
Access Control on Provenance

By

Xinyu Fan

A thesis submitted to Macquarie University

for the degree of Master of Research

Department of Computing

October 2018

ii

© Xinyu Fan, 2018.

Typeset in LATEX2ε .

iii

Except where acknowledged in the customary manner, the

material presented in this thesis is, to the best of my knowl-

edge, original and has not been submitted in whole or part

for a degree in any university.

Xinyu Fan

iv

Acknowledgements

First of all, I am very grateful to my supervisors, Prof. Jian Yang and A/Prof. Michael

Hitchens, who guided me to explore cyber security. They were always encouraging me to

pursue research. I also would like to particularly express my gratitude to my associate super-

visor A/Prof. Michael Hitchens. His professional knowledge in the field of access control

has been of enormous benefit me in the establishment of my PhD project.

I must also express my gratitude to my parents who have always supported me in my

research. Their continuing encouragement gave me the courage to overcome obstacles that I

encountered during this period.

Of enormous value throughout the creation of this thesis was the excellent academic envi-

ronment and professional support provided by administrative staff and the technical support

staff of the Computing Department at Macquarie University, including Tracy Rushmer, Jane

Yang, Yan Wang and others.

vi Acknowledgements

List of Publications

• Xinyu Fan, Vijay Varadharajan, Michael HitchensProvenance Based Classification Ac-

cess Policy System Based on Encrypted Search for Cloud Data Storage, ISC2015:283-

298, 2015.

viii List of Publications

Abstract

Though provenance has long played a major role in the context of art and archaeology (in

terms of lineage or pedigree), more recently it has become more important for data in various

sectors such as finance and medicine. It is not just about the origin or creator of data but also

what sort of operations have been performed by whom and in what context, especially when

it comes to security and privacy. As provenance research on security stays at its initial stage,

some open problems and research challenges have been identified for provenance research,

specifically in terms of security issues. Access control involving provenance is treated as a

primary security issue, and is the main area to which we are trying to contribute. Integrity

and non-repudiation should also be ensured for provenance.

This thesis mainly focuses on preserving the security of provenance as well as utilising

provenance as conditions to control proper access to data. The contributions of the thesis are

illustrated as follows:

We propose three frameworks of access control policies on provenance. The Partition-

based Access Control Policy Language on Provenance is tailored based on our extended

provenance model (OPM+). The fine-grained policies determine access for provenance,

based on our defined provenance partitions instead of whole provenance graphs. Moreover,

Algorithms for merging policy results and transferring provenance graphs according to policy

results are provided as well. Following this, The Provenance-based Access Control policies

employs provenance partitions as conditions to evaluate accessibility for data. Our proposed

policies distinguish different types of attributes extracted from provenance, where the result

x Abstract

of each policy is a value in the “four-valued" decisions set. Policy algebras for the “four-

valued" decision set are tailored accordingly. Further, to provide a comprehensive scope for

access control policies involving provenance, Purpose-based Access Policies on provenance

are proposed. This defines allowed/prohibited access purposes for data based on attributes

in provenance. A series of corresponding internal and external policy algebras is provided to

merge purpose sets.

We also provide two cryptographic schemes to implement access control policies in-

volving provenance. One scheme implements Provenance-based file Classification Policies

which sort files based on given provenance partitions (keywords) from their provenance. The

scheme enables to search given provenance partitions in the ciphertext of provenance as well

as check authentication of users. The other scheme is derived from attribute-based access

control encryption schemes. It allows data owners to encrypt data based on Provenance-based

Access Control policies.

Contents

Acknowledgements v

List of Publications vii

Abstract ix

Contents xi

List of Figures xvii

List of Tables xxi

1 Introduction 1

1.1 Motivation . 2

1.2 Contributions . 4

1.3 Roadmap of the Thesis . 7

2 Literature Review 9

2.1 Introduction . 9

2.2 Provenance Background and Models . 11

2.3 Access-Control Policy . 13

xii Contents

2.3.1 Basic Access Control Policy Models 13

2.3.2 Provenance Access Control . 17

2.3.3 Provenance-based Access Control 22

2.3.4 Policy Algebra . 25

2.4 Cryptographic Techniques for Implementing Access Control Policies 27

2.4.1 Confidentiality of Provenance . 27

2.4.2 Public-key Encryption with Keyword-Search Schemes (PEKS) . . . 28

2.4.3 Attribute-based Encryption for Access Control 33

2.4.4 Multiple-Authority Attribute-based Encryption 36

2.5 Conclusion . 38

3 PACLP: A Partition-Based Access Control Policy Language for Provenance 41

3.1 Introduction . 42

3.1.1 Related Work and Motivations . 42

3.1.2 Our Contribution . 43

3.1.3 Chapter Organisation . 44

3.2 Provenance Access Control . 44

3.2.1 Workflow of the Framework . 44

3.3 The Basics of the language . 45

3.4 Partition-based Access Control Language (PACLP) 59

3.4.1 The System Assumption . 59

3.4.2 Language Items . 60

3.4.3 The Grammar . 69

3.4.4 Case Study . 70

Contents xiii

3.5 the Algorithms . 73

3.6 Evaluation . 77

3.7 Conclusion . 79

4 A fine-grained Policy Model for Provenance-based Access Control 81

4.1 Introduction . 82

4.1.1 Related Work and Motivations . 82

4.1.2 Our Contribution . 84

4.1.3 Chapter Organisation . 85

4.2 the System Assumption . 86

4.3 Target Policies . 87

4.3.1 Atomic Target . 87

4.3.2 Atomic Target Evaluation . 93

4.3.3 Operators . 95

4.3.4 Target Equivalence . 98

4.3.5 On functional Completeness . 100

4.4 Access Control Policy . 101

4.4.1 Policy Operators . 105

4.5 A case study . 106

4.6 On Integrity of Provenance . 107

4.7 Evaluation . 108

4.8 Conclusion . 109

5 Purpose-based Access Policy on Provenance and Data Algebra 111

5.1 Introduction . 112

xiv Contents

5.1.1 Related Work and Motivations . 112

5.1.2 Our Contributions . 114

5.1.3 Chapter Organisation . 114

5.2 Purpose-based Access Policy on Provenance 115

5.2.1 System Architecture . 115

5.2.2 Semantics . 116

5.2.3 Syntax . 120

5.2.4 Case Study . 122

5.3 Internal Policies Algebra . 124

5.3.1 Basic Operators . 125

5.3.2 Functions for Internal Policy Algebras 127

5.4 External Policy Algebra . 131

5.5 Evaluation . 132

5.6 Conclusion and Future work . 133

6 Provenance-based Classification Policy based on Encrypted Search 135

6.1 Introduction . 136

6.1.1 Our Contributions . 138

6.1.2 Chapter Organisation . 140

6.2 Related Work . 140

6.3 System Architecture and the Policies . 141

6.3.1 System Architecture . 141

6.3.2 Provenance-based Classification Policy 143

6.3.3 Public-Key Encryption . 144

Contents xv

6.3.4 Digital Signature . 146

6.4 Provenance-based Classification Scheme 147

6.4.1 Algorithms . 148

6.4.2 Schemes . 149

6.5 Complexity Assumptions . 151

6.5.1 Computational Diffie-Hellman Assumption 151

6.5.2 Decisional Diflie-Hellman Assumption 152

6.5.3 Computational Bilinear Diffie-Hellman 152

6.5.4 Decisional Bilinear Diffie-Hellman Assumption 152

6.5.5 Symmetric External Diffie-Hellman Assumption 153

6.6 Security Proof . 153

6.7 Conclusion . 157

7 Provenance-based Encryption Scheme for Fine-grained Access Control 159

7.1 Introduction . 159

7.1.1 Our Contributions . 160

7.1.2 Chapter Organisation . 161

7.2 Related Work . 162

7.3 System Architecture and the Policies . 163

7.3.1 System Architecutre . 163

7.3.2 Threat Model . 164

7.3.3 Provenance-based Access Control Policy 166

7.4 Provenance-based Partitioned Encryption Scheme 166

7.4.1 Algorithms . 166

xvi Contents

7.4.2 PBE Scheme . 167

7.5 Security Proof . 171

7.5.1 Security Model for PBE . 171

7.5.2 Security Proof . 172

7.6 Discussion . 173

7.7 Conclusion . 174

8 Conclusion 175

8.1 Future Work . 178

A Appendix 179

A.1 Cryptography Tools . 179

A.1.1 Group . 179

A.1.2 Field . 180

A.1.3 Bilinear Maps . 181

A.1.4 Bilinear Groups . 181

A.1.5 Hash Function . 182

A.1.6 Random Oracle Model . 183

A.2 Access Tree . 183

References 185

List of Figures

1.1 the overall conceptual framework for all the contributions 5

2.1 Dependencies in Provenance Model [1] 13

2.2 Provenance Record Schemata [2] . 17

2.3 Access Control Language [2] . 18

2.4 A Layered Architecture of Provenance-aware Access Control Framework [3] 24

2.5 Commitment Protocol for Writing Operations[4] 28

2.6 Keyword Search Scheme Application in Intelligent Email Routing[5] . . . 29

2.7 Summary ofConsequences ofOff-lineKeywordGuessingAttacks [6] (A=BDOP-

PEKS [7], B=PECK [8], C=SCF-PEKS[9], D=PKE/PEKS [10]) 32

3.1 Workflow of the Framework . 45

3.2 OPM+ Schema . 46

3.3 Sample Provenance Graph under OPM+ 49

3.4 Sample Provenance Path A . 51

3.5 Sample Provenance Path B . 52

3.6 Sample Subgraph A . 53

3.7 Sample Subgraph B . 54

xviii List of Figures

3.8 System Model . 60

3.9 PACLP Schema . 61

3.10 Case Study . 71

3.11 Case Study . 72

3.12 Experiment . 78

3.13 policy results combination . 78

4.1 Provenance Access Control Policies v.s. Provenance-based Access Control

Policies . 82

4.2 The framework of Proposed Provenance-based Access Control 85

4.3 System Assumption . 87

4.4 Sample Dependency Path A . 91

4.5 Sample Dependency Path B . 92

4.6 Target Tree A . 98

4.7 Target Tree B . 99

4.8 Example Policy Trees . 104

4.9 Experiment . 107

4.10 Experiment . 109

5.1 System Architecture . 115

5.2 Access Tree of Provenance Segments . 118

5.3 Purpose DAG . 119

5.4 A Case Study . 123

5.5 Experiment . 133

5.6 A Case Study . 133

List of Figures xix

6.1 PBCAP System Architecture . 142

6.2 Provenance-based Classification Scheme 150

7.1 The System Architecture . 164

7.2 Example Policy Structures A . 165

7.3 Example Policy Structures B . 166

7.4 Generating new polynomials . 169

xx List of Figures

List of Tables

3.1 Example Vertices Category Dictionary . 55

3.2 Edge Merging Table . 58

3.3 Annotation of Edges . 58

4.1 Unary Operators . 95

4.2 Binary Operator t . 95

4.3 Binary Operator u . 96

4.4 Binary Operator ∪ . 96

4.5 Binary Operator ∩ . 96

4.6 Binary Operator < . 96

4.7 Binary Operator ∧ . 96

4.8 Binary Operator ∨ . 96

4.9 Binary Operator ⊃ . 96

4.10 Binary Operator ⊂ . 96

4.11 Binary Operator ` . 97

4.12 Binary Operator a . 97

4.13 Over the Set {3,2,1} . 100

xxii List of Tables

4.14 (Over the Set {1T , 0T , ⊥T , ×T} . 100

4.15 t ≺ p . 102

4.16 t � p . 102

4.17 t→∼ (¬t) . 103

4.18 ∼ (¬t)
≺
→ p . 103

4.19 ∼ (¬t)
�
→ p . 103

4.20 All Orders of a “Four-valued" set by ¬ and ∼ 103

4.21 Truth Table for pbdPP and dbdPP . 104

4.22 Idemponent . 105

4.23 Idemponent ⊕∪ . 105

4.24 Idemponent ⊕∩ . 105

4.25 First-applicable . 105

4.26 First-applicable . 105

5.1 Schema of Basic Operators . 126

We will bankrupt ourselves in the

vain search for absolute secu-

rity.

Dwight D. Eisenhower

1
Introduction

In the Oxford English Dictionary, provenance is defined as: (1) the fact of coming from

the particular source or quarter; origin, derivation; (2) the history or pedigree of a work of

art, manuscript, rare book, etc.; concretely, a record of the ultimate derivation and passage

of an item through its various owners. In computer systems, the provenance of a piece of data

logs processes and operations which result in the piece of data and is relevant to the source

and origins. Provenance can be expressed as a directed acyclic graph (DAG), illustrating how

a data artifact is processed by an execution. In such a DAG of provenance under the Open

Provenance Model (OPM)[1], nodes present three main entities including Artifact, Agent and

Process and edges represent connections to the main entities.

Provenance is a type of data can be utilised in the Cloud and database. The advance of

Cloud and database technology has aroused the concerns of privacy. The current database

technology enables to collect and store vast person-specific data. Although privacy violations

directly abuse the benefits of customers, most enterprises and institutes are concerned about

the issues of data privacy and security. Some large companies, including IBM, Google,

2 Introduction

demonstrating trusted privacy applications, aiming to attract more potential users.

Provenance has been utilised for various purposes, including estimating data quality and

data reliability via providing data derivation, tracing the audit trail of data to detect errors

in data generation, establishing the copyright and ownership of data to determine liability in

case of erroneous data etc.

However, some open problems and research challenges have been identified for prove-

nance research in term of security issues[11]. Access control on provenance is treated as the

primary security issue and is the main area to which we are trying to contribute. Integrity and

non-repudiation should also be ensured for provenance as a piece of data and its connecting

provenance might be generated by multi-owners. Historical operations logged in provenance

are facts which cannot be altered. Hence, the integrity of provenance without unintentional or

malicious manipulation should be ensured in provenance-aware systems. Moreover, deriva-

tion of authorisation information and context-based authorisation specifications are also open

problems for security issues of provenance. But this thesis focuses on proposing fine-grained

access control policies and cryptography schemes to implement the policies.

1.1 Motivation

The goal of the thesis is to protect the security of provenance and employing provenance

to preserve the security of data.

Assume such a scenario regarding the applications of access control policies. Data and

provenance are stored in a database, and the database server and data owners define access

control policies to decide whether a request can be accepted or denied. The policies are

expected to introduce items recorded in provenance as conditions or restrictions. How to

define fine-grained access control policies under a proper provenance model is the main

concern of this thesis.

Access control to provenance cannot be extended directly from the access decision of a

piece of data to its provenance, as the sensitivity of provenance is possibly different from the

data from which it derives. For instance, there is a provenance graph logs regarding how a

project was established by recording who did what operations. Even though the project can

be published, the provenance regarding the techniques and strategies to construct the project

1.1 Motivation 3

should be kept as a secret.

In addition, existing traditional access control techniques including role-based access

control[12], attribute-based access control [13] cannot be applied to provenance access con-

trol straightforwardly, because of provenance is a type of meta-data with a specific data

structure. The entities are linked by dependencies to show the relationship between the enti-

ties. Hence, to provide fine-grained access control policy frameworks involving provenance,

more contributions are explored in this thesis.

Provenance logging historical performances executed on a piece of data reveals the

sensitivity of the data. Hence it can be employed as conditions of policies to control access

to the data. Traditional access control policies usually utilise current status as conditions,

while provenance-based access control makes access decisions based on operations logged

in provenance which proposes more fine-grained access control policies.

The whole thesis is developed upon our self-define provenance model OPM+, which

stores attributes with the vertex in provenance graphs. OPM+ supports more fine-grained

access control policies.

As the existing work [2][14][15][16][17][18] cannot define provenance subgraphs prop-

erly, a proper fine-grained access control policy to control access to provenance should be

proposed. Details including how to transform provenance graphs by removing unallowed

partitions are lacking from existing work.

Moreover, provenance contains labels between the three main entities under the OPM,

which needs to be particularly handled for access control, especially when an access control

policy determines that certain subgraphs of a provenance can be accessed instead of the

whole graph. As a provenance graph continually develops along with the changes of the data,

access control policies of provenance are usually generated before all provenance graphs

are produced, where specific names of the subjects and objects cannot be predicted. Hence,

access control policies need to be tailored at an abstract level. This can also reduce redundancy

and contributes to the re-use of policies.

In addition, policy algebras to merge results of individual policies for a request should be

handled carefully for access control policies involving provenance. For a request to access

a piece of data, it is possible to retrieve many provenance-based access control policies to

make access decisions. As a result, how to combine results of policies should be tailored

4 Introduction

especially for unique fine-grained policy languages or models.

Access control policies are not restricted to only making decisions to determine whether

a piece of data can be accessed or not. Policies can also define which purposes a piece of

data can be accessed. In another word, privacy policies to confine eligible access purposes

under certain conditions are crucial access control mechanisms.

Finally, simply tailoring access control policies cannot address the security issues on

provenance access control thoroughly, and corresponding cryptographic schemes to imple-

ment the policies are also required to complete the project completely.

1.2 Contributions

In this thesis, we propose a comprehensive scope of access control policies involving

provenance and cryptography schemes implementing the policies. The policies can be ap-

plied to databases and Cloud servers. Provenance partitions are employed as conditions or

results, which support more fine-grained policies. The operations performed on data can be

introduced as restrictions for all types of policies proposed in this thesis. We provide three

types of policies which server for different purposes.

1. PACLP: A Partition-Based Access Control Policy Language for Provenance.

A partition-based access control policy language is proposed in Chapter 3, which is

more fine-grained comparing with existing work and defines provenance partitions at a

summarised level. The policies determine which provenance partitions can be accessed and

which partitions cannot be accessed. In this framework, we tailored and defined language

elements to support more fine-grained policy language, which is lacking previous work. For

instance, PACLP for the first time defines how to transform provenance partitions in order to

hide information which is not allowed by the policies, in order to respond an access request.

The contributions in details are listed as follows:

• We extend the OPM by proposing the OPM+ which stores attribute for entities in a

provenance DAG. Hence, OPM+ support more fine-grained policies. Namely, vertices

can be defined and searched over their attaching attributes. For example, a policy can

1.2 Contributions 5

Figure 1.1: the overall conceptual framework for all the contributions

define a collection of vertices which are attached with a timestamp as 10/6/2017. Thus,

vertices do not have to be enumerated in policies.

• We define several types of provenance partitions under OPM+, which can be expressed

over XPath. In PACLP, provenance partitions are utilised as conditions or results.

• We propose PACLP by extending existing policy languages. PACLP enables the spec-

ification of partial provenance graphs as well as transformation scope, transformation

mode, and transformation labels, in order to partition a provenance graph in a fine-

grained approach and define how to transform vertices in order to return a new subgraph

for the access requestors.

• Algorithms to retrieve applicable policies for a request and merge results of individual

policies as a final decision are proposed. In addition, we present algorithms to transform

a targeted provenanceDAG into a new subgraphwhich can be returned to the requestors.

2. Provenance-based Access Control Policies.

6 Introduction

Following PACLP, we propose a sound fine-grained provenance-based access control

policy model which determines whether data can be accessed based on its provenance.

Namely, it employs provenance as conditions. The object for accessing this policy model

is data, instead of provenance graphs. This policy model is tailored with a “four-valued"

decision set, which means it supports partial matching scenarios, including 0/3 matching,

1/3 matching, 2/3matching, 3/3 matching. The framework consists of a target section, policy

evaluation, and policy combination. Target language specifies which requests are matching to

the policy. Namely, when a query is received, target section checks if the policy is applicable

to the query. Then, the policy evaluates applicable queries and produce a result. All results

from applicable policies are combined based on a logical structure.

We propose several types of atomic targets (conditions). Path atomic target only uses

elements from provenance. Namely, the decision is determined by whether given operations

have been performed on the data. Associated atomic target takes attributes from both

provenance and requests, which implies the determining is based on whether the requestors

have performed operations on the data. For instance, let an atomic target be: if the requestor

previously edited data but did not submit it, the access request can be allowed.

Moreover, following a mechanism of policy tree structure [19], we replace the attribute

triple as provenance partitions. To cooperate with the “four-valued" decision set, we re-

arrange logic operators to merge results under the “four-valued" decision set.

3. Purpose-based Access Control Policies on Provenance.

In order to establish a comprehensive scope of policies involving provenance, we propose

a framework for purpose-based access policy. For the first time, we propose an access policy

model to employ provenance partitions as conditions to determine access purposes. Firstly,

we define the semantics and syntax of atomic privacy policies which map conditions to a set

of permitted or prohibited usages.

Even though purposes were classified based on various sensitivities in previous work. Al-

gebras which distinctively combine purposes in different sensitivity levels were not previously

proposed. Therefore, we particularly create functions for algebras of the policies involving

purposes. Our policy algebras merge purposes in different groups by different logic opera-

tors. In addition, both internal algebras and external algebras of this framework are presented.

1.3 Roadmap of the Thesis 7

4. Provenance-based Classification Access Policy System based on Encrypted Search

for Cloud Data Storage.

In Chapter 6, a scheme to implement provenance-based file classification policy is pro-

posed. Under the assumption of the systemmodel of this work, policies define how to classify

files based on their attached provenance by searching keywords from provenance. We pro-

pose a scheme to implement this policy. The scheme allows the Policy Decision Server to

check the encrypted provenance without decrypting the provenance. While at the same time,

it provides guarantees to the Policy Decision Server that the provenance is from a genuine

source. Such a solution will enable authenticated and confidential provenance information to

be used in the access control service without revealing its plain content. To achieve such a

solution, we introduce a new notion of Encrypted Provenance Search Scheme (EPSS). EPSS

is based on the searchable encryption method proposed by Boneh et al.[20].

5. Provenance-based partitioned encryption for fine-grained access control in Cloud

Computing.

Finally, a scheme to implement provenance-based access control policies is proposed.

Provenance-based Encryption (PBE) extends from ciphertext policy attribute-based access

control (CP-ABE)[21], which implements provenance-based access control policies.

We propose an assumption to implement provenance-based access control policies in the

Cloud. In the Cloud, a file could be generated by several data owners. Each data owner gen-

erates an access control policy for the section of data she contributes. As the access control

policies are based on the provenance. PBE is able to generate keys and encrypt sections of

a file to implement the policies. Concretely, the scheme proposes a more efficient approach

for calculation.

