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Abstract

Wireless Body Area Network (WBAN) is a new advanced technology of wireless net-
working inside and around the human body which has the potential to provide ubiq-
uitous and continuous health monitoring, and reduce the cost of health-care services.
This technology benefits from the recent advances in electronics and telecommunica-
tions brought about tiny sensor devices which can be implanted inside or attached
on the human body. A WBAN is composed of a number of these miniature devices
sampling signals of the body and sending them to a coordinator node for real-time
monitoring or other medical purposes.

Energy is the scarcest resource in WBANs and it is therefore highly desirable to
minimize energy dissipation in WBAN devices. One of the major sources of energy
waste in WBANs originates from the interference between co-located WBANs working
in the same frequency band. To mitigate this inter-network co-channel interference,
transmission power control can be employed. A power controller adjusts the transmis-
sion power levels in order to maximize some utilities, such as throughput, with the least
power. In this thesis, we aim to address the inter-network interference issue in WBANs
by proposing practical power control mechanisms to reduce energy consumption and
increase throughput as much as possible in WBANs.

We design a fuzzy-logic-based power controller which makes decisions on the trans-
mission power level based on the SINR and interference power level. The proposed
fuzzy power controller is then optimized off-line using genetic algorithms to increase
throughput and reduce power consumption. Simulation results reveal that the pro-
posed fuzzy power controller strongly outperforms a well-known power controller in
the literature, called ADP1, in terms of energy consumption per bit and also conver-
gence.

We also propose a power controller based on the game theory where players of a
non-cooperative game struggle to maximize their throughput with as low power for
transmission as possible. We show that a pure unique Nash equilibrium exists in the
game. Having found the best response of the players, we evaluate the performance of
the proposed approach using simulation and compare its performance with the fuzzy
power controller proposed earlier. Simulation results indicate that although the pro-
posed power control game is outperformed by the fuzzy power controller in terms of

1Asynchronous Distributed Pricing Power Controller
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x Abstract

energy consumption per bit, it is superior in terms of convergence. More importantly,
the game power controller enables us to adjust the tradeoff between power and through-
put easily and even adaptively, whereas in the fuzzy power controller this adjustment
has to be carried out off-line sat the design stage by time-consuming genetic algorithms.
We also propose adaptive methods to adjust pricing mechanism, taking into account
the power budget and channel conditions of WBANs, which allows them to make the
best use of their good conditions to achieve a higher throughput.

In an effort to enhance the adaptability and flexibility of the power controller, we
employ learning algorithms and put forward a power controller which learns from expe-
rience to improve its performance. The proposed controller relies on the reinforcement
learning to explore the environment and exploit the knowledge acquired from experi-
ence. We use approximation methods to tackle the curse of dimensionality issue and
investigate a broad range of reinforcement learning algorithms. We scrutinize the per-
formance of all the proposed approaches by extensive simulations and compare their
performances in terms of throughput, power levels, energy consumption per bit and con-
vergence. Simulation results illustrate that although the reinforcement-learning-based
power controller suffers from a slower convergence compared to the fuzzy and game
power controllers, it provides a better performance in terms of energy consumption per
bit. Moreover, the reinforcement learning based power controller enjoys simplicity in
design and high level of adaption to environment.

Moreover, for applications where meeting QoS requirements is more important than
saving energy, we formulate the power control problem as an optimization problem
which minimizes the total power consumption and meets the individual target rate of
each WBAN. Having attained the optimal solution by using the Lagrange multipliers
method, we present a distributed approach based on the Jacobi method for fixed-point
calculations, which approximates the optimal solution and is suitable for practical
WBANs without the need of any central arbiter. The simulation results indicate that
the distributed approach is able to provide good performance which is reasonably close
to that of the global optimum solution. Additionally, for cases where the optimiza-
tion problem is not feasible, the proposed distributed approach provides a better QoS
provisioning.
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“Nothing can bring you peace but yourself.”

Ralph Waldo Emerson

1
Introduction

1.1 Wireless Body Area Networks

Nowadays, the quality of medical services and health-care systems is regarded as a
major benchmark of social welfare in the world. Over the last decade, however, health-
care spending has shown a growing tendency to rise each year. According to a recent
report [3], health expenditures increase 5.7 percent on average each year, jumping
up from 17.9 percent of the GDP1 of the USA in 2010 to 19.6 percent in 2021. In
order to cope with this crisis, a new technology is needed to provide medical centres
with the ability to remotely monitor the condition of patients particularly the elderly,
children and chronically ill ones while they are at home or hospital. Hence in November
2007, IEEE established a new task group (TG6) under the IEEE 802.15 standard to
develop a technology for short-range ultra-low-power wireless communication in/on
and around the human body. The new-born technology was called Wireless Body Area
Network (WBAN). Prior to this standard, wireless medical data collection systems were
using standards such as ZigBee or Bluetooth that did not comply with the medical
standard due to their size, power consumption and strong interference from other
devices. Considering that potentially hundreds of sensors can be attached to a patient’s
body, such systems would become quite bulky and inefficient to be carried by patients.

WBAN technology benefits from the recent advancements in electronics and telecom-
munications which have made it possible to embed a micro-controller, sensors and radio
interface for data transmission and reception in a single tiny chip that can be integrated
into other wearable objects such as belts, wrist watches, glasses and head sets, or can

1Gross Domestic Product

1



2 Introduction

Figure 1.1: A Wireless Body Area Network along with other networking technologies;
photo from The Journal of NeuroEngineering and Rehabilitation (JNER)

be implanted in/on the human body. A WBAN comprises a number of such miniature
devices, known as BAN1 Nodes (BNs)2 forming a star topology3 with a BAN Node
Controller (BNC) node which serves as a coordinator, data collector, MAC controller
and gateway for the WBAN. The sensor nodes detect an abnormality in the body
or monitor physiological or physical signals of the body such as ECG4, EEG5, oxy-
gen saturation level (SpO2), accelerometer and gyrometer signals, and report to the
coordinator node.

1.1.1 Applications

With successful deployment of WBANs, patients can be examined, monitored and
followed up remotely when they are at home, even asleep. WBANs enable elderly or
after surgery patients to remain independently living in their own homes as long as
possible, saving costs and time for both doctors and patients. Moreover, this will avoid

1Body Area Network
2Note that we use BN and sensor node interchangeably throughout the thesis.
3Relay communication between sensor nodes incorporating two-hop or multi-hop links in an ex-

tended star topology has been also studied in WBANs [4].
4Electrocardiography
5Electroencephalography
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Figure 1.2: Applications of WBANs include medical and non-medical domains

patients’ unnecessary presence at hospitals which further contributes to reduction of
the health-care costs related to the cases where patients catch other infections known
as HAI1, when they visit or stay in hospitals [5].

WBANs may create interesting applications when combined with other technologies
and devices which have become a necessary part of our daily life such as smart phones,
PDAs, music players, etc. Checking the performance of our organs such as heart, liver
and stomach, or finding any inefficiency in our body by just using our mobile phones
will not be fictitious anymore and will be realized using WBANs in future.

In addition to the health-care and medical applications, WBAN is also a promising
technology for ubiquitous and pervasive computations and has potential to serve appli-
cations in a wide range of domains including military services, battlefield management
systems, sports and athletic training, surveillance, workplace safety, secure authenti-
cation, shopping, and entertainment and gaming. Figure 1.2 shows some applications
of WBANs in the medical and non-medical domains.

1Hospital-Acquired Infection



4 Introduction

1.2 Thesis Motivation

The lifetime of the sensor nodes in WBANs depend on the applications where they are
being used which can vary from a couple of hours e.g. endoscopy capsules to a few
years e.g. cardiac pacemakers or defibrillators. The sensor nodes all run on built-in
batteries and in most cases, it is difficult or impractical to recharge or replace exhausted
batteries, particularly when they are implanted inside the body. As a result, when the
battery runs out, the senor node simply becomes inoperative. Although some energy
harvesting techniques including motion [6] and body heat [7] scavenging have been
considered, they still do not suffice to cope with the energy bottleneck in WBANs.
Unlike other types of wireless communication technologies where bandwidth is the
most valuable resource, energy is therefore considered to be the scarcest resource in
WBANs. It is important to minimize energy waste and save power in WBANs.

One of the major sources of energy waste in wireless communications originates from
interference between the signals of nearby nodes working in the same frequency band.
The co-channel interference causes the SINR1 to drop and thereby throughput degrades
or bit error rate increases. In order to compensate for this SINR drop, an affected node
has to raise its transmission power which will again produce more interference to the
neighboring nodes and encourage them to transmit with a higher power in response.
Such positive feedback behavior leads to a significant increase in power consumption
in the system. Moreover, the packet loss caused by interference may result in more
power consumption when collided packets have to be retransmitted.

Due to their structure, applications and mobility, a WBAN is quite likely to be af-
fected by co-channel interference from other WBANs because their transmission ranges
can easily overlap each other when for example patients stand or sit next to each other
in the area where they the WBANs are deployed such as a hospital ward. The issue can
be even more devastating in emergency medical applications where the reliability of the
system is a key factor because the increased bit error rate or delay due to interference
can jeopardize patients’ lives.

The IEEE 802.15.6 standard has proposed two techniques for interference mitiga-
tion between neighboring WBANs, which are beacon shifting and channel hopping. It
has also proposed two techniques for energy conservation which are hibernation and
sleeping, known as power management techniques. However, the proposed interference
mitigation techniques may not suffice to tackle the problem in practice. For example,
due to the limited number of available frequency channels, hopping to another free
channel may not be possible. On the other hand, the proposed power management
techniques completely switch on/off the sensor nodes meaning that the radio is either
on (full power) or off (zero power). In other words, the MAC of WBAN is non-power-
aware and does not benefit from adjusting the transmission power levels to mitigate
interference.

1Signal-to-Interference-and-Noise-Ratio
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Figure 1.3: Inter-network interference between neighboring WBANs operating in the
same frequency band

The co-channel interference between different WBANs, namely inter-network in-
terference, can be managed by using Transmission Power Control (TPC). A power
controller adjusts the transmission power level to achieve a specific goal in the sys-
tem. The merits of using TPC include providing QoS1, decreasing power consumption,
enhancing throughput, controlling connectivity and network topology, increasing ca-
pacity, and so forth. The power control problem is often formulated as an optimization
problem where the goal is to maximize a utility such as the total throughput in the
system, with as little power for transmission as possible, or to minimize the total power
consumption in the system while achieving the utility of interest such as a certain level
of QoS.

In this thesis, we investigate techniques to mitigate inter-network interference in
WBANs by proposing power control schemes to reduce energy consumption, increase
throughput and keep WBANs reliable as much as possible.

1.3 WBAN Requirements

Any proposed approach for power control in medical WBANs must meet certain criteria
to be applicable and suitable in the reality due to WBANs’ special characteristics. It
should ideally have the following properties:

1Quality of Service



6 Introduction

1. Distributed : A centralized power controller requires a common arbiter which
possesses all the information regarding all the nodes in the system and channel
gains, and it controls all the transmission power levels in the network. On the
other hand, a distributed approach adjusts the transmission power of one single
node and is running by each node in the network separately until a global power
allocation is found, usually in an iterative manner. Since there is no such central
arbiter between different WBANs, any proposed solution for WBANs must be
fully distributed and all WBANs should be treated in the same manner from the
system point of view.

2. Asynchronous : Synchronous power control algorithms require that before pro-
ceeding to the next iteration, a radio interface that has finished its execution
interval must wait for neighbouring nodes to finish their current iteration (i.e.,
the execution interval is synchronized). Such approaches need to employ syn-
chronization techniques which usually involves negotiation between nodes in the
network. In contrast, in asynchronous power control algorithms, each radio in-
terface performs its power adjustments independently of other radio interfaces
on the neighbouring nodes. In other words, such a radio interface can proceed to
its next iteration without waiting for other radio interfaces to finish their current
iteration interval.

3. No Inter-WBAN Cooperation: In most of medical applications, WBANs are re-
luctant to participate in any cooperation with other WBANs because each WBAN
has to save its energy to do its critical tasks such as monitoring the heart beat
signal. As a result solutions with the least cooperation between WBANs are
highly preferred.

4. No Negotiation or Message Exchange: This is mainly because in almost all med-
ical applications WBANs are assumed to be independent and non-cooperative.
Moreover, the idea of negotiation of the interfering nodes may be infeasible in
practice. This for example happens when the signals of WBANs are highly in-
terfering with each other and they need to negotiate to find a solution reducing
this interference while the negotiation itself will put more interference on them
or even may not be possible at all in such high interference conditions.

5. Least Processing Load : In short-range wireless networks like WBANs (less than
three meters), the processing power consumption may be not negligible compared
to the transmission power. Since the tiny sensor nodes in WBANs are very
energy-constrained, algorithms to be run on them should be light in terms of
computation load and also memory requirements.

6. Fast Convergence: WBANs should run the power control algorithm distributively
to find a global solution. As this normally needs to be done in an iterative manner,
the convergence to the final solution becomes a concern not only for saving power
but also for the sake of being real-time.
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1.4 Scope of the Thesis

In this thesis, we consider techniques to manage inter-network interference between
neighboring WBANs operating in the same frequency band using transmission power
control in order to reduce energy consumption, increase throughput and keep WBANs
reliable as much as possible.

The problem of minimizing the power consumption summed over all users in a
system subject to meeting individual target SINR of users is a classic optimization
problem which has been considered first in [8]. Although this model may be also suit-
able for some real-time medical applications of WBANs such as a surgery operation,
where QoS is the most important, other WBANs’ applications may be tolerable to
reduce throughput for energy conservation. For example, at bad channel or high in-
terference conditions, where the cost (e.g. energy per bit) to maintain a target rate
is higher, a WBAN may prefer to postpone the transmission, or transmit at a lower
data rate. Another case for motivating such tradeoff between power and throughput
is when the battery is low and sensor nodes are willing to be more frugal for spend-
ing their battery. Therefore, instead of meeting target (data) rates at any cost, i.e.
non-tradeoff scenario, in this thesis (Chapters 3,4 and 5) we mainly aim to achieve a
tradeoff between throughput and power. However, in Chapter 6, we will turn back to
the non-tradeoff problem and propose a solution for the sake of QoS-sensitive medical
applications.

Making the tradeoff, we define a utility function which employs a penalty mecha-
nism to discourage WBANs with high power levels motivating them to achieve a higher
throughput with less power. This way, WBANs can reach a tradeoff between through-
put and power consumption by adjusting appropriate price factor. We also propose
adaptive methods to adjust the price factor to allow WBANs to make the best use of
their good conditions in terms of channel and power budget to achieve a higher rate.

We propose three approaches which are based on genetic-fuzzy systems, game the-
ory, and Reinforcement Learning (RL). Fuzzy control combined with genetic algo-
rithms, known as genetic-fuzzy systems, provides a powerful tool for decision making
and controlling complicated systems without requiring an exact mathematical model
while providing a high level of flexibility. However, genetic algorithms are very time-
consuming and are used only in off-line optimizations, which limits the adaptability of
the system to on-line dynamic changes of the surrounding environment. Game theory,
on the other hand, is a mathematical framework which analyzes the conflict of interests
between agents and is needless of such off-line optimization. Although, game theory
can improve the adaptability of the system compared to the genetic-fuzzy approach, it
normally requires finding a stable solution called Nash Equilibrium (NE) in advance,
and calculating a strategy such as the best response to reach that solution. In order
to further boost the adaptability, reinforcement learning can be employed, which is a
framework for finding optimal solutions without the need of the environment model
and only by interacting with the environment. Reinforcement learning allows agents
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to learn from experience and improve their performance over time.

The proposed fuzzy power controller in Chapter 3 makes decisions on the trans-
mission power level based on the SINR, interference power level and the current level
of transmission power. We design a genetic algorithm and a learning strategy to opti-
mize the power controller. Simulation results indicate that the proposed fuzzy power
controller strongly outperforms a well-known power controller in the literature, called
ADP1, in terms of energy consumption per bit and also convergence.

The proposed game-theoric power controller in Chapter 4 is a non-cooperative game
in which players struggle to maximize their throughput with as low power for transmis-
sion as possible. We show that a pure unique NE exists in the game. Having found the
best response of the players, we evaluate the performance of the proposed approach us-
ing simulation and compare its performance with the fuzzy power controller proposed
earlier. Simulation results reveal that although the proposed power control game is
outperformed by the fuzzy power controller in terms of energy consumption per bit,
it is superior in terms of convergence. More importantly, the game power controller
enables us to adjust the tradeoff between power and throughput easily and even adap-
tively, whereas in the fuzzy power controller this adjustment has to be carried out
off-line at the design stage by time-consuming genetic algorithms.

The proposed RL-based power controller in Chapter 5 improves its performance by
exploring the environment while exploiting the knowledge acquired from experience.
We use approximation methods to tackle the issue of large state-action space and
investigate a broad range of reinforcement learning algorithms. We scrutinize the
performance of all the proposed approaches by extensive simulations and compare their
performances in terms of throughput, power levels, energy consumption per bit and
convergence. Simulation results illustrate that although the RL-based power controller
suffers from a slower convergence compared to the fuzzy and game power controllers,
it provides a better performance in terms of energy consumption per bit. Moreover,
the RL-based power controller enjoys simplicity in design and a high level of adaption
to environment.

In Chapter 6, we also deal with the non-tradeoff problem in WBANs. Using the
Lagrangian multiplier method, we obtain the optimal solution and then propose an
iterative approach based on the Jacobi method for fixed-point calculations to attain
the optimal solution in a distributed manner. It should be clarified that the utilization
of fixed-point calculation for distributively solving optimization problems has been
well studied in the literature before (see the book [9] for detailed study and [10] for
a survey). However, we adopt and apply the Jacobi method to our problem because
it allows WBAN to asynchronously solve the problem while other methods such as
Gauss-Seidel do not hold this property.

1Asynchronous Distributed Pricing Power Controller
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1.5 Thesis Contribution

The main contributions of this thesis can be attributed as follows.

1. We employ transmission power control to increase the energy efficiency of WBANs
as well as to enhance their reliability for medical applications by mitigating inter-
network interference between different neighbouring WBANs operating in the
same frequency band.

2. We propose a fuzzy power controller in WBANs to provide a tradeoff between
throughput and power, and we develop a genetic algorithm and a learning mech-
anism to optimally design the fuzzy power controller to maximize throughput by
reducing inter-network interference between different WBANs and at the same
time reducing power consumption as much as possible. (Chapter 3)

3. We develop a power controller based on game theory to provide a tradeoff between
throughput and power consumption. The proposed power control game utilizes
a penalty on increasing power to motivate WBANs to achieve the maximum
throughput with as little power for transmission possible. We analyze the linear
and quadratic forms of the considered penalty function and prove the existence
and uniqueness of the NE in the game. A best response strategy will be proposed
for WBANs to reach the NE. (Chapter 4)

4. In order to adapt to dynamic changes in terms of channel conditions and power
budget of WBANs, we propose adaptive pricing mechanisms for the power control
game which increases the price of power for WBANs with bad channel conditions
or low power budgets. The interference from such WBANs will reduce, allowing
WBANs with good channels condition and power budgets to raise their power,
resulting in increased system capacity. (Chapter 4)

5. We develop a power controller for WBANs based on reinforcement learning (RL)
which allows WBANs to learn from experience and improve their performance
thereby being able to accommodate dynamic changes of the environment adap-
tively and reduce energy consumption as much as possible. (Chapter 5)

6. We use radial basis function approximators to manage the issue of large state-
action space and reduce the complexity of the learning process in the proposed
RL-based power controller. (Chapter 5)

7. We investigate the effects of reward function and other parameters, including
discount factor, learning rate and eligibility trace parameter on the performance
of the RL-based proposed power controller. (Chapter 5)

8. We evaluate the performance of the RL-based power controller while employing
different reinforcement algorithms including Q-learning and sarsa from the value
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iteration algorithm category, as well as OLSPI1 [11] from the policy iteration
algorithm category. Their performances in terms of optimality of the solution and
convergence are compared to each other and also against a counterpart approach
based on game-theory without learning. (Chapter 5)

9. We model our power control problem as an optimization problem which minimizes
the total power consumption in the system while keeping individual target rates
of WBANs satisfied and obtain the optimum (but centralized) solution of the
optimization problem using the Lagrangian multipliers method. (Chapter 6)

10. We develop a fully distributed version of the centralized solution based on fixed-
point calculations using Jacobi method. The distributed approach approximates
the centralized optimum solution and allows WBANs to find a solution asyn-
chronously. (Chapter 6)

11. We scrutinize the performance of all the proposed approaches using extensive
simulations and compare them against each other in terms of throughput, trans-
mission power, interference power, energy consumption per bit, network lifetime
and convergence. (Chapters 3, 4, 5 and 6)

12. Unlike other works which use the channel model in the ISM band for WBANs,
we consider the MICS frequency band.

13. All the proposed power control approaches in this thesis rely only on local infor-
mation and allow WBANs to find a solution independently and asynchronously.
Moreover, they do not need any cooperation or message exchange between WBANs,
which is highly favorable in WBANs with medical applications.

1.6 Thesis Outline

Chapter 2 is devoted to a review of the 802.15.6 standard and also presents related
work on power control existing in the literature. A fuzzy power controller optimized
by a genetic algorithm called WFPC2 is proposed in Chapter 3 and its performance
is evaluated and compared to a well-cited power controller, namely ADP. The system
model and simulation framework described in this chapter will be also used for the
rest of the thesis. Chapter 4 introduces a power controller based on game theory called
WPCG3 and presents the simulation results comparing its performance to ADP and the
fuzzy power controller proposed previously, namely WFPC. In Chapter 5, we employ
Reinforcement Learning (RL) and propose a highly adaptive power controller called
WRLPC4 and compare its performance to the previously proposed power controllers,
namely WFPC and WPCG. Different RL algorithms are used and compared and also

1Online Least-Squares Policy Iteration
2WBAN Fuzzy Power Control
3WBAN Power Control Game
4WBAN RL-based Power Control
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some design guidelines are presented. In Chapter 6, we formulate the power control
with the approach of satisfying the target rate of each WBAN with at least power as
possible. The centralized optimum solution and a distributed solution will be proposed.
Finally Chapter 7, concludes the thesis and presents some open problems and future
work.
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“An expert is a person who has made all the mistakes that can be
made in a very narrow field.”

Niels Bohr

2
Related Work and Literature Review

In this chapter, we first look over some aspects of the IEEE 802.15.6 standard which
may potentially affect power control because of the factors such as channel model,
MAC superframe structure and energy conservation. Afterward, an extensive review
on power control schemes existing in the literature will be presented and their suitability
for WBANs will be examined.

2.1 IEEE 802.15.6 Standard

In this section, the components of the IEEE 802.15.6 standard which may be related to
power control will be presented. This includes an overview of the frequency bands used
by WBANs, the physical layer, the MAC layer, power management and interference
mitigation techniques.

2.1.1 Frequency Bands

The frequency bands which are available for WBANs include Human Body Commu-
nications (HBC), Medical Implant Communication Service (MICS), Wireless Medical
Telemetry Service (WMTS) and Ultra Wide Band (UWB). The Industrial, Scientific
and Medical (ISM) band can be also used by WBANs. However, there are high chances
of co-channel interference from other devices which operate in the ISM band such as
IEEE 802.11 and IEEE 802.15.4. Although the ISM band is adopted worldwide, as
Figure 2.1 shows, different countries use different frequencies in the WMTS and UWB

13
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Figure 2.1: The frequency bands of WBANs in different countries

bands.

Human Body Communications (HBC)

HBC spans the frequencies between 5 MHz and 50 MHz and uses the human body as
a medium to transmit signals. There are two methods for HBC which are electric field
coupling and electromagnetic coupling. In the former method, there is one electrode
placed on the human body, the signal return path is coupled by the near electric field.
By means of the latter method, there are two electrodes attached on the human body,
which is treated as a waveguide to propagate RF signals.

Medical Implant Communication Service (MICS)

The FCC1 and ETSI2 allocated the MICS band to enable WBAN to deliver a high level
of comfort, mobility and better patient care. MICS is an ultra-low power, unlicensed,
mobile radio service at 402-405 MHz with 300 kHz channels for short-range data trans-
mission (up to 10 m) to support diagnostic or therapeutic functions associated with
implanted medical devices (in-body communications). This frequency range and band-
width allows for 10 non-overlapping channels. The MICS band permits individuals
and medical practitioners to utilize ultra-low power medical implant devices, such as
cardiac pacemakers and defibrillators, without causing interference to other users of
the electromagnetic radio spectrum.

In addition, the 402-405 MHz frequencies have propagation characteristics con-
ducive to the transmission of radio signals within human body and do not pose a
significant risk of interference to other radio operations in that band [12]. The MICS
band is located at an optimum frequency range that promises a high level of integration

1USA Federal Communications Commission
2European Telecommunications Standards Institute
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Table 2.1: WMTS Channel Specifications

Frequency (MHz) Bandwidth (kHz) Transmit Power (dBm) Range

Band 1 608-614 25 or 50 > 1.8 and ≤ 10 100
Band 2 1395-1400 25 > 1.8 and ≤ 10 100
Band 3 1427-1432 25 > 1.8 and ≤ 10 100

with the use of advanced RFIC1 technology. This results in miniaturization and low-
power consumption. While higher frequency causes higher penetration loss, high-level
integration becomes difficult at low frequencies. Moreover, there exists relatively in-
significant penetration loss at these frequencies (10 dB with 10 mm tissue penetration)
[12]. Additionally, a small antenna design is also difficult at lower frequencies such
as HBC. Combining all these features with the availability of the 402-405 MHZ band
internationally offers an attractive frequency choice for the targeted WBAN applica-
tions.

