam, 1994). Clustering analysis, however, allows all

features to be deployed for analytical purposes without, necessarily, reducing the features into

some smaller dimensions; and it only relies on clustering algorithms to form clusters separating

authors in question, making no use of prior knowledge (of the known work) of the authors. On

the other hand, Baayen et al. (2002) claimed that discriminant analysis would be more appropriate

than PCA when predicting the authorship of an unknown (heldout) text based on known (training)

texts of which the authorial fingerprints do exist. In a discriminant analysis, a linear function is

created to maximise the difference between groups (authors in the case of authorship attribution);

the coefficients of the resulting function are then used to predict the group membership of heldout

cases.
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The use of factor analysis in authorship-related work has also been proposed to model varia-

tions across different languages and to identify different registers or genres of texts (Biber, 1995).

Being similar to the approach of PCA, a large number of original variables (linguistic features in

the case of authorship analysis) are reduced to a small set of derived variables known as factors.

Each linguistic feature is assumed to have a certain amount of variability across texts (represented

by factor loadings) and such variability is possibly shared by other features represented by the

same factor. The shared variance is said to reflect the co-occurrence pattern amongst the linguistic

features. If two features tend to be frequent in some texts but rare in other texts, they are said to

co-occur and have a high amount of shared variance. Factor analysis seems to be able to identify

different feature dimensions based on the derived factors and to model the underlying dimensions

of variation. The inferred dimensions of linguistic variation are more easily interpretable with

respect to their functionalities (as opposed to PCA). For example, as per Biber (1995), linguistic

features of English can be grouped under seven dimensions such as involved versus informational

production, narrative versus non-narrative discourse, situation-dependent versus elaborated refer-

ence, overt expression of argumentation, and so forth.

Machine learning approaches. Authorship analysis in general can be seen as another form of

classification problem. Text classification techniques rooted in machine learning have been applied

in numerous authorship studies. Essentially, machine learning methods require a set of training

data and a set of testing data represented by vectors of features. Whilst the training data is used

by learning methods to develop the classification model, the testing data is subsequently used for

evaluation of the resulting model. Neural networks were one of the earliest methods to be applied,

with the first use by Merriam and Matthews (1994). Their findings demonstrated that a multi-layer

perceptron neural network is capable of identifying individual work as well as collaborative work.

The attempt to re-attribute the Federalist Papers using this type of neural network by Tweedie et al.

(1996) achieved consistent results with all the previous studies of the Federalist problem. Neural

networks were further proven to be useful for stylistic analysis by some recent studies (Graham

et al., 2005; Tearle et al., 2008).

Following their promising performance in text categorization (Joachims, 1998), support vec-

tor machines (SVM) have been a popular choice of classifier in the field of authorship analysis.

Diederich et al. (2003) experimented with SVM on authorship attribution and they were able to

detect 60-80% of the seven target authors for 2600 newspaper articles. An average accuracy close

to 80% was achieved by de Vel et al. (2001) who attempted to conduct author-topic classification

on 150 e-mail documents on three different topics produced by three authors. Since then, SVM

has been widely adopted particularly in e-mail forensic analysis (Corney et al., 2002; Teng et al.,
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2004; Ma et al., 2008). In another authorship-related work, Li et al. (2006) first made use of ge-

netic algorithms to select optimal feature sets before applying SVM as the classifier. With this

additional phase of feature selection, higher classification accuracy was achieved.

Other machine learning techniques that have been suggested for authorship-related studies

include decision trees (Abbasi and Chen, 2005), k-nearest neighbour algorithms (Hoorn et al.,

1999), and Markov chain models (Khmelev and Tweedie, 2001). Along with SVM, decision

trees were examined by Abbasi and Chen (2005) on web forum messages depicting cybercrime

and homeland security issues in Arabic. An accuracy of approximately 72% was achieved by

using decision trees in classifying 400 Arabic messages. Although it has been demonstrated that

SVM may outperform decision trees by more than 20%, decision trees may be more effective

in identifying the salient features for classification and thus provide more insight into the effect

of individual features. Likewise, Hoorn et al. (1999) performed a comparative study on three

different classification techniques — neural networks, k-nearest neighbour algorithms, as well as

Bayesian models — for an authorship attribution task involving 90 poems produced by three Dutch

poets. Results show that neural networks were the best relative to the other two techniques tested.

From these studies, k-nearest neighbour algorithms seem to be more effective than the Bayesian

classifiers, roughly 5-10% better in terms of classification accuracy. Markov chain models, which

have been widely used in speech recognition, were proposed by Khmelev and Tweedie (2001). A

result of 74% accuracy was obtained when the first-order Markov chain was tested with a large

dataset of more than 380 texts from the Project Gutenberg, written by 45 authors.

A consensus was found in the previous studies that machine learning methods on the whole

perform better than statistics-based methods. This is simply because the machine learning ap-

proach is more tolerant to high-dimensional feature spaces (Zheng et al., 2003, 2006) and requires

less parameter tuning (Holmes, 1998). Nevertheless, the choice of features by which the texts in

question are to be represented is of comparable importance to the choice of classification method.

2.2 Native Language Identification

Identifying the native language of an author from his or her written utterances in a second or a

foreign language can be regarded as a form of authorship analysis. More specifically, this is a

subtask of authorship profiling (authorship characterisation), one of the subfields of authorship

analysis. In the absence of a predefined set of candidate authors, authorship profiling exploits

sociolinguistic observation to predict the characteristics or traits of a specific class of authors

in order to derive a generic author profile. The resulting author profiles can then serve as the

basis for authorship identification. Author characteristics may comprise both demographics and
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psychometrics, and the native language of an author falls under the former category (Estival et al.,

2007). It is plausible to classify authors into distinguished classes with respect to their native

language, on the assumption that authors with different language backgrounds tend to exhibit

certain stylistic idiosyncrasies in their second language writing, which might have been influenced

by their native language to some extent. This idea underlies the concept of contrastive analysis

for second language acquisition (Lado, 1957; Wardhaugh, 1970) as well as subsequent work in the

field, which we discuss in Section 2.3.

The attempt to profile authors based on their native language is little studied compared to other

author characteristics; there is only a handful of research work that had attempted to identify native

language for the purpose of authorship profiling (Koppel et al., 2005; Tsur and Rappoport, 2007;

Estival et al., 2007), prior to the commencement of the studies carried out in this thesis. Since then,

the field of native language identification (NLI) has gained much attention and much related work

has emerged; for example, Kochmar (2011), Brooke and Hirst (2012), Swanson and Charniak

(2012), and Bergsma et al. (2012).

This presents an unusual challenge for the arrangement of the work in the thesis, in that some

of the subsequent work is based on our published work in some ways; the question then is whether

to present the subsequent work here or only after we present our own work in the relevant chapter.

We have opted to discuss the broad aims of the related work here, and then discuss any implications

or insights based on our work in the relevant chapter.

Much of the existing work on NLI is based on supervised machine learning approaches to text

classification. The earliest notable work in this classification paradigm is that of Koppel et al.

(2005), using features that are mostly lexical in nature, which include function words, character n-

grams, and PoS bi-grams, together with a range of spelling mistakes (such as repeated or missing

letters, letter inversion, and conflated words) and some neologistic terms. Five different groups

of English authors (with native languages Bulgarian, Czech, French, Russian, and Spanish) were

selected from the first version of International Corpus of Learner English (ICLE) (as described in

Section 1.3) — each native language group contributed 258 essays with word length in the range

of 580–850. Under a ten-fold cross validation setting, Koppel et al. (2005) gained a relatively

high classification accuracy of around 80% against a major baseline of 20% by deploying a SVM

classifier with a total number of 1,035 features: 400 function words, 200 character n-grams, 250

rare bi-grams, and 185 frequent error types primarily spelling mistakes (detected mostly through

the spelling and grammar checkers of Microsoft Word along with self-designed scripts). Of all

the feature sets, combining just function words and character n-grams led to greater than 75%

accuracy. Although syntactic features — syntactic errors in particular — were highlighted by

Koppel et al. (2005) as potentially useful features, they seemed to only investigate this idea at a
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surface level, by considering the rare PoS bi-grams as indications of ungrammaticality.

The work of Koppel et al. (2005) was later replicated and analysed by Tsur and Rappoport

(2007). With the idea of using character n-grams to approximate a language’s syllables, they

hypothesised that the choice of words in second language writing is highly influenced by the fre-

quency of native language syllables — the phonology of the native language. Tsur and Rappoport

(2007) claimed that, rather than manipulating sophisticated linguistic features, character bi-grams

alone can potentially lead to a good classification accuracy for authorship profiling based on the na-

tive language of the authors. Deploying only the 200 most frequently occurring character bi-grams,

they achieved 66% accuracy against a baseline of 46.8% (achieved through unigrams comprising

of letters and punctuation marks) over a similar set of ICLE data used in Koppel et al. (2005) with

the same five native language groups but based on their own random sample. The number of texts

randomly chosen in this study was 238 for each native language group with word length between

500 and 1,000. To further test their claims, two other native languages which were not tested in

Koppel et al. (2005) — Dutch and Italian — were used to replace French and Spanish in the initial

setting, and essentially a similar accuracy of approximately 65% was obtained. The issue of con-

tent bias was raised in Tsur and Rappoport (2007), and the approach taken to investigate this was

conducted through removing content words selected based on the tf-idf (term frequency-inverted

document frequency) measure; the resulting classification performance declined only 2-3% and

this suggests that the effect of content bias was minimal even if present.

Native language is also among one of the characteristics (gender, age, geographic origin, level

of education and psychometric traits) investigated in the authorship profiling task by Estival et al.

(2007). Unlike the approach of Koppel et al. (2005), linguistic errors in written texts are not of con-

cern here; rather this study focuses on a range of lexical features (including function words, PoS

categories, punctuation symbols, word length, and case attributes of characters) and document-

based structural features (such as paragraph breaks and various HTML tags). Using a random

forest classifier instead, the classification task yields a relatively good performance of 84% accu-

racy against the most frequent baseline of 62.9% when the native language alone is used as the

profiling criterion with 689 features in total. However, it should be noted that a smaller number

of native language groups were examined in this study — Arabic, English, and Spanish. It is also

worth noting that this study was carried out on a collection of 9,836 English emails that is not

publicly available. As such, comparing this work with the two aforementioned studies (Koppel

et al., 2005; Tsur and Rappoport, 2007) is not straightforward.

On the whole, the existing work discussed thus far tackled the problem of native language

identification with supervised machine learning, focusing mostly on lexical features. Syntactic

features, on the other hand, specifically those that capture grammatical errors, which might po-
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tentially be useful for this task, have received relatively little attention. It is only since the com-

mencement of the studies in this thesis that aim at exploiting syntactic knowledge for NLI, that

a number of related works have subsequently emerged which largely use as a starting point two

studies of ours — Wong and Dras (2009) and Wong and Dras (2011) — that serve as the respective

fundamental work of Chapter 3 and Chapter 4 to be presented later.

Kochmar (2011) cited the idea put forward by us in Wong and Dras (2009) of using second

language acquisition (SLA) knowledge (discussed next in Section 2.3) for NLI, as the basis for

work which extended it in a number of ways. This study involves a number of binary classifica-

tions between two Indo-European language groups — Germanic versus Romance, and between

closely related languages of each language group, which include Western Germanic versus North-

ern Germanic, High German versus Low German, German versus Swiss German, Swedish versus

Danish, and Catalan versus Spanish. Kochmar (2011) noted that the approach attempted by us

in Wong and Dras (2009) of exploring error analysis (to be discussed further in Chapter 3) as a

promising direction to identify suitable error types that might be indicative of a particular native

language. Features investigated in her work were thus grouped into two types: distributional and

error-based. The former include function words, character n-grams, PoS n-grams, and error type

rates as well as phrase structure rules (an idea suggested in Wong and Dras (2009) but not then

explored). The latter are various types of grammatical and spelling errors systematically identified

in the corpus investigated, aiming to address the limitation of ours (Wong and Dras, 2009) that

only investigated three manually identified common errors observed in non-native English speak-

ers — namely, subject-verb disagreement, noun-number disagreement, and misuse of determiners.

On a publically-available subset of the Cambridge Learner Corpus (CLC) (Yannakoudakis et al.,

2011), character-based n-grams were found to be the best indicator, and the best combination set

of features for the classification of each language pair contains at least this feature type. The best

binary classification accuracy achieved for all the language pairs range between 68–97% against

the majority baseline of 50%. Surprisingly, syntactic structures characterised by phrase structure

rules (extracted from the RASP parser (Briscoe et al., 2006)) perform poorer than PoS-based or

character-based n-grams, although significantly better than the majority baseline (with accuracy

rates between 55–65%). Interestingly, a greater number of error types identified in the corpus (in

particular those that selected based on information gain) appear to perform better than three error

types used by us (Wong and Dras, 2009); and Kochmar (2011) claimed that her findings demon-

strated that the three error types are not discriminative for most of her classification tasks except

for the Romance language group.

Much more recently, another attempt by us at characterising syntactic structure with parse

production rules in the form of context-free grammar (CFG) as published in Wong and Dras (2011)
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and to be discussed in Chapter 4 in detail has been replicated and further explored by Swanson

and Charniak (2012). Tree Substitution Grammar (TSG) was proposed for NLI tasks through

automatically induced TSG fragments — rules of arbitrary parse tree structures with any number

of non-terminal and terminal leaves — as classification features. Two different TSG induction

algorithms were investigated: one uses a non-parametric Bayesian model and the other is inspired

by tree kernels; and the former was found to be more robust in terms of classification performance.

Following our experimental setting in Wong and Dras (2011) (i.e. using ICLE essays from seven

native language groups), Swanson and Charniak (2012) demonstrate that TSG features induced

from the Bayesian approach result in the highest accuracy of around 78% against the baseline of

72.6% obtained through CFG parse rules as well as the tree kernel-induced TSG features (73–

77%) with a logistic regression classifier. To avoid potential biases as the artifact of content topics

or geographic locations, only terminal symbols of the 598 selected function words were retained

for the parse rules.

A somewhat different perspective to NLI is seen in the work of Brooke and Hirst (2012), whose

goal is to explore alternative sources for reliable training corpora for tasks in the NLI paradigm.

They suggest exploring web-based L1 corpora as a training source to minimise topic biases that

could possibly present in existing learner corpora, such as ICLE. In their presentation in the con-

ference meeting of Learner Corpus Research organised by University of Louvain, Brooke and

Hirst (2011) claimed that the ICLE corpus might have subject-based clues, leading to some degree

of distortion when used for NLI classification tasks. The approach that they took to investigate this

effect was to compare the classification performance of two subsets of ICLE essays, in which one

is based on a random selection and the other is carefully chosen essays based on a similar topic.

The hypothesis is that if content bias is present in the ICLE corpus, the latter data subset would

result in a drop in performance. The outcomes show that the classification performance using func-

tion words or PoS n-grams (which are supposedly topic-independent) were unexpectedly affected,

although only quite moderately. Such a claim would need further support given that Brooke and

Hirst (2011) only examined a small subset of ICLE (with four native languages French, Spanish,

Chinese, and Japanese) and lack sufficient details in terms of the experimental setup. In any case,

as we are ignoring content words in all of our approaches, such an effect should be small.

As an aside, features for NLI tasks can either include content words or not; but this type of

feature has largely been avoided by the exisiting work of NLI. A rather interesting related piece of

research that demonstrates the usefulness of content words is that of van Halteren (2008), which

has demonstrated the possibility of identifying the source language of medium-length translated

texts (between 400 and 2500 words). On the basis of frequency counts of word-based n-grams,

high classification accuracies from 87% to 97% are achievable in identifying the source language
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of speeches from the European Parliament (EUROPARL) corpus (Koehn, 2005). In fact, what

van Halteren (2008) uncovered was that there were some salient markers present for each source

language in both the linguistic and cultural aspects. Many of these were in fact tied to the content as

well as the domain of the speeches. For example, the greeting to the European Parliament is always

translated in a particular manner from German to English in comparison with other European

languages; and the Dutch speakers seem to be exaggerating their viewpoints both positively and

negatively with the Dutch vocabulary. These markers may have suggested an explanation for the

high classification accuracy rates.

In relation to this, in reviewing work in the general area of authorship attribution (including

NLI), Koppel et al. (2009) discussed the (arguably unreasonable) advantage that content word

features can provide, giving clues based on the subject matter of a text, and commented that

consequently they “are careful . . . to distinguish results that exploit content-based features from

those that do not”. For this reason, the existing studies we have discussed thus far generally deploy

approaches to NLI that similarly do not use content words features. Likewise, we are not using

any content word-based features in our NLI studies to be presented in the subsequent chapters.

2.3 Second Language Acquisition: Cross-linguistic Influence

Cross-linguistic influence or language transfer has for a long time been one of the key topics of

debate in the field of second language acquisition (SLA), centering around the influence of the

first (native) language on the acquisition and production of a second language; and in particular

the extent to which errors made by learners during their second language learning are the results of

the interference of their native language. Two early conflicting views of cross-linguistic influence

in language learning are contrastive analysis and error analysis, which have since been amongst

the core perspectives in SLA studies (Ellis, 2008; Gass and Selinker, 2008).

2.3.1 Contrastive Analysis and Error Analysis

Contrastive analysis (Lado, 1957) was an early attempt in the field of second language acqui-

sition to study the effects of language transfer in language learning, focusing on predicting the

kinds and sources of error that non-native speakers make by conducting comparisons between the

first (native) and the second (foreign) languages. It arose out of behaviourist psychology (Bloom-

field, 1933) that viewed language learning as an issue of habit formation that could be inhibited

by previous habits inculcated in learning the native language. The theory was also tied to struc-

tural linguistics, comparing the syntactic structures of the native and the second languages to find

differences that might cause learning difficulties.
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Taking a predictive perspective, Lado’s work led to the Contrastive Analysis Hypothesis (CAH)

framework, which claimed that:

. . . those elements which are similar to [the learner’s] native language will be easy to

learn, and those elements that are different will be difficult.

The consequence is that there will be more errors made with respect to those difficult elements,

hence equating learning difficulties with errors. In this regard, the greater the difference between

the first and the second languages, the greater the effect of interference or negative transfer from

the first language are to be expected — more errors are predicted.

While contrastive analysis was influential at first (especially in the 1960s), it was increasingly

noticed that many errors were common across all language learners regardless of native language,

and these could not be explained under the contrastive analysis framework. Furthermore, there

was evidence that many errors are not the results of transfer (Dulay and Burt, 1974a) and some

predicted errors did not actually occur (Odlin, 1989; Gass and Selinker, 2008). Corder (1967) then

presented an alternative linguistic analysis that focuses on the errors that learners make, known as

error analysis. Under this framework, errors based on contrastive analysis were seen as only

one type of errors, termed ‘interlanguage’ or ‘interference’ errors; other types were ‘intralingual’

and ‘developmental’ errors, which are not specific to the native language but are considered as

universal in nature (Richards, 1971). (Section 2.3.1.1 discusses each of these error types in more

detail.)

The basis of error analysis is that errors are viewed as the reflection of the learner’s competence

at a particular stage in the learning process. In other words, errors reflect the knowledge level of

the new language that the learner has acquired, regardless of the learner’s language background.

According to Corder (1967), many errors produced by learners are due to inappropriate application

and faulty inferences regarding the grammatical system of a new language to be acquired. Rather

than being influenced by the native language, errors are in fact ascribed to the mutual interference

of forms and functions within the new language itself (Richards, 1971). Nonetheless, error analy-

sis was not without its own limitations. According to Ellis (2008), error analysis fails to provide

a complete picture of language learning as this framework focuses on only what learners do in-

correctly but has no account for what learners do correctly. More importantly, as error analysis

only investigates what learners do, it has no way to investigate the phenomenon of avoidance as

discovered by Schachter (1974) — one of the negative effects of cross-linguistic inflluence (see

Section 2.3.1.2 for a detailed discussion).

In an overview of contrastive analysis after the emergence of error analysis, Wardhaugh (1970)



2.3. SECOND LANGUAGE ACQUISITION: CROSS-LINGUISTIC INFLUENCE 31

noted that there were two interpretations of the CAH, termed the strong and the weak forms.3

Under the strong form, all errors were attributed to the native language, and clearly that was not

tenable in light of error analysis evidence. In the weak form, these differences have an influence

but are not the sole determinant of language learning difficulty. Wardhaugh noted claims at the

time that the hypothesis was no longer useful in either the strong or the weak version: “Such a

claim is perhaps unwarranted, but a period of quiescence is probable for CA itself”.

Such a period of quiescence did in fact occur, starting perhaps around the frequently cited study

of Dulay and Burt (1974b), which attempted to count the number of transfer errors in sample texts,

and found them to constitute as little as 5% of the total. However, their approach only classified

an error as being a transfer one if it could be unambiguously attributed to transfer, and so almost

certainly greatly underestimated the effect of L1. In his comprehensive overview of SLA, Ellis

(2008) notes that “there can be little doubt that some scholars were too ready to reject transfer as a

major factor in L2 acquisition”, and that consequently a reappraisal of transfer effects occurred in

the 1980s that remains the position today. To sum up, contrastive analysis and error analysis focus

on somewhat different aims, although there is naturally an overlap. While contrastive analysis aims

to predict (a priori) and explain (a posterori) transfer errors to account for learning difficulties

during the second language acquistion process, error analysis can only be in full support when

errors actually manifest in production — otherwise, it might underestimate certain difficulties

when learners choose to avoid.

2.3.1.1 Categorisation of Errors

Corder (1967) was one of the first to introduce the distinction between systematic and non-

systematic errors in a language. Non-systematic errors generally occur in one’s native language

and are due to memory lapses, physical states and psychological conditions. Corder named these

sorts of errors mistakes and pointed out that they are of no significance in the process of language

acquisition, as learners are in general immediately aware of these mistakes and make almost in-

stant correction. On the other hand, the sort of systematic errors that are commonly detected

during the acquisition of a second language are termed errors by Corder. Systematic errors reflect

one’s competence of a new language at a particular stage of acquisition. This significant distinc-

tion in errors made by language learners subsequently led to a more concentrated framework for

language errors. Amongst the many research studies examining competence errors of language

learners, Richards (1971) identified three sources of (systematic) errors that could be observed

during the acquisition of English as a second or a foreign language: interlanguage (interference)
3Instead of taking the view of strong versus weak, CAH can be seen from the perspective of predictive versus explana-

tory (Gass and Selinker, 2008). In the former, one could either make predictions about learning difficulty based merely on
comparisons between two languages or perform analysis based on learners’ recurring errors.
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errors, intralingual errors and developmental errors; the first is native language-dependent, and

the latter two are considered as universal errors potentially made by all the learners of English

irrespective of their native languages.

Interlanguage (interference) errors. In essence, interlanguage errors result from the interfer-

ence of the learner’s native language. By its nature, contrastive analysis focuses only on identifying

interference of the native (first) language with the target (second) language. Instances of interfer-

ence can be predicted by contrasting syntax and other subsystems — including pronunciation,

vocabulary, as well as semantics — of the two languages. Numerous studies of different language

pairs have already been explored; in particular, focusing on learners of English with different

native language backgrounds. To give some examples: Dušková (1969) investigated Czech learn-

ers of English in terms of various lexical and syntactical errors; Light and Warshawsky (1974)

examined Russian learners of English (as well as French learners to some extent) on their im-

proper usage of syntax as well as semantics; Guilford (1998) specifically explored the difficulties

of French learners of English in various respects, from lexical and syntactical to idiosyncratic; and

both Chan (2004) and Mohamed et al. (2004) targeted grammatical errors of Chinese learners in

English.

In addition, many other studies examining interlanguage errors restricted their scope of inves-

tigation to a specific grammatical aspect of English in which the native language of the learners

might have an influence. Granger and Tyson (1996) examined the usage of connectors in En-

glish by a number of different native speakers — French, German, Dutch, and Chinese. Vassileva

(1998), investigated the employment of first person singular and first person plural by another dif-

ferent set of native speakers — German, French, Russian and Bulgarian. More recently, Slabakova

(2000) explored the acquisition of telicity marking in English by Spanish and Bulgarian learners.

Similarly, Yang and Huang (2004) studied the impact of the absence of grammatical tense in

Chinese on the acquisition of English tense-aspect system (i.e. telicity marking). Sabourin et al.

(2006) discovered the transfer effects of native language in the acquisition of the grammatical gen-

der system of a second language. Bannai (2008), whose focus is on Japanese learners of English,

examined the placement of verbs and adverbs within sentences.

It has also been discovered that spelling errors in English can plausibly be attributed to the neg-

ative transfer of one’s native language. Back in 1970, a comprehensive study on English spelling

errors was conducted by Oller and Ziahosseiny (1970), including a contrastive analysis among

languages that are of different writing systems (roman versus non-roman). In connection with

this, Sun-Alperin and Wang (2008) found that Spanish learners of English specifically produce

more spelling errors in English vowels due to different graphemes in the vocabulary of English
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and Spanish.

Intralingual errors. While errors owing to the effects of language transfer vary across learners

of a specific language, errors that are found to be common are the results of the learning strategies

adopted by learners throughout the process of acquiring the target language. Intralingual errors

are one type of those common errors regarded by Richards (1971) as errors that reflect the general

characteristics of rule learning of the target language, which include faulty generalisation, incom-

plete application of rules, and failure to learn conditions (restrictions) under which rules apply.

Over-generalisation occurs when learners create deviant sentence structures based on their previ-

ous experience of other regular structures in the target language. This could be seen as the result of

learners attempting to reduce their linguistic efforts. Some learners exploit over-generalisation for

redundancy reduction in which they find certain grammatical items of the target language carry no

significant distinctions in sentence realisation. Over-generalisation errors are usually observed be-

tween nouns and verbs in terms of number and tense agreement (Richards, 1971; Mohamed et al.,

2004). As an example, the omission of ‘-s’ in the third person singular of English is a common

error: the author give us some insight.

Further to the generalisation of deviant structures, learners sometimes fail to recognise the

restrictions of the existing structures of the target language, applying rules to contexts where they

do not actually apply. The use of analogy may account for such rule restriction errors. An instance

of such errors is apparent in the misuse of prepositions (Richards, 1971; Mohamed et al., 2004).

Learners who have discovered a particular preposition with a specific type of verb tend to apply an

analogy to use the same preposition for some related verbs. For instance, my supervisor talked to

me would lead to *my supervisor asked to me. Another failure in recognising the rule restrictions

can potentially be witnessed in the usage of English articles (Richards, 1971; Mohamed et al.,

2004). To some extent, the interference of native language can account for the misuse of articles

— in part due to the absence of this grammatical category in some languages, such as Czech,

Russian as well as Chinese. However, some studies argue that article misuse is indeed derived

from the complexities of the English article system itself (Light and Warshawsky, 1974). In most

cases, learners are still not competent in complying with the restrictions of article usage; instead,

they simply reason out a deviant usage on the basis of their experience and perhaps of their own

intuitions (Richards, 1971).

Nevertheless, difficulties in constructing questions are particularly observed across learners of

English regardless of their language backgrounds (Richards, 1971). And to some degree, learners

of English are found to be confused over verb usage. Incorrect use of participial clauses — for

those clauses whose verb element is non-finite — was noted by Granger (1997) in a comparative
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study between native and non-native English writers. Application of the rules of subject-verb

agreement is another area where learners of English have difficulty acquiring complete competence

(Vigliocco et al., 1996; Franck et al., 2002).

Developmental errors. In addition to interlanguage and intralingual errors, the third type of

errors that could possibly be observed amongst learners of a second language are developmental

errors. With limited knowledge or experience already obtained at a particular stage of the acquiring

process, learners have a tendency to build up false hypotheses about the target language. This is

also largely due to faulty comprehension of distinctions in the target language (Richards, 1971).

The occurrence of false hypotheses is, nevertheless, expected to decline over a period of time as

learners gain more in-depth knowledge of the language. The resulting errors are thus regarded as

developmental ones.

Development errors observed during the stages of interlanguage development are similar to

those that one observed in first language acquisition. They are generally supported by the U-

shaped behaviour in language learning. U-shaped behaviour reflects in three stages of linguistic

use: in the earliest stage, a learner produces some linguistic forms that conform to target-like

norms (without errors); at the second stage, a learner appears to lose what had been acquired at

the previous stage, and demonstrates linguistic behaviour that deviates from the target-like norms

and manifests errors; but eventually at the third stage, the correct target-like forms resurface (Ellis,

2008; Gass and Selinker, 2008). For example, the acquisition of English morphemes for past tense

forms: first ate then eated and finally back to ate. Longitudinal studies can often be utilised to

obtain evidence for developmental errors, but a particular concern is that one has to determine the

stage of development that each learner being examined has reached. In order to rule out those

errors that might due to transfer effect (interference errors), examination should involve groups of

learners of different native languages but at a similar stage of development.

A point to be noted is that there are other ways to distinguish errors apart from Richards’

categorisation of errors. Many SLA researchers have resorted to only a general distinction between

interlanguage errors (those that can be attributed to the native language) and intralingual errors

(those that are due to the second language being learned subsuming developmental errors), as

discussed in Ellis (2008) and Gass and Selinker (2008).

2.3.1.2 Effects of Cross-linguistic Influence

Work subsequent to contrastive analysis and error analysis has found that the effects of cross-

linguistic influence can in fact manifest in learner language in a number of ways. Such transfer



2.3. SECOND LANGUAGE ACQUISITION: CROSS-LINGUISTIC INFLUENCE 35

effects need not be solely negative, but can be positive and facilitating. In addition to positive

transfer, the types of negative transfer to be discussed below include avoidance (underproduc-

tion) and overuse (overproduction). (Interference errors as mentioned in the previous subsection,

Section 2.3.1.1, is one type of negative transfer.)

Positive transfer. Cross-linguistic similarities between the native and the second languages can

facilitiate learning of the second language. Kellerman (1995) claims that:

. . . the more similar the languages are at some point, the more likely the native lan-

guage is to influence the development of the second language.

Odlin (1989) argued that the effects of positive transfer can only be identified when comparative

studies are performed on learners with different native language backgrounds. Facilitating effects

have been evident in the acquisition of many of the subsystems of the target (second) language,

including vocabulary, syntax, phonology, and orthography. It is obvious that sharing a large num-

ber of cognates between two languages (such as English and French, or German and Dutch) can

promote vocabulary learning in a reduced time (Odlin, 1989; Ellis, 2008).4 Similarly, given the

similarity of the Chinese and Japanese writing systems, learners of Japanese from Chinese back-

ground would have the advantage over those with English background especially in learning kanji

(Ellis, 2008).

Avoidance. Avoidance or underproduction of certain linguistic structures are the type of phe-

nomenon that error analysis would underestimate since error analysis focuses on what learners

do but neglects what learners do not do. Gass and Selinker (2008) claimed that the source of

avoidance is indeed controversial. There are claims that differences between the native and sec-

ond languages are the major source of avoidance, but the opposite holds as well — when there

is greater the similarity between the two languages, learners may doubt the reliability of these

similarities.

Nonetheless, the influential study of avoidance by Schachter (1974) is a demonstration of the

first claim. Her study found that Chinese and Japanese learners of English made fewer (restric-

tive) relative clause errors compared to Persian and Arabic learners (see Table 2.1) despite the

latter group having relative clause structures that are closer to those of English. The underlying

reason was that Chinese and Japanese learners avoided using such constructions. Schachter (1974)

hypothesised that the difficulty that Chinese and Japanese learners have with relative clauses may

be due to the fact that their native languages are predominantly left-branching with prenominal

4Cognates between two languages, on the other hand, can also lead to spelling errors as observed by Oller and Ziahos-
seiny (1970) and Sun-Alperin and Wang (2008).
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Table 2.1: English relative clause production by five native lan-
guage groups (with American as the control group) in Schachter
(1974)

Native Language Correct Error Total % of Errors
Persian 131 43 174 25
Arabic 123 31 154 20
Chinese 67 9 76 12
Japanese 58 5 63 8
American 173 0 173 0

relative clauses, while English is right-branching with postnominal relative clauses (as are Persian

and Arabic). The examples below (from Gass and Selinker (2008))5 illustrate how a noun is mod-

ified by a relative clause in English (2.1a), Persian (2.1b), Chinese (2.1c), and Japanese (2.1d),

respectively.