1.3 Roadmap of the Thesis

The thesis is structured as follows:

Chapter 2 proposes the literature review of references relevant to the research program,

8 Introduction

including provenance background and models, access control policies, cryptographic tech-

niques.

Chapter 3 presents a framework for a partition-based access control policy language

for provenance. The policy language enables the tailoring of access control policies for

provenance, in order to preserve the security and privacy of provenance. Particularly, the

policy is able to define which provenance partitions can or can not be accessed instead of

making access decisions based on a whole provenance graph. Three algorithms to implement

the policies and transform provenance DAG based on the results of policies are also presented.

Chapter 4 proposes a fine-grained policy model for provenance-based access control,

which evaluates the accessibility of data based on provenance. Because provenance records

historical operations performed on provenance provide clues for the sensitivities and vulner-

abilities of provenance. Moreover, corresponding data algebras for the policies is proposed

as well.

Chapter 5 presents purpose-based privacy policies on provenance which decide permitted

or prohibited access purposes based on provenance. Particularly, the purposes are classified

as different levels based on the sensitivities. Accordingly, functions to merge purposes sets

generated for individual policies are tailored as well, which includes both internal and external

policy algebras.

In Chapter 6, we propose a scheme to implement Provenance-based file classification

policies. The policies classify files based on the keywords from provenance. The scheme

enables a server to search keywords in encrypted provenance without decoding it. In addition,

the scheme could also confirm the authentication of data owners.

In Chapter 7, we present a scheme to encrypt files based on access control policies. The

scheme operates under the security assumption that each data owner generates provenance-

based access control policies for the section of data they contribute. The scheme facilitates a

fast computation when the access control structures of sections in a file are similar.

Finally, Chapter 8 concludes the thesis with proposed further work in the future.

2
Literature Review

2.1 Introduction

Provenance is a document recording how a piece of data attains its current status, which

can be used to understand the process by which data was obtained and transformed[22]. It

can be employed for estimating data quality and reliability, detecting data errors, establishing

the copyright, etc.

In terms of access control issues related to provenance, there are twomain branches. They

are provenance access control and provenance-based access control. As metadata, there are

also security and privacy concerns associated with provenance itself, including the integrity,

confidentiality, and availability of provenance information. Particularly, provenance access

control determines accessibility to provenance in order to preserve the security of provenance;

provenance-based access control utilises provenance as conditions to estimate the accessibility

to the data.

10 Literature Review

Since provenance is itself data (metadata), it seems that the access control of provenance is

already addressed by a vast amount of existing work. But, existing access control techniques

cannot be applied straightforwardly due to specific data structures of provenance. Challenges

regarding access control issues regarding provenance are surveyed[23][24][25], a discussion

is mainly developed revolving bridging the gaps between provenance and normal data.

Because the specific data structures of provenance are the main reason that most existing

access control techniques cannot be applied directly, in this chapter, we firstly review sev-

eral popular provenance models which are followed by provenance access control policies,

provenance-based access control policies etc. In these proposed work, access control poli-

cies are tailored by considering the specific data structure of provenance. Moreover, policy

algebras which merge results of individual policies are also explored in this chapter.

In addition, cryptography can also contribute to access control regarding provenance.

Cryptography schemes tailored especially for provenance related access control policies are

also proposed in this thesis. Hence, we also reviewed some cryptographic schemes which are

generated to execute access control. Provenance-based access control can borrow techniques

of attribute-based access control by extracting attributes from provenance. Hence, attribute-

based access control encryption schemes are surveyed in this chapter. Moreover, we also

explored a series of schemes on keyword search techniques. To preserve the confidentiality

of provenance, we assume the provenance stored in the Cloud is encrypted. In order to

implement Provenance-based Access Control policies which employ attributes in provenance

as conditions, a proper scheme which enables the cloud server to search the given attributes

defined in access control policies from the ciphertext of provenance is expected.

In this chapter, the reviewing literature is organised as follows:

• Section 2.2 introduces provenance background and provenance models which are ad-

dressed for access control purpose.

• Section 2.3 reviews a series of access control policies or policy models relevant to

provenance access control, provenance-based access control and policy algebras.

• Section 2.4 surveys cryptographic schemes and techniques, where we explored the

topics on encryption schemes for provenance, keyword searching schemes and attribute-

based encryption schemes, in order to explore techniques to construct implementations

for our proposed policies.

2.2 Provenance Background and Models 11

• Section 2.5 points out the connection between the references and our own contributions.

2.2 Provenance Background and Models

In this section, we introduce the background of data provenance, including a definition,

application and several provenance models.

Though provenance has long played a major role in the context of art and archaeology

(in terms of lineage or pedigree), more recently it has become more important for data in

various sectors such as finance and medicine[25][26][27][28]. It is not just about the origin

or creator of data but also what sort of operations have been performed by whom and in what

context, especially when it comes to security and privacy. As such, representation of data

provenance provides information about the ownership as well as actions and modifications

which have been performed on the data. In terms of access control, characteristics such

as data accuracy, timeliness and the path of transfer of data are important. For instance,

with the Sarbanes-Oxley Act[29], the consequences for signing incorrect corporate financial

statements became dire. Formal penalties for non-compliance with SOX can include fines,

removal from listings on public stock exchanges and invalidation of D&O insurance policies.

Therefore it is important to keep track of data which contributes to financial reports and to

authenticate the people who worked on them.

A consensus began to emerge at the International Provenance and Annotation Workshops

(IPAW′06), where over 50 participants who were interested in the issues of data annotations,

data derivation, data provenance and process documents. Provenance research increasingly

has developed at following IPAWs to understand better the representations for provenance,

rationales motivating designs and research challenges of provenance [30][31][32][33][34].

At IPAWs, participators discuss and develop new ideas and explore connections between

disciplines and between academic research on provenance and practical applications. Differ-

ent techniques and provenance models have been proposed in many areas such as workflow

systems, visualization, databased, digital libraries, and knowledge representation. An im-

portant issue the focus on is how to integrate these techniques and models so that complete

provenance can be derived for complex data products.

In recent years, defining provenance models [1][2][14] which are adopted by various

systems is a topic of research. Moreau et al.[1] provides Open Provenance Model (OPM)

12 Literature Review

which could be presented as a form of a directed acyclic graph (DAG). It consists of five main

entities as nodes and dependencies as edges and records processes actioned on data. The three

main entities are “Artifact", “Process" and “Agent" respectively, and each edge represents a

causal dependency. Specifically, Artifact is a piece of data which may be a physical object

or a digital representation stored in computers; Process is an action affecting the artifact

and creating new artifacts; Agent is an entity enabling and controlling the process. These

main entities act as nodes in the provenance directed acyclic graph. Dependencies describe

the relationships between these entities and connect the nodes in the graph. Figure 1 shows

the five main dependencies. They are “used" (Process used Artifact); “wasGeneratedBy"

(Artifact was generated by Process); “wasControlledBy" (Process was controlled by Agent);

“wasTriggeredBy" (Process2 was triggered by Process 1); “wasDerivedFrom" (Artifact2 was

derived from Artifact1).

OPM meets the requirement allowing provenance information to be exchanged between

systems, and it is possible for developers to build and share tools operating onOPM.Currently,

it has been employed by some provenance-aware systems. Ni et al. [2] provides another

provenance model that presents a set of provenance records. It defines five kinds of records

which are operational records, message records, actor records, preference records, and context

records and each record consists of several attributes. However, these attributes are optional

in that the record might be null. To carry contextual information such as time, temporal

aspects, user ID and so on, Nguyen et al. [14] presents an extensional model of OPM by

adding attributes data of a transaction to vertex “Action" of each transaction. For instance, this

attribute information supports extra access control policies of Dynamic Separation of Duties

(DSOD) and there are other proposals [15][16][17][18] focusing on specific application

domains such as electronic health data and scientific records.

However, OPM only records three main entities and dependencies between the main

entities and these cannot support more fine-grained access control policies. This is because,

attributes of process, agent, artifact are crucial conditions for access control. Hence, in this

thesis, we extend OPM by proposing OPM+. In OPM+, each of the main entities is optionally

associated with an attribute set, where these attributes can be employed as restrictions in our

proposed policies.

2.3 Access-Control Policy 13

Figure 2.1: Dependencies in Provenance Model [1]

2.3 Access-Control Policy

After showing general definitions and usages of access control, a few access matrix

implementation approaches and basic access control models are reviewed in this section,

including Basic Access Control Policy Models, Provenance Access Control, Provenance-

Based Access Control, and policy algebras.

2.3.1 Basic Access Control Policy Models

We begin the exploration with basic access control policy models including Access

control lists (ACLs)[12], capability, authorisation relations, mandatory access control (MAC),

discretionary access control (DAC) and Role-Based Access Control (RBAC)[13]. The basic

policy models are foundations of the access control theoretical system.

Access Control constrains what a user can do and which objects they are allowed to access

[12]. This satisfies access control goals to restrain activities that could lead to a breach of

security. In a system, a reference monitor mediates each attempted access by a visitor (or

program executed on behalf of the visitor) to objects. The reference monitor accesses an

authorisation database for the purpose of deciding if the visitor attempting to do an operation

is authorised to perform, where the authorization based on security policies of an organisation

are administered and maintained by the security administrators. However, users might also

be able to modify some authorisation in the database, for example, to define permissions for

their owned files. In addition, the relevant activity might be recorded by auditing monitors,

14 Literature Review

as access control is not a complete solution to secure a system, it needs to be coupled with

auditing.

As a conceptual model, the access matrix specifies that each subject possesses which

rights each subject possesses for each object. In this matrix, rows are subjects and columns

are for objects. Each cell of access matrix defines the authorised accessibility for the subject

in the row and the object in the column. In systems, the numbers of access matrices might

be enormous and there are a few approaches to implementing access matrices in systems.

ACL is a popular approach, where each object is associated with an ACL. It indicates the

access authorised to execute for each subject. ACL corresponds to store matrices by columns

and checks which operations are authorised for the object. Similarly, one capability is a

twin approach to ACLs: every user or subject is attached with a list indicating, in a system,

which accesses this subject is authorised to operate in the object. It stores access matrices

by rows and provides an easy review for all authorised accesses of objects. However, paired

advantages and disadvantages of ACLs and capability are seen with respect to access review.

Hence, authorisation relation provides representations of the access matrix not favouring one

aspect of access review over the other, where each row in this table presents one access right

of a subject to an object.

Traditional access control models include MAC with a relatively long history and DAC

[13]. MAC is based on predetermined compartments associated with each classification of

subjects and clearance of objects. In a system, every object and every user are assigned a

security level. The security level assigned to an object represents the sensitivity of the content

of the object, as unauthorised disclosure of the information could lead to potential damage.

The subject’s security level which is also called clearance reflects the user’s trustworthiness.

In the simplest case, formilitary and civilian government arenas, the set hierarchically consists

of Top Secret(TS) > Secret (S) > Confidential (C) > Unclassified (U). The Bell-La Padula

model [35] is a classic MAC example that presents a model of multi-level security, where

information confidentiality is the main focus. In particular, the two principles are required to

prevent information in high-level objects to flow to objects at lower levels, as follows:

• Read down— A subject’s clearance must be higher than the security level of the object

being read.

• Write up— A subject’s clearance must be lower than the security level of the object

being written.

2.3 Access-Control Policy 15

Hence, information only flows upwards or within the same security level in such a system.

MAC can be applied to protect information integrity as well. For instance, the integrity levels

are classified as Crucial (C), Important (I), and Unknown (U). A subject’s integrity level

represents the degree of trust of information stored in the object as well as the potential

damage due to unauthorised modification. A subject’s integrity level reflects the subject’s

trustworthiness of operation such as modifying, inserting or deleting data. Rules similar to

those for preserving secrecy are shown as follows:

• Read up—A subject’s integrity level must be lower than the integrity level of the object

being read.

• Write down— A subject’s integrity level must be higher than the integrity level of the

object being written.

These principles protect integrity by preventing information in lower level objects to flow

to higher level objects. As well as controlling information flow, additional mechanisms are

also required to achieve integrity [36].

DAC is usually discussed in contrast to MAC (sometimes termed non-discretionary ac-

cess control), which is an approach restricting or granting access to objects based policies

determined by the objects’ owner group and/or subjects. The specific authorisation is checked

for each request of a user to access an object. If an authorisation exists stating that the user

can access the object in the specific mode, the access will be granted, otherwise, it will be

denied. Discretionary policies are flexible for a variety of systems and applications. Hence,

they are widely used for various implementations, especially for commercial and industrial

applications. DAC policies do not provide real assurance on the flow of information in a

system. Bypassing the access restrictions stated through the authorisation is easy. For in-

stance, when the permission to read data is granted to a user, the user might pass it to other

users who are not authorised to read it without the knowledge of the owner. Information

dissemination is not controlled. On the contrary, in mandatory systems, dissemination of

information is controlled by preserving information stored in high-level objects to flow into

low-level objects.

However, there are many practical requirements which can not be covered by classical

mandatory and discretionary policies. RBACwas introduced, but it was considered as a more

general model in comparison with these traditional models. RBAC assigns subjects to roles,

16 Literature Review

and each role is defined by policies on accessing rights to objects. The user assigned a role

is permitted to execute all accesses for that which the role is authorised, where the same role

can be taken by more than one subject. In addition, a subject could take on different roles

on different occasions. For some RBAC proposals, the user is limited to obtain one role at

a time. While other proposals allow a user to execute more than one role at the same time.

Various approaches will be adopted in different applications, as there is no fixed standard in

this arena.

Sandhu et al. [12] listed a few advantages of role-based approach which supports Autho-

risation Management, Hierarchical Roles, Separation of Duties and Object Classes. Firstly, it

breaks authorisation task into two parts by introducing a logical independence in specifying

user authorisations. Specifically, one designates roles to users and the other one designates

access rights for objects to roles. It dramatically simplifies authorisation management. For

example, when the responsibilities of an object changes, the previous role will be replaced by

a new one. This avoids withdrawing access rights to corresponding objects if all authorisa-

tion is assigned directly to users and objects. Secondly, it supports hierarchical roles, where

sub-roles will inherit privileges assigned to the general class role. For instance, teaching

staff consists of lecturers and professors: a user who is assigned a role of lecturer will inherit

access permissions for the general role of the teaching staff. In this way, RBAC further

enhances authorisation management. Thirdly, RBAC supports separation of duties, in that

it refers to the fact that no user, on their own, should be assigned privileges which could

compromise. For instance, the person authorising the review of a paper should not be the

one who submitted it. Separation of duties could be executed either dynamically or statically.

Last but not least, the access authorities on each object could determine access automatically

based on the classification of the objects. This benefits the authorisation management by

making its role-easier.

Zhou et al. [37] proposed a new access control system for cloud environments, which

integrated attribute-based access control with hierarchical role-based access control. The

presented access control system automatically assigns users to roles based on policies ap-

plied to the attributes of users and roles. Hence, it relieves the data owner from the online and

computational burdens of user-role assignment processes, especially, for large-scale systems

with a huge number of users and continuously changing user role policies. In addition,

hierarchical roles are applied in order to solve key management problems in a decentralised

environment. Attribute-based policies support a fine-grained and flexible access control.

2.3 Access-Control Policy 17

These basic access control models establish a solid theoretical basis for access control.

Many existing policy models are developed based on basic access control models.

2.3.2 Provenance Access Control

Privacy and security of provenance are perceived as the main bottleneck to broad appli-

cations of provenance[38][39][40]. Privacy helps individuals maintain their autonomy and

individuality, and security is the protection from theft and damage to provenance, as well

as from disruption or misdirection of provenance. Hence, lacking protection for privacy

and security can not convince users to trust the application of provenance. The research

domain is still at its initial stage. Provenance security involves ensuring the integrity and

availability of provenance records and connectivity. One of the current research challenges of

provenance access control is lack of access control languages which fully support the specific

requirements including defining provenance graph partitions. Several previous papers have

provided provenance access control languages.

Figure 2.2: Provenance Record Schemata [2]

Ni et al. [2] presented an access control language tailored to generate policies including

users’ self-defined policies. The language is designed under the new provenance model

18 Literature Review

Figure 2.3: Access Control Language [2]

defined in the same paper. Under the basic assumption of the provenance model, a piece

of data caused or manipulated by an operation results in output messages. A maximum

of one operation manipulates a piece of data for one record. The model is presented as

a set of provenance records. There are five types of records for each process. These are

operation records, message records, actor records, preference records, and context records

respectively. Each record is logged as several attributes. Figure 2.3 shows the elements of

provenance records, where PK represents “primary key" and FK represents “foreign key". In

this provenance, every record is uniquely identified by an identification attribute. For each

record, some attributes are optional. Hence, their values might be null.

As a documented history, provenance is immutable [41]. However, in this provenance

model, preference records are allowed to be rationally changed by their actors. Preferences

are updated via two approaches: overwriting previous attributes, and associating each pref-

erence record with a time-stamp. When different preferences result in conflicted evaluation

outcomes, the latest preferences take precedence.

The five records shown in Figure 2.2 make up a provenance graph and there are relations

between the records. For one graph, attributes in one record reference attribute in other

records. An operation, message, and preference records precisely reference the primary key

of actor record; operation record references the PK of context; and so forth.

Their proposed access control language is based on the above provenance model which

supports policies from organisations and actors. Each organisational policy consists of target,

condition, effect, and obligations items. This is illustrated in Figure 2.3. Actor preference

policies include one more time-stamp item, where the latest preferences take precedence.

2.3 Access-Control Policy 19

The target enumerates subjects and objects that a policy is intending to apply. It includes

an optional element restriction to refine the range of an applicable target as well as a scope el-

ement with two possible values “transferable" and “non-transferable", which defines whether

the records could be extended to their ancestors or not. The condition item screens the context

requirements for matching access requests, while effect states the results of the policy with

four potential values. Lastly, obligation points out operations that have to be executed before

the evaluation or after the access, and timestamp is an item in actor’s preference policies. In

the end, for one request, combining the consequences of all applicable policies outputs the

final result.

This access control language is tailored for the provenance model presented in the same

paper. It satisfies some specific requirements for provenance access control including support-

ing fine-grained access control policy for a specific data structure of provenance, aggregating

preferences from data actors. However, as this work is still at the initial stage of provenance

access control, it leaves several open issues.

Firstly, evaluation of target or condition might raise uncertainties, as predictions might

not be evaluated due to lack of privileges. For instance, the restrictions are on the status of

systems, but this information can not always be certain to be available for the party evaluating

policies. Hence, the corresponding mechanism is expected to be introduced. Secondly, be-

cause policies are generated by multi-parties, detecting redundant, conflicting, and repeated

policies is a challenge. Moreover, the policies lack the delegation mechanism which is es-

sential for flexible and effective regulation of access control.

Cadenhead et al. [42] complements and extends existing access control language to protect

both traditional data items and data provenance. Compare with the language proposed by Ni

et al., their language is tailored for an RDF data representation. They define the grammar

of each of the tags in the language, which allows evaluation for the correctness of policies.

Moreover, it allows unambiguous translation of policies into a form that can be used by the

proper layer in the proposed system architecture.

In addition, the provenance graph structure not only poses difficulties to access control

policies but also to querying language. It can use the set of names in a graph VG to answer

20 Literature Review

common queries about provenance such as why-provenance, where-provenance, and how-

provenance [43]. They create templates which are parameterised for a specific type of user

query to anticipate the varying number of queries a user could ask.

A Denials-take-precedence conflict resolution is proposed in this paper as well. Under

three scenarios which are G1 ⊆ G2 G1 ⊇ G2 G1 ∩ G2 of graphs overlapping, the conflicts

at the same area take deny as final effect. Namely, G1 is permits access, but it consists of a

subgraph G2 which denies access. Only the diagram G1 −G2 can be accessed via combining

the two results over Denial-take-precedence.

Danger et al. [44] proposed TACLP, an access control language to answer queries with

transformed graphs which abstract over the missing nodes and fragments. Hence, they

introduced the Transformation element into the access control language [2]. This allows

administrators to specify provenance subgraphs to return users if the whole graph is not

accessible. The transformation element consists of the specification of which nodes need to

be hidden and which transformation operations should be applied. The two transformation

types are single and subgraph, and the three transformation levels are hide (RemR), minimum

abstraction (RepR but no soft dependencies will appear in the transformed graphs), and

maximum abstraction (RepR soft dependencies could appear in the transformed graphs).

They presented algorithms to transform the provenance graphs. The general idea behind

the algorithms is to collect nodes to be transformed, while the policies are being evaluated.

The access control preference is defined as “deny takes precedence" or “permit takes prece-

dence". The order in which to evaluate policies with the four effects is different for the two

types of precedence, as the four effects which are “Absolute Permitted", “Deny", “Necessary

Permit", and “Permit" are originally defined with different priorities.

While existing work focuses on graph transformation mechanisms, Liang et al. [45]

propose the access control language for provenance that mainly deals with conflict solutions.

In particular, the validity constraints of provenance to specify that certain parts of provenance

are restricted to access has been taken into account. Provenance owners can define a set of

objects from a nested partition of a provenance graph, and specify policies to access based

on roles of subjects.

Moreover, this paper also explored how to extend the proposed approaches for a complete

2.3 Access-Control Policy 21

provenance graph. In this paper, a simple provenance graph can be viewed as an inner layer

of the complete one. Particularly, three forms of an object are defined as: an edge e = (p,

ag, wcb), a subgraph of its inner simple graph, and a kind of combination of three main

entities and relationships. Data owners are able to define any forms of objects to support

fine-grained access control. An algorithm Obj is proposed to calculate the smallest object

for all the three forms, where users can partition the complete graph into fine-grained objects.

Moreover, different roles can also be assigned to objects. This supports role-centric policies

for answering access queries.

Kuwabara et al. [46] proposed a mechanism to facilitate access control and version man-

agement of an RDF database, which embodies RDF statements by supplementing meta-data

and employs version management and statement-level access control. To be more specific,

the meta-data was introduced under two situations, when a new triple was manually added

by a user or derived from an existing ontology triple, which must be engaged under the

specification of access permission and the existence of the version. In terms of the version

formed under a tree structure, even though the parent version, which is specified as a new

one is imported, they are still valid in their child version. Moreover, the meta-data associated

with a reified triple is utilised for access control by specifying its property. In addition, the

querying rewriting is mentioned to check the access condition.

In a nutshell, there are still issues not addressed by the existing provenance access

control policies. Firstly, existing provenance access controls have not been established on a

provenance graph model which has attributes of the main entities. This indicates that vertices

in a provenance graph have not been confined by relevant attributes, such as timestamps,

locations, roles etc. Moreover, more fine-grained access control for provenance has not been

proposed in regards to provenance graph partitions, partition transformation labels. Lastly,

proper algorithms for merging individual policies have not been provided.

Therefore, based on the existing work and open problems, we develop our contributions

for provenance access control in this thesis. We establish a framework based on our extended

provenance model OPM+, which enables confining vertices in a provenance graph by relevant

attributes. In addition, our proposed provenance access control language is fine-grained:

• to define allowed or prohibited provenance partitions for accessing;

22 Literature Review

• to hide sensitive partitions, thereby creating a new provenance graph.

Moreover, functions and algorithms to perform policies and transform provenance graphs

based on policy results are presented in the thesis as well.

2.3.3 Provenance-based Access Control

Different fromhowProvenanceAccessControl determines access to provenance, Provenance-

based Access Control controls access to data based on its provenance, because provenance

contains clues to reveal sensitivities and vulnerabilities of data. This section explores several

papers which attempt to use data provenance to make access control decisions[47][48].

Park et al. [49] proposes a basic provenance-based access control model PBACB, which

facilitates additional capabilities beyond those available in traditional access control models.

This paper also mentions a family of PBAC models, PBACB being the basic model in this

family. It defines three criteria for the provenance-based access control family, namely:

• the kind of provenance data in the system;

• whether policies are based on acting user dependencies and object dependencies; and

• whether the policies are readily available or need to be retrieved.

The three other models PBACU , PBACA and PBACPR extend one of these three criteria

respectively. However, in this paper, the mechanism to list dependency paths manually and

search dependency paths from provenance graphs is not unrealistic, because, in real cloud

systems, the items in dependency path lists might be huge numbers.

Ni et al. [2] propose an access control language influenced by the XACML language

which supports both actor preferences and organisational access control policies. In their

system, applicable organisational policies and matching preferences are evaluated together

for a given query. However, there are obvious shortcomings for the evaluation, such as the

fact that uncertain decisions are inevitable due to the lack of privileges.

Lacroix and Boucelma [50] introduced a provenance-based access control system for the

cloud. This integrates a rule-based mechanism and provenance into access-control models.

2.3 Access-Control Policy 23

Particularly, indirect dependencies or locally-cloud context specific ones, are presented as

standard expressions on dependency paths. Moreover, this system involves rule propagation

and a mediator which is a central execution engine, in order to govern verification and

authorisation of the execution process.

Based on PBAC, Nguyen, Park, and Sandhu [51] proposed several variations of a cen-

tralised provenance and PBAC-enabled authorisation services architecture, as well as iden-

tifying the potential to adopt PBAC into the cloud Infrastructure-as-a-Service. The two

approaches to communication between the service components are intra-service commu-

nication and inter-service communication. In addition, by demonstrating, evaluating and

analysing the architectural implementation in the context of the OpenStack cloud manage-

ment platform, the authors proved that the design constitutes a strong foundation for enhanced

authorisation in cloud platforms.

Decat et al. [52], a concurrency control scheme specifically for the evaluation of access

control policies was proposed. This work is motivated by the need to enforce access control

policies on distributed applications, in which the policies have to be evaluated concurrently

and distributedly as well. However, for certain classes of policies such as history-based

policies, concurrency can be exploited to gain elevated access. By leveraging the specific

structure of a policy evaluation, the concurrency control scheme effectively prevents such

incorrect access decisions and is able to scale to a large number of machines while incurring

only limited and asymptotically bounded latency overhead. This result could not have been

achieved by employing more general techniques for concurrency control. This paper has

taken an important step towards applying policy-based access control to realistic applications

in practice.

Yan and Fang [53] proposed a constrained policy representation for facilitating IRM

optimisation. This policy representation is expressive enough to represent simple integrity

policies, Generalised Chinese Wall Policies, and Hierarchical One-Out-Of-k Policies. The

core optimisation procedure is safe, unobtrusive and effective. The optimisation procedure

has been extended to accommodate a distributed optimisation protocol, in which an untrusted

code producer may formulate method interfaces to boost the optimisation effectiveness of

a distrusting code consumer. A prototype of the procedure has been implemented and

demonstrated to exhibit positive performance characteristics. The authors are exploring

alternative optimisation directives that could lead to more effective optimisation than their

24 Literature Review

current design of method interfaces.

In order to facilitate access control in provenance-aware systems, Sun et al. [3] established

an abstract provenance model which is named Typed ProvenanceModel (TPM). Hence, TPM

accommodates generic attributed-based policies by employing provenance-type as a special

attribute. In addition, different levels of abstraction were proposed aiming to accommodate

provenance-aware policies flexibly. In detail, TPM defines two provenance types including

element types and dependency types, where each type identifies a collection of elements such

as nodes and edges in provenance graphs. Dependency type is mentioned as the core concept

of this model, which is defined as T:=N(E, C), where N is a composition of the name of a

dependency type T, E is an element type as an effect, C is an element type as a cause.

Figure 2.4: A Layered Architecture of Provenance-aware Access Control Framework [3]

A layered architecture of provenance-aware access control framework is also proposed in

paper [3]. In the architecture, reused or extended modules from either the existing XACML

architecture or provenance-aware systems (PAS) are on the top layer and bottom layer, while

a set of TPM interpreters serving specification and enforcement of policies is displayed

in the middle layer. TPM interpreter links Provenance-aware PDP and Provenance Query

Engine (SPARQL) is able to correctly interpret dependency types. However, when several

provenance stores in various physical representations are used in a PAS, it demands multiple

provenance query engines and TPM interpreters.

We identify some issues from the existing provenance-based access control work. Firstly,

different types of attributes have not been distinguished properly in policies, including ver-

tices types, vertices names, and vertices attributes. In a fine-grained provenance-based access

2.3 Access-Control Policy 25

control policy, meeting different types of attributes should result in correspondingly differ-

ent results. Secondly, operators to merge results in a multi-valued decision set should be

generated. In this thesis, mechanisms to address these identified issues are presented.

2.3.4 Policy Algebra

As more than one policy or rule might affect a request, functions in terms of how to merge

results of individual policies as a final decision should be taken into account to construct a

complete framework of access control. Hence, some access control policy algebra frameworks

are reviewed in this section.

Bonatti et al. proposed an algebra [54] of policies with their formal semantics and

demonstrate how to how to formulate complex policies using algebra. Firstly, they identified

the problem of integrating policies in a modular and incremental fashion. It is proven

that the composition algebra with restricted closure operators is less powerful compared

with relational algebra because it is not able to manipulate multiple relation schemata.

However, certain significant decision issues which are otherwise undecidable are decidable

for the composition algebras. Then, a translation of policy expressions into equivalent logic

programs is the basis for the implementation of the algebra, which is illustrated in this paper.

In addition, the expressions of this algebra are analysed via a comparison with first-order

logic. This work addresses the issue of combining authorisation specifications possibly in

different languages.

In 2003, Wijesekera and Jajodia presented [55] a propositional algebra for modeling secu-

rity policy operators such as union, sequential composition, intersection, adding provisions

and so on. After recognising the issue that authorisation policies can assign sets of permis-

sions to subjects, two operations are identified in this paper. Specifically, the external type

only quantifies on permission sets without reorganising them, while the other internal type

alters these sets. Moreover, the policy models can be used to identify whether two policy

operations or integrations are equivalent, and then a few algebraic identities are constructed

to verify equivalent policies. The other policy model is generated to identify whether com-

positely policies are complete, consistent, or deterministic. This work improves the outcome

in several ways. Firstly, a predicate version is presented, in which properties are generated

from relation, function, variable, and constant symbols, but not left as abstract symbols. The

area of the basic automata model is another improvement.

26 Literature Review

In distributed systems, access control policies of collaborating parties are often required

to be integrated. Bonita et al.[54] firstly introduced the concept of policy composition. In this

paper, logic programming and partial evaluation techniques for evaluating algebra expressions

are employed to compose access control policies. Following Bonita et al.[54], Rao et al.[56]

provides a framework which uses algebra for fine-grained integration of sophisticated access

control policies. The algebra consists of binary and unary operations as well as derived

operations, which are able to address the constraints of integrations. Particularly, the algebra

combines three-valued access policies. These are Permit policy, Deny policy and Not-

applicable polices. The integration of policies might consist of multiple operators, hence

this paper defines the concept of FIA expressions. Then, it proves the completeness of

this framework that can handle many policy integration scenarios and present approaches to

automatically generate integrated policies given FIA policy expression and to transform them

into actual XACML policies.

Ni et al. [57] presented a D-algebra which is functionally complete and computationally

effective to integrate decisions from multiple policies. The D-algebra consists of an analysis

of policy languages decision mechanism to contribute relevant applications in the context

of access control policies. They also implemented the decision specification language and

developed a toolkit to evaluate policy expressions. In addition, this paper investigated issues

concerning decision composition for hierarchies.

Hanson et al. [58] provided a data-purpose algebra used to model allowable usage of

data. The system of Records is associated with System of Records Notices (SORN) which

maps attributes of content to permissible usage scope. The data repository specifies input

conditions and a set of routine uses U (n) for those matching the conditions. Similarly, the

source agent also sets SORN which state the policies on the permissible usages of outgoing

data. The final scope of usage is the intersection of the results of both sides of SORN and

the purpose of attaching to the data content. However, this work is not good enough to sup-

port more complicated policies involving historical records and the relationship between data.

The existing techniques of policy algebras cannot be utilised for our proposed access

control policies directly. Hence, based on the existing policy algebras, we tailored policy

algebras for our proposed access control policies. The algebras merge results of individual

policies to generate a final result for an access request.

2.4 Cryptographic Techniques for Implementing Access Control Policies 27

2.4 CryptographicTechniques for ImplementingAccessCon-

trol Policies

In this section, we explore cryptographic techniques which could be borrowed to im-

plement access control policies on provenance. To protect privacy and confidentiality of

provenance itself, several previous works have been proposed to encrypt provenance. More-

over, provenance should be checked or verified by a third party to meet provenance-based

access control. In the meantime, provenance is encrypted to avoid leaking information

to a third party. Then, keyword search techniques for ciphertext could be employed for

provenance-based access control. In addition, as a method to facilitate provenance-based

access control, cryptographic schemes can effectively preserve the confidentiality of data via

encryption and grant decryption keys to eligible users. Therefore, in this section, we present

relevant literature on these techniques.

2.4.1 Confidentiality of Provenance

Data provenance might be sensitive information, in which case the security of provenance

(for example [41], [59] and [60]) has increasingly aroused attention. There are have been

several attempts to encrypt provenance information to keep its confidentiality. Li et al.[61]

proposes a provenance-aware system based on Attribute-based signature (ABS) which sup-

ports fine-grained access control policies. The users’ privacy is also protected because the

attribute private key of users is issued with an anonymous key-issuing protocol from multiple

attribute authorities. However, the whole computation is built on the assumption that the

could server has a large computational ability. Chow et al.[62] proposed a cryptographic

design for cloud storage systems supporting dynamic users and provenance data.

In the area of encrypted data search, Boneh et al. [63] present a Public Key Encryption

with Keyword Search (PKES) scheme. We will be making use of this work in the design

of our Provenance-based Classification Access scheme. Essentially, the work proposed by

Boneh et al.[63] considers the following scenario: when Alice receives emails, she would

like to set a gate that helps her to check whether the incoming emails contain certain sensitive

keywords such as "urgent". However, the emails are encrypted to protect privacy. As the

gateway is not fully trusted, Alice does not want to grant the gateway the ability to decrypt

28 Literature Review

her emails. The PKES scheme enables the gateway to conduct a test to verify if the encrypted

emails contain the keywords while learning nothing else about the content of the emails

themselves.

Bates et al. [4] introduced a framework to manage provenance metadata in the cloud.

In addition, in order to enforce organisational security policies, it introduced an approach

for using provenance as the basis for an attribute-based access control system. Although it

employs provenance to enforce access control, the mechanism effectively transfers the access

control paradigm from a stateless decision made strictly on the current state of data to a

stateful evaluation according to data’s origin and lineage. In the protocol which is illustrated

in Figure 2.2, the Cloud Provenance Authority (PA) generates a signature by the random

number nc sent from the Clients (C) which will be sent with a provenance chain and a

random number, then when the client updates the provenance and object and sign them with

random number npa This is the first protocol been aware of to be focused on securing and

managing provenance in distributed cloud environments. Further, the implementation using

the Cumulus cloud storage environment on the University of Oregon’s ACISS science cloud

illustrates that this is a practical system to support thousands of operation per second on a

modestly specified deployment.

Figure 2.5: Commitment Protocol for Writing Operations[4]

2.4.2 Public-key Encryption with Keyword-Search Schemes (PEKS)

To implement provenance-based access control, a server could be viewed as a third party

which can not be fully trusted. Hence, provenance is usually encrypted to preserve confiden-

tiality. Keyword Search schemes for ciphertext propose solutions to facilitate provenance-

based access control, which enables the ciphertext of provenance to be verified without

decryption.

Assume Bob sends emails to Alice encrypted under Alice’s public keys [64]. An email

2.4 Cryptographic Techniques for Implementing Access Control Policies 29

gateway would like to verify whether the mail contains the keyword “urgent". Thus, Alice

sends a short secret key Tw to the mail server. It enables the server to locate all the messages

containing the keyword “urgent", but learn nothing else. The secret key Tw was generated by

Alice under her private key.

To be more specific, PEKS schemes propose a mechanism which enables a keyword

search in the ciphertext, in order to preserve the privacy and confidentiality of data against

a third party. Usually, the encipherers owning the private keys generate the “trapdoors" of

data for the keywords checking purpose. The schemes provide an approach which allows the

third party to check keywords without decrypting the ciphertext.

PEKS has been applied to various applications, including retrieving sensitive ciphertext

in cloud, searchable and encrypted audit logs[65], intelligent email routing[66] [64] and etc.

Fang et al. [5] presented an example application for keyword search schemes in the figure

below, where Bob sends messages attaching keywords C̃ to Alice, where C̃ = (CPKE | |CPEKS)

= (PKE(pkA, m) | | PEKS (pkA, w)). The Email server verifies if the ciphertext matches

trapdoor T ′w generated by Alice, namely w ?
= w′.

Figure 2.6: Keyword Search Scheme Application in Intelligent Email Routing[5]

1) Traditional PEKS: Bones et al. [7] proposed a original mechanism named Public Key

Encryption with Keyword Search which is derived from Identity-based Encryption (IBE). It

is utilised in the following scenario. When Bob sends emails that are encrypted under Alice’s

30 Literature Review

public key to Alice. An email gateway wants to verify if there are nominated keywords in

the emails such as “urgent", in order to process them accordingly. Hence, Alice sends a key

of “urgent" to the gateway. The gateway can test whether the keywords are in the encrypted

emails but learn nothing else.

Abdalla et al. [66] identified and filled in some gaps in terms of consistency which

indicates that decryption reverses encryption. By defining computational and statistical

consistency, they prove the computational consistency of a scheme [7] and provide a new

scheme which meets statistical consistency. Three extensions of the basic notions are sug-

gested these are anonymous HIBE, public-key encryption with temporary keyword search,

and identity-based encryption with a keyword search.

Waters et al.[65] designed a scheme to protect the contents of audit logs as well as

making them searchable. They used identity-based encryption to protect symmetric keys

which encrypt audit log entries. A third party utilises capabilities created by a privileged

agent to search the audit log of records if it matches certain keywords. The scheme has been

implemented for MySQL database queries. It turns out the scheme to improve security and

convenience over symmetric key based schemes.

Khader [67] proposed the K-Resilient Public Key Encryption with Keyword Search (KR-

PEKS) which is secure under a chosen keyword attack without the random oracle. The

construction of the KR-PEKS was extended from constructing a Public Key Encryption with

Keyword Search from Identity-Based Encryption. Two modifications were created to support

multiple keyword searches and remove the need for secure channels. However, the limitation

of it is that the number of malicious users is restricted to K. Hence, the value of K should be

set as a large number.

Finding a PEKS that is not based on bilinear forms has been an open problem. Crescendo

et al. [68] proposed a scheme using a non-trivial transformation of Cocks’ identity-based

encryption scheme[69]. Hence, the scheme is based on a new assumption which is a variant

of the difficulty of deciding quadratic residues modulo for a large composite integer. As

PEKS can be viewed alongside anonymous identity-based encryption. However, it is less

efficient than the original Cocks’ scheme.

2) Secure Channel Free PEKS: Beak et al.[9] removes secure channel for PEKS schemes

by proposing a new PEKS scheme SCF-PEKS. The basic idea to construct the scheme is to

2.4 Cryptographic Techniques for Implementing Access Control Policies 31

introduce the public key and private key pair of a server, where the trapdoor and ciphertext

are generated with the receiver’s public key and server’s public key. Therefore, trapdoors

could be sent without the secure channel because they are protected by the server’s public

key. Then the server verifies the match of ciphertext and trapdoor via its private key. Overall,

another key pair from the server is introduced into the scheme to preserve trapdoors resulting

in the trapdoors being transferred without a secure channel. In addition, an idea of attaching

an effective range of time for each keyword is presented in this paper as well.

Rhee et al. [70] upgraded Beak et al.’s scheme to meet a stronger security model.

Specifically, under the enhanced security model, the public key can be published by an

attacker without revealing the corresponding private key. Moreover, the relation between

non-target ciphertext and a trapdoor is also allowed to be obtained. The scheme is proven

as semantic secure under their defined new security model against chosen keyword attacks,

referring to 1-BDHI and BDH assumptions.

Emura et al. [71] extends SCF-PEKS as an adaptive SCF-PEKS, which is secure even

when an adversary is able to issue test queries adaptively. Moreover, lightweight adaptive

SCF-PEKS is proposed. This is established by anonymous identity-based encryption only

without extra cryptographic primitive. In addition, a more efficient but not fully generic

construction is presented, where the server is utilised as a test oracle by malicious receivers.

3) Against Outside KGA: Byun et al.[72] defined Single Keyword Search Scheme and

Conjunctive Keyword Search Scheme. Particularly, a conjunctive keyword search scheme

enables a user to verify a combination of several keywords together, where trapdoors are

generated for conjunctive keywords. In addition, this paper also identifies off-line keyword

guessing attack for PEKS. Byun et al. analysed security vulnerability of Boneh et al.’s

scheme and Park et al.’s scheme under keyword guessing attacks.

Following Byun et al.’s paper, Yau et al. [6] demonstrated off-line keyword guessing

attacks on PEKS and SCF-PEKS. By presenting the vulnerabilities of these schemes under

off-line keyword guessing attacks, Yau et al. concluded that SCF-PEKS is not secure without

a secure channel. Moreover, it would still be possible for insider adversaries to break the

schemes with a secure channel. The figure below compares four PEKS schemes for their

performance against off-line keyword guessing attacks.

Beak et al. [10] proposed “IND-PKE/PEKS-CCA" by integrating a PKE and PEKS,

32 Literature Review

Figure 2.7: Summary of Consequences of Off-line KeywordGuessingAttacks [6] (A=BDOP-

PEKS [7], B=PECK [8], C=SCF-PEKS[9], D=PKE/PEKS [10])

which is secure against chosen ciphertext attack. The scheme is based on randomness reuse

techniques referring to the variation of ElGamal encryption schemes. Hence, the security of

IND-PKE/PEKS-CCA in the random oracle model is based on the computational difficulty

of Computational Diffie-Hellman (CDH) problem. Moreover, another generic construction

of PKE/PEKS scheme is presented, which is slightly less efficient compared with the other

one in this paper. The proposed PKE/PEKS are also extended to multi-receiver settings and

multi-keyword settings.

Rhee et al. [73] answers the open problem proposed by Byun et al. [72] by proposing

a secure searchable public-key encryption scheme with a designated tester (dPEKS) scheme

against keyword guessing attacks. They defined consistency in dPEKS and analysed how

keyword guessing attacks can break PEKS/dPEKS schemes. As a discrete the logarithm

problem is difficult, the scheme proposed in the paper is computationally consistent and

secure.

Rhee et al. [74] enhanced the security of dPEKS against off-line guessing attacks. Firstly,

they upgraded the existing security model of dPEKS from the paper [10], where an attacker

does not have to reveal the private key during the setup phase. It grants more power to

attackers and requires higher security of schemes to meet the model. Moreover, they defined

2.4 Cryptographic Techniques for Implementing Access Control Policies 33

“trapdoor indistinguishability" of dPEKS, where an adversary is trying to guess trapdoors

for a keyword of his choice. The indistinguishability of trapdoors ensures that a trapdoor

does not leak information of keywords. Moreover, the authors explored the connection

between security against off-line keyword guessing attacks and trapdoor indistinguishability

and further proposed a new scheme to satisfy these models.

A formal secure model of SCF-PEKS against off-line keyword guessing attacks was pro-

posed by Fang et al. [5]. Then, constructed from DBDH assumption, SXDH assumption and

the truncated q-ABDHE assumption, an SCF-PEKS scheme without random oracle against

keyword guessing attacks and chosen keyword and ciphertext attacks is proposed. However,

the computational efficiency of the scheme is expected to improve.

4) Against Inside KGA: Nevertheless, to explore the open problem published by Byun et

al. [72], Jeong et al.[75] provided a negative result in that consistency of PEKS schemes

leads to insecurity under keyword guessing attacks. Namely, they concluded that establishing

a PEKS scheme to both meet consistencies and secure against keyword guessing attacks is

impossible. However, the conclusion is proven under the original framework, which implies

that the security issues might be addressed by adjusting the framework.

There are plenty of schemes that are proposed in regards to keyword search techniques

for ciphertext. In this thesis, we upgrade an existing scheme to implement a file classification

policy on provenance, while checking the authentication of the data users who encrypt

provenance.

2.4.3 Attribute-based Encryption for Access Control

Besides searching keywords from the ciphertext of provenance, encrypting data is an

approach to control access. Then, decryption keys could be associated with eligible users.

Several previousworks have already accommodated provenance-aware policies by treating the

typed provenance partition as a special attribute. Namely, by accommodating provenance-

aware policies, attribute-based access control encryptions can be employed to implement

provenance-based access control policies.

34 Literature Review

Introduced By Sahai andWater [76], attribute-based encryption (ABE) is a more efficient

public-key encryption scheme which implements integrated and complicated access struc-

tures. In ABE schemes a message is encrypted under a set of attributes. Receivers must

obtain the attributes used as secret keys from a trusted party called central authority (CA),

then they are able to decrypt the ciphertext and obtain the data if and only if there is a match

between his secret keys and the attributes listed in the ciphertext. The original idea of ABE is

presented as a fuzzy (error-tolerant) identity-based encryption (IBE) scheme [77, 78]. Since

it was published as an efficient approach, ABE has attracted lots of attention in the public-key

cryptography research community. Generally, ABE schemes can be classified into two types:

Ciphertext-Policy ABE (CP-ABE): In these schemes [79–83], a user’s secret key is labeled

with a set of attributes, while a ciphertext is encrypted by an access structure.

Key-Policy ABE (KP-ABE): In these schemes [76, 84–87], a user’s secret key is associated

with an access structure, while a ciphertext is encrypted by a set of attributes.

In a distributed system, an access structure is constructed to define eligible combinations

of attributes from the users to access the objects. Given a universal set P, if a subset S′ ⊆ P

satisfies an access structure, then all subsets S ⊆ P which contain S′ also satisfy the access

structure, we say that the access structure is monotonic. A (k,n)-threshold access structure

is a type of structure, where given a universal set P with |P| = n, a subset S ⊆ P satisfies the

access structure if and only if |S | ≥ k. In an ABE scheme, an access structure is defined by

the encryptor (in CP-ABE) or the authority (in KP-ABE) to decide who is able to decrypt a

ciphertext. For instance, in a KP-ABE scheme, the authority specifies an access structure and

issues secret keys to users. A message is encrypted with attributes from the access structure

and attributes will be listed in the ciphertext. If a user holds a set of attributes which satisfy

the access structure, they can use their secret keys to decipher the ciphertext and obtain the

message. In the opposite way, if a user’s secret keys cannot satisfy the access structure, it is

impossible for them to decode the ciphertext.

However, the original ABE scheme contains a limitation in that it can only express a

threshold access structure. Subsequently, an ABE scheme for fine-grained access policy was

presented by Goyal, Pandey, Sahai and Waters [84], where the access tree technique could

express any monotonic access structure. Specifically, there is a tree access structure with

leaf nodes consist of the attributes and interior nodes represent AND and OR gates. Each

interior node ω of the tree specifies a threshold gate (kω,nω), where nω is the number of the

2.4 Cryptographic Techniques for Implementing Access Control Policies 35

children of ω and 0 < kω ≤ nω. Therefore, when kω = 1, it is an OR gate; when kω = nω,

it is an AND gate. Only when a set of attributes satisfies the tree access structure, the secret

embedded in the vertex of the tree could be reconstructed by the corresponding secret keys.

Following Ostrovsky, an ABE scheme with a non-monotonic access structure was proposed

by Sahai andWaters [85] to express more complicated access structures, where a secret key is

labeled with a set of attributes including not only the positive but also the negative attributes.

Subsequently, Bethencourt, Sahai and Waters [79] presented the first CP-ABE which

was proven to be secure in the generic group model. In contrast with a KP-ABE scheme, a

CP-ABE scheme’s access structure is constructed by the encryptor, but not the CA. Hence,

the encryptor can determine access structure; while, in a KP-ABE scheme, this is decided by

the CA. In 2007, Cheung and Newport [80] proposed another CP-ABE scheme but reduced

the difficulty of breaking their scheme based on the DBDH assumption. Unfortunately, these

CP-ABE schemes can only express a threshold access structure, hence, Waters proposed a

more generic CP-ABE scheme [83] which employs linear secret sharing scheme (LSSS)

technique [88] to express any access structure.

A dual policy ABE scheme [89] that combines a KP-ABE scheme with a CP-ABE scheme

was proposed by Attrapadung and Imai. Two access structures are employed in this scheme:

one is for the subjective attributes held by the users and the other one is for the objective

attributes labeled in the ciphertext. Nevertheless, there is only one access structure in both a

CP-ABE scheme and a KP-ABE scheme. Rial and Preneel [90] present a blind key extract

protocol for the centralised ABE scheme [79] which is a blind centralised ABE scheme.

In practical systems, such as data outsourcing systems [91], cloud computing [92], or

distributed systems [93], ABE has been used as a building block to express flexible access

structures. Against the collusion attacks[76], it is a basic benchmark for ABE schemes,

namely a group of users cannot combine their secret keys for decryption when none of them

can decrypt independently. The most common technique used to restrain collusion attacks is

randomisation. CA could randomise a user’s secret key via selecting a random polynomial

[76] [86] [87] or a random number [85] [80].

36 Literature Review

2.4.4 Multiple-Authority Attribute-based Encryption

Even though Sahai and Waters’ work [76] made an enormous contribution, an open

question was left regarding whether it is possible to construct an ABE scheme where a

user’s secret key can be granted by multiple authorities. Chase [86] addressed this issue

by presenting a multi-authority KP-ABE scheme. This ABE scheme supports multiple

authorities, where CA is one among them. A user has to obtain secret keys from all these

authorities, and CA comprehends all the secret keys of the other authorities. Being different

from one-authority ABE schemes, it is hard to combat collusion attacks in a multi-authority

ABE scheme. If the multiple authorities can work independently, the scheme is particularly

vulnerable to this attack. Chase [86] overcame this problem by introducing a global identifier

(GID) to a multi-authority ABE scheme. All authorities connect a user’s secret keys to his

GID. CA employs a user’s secret key and the other authorities’ secret keys to compute a

special secret key for the user, in order to enable ciphertext to be independent of user’s GID.

Even though this scheme could not support a decentralised system, it still made a significant

contribution to boosting ABE schemes from a single authority to multi-authority.

M Üuller, Katzenbeisser and Eckert [94] proposed a distributed CP-ABE scheme and proved

it to be secure in the generic group [79]. In addition, the pairing operations executed by the

decryption algorithm are constant, but the limitation of this scheme is that there must be a

central authority to generate the global key and issue secret keys to users. Another multi-

authority ABE scheme based on the distributed key generation (DKG) protocol [95] and the

joint zero secret sharing (JZSS) protocol [96] was presented by Lin, Cao, Liang, and Shao

[97]. This could be without a central authority. At setup phase, the multiple authorities have

to collaboratively run the DKG protocol twice and the JZSS protocol k times which is the

degree of the polynomial selected by each authority. In addition, every authority must obtain

k + 2 secret keys. However, this is k-resilient scheme, namely the scheme is secure if and

only if the number of the colluding users is no more than k which is determined at the system

setup phase.

Chase et al. [87] another multi-authority KP-ABE scheme was presented. The contribu-

tion of this scheme is that it removed the necessity of CA and improved the previous scheme

[86]. They also specifically addressed the privacy issue of previous ABE schemes [86, 97].

The issue is that a user must submit his GID to each authority to obtain the corresponding

secret keys, which would expose the user to being traced by a group of corrupted authorities.

2.4 Cryptographic Techniques for Implementing Access Control Policies 37

The solution of this paper is that it employed the 2-party secure computation technique and

provided an anonymous key distribution protocol for the GID. Consequently, a group of

authorities is not able to cooperate to obtain a user’s attributes by tracing his GID. However,

it requires the multiple authorities to interact to set up the system. Specifically, each pair

of authorities has to run a 2-party key exchange protocol to share the seeds of the selected

pseudorandom functions (PRF)[98]. This is a (N − 2)-tolerant scheme, which means the

scheme is secure if and only if the number of the compromised authorities is no more than

N − 2, where N is the number of the authorities in the system. The security of this scheme

was proven by reducing it to DBDH assumption and non-standard complexity assumption

(q-decisional Diffie-Hellman inverse (q-DDHI)). At the end of this paper, the authors also

presented an open challenging research problem on how to construct a privacy-preserving

multi-authority ABE scheme without the need of cooperations between the authorities.

A fully secure multi-authority CP-ABE scheme in the standard model was present by

Liu, Cao, Huang, Wong and Yuen [99]. This is based on the CP-ABE scheme [82]. It was

constructed in the composite order (N = p1p2p3) bilinear group. Multiple central authorities

and attribute authorities co-exist and cooperate in this scheme. Specifically, the attribute

authorities issue attribute-related keys to users and the CA distributes identity-related keys.

By running the algorithm, before obtaining attribute keys from the attribute authorities, a

user must obtain secret keys from the multiple central authorities.

In 2011, the cluster multi-authority ABE schemes added a new member named decen-

tralising CP-ABE [100]. Based on the previous multi-authority ABE schemes that require

collaboration among multiple authorities to set up the system, this scheme makes a contri-

bution that no cooperation between the multiple authorities is required in setup phase and

key generation phase. The scheme was constructed in the composite order (N = p1p2p3)

bilinear group and achieves full (adaptive) security in the random oracle model. In addition,

it is independent of central authority. The improvement of this scheme is that an authority

in the algorithm can join or leave the system freely without the necessity to re-initialise the

system. The authors also pointed out two approaches to creating a prime order group variant

of their scheme. Although it made progress theoretically, the two drawbacks of this scheme

are obviously: one is that it’s not efficient [83]; the other one is that a user’s attributes can be

collected by tracing his GID.

38 Literature Review

Via exploiting anonymous key issuing protocol [87], Li et al. [101] proposed a multi-

authority cipher-policy ABE scheme with accountability. The contribution of this scheme

is that a user can only obtain secret keys anonymously from N − 1 authorities. In addition,

in this system, a user can be traced and monitored when they share their secret keys with

others. Unfortunately, the multiple authorities initialising the system interactively make the

computing of the scheme complicated and even impractical. To prove the security of the

scheme, the simulation of the scheme was reduced to DBDH assumption, decisional linear

(DLIN) assumption and q-DDHI assumption.

In this thesis, we borrow ideas from attribute-based encryption schemes to generate

a new scheme. The new scheme is able to quickly generate keys under an access control

structure based on a similar structure with keys. This technique can be utilised in provenance-

aware systems because data owners for different sections of a file might generate related but

different access control policies for the sections they contribute to. Our proposed scheme can

be employed in such a way to generate encryption keys under these access control structures,

in order to preserve the confidentiality of provenance.

2.5 Conclusion

In conclusion, we survey literature surrounding the topic Access Control on Provenance,

including access control policies and cryptographic schemes to execute access control.

However, we identify that certain issues on this topic have not been addressed. For

provenance access control, the policy languages tailored based on OPM can not support fine-

grained access control policies. Hence, we propose an extended provenance model (OPM+)

andmore fine-grained access control policy language for provenance. Moreover, the approach

to defining provenance partitions in access control policies was not proposed properly and in

enough detail. Hence, in the thesis, we tailored a policy language to define various types of

provenance partitions under our self-defined OPM+. Additionally, we provide algorithms to

make evaluations based on our proposed access control policies.

In terms of provenance-based access control policies, which make access decisions for

data based on its provenance, the existing policy models did not match the complexity of data

structure of provenance. Hence, we define a fine-grained provenance-based access control

2.5 Conclusion 39

model to properly extract elements from provenance. Our proposed policy model distin-

guishes different types of elements from provenance and maps to a “four-valued" decision

set. Moreover, the corresponding policy algebras are presented in this thesis as well.

Being inspired by existing policies, we propose Purpose-based Privacy Policies on prove-

nance which map provenance partitions to allowed/prohibited access purposes. However,

to the best of our knowledge, existing policy algebras have not merged purpose sets to dis-

tinguish purposes at different levels of sensitivity. Therefore, we provide policy algebras to

address this issue.

Finally, cryptographic schemes to implement access control policies on provenance are

also significant approaches in the facilitation of access control issues on provenance. Hence,

based on existing techniques, we updated cryptographic schemes to make them fit access

control policies on provenance, which are presented in Chapter 6 and Chapter 7 respectively.

40 Literature Review

3
PACLP: A Partition-Based Access Control

Policy Language for Provenance

Even though the idea of partitioning provenance graphs for access control was previously

proposed, defining partial provenanceDAG for fine-grained provenance access control has not

been thoroughly explored. Hence, we define a more fine-grained provenance access control

policy language based on our proposed the extended OPM, where provenance subgraphs

are defined properly. Moreover, we provide algorithms to implement the proposed policies.

including retrieving applicable policies for a query, merging individual policy results as a

final determination and transforming provenance graphs.

42 PACLP: A Partition-Based Access Control Policy Language for Provenance

3.1 Introduction

3.1.1 Related Work and Motivations

Data provenance logs historical operations performed on data. In some situations, prove-

nance information might be more sensitive than the data. For instance, although a program-

ming project can be published to the public, the series of operations to generate the project

should be kept private, to avoid leaking the techniques of establishing such a project. There-

fore, the access control of provenance is a popular research topic in recent years. It allows

eligible users to access the provenance data and protects it from unauthorised access.

At first glimpse, since provenance itself is data, there should be a vast amount of existing

access control techniques that are available for provenance access control. However, this is

not the case. Most traditional access control techniques cannot be applied straightforwardly,

because the specific data structure of provenance cannot be easily supported by most tradi-

tional access control techniques. Particularly, in this chapter, the proposed policy language

is based on the extended OPM which is able to store attributes of entities.

Several existing work have already explored this topic. Cadenhead et al.[42] extended

an existing provenance access control language proposed by Ni et al.[2], which introduced

regular expression to protect traditional data items as well as their relationships from unau-

thorised users. It is an XML-based structure policy language and associates grammar based

on provenance graphs. In order to evaluate the effectiveness of their policy language, a proto-

type based on their architecture utilising Semantic Web technologies has been implemented.

Subsequently, Danger et al.[44] presented approaches allowing policies to define subgraphs

to be transformed by three levels of abstractions. This work proposed algorithms to transform

provenance graphs and generate an accessible version for queries.

There are issues have not been addressed by the existing work. Although Danger et

al. proposed an idea to return provenance sub-graphs by answering access queries, their

approach relies upon explicitly enumerated sets of nodes. Namely, provenance subgraphs

that are only partially defined cannot be used in defining access in these proposals. In another

word, the current provenance access control language models are unable to define provenance

subgraphs accurately on a summarised level. On the other hand, to reduce policy redundancy

3.1 Introduction 43

and encourage the re-usage of policies, a collection of nodes should be defined by a few key

features instead of listing them completely.

Therefore, we propose a new framework for provenance access control including a prove-

nance access control language and evaluation algorithms to address the issues nominated

above. Firstly, we define several types of provenance segments over the Extend OPM and

define language elements to express them by XPath. The approach enables to define a col-

lection of nodes by nominating their features, such as the starting node and the ending node.

Secondly, we introduce provenance subgraphs as a policy condition. For example, if the

provenance graph contains a subgraph saying the object was submitted and graded, then it

can be accessed.

3.1.2 Our Contribution

A provenance access control language is proposed in this chapter that can define a

collection of nodes by a defining certain characteristics of the collection. For example, a

string of connected nodes can be defined in a policy by nominating only the starting node

and ending node. As a more extended example a provenance logs that a student generates an

assignment and the studentmodified this assignment a few times. The provenance also records

that the student submitted the assignment to a professor and actions from the professor to grade

it, attach comments, revisions, etc. Students are not allowed to know all the operations that

happened after they submitted their assignments. However, all the nodes of the provenance

subgraphs are hard to be listed, as they cannot be predicted. In this scenario, a policy in

our proposal can be defined in such a way: the subgraphs that include nodes after “submit"

cannot be accessed by students. Therefore, we define provenance segments to facilitate the

definition of a collection of nodes in provenance DAG by a summarised approach.

Moreover, to the best of our knowledge, we are the first to introduce provenance segments

as elements of provenance access control. Hence, in this section, we extend and complete

existing provenance access control language to address these issues and make the following

contributions.

• We provide the extended OPM which can support more fine-grained access control

policy.

44 PACLP: A Partition-Based Access Control Policy Language for Provenance

• We define different types of provenance partitions which are collections of nodes in

provenance graphs.

• Wepropose a Segment-basedAccessControl Policy Language for Provenance (PACLP)

by extending existing policy languages.

• Algorithms to retrieve applicable policies for a request and merge results of individual

policies as a final decision are proposed. In addition, we present algorithms to transform

an existing provenance DAG into a new graph which can be returned to users.

3.1.3 Chapter Organisation

The construction of this chapter is organised as follows:

• A discussion of provenance access control demands and the motivation to generate

PACLP are present in Section 3.2.

• In Section 3.3, various types of segments of provenance graphs over XACML syntax

and other basic of the language and algorithms are defined.

• Section 3.4 illustrates PACLP by defining language items.

• Section 3.5 presents algorithms to retrieve applicable policies and combine results of

policies followed by conclusion in Section 3.6.

3.2 Provenance Access Control

3.2.1 Workflow of the Framework

The framework to answer an access request for a provenance graph is twofold and this is

shown in Figure 3.1. Generally, it returns a new version of a provenance graph by answering

a request from the users. Algorithm 2 retrieves applicable access control policies for a given

request, as the target item for each policy confines matching subject and object of the policy.

Then, algorithm 3 outputs a collection of allowed and prohibited vertices for each applicable

policy and combines results of policies based on policy priorities. The policies also define

3.3 The Basics of the language 45

Figure 3.1: Workflow of the Framework

whether the collected vertices are needed to unite with relevant vertices in the graph, in case

vertices cannot be listed thoroughly when policies are tailored.

The targeted provenance graph will then be transformed according to the results of

policies. For “permit-take-precedence", it reveals the collection of allowed vertices as a new

provenance graph. For “deny-take-precedence", it hides prohibited vertices by deleting or

replacing clusters of vertices, where the clusters of vertices are divided in the Algorithm

1. In particular, in provenance-aware systems, vertices for each category and labels are

listed by Vertices Cluster Dictionary. The policy collected vertices will be united as clusters

according to the Vertices Cluster Dictionary, and replaced vertices will be substituted by the

corresponding labels. In addition, the clusters of vertices will be joined with relevant vertices

if it is required by provenance access control policies.

3.3 The Basics of the language

In this section, we define the basics of our provenance access control language includ-

ing several types of provenance segments over an extended OPM and how to express them

by XPath. Briefly, these collections of nodes can be defined by node classifications, node

46 PACLP: A Partition-Based Access Control Policy Language for Provenance

attributes or terminals of a string of nodes. In terms of the motivation, an access control

policy might be unable to predict all the nodes in advance; or a policy just summarily defines

provenance segments to meet certain features instead of listing all the nodes thoroughly.

Firstly, we need to define our extended version of the OPM.

Figure 3.2: OPM+ Schema

Definition 1 (Open Provenance Model+(OPM+)) is an extension of OPM, which records

how is a piece of data derived. The model is defined by a triple <T, L, G>:

• T is the vertex types: agent (Ag), artifact (A), process (P) and attribute (Att). Each

vertex in a provenance graph is one of these types. In Figure 3.2, an artifact is

represented by the shape of oval, which is an object or as a piece of data, such as

“homework1", “comments", and etc.; a process is an action which is the operation

executed on a piece of data, such as “submit" and “review"; an agent is a subject that

sponsors an action including “user1" and “professor".

• L is the relationship labels: used (u), wasGeneratedBy (wgb), wasControlledBy (wcb),

wasTriggeredBy (wtb), wasDerivedFrom(wdf) and hasAttributes (ha). Each edge in

a provenance graph will be labeled as one of these labels. The Labels describe the

relationships between the vertices.

• G is a labelled DAG, where G = <V, E>, E defines the allowable relationships between

the elements, E = { (P, A, used), (A, P, wgb), (P, Ag, wcb), (A, A, wdf), (P, P, wtb),

3.3 The Basics of the language 47

(Ag, Att, ha), (P, Att, ha), (A, Att, ha) }

Given the OPM+ <T, L, G>, an OPM+ instance is defined by a provenance graph Gi =

< Vi,Ei >, where Vi is a set of entities and Ei ∈ Vi × Vi × L. Let τ: Vi → T be a function

that maps an entity to its type, we say Gi is valid if for each entity v ∈ Vi, τ(v) ∈ T, and

for each edge (v, v′, l) ∈ Ei, (τ (v), τ (v′), l)∈ E.We extend the definition of OPM in paper [45].

Definition 2 (Attribute Node) The extended provenance model attaches context informa-

tion as attribute nodes in DAG, where each attribute node consists of attribute items and

attribute values. For instance, let Attributei for a process be {timestamp: 1/5/2017; system

condition: Linux; location: Sydney}. In this model, provenance can be classified into base

provenance data and (optional) attribute provenance data that is associated with main enti-

ties in the graph (ag, p, or a). Attribute provenance data is classified into three categories:

Agent-related Attributes, Process-related Attributes, and Artifact-related Attributes.

• Agent-related Attributes: Agents trigger and execute operations, and their attributes

include IDs, activated roles ect. Identities are usually unique labels to identify users.

Activated roles are the roles users employ by taking actions and can play a key role in

distinguishing the sensitivity of content and in making access decisions. For instance,

when Alice adds a piece of data into a document in the role of teaching assistant, she

grades assignments of students. The comments and scores can only be accessed by

Alice and the owner of assignments. While when Alice edited data with a role of

student, the content of assignments can be read by other students enrolled the same

subject.

• Process-related Attributes: Processes are operations performed on data and result in

the change of data, their related attributes include temporal aspects when operations are

performed, such as locations, timestamps, system conditions etc. They can influence

access decisions. For example, operations in provenance can be accessed if they were

executed before 2016.

• Artifact-related Attributes: Artifacts are objects including input messages, output

messages, and source data. The related attributes can include object size, permitted

usages defined by the data producers etc. Some meta-data that might normally be

recorded as attributes may not be held in this way in provenance data, as they are

48 PACLP: A Partition-Based Access Control Policy Language for Provenance

recorded within the structure of a provenance graph. For example the generating agent

and time of data.

Particularly, the dependency linking the attribute node with the main entity is “att (has

attributes of)". There are two approaches to capturing attributes nodes in the graph-based

data model [14].

• The attributes of vertices ag, p, or a recorded as individual sets that are attached to the

corresponding vertex.

• The attributes of vertices ag, p, or a recorded as one set which is attached to the p

vertex.

Nguyen et al. prefer to attach attributes of one operation as one attribute set to p vertex.

We choose the former approach, i.e., storing attribute sets separately, where each attribute

set links to the node it describes, in order to identify a node directly according to its attached

attributes. Specifically, vertices can be defined by their attributes in PACLP. For example, a

policy can define all agent vertices attached to a role of “doctor" can be accessed. It can be

noticed that the attribute “doctor" storing at a vertex of agent is more convenient to selecting

targeted vertices, comparing with storing it at a close process vertex. Following, we define

partitions of provenance DAG based on the extended OPM model.

Definition 3 (Typed Vertex) A collection of nodes can be defined by the vertex types:

Agent (ag), Process (p), Artifact (a), and Attributes (att). Each typed vertex collection is a

set of nodes in a provenance DAG. Hence, for a graph Gi = < Vi,Ei > we define a family of

functions T ypedVT (Gi), as

VT = T ypedVT (Gi), ∀vm ∈ VT , vm ∈ Vi
∧
τ(vm) = T :

(I) VAg = T ypedVAg (Gi), ∀vm ∈ VAg, vm ∈ Vi
∧
τ(vm) = Ag

(II) VA = T ypedVA (Gi), ∀vm ∈ VA, vm ∈ Vi
∧
τ(vm) = A

(III) VP = T ypedVP (Gi), ∀vm ∈ VP, vm ∈ Vi
∧
τ(vm) = P

(IV) VAtt = T ypedVAtt (Gi), ∀vm ∈ VAtt , vm ∈ Vi
∧
τ(vm) = Att

3.3 The Basics of the language 49

Each member of the family of functions returns all vertices of the specified type in a given

provenance graph. For the one labeled (I), it returns all the agent vertices in provenance DAG

Gi. Similarly, we define another function to return named vertices of a given type.

V ′T = T ypedV ′T (Gi; Verticename(a),Verticename(b), ...Verticename(n)),

∀vm ∈ V ′T , vm ∈ Vi
∧
∀τ(vm) = T

The function V ′T which defines vertices in provenance graph Gi under the type of T with

certain vertices names. For example, V ′P = T ypedVT (G1; Grade,Submit) identifies all nodes

in the graph named “Grade" or “Submit" under type P.

Figure 3.3: Sample Provenance Graph under OPM+

Definition 4 (Attributed Vertex) Vertices can be defined by their attached attribute values

as well. We define the functions as below:

VAtt = AttV (Gi; Attibutea, Attibuteb, ...Attibuten)

where ∀vm ∈ V ′Att , vm ∈ Vi
∧
∃v′m ∈ Vi

∧
τ(v′m) = Att

&(vm, v
′
m, ha) ∈ Ei, Attibutea |Attibuteb |Attibuten ∈ v

′
m

50 PACLP: A Partition-Based Access Control Policy Language for Provenance

and V ′Att = AttVT (Gi; Attibutea, Attibuteb, ...Attibuten)

where ∀vm ∈ V ′Att , vm ∈ Vi
∧
∃v′m ∈ Vi

∧
τ(vm) = T

∧
τ(v′m) = Att

&(vm, v
′
m, ha) ∈ Ei, Attibutea |Attibuteb |Attibuten ∈ v

′
m

The functions above return a collection of vertices that is attached by given attributes.

The difference between the two functions is that the latter one only returns vertices under

given types. For instance, VAtt = AttV (G1; [1/1/2016 − 30/6/2016]) defines process nodes

which are executed in the first half year of 2016 in provenance graph G1. In terms of the

motivation to define Attributed Vertex, in most scenarios, exact values of nodes are difficult

to predict. Hence, a specific vertex in a provenance graph is required to be identified by its

attaching attributes as well. In addition, this mechanism enables the definition of nodes to be

more efficient.

Definition 5 (Effect and Cause Edges). Dependency edges are classified as Cause Edges

(CE) and Effect Edges (EE). For a given vertex, we define its connected edges linking to the

vertex that triggers it as CE, and its connected edges linking to the vertex that results from it

as EE.

We distinguish directions of edges aiming to ensure operations in a provenance path

happened sequentially. Specifically, if a string of vertices which are all linked by CE, we can

conclude that the operations in a provenance path happened in sequence.

Definition 6 (Provenance Path). A path p = { (vi, vi+1, ... vi+n) | n≥2}, starts from vi

and ends at vi+n, which is a collection of vertices that forms a line in a provenance DAG.

Moreover, from vi to vi+n, if all the vertices are connected by cause edges in a path, we define

it as a directional provenance path. It indicates that all operations in a directional provenance

path happened in a timed sequence. While, a general provenance path can include effect

edges, where processes recorded in a general provenance path may not happen according to

the time order.

There are two approaches to defining vertices in a provenance path. One is to define a

vertex by the functions defined above, including T ypedVT (Gi), T ypedV ′T (Gi), AttV (Gi;

3.3 The Basics of the language 51

Attibutea, Attibuteb, ... Attibuten), and AttV ′ (Gi; Attibutea, Attibuteb, ... Attibuten). The

other one is to define the names of vertices straightly, such as “submit", “grade", “homework"

etc. It should be noticed that the names in access control policies are abstract names which

are a class of vertices. For example, “homework" is the abstract name for “homework1",

“homework1", ... “homeworkn". We propose a sample provenance graph under OPM+ in

Figure 3.3. We generated sample provenance graphs Figure 3.3 - Figure 3.7 based on example

figures in Park et al.’s paper [49].

(XPath Symbols). We employ XPath (XML Path Language) expression to define prove-

nance path. XPath is a query language defined by theWorldWideWebConsortium (W3C) for

selecting nodes from an XML document. In addition, XPath can be used to compute values

(e.g., strings, numbers, or Boolean values) from the content of an XML document[102].

Provenance paths are defined over XPath. For example, a directional provenance paths

can be defined as (vi//v j /vk) describes provenance paths that start from vertex vi and end by

vk , include v j with at least one vertex between vi and vk . In this directed provenance path,

vertices are connected by effect edges only.

Figure 3.4: Sample Provenance Path A

In path expressions, it will be useful to be able to distinguish between directional and

general paths. Keyword qualifiers are used in our language for this purpose. For example:

52 PACLP: A Partition-Based Access Control Policy Language for Provenance

Figure 3.5: Sample Provenance Path B

• directional (T ypedV ′P(Gi,upload)//T ypedV ′P(Gi, submit))

The first example will match any directed provenance path which starts from a Process

vertex with a name of upload1 and ends at a Process vertex with a name of submit1.

The details of the syntax will be explained below. Because it is a directed path, all the

nodes in the path are connected by CE. In Figure 3.4, the example expression matches

the illustrated the provenance path, which can also be represented as follows:

→ (upload1, o1v1, replace1, o1v2, submit1): <upload1, o1v1, gupload>, <o1v1,

replace1, uinput>, <replace1, o1v2, greplace >, <o1v2, submit1, uinput >.

• general (T ypedV ′A(Gi,o2v1)//T ypedV ′A(Gi,o4v1))

The second example will match any general provenance path which starts from a

Artifact vertex with a name of o2v1 and ends at a Artifact vertex with a name of o4v1.

The details of the syntax will be explained below. Different from directed path, the

edges from the two terminals of a path could include EE. In the Figure 3.5, the example

expression matches the illustrated the provenance path, which can also be represented

as follows:

→ (o2v1, review1(attri), o1v3, grade1, o4v1(attri)): <o2v1, review1, greview>, <review1,

o1v3, uinput>, <o1v3, grade1, uinput>, <grade1, o4v1, ggrade>.

• directional (T ypedV ′Ag(Gi,au1),\v+,T ypedV ′A(Gi,o1v2))

3.3 The Basics of the language 53

The last example will match any directed provenance path which starts from an Agent

vertex with a name of au1 and ends at a Artifact vertex with a name of o1v2. In the

given example graph, there are three coincident paths.

→ (au1, upload1, o1v1, replace1, o1v2): <au1, upload1, c>, <upload1, o1v1, gupload

>, <o1v1, replace1, uinput >, <replace1, o1v2, greplace >;

→ (au1, replace1, o1v2): <au1, replace1, c>, <replace1, o1v2, greplace >;

→ (au1, submit1, o1v2): <au1, submit1, c>, <submit1, o1v2, uinput >.

Particularly, even though in the given sample, we distinguish the same type of operations,

replace as “replace1" and “"replace2". In policies, the same type of operations is usually

viewed equally, regardless of their appearing orders in a graph.

Definition 7 (Subgraph). Let G=<V, E>, S=<V′, E′ >. S is a subgraph of G, if V′ ⊆ V,

E′ ⊆ E. Namely, a subgraph is a set of vertices { (v j , v j+1, ... v j+n) | n≥2} in a provenance

DAG. A partition P of a graph G is a connected subgraph of G.

Figure 3.6: Sample Subgraph A

In our policy language, subgraphs can be defined by specifying a vertex expression.

Namely, a subgraph that consists of the given vertices is the target of a policy. For instance, a

54 PACLP: A Partition-Based Access Control Policy Language for Provenance

Figure 3.7: Sample Subgraph B

policy defines a subgraph by nominating a starting node and an ending node of the subgraph

as the subgraph (vi// v j), where vi and v j are the starting and ending points respectively.

Particularly, a subgraph may start or end at terminals of a provenance graph regardless

of what exactly the vertices are. Hence, in PACLP language, a terminal of a provenance

is expressed as / which is a starting point of a provenance DAG and . which is an ending

point of a provenance DAG. To be more specific, subgraph (v j /following::*) are those graphs

beginning at the starting vertex of a provenance graph and ending at Vertex v j . subgraph

(vi/preceeding::*) are those subgraphs starting at vi and finishing at the ending vertex of a

provenance graph.

The Figure 3.6 highlights a subgraph (upload//submit1), which begins with a node

“upload 1" and ends at a node “submit 1". Between the two terminals, it concludes all nodes

including vertices of the type of Agent. subgraphs (o4v1/following::*) is another example

between vertices o4v1 and the end of the provenance DAG, shown in Figure 3.7.

Definition 8 (Vertices Category Dictionary (VCD)). This is a document listing categories

of vertices, and each category collects vertices under a semantic domain. Namely, vertices

within one category are related to each other, they record entities for related operations.

Every category is referred by a label such as “Clinical Trial", “Library", etc. When nodes in

a category are replaced for transformation, they will be replaced by the label which is also

3.3 The Basics of the language 55

defined in VCD. We present two examples below. They list vertices for two categories with

labels University and Hospital .

VCD will be utilised in Algorithm 1 to transform the view of provenance graphs accord-

ing to access control policies, where VCD determines which clusters of nodes should be

processed as a union. If the relevant policy requires replacement of particular nodes by a

label, then the collection of nodes under a category is replaced by the label of the category.

Moreover, during the transformation of provenance graphs, if required by policies, a set of

nodes defined in policies should be extended to cover other nodes within the same category

in the provenance graph. The following is an example of a VCD.

University:

“Submit|wasSubmittedBy", “Grade|wasGradedBy", “Review|wasReviewedBy",

“Professors", “Teaching Staff", “Student", “HDR Candidates", “Assignments",

“Research Fellows", “Exams"

Hospital:

“Diagnose|wasDiagnosedBy", “Monitor|wasMoniteredBy", “Surgery", “Nurses"

“Doctors", “Patients"

Table 3.1: Example Vertices Category Dictionary

Following, we define two functions that are used in the algorithms. They are conjunction

and extension. A cluster is a partition that is identified for the purposes of deletion and

replacement for transformation. All vertices in a cluster must have the same label from the

VCD. Let C be a cluster of nodes in a provenance graph Prov= (V, E), C ⊆ V. Category() is a

function returns the label for vertex/vertices, which returns null if the vertices set do not take

a shared label. The function Con extends a cluster with all connect’s vertices that are within

the same category defined in VCD, where:

• C′ = Con (C) = { C∪V′: ∀vi ∈ V ′, vi ∈ V & Category (vi) = Category (C) & ∃ei ∈ E:

(vi, v j, l)→ v j ∈ C }

We employ the function Con in Algorithm 1 for the viewing the transformation of prove-

nance graphs, because each cluster defined in VCD tends to be a collaboration of operations.

56 PACLP: A Partition-Based Access Control Policy Language for Provenance

Hence, the neighbour nodes under the same category might reveal clues to the hidden cluster

of nodes. Thus, depending on different security requirements, relevant connecting nodes

should be joined within the hidden clusters when they are defined as Conjunction transfor-

mation mode in policies.

LetC be a cluster of nodes in a provenance graph Prov= (V, E). The function Ex combines

all nodes in the provenance DAG, if they are within the same category defined in VCD, where:

• C ′ = Ex (C) = {∀Ci ∈ C ′, Category (Ci) = Category (C), Ci ⊆ V ; & ∀Cj ∈ (C ′ − Ci)

(Ci ∩ Cj) = ∅ }

Particularly, Ex may generate a cluster set which may consist of more than one set. We

employ the function Ex in Algorithm 1. For higher security requirements defined by access

control policies, all nodes in the provenance DAG of the same category should be collected

for transformation.

Definition 9 (Partitions Removal Operator RemP). Let P = (VR,ER) be a partition of

provenance graph G = (V,E), VP ⊆ V , EP ⊆ E , which needs to be removed from the graph,

in order to generate a new graph G′ = {V ′,E′} = RemP (G, P), VRattri is the attribute vertices

of VP, where:

•V ′ = V \(VP ∪ VRattri)

•E′ = E \{∀ei : ei ∈ E, ei = {vi, v j, lk}&((vi < v
′&v j ∈ v

′)or(vi ∈ v
′&v j < v

′))}

• type′ morphism function:

-∀v ∈ V ′, type′(v) = type(v)

-∀e ∈ E′ ∩ E, type′(e) = type(e)

3.3 The Basics of the language 57

-∀e ∈ E′ \ E, type′(e) =

wdf i f type(e) = wdf +

u i f type(e) = u+

wgb i f type(e) = wgb+

wtb i f type(e) = wtb+

c otherwise

The function RemP generates a new provenance graph G′ = {V ′,E′} by removing the

collection of nodes P from Prov. RemP removes all the nodes in P including all the attributes

attached to nodes in P, and it deletes the edges in P and those connecting P with effect or

causes nodes. In terms of the types of edges, they are changed from indirect relationships to

their analog direct relationships or “caused by".

Definition 10 (Partitions Replacement Operator RepP). Let P = (VP,EP) be a partition

of provenance graph G = (V, E),VP ⊆ V , EP ⊆ E , which needs to be replaced from the graph,

in order to generate a new graph G′ = {V ′,E′} = RemP (G, P)„ VRattri is the attribute vertices

of VP, where:

•V ′ = V \(VP ∪ VAttri) ∪ {va}

•E′ = E \{∀ei : ei ∈ E, ei = {vi, v j, lk}&((vi < v′&v j ∈ v′)or(vi ∈ v′&v j < v′)) ∪

{(vP, vc) ∈ e|vc ∈ ca(P), vP ∈ P} ∪ (va, v
′) ∈ e}

• type′ morphism function:

-∀v ∈ V ′ ∪ {va}, type′(v) = type(v)

-type′(va) =

 Arti f act, i f∀v ∈ R, type(v) = Arti f act

Process, otherwise

-∀e ∈ E′ ∩ E, type′(e) = type(e)

-∀e ∈ E′ \ E, type′(e) is defined according to the TG graph.

The function RepP deletes P in the original graph and replace it with va which is a label

that can be checked by a dictionary. Then, it generates a new provenance graph G′ = {V ′,E′}.

The RemP and RepP are defined by following the functions in Danger et al.’s paper [44].

58 PACLP: A Partition-Based Access Control Policy Language for Provenance

wdf u wgb wcb wtb

wdf wdf + 0 .∗ wgb+ 0 0

u u+ 0 wtb+ 0 0

wgb 0 wdf + 0 c+ wgb+

wcb 0 0 0 0 0

wtb 0 u+ wcb+ wtb+ 0

Table 3.2: Edge Merging Table

wdf Artifact was derived from another artifact

wdf + Indiract was derived from relationship

u Process used an artifact

u+ Indirect used relationship

wgb Artifact was generated by a process

wgb+ Indirect was generated by relationship

wcb Process was controlled by an agent

wcb+ Indirect was controlled by relationship

wtb Process was triggered by another process

wtb+ Indirect was triggered by relationship

c Two entities are causally related

c+ Indirect was caused by relationship

Table 3.3: Annotation of Edges

Definition 11 (Merging Labels). When a vertex is deleted for transformation, edges

beside vertex node should be merged as a new edge to generate a connected new graph. How

to generate a new label is determined by the Transformation Label defined in access control

policies. Specifically, if the value of Transformation Label is Original dependency, the two

edges should be combined based on their original values. Each possible combination of two

edges is mapped to a merged edge type, which is defined in the Edge Merging Table. On the

other hand, the other value of Transformation Label is Fault dependency, where a merged

edge type is transformed as “wasCausedBy" regardless of what the original labels are.

3.4 Partition-based Access Control Language (PACLP) 59

Because edges of vertices can reveal the types of vertices and further leak clues for

provenance graphs. Organising the transformation type of edges is defined in access control

policies according to specific security requirements.

3.4 Partition-based Access Control Language (PACLP)

Based on the demands for provenance access control discussed above, we propose

Partition-based Access Control Policy Language on provenance (PACLP) which extends

the access control language [42], which enables a policy to determine allowed or prohibited

provenance partitions for accessing. The users send requests about which provenance graphs

they would like to access, and the policies tailored under PACLP languages defines which

graphs or partitions can be accessed. Our proposed PACLP language facilitates several con-

tributions. Firstly, language item PACLP tailored under the OPM+ which stores attributes in

order to support more fine-grained policies. Secondly, PACLP utilises provenance partitions

we defined which are expressed over XPath, where each policy determines which collections

of nodes in a provenance DAG can be accessed. Therefore, it maximises access to avail-

able information instead of hiding a whole graph to protect partially unavailable attributes

in a provenance graph. Thirdly, another difference of PACLP as distinct from traditional

access control is that we employ provenance partitions as conditions in policy, as provenance

partitions provide clues for data sensitivity and vulnerability.

3.4.1 The System Assumption

The system model for PACLP is shown in Figure 3.8, where the system consists of four

parties which are Administrator, Server, Users, and Database.

Users send queries to the Server in order to access provenance stored in a database.

Administrator generates access control policies and sends them to the Server.

Server collects policies from administrators and (optional) data producers. When Server

receives queries from users, it generates results based on the policies and delivers the results

to the database.

60 PACLP: A Partition-Based Access Control Policy Language for Provenance

Figure 3.8: System Model

Database transforms the target provenance graph based on the results to hide unavailable

partitions and sends it to users.

3.4.2 Language Items

Our provenance access control policy PACLP was tailored over XACML syntax, which

consists of Target, Condition, Obligation, Effect, and Transformation items. Each item

includes one or more tags. Initially, PACLP is constructed over the OPM+ which attaches

attributes sets to main entities, in order to support more fine-grained access control policies.

Moreover, based on provenance partitions we defined above, PACLP employs partitions as

conditions to confine applicable policies and determines accessible or prohibited partitions

in order to transform a version for requestors. In this section, we define each language items

in PACLP.

Each policy consists of five items including Target, Conditions, Obligations, Transfor-

mation, and Effect. Target contains Subject, Object, Access Purpose, and Restriction tags.

Transformation containsProvenance Partition, Transformation Scope, TransformationMode,

and Transformation Label. There are certain items and tags that are optional in a policy,

which will be shown in details below.

Target consists of three tags including subject, object, access purpose and restriction,

which specifies the effective scope of a policy. Only when a request matches the target, the

3.4 Partition-based Access Control Language (PACLP) 61

Figure 3.9: PACLP Schema

policy is applicable to the request. To be more specific, only when the requestor’s name,

objective provenance graphs in a request and contextual information meet conditions defined

in Target of a policy, the policy imposes its effects on the request and generate a result.

We believe that we are the first to introduce our self-defined provenance partitions as

conditions in a provenance access control language. Most existing provenance access control

languages only utilise traditional conditions such as subjects, objects, actions and certain

attributes to determine and control accessibility. However, we believe, to control accessibility

for provenance graphs, record items in provenance should also be used as conditions in

policies. In a simple example, if a provenance contains a record “Revise | wasRevisedBy",

then subgraph after the first process of “Revise | wasRevisedBy" can be accessed by the

requestors. Semantically, records or partitions in provenance could be criteria to determine

the sensitivity of provenance graphs. A provenance DAG includes certain records which

might be more sensitive in a system. For instance, if there is a record “collecting data by

government security department" or “security department labeled a piece of data as sensitive

information", then the following processes recorded in provenance might be relevant with

sensitive operations which can not be accessed by the public. Hence, provenance partitions

should be introduced as a condition for access control. Below, we introduce the four items

respectively.

• Subject can be any collection of names or roles, such as students, university staff,

62 PACLP: A Partition-Based Access Control Policy Language for Provenance

market manager and even any user. Particularly, each category is compatible with its

sub-category. For instance, {teaching assistant} ⊆ {university staff }, as a teaching

assistant is a type of university staff. Namely, when a requestor with a role of teaching

assistant, meets the required role of university staff in target.

• Object is a collection of provenance graphs, which is listed as graph ID or names, a

category of graphs etc. For instance, {provenance graph 001-008} is a set of provenance

graphs with the ID number from 001 to 008.

• Access Purposes is a set of purposes for which the requestors visit the object. The

example purposes could be education, governmental supervision, research etc. This is

an optional item in access control policies.

• Restriction is an optional element to specify restrictions to a subject and/or object,

which is in conjunction with subject and object to confine the applicable targets of a

policy. As the objects are provenance DAG, the restriction can be provenance partitions

which the provenance DAG should contain or avoid.

In the target item, we omit the scope element from the original language established in

Ni et al.’s paper. As their access control language is based on their self-defined provenance

model, where each provenance graph under the model logs attributes for one operation.

Correspondingly, the scope element specifies if the evaluated results can be extended to its

ancestor graphs. However, our access control language is based on the extended OPM by

which operations performed on a piece of data are organised in one graph. In addition, the

default action to access a provenance graph is read. Hence, we omit the action elements in

target and assume the access actions in all the queries are read.

Particularly, in our language, restriction only confines the effective scope of policies,

which is different from the language proposed by Danger et al. [44]. They defined that

nodes can be accessed or prohibited in Target for their language. To reduce redundancy, we

re-organise the syntax and the structure of the language, by displaying provenance partitions

for access to the item of Transformation. In other words, in PACLP, Target is tailored only for

matching a policy with queries instead of nominating the accessible or deniable provenance

subgraphs. Here, we present a simple example to illustrate the differences. <restriction>

agent.medical record == ABC clinic </restriction>, it screens target graphs with a record

“medical records are generated by ABC clinic", instead of permitting or denying access to

3.4 Partition-based Access Control Language (PACLP) 63

this piece of record in provenance DAG.

Introducing provenance partitions into Target facilitates fine-grained policies. It enables

a policy to define that the given graphs of the policy should contain nominated partitions.

In term of semantic meaning, it defines provenance graphs that contain certain partitions are

within the effective range of the policy. Just as in the example, the graphs must contain two

nodes which are “wasSubmittedBy" or “Submit" and “wasGradedby" or “Grade". As they

are in a directed path, where all the vertices are connected by cause edges CE, the operation

of Grade must be performed after Submit.

<Target>

<subject> students </subject>

<object> any provenance graph </object>

<restriction> timestamp.initial_operation ≤1/1/2016; directed provenance

path (wasSubmittedBy |Submit//wasGradedby |Grade) </restriction>

</Target>

The example Target defines that the policy governs queries from users with a role of

student. For the objective provenance graphs, the first operation recorded in the provenance

DAGmust be executed before 1/1/2016. In addition, the graphs must contain a path that starts

with a vertex named “wasSubmittedBy" or “Submit" finish at a vertex named “wasGradedby"

or “Grade", regardless of how many vertices are recorded between them. Moreover, in this

example, initial operation refers to the earliest process in a provenance graph.

As each language element might consist of assertions, we introduce the access tree

structure [103] to facilitate the organisation of conditions within each element.

Access Structure. This is a new item in our language. We replace the subject with an

attribute tree in each policy. Attributes trees are set with monotone access structure. We

assume {P1,P2, ...Pn} be a set of parties. A collection A ∈ 2{P1,P2,...Pn} is monotone if ∀ B,C:

if B ∈ A and B ⊆ C then C ∈ A. An access structure (respectively, monotone access structure)

is a collection (respectively, a monotone collection) A of non-empty subsets of {P1,P2, ...Pn},

i.e., A ∈ 2{P1,P2,...Pn} \{∅}. The sets in A are called the authorised sets, and the sets not in A

are called the unauthorised sets. In our policies, the parties are taken as attributes. Then, the

64 PACLP: A Partition-Based Access Control Policy Language for Provenance

access structure A contains a set of authorised attributes.

Attribute Tree. Let T be a tree with root r. The leaf nodes are set as attributes, and each

non-leaf node represents a threshold gate which is described by a threshold value and its

children. If numx is the number of children of a node x and kx is its threshold value, then

0 < kx < numx . When kx = 1, the threshold gate is an OR gate; when kx = numx , it is an

AND gate; when 1 < kx < numx , it is an n-in-m gate, it exists to satisfy at least any kx of its

children attributes.

Satisfying the Access Tree. Assume Tx(r) is a subtree of T with a root node x. For every

subtree, if x is a non-leaf node, it returns 1 if and only if at least kx of its children nodes

returns 1; if x is a leaf node, it returns 1 if the attribute satisfies x or belongs to a subclass

of x. The example below indicates that the applicable subjects have to be professors in the

computer science or electrical engineering department who are under 55 years of age.

Condition confines the applicable access requests in terms of context conditions. This

optional item sets restrictions on context conditions of requests, e.g. limitation on access

time and location. It is a crucial item to achieve fine-grained access control. The following

example condition restricts access only to be executed under Linux system environment.

<Condition> system == Linux </Condition>

Obligations specifies that operations should be executed before and/or after evaluations,

in conjunction with the enforcement of policies. File owners may ask visitors to get their

permissions in order to access the files. Obligations may demand users execute operations

after the queries are permitted. For instance, data owners might require visitors to report

their access. In the following example, if the access is permitted, users have to report their

access within 10 days. The report includes visiting time, the purpose of visiting, feedback

etc., for statistical and data tracking.

3.4 Partition-based Access Control Language (PACLP) 65

<Obligations>

<obligation>

<operation> require each access </operation>

</obligation>

<obligation>

<operation> report each visit </operation>

<report> access time, access purpose, feedback </report>

<temporal constraint> 10 days </temporal constraint>

<fulfill on> access </fulfill on>

</obligation>

</Obligations>

Transformation indicates how the provenance graphs should be transformed in order to

hide sensitive information. It specifies how each provenance partition should be processed by

replacing or removing. The transformation elements consist of four items including prove-

nance partitions, transformation scope, transformation mode, and transformation label.

Firstly, we illustrate how these provenance partitions are defined in a provenance access

control policy and present some examples.

• Vertices. This collects one or more types of vertices in a provenance DAG. These

can be Agent, Process, Artifact, or Attributes. Data owners might allow operations to

be read, but keep the performers anonymous. The following examples collect agent

vertices and the process vertices with the values of “wasGradedBy" or “Graded".

vertices (T ypedVAg(Gi))

vertices (T yped′P(Gi,wasGradedBy |Graded))

• Provenance Path. This is a single line of vertices in a provenance DAG. Based on

the directions of edges that link vertices, we defined two types of provenance paths:

directed path, and general path. In directed paths, only cause edges connect vertices

from the original to the destination; while in general paths, there can exist effect

66 PACLP: A Partition-Based Access Control Policy Language for Provenance

edges between the two terminals. The following directed path example is from node

“wasGradedBy" or “Graded" to node “wasSubmittedBy" or “Submit".

Particularly, in a directed path, processes from the original to the destination are listed

according to time order, because all the nodes are linked by cause edges.

directed (T ypedV ′Ag(Gi,wasGradedBy |Graded)//b+

T ypedV ′Ag(Gi,wasSubmittedBy |Submit))

• Subgraph. A subgraph is a collection of vertices with a nominated origin and/or desti-

nation, which can be expressed as subgraphs (vi \v + v j). The following first example

of subgraph defines all operations performed in 2016 in provenance graph Gi. The

other example represents a partition from a vertex with given value to the end of the

whole graph, which expresses all the operations happened since 2016 in a graph.

subgraphs (AttVP(Gi,1/1/2016)//AttVP(Gi,31/12/2016))

subgraphs (AttVP(Gi,1/1/2016)/ f ollowing :: ∗))

Transformation scope defines the scope of nodes for transformation. According to specific

security requirements, the conjunctive vertices which may reveal clues should be hidden as

well. Transformation scope takes three possible values. They are original, conjunction, and

extension. Vertices Classification Dictionary was defined in Definition 8.

• Original indicates the vertices defined by access control policies do not extend to other

vertices in the given provenance graph.

• Conjunction represents that a cluster of vertices should integrate with the connecting

nodes which are in the same category referring to the VCD. To facilitate graph trans-

formation, the VCD lists categories of nodes and the corresponding labels. The labels

replace the removed vertices when the graph was transformed. Then, if the neighbour

nodes of a cluster belong to the same category, the cluster should extend to include

these neighbour vertices.

3.4 Partition-based Access Control Language (PACLP) 67

• Extension is a function to return a set of clusters in the given provenance graph. For

a given cluster of vertices, all vertices in the provenance graph are within the same

category and should be collected as a set of clusters, regardless of whether these vertices

are connected with the given cluster or not.

Transformation mode indicates how to process the vertices that can be accessed or col-

lected by provenance access control policies. The two possible modes are “replace" and

“remove".

• Replace. When transforming a new provenance graph, replace clusters of vertices with

the label referring to the VCD. The label is a summarised term for a category of the

vertex.

• Remove which removes clusters of vertices specified by access control policies and

emerges edges besides the removed nodes.

In terms of transformation label, the edges connecting the transformed nodes matter.

• Original dependency When a cluster of nodes is removed or replaced, Original depen-

dency means keeping the original dependencies by merging two of the edges beside a

removed node referring to the Edge Merging Table.

• Fault dependency indicates to delete original labels and replace themas “wasCausedBy",

in order to prevent the labels to reveal clues of removed vertices.

The example Transformation item defines two provenance partitions to be transformed.

The first one is a subgraph beginning with an Artifact vertex O3V1 and ending at Artifact

vertices O8V1. As the transformation scope is “original", the subgraph does not include any

other vertices. It should be replaced with a label due to the fact that the transformation mode

is “replace". Moreover, all connecting edges for the cluster of nodes should be changed with

“wasCausedBy". The second hidden partition is a Process vertices Submit|was SubmittedBy.

If the neighbour nodes are within the same category defined by VCD, they will be included

by a partition, which will be deleted according to the transformation mode. In terms of edges,

keep the original edges or merge them by referring to the Edge Merging Table.

68 PACLP: A Partition-Based Access Control Policy Language for Provenance

<Transformation>

<partition>

subgraphs (T ypedV ′A(Gi,o3v1)//T ypedV ′A(Gi,o8v1) >)

</partition>

<scope> original </scope>

<mode> replace </mode>

<label> false dependency </label>

<partition>

vertices (T ypedV ′P(Gi,Submit |wasSubmittedBy))

</partition>

<scope> conjunction </scope>

<mode> remove </mode>

<label> original dependency </label>

</Transformation>

Effect defines results of a policy. The values of effects are Absolute Permit, Deny and

Necessary Permit, and Finalising Permit, which are listed according to the priority from

highest to lowest. Lower priority policies comply with higher priority policies. There is a

need to set different effects because policies naturally take varying degrees of importance

depending on the power of the generator. Moreover, it addresses the issue of conflicting

policies.

Partitions in policies with various effects correspond to different operations. Namely,

partitions in a permit policy are permitted access, while partitions in a deny policy should be

hidden to visitors.

• Absolute Permit is given the highest priority, namely, it gives the permit result to an

applicable policy regardless of the results of other policies. In Absolute Permit policies,

partitions will be permitted access despite the effect of other policies.

• Deny takes the second priority after Absolute Permit. When transforming a provenance

graph, the algorithm holds partitions permitted by Absolute Permit policies. A policy

with Deny Effect evaluates the rest of the part of graphs. The policies that define

partitions cannot be accessed regardless of effects of lower priority policies.

3.4 Partition-based Access Control Language (PACLP) 69

• Necessary Permit takes the third priority. It works on the part of a graph not affected

by Absolute Permit and Deny policies, and nominates accessible partitions.

• Finalising Permit is the effect with the weakest priority and which will be evaluated last.

The motivation of classifying policies into necessary permit and finalising permit is to

meet flexibility and convenience for different granularity of levels of administration[2].

3.4.3 The Grammar

In this section, we define a grammar for each tag in our proposed PACLP.

<exp>::= <char>+ (“."<char>+)?

<char>::= [a-z] | [A-Z] | “−" | “−"

<reg>::= “?" | “+" | “∗”| <num> | “["<ver>+ | <char>+“]"|“["∧ <ver>+ <char>+“]"

| \v | “|"

<bool>::= “AND" | “OR" | “|"

<op>::= “==" | “6" | “>" | “<" | “>"

<num>::= ([0-9])+

<sp>::= “[" <exp> “]"

<ver>::= <char>+ | <func>+

<ver-ep>::= <ver> | “\v <reg>+

<path kw>::= “directed" | “general" | “subgraph"

<provenance partition>::= <path kw> <ver-ep> (, <vertex-ep>)+

<transformation mode>::= <char>+

<transformation scope>::= <char>+

<dependency label>::= <char>+

70 PACLP: A Partition-Based Access Control Policy Language for Provenance

Following, we define the set of strings accepted by each element in our language.

name=(<char> | <num>)+

subject= “<subject>"<name>+ “</subject>"

object= “<object>"(“any provenance name"| <name>)+ “</object>"

restriction= “<restriction>"(<exp> <num>)+ (<op> | <sp> <reg>?) (<exp> <num>?)+

(<bool> (<exp> <num>?)+ (<op> | <sp> <reg>?)? (<exp> <num>?)+)∗“</restriction>"

condition= “<condition>"(<exp> <num>)+ (<op> | <sp> <reg>?) (<exp> <num>?)+

(<bool>(<exp> <num>?)+ (<op> | <sp> <reg>?)? (<exp> <num>?)+)∗“</condition>"

effect= “<effect>"<char>+ <num>“</effect>"

target= “<Target>"<subject> <object> <access purpose>? <restriction>? “</Target>"

transformation= “<Transformation>"<provenance partition> <transformation mode>

<transformation scope> <dependency label>“</Transformation>"

policy= “<Policy ID>" <target> <condition>? <obligation>? <transformaiton>

<effect>“</Policy ID>"

The grammar defined above allows us to evaluate the PACLP for correctness. In addition,

it enables a parser to unambiguously translate the policy into a form that can be employed by

the appropriate server in our proposed architecture.

3.4.4 Case Study

We give two sample policies generated over the proposed PACLP. In a policy, condition

and obligation are optional items. Therefore, the values of these items can be “none".

In the sample Policy ID=1, it restricts requests from student users who are from the

Computer Science or Electrical Engineering departments, and objective graphs must contain

the provenance paths that record “Alice did submit". Only if a request meets the target section

of the policy, the policy will be selected as an applicable policy for the request. As the effect

3.4 Partition-based Access Control Language (PACLP) 71

Figure 3.10: Case Study

of the policy is Deny, which indicates the nominated partition cannot be accessed unless

it was permitted by a policy with Absolute Permit effect, because the priority of Absolute

Permit is higher than Deny. Hence, the policy denies access to the nominated subgraphs.

The first subgraph starts from a Process vertices Review and ends at Process vertices Grade.

As the attribute values restrict, the “Review" process cannot be taken at Sunday, and matched

“Grade" vertex must attach with an attribute value “30/4/2018". The partition should be re-

placed without a conjunction with any other vertex, as the transformation model is “Original".

Similarly, The second partition nominated is that “the owner of the data did modify at and

re-submit at 30/5/2018". However, the partition should integrate with the all the connecting

node which are in the same category referring to the VCD. Both of the removed partitions

should be replaced with labels referring to the VCD. The label is a summarised term for

a category of the vertex. In addition, the partition connected edges should be replaced by

“wasCausedBy" due to the “false dependencies" of transformation label.

<Policy ID=1>

<Target>

<subject> role:student & department: computer science | electrical engineering </subject>

<object> any provenance graph </object>

72 PACLP: A Partition-Based Access Control Policy Language for Provenance

Figure 3.11: Case Study

<restriction> directed (T ypedV ′Ag(Gi, Alice)// TP(Gi,wasSubmittedBy |Submit))

</restriction>

</Target>

<Condition> system==Linux </Condition>

<Effect> Deny </Effect>

<Obligation> report each access </Obligation>

<Transformation>

<partition>

subgraph (T ypedV ′P(Gi,Review)[not@day=‘Sunday’]//T ypedV ′P(Gi,Grade)[@date=‘30/4/2018’])

</partition>

</scope> original </scope>

</mode> replace </mode>

</label> false dependency </label>

<partition>

subgraph (T ypedV ′Ag(Gi,Owner)T ypedV ′P(Gi,Modi f y)//T ypedV ′P(Gi,Re−submit)[@date=‘30/5/2018’])

</partition>

3.5 the Algorithms 73

</scope> conjunction </scope>

</mode> replace </mode>

</label> false dependency </label>

</Transformation>

</Policy ID=1>

3.5 the Algorithms

WeproposeAlgorithm1 for the view transformation of provenance graphs according to the

results of PACLP. The input of Algorithm 1 is results of access control policies and a targeted

provenance graph, and its output is a transformed graph which can be returned to requestors.

Based on the default setting of each system, the view transformation can be processed by two

approaches, which are Permit Takes Precedence and Deny Takes Precedence. The former

returns allowed partitions generated by access control policies and the latter deletes or replace

denied partitions.

Briefly, this algorithm arranges collection of vertices nominated by policies as a cluster.

Particularly, the function Sort introduced in Algorithm 1 divides vertices into clusters, where

the clusters will be deleted or replaced as a union. The vertices in the same category defined

by VCD and attached with the same transformation tags can be divided into a cluster for

further processes. The terminology Ci .Tscope is the value of transformation scope defined

by policies, which is attached to vertices by Algorithm 2. Ci .Tscope nominates whether

other vertex belongs to the same class in a given provenance graph should be added into a

cluster. The goal to introduce such a mechanism is to extend the effective scope of a policy,

in case vertex which might leak sensitive information cannot be thoroughly listed in a policy.

Similarly, Ci .Tmode andCi .Tlabel also tags for each cluster, which is defined by the policies.

Algorithm 1 Graph Transformation
INPUT:

g: OPM graph % the DAG to be trans-

formed

AC: % a set of vertices which can be ac-

cessed, defined by policies

DC: % a set of vertices which can not be

accessed, defined by policies

restr: conditions of elements of the parti-

tion

Ttags: Tmode + Tscope + Tlabel %they

are attached with AC&DC, as the output of

Algorithm 3

74 PACLP: A Partition-Based Access Control Policy Language for Provenance

OUTPUT:

g′: a transformed graph of g which can be

accessed by the requestors.

FUNCTIONS:

Sort: dividing a set of vertices as clusters of

vertices according to VCD&Ttags, where

each cluster are vertices in the same cate-

gory of VCDwith the same Ttags, to return

a set of clusters

CountCV: count the number of vertices

connected with CauseEdges for a cluster

of vertices

EffectCV: count the number of vertices

connected with EffectEdges for a cluster

of vertices

RUN ALGORITHM:

CV = � % CauseVertices

EV = � % EffectVertices

C = �

if Permit takes precedence then

C = Sort(AC)

for Ci ∈ C , where i= 1, 2,...n do

if Ci .Tscope = conjunction then

Ci = Con(Ci)

end if

if Ci .Tscope = extension then

Ci = Ex(Ci)

end if

C ′ = V\C

g′ = Remp(g, C ′)

end for

else if Deny takes precedence then

C = Sort(DC)

for Ci ∈ C, where i= 1, 2,...n do

if Ci .Tscope = conjunction then

Ci = Con(Ci)

end if

if Ci .Tscope = extension then

Ci = Ex(Ci)

end if

end for

for Ci ∈ C, where i= 1, 2,...n do

if (Ci .Tmode==‘Remove’)&(CV61)

&(EV61) then

g′ = Remp(g,Ci)

if Ci .Tlabel=Original dependency

then

merged edges refers to the Edge

Merging Table

else if Ci .Tlabel=Fault dependency

then

merged edges is “wasCausedBy"

end if

else

g′ = Repp(g,Ci)

if Ci .Tlabel=Fault dependency

then

merged edges is “wasCausedBy"

end if

end if

end for

end if

result g′

3.5 the Algorithms 75

Following, to evaluate provenance access policies we propose two algorithms which are

generated over our proposed language. The goal of Algorithm 2 is to retrieve all the applica-

ble policies in a system for one request. It verifies whether subject and object, access purpose

and restriction in a query meet Target in policies. Algorithm 3 combines applicable policies

for a request and generates allowed and forbidden collections of vertices. The algorithm

combines policies based on the priorities of policies.

Algorithm 2 Retrieval Applicable Policies
INPUT:

q: a query;

g: OPM graph; %the targeted DAG in a

query

POL: all the policies;

OUTPUT:

POLap: all the applicable policies for a

query;

FUNCTIONS:

FunctionRESTRI: verify if the subject and

object meet all the restrictions in a policy,

return {0, 1}.

RUN ALGORITHM:

POL∗ = �;

for all poli ∈ POL do

if g ⊆ object.target.poli& subject ⊆

subject.target.poli& Access Purpose ⊆

access purpose.target.poli; then

if FunctionRESTRI (a, poli) = 1; then

POLap = POLap
⋃

poli

end if

end if

end for

result=POLap

When the server receives a query, it runs Algorithm 2 to identify applicable policies

for the query. In this language, Target which includes subject, object, access purpose and

restriction confines applicable subject and object. The condition element defines context

restrictions. However, Algorithm 2 screens applicable policies based on Target. Condition

was verified in Algorithm 3, because the four effect values affect with different binary results

of Condition. Specifically, the effect value of Necessary Permit denies provenance partitions

when the Condition of this policy is evaluated as a false, while the other three effect values

affect when Condition is evaluated as true.

76 PACLP: A Partition-Based Access Control Policy Language for Provenance

Algorithm 3Merging results of individual

policies
INPUT:

g: OPM graph;

POLap: all the applicable policies;

OUTPUT:

AC % Allowed Collection of vertices

DC % Denied Collection of vertices

FUNCTIONS:

FunctionABSOLUTE: select all the abso-

lute permit policies

FunctionDENY: select all the deny polices

FunctionNECCE: select all the necessary

permit policies

FunctionFINALISING: select all the final-

ising permit policies

RUN ALGORITHM:

g′=�; AC = �; DC = �

RemainderDAG = �; Obligation = �

for all poli ∈ AbsolutePermitPolicies do

if condition.poli = 1 then

AC = AC
⋃

T partition.poli &

Ttags.poli % Ttags = Tmode +

Tscope + Tlabel

Obligation=Obligation
⋃

obligation.poli

end if

end for

RemainderDAG = g / ViewPartition

for all poli ∈ DenyPolicies do

if condition.poli = 1 then

if vertexm ∈Tpartition.pol .i &

vertexm∩RemainderDAG, �; then

DC = DC
⋃

vertexm & Ttags.poli

Obligation = Obligation⋃
obligation.poli

end if

end if

end for

RemainderDAG = g / DC

for all poli ∈ NeccessaryPermitPolicies

do

if condition.poli = 0 then

if vertexm ∈Tpartition.pol .i &

vertexm∩RemainderDAG, �; then

DC = DC
⋃

vertexm & Ttags.poli

Obligation=Obligation
⋃

obligation.poli

end if

end if

end for

RemainderDAG = g / DC

for all poli ∈ FinalisingPermitPolicies

do

if condition.poli = 1 then

if vertexm ∈Tpartition.pol .i &

vertexm∩RemainderDAG, �; then

DC = DC
⋃

vertexm & Ttags.poli

end if

Obligation=Obligation
⋃

obligation.poli

end if

end for

result={AC, DC, Obligation}

3.6 Evaluation 77

Algorithm 3 combines results of applicable policies and returns a collection of allowed

and forbidden vertices, because the effect of policies can have different priorities, such as

Absolute Permit > Deny > Necessary Permit > Finalising Permit. Where the algorithm runs

from the policies with the Absolute Permit effect, the partitions allowed to access will be defi-

nitely accessed regardless of results of other policies. Policies with denying effects only have

an effect on the remainder of the DAG. The partitions hidden by the “denying" policies cannot

be accessed by ignoring the rest of the applicable policies. Then, “necessary permit" policies

and “finalising permit" policies supplement accessible partitions. The output of Algorithm 3

is a set of permitted vertices and a set of denied vertices that are attached with transformation

tags. The transformation tags indicate the transformation scopes of the vertices, how to hide

prohibited vertices, and how to deal with the connected edges. Particularly, Algorithm 1

utilises the results of Algorithm 3 to transform the view of provenance graphs, in order to

answer the request.

3.6 Evaluation

In order to evaluate the performance of our proposed PACLP, we design and implement

an experiment to implement policy generation and individual policy results combination. We

deploy the implemented prototype onto a virtual machine with 16GB memory and 3.40 GHz

CPU. The 20 sample provenance graphs and 200 policy conditions and tags were generated.

Firstly, we generate 40 random PACLP policies under our proposed policy models and

10 provenance-based access control policies under the language (we name it LPAC for short)

proposed in paper [42], in order to compare the time span for generating these policies.

Among the 40 random PACLP policies, we generate 10 policies over the four policy effects

including Absolute Permit, Deny, Necessary Permit and Finalising Permit. We run the

experiments ten times and record the average time of the results, shown in the figure below.

However, we could find from results that generating PACLP takes more time than LPAC

proposes in paper [42], because PACLP has more policies items than LPAC.

Following, we select 300 random subgraphs/partitions/provenance paths from the sample

provenance graphs. We measure the numbers of subgraphs/partitions/provenance paths can

be expressed by PALCP and LPAC, under the model of OPM+. We draw figures of the

78 PACLP: A Partition-Based Access Control Policy Language for Provenance

Figure 3.12: Experiment

Figure 3.13: policy results combination

average values when we ran the experiments 10 times. Obviously, PACLP can express more

random sample provenance partitions comparing with the other policy language model under

the provenance model which stores entity attributes. The reason is that we introduce more

language elements to express different types of provenance partitions. We especially focus

on the ability of PACLP to nominate vertices based on the attached attribute values.

At last, we implement the processes to merge the results of individual policies. The

selected three scenarios are (1) all 20 sample policies are those with the effect of Absolute

Permit, (2) all 20 sample policies with the effect of Deny, (3) 20 sample policies with all the

effect randomly. As above experiments, we ran the system 10 times. And draw the average

time spans to the figure below. Apparently, merging policies with all effect of Absolute Permit

3.7 Conclusion 79

takes the shortest time. Because to run the algorithms for merging those policies calls the

least functions. On the contrary, it has to call most functions to merge policies with all the

types of effects. Hence, the experiment takes the longest time among the three experiments.

Apparently, the experiments demonstrate the process that PALCP can be applied in a project.

In another word, we can generate access control policies under this model and transfer a

provenance graph based on policies.

3.7 Conclusion

In this chapter, we propose a fine-grained provenance access control language PACLP

under OPM+ storing attribute sets to extend the existing languages. In PACLP various types

of partitions are defined over XPath. Our provenance access control language aims to define

which partial graph can be accessed or cannot be accessed under conditions and restrictions.

This fine-grained access control policy model not only hides all the sensitive vertices and

edges in a provenance graph but also maximises eligible information to be accessed.

We also present three algorithms in this framework. The algorithms enable retrieval of

all applicable access control policies for a given request and merge individual policy results

as a final decision on the request. Moreover, this chapter also present algorithms to transform

provenance graphs, in order to generate a new provenance graph with eligible information

for access requestors. At last, we did experiments to evaluate the performance of PACLP.

80 PACLP: A Partition-Based Access Control Policy Language for Provenance

4
A fine-grained Policy Model for

Provenance-based Access Control

A fine-grained provenance-based access control policy model is proposed in this chapter.

This method employs provenance as conditions to determine whether a piece of data can

be accessed because historical operations performed on data could reveal clues about its

sensitivity and vulnerability. Particularly, our proposed work provides a four-valued decision

set which allows showing status to match a restriction particularly. This framework consists

of target policy, access control policy, and policy algebras.

Different from the policy we proposed in Chapter 3, provenance subgraphs/partitions are

mainly used as policy conditions in this framework. While provenance partitions mainly

appear as policy results in PACLP. The goals of the two frameworks are also different, which

will be explained in the following section.

82 A fine-grained Policy Model for Provenance-based Access Control

4.1 Introduction

4.1.1 Related Work and Motivations

In recent years, provenance access control research includes two main classes. These are

provenance access controlwhich determines access right to provenance itself and provenance-

based access control which evaluates access rights to data based on their provenance. We

proposed a provenance access control policy language in Chapter 3 and present a provenance-

based access control policy model in this chapter.

Figure 4.1: Provenance Access Control Policies v.s. Provenance-based Access Control

Policies

Provenance-based access control involves using provenance of data to evaluate the ac-

cessibility of that data, where provenance records origins of data and operations performed

on them. Historical operations executed on documents could be crucial conditions for de-

termining who can access them and which operations are permissible for execution. The

mechanism also benefits fine-grained access control as provenance contains a large number

of attributes. To be more specific, let sample provenance-based access control policies be:

(1) an assignment can be submitted if it has never been submitted before; (2) a file can only be

reviewed by its authors after the file has been submitted and graded. It is easy to find from the

examples that whether a piece of data can be accessed is determined by operations recorded in

its provenance. Provenance proposes significant restrictions for fine-grained access control.

4.1 Introduction 83

Several provenance-based access control policy models [14][49] and history-based access

control [57] have been proposed. Park et al.[49] proposed a family of provenance-based access

control models which utilised a notion of dependency as the key foundation for access control

policy specification. They proposed a basic provenance-based access control model PBACB,

which facilitates additional capabilities beyond those available in traditional access control

models by introducing provenance as access control conditions. Based on the basic model

PBACB, a family of PBAC models was defined by extending three criteria, which are (1)

the kind of provenance data in the system, (2) whether policies are based on acting user

dependencies and object dependencies, and (3) whether the policies are readily available or

need to be retrieved. The three models PBACU , PBACA and PBACPR extend one of these

three criteria respectively. However, combined results for individual policies are only basic

conjunctive or disjunctive connectives between rules.

There are still issues have not been addressed by previous provenance-based access control

policies. Firstly, the existing work did not achieve a proper fine-grained policy model. Partial

matching of a provenance graph has not been explored well enough. Partial matching a

provenance graph is a scenario that not all elements of a provenance subgraph can be found

in the given provenance graph. For example, let a policy condition be: a doctor diagnosed

a patient at 22/4/2018. The partial matching scenario could be that a doctor diagnosed a

patient, but the timestamp is not 22/4/2018 or missing. Proposing a mechanism to introduce

partial matching a provenance graph is meaningful, and values to show the partial matching

status should be presented in a fine-grained policy model. From this point, policies algebras

to merge those partial matching values are also missing from the existing work.

Therefore, in this chapter, we propose a framework to bridge the gap. First of all, this

framework is based on OPM+ which we proposed in Chapter 3. The access control policies

are tailored to aware the situations of partial matching provenance graphs. In addition,

corresponding policy algebras to merge atomic policy values also are proposed.

In order to state the benefits of our proposed approach. Let a sample policy be: an

assignment was submitted beforeMarch 2017, andmarked before April 2018. If a provenance

graph contains the same partition, we say it as 100% match. On the contrary, if a provenance

graph does not contain any elements of the partition, we say it as 0% match. However, if

the assignment was submitted and graded, but the processes did not complete before March

2018 and April 2018 respectively. We say it partial match, where the status is between 0%

84 A fine-grained Policy Model for Provenance-based Access Control

match and 100% match.

Comparing with most existing work [14][57][49], we did not select normal two-valued

decision set (yes or no), but introducing a technique to show the status of the partial match.

We believe the idea is more close to the nature of provenance-based access control. Because

provenance is a type of metadata consists of various elements, including entities, attributes,

and dependencies. We distinguish these elements and define “a partial matching" when given

provenance only matches a part of elements.

4.1.2 Our Contribution

In this chapter, we propose a sound fine-grained provenance-based access control frame-

work that consists of policy models, policy evaluation, and policy algebras. Target section

confines the effective range of a policy. Namely, target section specifies which policy can

match a given request. While the access control section evaluates applicable queries and

outputs a result.

Different from the approach we proposed in Chapter 3 where provenance subgraphs are

returned as results of policies, provenance subgraphs are mainly employed as conditions of

policies in this framework. Particularly, the target section consists of some atomic targets.

We introduce provenance partitions as atomic targets. The results of an atomic target are

evaluated based on whether the provenance DAG contains the partition. In addition, a four-

valued decision set is defined for each atomic policy. Namely, the decision does not simply

restrict to Yes or No, but allows for a medium status between them. Moreover, we organise

atomic policies under a tree structure and defines a sound collection of new operators to

merge results of four-valued result sets.

We propose three types of atomic targets. Path atomic target only takes attributes from

provenance. The determination is based on whether certain operations that are recorded in

provenance have been performed on the data. Associated atomic target takes attributes from

both provenance and requests (subject, object, etc.), which implies that the determination is

based on whether the requestors have performed operations on the data. The latter atomic

targets perform differently from traditional access control. For instance, an associated atomic

target could express such a scenario: if the requestor was editing a file before and have not

submitted it, the access is permitted. Notably, for this scenario, the “requestor" is the subject

4.1 Introduction 85

of a query, and the editing and submitting are processes from a provenance. At last, the

attributes from requests can also be defined as conditions, which is named as request atomic

target.

Moreover, in this framework, these atomic targets (conditions) are organised under a

tree structure. This model takes a policy tree structure which combines atomic policies. We

borrow amechanism of policy tree structure fromCrampton et al.’s paper [19]. By borrowing

the structure, we replace the attribute triple as a provenance partition. This can express a

series of historical operations performed on data. The defined provenance partitions can

express both logic time and real-time operation strings. We define a “four-valued" decision

set for each atomic target (conditions). In addition, we rearrange logic operators and create

several new operators to combine atomic policies.

Figure 4.2: The framework of Proposed Provenance-based Access Control

4.1.3 Chapter Organisation

The chapter was organised as follows:

• Section 4.2 illustrates system assumptions of provenance-based access control policies;

• Section 4.3 defines atomic targets and demonstrates how to evaluate atomic targets are

presented;

• Section 4.4 focuses on the access control section; and the case study was provided in

section 4.5;

86 A fine-grained Policy Model for Provenance-based Access Control

• In Section 4.6, we provide approaches to preserve the integrity of provenance;

• Section 4.7 is the evaluation of this framework and 4.8 concludes this chapter.

4.2 the System Assumption

To establish the framework of provenance-based access controlmodel and policy algebras,

we propose a system assumption shown in Figure 4.1, where the system consists of four parties

including Administrator, Server,Data Producers Data Visitors andData Storage. Following,

we illustrate each party.

• Data Visitors send queries to theDatabase in order to access files stored in the database.

• Administrator generates provenance-based access control policies and sends them to

the Server.

• Data Producers generate files and attached provenance which are sent toData Storage.

They might also produce self-defined access control policies and send them to the

Server.

• Server collects policies from administrators and (optional) data producers. The server

evaluates results based on the policies and delivers the results to databases.

• Data Storage stores files and provenance, which receives queries from users and re-

sponds to queries according to the results generated by the Server.

In a provenance-aware system, access control policies can be generated by system ad-

ministrators as well as data owners. When a data visitor sends a request to a server in order

to access a piece of data, the server needs to retrieve the provenance of targeted data, as the

policies are tailored to make access decisions based on data provenance. After receiving

results made by the server, the database implements the results by granting or denying users’

requests.

It can be noticed that most access control mechanisms take evaluations based attributes

from queries or current system conditions. While for provenance-based access control

policies, conditions and restrictions can be extended to provenance which logs historical

operations of data.

4.3 Target Policies 87

4.3 Target Policies

The framework of provenance-based access control consists of access control policies

and policy algebras, where each policy consists of target section and access control section.

Each provenance-based access control policy consists of a target section and an access control

section. The target section confines applicable requests of each policy. Only if the objective

provenance graphs in a request meet the conditions of Target, can the policy affect the request.

Further, the access control section evaluates accessibility for the request. We give definitions

of syntax for targets.

Figure 4.3: System Assumption

In this framework of provenance-based access control model, we define three types of

atomic target. They are path atomic target, request atomic target, associated atomic target,

which are illustrated concretely in this section.

The definition of the target is different from the “target" item we proposed in Chapter 3.

However, the function or idea is similar. Both the “target" in the policy model is a part of the

policy, which confines the effective scope of a policy.

4.3.1 Atomic Target

Definition 4 (Path Atomic Target). We define four types of atomic targets from prove-

nance graphs:

88 A fine-grained Policy Model for Provenance-based Access Control

-nullT is a target;

-(vtype, vname) is a target, where vtype is a vertices type and vname is a vertices name;

-(vtype, vname,a, f) is a target, where v is a vertices, a is an attribute value and f is a binary

predicate.

-a target is a string of (vtype, vname) or (vtype, vname,a, f) expressed over XPath.

-(vtype, vname, x, f) is an alternative type of atomic target, where (vtype, vname) is a vertices, x

is an attribute in a query, and f is a binary predicate.

First of all, the atomic target models we propose above are named as path atomic target, as

they extract elements from provenance. A signal vertex can be viewed as an extreme form of

a provenance path. An atomic target could be one or a string of quaternions, which illustrates

a dependency path. vtype is the type of a vertex, which is one element in the set of V∗ = {Ag

∪ A ∪ P}.

vname is an element in a finite set of abstracted names for vertices, where an abstracted

name expresses a class of vertices names. For instance, User is the abstracted name for

all the users including user1, user2 etc. In terms of the motivation to utilise abstract value

names in policies, provenance is captured after provenance-based access control policies are

defined, and provenance keeps developing along with growing files. Hence, the exact names

of vertices could be countless and unpredictable. Therefore, it is very difficult for policy

generators to predict specific names for all the vertices, and we utilise abstracted names of

vertices in provenance-aware policies. In provenance-aware systems, provenance graphs can

be interpreted as Typed Provenance Model (TPM) [3] for policy checking purposes. This

bridges the gap between policies and provenance graphs. In TPM, the names of vertices are

interpreted as the abstract names or names for a class of vertices.

a is an attribute for vertices. The extended provenance model OPM+ stores context

information as attribute nodes in a provenance DAG. Under this model, provenance can be

classified as base provenance data and (optional) attribute provenance data that is associated

with main entities in the graph (ag, p, or a). Attribute provenance data was classified into

three categories: Agent-related Attributes, Process-related Attributes, and Artifact-related

Attributes.

4.3 Target Policies 89

In the quaternion Qua = (vtype, vname,a, f), f is a binary predictor. There are five possible

values of a binary predictor, they are =, 6, <, >, >. Moreover, as equality (=) is adopted most

frequently, we assume equality is the default value and can be omitted from the atomic targets.

We propose an example of a quaternion for a vertices, let a quaternion be (Agent, User,

Female, =). In the example, Agent is the vertices type; User is the abstracted vertice’s name

in a graph; Female is an attribute for the vertices; and = is the binary predicate. Namely, a

user vertices of type Agent with female attribute matches this atomic target. For another ex-

ample, (Process, Submit/wasSubmittedBy, 1/1/2016, <) is a quaternion, and a process named

“Submit" or “wasSubmittedBy" executed before 1/1/2016 matches it.

A dependency path could be a single vertex in a provenance graph. A dependency path

can also be a string of connected vertices, which expresses a set of operations executed on a

piece of data. Whether a provenance consists of given dependency paths can be defined as

a condition in an access control policy, as provenance-based access control determines if a

piece of data is accessible based on if there have been certain operations performed on the

data. We propose a few simple samples to illustrate what provenance-based access control

policies can do as following:

(1) An exam paper can only be downloaded if it has been reviewed at least three times

but has not been graded;

(2) A paper can only be accessed if it has not been submitted;

(3) A file can only be accessed if it was generated originally before 2016 and was reviewed

after 2017;

(4) If a piece of data was revised by Alice in 2016, and never been edited by Bob, then it

can be accessed by students;

The examples above are sample provenance-based access control policies, which make

access decisions based on certain operations recorded in provenance. One or a series of

90 A fine-grained Policy Model for Provenance-based Access Control

operations can be defined as a provenance path in policies.

Particularly, in certain scenarios, a dependency path defined in advance may only list a

few vertices in a string instead of all the vertices, such as nominating the starting point and

ending point of a provenance path. Thus, it can address the difficulty that all vertices in a

provenance path are hardly predicted in advance. For example, let a dependency path be

(vi,\v+, v j,\v{2}, vk). It presents a path starting at vertices vi, followed by several other

vertices regardless of the number of them and of vertices v j . The path ends at vk , where there

are two vertices between v j and vk .

Directed DPATH are those connected by all types with the CT, where the processes in a

path are presented according to a timed sequence. Hence, via identifying the directions of

labels connecting vertices, it ensures that operations were executed according to time order

in a directed DPATH .

Based on the above definitions of items, these elements of our proposed provenance-

based access control can express DPATH in both logic time and real time. The concept of

both is defined in Ravari’s paper [104]. The difference of timestamp for them is that a logic

counter-based clock ticks every time an event occurs and the other one records absolute real-

time. Namely, logic time compares the order of execution for operations but not the actually

executed time. Below, we illustrate how to express DPATH based on logic time and real time.

Scenario 1 (logic time-based paths) A DPATH records that an assignment was submitted

then was graded. It allows operations between them such as replacement and modification,

regardless of the numbers of operations. Following, it was reviewed by a coordinator. The

DPATH is expressed as:

<directional DPATH >::=

<(Process, wasSubmittedBy|Submit) (\v+)

(Process, wasSubmittedBy|Grade)

(Process, Append)>

4.3 Target Policies 91

In this example shown in Figure 4.3, the provenance path is expressed by some vertices

over XPath, where each vertices is defined by the form of (vtype, vname) or (vtype, vname,a, f).
∧ and $ (which are starting and ending symbols of XPath) are omitted, as no ambiguity arose.

It is a directed path at which vertices are all connected by CT. Hence, via distinguishing di-

rections of dependency types, the system can make sure the operations in the string happened

according to the time order. The DPATH starts with an artifact was submitted, followed by

\v+ which indicates by several vertices regardless of the number. After that, the assignment

was graded and appended.

Figure 4.4: Sample Dependency Path A

Scenario 2 (Real Time-based Paths) A DPATH records that an assignment was submitted

before 1/12/2016 and was graded at 3/12/2016. It allows operations between them such as

replacement and modification, regardless of the numbers of operations. It was subsequently

reviewed by a coordinator at 5/12/2016. The DPATH is expressed as following.

92 A fine-grained Policy Model for Provenance-based Access Control

Figure 4.5: Sample Dependency Path B

< DPATH >::=

<(Process, Submit, 1/12/2016, 6) (\v+)

(Process, wasGradedBy|Grade, 3/12/2016, =)

(Process, Append, 5/12/2016, =)>

Different from the previous example for a logic time DPATH , the real-time DPATH defines

the time order of operations via their attributes (timestamps). \v+ indicates that there may

exist vertices between the operations submission and grading, where \v is a space and + is

a symbol for once or more repeating the first symbol. Particularly, in this example shown in

Figure 4.4, as it does not restrict the dependency types in the paths, there might include ET.

Hence, it only ensures nominated vertices happened in the range of a defined timeframe, but

not denote that all the operations in the path have to be performed according to time order.

We propose the last atomic target which consists of attributes from both provenance

4.3 Target Policies 93

graphs and access requests. Access requests are from users, and the provenance is stored in

the cloud with its connecting data. Following, we should a sample to illustrate that what the

atomic target can express:

(1) If a requestor is a user who submitted the assignment, it can be accessed by the

requestor;

Apparently, the requestor is a subject of the request and the operation of submission is

recorded in the provenance.

x is an attribute in a query, which could be action, subject, or object. Following the

previous example, we can define an atomic target policy as (Agent, submitter, requestor, =).

The vtype is agent which is the type of a vertex, while the name of the vertex is submitter.

“requestor" represents the name or ID of the users sending a query, and the binary predictor

is “=".

From the model of atomic targets, it can be concluded that the provenance-based access

control we proposed control accessibility for data not only based on the provenance but also

on the connection of provenance and requests.

At last, attributes in requests can also be defined as restrictions for a atomic target. For

example, object1, action1 and subject1 can be atomic targets. Traditional access control

policies usually employ object, subject, and action in a query as conditions. It defines

when object, subject, and action are within a range, the given requests can (or can not) be

accessed. By defining the request atomic target, we set an interface between our proposed

provenance-based access control model and traditional access control.

Moreover, the attributes in requests also include other data labels, such as categories of a

file, usages and etc. However, every request atomic target takes a form as a single value.

4.3.2 Atomic Target Evaluation

In terms of evaluation for an atomic target with respect to a request, an atomic target

matches the query if the provenance graph meets all the attributes in the atomic target.

94 A fine-grained Policy Model for Provenance-based Access Control

Otherwise, it does not match the atomic target.

We begin with the request atomic target, as it takes the form as a single value. When the

attribute in a query meets the value of attributes, the result is 1T , otherwise, the result is ×T .

Because the models of path atomic target and joint atomic target takes the same form.

We illustrate the evaluation principles for them together. We hope there exist values of a

result to represent the conditions between a full match or complete not match. Hence, we

present a four-valued result set DecT = {1T,0T,⊥T,×T} for the evaluation, where 1T is ab-

solutematch and×T represents completely notmatch. The rank of them is 1T > 0T >⊥T> ×T .

(1) The “null" target matches all requests, which implies it returns 1T for all objective

provenance graphs.

(2) The target (vtype, vname) matches if the provenance graph contains vertices with the

vertex type and name, which returns the value of 1T . However, it returns ⊥T when vname is

not match and returns ×T when both of do not match.

(3) When the quaternion (vtype, vname, a, f) or (vtype, vname, x, f) is met, it returns 1T ; if it

only matches vtype but none of the other three values, it returns 0T ; if the provenance graph

only meets (vtype, vname) but not the value, it returns ⊥T ; ×T denotes that it does not include

the vertex v in the graphs.

(4) In terms of Dpath, which is a string of nodes defined by the quaternion of (vtype, vname,

a, f) or (vtype, vname, x, f), it returns 1T when it meets all quaternion; it returns 0T , if it

meets all the vtype, vname in the string but not the other two values; it returns ⊥T if it only

meets all vtype; it returns ×T when the provenance DAG can not meet all the vtype in the string.

We denote the evaluation of a given request q as [[t]]T (q) ∈ DecT . We utilise the subscript

T to denote that it is the evaluation of targets, in order to distinguish the results for target

section and access control section. However, the subscript can be emitted when no ambiguity

can arise. Initially, queries for null target returns 1T , and an evaluation for a query with empty

provenance graph returns ×T .

[[null]](q)=1T ; [[n]](�)=×T

4.3 Target Policies 95

Via the definition of atomic targets and evaluation principles, we propose a more a fine-

grained provenance-based access control policy model. In this model, different types of

attributes extracted from a provenance graph are distinguished. Namely, the four values in

the decision set denote the cases that a provenance graph meets different classes of elements

in an atomic target.

4.3.3 Operators

A target section may consist of several atomic targets, which are organised under a tree

structure. In the tree structure, the leaf nodes are atomic targets, and non-leaf nodes are logic

operators to merge the results of each atomic targets, in order to output one final decision.

The operators are tailored for our proposed four-valued decisions set, which includes

binary operators, unary operators, and u-ary operators. We introduce binary and unary op-

erators [19] which correspond to the weak and strong Kleene operators [105] for the four

values target decision set {1T , 0T , ⊥T , ×T} and define several new operators.

We define operators not t, opt t, t1 and t2 and t1 or t2 of targets as follows:

[[not t]](q)= ¬ [[t]](q); [[t1 and t2]](q)=[[t1]](q) u [[t2]](q)

[[opt t]](q)= ∼ [[t]](q); [[t1 or t2]](q)=[[t1]](q) t [[t2]](q)

Here, not t and opt t are unary operators. The total order of DecT is that 1T > 0T > ⊥T

> ×T . In binary operator and, the result is the lower value between the two sides. To the

contrary, or outputs the higher values from the two inputs. However, if we change the DecT

order as ×T > ⊥T> 0T > 1T , and (in 1T > 0T > ⊥T > ×T)= or (in ×T > ⊥T> 0T > 1T).

X ¬X ∼X ?X

1T 0T 1T ⊥T

0T 1T ⊥T ×T

⊥T ⊥T 0T 1T

×T ×T ×T 0T

Table 4.1: Unary Operators

t 1T 0T ⊥T ×T

1T 1T 1T 1T 1T

0T 1T 0T 0T 0T

⊥T 1T 0T ⊥T ⊥T

×T 1T 0T ⊥T ×T

Table 4.2: Binary Operator t

96 A fine-grained Policy Model for Provenance-based Access Control

Hence, whenwe change the priority order for the values in the DecT set, we can enumerate

all the operators as and for the orders 1T > 0T > ×T >⊥T> (∪), 1T >⊥T> 0T > ×T (∩), 1T >

×T >⊥T> 0 (<), 0T > 1T >⊥T> ×T (∧), 0T > ×T >⊥T> 1T (∨), ×T > 1T > 0T >⊥T (⊃),

×T >⊥T> 0T > 1T (⊂), ⊥T> ×T > 0T > 1T (`) and ×T > 1T > 0T >⊥T (a).

u 1T 0T ⊥T ×T

1T 1T 0T ⊥T ×T

0T 0T 0T ⊥T ×T

⊥T ⊥T ⊥T ⊥T ×T

×T ×T ×T ×T ×T

Table 4.3: Binary Operator u

∪ 1T 0T ⊥T ×T

1T 1T 0T ⊥T ×T

0T 0T 0T ⊥T ×T

⊥T ⊥T ⊥T ⊥T ⊥T

×T ×T ×T ⊥T ×T

Table 4.4: Binary Operator ∪

∩ 1T 0T ⊥T ×T

1T 1T 0T ⊥T ×T

0T 0T 0T 0T ×T

⊥T ⊥T 0T ⊥T ×T

×T ×T ×T ×T ×T

Table 4.5: Binary Operator ∩

< 1T 0T ⊥T ×T

1T 1T 0T ×T ⊥T

0T 0T 0T 0T 0T

⊥T ⊥T 0T ⊥T ⊥T

×T ×T 0T ⊥T ×T

Table 4.6: Binary Operator <

∧ 1T 0T ⊥T ×T

1T 1T 1T ⊥T ×T

0T 1T 0T ⊥T ×T

⊥T ⊥T ⊥T ⊥T ×T

×T ×T ×T ×T ×T

Table 4.7: Binary Operator ∧

∨ 1T 0T ⊥T ×T

1T 1T 1T 1T 1T

0T 1T 0T ⊥T ×T

⊥T 1T ⊥T ⊥T ×T

×T 1T ×T ×T ×T

Table 4.8: Binary Operator ∨

⊃ 1T 0T ⊥T ×T

1T 1T 0T ⊥T 1T

0T 0T 0T ⊥T 0T

⊥T ⊥T ⊥T ⊥T ⊥T

×T 1T 0T ⊥T ×T

Table 4.9: Binary Operator ⊃

⊂ 1T 0T ⊥T ×T

1T 1T 1T 1T 1T

0T 1T 0T 0T 0T

⊥T 1T 0T ⊥T ⊥T

×T 1T 0T ⊥T ×T

Table 4.10: Binary Operator ⊂

4.3 Target Policies 97

` 1T 0T ⊥T ×T

1T 1T 1T 1T 1T

0T 1T 0T 0T 0T

⊥T 1T 0T ⊥T ×T

×T 1T 0T ×T ×T

Table 4.11: Binary Operator `

a 1T 0T ⊥T ×T

1T 1T 0T ⊥T ×T

0T 0T 0T 0T ×T

⊥T ⊥T 0T ⊥T ×T

×T ×T ×T ×T ×T

Table 4.12: Binary Operator a

Moreover, the target can consist of a collection of atomic targets {t1, t2...tn,} which

are combined via these operators. For a target expression, binary operators take the same

priorities, and it runs from left to right for the same priority operators. Binary operators take

priority over an unary operator, but operators in brackets should be calculated first.

¬ (t1 ∧ t2 ∩ t3 ∪ t4)

∼ (¬t1t ∼ t2 ∧ (t3 ∩ t4))

In the first expression above, the calculation should start from the operators in brackets.

If there are no brackets, it should begin with the unary operator ¬. As the operators inside of

the brackets are all binary, they are calculated from left to right, then, calculating ¬ is last. In

the second expression, it is obvious that the sub-expression inside of the first bracket should

be calculated first. ¬t1, ∼ t2 and t3 ∩ t4 need to be calculated first, as an unary operator and

operators in brackets take priority. Then, t and ∧ combine results of both in brackets, which

is taken as ∼ in the end.

A solid target in a policy could be illustrated as a construction of a tree with nodes, where

leaf nodes are atomic targets and non-leaf nodes are logic gates. We employ a policy tree

structure to combine these atomic targets. The lower expression above was illustrated in

Figure 4.5.

The result of the target expression indicates whether a policy matches a given query. Only

1T ∈ DecT for target evaluation represents that the policy is applicable. More formally,

-If t evaluates to 1T , it evaluates p;

-If t evaluates to 0T , ⊥T and ×T it stops further evaluation.

98 A fine-grained Policy Model for Provenance-based Access Control

Figure 4.6: Target Tree A

However, to make the expressions more brief, we define u-ary operators which perform

on more than two atomic elements. The and and or pair for multi-elements are 4 and 5,

corresponding to t and u in binary operators. They inherit the same DecT priority order as

t and u, which is 1T > 0T > ⊥T > ×T .

More formally, for 4, it selects the highest value among candidates as a result. While 5

takes the lowest value among candidates as a result. For instance, 4[1T , 0T , ⊥T , ×T]= 1T ,

5[1T , 0T , ⊥T , ×T] = ×T .

Even though the u-ary operators can be translated as a series of binary operators, it enables

the atomic tree structure to be briefer and reduces the numbers of operators by combining

many binary operators as one. Hence, to illustrate u-ray operators, we provide an example

displayed under the tree structure in Figure 4.6. In this example, u-ary operators are utilised

to combine atomic target as: 5[t1, t2, t3, t4, t5]; 4[t6, t7, t8, t9].

4.3.4 Target Equivalence

For two targets t1 and t2, if for all requests, the evaluation are always the same, [[t1]](q)=[[

t2]](q), then t1 and t2 are equivalent targets, [[t1]] = [[t2]]. We show following priorities of

our target operators.

4.3 Target Policies 99

Figure 4.7: Target Tree B

Proposition 1 ∀ t and t’,

[[¬(¬t)]]=[[t]]; [[∼ (∼ t)]]=[[∼ t]]

[[∼ (¬t)]] , [[¬(∼ t)]]

[[¬(t t t′)]] , [[(¬t) u (¬t′)]]; [[¬(t u t′)]] , [[(¬t) t (¬t′)]]

[[∼ (t t t′)]]=[[(∼ t) t (∼ t′)]]; [[∼ (t u t′)]]=[[(∼ t) u (∼ t′)]]

Proof The above equations can be proven by checking the four-valued “truth" table which

are the definitions of the operators.

Proposition 2 ∀ t1, t2 and t3......tn,

4[t1, t2, t3] = t1 t t2 t t3;

5[t1, t2, t3] = t1 u t2 u t3;

4[t1, t2...... tn] = t1 t t2 t...... tn;

5[t1, t2...... t3] = t1 u t2 u...... t3;

Proof The above equations can be proven by checking the four-valued “truth" table which

are the definitions of the operators.

100 A fine-grained Policy Model for Provenance-based Access Control

4.3.5 On functional Completeness

By way of motivation, we wish the operations we defined could express all functions

which users would like to define. Hence, we prove ∀f : Decn
T → DecT , n∈ Z∗, where f can

be expressed by at least one combination of ¬, ∼, ? and ∪. This property is proven by the

logic expressions defined by ¬, ∼, ? and ∪ over DecT is functional completeness. We prove

this by introducing a theorem from Jobe [106].

Theorem 1 (Jobe) 1962 The three-valued logic E expressed over the set 1,2,3 and defined

by the operators •, E1 and E2, given in the figure below, is functionally complete.

• 3 2 1 E1 E2

3 3 2 1 3 1

2 2 2 1 1 2

1 1 1 1 2 3

Table 4.13: Over the Set {3,2,1}

Theorem 2 J-operators and functional completeness.[106] In order to present a new

and simple proof of functional completeness, we define the operators Jk(P1,P2, ...Pn)
l , which

have the following interpretation. Jk(P1,P2, ...Pn)
l represents the truth table of a possible

formula of order n which has the truth value k in the ith row and the truth value 1 in all other

positions, where (1≤k≤M) and (1 ≤ i ≤ Mn).

Corollary 2 Logic operations ∪, ¬, ∼, and ? is functionally complete for expressions

over four-valued set {1T , 0T , ⊥T , ×T}.

• 1T 0T ⊥T ×T E1 E2 E3

1T 1T 0T ⊥T ×T 0T 1T ⊥T

0T 0T 0T ⊥T ×T 1T ⊥T ×T

⊥T ⊥T ⊥T ⊥T ×T ⊥T 0T 1T

×T ×T ×T ×T 1T ×T ×T 0T

Table 4.14: (Over the Set {1T , 0T , ⊥T , ×T}

4.4 Access Control Policy 101

Proof Based on the theorem in Jobe’s paper[106], the operators we tailored for our

four-valued set is functionally complete.

4.4 Access Control Policy

When the target section is evaluated to be true, this indicates that the request is within

the effective range of the policy. In the access control section, we still employ partitions

in provenance as atomic conditions. The access control policy section determines that the

access request can be allowed/denied if the provenance graphs contain certain provenance

partitions in the policy. Based on both target section and access control section employing

provenance partitions as conditions, the model of atomic condition takes the same form as

the atomic target. However, the difference is that each section may take different provenance

partitions as conditions.

Here, we formally define atomic conditions. Let {1P,0P,⊥P,×T } ∈ DecP is a decision

set;

- p ∈ DecP is an atomic condition, where p is a value in the decision set;

- a provenance partition is an atomic condition;

- (t �→p{tag}) is a policy; and t is an atomic target, where � is ≺ or � (≺ and � are two

approaches to transform atomic target as atomic condition);

- (∗t �
→p{tag}) is an atomic condition; where ∗ is a logic unary expression over an atomic

target, and � is ≺ or �;

- p1 • p2 which is a conjunction policy of p1 and p2, where • is an operator connection two

atomic conditions;

- pbdP p permit by default policy is a policy p, where pbdP can be treated as an operator to

map a four-valued decision set to a two-valued decision set (Yes or No);

- dbdP p deny by default policy is a policy p, where pbdP can be treated as an operator to

map a four-valued decision set to a two-valued decision set (Yes or No);

Similarly, with the target section, we still utilise a tree structure to organise atomic

conditions. The tree structure enables proper visualisation of a policy and supports a flexible

102 A fine-grained Policy Model for Provenance-based Access Control

and powerful combination of atomic conditions. Even though atomic conditions employ

different provenance partitions, they take the samemodel to extract elements fromprovenance.

Atomic conditions could be provenance partitions already existing in the target section or

in newly defined provenance partitions. To be more specific, atomic access control policies

could recall conditions in target to reduce redundancy. Their conditions could be re-used

as a form of transformation which will be introduced in the later part of this section. So it

becomes apparent that the atomic access control policies could also define new provenance

partitions as conditions.

The following two truth tables define how to re-use the transformation of atomic target

policies as atomic access control policies. Atomic targets are forwardly or adversely referred

to a value in the four-valued decision set {1P, 0P, ⊥P, ×P}. Just as the tables shown below,

the transformation takes the form as t �→p{tag}, and the {tag}∈ {1,0,×,⊥}. When t is referred

to p forwardly, the tag × keeps the results of t; ⊥ changes ×T and ⊥T as ⊥P; 0 changes ×T

and ⊥T and 0T as 0P; 1 increases all the values as 1P. On the contrary, 1 for inverse reference

keeps values of t; 0 decreases 1T as 0P; ⊥ decreases 1T , 0T as ⊥P; and ⊥ downgrades all

values of t as ⊥P.

t ≺ p 1 0 ⊥ ×

1T 1P 1P 1P 1P

0T 1P 0P 0P 0P

⊥T 1P 0P ⊥P ⊥P

×T 1P 0P ⊥P ×P

Table 4.15: t ≺ p

t � p 1 0 ⊥ ×

1T 1P 0P ⊥P ×P

0T 0P 0P ⊥P ×P

⊥T ⊥P ⊥P ⊥P ×P

×P ×P ×P ×P ×P

Table 4.16: t � p

Moreover, to support all the possibility of references for the atomic target, atomic tar-

gets can be transformed by unary operators before referred to p, which takes the form of
∗t
�
→p{tag}. We show an example of logic expression over t in Table 17 as: ∼ (¬t), where t

∈ {1T,0T,⊥T,×T }.

4.4 Access Control Policy 103

t ∼ (¬t)

1T 0P

0T ⊥P

⊥T 1P

×T ×P

Table 4.17: t→∼ (¬t)

∼ (¬t) ≺ p 1 0 ⊥ ×

1T 1P 0P 0P 0P

0T 1P 0P ⊥P ⊥P

⊥T 1P 1P 1P 1P

×T 1P 0P ⊥P ×P

Table 4.18: ∼ (¬t)
≺
→ p

∼ (¬t) � p 1 0 ⊥ ×

1T 1P 0P ⊥P ⊥P

0T 1P 1P 1P 1P

⊥T 1P 0P 0P 0P

×T 1P 0P ⊥P ×P

Table 4.19: ∼ (¬t)
�
→ p

Lemma 1 ∀t ∈ DecT , ∗t
�
→ptag supports all the possibilities for (t, p), where � is ≺ or �,

∗ is unary expressions over ¬ and ∼.

Proof ∗t �→p is functionally completed, as ∗t can express all the order for a four-valued

set and � takes both forwardly and reversely. We firstly list all the orders of a four valued set

via ¬ and ∼.

t ?(¬(?t)) ∼ t ¬t

1T 1T 1T 0T

0T 0T ⊥T 1T

⊥T ×T 0T ⊥T

×T ⊥T ×T ×T

Table 4.20: All Orders of a “Four-valued" set by ¬ and ∼

Therefore, we can conclude the functional completeness of ∗t �→p.

A conjunction of policies is a policy. The motivation to define pbdPP and dbdPP is

that we need to transfer a four-valued decision set to a two-valued result (permit or deny

access). However, it could be processed by combining results of all applicable policies. This

transferring can be defined by each policy, or each system can define pbdP or dbdP as the

104 A fine-grained Policy Model for Provenance-based Access Control

default process. A permit by a default policy returns 1P if the output of P is 0 or 1; while it

returns ⊥P otherwise. On the contrary, a deny by default policy returns 1P if the output of

P is 1; while it returns ⊥P if the output of P is 0 or ⊥P. We define the truth table of both as

below.

P pbdPP dbdPP

1P 1P 1P

0P 1P ×P

⊥P 1P ×P

×P ×P ×P

Table 4.21: Truth Table for pbdPP and dbdPP

Figure 4.8: Example Policy Trees

∼ (t1 ∧ t2) ∪ (¬(4[t3, t4, t5]))

¬ (t4 ≺ p1 ∨ t5 � p2) ∩ (∼ p3 t ((¬t2
�
→ p4) ∩ p5)

In Figure 4.6, we provide a policy example which includes target policy and access control

policy. For this example, atomic target t2 t4, and t5 was assigned as atomic conditions by

t4 ≺ p1, t5 � p2, and ¬t2
�
→ p4.

Clearly, the frameworks of Chapter 3 and Chapter 4 introduce provenance partitions as

conditions of policies. However, in provenance access control policies, the decision set is a

two-valued. And we defined a four-valued decision set for provenance-based access control

policies. Because that provenance-based access control policies mainly depend on attributes

of provenance as conditions. The access control policies proposed in Chapter 3 is to access

4.4 Access Control Policy 105

provenance. Hence, the evaluation for provenance partitions is more fine-grained, where we

employ a four-valued decision set in the framework.

4.4.1 Policy Operators

The operators defined in the previous section can be used for access control policy tree

structure. In the policy tree structure, logic operations are non-leaf nodes in the policy

trees. Here, we introduce two operations inspired by the operators provided by Crampton

and Morisset [19]. Compared to other operators we proposed, the operators that we define

here are aware the orders of inputs. Namely, when the orders of two inputs switch, the output

is not always the same.

⊕ 1P 0P ⊥P ×P

1P 1P x 1P 1P

0P y 0P 0P 0P

⊥P 1P 0P ⊥P ⊥P

×P 1P 0P ⊥P ×P

Table 4.22: Idemponent

⊕∪ 1P 0P ⊥P ×P

1P 1P 1P 1P 1P

0P 0P 0P 0P 0P

⊥P 1P 0P ⊥P ⊥P

×P 1P 0P ⊥P ×P

Table 4.23: Idemponent ⊕∪

⊕∩ 1P 0P ⊥P ×P

1P 1P 0P 1P 1P

0P 1P 0P 0P 0P

⊥P 1P 0P ⊥P ⊥P

×P 1P 0P ⊥P ×P

Table 4.24: Idemponent ⊕∩

. 1P 0P ⊥P ×P

1P 1P 1P 1P 1P

0P 0P 0P 0P 0P

⊥P 1P 0P ⊥P ⊥P

×P 1P 0P ⊥P ×P

Table 4.25: First-applicable

/ 1P 0P ⊥P ×P

1P 1P 0P 1P 1P

0P 1P 0P 0P 0P

⊥P 1P 0P ⊥P ⊥P

×P 1P 0P ⊥P ×P

Table 4.26: First-applicable

We list the truth tables for ⊕, . and / as above. In Table 18, the outputs are no longer

106 A fine-grained Policy Model for Provenance-based Access Control

symmetrical at two sides of the diagonal, where inputs of {1P, 0P} and {0P, 1P} differ. For

⊕, the priority of four valued sets are 1P = 0P > ⊥P > ×P. Here, we employ ∪ and ∩ to decide

x and y when 1P meets 0P. In particular, ⊕∪ takes the former one as the result, while ⊕∩
takes the latter one as the result. Based on ⊕, we can define more operations with the priority

order s such as 1P > 0P = ⊥P > ×P, 1P = ⊥P > 0P > ×P etc.

Similarly, . is another logic operator that is aware of the order of inputs, and . emphasises

the first input. When the first input is 1P or 0P, it covers the second input and was outputted

as the result. While, when the first input is ⊥P, the second input is the result. / effects with

the opposite rule by emphasising the second input.

4.5 A case study

In order to better deliver the idea, we generate a sample policy and a provenance graph.

Thus we output a result of the policy based on the provenance graph.

Target Policy Section:

Atomic Target (1): Bob uploads a piece of data and Alice submits it;

Atomic Target (2): The data was reviewed on Monday and was graded at 30/5/2018;

Access Control Policy Section:

Atomic Condition (1): Bob replaces the data;

Atomic Condition (2): it was revised after reviewed;

Atomic Condition (3): it was re-submitted on Wednesday;

A requestwas sent to access a piece of data in a database, the server retrieves its provenance

graph andmakes a decision based on the sample policy. Beginwith the target section, referring

to the provenance graph, we can see Bob uploaded the data “a1v1" and Alice submitted it.

Hence, the results for the atomic target (1) is total match 1T . Next, in the provenance graph, the

data was reviewed at Monday but graded at 30/5/2018 instead of 30/4/2018, which indicates

that the provenance graphs partial match the atomic target (2), where its result is 0T . The

results of the atomic targets were merged by the operator t. