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ABSTRACT

This thesis presents a system study on the theory, methodology, and ar-

chitecture for non-GPS based wireless positioning systems. In particular, the

focus is to devise new algorithms and methodologies to improve the position-

ing accuracy of existing methods, and to develop the theoretical framework

for node configuration optimisation.

Node configuration is one of the main subjects studied in this thesis. To

understand the effect of node configuration on positioning accuracy, we first

examine the challenging scenario of tracking swimmers in a swimming pool

using a two dimensional (2D) and a three dimensional (3D) distributed sen-

sor network, respectively. By employing the spherical interpolation approach

(SIA) as the positioning algorithm and the cumulative distribution function

(CDF) as the objective function, a methodology for optimising the configura-

tion of the positioning network for tracking swimmers is proposed. Secondly,

we propose a hybrid optimisation algorithm combining the particle swarm op-

timisation (PSO) and the classical sequential quadratic programming (SQP)

method for node placement optimisation using the geometric dilution of pre-

cision (GDoP) as the objective function. It is observed that the result of

such an optimisation strategy is different from that obtained from the CDF

method. This seemingly contradictory finding could potentially be beneficial

in practical network deployment: Given a coverage area, the optimal posi-

tions of the node obtained from GDoP optimisation would result in the lowest

Cramér-Rao lower bound, but such a configuration would require the use of an

optimum positioning algorithm. If one doesn’t have the option of choosing the





algorithm, as in the case when the positioning algorithm is embedded in the

device at hand, the CDF based method would result in a positioning network

with greater achievable accuracy.

Triangulation based positioning methodology employing direction-of-arrival

(DoA) estimation suffers from a deficit in the antenna radiation pattern when

the impinging signal is close to the antenna plane. To overcome this difficulty,

we propose a weighted least squares method (WLSM) with the weighting ma-

trix derived from the angle of incidence of each array for wireless positioning

using multi-angulation. The algorithm is suited for both 2D and 3D position-

ing when a number of sensor arrays are employed, and it is proven to be far

superior to the conventional least squares method (LSM).

To take advantage of the proliferation of low cost wireless ranging devices,

such as wireless LAN and ultra wideband (UWB), a new positioning method

employing ranging based sensor arrays is presented and the associated location

estimator is developed. Such an array is of low cost and is easy to maintain.

The Cramér-Rao lower bound of the proposed location estimator is derived. A

closed form expression of the standard deviation is given and proved to reach

the Cramér-Rao lower bound.

Finally, a co-operative positioning system based on the co-operation be-

tween adjacent sensor arrays is proposed. The Cramér-Rao lower bounds for

two arrays and three arrays for 2D and 3D cases, respectively, are derived. It

is shown that the co-operation between arrays lead to much improved posi-

tioning accuracy compared with the employment of a stand-alone array and

non-co-operative arrays, thus reaching the Cramér-Rao lower bound.
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Chapter 1

Introduction

1.1 Background

Position information is of great importance to numerous commercial, public safety,

and defense applications. It is probably fair to say that any spatial information with-

out the corresponding position information is of only limited value [1]. The ever

increasing mobility of our society and industry renders that most positioning applica-

tions and services require a wireless solution. The most commercially successful and

widely used wireless positioning system is the global positioning system (GPS). GPS

provides three dimensional (3D) positioning information at any time, with almost

any device and anywhere outdoors. Unfortunately, GPS fails to locate in harsh radio

environments such as inside buildings, underground, in mines, under forest canopies,

and in certain urban settings [2], [3]. Furthermore, a GPS chip is power hungry and

can be too expensive for certain low cost applications such as wireless sensor net-

works (WSN) [4]. Thus, in the last decade, a significant amount of research has been

focused on localised positioning systems employing other wireless technologies. The

majority of local wireless positioning systems are range based and the distance can be

1
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estimated using the delay in the transmitted signal or its attenuation. Delay based

systems, which include time-of-arrival (ToA) based systems and time-difference of

arrival (TDoA) systems, have the potential of delivering high positioning accuracy,

but they require accurate clocks and relatively complicated signal processing which

increases the complexity of the system. On the other hand, attenuation based sys-

tems, known as received signal strength (RSS) based systems, bypass the require-

ment of additional hardware and are hence ideal for low complexity networks such as

wireless sensor networks (WSN). Unfortunately, the RSS based positioning systems

do have the disadvantage of relatively lower positioning accuracy [5]. Other posi-

tioning techniques include direction-of-arrival (DoA) based and inertia sensor based

ones [6], [7], [8]. The former requires an antenna array with relatively sophisticated

signal processing and the accuracy is quite often inadequate, whilst the latter tends to

suffer from the problem of drifting and is therefore typically used as a complementary

means to enhance the accuracy of a primary positioning technique.

Currently there is no solution which can perform high accuracy positioning seam-

lessly indoors and outdoors at a commercially acceptable cost. In the short to medium

term, new application-specific solutions will be developed to strike a balance be-

tween benefit and cost. In the long run, the integration of global positioning system

(GPS) and inertia sensors into cellular phones, in conjunction with WiFi localisa-

tion, will provide ubiquitous location-awareness, meeting most civil and industrial

requirements [3]. In the coming years, we will also expect to see the emergence of

high-definition situation aware (HDSA) systems which can operate in both benign

and harsh propagation environments where GPS typically fails. Such applications

would require localisation systems with submeter accuracy. Reliable localisation in

such conditions is a key enabler for a diverse set of applications including logistics,

security, medical services, search and rescue operations, control of home appliances,
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industrial safety, defense systems, and a large set of emerging wireless sensor net-

work (WSN) applications. Other applications include networking protocols taking

advantage of the position information to improve the performance of routing algo-

rithms (geo-routing), as well as interference avoidance techniques in future cognitive

radios [9].

1.2 Research Objectives

This thesis is aimed at solving some key problems in wireless positioning to

achieve high accuracy in GPS-denial scenarios. In particular, we are interested in

self-contained areas, such as warehouses, museums, or sports fields and swimming

pools. It is focused on the positioning algorithms and methodologies, system ar-

chitecture, node placement optimisation and hybrid techniques to deliver superior

performance. Moreover, we aim to develop solutions to scenarios where there are no

pre-installed reference nodes in order to meet such needs as emergency rescue, rural

fire-fighting, worksite management and open mine management.

Using a set of known location arrays, a target position can be estimated by using

the geometric relations between the incoming signal directions to each array and

the arrays’ locations. Due to the element radiation pattern, the accuracy of DoA

estimation decreases when the signal direction approaches alignment with the array

plane. To this end, a further objective of the research is to develop weighted least

squares solutions to overcome the difficulty, thus enhancing the DoA based wireless

positioning systems.

Finally, the research is intended to take advantage of the proliferation of low

cost ranging based sensors to develop new array based positioning systems and to

investigate possible ways to improve the positioning performance by virtue of co-
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operation between arrays.

1.3 Thesis Organisation

This thesis consists of eight chapters as follows:

1. Chapter 1 presents an overview of the overall background, the research project

and the research objectives. It outlines the thesis structure, our own research

contributions to the field, and lists our publications.

2. The purpose of positioning is to obtain the unknown positions of targets based

on a set of measurements. Positioning is normally conducted in two main steps:

(i) parameter estimation where the estimates of the parameters required for

position calculation between the wireless positioning nodes are obtained;

(ii) position update or localisation where these estimates are processed to

determine the positions of target nodes.

In a two-step positioning system, the positioning accuracy increases as the

position-related parameters in the first step are estimated more precisely. As

a foundation to later chapters, Chapter 2 describes various commonly used pa-

rameter estimation techniques for wireless positioning. These include the time-

of-arrival (ToA) based ranging, the radio signal strength (RSS) based ranging,

direction-of-arrival (DoA) estimation, and the inertial sensor based positioning.

Then it discusses a number of popular positioning update/localisation schemes.

Finally, the advantages and disadvantages of a number of existing wireless po-

sitioning systems are discussed.

3. Node configuration in positioning networks is of great importance for practical

network deployment, as it has significant impact on the positioning accuracy in
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the coverage area and the number of nodes required. Chapter 3 is concerned

with the problem of node configuration or node placement using trilateration.

We consider the scenario where there is the freedom to choose the locations of

the reference nodes and we aim to optimise these locations in order to minimise

the position estimation errors. A scenario we have studied is the monitoring of

elite swimmers in a swimming pool. To ease the analysis, we assume certain

statistics regarding the range measurements without specifying the techniques

used for measuring the ranges. In this chapter, we first introduce the spherical

interpolation approach (SIA) as the chosen positioning algorithm. Then, the

configuration of the network, namely, the arrangement of sensor nodes in the

swimming pool, is optimised to achieve the highest accuracy with the minimum

number of nodes and therefore the lowest cost. The objective function used

for the node configuration optimisation is the cumulative distribution function

(CDF). The study includes both two dimensional (2D) and three dimensional

(3D) cases to understand the variation of the positioning estimation accuracy

in the horizontal and vertical planes.

4. The positioning accuracy of ranging based methods is determined by three main

factors, namely, the ranging accuracy, the localisation algorithm and the config-

uration of the sensor nodes. The geometric configuration of the reference sensors

or anchor nodes in relation to the area in which the target nodes are to be lo-

cated is critically important, sometimes even dominant. The geometric dilution

of precision (GDoP) is commonly used to describe how the positioning accuracy

is related to such geometric factors. To certain extent, without doing any de-

tailed analysis of the positional errors, GDoP can be used to assess the “fitness”

of given sensor placement and optimise it accordingly. It provides an approx-

imation to the Cramér-Rao lower bound. In Chapter 4, we first present the
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theory of GDoP. Then, a hybrid optimisation algorithm combining the particle

swarm optimisation (PSO) method and the sequential quadratic programming

(SQP) method is proposed. Using the average GDoP as the objective func-

tion, the hybrid optimisation algorithm is used to optimise the locations of the

reference sensor nodes. The effectiveness of the hybrid optimisation method is

demonstrated by simulations.

5. Triangulation is another positioning method which uses more than one direction-

of-arrival (DoA) estimate at spatially separated arrays. By using a number of

arrays whose positions are known, one can locate the position of the target

using simple geometrical equations. A critical problem associated with DoA

estimation is that the accuracy of the estimation falls rapidly when the signal

direction is close to the plane on which the array is placed. This is due to the

physical property of the array element which radiates or receives energy as a

function of the direction of the signal. As a result, the signal-to-noise ratio

deteriorates significantly as the DoA moves away from the normal direction.

In Chapter 5, we propose a weighted least squares method (WLSM) with the

weighting matrix derived from the angle of incidence of each array. Since the

weight applied to each array is a function of the DoA seen by the array, the

variances of the DoA estimation at each array is taken automatically when con-

ducting positioning. We start from 2D scenarios, and then extend the WLSM

to 3D cases. Simulation results show that the new method outperforms the

conventional LSM significantly.

6. Chapter 6 presents a novel wireless positioning system which employs an array

of sensors to estimate the position of a mobile target without using fixed ref-

erence nodes. In contrast to the traditional array based method, every sensor
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in the positioning array is capable of doing ranging measurements individu-

ally by communicating with the target, but no phase measurement is required.

These range measurements lead to a bearing estimate as well as a high accuracy

ranging estimate via averaging. In this chapter, the new location estimator is

presented, and the Cramér-Rao lower bound of the proposed location estimator

is derived. We also present a closed form expression of the standard deviation

and prove that the estimator can reach the Cramér-Rao lower bound. Theoret-

ical results are validated by simulations.

7. All bearing or DoA based methods suffer from a main limitation: the positioning

error caused by the DoA estimation error increases with the distance from the

target to the array used for DoA estimation. To solve the problem, Chapter 7

introduces the use of co-operation between adjacent sensor arrays for wireless

positioning. The Cramér-Rao lower bounds for two arrays and three arrays

for 2D and 3D cases, respectively, are derived. It is shown that co-operation

between arrays leads to much improved positioning accuracy compared with the

employment of a stand-alone array and non-co-operative arrays, thus reaching

the Cramér-Rao lower bound.

8. Chapter 8 concludes the thesis and presents some research directions.

1.4 Contributions

This thesis presents a system study on the algorithms, methodology and node con-

figuration optimisation of non-GPS based wireless positioning systems. In particular,

the focus is to devise new algorithms and methodologies to improve the positioning

accuracy of existing methods, and to develop the theoretical frameworks to support
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the proposed algorithms. Key contributions of the thesis can be summarised as fol-

lows:

• By using the spherical interpolation approach (SIA) as the positioning algorithm

and the cumulative distribution function (CDF) as the objective function, a

methodology for optimising the configuration of the positioning network for

tracking swimmers is proposed. The study includes both two dimensional (2D)

and three dimensional (3D) cases to understand the variation of the positioning

estimation accuracy in the horizontal and vertical planes (Chapter 3).

• A hybrid optimisation algorithm combining the particle swarm optimisation

(PSO) and the classical sequential quadratic programming (SQP) method is

proposed for node placement optimisation using the geometric dilution of preci-

sion (GDoP) as the objective function. The optimal positions of the node would

result in the lowest Cramér-Rao lower bound (Chapter 4). The effectiveness of

the proposed scheme is verified by simulations.

• A weighted least squares method (WLSM) with the weighting matrix derived

from the angle of incidence of each array is proposed for wireless positioning

using triangulation. The algorithm is suited for both 2D and 3D positioning

when a number of sensor arrays are employed, and is proven to be much superior

to the conventional least squares method (LSM) (Chapter 5).

• A new positioning method employing ranging based sensor arrays is presented

and the associated location estimator is developed. The Cramér-Rao lower

bound of the proposed location estimator is derived. A closed form expression

of the standard deviation is given and proven to reach the Cramér-Rao lower

bound (Chapter 6).
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• A co-operative positioning method based on the co-operation between adjacent

sensor arrays is proposed. The Cramér-Rao lower bounds for two arrays and

three arrays for 2D and 3D cases, respectively, are derived. It is shown that

the co-operation between arrays lead to much improved positioning accuracy

compared with the employment of a stand-alone array and non-co-operative

arrays, thus reaching the Cramér-Rao lower bound (Chapter 7).

1.5 Publications

As part of the outcomes of the research, the following papers have been published:

[1] K. Clare Xu, E.Dutkiewicz, Xiaojing. Huang, Y.J. Guo, “Ranging based po-

sitioning employing co-operative Arrays,”International Symposium on Communica-

tions and Information Technologies (ISCIT), Gold Coast, Oct., 2012.

[2] K. Clare Xu, Y. J. Guo, Xiaojing. Huang, E. Dutkiewicz, “A hybrid wireless

positioning system,” IEEE International Symposium on Antennas and Propagation

and USNC/URSI National Radio Science Meeting, Chicago, July 2012.

[3] K. Clare Xu, Y.J. Guo, Xiaojing Huang E. Dutkiewicz, “DoA based positioning

employing uniform circular arrays,” International Symposium on Communications

and Information Technologies (ISCIT), Hangzhou, October 2011.

[4] K. Clare Xu, Y. Jay Guo, Xiaojing Huang, Eryk Dutkiewicz, “3D wireless po-

sitioning using uniform circular arrays,” IEEE International Symposium on Antennas

and Propagation and USNC/URSI National Radio Science Meeting, Spokane, July

2011.
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Chapter 2

Literature Review

2.1 Introduction

The purpose of positioning is to obtain the unknown positions of target nodes

based on a set of measurements. Positioning is normally conducted in two main

steps: (i) Parameter estimation where the measurements of the parameters required

for position calculation are performed and the parameter estimates are conducted; (ii)

localisation where these estimates are processed to determine the position of target

nodes. In a two-step positioning system, the positioning accuracy increases when

the position-related parameters in the first step are estimated more precisely. In

this chapter, various commonly used parameter estimation techniques for wireless

positioning are described in Section 2.2. Section 2.3 discusses some key issues related

to localisation including node configuration, distributed positioning networks and co-

operative localisation. A number of current wireless positioning systems are presented

in Section 2.4. Section 2.5 concludes the chapter.

11
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2.2 Parameter Estimation Techniques

A. Time-of-Arrival (ToA) Estimation

Wireless positioning can be conducted based on many properties of radio, optical

or acoustic waves, but most commonly used systems are based on the determination

of the time-of-flight (ToF) which is the time taken for a signal to travel from the

transmitter to the receiver, or a similar concept, the time-of-arrival (ToA) [10], [11].

In principle, if the time of the start of a transmission and the time of reception are

both known, the ToF can be used to determine the range from the transmitting node

to the receiving node. As radio waves propagate at about 0.3m per nanosecond,

assuming the accuracy of an indoor positioning system is, say, less than a metre,

timing measurements must be made to the order of one nanosecond. This precision

of time measurement is very challenging, particularly when using cheap devices [12].

In a single-path propagation environment with no interfering signals and no ob-

structions between the nodes, extremely accurate ToF estimation can be performed.

However, in practical environments, signals arrive at a receiver via multiple signal

paths, and there are interfering signals and obstructions as well. Those error sources

make it difficult to achieve high accuracy ToF estimation in practice, which are ex-

plained in details in the following.

1) Multipath Propagation: In a multipath environment, a transmitted signal ar-

rives at the receiver via multiple paths. Owing to the high resolution of wideband

signals, the pulses received via multiple paths are usually resolvable at the receiver.

For narrow-band systems, however, pulses received via multiple paths overlap with

each other as the pulse duration tends to be considerably larger than the relative

time delays between the multipath components. This causes a shift in the delay

corresponding to the correlation peak and can result in erroneous ToA estimation.
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In order to mitigate those errors, super resolution time-delay estimation algorithms,

such as that described in [13], [14], have been proposed for narrow-band systems.

However, the high resolution of wideband signals in the time domain facilitates accu-

rate correlation-based ToA estimation without the use of such complex algorithms.

A number of first path detection algorithms have been proposed for ultra wideband

(UWB) systems to accurately estimate ToA by determining the delay of the first in-

coming signal path [15], [16]. The effects of multipath propagation on ToA estimation

can be analysed by employing accurate characterisation of wideband channels.

2) Non-line-of-sight (NLoS) Propagation: When the direct line-of-sight (LoS) be-

tween two nodes is obstructed, the direct signal component is attenuated significantly

so it becomes considerably weaker than some other multipath components, or it can-

not even be detected by the receiver. For the former case, first-path detection al-

gorithms may still be utilised to estimate the ToA accurately. In the latter case,

however, the delay of the first detectable signal path does not represent the true ToA,

as it includes a positive bias, called NLoS error [17], [18]. Mitigation of NLoS errors

is one of the most challenging tasks in accurate ToA estimation [19], [20], [21]. In

the presence of statistical information about NLoS errors, various NLoS identifica-

tion and mitigation algorithms can be employed. For example, in [22], the fact that

the variance of ToA measurements in the NLoS case is usually considerably larger

than that in the LOS case is used in order to identify NLoS situations, and then a

simple LOS reconstruction algorithm is employed to reduce the positioning error. In

addition, statistical techniques are studied in [23] and [24] in order to classify a set

of measurements as LOS or NLoS. Finally, based on various scattering models for a

given environment, the statistics of ToA measurements can be obtained, and then

well-known techniques, such as maximum a priori (MAP) and maximum likelihood

(ML), can be employed to mitigate the effects of NLoS errors [25], [26], [27].
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3) Multiple-Access Interference: In the presence of multiple users in a given envi-

ronment, signals can interfere with each other, and the accuracy of ToA estimation

can degrade significantly [28], [29], [30]. A common approach to mitigate the effects

of multiple access interference (MAI) is to assign different time slots or frequency

bands to different users in a network [31]. However, there can still be interference

among different networks that operate at the same time intervals and/or in the same

frequency bands [32]. Therefore, various MAI mitigation techniques, such as non-

linear filtering [33] and training sequence design [34], are commonly employed. For

high end applications where the size and the cost of the nodes are less constrained,

one can employ smart antennas to minimise the MAI effect [35].

B. Radio Signal Strength (RSS) Based Ranging

The simplest method to estimate the radio propagation range is to measure the

signal strength and then exploit the relationship between the power loss and the dis-

tance between the transmitter and receiver. Such methods can be implemented, for

instance, using commercial of the shelf (COS) ZigBee or WLAN hardware. Whilst

signal strength measurements are available in even the simplest of single-chip ra-

dios, the accuracy of such measurements is limited mostly due to the complexity of

propagation environment caused by shadowing and multipath, and the interaction

with the human body when worn by a person [36], [37]. Generally speaking, signal

strength varies in a complex fashion as a function of the position, so that a simple loss

versus range function doe not exist. The changes in the transmission path loss are

characterised primarily by shadowing, multipath fading and the distance between the

transmitter and the receiver [38]. Shadowing is characterised by long-term fading or

lognormal fading and its variations are due to terrain contour between the transmitter

and receiver. It represents a slow variation in the mean envelope over a distance. The

multipath fading is caused by NLoS propagation. The multipath fading or short-term
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fading is characterised by the fast variation of received signal strength over a short

distance on the order of a few wavelengths or over short time durations on the order

of seconds [39], [40]. As a result, the path loss, which is the signal power attenuation

with the increasing distance between the transmitter and the receiver, can fluctuate

as much as 30−40dB, thus degrading the ranging estimation accuracy [41], [42], [43].

One method to improve the RSS based ranging accuracy is to generate a path-loss

map of the area concerned, which allows a database matching algorithm to improve

the accuracy of the position fix [5], [44], [45], [46]. However, even with such a tech-

nique, and particularly when using cheap body-worn mobile units, the positional

accuracy is likely to be of the order of a few metres. Thus signal strength methods

are likely to be limited to applications where only crude positional accuracy, such as

in wireless sensor network applications, is sufficient. A typical example is to locate

the patients in a hospital, in which case a few metres of accuracy is adequate.

C. Direction-of-Arrival (DoA) Estimation

The direction of an incoming signal can be estimated by using an array. If one

can measure the distance between the target and the array, the position of the target

can be easily obtained. This is the basic principle of radar. One problem with this

approach is that it demands a high accuracy of DoA estimation. Given an DoA

estimation error, the associated position error increases as the target moves away

from the array.

An improved method of using DoA estimation for positing is to employ more

than one array. Given a set of arrays each of which are placed at a known position,

there exists a simple geometric relationship between the array positions and the signal

directions of arrival (DoA) estimated by each array. Using this geometrical relation-

ship, the target which sends the signal can be located and tracked. The advantages

of this approach are that the synchronisation between the target and the arrays is
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not necessary; the signal format can be very simple; and the system can be operated

in a very narrow band. This kind of positioning systems is more suited for scenarios

where there are lines-of-sight (LoS) between the target and the super-nodes equipped

with arrays. Such systems can be employed in applications like warfare, sport and

underwater tracking of submarines. The key to this approach is also high accuracy

and low complexity DoA estimation [47].

There are a number of techniques to estimate DoAs [48], and the most fundamen-

tal one is the conventional beamformer, also known as Bartlett beamformer [49]. For

a signal coming from a given direction, the algorithm of the conventional beamformer

maximises the power of the array output by weighting the signals at each array el-

ement. The optimum weighting vector obtained contains the DoA information. A

study on the incoherent wideband MUSIC (IWM) and coherent wideband MUSIC

(CWM) algorithms is presented with experimental analysis in [50]. It is shown that,

given adequate SNR, the IWM performs well and yields sharp and distinct peaks in

the beam pattern. However, frequency selective fading may be an issue here, as the

inclusion of low SNR frequency bins tends to degrade the resulting beampattern, thus

reducing height of peaks and introducing spurious peaks. In contrast, the coherent

MUSIC approach is much more statistically stable, with a beampattern that gener-

ally improves with the addition of lower SNR bins. However, the inclusion of more

frequency bins can introduce bias errors. The coherent approach outperforms the

incoherent in terms of DoA accuracy with sources that have relatively flat spectra.

Conversely, for sources with highly peaked spectra the incoherent approach yields

better DoA results. In general, the coherent focused wideband methods are much

more statistically stable than any of the incoherent wideband methods but at higher

computational cost [51]. It is noted that coherent processing has great practical

importance because it can handle fully correlated signals (e.g., multipath).
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A critical problem associated with DoA estimations is that the accuracy of the

estimation falls rapidly when the signal direction is close to the plane on which the ar-

ray is placed. This is due to the physical property of the array element which radiates

or receives energy as a function of the direction [52]. As a result, the signal-to-noise

ratio deteriorates significantly as the DoA moves away from the normal direction.

In other words, the variance of the DoA estimation changes according to DoA itself.

This issue will be addressed in Chapter 5.

2.3 Localisation

Given an underlying transmission technology, the positioning performance is largely

dependent on the specific algorithm used in the position update phase. In fact, al-

though the parameter estimation accuracy provides the inherent limit on positioning

accuracy, the positioning accuracy actually achieved in a system is determined by a

number of other major factors and architecture decisions. For instance, in systems

where anchor or reference nodes are employed, the number of reference nodes and the

configuration of the reference nodes, referred to as node placement, play an import

role in determining the system accuracy.

Traditionally, the architecture of a positioning system is based on the concept of

reference nodes and target nodes whose position is required. In GPS, satellites can

be considered as reference nodes, even though the satellites are moving relative to the

earth, their positions at any time are accurately known [2], [53], [54], [55]. For indoor

applications, a logical development would be to enhance the existing wireless local

area network (WLAN) to incorporate positioning capability [9], [56]. For outdoor

applications, base stations of cellular networks may serve as the positioning network

infrastructure [57], [58], [59]. For specialist applications, an optimal node configura-
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tion can be deployed to achieve the required accuracy with the minimum number of

nodes [60].

An interesting area of research is distributed ad hoc wireless positioning networks.

In such a network, small and low cost nodes are organised in an ad hoc manner. Nodes

communicate among themselves for both data communications and position determi-

nation [61], [62]. Distributed positioning schemes are particularly suited to situations

where a positioning infrastructure is not available. In a distributed positioning net-

work, nodes are able to communicate directly only with their neighbours and compute

the distances to their neighbours [63], [64]. Multilateration techniques, which encom-

pass collaborative and iterative position determination based on distance estimates,

are then used in a distributed manner to estimate the location of each sensor node.

Distributed positioning algorithms generally have three positioning phases: the dis-

tance estimation phase where nodes estimate the distances to their neighbours, the

position estimation phase where a system of linear equations is generally solved using

a least squares approach to estimate the position of the node, and finally a refine-

ment phase where the accuracy of the algorithm is improved by using an iterative

algorithm.

An emerging paradigm is co-operative localisation, in which nodes help each other

to determine their locations [65]. Co-operative localisation has received extensive in-

terest from the robotics, optimisation, and wireless communications communities.

The premise of co-operative positioning is this: while each mobile node cannot in-

dependently determine its own position based on distance estimates with respect to

the anchor or reference nodes, they can co-operatively find their positions. In gen-

eral, co-operative localisation can dramatically increase localisation performance in

terms of both accuracy and coverage. Apparently, there is a blurred distinction be-

tween distributed and co-operative positioning networks as the latter are necessarily
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distributed. A common view is that the latter is more focused on the co-operation

between adjacent nodes to extend the coverage of positioning network and increase

accuracy.

All the positioning techniques described above need an infrastructure. In contrast,

the inertia sensor base positioning is infrastructure-free [3]. The concept is biolog-

ically inspired; a hummingbird obtains the relevant information on spatial position

from its sophisticated equilibrium organs. By means of inertial sensor systems, the

motion of an object, animal, or person can be continuously measured. The current

position is calculated on the basis of the distance that was covered within a certain

time interval and the direction of the motion with reference to the last known po-

sition. The basic idea behind an inertial navigation system (INS) is to measure the

acceleration and angular rate in order to calculate the position. In principle, three

angular rate or rotation sensors (gyroscopes) and three acceleration or motion sen-

sors (accelerometers) which are orthogonally positioned to each other are required to

continuously track the position, orientation, and velocity of a moving object without

the need for external references. The update or tracking is done via dead reckoning,

a method to predict a future position by the course and speed from a known present

position. Dead-reckoning is simple, inexpensive, and easy to accomplish in real-time.

But the disadvantage of dead-reckoning is its unbounded accumulation of errors [66].

Typical dead-reckoning errors are so large that the position estimate may become

unacceptably wrong after as little as ten metres of travel.

INS is used on vehicles such as ships, aircraft, submarines, guided missiles, and

spacecraft. For military and other mission critical applications where cost is not a

major objective, high-end INS serves as a superb positioning technology. With the

current state of the art of sensor technologies, however, it is found that low-cost and

low form factor inertial sensors suffer from a phenomenon known as drift, so the
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position values need to be calibrated after, say, a few metres for a walking person

with an external reference. Therefore, for handheld devices, the INS as a positioning

system may remain as a complementary technology for some years [4], [8] to come.

2.4 Current Wireless Positioning Systems

1. Wireless Positioning in Cellular Networks: At the onset of 3G standardisa-

tion in the late 1990s, it was predicted that location based services (LBS) such as

localised advertising, clubbing and workforce and fleet management would become

pervasive. Consequently, four positioning schemes were introduced to third genera-

tion partnership project (3GPP) standards including Cell ID, assisted GPS (A-GPS),

observed time-difference of arrival (OTDOA) and uplink time-difference of arrival

(UTDOA) [67]. The Cell ID method locates a mobile terminal according to the radio

cell, typically a sector, to which it is connected. A-GPS is a version of the GPS

which employs the cellular system to aid the acquisition process. OTDOA is basi-

cally a time difference measurement technique (TDoA) to locate a mobile terminal

by trilateration. Each OTDOA measurement for a pair of downlink transmissions

from two adjacent base stations describes a line of constant difference along which

the mobile terminal may be located. The mobile terminal position is determined by

the intersection of these lines for at least two pairs of base stations. UTDOA is the

uplink version of OTDOA, in which the time-of-flight measurements are done by the

network instead of the mobile terminal using the uplink signals from a mobile to a

number of adjacent base stations.

The latest 3GPP long term evolution (LTE) standards support assisted-global

navigation satellite system (A-GNSS), which is similar to A-GPS but supports other

satellite systems, as well as OTDOA in Release 9. The UTDOA was standardised in
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Release 11 [68], [69], [70]. Field trials by Nokia Siemens Network demonstrated that

A-GNSS is the most accurate for outdoor applications with two metres accuracy at

the best, and OTDOA is the second most accurate reaching fifty metres at the best.

2. Wireless Local Area Networks (WLAN): The WLAN technology currently is

based on the IEEE 802.11 specifications, which define a number of different physical

layers for data transmission operating in the 2.4GHz ISM band and at 5.2GHz.

Positioning capability is not part of the normal operation, but the functionality could

be added. The simplest implementation is based on signal strength measurements,

but techniques using ToA also could be implemented. The range of the current

WLAN is typically limited to about fifty metres indoors, and a similar range could

be expected for a positioning application.

There are three types of positioning systems based on the WLAN platform. The

first is RSS based, the second is to introduce a tag such as CISCO’s choke point

which is effectively a proximity detector and the third one is based on database to do

localisation. The U.S. Wireless Corporation’s fingerprinting scheme falls under the

third category. Instead of exploiting signal timing or signal strength, this scheme relies

on the received signal structure characteristics to do localisation. By combining the

multi-path pattern with other signal characteristics, the algorithm creates a signature

unique for every given location in the area. This can be achieved by carrying the

target node through the area and acquiring the signal characteristic information. By

comparing the received signal characteristic to all the fingerprints in the database,

a node’s location can be determined. The major drawback of this technique is the

substantial effort needed for generating the signal signature database. Hence, it is

not suited for the ad hoc deployment scenarios where the radio environment is not

known in advance. Besides, the positioning accuracy is also limited.

3. Radio Frequency Identification (RFID): RFID is a simple radio technology
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mainly aiming at providing identification of objects based on a unique multi-digit

identifier, usually associated with inventory control applications. RFID tags are small

and very cheap, but their range is limited to about one metre. Normally a special

tag reader, often hand held, is used to identify the tag. Such technology is not

particularly aimed at position determination, but a simple adaptation would allow

its use for position determination to a limited extent. For example, tag readers at a

strategic locations such at doorways can be used to identify people moving through a

building. In an office building, one reader located at the entrance of each floor would

provide the information needed for emergency evacuation. The positional accuracy

would be typically few metres (the size of a room) at the best.

4. Ultra-Wideband (UWB): UWB uses a very wide bandwidth (greater than

500MHz [71]), but is restricted to a very low transmitter power density to minimise

the interference to other existing radio systems which use part of the same frequency

band (3GHz to 10.7GHz). UWB technology is mainly aimed at short-range (typically

ten metres) and high data rates links. However, the large bandwidths are ideal for

indoor positioning systems, as the large bandwidth can bed used to mitigate the effects

of multipath propagation by allowing very fine (sub-nanosecond) time resolutions,

thus resulting in an accuracy of the order of twenty cetimetres. The short range

nature of UWB means that the number of base stations required to cover an area can

be very large.

5. IEEE 802.15.8: The IEEE is currently in the process of developing a peer aware

communications (PAC) system for wireless personal area networks. The communica-

tions range is from two hundred metres to five hundred metres. It shall operate in

the ISM bands and the UWB bands. An interesting fact is that it shall support peer

to peer ranging. In fact, one of the companies participating in the standardisation

process, Nanotron, has already developed a ranging chipset based on chirp spread
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spectrum across a bandwidth of 80MHz. As far as positioning is concerned, IEEE

802.15.8 is the most interesting standard to watch.

6. Underwater Sensing and Positioning Networks: Although underwater sensor

networks share some common properties with ground based wireless sensor networks,

such as the large number of nodes and limited energy available to each node, they

possess some unique characteristics [72], [73]. First, radio communications do not

work well under the water due to the absorption of radio waves by water, especially

the sea water, so they must be replaced by acoustic communications. Second, the

propagation of acoustic waves in water has very different characteristics. With the

speed of 1500m/s, underwater acoustics waves are five orders of magnitude slower

than radio, thus leading to large latency [74]. Further, the available bandwidth of

underwater acoustic channels is drastically limited due to water absorption at high

frequencies. Most acoustic systems operate below 30kHz, and rarely above 1MHz.

It is reported that no research or commercial system can exceed 40km × kb/s as

the product of maximum available range × rate. This means that the bandwidth

of underwater acoustic channels operating over several kilometres is about several

tens of kilobits per second, while short-range systems over several tens of metres can

reach hundreds of kilobits per second. Fifth, whilst most ground based sensors are

static, underwater sensor nodes may move with water currents and other underwater

activities. Some empirical study showed that underwater objects may move at the

speeds of 3− 6km/h under a typical condition.

The mobility of the anchor nodes poses a great challenge to the localisation of

a mobile sensor. By utilising the predictable mobility patterns of underwater ob-

jects, [75] proposed scalable localisation scheme with mobility prediction (SLMP),

which divides under water localisation into two parts: anchor node localisation and

ordinary node localisation. Anchor nodes, of which positions are known, will control
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the whole localisation process, and every ordinary node predicts its future mobility

pattern according to its past known location information. [75] introduced the three

dimensional underwater localisation (3DUL) algorithm that seeks to achieve 3D lo-

calisation in large-scale underwater acoustic sensor networks in a dynamic, energy

efficient, simple and accurate way. This process dynamically iterates along all direc-

tions in 3D topology to localise as many nodes as possible. In [76], the localisation

problem in sparse 3D underwater sensor networks is transformed into its two di-

mensional counterpart via a projection technique. Other papers examined the 3D

localisation problem from a different angle, such as the difficulties of precise deploy-

ment of underwater sensor networks [77], [78], [79], the limitation of bandwidth and

battery power in underwater environment [80], [81], distance measurements underwa-

ter suffer from large errors due to the fact that the speed of sound is affected by water

temperature, pressure, and salinity [82]. [83] proposed a 3D localisation scheme using

directional beacons (LDB) for under water sensor networks. LDB employs an acous-

tic directional transducer which acoustic beam under the AUV to aid localisation

underwater.

2.5 Conclusion

In this chapter, we have reviewed various parameter estimation techniques for

wireless positioning and their latest development, including multipath, NLoS and

multiple access interference mitigation techniques. The latest research in localisation

such as co-operative and distributed ad hoc positioning networks are discussed. We

complete the literature review by outlining a number of existing systems employed by

industry and the research community, namely, cellular systems, WLAN, RFID, ultra-

wideband (UWB), IEEE 802.15.8 peer aware communications (PAC) and underwater
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positioning networks.

GPS denial wireless positioning is currently an area of active research aiming to

achieve a number of major objectives: 1) higher accuracy; 2) lower overall system

cost; 3) less dependency on the infrastructure; 4) seamless positioning. The following

chapters detail our achievements in addressing the first three issues.
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Chapter 3

Node Configuration in Positioning

Networks

3.1 Introduction

Node configuration in positioning networks is of great importance for practical

network deployment, as it has significant impact on the positioning accuracy in the

coverage area and the number of nodes required. The latter can be translated into

network capital and maintenance cost, and it also affect the network capacity and

therefore the maximum update frequency. Recently, in a paper entitled “Sensor

placement for triangulation-based localisation” by Tekdas and Isler [84], the authors

studied the problem of finding the minimum number, and placement of sensors in

such a way that the uncertainty in localisation is bounded at every point in a given

space. The method Tekdas and Isler employed to determine the location of an object

is triangulation, in which two bearing measurements at two sensors are made. Given

the positions of the two sensors and the two bearing measurements, the location of

an unknown target can be obtained.

27
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The relative positions between target node and sensors nodes play a significant

role in the accuracy of an estimation obtained via triangulation. If the target and the

two sensors are collinear, the sensors cannot localise the target. In general, the un-

certainty in bearing-only triangulation is proportional to the product of target-sensor

distances and inversely proportional to the sine of the angle between the target and

the sensors [85]. The environment also plays a role in localisation with triangula-

tion. For example, occlusions caused by the environment may prevent a sensor from

participating in the triangulation process.

The most well-known node placement problem is perhaps the Art Gallery Problem

that involves cameras [86] where a minimum number of omnidirectional cameras

is sought to guard every point in a gallery represented by a polygon. Art gallery

problems emphasise visibility/occlusion issues and there is no explicit representation

of the quality of guarding. The problem of relocating sensors to improve coverage

has been studied in [87]. In the formulation, It is assumed that the sensors can

individually estimate the positions of the targets, but the quality of coverage decreases

with increasing distance. The problem of choosing the best subset of cameras for a

given placement has been studied recently in [88]. In this work, the focus is on

selecting a small subset of cameras to minimise a joint uncertainty measure.

This chapter is concerned with the problem of node placement or node configura-

tion using trilateration. Similar to triangulation, two range measurements instead of

bearing measurement from two sensor nodes are required to locate an unknown target.

Naturally, the quality of the localisation is a function of relative position between the

target node and reference nodes. We consider the scenario where there is the freedom

to choose the locations of the reference nodes and we aim to optimise those locations

in order to minimise the position estimation errors. The scenario we presented is the

monitoring of elite swimmers in a swimming pool. As is known in the sport commu-



3.2 Spherical Interpolation Approach 29

nity, a monitoring system which can provide timely feedback to the swimmer, coach

and sport scientists regarding the performance and physiological capabilities of an

athlete is critical for the development of optimal personal training plans that could

ensure a swimmer’s continued improvement and enhance their ability to win medals

in major competitions such as the Olympics Game [89]. To ease the analysis, we

assume certain statistics regarding the range measurements without specifying the

techniques used for measuring the ranges [90]. Given the fact that radio waves do

not travel far underwater, the most practical underwater ranging technique may be

via acoustics or optics for short ranging applications, but these details are beyond

the scope of the thesis.

The chapter is organised as follows. Following Section 3.1, in Section 3.2, we

introduce the spherical interpolation approach as the chosen positioning algorithm

[91]. In Section 3.3, the configuration of the network, namely, the arrangement of

sensor nodes in the swimming pool, is optimised to achieve the highest accuracy

with the minimum number of nodes and therefore the lowest cost. The objective

function used for the node configuration optimisation is the cumulative distribution

function (CDF). The study includes both two dimensional (2D) and three dimensional

(3D) cases to understand the variation of the positioning estimation accuracy in the

horizontal and vertical planes. Finally, the conclusions are presented in Section 3.4.

3.2 Spherical Interpolation Approach

Using the trilateration approach, the determination of the position of a target

node is based on the distance or range measurements between the target node and

the sensor nodes. Two types of ranging methods are commonly used, the time-of-

flight (ToF) and the time-difference-of-arrival (TDoA). The TDoA method has the
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advantage that no synchronisation between the target nodes and the sensor nodes is

required, and therefore it is much easier for implementation and has been more widely

employed. For this reason, the TDoA method is employed in the study. Furthermore,

we assume that the target nodes are for transmission only, and all the sensor nodes

placed in a swimming pool are for receiving only, and they are all connected to a

central signal processing unit. When a signal is sent from a swimmer, all the sensor

nodes will receive the signal with a time delay determined by the distances from the

target to each sensor node. Different delays are then used to determine the position

of the target.

The TDoA measurements lead to a set of non-linear equations whose solution

yields the position of the target node. One way to solve the non-linear equations is

to use a linear approximation based on Taylor series expansion and find the position

iteratively [92]. This method has the advantage of low computational complexity and

is therefore suited for the implementation in a real-time system. A more elegant way

to solve the non-linear equation is to employ the spherical interpolation approach

(SIA) [93]. A salient advantage of SIA is that the position estimate is expressed in a

closed form so it is easier to ensure the accuracy. The disadvantage of SIA is that it

doesn’t have the lowest complexity. Since the positioning calculation is done in the

network but not in the target node, the complexity of the algorithm is not really an

issue for our study. Furthermore, an instantaneous report on the positions of targets

is not required for the application concerned and it is acceptable for the position

data to be obtained after the completion of the measurements (training session or

competition). For these reasons, the SIA is used in our study.

Given the position estimates across the node covering area, i.e., the swimming

pool, one can calculate the cumulative distribution function (CDF) of positioning. It

is shown in the following that different node configurations result in different CDF.
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Mathematically, the SIA scheme is shown in Fig. 3.1. The target is assumed to

be at position (x, y, z, ) at a given instant, the distance from the target to node i is

denoted as di, the distance from the origin of the Cartesian coordinate to node i is

denoted as Ri, and dj represents the distance from the target to node j. Assuming

that node i receives the signal from the target node at time ti and node j receives

the signal at time tj, one has

Target
z

x

y
Node 1

Node i

iR

Rd =1
id

( )zyx ,,

( )iii zyx ,,

( )
( )0,0,0

,, 111

=
zyx

Figure 3.1: Co-ordinate used for spherical interpolation approach

Ri =
√
xi2 + yi2 + zi2, (3.1)

p =

[
x, y, z

]T
, (3.2)
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dij = di − dj = v(ti − tj), (3.3)

where dij is the TDoA measurement from node i and node j, and v is the speed

of sound in water. It is assumed that the target node and the sensor nodes are all

immersed in water. Denoting the measurement error for dij as εij , and the measured

distance of TDoA as d̂ij , one has

d̂ij = dij + εij. (3.4)

The position of the target is given by [47] as

p̂ =
1

2

(
ATWA

)−1
ATW

(
I− d̂d̂TBVB

d̂TBVBd̂

)
δ, (3.5)

where

δ =

[
R2

2 − d̂221, R3
2 − d̂231, · · · , RN

2 − d̂2N1

]T
, (3.6)

d̂ =

[
d̂21, d̂31, · · · , d̂N1

]T
, (3.7)

A =



x21 y21 z21

x31 y31 z31
...

...
...

xN1 yN1 zN1


, (3.8)

B = I−A
(
ATWA

)−1
ATW. (3.9)

The weighting matrices V and W are employed for emphasising the contributions of

the measurements that are more reliable. If the quality of the ranging measurements is

known, the weighting matrices should be chosen accordingly to achieve good accuracy.

In this study we consider homogenous transmission, so V and W are chosen as unit

matrix.

From (3.8) one can see that, in general, to avoid A being singular, the minimum

number of reference node is 4.
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3.3 Optimisation by Using a Cumulative Distribu-

tion Function

A simulation study has been conducted to investigate the effect of the network

configuration on the accuracy of localisation using the following methodology. The

TDoA measurement is modeled by a range measurement with errors following a Gaus-

sian distribution with a standard deviation σ given by

pdf (x) =
1√
2πσ

exp

(
−(x− µ)2

2σ2

)
, (3.10)

where µ is the true value of the range. A standard size training pool as that used

at the Australian Institute of Sports (AIS), which is 50m long, 25m wide and 3m

deep, is assumed. A simulation run is conducted for each given configuration. For

each simulation run, 1000 random locations are chosen for 2D cases and 10000 for 3D

cases, and 100 positioning estimates using SIA is performed for each given location.

The cumulative distribution function (CDF) of estimation errors are produced for

each given configuration.

The study starts with 2D cases first. Fig. 3.2 shows different configurations and

their CDFs. The nodes number are chosen to be four, six and eight, and all the nodes

are placed in the same horizontal plane as the target node. The standard deviation, σ,

is chosen to be 0.1m to meet the measurement accuracy of the most common devices.

It is seen that, for a given network size, there is an optimum network configuration

which produces the highest positioning accuracy. The smaller the number of the

sensor nodes, the more sensitive the CDFs are to the network configuration. When

the node number or the network size increases, the effect of the network configuration

decreases.

The greater the number of the sensor nodes, the higher the positioning accuracy.
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Figure 3.2: Different configurations and their CDFs, the STD of measurement is

0.1m
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(a) Configuration of fifteen nodes
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Figure 3.3: Configurations of fifteen nodes and its CDF, the STD of measurement

is 0.1m

It is found that when the number of sensor nodes is further increased, the network

size becomes the dominating factor. Fig. 3.3 shows the CDF using the network

configuration with 15 sensor nodes.

Next we move to the 3D case. Since the depth of the swimming pool is much

smaller than the width and the length, the positioning accuracy in the vertical di-

rection is expected to be lower than that in the horizontal plane. This is a general

problem in 3D positioning for both wireless and underwater networks as one always

has limited flexibility in placing sensor nodes vertically [94]. Fig. 3.4 shows an under-

water acoustic network configuration with three tiers of sensor nodes placed on three

horizontal planes at z = 0 (bottom), z = 1.5m (middle) and z = 3m (just beneath

the water surface), each tier contains fifteen sensor nodes and its CDFs, one for the

overall 3D position estimation, one for horizontal plan position estimation and the

other for the position estimation in the vertical direction.

It is seen, in Fig. 3.4, that positioning accuracy is slightly better in the horizontal

plane by comparing with single layer of fifteen nodes, as shown in Fig. 3.3. However,

the overall estimation accuracy is reduced significantly due to the lower accuracy
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Figure 3.4: Configuration of 3 tiers with 15 nodes on each layer and CDF, the STD

of measurement is 0.1m

in the vertical direction. An improvement in the accuracy can be made by either

increasing the ranging accuracy from 0.1m to a few millimetres or by placing more

sensor nodes in the middle of the pool. The former would demand for more delicate

and more expensive sensor nodes or hydrophones, whereas the latter may cause cer-

tain inconvenience which is not ideal but can be acceptable in practice. A practical

problem associated with the latter is the difficulty in keeping positions of the sensor

nodes in the middle of the space or swimming pool fixed.

Fig. 3.5 shows for a network configuration with three tiers each contains forty-five

sensor nodes placed on planes and the CDF.

With three tiers and each tier contains forty-five nodes,the 3D positioning accuracy

can reach 95 per cent within 1m when the standard deviation is 0.1m. To reach

positioning accuracy within 0.1m, the standard deviation needs to be narrowed down

to 0.01m; and to reach positioning accuracy within 2− 3cm, the standard deviation

needs to be further reduced down to 5mm, as shows in Fig. 3.6.
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(a) A horizontal plane of 45 sensor nodes

placed on the solid dividing lines.
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Figure 3.5: A network configuration with three tiers each contains forty-five sensor

nodes and the CDFs.
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Figure 3.6: CDFs for a network configuration with three tiers each contains forty-

five sensor nodes.
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3.4 Conclusion

The sensor configuration using TDoA has been investigated in this chapter. The

spherical interpolation approach is used as the positioning algorithm. The evaluation

of different configurations is to achieve the maximum CDF using the minimum number

of sensor nodes. A parametric study on the configuration of the network and the size

of the network is presented to understand their effect on the positioning accuracy.

It is found that the configuration of the network, i.e., the arrangement of the sensor

nodes, has a strong effect on the positioning accuracy. The smaller the number of the

sensor nodes, the more sensitive the CDFs are to the network configuration. When

the sensor node number increases, the effect of network configuration decreases. The

greater the number of the sensor nodes, the higher the positioning accuracy. When

the number of sensor nodes is large, say more than ten, it becomes the dominating

factor. With 1cm standard deviation for ranging, a 2cm positioning accuracy in the

horizontal plane can be achieved by employing three tiers with fifteen sensor nodes

on each, which is adequate for monitoring the speed of targets. Owing to the limited

depth of a swimming pool, however, it is shown that monitoring the 3D movement

of targets proved to be very challenging, demanding a ranging accuracy of at least a

few millimetres.

It should be pointed out that the dependance of the positioning accuracy, CDF

in the current context, on the node configuration is also a function of the positioning

algorithm used. The fact that one node configuration is better than another for a

given positioning algorithm may not hold for a different positioning algorithm [92].

A more general approach to optimising the node configuration for a given coverage

scenario is to use the geometric dilution of precision (GDoP) as the fitness function, as

GDoP provides a good approximation to the Cramér-Rao lower bound (CRLB) [95]
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which is algorithm independent. This is the topic for the next chapter.



40 Chapter 3. Node Configuration in Positioning Networks



Chapter 4

A Hybrid Node Configuration

Optimisation Scheme Using GDoP

4.1 Introduction

The accuracy of ranging based positioning methods is determined by three main

factors, namely, the ranging accuracy, the positioning algorithm and the configuration

of the reference nodes. The geometric configuration of the reference nodes or anchor

nodes in relation to the area in which the target nodes are to be located is critically

important, sometimes even dominant. The geometric dilution of precision (GDoP) is

used to describe how the positioning accuracy is related to such geometric factors [96].

To certain extent, without doing any detailed analysis of the positional errors, GDoP

can be used to assess the “fitness” of given reference node placement and optimise

it accordingly [97], [98]. A further advantage of employing GDoP as the fitness

function is that GDoP provides a good approximation to the Cramér-Rao lower bound

(CRLB) [95] and, therefore, the optimised node configuration is independent of the

positioning algorithm used.

41
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This chapter is organised as follows. Following Section 4.1, we first present the

theory of GDoP in Section 4.2. In Section 4.3 we introduce particle swarm optimisa-

tion (PSO) method. Then, in Section 4.4, a hybrid optimisation algorithm combining

the particle swarm optimisation (PSO) method and the sequential quadratic program-

ming (SQP), using the average GDoP as the objective function is proposed. In this

section, the hybrid optimisation algorithm is used to optimise the locations of the ref-

erence nodes. The effectiveness of the hybrid optimisation method is demonstrated

by simulation results. Finally, Section 4.5 concludes the chapter.

4.2 Geometric Dilution of Precision of Positioning

System

We assume a positioning system based on ranging measurement. Every range

estimate would incur certain errors which contribute to the positional inaccuracy.

For simplicity, a 2D geometric model of the reference node i, the target and the

estimated position is shown as Fig. 4.1. Its extension to 3D is straightforward.

Assume that the ith reference node is located at (xi, yi, zi), and the true position

of the target is (x, y, z), the distance between the ith sensor node and the target, di ,

is given by di =
√

(x− xi)2 + (y − yi)2 + (z − zi)2 , i = 1, · · · , N . Denoting c as the

propagation speed, if all the sensors are time synchronised, ri is expressed as the sum

of propagation distance between the target and the sensor node, di, and an unknown

error caused by a time offset which is expressed as cφ, i.e.

ri = di + cφ. (4.1)

If the position coordinate estimation errors ∆x, ∆y and ∆z are small, and the

time estimation error, ∆φ, is also small, the corresponding ranging error associated
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Figure 4.1: Distance and its measurement error

with the ith sensor can be expressed as

∆ri ≈
∂ri
∂x

∆x+
∂ri
∂y

∆y +
∂ri
∂z

∆z +
∂ri
∂φ

∆φ. (4.2)

To emphasis the nodes configuration effect, we assume that the clocks are perfectly

synchronised so
∂ri
∂φ

= 0. Denote αi the derivative of the range of ith sensor with

respect to the target Cartesian coordinate x, and βi the derivative of the range with

respect to the target coordinate y, γi the derivative of the range with respect to the

target coordinate z, i.e.,

αi =
∂ri
∂x

=
x− xi
ri

,

βi =
∂ri
∂y

=
y − yi
ri

,

γi =
∂ri
∂z

=
z − zi
ri

.

(4.3)

From (4.3), the N range errors ∆ri, i = 1, 2, · · · , N , can be used to estimate the
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positioning errors by performing least squares fitting. Denote

A =



α1 β1 γ1

α2 β2 γ2
...

...
...

αN βN γN


, δ =


∆x

∆y

∆z

 , h =



∆r1

∆r2
...

∆rN


. (4.4)

Equation (4.1) can be re-written as

Aδ ≈ h. (4.5)

The least squares solution of (4.5) is given by

δ =
(
ATA

)−1
ATh. (4.6)

Denote

Z =
(
ATA

)−1
, (4.7)

the elements in (4.4) can be expressed as

∆x = Z1,1

N∑
i=1

αi∆ri + Z1,2

N∑
i=1

βi∆ri + Z1,3

N∑
i=1

γi∆ri

=
N∑
i=1

ρi∆ri,

∆y = Z2,1

N∑
i=1

αi∆ri + Z2,2

N∑
i=1

βi∆ri + Z2,3

N∑
i=1

γi∆ri

=
N∑
i=1

κi∆ri,

∆z = Z3,1

N∑
i=1

αi∆ri + Z3,2

N∑
i=1

βi∆ri + Z3,3

N∑
i=1

γi∆ri

=
N∑
i=1

χi∆ri.

(4.8)

where Zi,j represents the element in ith row and jth column in matrix Z, and

ρi = Z1,1αi + Z1,2βi + Z1,3γi,

κi = Z2,1αi + Z2,2βi + Z2,3γi,

χi = Z3,1αi + Z3,2βi + Z3,3γi.

(4.9)
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The mean and variance of the positioning errors ∆x are given by

E [∆x] = E

[
N∑
i=1

ρi∆ri

]
=

N∑
i=1

ρiE [∆ri] = 0,

σx
2 = E

[
(∆x)2

]
= E

[(
N∑
i=1

ρi∆ri

)2
]

=
N∑
i=1

ρi
2E
[
(∆ri)

2] = σr
2
N∑
i=1

ρi
2,

(4.10)

and similarly, the means and variances of the positioning errors ∆y and ∆z are given

by

E [∆y] = E

[
N∑
i=1

κi∆ri

]
= 0,

σy
2 = E

[
(∆y)2

]
= E

[(
N∑
i=1

κi∆ri

)2
]

= σr
2
N∑
i=1

κi
2,

(4.11)

and

E [∆z] = E

[
N∑
i=1

χi∆ri

]
= 0,

σz
2 = E

[
(∆z)2

]
= E

[(
N∑
i=1

χi∆ri

)2
]

= σr
2
N∑
i=1

χi
2.

(4.12)

The GDoP is defined as [92]

GDoP =

√
σ2
x + σ2

y + σ2
z

σ2
r

. (4.13)

Substituting (4.10), (4.11) and (4.12) in (4.13) results in

GDoP =

√√√√ N∑
i=1

ρ2i +
N∑
i=1

κ2i +
N∑
i=1

χ2
i . (4.14)

Since ρi, κi and χi in (4.14) are related to the coordinates of sensor node i and

the target, GDoP reflects how the node configuration affects the positioning accuracy.

The lower the GDoP level, the more accuracy positioning a system can provide. Since

our aim is to achieve the highest positioning accuracy at most places, we choose the

average GDoP as the objective function for an optimisation process. Bearing in

mind that the GDoP theory assumes that the ranging errors are much smaller than

the ranges themselves, circular areas with a predetermined radius around every sensor

node are excluded in the calculation of GDoP. This is different from the CDF analysis

in the previous chapter.
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4.3 Particle Swarm Optimisation

Given the number of sensor nodes and the area within which they can be placed,

the average GDoP across a given area can be minimised by finding the optimum sensor

locations. Such an optimisation process is unfortunately complicated. There exists a

vast number of optimisation algorithms in the open literature. Different optimisation

algorithms are classified based on the type of the search space and the objective (cost)

function. The simplest technique is linear programming (LP) which concerns the case

where the objective function is linear and the set is specified using only linear equality

and inequality constraints. In our case, however, the objective function and the

constraints are both non-linear. In theory, one can resort to non-linear programming

(NLP), but such a strategy proves ineffective due to the complexity of the objective

function.

Computational intelligence-based techniques, such as the genetic algorithm (GA)

and particle swarm optimisation (PSO), can be applied to tackle the problem at hand.

GA is a search technique used in computer science and engineering to find the approx-

imate solutions to optimisation problems [99], [100], [101]. GA represents a particular

class of evolutionary algorithms that uses techniques inspired by evolutionary biology

such as inheritance, mutation, natural selection, and recombination (or crossover).

While it can rapidly locate good solutions even for difficult search spaces, it has some

disadvantages as follows:

i) Unless the fitness function is defined properly which is a very difficult task itself

in practice, GA has a tendency to converge towards local optima rather than the

global optimum of the problem.

ii) For specific optimisation problems and given the same amount of computation

time, simpler optimisation algorithms which employ PSO may find better solu-
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tions than employ GAs [102], [103].

In the study, we have used GA to optimise the locations of reference nodes to

achieve minimum average GDoP. Unfortunately, an exhaustive investigation proved

that in most cases the algorithm would converge to a local optima. Therefore, we

moved our attention to the particle swarm optimisation (PSO) algorithm instead.

Similar to GA, PSO is another evolutionary computation technique that mimicks

what happens in nature. Inspired by the social behavior of bird flocking and fish

schooling, the algorithm was developed by Eberhart and Kennedy [104] in 1995. It

utilises a population of particles that fly through the problem hyperspace with given

velocities. At each iteration, the velocities of the individual particles are stochas-

tically adjusted according to the historical best position for the particle itself and

the neighbourhood best position. Both the particle best and the neighbourhood best

are derived according to a user defined fitness/objective function. The movement

of each particle naturally evolves to an optimal or near-optimal solution. The word

swarm comes from the irregular movements of the particles in the problem space,

more similar to a swarm of mosquitoes rather than a flock of birds or a school of fish

which, to some extent, ensures that the algorithm would converge to a global optima.

PSO is largely not affected by the size and nonlinearity of the problem, and can con-

verge to the optimal solution in many problems where most analytical methods fail

to converge. Moreover, in comparison to GA, PSO has the following advantages:

i) PSO is easier to implement and there are fewer parameters to adjust.

ii) In PSO, every particle remembers its own previous best value as well as the

neighbourhood best. Therefore, it has a more effective memory capability than

the GA which helps avoid wasteful random iterations.

iii) PSO is more efficient in maintaining the diversity of the population since all the
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particles use the information related to the most successful particle in order to

improve themselves. In contrast, the worse solutions are discarded in GA and

only the fit ones are kept, which contributes to its suboptimum nature.

In PSO, the term particles refers to population members which are mass-less and

volume-less and are subject to velocities and accelerations towards a better mode of

behavior. In addition, PSO uses the swarm intelligence concept, which is the property

of a system, whereby the collective behaviors of unsophisticated agents that interact

locally with their environment create coherent global functional patterns. Therefore,

the cornerstones of PSO can be described as swarm intelligence principles: swarm

intelligence can be described by considering five fundamental principles:

a. Proximity Principle: the population should be able to carry out simple space

and time computations.

b. Quality Principle: the population should be able to respond to quality factors

in the environment.

c. Diverse Response Principle: the population should not commit its activity along

excessively narrow channels.

d. Stability Principle: the population should not change its mode of behavior every

time the environment changes.

e. Adaptability Principle: the population should be able to change its behavior

when it is worth the price.

In the real number space, each individual possible solution can be modeled as a

particle that moves through the problem hyperspace. The position of each particle

is determined by the position vector and its movement which is determined by the
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velocity of the particle [105]:

xi (t) = xi (t− 1) + vi (t) . (4.15)

The information available for each individual is based on its own experience, i.e.,

the decisions that it has made so far and the success of each decision, and the knowl-

edge of the performance of other individuals in its neighbourhood. Since the relative

importance of these two factors can vary from one decision to another, it is reasonable

to apply random weights to each part, and therefore the velocity can be determined

by

vi (t) = vi (t− 1)+ϕ1 ·rand1 · (pi − xi (t− 1))+ϕ2 ·rand2 · (pg − xi (t− 1)) , (4.16)

where ϕ1 and ϕ2 are two positive numbers and , rand1 and rand2 are two random

numbers with uniform distribution in the range of [0.0, 1.0]. The velocity update

equation in (4.16) has three major components:

• The first component is sometimes referred to as inertia, momentum, or habit.

It models the tendency of the particle to continue in the same direction it has

been traveling.

• The second component is a linear attraction towards the best position ever found

by the given particle whose corresponding fitness value is called the particle’s

best, scaled by a random weight ϕ1. This component is referred to as memory,

self-knowledge, nostalgia, or remembrance.

• The third component of the velocity update equation is a linear attraction to-

wards the best position found by any particle whose corresponding fitness value

is called global best, scaled by another random weight ϕ2. This component is

referred to as co-operation, social knowledge,group knowledge, or shared infor-

mation.
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According to the formulation above, the following procedure can be used for im-

plementing the PSO algorithm.

1. Initialise the swarm by assigning a random position in the problem hyperspace

to each particle.

2. Evaluate the fitness function for each particle.

3. For each individual particle, compare the particle’s fitness value with its pbest.

If the current value is better than the value pbest, then set this value as the pbest

and the current particle’s position xi, as pi.

4. Identify the particle that has the best fitness value. The value of its fitness

function is identified as gbest and its position as pg.

5. Update the velocities and positions of all the particles using (4.15) and (4.16).

6. Repeat steps 2 to 5 until a stopping criterion is met. This could be the maximum

number of iterations or a sufficiently good fitness value. In our study, he former

criterion is adopted.

4.4 GDoP Based Node Configuration Optimisa-

tion Using a Hybrid Algorithm

Using the PSO algorithm, it is possible to optimise the average GDoP to obtain

the optimum locations of the reference nodes. However, it is found that the PSO

algorithm tends to produce near-optimum answers but stop or slows down the search

significantly before the optimum solution is obtained. To overcome the problem, we

propose a hybrid two-step optimisation algorithm as follows. First, the PSO algorithm
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is used to find the near-optimum solution. Then, using the near optimum solution as

the initial value, we conduct the final search using the classical optimisation algorithm.

In particular, we employ the sequential quadratic programming (SQP) algorithm in

our study. It is found that such a hybrid algorithm can produce the optimum solution

in most cases.

A number of scenarios have been used to verify the effectiveness of the proposed

hybrid optimisation scheme. In the simulations, we assume that the mobile target

nodes is within the radio range of all the reference nodes. To verify the algorithm, we

consider the scenario of a circular area to which the optimum solution is to distribute

the nodes uniformly along the perimeter. Three different number of nodes, four, six

and eight are used, respectively. The simulation results are presented in the way

that red dots illustrate the locations of the reference nodes as a result of the first

optimisation step, PSO, and the blue dots illustrate the locations of the reference

nodes after the second optimisation step. It is seen in Fig. 4.2 that all the results

agree with expectations, that the reference nodes are uniformly distributed along the

perimeter. A special phenomenon is observed for the scenario when six reference

nodes are deployed in a circular area: the PSO optimisation can reach the best result

due to the highly symmetrical property, as seen in Fig. 4.2(c), therefore, the blue dots

are co-located with the red dots.

The second scenario we considered is an elliptical area of which the ratio of the

major axis to the minor axis is 2 : 1. As shown in Fig. 4.3, four, six and eight nodes

are used again, respectively. The results show that all the reference nodes should be

optimally place along the major axis direction.

The third scenario we considered is a square area. As shown in Fig. 4.4, four, six

and eight nodes are used, respectively. It is seen that, as expected, all the reference

nodes are uniformly distributed along the perimeter, being similar to the circular



52 Chapter 4. A Hybrid Node Configuration Optimisation Scheme Using GDoP

case. The six node case is probably the most interesting one as it may not be obvious

where the optimal node locations should be. The fourth scenario we considered is a

rectangular area with a ratio of length to width is 2 : 1. As shown in Fig. 4.5, the

optimisation results are very similar to the elliptical case.

The final scenario we considered are two types of right-angled triangle areas, one

being a right-angle isosceles triangle, as shown in Fig. 4.6, and the other being a

right-angle triangle of which the ratio of the two catheti is 2 : 1, as shown in Fig. 4.7.

Only eight nodes are used for both triangles. The results are intuitively instructive:

the nodes are more sparsely placed in the narrow section of the triangle and more

densely placed in the wide section.

It may be noted that the optimal node configurations shown in this chapter are

different from those shown in the previous chapter. This is due to the fact GDoP

optimisation leads to the configuration which corresponds to the Cramér-Rao lower

bound but may not be optimal for a given algorithm, such as the spherical interpo-

lation approach (SIA).
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(a) Optimised four-node configura-
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Figure 4.2: Optimised node configurations for a unit circle area
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(a) Optimised four-node configuration
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Figure 4.3: Optimised node configurations for an elliptic area of which the ratio of

the major axis to the minor axis is 2 : 1
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(a) Optimised four-node configura-
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Figure 4.4: Optimised node configurations for a unit square area
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(a) Optimised four-node configuration
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Figure 4.5: Optimised node configurations for a rectangle of which the ratio of the

length to the width is 2 : 1
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(a) Optimised eight-node configura-
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the ratio of the two catheti is 2 : 1
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4.5 Conclusion

In this chapter, a study of the node configuration optimisation is presented. A

new hybrid optimisation algorithm combining the particle swarm optimisation and

the classical sequential quadratic programming (SQP) method is proposed. The opti-

misation is carried for positioning a target in a restricted area with the average GDoP

as the objective function. Simulation results for a variety of scenarios demonstrate

the effectiveness of the proposed scheme.

As pointed out in the previous chapter, the actual positioning accuracy obtained

with a given positioning algorithm for a given coverage scenario is largely dependent

on the node configuration. The optimal node configuration for the given position-

ing algorithm may not hold for a different positioning algorithm. For instance, ToA

algorithm and TDoA algorithm provide different optimal configuration. The algo-

rithm of GDoP is based on the distance measurement, related to ToA technique,

while spherical interpolation approach (SIA), which is used in previous chapter, is

based on the TDoA measurement. The advantage of optimisation of GDoP leads to

the lowest Cramér-Rao lower bound (CRLB) [95] but the optimal node configuration

may not be optimal for other given positioning algorithm, for instance SIA, which

employs TDoA technique avoiding synchronisation of target clock. For a practical

application, therefore, one can take two different approaches. The first is to use the

GDoP-optimised node configuration to deploy the reference nodes and to employ a

positioning algorithm which can reach or approach CRLB; this would be the optimal

approach. The second is to optimise the node configuration based on the positioning

algorithm implemented in the mobile and reference nodes. In the latter scenario, the

hybrid optimisation algorithm presented in this chapter is equally applicable.



Chapter 5

Weighted Least Squares Method

for DoA Based Positioning

5.1 Introduction

The majority of known positioning methods are based on trilateration using the

measurements of the time-of-arrival (ToA) or the time-difference of arrival (TDoA)

[92]. In the former, the time-of-flight (ToF) taken for the signal from each transmitter

to reach the receiver is obtained, whereas in the latter only the differences between

the times of flight are obtained. The accuracy of such systems depends largely on

the accuracy of the timing measurements, which is the detection of the moment when

the signal from the transmitter is received by a receiver. In order to obtain a high

accuracy of timing measurements, one needs to have a wide bandwidth to achieve a

sharp pulse at the output of the receiver [90]. Therefore, these systems are usually

referred to as wideband positioning systems.

An alternative approach to wireless positioning is based on the triangulation using

more than one direction-of-arrival (DoA) estimate at spatially separated arrays [106].

59
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By using multiple arrays whose positions are known, one can locate the position of

the target using simple geometrical equations (see Fig. 5.1). There is a number of

advantages in adopting this approach: the synchronisation between the target and

the arrays is not necessary; the signal format can be very simple; and the system can

be operated in a very narrow band. These kind of positioning systems are more suited

to situations where there are lines-of-sight (LoS) between the target and some anchor

nodes where the employment of arrays is practical. Such systems can be employed in

such applications as warfare, sport and underwater tracking of submarines. The key

to this approach is the high accuracy and low complexity DoA estimation [107].

There are a number of techniques to estimate DoAs [51], and the most fundamen-

tal one is the conventional beamformer also known as Bartlett beamformer. For a

signal coming from a given direction, the algorithm of the conventional beamformer

maximises the power of the array output by weighting the signals at each array ele-

ment. The optimum weighting vector obtained at the beamformer contains the DoA

information. A critical problem associated with DoA estimation is that the accu-

racy of the estimation falls rapidly when the signal direction is close to the plane on

which the array is placed. This is due to the physical property of the array element

which radiates or receives energy as a function of the direction [108]. As a result, the

signal-to-noise ratio deteriorates significantly as the DoA moves away from the nor-

mal direction. In other words, the variance of the DoA estimation changes according

to DoA itself.

Owing to the inherent nature of DoA estimation, when a number of arrays are

employed to estimate the direction of a signal, each of the arrays estimates their

own DoAs with the associated variances. Therefore, for a given signal, the DoA

estimations made by a set of the arrays may have different variances. From statistics

point of view, the conventional least squares method (LSM) may be inaccurate for
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locating the target by using these DoAs. To solve the problem, a weighting matrix

should be introduced to take into the account of the unequal variances. This technique

is known as generalized least squares method (GLSM) in the literature [109], [110].

To our knowledge, however, we are the first to apply the GLSM concept to solve DoA

problems.

In this chapter, we propose a weighted least squares method (WLSM) with the

weighting matrix derived from the angle of incidence of each array [111], [112], [113].

Since the weight applied to each array is a function of the DoA observed by the ar-

ray, the variances of the DoA estimation at each array is taken automatically when

conducting positioning. We start from 2D scenarios, and then extend the WLSM tech-

nique to 3D cases. Simulations results show that the new method outperforms the

conventional LSM significantly. Without loss of generality, the conventional beam-

former is used in this chapter as the method to estimate the DoA of the incoming

signal at the individual arrays.

The chapter is organised as follows. Following Section 5.1, the 2D positioning

using DoAs and WLSM is studied in Section 5.2. We first present the method of

2D positioning method using multiple arrays. Then, the derivation of WLSM is

presented. The DoA estimation error distribution is discussed, and the performance

of WLSM is simulated using a standard swimming pool, and evaluated by comparing

with the conventional LSM. In Section 5.3, the WLSM method is extended to 3D

cases using uniform circular arrays. The theoretical framework is presented first. It is

then applied to the case of tracking swimmers in a swimming pool. It is demonstrated

that the weighted least squares method (WLSM) outperform the conventional least

squares method (LSM) significantly. Section 5.4 concludes the chapter.
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5.2 2D Positioning Using Multiple Linear Uniform

Arrays

5.2.1 Positioning Using Multiple Arrays

Given a 2D area in which a mobile target is contained, one can employ a number

of arrays at known positions to track the target, as shown in Fig. 5.1.
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Figure 5.1: Positioning using N arrays in 2D

Assume that the target is located at (x, y). Denote (ai, bi) as the coordinates of

the center of the array i , and αi the bearing of the array i. The signal incident angle
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estimated by the array i is θi. Then, one has the following geometric equation:

x− ai
y − bi

=
sin (αi + θi)

cos (αi + θi)
. (5.1)

For simplicity, denote 
qi1 (θ) = cos (αi + θi) ,

qi2 (θ) = − sin (αi + θi) ,

(5.2)

and

pi (θi) = cos (αi + θi) ai − sin (αi + θi) bi. (5.3)

Then, (5.1) can also be written as

qi1 (θi)x+ qi2 (θi) y = pi (θi) . (5.4)

Since ai, bi and αi are known, (5.4) describes the relationship between the DoA

estimation θi and the target position (x, y).

When N (N > 1) arrays are employed, N -DoA estimations can be obtained as

θ1, θ2, · · · , and θN . From the geometric point of view, only two of the N parameters

are necessary to find a position. However, the participation of more arrays would lead

to a more robust solution. From the N -DoA estimations, one has a set of N straight

line equations given by

q11 (θ1)x+ q12 (θ1) y − p1 (θ1) = 0,

q21 (θ2)x+ q22 (θ2) y − p2 (θ2) = 0,

...

qN1 (θN)x+ qN2 (θN) y − pN (θN) = 0.

(5.5)

The signal position (x̃, ỹ) can be determined by using the least squares method (LSM),

which finds (x̃, ỹ) by minimising the sum of squared residuals,
N∑
i=1

εi
2, where εi, for
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i = 1, · · · , N satisfy

q11 (θ1) x̃+ q12 (θ1) ỹ − p1 (θ1) = ε1,

q21 (θ2) x̃+ q22 (θ2) ỹ − p2 (θ2) = ε2,

...

qN1 (θN) x̃+ qN2 (θN) ỹ − pN (θN) = εN .

(5.6)

Defining the residual vector ε as

ε =

[
ε1, ε2, · · · , εN

]T
. (5.7)

and denoting the superscript T as the transpose operator to a matrix or a vector, the

sum of square residuals can be expressed as

N∑
i=1

εi
2 = εT ε. (5.8)

(x̃, ỹ) can be obtained by minimising (5.8) using the least squares method (LSM).

Denoting

Q =



q11 (θ1) q12 (θ1)

q21 (θ2) q22 (θ2)

...
...

qN1 (θN) qN2 (θN)


, (5.9)

and

p =



p1 (θ1)

p2 (θ2)

...

pN (θN)


, (5.10)

equation (5.6) can be re-written as

Q

 x̃

ỹ

− p = ε, (5.11)
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and the LSM solution of (5.5) can be expressed as x̃

ỹ

 =
(
QTQ

)−1
QTp. (5.12)

5.2.2 Weighted Least Squares Method

Owing to the physical characteristics of array elements, the received power of an

array decreases sharply when the signal direction moves away from the array normal

direction. As a result, the signal-to-noise ratio deteriorates as the signal direction

moves towards the array plane, thus increasing the variances of the measurement.

Fig. 5.2 shows the root-mean-square error (RMSE) of DoA estimation for the array

used for the simulation later this chapter. Since the RMSE is over one thousand

iterations, one can treat it as the square root of the variances.It is seen that the lower

the SNR, the worse the DoA estimate towards ±90◦. In the following, we propose a

weighted least squares method (WLSM). By employing weights applied to different

arrays as functions of the DoA observed by each array, the accuracy of the DoA

estimation of each array can be taken into account automatically when conducting

positioning. This could improve the positioning accuracy significantly.

When a number of arrays are employed to conduct positioning, each array esti-

mates their DoAs of the signal sent from position (x, y) relative to the orientation of

different arrays, so each DoA is related with different variances of measurement error.

From statistics point of view, the conventional least squares method (LSM) is inac-

curate for locating the target position by taking residuals in (5.6) equally. Instead, a

weighting matrix should be introduced to weigh down the residuals according to the

variances. This is known as the generalized least squares method (GLSM) [109].

GLSM is suited for applications when the variances of the observations are un-

equal, or when there is a correlation between the observations. In the application of
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GLSM, every squared residuals ε2i , for i = 1, 2, · · · , N , is weighted by the inverse of the

covariances of residual terms, E [(εi) (εj)], (for i = 1, 2, · · · , N , and j = 1, 2, · · · , N )

if there are correlations; or weighted by the inverse of the variances of residual terms

(for j = i, and i = 1, 2, · · · , N ) when there is no correlations. Denote the bold Greek

letter Ω as the covariance matrix of residual terms, i.e.

Ω = E
[
εεT
]
. (5.13)

GLSM aims to find the solution to a over-determined system by minimising the sum

of weighted squared residuals, εTΩ−1ε, instead of minimising the sum of squared

residuals shown as (5.8). The sum of weighted squared residuals is known as the

squared Mahalanobis length [110]. Denote D as Mahalanobis length,

D2 = εTΩ−1ε. (5.14)

Assuming that each DoA estimation θi, i = 1, 2, · · · , N contains measurement errors

∆θi, i = 1, 2, · · · , N with respect to their true value θi0, i = 1, 2, · · · , N , one can

re-write (5.11) as

q11 (θ10 + ∆θ1) q12 (θ10 + ∆θ1)

q21 (θ20 + ∆θ2) q22 (θ20 + ∆θ2)

...
...

qN1 (θN0 + ∆θN) qN2 (θN0 + ∆θN)


 x̃

ỹ

−


p1 (θ10 + ∆θ1)

p2 (θ20 + ∆θ2)

...

pN (θN0 + ∆θN)


=



ε1

ε2
...

εN


.

(5.15)

Assume that ∆θi, i = 1, 2, · · · , N cause small changes of ∆qik, i = 1, 2, · · · , N, k =

1, 2. and ∆pi, i = 1, 2, · · · , N , one has

qik (θi0 + ∆θi) = qik (θi0) +
∂qik (θi)

∂θi
∆θi,

i = 1, 2, · · · , N,

k = 1, 2.

(5.16)
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and

pi (θi0 + ∆θi) = pi (θi0) +
∂pi (θi)

∂θi
∆θi,

i = 1, 2, · · · , N.
(5.17)

Since θi0, i = 1, 2, · · · , N , represent the true DoA values, x̃ = x, and ỹ = y, the

straight lines of signal directions satisfy

q11 (θ10) q12 (θ10)

q21 (θ20) q22 (θ20)

...
...

qN1 (θN0) qN2 (θN0)


 x̃

ỹ

−


p1 (θ10)

p2 (θ20)

...

pN (θN0)


= 0, (5.18)

which leads to

ε =



ε1

ε2
...

εN


=



(
∂q11 (θ1)

∂θ1
x̃+

∂q12 (θ1)

∂θ1
ỹ − ∂p1 (θ1)

∂θ1

)
∆θ1(

∂q21 (θ2)

∂θ2
x̃+

∂q22 (θ2)

∂θ2
ỹ − ∂p2 (θ2)

∂θ2

)
∆θ2

...(
∂qN1 (θN)

∂θN
x̃+

∂qN2 (θN)

∂θN
ỹ − ∂pN (θN)

∂θN

)
∆θN


. (5.19)

Applying (5.19) to (5.13), the residual covariance matrix can be obtained.

Assuming that each array estimates their DoAs independently, the covariance ma-

trix Ω becomes diagonal. This leads to the weighted least squares method (WLSM).

By denoting diag [·] as a diagonal matrix, Ω is obtained as

Ω = diag

[(
∂qi1 (θi)

∂θi
x̃+

∂qi2 (θi)

∂θi
ỹ − ∂pi (θi)

∂θi

)2

E
[
|∆θi|2

]]
N×N

,

i = 1, 2, · · · , N.
(5.20)

The coordinates of estimated signal position (x̃, ỹ) can be obtained by the least

squares estimation from (5.12), and E
[
|∆θi|2

]
can be obtained from the RMSE of

DoA estimation. Thus matrix Ω can be obtained by (5.20).
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By applying (5.11), Squared Mahalanobis Length is expressed as

εTΩ−1ε =

Q

 x̃

ỹ

− p


T

Ω−1

Q

 x̃

ỹ

− p

 . (5.21)

Finding the minimum of (5.21) leads to x̃

ỹ

 =
(
QTΩ−1Q

)−1
QTΩ−1p. (5.22)

5.2.3 DoA Estimation Error Distribution

To obtain the weighting matrix Ω−1 requires the information of the DoA esti-

mation error for each array as a function of the observation angle, which can be

represented by the root-mean-squares error (RMSE). The RMSE as a function of the

observation angle depends on the beamformer type, the physical parameters of the

array, and the elements used. Without loss of generality, we employ the conventional

beamformer to illustrate the effectiveness of WLSM in this chapter. A beamformer

searches for an optimal weighting vector to find the direction of the incoming sig-

nal [49]. For the conventional beamformer, the weighting vector takes the form of the

steering vector, which has the observation angle as the only variable. The observa-

tion angle which produces the maximum power value in the spatial spectrum gives

the estimated DoA of the incoming signal [51]. The details of the method is presented

below for two-dimensional (2D) positioning.

Assume that the array elements are arranged in one dimension with equal distances

between the sensor elements. This kind of arrays are known as uniform linear arrays

(ULA).

Let M denote the number of the sensor elements in the array, d the inter-element

spacing, and λ the wavelength corresponding to the carrier frequency. Without loss



5.2 2D Positioning Using Multiple Linear Uniform Arrays 69

of generality, we assume that M is an odd number and the middle sensor is chosen

as the reference one. Then, the steering vector is written as

a (θ) =

[
ej

M−1
2

2π
λ
d sin(θ), · · · , 1, · · · , e−j

M−1
2

2π
λ
d sin(θ)

]T
. (5.23)

In this 2D case, each element is assumed to be a linear source, l is the length of the

element and θ is the signal observation angle. The relative distribution of radiated

power as a function of direction in space, known as the element radiation pattern, is

given by [114], [115], [116]

g (θ) =

sin

(
2π

λ

l

2
sin (θ)

)
2π

λ

l

2
sin (θ)

. (5.24)

Denote R the covariance matrix of the received data, the superscript H the Her-

mitian transpose operator (i.e. the conjugate transpose to a matrix or a vector) [51].

For a given DoA θ0 , the following spatial spectrum reaches maximum in an additive

white Gaussian noise (AWGN) channel when θ = θ0 in (5.23):

P (θ) =
aH (θ) Ra (θ)

aH (θ) a (θ)
. (5.25)

5.2.4 Simulation Using Uniform Linear Arrays for 2D

In this section, we present simulation results to demonstrate the effectiveness the

proposed WLSM method. In the simulation study, we assume M = 9 , and l in

(5.24) is chosen to be λ/2 in order to avoid sidelobes [115], [116]. The direction-of-

arrival is varied from −85◦ to 85◦ with an increment of 15′ . The scanning range for

the conventional beamformer is from −90◦ to 90◦ for every direction-of-arrival. It is

assumed that the signal output is corrupted by additive white Gaussian noise. The

root-mean-square of the DoA estimation error distributions are obtained for three

different signal-to-noise ratios (SNR), namely, 5dB, 0dB, and −5dB, as shown in
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Fig. 5.2. It is observed that the lower the SNR, the greater the DoA estimation error

especially when the DOAs approach ±90◦ . For SNR= −5dB, for instance, the DoA

estimation error becomes too large beyond ±80◦.
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Figure 5.2: RMSE distribution of DoA estimation of a 9-element ULA.

The positioning simulation is carried out for a standard size Olympic swimming

pool, which is 50m long and 25m wide, shown as Fig. 5.3(a). In this rectangular area,

four identical uniform linear arrays (ULA) are employed, each of which is placed at

the centre on one side of the swimming pool. For most positions in the pool, the

distance from the target to any ULA is far great than the size of the ULA, so the

positions of the ULAs can be represented by their centre coordinates .

The global coordinates are shown in Fig. 5.3(b), with the origin chosen at the

centre of the swimming pool, the X-axis along the width of the pool, and the Y -axis

along the length of the pool. The labels of these arrays are arranged anti-clock wise.

Given a signal emitted from within the swimming pool, one has four DoAs ob-

served at the four ULAs, θ1, θ2, θ3 and θ4. A geometrical analysis produces the
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(a) Layout of standard swimming pool
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(b) 2D coordinates and ULA positioning

Figure 5.3: Standard swimming pool layout and coordinates

following set of equations:

sin (θ1)x+ cos (θ1) y =
W

2
sin (θ1) ,

cos (θ2)x− sin (θ2) y = −L
2

sin (θ2) ,

sin (θ3)x+ cos (θ3) y = −W
2

sin (θ3) ,

cos (θ4)x− sin (θ4) y =
L

2
sin (θ4) .

(5.26)

Applying (5.9) and (5.10) to (5.26) results in

Q =



sin (θ1) cos (θ1)

cos (θ2) − sin (θ2)

sin (θ3) cos (θ3)

cos (θ4) − sin (θ4)


, (5.27)
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p =



W

2
sin (θ1)

−L
2

sin (θ2)

−W
2

sin (θ3)

L

2
sin (θ4)


. (5.28)

Substituting (5.27) and (5.28) into (5.12), the source position, (x̃, ỹ) which is

estimated by the LSM can be obtained. Applying (5.27), (5.28) and (x̃, ỹ) to (5.20),

the matrix Ω can be obtained as

Ω =



Ω11

Ω22

0

0
Ω33

Ω44


, (5.29)

where

Ω11 =

[
cos (θ1) x̃− sin (θ1) ỹ −

W

2
cos (θ1)

]2
E
[
|∆θ1|2

]
,

Ω22 =

[
sin (θ2) x̃+ cos (θ2) ỹ −

L

2
cos (θ2)

]2
E
[
|∆θ2|2

]
,

Ω33 =

[
cos (θ3) x̃− sin (θ3) ỹ +

W

2
cos (θ3)

]2
E
[
|∆θ3|2

]
,

Ω44 =

[
sin (θ4) x̃+ cos (θ4) ỹ +

L

2
cos (θ4)

]2
E
[
|∆θ4|2

]
.

(5.30)

Finally, applying the weighting matrix Ω−1, (5.27) and (5.28) into (5.22), the

source position estimated by the weighted least squares method (WLSM) is obtained.

It is noted that, based on the estimates obtained using LSM, the WLSM provides a

means of improving the positioning estimation accuracy by introducing an extra step.

In theory, one could use the previous WLSM position estimates to perform one or more

WLSM operations, but simulation results showed that only one WLSM operation is

sufficient and the improvement achieved using further iterations is negligible. For



5.2 2D Positioning Using Multiple Linear Uniform Arrays 73

comparison, the root-mean-square errors have been measured for the source positions

estimated by both methods.

Simulations have been carried out for two different lanes, lane 6 and lane 8 (note

that the lanes of the standard swimming pool are labeled from 0 - 9, see Fig. 5.3(a)),

under the signal-to-noise ratio 5dB and −5dB. Fig. 5.4 shows the RMSE along lane

6 and lane 8.
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Figure 5.4: RMSE distribution and WLSM improvement.

From Fig. 5.4, it can be seen that the accuracy of positioning using WLSM out-

performs that of the conventional LSM significantly, particularly when the swimmer

is close to both ends of the pool. The overall conclusion is that the lower the signal-to-

noise ratio, the better the improvement achieved by the WLSM. The improvements

become quite significant when the positions are less than 10m towards either end of

the swimming pool. The WLSM pushes the points where the positioning accuracy

falls sharply much closer to the ends of the pool, at least within 2m of the end of

the pool. It should be pointed out that some applications including the one pre-

sented in the chapter demand a positioning accuracy of millimetres. Therefore, the

improvement achieved using WLSM even in centimetres is of practical importance.
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5.3 3D DoA Positioning

5.3.1 Methodology and Theoretical Framework for 3D

For 3D DoA estimation using a planar array, one needs to measure both the

elevation angle with respect to the array plane and azimuth angle. Without loss of

generality, the uniform circular array (UCA) is employed for the study. A uniform

circular array, as shown in Fig. 5.5, consists of N elements located evenly on a circle

with radius R.

2

N
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N

1

i
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O

(a) Birdeye view of uniform circular ar-

ray and sensor coordinates

Normal

X

Y

Z

1 2

N

k

θ

ϕ

O

n

(b) Front view of uniform circular array and

wave vector

Figure 5.5: Illustration of an uniform circular array with N sensors

Using a spherical coordinate system, the position of each element is represented

by

rn = R

[
cos (n− 1)

2π

N
, sin (n− 1)

2π

N
, 0

]T
,

n = 1, 2, · · · , N.
(5.31)

where the superscript T denotes the transpose operation. To avoid grating lobes,

the distance between two adjacent elements is chosen as a half of the wavelength
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λ [115], [108], thus resulting in

R =
λ

4

1

sin(π/N)
. (5.32)

When a plane wave impinges on the array, every element receives the same direc-

tional signal with different phase delays due to the position difference. We assume

that the elevation angle, θ, is measured to the opposite direction of the wave vector,

i.e., −k direction. For the problem concerned, the range of the elevation angle is

limited from 0 to
π

2
. The azimuth angle ϕ is measured from X-axis to the projection

of −k on the array plane. The range of the azimuth angle is from −π to π.

The wave vector is expressed as

k = − λ

2π

[
sin (θ) cos (ϕ) , sin (θ) sin (ϕ) , cos (θ)

]T
, (5.33)

and the phase factor of each element in the UCA is expressed as

−jkT rn = j
λ

2π
R sin (θ) cos

(
ϕ− (n− 1)

2π

N

)
,

n = 1, 2, · · · , N.
(5.34)

For simplicity, denote

ψn =
λ

2π
R sin (θ) cos

(
ϕ− (n− 1)

2π

N

)
,

n = 1, 2, · · · , N.
(5.35)

The signal replica vector is given by [51]

a (θ, ϕ) = g (θ, ϕ) as (θ, ϕ) , (5.36)

where g (θ, ϕ) is the common element pattern which depends on the specific element

used. For an element with a circular aperture and radius a, g (θ, ϕ) is given by

g (θ, ϕ) =

J1

(
λ

2π
a sin (θ)

)
λ

2π
a sin (θ)

, (5.37)
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where J1

(
λ

2π
a sin (θ)

)
is Bessel function of the first kind and order one. The steering

vector as (θ, ϕ) is given by [51]

as (θ, ϕ) =

[
ejψ1 , ejψ2 , · · · , ejψN

]T
. (5.38)

Assume that the target to be positioned is contained in an enclosure with a rect-

angular floor area and height C . The rectangular floor is defined by length L and

width W , as shown in Fig. 5.6(a). The XOY plane is chosen on the floor, with

X-axis along the width, Y -axis along the length, and the origin at the centre of the

area and Z-axis along the height.

Four uniform circular arrays (UCAs) are employed to locate a target in the enclo-

sure as shown in Fig. 5.6(a). The four UCAs are all placed at a height of h(h < C)

above the floor. On each wall, the UCA is placed at the middle point along the wall.

It should be noted that the walls are used to define the enclosure and they can be

virtual ones as long as the UCAs can be somehow fixed on them. Table 5.1 lists

the coordinates and the normal directions of each UCA, as shown in Fig. 5.6(b) -

Fig. 5.6(e).

Assume that the target is located at (x, y, z) and in the far field of all the UCAs.

Each array estimates the signal direction from its own position. The elevation angle is

measured from the normal direction of each array and the azimuth angle is measured

from Z-axis. The sign of the azimuth angle is determined by the right-hand rule from

the normal direction of the array to Z-axis.

Using θi, i = 1, 2, 3, 4, to describe the elevation angle that is measured by each ar-

ray, and ϕi, i = 1, 2, 3, 4, the azimuth angle is measured by each array, the geometrical

relationship can be found as described by (5.39)
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Table 5.1: Centre coordinates and normal direction of arrays

Array Centre Normal

order coordinates direction

Array 1

(
W

2
, 0, h

)
Opposite to X-axis

Array 2

(
0,
L

2
, h

)
Opposite to Y -axis

Array 3

(
−W

2
, 0, h

)
X-axis

Array 4

(
0,−L

2
, h

)
Y -axis




sin (θ1) sin (ϕ1)x+ cos (θ1) y −

W

2
sin (θ1) sin (ϕ1) = 0,

cos (ϕ1) y − sin (ϕ1) z + h sin (ϕ1) = 0.
cos (θ2)x− sin (θ2) sin (ϕ2) y +

L

2
sin (θ2) sin (ϕ2) = 0,

cos (ϕ2)x+ sin (ϕ2) z − h sin (ϕ2) = 0.
sin (θ3) sin (ϕ3)x+ cos (θ3) y +

W

2
sin (θ3) sin (ϕ3) = 0,

cos (ϕ3) y + sin (ϕ3) z − h sin (ϕ3) = 0.
cos (θ4)x− sin (θ4) sin (ϕ4) y −

L

2
sin (θ4) sin (ϕ4) = 0,

cos (ϕ4)x− sin (ϕ4) z + h sin (ϕ4) = 0.

(5.39)
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In a matrix-vector form, (5.39) can be written as

A


x

y

z

− b = 0, (5.40)

where

A =



sin (θ1) sin (ϕ1) cos (θ1) 0

0 cos (ϕ1) − sin (ϕ1)

cos (θ2) − sin (θ2) sin (ϕ2) 0

cos (ϕ2) 0 sin (ϕ2)

sin (θ3) sin (ϕ3) cos (θ3) 0

0 cos (ϕ3) sin (ϕ3)

cos (θ4) − sin (θ4) sin (ϕ4) 0

cos (ϕ4) 0 − sin (ϕ4)



, (5.41)

and

b =



W

2
sin (θ1) sin (ϕ1)

−h sin (ϕ1)

−L
2

sin (θ2) sin (ϕ2)

h sin (ϕ2)

−W
2

sin (θ3) sin (ϕ3)

h sin (ϕ3)

L

2
sin (θ4) sin (ϕ4)

−h sin (ϕ4)



. (5.42)

The LSM solution of (5.40) is obtained as
x̃

ỹ

z̃

 =
(
AHA

)−1
AHb. (5.43)
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Next, we develop the weighted least square method (WLSM) for 3D. We assume

that all the measurements are independent of each other, so there is no correlations

between the arrays, nor correlation between the measurement of elevation angle and

azimuth angle for any given array. Further we assume that measurement errors ∆θi

and ∆ϕi, for i = 1, 2, · · · , N , cause small changes to the elements of A and elements

of b so that


∆a(2i−1)k =

∂a(2i−1)k
∂θi

∆θi +
∂a(2i−1)k
∂ϕi

∆ϕi,

∆a(2i)k =
∂a(2i)k
∂θi

∆θi +
∂a(2i)k
∂ϕi

∆ϕi,

i = 1, 2, 3, 4,

k = 1, 2, 3,

(5.44)

and 
∆b(2i−1) =

∂b(2i−1)
∂θi

∆θi +
∂b(2i−1)
∂ϕi

∆ϕi,

∆b(2i) =
∂b(2i)
∂θi

∆θi +
∂b(2i)
∂ϕi

∆ϕi,

i = 1, 2, 3, 4.

(5.45)

The residuals for solving (5.39) are obtained as
ε(2i−1) =

3∑
k=1

∆a(2i−1)k · x̃k −∆b(2i−1),

ε(2i) =
3∑

k=1

∆a(2i)k · x̃k −∆b(2i),

i = 1, 2, 3, 4,

(5.46)

where x̃k, k = 1, 2, 3, in (5.46) represent the signal coordinates x̃, ỹ, z̃ in (5.43).

The covariance matrix Ω can be obtained by

Ω = E
[
εεT
]
, (5.47)

where the elements of ε are decided by (5.46).
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Since the arrays are independent of each other, there is no correlation between

the arrays,  E [(ε2i−1) (ε2j−1)] = E [(ε2i−1) (ε2j)] = 0,

E [(ε2i) (ε2j−1)] = E [(ε2i) (ε2j)] = 0,

i 6= j,

(5.48)

while ε(2i−1) and ε(2i), i = 1, 2, · · · , N , are correlated due to the fact that one needs

two equations to decide one straight line in 3D. Equation (5.47) produces a band

matrix. Denote ωij the element on ith row and jth column of Ω, the matrix is in the

form of

Ω =



ω11 ω12

ω21 ω22

. . .

0

0

. . .

ω(2N−1)(2N−1) ω(2N−1)(2N)

ω(2N)(2N−1) ω(2N)(2N)


2N×2N

, (5.49)
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where

ω(2i−1)(2i−1) = E
[
ε(2i−1)ε(2i−1)

]
=

[
3∑

k=1

(
∂a(2i−1)k
∂θi

· x̃k
)
−
∂b(2i−1)
∂θi

]2
E
[
(∆θi)

2]
+

[
3∑

k=1

(
∂a(2i−1)k
∂ϕi

· x̃k
)
−
∂b(2i−1)
∂ϕi

]2
E
[
(∆ϕi)

2] ,
ω(2i−1)(2i) = E

[
ε(2i−1)ε(2i)

]
=

[
3∑

k=1

(
∂a(2i−1)k
∂θi

· x̃k
)
−
∂b(2i−1)
∂θi

]
×[

3∑
k=1

(
∂a(2i)k
∂θi

· x̃k
)
−
∂b(2i)
∂θi

]
E
[
(∆θi)

2]
+

[
3∑

k=1

(
∂a(2i−1)k
∂ϕi

· x̃k
)
−
∂b(2i−1)
∂ϕi

]
×[

3∑
k=1

(
∂a(2i)k
∂ϕi

· x̃k
)
−
∂b(2i)
∂ϕi

]
E
[
(∆ϕi)

2] ,
ω(2i)(2i−1) = E

[
ε(2i)ε(2i−1)

]
= ω(2i−1)(2i),

ω(2i)(2i) = E
[
ε(2i)ε(2i)

]
=

[
3∑

k=1

(
∂a(2i)k
∂θi

· x̃k
)
−
∂b(2i)
∂θi

]2
E
[
(∆θi)

2]
+

[
3∑

k=1

(
∂a(2i)k
∂ϕi

· x̃k
)
−
∂b(2i)
∂ϕi

]2
E
[
(∆ϕi)

2] .

(5.50)

Note that E
[
|∆θi|2

]
and E

[
|∆ϕi|2

]
need to be pre-determined.

Substituting (5.41) and (5.42) into (5.50), one obtains the elements of sub-matrices
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as follows:

ω11 =

[
cos (θ1) sin (ϕ1) x̃− sin (θ1) ỹ −

W

2
cos (θ1) sin (ϕ1)

]2
E
[
(∆θ1)

2]
+

[
sin (θ1) cos (ϕ1) x̃−

W

2
sin (θ1) cos (ϕ1)

]2
E
[
(∆ϕ1)

2] ,
ω12 = −

[
sin (θ1) cos (ϕ1) x̃−

W

2
sin (θ1) cos (ϕ1)

]
×

[sin (ϕ1) ỹ + cos (ϕ1) z̃ − h cos (ϕ1)]E
[
(∆ϕ1)

2] ,
ω21 = ω12,

ω22 = [sin (ϕ1) ỹ + cos (ϕ1) z̃ − h cos (ϕ1)]
2E
[
(∆ϕ1)

2] .

(5.51)

ω33 =

[
sin (θ2) x̃+ cos (θ2) sin (ϕ2) ỹ −

L

2
cos (θ2) sin (ϕ2)

]2
E
[
(∆θ2)

2]
+

[
sin (θ2) cos (ϕ2) ỹ −

L

2
sin (θ2) cos (ϕ2)

]2
E
[
(∆ϕ2)

2] ,
ω34 =

[
sin (θ2) cos (ϕ2) ỹ −

L

2
sin (θ2) cos (ϕ2)

]
×

[sin (ϕ2) x̃− cos (ϕ2) z̃ + h cos (ϕ2)]E
[
(∆ϕ2)

2] ,
ω43 = ω34,

ω44 = [sin (ϕ2) x̃− cos (ϕ2) z̃ + h cos (ϕ2)]
2E
[
(∆ϕ2)

2] .

(5.52)
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ω55 =

[
cos (θ3) sin (ϕ3) x̃− sin (θ3) ỹ +

W

2
cos (θ3) sin (ϕ3)

]2
E
[
(∆θ3)

2]
+

[
sin (θ3) cos (ϕ3) x̃+

W

2
sin (θ3) cos (ϕ3)

]2
E
[
(∆ϕ3)

2] ,
ω56 = −

[
sin (θ3) cos (ϕ3) x̃+

W

2
sin (θ3) cos (ϕ3)

]
×

[sin (ϕ3) ỹ − cos (ϕ3) z̃ + h cos (ϕ3)]E
[
(∆ϕ3)

2] ,
ω65 = ω56,

ω66 = [sin (ϕ3) ỹ − cos (ϕ3) z̃ + h cos (ϕ3)]
2E
[
(∆ϕ3)

2] .

(5.53)

ω77 =

[
sin (θ4) x̃+ cos (θ4) sin (ϕ4) ỹ +

L

2
cos (θ4) sin (ϕ4)

]2
E
[
(∆θ4)

2]
+

[
sin (θ4) cos (ϕ4) ỹ +

L

2
sin (θ4) cos (ϕ4)

]2
E
[
(∆ϕ4)

2] ,
ω78 =

[
sin (θ4) cos (ϕ4) ỹ +

L

2
sin (θ4) cos (ϕ4)

]
×

[sin (ϕ4) x̃+ cos (ϕ4) z̃ − h cos (ϕ4)]E
[
(∆ϕ4)

2] ,
ω87 = ω78,

ω88 = [sin (ϕ4) x̃+ cos (ϕ4) z̃ − h cos (ϕ4)]
2E
[
(∆ϕ4)

2] .

(5.54)

Extending (5.21) to 3D results in

εTΩ−1ε =

A


x̃

ỹ

z̃

− b


T

Ω−1

A


x̃

ỹ

z̃

− b

 . (5.55)

Thus, the WLSM solution of the target position in 3D case is given by
x̃

ỹ

z̃

 =
(
AHΩ−1A

)−1
AHΩ−1b. (5.56)
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5.3.2 Simulation Using Uniform Circular Arrays in 3D

Simulations have been carried out using a standard swimming pool of 50m long,

25m wide, and 3m deep. Four UCAs are all placed 1.5m above the floor. One UCA is

placed on each wall at the middle point along the wall, as shown in Fig. 5.6(a). The

four UCAs are identical. Each element of the array is a circular one with a radius of

λ/4 whose radiation pattern is given by (5.37).

To examine the performance of the proposed method, the root-mean-square esti-

mates of 3D positions are obtained for Lane 8 (see Fig. 5.3(a)) under signal-to-noise ra-

tio −5dB and 5dB, respectively. Two sets of UCAs with 8-elements and 12-elements,

respectively, are used in the simulation to examine the effect of the number of ele-

ments in an UCA on the positioning accuracy. As expected, since a greater number

of elements leads to a narrower beam and therefore higher DoA estimation accuracy,

the positioning accuracy increases with the number of elements in the array. Both

the LSM and the WLSM are used for positioning estimates, and a comparison of

their RMSEs are shown in Fig. 5.7(a) and Fig. 5.7(b). It can be seen that the WLSM

outperforms the conventional LSM significantly. Most improvement can be observed

when the targets are closer to either end of the swimming pool.

5.4 Conclusion

The method of using multiple arrays for wireless positioning for 2D and 3D sce-

narios is studied. To mitigate the problem of DoA estimation inaccuracy when the

DoA moves away from the array norm, a weighted least squares method (WLSM)

is proposed with the weighting function derived from the generalized least squares

method (GLSM). When the WLSM is applied for tracking swimmers in a swimming

pool, it produces excellent results. Compared with the conventional least squares
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Figure 5.7: RMSE for 3D Positioning for Lane 8

method, the WLSM results in great improvement in positioning accuracy. The effec-

tiveness of the method has been validated by simulations carried out in a standard

swimming pool.

It should be noted that the method and results presented in the chapter are

applicable to both wireless and acoustic positioning as no specific propagation channel

information has been assumed.



Chapter 6

A Novel Ranging Based Array for

Positioning

6.1 Introduction

Wireless positioning techniques can be classified into two main categories: rang-

ing based and bearing or direction-of-arrival (DoA) based [1], [2]. The associated

algorithms of the two techniques are presented in a fine review by Torrieri [117].

Typical techniques for DoA estimation employ a linear or circular antenna array. By

directly or indirectly measuring the phase differences between antenna elements, the

direction of the incident signal can be estimated [51], [92], [118]. A drawback of this

technique is that it requires calibrations of different signal branches. Since the phase

measurement is sensitive to the environment change such as temperature and aging,

the calibration must be done on a regular basis. This could complicate the system

and increase cost.

Wireless positioning systems using ranging estimations have been widely and

deeply explored [119], [120], [121], [122]. The technique is to use ranging information,

87
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which is obtained from the time-of-flight measurement, for instance, to estimate the

target position using trilateration. The application is typically under the assumption

that some fixed reference nodes are available in the area where positioning is con-

ducted. This assumption may limit the applications of ranging based methods. In

many situations, such as emergency rescue operation and mobile workforce manage-

ment, it is impractical or even impossible to pre-install the reference nodes. Therefore,

a positioning system without requiring fixed reference nodes would be desired.

This chapter presents a novel wireless positioning system which employs an array

of sensors to estimate the position of a mobile target without using fixed reference

nodes [123]. In contrast to the traditional array based method, every sensor is capable

of doing ranging measurements individually by communicating with the target, but no

phase measurement is required. These range measurements lead to a bearing estimate

as well as a high accuracy ranging estimate via averaging. Given the proliferation of

various standard wireless transceivers capable of doing ranging measurements, such

a system can be built at a reasonably low cost.

The chapter is organised as follows. In Section 6.2, a wireless localisation system

employing raging based arrays is described and an associated location estimator is

presented. Section 6.4 derives the Cramér-Rao lower bound of the proposed location

estimator. Section 6.4 presents a closed form expression of the standard deviation

(STD) and it is proved that the estimator can reach its Cramér-Rao lower bound.

Samples of STD calculations are compared with root-mean-square error (RMSE) of

positioning simulation. Section 6.5 presents the derivation of CRLB when the array is

placed at an arbitrary location, and Section 6.6 presents the closed-form of standard

deviation for the array placed at an arbitrary location and proves that the estimator

can reach its Cramér-Rao lower bound. Some numerical results are given in the same

section to prove the theoretical results. Section 6.7 extends the theory of ranging
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based sensor array to 3D. In Subsection 6.7.1, a 3D array model is introduced, and in

Subsection 6.7.2, a closed-form standard deviation is derived, and in Subsection 6.7.3,

numerical result is presented. Finally, Section 6.8 concludes the chapter.

6.2 System Description and Position Estimator

Conventional DoA based positioning systems typically employ phase measure-

ments at the antenna branches and distance measurements to determine the location

of a mobile target. To avoid ambiguity, the antenna inter-element spacing is nor-

mally chosen to be close to half wavelength. All the antenna branches need to be

carefully calibrated in order to extract the DoA information from the received signal.

Given the proliferation of low cost sensors capable of doing range measurement, we

introduce the concept of using such sensors to form a positioning array. In contrast

to conventional arrays, the inter-sensor distance is entirely the choice of the system

designer, which can be as large as practically feasible to increase positioning accuracy.

The bearing of the target node is determined by the differences of ranges measured

at the individual sensors. The ranges estimated by each sensor are then employed to

estimate the distance of the target node to the center of sensor array, thus leading to

the target node position.

Without loss of generality, the size of the sensor array is considered to be in metres.

Since the target node is typically far away from the sensor array and the distance far

greater than the size of the sensor array, one can use the far field approximation to

represent the ranges between the target node and the individual sensors. In other

words, the signal impinging on the sensor array from the target node can be modeled

as a plane wave. For convenience, we assume that all the sensors in the sensor array

are uniformly distributed in a circle as shown in Fig. 6.1.
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Figure 6.1: Far field estimation model

A polar coordinates system is set-up with its origin is at the centre of the sensor

array, and the polar angle is measured from the X-axis counter-clockwise. We also

denote R as the radius of the circle, and the polar angle of the ith sensor is αi . If the

position of the target is represented as (d, θ) , the range between the ith sensor and

the target is given by

ri = d−R cos (αi − θ) + ∆ri

= d−R cos (αi) cos (θ)−R sin (αi) sin (θ) + ∆ri,

i = 1, · · · , N.

(6.1)

where ∆ri, i = 1, · · · , N , are the deviations of ranges from their expected value

respectively.

For a whole array, the ranges between the target and each individual sensor is
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thus expressed in a matrix form as

r1

r2
...

rN


= A


d

cos (θ)

sin (θ)

+



∆r1

∆r2
...

∆rN


, (6.2)

where

A =



1 −R cos (α1) −R sin (α1)

1 −R cos (α2) −R sin (α2)

...
...

...

1 −R cos (αN) −R sin (αN)


N×3

. (6.3)

is a matrix related with the radius of the array R , and sinusoidal functions of the

polar angles associated with each individual sensor.

Denote r as a vector form of ranges between each sensor and the target,

r =

[
r1, r2, · · · , rN

]T
, (6.4)

where [·]T denotes the vector or matrix transposition. And denote ∆r as the vector

form of range deviations from their expected value

∆r =

[
∆r1, ∆r2, · · · , ∆rN

]T
, (6.5)

(6.2) can be re-written as

A


d

cos (θ)

sin (θ)

+ ∆r = r. (6.6)

The least squares solution of (6.6) yields
d

c

s

 =
(
ATA

)−1
ATr. (6.7)
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Thus, the distance of the target is estimated as d and the bearing of the target, θ , is

estimated as

θ = tan−1
(s
c

)
. (6.8)

Equations (6.7) and (6.8) constitute a distance and bearing estimator.

6.3 Cramér-Rao Lower Bound for Ranging Based

Sensor Array

In the model described in Section 6.2, the coordinates of target position in polar

system, d and θ, are two parameters need to be estimated. The two estimators d̂ and

θ̂ are described by (6.7) and (6.8). Let pdf denote the probability density function of

the array. With two parameters to be estimated, the Fisher information matrix is a

2× 2 matrix [124], which is expressed as

I =


E

{[
∂

∂d
ln (pdf)

]2}
E

{[
∂

∂d
ln (pdf)

] [
∂

∂θ
ln (pdf)

]}
E

{[
∂

∂d
ln (pdf)

] [
∂

∂θ
ln (pdf)

]}
E

{[
∂

∂θ
ln (pdf)

]2}
 . (6.9)

Let pdf i denote the probability density function of the ith sensor, i = 1, · · · , N .

By the law of likelihood [124], the probability density function of the array, pdf , and

the probability density function of individual sensor, pdf i , satisfy

pdf =
N∏
i=1

pdf i. (6.10)

Assume that the range measurements by each sensor, ri, i = 1, · · · , N , is corrupted

by Gaussian noise with standard deviation σ. The probability density function for
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each measurement is thus given by

pdf i =
1√
2πσ

exp

[
−1

2

(ri − µi)2

σ2

]
,

i = 1, · · · , N.
(6.11)

where µi is the expected value of the range between the target and the sensor i. In the

model described in Section 6.2, the expected value of the range measured by sensor i

is expressed by

µi = d−R cos (αi − θ) ,

i = 1, · · · , N.
(6.12)

where µi is a function of two parameters, the expected target distance d and the

expected target bearing θ .

To obtain the Fisher information matrix, we take the natural logarithm of 6.10

[124]:

ln (pdf) = −N ln
(√

2πσ
)
− 1

2

N∑
i=1

(ri − µi)2

σ2
. (6.13)

Performing partial differentiation of (6.13) with respected to the two parameters

results in the Fisher information matrix. The partial derivative of (6.13) with respect

to distance d is found to be

∂

∂d
ln (pdf) =

N∑
i=1

{[
∂

∂µi
ln (pdf i)

]
∂µi
∂d

}
=

1

σ2

N∑
i=1

(ri − µi) ,
(6.14)

and the partial derivative of (6.13) with respect to bearing θ is found to be

∂

∂θ
ln (pdf) =

N∑
i=1

{[
∂

∂µi
ln (pdfi)

]
∂µi
∂θ

}
= −R

σ2

N∑
i=1

(ri − µi) sin (αi − θ) .
(6.15)

From (6.14) and (6.15), one can obtain the elements of the Fisher information matrix
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as follows. First,

I11 = E

{[
∂

∂d
ln (pdf)

]2}
=

1

σ4
E


[

N∑
i=1

(ri − µi)

]2 . (6.16)

For independent sensors in the array, we assume that there is no correlation between

the measurements, i.e.,

E [(ri − µi) (rj − µj)] = 0,

i 6= j.
(6.17)

This leads to

E


[

N∑
i=1

(ri − µi)

]2 =
N∑
i=1

E
[
(ri − µi)2

]
. (6.18)

Since

E
[
(ri − µi)2

]
= σ2, (6.19)

applying (6.18) and (6.19) to (6.16) results in

I11 =
N

σ2
. (6.20)

Similarly,

I22 = E

{[
∂

∂θ
ln (pdf)

]2}

=

(
−R
σ2

)2

E

{[
N∑
i=1

(ri − µi) sin (αi − θ)
]2}

.

(6.21)

Note that

E {[(ri − µi) sin (αi − θ)] [(rj − µj) sin (αj − θ)]}

= sin (αi − θ) sin (αj − θ)E {[(ri − µi) (rj − µj)]} .
(6.22)

By virtue of (6.18), one obtains

E {[(ri − µi) sin (αi − θ)] [(rj − µj) sin (αj − θ)]} = 0,

i 6= j.
(6.23)

Substituting(6.23) in(6.21) gives

I22 =

(
R

σ2

)2 N∑
i=1

E
[
(ri − µi)2

]
sin2 (αi − θ). (6.24)



6.3 Cramér-Rao Lower Bound for Ranging Based Sensor Array 95

Applying (6.19) to (6.24) leads to

I22 =
R2

σ2

N∑
i=1

sin2 (αi − θ) . (6.25)

Further manipulation of (6.24) results in

I22 =
NR2

2σ2
. (6.26)

We note,

I12 = I21

= E

{[
∂

∂d
ln (pdf)

] [
∂

∂θ
ln (pdf)

]}
.

(6.27)

Substituting (6.14) and (6.15) in (6.27) one has

I12 = I21

= −R
σ4
E

{[
N∑
i=1

(ri − µi)

][
N∑
i=1

(ri − µi) sin (αi − θ)

]}
.

(6.28)

Again, the zero correlation error between different measurements leads to

E

{[
N∑
i=1

(ri − µi)
] [

N∑
i=1

(ri − µi) sin (αi − θ)
]}

=
N∑
i=1

E
[
(ri − µi)2

]
sin (αi − θ)

= σ2
N∑
i=1

sin (αi − θ)

= 0.

(6.29)

Substituting (6.29) in (6.28), one obtains

I12 = I21 = 0. (6.30)

Therefore, the Fisher information matrix of the array is obtained as

I =
N

σ2

 1 0

0
R2

2

 . (6.31)
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It is seen that, for distance estimation, the array provides N times the Fisher

information of that of a single sensor. The Fisher information for bearing is not only

determined by the number of the sensors, but also is proportional to the squared

radius of the array. The greater the array size, the greater the Fisher information

it provides. Comparing with using a single sensor, the advantage of using a sensor

array is that the bearing information can be obtained. In the model, since the sensors

are evenly distributed along the circumference of the array, the correlation of d and

θ happens to be zero with reference to the array centre, thus resulting in a diagonal

Fisher information matrix.

The Cramér-Rao lower bound is given by the inversion of Fisher information

matrix [125], denoted as Σ. By inversing (6.31), one obtains

Σ =
σ2

N

 1 0

0
2

R2

 . (6.32)

Thus, the lower bound of the variance of distance estimates is found to be

V ar (d) ≥ 1

N
σ2, (6.33)

and the lower bound of the variance of bearing estimates is found to be

V ar (θ) ≥ 2

NR2
σ2. (6.34)

It is seen that the accuracy of the distance estimation can be increased by in-

creasing N , the number of elements in the array, and the accuracy of the bearing

estimation can be increased by increasing N and R, with the latter being the radius

of the array. However, the radius of the array is typically less than, say, two metres

as the array is considered to be carried by a vehicle. Therefore, to certain extent, it

is more practical to increase N . In practice, the inter-sensor spacing is limited to, say

a half wavelength, by the coupling between sensors. One way of increasing N further
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is to arrange the elements on multiple circles. Thus the Fisher information matrix,

presented by equation (6.31) can be extended. When the mth circle has Nm sensors

and the radius Rm, and the total number of circles is M , by following the previous

procedure, one obtains

I =
1

σ2


M∑
m=1

Nm 0

0

M∑
m=1

NmRm
2

2

 . (6.35)

Thus, the lower bound of the variance of distance estimates is given by

V ar (d) ≥ 1
M∑
m=1

Nm

σ2, (6.36)

and the lower bound of the variance of bearing estimates is given by

V ar (θ) ≥ 2
M∑
m=1

NmRm
2

σ2. (6.37)

6.4 Variance and Standard Deviation of the Array

In this section, the variance of distance estimator, σd
2 , and the variance of bearing

estimator, σθ
2 , are derived from the positioning algorithm.

Assume ∆ri , i = 1, · · · , N , are small, so are ∆d, ∆c and ∆s, they can be

expressed in their differential forms.

Define the operator vector as

∂

∂r
=

[
∂

∂r1
,

∂

∂r2
, · · · , ∂

∂rN

]T
, (6.38)

The errors of d , c and s are thus expressed as

∆d =

(
∂d

∂r

)T
· (∆r) , (6.39)
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∆c =

(
∂c

∂r

)T
· (∆r) , (6.40)

and

∆s =

(
∂s

∂r

)T
· (∆r) . (6.41)

We also assume that the error of bearing estimation, ∆θ , is small, so it can be

expressed by the first order of partial differential (6.8) as

∆θ = cEV ·∆s− sEV ·∆c, (6.42)

where ∆c and ∆s are the deviations from the expected value of cEV and sEV , and

cEV and sEV represent cos (θEV ) and sin (θEV ) respectively.

Defining

u = cEV
∂s

∂r
− sEV

∂c

∂r
, (6.43)

equation (6.42) can be simply re-written as

∆θ = uT · (∆r) . (6.44)

Thus, by using (6.38), the variance of distance estimates, σd
2 , is obtained as

σd
2 = E

[
(∆d)2

]
= E


[(

∂d

∂r

)T
· (∆r)

]2 , (6.45)

and by using (6.44), the variance of bearing estimates, σθ
2 , can be obtained as

σθ
2 = E

[
(∆θ)2

]
= E

{[
uT · (∆r)

]2}
. (6.46)

From (6.3), and by using Euler formula, one obtains (AppendixA, A.11)

ATA =


N 0 0

0
NR2

2
0

0 0
NR2

2

 . (6.47)
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Noting that

AT r =



N∑
i=1

ri

−R
N∑
i=1

ri cosαi

−R
N∑
i=1

ri sinαi

 , (6.48)

one has

d =
1

N

N∑
i=1

ri, (6.49)

c = − 2

NR

N∑
i=1

ri cos (αi), (6.50)

and

s = − 2

NR

N∑
i=1

ri sin (αi). (6.51)

Substituting (6.49) in (6.39) yields

∆d =
1

N

N∑
i=1

(∆ri), (6.52)

thus

E
[
(∆d)2

]
=

1

N2
E


[

N∑
i=1

(∆ri)

]2 . (6.53)

Since the sensors in the array are independent of each other,

E [(∆ri) (∆rj)] = 0,

i 6= j,
(6.54)

one obtains

E

{[
N∑
i=1

(∆ri)

]2}

=
N∑
i=1

{
E
[
(∆ri)

2]}
= Nσ2.

(6.55)

Therefore, one has

E
[
(∆d)2

]
=

1

N
σ2. (6.56)
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Substitute (6.56) in (6.45), the variance of distance estimation is obtained as

σd
2 =

1

N
σ2. (6.57)

Applying operation vector (6.38) to (6.50) and (6.51) one obtains

∂c

∂r
= − 2

NR

[
cos (α1) , · · · , cos (αN)

]T
, (6.58)

and

∂s

∂r
= − 2

NR

[
sin (α1) , · · · , sin (αN)

]T
. (6.59)

Substitute (6.58) and (6.59) in (6.44)

∆θ = − 2

NR

N∑
i=1

{[cEV sin (αi)− sEV cos (αi)] (∆ri)}. (6.60)

Noting that item [cEV sin (αi)− sEV cos (αi)] does not contain any variables, and

also noting that the errors of range measurement are uncorrelated, which is expressed

as (6.54), the variance of bearing is obtained to be

E
[
(∆θ)2

]
=

4σ2

N2R2

N∑
i=1

[cEV sin (αi)− sEV cos (αi)]
2. (6.61)

Further simplification leads to (see Appendix B),

σθ
2 =

2

NR2
σ2. (6.62)

Comparing (6.57) with (6.33), and (6.62) with (6.34), finds that the variance of dis-

tance and the variance of bearing by proposed model reach their Cramér-Rao lower

bound.

Denote ∆p as the positioning error. Since

(∆p)2 = (∆d)2 + d2 (∆θ)2 , (6.63)

one can obtain the positioning variance σ2
p by performing

E
[
(∆p)2

]
= E

[
(∆d)2

]
+ d2E

[
(∆θ)2

]
. (6.64)
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It leads to

σp
2 =

σ2

N

(
1 +

2d2

R2

)
, (6.65)

where (6.57) and (6.62) have been used.

In order to understand the performance of the proposed location estimator, sim-

ulations have been carried out to obtain the root-mean-square errors (RMSE) of

positioning. Further, to validate the theoretical analysis, the RMSE are compared

with the standard deviation of positioning σp, which is obtained from (6.65).

In the simulations, we assume that the standard deviation of individual sensor

measurement is 0.02m which can be achieved using ultra wideband signals, and the

distance between the position of the target and the center of the sensor array is chosen

as 50m and 100m, respectively. The sensor array uses three different radius settings:

1m, 1.5m, and 2m, and for each radius setting, two numbers of sensors are chosen,

four and eight.

Fig. 6.2 shows the positioning errors for different array radii and different target

distances from the array centre. The solid lines represent standard deviations, and

the diamonds the RMSE. It is shown that simulation results agree with the theoretical

STD ones.

One can reduce the positioning variance by increasing the number of sensors and

the array size, and even by using multiple circles of sensors. When the mth circle is

of the number of Nm sensors and the radius Rm, and the total number of the circle

is M , by following the previous procedure, the variance of positioning using multiple

circles of sensors is found to be

σp
2 = σ2

 1
M∑
m=1

Nm

+
2d2

M∑
m=1

(
NmRm

2
)
 . (6.66)

It shows that, if space permits, the best way that distributes sensors is to place them
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(a) Positioning error of a 4-sensor sensor array
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(b) Positioning error of an 8-sensor sensor ar-

ray

Figure 6.2: Positioning error when the target is 100m away, and the STD of mea-

surement is 0.02m

on the outmost circumference of the array.

Fig. 6.3 shows the standard deviation of positioning as a function of the number of

sensors, where Fig. 6.3(a) shows the relationships for three different sizes of the array

radius when the target is 50m away from the center of the array, and Fig. 6.3(b) shows

for the same sizes of the arrays when the target is 100m away. All the calculations

are performed under the condition that, σ , the STD of range measurement by each

sensor, is 0.02m. It is apparent that greater radius and larger number of sensors in

the array lead to higher positioning accuracy.

Equations (6.57), (6.62) and (6.65) show that the positioning error caused by the

ranging estimate, ∆d, is relatively small. The overall positioning error is primarily

determined by the squared distance, d2, which serves as an amplification factor. A

small error in the bearing estimate, ∆θ, would result in a large positioning error

along the arc, named error arc, which is shown in Fig. 6.4 as PQ. Using Gaussian

distribution, the length of the arc can be estimated to be 2× (3σθd).



6.4 Variance and Standard Deviation of the Array 103

10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Sensors

S
ta
nd

ar
d
D
ev

ia
tio

n
of

P
os

iti
on

in
g

Array Radius: 1 metre
Array Radius: 1.5 meters
Array Radius: 2 meters

(a) Target 50m away from the array center
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Figure 6.3: Standard deviation of positioning
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Figure 6.4: Positioning error analysis
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6.5 Cramér-Rao Lower Bound for an Array at an

Arbitrary Position

In the previous section, we have analysed the Fisher information matrix of an

array with respect to its own center. In the following, we derive the Fisher information

matrix of an array with respect to the origin of a co-ordinate system when the array is

placed at an arbitrary position. It will be seen next chapter that this is for analysing

the positioning performance of two co-operating arrays.

As shown in Fig. 6.5, an array same as that described in Section 6.2 is placed at

(a, ψ), and the target position is estimated at (dA, θA) with respect to the center of

the array (a, ψ). In other words, the estimators are d̂A and θ̂A with respect to the

centre of array A.

The law of likelihood provides that the probability density function of array A

equals the product of probability density function of its individual sensors,

pdfA =
N∏
i=1

pdfAi. (6.67)

From the model described in Section 6.2, the expected value of range between an

individual sensor and the target is

µAi (d, θ) = dA (d, θ)−R cos (αi − θA (d, θ)) . (6.68)

The same assumption that the measurements are corrupted by Gaussian noise is made

as in Section 6.3. The probability density function of individual sensors in the array,

referred to as array A, is given by

pdfAi =
1√
2πσ

exp

[
−1

2

(rAi − µAi)2

σ2

]
. (6.69)
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Figure 6.5: Array Placed at an Arbitrary Position

And the logarithm of probability density function of array A is given by

ln (pdfA) = −N ln
(√

2πσ
)
− 1

2

N∑
i=1

(rAi − µAi)2

σ2
. (6.70)

First we obtain the partial differentiation of natural logarithm of probability den-

sity function with respect to the two parameters, dA and θA as

∂

∂dA
ln (pdfA) =

1

σ2

N∑
i=1

(rAi − µAi), (6.71)

and

∂

∂θA
ln (pdfA) =

−R
σ2

N∑
i=1

(rAi − µAi) sin (αi − θA). (6.72)

The elements of Fisher information matrix are obtained as

E

{[
∂

∂dA
ln (pdfA)

]2}
=
N

σ2
, (6.73)

E

{[
∂

∂θA
ln (pdfA)

]2}
=
NR2

2σ2
, (6.74)
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and

E

{[
∂

∂dA
ln (pdfA)

] [
∂

∂θA
ln (pdfA)

]}
= 0. (6.75)

where uncorrelated measurement errors, the uniformed variance of measurement by

individual array have been applied, also trigonometry identity and (A.7) have been

employed.

To simplify the text, we use IA11, IA22, IA12 and IA21 denoting the elements of the

Fisher information matrix,

IA =

 IA11 IA12

IA21 IA22

 . (6.76)

where

IA11 = E

{[
∂

∂d
ln (pdfA)

]2}
, (6.77)

IA22 = E

{[
∂

∂θ
ln (pdfA)

]2}
, (6.78)

IA12 = E

{[
∂

∂d
ln (pdfA)

] [
∂

∂θ
ln (pdfA)

]}
, (6.79)

and

IA21 = E

{[
∂

∂θ
ln (pdfA)

] [
∂

∂d
ln (pdfA)

]}
. (6.80)

Note that the above are the elements of Fisher information matrix with respect to

the center of array A. One needs to obtain the information with respect to the origin

from where the position of the target is (d, θ) estimated. By using the transformation

of

∂

∂d
ln (pdfA) =

∂

∂dA
ln (pdfA)

∂dA
∂d

+
∂

∂θA
ln (pdfA)

∂θA
∂d

, (6.81)

and

∂

∂θ
ln (pdfA) =

∂

∂dA
ln (pdfA)

∂dA
∂θ

+
∂

∂θA
ln (pdfA)

∂θA
∂θ

, (6.82)
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substituting (6.81) and (6.82) to (6.77), (6.78), (6.79) and (6.80) yields

IA11 =
N

σ2

[(
∂dA
∂d

)2

+
R2

2

(
∂θA
∂d

)2
]
, (6.83)

IA22 =
N

σ2

[(
∂dA
∂θ

)2

+
R2

2

(
∂θA
∂θ

)2
]
, (6.84)

and

IA12 = IA21

=
N

σ2

(
∂dA
∂d

∂dA
∂θ

+
R2

2

∂θA
∂d

∂θA
∂θ

)
.

(6.85)

where during the manipulation of (6.83), (6.84) and (6.85), (6.73), (6.74) and (6.75)

have been applied.

From the geometric relationship which is demonstrated in Appendix C, the polar

coordinates transformation has been obtained as

∂dA
∂d

= cos (γ) (C.5),

∂dA
∂θ

= d sin (γ) (C.7),

∂θA
∂d

= −sin (γ)

dA
(C.13),

∂θA
∂θ

=
d

dA
cos (γ) (C.16).

Applying (C.5), (C.7), (C.13) and (C.16) to (6.83), (6.84) and (6.85), it leads the

elements of Fisher information matrix to be

IA11 =
N

σ2

[
R2

2dA
2 sin2 (γ) + cos2 (γ)

]
, (6.86)

IA22 =
N

σ2
d2
[
sin2 (γ) +

R2

2dA
2 cos2 (γ)

]
, (6.87)
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and

IA12 = IA21

=
N

σ2
d

(
1− R2

2dA
2

)
sin (γ) cos (γ) .

(6.88)

Equations (6.86), (6.87) and (6.88) give out the concise form of the elements of Fisher

information matrix, but one of the variables is angle γ which does not directly present

the target position. We keep these equations for future use. To express the elements

as the functions of target position, using trigonometry identities and sine rule that

states

a

sin (γ)
=

dA
sin (θ − ψ)

, (6.89)

equations (6.86), (6.87) and (6.88) can be re-written as

IA11 =
N

σ2

[
1− a2

dA
2

(
1− R2

2dA
2

)
sin2 (θ − ψ)

]
, (6.90)

IA22 =
N

σ2
d2
[
R2

2dA
2 +

a2

dA
2

(
1− R2

2dA
2

)
sin2 (θ − ψ)

]
, (6.91)

and

IA12 = IA21

=
N

σ2
d

(
1− R2

2dA
2

)
a

dA
sin (θ − ψ)

√
1− a2

dA
2 sin2 (θ − ψ).

(6.92)

When the array is placed at an arbitrary position, the elements of the Fisher

information matrix are complicated as each of them is a function of the array position

and the relative position of the target with reference to the array center, as well as

the array parameters such as the number of the sensors and the radius of the array.

In general, the matrix elements along the anti diagonal line, IA12 and IA21, are not

zeros. This is due to the coordinates transfer which involves rotation, causing the

estimates of d and θ to become correlated. If θ = ψ, or if θ = π + ψ, while a 6= 0,

IA12 = IA21 = 0, IA is diagonal. This means that when the target, the array and

the origin of the co-ordinates are along one line, there is no distance and bearing
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correlation during the coordinate transfer. If a = 0, then dA = d, thus leading to

IA = I, which is the situation when the array is placed at origin.

From the Fisher information matrix one can find the Cramér-Rao lower bound

by inversing the matrix. The derivation of the determinant of the Fisher information

matrix IA is presented in Appendix D. The determinant is found to be

det (IA) =

(
N

σ2

)2
R2d2

2dA
2 . (6.93)

The inversion of Fisher information matrix IA is denoted by the bold Greek letter Σ

with subscript A

ΣA = (IA)−1. (6.94)

The elements of matrix ΣA can be found by ΣA11 ΣA12

ΣA21 ΣA22

 =
1

det (IA)

 IA22 −IA12

−IA21 IA11

 . (6.95)

Applying (6.90), (6.91), (6.92) and (6.93) to (6.95), one finds

ΣA11 =
σ2

N

[
1−

(
1− 2dA

2

R2

)
a2

dA
2 sin2 (θ − ψ)

]
, (6.96)

ΣA22 =
σ2

N

1

d2

[
2dA

2

R2
+

(
1− 2dA

2

R2

)
a2

dA
2 sin2 (θ − ψ)

]
, (6.97)

and

ΣA12 = ΣA21

= −1

d

(
1− 2dA

2

R2

)
a

dA
sin (θ − ψ)

√
1− a2

dA
2 sin2 (θ − ψ).

(6.98)

Equation (6.98) shows the covariances caused by coordinates transformation. When

the target, the array and the origin are not in one line, the covariances, Σ12 and Σ21

are not zero due to the rotation operation. When θ = ψ, or θ = π + ψ , there is no

rotation involved in the coordinates transfer, so ΣA12 = ΣA21 = 0.
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6.6 Variance and Standard Deviation for an Array

at an Arbitrary Position

As shown in Fig. 6.5, we assume that the array is placed at (a, ψ), and a target is

estimated at (dA, θA) with respect to the location of the array.

It is assumed that the estimation errors for both distance dA and bearing θA

are small, so they can be expressed by differentials when transformed to system

coordinates d and θ. In Appendix E, the error ∆d and ∆θ are found to be

∆d = cos (γ) ∆dA − dA sin (γ) ∆θA (E.4),

∆θ =
sin (γ)

d
∆dA +

dA cos (γ)

d
∆θA (E.7).

Since dA and θA are independent variables,

E [(∆dA) (∆θA)] = 0. (6.99)

Substituting (6.6) to (E.4) and (E.7), one obtains

E
[
(∆d)2

]
= cos2 (γ)E

[
(∆dA)2

]
+ dA

2sin2 (γ)E
[
(∆θA)2

]
, (6.100)

and

E
[
(∆θ)2

]
=

sin2 (γ)

d2
E
[
(∆dA)2

]
+
dA

2cos2 (γ)

d2
E
[
(∆θA)2

]
. (6.101)

With reference to the array center, one has

E
[
(∆dA)2

]
=
σ2

N
, (6.102)

and

E
[
(∆θA)2

]
=

2σ2

NR2
. (6.103)
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Substituting (6.102) and (6.103) to (6.100) and (6.101), and denoting σAr
2 as E

[
(∆d)2

]
, and σAb

2 as E
[
(∆θ)2

]
, one has

σAr
2 =

σ2

N

[
cos2 (γ) +

2dA
2

R2
sin2 (γ)

]
, (6.104)

and

σAb
2 =

σ2

N

1

d2

[
sin2 (γ) +

2dA
2

R2
cos2 (γ)

]
. (6.105)

Applying trigonometry identities and sine rule expressed by (6.89), one gets

σAd
2 =

σ2

N

[
1−

(
1− 2dA

2

R2

)
a2

dA
2 sin2 (θ − ψ)

]
, (6.106)

and

σAb
2 =

σ2

N

1

d2

[
2dA

2

R2
+

(
1− 2dA

2

R2

)
a2

dA
2 sin2 (θ − ψ)

]
. (6.107)

By comparing (6.106) with (6.96), and (6.107) with (6.97), one concludes that both

variance of distance and variance of bearing reach their Cramér-Rao lower bound.

Positioning variance σAp
2 can be found by performing

σAp
2 = σAd

2 + d2σAb
2 =

σ2

N

(
1 +

2dA
2

R2

)
. (6.108)

It is observed that (6.108) is effectively the same as (6.65). It should be noted,

however, that when dA is fixed, the STD we observe from the origin of the coordinates

will vary with the bearing. Simulations have been used to evaluate the performance

of the distance and bearing estimator given by (6.108). Fig. 6.6 shows the standard

deviation, the solid lines, and root-mean-square error (RMSE), the diamond shapes,

for an array is placed at 150m and 30◦ of bearing, the number of the sensor in the

array is four, and the standard deviation of single sensor is 0.1m. As shown in the

legend, the arrays of different sizes have been used in three different sizes. The trend

of RMSE results agree with those of standard deviation.
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Figure 6.6: STD and RMSE when array A is placed at 150m and 30◦

As shown in (6.108), no matter where the array is placed, the variance of posi-

tioning is always proportional to the squared distance of the target to the array, as

2dA
2

R2
� 1 . This suggests that a single array only provides limited accuracy due

to the error arc. To improve the positioning accuracy, a means that can be used to

determine a position on the error arc ought to be employed.

6.7 Ranging Based Sensor Arrays for 3D Position-

ing

6.7.1 System Model for 3D

The concept of ranging based positioning arrays can be extended into three di-

mensions. For 3D positioning, the array should be able to make the measurements in
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distance, elevation angle and azimuth angle. In the following, a cubic array is sued,

which is equipped with twelve sensors and each of them is placed in the middle point

of the cubic frame. To make it simple, we assume that each side of the cube is of

length 2b, as shown in Fig. 6.7.

Sensor 1
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Sensor 5

Sensor 4

Sensor 6
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Sensor 10

Sensor 11

Sensor 12

X

Y

Z
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Figure 6.7: A cubic array with sensors on each side

We choose the center of the cubic frame as the origin of the coordinates. The

coordinates of the sensors are listed in the Table 6.1:

Suppose that a target is at distance d , elevation angle θ, and azimuth angle ϕ.

We assume the target is far from the array so when the signal reaches the array, the

wave front is a plane. We choose the plane that parallels to the wave front and passes

the origin as the reference plane. We choose the normal direction of the reference
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Table 6.1: Coordinates of sensors in a cubic array

Sensor S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

X-coordinate b b b b 0 0 0 0 -b -b -b -b

Y -coordinate 0 b 0 -b b b -b -b 0 b 0 -b

Z-coordinate b 0 -b 0 b -b -b b b 0 -b 0

plane n opposite to the wave vector direction, thus θ is the elevation angle of n and ϕ

the azimuth angle of n. Denote ti (θ, ϕ) as the distance from sensor i, i = 1, 2, · · · , N

to the reference plane, it is obvious that ti, i = 1, 2, · · · , N , are the functions of θ and

ϕ, as shown in Fig. 6.8.

Denote ri, i = 1, 2, · · · , N , as the target range measured by sensor i. The target

distance d, the ranges of the target measured by each sensor and the distances of each

sensor to the reference plane, ti, i = 1, 2, · · · , N , have the relationship

d− ti (θ, ϕ) = ri,

i = 1, 2, · · · , 12.
(6.109)

The equation for a plane that passes the origin is given by

x cosα + y cos β + z cos γ = 0, (6.110)

where α, β, and γ are the direction angles of the normal direction of the plane, as

shown in Fig. 6.9. The relationship between the direction angles and elevation angle,

θ, and azimuth angle, ϕ, is given by
cosα = cos θ cosϕ,

cos β = cos θ sinϕ,

γ =
π

2
− θ.

(6.111)

Therefore, the equation of the reference plane can be re-written as
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Figure 6.8: Range difference between the sensors

x cos θ cosϕ+ y cos θ sinϕ+ z sin θ = 0. (6.112)

The distance from the ith sensor, whose coordinates are (xi, yi, zi), to the reference

plane is

ti = xi cos θ cosϕ+ yi cos θ sinϕ+ zi sin θ. (6.113)

Denote

B =



1 1 1 1 1 1 1 1 1 1 1 1

−b −b −b −b 0 0 0 0 b b b b

0 −b 0 b −b −b b b 0 −b 0 b

−b 0 b 0 −b b b −b −b 0 b 0



T

, (6.114)
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Figure 6.9: The reference plane and its parameters

and

r =

[
r1, r2, · · · , r12

]T
. (6.115)

one obtains the matrix form of the linear equation

B



d

cos θ cosϕ

cos θ sinϕ

sin θ


= r. (6.116)
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The least squares solution of (6.116) is given by

d

u

v

w


=
(
BTB

)−1
BT r, (6.117)

where

u = cos θ cosϕ,

v = cos θ sinϕ,

w = sin θ.

(6.118)

The elevation angle θ can be decided by

θ = tan−1
w√

u2 + v2
, (6.119)

and the azimuth angle ban be decided by

ϕ = tan−1
v

u
. (6.120)

6.7.2 Standard Deviation of the Cubic Array

Assume that the errors in range measurements made by the sensors, ri , i =

1, 2, · · · , 12 , are small, so are the errors in the solutions of (6.117) , d, u , v , and w .

Furthermore, we assume that the errors in position parameters , θ , and ϕ , are small

so that the errors of position parameters can be expressed as the first order of partial

differentials. Differentiating (6.119) , one obtains the error of elevation angle, ∆θ , to

the first order of partial differentials of its parameters u, v and w. When θ 6= π

2
, one

has

∆θ = cos θ∆w − sin θ cosϕ∆u− sin θ sinϕ∆v. (6.121)
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Differentiating (6.120) to obtain ∆ϕ, and applying (6.118), Assuming ϕ 6= π

2
or

ϕ 6= 3π

2
, one can have the expression

∆ϕ =
cosϕ∆v − sinϕ∆u

cos θ
. (6.122)

Next, we investigate the effect of measurements to d, u, v, and w. Employing

(6.114), one gets

BTB =



12 0 0 0

0 8b2 0 0

0 0 8b2 0

0 0 0 8b2


, (6.123)

Substitute (6.114) to (6.117), one obtains

d =
1

12

12∑
i=1

ri,

u =
1

8b

(
−

4∑
i=1

ri +
12∑
i=9

ri

)
,

v =
1

8b
(−r2 + r4 − r5 − r6 + r7 + r8 − r10 + r12) ,

w =
1

8b
(−r1 + r3 − r5 + r6 + r7 − r8 − r9 + r11) .

(6.124)

Take the first order of derivative of (6.124), one has the deviation of the target

distance

∆d =
1

12

12∑
i=1

∆ri, (6.125)

and the deviations of elements u, v and w

∆u =
1

8b

(
−

4∑
i=1

∆ri +
12∑
i=9

∆ri

)
,

∆v =
1

8b
(−∆r2 + ∆r4 −∆r5 −∆r6 + ∆r7 + ∆r8 −∆r10 + ∆r12) ,

∆w =
1

8b
(−∆r1 + ∆r3 −∆r5 + ∆r6 + ∆r7 −∆r8 −∆r9 + ∆r11) .

(6.126)
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Since u , v , and w are independent elements in (6.117),

E [(∆u) (∆w)] = E [(∆v) (∆w)] = E [(∆u) (∆v)] = 0, (6.127)

resulting

E
[
(∆u)2

]
= E

[
(∆v)2

]
= E

[
(∆w)2

]
=

σ2

8b2
. (6.128)

Denote σθ
2 as the variance of elevation angle estimate, and σϕ

2 the variance of

azimuth angle estimate. Substituting (6.128) to (6.121) and (6.122), one gets

σθ
2 =

σ2

8b2
. (6.129)

and

σϕ
2 =

1

cos2θ

σ2

8b2
. (6.130)

In the spherical coordinates, a positioning error ∆p is expressed as

∆p =

√
(∆d)2 + d2(∆θ)2 + d2cos2θ(∆ϕ)2, (6.131)

Finally, denote σp
2 as the 3D positioning variance E

[
(∆p)2

]
, one gets

σp
2 =

σ2

12

(
1 + d2

3

b2

)
. (6.132)

Since one can write

σ2

12

(
1 + d2

3

b2

)
=
σ2

12

[
1 + d2

2

8b2 + 4
(√

2b
)2
]
. (6.133)

Equation (6.133) indicates that the same positioning variance can be produced by a

spherical array with 12 sensors, of which 8 sensors are fixed at radius of b and 4 of

them are fixed at radius of
√

2b.

6.7.3 Calculation of STD and Simulation of RMSE

From (6.132) one can see that the standard deviation of the positioning is a

function of target distance once the array size is chosen. The calculation of standard
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Figure 6.10: Comparison of RMSE from measurement with STD from analysis

deviation when the target distance is 200m and the side of the array is 2m is shown as

the green surface in Fig. 6.10. The simulation result of positioning RMSE is shown as

the red diamond shape in Fig. 6.10. The simulation is conducted for a target whose

distance is 200m, and moves with its angle of elevation changing 0◦ to 90◦, and its

angle of azimuth changing from 0◦ to 360◦. The iteration is 1000. The simulation

results validate the theoretical ones.

6.8 Conclusion

A novel localisation method employing ranging based arrays is proposed. It con-

sists of a number of sensors each being able to conduct ranging measurements individ-

ually. It can be constructed by using commercial off the shelf wireless ranging devices

at a low cost. Owing to its modular structure, it is easy to maintain as individual

sensors can be simply replaced. It is proved that the proposed location estimator
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can reach its Cramér-Rao lower bound. The proposed array is suited for applications

such as fleet management, sport training, security and military operations.
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Chapter 7

Co-operative Ranging Based

Sensor Arrays

7.1 Introduction

In the previous chapter, it is shown that an array equipped with ranging based

sensors is able to locate a target by estimating the range and bearing of the target,

hence providing the information of the target location. Unfortunately, all bearing or

DoA based methods suffer from a main limitation: the positioning error caused by

the DoA estimation error increases with the increasing distance from the array used

for DoA estimation. To solve the problem, this chapter introduces the use of co-

operation between adjacent sensor arrays [126]. It is demonstrated that the ranging

measurement between the target node and the second sensor array makes it possible

to increase the overall positioning accuracy.

This chapter is organised as follows. Following the introduction in Section 7.2,

the Cramér-Rao lower bound and standard deviation for the co-operative arrays,

which are placed at the origin and an arbitrary position, respectively, are derived in

123
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Section 7.2. Section 7.3 introduces the use of co-operation between sensor arrays, and

describes the theoretical foundation for Cramér-Rao lower bound (CRLB) and the

standard deviation. Section 7.4 analysis the method to approach CRLB. Section 7.5

studies the 3D co-operative array positioning. In Subsection 7.5.1, 3D ranging based

sensor array is introduced; Subsection 7.5.2 the STD for 3D positioning is derived;

and in Subsection 7.5.3, simulations results to verify the theory. Finally, conclusions

are given in Section 7.6.

7.2 Cramér-Rao Lower Bound for Co-operative Ar-

rays

Suppose that two arrays are employed to estimate the position of a target. One

array is placed at the center of the coordinates, called array C, and the other is placed

at an arbitrary position (a, ψ), called array A.

Suppose the two arrays have the same radius R, and each of them has the same

number of sensor N . The measurements by each sensor are corrupted by Gaussian

noise, and the measurements are made by the respective sensors independently. All

the data are transferred to a fusion center to process.

By the law of likelihood, the Fisher information of the system is the sum of the

individuals’ [124],

ICA = IC + IA. (7.1)

We use ΣCA denoting the inversion matrix of ICA. The elements of ΣCA can be

obtained by performing ΣCA11 ΣCA12

ΣCA21 ΣCA22

 =
1

det (ICA)

 ICA22 −ICA12

−ICA21 ICA11

 . (7.2)
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Figure 7.1: Two arrays

where the determinant of (7.1) is (see Appendix F for the derivation).

det (ICA)

=
N2

σ4

[
R2

(
1 +

d2

dA
2

)
+

(
d2 − R2

2

)(
1− R2

2dA
2

)
a2

dA
2 sin2 (θ − ψ)

] (F.9).

They are found to be

ΣCA11

=
σ2

N

R2

2

(
1 +

d2

dA
2

)
+ d2

(
1− R2

2dA
2

)
a2

dA
2 sin2 (θ − ψ)

R2

(
1 +

d2

dA
2

)
+

(
d2 − R2

2

)(
1− R2

2dA
2

)
a2

dA
2 sin2 (θ − ψ)

,
(7.3)
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ΣCA22

=
σ2

N

2−
(

1− R2

2dA
2

)
a2

dA
2 sin2 (θ − ψ)

R2

(
1 +

d2

dA
2

)
+

(
d2 − R2

2

)(
1− R2

2dA
2

)
a2

dA
2 sin2 (θ − ψ)

,
(7.4)

and

ΣCA12 = ΣCA21

= −σ
2

N

d

(
1− R2

2dA
2

)
a

dA
sin (θ − ψ)

√
1− a2

dA
2 sin2 (θ − ψ)

R2

(
1 +

d2

dA
2

)
+

(
d2 − R2

2

)(
1− R2

2dA
2

)
a2

dA
2 sin2 (θ − ψ)

.

(7.5)

Since R� d and R� dA, one has

1− R2

2dA
2 ≈ 1, (7.6)

d2 − R2

2
≈ d2, (7.7)

which leads to

ΣCA11 ≈
σ2

N

R2

2

(
1 +

d2

dA
2

)
+
d2a2

dA
2 sin2 (θ − ψ)

R2

(
1 +

d2

dA
2

)
+
d2a2

dA
2 sin2 (θ − ψ)

, (7.8)

and

ΣCA22 ≈
σ2

N

2− a2

dA
2 sin2 (θ − ψ)

R2

(
1 +

d2

dA
2

)
+ d2

a2sin2 (θ − ψ)

dA
2

. (7.9)

Since d, dA and a are expected to be of the same magnitude and they are two

order of magnitude greater than R, when sin2 (θ − ψ) is not too small, one has

R2

(
1 +

d2

dA
2

)
� d2a2

dA
2 sin2 (θ − ψ) , (7.10)

which leads to

ΣCA11 ≈
σ2

N
, (7.11)
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and

ΣCA22 ≈
σ2

N

2dA
2 − a2sin2 (θ − ψ)

d2a2sin2 (θ − ψ)
. (7.12)

7.3 Standard Deviation by Fusion of Two Arrays

If the two arrays are used independently to conduct the range and bearing es-

timates, the standard deviation of a two array system can be simply obtained by

averaging the two variances. Array C is the one placed at the origin, and its variance

of positioning, σCp
2 , which is given in Section 6.4, is

σ2

N

(
1 +

2d2

R2

)
. The variance of

array A is given by (6.108) in Section 6.6. The fusion [119] of the two arrays produces

the following average variances

(σCAp)
2 =

1

2

(
σCp

2 + σAp
2
)
, (7.13)

and therefore the standard deviation by fusion is found to be

σCAp =
σ√
N

√
1 +

d2

R2
+
dA

2

R2
. (7.14)

Fig. 7.2 shows the comparison between the Cramér-Rao lower bounds (CRLB)

of a two array system, and the standard deviation achieved by using two arrays

independently as well as simulated root-mean-square error when the two arrays are

employed independently. It shows that using the two arrays independently lead to

errors well above the CRLB

7.4 Co-operation between Sensor Arrays

In the previous section, it was shown that using two independent arrays is not an

effective approach to improving the positioning accuracy of ranging based positioning

arrays. To make full use of the two arrays, the two arrays must co-operate in the
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Figure 7.2: Comparison with data fusion

positioning process. Since a sensor array is a supernode which can afford certain

degree of sophistication, we assume that they are equipped with additional sensors

to obtain its position with high accuracy. The positions of the two arrays and the

target are linked by the cosine rule

dA
2 = d2 + a2 − 2da cos (θ − ψ) . (7.15)

The differential of (7.15) is given by

dA∆dA = d∆d− a cos (θ − ψ) ∆d+ da sin (θ − ψ) ∆θ, (7.16)

which leads

∆θ =
[a cos (θ − ψ)− d] ∆d+ dA∆dA

ra sin (θ − ψ)
. (7.17)

Since the measurements made by two separate arrays are uncorrelated, one has

E
[
(∆d)2

]
= E

[
(∆dA)2

]
=
σ2

N
, (7.18)
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and

E [(∆d) (∆dA)] = 0. (7.19)

The variance of bearing determined by these two arrays is found to be

σθ
2 = E

[
(∆θ)2

]
=

σ2

N

[d− a cos (θ − ψ)]2 + dA
2

d2a2sin2 (θ − ψ)
.

(7.20)

The sides of the triangle satisfy (see Fig. C.1)

[a cos (θ − ψ)− d]2 = dA
2 − a2sin2 (θ − ψ) . (7.21)

Substituting (7.21) to (7.20) yields

σθ
2 =

σ2

N

2dA
2 − a2sin2 (θ − ψ)

d2a2sin2 (θ − ψ)
. (7.22)

Compare (7.22) with (7.12), it can be observed that now σθ
2 reaches the Cramér-

Rao lower bound. By virtue of co-operation between the two arrays, the variance of

positioning, σp
2 = σd

2 + d2σθ
2, becomes

σp
2 =

σ2

N

2dA
2

a2sin2 (θ − ψ)
. (7.23)

Therefore, the standard deviation of the positioning is obtained as

σp = σ

√
2

N

dA
a |sin (θ − ψ)|

. (7.24)

Comparing (7.24) with that of a single array standard deviation σCp
2 =

σ2

N

(
1 +

2d2

R2

)
,

it is observed that, for a single array, the positioning error is proportional to the ratio

of the target distance over the array radius, whereas that for two co-operative arrays,

it is proportional to the ratio of the distance of the target from the second array and

the distance between the two arrays. Since the two arrays can be placed far away

from each other, the positioning accuracy for two co-operative arrays is much greater.
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To further support the conclusion, simulation results are shown in Fig. 7.3. It should

be noted that in (7.24), σp becomes very large when the bearing of the target node

approaches that of the second sensor array ψ, or ψ + π. In this circumstance, the

accuracy of the proposed scheme degrades significantly. This is a typical problem of

geometric dilution of precision (GDoP) [127], [106], [128]. It can be resolved if one

can use a different pair of arrays for co-operation.

Fig. 7.3 shows the RMSE (diamond shapes) of simulation when two arrays co-

operatively work together, with the comparison of square root of CRLB (red solid line)

and theoretical analysis of STD (blue dashed line). In this example, the second array

is known to the primary array at 150m and 30◦. The target is at 200m, and moves

from −180◦ to 180◦. The simulation result validates the derived STD. Furthermore,

it proves that the standard deviation of positioning by the co-operation of two arrays

reaches the Cramém-Rao lower bound.
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The simulation result verifies the theoretical analysis of CRLB and STD. It is

seen that using two co-operative arrays to determine a position on the uncertainty

arc provides highly improved positioning accuracy. The contribution of each array is

to provide an arc of positioning uncertainty. The higher the sensor number is, the

shorter the arc appears.

It is interesting to compare the above scheme to that of using two single sensors

for positioning. In the latter case, each sensor contributes a circle, the radius of which

is the measured distance between the target and the sensor. The intersection of the

two circles typically produces two possible target locations.

7.5 Co-operative Positioning in 3D

7.5.1 Co-operative Positioning in 3D

In this section, we extend the concept of co-operative arrays for wireless position-

ing to three-dimensional cases. Assume each array is composed of 12 sensors that

are located in the middle of the 12 sides a cubical frame, so that one can make the

following measurements: range d , elevation angle θ , and azimuth angle ϕ .

To improve the positioning accuracy, two additional arrays are introduced to co-

operate with the array located at the origin of the coordinate. Suppose that array A

is known to the main array with aA as the range, ψA as the elevation angle, and ζA

as the azimuth angle, shown as Fig. 7.4.

Denote l as the projection of dA on XOY plane. Consider that d cos (θ) represents

the projection of d onto XOY plane , and aA cos (ψA) the projection of aA onto XOY

plane, the cosine rule states

l2 = (d cos θ)2 + (aA cosψA)2 − 2daA cos θ cosψA cos (ϕ− ζA) . (7.25)
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The height difference between the target and array A is (d sin θ − aA sinψA). Ap-

plying the heights difference to Pythagoras’ Theorem results in

sin θ sinψA + cos θ cosψA cos (ϕ− ζA) =
d2 + aA

2 − dA2

2daA
. (7.26)

We introduce the third array, array B. Array B is known to the main array by aB,

ψB, ζB , and ζB > ζA. Assume that the distance between array B and the target is

dB, shown as Fig. 7.5, one has

sin θ sinψB + cos θ cosψB cos (ϕ− ζB) =
d2 + aB

2 − dB2

2daB
. (7.27)

θ and ϕ can be found by solving non-linear equations (7.26) and (7.27).
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7.5.2 Statistical Analysis of 3D Co-operative Arrays

Denote ∆dA and ∆dB as the measurement error of dA and dB respectively, and

assuming they are small with corresponding to ∆ri, i = 1, · · · , N .

Differentiating (7.26), and denoting

ΘA = cos θ sinψA − sin θ cosψA cos (ϕ− ζA) , (7.28)

ΦA = cos θ cosψA sin (ϕ− ζA) , (7.29)

and

ρA =
d2 − aA2 + d2A

2daA
, (7.30)
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lead to

ΘA∆θ − ΦA∆ϕ =
ρA
d

∆d− dA
daA

∆dA. (7.31)

Differentiating (7.27) and denoting

ΘB = cos θ sinψB − sin θ cosψB cos (ϕ− ζB) , (7.32)

ΦB = cos θ cosψB sin (ϕ− ζB) , (7.33)

and

ρB =
d2 − aB2 + d2B

2daB
, (7.34)

lead to

ΘB∆θ − ΦB∆ϕ =
ρB
d

∆d− dB
daB

∆dB. (7.35)

Solving equations (7.31) and (7.35) for ∆θ and ∆ϕ yields

∆θ =
(ΦBρA − ΦAρB) ∆d+ ΦA

dB
aB

∆dB − ΦB
dA
aA

∆dA

d (ΘAΦB −ΘBΦA)
, (7.36)

and

∆ϕ =
(ΘBρA −ΘAρB) ∆d−ΘB

dA
aA

∆dA + ΘA
dB
aB

∆dB

d (ΘAΦB −ΘBΦA)
. (7.37)

Noting that the arrays are independent of each other and are identical

E [(∆d) (∆dA)] = E [(∆d) (∆dB)] = E [(∆dA) (∆dB)] = 0, (7.38)

and

E
[
(∆d)2

]
= E

[
(∆dA)2

]
= E

[
(∆dB)2

]
=
σ2

N
. (7.39)

Thus

σθ
2 =

(ΦBρA − ΦAρB)2 +

(
ΦA

dB
aB

)2

+

(
ΦB

dA
aA

)2

d2(ΘAΦB −ΘBΦA)2
σ2

N
, (7.40)

and

σϕ
2 =

(ΘBρA −ΘAρB)2 +

(
ΘB

dA
aA

)2

+

(
ΘA

dB
aB

)2

d2(ΘAΦB −ΘBΦA)2
σ2

N
. (7.41)
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7.5.3 Arrays on the Same Plane

When all the arrays are in the same plane, ψA = 0 , and ψB = 0 , (7.26) and

(7.27) are simplified as

cos θ cos (ϕ− ζA) =
d2 + aA

2 − dA2

2daA
, (7.42)

and

cos θ cos (ϕ− ζB) =
d2 + aB

2 − dB2

2daB
. (7.43)

When cos θ 6= 0 , which are valid for all the positions except the point that is on

the top of the central array, one obtains the closed for solution for elevation angle θ

and azimuth angle ϕ as

θ = cos−1
d2 + aA

2 − dA2

2daA cos (ϕ− ζA)
, (7.44)

and

ϕ = tan−1
p cos ζB − cos ζA
sin ζA − p sin ζB

, (7.45)

where

p =
aB
aA

d2 + aA
2 − dA2

d2 + aB2 − dB2 . (7.46)

The variance of the elevation angle expressed as

σθ
2 =

η2 + sin2 (ϕ− ζA)

(
dB
aB

)2

+ sin2 (ϕ− ζB)

(
dA
aA

)2

d2sin2θsin2 (ζA − ζB)

σ2

N
, (7.47)

and the variance of the azimuth angle expressed as

σϕ
2 =

κ2 + cos2 (ϕ− ζB)

(
dA
aA

)2

+ cos2 (ϕ− ζA)

(
dB
aB

)2

d2cos2θsin2 (ζA − ζB)

σ2

N
, (7.48)

where

η = sin (ϕ− ζB) ρA − sin (ϕ− ζA) ρB, (7.49)
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and

κ = cos (ϕ− ζA) ρB − cos (ϕ− ζB) ρA. (7.50)

The positioning variance can be expressed as

σp
2 = σd

2 + d2σθ
2 + d2cos2 (θ)σϕ

2, (7.51)

which leads to

σp
2

=
σ2

N
+
σ2

N

η2 + κ2sin2θ

sin2θsin2 (ζA − ζB)

+
σ2

N

sin2 (ϕ− ζB) + sin2θcos2 (ϕ− ζB)

sin2θsin2 (ζA − ζB)

(
dA
aA

)2

+
σ2

N

sin2 (ϕ− ζA) + sin2θcos2 (ϕ− ζA)

sin2θsin2 (ζA − ζB)

(
dB
aB

)2

.

(7.52)

Simulation for 3D positioning is performed in the condition that the three cubic

arrays being in the same plane, array A is at 100m with azimuth angle, ϕA of 30◦,

and array B is at 150m and the azimuth angle, ϕB of 120◦. The true target range is

200m, and the elevation angle of the target, θ, changes from 0◦ to 90◦, the azimuth

angle of the target, ϕ, changes from 0◦ to 360◦. The standard deviation (STD) of

positioning as a function of elevation angle and azimuth angle, express by (7.52), is

illustrated in Fig. 7.6 as the surface. It appears that when the target is close to the

plane where the arrays are placed, i.e., the elevation angle is close to 0◦, the STD of

positioning increases shapely. There is a dip when the azimuth angle of the target is

at 30◦, where the target is at the closest position to array A in the simulation, and

a valley when the azimuth angle of the target is at 120◦, where the target is at the

closest position to array B. There are two peaks where the azimuth angle of the target

is either 210◦ or 300◦, which are the the angles of either ϕA+180◦, where the target is

at furthest point from array A, or ϕB + 180◦, where the target is at the furthest point
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Figure 7.6: RMSE and STD of co-operative arrays in 3D.

from array B. The simulation result of root-mean-square error (RMSE) are shown in

Fig. 7.6 as the red diamonds when the error distribution is chosen as the Gaussian

distribution. The simulation result agrees with the STD expressed by (7.52) very well

except when the elevation angle is close to 0◦.

7.6 Conclusion

In this chapter, we have proposed a co-operative positioning method employing

sensor arrays. It involves two arrays and three arrays for 2D and 3D scenarios, re-

spectively. The Cramér-Rao lower bounds (CRLB) of the positioning accuracy when

employing co-operative arrays have been derived for both cases. Simulation results

demonstrate that the co-operative positioning method achieves the CRLB. Compared

with using single array and non-co-operative arrays, the positioning accuracy is sig-

nificantly improved.
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Chapter 8

Conclusions and Future Work

In the past decade, the Global Positioning System (GPS) has played a pivotal role

in various location based services (LBS) including place-finding, fleet management,

emergency rescue and defense, thus contributing to the growth of a multi billion dol-

lar industry. It is generally believed that the next decade will witness the penetration

of location based services into GPS-denial environments such as dense urban centers,

in-buildings and warehouse and supermarket logistics management. The defense in-

dustry has also been contemplating the scenario when GPS satellites are destroyed

by enemy forces. All of these factors have created strong interest in non-GPS based

wireless positioning networks which can either stand alone or be part of a seamless

positioning system.

Ground based positioning networks have also been in existence for decades, but

the state of the art still falls far short of the accuracy and robustness required for many

location based services. This thesis has attempted to address a number of problems

in GPS-denial wireless positioning. These include the optimisation of sensor node

placement for tracking mobile nodes in a given area with the highest accuracy/lowest

number of nodes; the development of the weighted least squares method (WLSM)
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to increase the accuracy of triangulation based positing system using multiple sensor

arrays; the invention of a novel ranging based sensor array and the development of the

associated statistical theory; the introduction of the scheme of employing co-operative

sensor arrays and the underlying theory. These new algorithms, methods and systems

should help system designers and practitioners to design high accuracy positioning

networks with lower cost. It is also aimed to stimulate new ideas/concepts in the

research of GPS-denial wireless positioning networks.

For certain applications, there is a demand to increase the positioning accuracy

to a few millimetres. These include the tracking of swimmers in a swimming pool.

Our study shows that, although its is theoretically possible by designing an optimum

positioning network, the ranging accuracy required is probably beyond what is feasible

with radio and acoustic systems. This is more complicated by the fact that radio

signals do not penetrate water very well and acoustic systems tend to be bulky and

very costly.

We have just commenced the investigation of using optical systems for high ac-

curacy and short range positioning. This has been inspired by the availability of

low cost LEDs and lasers and the renewed interest in wireless optical communica-

tions [129], [130], [131], [132]. It is expected that such optical positioning networks

will play a complementary role for certain applications where there is line-of-sight

between the target and some networks sensors.



Appendix A

Trigonometric Properties of a

Ranging Based Sensor Array

This appendix details the trigonometry properties of a ranging based sensor array

proposed in Section 6.2. These properties play essential roles in Section 6.3.

As the model described in Section 6.2, all the sensors in the array are evenly

distributed on the circumference so the center angle of the ith sensor is expressed as

αi = (i− 1)
2π

N
+ α0, (A.1)

where N is the number of the sensor, and α0 is an arbitrary angle.
N∑
i=1

ejαi is the sum

of geometric series with the initial ejα0 and common ratio of ej
2π
N . It results in

N∑
i=1

ejαi = ejα0
1− ejN 2π

N

1− ej 2πN
= 0. (A.2)

Thus
N∑
i=1

cos (αi) = 0, (A.3)

and
N∑
i=1

sin (αi) = 0. (A.4)
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In the same way, one obtains

N∑
i=1

cos (kαi) = 0, (A.5)

and
N∑
i=1

sin (kαi) = 0, (A.6)

where k is an arbitrary integer.

Employing trigonometry identity sin2 (αi) =
1− cos (2αi)

2
and (A.5), one gets

N∑
i=1

sin2 (αi) =
N

2
. (A.7)

Employing trigonometry identity cos2 (αi) =
1 + cos (2αi)

2
and (A.5), one gets

N∑
i=1

cos2 (αi) =
N

2
. (A.8)

And employing trigonometry identity 2sin (αi) cos (αi) = sin (2αi) and (A.6), one gets

N∑
i=1

sin (αi) cos (αi) = 0. (A.9)

From the definition of matrix A by (6.3) one obtains

ATA =


N −R

N∑
i=1

cos (αi) −R
N∑
i=1

sin (αi)

−R
N∑
i=1

cos (αi) R2
N∑
i=1

cos2 (αi) R2
N∑
i=1

sin (αi) cos (αi)

−R
N∑
i=1

sin (αi) R2
N∑
i=1

sin (αi) cos (αi) R2
N∑
i=1

sin2 (αi)

 , (A.10)

where the superscript T denotes the matrix or vector transpose operation.

Applying (A.3), (A.4), (A.7), (A.8), and (A.9) to (A.10) yields

ATA =


N 0 0

0
NR2

2
0

0 0
NR2

2

 . (A.11)



Appendix B

Derivation of Variance of Bearing

for Ranging Based Sensor Array

This appendix details derivation of bearing variance expressed by (6.62) in Section

6.4.

From the variance of bearing expressed by (6.61) in Section 6.4, expanding the

item in the squared bracket one has

N∑
i=1

{
[cEV sin (αi)− sEV cos (αi)]

2}
= cEV

2
N∑
i=1

sin2 (αi) + sEV
2
N∑
i=1

cos2 (αi)− 2cEV sEV
N∑
i=1

sin (αi) cos (αi).

(B.1)

Employing (A.7) and (A.8) leads to

cEV
2

N∑
i=1

sin2 (αi) + sEV
2

N∑
i=1

cos2 (αi) =
N

2
. (B.2)

Employing (A.9) leads to

2cEV sEV

N∑
i=1

sin (αi) cos (αi) = 0. (B.3)

The contribution of the item in the squared bracket is
N

2
. Substituting this result to

143



144 Chapter B. Derivation of Variance of Bearing for Ranging Based Sensor Array

(6.61) results in

E
[
(∆θ)2

]
=

2

NR2
σ2. (B.4)



Appendix C

Parameter Transform

This appendix details the derivation of parameter transform,
∂dA
∂d

,
∂dA
∂θ

,
∂θA
∂d

, and
∂θA
∂θ

which are used in Section 6.5. The result is presented in four equations

(C.5), (C.7), (C.13) and (C.16).

The target, the array and the origin position are as shown in Fig. C.1.

a

Target

ψ

d
Ad

θ

Aθ

X

Y

O

( )X

γ

β

( )cosa π β−

Aθ
Array

Figure C.1: Geometric relationship of an array at an arbitrary position
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The cosine rule states

dA
2 = d2 + a2 − 2ad cos (θ − ψ) . (C.1)

Differentiating (C.1) with respect to d leads to

dA
∂dA
∂d

= d− a cos (θ − ψ) , (C.2)

and differentiating (C.1) with respect to θ leads to

dA
∂dA
∂θ

= ad sin (θ − ψ) . (C.3)

Geometrical relationship provides

d = a cos (θ − ψ) + dA cos (γ) , (C.4)

where γ is the interior angle made by sides d and dA. Substituting (C.4) to (C.2)

leads to

∂dA
∂d

= cos (γ) . (C.5)

The sine rule states

sin (γ)

a
=

sin (θ − ψ)

dA
. (C.6)

Substituting (C.6) to (C.3) leads to

∂dA
∂θ

= d sin (γ) . (C.7)

Geometrical relationship provides

dA + a cos (π − β) = d cos (γ) , (C.8)

and

β = π − θA + ψ. (C.9)
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Differentiating (C.8) with respect to d and applying (C.5) lead to

∂θA
∂d

=
∂γ

∂d
, (C.10)

where the partial differentiation of (C.9) with respect to d and the sine rule that

states

sin (β)

d
=

sin (γ)

a
(C.11)

have been applied to obtain (C.10).

Differentiating (C.6) with respect to d provides

∂γ

∂d
= −sin (γ)

dA
, (C.12)

where (C.6) has been employed to simplify (C.12). Substituting (C.12) to (C.10),

and applying (C.6) lead to

∂θA
∂d

= −sin (γ)

dA
. (C.13)

Differentiating (C.8) with respect to θ and applying (C.7) lead to

1− ∂θA
∂θ

= −∂γ
∂θ
, (C.14)

where partial differentiation of (C.9) with respect to θ has been applied to obtain

(C.14), and (C.11) has been employed to simplify (C.14).

Differentiating (C.11)with respect to θ leads to

d cos (γ)
∂γ

∂θ
= −a cos (β)

∂θA
∂θ

. (C.15)

Substituting (C.15) to (C.14), and applying (C.8) lead to

∂θA
∂θ

=
d

dA
cos (γ) . (C.16)
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Appendix D

The Determinant of Fisher

Information Matrix for Array

Placed at Arbitrary Position

This appendix details the derivation for the determinant of Fisher information

matrix in Section 6.5. The 2 × 2 matrix and its elements are obtained in Section

6.5. There two sets of formulae to express the elements. Equations (6.86), (6.87) and

(6.88) express the matrix elements in the concise form, although they do not show the

obvious functions as bearing. Equations (6.90), (6.91) and (6.92) show the elements

as functions of range and bearing of the target, but the forms are lengthy. In the

following demonstration, the former set of equations are used. The result shows that

the determinant is not a function of target bearing.

From Chapter 6, Section 6.5, the Fisher information matrix for positioning when

the array is place at (a, ψ) is expressed as
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Arbitrary Position

IA =

 IA11 IA12

IA21 IA22

 (6.76),

where

IA11 =
N

σ2

[
R2

2dA
2 sin2 (γ) + cos2 (γ)

]
(6.86),

IA12 =
N

σ2
d

(
1− R2

2dA
2

)
sin (γ) cos (γ) (6.88),

IA21 =
N

σ2
d

(
1− R2

2dA
2

)
sin (γ) cos (γ) (6.88),

IA22 =
N

σ2
d2
[
sin2 (γ) +

R2

2dA
2 cos2 (γ)

]
(6.87).

IA11IA22

=
1

2

(
N

σ2

)2

d2
R2

dA
2

{[
sin2 (γ)

]2
+
[
cos2 (γ)

]2}
+

(
N

σ2

)2

d2

[
1 +

(
R2

2dA
2

)2
]

sin2 (γ) cos2 (γ) .

(D.1)

Adding

[(
N

σ2

)2

d2
R2

dA
2 sin2 (γ) cos2 (γ)

]
to the first item leads the item to be

(
N

σ2

)2
R2d2

2dA
2 ,

and subtracting

[(
N

σ2

)2

d2
R2

dA
2 sin2 (γ) cos2 (γ)

]
from the second item leads the item

to be

(
N

σ2

)2

d2
(

1− R2

2dA
2

)2

sin2 (γ) cos2 (γ). The product of main diagonal items is

IA11IA22

=

(
N

σ2

)2
R2d2

2dA
2 +

(
N

σ2

)2

d2
(

1− R2

2dA
2

)2

sin2 (γ) cos2 (γ) .
(D.2)

And the product of anti-diagonal items is

IA12IA21 =

(
N

σ2

)2

d2
(

1− R2

2dA
2

)2

sin2 (γ) cos2 (γ) . (D.3)
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Therefore

det (IA) =

(
N

σ2

)2
R2d2

2dA
2 . (D.4)
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Appendix E

Error of Variables

This appendix details relationship between variable errors in Section 6.6. There

are two sets of variables, (d, θ) and (dA, θA), shown as Fig. 6.5. The latter set is

estimated by the array which is placed at (a, ψ). The aim of this appendix is to

present the relationship between the error of a target position and the error made by

array estimation.

For the relationship between distance and bearing, cosine rule is the way to ex-

press. Take the side d and its opposite angle β, the cosine rule states

d2 = dA
2 + a2 − 2dAa cos [β (θA)] , (E.1)

noting that

β = π − θA + ψ. (E.2)

The deviation of d is thus expressed as

∆d =

[
dA
d
− a

d
cos (β)

]
∆dA −

dAa

d
sin (β) ∆θA. (E.3)

Employing (C.8) and (C.11) leads to

∆d = cos (γ) ∆dA − dA sin (γ) ∆θA. (E.4)
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Geometrical relationship has

dA cos (γ) + a cos (θ − ψ) = d. (E.5)

The sine rule states

sin (γ)

a
=

sin (θ − ψ)

dA
. (E.6)

Differentiating (E.5) and (E.6), and having eliminated ∆γ, it leads to

∆θ =
sin (γ)

d
∆dA +

dA cos (γ)

d
∆θA. (E.7)



Appendix F

The Determinant of Fisher

Information Matrix for

Co-operative Arrays

This appendix derives the determinant of Fisher information matrix for two co-

operative arrays in Section 7.2. In this appendix, the same subscriptions as in 7 are

used, i.e.,subscript C denotes the array located at the center of the system, i.e. the

origin, subscript A denotes the array located at an arbitrary location but known to

the system as located at (a, ψ), and subscript CA denotes the two co-operative arrays.

From the definition of determinant one has

det (ICA) = ICA11ICA22 − ICA12ICA21. (F.1)

Applying (7.1) to (F.1) yields

det (ICA)

= (IC11 + IA11) (IC22 + IA22)− (IC12 + IA12) (IC21 + IA21) .
(F.2)
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Noting that (6.31) in 6.3 states

IC12 = IC21 = 0. (F.3)

Equation (F.2) can be written as

det (ICA)

= det (IC) + det (IA) + IC11IA22 + IA11IC22.
(F.4)

Substituting (6.31) from Section 6.3 and (6.93) from Section 6.5 leads to

det (IC) + det (IA)

=
N2R2

2σ4
+
N2R2

2σ4

d2

dA
2

=
N2

σ4

R2

2

(
1 +

d2

dA
2

)
.

(F.5)

The rest items in (F.4) are

IC11IA22 + IA11IC22

=

(
N

σ2

)2
R2

2

(
1 +

d2

dA
2

)

+

(
N

σ2

)2(
d2 − R2

2

)(
1− R2

2dA
2

)
sin2 (γ) .

(F.6)

Substituting (F.5) and (F.6) to (F.4) results in

det (ICA) =
N2

σ4

[
R2

(
1 +

d2

dA
2

)
+

(
d2 − R2

2

)(
1− R2

2dA
2

)
sin2 (γ)

]
. (F.7)

The sine rule states

a

sin (γ)
=

dA
sin (θ − ψ)

. (F.8)

Substituting (F.8) in (F.7) leads to

det (ICA)

=
N2

σ4

[
R2

(
1 +

d2

dA
2

)
+

(
d2 − R2

2

)(
1− R2

2dA
2

)
a2

dA
2 sin2 (θ − ψ)

]
.

(F.9)
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