Wireless Medical Telemetry Service (WMTS)

WMTS defined by FCC is a service for data collection in medical applications and has
a longer distance range than MICS which is up to 100m [13]. It is however used only for
non-implantable devices (on-body communications). WMTS is split into three bands
of 6MHz bandwidth with each band divided into 25KHz sub-channels. The first band
can also support 50kHz subchannels. Table 2.1 presents some technical specifications
of WMTS.

Ultra Wide Band (UWB)

UWB has been defined by FCC and ITU-R2 in terms of a transmission from an antenna
for which the emitted signal bandwidth exceeds the lesser of 500 MHz or 20% of the
center frequency. The unlicensed use of UWB lies in the range of 3.1 GHz to 10.6
GHz. UWB enables WBANs to support real-time parameter measurement and can
provide high data rate transfer (up to 10Mbps) for on-body communications. The
advantages of UWB include low interference generation, resistance to multipath and
low transceiver complexity as well as low transmission power levels in an order of those
used in the MICS band, namely -16 dBm.

1Radio Frequency Integrated Circuits
2International Telecommunication Union (ITU) Radiocommunication Sector
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2.1.2 Physical Layer

The IEEE 802.15.6 supports three different physical layers (PHYs) , which are Narrow-
Band (NB), UWB, and Human Body Communications (HBC). In the following, the
specifications of these PHYs are briefly described. For more detailed study, the reader
is referred to [14].

Narrow-band PHY

The NB PHY is responsible for activation/deactivation of the radio transceiver, CCA1

within the current channel and data transmission/reception. The Physical Protocol
Data Unit (PPDU) frame of the NB PHY contains a Physical Layer Convergence
Procedure (PLCP) preamble, a PLCP header, and a PHY Service Data Unit (PSDU)
as seen in Figure 2.2.

The PLCP preamble helps the receiver in the timing synchronization and carrier-
offset recovery. It is the first component being transmitted. The PLCP header conveys
information necessary for a successful decoding of a packet to the receiver. The PLCP
header is transmitted after the PLCP preamble using the given header data rate in
the operating frequency band. The last component of a PPDU is a PSDU which
consists of a MAC header, MAC frame body, FCS2 and is transmitted after the PLCP
header using any of the available data rates in the operating frequency band which
can be either of MICS, WMTS or ISM. In the NB PHY, the standard uses DBPSK3,
DQPSK4, and D8PSK5 modulation techniques, except in the MICS band which uses
only GMSK6.

Human Body Communications PHY

The HBC PHY operates in two frequency bands centered at 16 MHz and 27 MHz
with the bandwidth of 4 MHz. Both operating bands are valid for the United States,
Japan, and Korea, and the operating band at 27 MHz is valid for Europe. HBC is
the EFC7 specification of PHY, which covers the entire protocol for WBAN such as
packet structure, modulation, preamble/SFD, etc. Figure 2.3 describes the PPDU
structure of EFC that is composed of a preamble, SFD, PHY header and PSDU. The
preamble and SFD are fixed data patterns. They are pre-generated and sent ahead of
the packet header and payload. The preamble sequence is transmitted four times in
order to ensure packet synchronization while the SFD is transmitted only once. When

1Clear Channel Assessment
2Frame Check Sequence
3Differential Binary Phase-Shift Keying
4Differential Quadrature Phase-Shift Keying
5Differential 8-Phase-Shift Keying
6Gaussian minimum shift keying
7Electrostatic Field Communication
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Figure 2.2: IEEE 802.15.6 NB PPDU structure [1]

Figure 2.3: IEEE 802.15.6 EFC PPDU structure [1]

the packet is received by the receiver, it finds the start of the packet by detecting the
preamble sequence, and then it finds the start of the frame by detecting the SFD.

Ultra Wide-band PHY

Figure 2.4 shows the UWB PPDU that contains a Synchronization Header (SHR), a
PHY Header (PHR), and PSDU. The SHR is composed of a preamble and a Start
Frame Delimiter (SFD). The PHR conveys information about the data rate of the
PSDU, length of the payload and scrambler seed. The information in the PHR is used
by the receiver in order to decode the PSDU. The SHR is formed of repetitions of
Kasami code [15] of length 63. Typical data rates range from 0.5 Mbps up to 10 Mbps
with 0.4882 Mbps as the mandatory one.

UWB PHY operates in two frequency bands: low band and high band. Each band
is divided into channels with the bandwidth of 499.2 MHz. The low band consists
of three channels (1-3) only. The channel 2 has a central frequency of 3993.6 MHz
and is considered a mandatory channel. The high band consists of eight channels (4-
11) where channel 7 with a central frequency 7987.2 MHz is considered a mandatory
channel, while all other channels are optional. A typical UWB device should support
at least one of the mandatory channels.
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Figure 2.4: IEEE 802.15.6 UWB PPDU structure [1]

2.1.3 MAC Layer

In IEEE 802.15.6, the entire channel is divided into superframe structures. Each super-
frame is bounded by a beacon period of equal length. The BNC selects the boundaries
of the beacon period and thereby selects the allocation slots. The BNC may also shift
the offsets of the beacon period. Generally, the beacons are transmitted in each beacon
period except in inactive superframes or unless prohibited by regulations such as in
MICS band. A WBAN operates in one of the following modes.

1. Beacon mode with beacon period superframe boundaries : In this mode, the bea-
cons are transmitted by the BNC in each beacon period except in inactive superframes
or unless prohibited by regulations. Figure 2.5 shows the superframe structure of IEEE
802.15.6, which is divided into Exclusive Access Phase 1 (EAP1), Random Access Phase
1 (RAP1), Type I/II phase, Exclusive Access Phase 2 (EAP 2), Random Access Phase
2 (RAP 2), Type I/II phase, and a Contention Access Phase (CAP). In EAP, RAP
and CAP periods, nodes contend for the resource allocation using either CSMA/CA or
a slotted Aloha access procedure. The EAP1 and EAP2 are used for highest priority
traffic such as reporting emergency events.

The RAP1, RAP2, and CAP are used for regular traffic only. The Type I/II phases
are used for uplink allocation intervals, downlink allocation intervals, bilink allocation
intervals, and delay bilink allocation intervals. In Type I/II phases, polling is used for
resource allocation. Depending on the application requirements, the coordinator can
disable any of these periods by setting the duration length to zero.

2. Non-beacon mode with superframe boundaries : In this mode, the entire super-
frame duration is covered either by a type I or a type II access phase but not by both
phases.

3. Non-beacon mode without superframe boundaries : In this mode, the coordinator
provides unscheduled Type II polled allocation only. The access mechanisms used in
each period of the superframe are divided into three categories:
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Figure 2.5: IEEE 802.15.6 superframe structure

• Random access mechanism, which uses either CSMA/CA or a slotted Aloha
procedure for resource allocation.

• Improvised and unscheduled access (connectionless contention-free access), which
uses unscheduled polling/posting for resource allocation.

• Scheduled access and variants (connection-oriented contention-free access), which
schedules the allocation of slots in one or multiple upcoming superframes, also
called 1-periodic or m-periodic allocations.

For a detailed study of the MAC layer, we refer the reader to the IEEE 802.15.6
standard [1].

2.1.4 Power Management

The power management techniques try to save energy by switching off sensor nodes
when they are not supposed to send or receive. The sensor nodes in a WBAN are not
always in the active state and may hibernate during a number of the entire beacon
periods (superframes), and may also sleep over some time intervals even in its wake-up
beacon periods.

The IEEE 802.15.6 standard has introduced two techniques for power management
which are hibernation and sleeping. In the following we overview these techniques. For
more detailed study, the reader is referred to the standard in [1].

Hibernation

Hibernation is referred to as a state for a sensor node without receiving or transmitting
any traffic over one or more superframes. On the other hand, awake is referred to
receiving or/and transmitting frames in every beacon period. To hibernate, the node
shall set the Wake-up Period field in its last Connection Request frame to an integer
larger than 1, while setting the Wake-up Phase field in the frame to a value specifying
its intended next wake-up beacon period. To wake up, the node shall set the Wake-up



20 Related Work and Literature Review

Figure 2.6: 1-periodic hibernation allocation [1]

Figure 2.7: m-periodic hibernation allocation [1]

Period field in its last Connection Request frame to 1, while setting the Wake-up Phase
field in the frame to a value identifying the next beacon period.

The intended recipient BNC of the Connection Request frame responds by a Con-
nection Assignment frame. If the BNC sets the Wake-up Period field in its responding
frame to an integer larger than 1, it may grant only m-periodic allocations to the node,
with the allocation intervals being in the nodes wake-up beacon periods, in accordance
with the nodes last Connection Request whenever possible, but shall not grant to the
node any 1-periodic allocations. Likewise, if the BNC sets the Wake-up Period field
to 1, it may grant only 1-periodic allocations to the node and shall not grant any m-
periodic allocations. Figure 2.6 and 2.7 show the 1-periodic and m-periodic allocations
respectively.

If the Wake-up Period value in the Connection Assignment frame last received from
the BNC is larger than 1, the node shall wake up in each of its wake-up beacon periods
based on the latest Wake-up Period and Wake-up Phase values provided in that frame
by the BNC, to transmit or/and receive frames in the granted m-periodic allocation
intervals, and to receive the beacon if needed. On the other hand, if the Wake-up
Period value is 1, the node shall wake up in every beacon period, to transmit or/and
receive frames in the granted 1-periodic allocation intervals, and to receive the beacon
if appropriate. Figure 2.8 represents the hibernation mechanism of the macroscopic
power management across beacon periods.
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Figure 2.8: Hibernation mechanism [1]

Sleeping

Apart from the hibernation, a sensor node may also sleep —without receiving or trans-
mitting any traffic— during a superframe, except over the following time intervals.

• The node shall wake up to receive a beacon from the BNC when it needs a beacon
reception to synchronize with the BNC or to obtain certain information contained
in a beacon.

• The node shall wake up to receive and transmit frames in its scheduled allocations
in its wake-up beacon periods.

• The node shall stay active participating in frame transactions in its expected
posted allocations. The BNC should arrange to have the posted allocations of a
node to occur in the nodes wake-up beacon periods, if possible. If the node did
not receive a frame at the announced time for a pending post, it should stay in
receive mode until the BNC could have finished a frame transaction for the post
and retransmitted a frame pSIFS later unless it needs to make a turnaround to
transmit mode.

• If the node has indicated its support for polls through its MAC Capability field
of its last Connection Request frame, it shall also stay active in such times as to
receive announced polls and initiate frame transactions in its polled allocations.
The BNC should arrange to have the polled allocations of a node to occur in the
nodes wake-up beacon periods, if possible.

2.1.5 Interference Mitigation

The IEEE 802.15.6 standard has introduced two techniques for interference mitigation
which are beacon shifting and channel hopping. In the following we overview these
techniques. For more detailed study, the reader is referred to the standard in [1].
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Figure 2.9: Sleeping mechanism [1]

Figure 2.10: Beacon Shifting [1]

Beacon Shifting

A BNC may transmit its beacons at different time offsets relative to the start of the
beacon periods by including a Beacon Shifting Sequence field in its beacons. A BNC
should choose a beacon shifting sequence that is not being used by its neighbor BNC to
mitigate potential repeated beacon collisions and scheduled allocation conflicts between
overlapping or adjacent BANs operating on the same channel.

As shown in 2.10, the BNC shall transmit a beacon at a time BTTO = PNm(n)×
BP/4 relative to the start of beacon period n. Here, PNm is a pseudo-random beacon
shifting sequence, m is the beacon shifting sequence index that the BNC has chosen
for its WBAN, BP is the length of its beacon period, and n is the phase of the chosen
sequence (n = 0, 1, · · · ) for this beacon period.

The allocation slots in a beacon period shift around with the beacon transmit time.
The access phases (EAP1, RAP1, EAP2, RAP2, and CAP) are referenced to numbered
allocation slots and shift around with the beacon in the beacon period accordingly. The
RAP1 Length and RAP2 Length fields contained in the beacon of the current beacon
period now refer to RAP1 and RAP2 in the next beacon period.

The BNC shall ensure in choosing these access phases and the beacon shifting
sequence that beacon shift does not result in a split of any of the aforementioned
access phases into two parts.
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Scheduled allocation intervals are also referenced to numbered allocation slots and
shift around with the beacon transmit time accordingly in the beacon period. A sched-
uled allocation interval in a beacon period may be split into two portions as a result
of shifting around the beacon period, but the aggregate length remains the same.

Channel Hopping

A BNC may change its operating channel periodically by including the Channel Hop-
ping State and Next Channel Hop fields in its beacons. The channel hopping sequence
selected by the BNC must not be being used by its neighbor BNCs.

The BNC can not hop to a new channel in the middle of a beacon period and before
hopping to another channel, it must dwell on the current channel for a fixed number
of beacon periods as communicated to the nodes connected with the BNC through
Connection Assignment frames.

If required for regulatory compliance, a BNC shall select a channel based on the
applicable regulatory requirements, and may dwell on the channel for an indefinite
period of time. To communicate this selection to nodes, the BNC shall set the channel
hopping state to 0, which makes the connected sensor nodes to dwell on the current
channel for an indefinite period of time as well.

The channel hopping sequences are generated by the BNC using the maximum-
length Galois LFSR1. Given the current channel number, the next channel number will
be chosen such that the difference between the two numbers is greater than a threshold
parameter, pChannelSeparation, which is the minimum number of channels separated
between two consecutive hops. The details of channel hopping sequences generation is
beyond the scope of this thesis and the interested reader is referred to [1].

2.2 Transmission Power control

Transmission Power control (TPC) has been exploited for various objectives in vari-
ous types of wireless networks. In the following, we examine power control schemes
existing in the literature which have been proposed for non-WBANs and investigate
their suitability for WBANs. This will be followed by summarizing the power control
schemes currently found in the literature for WBANs. The network types we will ex-
plore consist WLANs2, ad-hoc and WSNs3 and cellular networks. Each of the selected
networks has an analogy to WBANs in some way which will be pointed out in its own
section. We also examine the existing power control schemes based on the methodology
they utilized. The methodologies of interest comprises fuzzy control, game theory and

1Linear Feedback Shift Register
2Wireless Local Area Networks
3Wireless Sensor Networks



24 Related Work and Literature Review

reinforcement learning.

2.2.1 Power Control in non-WBANs

Wireless Local Area Networks

In WLANs, power control is mainly employed to mitigate co-channel interference be-
tween adjacent APs1 and thereby increasing spatial channel utilization.

In some works e.g. [16] [17] [18] [19], the authors suggested modifying the MAC
layer to incorporate power control. The key idea is to send the RTS/CTS packets at the
maximum power and use a minimum required transmission power for the DATA/ACK
transmissions. However such approaches can not be applied to WBANs due to the
lack of per data packet RTS/CTS control in WBANs’ communication model and fun-
damental differences between the MAC layers of WLANs and WBANs.

In [20], the authors proposed a power control mechanism for WLANs taking into
account factors including SINR, path loss and bit error rate as well as the dynamic
changes in bit error rate by using a Markov chain model which includes good and bad
states. They derived the minimum power needed to successfully transmit one bit at
a certain bit error rate for various MAC packet lengths, and extended their scheme
to support multiple power levels. Although they achieved good performance in terms
of energy efficiency, their power control mechanism is a centralized approach and is
specifically developed for WLAN channel model. A fully distributed power control
mechanism for WLANs proposed by the authors in [21] where all APs cooperate to
reduce their transmission power simultaneously until the point where it is impossible to
improve the utility of at least one AP. Nevertheless their approach requires negotiation
and cooperation between APs belonging to different WLANs.

There are also some works in WLAN which involve jointly optimizing power control
and another parameter in the network such as channel assignment e.g. [22] [23], rate
control e.g. [24] [25], scheduling e.g. [26], and session admission control e.g. [27] [28].

The reader is referred to [29] for further study on power control in WLANs.

Ad-hoc and Sensor Networks

In ad-hoc networks including MANETs2 and WSNs, power control mostly deals with
topology control [30] [31]. The multi-hop structure of packet delivery in ad-hoc net-
works obligates adjacent nodes to stay connected with each other. The dilemma is the
tradeoff between network connectivity and energy efficiency: increasing power to avoid
network from being partitioned or decreasing power to save energy.

1Access Points
2Mobile Ad-hoc NETworks
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Some papers including [32] [33] [34] perform power control based on the number of
neighboring nodes. In [32], the authors proposed a heuristics power control in WSNs
where each node tries to keep a predefined number of neighbors. If the number of
neighbors is less than the predefined threshold value, the transmitter will increase its
power by a certain factor. They compared their algorithm to a centralized approach
and showed a 50% improvement in network lifetime. However, they considered fixed
nodes in their system model and ignored all spatial and temporal channel variations.
Moreover their approach requires negotiation and cooperation between nodes in the
network which does not suit WBANs.

El-Batt et. al. in [33] proposed a power control mechanism to adjust the tradeoff
between reducing transmission power and enhancing throughput in ad-hoc networks.
They investigated the effect which power reduction has on the increase in the number
of intermediate hops. Each node broadcasts beacon messages at the maximum power
level to discover its neighbors and builds up a connectivity table. The average received
power level is used to pick up the nearest nodes having the highest average values.
Each node then adapts its transmission power level for each of its direct neighbors.
The problem with their approach is scalability as each node in the network has to store
the global network topology information.

Taking advantage of the RTS/CTS or SYNC packets has been the idea of some
power control schemes e.g. [35] and [36] in ad-hoc networks. Wu et al. in [35] proposed
a power control scheme in mobile ad-hoc networks where the main idea is to use
the RTS/CTS packets before transmitting data packets in an effort to determine the
relative distance between two communicating nodes and then adjust transmission power
level based on the estimated distance. Although their approach remarkably decreases
co-channel interference, it needs an exact model of the channel and path loss for the
distance estimation to be accurate. Moreover the lack of per packet RTS/CTS control
in WBANs makes all such approaches inapplicable in WBANs.

There are also some works in ad-hoc networks e.g. [37] and [38] which employ node
localization for computing link distance, which is subsequently used for adjusting power
levels using a known channel model. However, in WBANs, performing localization
for on-body sensor nodes is not feasible due to complexity and cost. The channel
in WBAN greatly varies with body posture changes such as walking. Moreover, to
perform localization, an additional transmission medium such as ultrasound is needed
to perform TDOA1 computation which is very costly in practice.

A well-cited power control algorithm, called Asynchronous Distributed Pricing
Power Controller (ADP), is proposed by J. Huang in [39], where each user announces
a price that reflects the compensation paid by other users for their interference. The
authors present an asynchronous distributed algorithm for updating power levels and
prices. Their approach is capable of finding the optimal power allocation which maxi-
mizes the utility ui(γi(p)) = log(γi(p)) summed over all users, where γi(p) is the SINR
of user i. This problem is given by

1Time Delay of Arrival
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max
p

∑
i

ui(pi, p−i) (2.1)

variable p : pi ∈ [Pmin
i , Pmax

i ] (2.2)

The authors define a parameter as πi(pi, p−i) = −∂ui(pi, p−i)/∂Ii(p−i), which rep-
resents user i’s marginal increase in utility per unit decrease in the total interference
Ii(p−i), given all other users’ power levels p−i. Each user i then maximizes the differ-
ence between its utility minus its payment to the other users affected by interference,
i.e.

pi = arg max
pi

{
log(γi(p))− pi

∑
j 6=i

πjhji

}
(2.3)

where hji is the channel gain from user i to user i.

At each iteration, the price πi is updated according to the following equation and
announced to other users in the network.

πi =
∂ui(γi(p))

∂γi(p)

(γi(p))2

Bpihii
(2.4)

where B is the bandwidth in Hz.

However the approach suffers from two main drawbacks. Firstly, users need to
cooperative to announce their price updates to all other users in the network, which
does not suit the systems in which users are reluctant to cooperate. Secondly, their
approach does not rely only on local information and for example needs the adjacent
channel gains, namely hji, to be known, which implies message exchange between
users. However the approach suffers from two main drawbacks. Firstly, users need to
cooperative to announce their price updates to all other users in the network, which
does not suit the systems in which users are reluctant to cooperate. Secondly, their
approach does not rely only on local information and for example needs the adjacent
channel gains, namely hji, to be known, which implies message exchange between users.

The dynamic adjustment of transmission power in ad-hoc networks also affects
routing link selection and has been well investigated in the literature bringing about
numerous power-aware routing protocols [40] [41]. Although, there have been some
studies on cooperative and relay communications using multi-hop links within a WBAN
e.g. in [42] [43] or between different WBANs [44], network connectivity and routing are
not pertinent in medical applications, where WBANs are not allowed to communicate
with each other and are supposed to perform their vital health-care tasks. This leads
to non-cooperative WBANs with single-hop links within each WBAN. Nevertheless,
in some gaming and military applications WBANs may share their interests and need
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to inter-communicate or even cooperate. Such applications are not however of our
interest.

There are some good survey papers including [45] [46] and [47] on power control in
ad-hoc and sensor networks, to which we refer the reader for further study.

Cellular Networks

Transmission power control has been studied widely in the context of cellular networks
where it is employed for both uplink, from Mobile Station (MS) to Base Station (BS),
and downlink, from BS to MS, although it is far more important and challenging
in the uplink due to the mobility and energy limitation of MSs. The uplink power
control problem is often attributed as maximizing a utility function of throughput or
minimizing power consumption at MSs subject to a constraint on SINR.

Some works e.g. [48] [49] proposed closed-loop transmission power control schemes,
where a separate feedback channel with universal frequency for control data is used.
However, the lack of a separate feedback channel in a WBAN makes such approaches
unsuitable. Additionally, as it is mentioned in [50], the time constants for power
control in the cellular networks are much larger than what are needed in WBANs
causing those closed-loop mechanisms to be too slow in the presence of high postural
mobility in WBANs.

There exist numerous papers in the literature including [51] [52] [53] which try
to solve the uplink power control problem centralizedly at BS. The optimum power
allocation is calculated at BS and constantly instructed to the MSs in the cell. However,
due to the lack of a central arbiter in WBANs, such approaches are not applicable.

Addressing the problem distributively at MSs, however, has been the goal of mul-
tiple works in the literature amongst which Distributed Power Control (DPC) is a
key power control algorithm proposed by Foschini and Miljanic in [54] and has been
further studied afterward in several papers including [55] [56] [57]. DPC is a heuristic
power control in which each link attempts to continuously maintain its target SINR
by overcoming the interference imposed by all the other links using as low power for
transmission as possible. Although DPC was proposed heuristically, it is very efficient
and is proved by Mitra et al. in [58] to be asynchronously convergent with geometric
rate to the Pareto optimal power allocation. DPC is later extended by Bambos et al.
in [59] and [60] to allow the links to trade off delay toleration for power conservation
when the interference is high, which can lead to improvement in total throughput and
power consumption.

A considerable amount of literature has been published on power control in cellular
networks. For further study, we refer the reader to [61] [62] and references therein.

Due to the fundamental differences between WBANs and non-WBANs in terms of
structure and requirements, the existing power control approaches in non-WBANs can
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not be directly applied to WBANs.

2.2.2 Power Control in WBANs

Since WBAN is a very new-born technology, the literature on power control in WBANs
is quite sparse. In the following, we summarize the existing power control schemes
proposed in WBANs for energy conservation.

In [63], S. Xiao et al. presented an optimal transmission power control that min-
imizes energy usage subject to lower-bounds on the link quality, namely RSSI. Their
optimal transmit power scheme is based on off-line calculations and impractical as-
sumptions which require the sender to have a-priori knowledge of the link quality at
the receiver. For practical scenarios, however, they proposed two simple online power
control schemes called conservative and aggressive power control schemes which trade
off reliability for energy savings by changing transmit power based on feedback informa-
tion from the receiver. Their empirical results show that conservative scheme preserves
reliability and yet reduces energy consumption by 9% on average when compared to
using maximum transmit power, while the aggressive scheme saves 25% more energy
on average, at the expense of slightly increased loss. However, the proposed approaches
are very trivial and suffer from being too far from the optimal transmit power control.
On the other hand, the optimal power control proposed which relies on the brute-force
search is quite vague and it is unknown that how it converges to a stable solution when
it is done by multiple neighboring WBANs simultaneously, and even if it converges,
whether the final solution is still optimal or just sub-optimal.

M. Quwaider et al. in [64] modeled human body movements as a stochastic linear
system and utilized a LQGI1 to predict RF signal strength which then was used for
regulating the RSSI of the receiver node at a fixed reference level for an on-body link.
It was shown that power assignment with quantized LQGI model and small weight
factor can provide lower error and energy performance compared with the search based
strategies. Their approach is however very costly in terms of processing and memory
usage which does not suit the tiny sensor nodes. Moreover, power levels can be very
sensitive to prediction errors which may hinder its use in practice.

Smith et al. in [65] presented a power control scheme for WBANs based on channel
predictions. They proposed a long-term predictor for WBAN channel which is accurate
for up to 2 seconds, even with a nominal channel coherence time of 500ms. The
predictor utilizes the partial-periodicity of measured WBAN channels and weights an
alternate least-squares estimate for the desired prediction interval using the last 4s
of received signal. Their approach shows concurrent improvements in reliability and
power consumption in comparison to some typical WBAN transmission strategies with
no channel prediction. However, they did not consider co-channel interference from
nearby WBANs into account and their proposed power control scheme is only based

1Linear Quadratic Gaussian control with an Integrator
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on body movements which cause partial periodicity in WBAN channel.

B. Moulton et al. in [66] extended Xiao’s work and proposed a power control
protocol which adaptively adjusts the period between each feedback transmission to
accommodate run-time variation in the quality of channel. Their simulation results
show that the adaptive approach improves the power savings compared to the full
power with no feedback by 21%.

2.2.3 Power Control by Methodology

Fuzzy Control

Fuzzy control utilizes fuzzy logic, which incorporates qualitative linguistic variables,
to control a system. The system is modeled by a number of fuzzy sets and fuzzy
rules which are used by an inference engine to make decisions. The input of a fuzzy
controller is a non-fuzzy value (called a crisp value) which is first fuzzified to produce a
fuzzy input and then is used by the inference engine to produce a fuzzy output, which
is finally defuzzified into a crisp value. This involves the utilization of membership
functions and fuzzy operators to determine the degree of membership for the fuzzy
input, consequences of fuzzy rules and the fuzzy output. For an introduction to fuzzy
control, please refer to chapter 4.

Since linguistic variables are used to model a system in fuzzy control, an exact
mathematical model of the system is not necessary which makes the design of the
controller quite simple. In addition to having simplicity and flexibility in the controller
design, fuzzy systems have shown a great ability to control complicated systems and
have also been broadly employed in the literature for the purpose of power control. In
the following we summarize some of the key related work which employ fuzzy logic for
power control.

Sabitha et al. [67] replaced the currently existing common-range maximum trans-
mission power at the MAC layer of the IEEE 802.15.4 with the concept of dynamic
and adaptive transmission power control at link level. Various parameters like Link
Quality Indicator (LQI), Received Signal Strength Indicator (RSSI) and MAC colli-
sions are considered and fuzzified, then optimal transmission power levels are chosen
based on the following algorithm:

• Step 1: Find RSSI from the physical layer. Store it in ’RSSI’ variable.
• Step 2: Packetise and send it to MAC layer
• Step 3: In the MAC layer, find LQI, Source MAC address and the status of the

frame (normal, corrupted or collided). Store them in the variables LQI, MACSRC
and ERR respectively.
• Step 4: Calculate the average values of RSSI and LQI over a time period, i.e., 5

seconds and store it in variables ARSSI and ALQI respectively. Also store the
total number of error frames in TOTERR.
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• Step 5: Check if the packet type is DATA or ACK.
• Step 6: Based on the accumulated values of TOTRSSI and TOTLQI, calculate

Average RSSI and Average LQI.
• Step 7: Decide the transmit power using the following fuzzy rule base. In case of

Frame Errors > 2, increase the power level one step higher.
• Step 8: Repeat the above steps for every 5 seconds.

Zhang et al. in [68] proposed a transmission power adjustment scheme using the
fuzzy control in WSNs for topology control by dynamically controlling the degree (num-
ber of neighboring nodes). All nodes start with the same initial power level. Each node
acts as a controller and periodically broadcasts a message (Msg) including its unique
identity. All other nodes, which receive such a Msg, reply with a feedback acknowledge
message (FBMsg) including the identity of the Msg sender. Before the node issues
the next Msg, it counts the number of FBMsgs received in current period, namely Td
in current period. If the error between Td and Ed, the expected degree, is within a
bound on error, e, the node converged and does not change its transmission power any
more. Otherwise, the node runs the fuzzy control law to adjust its power again, and
continues to broadcast its Msg. Although their approach improves network lifetime, it
is a closed-loop power controller which need a feedback control channel to be existing
between the nodes in the network.

Xia et al. in [69] considered the tradeoff between power consumption and packet
delay in WSNs. At high interference conditions, deferring the transmission of packets
which leads to experiencing longer delay. They proposed a fuzzy power controller to
determine a threshold SINR used by sensor nodes to decide whether to send a packet
or not. Average delay and distance of a node to the source node are the inputs for
the controller. The output of the controller provides adjusting factor for the SINR
threshold. Their simulation results indicate the proposed fuzzy controller can reduce
the average delay by up to 28%.

Lakshmi et al. in [70] proposed a power controller to reduce interference in WSNs.
The output of the fuzzy controller is the transmission power level and its inputs are
end-to-end delay and RSSI. These parameters are fuzzified and optimal transmission
power levels are calculated for each node by the fuzzy controller.

In [71], Jiang et al. presented a peer to peer fuzzy power controller in WSNs. The
fuzzy controller adjusts transmission power adaptively based on diverse receiving QoS
parameters. The inputs of the power controller are LQI, RSSI, SINR and and the
output is a power adjust value which is fed back to the transmitter.

Some other power control works in wireless communications using fuzzy control
include [72] [73] proposing power reduction algorithms to select cluster heads in WSNs
using a fuzzy controller, [74] [75] presenting power efficient routing protocols in ad-hoc
and sensor network using a fuzzy logic approach, [76] [77] [78] proposing fuzzy-based
opportunistic spectrum access strategies in the Cognitive Radio Networks (CRN) which
consider interference caused by CR links to the Primary Users (PUs) and enable the
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CR links to select an optimal spectrum band and transmit at an optimal power.

Game Theory

Game theory is the formal study of decision-making agents known as players where
their choices potentially affect the interests of the other players. A review on game
theory can be found in chapter 5.

In wireless communications, game theory has been employed mostly to solve re-
source allocation problems in a competitive environment. Mobile nodes in a wireless
system suffering from a limited transmission resource, i.e. energy and radio spectrum
that imposes a conflict of interests. In an effort to resolve this conflict, they can
make certain choices such as changing their transmission power level (power control),
transmitting now or later (scheduling), choosing a beacon sequence (beacon shifting),
changing their transmission channel (channel hopping), or adapting their transmission
rate and modulation (AMC1).

Koskie et al. in [79] formulated the uplink power control problem in CDMA net-
works as a non-cooperative game in which users choose to trade off between SINR error
and transmission power usage. That is, minimizing the SINR error at the cost of high
transmission power usage. The cost function they have selected is:

Ji(pi, γi) = bipi + ci(γ
tar
i − γi)2 (2.5)

where bi and ci are constant weighting factors, pi is transmit power, γi and γtari are the
SINR and the target SINR respectively. Using the best response method, the Nash
equilibrium power p∗i is given as:

p∗i =
2ci
bi
γ∗i (γ

tar
i − γ∗i ) (2.6)

where γ∗i is the Nash equilibrium SIR as:

γ∗i =

{
γtari − bi

2cigii
(
giip
∗
i

γ∗i
) if non-negative

0 otherwise
(2.7)

The authors have proposed distributed power control strategies based on the New-
ton iterations to accelerate the convergence of the static Nash power control algorithm.
Their Newton iteration is of third-order rather than quadratic which appears to better
eliminate the slight overshoot observed in early iterations. Their simulation results
indicate that the use of Newton iterations notably improves convergence. A realistic
CDMA cell model has been used to simulate the proposed algorithms. However, the
CDMA cell model requires centralized arbiter and thus procedure on how independent
users were assigned codes and with what power level was not discussed by the authors.

1Adaptive Modulation and Coding
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In [80], Meshkati et al. proposed a game-theoretic approach for energy-efficient
power control in multicarrier CDMA systems. The authors formulated power control
problem as a non-cooperative game in which each user decides how much power to
transmit over each carrier to maximize its own utility function being as follows:

uMC
k =

∑D
l=1 Tkl∑D
l=1 pkl

(2.8)

where Tkl is the throughput achieved by user k over the lth carrier, and is given
by Tkl = L

MRkf(γkl)
with γkl denoting the received SINR for user k on carrier l; L

and M are the number of information bits and the total number of bits in a packet,
respectively; Rk is the transmission rate for the kth user; and f(γkl) is the efficiency
function representing the packet success rate (PSR), i.e., the probability that a packet
is received with no error.

The authors have showed that for all linear receivers including matched filter, decor-
relator, and MMSE1 detector, the utility function is maximized when the user transmits
only on its best carrier which is the carrier that requires the least amount of power
to achieve a particular target SINR at the output of the receiver. They derived the
conditions on the channel gains for a Nash equilibrium to exist. The authors also char-
acterized the distribution of users among the carriers at equilibrium and presented an
iterative and distributed algorithm for reaching the equilibrium. Their approach results
in significant improvements in the total utility achieved at equilibrium compared to a
single-carrier system and also to a multicarrier system in which each user maximizes
its utility over each carrier independently. However, the proposed technique trades-off
complexity for optimality and thus efficient power consumption is hard to guarantee.

In [81], a game-theoretic power control in MIMO2 ad-hoc networks has been pro-
posed. The power allocation at each user is built into a non-cooperative game where
the utility function is as follows:

ul = Cl − γlpl (2.9)

where γl is a non-negative scaling factor, Cl is the channel capacity of link l and pl is
the transmission power of link l. Due to poor channel conditions, some users have very
low data transmission rates even though their transmit powers are high. Therefore,
a mechanism for shutting down such users is proposed in order to reduce co-channel
interference and improve energy-efficiency. On the other hand, if the capacity of a
particular link is more than enough to maintain a certain level of QoS, reducing the
capacity by decreasing transmission power will mitigate the interference impose to

1Minimum Mean Square Error
2Multi Input Multi Output
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other links. These two mechanisms are controlled via γl as follows:

γl =

{ αl

p0
Cl0 > Ct

l

∞ Cl0 < Ct
l

(2.10)

where αl is a certain capacity value and p0 is the initial transmit power; Cl0 is the
initial multiuser water-filling capacity of link l and Ct

l is a capacity threshold assigned
to link l by the external network controller.

The decision of whether to shut down a particular link depends on the minimum
data rate Ct

l that is required by that link. This threshold is adaptively determined by
the type of service in which the link is involved as well as the overall channel conditions
which relate the QoS level to the threshold.

Compared to multiuser water-filling and gradient projection methods (e.g. [80]),
the proposed game-theoretic approach with the link user shut-down mechanism allows
the MIMO ad hoc network to achieve a higher energy saving and a higher system
capacity.

Thomas et al. in [82] presented a cognitive network approach to achieve the ob-
jectives of power and spectrum management. The authors cast the problem as a two
phased non-cooperative game and used the properties of potential game theory to en-
sure the existence of, and convergence to, a desirable Nash Equilibrium. The utility
function they have used is:

uPCi (p) = Mfi(p)− pi (2.11)

where p is the transmission power vector; pi is the transmission power of radio i; fi(p)
is the number of the radios that can be reached (possibly over multiple hops) by radio
i via bidirectional connections and paths. The scalar benefit multiplier M indicates
the value each radio places on being connected to other radios; and it is assumed
M ≥ maxi {pmaxi}.

The authors proved that the game with this utility function is an OPG1 with the
global function as follows:

V PC(p) = M
∑
i∈N

fi(p)−
∑
i∈N

pi (2.12)

The authors showed that this selfish cognitive network constructs a topology that
minimizes the maximum transmission power while simultaneously using, on average,
less than 12% extra spectrum, as compared to the global optimum solution.

1Ordinal Potential Game
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Closas et al. in [83] employed non-cooperative game theory to design a fully dis-
tributed network topology control algorithm in WSNs using optimal transmission ad-
justments. Their utility function is as follows:

ui(pi, p−i) =

{
pmaxi − pi if network is connected
−pi otherwise

(2.13)

The authors proved that the game is an EPG1 with the following global function:

V (pi, p−i) =

{
pmaxi −

∑
i∈N pi if network is connected

−
∑

i∈N pi otherwise
(2.14)

Their simulation results shows that for a relatively low node density, the proposed
game leads to a connected network almost with probability one.

Huang et al. in [84] made use of game theory and proposed two auction mech-
anisms, SINR auction and power auction, that determined relay selection and relay
power allocation respectively in a distributed fashion. For both single-relay networks
and multiple-relay networks, the power auction achieves the efficient allocation by max-
imizing the total throughput, and the SNR auction is flexible in trading off fairness and
efficiency. Users iteratively update and submit their bids based on the best response
using the following update rule:

b(t+ 1) = F s(π)b(t) + f s(π)β (2.15)

where b(t+1) and b(t) are the next and current bid vectors respectively, F s(π) is aN×N
matrix with (i, j)th component being f si (π), and f s(π) = [f s1 (π), f s2 (π), · · · , f sN(π)]′;
β > 0 is the reserve bid and π > 0 is the price.

Alpcan et al. in [85] proposed a non-cooperative power control game in CDMA
networks with a utility function based on the outage probability, i.e. the probability
that the SINR level of the mobile user is greater than a predefined individual threshold
level. Having proved the uniqueness of the Nash equilibrium for a class of uniformly
strictly convex pricing functions, the authors established the global convergence of
continuous-time as well as discrete-time synchronous and asynchronous iterative power
update algorithms to the unique NE of the game under some conditions. They also
considered the uncertainty due to quantization and estimation errors and a proposed a
stochastic version of the discrete-time synchronous update scheme which almost surely
converged to the unique NE point.

Xing et al. in [86] put forward a stochastic learning solution for distributed dis-
crete power control game in wireless data networks. They proposed two probabilistic
power adaptation algorithms and analyzed their theoretical properties along with the
numerical behavior. Their approach has been later formulated by Wang et al. in [87]

1Exact Potential Game
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as a general-sum game in which each player evaluates a power strategy by computing
a utility value. This evaluation was performed using a stochastic iterative procedure.
The authors approximated the discrete power control iterations by an equivalent ODE1

and proved that the proposed stochastic learning power control algorithm converges
to a stable Nash equilibrium. The drawback is that the convergence times may be too
long relative to the packet duration.

The literature is quite rich in game-theoric power control in wireless networks. For
further study on this area, the reader is referred to [88], [89] and [90].

Reinforcement Learning

Reinforcement Learning (RL) is a form of machine intelligence which an agent can
use to learn an optimal policy to achieve a given goal. The agent is ignorant of the
environment model and performs trial-and-error interactions with the environment to
find out the immediate reward resulted by the action taken at the current state of the
environment, which will then be used to estimate the potential long-term reward for
any state of the environment. A review on reinforcement learning can be found in
chapter 6.

RL is a broad branch of machine learning and has attracted the attention of many
scientists over the last few years. The utilization of RL for power control in wireless
networks, however, is quite intact and the area has not been well investigated by the
researchers in this area. In the following, we summarize the existing related power
control works employing RL.

Pandana et al. in [91] employed reinforcement learning to maximize the average
throughput per total consumed energy in WSNs by choosing the optimal modulation
level and transmission power while adapting to the incoming traffic rate, buffer condi-
tion, and the channel condition. The reward function which they chose is the number
of successfully transmitted packets per total consumed energy as follows

r =
Lb
L
· R ·m · S(Γ(γ, pt),m)

L · pt
(2.16)

where Lb is the information carried by one packet in bits; L is the number of bits
in the packet after adding error coding; R is the transmission rate in bits/s. γ is
the current received channel gain fed back from receiver to the transmitter; m and pt
denote the modulation level and the transmission power respectively. S(Γ(γ, pt),m) is
the probability of successful packet reception, where Γ(γ, pt) is the target SINR.

However, the authors kept the space-action space too small and did not consider the
curse of dimensionality issue which simply occurs in large space-action spaces. Also,
the computation of the optimal policy is vague and not addressed clearly. Moreover,

1Ordinary Differential Equation
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they assumed an error-free feedback channel existing between transmitter and receiver
which may not be feasible in practice.

In [92], the authors propose a distributed power control for SUs1 to manage the
interference at the receivers of the PUs2 in a CRN3. They modeled it as a multiagent
system where the multiple agents are the different secondary base stations in charge of
controlling the secondary cells. Agents are independent learners which use Q-learning
to find the optimal policy. The cost function considered is as follows:

c = (SINR
(t)
i − SINRTh)2 (2.17)

where SINR
(t)
i is the instantaneous SINR in the control point of cell i, and SINRTh

is the threshold SINR which should be reached.

The Q-learning employed aims to minimize this cost so that the SINR at the control
points is SINRTh, which guarantees that interference at the primary receivers is below
the threshold. For the generalization of the state space, the authors employed neural
networks to approximates the Q-functions. However, it needs off-line training. To
take the error of the observation of the current state into account, the authors utilize
POMDP4 which makes use of a state estimator to compute the agents belief state as
a function of the old belief state, the last action, and the current observation that the
agent makes of the environment. This, however, adds complexity to the system thereby
trading off optimality for the increased computation load.

In [93], Jiandong et al. presented a power control in CRNs to enhance the perfor-
mance of secondary users in terms of the ratio of the spectrum efficiency to the power
consumption level, as well as to improve the fairness among the SUs. The utility
function considered is as follows:

ci =
log(1 + SINRi(t))

pi(t)
(2.18)

The authors modeled the interaction among the agents and wireless environment as
a Markovian game-theoretic and formulated the spectrum sharing issue among multiple
secondary users as an expected utility maximization problem. Employing Q-learning,
each SU can well obtain the fair and optimal power control strategy. However, their
approach does not address the curse of dimensionality problem.

1Secondary Users
2Primary Users
3Cognitive Radio Network
4Partially Observable Markov Decision Process



“We are what we repeatedly do.”

Aristotle

3
Rate-Power Tradeoff - Genetic-Fuzzy

Approach

In this chapter, we begin with the system model description followed by the motivation
for the tradeoff between rate and power in WBANs and also derive the utility function
needed to achieve this. We then propose a fuzzy power controller, called WFPC1,
which makes a tradeoff between throughput and power by adjusting the transmission
power level to mitigate inter-network interference between neighboring WBANs. The
controller can be looked at as a decision-making system which makes decisions on the
next transmission power level based on the current levels of the SINR, interference
power and the current transmission power level which is fed back to the controller
from the controller output. We utilize a genetic algorithm to attain the optimum
design of the controller. This optimization takes place offline, i.e. at the design stage,
and ensures the controller maximizes a utility function of throughput with a cost to
penalize increasing power level. We compare the performance of WFPC to a literature
well-cited power controller, namely ADP2 [39]. Although, the offline genetic algorithm
optimization required by WFPC can limit the controller adaptation to dynamic changes
of the surrounding environment, it notably improves the performance of the controller
as the simulation results illustrate that WFPC achieves a lower energy consumption
per bit as well as a faster convergence compared to ADP.

1WBAN Fuzzy Power Controller
2Asynchronous Distributed Pricing Power Controller
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Figure 3.1: The System Model; as seen in the interference model of the system, while
the signals of the BNs collide at the BNC of neighboring WBANs, there is no interference
between BNs and their associated BNC within each WBAN, as they employ an orthogonal
MAC communication scheme such as TDMA, as defined in the standard of IEEE 802.15.6

3.1 System Model

In this section, we elaborate the system model which will be used by all the proposed
approaches in the thesis.

We consider a system of m WBANs denoted by set M = {1, ...,m} operating in
the same frequency channel where their transmission ranges overlap causing co-channel
interference on each other. The transmissions considered within each WBAN are from
BNs to BNCs, as the traffic flow is mostly of this direction in medical applications. We
assume that WBANs rely on the MAC layer defined in the standard IEEE 802.15.6
[94], implying that there is no intra-network collisions between the BNs within a single
WBAN. This interference model is shown in Figure 3.1.

We consider that each WBAN in our system has one instance of TPC algorithm
running on its BNC node that determines the transmission power levels which the sen-
sor nodes should use for the next MAC superframe. The sensor nodes are informed of
their next transmission power levels by the BNC in the beacon period of each super-
frame. Running the power controller on BNCs —which are receivers in our system—
rather than on the sensor nodes has two important advantages as follows: Firstly, bear-
ing in mind that the sensor nodes are very resource-constrained in terms of battery,
memory and processing power, keeping them away from running algorithms will save
their resources remarkably. On the other hand, BNC nodes can be quite big like a
PDA with powerful processors and enough memory to run complicated algorithms.
Plus, their battery can be easily recharged or replaced. Secondly, since some power
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controllers like the ones we will propose require some information at the receiver such
as SINR, if the power controller was running on sensor nodes —which are transmitters
in our system, we would need error-free feedback channels from BNC to each sensor
node to carry back such information which can be quite costly in practice due to the
extra power, delay and bandwidth needed for feedback channel coding.

From the system point of view, the task of the power controller is to allocate power
levels to the sensor nodes across all WBANs to achieve a performance utility. For
simplicity and without any loss of generality, we assume that there is only one sensor
node within each WBAN and we use p = (pi)

m
i=1 to denote the power vector in the

system, where pi ∈ Pi = [0, Pmaxi ] is the transmission power level of the sensor node in
WBAN i.

The throughput of a WBAN is assumed to be the maximum data rate achievable
by its sensor node in the channel from the sensor node to the BNC in the WBAN and
is given by the Shannon channel capacity formula as follows

ci = B log2(1 + ξi) (3.1)

where ci in bit per second (bps) is the throughput of WBAN i, B is the channel
bandwidth in Hz and ξi is SINR at BNC in WBAN i given by:

ξi =
hiipi∑m

j 6=i hjipj + ni
(3.2)

where pi and pj are the transmission power levels of BN i and BN j respectively; ni is
the thermal noise power over the entire channel bandwidth at BNC i. hii and hji are
the elements of the power gain matrix H given by

H =

h11 . . . h1m
...

. . .
...

hm1 . . . hmm

 (3.3)

where hii is the power gain between BN i and its corresponding coordinator, namely
BNC i; hji is the power (interference) gain between BN j (transmitter) and BNC i
(receiver).

It should be noted that we here abuse the notation H, which is usually used for
denoting channel matrix. It is, however, used here to denote the power gain matrix
which can be thought of as the square of the norm (‖·‖2) of the channel matrix element-
wisely. It therefore has all real-valued elements here.

3.2 Tradeoff Utility Motivation

In this thesis, we aim to make a tradeoff between throughput and power by using a
utility function which encourages WBANs to achieve a higher throughput with less
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power. To motivate such a utility function, consider the following optimization prob-
lem, which is the maximization of the total throughput, i.e. throughput summed over
all WBANs in the system

max
m∑
i=1

ci

subject to 0 ≤ pi ≤ Pmaxi ,∀i
variables p = (pi)

m
i=1

(3.4)

where ci is the throughput of WBAN i given by Eq. 3.1.

This optimization problem is non-convex due to the non-convexity of throughput
ci, and the global optimum solution can not be attained analytically. As a baseline
distributed approach, however, consider decomposing this problem into decoupled sub-
problems, where each WBAN chooses its transmission power level to maximize its own
individual throughput. Since the throughput of each WBAN i is strictly increasing
with its transmission power pi (for fixed power levels of all other WBANs), provided
that WBANs do not cooperate or exchange messages to solve their problems, the
unique solution of the system is p∗ = (Pmaxi)

m
i=1, i.e., each WBAN uses its maximum

power to transmit, which is a very aggressive solution from the view point of inter-
network interference and power consumption. One technique to prevent WBANs from
aggressively raising their power is punishing them by setting a penalty for increasing
transmission power. To this end, we define the following individual utility function

Ui(pi, wpi) =
ci

Cmaxi

− wpi(
pi

Pmaxi

)αi (3.5)

where pi is the transmission power level of WBAN i; ci is the throughput of WBAN
i; wpi is a price factor which can be used to adjust the tradeoff between throughput
and power; α is the price exponent which as we will see later in chapter 5, imposes
sufficient conditions for existence of a stable solution as well as affecting the behavior of
the power controller; Cmaxi is the maximum channel capacity achievable by WBAN i at
zero interference; and Pmaxi is the maximum allowable transmission power of WBAN i.
We normalize the values of throughput and power using Cmaxi and Pmaxi for the price
factor to have meaningful values;

The considered utility function rewards WBANs for increasing their throughput
and penalize them for increasing their power. The devised penalty mechanism prevents
them from increasing their power uselessly and producing interference to others. This
motivates them to achieve a higher throughput with less power and enables them to
achieve a tradeoff between throughput and power, which can be controlled by using
the price factor.

If the problem in (3.4) was convex, the optimum price factor vector w∗p = (w∗pi)
m
1=i
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could be calculated as follows:

w∗p = min
wp

U(p∗,wp)

subject to wpi ≥ 0 ,∀i
variables wp

where p∗ = (p∗i )
m
1=i and p∗i is the optimum power calculated by each WBAN inde-

pendently (and of course in a distributed manner).

Since Ui(pi, wpi) is differentiable with respect to wpi , the optimum price factors
could also be calculated distributedly using the gradient method iteration:

wpi(t+ 1) = [wpi(t) + δ(pi(t)− Pmaxi)]
+ (3.6)

where 0 < δ < 1 is a step size.

However, since the optimization problem is non-convex, there will be a dulaity gap
and the price factor calculated as above will not be optimum which will cause the
attained power allocation p∗ not to be the global optimum of the primal problem. In
fact due to the non-convexity, it is not possible to attain the global optimum solution
in a distributed manner and the decoupled sub-problems will finally converge to a
sub-optimal solution. In Chapter 4, we propose adaptive methodes to adjust the price
factor.

3.3 Genetic Fuzzy Systems

A fuzzy control system [95] is a decision making machine which employs fuzzy logic [96]
to make decisions for controlling a system. Fuzzy logic introduced by Zadeh [97] models
the uncertainty expressed by the use of linguistic variables such as ”High”, ”Medium”,
”Low”, ”Most”, ”Many”, ”Seldom”, etc., similar to the way the human brain makes
reasoning. While classical set theory requires an element to be either included by a
set or not, fuzzy sets define intermediate values, known as the degree of membership,
which allow an object to be a partial member of a set. For example, a person may be
a member of the set short to a degree of 0.7, or the temperature of a room can be 70%
freezing and 30% cold. Figure 3.2 shows sample fuzzy sets for describing temperature,
which uses trapezoidal membership functions for ”Freezing” and ”Hot” fuzzy sets, and
triangular membership functions for ”Cool” and ”Warm” fuzzy sets.

Fuzzy control is known as art of controlling using words. The dynamic behavior of
the system to be controlled is attributed by a number of linguistic fuzzy rules based on
the knowledge of a human expert. Fuzzy rules are of the general form: IF [antecedents ]
THEN [consequents ], where antecedents and consequents are propositions containing
linguistic variables. Antecedents of a fuzzy rule form a combination of fuzzy sets
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Figure 3.2: Fuzzy sets for describing the temperature of a room; the temperature can
be a member of the ”Freezing” set to a degree of 0.7 and a member of the ”Cool” set to a
degree of 0.3.

through the use of logic operations consisting AND, OR and NOT. Thus, fuzzy sets
and fuzzy rules together form the knowledge base of a rule-based inference system as
shown in Figure 3.3. Antecedents and consequents of a fuzzy rule form fuzzy input
space and fuzzy output space respectively, which are defined by the combinations of
fuzzy sets. Non-fuzzy (also known as crisp) inputs are scaled and mapped to their
fuzzy representation in a process called fuzzification. This involves the utilization of
membership functions such as Gaussian, triangular and trapezoidal. The inference
engine maps the fuzzified inputs to the rule base to produce a fuzzy output which
involves determining the consequent of rules and its membership to each output fuzzy
set. Finally, the fuzzy output is defuzzified and scaled into a crisp value.

Since in fuzzy control, qualitative linguistic variables are used to define the sys-
tem behavior, an exact mathematical model of the system is not necessary, and this
makes the design of the controller quite simple and flexible. Fuzzy controllers enjoy
the advantages of robustness, ease of design, simplicity, and flexibility. Besides, fuzzy
controllers have shown a great ability to control nonlinear systems and gracefully map
complicated relationships between input and output spaces over the last two decades
[98]. In this chapter, we make use of the fuzzy logic and propose a fuzzy power con-
troller, namely WFPC, which takes inter-network interference between neighbouring
WBANs into consideration to maximize throughput aiming to use as little power for
transmission as possible.

Although one of the most useful features of a fuzzy control system is to incorporate
human expert knowledge for the controller design sake, designing and tuning a fuzzy
controller using an automated learning process such as genetic algorithms is preferred
and has received extensive attention by researchers in the literature [99] [100] [101].
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Figure 3.3: A Fuzzy control system; Genetic algorithms can be employed to design or
tune the fuzzy controller by optimizing the fuzzy knowledge base

Genetic algorithms lie in the family of stochastic search algorithms based on Dar-
win’s theory of evolution, where an objective function, called fitness function, is max-
imized. The inputs to the fitness function are the potential solutions to the problem
coded as chromosomes. Each chromosome can be thought of as a point the search
space. A genetic algorithm operates over a pool of such chromosomes, known as pop-
ulation, and randomly mates them using a recombination operator such as crossover
to produce offspring called individual. The idea behind is that the new individual may
be better than both of the parents if it takes the best genes from each of the parents.

The crossover operator randomly swaps some genes of the parents’ chromosomes
to make a new individual and can be carried out using different methods including N -
point, uniform and arithmetic methods. In the N -point method, the crossover operator
randomly chooses N points in the parents’ chromosome which split them up into N+1
sections. Then it swaps the corresponding sections to make a new individual.

The individuals obtained constitute a generation which is then altered by a mutation
operator where some genes in the chromosome are manipulated randomly. For example,
with binary genes, this is done by flipping some bits, or with real-valued genes, by
adding a small value.

The altered individuals are then evaluated by using the fitness function which quan-
tifies the optimality of individuals. Afterward, some individuals from the current pop-
ulation are randomly chosen through a process called selection to form the mating pool
for the next generation. The selection process can be done in various ways including
roulette wheel selection, tournament selection and rank selection. Although the selec-
tion operator basically gives higher chances to the best individuals in the population
to be chosen, there is always chances of losing the best individuals. To prevent this, a
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few number of the best individuals in the current population are always selected first
to be a part of the next generation. This process is called elitism.

The whole evolution process which involves recombination, mutation, evaluation,
elitism and selection are repeated until a stop criterion, such as reaching a maximum
number of generations, or finding a good enough individual, is fulfilled.

From the fuzzy system point of view, a genetic algorithm optimization is equivalent
to parameterizing a fuzzy knowledge base, i.e. rules and membership functions, and
to finding those parameter values that are optimal with respect to the design criteria
(see Figure 3.3). The knowledge base parameters constitute the optimization space,
which are transformed into a suitable genetic representation of chromosomes on which
the genetic algorithm operates.

We employ a genetic algorithm to obtain the optimum design of WFPC. The op-
timization problem we get the genetic algorithm to solve is to design a fuzzy power
controller which maximizes a utility function of throughput with a penalty on increas-
ing power levels.

3.4 Proposed Approach

We will develop a fuzzy power controller, namely WFPC, to manage the effects of inter-
network interference on throughput and power consumption. The output of WFPC
is the next transmission power level p(t + 1) to be used by sensor nodes. WFPC
makes decisions on transmission power based on the values of its inputs which are the
current levels of the SINR(t), interference power pI(t)

1, and transmission power p(t),
fed back from the output to the controller. As described earlier in the System Model
section in chapter 1, in our system, the BNC nodes are responsible for running the
power control algorithm within each WBAN. Both the SINR and interference power
which are needed by WFPC to make decision on the transmission power level can be
measured at a digital receiver and hence are available at BNC. The structure of WFPC
is shown in Figure 3.4.

WFPC has three inputs indexed from 1 to 3 which represent SINR(t), pI(t) and
pT (t) respectively. We fuzzify each input by using K fuzzy sets corresponding to
K linguistic terms. For example, for K = 3, these linguistic terms can be thought
of as ”Low”, ”Medium” and ”High”. For input i, the membership function (MF)
corresponding to the fuzzy set j is denoted by MFi,j where i ∈ [1, 3] and j ∈ [1, K].
The fuzzy output variable is however expressed by Kout fuzzy sets corresponding to
Kout membership functions denoted by MFo,j, where j ∈ [1, Kout]. A fuzzy rule then
looks like as follows:

1This is actually interference power plus noise which can be measured at receivers, but to avoid
cumbersome descriptions later on, it will be referred to as just interference power.
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if (SINR(t) is MF1,i) and (PI(t) is MF2,j) and (PT (t) is MF3,k)

then
(
PT (t+ 1) is MFo,ri,j,k

)
where ri,j,k ∈ [1, Kout] is an integer valued number identifying the output fuzzy set for
the fuzzy rule corresponding to fuzzy set i of input 1, fuzzy set j of input 2, and the
fuzzy set k from input 3.

3.5 Genetic Algorithm Optimization

In this section, we obtain the optimum values for the parameters of membership func-
tions as well as the fuzzy rules using GA.

3.5.1 Chromosome Structure

To codify the fuzzy controller as a chromosome, we consider that each chromosome
is formed by two parts: parametric genes and rule genes that represent the fuzzy
membership functions and the fuzzy rules, respectively. For the membership functions,
we use the following Gaussian function

µij(x) = exp

(
−(x−mij)

2

2σ2
ij

)
(3.7)

where µij is the membership function of the jth fuzzy set related to input i, and mij

and σij are the center position and spreading factor of the membership function. To
be codified as genes, this function requires two real valued numbers, i.e. mij and σij,
bounded by the dynamic range of the corresponding input, as seen in Fig 3.5.

Figure 3.4: Structure of the WBAN Fuzzy Power Controller (WFPC); the SINR needed
by WFPC can be measured at a digital receiver, i.e. the BNC nodes



46 Rate-Power Tradeoff - Genetic-Fuzzy Approach

Figure 3.5: Membership functions and the corresponding genes; each membership func-
tion is codified using two real-valued parameters

Figure 3.6: Rule genes in the chromosome structure

The chromosome part corresponding to the fuzzy rules is shown in Fig 3.6. There
are K2 rule genes each corresponds to a fuzzy rule which involves two fuzzy sets, one
from each input.

3.5.2 Genetic Operators

Since we have real valued genes codifying the membership function parameters and
integer valued genes codifying the fuzzy rules in the chromosome structure, we do
not employ the usual binary code operators, i.e. N -point crossover and bit inversion
for recombination and mutation respectively. Instead, for recombination, we use two
crossover methods comprising arithmetic and heuristic crossovers being selected ran-
domly with equal probabilities. In both methods, a linear combination of the parents’
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corresponding genes is obtained based on the following equation

Go = a.GP1 + (1− a).GP2 (3.8)

where Go, GP1 and GP2 are the offspring’s gene, the first parent’s gene and the second
parent’s gene respectively; and a is a random number.

In arithmetic crossover, the offspring gene is an interpolation along the line formed
by the parents’ genes is performed (0 < a < 1), while in the heuristic crossover, it is
an extrapolation outward in the direction of the better parent (a < 0 if P2 is better
and a > 1 if P1 is better).

The mutation operator is uniformly selected from three methods which are Gaus-
sian, uniform and non-uniform mutations. In the Gaussian mutation, the gene is
changed with the probability of a normal Gaussian distribution. The other two meth-
ods change the value of the gene based on a uniform distribution and non-uniform
distribution respectively in the specified range of the variable.

The selection strategy utilized to pick individuals into the mating pool to produce
an offspring for the next generation is a ranking selection based on the geometric
distribution. In the ranking selection, the individuals are first sorted according to
their fitness values. Then the individuals are ranked based on their positions in the
ordered list so that the rank 1 is assigned to the worst individual and N (the number
of chromosomes in population) to the best individual. The ranking selection can lead
to a more optimum controller design, although it may slows down the convergence to
the optimum design. However, this convergence is not of importance in here, because
this GA optimization is taking place offline.

3.5.3 Fitness Function

The genetic algorithm tries to find the individual maximizing a given fitness function
which conveys the objectives of the problem at hand, which is maximizing throughput
using as little power for transmission as possible. The fitness function we use to evaluate
the optimality of individuals in our system is as follows.

f(pi) =
ci

Cmaxi

− wpi
pi

Pmaxi

(3.9)

3.5.4 Learning Strategy

We develop a new learning strategy for the system proposed by extending the existing
learning process in GA. In addition to the elitism that takes place at each generation,
namely over-generation elitism, we propose another elitism called over-step elitism in
which after a certain number of generations, the WBANs move (according to a random
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Figure 3.7: Fuzzy decision surface for power and the SINR after genetic algorithm opti-
mization

walk model) and the best individuals are copied directly to the next newly initialized
population. The number of best individuals copied during the over-step elitism is,
however, not fixed but increases linearly with the number of random walk steps have
been taken so far. Moreover, in order to get the controller adapted more, the number
of WBANs in the system also changes after a certain number of steps, while the best
individuals are again selected by the over-step elitism.

Figures 3.7, 3.8 and 3.9 demonstrate the fuzzy decision surfaces after performing
the genetic algorithm optimization for each pair of inputs. Figure 3.7 shows how the
fuzzy control output, i.e. the power level in the next tome slot changes with respect to
the SINR and the current power level. The graph illustrates that the relation between
the SINR and power is quite non-linear and complex. For example, for a certain level of
the current power, the next power level will be low for both low and high SINR values,
while it increases for mid values of SINR. On the other hand, for a certain SINR, the
next power level will be almost independent of the current power level except for the
cases where the current power is very high.

Figure 3.8 demonstrates how the next power level depends on interference power
and the current power level. Again, a non-linear and complex behaviour is perceived.
When the current power level is not very high, the next power level plateaus for a
certain value of interference power. This behaviour, however, does not hold when
interference is very high.

Figure 3.9 shows how the next power level varies with respect to interference and
the SINR. As it can be seen, in very low SINR conditions, the next power level will
be quite high in both low and high interference conditions, and it is very low for mid
values of interference, while this behaviour is exactly the reverse for mid values of
SINR. Besides, the controller decreases the next power level in very high SINR regime
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Figure 3.8: Fuzzy decision surface for power and the interference after genetic algorithm
optimization

especially when interference is also very high.

3.6 Performance Evaluation

3.6.1 Simulation Framework

We use simulations to evaluate the performance of the proposed power control schemes
in this research. In this section we elaborate the unified simulation framework used for
the rest of the thesis. For a fair comparison, all the proposed approaches are evaluated
using the same simulation framework and values for common parameters.

WBANs are confined inside a 10 m by 10 m room and walk around the room
according to a random walk model as seen in Figure 3.10. For each WBAN, we consider
one implanted sensor node inside the body at a depth of 50 mm from the body surface
that communicates with its coordinator node that is located 1.1 m away from it on the
body surface.

Channel gains are calculated based on the channel models (CM) as defined in [2].
We have different path types in our model as seen in Figure 3.11 which are as follows:
an in-body path from a BN to the body surface, known as CM2; an on-body path
from the body surface to the BNC in the same WBAN, referred to as CM3; and an
off-body path from the body surface to a BNC in another WBAN, namely CM4, which
can be with line of sight (LOS) or non-LOS. The transmission takes place in the MICS
frequency band and is considered to be only from sensor nodes to BNC nodes.

We change the density of WBANs in the system and assess the performance of
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Figure 3.9: Fuzzy decision surface for interference and the SINR after genetic algorithm
optimization
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Figure 3.10: WBANs move around the simulation room according to the random walk
model while transmitting and their signals interfering.



3.6 Performance Evaluation 51

Figure 3.11: Different types of channel in WBANs [2]

algorithms in terms of power consumption, throughput, energy consumption per bit
and convergence. We refer to a scenario as a setup of a certain number of WBANs
in the system which move around the room and transmit simultaneously in the same
frequency channel. Each scenario is run 1000 times and the confidence intervals of 95%
will be provided.

3.6.2 Simulation Results

In this section, we evaluate the performance of WFPC by simulations and compare
it to ADP. The simulation environment is as previously elaborated in the Simulation
Framework section in chapter 3. Table 3.1 summarizes the parameters and their values
used in this simulations. Each plot is the average of 1000 runs of the simulation.

Figure 3.12 represents the average transmission power level as a function of the
number of WBANs in the system. As it can be clearly seen, WFPC strongly outper-
forms ADP and transmits at almost 9 µW less power than ADP for any number of
WBANs in the system. This is equivalent to almost 40% and 50% improvement under
sparse (4 WBANs) and dense conditions (32 WBANs) respectively.

Figure 3.13 shows the average throughput versus the number of WBANs in the
system. The graph reveals that ADP slightly outperforms WFPC and delivers almost
20 kbps more throughput for any number of WBANs in the system. We can conclude
that WFPC sacrifices a small portion of throughput, which is around 4%, for a great
improvement in power being 9 µW (40%-50%). In order to find out how well this
tradeoff works, we need to look at Figure 3.14 which shows the average energy con-
sumption per bit versus the number of WBANs in the system for both WFPC and
ADP. As it can be clearly seen, WFPC strongly outperforms ADP and consumes less
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Table 3.1: Simulation Parameters and Values
Parameter Name Symbol Parameter Value

Bandwidth B 300 kHz
Noise ni -174 dBm/Hz
Minimum Transmission Power Pmin

i 0

Maximum Transmission Power Pmaxi 25 µW (≈ -16 dBm)

Minimum SINR SINRmin -100 dB

Maximum SINR SINRmax 100 dB

Minimum Interference Power PImin
-100 dBm

Maximum Interference Power PImax 100 dBm

Price Factor wpi 0.02

Number of Input Fuzzy Sets K 3

Number of Output Fuzzy Sets Kout 5

Genome Size 45

Number of Population 450

Mutation Probability 0.05

Crossover Probability 0.8
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Figure 3.12: Average transmission power versus the number of WBANs
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Figure 3.13: Average throughput versus the number of WBANs

energy than ADP for transmitting one bit particularly with large number of WBANs
in the system where it shows over 45% improvement in energy conservation, while this
figure amounts to around 27% under sparse condition.

Finally, Figure 3.15 shows the average number of iterations needed by each ap-
proach for converging to a stable solution. It is readily observed that WFPC strongly
outperforms ADP in terms convergence by almost 70% under sparse condition and 60%
under dense condition.

3.7 Conclusions

We proposed a power controller based on fuzzy logic, namely WFPC, to manage inter-
network interference in WBANs. A genetic algorithm and a learning mechanism was
developed to design and optimize WFPC. We evaluated and compared the perfor-
mance of the proposed approach to the ADP algorithm, a well-cited power controller
in the literature. Simulation results show that WFPC strongly outperforms ADP and
improves both power consumption by 40%-50% and convergence by 60%-70% for dif-
ferent number of WBANs in the system, while sacrificing only 4% of throughput. Also,
the average energy consumption per bit improves by 27%-45% for different number of
WBANs in the system. This superiority basically originates from two factors which
are the ability of genetic algorithms to find the best solution and the ability of fuzzy
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Figure 3.14: Average energy consumption per bit versus the number of WBANs
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Figure 3.15: Average number of iterations versus the number of WBANs
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controllers to cope with complicated non-linear systems. However, the genetic algo-
rithm optimization required by WFPC decreases its flexibility to adjust the tradeoff
between throughput and power adaptively and accommodate dynamic changes of the
surrounding environment because it is performed offline at design stage. In the follow-
ing chapters, we propose more adaptive approaches for power control in WBANs based
on game-theory (Chapter 5) and based on reinforcement learning (Chapter 6). We also
further evaluate and compare the performance of WFPC to the new power controllers
which will be proposed.



56 Rate-Power Tradeoff - Genetic-Fuzzy Approach



“Gravitation cannot be held responsible for people falling in love.”

Albert Einstein

4
Rate-Power Tradeoff - Game Theory

Approach

Although the proposed genetic-fuzzy approach performs well, it requires off-line opti-
mizations which means that the fuzzy controller needs to be optimized at the design
stage using the time-consuming genetic algorithms. This is the main drawback of this
approach because once the optimum design is achieved for a specific tradeoff between
rate and power, it will not change anymore and the controller can not adapt to the
dynamic changes of the surrounding environment. This makes the controller very sen-
sitive to design parameters which is not favorable in practice. In order to remove
the off-line optimization and design a more adaptive power controller, we employ the
game theory. In this chapter, we put forward a non-cooperative game for power control,
called WPCG1, to mitigate inter-network interference in WBANs. The proposed power
control game enables WBANs to coordinate transmission power levels so as to increase
the system total throughput in the presence of interference from nearby WBANs us-
ing as little power for transmission as possible. We utilize both a first-order and a
second-order pricing mechanism to penalize high power users and also introduce an
adaptive pricing scheme to increase throughput in good channel conditions and high
energy budgets. We investigate the Nash Equilibrium (NE) existence in the game and
propose the best response strategy for players in the game to reach the NE. Finally
we assess the performance of WPCG and compare it to the previously proposed fuzzy
power controller, namely WFPC.

1WBAN Power Control Game

57
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4.1 Game Theory

Game theory is a discipline aimed at modeling the interaction between decision makers
with conflicting interests. Since 1944 when the first paper on game theory [102] was
written by Von Neumann and followed by his textbook [103], many researchers have
contributed to the field and just after a few years, game theory turned into a very
active field of study. Although it was primarily used in economics to model competition
between companies, game theory soon found its way to engineering fields to assist with
solving optimization problems. Some references to game theory include [104], [105],
[106] and [107].

Games are broadly categorized as cooperative and non-cooperative. A cooperative
game deals with specifying what payoffs each potential group, or coalition, can obtain
by the cooperation of its members. It however does not delineate the process by which
the coalition forms. Cooperative game theory is mostly applied to situations emerging
in political or economic relations, where concepts like power are the most important.
For example, a cooperative game can describe which coalitions of parties can form a
majority in a parliament, based upon the number of seats occupied by party members.
It focuses solely on the outcome of such coalition formation, rather than specifying
how this should be carried out. In contrast, non-cooperative game theory is concerned
with the analysis of self-interested decision makers who make strategic choices based
on their own interest. Unlike that of the cooperative games, the details of the ordering
and timing of players choices are often crucial in determining the outcome of a non-
cooperative game. In this thesis, we utilize non-cooperative games as they better suit
to model WBANs with medical applications where cooperation between WBANs is not
tolerable.

4.1.1 Non-Cooperative Games

Definition 6.1: A non-cooperative game (also known as a strategic game) is denoted
by a tupple 〈{Ai}, {πi}〉∀i∈M , where

• M = {1, 2, 3, · · · ,m} is the set of a finite number, m, of players in the game.

• Ai is the set of pure strategies (or actions) available to player i. The Cartesian
product of all players’ individual strategy sets is known as the strategy profile set
and is denoted by A = {×Ai}∀i∈M . Each member of A is a pure strategy profile
a = (a1, · · · , am), where ai ∈ Ai. The notation a−i = (a1, · · · , ai−1, ai+1, · · · , am)
is used to delineate the pure strategies selected by all players except player i.

• πi : A → R is the payoff function of player i which is a real-valued function
defined from the pure strategy profile set A to R. Players are assumed to be
rational which means that each player make choices to maximize his own payoff
function.



4.1 Game Theory 59

In the following, we state some definitions and theorems which will be used in the
rest of this chapter.

The Best Response

Definition 6.2: A pure strategy ai = BRi(a−i) ∈ Ai is called the best response of
player i to the strategies of all other players a−i if

πi(ai, a−i) ≥ πi(a
′

i, a−i) ∀a
′

i ∈ Ai (4.1)

This means that there is no alternative strategy to select for player i that gives him
better profit, given all other players’ strategies.

Pure Nash Equilibrium

Definition 6.3: A pure strategy profile a∗ ∈ A is a pure Nash equilibrium if, for all
players i

πi(a
∗
i , a
∗
−i) ≥ πi(ai, a

∗
−i),∀ai ∈ Ai (4.2)

This means that no player can improve his payoff by unilaterally deviating from his
strategy given that the other players stick to their selected strategies. In other words,
the strategy profile a∗ is the best response strategy profile where for each player i, a∗i
is the best response for a∗−i.

Pure Nash Equilibrium Existence

Theorem 6.1: In a strategic game, if each player’s pure strategy set is a non-empty,
compact and convex subset of an Euclidean space, and each player’s payoff function
is continuous and quasi-concave1 over the player’s strategies, then the game admits at
least one pure Nash equilibrium.

Proof: The proof can be found in Theorem 1.2 in [104].

Mixed Strategy

Definition 6.4: A mixed strategy for player i denoted by ∆i : Ai → R is a probability
distribution over his pure strategy set, Ai. When Ai is a finite set, a mixed strategy

1A function f defined on a convex set S is quasi-concave if for every value of a, the set Pa = {x ∈
S : f(x) ≥ a} is convex. Quasi-concavity generalizes the concavity, i.e. all concave functions are also
quasi-concave, but not all quasi-concave functions are concave.
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simply assigns a value to each pure strategy ai ∈ Ai, which specifies the probability
of choosing that pure strategy by player i, i.e. ∆i(Ai) = {σi(ai) |

∑
σi(ai) = 1}∀ai∈Ai

,
where σi(ai) is the probability of choosing the pure strategy i.

A mixed strategy profile denoted by σ = (σ1, · · · , σm) comprises the mixed strate-
gies chosen by all players. The expected payoff of each player i as a result of choosing
the mixed strategy profile σ is as follows

ui(σ) =
∑
∀a∈A

m∏
j=1

σj(aj) · πi(ai, a−i) (4.3)

The notation σ−i = (σ1, · · · , σi−1, σi+1, · · · , σm) is used to denote the mixed strategy
profile chosen by all players except player i.

Mixed Nash Equilibrium

Definition 6.5: A mixed strategy profile σ∗ is a mixed Nash equilibrium if, for all
players i

ui(σ
∗
i , σ

∗
−i) ≥ ui(σ

′

i, σ
∗
−i),∀σ

′

i ∈ ∆i (4.4)

Strict Nash Equilibrium

Definition 6.6: A strategy profile a∗ ∈ A is a strict Nash equilibrium if, for all players
i

πi(a
∗
i , a
∗
−i) > πi(ai, a

∗
−i),∀ai ∈ Ai (4.5)

In other words, a Nash equilibrium is strict if each player has a unique best re-
sponse to other players’ strategies. A strict Nash equilibrium can not be mixed and
is necessarily pure in strategies. There can be only one strict Nash equilibrium in a
game.

Mixed Nash Equilibrium Existence

Theorem 6.2: In a strategic game, if each player’s pure strategy set is finite, the game
admits at least one mixed Nash equilibrium.

Proof: The proof can be found in Theorem 1.1 in [104].
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4.2 Proposed Approaches

Because of the nature of their applications particularly in medicare and healthcare,
WBANs do not cooperate in their power decision making implying that each WBAN
should choose its transmission power independently based on its belief of other WBANs’
choices. This suggests modeling WBANs as the rational players in a non-cooperative
game where each player’s goal is to maximize its own payoff. The payoff function can
be intuitively inspired by decomposing the following non-convex optimization problem,
which maximizes the total throughput, into distributed sub-problems and applying a
pricing mechanism on the power levels so as to prevent WBANs from lavishly increasing
their power levels.

max
m∑
i=1

ci (4.6)

subject to 0 ≤ pi ≤ Pmaxi ,∀i
variables p = (pi)

m
i=1

(4.7)

where ci is the throughput of WBAN i given by

ci = B log2(1 +
hiipi∑m

j 6=i hjipj + ni
) (4.8)

We call the resulted game, WPCG1, and define it as follows.

Definition 6.6: The WBAN Power Control Game is a non-cooperative game denoted
by a tupple 〈{Ai}, {πi}〉∀i∈M , where

• Each player i models the link between the BN and BNC nodes within WBAN i
at a certain time slot.

• The strategy set of player i is comprised of the transmission power levels which
transmitter i can choose, i.e. Ai = {pi | 0 ≤ pi ≤ Pmaxi}.

• The payoff functions of each player i is defined as the difference between its nor-
malized individual throughput and a pricing term on the normalized individual
power as follows

πi(pi, p−i) =
ci

Cmaxi

− wpi(
pi

Pmaxi

)αi (4.9)

where wpi is the price factor; α is the price exponent which as we will see later,
imposes sufficient conditions for existence of Nash equilibrium in the game as

1WBAN Power Control Game
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well as affecting the behavior of the game; ci is the throughput of WBAN i;
Cmaxi is the maximum channel capacity achievable at zero interference used for
normalization; pi is the transmission power level of WBAN i and Pmaxi is the
maximum allowable transmission power of WBAN i.

4.2.1 Nash Equilibrium

In this section we prove the existence of the Nash equilibrium in WPCG.

Proposition 6.1: There exists a pure Nash equilibrium in WPCG if αi ≥ 1 and
wpi > 0.

Proof: The payoff function πi(pi, p−i) is continuous and twice differentiable with re-
spect to pi. Taking the first derivative, we get:

∂πi(pi, p−i)

∂pi
=

B

log(2)Cmaxi

· hii
hiipi +

∑m
j 6=i hjipj + ni

− αi
wpi
Pαi
maxi

pαi−1
i (4.10)

Taking the second derivative gives:

∂2πi(pi, p−i)

∂p2i
= − B

log(2)Cmaxi

· h2ii(
hiipi +

∑m
j 6=i hjipj + ni

)2 − αi(αi − 1)
wpi
Pαi
maxi

pαi−2
i

(4.11)

It is straightforward to see that for αi ≥ 1 and wpi > 0, the second derivative is
less than zero for all pi and a given p−i, which means that πi(pi, p−i) is strictly concave
in pi, for a given p−i . On the other hand, the strategy set of player i, Ai = [0, Pmaxi ],
is non-empty, convex and a compact subset of the Euclidean space Rn. As a result
according to Theorem 6.1, we can conclude that there exists a pure Nash equilibrium
in the game.

Proposition 5.2: The pure Nash equilibrium in WPCG when αi ≥ 1 and wpi > 0 is
unique.

Proof: Let p∗i denote the root of Eq. (4.10) which maximizes the payoff function of
each player i, i.e.

∂πi(pi,p−i)
∂pi

∣∣∣
pi=p∗i

=
B

log(2)Cmaxi

· hii
hiip∗i +

∑m
j 6=i hjipj + ni

− αi
wpi
Pαi
maxi

p∗i
αi−1 = 0 (4.12)

Three cases may happen. Firstly, if p∗ satisfies p∗ ∈ [0, Pmaxi ], it can be easily shown
that ∂πi(pi, p−i)/∂pi > 0 for pi ∈ [0, p∗i ], meaning that πi(pi, p−i) is strictly increasing,
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and ∂πi(pi, p−i)/∂pi < 0 for pi ∈ [p∗i , Pmaxi ] when πi(pi, p−i) is strictly decreasing.
Secondly, if p∗ hits the lower boundary of pi, i.e. p∗i < 0, then we still have πi(pi, p−i)
strictly decreasing in pi. Thirdly, if p∗ hits the upper boundary of pi, i.e. p∗i > Pmaxi ,
then πi(pi, p−i) is strictly increasing in pi. Hence, the payoff function of each player i is
strictly concave in pi implying that the best response of each player i to the strategies
chosen by other players in unique. This concludes that the Nash equilibrium in the
game is strict and thereby unique.

4.2.2 The Best Response

In this section, we provide a best response approach for WBANs to calculate their
transmission power and reach the Nash equilibrium.

Finding the best response requires finding the solution of Eq. (4.12). The case
of αi = 2 is easily solved and it is an example of a pricing function that penalizes
high-power WBANs more severely than the linear cost case of αi = 1. The solution
of Eq. (4.12) in the case of αi = 2 is given by the solution of the following quadratic
equation

p∗i
2 +

p∗i
ηi

=
2BP 2

maxi

log(2)Cmaxiwpi
(4.13)

where ηi is the sensitivity of SINR to power at WBAN i as defined in Definition 3.4.

Solving Eq. (4.13) gives

p∗i =
1

2

√
1

η2i
+

2BP 2
maxi

log(2)Cmaxiwpi
− 1

2ηi
(4.14)

We also need to take the power boundaries into account to obtain the best response.
Since Eq. (4.14) is always greater than zero, we will have the following result.

Proposition 6.2: The Nash equilibrium in WPCG with αi = 2 and wpi > 0 is the
strategy profile {BRi(p−i)}i∈M where BRi(p−i) is the best response of player i to the
strategies of all other players in the game and is given by

BRi(p−i) = min

(
Pmaxi ,

1

2

√
1

η2i
+

2BP 2
maxi

log(2)Cmaxiwpi
− 1

2ηi

)
(4.15)

Using a similar approach, we can obtain the best response in the power control
game for the linear cost case of α = 1 as follows.

Proposition 5.3: The Nash equilibrium in WPCG with αi = 1 and wpi > 0 is the
strategy profile {BRi(p−i)}i∈M where BRi(p−i) is the best response of player i to the
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Figure 4.1: BRi(p−i)/Pmaxi versus ηi for αi = 1

strategies of all other players in the game and is given by

BRi(p−i) = min

(
Pmaxi ,max

(
0,

BPmaxi

log(2)Cmaxiwpi
− 1

ηi

))
(4.16)

The best response of each player gives him the highest payoff in response to the
strategies chosen by all other players. If each player plays his best response, the game
will finally settle at a Nash equilibrium. WBANs in our system independently and
asynchronously update their power levels in an iterative manner using Eq. (4.15) or
(4.16) until the game converges to the Nash equilibrium.

Figures 4.1 and 4.2 demonstrate the best response BRi(p−i) versus ηi for different
values of wpi with αi = 1 and αi = 2 respectively. As it can be clearly seen, as
interference increases, which corresponds to smaller values of ηi, lower-clipping happens
to the best response for αi = 1, which makes it more rigid in power decision making
than αi = 2. For example, for α = 1 with wpi = 0.005, if ηi is less than 37dBm, the
best response will be 0 (i.e. fully shut down). If, however, ηi increases only 2dBm, the
best response will be 1 (i.e. transmitting at full power). In other words, α = 1 may
lead to a binary power allocation, where the nodes are either transmitting at full power
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Figure 4.2: BRi(p−i)/Pmaxi versus ηi for αi = 2

or switched off. In contrast, this behavior is much smoother with α = 2.

4.2.3 Adapting to Dynamic Changes

The price parameters αi and wpi can be utilized to adjust the tradeoff between through-
put and power efficiency. This is of importance for WBANs where different WBANs
have different throughput and power efficiency requirements because of the dynamics
of the wireless channel states, different constraints on power and QoS requirements.
Moreover, the price parameters can also be set by the WBAN’s BNC according to
some dynamic parameters such as the power budget, QoS metrics, and interference
to and from nearby WBANs. We will employ wpi to dynamically adapt to channel
gains and power budget so as to penalize WBANs with bad channel conditions or low
power budgets more and to allow WBAN with good channels or high power budgets
to take advantages of their good conditions. In order to employ wpi as an adaptive
price factor, we should clarify its effect on the solution. Eq. (4.17) and (4.18) show the
range of which leads to a best response within [0, Pmaxi ] without hitting the boundaries
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for αi = 1 and αi = 2 respectively.

BPmaxiηi
log(2)Cmaxi (1 + ηiPmaxi)

6 wpi 6
BPmaxiηi

log(2)Cmaxi

(4.17)

wpi >
Bηi

log(2)Cmaxi

(
2P 2

maxi
ηi + 1

) (4.18)

Looking at Figures 4.1 and 4.2, we realize that for wpi smaller than the lower bounds
in Eq. (4.17) and (4.18), also upper-clipping occurs on the best response due to the
limitation on the maximum power for both αi = 1 and αi = 2. When interference
decreases, which corresponds to greater values of ηi, the best response either is clipped
by the maximum power (when wpi is quite small) or it is restricted by an upper bound
which is smaller than the maximum power, even when the SINR is good. In other
words, wpi plays the main role in limiting the power levels in high SINR conditions
and can simply prevent WBANs to benefit form their good channel and high SINR
conditions by limiting their power levels.

In order to dynamically adapt to channel changes and power budgets, the parameter
wpi is no longer considered fixed but is a function of channel gains and power budget
of WBANs as follows:

wpi =
Ki

hii
,∀i ∈M (4.19)

where Ki > Kmin
i > 0 is a coefficient which reflects WBAN i’s battery level. For full

battery charge, it is set to Kmin
i and as the WBAN’s battery energy is consumed, in-

creases. Different values of Kmin
i distinguish different battery types and the importance

given to battery capacity for different WBANs. Using Eq. (4.19), it will be possible
to allow each user having a good channel state and power budget to take advantages
of his good conditions by reducing his penalty for further increasing his power level,
which will lead to increased system capacity. On the other hand, it will prevent the
user from increasing his transmission power level uselessly when his channel gain is low
or when he is running out of his battery power by increasing his penalty, and thereby
avoiding interference to other WBANs. As a result, power consumption will reduce
and network lifetime will increase.

4.2.4 SINR-based Adaptive Price Factor

In the previous section, we proposed an adaptive price parameter which adjusts the
tradeoff between system capacity and power consumption according to the dynamic
changes in the system including channel gains. Although parameters such as SINR
are very simple to be measured at digital receivers, the availability of channel gains
at receivers is still a rather serious problem and incurs a heavy cost and overload on
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Table 4.1: Simulation Parameters and Values
Parameter Name Symbol Parameter Value

Bandwidth B 300 kHz
Noise ni -174 dBm/Hz
Maximum Transmission Power Pmaxi 25 µW (≈ -16 dBm)

Price Factor wpi 0.02

Price Exponent α 1

the system to be measured somehow as well as to be exchanged throughout the whole
system. Consequently this makes all algorithms relying on channel gains at receivers
less suitable and more expensive in practice. As a result, to overcome this shortcoming
we suggest another adaptive price parameter which is not dependent on channel gains
but relies only on SINR as:

wpi =
Ki

ξi
, ∀i ∈M (4.20)

where ξi is the SINR at the BNC node in WBAN i.

We evaluate the performance of different pricing schemes including the proposed
adaptive pricing schemes in the following section by simulations.

4.3 Performance Evaluation

Table 4.1 summarizes the parameters and their values used in the simulations. Each
plot is the average of 1000 runs of the simulation.

4.3.1 Pricing Mechanisms

Figures 4.3 and 4.4 show the average power and average throughput respectively versus
the price factor wpi for α = 1 and α = 2. As it can be seen, both power and throughput
drop when wpi increases. Although the performance of the system with α = 1 and α = 2
is similar for lower wpi , it shows some difference when wpi increases such that we see 2
µW less power and 130 kbps drop in throughput for α = 1.

Figures 4.5 and 4.6 show the average power and average throughput respectively as
functions of the number of WBANs in the system for different values of wpi and also
the two adaptive schemes (1) and (2) based on Eq. (4.19) and (4.20) respectively. As
it can be seen, for a given number of WBANs, decreasing the price factor wpi leads
to higher power levels and also higher throughput for both α = 1 and α = 2. The
graphs also reveal that the adaptive schemes (1) and (2) provide a moderate tradeoff
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Figure 4.3: Average transmission power versus the price factor wpi with 16 WBANs
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Figure 4.4: Average throughput versus the price factor wpi with 16 WBANs
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Figure 4.5: Average transmission power for different pricing schemes versus the number
of WBANs

between throughput and power for both α = 1 and α = 2. Moreover, it is indicated
that the adaptive scheme (2) which relies only on SINR performs almost similarly to
the adaptive pricing scheme (1) which is based on channel gains.

4.3.2 WPCG versus WFPC and ADP

In the following, we compare the performance of WPCG to WFPC and ADP power
controllers.

Figure 4.7 shows the average transmission power as a function of the number of
WBANs in the system. As it can be clearly seen, all the approaches decrease the
transmission power when number of WBANs in the system increases, leading to inter-
ference mitigation. WPCG surpasses ADP and uses almost 3 µW (i.e. about 12.5%
under sparse and 17.5% under dense conditions) less power. However it is still outper-
formed by WFPC which transmits at almost 6 µW (i.e. about 27% under sparse and
40% under dense conditions) less power than WPCG.

Figure 4.8 represents the average throughput versus the number of WBANs in the
system. The graphs illustrates that WPCG outperforms other approaches and provide
almost 50 kbps (i.e. about 10% under sparse and 20% under dense conditions) more
throughput than ADP and 100 kbps (i.e. about 20% under sparse and 40% under
dense condition) more throughput than WFPC.
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Figure 4.6: Average throughput for different pricing schemes versus the number of
WBANs
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Figure 4.7: Average transmission power versus the number of WBANs
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Figure 4.8: Average throughput versus the number of WBANs

Figure 4.9 demonstrates the average energy consumption per bit versus the number
of WBANs in the system, and it reveals how the tradeoff between throughput and
power is done. As it can be seen, WPCG ranks between WFPC and ADP. While
it is outperformed by WFPC by almost 25%, it surpasses ADP by 25% under dense
conditions

Finally, Figure 4.10 shows the number of iterations needed by each approach to
reach the steady state versus the number of WBANs in the system. It is readily
observed that WPCG strongly outperforms the other two approaches.

4.4 Conclusions

We proposed a non-cooperative power control game, namely WPCG, for inter-network
interference mitigation in WBANs, and considered a broader family of pricing func-
tions. We proved that there existed a Nash equilibrium in this game and proposed
the dynamic rules of the game based on the best response. Moreover, we suggested
an adaptive pricing mechanism to dynamically adjust the tradeoff between through-
put and power based on the channel gains and WBANs’ power budgets. This allows
WBANs to benefit from good channel conditions and high energy budgets, leading to
increased throughput, and on the other hand preventing them from increasing their
transmission power levels at bad channel conditions or low power budgets, thereby
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Figure 4.9: Average energy consumption per bit versus the number of WBANs
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extending their battery lifetimes as well as decreasing interference to other WBANs.
We also proposed another adaptive pricing method which did not rely on channel gains
for calculations and required only SINR which was simply available at digital receivers
at low cost, and it was showed by simulations to perform almost similarly to the first
adaptive pricing scheme which was based on channel gains. We also compared the per-
formance of WPCG to the previously proposed fuzzy power controller, namely WFPC,
as well as to ADP. The simulation results indicate that WPCG strongly outperforms
both WFPC and ADP in convergence while it is still overwhelmed by WFPC in terms
of energy consumption per bit by 25%. WPCG consumes almost 6 µW more power
than WFPC to produce 100 kbps more throughput.
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“The less we deserve good fortune, the more we hope for it.”

Moliere

5
Rate-Power Tradeoff - Reinforcement

Learning Approach

The power control game proposed in Chapter 4 does not require any off-line optimiza-
tion and using it, the tradeoff between rate and power can be adjusted adaptively.
However, the solution of the game. i.e. the NE, needs to be devised in advance. In
other words, the players of the game must implicitly know that they are playing the
same game and are trying to reach the same point in the solution space, namely the NE.
In an effort to make the power controller more adaptive and flexible, in this chapter,
we propose a novel power controller called WRLPC1, which employs Reinforcement
Learning (RL) to learn from experience and improve its performance. We compare the
performance of the proposed controller to the fuzzy and game-theoric power controllers
proposed in the previous chapters. Simulation results indicate that WRLPC outper-
forms the fuzzy and game-theoric power controllers in terms of the solution optimality
and provides a substantial saving in energy consumption per bit, while providing almost
the same amount of throughput.

5.1 Reinforcement Learning

In this section, a review of reinforcement learning will be presented. For more detailed
study, the reader is referred to the textbook [108] by Sutton and Barto.

Reinforcement learning is a branch of unsupervised learning algorithms which can

1WBAN RL-based Power Controller
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solve control problems without using a model. Agents in RL learn to reach a goal by
interacting with an environment in such a way that their long-term reward is maxi-
mized. For any state of environment, a given agent executes an action under a policy
π, that, in general, is a probability distribution over all actions available to the agent
at each state, and this action changes the current state of the environment to a new
one. The environment responds to this change by giving an immediate reward to the
agent. The learning agent tries to find an optimal policy π∗, which maps each state
of the environment to the action(s) that the agent should take in that state so as to
maximize its long-term rewards for any arbitrary starting state. The learned policy is
deterministic or pure if the probability of choosing one action is 1 while the probability
of choosing other actions is 0; otherwise it is called stochastic or mixed. The long-term
reward which the agent tries to maximize is expressed by a discounted summation of
immediate rewards r starting from time t over a time period T as:

Rt =
T∑
k=1

γk−1rt+k (5.1)

where γ is the discount factor and determines the level of far-sightedness of the agent.
As γ approaches 1, the agent struggles more to achieve a possible high long-term
reward at the expense of losing short-term rewards. For episodic tasks, i.e. the tasks
having a terminal state, T is the time of reaching the terminal state and in this case Rt

determines the episode reward. An episode is a sequence of 〈action-state-reward〉 triples
the agent experiences starting from an arbitrary state and ending at the terminal state.
However, for non-episodic tasks in which there is no terminal state, we have T = ∞
and γ must be less than one. In this study, we model our power control problem as an
episodic task where each episode ends when the transmission power vector of WBANs
converges to a stable solution, i.e. no WBAN changes its power anymore. In other
words, the terminal state is the convergence point.

An RL problem can be regarded as determining which states are the most favorable
according to the potential rewards of being in that state, obtained by evaluating the
values of the states, and consequently choosing actions that are most likely to lead
to the most valuable states. The value of each state is determined by the state value
function V π(s) which is the expectation of the episode reward if the agent follows policy
π, starting from state s:

V π(s) = E {Rt | st = s} =
∑
a

π(s, a)
∑
s′

P (s, a, s′) [R(s, a) + γV π(s′)] (5.2)

where π(s, a) is the probability of choosing action a in state s under policy π; P (s, a, s′)
is the transition probability for changing to state s′ by choosing action a in state s and
is given by:

P (s, a, s′) : S × A× S → σ = Pr {st+1 = s′ | st = s, at = a} (5.3)
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and R(s, a) is the expectation of immediate reward received for choosing action a in
state s:

R(s, a) : S × A→ R = E {rt+1 | st = s, at = a} (5.4)

Alternatively to V π(s), the action value function Qπ(s, a) explicitly denotes the
value of taking action a in state s and following policy π afterward:

Qπ(s, a) = E {Rt | st = s, at = a} =
∑
s′

P (s, a, s′) [R(s, a) + γV π(s′)] (5.5)

The Q values for the optimal policy π∗ are denoted by Q∗(s, a) and according to
the Bellman principle of optimality can be calculated by the following iteration:

Q∗t+1(st, at) = R(st, at) + γ
∑
s

P (st, at, s).max
a
Q∗t (s, a) , t = 0, 1, 2, · · · (5.6)

where Q∗t+1(st, at) is the next update for the optimal Q value of the current state st
and action at.

In this study, we will use deterministic rewards, i.e. R(s, a) = rt+1, where the value
of the next immediate rewards rt+1 is given by a reward function which will be defined
later in the next section.

Once we have Q∗(s, a), the greedy policy, which chooses the action with the greatest
Q value amongst all actions available in state s, gives us the optimal policy:

π∗(s) = argmax
a

Q∗(s, a) (5.7)

Acting under the greedy policy is known as exploitation because the agent is ex-
ploiting its knowledge to take actions.

However the computation of Q∗(s, a) from Eq. (5.6) requires the environment model
parameters, i.e. P (s, a, s′) and R(s, a), to be known. In reality, such perfect knowledge
of the environment is rarely available. Reinforcement learning addresses this problem
by estimating Q values without the need of the environment model. More precisely, a
RL agent discovers the environment model using a technique called exploration, where
the agent sometimes bypasses the exploitation and tries out a random action with the
hope of achieving a higher long-term reward at the expense of possibly losing some
short-term rewards. Interacting with the environment this way, the agent generates
experience, i.e. a history of tupples 〈a, s, r〉, which will be used by RL to estimate Q
values.

The policy used by an RL agent to generate experience is called the behavior policy,
which normally makes a tradeoff between exploration and exploitation. Such tradeoff
can be obtained by using an ε-greedy policy where with probability ε, the agent explores
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and with probability 1 − ε, it exploits, as seen in Eq. 5.8. The parameter ε is called
the exploration rate and its value should be decreased gradually over time to make
the ε-greedy policy hold the Greedy in the Limit with Infinite Exploration (GLIE)
property. This allows agents to benefit more from their experience as they learn more
and it is required for convergence to the greedy policy [109]. In our system, we decay
the exploration rate from 1 by a factor of 0.9 after each episode.

ε− greedy(Q, s) =

{
uniformly random action ,with probability ε

argmaxaQ
∗(s, a) ,with probability 1− ε (5.8)

where a is the action to be taken at state s.

Another popular behavior policy is Boltzmann exploration, where the probability
of choosing an action is given by

Prob {choosing action a} =
exp(−Q(s, a))/T∑
a′ − exp(Q(s, a′)/T )

(5.9)

where T is called temperature and initialized to a high value in order to do more
exploration initially, and it is decayed over time to do more exploitation as the agent
is learning more. At a very very low temperature, Boltzmann policy is equivalent to
the greedy policy.

RL estimates Q values using the following equation, enabling the agent to learn the
optimal policy directly through the estimated values without requiring the environment
model to be known.

Q̂t+1(st, at) = Q̂t(st, at) + αtδt (5.10)

where Q̂t(st, at) is the current estimation of Q∗ at the current state-action pair, (st, at);
0 < α ≤ 1 is the learning rate at time t; and δt is the temporal difference (TD) error
at time t, given by:

δt = rt+1 + γQ̂t(st+1, π̂(st+1))− Q̂t(st, at) (5.11)

where π̂(s) is the policy being estimated and improved, known as the estimation policy,
which generates the next action at+1 for the estimations.

The learning rate in Eq. (5.11) should meet the following conditions for Q̂ to
converge to Q∗:

∑
t

αt =∞ (5.12)∑
t

α2
t <∞
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1: procedure Q-learning
2: Initialize Q(s, a) arbitrarily for all s,a
3: for all episodes do
4: t← 0
5: Initialize st
6: repeat(for each step of the episode):
7: at ← ε-greedy(Qt, st) . behavior policy
8: Take action at, observe rt+1, st+1

9: at+1 ← maxaQt(st+1, a) . estimation policy
10: Qt+1(st, at)← Qt(st, at) + α[rt+1 + γQt(st+1, at+1)−Qt(st, at)]
11: at ← at+1; st ← st+1

12: t← t+ 1
13: until st is terminal
14: end for
15: end procedure

Figure 5.1: Q-learning algorithm

In our system, we decrease the learning rate by a factor of 0.99 after each iteration
within an episode and reset it to an initial value at the beginning of the next episode.

We should distinguish between the estimation policy, used for generating temporal
difference, and the behavior policy, used for generating experience. As a matter of
fact, they can be different and that is how different RL algorithms are obtained. If
the greedy policy is used for the estimations, we obtain a so-called off-policy algorithm
because the policy being used estimation is different from the behavior policy. The
resulting algorithm called Q-learning is shown in Figure 5.1.

If we use the behavior policy also for estimation policy, we obtain an on-policy
algorithm which is called Sarsa, as seen in Figure 5.3.

There are also some methods known as indirect RL algorithms where instead of
estimating Q values directly, they try to build up the environment model, i.e. P (s, a, s′)
and R(s, a), from observations and then solve Eq. (5.6) to find the optimal policy.
However, the applicability of these algorithms is very limited in practice.

An impacting factor in RL is credit assignment which deals with propagating re-
wards backward in time and space (across state-action pairs) to update the Q values
of the visited state-action pairs while agents are learning forward in time. Q-learning
and Sarsa are very hasty and use a one-step update or backup which is based on only
the next immediate reward and update only the Q value of the last visited state-action
pair. These algorithms with zero patience are referred to as TD(0). On the contrary,
algorithms like Monte-Carlo in which the agent waits until the end of episode to create
a n-step backup (based on the immediate rewards of the previous n steps) to update
the Q values of all visited state-action pairs during the episode, are called TD(1). The
drawback is that the agent does not benefit from its experience and acts blindly until
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1: procedure Sarsa
2: Initialize Q(s, a) arbitrarily for all s,a
3: for all episodes do
4: t← 0
5: Initialize st
6: repeat(for each step of the episode):
7: at ← ε-greedy(Qt, st) . behavior policy
8: Take action at, observe rt+1, st+1

9: at+1 ← ε-greedy(Qt, st+1) . estimation policy
10: Qt+1(st, at)← Qt(st, at) + α[rt+1 + γQt(st+1, at+1)−Qt(st, at)]
11: at ← at+1; st ← st+1

12: t← t+ 1
13: until st is terminal
14: end for
15: end procedure

Figure 5.2: Sarsa algorithm

the end of episodes. The general case can be considered as TD(λ), with λ being the
eligibility trace parameter which allows a tradeoff between TD(0) and TD(1). In order
to practically utilize this general credit assignment, an eligibility trace, a record of the
occurrence of past visits, is used as:

et+1(s, a) =

{
1 if st = s and at = a
γλet(s, a) otherwise

(5.13)

The eligibility trace for each state-action pair is initialized to 0 at the beginning of
each episode. Whenever a state-action pair is visited, its eligibility trace is set to 1, and
at each iteration, it is decayed by a factor of γλ. If a state-action pair is never visited,
its eligibility trace will remain zero which means that its Q value will not change. When
using an eligibility trace, all state-action pairs must be updated at each iteration where
the amount of change for each state-action is proportional to its eligibility trace. The
update rule in Eq. (5.10) will change as follows when eligibility trace is used:

∀s, a : Q̂t+1(s, a) = Q̂t(s, a) + αtδtet(s, a) (5.14)

In our system, with the Q-learning algorithm, we do not use the eligibility trace
whenever the next action is determined by exploration and also that all the eligibility
trace values et(s, a) should be reset to zero. This is because after exploration, the next
backups will no longer have any necessary relationship to the estimation policy.

Calculating Q values by using either Eq. (5.10) or (5.14), however, requires keeping
them in tables with size |S| × |A|. The curse of dimensionality problem can arise
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1: procedure Q-learning (λ)
2: Initialize Q(s, a) arbitrarily for all s,a
3: for all episodes do
4: e(s, a)← 0 for all s,a
5: t← 0
6: Initialize st, at
7: repeat(for each step of the episode):
8: Take action at, observe rt+1, st+1

9: at+1 ← maxaQt(st+1, a)
10: a∗ ← ε-greedy(Qt, st+1)
11: et(st, at)← 1
12: for all s, a do
13: Qt+1(s, a)← Qt(s, a) + α[rt+1 + γQt(st+1, at+1)−Qt(st, at)]et(s, a)
14: if at+1 = a∗ then . exploiting?
15: et(s, a)← γλet(s, a)
16: else . exploring
17: et(s, a)← 0
18: end if
19: end for
20: at ← at+1; st ← st+1

21: t← t+ 1
22: until st is terminal
23: end for
24: end procedure

Figure 5.3: Q-learning algorithm with eligibility trace

when we are faced with problems with a large state-action space, which slows down
the agent’s learning markedly. This can simply happen when the state variables can
take a very large or infinite —when they are continuous— number of possible values.
In this case even an exact representation of the Q-function in a tabular format is not
possible and we need to estimate them by using an approximation. An approximator
can be denoted by an n-dimensional mapping

F (θ) : Rn → ψ (5.15)

where θ is the vector of approximator parameters, Rn is the approximator parameter
space, and ψ is the space of Q-functions.

Instead of learning Q-functions directly, agents now try to learn the approxima-
tor parameter vector θ which provides a compact representation of the corresponding
approximate Q-function as follows:

Q̂(s, a) = [F (θ)] (s, a) (5.16)
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1: procedure Sarsa(λ)
2: Initialize Q(s, a) arbitrarily for all s,a
3: for all episodes do
4: e(s, a)← 0 for all s,a
5: t← 0
6: Initialize st, at
7: repeat(for each step of the episode):
8: Take action at, observe rt+1, st+1

9: at+1 ← ε-greedy(Qt, st+1)
10: et(st, at)← 1
11: for all s, a do
12: Qt+1(s, a)← Qt(s, a) + α[rt+1 + γQt(st+1, at+1)−Qt(st, at)]et(s, a)
13: et(s, a)← γλet(s, a)
14: end for
15: at ← at+1; st ← st+1

16: t← t+ 1
17: until st is terminal
18: end for
19: end procedure

Figure 5.4: Sarsa algorithm with eligibility trace

This remarkably reduces the problem complexity because normally the parameter
space has many fewer dimensions than the space of Q-functions, i.e. n << |S|. Another
advantage of using the approximation is the notion of generalization, which enables the
agent to make reasonable decisions in the states which have not been encountered so far,
only by approximating from the nearby states experienced before. This can improve
decision making and also convergence speed. For further study of using approximations
in RL we refer the reader to [11].

5.2 Design Considerations

5.2.1 Reward Function

A reward function is used by RL agents to calculate the immediate reward of taking
an action. It reflects the goal of the task being optimized either implicitly or explicitly
and can greatly impact the performance of the system in terms of convergence and
optimality of the solution. Designing a good reward function which well targets the goal
can be sometimes very hard and it is still an open problem. Recently, some researchers
studied (e.g. in [110]) the approach of automatically constructing the reward function
by the agent itself either from an explicit given fitness function induced directly by the
goal with the aid of evolutionary search techniques such as genetic algorithms, or from a
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set of expert demonstrations in the absence of an a-priori given reward function, known
as apprenticeship learning. Although these approaches appear to be very promising,
their application in the context of WBANs is currently infeasible because they are too
resource-consuming which does not suit the very resource-limited WBAN nodes.

In order to motivate how the reward function can affect convergence, let us assume
the WBANs in our system are intended to achieve the minimum energy consumption
per bit. One may suggest the following reward function which is the negative of en-
ergy consumption per bit in Joules/bit as a result of an explicit reflection of the goal
assumed:

r
(t)
i = −p

(t)
i

c
(t)
i

(5.17)

where p
(t)
i is the transmission power level of WBAN i at iteration t and c

(t)
i is the

throughput of WBAN i at iteration t. Each agent tries to maximize its episode reward
which is:

R
(t)
i =

T∑
k=t+1

γk−t−1i r
(t)
i (5.18)

At each state, this system can be thought of as a non-cooperative game with the
set of RL agents M = {1, · · · ,m} as players of the game, the transmission power levels

p
(t)
i as strategies and Q values as payoffs, bearing in mind that Q values are technically

the expected episode reward R
(t)
i . The Nash Equilibrium (NE) is given by a strategy

profile of the best response p
(t)
i of each player i to all the other players strategies p

(t)
−i.

The best response of player i in the game defined is the root of the following equation:

∂R
(t)
i (pi,p−i)

∂p
(t)
i

∣∣∣∣
p
(t)
i =p

∗(t)
i

= 0 (5.19)

Using Eq. (5.18) and (5.17), we get:

T∑
k=t+1

γk−t−1i

 log(1 + ξ
(k)
i )− p∗(k)i

∂ξ
(k)
i

∂p
(k)
i

(
1

1+ξ
(k)
i

)
log2(1 + ξ

(k)
i )

 = 0 (5.20)

which gives:

T∑
k=t+1

γk−t−1i

 log(1 + ξ
(t)
i )− ξ

(t)
i

1+ξ
(t)
i

log2(1 + ξ
(t)
i )

 = 0 (5.21)
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because we have:

p
∗(k)
i

∂ξ
(k)
i

∂p
(k)
i

= ξ
(k)
i (5.22)

Defining y
(k)
i = 1 + ξ

(k)
i simplifies Eq. (5.21) to:

T∑
k=t+1

γk−t−1i

 log(y
(t)
i )− 1

y
(t)
i

− 1

log2(y
(t)
i )

 = 0 (5.23)

Since the discount factor γi and y
(k)
i are always non-negative, the above summation

can become zero only when the nominator is zero. This gives:

y
(t)
i · log(y

(t)
i ) = y

(t)
i − 1 (5.24)

The root of this equation is given by the Lambert W function as y
(k)
i = −W (−e−1)

which is equal to one and this gives us the best response of player i as: p
∗(k)
i = 0, k ∈

[t + 1, T ]. This simply means to keep the sensor nodes switched off which does not
seem a practical solution. In particular, with the non-cooperative agents which are
interested to maximize their own rewards selfishly, this reward function does not admit
a NE at which power levels stabilize. However, a stable solution may be attained by
some cooperation between the agents which is not of our interest.

Now we revise the reward function as follows:

r
(t)
i =

c
(t)
i

Cmaxi

− wp
p
(t)
i

Pmaxi

− 1 (5.25)

where c
(t)
i is is the throughput of WBAN i at iteration t, Cmaxi is the maximum channel

capacity calculated at zero interference used for normalization; p
(t)
i is the transmission

power level of WBAN i at time t, Pmaxi is the maximum allowable transmission power
of WBAN i; and, wpi is the price factor.

Using the same approach stated earlier, one can calculate the best response of player
i as:

p
∗(t)
i =

PmaxiB log(2)

wpCmaxi

− 1

η
(t)
i

(5.26)

where η
(t)
i is the sensitivity of the SINR at WBAN i.

A change in η
(t)
i is a consequence of a change in the arrangement of WBANs, the

transmission power levels of other WBANs and channel gains. Therefore, as WBANs
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move around, NE in the system changes and the RL agents are faced with learning a
non-stationary task with a moving terminal state. However we show through simulation
that once they learn to reach the NE in an arbitrary arrangement, they are able to find
the NE for the next given arrangements.

5.2.2 Impact of Immediate Rewards

Another important factor which can affect convergence and the optimality of solution
is the range of immediate reward values. Considering rmin

i < ri < rmax
i , three cases can

happen:

1. rmax
i > rmin

i ≥ 0: In this case the terminal state should be rewarded explicitly
or a penalty should be considered for not being at the terminal state at each
iteration otherwise the convergence speed may deteriorate. This is due to the
fact that the episode reward is a discounted summation of these non-negative
immediate rewards over an episode, and in this case, the longer the episode is,
the greater the episode reward will be, which may be preferred by agents rather
than reaching a solution with better quality in less number of iterations.

2. rmax
i ≥ 0 > rmin

i : In this case also a special reward for reaching the terminal
state or a penalty for not being at the terminal state at each iteration should be
considered otherwise agents may compromise the optimality of the solution by
longer episodes and not have any incentive to find a solution as fast as they can,
particularly when the discount factor is large.

3. rmin
i < rmax

i < 0: In this case convergence is implicitly considered by the reward
function and the terminal state is not necessarily needed to be rewarded. This
case is also suitable for problems with moving terminal states such as our system
where the terminal state is not known a-priori to be rewarded by the system
designer, or it should not even be rewarded at all because it may change each
time and does not remain the same state. The subtracting term (-1) in the reward
function defined in Eq. (5.25) ensures we have negative immediate rewards in
our system. In all three cases, the immediate rewards should be bounded for the
RL algorithm to converge to the optimal policy.

5.2.3 Impact of Initial Q Values

Another factor which may affect the convergence and the optimality of the solution is
the initial values of the Q-table. It can be easily shown that the episode reward lies in
the following range:

rmin
i

1− γ i
< R

(t)
i <

rmax
i

1− γ i
(5.27)
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If Q values are initially set to a value greater than the upper bound, this will
lead to optimistic initialization [111], which promotes the exploration early in the
learning phase because untried actions are always indicated to be better than the
already tried ones. This can improve the optimality of the solution due to providing
a broad exploration at early stages of learning, but can lead to a poor convergence
because it may take quite a lot of time for the algorithm to get rid of optimism,
propagate actual reward of actions, and converge to a stationary policy. In this study,
we employ the optimistic initialization by setting the Q values to zero initially.

5.2.4 State Representation

Agents in RL make decisions based on only the current observation of the reinforce-
ment signal (the next state and immediate reward) regardless of the sequence of past
observation triples 〈ak, sk, rk〉 , k = 1, 2, · · · , t. This means that RL is potentially able
to solve only tasks where the state signal has the property to be a representative of
the history of agents past interactions with environment, namely the Markov property.
As a result, the state definition in RL problems is very important because the current
state should summarize the previous observations in a compact and informative way
to provide the agent with a good basis for predicting subsequent states and future
rewards as well as selecting actions. An improper state representation can introduce
non-Markov states and dramatically degrade the efficiency of the learning or even not
leading to a solution. In our power control problem, as Eq. (5.26) shows, the NE in
the system is a function of the sensitivities of the SINR to transmission power level:

P∗(t) = f (η(t)) (5.28)

η(t) = (η
(t)
i )mi=1 (5.29)

This intuitively suggests to use the sensitivity of the SINR to the transmission
power level as a Markov state variable because the power vector P∗(t) is dependent
on only the current η(t) regardless of the history of WBANs’ movements, power levels

and channel gains. We define the tupple (p
(t)
i , η

(t)
i ), i.e. the current transmission power

of BN i and the value of the sensitivity of the SINR at BNC i as the state of the
environment from the view point of WBAN i at time t.

5.2.5 Approximation

Since in our system the state variables, i.e. the transmission power and the sensitivity
of SINR, are continuous, we should use approximation to cope with the curse of dimen-
sionality issue. To this end, we use Radial Basis Functions (RBF) [112] to approximate
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Q-functions. RBF approximators lie in the category of linear approximators, as seen
in the following:

ŷ(t) =
N∑
i=1

θiφi (‖x− xi‖) (5.30)

where ŷ(t) is the function to be approximated and is represented as a sum of N radial
basis functions φ(.), each associated with a different center xi, and weighted by an
appropriate coefficient θi. In this study, we use Gaussian shape basis functions as:

φ(r) = exp(−r/b)2, r = ‖x− xc‖ (5.31)

where xc and b are the center and the width of the Gaussian basis function respectively;
and r is the Euclidean distance from the center point.

5.3 Performance Evaluation

Each run of the simulation has two phases which are a learning phase and a testing
phase. For each scenario of a certain number of WBANs in the system, the learning
phase starts with a random initial arrangement of the WBANs followed by running a
number of episodes until the agents learn to find the optimal solution in the least num-
ber of iterations. At each arrangement, an episode starts with a random initial power
vector and finishes when the power vector converges to a stable point, i.e. no WBAN
changes its power anymore. In the testing phase, however, WBANs move around the
room according to a random walk model and they just employ their knowledge to reach
the solution and at the same time improve their policy. During the learning phase, the
exploration rate is decayed from 1 by a factor of 0.9 after each episode. However, dur-
ing the testing phase in which the environment (arrangement, channel, power levels)
changes, in order to let agents adapt to the environment changes and be able to find
the optimal solution, the exploration rate is kept at a fixed but small value, namely
0.05, that is 5% exploration. The learning rate is set to an initial value at the beginning
of each episode and is decreased by a factor of 0.99 after each iteration to satisfy Eq.
(5.12) for the sake of convergence.

Table 5.1 summarizes the parameters and their values used in the simulations.

5.3.1 Effects of RL Parameters

Figures 5.5 and 5.6 show the performance of RLPC with respect to the initial values
of the learning rate (alpha) for three scenarios of 4, 16 and 32 WBANs in the system.
Figure 5.5 represents the optimality of solution in terms of the average energy consump-
tion per bit. As it illustrates, the energy consumption per bit decreases dramatically
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Table 5.1: Simulation Parameters and Values
Parameter Name Symbol Parameter Value

Bandwidth B 300 kHz
Noise ni -174 dBm/Hz
Maximum Power Pmaxi -16 dBm

Initial Exploration Rate ε0 1

Exploration Rate Decay 0.9

Initial Learning Rate α0 0.7

Learning Rate Decay 0.99

Discount Factor γ 0.1

Eligibility Trace Parameter λ 1

Number of RBF approximators (per each state variable) 5

Number of action (power) levels 10

when alpha increases from 0 and almost remains unchanged for alpha greater than
0.5. Figure 5.6 demonstrates the number of iterations needed to converge to a stable
solution. It indicates that the convergence improves as alpha increases and WBANs
find the solution in less number of iterations. We conclude that both the optimality
and convergence improve by using greater values for the initial learning rate.

The reason why the initial value of the learning rate affects the performance of the
system is explained by the fact that at the begining of each episode in the training
phase, the learning rate is reset to the initial value. Therefore it determines to what
extent RL agents learn from early actions taken at the beginning of each episode. The
figures reveal that the early actions of each episode are very important and learning
more from them, considerably improves the performance of the system.

Figures 5.7 and 5.8 represents the performance of the system with respect to the
eligibility trace parameter (lambda) for three scenarios of 4, 16 and 32 WBANs in the
system. As seen in Figure 5.7, the quality of the solution does not show any dependency
to lambda because energy consumption per bit does not change with lambda and is
almost constant for the three scenarios. Figure 5.8 illustrates that convergence improves
as lambda increases. Increasing the eligibility trace parameter, however, increases the
amount of calculations which has not been considered in our system model because we
are assuming that BNC nodes run the power control algorithms. In the systems where
BN nodes are responsible for running the power control algorithm, this calculation
overload should be also taken into account.
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Figure 5.5: The average energy consumption per bit versus the initial learning rate

Figures 5.9 and 5.10 represents the performance of the system with respect to the
discount factor (gamma) for three scenarios of 4, 16 and 32 WBANs in the system.
As seen in Figure 5.9) while energy consumption per bit remains almost unchanged
for small values of gamma up to 0.5, it gradually starts to increase after that and it
increases substantially once gamma becomes greater than 0.8. Figure 5.10 also shows
that convergence also deteriorates and WBANs need more iterations to converge to
the solution when gamma increases. This suggests that the best value for the discount
factor in our system is 0 which makes the agent completely near-sighted in terms of
maximizing rewards. However this will also disable the eligibility trace (see Eq. (5.13)).

5.3.2 WRLPC versus WPCG and WFPC

Figure 5.11 represents the average power as a function of the number of WBANs in the
system for different controllers. As it can be clearly seen, WRLPC transmits at the
least transmission power compared to the other two approaches. While the fuzzy power
controller, WFPC, transmits at almost 6 µW less power than WPCG, the RL-based
power controller, WRLPC, consumes 10 µW less power than WPCG and almost 3 µW
less power than WFPC for transmissions.



90 Rate-Power Tradeoff - Reinforcement Learning Approach

Figure 5.6: The average number of iteration versus the initial learning rate

Figure 5.7: The average energy consumption per bit versus the eligibility trace parameter
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Figure 5.8: The average number of iteration versus the eligibility trace parameter

Figure 5.9: The average energy consumption per bit versus the discount factor
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Figure 5.10: The average number of iteration versus the the discount factor
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Figure 5.11: The average transmission power level versus the number of WBANs
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Figure 5.12: The average throughput versus the number of WBANs

Figure 5.12 shows the average throughput versus the number of WBANs in the
system. The graph illustrates that WRLPC is slightly outperformed by WFPC, while
both are beaten by WPCG. WRLPC delivers almost 10 kbps (i.e. around 2% under
sparse and 5% under dense conditions) less throughput than WFPC and 110 kbps
(i.e. around 15% under sparse and 30% under dense conditions) less throughput than
WPCG. However, WRLPC saves a notable amount of power at the expense of sacri-
ficing such throughput. In order to find out how each controller adjusts the tradeoff
between power and throughput, we should look at the energy consumption per bit.

Figure 5.13 shows the average energy consumption per bit in nJoul/bit versus the
number of WBANs in the system. As it can be clearly seen, WRLPC consumes the
least energy per bit and strongly surpasses WPCG and WFPC. For all the controllers,
the energy consumption per bit increases as the number of WBANs in the system goes
up which can be explained by the increased inter-network interference leading to a
decreased SINR. The rate of this rise is almost 1.2 nJoul/bit per WBAN for WPCG,
0.3 nJoul/bit per WBAN for WFPC and 0.07 nJoul/bit per WBANs for WRLPC.
The energy consumption of WRLPC is only 60% of that of WPCG and 75% of that
of WFPC under sparse condition, and these figures even drop and reach 40% and
50% respectively under dense condition. This concludes that WRLPC reduces energy
consumption per bit by 40%-60% compared to WPCG, and by 25%-50% compared to
WFPC.

Figure 5.14 shows the number of iterations needed by each approach to reach the
steady state versus the number of WBANs in the system. It is noticed that WRLPC
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Figure 5.13: The average energy consumption per bit versus the number of WBANs

does not converge as fast as WPCG and WFPC and is outperformed strongly by them.
This is the only drawback of the reinforcement learning approach compared to the fuzzy
and game approaches.

Finally, the average lifetime of WBANs in days versus the number of WBANs
in the system is shown in Figure 5.15, given that they transmit continuously. Note
that we assume each BN is equipped with a 90 mWh Lithium coin battery and only
transmission power is considered for energy consumption. We can vividly see that the
WBANs featured with WRLPC survive longer than those with WPCG and WFPC.
The average WBAN’s lifetime with WRLPC is roughly 4 times longer than that of
with WPCG and 1.3 times longer than that of with WFPC.

Discussion on the Results

The improvement of WRLPC over WPCG and WFPC is basically due to two factors.
Firstly, WRLPC maximizes an agents rewards by taking the states of the environment
into consideration. Secondly its dynamic behavior helps agents learn from their past
experience and increase their knowledge of the environment to make better decisions.
Game theory, genetic fuzzy systems and reinforcement learning are three different tools
which have been extensively used in the machine learning area. The common concept
between these techniques is having agents take the best actions to reach a goal with
the most reward. Although all these techniques contribute to better decision making,
they look at the problem from different points of view and try to solve the problem
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Figure 5.14: The average number of convergence iterations versus the number of WBANs
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Figure 5.15: The average network lifetime versus the number of WBANs
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using different approaches.

WPCG is a power controller based on the game theory where agents take the actions
according to the best response strategy, which will maximize their reward function and
eventually settle the game at the Nash equilibrium point. However, the best response is
calculated directly from the reward function. As a result, the reward function implicitly
has all the information agents need to know and it is the only thing which is directly
taken into account by them to make decisions and reach the NE. In other words,
agents in WPCG control their transmission power level regardless of the direct use of
the current environment state. Although the states of the environment can have some
effects on the value of the reward function, agents do not make use of them directly.
Moreover, the NE itself is not necessarily the optimal solution but just a stable solution.

On the other hand, agents in WFPC, the fuzzy power controller, make decisions
regarding only the current state of environment described by SINR, interference power
level and transmission power level which are the controllers inputs. Although WFPC
has been optimized by genetic algorithms to maximize a reward function during the
design stage, agents do not consider the reward function afterward and make decisions
only based on the current state of environment.

In contrast to WPCG and WFPC, agents in WRLPC, not only try to maximize
their long-term rewards, but also take into account the current state of the environment
directly to choose actions. Furthermore, WRLPC is quite dynamic in the sense that
agents learn constantly from their experience and improve their policy to make better
decisions, while WPCG and WFPC suffer from the lack of such a dynamic learning
mechanism and everything needs to be considered accurately in advance during the
design stage. Another advantage of WRLPC over WPCG and WFPC is its adaptability
to unforeseen situations which may happen in practice and have not been modeled
during the design stage. Due to its dynamic behavior, WRLPC is capable of learning
from experience and adapting to any changes gracefully.

5.3.3 Various RL Algorithms

Figure 5.16 shows the average transmission power level of WBANs with respect to the
number of WBANs in the system. As can be seen, all the RL-based power controllers
achieve lower power levels than the counterpart game. The difference between power
levels in Sarsa, which shows the lowest power level among the controllers, and the
counterpart game is roughly 6 dBm for all the system densities. However, all the
power controllers behave similarly and decrease power levels when the system density
increases in order to control the interference.

Figure 5.17 depicts the average throughput of WBANs with respect to the num-
ber of WBANs in the system. As can be seen, the counterpart game outperforms
the RL-based power controllers and delivers almost 100 kbps more throughput. How-
ever, the RL-based approaches perform almost the same and still deliver a reasonable
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Figure 5.16: Average transmission power versus the number of WBANs

throughput. Figures 5.16 and 5.17 reveal that the RL-based power controllers sacrifice
throughput to some extent for less power consumption. In order to find out how good
this tradeoff is, we should have a look at Figure 5.18.

Figure 5.18 represents the average energy consumption of WBANs for transmitting
one bit in nJouls/bit with respect to the number of WBANs in the system. The graphs
show that the RL-based approaches perform almost the same and all outperform the
counterpart game by achieving a less energy consumption per bit for any system density.
However, for all the approaches, the energy consumption per bit increases when the
number of interfering WBANs increases in the system.

Figure 5.19 compares the convergence time (the number of iterations) to reach NE
with respect to the number of WBANs in the system. As expected, the counterpart
game outperforms the RL-based approaches. This is due to the fact that the agents in
the counterpart game are aware of the NE and are designed to reach it. However, the
ignorance of the agents about a pre-designed NE in the RL-based power controllers
conveys an important advantage and that is their ability to adapt to dynamic changes
of the environment because they are not biased to any pre-designed NE but designed
to find an optimal solution by interacting with the environment.

Finally, Figure 5.20 demonstrates the average lifetime of WBANs versus the number
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Figure 5.17: Average throughput versus the number of WBANs

of WBANs in the system. As it can be seen, WBANs with the RL-based power con-
trollers live longer than those with the counterpart game power controller. This means
that the proposed RL-based power controllers save energy more than the counterpart
game.

5.4 Conclusions

We proposed a lightweight power controller based on reinforcement learning, namely
WRLPC, to mitigate inter-network interference in WBANs. WRLPC learns from ex-
perience and improves its performance.

We showed through simulation that the proposed RL-based power controller pro-
vided a better tradeoff between throughput and power leading to 3 µW less power
consumption for sacrificing 2%-5% of throughput compared to WFPC, and saving 6
µW of power for sacrificing 15%-30% of throughput compared to WPCG. Moreover,
WRLPC was also able to improve energy consumption per bit by 40%-60% compared
to WPCG, and by 25%-50% compared to WFPC. However, it was outperformed by
WFLPC and WPCG in terms of convergence.

We also investigated the impact of reinforcement learning key factors including the
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Figure 5.18: Average energy consumption per bit versus the number of WBANs

reward function, discount factor, learning rate and eligibility trace parameter on the
performance of the system in terms of convergence and optimality. It was showed that
increasing the learning rate could improve both convergence and energy consumption
per bit. While increasing the eligibility trace parameter does not affect energy con-
sumption per bit, it improves convergence, and finally, increasing the discount factor
aggravates both energy consumption per bit and convergence.

Moreover, we evaluated and compared the performance of the different RL algo-
rithms including Q-learning, sarsa and OLSPI to that of a counterpart non-cooperative
game. Although RL-based approaches were outperformed by the counterpart game in
terms of convergence, they were able to save more energy. More importantly, WBANs
in the RL-based approaches do not need to be aware of a pre-designed Nah equilibrium
as opposed to the game. This increases their adaptability to the dynamic changes of
the environment.
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Figure 5.19: Average convergence iterations versus the number of WBANs

Figure 5.20: Average network lifetime versus the number of WBANs



“Make things as simple as possible, but not simpler.”

Albert Einstein

6
Minimizing Power for Target Rate

In the previous chapters, we proposed three approaches which made a tradeoff between
data rate and power. However, there are some medical applications with emergency
traffic such as a surgery operation or ICU/CCU treatments, which require a certain
level of QoS to be guaranteed. In this chapter, we take the non-tradeoff approach and
aim to meet QoS requirements of WBANs at any cost. Although, the optimization
problem we consider for this scenario is a classic optimization problem which has been
considered before (e.g. in [8]) and also a distributed solution for it has been proposed
by Foschini in [54], we present a different approach and formulation for solving this
problem and employ the Jacobi method for fixed-point calculations, which leads to an
asynchronous distributed power control algorithm.

6.1 Problem Formulation

We assume that each WBAN in our system demands to achieve a target (data) rate
to meet its QoS requirements. For the sake of notational simplicity and without any
loss of generality, we assume that the target data rate is the same for all WBANs and
is denoted by rmin.

We formulate the power control problem as an optimization problem where the goal
is to minimize the total power consumption in the system subject to the target data

101
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rate constraint. The optimization problem is defined as follows:

min
p∈P

f(p) =
m∑
i=1

pi (6.1)

subject to ci ≥ rmin ,∀i
variables p

where P = {×Pi}∀i∈M , Pi = [0, Pmaxi ]; and ci is the throughput of WBAN i given by
Eq. (3.1).

Proposition 4.1: The optimization problem defined by (6.1) is convex.

Proof: Since the objective function f(p) is linear and P in the regional constraint is
a convex subset on Rm, for the optimization problem to be convex, just the inequality
constraint should be convex. We can rearrange the data rate constraints as follows:

ci ≥ rmin

⇒ B log(1 +
hiipi∑m

j 6=i hjipj + ni
) ≥ rmin

⇒ 1 +
hiipi∑m

j 6=i hjipj + ni
≥ 2rmin/B

⇒ hiipi − (2rmin/B − 1)
m∑
j 6=i

hjipj − (2rmin/B − 1)ni ≥ 0

⇒ gi(p) ≥ 0 (6.2)

The new constraint function obtained, gi(p), is an affine function with respect to p
and the constraints in Eq. (6.2) constitute a system of m inequalities which are linear
in p. This concludes that the optimization problem defined by Eq. (6.1) is convex.

�

The optimization problem with the new constraints obtained is as follows:

min
p∈P

f(p) =
m∑
i=1

pi (6.3)

subject to gi(p) ≥ 0 , ∀i
variables p
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6.2 Problem Solution

6.2.1 Centralized Solution

As the problem at hand is a convex constrained optimization problem, we can em-
ploy the method of Lagrange multipliers to obtain a solution which can be the global
optimum solution under some conditions which will be stated later. The Lagrangian
function for the optimization problem is given by:

L(p,u) = f(p)− uT · g(p) (6.4)

=
m∑
i=1

pi −
m∑
i=1

ui[hiipi − (2
rmin
B − 1)

m∑
j 6=i

hjipj − (2
rmin
B − 1)ni]

where g = (g1, . . . , gm)T is the vector of the new affine constraint functions and
u = (u1, . . . , um)T ∈ U is the vector of the Lagrange multipliers from the convex subset
U = {u ∈ Rm | ui ≥ 0,∀i ∈M}.

The Lagrangian function L(p,u) can be thought of as the payoff function of a two
player zero-sum game where p ∈ P is the strategy of the first player P1 and u ∈ U is
the strategy of the second player P2, being chosen independently. P1 pays an amount
of L(p,u) to P2 (or equivalently P1 gains that from P2 if L(p,u) < 0). P1 is concerned
with making a large payoff to P2, so trying to minimize it, and on the other hand, P2
is worried about receiving a small payoff from P1, so willing to maximize it.

In the worst case, P1 expects that his choice p would lead to a payoff of at most
L∗(p) = supu∈U L(p,u) to P2. Minimizing this, P1 is faced with a so-called min-max
optimization problem as follows, known as the Lagrange primal problem:

min
p∈P

sup
u∈U
{L(p,u)} (6.5)

On the other hand, if P2 chooses u, then in the worst case the payoff he receives
is at least L∗(u) = infp∈P L(p,u) from P1. Maximizing this, P2 deals with solving a
so-called max-min optimization problem, referred to as the Lagrange dual problem:

max
u∈U

inf
p∈P
{L(p,u)} (6.6)

The dual problem is often easier to solve than the primal one because L∗(u) is
always a convex function of u. The solution of the dual problem is given by ∇pL = 0
and ∇uL = 0, which gives the following two systems, each with m equations:
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
∂L/∂p1 = 0

...
∂L/∂pm = 0


∂L/∂u1 = 0

...
∂L/∂um = 0

Taking partial derivations from Eq. (6.4) with respect to pi yields the following
system: 

h11u1 − (2rmin/B − 1)
∑m

j 6=1 h1juj = 1
...

hmmum − (2rmin/B − 1)
∑m

j 6=m hmjuj = 1

(6.7)

Writing the linear system of equations given by Eq. (6.7) in the matrix form, we
get:

Hd · u− (2rmin/B − 1)Hd0 · u = 1 (6.8)

where 1 = (1, ..., 1)T; Hd = [hdij ] is a diagonal matrix with diagonal elements of the
channel matrix, and Hd0 = [hd0ij ] is the channel matrix having the diagonal elements
set to zero as follows:

hdij =

{
hij if i = j
0 else

hd0ij =

{
0 if i = j
hij else

This gives us the optimal Lagrange multipliers u∗ as:

u∗ =
[
Hd − (2rmin/B − 1)Hd0

]−1 · 1 (6.9)

Similarly, taking partial derivations from Eq. (6.4) with respect to ui gives:
h11p1 − (2rmin/B − 1)

∑m
j 6=1 hj1pj = (2rmin/B − 1)n1

...
hmmpm − (2rmin/B − 1)

∑m
j 6=m hjmpj = (2rmin/B − 1)nm

(6.10)

Writing this in the matrix form, we get:

Hd · p− (2rmin/B − 1)Hd0
′ · p = (2rmin/B − 1)n (6.11)

where n = (n1, . . . , nm)T is the noise vector. Finally, we can get the optimal solution
of the dual problem, p∗ = (p∗i )

T
∀i∈M , as:

p∗ =
[
Hd − (2rmin/B − 1)Hd0

′]−1 · (2rmin/B − 1)n (6.12)

�
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Duality Gap

Let x∗ and y∗ denote the solutions of the Lagrange primal and dual problems respec-
tively for a given optimization problem. According to the weak duality theorem [113],
the solution of the dual problem provides a lower bound on the solution of the primal
problem, i.e. x∗ ≥ y∗. The difference between the solutions x∗ − y∗ is called duality
gap. The case x∗ = y∗ is known as strong duality and happens only if the optimization
problem meets some criteria called sufficient conditions for the strong duality. If the
strong duality holds for an optimization problem, there is no duality gap between the
primal and dual solutions which means that once the solution of the dual problem is
found, provided that it is finite, the solution of the primal problem is attained.

Proposition 4.2: The duality gap in the optimization problem defined by (6.3) is zero.

Proof: According to the Slater theorem [113], if there exists a feasible solution for a
convex optimization problem which normally satisfies affine inequality constraints and
strictly satisfies nonlinear inequality constraints, then the strong duality holds. The
optimization problem at hand is convex and the solution of the dual problem is given
by Eq. (6.12). Assuming that p∗ exists and is finite, it is a feasible solution for the
optimization problem, i.e. satisfies the inequality constrains g(p). Since the inequality
constraints are all affine, the strong duality is concluded.

�

As a result, the solution given by Eq. (6.9) is also the global optimum solution
of the primal problem and hence p∗ is the optimum power allocation for WBANs in
the system which minimizes the total power consumption while satisfying the QoS
constraints across the whole system.

Having calculated p∗, we need to apply the regional constraint as the power alloca-
tion vector should lie in P . The final power allocation would therefore be element-wise
as:

p∗i ← min (Pmaxi ,max (0, p∗i )) (6.13)

6.2.2 Distributed Solution

The optimization problem at hand is inherently a centralized problem in the sense that
all the WBANs aim to minimize the total power consumption in the system as opposed
to minimizing individual power consumption. The solution given by Eq. (6.12) is also
a centralized approach because firstly the optimum power allocation for all WBANs in
the system is to be calculated in one place as the vector p∗, and secondly the global
information of the channel matrix and the noise vector is needed for this calculation.
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However, multiple WBANs usually operate with no central arbiter existing and
operating between different WBANs on which the power control algorithm can run.
Therefore, the centralized solution proposed is not directly applicable to WBANs —it
is very useful as a benchmark though, and the problem needs to be addressed distribu-
tively.

In the first effort to solve the problem distributively, let us decompose and decouple
the dual problem. From the Lagrangian function in Eq. (6.4) we have

L(p,u) =
m∑
i=1

[
pi(hiiui − 1)− (2rmin/B − 1)uin0i

]
− (2rmin/B − 1)

m∑
i=1

ui

m∑
j 6=i

hjipj (6.14)

It can be shown that the following equation holds:

m∑
i=1

ui

m∑
j 6=i

hjipj =
m∑
i=1

pi

m∑
j 6=i

hijuj (6.15)

Substituting (6.15) into (6.14) and factoring out pi, we get:

L(p,u) =
m∑
i=1

fi(pi,u) (6.16)

where fi(pi,u) is given by:

fi(pi,u) = pi

(
hiiui − 1− (2rmin/B − 1)

m∑
j 6=i

hijuj

)
− (2rmin/B − 1)uini (6.17)

Provided that the optimal Lagrange multiplier vector u∗ (the maximizer of the
Lagrangian function) given by (6.9) is known by each WBAN, we can write:

L(p,u)
∣∣
u=u∗

=
m∑
i=1

fi(pi,u
∗) = L∗(p) (6.18)

Considering the primal problem in (6.5), we have:
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min
p∈P

sup
u∈U
{L(p,u)}

= min
p∈P

L∗(p)

= min
p∈P

m∑
i=1

fi(pi,u
∗)

≥
m∑
i=1

min
pi

fi(pi,u
∗) (6.19)

Thinking of fi(pi,u
∗) as the individual objective function of WBAN i, this inequality

implies that if each WBAN independently minimizes its own objective function, the
reached solution bounds above the primal solution p∗.

The approach proposed provides a partially-distributed solution to the problem
because in order to calculate fi(pi,u

∗), the problem in Eq. (6.9) should be solved
centralizedly1 before each iteration. Although WBANs can employ stochastic approx-
imation methods to estimate u∗, this leads to a more complicated solution. Moreover
the approach proposed requires some negotiation taking place between WBANs in or-
der to share partial information of channel gains which makes it less useful in practice.
Each WBAN i needs power gain, hii, and also power gains of the interference it imposes
on other WBANs, namely hij, to calculate fi(pi,u

∗).

In the following, we present a fully distributed solution to the problem which does
not need any centralized computation and can be executed distributively and asyn-
chronously by independent WBANs. The concept underlying this approach is fixed-
point calculations. From Eq. (6.11), the optimum power allocation for the system is
obtained by solving the following equation:

A.p = b (6.20)

where

A = Hd − (2rmin/B − 1)Hd0
′ (6.21)

b = (2rmin/B − 1)n (6.22)

Eq. (6.20) can be reformulated as a fixed-point p = F(p) by writing matrix A as
A = A + B−B with B an arbitrary non-singular matrix and multiplying the equation
by B−1 as follows:

p = Cp + c =: F(p) (6.23)

1The centralized problem which adjusts the Lagrangian multipliers is known as the master problem
in decomposition theory [114].
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where C = B−1 ·(B−A) is called the iteration matrix, c = B−1 ·b and p is a fixed point
of the mapping F : Rm → Rm. To attain this fixed point, one can use the following
iteration, starting from an arbitrary point p0:

p(k+1) = F(p(k)), k = 0, 1, 2, 3, ... (6.24)

According to Banach’s theorem [115], if F is a contraction mapping, i.e. there is
a constant 0 < q < 1 such that ‖F (x)− F (y)‖ 6 q ‖x− y‖ ,∀x,y ∈ Rm , then this
sequence converges to the fixed point. With the problem at hand where F(p) = Cp + c,
this would be determined by the iteration matrix C. Whether the sequence converges
or not to the fixed point depends only on the selection of C.

One selection for the iteration matrix is obtained by the Jacobi method. By de-
composing the matrix A to its lower-left sub-diagonal part L, its diagonal part D and
its upper-right sup-diagonal part R, i.e. A = L+D+R, and then picking its diagonal
part D for the matrix B, we have the iteration matrix as:

C = I−B−1A = I−D−1(L + D + R) = −D−1(L + R)

with entries

cij =

{
−aij/aii , if i 6= j

0 otherwise
(6.25)

Therefore, we can write the iteration as:

p(k+1) = Cp(k) + c = −D−1(L + R)p(k) + D−1b (6.26)

Writing component-wise, we get:

p
(k+1)
i =

1

aii

(
bi −

m∑
j 6=i

aijp
(k)
j

)
(6.27)

An important property of this iteration is that the elements of the vector p can be
calculated independently and asynchronously. By inspecting Eq. (6.27), it is noticed

that the computation of p
(k+1)
i is independent of any other p

(k+1)
j . This is useful for

parallel and distributed computations. Being regarded as the best response, it also fits
well in the context of non-cooperative games where players play their best response
independently and asynchronously to reach a Nash equilibrium.

By substituting the values of aii, aij and bi from Eq. (6.21) and (6.22) into Eq.
(6.27), we get the iteration for our system as:

p
(k+1)
i =

2rmin/B − 1

hii

(
ni +

m∑
j 6=i

hjip
(k)
j

)
(6.28)
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We need to apply the regional constraint as the power allocation vector should lie
in P :

p
(k+1)
i ← min

(
Pmaxi ,max

(
0, p

(k+1)
i

))
(6.29)

It is worth noting here that the regional constraint is applied to the power allocation
at each iteration, whilst with the centralized approach, it should be applied only once
and that to the final solution given by Eq. (6.12). This may cause the two approaches
to end up with different solutions whenever a feasible power allocation does not exist in
P . Moreover, a WBAN that hits its maximum power bound at some iteration can not
meet its QoS requirement and will get a rate lower than its target rate, even though it
is transmitting at the maximum power. In this case, it can be shown that the power of
those WBANs in the system that satisfy the rate constraint will converge to a feasible
solution, whereas the other WBANs that cannot achieve their target rate will continue
to do their best by transmitting at the maximum power.

Proposition 4.3: The iteration in Eq. (6.28) converges for every starting point if the
following condition holds

m∑
j 6=i

∣∣2rmin/B − 1
∣∣hji < hii ,∀i ∈M (6.30)

Proof:

‖F (p1)− F (p2)‖
= ‖Cp1 + c− (Cp2 + c)‖
= ‖C(p1 − p2)‖
6 ‖C‖ ‖p1 − p2‖

For F to be a contraction mapping, we should have ‖C‖ < 1. Using the maximum
absolute row sum norm to calculate the norm of the iteration matrix C, we have:

‖C‖∞

= max
0≤i≤m

m∑
j=1

|cij|

= max
0≤i≤m

m∑
j=1

|aij|
|aii|

= max
0≤i≤m

m∑
j=1

∣∣2rmin/B − 1
∣∣hji

hii
< 1

hence, we have the convergence.
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�

It is highly desirable that WBANs coordinate their power levels without any mes-
sage exchanges. However, for the iteration in Eq. (6.28) to be calculated at each
WBAN i, the interference gains imposed by other WBANs, namely hji, as well as the

power levels those WBANs have chosen currently, namely p
(k)
j , are needed which re-

quires some messages to be exchanged between WBANs. In the following, we show that
it is possible to use the iteration without the need of any message exchange between
WBANs which is highly favorable in practice. First we define a parameter called the
sensitivity of SINR to power as follows.

Definition 4.1: The sensitivity of SINR to power, denoted by η, is the rate of change
in SINR at the receiver with respect to transmission power at the transmitter. For
WBAN i in our system, it is given by

ηi =
∂ξi
∂pi

=
hii

ni +
∑m

j 6=i hjipj
(6.31)

where ξi is the SINR at BNC in WBAN i.

The sensitivity of SINR in an average sense expresses the change in the SINR that
the receiver experiences as a result of a change of one Watt in the transmission power at
the transmitter. It can be thought of as a measure for the density of interfering WBANs
in the system. For a fixed power level, ηi depends on the number of interfering WBANs
and their arrangement around WBAN i because the interference gains are proportional
to an order n ≥ 2 of the inverted distance as hji = f(d−nji ). In a dense system with
many interfering WBANs around, the sensitivity of SINR is low, hence a WBAN in
order to increase its channel capacity has to increase its transmission power much more
than that of a high sensitivity of SINR condition, where the interference is low.

Rewriting the iteration in Eq. (6.28) using the sensitivity of SINR yields:

p
(k+1)
i =

2rmin/B − 1

η
(k)
i

(6.32)

In each WBAN i, the BNC node can measure the SINR ξi and use it to approximate
the sensitivity of SINR as follows:

η
(k)
i ≈

∆(k)ξi
∆(k)pi

=
ξ
(k)
i − ξ

(k−1)
i

p
(k)
i − p

(k−1)
i

(6.33)

This way, the distributed solution is attained using only local information which can
be simply calculated at each BNC and there will be no need for any message exchange
between WBANs.
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Table 6.1: Simulation Parameters and Values
Parameter Name Symbol Parameter Value

Bandwidth B 300 kHz
Noise ni -174 dBm/Hz
Minimum Power Pmini

0

Maximum Power Pmaxi 25 µW (≈ -16 dBm)

6.3 Performance Evaluation

Table 6.1 shows the parameters and their values used in this simulations.

We assess the performance of the proposed centralized and distributed solutions
using extensive simulations. The simulation environment is as described earlier in the
previous section. We consider two cases for performance evaluation, one by changing
the density of WBANs in the system and the other one by varying the target data rate
required by WBANs to maintain their QoS. In the first case, the target data rate, rmin,
is set to 100 kbps and the number of WBANs in the system is increased from 4 to 32,
while in the second case, the number of WBANs is fixed at 16 and rmin is increased
from 25 kbps to 200 kbps.

Figure 6.1 shows the average transmission power of sensor nodes in µW versus
the number of WBANs in the system. As it can be seen, the power level has to
rise when the number of WBANs increases to keep the minimum data rate constraint
satisfied. Although in low density conditions, the difference between power levels in
the centralized and distributed solutions is negligible, it goes up when the number of
WBANs in the system increases. With only 4 WBANs in the system, sensor nodes
transmit at just below 2 µW, while in a dense condition with 32 WBANs, this figure
goes up to almost 3.2 µW in the centralized approach and to 5.8 µW in the distributed
approach.

Figure 6.2 shows the average interference power in dBm versus the number of
WBANs in the system. As it can be seen, the two approaches perform almost similarly
under low density conditions, while the centralized solution outperforms the distributed
solution under dense conditions. The interference power rises from just above -125 dBm
and reaches around -122 dBm and -119 dBm for the centralized and distributed ap-
proaches respectively when the number of WBANs in the system increases from 4 to
32 nodes.

Since all the computations in our model take place at BNC nodes and not in sensor
nodes, the major source of energy consumption in the sensor nodes will be dominantly
related to transmissions. Figure 6.3 shows the average energy consumption at sensor
nodes for transmission of one bit in nJoul/bit as a function of the number of WBANs
in the system. We clearly notice that the energy needed to transmit one bit increases
when the density of WBANs in the system goes up. It is due to the fact that the price
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Figure 6.1: Average transmission power versus the number of WBANs with rmin= 100
kbps
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Figure 6.2: Average interference power versus the number of WBANs with rmin= 100
kbps
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Figure 6.3: Average energy consumption per bit versus the number of WBANs with
rmin= 100 kbps

to pay for keeping target rates increases when interference increases. With 4 WBANs
in the system, the centralized and distributed solutions perform almost identically and
consume just above 0.02 nJoul/bit, but as the network density goes up, the distributed
solution does worse and consumes more energy than the centralized approach. With
32 WBANs in the system, the distributed solution consumes 0.14 nJoul per bit which
is almost double that of the centralized solution.

Since WBANs in the distributed approach determine the solution in an iterative
way, the convergence to a stable power allocation is of importance. The average number
of iterations needed by the distributed approach to reach the solution at rmin = 100
kbps with respect to the number of WBANs in the system is depicted in Figure 6.4 .
As it can be seen, the number of iterations increases almost linearly with the number
of WBANs in the system. Each iteration takes almost 260 nS to run on a 2.67 GHz
i5 Intel CPU. The convergence time, hence, under the most dense condition, i.e. 32
WBANs in the room, would be around 5.5 µS which is quite satisfactory in practice.

Finally, Figure 6.5 shows the average lifetime of the sensor nodes in months versus
the number of WBANs in the system. As it can be noticed, sensors’ lifetime decreases
as the system density increases for both the approaches. The graph illustrates that the
sensors with the centralized solution can live longer than those with the distributed
solution for any number of WBANs in the system. The superiority of the centralized
solution over the distributed version, however, decreases with the number of WBANs



114 Minimizing Power for Target Rate

0 5 10 15 20 25 30 35
0

5

10

15

20

25

Number of WBANs

Ite
ra

tio
ns

Average Number of Iterations to Converge

 

 

Centralized

Distributed

Figure 6.4: Average number of iterations versus the number of WBANs with rmin= 100
kbps

in the system such that with 32 WBANs in the room, the centralized solution allows
WBANs to live double that of the distributed solution whereas with 4 WBANs, we
see almost similar performances from both approaches allowing sensors to survive for
almost 3.7 months respectively.

Now we evaluate the performance of the centralized and distributed approaches
with respect to the target data rate, rmin. We keep the number of WBANs fixed at 16
nodes and increase rmin from 25 kbps to 200 kbps.

Figure 6.6 shows the average transmission power of sensor nodes versus the target
data rate. As it can be seen, more power is needed to maintain a higher required data
rate for both the centralized and distributed approaches. Transmission power in the
centralized solution goes up with the target data rate and reaches from almost 0.5 µW
at rmin = 25 kbps to 4.2 µW at rmin = 200 kbps. In the distributed solution, however,
the power level markedly goes up from 0.1 µW at rmin = 25 kbps to roughly 7.8 µW
at rmin = 200 kbps. Although the power consumption of the distributed solution is
almost the same as the centralized solution at rmin =25 kbps, it is almost double that
of the centralized solution at rmin = 200kbps.

Figure 6.7 shows the average interference power in dBm versus the target data rate
in the system with 16 WBANs. As it can be seen, the interference power which WBANs
experience increases as the QoS constraints tighten more. Although both approaches
show similar performance at low target data rate, the centralized solution outperforms
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Figure 6.5: Average lifetime of sensor nodes versus the minimum required data rate
constraint with 16 WBANs
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Figure 6.6: Average transmission power versus the minimum required data rate constraint
with 16 WBANs
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Figure 6.7: Average interference power versus the number of WBANs with 16 WBANs

the distributed solution at high data rate constraints. The interference power increase
from just above -125 dBm at rmin =25 kbps and reaches almost -122.7 dBm and -120.2
dBm for the centralized and distributed solutions respectively at rmin = 200 kbps.

Figure 6.8 shows the average throughput of WBANs versus the target data rate
both in kbps. Ideally, the graph should be a line with slope one for any rmin, implying
providing an average throughput equal to the minimum required data rate. As it
can be seen, both approaches are able to provide such QoS guarantee up to almost
rmin =75 kbps. For greater data rates, however, a feasible solution in P may not exist
and we see that the average throughput starts to drop slightly in both approaches,
although it is more remarkable in the centralized solution. For rmin = 200 kbps, the
distributed solution provides around 150 kbps averagely while the centralized solution
delivers roughly 185 kbps.

The average energy consumed to transmit one bit is shown as a function of the
target data rate in Figure 6.9. As it can be seen, more energy is needed as the minimum
required data rate increases in both approaches. While they both consume almost 0.02
nJoul per bit at rmin = 25 kbps, the distributed solution needs almost 0.12 nJoul
to transmit one bit at rmin = 200 kbps which is three times that of the centralized
solution. In other words, WBANs in the distributed approach tend to transmit at
a higher price which possibly leads to increased throughput to maintain the required
QoS, whereas with the centralized solution, they tend to be more frugal and save power
at the expense of decreased throughput.
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Figure 6.8: Average throughput versus the target rate with 16 WBANs
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Figure 6.9: Average energy consumption per bit versus the target rate with 16 WBANs
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Figure 6.10: Average number of iterations versus the target rate with 16 WBANs

Figure 6.10 shows the average number of iterations needed by the distributed ap-
proach to reach a stable power allocation versus the target data rate in the system
with 16 WBANs. As it can be seen, the number of iterations increases with the target
data rate, i.e., a tighter QoS constraint, a slower convergence. Considering that each
iteration takes almost 470 nS time of a 2.67 GHz i5 Intel CPU, the convergence time
varies from almost 2.4 µS to 7.1 µS for a data rate range between 25 kbps and 200
kbps.

Finally figure 6.11 shows the average lifetime of the sensor nodes in months versus
the target data rate. As it can be seen, the centralized solution slightly outperforms the
distributed solution. The graph also illustrates that sensors’ lifetime drops markedly
as the QoS constraint becomes tighter. While the sensor nodes can run almost 16
months on their batteries at rmin = 25 kbps, they survive only around 1 months and
half a month with the centralized and distributed approaches respectively at rmin =
200 kbps.

6.4 Conclusions

We formulated the power control problem as an optimization problem which mini-
mized the total power consumption in the system while satisfying individual target
(data) rates of WBANs. Having attained the centralized optimal solution using the
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Figure 6.11: Average lifetime of sensor nodes versus the target rate with 16 WBANs

Lagrange multipliers, we employed fixed-point calculations and proposed a distributed
solution based on Jacobi method which enabled WBANs to asynchronously find a solu-
tion, without the need of any central arbiter inter-operating between WBANs. Besides,
the distributed approach did not require any cooperation or message exchange between
WBANs to attain the solution which is highly favorable in medical applications. We
evaluated the performance of the centralized and distributed approaches using exten-
sive simulations by considering two cases. In the first case, we kept the target data
rate fixed and increased the number of WBANs in the system, while in the second case
we kept the number of WBANs fixed and increased the target data rate. This way
we scrutinized the performance of the proposed approaches in terms of throughput,
transmission and interference power levels, energy consumption per bit, network life-
time and convergence. The simulation results indicated that both the centralized and
distributed approaches were able to manage the interference between WBANs when
node density or target data rate increased in the system. Results also revealed that
although the centralized solution allowed WBANs to live longer, it was outperformed
by the distributed solution in terms of throughput under dense conditions, which leads
to a worse QoS provisioning. The difference between the performance of the two solu-
tions which mostly emerges under dense conditions is due to the fact that the regional
constraint on power levels, which bounds them to Pmini and Pmaxi , is a non-linear op-
erator and is applied differently to the centralized and distributed solutions. While it
is applied once to the final solution of the centralized approach, it is applied at each
iteration to the solution in the distributed approach. This causes the two approach to
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end up with different solutions whenever a feasible solution does not exist in the region
of interest.



“The knowledge of yourself will preserve you from vanity.”

Miguel de Cervantes

7
Conclusions and Future Work

7.1 Conclusions

The lifetime and reliability of WBANs can be enhanced by using transmission power
control, which mitigates inter-network interference between neighboring WBANs op-
erating in the same frequency band.

To this end, we considered two problems, where in the first one, the goal was to
make a tradeoff between power and data rate for the sake of applications in which
energy conservation is more important than QoS, and in the second problem, the aim
was to maintain target data rates at any cost, for the sake of QoS-sensitive applications.

For the tradeoff scenario, we proposed three novel power controllers based on
genetic-fuzzy control, game theory and reinforcement learning called WFPC, WPCG
and WRLPC respectively.

We designed a genetic algorithm and a learning mechanism to optimize WFPC
and compared its performance to a well-cited power controller in the literature, called
ADP. Simulation results show that WFPC strongly outperforms ADP and improves
both power consumption by almost 40%-50% and convergence by 60%-70% for differ-
ent number of WBANs in the system, while sacrificing only 4% of throughput. Also,
the average energy consumption per bit improves by 27%-45% for different number of
WBANs in the system. This superiority basically originates from two factors which
are the ability of genetic algorithms to find the best solution and the ability of fuzzy
controllers to cope with complicated non-linear systems. However, the genetic algo-
rithm optimization required by WFPC decreases its flexibility to adjust the tradeoff

121
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Table 7.1: Comparing Power Controllers

Solution
Optimality

Convergence Dynamic
Adaptability

Message
Exchange

Off-line
Optimization

ADP ? ? ?? YES NO
WFPC ?? ?? ? NO YES
WPCG ? ? ? ? ?? NO NO
WRLPC ? ? ? ? ? ? ? NO NO

between throughput and power adaptively and accommodate dynamic changes of the
surrounding environment because it is performed offline at design stage.

For the game theory-based power controller, WPCG, we considered a broader fam-
ily of pricing functions and proved the existence of a Nash equilibrium in the game.
We proposed the dynamic rules of the game based on the best response and suggested
an adaptive pricing mechanism to dynamically adjust the tradeoff between through-
put and power based on the channel gains and WBANs’ power budgets. This allows
WBANs to benefit from good channel conditions and high energy budgets, leading to
increased throughput, and on the other hand preventing WBANs from increasing their
transmission power levels at bad channel conditions or low power budgets, thereby
extending their battery lifetimes as well as decreasing interference to other WBANs.
We also proposed another adaptive pricing method which did not rely on channel gains
for calculations and required only SINR which was simply available at digital receivers
at low cost, and it was showed by simulations to perform almost similarly to the first
adaptive pricing scheme which is based on channel gains. We also compared the per-
formance of WPCG to WFPC and ADP. The simulation results indicate that WPCG
strongly outperforms both WFPC and ADP in convergence while it is overwhelmed
by WFPC in terms of energy consumption per bit by 25%. WPCG consumes almost
6 µW more power than WFPC to produce 100 kbps more throughput.

The proposed RL-based power controller, WRLPC, is a lightweight power controller
based which improves its performance by learning from experience. We showed through
simulation that the proposed RL-based power controller provided a better tradeoff
between throughput and power leading to 3 µW less power consumption for sacrificing
2%-5% of throughput compared to WFPC, and saving 6 µW of power for sacrificing
15%-30% of throughput compared to WPCG. Moreover, WRLPC was also able to
improve energy consumption per bit by 40%-60% compared to WPCG, and by 25%-
50% compared to WFPC. However, it was outperformed by WFLPC and WPCG in
terms of convergence.

Table 7.1 compares the power control approaches, where the measure of the solution
optimality is considered to be the average energy consumption per bit.

Figure 7.1 demonstrates the most representative performance indicator, being the
average energy consumption per bit in nJoul/bit, versus the number of WBANs in the
system for all the power controllers. As it can be clearly seen, WRLPC consumes the
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Figure 7.1: The average energy consumption per bit versus the number of WBANs

least energy per bit and strongly surpasses all other power controllers. WFPC ranks
second and is followed by WPCG and ADP as the third and forth places respectively.
ADP is outperformed by all the proposed power controllers.

We also investigated the impact of reinforcement learning key factors including the
reward function, discount factor, learning rate and eligibility trace parameter on the
performance of the system in terms of convergence and optimality. It was showed that
increasing the learning rate could improve both convergence and energy consumption
per bit. While increasing the eligibility trace parameter does not affect energy con-
sumption per bit, it improves convergence, and finally, increasing the discount factor
aggravates both energy consumption per bit and convergence.

Moreover, we evaluated and compared the performance of the different RL algo-
rithms including Q-learning, sarsa and OLSPI to that of a counterpart non-cooperative
game. Although RL-based approaches were outperformed by the counterpart game in
terms of convergence, they were able to save more energy. More importantly, WBANs
in the RL-based approaches do not need to be aware of a pre-designed Nah equilibrium
as opposed to the game. This increases their adaptability to the dynamic changes of
the environment.

For the non-tradeoff scenario, we modeled the problem as a convex optimization
problem and utilized Lagrangian multipliers method to obtain the optimum solution.
We then employed fixed-point calculations and proposed a distributed solution based
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on Jacobi method which enabled WBANs to asynchronously find a solution. We eval-
uated the performance of the centralized and distributed approaches using extensive
simulations and considered two cases where in the first case, we kept the target data
rate fixed and increased the number of WBANs in the system, while in the second case
we kept the number of WBANs fixed and increased the target data rate. This way
we scrutinized the performance of the proposed approaches in terms of throughput,
transmission and interference power levels, energy consumption per bit, network life-
time and convergence. The simulation results indicated that both the centralized and
distributed approaches were able to manage the interference between WBANs when
node density or target data rate increased in the system. Results also revealed that
although the centralized solution allowed WBANs to live longer, it was outperformed
by the distributed solution in terms of throughput under dense conditions, which leads
to a better QoS provisioning. The difference between the performance of the two solu-
tions which mostly emerges under dense conditions is due to the fact that the regional
constraint on power levels boundaries is a non-linear operator and is applied differently
to the centralized and distributed solutions. While it is applied once to the final solu-
tion of the centralized approach, it is applied at each iteration to the solution in the
distributed approach. This causes the two approach to end up with different solutions
whenever a feasible solution does not exist in the region of interest.

All the proposed power controllers in this thesis rely only on physically measurable
local information, such as the SINR and interference power, and they do not need any
negotiation or cooperation between WBANs to find a solution. Additionally, they are
fully distributed and asynchronous.

7.2 Future Work and Open Problems

There exist a number of future work and open problems to be solved to potentially
improve the performance of power control algorithms in WBANs. In the following, we
list some of them.

• The proposed fuzzy power controller showed good performance in both conver-
gence and the optimality of solution, while suffering from the lack of high adapt-
ability, i.e. offline tuning. On the other hand, the RL-based power controller
suffered from slow convergence, while enjoying a high level of adaptability and
solution optimality. Combining these two techniques may potentially result in
greater performance for the power control in WBANs. This can be basically
achieved in two ways which are reinforcement learning power controllers being
tuned by fuzzy logic and fuzzy power controllers being tuned by reinforcement
learning.

When fuzzy logic is employed to tune a RL-based power controller, it acts as a
function approximator for the state-action space of reinforcement learning. Fuzzy
controllers can gracefully approximate the Q functions and enable RL agents to
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better generalize the state-action space and make better decisions. In other
words, the power controller itself is based on reinforcement learning and it is
only tuned by the fuzzy controller (as in [116], [117] and [118]).

On the other hand, reinforcement learning can also be employed to tune a fuzzy
power controller. With the aid of reinforcement learning, a fuzzy power controller
will be able to tune its knowledge-base parameters over time in an online manner
by learning from experience (see for example [119] and [120]). This makes the
fuzzy controller highly dynamic and adaptive to the changing environment.

Although the first approach, i.e. using fuzzy approximators in reinforcement
learning, namely a fuzzy RL-based power controller, has been investigated by
some researchers in the literature, the second approach, i.e. tuning fuzzy param-
eters using reinforcement learning, namely a RL-based fuzzy power controller, still
deserves more attention and can be studied more extensively in the future.

It will be even more interesting if fuzzy RL-based power controllers and RL-based
fuzzy power controllers incorporate POMDP1 to model the error that may happen
when RL agents observe the current state. In this study, however, we disregarded
such errors and considered error-free state observations. Taking such errors into
account will also remain for future work. We believe even better performance in
practice can be achieved in WBANs by using specifically a POMDP RL-based
fuzzy power controller.

• In this study, we considered that BNC nodes are responsible for running power
control algorithms. However, if the power controller is embedded in BN nodes,
the power consumption related to computations may not be negligible compared
to the transmission power and should be considered in calculating the power
efficiency of the power controller.

• In this study, we considered only single-action learner agents for the reinforcement
learning approach. Although considering joint-action learner agents, which are
aware of the actions of each other and maximize their reward over the joint
actions, leads to more computation overhead, system complexity and the need
for negotiation between WBANs, it may improve the quality of the solution
and also convergence. The tradeoff between such complexity and the resulting
improvements would be interesting to investigate.

• In this study we considered non-cooperative agents. However, in applications
allowing cooperation between WBANs, considering cooperating agents may lead
to a better solution. In the game theory approach, this can be done by using
cooperative games (state-less) or stochastic games (state-full), and in the rein-
forcement learning approach, by employing Multi-Agent Reinforcement Learning
(MARL), which can also help to solve stochastic games. However, the overhead
imposed by such cooperation between agents in terms of computation, message
exchange and power consumption should be modeled and investigated.

1Partially Observed Markov Decision Process
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• In this thesis, we only considered the ε-greedy policy for the exploration-exploitation
tradeoff. The performance of learning can be improved by using the Boltzmann
policy. However, the application of the Boltzmann policy is limited to discrete
space-action spaces. Developing such policy for continuous state-action spaces
can be a possible future work.
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[42] B. Braem, B. Latré, C. Blondia, I. Moerman, and P. Demeester, “Analyzing and
improving reliability in multi-hop body sensor networks,” International Journal
On Advances in Internet Technology, vol. 2, no. 1, pp. 151–161, 2009. 26

[43] S.-H. Seo, S. Gopalan, S.-M. Chun, K.-J. Seok, J.-W. Nah, and J.-T. Park,
“An energy-efficient configuration management for multi-hop wireless body area
networks,” in Broadband Network and Multimedia Technology (IC-BNMT), 2010
3rd IEEE International Conference on, pp. 1235–1239, IEEE, 2010. 26



References 135

[44] J. Dong and D. Smith, “Cooperative body-area-communications: Enhancing co-
existence without coordination between networks,” in Personal Indoor and Mo-
bile Radio Communications (PIMRC), 2012 IEEE 23rd International Symposium
on, pp. 2269–2274, 2012. 26

[45] T. O. Olwal, B. J. Van Wyk, N. Ntlatlapa, K. Djouani, P. Siarry, and Y. Hamam,
“Dynamic power control for wireless backbone mesh networks: a survey,” Net-
work protocols and algorithms, vol. 2, no. 1, pp. 1–44, 2010. 27

[46] N. A. Pantazis and D. D. Vergados, “A survey on power control issues in wireless
sensor networks,” Communications Surveys & Tutorials, IEEE, vol. 9, no. 4,
pp. 86–107, 2007. 27

[47] L. H. Correia, D. F. Macedo, A. L. dos Santos, A. A. Loureiro, and J. M. S.
Nogueira, “Transmission power control techniques for wireless sensor networks,”
Computer Networks, vol. 51, no. 17, pp. 4765–4779, 2007. 27

[48] H. Saghaei and A. Neyestanak, “Variable step closed-loop power control in cel-
lular wireless cdma systems under multipath fading,” in Communications, Com-
puters and Signal Processing, 2007. PacRim 2007. IEEE Pacific Rim Conference
on, pp. 157–160, 2007. 27

[49] M. Rintamaki, H. Koivo, and I. Hartimo, “Adaptive closed-loop power control al-
gorithms for cdma cellular communication systems,” Vehicular Technology, IEEE
Transactions on, vol. 53, no. 6, pp. 1756–1768, 2004. 27

[50] M. Quwaider, J. Rao, and S. Biswas, “Transmission power assignment with pos-
tural position inference for on-body wireless communication links,” ACM Trans.
Embed. Comput. Syst., vol. 10, pp. 14:1–14:27, Aug. 2010. 27

[51] M. Rintamaki, H. Koivo, and I. Hartimo, “Adaptive closed-loop power control al-
gorithms for cdma cellular communication systems,” Vehicular Technology, IEEE
Transactions on, vol. 53, no. 6, pp. 1756–1768, 2004. 27

[52] C.-Y. Yang and B.-S. Chen, “Robust power control of cdma cellular radio systems
with time-varying delays,” Signal Processing, vol. 90, no. 1, pp. 363–372, 2010.
27

[53] M. Almgren, B. Engstrm, and M. Ericson, “Power control in a cdma mobile
communication system,” Oct. 19 2004. US Patent 6,807,164. 27

[54] G. J. Foschini and Z. Miljanic, “A simple distributed autonomous power control
algorithm and its convergence,” Vehicular Technology, IEEE Transactions on,
vol. 42, no. 4, pp. 641–646, 1993. 27, 101

[55] R. D. Yates, “A framework for uplink power control in cellular radio systems,”
Selected Areas in Communications, IEEE Journal on, vol. 13, no. 7, pp. 1341–
1347, 1995. 27



136 References

[56] A. Zappavigna, T. Charalambous, and F. Knorn, “Unconditional stability of the
foschini-miljanic algorithm,” Automatica, vol. 48, no. 1, pp. 219–224, 2012. 27

[57] I. Lestas, “Power control in wireless networks: Stability and delay independence
for a general class of distributed algorithms,” Automatic Control, IEEE Trans-
actions on, vol. 57, no. 5, pp. 1253–1258, 2012. 27

[58] D. Mitra, “An asynchronous distributed algorithm for power control in cellular
radio systems,” in Wireless and Mobile Communications, pp. 177–186, Springer,
1994. 27

[59] N. Bambos and S. Kandukuri, “Power controlled multiple access (pcma) in wire-
less communication networks,” in INFOCOM 2000. Nineteenth Annual Joint
Conference of the IEEE Computer and Communications Societies. Proceedings.
IEEE, vol. 2, pp. 386–395, IEEE, 2000. 27

[60] N. Bambos and S. Kandukuri, “Power-controlled matiple access schemes for next-
generation wireless packet networks,” Wireless Communications, IEEE, vol. 9,
no. 3, pp. 58–, 2002. 27

[61] M. Chiang, P. Hande, T. Lan, and C. W. Tan, “Power control in wireless cellular
networks,” Foundations and Trends R© in Networking, vol. 2, no. 4, pp. 381–533,
2008. 27

[62] S. Koskie and Z. Gajic, “Signal-to-interference-based power control for wireless
networks: a survey, 1992-2005,” Dynamics of Continuous Discrete and Impulsive
Systems Series B, vol. 13, no. 2, p. 187, 2006. 27

[63] S. Xiao, V. Sivaraman, and A. Burdett, “Adapting radio transmit power in wire-
less body area sensor networks,” in Proceedings of the ICST 3rd international
conference on Body area networks, p. 14, ICST (Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineering), 2008. 28

[64] M. Quwaider, A. Muhammad, J. Choi, and S. Biswas, “Posture-predictive power
control in body sensor networks using linear-quadratic gaussian control,” in Net-
works and Communications, 2009. NETCOM ’09. First International Conference
on, pp. 52–59, 2009. 28

[65] D. Smith, L. Hanlen, and D. Miniutti, “Transmit power control for wireless body
area networks using novel channel prediction,” in Wireless Communications and
Networking Conference (WCNC), 2012 IEEE, pp. 684–688, 2012. 28

[66] B. Moulton, L. Hanlen, J. Chen, G. Croucher, L. Mahendran, and A. Varis,
“Body-area-network transmission power control using variable adaptive feedback
periodicity,” in Communications Theory Workshop (AusCTW), 2010 Australian,
pp. 139–144, 2010. 29



References 137

[67] S. Ramakrishnan and T. Thyagarajan, “Energy efficient medium access control
for wireless sensor networks,” IJCSNS International Journal of Computer Science
and Network Security, vol. 9, no. 6, pp. 273–279, 2009. 29

[68] J. Zhang, J. Chen, and Y. Sun, “Transmission power adjustment of wireless
sensor networks using fuzzy control algorithm,” Wireless Communications and
Mobile Computing, vol. 9, no. 6, pp. 805–818, 2009. 30

[69] X. Xia and Q. Liang, “Packets transmission in wireless sensor networks: In-
terference, energy and delay-aware approach,” in Wireless Communications and
Networking Conference, WCNC 2007. IEEE, pp. 2501–2505, IEEE, 2007. 30

[70] A. Lakshmi, S. Manisekaran, and D. Venkatesan, “Fuzzified dynamic power con-
trol algorithm for wireless sensor networks,” International Journal of Science and
Technology (IIJEST), vol. 3, 2011. 30

[71] T. Jiang, P. Wu, B. Shen, and K. Kwak, “A novel fuzzy algorithm for power con-
trol of wireless sensor nodes,” in Communications and Information Technology,
2009. ISCIT, 9th International Symposium on, pp. 64–68, 2009. 30

[72] J. Anno, L. Barolli, A. Durresi, F. Xhafa, and A. Koyama, “A cluster head
decision system for sensor networks using fuzzy logic and number of neighbor
nodes,” in Ubi-Media Computing, 2008 First IEEE International Conference on,
pp. 50–56, 2008. 30

[73] I. Gupta, D. Riordan, and S. Sampalli, “Cluster-head election using fuzzy logic
for wireless sensor networks,” in Communication Networks and Services Research
Conference, 2005. Proceedings of the 3rd Annual, pp. 255–260, IEEE, 2005. 30

[74] T. Srinivasan, R. Chandrasekar, and V. Vijaykumar, “A fuzzy, energy-efficient
scheme for data centric multipath routing in wireless sensor networks,” in Wire-
less and Optical Communications Networks, 2006 IFIP International Conference
on, p. 5, 2006. 30

[75] Q. Bing, J. Lu, and W. Lili, “An improved multicast routing protocol based on
fuzzy clustering,” in Wireless Communications, Networking and Mobile Comput-
ing, 2008. WiCOM ’08. 4th International Conference on, pp. 1–4, 2008. 30

[76] W. Mustafa, J. S. Yu, E. Rakus-Andersson, A. Mohammed, and W. J. Kulesza,
“Fuzzy-based opportunistic power control strategy in cognitive radio networks,”
in Applied Sciences in Biomedical and Communication Technologies (ISABEL),
2010 3rd International Symposium on, pp. 1–5, IEEE, 2010. 30

[77] H.-S. T. Le, H. D. Ly, and Q. Liang, “Opportunistic spectrum access using fuzzy
logic for cognitive radio networks,” International Journal of Wireless Information
Networks, vol. 18, no. 3, pp. 171–178, 2011. 30



138 References

[78] H.-S. Le and H. Ly, “Opportunistic spectrum access using fuzzy logic for cognitive
radio networks,” in Communications and Electronics, 2008. ICCE 2008. Second
International Conference on, pp. 240–245, 2008. 30

[79] S. Koskie and J. Zapf, “Acceleration of static nash power control algorithm using
newton iterations,” Dynamics of Continuous, Discrete and Impulse Systems B:
Applications and Algorithms, vol. 12, pp. 685–690, 2005. 31

[80] F. Meshkati, M. Chiang, H. Poor, and S. Schwartz, “A game-theoretic approach
to energy-efficient power control in multicarrier cdma systems,” Selected Areas
in Communications, IEEE Journal on, vol. 24, no. 6, pp. 1115–1129, 2006. 32,
33

[81] C. Liang and K. R. Dandekar, “Power management in mimo ad hoc networks:
a game-theoretic approach,” Wireless Communications, IEEE Transactions on,
vol. 6, no. 4, pp. 1164–1170, 2007. 32

[82] R. W. Thomas, R. S. Komali, A. B. MacKenzie, and L. A. DaSilva, “Joint power
and channel minimization in topology control: A cognitive network approach,”
in Communications, 2007. ICC’07. IEEE International Conference on, pp. 6538–
6543, IEEE, 2007. 33

[83] P. Closas, A. Pages-Zamora, and J. Fernandez-Rubio, “A game theoretical al-
gorithm for joint power and topology control in distributed wsn,” in Acoustics,
Speech and Signal Processing, 2009. ICASSP 2009. IEEE International Confer-
ence on, pp. 2765–2768, 2009. 34

[84] J. Huang, Z. Han, M. Chiang, and H. V. Poor, “Auction-based resource alloca-
tion for cooperative communications,” Selected Areas in Communications, IEEE
Journal on, vol. 26, no. 7, pp. 1226–1237, 2008. 34

[85] T. Alpcan, X. Fan, T. Basar, M. Arcak, and J. Wen, “Power control for multicell
cdma wireless networks: a team optimization approach,” in Modeling and Opti-
mization in Mobile, Ad Hoc, and Wireless Networks, 2005. WIOPT 2005. Third
International Symposium on, pp. 379–388, 2005. 34

[86] Y. Xing and R. Chandramouli, “Stochastic learning solution for distributed dis-
crete power control game in wireless data networks,” Networking, IEEE/ACM
Transactions on, vol. 16, no. 4, pp. 932–944, 2008. 34

[87] Y. Wang and X.-Y. Li, “Minimum power assignment in wireless ad hoc networks
with spanner property,” Journal of combinatorial optimization, vol. 11, no. 1,
pp. 99–112, 2006. 34

[88] E. Altman, T. Boulogne, R. El-Azouzi, T. Jiménez, and L. Wynter, “A survey
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