(2.1) a. I saw [the woman [who speaks English]S′]NP .

b. [an
that

zæn-ra
woman-OBJ

[ke
that-COMP

inglisi
English

hærf-mi-zæn-e]S′ ]NP

speak-3SG
did-æm.
saw-1SG

c. wǒ
I

kàndào
saw

[nèi
that

gè
ge-CLASS

[shuō
speak

yīngyǔ
English

de]S′

de-COMP
nǚrén]NP .
woman

d. watashi-wa
I-NOM

[[eigo-o
English-OBJ

hana-su]S′

speak-PRES
josei-o]NP

woman-ACC
mimashi-ta.
see-PAST

Avoidance can be the result of the complexity of the target (second) language structures them-

selves (Gass and Selinker, 2008). In relation to this, the study of Dagut and Laufer (1985) that

focuses on the acquisition of phrasal verbs in English found that Hebrew learners tend to use one-

word verbs more frequently than the equivalent phrasal verbs. For example, they preferred verbs

like enter, stop, and confuse over phrasal verbs like come in, shut off, and mix up. When choosing

to use phrasal verbs, they would resort to those that are semantically more transparent (such as go

out and get up instead of give in and look up to). On the other hand, Kleinmann (1977) discovered

that psychological states such as anxiety could be another factor that accounts for the occurrence

of avoidance.

Overuse. Overuse or overproduction can be viewed as the consequence of underproduction of

some structures that perceived to be difficult by learners (Odlin, 1989; Ellis, 2008). Taking relative

clauses as an example, Chinese or Japanese learners would resort to more simple sentences to

5Note that we added more detailed glosses on these linguistic examples and with the help of Yasaman Motazedi con-
firming the Persian one.
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avoid using constructions that they find difficult. In the study of Schachter and Rutherford (1979),

Chinese and Japanese learners of English were seen to rely heavily on the concept of topic and

overproduced sentences of pseudo-passive, as in the examples (2.2) below. This discourse level

of transfer effect is claimed to be due to the topic-comment structure commonly found in Chinese

and Japanese.

(2.2) a. There is a small restaurant near my house in my country.

b. Most of food which is served in such restaurant have cooked already.

Overuse phenomena can occur as a result of an intralingual process such as overgeneralisation

(Ellis, 2008). It has often been noted that second language learners of English tend to overgener-

alise for irregular verbs in English with the regular past tense inflection, such as eated versus ate.

Another potential form of overgeneralisation, as aforementioned, is that second language learners

might overgeneralise for the third person singular in terms of subject-verb agreement and conse-

quently omitting the ‘-s’ for the verb, given the endingless form is more common (for both the first

and second persons).

2.3.2 Other Perspectives on Second Language Acquisition

In the recent years, a range of other SLA frameworks based on diverse perspectives have emerged

to supplement contrastive analysis and error analysis: some are psycholinguistically oriented such

as the competition model of MacWhinney and Bates (1989) and the processability theory of Piene-

mann (1998) and others are based on sociocultural theory (Lantolf, 2000; Lantolf and Thorne,

2006). We do not review them comprehensively in this thesis as we do not draw on any of the

specific ideas; but we describe a few of them briefly to convey some more recent directions of the

field.

The competition model is a theoretical framework that accounts for language acquisition (both

first and second languages) and sentence processing. The model rests on the idea that there are var-

ious competitive linguistic cues and their strengths, such as syntax (word order), morphology, and

semantics (animacy) that the learner relies on for sentence meaning interpretation (MacWhinney,

1987; MacWhinney and Bates, 1989). During acquisition and usage of a language, the activa-

tion of these competitve cues are controlled by a number of counteracting cognitive mechanisms

(MacWhinney, 2008). With respect to second language acquisition, learners are often confused

between the first and second language cues, and tend to rely on their first language interpretation

strategies.
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The underlying idea of the processability theory model of second language acquisition is based

on the logic that the learner can process only those second language constructions permitted by

the processing resources (grammatical information) available at any stage of development (Piene-

mann, 1998, 2005). Within this framework, the transfer effects of the native language are seen

as partially due to the constraints of the processability hierarchy: the first language forms can be

transferred to the second language only when they can be processed in the developing system.

The sociocultural approaches to second language acquisition take a rather different view as

compared to those frameworks from the cognitive paradigm. Taking the general theory to human

mental development as its basis, the sociocultural theory posits that the knowledge of a second

language is internalised through sociocultural interactions (Lantolf, 2000). In particular, mediation

from the external environment (such as recasts and feedback) is crucial for the learners to recognise

what they can handle themselves and when they need guidance and support.

2.3.3 Application to Native Language Identification

In light of the focus of this thesis, with the advancement in natural langauge processing (NLP)

techniques, we can now revisit and make use of the weak form (explanatory perspective) of the

contrastive analysis as well as the notions of avoidance and overuse by taking a probabilistic ap-

proach to native language identification (NLI). Specifically, interlanguage (interference) errors or

differences in distribution of usage of syntactic constructions, as represented by syntactic struc-

tural differences observed in the form of CFG production rules for instance, may be characteristics

of the native language of a learner. We can make use of the occurrence of these to come up with a

revised likelihood of the native language.

Although both intralingual and developmental errors as well as other aspects (such as psy-

cholinguistics and sociolinguistics) could be complementary for the task of NLI, they are not of

focus here but are interesting areas for future investigation.



Chapter 3

A Preliminary Error-based Analysis

The goal of the current chapter is to make a preliminary investigation on the usefulness of syn-

tactic errors in native language identification (NLI), as motivated by the related work discussed

in Chapter 2.1 Given that it is uncertain whether our intuition of exploiting syntactic features or

syntactic errors per se is at all useful for the task of NLI, the work presented in this chapter first

sets out to test this on a small scale. Amongst the frequently encountered types of syntactic error in

non-native English users, which it has been argued can be attributed to language transfer to some

extent, the three types of error to be investigated are subject-verb disagreement, noun-number

disagreement, and misuse of determiners.

The organisation of the current chapter is two-fold. Firstly, the potential of syntactic errors is

explored with respect to its usefulness in determining the native language of the authors (writers)

of interest. We motivate this by the intuitions of the Contrastive Analysis Hypothesis (CAH) used

in a reverse direction (in relation to transfer analysis), in which based on the syntactic errors,

our aim is to detect the native language of the author. We will first conduct statistical analysis

(which include ANOVA tests) to gauge whether there is any distributional difference with respect

to the errors produced by authors of different native language background prior to using them as

features to identifying authors’ native language. Secondly, the current chapter will investigate to

what extent basic syntactic features (i.e. grammatical errors manually identified) can be useful

for native language identification in addition to the other commonly used lexical features (such

as function words, character n-grams, and PoS n-grams) from the existing related work — with a

particular interest in those that were adopted by Koppel et al. (2005).

1The core work in this chapter was published in Wong and Dras (2009).
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3.1 Syntactic Errors

For the purpose of the current study, only the three major syntactic error types as mentioned above

are explored. Here we detail each of the syntactic error types in turn and provide some examples

for each type.

Subject-verb disagreement. This error type refers to situations in which the subject of a sen-

tence disagrees with the verb of the sentence in terms of number or person. Two excerpts adapted

from our training data (discussed in Section 3.2) demonstrate this sort of error:

(3.1) a. * If the situation become worse . . .

b. If the situation becomes worse . . .

(3.2) a. * There is a suggestion to construct a second railway which link between . . .

b. There is a suggestion to construct a second railway which links between . . .

Noun-number disagreement. This error type refers to situations where a noun is in disagree-

ment with its determiner in terms of number. Two excerpts from our training data that demonstrate

this sort of error:

(3.3) a. * They provide many negative image . . .

b. They provide many negative images . . .

(3.4) a. * These finding prove that . . .

b. These findings prove that . . .

c. This finding proves that . . . 2

Misuse of determiners. This type of error refers to situations in which the determiners (such as

articles, demonstratives, and possessive pronouns) are improperly used with the nouns modified

by them. Specifically, these are situations involve missing a determiner when it is required as well

as having an extra determiner when it is in fact not needed. Here are two excerpts from our training

data demonstrating this sort of error:

(3.5) a. * Cyber cafes should not be located outside airport.

b. Cyber cafes should not be located outside the airport.

c. Cyber cafes should not be located outside airports.3

2This additionally resolves subject-verb disagreement.
3The second grammatical form of this example indicates an error of noun-number disagreement instead.
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Table 3.1: Presence or absence of the three grammatical features
in each native language

Native Subject-verb Noun-number Use of
Language Agreement Agreement Determiners
Bulgarian + + +
Czech + + –
Russian + + –
French + + +
Spanish + + +
Chinese – – +
Japanese – – +

(3.6) a. * I have read nice quotation . . .

b. I have read a nice quotation . . .

It is worth highlighting that the three grammatical phenomena might or might not present

in each of the native languages under investigation (see Table 3.1 for a brief summary of these).

Generally speaking, a ‘–’ indicates that such a phenomenon does not exist or exists to a much lesser

extent in a particular native language; where a ‘+’ indicates that the phenomenon does exist but

might not coincide precisely with the English one. Some of the general observations are: Spanish

and French have much more extensive use of determiners than in English in which determiners are

often inflected to agree with gender and number for the nouns that they determine (Jones, 1996;

Zagona, 2002); the presence or absence of determiners in Bulgarian has no effect on aspectual

interpretation unlike in English (Slabakova, 2000); and as for Chinese and Japanese, the usage of

determiners is far less frequent than that of the other languages and generally more deictic in nature

(Robertson, 2000; Butler, 2002). On the other hand, conjugations (and consequently subject-verb

agreement) are more extensive in the European languages than in English (Jones, 1996; Comrie

and Corbett, 2002; Zagona, 2002).

3.2 Data and Examples

The data to be examined in the current study is taken from the second version of the International

Corpus of Learner English (ICLE) compiled by Granger et al. (2009) as mentioned in Section 1.3.

This was also the data used by Koppel et al. (2005) and Tsur and Rappoport (2007), although they

used the first version of the corpus.

Taking Koppel et al. (2005) as a point of reference, we employed the five languages examined

by them — Bulgarian, Czech, French, Russian, and Spanish — and added Chinese and Japanese.

Such a combination would give us a fair coverage of different language groups. This also allows
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Table 3.2: Average text length of each native language

Native Language Average Text Length (words)
Bulgarian 668
Czech 747
Russian 639
French 692
Spanish 621
Chinese 570
Japanese 610

us to investigate languages that have quite different grammatical features from English. As noted

before, subject-verb and noun-number disagreements are not present in Chinese and Japanese.

For each of the native languages, we randomly chose from amongst the essays with length of

500–1000 words. For the purpose of the current study, for each native language, we have 70 essays

for training and 25 essays for testing, with another 15 essays set aside for a specific purpose to

be explained later in the chapter. By contrast, Koppel et al. (2005) made full use of all the 258

texts from their version (ICLE, Version 1) for each language and evaluated through the common

practice of 10-fold cross validation. Table 3.2 gives the average text length of our sample (ICLE,

Version 2) broken down by native language; and Figures 3.1 – 3.4 illustrate some excerpts of the

essays selected for Czech, French, Chinese, and Japanese, respectively.

<ICLE-CZ-PRAG-0011.3>
. . .
Television offers three basic things are important for modern
man: information, entertainment. These things we can get very
easily, in very comfortable way. We just only sit in room and
press buttom. In a few minutes we get all information about the
war in Jugoslavia, how is the President of Lapland and what will
the weather be like. In other few minutes we can learn Spanish
with charming Spanish teacher and if we are not tired young
couple invite us for dancing course. All these things we are able
to get through within few hours without moving from our house.
. . .

Figure 3.1: An excerpt of an ICLE essay whose author is of Czech background
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<ICLE-FR-ULB-0022.2>
. . .
The different courses students attend to become teacher are
another example which illustrates the theoretical aspect of
university. As a matter of fact it is very different to learn
various pedagogical methods and to be in front of twenty pupils
who are most of the time making fun of you. University will not
tell you how to react; maybe you will be given some advice but in
class you will be alone.
. . .

Figure 3.2: An excerpt of an ICLE essay whose author is of French background

<ICLE-CN-HKU-0085.1>
. . .
The development of country park can directly elp to alleviate
overcrowdedness and overpopulation in urban area. According
to <R>, the population density in urban area is rising at an
alarming rate with the incoming mainland immigrants and economy
growth. As such policy helps to develop the New Territories (N.T)
and north-east part of Lantau Island, more people can more to
there with the improvement in tis infrastructure facilities and
transportation network. Large scale of public estate and elderly
care-centre can be built there. This will lead to a more balanced
and even distribution of the population.
. . .

Figure 3.3: An excerpt of an ICLE essay whose author is of Chinese background

<ICLE-JP-SWU-0007.2>
. . .
But causes for those problems (lazy college students and juvenile
crime) exist not only young people but Japanese educational
system, I think. Of course, as each person has his/her
responsibility, when he/she acts something, its responsibility
goes with his/her actions. However we should improve going to
cram school from very young age and very fierce examination
hell to enter university. To continue these things becomes
young people’ stress, I guess. My suggestion is that Japanese
education system should follow American style. For, to graduate
from university is more difficult than entering university and
students are to pay their school expenses by themselves. By doing
in that way, they will study harder become independent, and get
to have their own responsibility.
. . .

Figure 3.4: An excerpt of an ICLE essay whose author is of Japanese background
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3.3 Analysis Procedures

Given the main focus of the current chapter is to uncover whether syntactic features are useful

in determining the native language of the authors, we require some sort of analysis procedures

that could provide us with some insight as to how different are the distributions of the syntactic

features (errors) detected from the seven groups of non-native English users. For the purpose

of the current chapter, two widely adopted approaches were conducted: statistical analysis with

hypothesis testing and text classification with supervised machine learning.

Statistical analysis. We first performed some basic descriptive statistics to gain a general idea of

the distributions of the three syntactic error types. A range of hypothesis testing with single-factor

ANOVA tests (having the native language type as the factor) were then carried out to gauge the

extent to which the distribution of each error type in fact significantly differed across the seven

groups of non-native English learners. If the ANOVA result is statistically significant, that sug-

gests that non-native English learners with different native language backgrounds tend to produce

different proportions of errors for a particular syntactic type.

Text classification. A second approach is to take syntactic errors as a type of feature for text

classification through supervised machine learning. A general principle of text classification is

that if a feature is a good discriminant, this would result in high classification accuracy rates

having more texts classified into the correct groups (or classes). With respect to our study, if we

expect syntactic features (such as syntactic errors) to be a good marker, using these features should

lead to a reasonable accuracy in classifying the authors according to their own native language.

In other words, the resulting classification accuracy is at least some form of indication as to how

useful a particular feature is for a specific classification task.

Amongst the available machine learners as classifiers, a Support Vector Machine (SVM) was

chosen simply because its performance in classification problems and its ability in handling high

dimensional feature space have already been well attested (Joachims, 1998). We deployed one of

the SVM online tools — LIBSVM (Version 2.89) by Chang and Lin (2001). It should be noted that

all the classifications were conducted under the default settings, where the radial basic function

(RBF) kennel was chosen as it is appropriate for learning non-linear relationships between multiple

features. The kernel was tuned to search for the best pair of (C, γ) parameters with the default

5-fold cross validation on the training data (i.e. the 490 ICLE essays).
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3.4 Error Detection Tools

In addition to the machine learning tool, we also required some form of error detection tools or

grammar checkers to assist in detecting the three syntactic error types. Two tools were adopted:

the online grammar checker Queequeg,4 and a tagger that we trained in a fairly simplistic way for

error detection purposes.

Queequeg. This is a very small English grammar checker that specifically detects the three er-

ror types that are of concern in our study. Unfortunately, the creator of the software acknowledges

that this grammar checker suffers from high false positives, especially for detecting errors of deter-

miner misuse. Further evaluation was performed on Queequeg and we will discuss its limitations

in more detail when we make comparisons between the two error detection tools.

Re-training Tagger. In view of the limitations of Queequeg, the alternative approach is to make

use of a tagger for error detection through supervised learning. We first extracted a portion of

the Brown corpus (with approximately 3600 sentences) and modified it by introducing the three

types of syntactic errors in a semi-automatic manner and marked each of the error types with

a specific part-of-speech (PoS) error tag.5 It is worth noting that the idea of training a tagger

on an artificial erroneous corpus such that the trained tagger would be able to tag (or detect)

ungrammatical sentences is quite similar in spirit to the idea used in Foster (2007) of generating

an ungrammatical treebank for training a parser in order to parse ungrammatical sentences. (The

reader may refer forward to Section 4.2 for a longer description on this.)

For each error of subject-verb disagreement, the error tag of #SVD is assigned to the verb

that is in disagreement with its subject. As for noun-number disagreement errors, the error tag of

#NND is assigned to the determiner that disagrees in number with the noun it modified, and for

errors of determiner misuse, the noun itself is tagged with the error tag of #DTM. An example of

each error type augmented from the Brown corpus is presented below.

(3.7) a. He said evidence was/BEDZ obtained in . . .

b. * He said evidence were/#SVD obtained in . . .

(3.8) a. These/DTS crucial questions must be answered . . .

b. * This/#NND crucial questions must be answered . . .

4Queequeg software is available at http://queequeg.sourceforge.net/index-e.html (as of July 19,
2012).

5Each sentence generally consists of one error type; only a few have more than one error type.

http://queequeg.sourceforge.net/index-e.html
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(3.9) a. There were as many/AP as 25,000 schools . . .

b. * There were as much as 25,000 schools/#DTM . . .

Briefly, we implemented a separate simple pattern-matching and rule-based system (in Python)

for each error type. A segment of each of the original Brown sentences that are presumably gram-

matical is augmented with one of the three error types and the corresponding PoS tag is also mod-

ified to be the erroneous one. For instance, to introduce an error of subject-verb disagreemment,

we first locate the subject of a selected sentence and search for the corresponding verb that should

be in agreement with it, such as evidence and was as given in Example 3.7. We then introduce an

error by changing the verb from the singular form to the plural form (or vice versa). Likewise, the

initial PoS tag of the verb is replaced with the new tag indicating an error of subject-verb disagree-

ment. Hence, for this example, was is changed to were and its correspoding PoS tag, BEDZ is

replaced with #SVD. Similar procedures are applied to the other two error types, where the system

would have to find a noun and its determiner in a sentence and augment the determiner either to

disagree with the noun (as an error of noun-number disagreement) or introduce an inappropriate

determiner (as an error for determiner misuse). To verify that the errors are correctly introduced

through the automated systems (Python scripts), we also conducted a random manual check on the

erroneous sentences and rectified them if required.

Having the sub-corpus of Brown augmented with flawed sentences, we trained a tagger on it

— the Brill tagger provided by NLTK (Bird et al., 2009)6 — to recognise the possible patterns

of these error types. When the Brill tagger is used for tagging erroneous sentences, it would

be able to identify the occurrences of these error types and denote them with the appropriate

error tags. We then used the trained Brill tagger on our sample of ICLE. The tagger currently

performs at around 95% accuracy per tag having trained on the self-created erroneous corpus (i.e.

the augmented Brown corpus, with 90% of the corpus used for training and the remaining for

evaluation purposes).

As a side note, one issue that we needed to consider throughout the process of introducing

errors for the construction of the erroneous corpus was when dealing with the plurality and count-

ability of nouns. Plurality of nouns is essential as when constructing noun-number disagreement

errors, we need to know whether a noun is in its plural or singular form before deciding whether a

singular or non-singular determiner should be used to modify that noun. Likewise, when dealing

misuse of determiners (articles in particular), knowing whether a noun is countable or uncountable

is crucial in deciding whether an article should be present. Unfortunately, extensive lists of such

nouns broken down by plurality or countability are quite limited and not publicly available. To

6NLTK software is available at https://sites.google.com/site/naturallanguagetoolkit/Home
(as of July 19, 2012).

https://sites.google.com/site/naturallanguagetoolkit/Home
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Table 3.3: Results of false positive and false negative
of each error detection tool (%)

Syntactic Error Retrained Tagger Queequeg
Subject-verb disagreement
False positive 4.36 11.99
False negative 56.06 34.02
Noun-number disagreement
False positive 7.45 14.14
False negative 62.62 70.00
Misuse of determiners
False positive 2.49 80.54
False negative 93.05 34.54

this end, we had to semi-automatically induce four separate sets of noun for each lexical-semantic

property: singular, plural, countable, and uncountable.7 Here, we implemented a Python script to

classify the nouns based on simple heuristics, and then manually check through the resultant noun

sets (particularly the countable and uncountable ones) with an online dictionary, Wikitionary.8 The

basic idea is that countable nouns generally have an inflected form for plurality while uncountable

nouns do not.

Evaluations on error detection tools. To get an insight into the ability of each error detection

tool to identify the three types of syntactic error, a manual evaluation was carried out on a sample

of the training data (of 35 essays). As shown in Table 3.3, the results reveal that the retrained

tagger generally exhibits much higher false negative rates, whereas the online grammar checker

Queequeg has relatively high false positive rates, particularly in detecting errors of determiner

misuse.9

It was noticed that Queequeg fails to distinguish between countable and uncountable nouns.

Consequently, it tends to generate more false positives especially when determining whether the

determiners are in disagreement with the nouns they modify. An example of such false positive

generated by the grammar checker is as follows:

(3.10) It could help us to save some money . . .

The above sentence would be inappropriately detected as ungrammatical. Similarly, the ap-

proach of retraining a tagger for error detection is not without its limitations. One particular

concern worth mentioning is that the current tagger was trained on a relatively small data set (with
7For the current study, we have 12158 singular nouns, 6514 plural nouns, 4444 of countable nouns, and 245 uncountable

nouns.
8Wikitionary is available at http://en.wikitionary.org.
9Given that the class sizes are relatively small here, we present only the false positive and false negative rates, rather

than the accuracy.

http://en.wikitionary.org
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approximately 3600 erroneous sentences modified from the original Brown corpus), and as such it

will not have learned all the cases of error pattern for each error type. Nevertheless, they appear to

be complementary to one another in terms of the errors detected; they were thus both being used

as the syntactic features for the classification task of NLI.

3.5 Syntactic Features in Isolation

Given that the aim of the current chapter is to conduct a preliminary investigation on the poten-

tial usefulness of syntactic features in determining the native language of the authors, syntactic

features are first examined separately. Here we present both results from statistical analysis and

supervised learning.

3.5.1 Statistical Analysis on Syntactic Errors

Boxplots. Boxplots generally represent the median, the quartiles, and the range of the lowest and

the highest values. This gives an overview of the distribution of each error type. Figures 3.5 – 3.10

depict the distributions of the three syntactic error types as observed in our ICLE training data of

490 essays by seven distinct groups of non-native English users. The distributions of each of the

three syntactic errors are presented in two separate figures: the first contrasts between the actual

number of errors (manually counted) and the number of errors detected by Queequeg (-Qg); and

the second between the actual number of errors and the number of errors detected by the retrained

Brill tagger (-Tg).

Note that the frequency of each error type presented in these figures is normalised by the

corresponding text length (measured by the total number of words). This is to ensure that the

chances for the occurrence of syntactic errors are equal across the seven sub-corpora of different

text lengths, as given in Table 3.2. (An ANOVA test shows that the average text lengths are indeed

significantly varied at the confidence level of 95%.)

These boxplots do show some variability amongst non-native English users with different na-

tive languages with respect to their syntactic errors. This is most obvious in Figures 3.9 and 3.10,

illustrating the distribution of errors concerning misuse of determiners. (The boxplots of actual er-

rors give the clearest picture.) Such a phenomenon could possibly be explained by the interference

of native language as indicated in the notion of contrastive analysis. As depicted in the figures,

Czech and Chinese as well as Japanese learners seem to have more difficulties when dealing with

determiners as compared to French and Spanish learners. This appears plausible since determin-

ers (especially articles) are absent from the language system of Czech and are less frequently used
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Table 3.4: P-values of ANOVA tests for errors detected by Quee-
queg

Frequency Subject-verb Noun-number Use of
Type Agreement Agreement Determiners
Absolute 0.038** 0.114 5.306E-10**
Relative 0.178 0.906 0.006**

**Significant at α = 0.05

in Chinese and Japanese; whereas the usage of determiners in French and Spanish is somewhat

different from (and generally more extensive than) English.

In addition, there are some modest indications of possible native language transfer in the dis-

tributions of the other two errors as well (referring to Figures 3.5 and 3.6 for subject-verb disagree-

ment and Figures 3.7 and 3.8 for noun-number disagreement). In particular, Chinese learners stand

out amongst the others with quite a high number of errors, specifically for noun-number disagree-

ment; and this corresponds, according to the transfer effect, to the fact that these two grammatical

features are in fact absent from the Chinese language system. (It should be noted that there are a

couple of outliers in these distributions, as indicated by the red dots in the figures.)

Another observation that can be drawn from these boxplots is that the distribution of each error

type detected by the retrained Brill tagger is generally closer to the distribution of the actual errors,

as compared to those by Queequeg. It can be seen that Queequeg has a high false positive rate

(as acknowledged by its creator); see Section 3.4 for more details on the evaluation of the two

detection tools.

ANOVA tests. On the whole, the boxplots do not suggest an extremely non-Gaussian distribu-

tion, so we deployed ANOVA for variance analysis to verify whether the distributions do in fact

differ. We note that normality in data distribution is one of the assumptions for ANOVA and other

parametric tests. It had been, however, demonstrated by a number of simulation studies conducted

on non-normal distributions that, ANOVA is tolerant to a moderate violation of normality, as noted

in McDonald (2009) (citing Glass et al. (1972); Harwell et al. (1992); Lix et al. (1996)). In our

study with the native language being the factor of interest, single-factor ANOVA tests were carried

out for each syntactic error type, for both absolute frequency and relative frequency (normalised

to the text length). The results are presented in Table 3.4 and Table 3.5 for both Queequeg and the

retrained Brill tagger, respectively.

The most interesting result is for the case of determiner misuse. This is highly significant for

both absolute and relative frequencies, be it in the results from Queequeg or from the retrained

Brill tagger. This seems to be in line with our expectation as well as the explanation above.
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Table 3.5: P-values of ANOVA tests for errors detected by the
retrained Brill Tagger

Frequency Subject-verb Noun-number Use of
Type Agreement Agreement Determiners
Absolute 0.002** 0.453 1.449E-29**
Relative 0.005** 0.410 1.498E-31**

**Significant at α = 0.05

As for the subject-verb disagreement, significant differences are observed for both frequency

types in the results from the tagger; as for Queequeg, on the other hand, only the absolute fre-

quency appears to be significant. This inconsistency in the results of Queequeg could be attributed

to the differences in text length. As mentioned earlier, we had additionally carried out another

single-factor ANOVA test on the text length from our training data (the average values are given

in Table 3.2), which confirms that the text lengths are indeed different.

Noun-number disagreement, however, does not demonstrate any significant dissimilarity among

the seven groups of non-native English users (neither for the frequency types nor for the error de-

tection tools), even though again the native languages differ in whether this phenomenon exists.

Perhaps our analysis is not fine-grained enough: different L1 speakers may make different sorts

of noun-number disagreement errors, but these differences do not show up in aggregate counts.

Or perhaps noun-number disagreement is just not an interference (interlanguage) error (refer to

Section 2.3.1.1 for discussion on different categories of learner errors); instead, it may be regarded

as a developmental error according to the notion of error analysis (Corder, 1967). Developmental

errors are largely due to the complexity of the grammatical system of the second language itself.

This sort of error would gradually reduce or diminish as learners become more competent.

3.5.2 Learning from Syntactic Features

On the whole, the ANOVA results do demonstrate some support for the claim that non-native

English users of different native language backgrounds exhibit different distributions of errors.

We therefore hypothesised that with syntactic errors as features, a machine learner would be able

to classify the authors (i.e. the non-native English users) according to their native language at rates

above chance. The results of classification based on merely syntactic features using both absolute

frequency and relative frequency are shown in Table 3.6.10

Given that there are seven native languages with an equal quantity of test data (25 essays per

native language), the majority class baseline is 14.29%. Since there are only three syntactic error

10With the small amount of data used in our study, all the results presented here are after tuning with the default 5-fold
cross validation on the training data (i.e. the 490 ICLE essays).
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Table 3.6: Classification accuracy for syntactic error features (after tun-
ing)

Baseline Queequeg Retrained Tagger
(Majority) Absolute Relative Absolute Relative

Frequency Frequency Frequency Frequency
14.29% 20.57% 26.86%** 28.0% 25.71%**
(25/175) (36/175) (47/175) (49/175) (45/175)

**Significant at α = 0.05 with respect to the baseline

Table 3.7: Classification accuracy for combined syntactic
error features from both Queequeg and the retrained tagger
(after tuning)

Baseline Absolute Frequency Relative Frequency
14.29% 29.14% 32.0%**
(25/175) (51/175) (56/175)

**Significant at α = 0.05 with respect to the baseline

types being examined in the current study, it is not unreasonable to expect that the accuracy would

not improve to too great an extent. Nonetheless, the classification accuracies with respects to

the errors detected by Queequeg and by the retrained tagger are both somewhat higher than the

baseline (approximately 12% better than the baseline after tuning based on the relative frequency).

It should be noted that these improvements are in effect significant at the 95% confidence level,

based on the z-test of two proportions. In addition, combining the syntactic errors detected by both

error detection tools leads to a classification accuracy of 32% (based on the relative frequency) as

shown in Table 3.7; and this improvement over the baseline is again significant at α = 0.05.

3.6 Learning from All Features

Turning to the second part of the current chapter, the focus is to investigate the effects of combining

syntactic features with lexical features in determining the native language of the authors. To do

this, we broadly replicated the work of Koppel et al. (2005) (as discussed in Section 2.2), which

adopted a machine learning approach with features commonly used in authorship analysis —

namely, function words, character n-grams, and PoS n-grams. Koppel et al. (2005) also utilised

spelling errors as features, although this feature is not explored in our study. Spelling errors would

undoubtedly further improve the overall classification performance to some extent as suggested

by some of the previous studies (Oller and Ziahosseiny, 1970; Sun-Alperin and Wang, 2008);

however, these would largely be tied to content words, and we do not deal with them in our work.
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In what follows, each lexical feature being examined in the current study is first explained whilst

the classification results for both individual features as well as the combinations of these features

are presented next.

3.6.1 Lexical Features

Function words. Koppel et al. (2005) did not specify which set of function words was used,

although they noted that there were 400 words in the set. Consequently, three sets of function

words were explored. Firstly, a short list of 70 function words was examined; these function

words were initially used by Mosteller and Wallace (1964) in their well-known work where they

successfully attributed the twelve disputed Federalist papers between Madison and Hamilton (re-

fer to Section 2.1.1 for discussion on lexical features used for authorship analysis in general).

Secondly, a long list of 363 function words was adopted from Miller et al. (1958) from which

the 70 function words used by Mosteller and Wallace were originally extracted. Considering that

Koppel et al. (2005) made use of 400 function words, in an attempt to make up to a list of close

to 400 words, we then searched for some stopwords commonly used in information retrieval —

where our third list consists of 398 function words integrated with stopwords.11 (These three sets

of function words are listed in Appendix B.)

Character n-grams. Similarly, as Koppel et al. (2005) did not indicate which sort of character

n-grams was used, we attempted three different types: unigram, bi-gram, and tri-gram. The 200

most frequently occurring character bi-grams and tri-grams were extracted from our ICLE training

data. As for unigrams, only the 100 most frequently occurring ones were used since there were

fewer than 200 unique unigrams found in the training data. Note that space and punctuation

symbols were considered as tokens when forming n-grams.

PoS n-grams. In terms of PoS n-grams, Koppel et al. (2005) tested on 250 rare bi-grams ex-

tracted from the Brown corpus. As for the current study, in addition to these 250 rare Brown bi-

grams, we also examined the 200 most frequently occurring PoS bi-grams taken from our training

data. For the purpose of PoS tagging, we again used the Brill tagger which performs at approx-

imately 93% accuracy. (Note that the tagger used in this part was trained on the original Brown

corpus without modification unlike when it was trained for error detection as mentioned in Sec-

tion 3.4.)

11Stopwords were obtained from Onix Text Retrieval Toolkit available at http://www.lextek.com/manuals/
onix/stopwords1.html in June 2009. Note that the revised list is now with 429 words as opposed to 398 words as
of the time of our experiments.

http://www.lextek.com/manuals/onix/stopwords1.html
http://www.lextek.com/manuals/onix/stopwords1.html
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Table 3.8: Classification accuracy (%) for combining function
words with syntactic errors (after tuning)

Function Absolute Frequency Relative Frequency
Words – Errors + Errors – Errors + Errors

Queequeg
70 words 52.00 50.29 60.57 60.57
363 words 59.43 58.86 65.14 68.00
398 words 61.14 61.14 62.86 62.86

Retrained Tagger
70 words 52.00 50.86 60.57 62.86
363 words 59.43 60.00 65.14 66.29
398 words 61.14 63.43 62.86 69.14

Both error detectors
70 words 52.00 50.86 60.57 65.14
363 words 59.43 58.86 65.14 67.43
398 words 61.14 61.14 62.86 69.71

Table 3.9: Classification accuracy (%) for combining character
n-grams with syntactic errors (after tuning)

Character Absolute Frequency Relative Frequency
N-grams – Errors + Errors – Errors + Errors

Queequeg
Unigram 57.14 61.14 61.71 64.00
Bigram 31.43 29.71 69.14 70.29
Trigram 33.71 32.57 71.43 70.86

Retrained Tagger
Unigram 57.14 57.71 61.71 65.14
Bigram 31.43 32.57 69.14 70.85
Trigram 33.71 31.43 71.43 73.14

Both error detectors
Unigram 57.14 60.57 61.71 63.43
Bigram 31.43 32.00 69.14 70.29
Trigram 33.71 32.57 71.43 72.00

For each of the lexical features, four sets of classification were performed. The data was exam-

ined without normalising, with normalising to lowercase, according to their absolute frequency,

as well as their relative frequency (per text length). Only the results without normalising are

presented since the classification results with and without normalising to lowercase do not differ

much.

3.6.2 Classification Results

Individual results. The classification results (after tuning) for each lexical feature — function

words, character n-grams, and PoS n-grams — are presented in Tables 3.8, 3.9 and 3.10, re-
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Table 3.10: Classification accuracy (%) for combining PoS
n-grams with syntactic errors (after tuning)

PoS Absolute Frequency Relative Frequency
N-grams – Errors + Errors – Errors + Errors

Queequeg
Bigram 66.29 66.29 74.28 78.28
Trigram 58.86 58.86 62.29 64.00

Retrained Tagger
Bigram 66.29 62.86 74.28 77.14
Trigram 58.86 58.86 62.29 62.86

Both error detectors
Bigram 66.29 62.86 74.28 77.71
Trigram 58.86 58.28 62.29 64.00

spectively. Each table contains results with and without integrating with syntactic features (i.e.

the three identified syntactic error types) and there are three sub-tables for each lexical feature

representing errors detected from Queequeg itself, from the retrained tagger itself, and from the

combination of both. (The best result with each sub-table is italicised and the overall best result

among the three is in bold.)

It was found that the classification performance for each lexical feature seems to be better

prior to tuning when the absolute frequency of the features is considered. However, using features

based on their relative frequency leads to better classification performance after tuning; hence,

only the tuned results are presented. These accuracies are in fact much higher — between 5% and

10% improvement over the accuracies achieved based on the absolute frequencies. (There is an

exception, in which both character bi-grams and tri-grams are observed to perform much better in

their relative frequency in general.)

When integrating with syntactic features, the effect on the classification performance based on

the absolute frequency appears to be inconsistent in the sense that adding syntactic errors some-

times improves the classification but at other times the performance decreases. On the other hand,

the performance seems to be consistent when the relative frequency is utilised for classification.

For the most part, after tuning, adding syntactic errors maintains or slightly improves the classi-

fication performance for each lexical feature before combining with any syntactic features (with

respect to relative frequency).

Comparing Queequeg and the retrained tagger, the overall picture is that integrating errors de-

tected by the retrained tagger improves the classification for each of the lexical features; but errors

from Queequeg sometimes leads to a slight decline in performance (especially when integrating

with character tri-grams.) In brief, the best performance for function words, character n-grams,

and PoS n-grams with the integration of the syntactic errors detected by both Queequeg and the
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retrained tagger are 69.71% (398 function words), 72.0% (character tri-grams), and 77.71% (PoS

bi-grams), respectively. However, it should be noted that the overall best result for character n-

grams comes from the retrained tagger (73.14% for the tri-grams); as for PoS n-grams, the overall

best result is from Queequeg (78.28% for the bi-grams).

As a side note, the classification performance prior tuning of character n-grams — bi-grams

and tri-grams (Table 3.9) — is much weaker than the accuracies observed for function words and

PoS n-grams as the classification features. It, however, achieves more than 70% after tuning which

seems to be on par with the individual best performance of the other two lexical features. Also note

that the classification results for the 250 rare bi-grams from the Brown corpus are not presented

here since the results are all at around the baseline (14.29%). This is no doubt due to feature

sparsity.

Combined results. Table 3.11 presents the classification results of all combinations of lexical

features (with and without integrating with syntactic errors) after tuning. We selected the longest

list of function words (398 words), character bi-grams, and PoS bi-grams were selected for com-

bination. Although character tri-grams seem to perform better than character bi-grams, combining

the former with the rest of the features (including syntactic features) results in weaker classification

performance than the integration of the latter with other features. A similar behaviour is observed

for function words, where the longest list with stopwords leads to a better overall performance for

the combination of all features than the set with solely 363 function words.

The combination of all three lexical features generally results in higher classification accuracy

after tuning than any of the combinations of two features — between 75% and 80% accuracies.

Some observations from the combined results are that integrating syntactic errors in general does

not seem to improve the classification accuracy after tuning; however, adding errors from Quee-

queg sometimes causes a slight decline in performance with respect to relative frequency — this

is observed in the combination of function words with character n-grams (refer to the first sec-

tion of Table 3.11). Conversely, with the integration of errors from the retrained tagger somehow

improves the classification, in particular when character n-grams and PoS n-grams are combined

(refer to the second section of Table 3.11).

In summary, our overall best accuracy after tuning thus far is at 81.14% (with 142 out of

the 175 essays correctly classified to their respective native language.) The confusion matrix

presented in Table 3.12 provides an overall picture illustrating where most of the misclassifications

occurred; they largely occur in two of the Slavic languages — Bulgarian and Russian — as well

as Spanish. Furthermore, the classifier is able to identify the two Asian (Oriental) languages —

Chinese and Japanese — with close to 100% accuracy which is perhaps not surprising, given that
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Table 3.11: Classification accuracy (%) for combining lexical features with syntactic
errors (after tuning)

Feature Absolute Frequency† Relative Frequency
Combination – Errors + Errors – Errors + Errors

Queequeg
Function words+Character n-grams 66.29 66.29 77.71 75.43
Function words+PoS n-grams 73.14 73.14 79.43 79.43
Character n-grams+PoS n-grams 66.29 66.29 78.86 78.86
All three lexical types 74.86 74.86 81.14 81.14

Retrained Tagger
Function words+Character n-grams 66.29 66.86 77.71 77.71
Function words+PoS n-grams 73.14 73.14 79.43 79.43
Character n-grams+PoS n-grams 66.29 69.14 78.86 80.00
All three lexical types 74.86 74.86 81.14 81.14

Both error detectors
Function words+Character n-grams 66.29 66.86 77.71 76.00
Function words+PoS n-grams 73.14 73.71 79.43 78.29
Character n-grams+PoS n-grams 66.29 66.29 78.86 79.43
All three lexical types 74.86 74.86 81.14 81.14
†Character n-grams are in their relative frequency

Table 3.12: Confusion matrix for the best classifica-
tion accuracy based on the combination of both lexi-
cal and syntactic features

BL CZ RU FR SP CN JP
BL [14] 3 3 4 1 – –
CZ 2 [21] – 2 – – –
RU 3 2 [16] 4 – – –
FR 1 – – [24] – – –
SP 2 1 1 3 [18] – –
CN – – – – – [25] –
JP – – – 1 – – [24]

BL:Bulgarian; CZ: Czech; RU:Russian; FR:French;
SP:Spanish; CN:Chinese; JP:Japanese

these language systems differ quite significantly from English, in particular with respect to the

grammatical features investigated in the current study.

3.7 Discussion

Comparison with Koppel et al. (2005). The classification results prior to tuning for both func-

tion words and character n-grams (without taking syntactic features into consideration) are lower

than the results obtained by Koppel et al. (2005). Nonetheless, character n-grams (both bi-grams
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Table 3.13: Comparison of classification accuracy with Koppel
et al. (2005)

Feature Type Koppel et al. (2005) Our Best Result
Function words 71.0% 65.14%
Character n-grams 68.0% 71.43%
All lexical features 80.2% 81.14%

Note: Our best results presented here are based on 363 function words
and character trigrams since they are the individual best performance
(after tuning)

and tri-grams) perform on par with Koppel et al. after tuning, as presented in Table 3.13. The

observed difference in classification accuracy, for function words in particular, can basically be

explained by the corpus size. As mentioned earlier, we adopted smaller subsets of the ICLE cor-

pus for the current study — only 95 essays were used for each native language (i.e. 70 for training

and 25 for testing). In contrast, Koppel et al. (2005) made use of 258 essays for each native lan-

guage. A simple analysis (looking at a curve of the results for variously sized subsets of our data,

and the improvements as the training sample size grows — see Figure 3.11) suggests that our re-

sults are indeed consistent with those of Koppel et al. given the sample size. (In order to build up

bigger training subsets up to size 85, we made use of the additional 15 essays set aside for each

native language group, as mentioned at earlier the chapter under Section 3.2.)

Moreover, it is worth noting that our task is indeed to some extent more difficulty than Koppel

et al. (2005) since we examined two additional languages. Overall, we managed to achieve the

same level of classification performance as Koppel et al. (2005) for the combination of all features

— comparing 81.1% with 80.2%. (Note that the results of PoS n-grams could not be compared

here since Koppel et al. (2005) considered these features as part of the errors and did not provide

a separate classification result.)

Usefulness of syntactic features. For the best combination of features, our classification re-

sults of integrating with syntactic features (i.e. syntactic errors) with the lexical features do not

demonstrate any improvement in terms of classification accuracy. In fact, adding syntactic errors

decreases the classification performance sometimes. This could possibly be due to the small num-

ber of syntactic error types being considered at this stage. Such a small number of features (three

in our case) would not be sufficient to add much to the approximately 800 features used in our

replication of the work by Koppel et al. (2005). Furthermore, it cannot be ruled out that there

might be flaws in error detection as a result of the limitations of the error detection tools.



64 CHAPTER 3. A PRELIMINARY ERROR-BASED ANALYSIS

...
..

20

.

30

.

40

.

50

.

60

.

70

.

80

.

90

.

50

.

55

.

number of training documents

.

ac
cu

ra
cy

(%
)

.
. ..actual
. ..predicted

(a) Function words

...
..

20

.

30

.

40

.

50

.

60

.

70

.

80

.

90

.40 .

50

.

60

.

number of training documents

.

ac
cu

ra
cy

(%
)

.
. ..actual
. ..predicted

(b) Character bi-grams

...
..

20

.

30

.

40

.

50

.

60

.

70

.

80

.

90

.
45

.

50

.

55

.

60

.

65

.

number of training documents

.

ac
cu

ra
cy

(%
)

.
. ..actual
. ..predicted

(c) PoS bi-grams

Figure 3.11: Extrapolation of classification accuracy with respect to training data size
(Note: These results are based on only the five native languages as used by Koppel et al. (2005)
for comparison purposes)
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Other issues of note. As seen in the individual results of character n-grams (Table 3.9), charac-

ter n-grams alone are able to achieve a relatively reasonable accuracy of approximately 70%. It

can be regarded that character n-grams are to some extent a useful marker and as argued by Kop-

pel et al. (2005) that such features may reflect the orthographic conventions of individual native

language. Furthermore, this is also consistent with the hypothesis put forward by Tsur and Rap-

poport (2007) in their replication of Koppel et al.’s work. It was claimed that the choice of words

in second language writing is highly influenced by the frequency of native language syllables (i.e.

the phonology of the native language) which can be captured by character n-grams. Such a phe-

nomenon can be observed in Japanese learners of English, where it is well known that they are

particularly confused between the English phonemes /l/ and /r/ as the Japanese language does not

make such a distinction; and they often assimilate both the phonemes to the Japanese /r/ (Aoyama

et al., 2004).

Recent related work. As mentioned in Section 2.2, a number of related works have extended

our studies presented in this thesis, in particular the current chapter and the next. Here, one specific

piece of work that should be considered is that of Kochmar (2011) which is based on our initial

work in this chapter and published in Wong and Dras (2009), where part of her work is aimed at

improving upon our approach of using only three syntactic error types.

Kochmar (2011) investigated about 80 types of error identified in the Cambridge Learner Cor-

pus (CLC), and discovered that using the top 10 error types selected through information gain (IG)

results led to better performance in most of her binary classification tasks for distinguishing be-

tween a pair of closely related languages from the Germanic and Romance language groups. It was

found that the three error types considered in our work (Wong and Dras, 2009) were not among

the typical error types detected for all the Indo-European languages examined in her work. (These

error types are presented in Kochmar (2011) under Table 3.1.) Consequently, the classification

results based on just three error types (that we used) only resulted in the classification accuracy

slightly above chance (50-60%); while the IG selected error types perform significantly better at

the accuracy range of 60-80%. Further, as our results show no significant improvement when in-

tegrating errors with widely adopted lexical features, Kochmar (2011)’s results demonstrate that

adding her error types with lexical features (and other distributional features) led to some degree

of improvement but not higher than 2.5% in general.

It should be noted that there are a number of differences between the work of Kochmar (2011)

and ours. In our studies (throughout the entire thesis), we are working on a multiclass classification

task involving seven native language groups; while all the classification tasks in Kochmar (2011)

are binary ones for pairs of languages from 5 Germanic languages and 5 Romance languages.
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With regard to the native languages investigated, we consider languages that are quite different

from English in terms of grammatical features (Slavic and Asian in particular), but Kochmar’s

languages are Germanic and Romance which are quite similar to English. Another aspect that is

worth mentioning is the difference in the corpus used (ICLE versus CLC). All these factors may

account for some degree of variation in terms of classification performance.

3.8 Concluding Remarks

For the most part, we have found some modest support for the hypothesis that the idea of in-

terference errors from contrastive analysis can help in detecting the native language of a text’s

author, through a statistical analysis of three syntactic error types and through machine learning

using only features based on those error types. Nevertheless, in combining these with features

commonly used in other machine learning approaches to the task of native language identification,

we did not manage to find an improvement in classification accuracy, only performance at the

comparable level of just about 80%.

An examination of the results suggests that using more error types (such as inappropriate

use of prepositions and incorrect use of word order), as well as a method for more accurately

identifying them (in view of the limitations of the error detection tools used in the current study),

might result in classification improvements. A still more useful approach might be to use an

automatic means to detect different types of syntactic errors; for example, the idea suggested by

Gamon (2004) as inspired by Baayen et al. (1996), in which context-free grammar production rules

can be exploited to detect ungrammatical structures. Syntactic parsing would be helpful in this

regard. With the help of statistical parsers, parse production rules can be extracted and the resultant

different distributions of production rules could serve as useful markers. In adddition, such an

approach could also uncover overuse and avoidance of certain syntactic structures that might be

the effects of cross-linguistic influence (as seen in Section 2.3.1.2) as these would manifest in the

extreme occurrences of certain production rules. We proceed to this second approach in the next

chapter.



Chapter 4

Using Statistical Parsing for

Syntactic Structures

From Chapter 3, there has been some evidence that error-based differences among texts written

in a second language (English) by writers with different native language backgrounds are indeed

detectable to some extent through a simple approach of pattern-matching over PoS tags and words.

However, the use of these error-based distributions as markers for identifying native language did

not lead to an improved classification performance over just the lexical ones. Likely reasons

are that we had only explored a relatively small number of error types and perhaps the detected

syntactic patterns are in fact inaccurate.

It appears to us that there are two possible directions to pursue: the first is to explore a wider

range of error types with more sophisticated error detection techniques; alternatively, syntactic

structures themselves can be used as features through deploying statistical parsers with high ac-

curacy. We opt for the latter direction since statistical parsing can be exploited to uncover other

phenomena influenced by native language, such as overuse and avoidance of certain syntactic

constructions in second language production (to be discussed later in the chapter), in addition to

syntactic errors. For the purpose of native language identification (NLI), the goal of this chapter

is to investigate how computational linguistic tools — specifically automatic statistical parsers —

might detect such syntactic manifestations of native language and use them as features for deter-

mining the native language of the writer of a particular text.1

We tackle this in two parts. First, it is not clear whether statistical parsers are in fact even useful

in characterising syntactic errors at all. In addressing the problem of sentence grammaticality

judgement as a binary classification task — determining whether a sentence is grammatical or

1The core work of this chapter was published in Wong and Dras (2011).
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not, that is, whether it contains grammatical errors — by means of supervised machine learning, a

number of existing studies have attempted to exploit some form of parser outputs and ‘by-products’

as features for classification. These include (log) probability of a parse tree, number of partial

(incomplete) parse trees, parsing duration, and such (Mutton et al., 2007; Sun et al., 2007b; Foster

et al., 2008; Wagner et al., 2009). What we are interested in is the primary parser output, the

syntactic tree or parts thereof. As the first task, then, we look at whether features derived from

syntactic trees are useful in sentence grammaticality judgement, similar to Sun et al. (2007a)

which explored the ‘direct’ parse trees, in next section; we, in particular, look at horizontal tree

slices (i.e. production rules) and at instantiations of more complex templates over trees as used in

parse reranking and elsewhere.

Subsequently, we incorporate such syntactic features as they prove to be useful in sentence

grammaticality judgement into the NLI task, which we approach using the standard machine learn-

ing paradigm. In our earlier work in Wong and Dras (2009) and also (with some more detail) in

Chapter 3, we looked at identifying specific errors known from the SLA literature, for example

article errors, and using those as features. Here, there is no presupposition about what the errors

might be: this then has the potential to discover previously unknown errors, and also to identify

when particular constructions are grammatical in the L1 but are overused or avoided in a manner

characteristic of a particular L1.2

The remaining structure of this chapter is as follows. In Section 4.1, we introduce the key

concepts as well as review the related work on sentence grammaticality judgement (the review of

relevant NLI work being in Section 2.2). The subsequent two sections detail the classification ex-

periments for each of the two key tasks of this chapter, exploiting parse structures as classification

features: Section 4.2 for sentence grammaticality judgement (as a binary classification task) and

Section 4.3 for native language identification (as a multiclass classification task).

4.1 Related Work: Sentence Grammaticality Judgement

Research on identifying specific ungrammaticalities, such as articles, prepositions, as well as col-

locations, has been abundant; and an attempt to give an exhaustive review on these would go

beyond the scope of this chapter as well as the thesis. An extensive list of research targeting

specific grammatical errors can be found in Leacock et al. (2010). Here we note some promi-

nent examples of work identifying ungrammaticality at the sentence level (i.e. judging whether a

sentence is well-formed or not) using parser outputs, including parse trees and parser by-products.

2Alternatively, generative grammars, such as the English Resource Grammar (Copestake and Flickinger, 2000) and
the ParGram English grammar (Butt et al., 2002), could be an alternative; grammaticality prediction is also realised as a
first-order output by these grammars.
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An early work using parser outputs is Mutton et al. (2007), who found that outputs from

multiple parsers, such as log probability of the most likely parse, number of partial parse trees,

and number of invalid parses correlate well with sentence ‘fluency’; and that the combination of

multiple parser outputs outperformed individual parser metrics. Likewise, Andersen (2007) used

grammatical relations obtained from the RASP parser (Briscoe et al., 2006) in addition to n-grams

and PoS tags to detect grammatical errors.

N-grams have been explored in other studies as well. Okanohara and Tsujii (2007) used n-

grams clustered by a semi-Markov class model as features in grammaticality discrimination; the

highest classification accuracy rate reported was 74% for data drawn from the British National

Corpus. Sun et al. (2007b) suggested that non-contiguous n-gram-like features which they termed

as ‘labelled sequential patterns’ are more important than parse probabilities in terms of sentence

grammaticality classification, achieving an accuracy rate of over 80% on their classification task.

In their subsequent work (Sun et al., 2007a), they deployed the full parse trees (also taking into

account subsumption relationships between trees) as features, and achieved a similar accuracy

rate of up to 80% when combining both the ‘labelled tree patterns’ and the ‘labelled sequential

patterns’.

The work presented in this chapter is most similar to the line of work started by Wagner et al.

(2009) which based on their earlier work (Wagner et al., 2007). They looked at two approaches to

judging sentence grammaticality: one using the precision parser XLE (Maxwell and Kaplan, 1996)

with the ParGram English grammar (Butt et al., 2002), a manually constructed grammar in the

Lexical Functional Grammar (LFG) formalism; and the other using the statistical reranking parser

by Charniak and Johnson (2005) (which we henceforth refer to this throughout the chapter as the

C&J parser). In the former, they used n-grams over part-of-speech (PoS) tags, and six features

of XLE including a flag indicating use of robustness techniques which indicate that the parser

initially failed to parse. In the latter, they used log parse probabilities and “structural differences

between the parse trees measured using various parser evaluation metrics”.3 Three variants of

the C&J parser were produced, by training on grammatical treebank, a distorted ungrammatical

treebank, and the union of these, following the approaches proposed in Foster et al. (2008).4 The

classification accuracy rates reported were within the range of 65–75%, the best result obtained by

combining all the feature sets.

Another related work of ours, Wong and Dras (2010), followed a similar approach, training a

statistical parser on the same sets of grammatical and ungrammatical treebanks, but deploying the

3These were not explicitly described, but were given by citation of Abney et al. (1991) and Sampson and Babarczy
(2003).

4The methodology used in Foster et al. (2008) for constructing an ‘ungrammatical’ parser through training with er-
rorneous treebank is discussed in the next section (Section 4.2) as we are deploying the similar methodology for our
experiments on judging sentence grammaticality.
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Stanford parser (Klein and Manning, 2003) instead of the C&J parser. The idea was to exploit the

parse structure itself in the form of CFG production rules to improve grammaticality judgement

(as a form of classification task at the sentence level). Compared to a baseline using parse proba-

bilities, we found that considering the trees as sets of context-free production rules (e.g. S → NP

VP), and then adding in the production rules as features, resulted in a modest 1.6% improvement

overall. Sparsity of training vectors was proposed as a reason for the smallness of the improvement

in performance.

Our intuition in this chapter is that the production rules used in our previous work (Wong

and Dras, 2010), as a form of representation for syntactic structures, are just a small subset as

compared to the feature schemas used in discriminative parse reranking (Charniak and Johnson,

2005). In principle, utilising these templates as classification features for sentence grammaticality

judgement could capture much more structure and better characterise ungrammmatical structures,

as well as alleviate feature sparsity problems. In this first task of the chapter, we approach the

sentence grammaticality judgement task using this broader set of syntactic features.

Finally on sentence grammaticality judgement, we note that there has been recent work by Post

(2011), deploying tree fragments from Tree Substitution Grammar (TSG) derivations as features

in addition to parse reranking features along with other features for the same classification task: in

this it is more similar to our work than those discussed above. The Post (2011) work starts from the

BLLIP’99 dataset in contrast to our Wall Street Journal (WSJ) treebank, which constitutes the pos-

itive (grammatical) examples. The negative (ungrammatical) examples are, however, less realistic

‘pseudo-negative’ sentences generated from a trigram language model. The reported classification

results based on TSG tree fragments and reranking features are higher than the previous studies,

with accuracy in the range 88–100%, with each of them outperforming one another in each dataset

(reranking features performed best on the BLLIP data). For the purpose of the work presented in

this chapter, we are following Wagner et al. (2009) and Wong and Dras (2010) to examine more

‘realistic’ ungrammatical data created through modeling real learner errors, and whether parsers

are useful in discovering these; with respect to classification accuracy, then, we expect these to be

lower compared to Post’s.

4.2 Sentence Grammaticality Judgement

Before tackling NLI, the goal of this section (as the first task of this chapter) is to investigate the

extent to which parse structures themselves can be deployed for characterising sentence grammat-

icality in general. We follow the general approach taken by Foster et al. (2008), and our previous

work, Wong and Dras (2010). The key idea there is that having a parser that is trained on both
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grammatical and ungrammatical data may help in detecting ungrammatical sentences: an ‘ungram-

matical’ parser may, for example, assign higher probabilities to parses of ungrammatical sentences

than a parser trained on regular grammatical sentences would, making this a useful feature.

In general, treebanks of ungrammatical data do not exist, however. Foster (2007) therefore

proposed an approach for constructing ungrammatical treebanks based on an extensive modelling

of errors in real corpora presented in her thesis (Foster, 2005). Ungrammatical sentences are

constructed by introducing errors into the original (grammatical) WSJ sentences through the op-

erations of word insertion, substitution, and deletion. Each ungrammatical sentence is then tagged

with the gold standard parse tree, a transformation of the original parse tree of its grammatical

counterpart with the intended meaning remained intact. The types of errors introduced include

missing word, extra word, real-word spelling, agreement, and verb form: according to Foster

(2005), these comprise 72% of the analysed errors. Foster et al. (2008) subsequently showed that

a combination of regular parsers and ungrammatical parsers was better at detecting ungrammatical

sentences than a regular parser alone. Specifically, they took as features the log probabilities of

the most likely parse returned by a regular parser and an ungrammatical parser, and used these as

features in a classifier.

4.2.1 Experimental Setup

As per this approach, then, the experiments here are carried out in two stages. In the first stage, we

induce a parsing model that can (preferably) parse both grammatical and ungrammatical sentences

equally well, as in Foster et al. (2008). This robust parsing model is then used for all the subsequent

parsing tasks in the second stage, where we take as a baseline the parse probability approach

derived from Foster et al. (2008), and then examine the addition of parse production rules and

instantiated tree templates (discussed in Section 4.2.2).

4.2.1.1 Scenarios

We investigate two scenarios here. First, we assume an ‘ideal’ scenario where a gold standard

treebank for ungrammatical data is available for training a parser; the parser hence has some insight

into how ungrammatical sentences should be parsed. We also investigate a more ‘realistic’ second

scenario, where the gold standard ungrammatical treebank is not available for parser training.

Instead, we assume we only have access to a regular parser trained on a grammatical treebank.

By assessing these two scenarios, this allows us to gauge the extent to which the use of a gold

standard ungrammatical treebank is indeed important for training a parser and subsequently to

study its effects on judging the grammatical status of sentences.
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4.2.1.2 Corpora

Two types of corpus are needed for the purpose of the present study. For the grammatical sen-

tences, we take the original Wall Street Journal (WSJ) treebank (Marcus et al., 1993) with the as-

sumption that these sentences are grammatically well-formed. We refer to this corpus as PureWSJ.

The ungrammatical sentences are obtained from the noisy (distorted) versions of WSJ created by

Foster (2007).5 There are two sets of the noisy version of WSJ, which we refer to as NoisyWSJ

and NoisierWSJ; the second set contains two or more errors in each sentence while the first set

contains only one error. These grammatically ill-formed WSJ sentences were generated by intro-

ducing grammatical errors to the initially well-formed WSJ sentences.

4.2.1.3 Parsers

We employ two PCFG-based statistical parsers: the Stanford parser (Klein and Manning, 2003)

and the C&J parser (Charniak and Johnson, 2005). The Stanford parser constructs a generative

parsing model within a factored lexicalised parsing framework that uses an unlexicalised PCFG

model with a separate lexical dependency model. With carefully defined state splits (parent tree

annotation) and other grammar transformations such as markovization, Klein and Manning (2003)

demonstrate that the Stanford parser can parse quite accurately compared to early lexicalised mod-

els, with a reported f-score of 86.36%.

The C&J parser, on the other hand, adopts a discriminative model which uses a regularised

maximum entropy or log-linear model to perform discriminatve reranking on the n-best parses

returned by another generative parsing model, the Charniak parser (Charniak, 2000). The n-

best parses are produced through heuristic coarse-to-fine refinement of parsing, resulting in high

quality parse candidates. The reranking process then selects the best parse that is associated with

the highest score of a linear function of a set of linguistically informed reranking features. As a

result of reranking, the C&J parser at the time achieved state-of-the-art parsing performance with

a reported f-score of 91.0%.

4.2.2 First Stage: Training of Parsers

To enable it to be capable of accurately parsing both grammatical and ungrammatical sentences,

a parser ideally has to be re-trained on both grammatical and ungrammatical corpora. Following

Foster et al. (2008), we conduct five experiments to re-train the two parsers — the C&J parser

5For more detail on how grammatical errors were inserted, the reader can turn to Foster (2007). A special thanks to
Jennifer Foster for providing us with the ungrammatical versions of the WSJ treebank; and for her helpful comments on
the early draft of this chapter.
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(Charniak and Johnson, 2005) as per Foster et al. (2008)6, and the Stanford parser (Klein and

Manning, 2003) as per Wong and Dras (2010) — in order to induce a more robust parsing model

capable of parsing both grammatical and ungrammatical sentences. In this first part, we compare

the parsing performance of the two parsers, and subsequently their influences on the classification

tasks of judging sentence grammaticality.

In the first three experiments, three models for each of the two parsers are induced by training

on three different sets of corpora — first on the original WSJ (PureWSJ); second on the noisy

WSJ (NoisyWSJ); and third on the combination of the first two (i.e. PureWSJ plus NoisyWSJ). We

denote these three parsing models as PureParser, NoisyParser, and MixedParser, respectively. To

gauge its ability to parse both grammatical and ungrammatical sentences, each of these models is

evaluated against the three WSJ test sets (i.e. PureWSJ, NoisyWSJ, and NoisierWSJ) based on the

labelled f-score measure.

For the last two experiments we train a ‘combination’ parser, where each sentence is parsed

with two of the abovementioned parsers — one trained exclusively on grammatical data (PureParser)

and the other trained on some ungrammatical data (either NoisyParser or MixedParser). The best

parse for a sentence is selected based on the one associated with the higher parse probability (Fos-

ter et al., 2008). Hence, PureParser is integrated with NoisyParser for the fourth experiment and

with MixedParser for the last experiment. All training is performed on Sections 02-21; all testing

is on Section 00.

4.2.3 Second Stage: Classification of Sentences

For the main task of grammaticality judgement, we deploy the parser outputs described below as

features for classifying sentences, as either grammatical or ungrammatical. Here, we are interested

in investigating the degree of influence of the two parsers — Stanford parser and C&J parser —

on the overall classification performance, through examining the parse production rules extracted

from the parses produced by each of them.

As mentioned above, we intend to evaluate two ‘scenarios’ as described at the beginning of this

section: one where an ungrammatical treebank is available for parser training, in which we have

two instances of a parser trained (as in the first stage) on both grammatical and ungrammatical

data — PureParser with either NoisyParser or MixedParser (depending on the outcomes from the

first-stage experiments); and the more realistic scenario where there is only one instance of the

parser being trained on only grammatical data — PureParser. To be precise, there will be two sets

of features (each coming from any two instances of the parser trained) for the ideal first scenario,

6Note that Foster et al. (2008) only retrained the first-stage generative parser of the C&J parser (i.e. the Charniak
parser), while we also retrained the reranker at the second stage with assistance from Mark Johnson.
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but only one set of features for the realistic second scenario.

4.2.3.1 Classification Features

Parse probability features. Parse probabilities, serving as a baseline, are obtained by conducting

similar procedures as in the last two experiments in the first stage. As before, each sentence is

parsed with two types of parsing model — PureParser and either NoisyParser or MixedParser

(depending on the first-stage outcomes). The parse probability returned by each parsing model is

used as a classification feature. With the Stanford parser, there are only two feature values: the

parse probability from PureParser and the parse probability from either NoisyParser or Mixed-

Parser. For the C&J parser, on the other hand, there are two additional feature values which are

the reranking scores as mentioned in Section 4.2.1.3 — i.e. the best parse returned by the C&J is

the highest scoring parse amongst the other n-best parse candidates. (Note that this description is

specifically for the first scenario mentioned above; as for the second scenario, only PureParser is

used — hence, there is only a single set of parse probabilities serving as feature values.)

Parse production rule features. The parse production rules are selected using the two feature

selection metrics that we found to perform best in Wong and Dras (2010): Information Gain

(IG) (Yang and Pedersen, 1997) and Binormal Separation (BNS) (Forman, 2003). The details of

each metric is described as follows (with r representing a parse production rule and c a class, i.e.

grammatical or ungrammatical):

• Information Gain (IG): The formula below is adopted from Yang and Pedersen (1997), with

m = 2 (i.e. the number of distinct classes). We pick the 100, 500, and 1000 rules with the

highest information gain as classification features. Feature values are of binary type.

IG(r) = −
∑m

i=1 Pr (ci) log Pr (ci)

+Pr (r)
∑m

i=1 Pr (ci|r) log Pr (ci|r)

+Pr (r̄)
∑m

i=1 Pr (ci|r̄) log Pr (ci|r̄) (4.1)

• Binormal Separation (BNS): Forman (2003) defines this metric as below, where F(x) is the

cumulative probability function of a normal distribution. Similarly, the 100, 500, and 1000

rules with the highest BNS scores are selected as features with binary-typed values.

BNS(r, c) =
∣∣F−1(Pr (r|c))− F−1(Pr (r|c̄))

∣∣ (4.2)
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Reranking features. To resolve the probable feature vector sparsity problem that might arise from

the use of just horizontal parse production rules, we explore more generalised parse structures —

features used for discriminative reranking — that might capture much more aspects of ungrammat-

icality. We use the 13 feature schemas as described in Charniak and Johnson (2005), which were

inspired by earlier work in discriminative estimation techniques, such as Johnson et al. (1999) and

Collins (2000). Examples of these feature schemas include tuples covering head-to-head depen-

dencies, pre-terminals together with their closest maximal projection ancestors, as well as subtrees

rooted in the least common ancestor. (For the full list of feature schemas, the reader can refer to

Charniak and Johnson (2005).)

Since the parser keeps track of these features, we can make them perform ‘double duty’ —

both for reranking the parses and as classification features. Based on the 50-best parser outputs

returned in the first stage of the reranking parser, features that meet a certain count threshold are

selected. There are 3,380,722 features extractable from the training data that we have. Taking the

reranker’s default count threshold of 5, the number of features was reduced to 1,133,261. Three

experiments are to be conducted: first on the 100,000 most frequently occurring features, followed

by the 500,000 most frequently occurring ones, and finally all of the 1,133,261 features.7

4.2.3.2 Classification Settings

Training. The training set consists of a balance of grammatical and ungrammatical sentences,

with 79,664 in total (i.e. 39,832 sentences for each class). As mentioned before, the grammatical

sentences are adopted from PureWSJ 02-21 and the ungrammatical ones are from NoisyWSJ 02-

21.

Testing. The testing set is also a balanced set of the two classes of sentences. Unlike for training,

we have two sets of testing data. While the first set is formed from PureWSJ 00 and NoisyWSJ

00, the second set is from PureWSJ 00 and NoisierWSJ 00. The intention of testing on the latter

set is to examine the extent to which the degree of noisiness in the data would affect the overall

classification performance. 3,840 sentences are used for testing with the Stanford parser and 3,842

sentences with the C&J parser.8

Classifiers. Two types of machine learner are deployed for all the classification tasks: a support

vector machine (SVM) as per Wong and Dras (2010), and a maximum entropy (maxent) learner

— one of the classifiers that has been gaining much success in text classification (Nigam et al.,

7The reason for selecting the 100,000 features as the first set for the reranking features is that there is an issue of feature
sparsity even with 50,000 features.

8The difference is due to the Stanford parser returning no parses for one of the test sentences in PureWSJ.
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Table 4.1: Stanford parsing evaluation (labelled f-score %) of five exper-
iments on three versions of WSJ Section 00

Exp Parser PureWSJ NoisyWSJ NoisierWSJ
1 PureParser 85.61 78.42 72.64
2 NoisyParser 84.31 80.32 76.19
3 MixedParser 82.63 78.69 74.25
4 Pure-NoisyParser 85.39 80.43 76.40
5 Pure-MixedParser 85.49 80.04 75.53

Table 4.2: C&J parsing evaluation (labelled f-score %) of five experiments
on three versions of WSJ Section 00

Exp Parser PureWSJ NoisyWSJ NoisierWSJ
1 PureParser 91.09 82.41 76.78
2 NoisyParser 89.73 82.92 78.96
3 MixedParser 90.33 83.80 79.48
4 Pure-NoisyParser 89.79 83.19 78.73
5 Pure-MixedParser 90.66 83.64 79.09

1999; Zhu et al., 2005). We use the online SVM tool, LIBSVM (version 2.89) by Chang and Lin

(2001) and the maxent tool, MegaM9 (fifth release) by Hal Daumé III. Each classifier is tuned to

obtain an optimal classification model.

4.2.4 Results

4.2.4.1 Parser Evaluation

Here, we present the parsing results of the five experiments conducted in the first stage where

the intention is to induce a more robust parsing model that can handle ungrammatical sentences

without compromising its performance on grammatical ones.

Tables 4.1 and 4.2 are the parsing evaluations for the Stanford parser and the C&J parser

respectively. In general, the C&J parser performs better than the Stanford parser in all the parsing

experiments. For Stanford, Pure Parser integrated with Noisy Parser in the fourth experiment

is the best combination in the sense that this integrated model performs relatively well for both

grammatical and ungrammatical data; while for C&J, Pure Parser with Mixed Parser in the last

experiment is best. These two best models are used for all the parsing tasks in the second stage (to

produce parse outputs for the purpose of classification).

9MegaM software is available at http://www.umiacs.umd.edu/~hal/megam/.

http://www.umiacs.umd.edu/~hal/megam/
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Table 4.3: Classification results (accuracy %) with ‘parse prob-
abilities’ as features on both NoisyWSJ and NoisierWSJ — First
scenario

Features SVM MegaM
Parse Prob Stanford C&J Stanford C&J

Pure-NoisyWSJ 65.46 61.56 66.43 64.24
Pure-NoisierWSJ 74.19 71.76 74.97 74.46

Table 4.4: Classification results (accuracy %) with ‘parse proba-
bilities’ as features on both NoisyWSJ and NoisierWSJ — Second
scenario

Features SVM MegaM
Parse Prob Stanford C&J Stanford C&J

Pure-NoisyWSJ 50.02 51.54 50.00 52.81
Pure-NoisierWSJ 53.46 53.80 50.00 55.46

4.2.4.2 Classification Performance

In the following tables of classification results, Pure-NoisyWSJ denotes the set of testing data

consists of PureWSJ and NoisyWSJ, while Pure-NoisyWSJ refers to the testing set containing

PureWSJ and NoisierWSJ. (All tests are performed on Section 00.)

Parse probabilities. For the classification of sentence grammaticality, a reasonably good accuracy

(better than chance) is achievable by using just parse probabilities alone as features under the ideal

first scenario, in which the gold standard ungrammatical parses are available for parser training

(see Table 4.3). Unsurprisingly, noisier data is easier to distinguish — for instance, comparing

the SVM classification accuracy of 65.46% (Pure-NoisyWSJ) with 74.19% (Pure-NoisierWSJ) for

the Stanford parser, and 61.56% (Pure-NoisyWSJ) with 71.76% (Pure-NoisierWSJ) for the C&J

parser. Also relatively unsurprisingly, with the use of just PureParser in the second scenario, the

classifiers perform no better than chance with just a single set of parse probabilities as classification

features (as shown in Table 4.4).

Parse rules with Information Gain. Table 4.5 shows that using syntactic information in the

form of production rules produces results substantially better than chance. However, results are

still below using only parse probabilities alone (Table 4.3). In terms of relative machine learner

performance, for the first scenario using IG (see Table 4.5), our previous work (Wong and Dras,

2010) had found that, with an SVM and the Stanford parser, using more production rules led

to a reduction in classification performance for Pure-NoisyWSJ. However, the MegaM (maxent)
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Table 4.5: Classification results (accuracy %) with ‘parse rules IG’ as
features on both NoisyWSJ and NoisierWSJ — First scenario

Features SVM MegaM
n IG Stanford C&J Stanford C&J

100 Pure-NoisyWSJ 60.67 54.01 60.70 54.42
Pure-NoisierWSJ 63.43 58.02 63.46 58.41

500 Pure-NoisyWSJ 58.07 53.20 63.23 57.13
Pure-NoisierWSJ 60.81 56.51 67.06 61.97

1000 Pure-NoisyWSJ 56.69 54.61 63.93 58.30
Pure-NoisierWSJ 59.95 57.65 68.54 63.35

Table 4.6: Classification results (accuracy %) with ‘parse rules IG’ as
features on both NoisyWSJ and NoisierWSJ — Second scenario

Features SVM MegaM
n IG Stanford C&J Stanford C&J

100 Pure-NoisyWSJ 60.31 59.03 60.65 59.63
Pure-NoisierWSJ 66.88 63.20 67.16 65.20

500 Pure-NoisyWSJ 58.91 58.04 62.03 61.61
Pure-NoisierWSJ 66.30 63.72 69.74 69.36

1000 Pure-NoisyWSJ 58.77 57.18 62.97 62.41
Pure-NoisierWSJ 64.45 61.48 70.96 69.91

results of the Stanford parser demonstrate the opposite — as the number of rules increases, the

accuracy is gradually improved. Furthermore, in absolute magnitude, these classification scores

are a major improvement over those reported in Wong and Dras (2010) (replicated in the SVM-

Stanford columns of Table 4.5). As for the C&J parser, there is no noticeable improvement in the

SVM classification accuracies; but improvements in classification are observed with MegaM.

Turning to the second scenario (shown in Table 4.6), similar classification performance pat-

terns are observed for both parsers. More precisely, the use of more production rules causes a

reduction in the overall SVM classification performance for Pure-NoisyWSJ; unlike the cases for

MegaM where improvements are observed.

Parse rules with Binormal Separation. BNS performed similarly to IG. For the first scenario

with BNS (see Table 4.7), the use of more production rules does not have much impact on the

overall SVM classification performance for Pure-NoisyWSJ be it the case for the Stanford parser or

the C&J parser. MegaM, on the other hand, demonstrates the opposite where the classification per-

formance is gradually improved with more production rules. As for IG, both parsers demonstrate

similar classification performance behaviours under the second scenario. As shown in Table 4.8,

MegaM shows classification improvements on Pure-NoisyWSJ when more production rules are
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Table 4.7: Classification results (accuracy %) with ‘parse rules BNS’ as
features on both NoisyWSJ and NoisierWSJ — First scenario

Features SVM MegaM
n BNS Stanford C&J Stanford C&J

100 Pure-NoisyWSJ 57.58 53.85 58.18 55.00
Pure-NoisierWSJ 61.51 56.59 62.89 58.20

500 Pure-NoisyWSJ 58.77 54.89 62.81 56.64
Pure-NoisierWSJ 63.88 58.35 67.10 61.17

1000 Pure-NoisyWSJ 57.39 54.71 63.59 57.52
Pure-NoisierWSJ 61.35 57.78 68.23 62.41

Table 4.8: Classification results (accuracy %) with ‘parse rules BNS’ as
features on both NoisyWSJ and NoisierWSJ — Second scenario

Features SVM MegaM
n BNS Stanford C&J Stanford C&J

100 Pure-NoisyWSJ 60.03 58.12 60.15 57.96
Pure-NoisierWSJ 65.15 64.18 65.68 63.79

500 Pure-NoisyWSJ 59.09 57.10 62.58 60.38
Pure-NoisierWSJ 65.96 63.33 69.61 68.01

1000 Pure-NoisyWSJ 58.96 57.05 63.70 61.11
Pure-NoisierWSJ 64.48 62.44 71.64 69.34

deployed but not for the cases with SVM.

As before, more noisy data is generally easier to distinguish from grammatically well-formed

data. All the classification accuracies for Pure-NoisierWSJ are, therefore, much higher overall (for

both feature selection metrics).

Combining with parse probabilities. In Tables 4.9 and 4.10, we present the results of integrating

parse production rules with parse probabilities. (Note that, the number of parse rules used here

is based on the top 100 rules since this is generally the best performing set when the SVM set-

ting is taken into consideration.) In the case of the first scenario, combining these two types of

features demonstrates some slight improvement in the overall SVM classification performance for

both parsers, with the performance of parse probabilities as the point of reference. Improvements

occur for the Stanford parser with MegaM (67% vs 66.43%) but not for the C&J parser (64.37%

vs 64.24%). As for the second scenario, since there is only one set of parse probabilities, no im-

provements are observed in terms of the classification performance (as expected); this has in turn

worsened the accuracies of using production rules alone in most cases.

Reranking features. Table 4.11 presents the classification results with the reranking features.

Here, having established above the consistent relative performance of the two scenarios, we present
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Table 4.9: Classification results (accuracy %) with the combinations of
‘parse rules and parse probabilities’ as features on NoisyWSJ — First
scenario

Features SVM MegaM
Combinations Stanford C&J Stanford C&J

IG + BNS 58.52 53.28 60.83 56.19
IG + Parse Prob 65.60 63.30 67.00 64.37

BNS + Parse Prob 66.02 63.25 66.77 63.35
All three types 66.30 63.33 66.54 63.97

Table 4.10: Classification results (accuracy %) with the combinations
of ‘parse rules and parse probabilities’ as features on NoisyWSJ — Sec-
ond scenario

Features SVM MegaM
Combinations Stanford C&J Stanford C&J

IG + BNS 60.26 58.41 61.64 59.60
IG + Parse Prob 56.80 55.13 58.44 59.63

BNS + Parse Prob 57.01 55.57 59.84 58.17
All three types 57.03 56.12 58.31 59.55

results under the realistic second scenario (refer to the discussion section for further details — Sec-

tion 4.2.5), and only with the MegaM as the SVM implementation could not handle the quantity

of reranking features. As shown in the results, reranking features appear to be a better discrimi-

nant as compared to parse production rules (be it based on IG or BNS). For instance, comparing

the accuracy rate of 64.42% achieved by using the 100,000 most frequently occurring reranking

features for Pure-NoisyWSJ with the accuracy of 62.41% attained by the use of the 1,000 parse

rules with the highest IG (see Table 4.6). If all the reranking features are used, the classification

accuracy increases to 65.25% for Pure-NoisyWSJ and 71.06% for Pure-NoisierWSJ.

In comparison with the accuracies reported by Post (2011) as mentioned in Section 4.1, our

reranking feature-based results are indeed lower as expected. Nonetheless, our ungrammatical

sentences are of more realistic errors which seem to have posed a more difficult classification

problem.

Table 4.11: Classification results (accuracy %) with ‘reranking fea-
tures’ as features on NoisyWSJ and NoisierWSJ — Second scenario

Features MegaM (2nd scenario)
Reranking n = 100,000 n = 500,000 n = 1,133,261

Pure-NoisyWSJ 64.42 65.02 65.25
Pure-NoisierWSJ 69.99 70.10 71.06
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Table 4.12: Classification results (accuracy %) with the combinations of
‘reranking features and parse rules’ as features on NoisyWSJ — Second
scenario

Features MegaM (2nd scenario)
Combinations IG + Reranking BNS + Reranking All three
Pure-NoisyWSJ 66.37 66.71 66.97

Combining with parse rules. Furthermore, integrating parse rules with reranking features results

in greater improvement in the overall classification performance (as shown in Table 4.12). Adding

all the reranking features to the 1,000 production rules with either the highest IG or the highest

BNS has led to an approximately 4–5% increase in accuracy. (Note that, under the 2nd scenario

with the C&J parser, the MegaM accuracy of using only the top 1,000 IG selected rules is 62.41%

for Pure-NoisyWSJ, while for the top 1,000 BNS selected rules is 61.11%.) Combining all three

types of features (i.e. the two feature selection metrics for parse production rules and the reranking

features) yields an overall accuracy of 66.97% which is almost 7% higher than the performance of

combining just the two feature selection metrics alone for the case of the C&J parser (59.60% as

shown in Table 4.10).

4.2.5 Discussion

First scenario versus second scenario. This is perhaps the most striking result, and of particular

relevance to the following NLI task. Comparing the two scenarios, taking features of IG selected

parse rules for example, the classification results under the second scenario (a single parser) are

noticeably higher (compare Table 4.5 with Table 4.6). This is somewhat surprising, in light of the

direction of previous work discussed in Section 4.1 and at the start of this section: in terms of

statistical parsers, it is not actually beneficial to train two separate parsers on grammatical and un-

grammatical data respectively, as far as structural information is concerned. Similar performance

patterns are indeed observed amongst the cases with BNS selected parse rules (compare Table 4.7

with Table 4.8).

Stanford parser versus C&J parser. Interestingly, in all of the classifications based on parse

production rules as well as parse probabilties, the Stanford parser produces better results, even

though by f-score it was worse than the C&J parser (compare Table 4.1 with Table 4.2). Looking

at the data, we believe that this is because the C&J parser is better at ‘handling’ ungrammaticality,

effectively ignoring errors and consequently producing fewer structural differences in the parse

trees. This may be a consequence of the causal competition effect (‘explaining-away’) inherent
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(S1
(S
(ADVP (RB Nonetheless))
(, ,)
(NP (DT the) (NN suit))
(VP (VBZ seeks)

(NP (JJ unspecified) (NNS damages)
(SBAR

(IN that)
(S
(NP (NP (DT man) (NN attorney))

(PP (IN for)
(NP (NNP Quickview)))

(VBD claimed))
(VP (MD could)

(VP (VB run)
(PP (IN into)

(NP (NP (DT the) (NNS millions))
(PP (IN of)

(NP (NNS dollars)))))))))))
(. .)))

Figure 4.1: An example of parse from C&J parser illustrating the effect of ‘explaining-away’

in maxent models — the C&J parser’s reranker was implemented under the maxent framework.

Under causal competition in the context of a parser, an implausible part of speech, say, may be

assigned because of strong n-gram or structural associations. Compounding this, both the Stanford

and C&J parsers have quite strong built-in linguistic constraints: for example, a sentence will be

forced to have a verb, even if none of the words in an ungrammatical sentence are likely candi-

dates.10 Figure 4.1 demonstrates this phenomenon with an ungrammatical sentence extracted from

the NoisyWSJ. The noun phrase man attorney was the result of substitution of an article an with

a noun man in a presumably grammatical WSJ sentence Nonetheless, the suit seeks unspecified

damages that an attorney for Quickview claimed could run into the millions of dollars. Despite

the presence of ungrammaticality, the C&J parser still produced the parse that is identical to that of

the grammatical sentence given that NP -> DT NN is seemingly much more probable in contrast

to NP -> NN NN.

Table 4.13 provides a closer look at the parse production rules produced by the two parsers. It

illustrates the ratio between the number of occurrences of a particular parse rule in both the gram-

matical and ungrammatical corpora. It can be argued that the greater the ratio for a particular parse

rule, the more prominent a feature it might make for classifying sentences based on their grammat-

icality. Referring to the examples given, the ratios seem to be higher for the parse rules returned

10This comment comes from Mark Johnson (personal communication). To our knowledge, this is not documented in the
literature, although it may be noted by inspecting the code.
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Table 4.13: Examples of parse rules returned by Stanford
and C&J parsers

Parse Rules Stanford C&J
IG + – + –

NP → DT DT JJ NN 2 225 1 141
VP → TO TO VP 0 89 0 24
PP → NN IN NP 0 70 0 1

NP → NP PP VBD 0 54 0 26
BNS + – + –

PP → IN IN NP 105 1858 334 917
VP → VBZ VBZ NP 0 157 1 61

NP → DT DT NN 2 531 6 383
S → NP VBD VP . 0 242 0 40

+: grammatical; –: ungrammatical

by the Stanford parser as compared to those by the C&J parser. It seems that the C&J parser

is successfully ignoring the ungrammaticality in order to produce a parse. Figure 4.2 presents

an example that could conceivably provide some insight into why the higher ratios are observed

amongst the Stanford parse rules as compared to those from the C&J. Comparing the two parses

derived for an ungrammatical sentence with two infinitivals to occuring together, Stanford pro-

duced an uncommon parse rule VP -> TO TO VP (reflecting some form of ungrammaticality)

while C&J produced the typically grammatical rule VP -> TO VP.

Further analysis of some other parses reveals that the C&J parser is not always immune to

ungrammaticality. Figure 4.3 shows an ungrammatical sentence with the presence of two third-

person verbs has occuring in sequence. Although the C&J parser produced the more probable VP

-> VBZ NP in contrast to the less probable VP -> VBZ VBZ NP by the Stanford parser, the

C&J parse also resulted in another typically ungrammatical rule NP -> VBZ DT JJ JJ NN.

Summary. We have shown that using syntactic structural information in the form of parse rerank-

ing templates can identify ungrammaticality at rates substantially greater than chance. We also

found that the maxent-based machine learner MegaM, allowing the useful incorporation of larger

numbers of features, contributes strongly in terms of prediction. On the other hand, having an

ungrammatical treebank does not in fact lead to improved classification (as depicted by the classi-

fication results of the two scenarios). Furthermore, the better C&J parser, a robust statistical parser

that is capable of parsing both grammatical and ungrammatical data equally well, does not neces-

sarily lead to the best results in terms of classifying sentences with respect to their grammaticality:

the Stanford parser performs better here by not ignoring ungrammaticality to the extent of the C&J

parser. This suggests for the NLI task that, in addition to these two parsers, another parser that has
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(ROOT
(S (‘‘ ‘‘)

(S
(NP (PRP We))
(VP (VBP consider)

(NP (PRP$ our) (JJ internal) (NNS controls))
(S
(VP (TO to) (TO to)
(VP (VB have)

(VP (VBN worked) (ADVP (RB well))))))))
(, ,) (’’ ’’)
(NP (PRP she))
(VP (VBD was) (VBD said) (, ,)
(S

(VP (VBG adding)
(SBAR (IN that)
(S

(NP (DT some) (NNS procedures))
(VP (VBP have)
(VP (VBN been) (VP (VBN strengthened)))))))))

(. .)))
(S1
(S (‘‘ ‘‘)

(S
(NP (PRP We))
(VP (VBP consider)

(S
(NP (PRP$ our) (JJ internal) (NNS controls))
(VP (TO to)
(VP (TO to) (VB have)

(VP (VBN worked) (ADVP (RB well))))))))
(, ,) (’’ ’’)
(NP (PRP she))
(VBD was)
(VP (VBD said) (, ,)
(S

(VP (VBG adding)
(SBAR (IN that)
(S

(NP (DT some) (NNS procedures))
(VP (VBP have)
(VP (VBN been) (VP (VBN strengthened)))))))))

(. .)))

Figure 4.2: Parses by Stanford (top) and C&J (bottom) parsers exhibiting grammatical-
ungrammatical ratio difference
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(ROOT
(S
(NP (NNP Warner))
(VP (VBZ has) (VBZ has)

(NP
(NP (DT a) (JJ five-year) (JJ exclusive) (NN contract))
(PP (IN with)
(NP (NNP Mr.) (CC and) (NNP Mr.) (NNP Peters)))

(SBAR
(WHNP (WDT that))
(S

(VP (VBZ requires)
(S (NP (PRP them))

(VP (TO to)
(VP (VB make)
(NP (NNS movies))
(ADVP (RB exclusively))
(PP (IN at)

(NP (DT the)
(NNP Warner) (NNPS Bros.) (NN studio)))))))))))

(. .)))
(S1

(S
(NP (NNP Warner))
(VP (VBZ has)

(NP
(NP (VBZ has) (DT a) (JJ five-year) (JJ exclusive) (NN contract))
(PP (IN with)
(NP (NP (NNP Mr.)) (CC and) (NP (NNP Mr.) (NNP Peters))))

(SBAR
(WHNP (WDT that))
(S

(VP (VBZ requires)
(S (NP (PRP them))

(VP (TO to)
(VP (VB make)
(NP (NNS movies))
(PP (ADVP (RB exclusively))

(IN at)
(NP (DT the)

(NNP Warner) (NNPS Bros.) (NN studio)))))))))))
(. .)))

Figure 4.3: Parses by Stanford (top) and C&J (bottom) demonstrating different forms of ungram-
matical parse rule
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weaker linguistic constraints should be investigated.

4.3 Native Language Identification

Given the demonstration in the previous section that parse structures (such as parse production

rules and more generalised parse reranking features) appear to be useful in characterising sentence

grammaticality, it seems promising to apply a similar approach to the task of native language

identification (NLI), exploiting syntactic errors as classification features. The goal of this section

(as the second task of this chapter) is, therefore, to investigate the influence to which syntactic

features including syntactic errors represented by parse structures would have on the classification

task of identifying an author’s native language relative to, and in combination with, typical lexical

features.

4.3.1 Models for NLI

In this subsection, we describe the three basic models to be investigated for NLI: the first is the

lexical model, based on Koppel et al. (2005), serving as the baseline; followed by the two models

that exploit syntactic information — parse production rules and reranking features. Then we

look at the classification performance of each model independently and also in combination: to

combine, we just concatenate feature vectors linearly.

4.3.1.1 First Model: Lexical Features

As per Chapter 3 (similarly to Wong and Dras (2009)), we replicate the features of Koppel et al.

(2005) to produce our LEXICAL model. These are of three types: function words,11 character

n-grams, and PoS n-grams.

We follow the approach of Chapter 3 in resolving some unclear issues from Koppel et al.

(2005). Specifically, we use the same list of function words, left unspecified in Koppel et al.

(2005), that were empirically determined in Chapter 3 to be the best of three candidates. We used

character bi-grams, as the best performing n-grams, although this also had been left unspecified

by Koppel et al. (2005); and we used the most frequently occurring PoS bi-grams,12 obtained by

using the Brill tagger provided in NLTK (Bird et al., 2009) trained on the Brown corpus.

In total, there are 798 features of this class with 398 function words, 200 most frequently

occurring character bi-grams, and 200 most frequently occurring PoS bi-grams. Both function

11As noted in Section 4.1, we use only function words, so that the result is not tied to a particular domain, and no clues
are obtained from different topics that different authors might write about.

12We omitted the 250 rare PoS bi-grams used by Koppel et al. (2005), as an ablative analysis showed that they contributed
nothing to classification performance.
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words and PoS bi-grams are of binary-typed feature values; while for character bi-grams, the

feature value is of the relative frequency. (These types of feature value are the best performing

ones for each lexical feature.)

4.3.1.2 Second Model: Production Rules

Under this model (PROD-RULE), we take as features horizontal slices of parse trees, in effect

treating them as sets of CFG production rules (as used in the experiments for sentence grammatical

judgement). Feature values are of binary type. We look at all possible rules as features, but also

present results for subsets of features chosen using feature selection. For each language in our

dataset, we identify the n rules most characteristic of the language using Information Gain (IG).

We adopt the formulation of IG of Yang and Pedersen (1997) given in Section 4.2.3.1.

We also investigated other feature selection metrics such as simple frequencies, frequency

ratios, and pointwise mutual information, as per our previous work (Wong and Dras, 2010). As

in much other work, IG performed best, so we do not present results for the others. Binormal

Separation (Forman, 2003), often competitive with IG (as seen in the results presented for sentence

grammaticality judgement), is only suitable for binary classification — hence it is not applicable

to this multi-classification task.

It is worth noting that the production rules being used here are all non-lexicalised ones (i.e.

elements of the right-hand side of each rule are non-terminals), except those rules that are lexi-

calised with function words and punctuation (i.e. the right-hand side of these are terminals), in

order to avoid topic-related clues.

4.3.1.3 Third Model: Reranking Features

Reranking features are cross-sections of parse trees that might capture other aspects of language-

specific ungrammatical structures, or of overuse or avoidance. It should be noted that the 13 feature

schemas as described in Charniak and Johnson (2005) are not the only possible ones — they were

empirically selected for the specific purpose of augmenting the Charniak parser (Charniak, 2000).

However, much subsequent work has tended to use these same features, albeit sometimes with

extensions for specific purposes: for instance, Johnson and Ural (2010) for the Berkeley parser

(Petrov et al., 2006), and Ng et al. (2010) for the C&C parser (Clark and Curran, 2007). We

also use this standard set as our third feature model (RERANKING), specifically the set of instan-

tiated feature schemas from the C&J parser (Charniak and Johnson, 2005) trained on the Wall

Street Journal (WSJ) treebanks (as described in the previous section of sentence grammaticality

judgement — Section 4.2).
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4.3.2 Experimental Setup

4.3.2.1 Corpus

As per the previous chapter (Chapter 3), we use the same corpus here — the second version of the

International Corpus of Learner English (ICLE) (Granger et al., 2009). For comparability reason,

we examine the same seven languages, namely Bulgarian, Czech, French, Russian, Spanish, Chi-

nese, and Japanese. For the purpose of the present study, we have 95 essays per native language.

Of the 95 texts per language, 70 essays are used for training, where the remaining 25 essays are

held out for testing. In total, there are 17,718 training sentences and 6,791 testing sentences. It

should be noted that the training and testing sets selected here are the exact same sets as used in

Chapter 3 and also Wong and Dras (2009).

It is also worth mentioning that some of the essays from the corpus were annotated with special

characters that appear to have some impact on the overall classification performance. To prevent

any potential biases towards particular native language groups, such special characters are ignored

in our experiments.13

4.3.2.2 Parsers

We employ three PCFG-based parsers: the Stanford parser (Klein and Manning, 2003) and the

C&J parser (Charniak and Johnson, 2005) as before, together with the Berkeley parser (Petrov

et al., 2006).

The Berkeley parser, similar to the Stanford parser which uses an unlexicalised grammar, also

produces state-of-the-art parsing results, comparable to the best lexicalised C&J parser, with a

reported f-score of 90.2%. The Berkeley parsing model utilises latent variables and a hierachical

split-and-merge approach to augment non-terminal categories such that optimal state splits can

be learned automatically using the Expectation-Maximization (EM) algorithm. Such a model

improves over the Stanford model in which state splits are manually identified in response to

linguistic observations in the data. We add the Berkeley parser here because, in contrast to the

C&J and Stanford parsers, and perhaps related to its quite fine-grained final categories as a result

of its split-and-merge operation, it seems to less strongly coerce a parse to have the properties

associated with a grammatical sentence (e.g. that it should contain a verb).

With the Stanford parser, there are 26,234 unique parse production rules extractable from our

ICLE training set of 490 texts, while the C&J parser produces 27,610 and the Berkeley parser pro-

duces 75,790. For the Berkeley parser, we take fine-grained production rules with latent variables

13This was suggested by Joel Tetreault and Daniel Blanchard from Educational Testing Service (ETS) (personal com-
munication).
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as features (hence the much higher number of rules). The intention is to investigate whether parse

rules with finer-grained non-terminals would capture deeper syntactic structures characterising

individual native languages.

In terms of reranking features, we use only the C&J parser (for the same reason as before)

— since the parser stores these features during parsing, we can use them directly as classification

features as before. With the ICLE training data, there are 6,230 features with frequency >10, and

19,659 with frequency >5.

4.3.2.3 Classifiers

As per the sentence grammaticality judgement experiment, we use the maximum entropy (maxent)

machine learner, MegaM (fifth release) by Hal Daumé III. (We also used an SVM for comparison

purposes, but the results were uniformly worse, as with grammaticality judgement, and degraded

more quickly as the number of features increased, so we only report the maxent results here.)

Similarly, the classifier is tuned to obtain an optimal classification model for each feature set.

4.3.2.4 Evaluation Methodology

We give results for two types of test data: cross-validation and held-out. Given our relatively small

amount of data, we use k-fold cross-validation on the set of 70 documents per language, choosing

k = 5. While testing for statistical significance of classification results is often not carried out in

NLP, we do so here because the quantity of data could raise questions about the certainty of any

effect. In an encyclopedic survey of cross-validation in machine learning contexts, Refaeilzadeh

et al. (2009) note that there is as yet no universal standard for testing of statistical significance; and

that while more sophisticated techniques have been proposed, none is more widely accepted than

a paired t-test over folds. We therefore use this paired t-test over folds, as formulated by Alpaydin

(2004). Under this cross-validation, 5 separate training feature sets are constructed, excluding the

test fold; 3 folds are used for training, 1 fold for tuning and 1 fold for testing.

We also use a held-out test set for comparison, as it is well-known that cross-validation can

overestimate prediction errors (Hastie et al., 2009). We do not conduct significance testing here

— with this held-out test set size (n = 175 with 25 per native language), two models would have

to differ by a great deal to be statistically significant. We only use it as a check on the effect of

applying the model to completely new data.
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Table 4.14: Classification results with parse rules as syntactic features
(accuracy %) — 5-fold cross validation

Features MaxEnt
LEXICAL (n = 798) 64.29

PROD-RULE[Stanford] (n = 1000) 64.90
PROD-RULE[Stanford]* (n = 1000) 72.45

PROD-RULE[Stanford]* (n = all) 74.29
PROD-RULE[C&J] (n = 1000) 62.65

PROD-RULE[C&J]* (n = 1000) 72.04
PROD-RULE[C&J]* (n = all) 71.84

PROD-RULE[Berkeley] (n = 1000) 68.79
PROD-RULE[Berkeley]* (n = 1000) 75.10

PROD-RULE[Berkeley]* (n = all) 75.10
PROD-RULE[Stanford+C&J] (n = 2000) 67.14

PROD-RULE[Stanford+C&J]* (n = 2000) 74.49
PROD-RULE[Stanford+C&J]* (n = all) 75.71

PROD-RULE[Stanford+C&J+Berkeley] (n = 3000) 72.00
PROD-RULE[Stanford+C&J+Berkeley]* (n = 3000) 79.18

PROD-RULE[Stanford+C&J+Berkeley]* (n = all) 80.00
RERANKING (all features) 67.96
RERANKING (>5 counts) 66.33

RERANKING (>10 counts) 64.90
* Rules lexicalised with function words are included

4.3.3 Results

Table 4.14 presents the results for the three models individually under the cross-validation set-

ting.14 The first point to note is that PROD-RULE, under all the three parsers, is a substantial im-

provement over LEXICAL when (non-lexicalised) parse rules together with rules lexicalised with

function words are used (rows marked with * in Table 4.14), with the largest difference as much as

80.0% for PROD-RULE [Stanford+C&J+Berkeley]* (n = all) versus 64.29% for LEXICAL; these

differences with respect to LEXICAL are statistically significant at the confidence level of 95%.

(To give an idea, the paired t-test standard error for this largest difference is 2.78%.) In terms of

error reduction, this is over 40%.

There appears to be no significant difference between the Stanford and C&J parsers, regardless

of their differing accuracy on the WSJ; but the Berkeley parser generally results in much better

performance in comparison to the other two parsers. On the whole, using the selection metric with

IG for PROD-RULE without rules lexicalised with function words produces results mostly around

those for LEXICAL; except that Berkeley’s PROD-RULE[Berkeley] (n = 1000) still demonstrates

14An earlier version of some of the results in this table were published in Wong and Dras (2011) where the results were
based on the experiments that included those parse production rules lexicalised with special symbols that might skew the
overall classification performance, as highlighted earlier. The results presented here are, on the other hand, based on the
experiments that ignored these symbols. (By and large, these revised results are marginally lower.)
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Table 4.15: Classification results with parse rules as syntactic features
(accuracy %) — held-out validation

Features MaxEnt
LEXICAL (n = 798) 75.43

PROD-RULE[Stanford] (n = 1000) 72.57
PROD-RULE[Stanford]* (n = 1000) 78.86

PROD-RULE[Stanford]* (n = all) 78.86
PROD-RULE[C&J] (n = 1000) 73.71

PROD-RULE[C&J]* (n = 1000) 78.86
PROD-RULE[C&J]* (n = all) 80.57

PROD-RULE[Berkeley] (n = 1000) 73.14
PROD-RULE[Berkeley]* (n = 1000) 80.57

PROD-RULE[Berkeley]* (n = all) 78.28
PROD-RULE[Stanford+C&J] (n = 2000) 77.71

PROD-RULE[Stanford+C&J]* (n = 2000) 78.28
PROD-RULE[Stanford+C&J]* (n = all) 78.86

PROD-RULE[Stanford+C&J+Berkeley] (n = 3000) 80.00
PROD-RULE[Stanford+C&J+Berkeley]* (n = 3000) 82.28

PROD-RULE[Stanford+C&J+Berkeley]* (n = all) 81.71
RERANKING (all features) 77.14
RERANKING (>5 counts) 76.57

RERANKING (>10 counts) 75.43
* Rules lexicalised with function words are included

modest improvement over LEXICAL (and this is statistically significant at the confidence level

of 95%). Using fewer reranking features is worse as the quality of RERANKING declines when

feature cut-offs are raised.

Another, somewhat surprising point is that the RERANKING results are also generally around

those of LEXICAL even though like PROD-RULE they are also utilising cross-sections of the parse

trees (which was expected to be performing better). We consider there might be a number of possi-

ble explanations for this. Firstly, the feature schemas used were originally chosen for the specific

purpose of augmenting the performance of the Charniak parser; perhaps others might be more

appropriate for our purpose here. Secondly, we selected only those instantiated feature schemas

that occurred in the WSJ, and then applied them directly to ICLE. As the WSJ is filled with pre-

dominantly grammatical text, perhaps those that were not seen on the WSJ are precisely those that

might indicate ungrammaticality. In contrast, the production rules of PROD-RULE were selected

merely from the ICLE training data. We also note that genre difference may have some impact

here: given that the WSJ treebank consists of predominantly newswire texts, while the ICLE cor-

pus is a collection of mostly argumentative essays; perhaps the feature schemas are particularly

appropriate for newswire texts but not for essays. In relation to this, the proficiency of writers who

contributed to both the WSJ and ICLE might be another confounding factor. From the technical
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Table 4.16: Classification results for combined models (accuracy %) — 5-fold
cross validation

Features MaxEnt
LEXICAL (n = 798) 64.29

LEXICAL + PROD-RULE[Stanford+C&J] (n = 2000) 60.41
LEXICAL + PROD-RULE[Stanford+C&J]* (n = 2000) 72.04

LEXICAL + PROD-RULE[Stanford+C&J]* (n = all) 71.43
LEXICAL + PROD-RULE[Stanford+C&J+Berkeley] (n = 3000) 68.57

LEXICAL + PROD-RULE[Stanford+C&J+Berkeley]* (n = 3000) 76.94
LEXICAL + PROD-RULE[Stanford+C&J+Berkeley]* (n = all) 76.33

LEXICAL + RERANKING (n = all) 68.17
* Rules lexicalised with function words are included

standpoint, it could be the case of ‘overfitting’, given a relative small training data in comparison

with a huge number of reranking features; consequently, there might be the problem of feature

vector sparsity.

Table 4.15 presents the results for the individual models on the held-out test set.15 The results

are generally higher than for cross-validation — this is not surprising, as the texts are of the same

type, but all the training data was used (rather than the 1−2/k proportion under cross-validation).

Overall, the pattern is still the same as observed under cross validation, with PROD-RULE best, then

RERANKING and LEXICAL broadly similar; as expected, no differences are significant with this

smaller dataset. The gap has narrowed, but without significance testing it is difficult to conclude

whether this is a genuine phenomenon. One point to be noted is that the overall best result for the

held-out testing is from PROD-RULE[Stanford+ C&J+Berkeley]* (n = 3000) with the accuracy

rate of 82.28% rather than PROD-RULE[Stanford+C&J+ Berkeley]* (n = all) as demonstrated

under cross-validation (refer to Table 4.14). As for the accuracy rate for LEXICAL here, it is

indeed in line with Wong and Dras (2009); and given the smaller dataset as well as the larger set

of languages (7 versus 5), it is also broadly in line with Koppel et al. (2005).

Tables 4.16 and 4.17 present results for model combinations (i.e. integrating LEXICAL with

PROD-RULE and RERANKING). It can be seen that the model combinations do not produce results

better than using PROD-RULE alone; but again a slight improvement is observed when integrating

with Berkeley’s PROD-RULE along with rules lexicalised with function words, under the held-

out testing. Combining all feature sets (where results are not presented here) seems to degrade

the overall performance even of the MegaM: perhaps we need to derive feature vectors more

15It should be noted that the results presented here are not directly comparable with the results presented in the previous
chapter (Chapter 3) in particular Table 3.11, given that the types of feature value used for the lexical features are somewhat
different. In Chapter 3, the results are based on the relative frequencies of the lexical features; whereas the results presented
here are based on the best performing type of feature value for each lexical feature: function words and PoS n-grams are
both based on binary-typed of feature value; only char n-grams are based on the relative frequencies.
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Table 4.17: Classification results for combined models (accuracy %) — held-out
validation

Features MaxEnt
LEXICAL (n = 798) 75.43

LEXICAL + PROD-RULE[Stanford+C&J] (n = 2000) 81.14
LEXICAL + PROD-RULE[Stanford+C&J]* (n = 2000) 80.57

LEXICAL + PROD-RULE[Stanford+C&J]* (n = all) 81.71
LEXICAL + PROD-RULE[Stanford+C&J+Berkeley] (n = 3000) 82.28

LEXICAL + PROD-RULE[Stanford+C&J+Berkeley]* (n = 3000) 82.86
LEXICAL + PROD-RULE[Stanford+C&J+Berkeley]* (n = all) 82.86

LEXICAL + RERANKING (n = all) 76.00
* Rules lexicalised with function words are included

Table 4.18: Confusion matrix based on the best per-
forming feature set for production rules from all the three
parsers — on the held-out set

BL CZ RU FR SP CN JP
BL [17] 4 3 1 – – –
CZ 2 [21] 2 – – – –
RU 1 4 [17] 3 – – –
FR 1 – – [24] – – –
SP 2 1 3 2 [17] – –
CN – – – – – [24] 1
JP – – – – 1 2 [22]

BL:Bulgarian; CZ:Czech; RU:Russian; FR:French;
SP:Spanish; CN:Chinese; JP:Japanese

compactly than by just using feature concatenation. Another plausible explanation could be that

the current training data is not sufficient to support such a large feature set and this might have

caused the models to overfit.

4.3.4 Discussion

Confusion matrices. As illustrated in the confusion matrices (Table 4.18 for the PROD-RULE

model, and Table 4.19 for the LEXICAL model), misclassifications occur largely in Spanish and

Slavic languages, Bulgarian and Russian in particular. Unsurprisingly, Chinese is almost perfectly

identified, coming as it does from an entirely different language family, Sino-Tibetan, as com-

pared to the rest of the languages which are from the branches of the Indo-European family (with

Japanese as the exception). Japanese and French also appear to be easily identified, which could

perhaps be attributed to their word order or sentence structure which are, to some extent, quite

different from English. Japanese is a ‘subject-object-verb’ language; and French, although having
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Table 4.19: Confusion matrix based on lexical features
— on the held-out set

BL CZ RU FR SP CN JP
BL [14] 3 4 2 2 – –
CZ 6 [16] 2 – 1 – –
RU 3 2 [16] 3 1 – –
FR 1 – – [24] – – –
SP 1 2 1 3 [17] – 1
CN – – – – – [24] 1
JP – – – – 1 3 [21]

BL:Bulgarian; CZ:Czech; RU:Russian; FR:French;
SP:Spanish; CN:Chinese; JP:Japanese

the same word order as English, heads of phrases in French typically come before modifiers as

opposed to English. Overall, the PROD-RULE model results in fewer misclassifications as com-

pared to the LEXICAL model and demonstrates significant reduction in confusion in the Slavic

languages.

Data analysis. We looked at some of the data, to see what kinds of syntactic substructure (charac-

terised by parse production rules) are useful in classifying native languages. Although using fea-

ture selection with only 1000 features did not improve classification performance, the information

gain (IG) ranking does identify particular constructions as characteristic of one of the languages,

and so is useful for inspection.

A phenomenon that the literature has noted as occurring with Chinese speakers is that of the

inappriopriate use of determiners (Swan and Smith, 2001).16 As mentioned in Section 3.1, such a

phenomenon reflects misuse of determiners both in situations where a determiner is missing when

it is required and also in situations where an extra determiner is used when it is indeed redundant.

Consequently, this also relates to problems of determiner-noun agreement dealing with singular

and plural nouns. If these phenomena are observed in our data, this could correspond to the dis-

tributional difference in NP rules involving NN, NNS, and DT, such as NP → NN NN, NP →

NN NNS, NP → DT NN NN and NP → DT NN NNS. This set of rules may be valid in some

other contexts but are also possibly indicators of inappropriate usage of certain syntactic construc-

tions (as for the case of determiner misuse). Looking at the distribution of NP rules presented in

Table 4.20 (only for rules taken from the top 1000 with highest IG), the absolute frequencies do

not seem to provide a clear picture of distributional differences across the seven native languages.

However, comparing the proportion of NP rules involving NN with respect to the total number of

16This does happen with native speakers of some other languages, such as the Slavic ones, but not generally (from our
knowledge of the literature) with native speakers of others, such as the Romance ones.
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Table 4.20: Stanford rules of NP from the Top 1000 IG list

Stanford Absolute Frequency
Rules BL CZ RU FR SP CN JP

NP → NNP NNP NNS 0 3 0 1 0 31 0
NP → DT NNS CC NNS 8 10 13 8 12 41 7
NP → JJR NN NNS 1 0 0 1 1 18 1
NP → DT NN NNS 17 17 14 15 11 44 12
NP → NNP NNP NN 1 1 1 0 0 12 1
NP → NN NN 32 39 41 22 34 53 44
NP → NN , NNS CC NN NN 0 0 0 0 0 8 0
NP → JJR NN NN 0 0 0 0 0 8 1
NP → NN NN NN 0 3 3 2 2 14 5
NP → NN NN NNS 2 3 4 1 0 12 1
NP → JJ NN NNS 15 15 21 9 8 27 14
NP → DT NN NN 40 38 43 44 44 59 41
NP → JJR NN 23 19 16 13 19 29 11
NP → DT JJS NN 15 26 18 11 22 10 15
NP → DT NN NN NNS 1 0 0 0 1 5 2
NP → DT NN NN NN 2 6 2 1 4 9 8
total rules of NP 157 180 176 128 158 380 163
total rules with NN 113 132 124 93 125 202 126
total rules with NNS 44 48 52 35 33 178 37
% rules with NN 0.719 0.733 0.704 0.726 0.791 0.536 0.773
total rules with DT 75 90 77 72 82 158 78
total rules without DT 82 90 99 56 76 222 85
% rules with DT 0.4777 0.500 0.437 0.562 0.519 0.416 0.478

NP rules used, Chinese appears to have a much lower proportion in contrast to the other native

language groups. Similarly, the same situation is observed on the proportion of NP rules with

DT: Chinese stands out amongst the rest. Taking these observations altogether, Chinese speakers

seem to be using singular and plural noun phrases quite differently from other L1 speakers, per-

haps reflecting problems with determiner-noun agreement and using determiners inappropriately.

We give an example of this sort of phenomenon in Figure 4.4, taking the parse (returned by the

Stanford parser) of the sentence The development of country park can directly elp to alleviate

overcrowdedness and overpopulation in urban area. The phrase country park (corresponds to NP

→ NN NN) should either have a determiner or be plural (in which case the appropriate rule would

be NP → DT NN NN or NP → NN NNS). There is a similar phenomenon with the phrase in

urban area, although this is an instance of the rule NP → JJ NN.

The above phenomenon may be an example of one of the four measures of cross-linguistic in-

fluence based on the comprehensive survey of second language acquisition (SLA) by Ellis (2008)

and discussed in Section 2.3.1.2, regarded as negative transfer. Given that the absence of deter-
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(ROOT
(S
(NP

(NP (DT The) (NN development))
(PP (IN of)

(NP (NN country) (NN park))))
(VP (MD can)

(ADVP (RB directly))
(VP (VB elp)

(S
(VP (TO to)

(VP (VB alleviate)
(NP (NNS overcrowdedness)

(CC and)
(NN overpopulation))

(PP (IN in)
(NP (JJ urban)

(NN area))))))))
(. .)))

Figure 4.4: An example of parse from Chinese-speaking authors illustrating missing determiners
(also with a typographical error)

(ROOT
(S
(NP (NNP Hong) (NNP Kong) (NNS people))
(VP (AUX are)
(ADJP (JJ non-sensable)

(PP (IN on)
(S

(VP (VBG recycling)
(SBAR (WHNP (WP who))

(S
(VP (AUX are)

(ADJP (JJ rich))))))))))
(. .)))

Figure 4.5: An example of parse from Chinese-speaking authors illustrating difficulties with WH-
clauses (also with a typographical error)

miners (articles) in Chinese, this has caused difficulties in article usage amongst Chinese learners

of English.

In addition, the cross-linguistic phenomenon of avoidance is also noticeable. To minimise

errors, learners tend to avoid using certain grammatical aspects if lacking in confidence. We

observed that Chinese speakers use a relatively lower number of WH-words (who and which in

particular) as characterised by the Stanford rules of WHNP → WP and WHNP → WDT (occurred

in the top 1000 rules with highest IG) respectively in their texts in contrast to other native lan-
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Table 4.21: Stanford rules of WHNP and WHPP from the Top 1000 IG
list

Stanford Absolute Frequency
Rules BL CZ RU FR SP CN JP

WHNP → WP 67 69 66 61 67 37 61
WHNP → WDT 67 68 66 67 70 49 58
SBAR → WHPP S 25 17 17 27 25 2 9
WHPP → IN WHNP 25 16 17 28 24 2 10

Table 4.22: WH-word (and relative clause marker) usage across seven native language groups

Native Relative Frequency
Languages who which whose whom when where that
Bulgarian 0.0021 0.0034 0.0002 3.7819E-05 0.0020 0.0010 0.0132
Czech 0.0021 0.0027 3.4155E-05 8.5388E-05 0.0016 0.0007 0.0118
Russian 0.0032 0.0030 0.0002 9.0940E-05 0.0016 0.0006 0.0136
French 0.0018 0.0039 0.0002 5.9216E-05 0.0012 0.0008 0.0117
Spanish 0.0034 0.0042 0.0001 2.0291E-05 0.0023 0.0007 0.0141
Chinese 0.0011 0.0022 2.2016E-05 2.2016E-05 0.0012 0.0002 0.0113
Japanese 0.0023 0.0023 8.0413E-05 0.0001 0.0023 0.0003 0.0118

guage groups (refer to Tables 4.21 and 4.22). This observation is in line with the findings of

Schachter (1974): although Chinese learners (and also Japanese in her work) made few errors in

relative clause usage compared to learners of Arabic and Persian, they actually used a much lower

number of relative clauses (i.e. they are avoiding using such a construction). This is obviously

a phenomenon of avoidance. Furthermore, given that Chinese is a WH-in-situ language while

English is a language with overt WH-movements, this also poses a related problem to native Chi-

nese speakers when dealing with WH-clauses in English. As seen in Figure 4.5, the grammatical

counterpart of the given sentence should be something like Hong Kong people who are rich are

not sensible on recycling.

Another production rule that occurs typically — in fact, almost exclusively — in the texts

of native Chinese speakers is PP → VBG PP (by the Stanford parser), which almost always

corresponds to the phrase according to. In Figure 4.6, we give the parse of a short sentence

(According to <R>, burning of plastic waste generates toxic by-products. — <R> is an in-text

citation that was removed in our preparation of ICLE)17 that illustrates this particular construction.

It appears that speakers of Chinese frequently use this phrase as a translation of gēn jù. So in this

case, what is identified is perhaps not the sort of error that is of interest to contrastive analysis,

17All parse rules lexicalised with the symbol <R> were excluded as classification features to avoid biases towards a
specific native language, Chinese in particular. This was noted by Joel Tetreault and Daniel Blanchard (personal commu-
nication).
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(ROOT
(S
(PP (VBG According)

(PP (TO to)
(NP (NNP <R>))))

(, ,)
(NP

(NP (NN burning))
(PP (IN of)

(NP (JJ plastic)
(NN waste))))

(VP (VBZ generates)
(NP (JJ toxic)

(NNS by-products)))
(. .)))

Figure 4.6: An example of parse from Chinese-speaking authors illustrating according to

but just a particular construction that is idiosyncratic of a certain native speaker’s language, one

that is perfectly grammatical but which is used relatively infrequently by others and has a slightly

unusual analysis by the parser. This could be considered as an instance of overuse in the SLA

sense.

Having seen a number of examples from Chinese speakers, we move on to examine the Indo-

European language group. It was suggested in Swan and Smith (2001) that French speakers do

encounter difficulties with English article usage but in a rather different manner compared to Chi-

nese speakers. A typical error produced by French speakers as a result of the article usage in

French is found in The English is a difficult language, where proper nouns are preceded with def-

inite articles.18 Looking into the ICLE corpus, we found that the texts produced by native French

speakers demonstrate somewhat higher number of production rules involving DT (determiners)

and NNP (proper nouns) such as NP -> DT NNP and NP -> DT NNP NNP. More concretely,

Figure 4.7 presents a parse example extracted from a text of a native French speaker illustrating

such a case.

Overall, we had expected to see more rules that displayed obvious ungrammaticality; for in-

stance, VP → DT IN. However, as for grammaticality judgement in Section 4.2, the Stanford

and C&J parsers particularly appear to be good at ‘ignoring’ errors, and producing relatively gram-

matical structures (albeit ones with different frequencies for different native languages). Figure 4.8

gives the C&J parse for Overall, cyber cafeis a good place as recreational centre with a bundle of

up-to-dated information. The correction of up-to-dated rather than up-to-date is straightforward,

but the simple typographical error of running together cafe and is leads to more complex problems

18Spanish speakers were seen to produce similar article errors in their English usage.
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(ROOT
(S
(NP (DT Another) (NN example))
(VP (VBZ is)

(NP
(NP (DT the) (NN worker))
(PP (IN of)

(NP
(NP (DT an) (NN iron)

(CC and)
(NN steel) (NN industry))

(PP (IN near)
(NP (DT the) (NNP Baïkal)))))))

(. .)))

Figure 4.7: An example of parse from French-speaking authors, illustrating errors in English
article usage

(S1
(S
(ADVP (RB Overall))
(, ,)
(NP (NNP cyber))
(VP (VBD cafeis)

(NP (DT a) (JJ good) (NN place))
(PP (IN as)

(NP (JJ recreational)
(NNP centre)))

(PP (IN with)
(NP

(NP (DT a) (NN bundle))
(PP (IN of)

(NP (JJ up-to-dated)
(NN information))))))

(. .)))

Figure 4.8: An example of parse from C&J parser, illustrating parser correction

for the parser. Nevertheless, the parser produces a solid grammatical tree, specifically assigning

the category VBD to the compound cafeis. This would support our previous suggestion that this is

because both the Stanford and C&J parsers have implicit linguistic constraints such as assumptions

about heads; these are imposed even when the text does not provide evidence for them.

We also present in Table 4.23 the top 10 production rules chosen under the IG feature selection

for the Stanford parser on the held-out test set. A number of these are concerned with punctuation:

these seem unlikely to be related to native language, but perhaps rather to how English learners of

a particular language background are taught. Others are more typical of the sorts of example we

illustrated above: PP → VBG PP, for instance, is typically connected to the according to con-
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Table 4.23: Top 10 production rules for the Stanford parser based on Infor-
mation Gain — on the held-out set

Stanford Absolute Frequency
Rules BL CZ RU FR SP CN JP

: → - 55 51 39 23 10 9 4
PRN → -LRB- X -RRB- 0 1 2 7 0 42 0
: → : 30 39 46 58 47 11 6
X → SYM 0 2 4 7 4 42 6
NP → NNP NNP NNS 0 3 0 1 0 31 0
S → S : S . 36 34 39 53 41 5 9
PP → VBG PP 9 15 12 16 13 54 13
: → ... 16 13 11 39 24 1 3
NP → NNP NNP 23 31 29 22 27 65 25
S → ADVP, NP VP . 48 27 31 45 36 65 60

Table 4.24: Top 10 fine-grained production rules for the Berkeley parser based
on Information Gain — on the held-out set

Berkeley Absolute Frequency
Rules BL CZ RU FR SP CN JP

NP-56 → NNP-53 NNP-2 0 1 0 2 0 44 0
NP-53 → NNP-53 NNP-2 0 1 0 1 0 44 2
:-3 → - 52 47 34 20 9 7 3
PP-21 → VBG-3 PP-11 4 3 7 7 5 51 9
WHNP-1 → WP-0 58 61 51 48 52 6 48
NP-30 → NNP-33 2 1 4 1 0 37 1
:-0 → : 28 38 37 53 45 9 6
PP-11 → TO-0 NP-44 1 1 3 1 2 36 3
@S-24 → S-5 :-1 20 16 34 45 33 1 10
@S-23 → S-5 :-0 17 16 18 39 27 0 2

struction discussed in connection with Figure 4.6, and it can be seen that the dominant frequency

count there is for native Chinese speakers (column 6 of the counts in Table 4.23).

We compare this with the fine-grained production rules from the Berkeley parser, looking at the

top selected rules of Berkeley (Table 4.24). The rule frequency ratio between the seven languages

is greater as compared to those from Stanford (as shown in Table 4.23). The improvement in

classification performance suggests that augmenting coarse-grained production rules with latent

variables (such as those of Berkeley) can model characteristics of individual native languages

more closely.

Recent related work. Before concluding this section, one other aspect that worth mentioning is

the very recent work of Swanson and Charniak (2012), which has extended from our initial work

of this section published in Wong and Dras (2011). Swanson and Charniak (2012) replicated our
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work using CFG rules as features for the same NLI task on ICLE texts from the same seven native

language groups. Their reported accuracy for CFG rules derived from a single parser (72.6% using

Berkeley parser) appears to slightly underperform in comparison with our best result presented in

Wong and Dras (2011) (74.49% for Stanford parser under 5-fold cross validation; the revised

result here is 74.29% as shown in Table 4.14). (Note that this still holds even if compared with

our current best result for Berkeley parser of 75.71%). Such difference in performance is possibly

due to the sample selection (as claimed by Swanson and Charniak (2012)) as their result is based

on the averaged score over 5 subsamplings of the full data set of ICLE for each native language

group; while we only used a single sampling with 5-fold cross validation. It seems that there is

some degree of variance across the sub-corpora in ICLE. However, through the proposed features

of using rules based on Tree Substitution Grammar (TSG), Swanson and Charniak (2012) have

demonstrated that TSG rules appear to perform better than CFG rules by a margin of around 6%

in terms of accuracy.

Summary. In this section we have shown that, using cross-sections of parse trees, we can improve

above an already good baseline in the task of native language identification. While we do not make

any strong claims for the Contrastive Analysis Hypothesis (CAH) or subsequent work in SLA on

cross-linguistic effects, the usefulness of syntax in the context of this problem does provide some

support.

The best features arising from the classification have been horizontal cross-sections of trees

(i.e. parse rules), rather than the more general discriminative parse reranking features that might

have been expected to perform at least as well. This relatively poorer performance by the reranking

features may be due to a number of factors, all of which could be investigated in future work. One

is the use of feature schema instances that did not appear in the largely grammatical WSJ; another

is the extension of feature schemas to suit our specific problem.

Examining some of the substructures showed some errors that were expected; and also some

other constructions that were grammatical, but were just characteristic translations of constructions

that were common in the native language. Utilising more fine-grained rules appears to be useful

in enhancing the performance of the classification task. Overall, the use of all these led to an error

reduction in over 40% in the cross-validation evaluation with significance testing.

4.4 Concluding Remarks

In this chapter, we have demonstrated that syntactic structures — in particular those that are char-

acterised by horizontal slices of parse trees (i.e. production rules) — are not only useful in terms
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of sentence-based grammaticality judgement, but can be beneficial to NLI tasks in identifying the

native language of the writers. Furthermore, classification performance can be improved through

more fine-grained production rules augmented with latent variables, as are generated by the Berke-

ley parser.

Reranking features directly extracted from the C&J parser, on the other hand, appear to be

helpful only for the simpler task of judging sentence grammaticality but not so much for the more

specific classification task of NLI. The feature schemas used in the C&J parser were initially

identified specifically for the purpose of improving the Charniak parser. A possible improvement

here would be to explore instances of feature schemas produced after retraining the C&J parser

with some ungrammatical data, such as the noisy WSJ treebank from Foster (2007). Alternatively,

one can extend the existing feature schemas to specifically suit the purpose of NLI, based on the

extensive literature from the field of second language acquisition.

The results from the Berkeley parser, however, suggest that an approach that is less constrained

by linguistic expectations than parsers, and is more purely distributional, would be interesting to

pursue. We propose one such approach in the next chapter.



Chapter 5

Exploring Topic Modeling

Chapter 4 particularly explored syntactic structures, in the form of production rules and parse

reranking templates. Two of the conclusions were that: (1) the expected instances of clearly un-

grammatical elements of syntactic structure indicating non-native speaker errors were not largely

observed, instead there were often just different distributions over regular elements of grammati-

cal structure for different native languages; and (2) it might be useful to avoid imposing linguistic

constraints.

Therefore, we investigate two ideas in this chapter. Firstly, our first intuition is that it is several

elements together that indicate particular kinds of indicative errors, such as incorrect noun-number

agreement; and from this, that there might be coherent clusters of correlated features that are

indicative of a particular native language. Secondly, we intend to revisit n-gram features as a

form of approximation to syntactic structures through selection of collocational ‘quasi-syntactic’

n-grams of arbitrary length. To realise these ideas, we adopt a Bayesian approach to the task

of native language identification (NLI) through topic modeling which can be exploited for the

purpose of both feature dimensionality reduction and feature selection.1

Latent Dirichlet Allocation (LDA) — a generative probabilistic model for unsupervised learn-

ing — was first introduced by Blei et al. (2003) to discover a set of latent mixture components

known as topics which are representative of a collection of discrete data. The underlying idea of

LDA is that each document from a text corpus is constructed according to a specific distribution

of topics, in which (in this first application of LDA to texts) words comprising the document are

generated based on the word distribution for each selected topic; a topic is typically represented

by a set of words such as species, phylogenetic, evolution and so on. Such a model allows multiple

1The two studies presented in this chapter had been published in Wong et al. (2011) and Wong et al. (2012), respectively.
A special thanks to Mark Johnson, who provided much guidance on the topic modeling work conducted in this chapter,
especially on the overall formulation of the adaptor grammars.
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topics in one document as well as sharing of topics across documents within a corpus.

LDA can be viewed as a form of feature dimensionality reduction technique. As the first key

task investigated in this chapter, we intend to exploit LDA to discover the extent to which a lower

dimension of feature space — a set of potentially useful coherent clusters of features (or latent

factors) — in each document affects the classification performance of NLI. Here we are mapping

clusters of features as ‘topics’ in typical LDA models and the posterior topic distributions inferred

are to be used for classifying the native language of the authors against baseline models using

the actual features themselves. We are particularly interested in whether the topics appear at all

to form coherent clusters, and consequently whether they might potentially be applicable to the

much larger class of syntactic features.

As the second key task of this chapter, our intention is to investigate the usefulness of n-

grams as features for NLI classification. As seen in Koppel et al. (2005), PoS n-grams can be

leveraged to characterise surface syntactic structures, in which they approximated ungrammatical

structures with rare PoS bi-grams. Hirst and Feiguina (2007) also proposed replacing syntactic

rules with PoS sequences (in the form of bi-grams) on the grounds of data sparsity for the more

general problem of authorship analysis (see discussion in Section 2.1.1 under syntactic features).

However, to capture sequences of patterns that are characteristic of a particular native language,

small n-grams like bi-grams or tri-grams might not suffice. To address this, adaptor grammars

(Johnson, 2010) which are interpretable as an extension to the basic LDA models, can be helpful

as they are capable in discovering useful collocational n-grams of arbitrary length. For example,

in his initial work, Johnson’s model learnt collocations such as gradient descent and cost function,

under a topic associated with ‘machine learning’. Hardisty et al. (2010) subsequently applied this

idea to perspective classification, learning collocations such as palestinian violence and palestinian

freedom, the use of which as features was demonstrated to help the classification of texts from

the Bitter Lemons corpus as either Palestinian or Israeli perspective. In our context, instead of

typical collocations of (content) words, we are interested in ‘quasi-syntactic collocations’ of either

pure PoS (e.g. NN IN NN) or a mixture of PoS with function words (e.g. NN of NN).2 Thus,

a particular question of interest for this second key task is to investigate whether the power of

adaptor grammars to discover collocations extend to features beyond the purely lexical — and

whether in turn we can discover ones of arbitrary length that are useful for NLI.

The organisation of the chapter is as follows. In Section 5.1, we introduce the fundamental

concepts of LDA and its applications to classification in general. We then present the first key task

of this chapter in Section 5.2, demonstrating how LDA models can be used for feature dimension-

2Typically in NLI and other authorship attribution tasks, the feature sets exclude content words, to avoid unfair cues
due to potentially different domains of discourse. (See the discussion in Section 2.2).
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ality reduction to uncover clusters of features that are helpful in the classification task of NLI. In

Section 5.3, we review the mechanics of adaptor grammars and the view of them as an extension

of LDA. This will then be followed by the second key task of this chapter in Section 5.4, where

we describe two appproaches in which adaptor grammars can be deployed for feature selection by

finding useful n-gram collocations for the purpose of NLI.

5.1 Latent Dirichlet Allocation

In its basic form, Latent Dirichlet Allocation (LDA) is a Bayesian probabilistic model used to

represent collections of discrete data such as text corpora, introduced by Blei et al. (2003). It ad-

dressed the limitations of earlier techniques such as probabilistic latent semantic indexing, which

is prone to overfitting and unable to generalise to unseen documents. LDA is a relaxation of clas-

sical document mixture models in which each document is associated with only a single topic, as

it allows documents to be generated based on a mixture of topics with different distributions. We

discuss the basic mechanisms of LDA and our particular representation, in Section 5.2.1.

LDA has been applied to a wide range of tasks, such as building cluster-based models for

ad-hoc information retrieval (Wei and Croft, 2006) or grounded learning of semantic parsers

(Börschinger et al., 2011). Relevant to our studies on NLI, it has been applied to a range of

text classification tasks.

The original paper of Blei et al. (2003) used LDA as a dimensionality reduction technique over

word unigrams for an SVM, for genre-based classification of Reuters news data and classification

of collaborative filtering of movie review data, and found that LDA topics actually improved clas-

sification accuracy in spite of the dimensionality reduction. This same basic approach has been

taken with other data, such as spam filtering of web texts (Bíró et al., 2008), where LDA topics

improved classification f-measure, or finding scientific topics from article abstracts (Griffiths and

Steyvers, 2004), where LDA topics appear to be useful diagnostics for scientific subfields.

It has also been augmented in various ways: supervised LDA, where topic models are in-

tegrated with a response variable, was introduced by Blei and McAuliffe (2008) and applied to

predicting sentiment scores from movie review data, treating it as a regression problem rather than

a classification problem. Work by Wang et al. (2009) followed from that, extending it to classifi-

cation problems, and applying it to the simultaneous classification and annotation of images. An

alternative approach to joint models of text and response variables for sentiment classification of

review texts (Titov and McDonald, 2008), with a particular focus on constructing topics related

to aspects of reviews (e.g. food, decor, or service for restaurant reviews), found that LDA topics

were predictively useful and seemed qualitatively intuitive.
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In all of this preceding work, a document to be classified is represented by an exchangeable set

of (content) words: function words are generally removed, and are not typically found in topics

useful for classification. It is exactly these that are used in NLI, so the above work does guarantee

that an LDA-based approach will be helpful here.

Three particularly relevant pieces of work on using LDA in classification are for the related

task of authorship attribution, determining which author wrote a particular document. Rajkumar

et al. (2009) claim that models with stopwords (function words) alone are sufficient to achieve high

accuracy in classification, which seems to peak at 25 topics, and outperform content word-based

models; the results presented in Table 2 of that paper and the discussion are, however, somewhat

contradictory. Seroussi et al. (2011) also include both function words and content words in their

models; they find that filtering words by frequency is almost always harmful, suggesting that

function words are helping in this task.3 In very recent work, Seroussi et al. (2012) modified the

existing author-topic model of Rosen-Zvi et al. (2004) to suit the purpose of authorship attribution

and demonstrated the combination of both the basic LDA and author-topic models outperforms

each of the individual models as well as SVM-based classification.

5.2 Feature Dimensionality Reduction

One key phenomenon observed in Chapter 4 was that there were different proportions of parse

production rules indicative of particular native languages. One example is the production rules

of NP, such as NP → NN NN, and NP → NN NNS, in which the NP usage of Chinese appears

to be quite different from other native language groups; this is likely to reflect determiner-noun

agreement errors, as the latter (NP → NN NNS) is used at the expense of the former which is

headed by a singular noun (NP → NN NN). There might be coherent clusters of related features,

with these clusters characterising typical errors or idiosyncrasies, that are predictive of a particular

native language. As the first task investigated in this chapter, we use the fundamental model of

LDA to cluster coherent features as a form of latent factors, to investigate whether clustering

shows any potential for our classification task for NLI. Here, we intend to explore the basic lexical

features — both function words and PoS n-grams — the latter of which is quite novel to our

knowledge in terms of classification using LDA.

3They note that for function words the term ‘latent factor’ is more appropriate than ‘topic’, with its connotation of
semantic content.
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5.2.1 Mechanics of LDA

5.2.1.1 General Definition

Formally, each document is formed from a fixed set of vocabulary V and fixed set of topics T

(|T | = t). Following the characterisation given in Griffiths and Steyvers (2004), the process of

generating a corpus of m documents is as follows: (1) first generate a set of multinomial distri-

butions over topics θj for each document Dj according to a T -dimensional Dirichlet distribution

with concentration parameter α (i.e. θj ∼ Dir(α)); (2) then generate a set of multinomial distribu-

tions ϕi over the vocabulary V for each topic i according to a V -dimensional Dirichlet distribution

with concentration parameter β (i.e. ϕi ∼ Dir(β)); and (3) finally generate each of the nj words

for document Dj by selecting a random topic z according θj and then drawing a word wj,k from

ϕz of the selected topic. The overall generative probabilistic model can be summarised as below:

θj ∼ Dir(α) j ∈ 1, ...,m

ϕi ∼ Dir(β) i ∈ 1, ..., t

zj,k ∼ θj j ∈ 1, ...,m, k ∈ 1, ..., nj

wj,k ∼ ϕzj,k
j ∈ 1, ...,m, k ∈ 1, ..., nj

Hyperparameters α and β are Dirichlet priors, which are used as a form of smoothing to

smooth the topic and word distributions where the amount of smoothing is determined by the

values of α and β. In cases where α (β) < 1, these are known as sparse (weak) priors, in which

most of the probability mass is concentrated on only a small number of topics (words). This type

of distribution is appropriate for modeling human languages that obey the power laws. It was

suggested by Steyvers and Griffiths (2007) that α = 50/t and β = 0.01 work well for most of the

text collections in previous research.

From the inference perspective, given a corpus of m documents with nj words each, the task is

to estimate the posterior topic distributions θj for each document Dj as well as the posterior word

distributions ϕi for each topic i that maximise the log likelihood of the corpus. Knowing that the

exact inference of these posterior distributions is intractable in general, there is a wide variety of

means of approximate inference for LDA models which include approximation algorithms such

as Variational Bayes (Blei et al., 2003) and expectation propagation (Minka and Lafferty, 2002)

as well as the Markov Chain Monte Carlo approach with Gibbs sampling (Griffiths and Steyvers,

2004).
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5.2.1.2 LDA in PCFG Formulation

Johnson (2010) demonstrated that LDA topic models can be regarded as a specific type of proba-

bilistic context-free grammar (PCFG), and that Bayesian inference for PCFGs can be used to learn

LDA models where the inferred distributions of PCFGs correspond to those distributions of LDA.

A general schema used for generating PCFG rule instances for representing m documents with t

topics is as follows:4

Sentence → Doc′j j ∈ 1, ...,m

Doc′j → _j j ∈ 1, ...,m

Doc′j → Doc′j Docj j ∈ 1, ...,m

Docj → Topici i ∈ 1, ..., t; j ∈ 1, ...,m

Topici → w i ∈ 1, ..., t;w ∈ V

Each of the rules in the PCFG is associated with a Bayesian inferred probability. While the

probabilities associated with the rules expanding Topici correspond to the word distributions ϕi

of the LDA model, the probabilities associated with the rules expanding Docj correspond to the

topic distributions θj of LDA. Similarly, inference on the posterior rule distributions can be ap-

proximated with Variational Bayes and Gibbs sampling. We use this PCFG formulation of LDA

in this work.

5.2.2 Experimental Models

This subsection describes both the LDA models and the corresponding classification models used

for our native language identification task on the ICLE corpus (Version 2) (Granger et al., 2009).

Following the experimental setup in the previous chapters, we use the same dataset which consists

of 490 essays written by non-native English users from seven different groups of language back-

ground — namely, Bulgarian, Czech, French, Russian, Spanish, Chinese, and Japanese. There are

70 essay documents per native language.

Unlike the documents often inferred by LDA topic models which mostly consist of only con-

tent words, we represent our documents with function words instead, given that this is typical for

authorship-related tasks, and does not allow unfair clues based on different distributions of domain

discourse. In addition, we also experiment with documents represented by another type of lexical

features for NLI, PoS bi-grams.

4It should be noted that each document is given with a document identifier in which sentences in the document are
prefixed with _j.
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5.2.2.1 LDA Models for NLI

For each of the LDA models we describe below, we experiment with different numbers of topics,

in which t = {5, 10, 15, 20, 25}. In terms of the total number of PCFG rules representing each

LDA model, there are 490 of the first three rules as shown in the schema (Section 5.2.1.2), 490× t

of the rule expanding Docj → Topici, and t × v of the rule expanding Topici → w (see

Table 5.1). All the inferences are performed with the PCFG-based Gibbs sampler implemented by

Mark Johnson.5

FW-LDA models. The first variant of the LDA models is function word based. The vocabulary

used for generating documents with this LDA variant is therefore a set of function words. We

adopt the same set as used in the previous chapters which consists of 398 words. An instance of

the PCFG rule expanding Topici → w is Topic1 → the. There are 398 such rules for each

topic.

POS-LDA models. The second variant of the LDA models is PoS bi-gram based. We choose

bi-grams as they have already been explored in Chapter 3 and have been shown to be useful to

some degree. Similar to the procedures performed in Chapter 3, by tagging the 490 documents

with the Brill tagger (using Brown corpus tags), we extract the 200 most frequent occurring PoS

bi-grams to form the vocabulary for this LDA variant. An instance of the PCFG rule expanding

Topici → w is Topic1 → NN_NN. There are 200 such rules for each topic.

FW-POS-LDA models. The third variant of the LDA models combines the first two. We note

that this is not typical of topic models: most form topics only over single types, such as content

words.6 The vocabulary then consists of both function words and PoS bi-grams with 598 terms in

total, with 398 from the former and 200 from the latter. Therefore, there are 598 instances of the

rule expanding Topici → w for each topic.

Note that for each of these variants of LDA models, there are five versions with a different

number of topics respectively (as mentioned in the beginning of this subsection).

5Gibbs sampling software for PCFG-based topic modeling is available at http://web.science.mq.edu.au/
~mjohnson/Software.htm.

6Those that include multiple types typically treat them in different ways, such as in the separate treatment of content
words and movie review ratings of Blei and McAuliffe (2008).

http://web.science.mq.edu.au/~mjohnson/Software.htm
http://web.science.mq.edu.au/~mjohnson/Software.htm
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Table 5.1: Number of PCFG rules for each LDA model with different
number of topics t

LDA Models t = 5 t = 10 t = 15 t = 20 t = 25
FW-LDA 5,910 10,350 14,790 19,230 23,670
POS-LDA 4,920 8,370 11,820 15,270 18,720
FW+POS-LDA 6,910 12,350 17,790 23,230 28,670

5.2.2.2 Classification Models for NLI

Here, we exploit LDA as a form of dimension reduction in feature space to discover clusters of

latent factors (features) as represented by ‘topics’ for classification. Based on each of the LDA

models inferred, we take the posterior topic distributions and use as features for classifying the

documents into one of the seven native language groups. All the classifications are performed

with one of the machine learners used in Chapter 4: maximum entropy — MegaM (fifth release)

by Hal Daumé III.7

Baselines. Each LDA classification model (as described in the following) is compared against a

corresponding baseline model. These sets of model use the actual features themselves for classifi-

cation without feature reduction. There are three baselines: function word based with 398 features

(FW-BASELINE), PoS bi-gram based with 200 features (POS-BASELINE), and the combination of

the first two sets of features (FW+POS-BASELINE). For each of these models, we examine two

types of feature value: binary value (presence or absence) and relative frequency.

Function words. Features used in this model (FW-LDA) are the topic distributions inferred from

the first LDA model. There are five variants of this based on the different number of topics (Sec-

tion 5.2.2.1). The feature values are the posterior probabilities associated with the PCFG rules

expanding Docj → Topici which correspond to the topic distributions θj of the LDA repre-

sentation.

PoS bi-grams. Similarly, this set of classification models (POS-LDA) uses the topic probabilities

inferred from the second variant of the LDA model as classification features. Five variants of this

with respect to the different topic numbers are examined as well.

Combined Features The last set of models combine both the function words and PoS bi-grams

as classification features. The feature values are then the topic probabilities extracted from the last

variant of the LDA models (i.e. the combined FW+POS-LDA models).

7MegaM software is available at http://www.umiacs.umd.edu/~hal/megam/.

http://www.umiacs.umd.edu/~hal/megam/
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Table 5.2: Classification performance (%) of the three baseline
models

Baselines Binary Relative Frequency
FW-BASELINE 62.45 33.26
POS-BASELINE 53.87 45.92
FW+POS-BASELINE 64.08 42.65

Feature types: binary value and relative frequency

5.2.2.3 Evaluation

Often, LDA models are evaluated in terms of goodness-of-fit of the model to new data, by estimat-

ing the perplexity or similar of unseen held-out documents given some training documents (Blei

et al., 2003; Griffiths and Steyvers, 2004). However, there are issues with all such proposed mea-

sures so far, such as importance sampling, harmonic mean, Chib-style estimation, and others; see

Wallach et al. (2009) for a discussion. Alternatively, LDA models can be evaluated by measuring

performance of some specific applications such as information retrieval and document classifica-

tion (Titov and McDonald, 2008; Wang et al., 2009; Seroussi et al., 2011). We take this approach

here, and adopt the standard measure for classification models — classification accuracy — as an

indirect evaluation on our LDA models. For the same reason as presented in the previous chapters,

the evaluation uses 5-fold cross-validation on our fairly small data set.

5.2.3 Classification Results

5.2.3.1 Baseline Models

Table 5.2 presents the classification accuracies achieved by the three baseline models mentioned

above (i.e. using the actual features themselves without dimension reduction in feature space).

These results are aligned with the results presented in Chapter 4 under the subsection of 4.3.1.1, in

which binary feature values generally perform much better, although the results are lower because

the calculation was made under cross-validation rather than on a separate held-out test set (hence

with an effectively smaller amount of training data). Combining both the function words and PoS

bi-grams yields a higher accuracy as compared to individual features alone. It seems that both

features are capturing different useful cues that are predictive of individual native languages.

5.2.3.2 LDA Models

The classification performance for all the three variants of the LDA models under different param-

eter settings are presented in Tables 5.3 to 5.6. Three sets of concentration parameters (Dirichlet
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Table 5.3: Classification performance (%) of each LDA-induced
model — under the setting of uniform priors (α = 1 and β = 1)

LDA Models t = 5 t = 10 t = 15 t = 20 t = 25
FW-LDA 44.89 50.61 44.29 47.14 49.59
POS-LDA 47.35 51.02 50.00 50.61 49.79
FW+POS-LDA 49.79 54.08 55.51 52.86 53.26

Feature type: topic probabilities

Table 5.4: Classification performance (%) of each LDA-induced
model — under the setting of uniform priors (α = 1 and β = 1)

LDA Models t = 5 t = 10 t = 15 t = 20 t = 25
FW-LDA 35.51 41.02 42.65 41.02 40.00
POS-LDA 40.20 43.88 47.35 48.16 44.28
FW+POS-LDA 42.65 46.33 51.22 49.39 44.49

Feature type: binary type with probability threshold >= 0.1

priors) were tested on each of the three LDA variants to find the best fitted topic model: Table 5.3

contains results for uniform priors α = 1 and β = 1 (the default setting); Table 5.5 is for α = 50/t

and β = 0.01 (as per Steyvers and Griffiths (2007)); and Table 5.6 is for α = 5/t and β = 0.01

(since for us, with a small number of topics, the α = 50/t of Steyvers and Griffiths (2007) gives

much larger values of α than was the case in Steyvers and Griffiths (2007)). On the whole, weaker

priors (α = 5/t and β = 0.01) lead to a better model as evidenced by the accuracy scores.

As observed in Table 5.3, the model with 10 topics is the best model under uniform priors for

both the individual feature-based models (FW-LDA and POS-LDA) with accuracies of 50.61% and

51.02% respectively, while the combined model (FW+POS-LDA) performs best at 55.51% with 15

topics. It should be noted that these are the outcomes of using the topic probabilities as feature

values. (We also investigated the extent to which binary feature values could be useful by setting

a probability threshold at 0.1; however, the results are consistently lower as shown in Table 5.4.)

By setting a stronger α = 50/t and a much weaker β = 0.01, the resulting models perform no

Table 5.5: Classification performance (%) of each LDA-induced
model — under the setting of stronger priors on α (α = 50/t
and β = 0.01)

LDA Models t = 5 t = 10 t = 15 t = 20 t = 25
FW-LDA 32.45 42.45 44.29 45.71 47.35
POS-LDA 44.29 46.53 50.82 48.76 50.82
FW+POS-LDA 47.75 49.39 51.02 54.49 50.81

Feature type: topic probabilities
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Table 5.6: Classification performance (%) of each LDA-induced
model — under the setting of weaker priors on α (α = 5/t and
β = 0.01)

LDA Models t = 5 t = 10 t = 15 t = 20 t = 25
FW-LDA 41.63 47.14 48.76 45.51 52.45
POS-LDA 43.47 49.79 51.22 52.86 53.47
FW+POS-LDA 51.84 50.61 53.88 52.62 56.94

Feature type: topic probabilities

better than those with uniform priors (see Table 5.5). The best performing models under this setting

are with 25 topics for the individual feature-based models but with 20 topics for the combined

model. This setting of priors was found to work well for most of the text collections as suggested

in Steyvers and Griffiths (2007). However, given that our topic sizes are just within the range

of 5 to 25, we also tried α = 5/t. The classification results based on α = 5/t and β = 0.01

are showed in Table 5.6. This setting leads to the best accuracy (thus far) for each of the models

with 25 topics — FW-LDA (52.45%), POS-LDA (53.47%), FW+POS-LDA (56.94%). The overall

trajectory suggests that more than 25 topics might be useful.

Overall, the classification performance for each of the LDA-induced models (regardless of the

parameter settings) performs worse than the baseline models (Section 5.2.3.1) where the actual

features were used, contra the experience of Rajkumar et al. (2009) in authorship attribution. The

drop is, however, only small in the case of PoS tags; the overall result is dragged down by the

drop in function word model accuracies. And comparatively, they are still well above the majority

baseline of 14.29% (70/490), so the LDA models are detecting something useful. On the one

hand, it is not surprising that reducing a relatively small feature space reduces performance; on the

other hand, other work (as discussed in Section 5.1) had found that this had actually helped. While

these results may not be conclusive — a more systematic search might find better values of α and

β — the results of the POS-LDA model suggests some promise for applying the method to a much

larger feature space of similar terms: this could either be the unrestricted set of PoS bi-grams, or

of syntactic structure features. We investigate this further by looking more deeply at some of the

‘topics’ (i.e. latent factors) found in the discussion below.

5.2.4 Discussion

Despite the fact that all the LDA-induced models had lower accuracy scores than the baseline

models, the inferred topics (clusters of related features) did demonstrate some useful cues that

appear to be indicative of a particular native language. Here we present a discussion of three of

these.
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Table 5.7: Analysis on the best performing FW-LDA model for Topic8

Language Feature Weight Relative Frequency of the
Bulgarian (relative to Bulgarian) 0.0814
Czech -0.0457 0.0648
French 0.2124 0.0952
Russian 0.0133 0.0764
Spanish -0.0016 0.0903
Chinese 3.2409 0.1256
Japanese 0.4485 0.0661

Under the setting of 25 topics with α = 5/t and β = 0.01

Analysis of FW-LDA models. It is often noted in the literature on second language errors that

a typical error of Chinese speakers of English is with articles such as a, an, and the, as Chinese

does not have these. Looking at the best performing FW-LDA model (weak priors of α = 5/t and

β = 0.01; 25 topics), we observed that for the three topics — Topic8 (the 8th feature), Topic19

(the 19th feature) and Topic20 (the 20th feature) — each of these is associated with a much higher

feature weight for Chinese as compared to other native language groups (Table 5.7 shows the

analysis on Topic8). As for the function words clustered under these topics, the appears to be

the most probable one with the highest probabilities of around 0.188, 0.181, and 0.146 for each

respectively (i.e. the PCFG rules of Topic8 → the, Topic19 → the, and Topic20 →

the); this is a higher weighting than for any other word in any topic. To verify that the topic model

accurately reflects the data, we found that the relative frequency of the in the documents produced

by Chinese learners is the highest in comparison with other languages in our corpus. It seems

that Chinese learners have a tendency to misuse this kind of word in their English constructions,

overusing the: this parallels the example given in Chapter 4 and also noted in the beginning of

Section 5.2, in which the different proportions of NP rules such as NP → NN NN, NP → NN

NNS, and also NP → DT NN NN (rather than specifically ungrammatical constructions), are a

characteristic of Chinese texts. However, there is no obvious pattern to the clustering (at least, that

is evident to us) — if the clusters were to be grouping features in a way representative of errors,

one of these topics might reflect misuse of determiners. But, none of these appear to: in Topic8,

for example, a appears only in 5th place, and no other determiners appear at all in the upper end

of the distribution.

Analysis of POS-LDA models. On the other hand, there is a different story for POS-LDA, in

terms of Chinese error phenomena. As shown in Table 5.8, Chinese has the highest feature weight

for the first feature, Topic1 (and also for Topic4). To characterise this, we note that the PoS bi-

gram NN_NN appears as the top bi-gram under Topic1 (∼0.18) (and also occurs most frequently
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Table 5.8: Analysis on the best performing POS-LDA model for Topic1

Language Feature Weight Relative Frequency of NN_NN
Bulgarian (relative to Bulgarian) 0.0126
Czech 0.7777 0.0157
French 0.2566 0.0148
Russian 0.0015 0.0129
Spanish 0.0015 0.0142
Chinese 2.4843 0.0403
Japanese 0.4422 0.0202

Under the setting of 25 topics with α = 5/t and β = 0.01

among Chinese learners as compared to other native language groups). Further, the next four bi-

grams are NN_IN, AT_IN, IN_NN and NN_NNS, the last of which appears to be in complementary

distribution in Chinese errors with NN_NN (i.e. Chinese speakers may tend to use the singular more

often in compound nouns, when a plural might be more appropriate). At this point, we note the

finding in Chapter 4 that usage of nouns was very distinctive for Chinese speakers. There, however,

the finding was that Chinese speakers overused plural nouns relative to singular ones. A possible

explanation is that there proportions were calculated over the top 1000 rules by IG: there are many

other rules not included. It may be that the use of plural nouns by Chinese speakers in those

constructions is particularly characteristic (and more common within those constructions), and

still be consistent with an overall overuse of singular nouns. In any case, it is the distinctiveness of

Chinese noun distribution that is noteworthy. Topic1 thus seems to be somehow connected with

noun-related errors.

Our second instance to look at in some detail is Japanese. Our expectation is that there are

likely to be errors related to pronouns, as Japanese often omits them. In Ellis (2008)’s compre-

hensive survey of second language acquisition (also presented in Section 2.3.1.2), there are four

measures of cross-linguistic influence: error (negative transfer), where differences between the

languages lead to errors; facilitation (positive transfer), where similarities between the languages

lead to a reduction in errors (relative to learners of other languages); avoidance, where construc-

tions that are absent in the native language are avoided in the second language; and overuse, where

constructions are used more frequently in an incorrect way in the second language, due to over-

generalisation.

A priori, it is difficult to predict which of these types of influence might be the case. The classic

study of avoidance by Schachter (1974) examines Persian, Arab, Chinese, and Japanese learners

of English, and their performance on using relative clauses (as mentioned in Section 2.3.1.2). It

found that even though Persian and Arabic have similar (right-branching) relative clauses to En-

glish, and Japanese and Chinese have different (left-branching) ones, the Japanese and Chinese
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Table 5.9: Analysis on the best performing POS-LDA model for Topic8

Language Feature Weight Relative Frequency of PPSS_VB
Bulgarian (relative to Bulgarian) 0.0111
Czech 0.7515 0.0137
French -0.7080 0.0074
Russian -0.2097 0.0116
Spanish -0.3394 0.0117
Chinese -0.1987 0.0059
Japanese 2.0707 0.0224

Under the setting of 25 topics with α = 5/t and β = 0.01

learners made fewer errors (see Table 2.1); but that that was because they avoided using the con-

struction. On the other hand, for a grammatically less complex phenomenon such as article use,

several studies such as those of Liu and Gleason (2002) show that there can be a developmental

aspect to cross-linguistic influence, with initial errors or avoidance turning to overuse because of

overgeneralisation, which is later corrected — reflecting the U-shaped learning behaviour; inter-

mediate learners thus show the greatest level of overuse.

Looking at Topic8 and Topic20 under the POS-LDA model, relative to other topics inferred,

top-ranking PoS bi-grams are mostly related to pronouns (such as PPSS_VB, PPSS_MD, and

PPSS_VBD). Much higher feature weights are associated to these two topics for Japanese (as seen

in Table 5.9 the analysis on Topic8). Bi-grams of PPSS_VB and PPSS_MD occur much more

often in Japanese learners’ writings, and they are the first and the fifth terms under Topic8, which

seems to capture some of these phenomena.

To understand what these were saying about Japanese pronoun usage, we looked at a break-

down of pronoun use (see Table 5.10 and Figure 5.1 for better visualisation). Most apparently, the

texts by Japanese speakers use more pronouns than any others. As the texts in the ICLE corpus

are written by intermediate (to advanced) speakers, this could indicate a very strong instance of

overuse. Looking at the distribution of pronouns, the Japanese speakers make much more use of

the pronoun I than others: this has been noted elsewhere by Ishikawa (2011) on different corpora,

particularly in the use of phrases such as I think. (The phrase I think is over-represented among

Japanese speakers in our data also.)

Overall, then, POS-LDA seems to provide useful clustering of terms, while FW-LDA does not.

This accords with the classification accuracies seen.

Analysis of FW+POS-LDA models. One question about the combined models was whether top-

ics split along feature type — if that were the case, for a rough 2:1 ratio of function words to

PoS bi-grams under 15 topics, there might be 10 topics whose upper rankings are dominated by
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Table 5.10: Pronoun usage across seven native language groups — words tagged with PPSS

Native Absolute Frequency
Languages I They Thou We You it she they we you Total
Bulgarian 229 66 0 52 38 1 0 297 338 219 1240
Czech 483 188 0 166 34 1 0 459 348 202 1881
Russian 355 100 1 76 28 1 0 332 286 110 1289
French 161 55 0 71 4 2 0 282 261 90 926
Spanish 157 52 0 49 6 2 1 361 360 107 1095
Chinese 143 52 0 9 2 2 0 259 66 30 563
Japanese 1062 104 0 115 13 4 0 310 473 71 2152

function words, and 5 by PoS bi-grams. However, they are relatively evenly spread: for the top 20

words in each topic (uniform priors; 15 topics), the proportion of function words varied from 0.22

to 0.44, mean 0.339 and standard deviation 0.063. The topics thus appear to be quite mixed.

Looking into the combined model, Topic3 and Topic11 inferred by this model are amongst the

features that associated with high feature weights for Chinese. Coinciding with our expectation,

the two potential terms indicative of Chinese — NN_NN and the — topped the lists of Topic3 and

Topic11 respectively (where the also appears as the second most probable in Topic3).

Summary. Although the LDA-induced classification models with feature space reduction some-

what underperformed in relation to the full feature-based models (i.e. the baselines), the ‘topics’

(latent factors) found appear in fact to be capturing some useful information characterising indi-

vidual native languages. Given the performance attained by the POS-LDA models, and the fact that

the clustering seems more intuitive here, it seems promising to explore LDAs further with larger

class of unrestricted PoS bi-grams, or of syntactic features such as the parse tree substructures used

in Chapter 4. This could be complemented by using the adaptor grammars of Johnson (2010) to

capture collocational pairings as a form of feature selection, which we will demonstrate next. But,

we will first give an overview of adaptor grammars and discuss its relation to LDA.

5.3 Adaptor Grammars

Adaptor grammars are a non-parametric extension to PCFGs that are associated with a Bayesian

inference procedure. Here, we provide an informal introduction to adaptor grammars; Johnson

et al. (2007) provide a definition of adaptor grammars as a hierarchy of mixtures of Dirichlet (or

2-parameter Poisson-Dirichlet) Processes to which the reader should turn for further details.

Adaptor grammars can be viewed as extending PCFGs by permitting the grammar to contain

an unbounded number of productions; they are non-parametric in the sense that the particular
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productions used to analyse a corpus depends on the corpus itself. Because the set of possible

productions is unbounded, they cannot be specified by simply enumerating them, as is standard

with PCFGs. Instead, the productions used in an adaptor grammar are specified indirectly using a

base grammar: the subtrees of the base grammar’s ‘adapted non-terminals’ serve as the possible

productions of the adaptor grammar (Johnson et al., 2007), much in the way that subtrees function

as productions in Tree Substitution Grammars.8

Another way to view adaptor grammars is that they relax the independence assumptions as-

sociated with PCFGs. In a PCFG productions are generated independently conditioned on the

parent non-terminal, while in an adaptor grammar the probability of generating a subtree rooted

in an adapted non-terminal is roughly proportional to the number of times it has been previously

generated (a certain amount of mass is reserved to generate ‘new’ subtrees). This means that the

distribution generated by an adaptor grammar ‘adapts’ based on the corpus being generated.

5.3.1 Mechanics of Adaptor Grammars

Adaptor grammars are specified by a PCFG G, plus a subset of G’s non-terminals that are called

the adapted non-terminals, as well as a discount parameter aA, where 0 ≤ aA < 1 and a concen-

tration parameter bA, where b > −a, for each adapted non-terminal A. An adaptor grammar de-

fines a two-parameter Poisson-Dirichlet Process for each adapted non-terminal A governed by the

parameters aA and bA. For computational purposes, it is convenient to integrate out the Poisson-

Dirichlet Process, resulting in a predictive distribution specified by a Pitman-Yor Process (PYP).

A PYP can be understood in terms of a ‘Chinese Restaurant’ metaphor in which ‘customers’ (ob-

servations) are seated at ‘tables’, each of which is labelled with a sample from a base distribution

(Pitman and Yor, 1997).

In an adaptor grammar, unadapted non-terminals expand just as they do in a PCFG; a produc-

tion r expanding the non-terminal is selected according to the multinomial distribution θr over

productions specified in the grammar. Each adapted non-terminal A is associated with its own

Chinese Restaurant, where the tables are labelled with subtrees generated by the grammar rooted

in A. In the Chinese Restaurant metaphor, the customers are expansions of A, each table corre-

sponds to a particular subtree expanding A, and the PCFG specifies the base distribution for each

of the adapted non-terminals. An adapted non-terminal A expands as follows. A expands to a sub-

tree t with probability proportional to nt, where nt is the number of times t has been previously

generated. In addition, A expands using a PCFG rule r expanding A with probability proportional

to (mA aA + bA) θr, where mA is the number of subtrees expanding A (i.e., the number of tables

8 For computational efficiency reasons, adaptor grammars require the subtrees to completely expand to terminals. The
fragment grammars of O’Donnell (2011) lift this restriction.
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in A’s restaurant). Because the underlying Pitman-Yor Processes have a ‘rich get richer’ property,

they generate power-law distributions over the subtrees for adapted non-terminals.

5.3.2 Adaptor grammars as LDA Extension

With the ability to rewrite non-terminals to entire subtrees, adaptor grammars have been used to

extend unigram-based LDA topic models as demonstrated in Johnson (2010). This allows topic

models to capture sequences of words with arbitrary length rather than just unigrams of word.

It has also been shown that it is crucial to go beyond the bag-of-words assumption as topical

collocations capture more meaning information and represent more interpretable topics (Wang

et al., 2007).

Taking the PCFG formulation for the LDA topic models, it can be modified such that each

topic Topici generates sequences of words by adapting each of the Topici non-terminals (usually

indicated with an underline in an adaptor grammar). The overall schema for capturing topical

collocations with an adaptor grammar is as follows:

Sentence → Docj j ∈ 1, . . . ,m

Docj → _j j ∈ 1, . . . ,m

Docj → Docj Topici i ∈ 1, . . . , t;

j ∈ 1, . . . ,m

Topici → Words i ∈ 1, . . . , t

Words → Word

Words → Words Word

Word → w w ∈ Vpos

w ∈ Vpos+fw

There is a non-grammar-based approach to finding topical collocations as demonstrated by

Wang et al. (2007). Both of these approaches learned useful collocations: for instance, Johnson

(2010) found collocations such gradient descent and cost function associated with the topic of

‘machine learning’; Wang et al. (2007) found the topic of ’human receptive system’ comprises of

collocations such as visual cortext and motion detector.

Related applications. Adaptor grammars have also been deployed as a form of feature selection

in discovering useful collocations for perspective classification. Hardisty et al. (2010) argued

that indicators of perspectives are often beyond the length of bigrams and demonstrated that the

use of the adaptor grammar-inferred lexical n-grams of arbitrary length as features leads to the
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start-of-the-art performance for perspective classification on the Bitter Lemons corpus, depicting

two different perspectives (Israeli and Palestinian) on various issues. Their goal was to address

the limitation of naïve Bayes models in which each class is only associated with a probability

distribution over a fixed vocabulary. By adopting the adapted grammars, this allowed them to

derive an ‘adaptive’ naïve Bayes model where the vocabulary can grow as required such that

collocations of arbitrary length can be included according to the corpus used. The approach taken

by Hardisty et al. (2010) demonstrates how both the collocation selection and classification can

be expressed within a single model through adaptor grammar inference, without having to find

collocations in a separate process. The overall approach that we are taking in the next section

for classifying texts with respect to the author’s native language is largely inspired by the general

idea of Hardisty et al. (2010) in finding useful collocations. But, the key difference with Hardisty

et al. (2010)’s approach will be that our focus is on collocations that mix PoS and lexical elements,

rather than being purely lexical.

Another related piece of work that adopts grammatical inference is that of Börschinger et al.

(2011), which also inspired our approach in the next section. In that work of Börschinger et al.

(2011), their aim was to demonstrate that ‘grounded’ learning tasks (such as learning of a natural

language) can indeed be represented within the scope of grammatical inference for certain cases.

This was achieved by reducing the task of learning a semantic parser to a grammatical inference

task using the PCFG formalism (rather than the more relaxed representation of adaptor grammars).

The general idea was to train a PCFG grammar learning to map a collection of humanly generated

comments on a robot soccer game to a set of candidate meanings in different contexts (represent-

ing the actions performed in the robot soccer game world); and the results reported were highly

competitive. We will be adopting a similar idea to induce an adapted grammar, learning to infer

the native language of an author from the written texts. (The grammatical inference procedures

will be explained in Section 5.4.2.)

5.4 Feature Selection with Adaptor Grammars

As compared with the first task (Section 5.2), this second task investigated in this chapter differs in

that it uses Bayesian techniques to discover collocations of arbitrary length for use in classification,

over a mix of both PoS and function words, rather than for use as feature dimensionality reduction.

For the purpose of native language identification (NLI), small n-gram sizes like bi-gram or tri-

gram might not suffice to capture sequences that are characteristic of a particular native language.

On the other hand, an attempt to represent these with larger n-grams would not just lead to feature

sparsity problems, but also computational efficiency issues. Some form of feature selection should
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then come into play and adaptor grammars, as discussed above, seem to hold some promise here.

We explore the usefulness of adaptor grammars for n-gram feature selection with two different

approaches. We first utilise adaptor grammars for discovery of high performing ‘quasi-syntactic

collocations’ of arbitrary length as mentioned above and use them as classification features in a

conventional maximum entropy (maxent) model for identifying the author’s native language. In

the second approach, we adopt a grammar induction technique to learn a grammar-based language

model in a Bayesian setting. The grammar learned can then be used to infer the most probable na-

tive language that a given text written in a second language is associated with. The latter approach

is actually closer to the work of Hardisty et al. (2010) using adaptor grammars for perspective

modeling, in which discovery of collocations is an integral part of the approach rather than a sep-

arate process. This alternative approach is also similar in nature to the work of Börschinger et al.

(2011) in which grounded learning of semantic parsers was reduced to a grammatical inference

task.

5.4.1 Maximum Entropy-based Classification

In this subsection, we first explain the procedures taken to set up the conventional supervised

classification task for NLI through the deployment of adaptor grammars for discovery of ‘quasi-

syntactic collocations’ of arbitrary length. We then present the classification results attained based

on these selected sets of n-gram features. In all of our experiments, we investigate two sets of

collocations: pure PoS and a mixture of PoS and function words. The idea of examining the latter

set is motivated by the results of Chapter 4 where inclusion of parse production rules lexicalised

with function words as features had shown to improve the classification performance relative to

unlexicalised ones.

5.4.1.1 Adaptor Grammars for Supervised Classification

We derive two adaptor grammars for the maxent classification setting, where each is associated

with a different vocabulary (i.e. either pure PoS or the mixture of PoS and function words).

We use the grammar of Johnson (2010) as presented in Section 5.3.2, except that the vocabulary

differs: either w ∈ Vpos or w ∈ Vpos+fw. For Vpos, there are 119 distinct PoS tags based on

the Brown tagset. Vpos+fw is extended with 398 function words as per the earlier studies in the

thesis. m = 490 is the number of documents, and t = 25 the number of topics (chosen as the best

performing one from the first task of this chapter — feature dimensionality reduction with LDAs,

Section 5.2).

Rules of the form Docj → Docj Topici that encode the possible topics that are associated
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with a document j are given similar α priors as used in LDA (α = 5/t where t = 25 in our

experiments). Likewise, similar β priors from LDA are placed on the adapted rules expanding

from Topici → Words, representing the possible sequences of words that each topic comprises

(β = 0.01). The values of α and β are also based on the established values presented in the first

task (Section 5.2). The inference algorithm for the adaptor grammars are based on the Markov

Chain Monte Carlo technique made available online by Johnson (2010).9 The inference algorithm

is run for 1,500 iterations for each of the adaptor grammars, with the Pitman-Yor parameters a and

b parameters initialised to 0.01 and 10 respectively.

5.4.1.2 Classification Models with N-gram Features

Based on the two adaptor grammars inferred, the resulting collocations (n-grams) are extracted

as features for the classification task of identifying the writers’ native language. These n-grams

found by the adaptor grammars are only a (not necessarily proper) subset of those n-grams that

are strongly characteristic of a particular native language. In principle, one could find all strongly

characteristic n-grams by enumerating all the possible instances of n-grams up to a given length if

the vocabulary is of a small enough closed set, such as for PoS tags; but this is infeasible when the

set is extended to PoS plus function words. The use of adaptor grammars here can be viewed as a

form of feature selection, as in Hardisty et al. (2010).

Baseline models. To serve as the baseline, we take the commonly used PoS bigrams as per the

previous work of NLI (Koppel et al., 2005). A set of 200 PoS bigrams is selected in two ways:

the 200 most frequently occur in the training data (as in Chapter 4) and the 200 with the highest

values of information gain (IG) in the training data (which have not been evaluated in other work,

to our knowledge).

Enumerated n-gram models. Here, we enumerate all the possible n-grams up to a fixed length

and select the best of these according to IG, as a generalisation of the baseline. The first motivation

for this feature set is that, in a sense, this should give a rough upper bound for the adaptor gram-

mar’s PoS-alone n-grams, as these latter should most often be a subset of the former. The second

motivation is that, it gives a robust comparison for the mixed PoS and function word n-grams,

where it is infeasible to enumerate all of them.

ENUM-POS We enumerate all possible n-grams up to the length of 5, and select those that actually

occur (i.e. of the
∑5

i=1 119
i possible n-grams, this is 218,042 based on the average of 5 folds).

9Adaptor grammar software is available on http://web.science.mq.edu.au/~mjohnson/Software.
htm.

http://web.science.mq.edu.au/~mjohnson/Software.htm
http://web.science.mq.edu.au/~mjohnson/Software.htm
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We look at the top n-grams up to length 5 selected by IG: the top 2,800 and the top 6,500 (for

comparability with adaptor grammar feature sets, see below), as well as the top 10,000 and the

top 20,000 (to study the effect of larger feature space).

Adaptor grammar n-gram models. The classification features are the two sets of selected col-

locations inferred by the adaptor grammars which are the main interest of this paper.

AG-POS This first set of the adaptor grammar-inferred features comprise pure PoS n-grams (i.e.

Vpos). The largest length of n-gram found is 17, but about 97% of the collocations are of length

between 2 to 5. We investigate three variants of this feature set: top 200 n-grams of all lengths

(based on IG), all n-grams of all lengths (n = 2, 795 on average), and all n-grams up to length

5 (n = 2, 710 on average).

AG-POS+FW This second set of the adaptor grammar-inferred features are mixtures of PoS and

function words (i.e. Vpos+fw). The largest length of n-gram found for this set is 19 and the

total number of different collocations found is much higher. For the purpose of comparability

with the first set of adaptor grammar features, we investigate the following five variants for this

feature set: top 200 n-grams of all lengths, all n-grams of all lengths (n = 6, 490 on average),

all n-grams up to the length of 5 (n = 6, 417 on average), top 2,800 n-grams of all different

lengths, and top 2,800 n-grams up to the length of 5. (Similarly, all the selections are based on

IG).

In our models, all feature values are of binary type. For the classifier, we again employ the

maximum entropy machine learner — MegaM (fifth release) by Hal Daumé III.10

5.4.1.3 Data and Evaluation

The classification experiments are conducted on the same dataset as per the first task on feature

dimensionality reduction with LDAs.11 Hence, the data set used in this second task of the chapter

consists of 490 texts written in English by authors of the same seven different native language

groups: Bulgarian, Czech, French, Russian, Spanish, Chinese, and Japanese. Each native language

contributes 70 out of the 490 texts. As we are again using a relative small data set, we perform

k-fold cross-validation, choosing k = 5.

10MegaM software is available on http://www.umiacs.umd.edu/~hal/megam/.
11As noted in Chapter 4, Joel Tetreault and Daniel Blanchard from ETS have pointed out (personal communication) that

there is a subtle issue with ICLE that could have an impact on the classification performance of NLI tasks; in particular,
when character n-grams are used as features, some special characters used in some ICLE texts might affect performance.
For our case, this should not be of much issue since they will not appear in our collocations.

http://www.umiacs.umd.edu/~hal/megam/
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Table 5.11: Maxent classification results for individual feature
sets — 5-fold cross validation

Features (n-grams) Accuracy
BASELINE-POS [top200 MOST-FREQ] 53.87
BASELINE-POS [top200 IG] 56.12
AG-POS [top200 IG] 61.02
AG-POS [all ≤17-gram] (n ≈ 2800) 68.37
AG-POS [all ≤ 5-gram] (n ≈ 2700) 68.57
AG-POS+FW [top200 IG] 58.16
AG-POS+FW [all ≤19-gram] (n ≈ 6500) 74.49
AG-POS+FW [all ≤5-gram] (n ≈ 6400) 74.49
AG-POS+FW [top2800 IG ≤ 19-gram] 71.84
AG-POS+FW [top2800 IG ≤ 5-gram] 71.84
ENUM-POS [top2800 IG ≤ 5-gram] 69.79
ENUM-POS [top6500 IG ≤ 5-gram] 72.44
ENUM-POS [top10K IG ≤ 5-gram] 71.02
ENUM-POS [top20K IG ≤ 5-gram] 71.43

5.4.1.4 Classification Results

Table 5.11 presents all the classification results for the individual feature sets, along with the

baselines. On the whole, both sets of the collocations inferred by the adaptor grammars perform

better than the two baselines. We make the following observations:

• Regarding ENUM-POS as a (rough) upper bound, the adaptor grammar AG-POS with a com-

parable number of features performs almost as well. However, because it is possible to

enumerate many more n-grams than are found during the sampling process, ENUM-POS

opens up a gap over AG-POS of around 4%.

• Collocations with a mix of PoS and function words do in fact lead to higher accuracy as

compared to those of pure PoS (except for the top 200 n-grams); for instance, compare the

2,800 n-grams up to length 5 from the two corresponding sets (71.84 vs. 68.57).

• Furthermore, the adaptor grammar-inferred collocations with mixtures of PoS and function

words (AG-POS+FW) in general perform better than our rough upper bound of PoS collo-

cations, i.e. the enumerated PoS n-grams (ENUM-POS): the overall best results of the two

feature sets are 74.49 and 72.44 respectively.

Given that the AG-POS+FW n-grams are capturing different sorts of document characteristics,

they could potentially usefully be combined with the PoS-alone features. We thus combined them

with both AG-POS and ENUM-POS feature sets, and the classification results are presented in Table

5.12. We tried two ways of integrating the feature sets: one way is to take the overall top 2,800 of
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Table 5.12: Maxent classification results for combined feature
sets — 5-fold cross validation

Features (n-grams) Accuracy
AG-POS [all ≤ 5-gram] & FW 72.04
ENUM-POS [top2800 ≤ 5-gram] & FW 73.67
AG-POS+FW & AG-POS a 75.71
AG-POS+FW & AG-POS b 74.90
AG-POS+FW & ENUM-POS [top2800] a 73.88
AG-POS+FW & ENUM-POS [top2800] b 74.69
AG-POS+FW & ENUM-POS [top10K] b 74.90
AG-POS+FW & ENUM-POS [top20K] b 75.10

aFeatures from the two sets are selected based on the overall top 2800
with highest IG; bfeatures from the two sets are just linearly concate-
nated

the two sets based on IG; the other way is to just combine the two sets of features by concatenation

of feature vectors (as indicated by a and b respectively in the result table). For comparability

purposes, we considered only n-grams up to length of 5. A baseline approach to this is just to add

in function words as unigram features by feature vector concatenation, giving two further models:

AG-POS [all ≤ 5-gram] & FW and ENUM-POS [top2800 ≤ 5-gram] & FW.

Overall, the classification accuracies attained by the combined feature sets are higher than

the individual feature sets. The best performing of all the models is achieved by combining the

mixed PoS and function word collocations with the adaptor grammar-inferred PoS, producing the

best accuracy thus far of 75.71. This demonstrates that features inferred by adaptor grammars do

capture some useful information and function words are playing a role. The way of integrating the

two feature sets has different effects on the types of combination. As seen in Table 5.12, method

a works better for the combination of the two adaptor grammar feature sets; whereas method b

works better for combining adaptor grammar features with enumerated n-gram features.

Using adaptor grammar collocations also outperforms the alternative baseline of adding in

function words as unigrams. For instance, the best performing combined feature set of both AG-

POS and AG-POS+FW does result in higher accuracy as compared to the two alternative baseline

models, comparing 75.71 with 72.04 (and 75.71 with 73.67). This demonstrates that our more

general PoS plus function word collocations derived from adaptor grammars are indeed useful,

and supports the argument of Wang et al. (2007) that they are a useful technique for looking into

features beyond just the bag of words.
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5.4.2 Language Model-based Classification

In this subsection, adaptor grammars are utilised in a different way to the classification task of

NLI. We take a language modeling approach; the idea here is to adopt grammatical inference to

learn a grammar-based language model to represent the texts written by non-English native users.

The grammar learned is then used to predict the most probable native language that a document (a

sentence) is associated with.

In a sense, we are using a parser-based language model to rank the documents with respect

to native language. We draw on the work of Börschinger et al. (2011) for this. In that work

(as mentioned in Section 5.3.2), the task was grounded learning of a semantic parser. Training

examples there consisted of natural language strings (descriptions of a robot soccer game) and a

set of candidate meanings (actions in the robot soccer game world) for the string; each was tagged

with a context identifier reflecting the actual action of the game. A grammar was then induced that

would parse the examples, and was used on test data (where the context identifier was absent) to

predict the context. We take a similar approach to developing an grammatical induction technique,

although where they used a standard LDA topic model-based PCFG, we use an adaptor grammar

here.12 We expect that the classification results will likely to be lower than for the discriminative

approach of Section 5.4.1 with the maxent-based approach.

However, the approach is of interest for a few reasons: whereas the adaptor grammar plays

an ancillary, feature selection role in Section 5.4.1, here the feature selection is an organic part

of the approach as per the actual implementation of Hardisty et al. (2010); adaptor grammars can

potentially be extended in a natural way with unlabelled data; and for the purposes of the second

task investigated in this chapter, it constitutes a second, quite different way to evaluate the use of

n-gram collocations.

5.4.2.1 Language Models

We derive two adaptor grammar-based language models. One consists of only unigrams and bi-

grams, and the other finds n-gram collocations, in both cases over either PoS or the mix of PoS and

function words. The assumption that we make is that each document (each sentence) is a mixture

of two sets of topics: one is the native language-specific topic (i.e. characteristic of the native lan-

guage) and the other is the generic topic (i.e. characteristic of the second language — English in

our case). The generic topic is thus shared across all languages, and will behave quite differently

from a language-specific topic, which is not shared. In other words, there are eight topics, repre-

senting seven native language groups that are of interest — Bulgarian (BL), Czech (CZ), French

12A special thanks to Benjamin Börschinger for the helpful discussion on the formulation of the adaptor grammars used
in this grammatical inference approach.)
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(FR), Russian (RU), Spanish (SP), Chinese (CN), and Japanese (JP) — and the second language

English itself.13

Bi-gram models. The following rule schema for an adaptor grammar is applicable to both vo-

cabulary types of PoS and the mixture of PoS and function words.

Root → _lang langTopics

langTopics → langTopics langTopic

langTopics → langTopics nullTopic

langTopics → langTopic

langTopics → nullTopic

langTopic → Words

nullTopic → Words

Words → Word Word

Words → Word

Word → w w ∈ Vpos; w ∈ Vpos+fw

(Note: _lang is the native language identifier where it takes the value from the set of 7 native

languages {BL, CZ, FR, RU, SP, CN, JP}; langTopic and nullTopic represent the native language

specific topic and the generic (second language) topic, respectively.)

N-gram models. The adaptor grammar is generally the same as the above with the only excep-

tion that the non-terminal Words is now rewritten as follows in order to capture n-gram colloca-

tions of arbitrary length.

Words → Words Word

Words → Word

It should be noted that the two grammars above can in theory be applied to an entire document

or on individual sentences. For this present work, we work on the sentence level as the run-time of

the current implementation of the adaptor grammars grows proportional to the cube of the sentence

length. For each grammar we try both sparse and uniform Dirichlet priors (α = {0.01, 0.1, 1.0}).

The sparse priors encourage only a minority of the rules to be associated with high probabilities.

13We could just induce a regular PCFG here, rather than an adaptor grammar, by taking as terminals all pairs of PoS
tags. We use the adaptor grammar formulation for comparability.
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5.4.2.2 Training and Evaluation

As we are using the same data set as per the previous approach, we perform 5-fold cross validation

as well. However, the training for each fold is conducted with a different grammar consisting of

only the vocabulary that occur in each training fold. The reason is that we are now having a form

of supervised topic models where the learning process is guided by the native languages. Hence,

each of the training sentences are prefixed with the (native) language identifiers _lang, as seen in

the Root rules of the grammar presented above.

To evaluate the grammars learned, as in Börschinger et al. (2011) we need to slightly modify

the grammars above by removing the language identifiers (_lang) from the Root rules and then

parse the unlabeled sentences using a publicly available CKY parser.14 The predicted native lan-

guage is inferred from the parse output by reading off the langTopics that the Root is rewritten

to. We take that as the most probable native language for a particular test sentence. The parsing

performance (i.e. classification outcome) is evaluated at both the sentence and the document lev-

els. At the document level, we select as the class the language predicted for the largest number of

sentences in that document.

5.4.2.3 Parsing Results

Tables 5.13 and 5.14 present the parsing results at the sentence level and the document level,

respectively. On the whole, the results at the sentence level are much poorer as compared to those

at the document level. In light of the results of Section 5.4.1.4 (i.e. maxent-based classification),

it is surprising that bi-gram models appear to perform better than n-gram models for both types of

vocabulary, with the exception of AG-POS+FW at the document level. In fact, one would expect

n-gram models to perform better in general as it is a generalisation that would contain all the

potential bi-grams. Nonetheless, the language models over the mixture of PoS and function words

appear to be a more suitable representative of our learner corpus as compared to those over purely

PoS, confirming the usefulness of integrated function words for the NLI classification task.

It should also be noted that sparse priors generally appear to be more appriopriate; except that

for AG-POS+FW n-grams, uniform priors are indeed better and resulted in the highest parsing result

of 50.15. Although all the parsing results are much weaker as compared to the results presented in

Section 5.4.1.4, they are all higher than the majority baseline of 14.29% i.e. 70/490.

14CKY parser by Mark Johnson is available on http://web.science.mq.edu.au/~mjohnson/Software.
htm.

http://web.science.mq.edu.au/~mjohnson/Software.htm
http://web.science.mq.edu.au/~mjohnson/Software.htm
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Table 5.13: Language modeling-based classification results based
on parsing — at the sentence level

Feature Types Accuracy
(n-grams) (α = 0.01) (α = 0.1) (α = 1.0)
AG-POS [bigrams] 26.84 27.03 26.77
AG-POS [n-grams] 25.85 25.78 25.62
AG-POS+FW [bigrams] 28.58 28.40 27.43
AG-POS+FW [n-grams] 26.64 27.64 28.75

Table 5.14: Language modeling-based classification results based
on parsing — at the document level

Features Accuracy
(n-grams) (α = 0.01) (α = 0.1) (α = 1.0)
AG-POS [bigrams] 41.22 38.88 39.69
AG-POS [n-grams] 36.12 34.90 35.20
AG-POS+FW [bigrams] 47.45 46.94 44.64
AG-POS+FW [n-grams] 43.97 49.39 50.15

5.4.3 Discussion

Here we take a closer look at how well each approach does in identifying the individual native lan-

guages. The confusion matrix for the best performing model of the two approaches are presented

in Table 5.15 and Table 5.16, respectively. Both approaches perform reasonably well for the two

Oriental languages (Chinese in particular); this is not a major surprise, as the two languages are

not part of the language family that the rest of the languages come from (i.e. Indo-European). Un-

der the supervised maxent classification, misclassifications largely are observed in the Romance

ones (French and Spanish) as well as Russian; for the language model-based approach, Bulgarian

is identified poorly, and Spanish moreso. However, the latter approach appears to be better in

identifying Czech. On the whole, the maxent approach results in much fewer misclassifications

compared to its counterpart.

In fact, there is a subtle difference in the experimental setting of the models derived from the

two approaches with respect to the adaptor grammar: the number of topics. Under the maxent

setting, the number of topics t was set to 25, while we restricted the models with the language

modeling approach to only eight topics (seven for the individual native languages and one for the

common second language, English). Looking more deeply into the topics themselves reveals that

there appears to be at least two out of the 25 topics (from the supervised models) associated with

n-grams that are indicative of the native languages, taking Chinese and Japanese as examples (see
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Table 5.15: Confusion matrix based on the best perform-
ing model — under maxent setting

BL CZ RU FR SP CN JP
BL [52] 5 7 4 2 – –
CZ 5 [50] 5 3 4 – 3
RU 6 8 [46] 5 1 – 4
FR 7 3 5 [43] 8 – 4
SP 7 2 4 9 [47] – 1
CN – – – – – [70] –
JP – – 2 2 1 2 [63]

BL:Bulgarian, CZ:Czech, RU:Russian, FR:French,
SP:Spanish, CN:Chinese, JP:Japanese

Table 5.16: Confusion matrix based on the best per-
forming model — under language modeling setting

BL CZ RU FR SP CN JP
BL [20] 32 9 6 – 1 2
CZ 2 [59] 3 1 – – 5
RU 3 41 [19] 2 1 – 4
FR 8 20 4 [31] 4 – 3
SP 7 27 11 12 [9] – 4
CN – 2 – 2 – [62] 4
JP – 19 1 2 – 1 [47]

BL:Bulgarian, CZ:Czech, RU:Russian, FR:French,
SP:Spanish, CN:Chinese, JP:Japanese

the associated topics in Table 5.17).15 Perhaps associating each native language with only one

generalised topic is not sufficient.

Furthermore, the distribution of n-grams among the topics (i.e. subtrees of collocations de-

rived from the adaptor grammars) is quite different between the two approaches although the total

number of n-grams inferred by each approach is about the same. For the language modeling ones,

a high number of n-grams were associated with the generic topic nullTopic16 and each language-

specific topic langTopic has a lower number of n-grams relative to bi-grams associated with it

(Table 5.18). For the maxent-based models, in contrast, the majority of the topics were associ-

ated with a higher number of n-grams (Table 5.19). The smaller number of n-grams to be used

as features — and the fact that their extra length means that they will occur more sparsely in the

documents — seems to be the core of the problem.

Nonetheless, the language models inferred discover relevant n-grams that are representative of

15Taking the examples from the first task in this chapter (Section 5.2) as reference, we found similar n-grams that are
indicative of Japanese and Chinese.

16This is quite plausible as there should be quite a number of structures that are representative of native English speakers
that are shared by non-native speakers.
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Table 5.17: Top mixture n-grams (collocations) for 4 out of the 25 topics
representative of Japanese and Chinese — under maxent setting

Top 10 Mixture N-grams
Japanese Chinese

topic2 topic23 topic9 topic17
. . NN .

we VB PPSS VB a NN NN NN
our NNS my NN NN NN NNS
our NN CC VBN by NN

NN VBG NP . RB ,
PPSS VB PPSS think NP of NN
about NN : JJ NN

because PPSS VBD ( NN .
it . RB as VBG NN

we are PPSS ’ NN NN NN NN NN NN NN

N-grams of pronoun with verb are found at the upper end of Topic2 and
Topic23 reflecting the frequent usage of Japanese; n-grams of noun are top
n-grams under Topic9 and Topic17 indicating Chinese’s common error of
determiner-noun disagreement

individual native languages. For instance, the bi-gram NN NN, which we claimed in Section 5.2.4

(and also Chapter 4) may reflect errors of determiner-noun agreement commonly found amongst

Chinese learners, was found under the Chinese topic at the top-2 position with a probability of

0.052 as compared to the other languages at the probability range of 0.0005-0.003. Similarly, one

example for Japanese, the mixture bi-gram PPSS think, indicating frequent usage of pronouns

within Japanese was seen under the Japanese topic at the top-9 position with a probability of 0.025

in relation to other languages within the range of 0.0002-0.006: this phenomenon as characteristic

of Japanese speakers has also been noted for different corpora by Ishikawa (2011) as we high-

lighted in Chapter 4. (Note that this collocation as well as its pure PoS counterpart PPSS VB

are amongst the top n-grams discovered under the maxent setting as seen in Table 5.17.) Some

excerpts extracted from the corpus that illustrate these two common phenomena are presented in

Table 5.20.

To investigate further the issue associated with the number of topics under the language mod-

eling setting, we attempted to extend the adaptor grammar with three additional topics that group

the seven native languages of interest: Slavic, Romance, and Oriental. The resulting grammar

(with familyTopic representing the three language groups) is presented as follows. However, the

parsing result does not improve over the initial setting with eight topics in total.



5.4. FEATURE SELECTION WITH ADAPTOR GRAMMARS 133

Ta
bl

e
5.

18
:

D
is

tr
ib

ut
io

n
of

n-
gr

am
s

(c
ol

lo
ca

tio
ns

)f
or

ea
ch

to
pi

c
—

un
de

rl
an

gu
ag

e
m

od
el

in
g

se
tti

ng

N
-g

ra
m

Fr
eq

ue
nc

y
M

od
el

B
LT

op
ic

C
Z

To
pi

c
R

U
To

pi
c

FR
To

pi
c

SP
To

pi
c

C
N

To
pi

c
JP

To
pi

c
N

ul
lT

op
ic

Ty
pe

s
(a

)
(b

)
(a

)
(b

)
(a

)
(b

)
(a

)
(b

)
(a

)
(b

)
(a

)
(b

)
(a

)
(b

)
(a

)
(b

)
B

ig
ra

m
s

37
4

18
7

35
2

21
9

35
0

21
1

42
6

16
5

35
1

15
6

39
7

35
1

39
4

19
4

86
7

61
69

N
-g

ra
m

s
17

7
15

9
22

6
21

7
14

8
20

2
15

1
15

2
12

8
14

7
35

7
25

5
20

9
22

6
30

89
77

94
(a

)S
ub

co
lu

m
ns

ar
e

fo
r

n-
gr

am
s

of
pu

re
Po

S;
(b

)s
ub

co
lu

m
ns

ar
e

fo
r

n-
gr

am
s

of
m

ix
tu

re
s

of
Po

S
an

d
fu

nc
tio

n
w

or
ds



134 CHAPTER 5. EXPLORING TOPIC MODELING

Ta
bl

e
5.

19
:

D
is

tr
ib

ut
io

n
of

n-
gr

am
s

(c
ol

lo
ca

tio
ns

)f
or

ea
ch

to
pi

c
—

un
de

rm
ax

en
ts

et
tin

g

N
-g

ra
m

Fr
eq

ue
nc

y
To

pi
c 1

To
pi

c 2
To

pi
c 3

To
pi

c 4
To

pi
c 5

To
pi

c 6
To

pi
c 7

To
pi

c 8
To

pi
c 9

To
pi

c 1
0

(a
)

(b
)

(a
)

(b
)

(a
)

(b
)

(a
)

(b
)

(a
)

(b
)

(a
)

(b
)

(a
)

(b
)

(a
)

(b
)

(a
)

(b
)

(a
)

(b
)

17
4

44
3

14
5

44
1

13
6

24
5

14
1

34
1

23
6

51
9

16
9

74
8

12
7

34
0

18
2

47
3

10
9

33
9

19
0

23
6

To
pi

c 1
1

To
pi

c 1
2

To
pi

c 1
3

To
pi

c 1
4

To
pi

c 1
5

To
pi

c 1
6

To
pi

c 1
7

To
pi

c 1
8

To
pi

c 1
9

To
pi

c 2
0

(a
)

(b
)

(a
)

(b
)

(a
)

(b
)

(a
)

(b
)

(a
)

(b
)

(a
)

(b
)

(a
)

(b
)

(a
)

(b
)

(a
)

(b
)

(a
)

(b
)

57
25

9
12

6
45

5
10

3
54

3
21

1
22

5
17

0
45

9
81

30
9

23
8

20
7

15
2

47
5

11
9

45
2

33
3

42
3

To
pi

c 2
1

To
pi

c 2
2

To
pi

c 2
3

To
pi

c 2
4

To
pi

c 2
5

(a
)

(b
)

(a
)

(b
)

(a
)

(b
)

(a
)

(b
)

(a
)

(b
)

24
5

34
1

16
8

49
2

19
4

47
2

20
1

36
6

19
5

19
0

(a
)S

ub
co

lu
m

ns
ar

e
fo

r
n-

gr
am

s
of

pu
re

Po
S;

(b
)s

ub
co

lu
m

ns
ar

e
fo

r
n-

gr
am

s
of

m
ix

tu
re

s
of

Po
S

an
d

fu
nc

tio
n

w
or

ds



5.4. FEATURE SELECTION WITH ADAPTOR GRAMMARS 135

Table 5.20: Excerpts from ICLE illustrating the common phenomena
observed amongst Chinese and Japanese

Languages Excerpts from ICLE
Chinese . . . the overpopulation problem in urban area . . .

. . . The development of country park can directly . . .
. . . when it comes to urban renewal project . . .

. . . As developing new town in . . .
. . . and reserve some country park as . . .

Japanese . . . I think many people will . . .
. . . I think governments should not . . .

. . . I think culture is the most significant . . .
. . . I think the state should not . . .
. . . I really think we must live . . .

Root → _lang langTopics

langTopics → langTopics langTopic

langTopics → langTopics familyTopic

langTopics → langTopics nullTopic

langTopics → langTopic

langTopics → familyTopic

langTopics → nullTopic

langTopic → Words

familyTopic → Words

nullTopic → Words

Words → Words Word

Words → Word

Word → w w ∈ Vpos; w ∈ Vpos+fw

Summary. We have shown that the extension of adaptor grammars to discovering collocations

beyond the lexical, in particular a mix of PoS tags and function words, can produce features useful

in the NLI classification problem. More specifically, when added to a new baseline presented

in this paper, the combined feature set of both types of adaptor grammar inferred collocations

produces the best result in the context of using n-grams for NLI. The usefulness of the collocations

does vary, however, with the technique used for classification.

Follow-up work from here will involve a broader exploration of the parameter space of the

adaptor grammars, in particular the number of topics and the value of prior α; a look at other

non-parametric extensions of PCFGs, such as infinite PCFGs (Liang et al., 2007) for finding a set

of non-terminals permitting more fine-grained topics; and an investigation of how the approach
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can be extended to semi-supervised learning to take advantage of the vast quantity of texts with

errors available on the Web.

5.5 Concluding Remarks

The two approaches investigated in this chapter demonstrate how topic modeling can be exploited

for the classification task of native language identification. Although the first approach of deploy-

ing the basic LDA models as a form of feature space reduction for finding clusters of coherent

features does not lead to an especially high classification performance, the ‘topics’ or latent fac-

tors inferred from (at least) the PoS-based LDA models do capture some indicative patterns (in the

form of PoS bi-grams) that are characteristics for a particular native language.

With the second approach, unigram-based topic models are extended using adaptor grammars

for discovering collocational n-grams of arbitrary length that are useful for NLI, treating them as

an approximation to the ‘deep’ syntactic structures (such as production rules and tree templates

for parse reranking). Using the conventional classification method with a maxent machine learner,

n-grams of beyond just purely PoS — mixtures of PoS with function words — has shown that

reasonably good classification performance can be achieved, although it is not as high as the

performance attained with the syntactic structures used in Chapter 4, parse production rules in

particular.

Before we conclude in the next chapter, one issue of concern that deserves some further discus-

sion is of the linguistic phenomena greatly investigated in this chapter as well as in the previous

two chapters: (mis)use of determiners. Most of the discussions thus far have been focusing on

Chinese speakers of English on the whole. This is largely due to the subset of the ICLE corpus

used in this thesis in which this phenomena appears to be evident amongst Chinese, who appear

to overuse certain determiners such as the as discussed in Section 5.2.4. One would argue that

similar determiner-noun errors should also be pronounced for Japanese as well as Slavic speakers,

given the fact that these languages lack articles in their language system; however, these were not

observed in our dataset. A plausible explanation could be that these non-native English speakers

might have chosen to avoid using certain determiners when lack of confidence — one of the several

ways of manifesting errors as mentioned in Section 2.3.1.2. It has also been argued that articles

(definites in particular such as the) is closely related to demonstratives (such as this and that). As

for languages without articles but with demonstratives, it is reasonable to hypothesise that there

might be lexical transfer from the semantics of L1 demonstratives to the usage of L2 (English)

articles subjected to the learners’ interpretation on the semantic environments of the noun phrases

in which the articles are used — consequently, a demonstrative such as that could be (over)used
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Table 5.21: Usage of the article the versus the demonstrative that

Language Relative Frequency of the Relative Frequency of that
Bulgarian 0.0814 0.0133
Czech 0.0648 0.0119
French 0.0952 0.0117
Russian 0.0764 0.0134
Spanish 0.0903 0.0143
Chinese 0.1256 0.0112
Japanese 0.0661 0.0121

for definiteness marking in place of the. Table 5.21 shows that Bulgarian, Russian and Japanese;

each has a somewhat higher number of usage for that in comparison with Chinese as observed

in our dataset. In fact, there have been a number of related works attempted to investigate the

relationship between L1 demonstratives and English definite articles (Niimura and Brenda, 1996;

Robertson, 2000; Butler, 2002; Ionin et al., 2012); yet the results are not conclusive. It is thus

another interesting topic of research that worth addressing in the future.





Chapter 6

Conclusion

6.1 Summary of Findings

Prior to the studies presented in this thesis, there were only a limited number of works on native

language identification (NLI) in which the usefulness of syntactic features had not been explored

extensively. Following our publications that specifically exploit syntactic features for NLI taking

cross-linguistic influence as the basis (Wong and Dras, 2009, 2011), work on NLI proliferated and

much subsequent related research has emerged — such as the work of Kochmar (2011), Swan-

son and Charniak (2012), and Bergsma et al. (2012) — which utilise syntactic features in some

way. Work has also appeared very recently in the linguist community on exploring the transfer

effects of native language in second language learning in an automated manner rather than rely-

ing on conventional human judgements, using mainly statistical-based methods focusing on linear

discriminant analysis (Jarvis and Crossley, 2012).

The work in the thesis started with, as its motivating principle, the assumptions of Contrastive

Analysis Hypothesis (CAH) in its weaker form, although the ways in which syntax appears to

be useful in native language identification differ quite significantly from the CAH predictions.

As seen in Chapter 3, there is some modest support for the contention that syntactic structure

can indeed help in detecting the writers’ native language, through a statistical analysis of three

syntactic error types and through machine learning-based classification using only features based

on those error types. This suggests that errors as a result of native language transfer appear to

be useful for the NLI task. Despite the fact that there appears to be no improvement in terms of

classification performance when combining these with features commonly used in other machine

learning approaches to the classification task of NLI, such as Koppel et al. (2005), a comparable

level of accuracy rate of around 80% is observed on the classification task of identifying seven

139
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different native language groups based on the texts from the ICLE corpus.

In view of the limitation of the first approach focusing on only three manually detected syntac-

tic errors, Chapter 4 explored an automated means of detecting different types of syntactic errors

as well as other cross-linguistic effects through statistical parsing. The outcomes of this second

approach suggests that syntactic structures — in particular those that are characterised by hori-

zontal slices of parse trees (i.e. context-free grammar (CFG) production rules) — are not only

useful in terms of sentence-based grammaticality judgement, but can be beneficial to NLI tasks

in identifying the native language of the writers. Moreover, more fine-grained production rules

augmented with latent variables, as are generated by the Berkeley parser, lead to the best classifi-

cation performance. On the other hand, the more generalised syntactic structures represented by

the tree templates used for parse reranking (Charniak and Johnson, 2005) which were expected to

be more helpful in general but do not appear so, as they seem to be only useful for the simpler task

of judging sentence grammaticality. Nonetheless, an interesting aspect worth highlighting is that

distributional differences over syntactic structures appear to be representative of syntactic errors

(e.g. misuse of determiners by Chinese speakers) as well as other phenomena of cross-linguistic

influence, including avoidance (e.g. underuse of relative clauses by Chinese) and overuse (e.g.

pronouns by Japanese).

The last approach investigated in this thesis shows some promising outcomes from adopting

topic modeling to native language identification in two ways, as discussed in Chapter 5. The clus-

ters of coherent latent factors (‘topics’) found appear to be capturing useful information for indi-

vidual native languages when inspecting the topics manually, although the topic modeling-induced

classification models with the reduction in feature dimension in general underperform in relation

to the full feature-based models (i.e. taking features themselves for classification rather than the

topic probabilities inferred from the topic models). With the extension to adaptor grammars, col-

locations beyond the purely lexical ones, in particular mixtures of PoS tags and function words,

can produce informative features that are useful in the NLI classification task. More specifically,

adaptor grammar-induced n-grams consist of mixtures of PoS and function words outperform all

enumerated PoS n-grams with function words incorporated separately. However, the usefulness of

n-gram collocations does vary with respect to the technique used for classification. As supported

by the classification results, the conventional machine learning-based approach with maximum

entropy learners performs better in comparison with the language modeling-based approach. All

in all, classification models with the full syntax represented in the form of production rules still

performs better than any of the topic modeling-induced models for the NLI tasks conducted in the

thesis.
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6.2 Limitations and Future Outlook

The discoveries of the thesis have also led to a recognition of various limitations and caveats.

One that requires much further investigation is the corpus used throughout the thesis. There have

been some arguments that the ICLE corpus might have subject-based clues that would lead to a

distortion when used for tasks in the NLI paradigm, even with features typically regarded as not

connected to the subject of the text. However, the effect of this on the classification results pre-

sented in this thesis would likely be a slight inflation of all the results, rather than any wholesale

revision of relative usefulness. As a result, some other recent research, such as Brooke and Hirst

(2012), has resorted to alternative sources for reliable training corpora for NLI-related tasks. An-

other related issue to be aware of when using learner corpora in general is that all other variables

— for example, the writers’ proficiency level in the second language and the registers of second

language texts — must be certain to be held constant except for the native language factor in or-

der to yield unbiased classification outcomes. The availability of such a corpus is still far from

ideal; future research efforts to compiling a fully controlled corpus would certainly be beneficial

to NLI-related tasks.

Given that this thesis has taken CAH as the basis to identifying predictive syntactic features for

NLI, the types of syntactic errors and patterns uncovered are expected to be primarily influences of

the native language. It is undeniable that there is the possibility that some of these features might

be in fact the outcomes of the developmental process. As suggested in the extensive literature

of second language acquisition (SLA) by Ellis (2008), interlingual (interference) and intralingual

(developmental) errors are often not easy to be indubitably distinguished. It is therefore worth

exploring constrastive analysis and error analysis hand-in-hand in greater detail in order to rule

out syntactic errors and patterns that are irrelevant for the purpose of determining the writers’

native language.

With respect to the approaches investigated in this thesis, despite the outcomes of exploiting

parse structures and topic modeling-induced features sound promising, the credibility of these

approaches needs to be further attested. Admittedly, the number of native languages examined

throughout the studies of this thesis is rather limited in size — only seven in total. Another related

but orthogonal issue: the subset of the ICLE corpus used in this thesis is also rather small in size.

A more extensive study would need to be conducted on a wider range of native languages with

a larger corpus to substantiate the credibility as well as the scalability of these approaches. In

relation to this, we had extended these approaches to the first ever shared task on NLI organised

by researchers from ETS based on a relatively larger corpus comprising 11 native languages with
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1,100 essays per language (Malmasi et al., 2013).1 Furthermore, having the ability to identify a

broader range of native language groups would be of help to the CALL practitioners at large in

detecting and correcting specific errors produced by learners of different native langauge back-

grounds with more efficacy. It is anticipated that there would still be a rise in terms of the number

of English learners as it has been reported that more than one billion of people in the world are

using English as their second or foreign language (Guo and Beckett, 2007).

As for further improvement on the approaches, one potential avenue of future work is to

further explore different variants of topic modeling that might deem suitable. For example, the

non-parametric variant — hierarchical Dirichlet processes (Teh et al., 2006) — which allows an

unbounded number of topics (coherent latent factors) and sharing of topics across groups of doc-

uments. In relation to our task, this could be those syntactic patterns found in the grammatical

native English constructions across the different native language groups. Other variants that could

be potentially useful include more linguistic-informed syntactic topic modeling (Boyd-Graber and

Blei, 2009) as well as supervised topic modeling (Blei and McAuliffe, 2008), which might produce

feature clusters that are more closely aligned to native language identification cues.

To wrap up, native language identification ideas can be applied in a number of ways. As

highlighted in Chapter 1, SLA researchers and practitioners can benefit from NLI studies from

a pedagogical standpoint, specifically in terms of second language assessment as well as second

language curriculum planning. As for heightening Internet security in relation to phishing attacks,

successfully identifying the phishers’ native language would be of help to law enforcement agen-

cies in investigation. And given the recent surge of interest in the field, no doubt many more

techniques and applications will be forthcoming.

1Further information on NLI Shared Task 2013 is available at http://www.nlisharedtask2013.org/.

http://www.nlisharedtask2013.org/


Appendix A

Subsets of ICLE Corpus

Below are the subsets taken from the seven subcorpora of International Corpus of Learner English

(Version 2) (Granger et al., 2009), for the purpose of all the NLI classification tasks conducted in

the thesis. For each of the subsets (each representing one native language group):

• the first 70 essays are used as the training set in Chapter 3 and for cross validation in Chap-

ter 4 and Chapter 5;

• the last 25 essays are used as the held-out test set in Chapter 3 and Chapter 4;

• the 15 essays in between these two previous sets are those used in Chapter 3 — for the

purpose of investigating the impact of the training sample size on classification performance

(as described in Section 3.7).

All the essays are of argumentative type and with 500–1000 words.
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Bulgarian

The first 70 essays:

BGSU1001 BGSU1002 BGSU1003 BGSU1004
BGSU1005 BGSU1006 BGSU1007 BGSU1008
BGSU1011 BGSU1012 BGSU1013 BGSU1014
BGSU1018 BGSU1022 BGSU1024 BGSU1030
BGSU1031 BGSU1034 BGSU1035 BGSU1036
BGSU1037 BGSU1039 BGSU1042 BGSU1044
BGSU1045 BGSU1047 BGSU1051 BGSU1053
BGSU1055 BGSU1057 BGSU1058 BGSU1059
BGSU1065 BGSU1066 BGSU1067 BGSU1068
BGSU1071 BGSU1072 BGSU1073 BGSU1074
BGSU1076 BGSU1080 BGSU1081 BGSU1082
BGSU1083 BGSU1086 BGSU1087 BGSU1099
BGSU1100 BGSU1102 BGSU1105 BGSU1107
BGSU1108 BGSU1109 BGSU1114 BGSU1115
BGSU1116 BGSU1119 BGSU1126 BGSU1127
BGSU1129 BGSU1130 BGSU1132 BGSU1133
BGSU1136 BGSU1139 BGSU1140 BGSU1145
BGSU1146 BGSU1148

The 15 essays in between:

BGSU1149 BGSU1150 BGSU1152 BGSU1153
BGSU1154 BGSU1157 BGSU1158 BGSU1159
BGSU1160 BGSU1162 BGSU1164 BGSU1165
BGSU1168 BGSU1172 BGSU1173

The last 25 essays:

BGSU1174 BGSU1178 BGSU1182 BGSU1183
BGSU1184 BGSU1190 BGSU1191 BGSU1192
BGSU1193 BGSU1194 BGSU1195 BGSU1196
BGSU1198 BGSU1202 BGSU1203 BGSU1205
BGSU1208 BGSU1210 BGSU1211 BGSU1213
BGSU1215 BGSU1216 BGSU1217 BGSU1223
BGSU1228
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Czech

The first 70 essays:

CZKR1001 CZKR1002 CZKR1003 CZKR1004
CZKR1005 CZKR1006 CZKR1007 CZKR1008
CZKR1009 CZKR1010 CZPR2001 CZPR2002
CZPR2004 CZPR2005 CZPR2008 CZPR2014
CZPR2015 CZPR2016 CZPR2017 CZPR2018
CZPR2020 CZPR2022 CZPR2023 CZPR2027
CZPR2029 CZPR2030 CZPR2031 CZPR2032
CZPR2034 CZPR2039 CZPR2043 CZPR2045
CZPR2047 CZPR2048 CZPR2049 CZPR2050
CZPR2051 CZPR2054 CZPR2055 CZPR2057
CZPR2059 CZPR3009 CZPR3010 CZPR3011
CZPR3012 CZPR3013 CZPR3016 CZPR3018
CZPR3022 CZPR3023 CZPR3025 CZPR3026
CZPR3027 CZPR3029 CZPR3036 CZPR3039
CZPR3040 CZPR3047 CZPR3048 CZPR3049
CZPR3050 CZPR3052 CZPR3053 CZPR3057
CZPR3060 CZPR3061 CZPR4004 CZPR4005
CZPR4008 CZPR4010

The 15 essays in between:

CZPR4011 CZPR4012 CZPR4013 CZPR4014
CZPR4016 CZPR4017 CZPR4018 CZPR4019
CZPR4020 CZPR4021 CZPU1002 CZPU1004
CZPU1005 CZPU1006 CZPU1007

The last 25 essays:

CZPU1008 CZPU1009 CZPU1011 CZPU1012
CZUN1001 CZUN1004 CZUN1005 CZUN1006
CZUN1009 CZUN1010 CZUN1011 CZUN1012
CZUN1014 CZUN1016 CZUN1017 CZUN1019
CZUN1020 CZUN1023 CZUN1025 CZUN1026
CZUN1027 CZUN1030 CZUN1031 CZUN1032
CZUN1033
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Russian

The first 70 essays:

RUMO1020 RUMO2001 RUMO2002 RUMO2003
RUMO2004 RUMO2005 RUMO2006 RUMO2008
RUMO2010 RUMO2011 RUMO2012 RUMO2013
RUMO2014 RUMO2015 RUMO2017 RUMO2019
RUMO2020 RUMO2021 RUMO3004 RUMO3005
RUMO3006 RUMO3007 RUMO3008 RUMO3009
RUMO3010 RUMO3011 RUMO3012 RUMO4001
RUMO4002 RUMO4003 RUMO4004 RUMO4007
RUMO4010 RUMO4011 RUMO4012 RUMO4013
RUMO4014 RUMO4015 RUMO4016 RUMO4018
RUMO4019 RUMO4020 RUMO4022 RUMO4023
RUMO4024 RUMO4025 RUMO4026 RUMO4029
RUMO5002 RUMO5004 RUMO5007 RUMO5008
RUMO5009 RUMO5011 RUMO5012 RUMO5013
RUMO5014 RUMO5016 RUMO5017 RUMO5018
RUMO5019 RUMO5020 RUMO5021 RUMO5023
RUMO5024 RUMO5026 RUMO5027 RUMO5031
RUMO5032 RUMO5033

The 15 essays in between:

RUMO5034 RUMO5036 RUMO5037 RUMO5039
RUMO5040 RUMO5041 RUMO5042 RUMO5043
RUMO5045 RUMO5046 RUMO6001 RUMO6002
RUMO6003 RUMO6005 RUMO6006

The last 25 essays:

RUMO6008 RUMO6009 RUMO6011 RUMO6014
RUMO6017 RUMO6020 RUMO7001 RUMO7002
RUMO7004 RUMO7005 RUMO7008 RUMO7014
RUMO7015 RUMO7017 RUMO7020 RUMO7022
RUMO7023 RUMO7031 RUMO7033 RUMO7035
RUMO7036 RUMO7038 RUMO7040 RUMO7042
RUMO7046
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French

The first 70 essays:

FRUB1002 FRUB1003 FRUB1004 FRUB1005
FRUB1006 FRUB1007 FRUB1008 FRUB1010
FRUB1011 FRUB1012 FRUB1013 FRUB1014
FRUB1015 FRUB1018 FRUB1019 FRUB1021
FRUB1022 FRUB1024 FRUB1026 FRUB1027
FRUB1028 FRUB1029 FRUB1030 FRUB2003
FRUB2004 FRUB2005 FRUB2006 FRUB2007
FRUB2008 FRUB2009 FRUB2010 FRUB2011
FRUB2012 FRUB2014 FRUB2015 FRUB2016
FRUB2017 FRUB2018 FRUB2019 FRUB2020
FRUB2021 FRUB2022 FRUB2024 FRUB2025
FRUB2027 FRUB2028 FRUB2029 FRUB2030
FRUC1001 FRUC1004 FRUC1005 FRUC1006
FRUC1007 FRUC1008 FRUC1009 FRUC1010
FRUC1011 FRUC1013 FRUC1015 FRUC1016
FRUC1021 FRUC1022 FRUC1023 FRUC1024
FRUC1025 FRUC1027 FRUC1028 FRUC1029
FRUC1030 FRUC1032

The 15 essays in between:

FRUC1033 FRUC1034 FRUC1035 FRUC1037
FRUC1038 FRUC1041 FRUC1042 FRUC1044
FRUC1045 FRUC1047 FRUC1050 FRUC1051
FRUC1053 FRUC1054 FRUC1055

The last 25 essays:

FRUC1056 FRUC1060 FRUC1061 FRUC1064
FRUC1065 FRUC1067 FRUC1069 FRUC1071
FRUC1072 FRUC1073 FRUC1074 FRUC1076
FRUC1078 FRUC1079 FRUC1085 FRUC1086
FRUC1089 FRUC1090 FRUC1091 FRUC1092
FRUC1093 FRUC1094 FRUC1096 FRUC1098
FRUC1099
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Spanish

The first 70 essays:

SPM01005 SPM01006 SPM01007 SPM01010
SPM01011 SPM01012 SPM01013 SPM01014
SPM01015 SPM01016 SPM01017 SPM01018
SPM02001 SPM02003 SPM02004 SPM02005
SPM02007 SPM02009 SPM02010 SPM02011
SPM02012 SPM02013 SPM02014 SPM02015
SPM03002 SPM03004 SPM03005 SPM03006
SPM03007 SPM03008 SPM03012 SPM03014
SPM03015 SPM03016 SPM03017 SPM03018
SPM03019 SPM03020 SPM03021 SPM03023
SPM03025 SPM03026 SPM03027 SPM03028
SPM03029 SPM03031 SPM03034 SPM03035
SPM03036 SPM03037 SPM03038 SPM03040
SPM03042 SPM03043 SPM03044 SPM03045
SPM03046 SPM03047 SPM03049 SPM03051
SPM03052 SPM03053 SPM03054 SPM04001
SPM04002 SPM04003 SPM04004 SPM04007
SPM04008 SPM04010

The 15 essays in between:

SPM04011 SPM04012 SPM04013 SPM04015
SPM04016 SPM04017 SPM04018 SPM04019
SPM04022 SPM04023 SPM04026 SPM04028
SPM04029 SPM04030 SPM04031

The last 25 essays:

SPM04032 SPM04033 SPM04034 SPM04035
SPM04036 SPM04037 SPM04039 SPM04040
SPM04041 SPM04042 SPM04043 SPM04044
SPM04045 SPM04046 SPM04047 SPM04048
SPM04049 SPM04052 SPM04054 SPM04055
SPM04057 SPM05001 SPM05003 SPM05004
SPM05005
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Chinese

The first 70 essays:

CNHK1001 CNHK1002 CNHK1003 CNHK1004
CNHK1005 CNHK1010 CNHK1013 CNHK1017
CNHK1021 CNHK1025 CNHK1027 CNHK1029
CNHK1030 CNHK1031 CNHK1032 CNHK1033
CNHK1035 CNHK1038 CNHK1041 CNHK1042
CNHK1044 CNHK1048 CNHK1051 CNHK1052
CNHK1053 CNHK1055 CNHK1058 CNHK1059
CNHK1060 CNHK1062 CNHK1063 CNHK1065
CNHK1066 CNHK1067 CNHK1072 CNHK1073
CNHK1075 CNHK1076 CNHK1077 CNHK1079
CNHK1081 CNHK1084 CNHK1085 CNHK1086
CNHK1089 CNHK1091 CNHK1092 CNHK1093
CNHK1095 CNHK1098 CNHK1105 CNHK1107
CNHK1109 CNHK1115 CNHK1117 CNHK1121
CNHK1123 CNHK1128 CNHK1134 CNHK1135
CNHK1136 CNHK1137 CNHK1145 CNHK1149
CNHK1152 CNHK1160 CNHK1164 CNHK1175
CNHK1176 CNHK1177

The 15 essays in between:

CNHK1181 CNHK1185 CNHK1186 CNHK1188
CNHK1190 CNHK1191 CNHK1192 CNHK1193
CNHK1198 CNHK1199 CNHK1200 CNHK1201
CNHK1206 CNHK1207 CNHK1208

The last 25 essays:

CNHK1209 CNHK1210 CNHK1211 CNHK1212
CNHK1213 CNHK1214 CNHK1216 CNHK1217
CNHK1218 CNHK1219 CNHK1220 CNHK1221
CNHK1222 CNHK1223 CNHK1225 CNHK1226
CNHK1228 CNHK1229 CNHK1230 CNHK1233
CNHK1237 CNHK1240 CNHK1242 CNHK1244
CNHK1246
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Japanese

The first 70 essays:

JPHI1001 JPHI1002 JPHI1003 JPHI1004
JPHI1005 JPKO1004 JPKO1013 JPKO1017
JPKO1018 JPKO2001 JPKO2002 JPKO2003
JPKO2004 JPKO2005 JPKO2006 JPKO2007
JPKO2008 JPKO2009 JPKO2010 JPKO2011
JPKO2012 JPKO2013 JPKO2014 JPKO2015
JPKO2017 JPKO2018 JPKO2019 JPKO2021
JPKO2022 JPKO2025 JPKO2027 JPKO2028
JPKO2029 JPKO2030 JPKO2031 JPKY1001
JPKY1002 JPNH1001 JPSH1001 JPSH1002
JPSH1003 JPSH1004 JPST1001 JPST1002
JPSW1011 JPSW1014 JPSW1017 JPSW1018
JPSW1022 JPSW1023 JPSW1025 JPSW1028
JPSW1032 JPSW1036 JPSW1038 JPSW1039
JPSW2004 JPSW2006 JPSW2007 JPSW2010
JPSW2011 JPSW2012 JPSW2013 JPSW2015
JPSW2018 JPSW2020 JPSW2021 JPSW3001
JPSW3002 JPSW3003

The 15 essays in between:

JPSW3004 JPSW3005 JPSW3006 JPSW3013
JPSW3015 JPSW3022 JPSW3025 JPSW3026
JPSW3027 JPSW3028 JPSW3029 JPSW3030
JPSW3031 JPSW4004 JPSW4007

The last 25 essays:

JPSW4008 JPSW4009 JPSW4010 JPSW4011
JPSW4013 JPSW4019 JPSW4021 JPSW4022
JPSW4025 JPSW4029 JPSW4030 JPTF1004
JPTF1012 JPTF1013 JPTF1014 JPTF1015
JPTF1016 JPTF1017 JPTF1019 JPTF1020
JPTF1022 JPTF1024 JPTF1025 JPTF1041
JPTK1001
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Lists of Function Words

Below are the three lists of function words first introduced and used in Chapter 3: the first list

consists of 70 function words used in Mosteller and Wallace (1964); the second is the original list

of Miller et al. (1958), in which the first list was extracted from, with 363 function words; and

the third is the list obtained from the website of Onix Text Retrieval Toolkit including stopwords

commonly used in information retrieval, with up to 398 words. Only the last list is used in the

studies in the two subsequent chapters, Chapter 4 and Chapter 5.

The First List: 70 function words

a had one was
all has only were
also have or what
an her our when
and his shall which
any if should who
are in so will
as into some with
at is such would
be it than your
been its that
but may the
by more their
can must then
do my there
down no things
even not this
every now to
for of up
from on upon
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The Second List: 363 function words

a below four keep
about between fourteen kept
above beyond fourteenth later
across both fourth least
ado but from less
aforesaid by further lest
after can furthermore likewise
again cannot get many
against canst gets may
alive could got me
all did had middle
almost do halfdozen midthirties
alone does hardly might
along doing has mighty
already done have millenia
also dont having million
although down he millions
alway during height mine
always each hence more
am eight henceforth moreover
among eighteen her most
amount eighth here much
an eighty herein must
and either heretofore my
anon eleven herself myself
another else hes nay
any elsewhere him neither
anybody enough himself never
anyone etc his nevertheless
anything even hither next
anywhere ever how nine
apart evermore howbeit ninth
are every however no
around everyone hundred nobody
as everything i noes
aside everywhere if none
at except in nor
away fairly inasmuch not
awful farther indeed nothing
awfully few inner now
awhile fifty insofar nowadays
backward first insomuch nowhere
backwardness five instead of
be for into often
because forasmuch inward oftentimes
been foregoing is oh
before forever it on
beforehand forth its once
behind forty itself one
being forward just ones
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The Second List: 363 function words (continue)

only such twice without
onto ten two won
or than twothirds would
other that under ye
others the underneath yea
otherwise thee undoing yes
ought their unless yeses
our theirs until yet
ours them unto you
ourselves themselves up your
outside then upon yours
outward thence upward yourself
over there us yourselves
overmuch thereafter very
past thereby was
per therefore wasnt
perhaps therein way
please thereof we
plus thereon weight
pretty theretofore well
quite therewith were
rather these what
real they whatever
really thine when
right thing whence
same things whenever
second third where
self thirds whereas
selves thirty wherefor
seven this wherefore
seventy thither wherein
several those whereinsoever
shall thou whereof
shalt though whereon
she thousand wherever
should three wherewith
shouldest thrice whether
since through which
six throughout while
sixteen thus whilst
sixth thy whither
sixty thyself who
so to whom
some together whose
somebody too why
someday toward will
something truly wilt
sometimes twelve with
somewhat twenty withal
still twentyseven within
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The Third List: 398 function words and stopwords

a best far however
about better felt if
above between few important
across big find in
after both finds interest
again but first interested
against by for interesting
all came four interests
almos can from into
alone cannot full is
along case fully it
already cases further its
also certain furthered itself
although certainly furthering just
always clear furthers keep
among clearly gave keeps
an come general kind
and could generally knew
another did get know
any differ gets known
anybody different give knows
anyone differently given large
anything do gives largely
anywhere does go last
are done going later
area down good latest
areas downed goods least
around downing got less
as downs great let
ask during greater lets
asked each greatest like
asking early group likely
asks either grouped long
at end grouping longer
away ended groups longest
back ending had made
backed ends has make
backing enough have making
backs even having man
be evenly he many
became ever her may
because every here me
become everybody herself member
becomes everyone high members
been everything higher men
before everywhere highest might
began face him more
behind faces himself most
being fact his mostly
beings facts how mr
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The Third List: 398 function words and stopwords (continue)

mrs parted small until
much parting smaller up
must parts smallest upon
my per so us
myself perhaps some use
necessary place somebody used
need places someone uses
needed point something very
needing pointed somewhere want
needs pointing state wanted
never points states wanting
new possible still wants
newer present such was
newest presented sure way
next presenting take ways
no presents taken we
nobody problem than well
non problems that wells
noone put the went
not puts their were
nothing quite them what
now rather then when
nowhere really there where
number right therefore whether
numbers room these which
of rooms they while
off said thing who
often same things whole
old saw think whose
older say thinks why
oldest says this will
on second those with
once seconds though within
one see thought without
only seem thoughts work
open seemed three worked
opened seeming through working
opening seems thus works
opens sees to would
or several today year
order shall together years
ordered she too yet
ordering should took you
orders show toward young
other showed turn younger
others showing turned youngest
our shows turning your
out side turns yours
over sides two
part since under
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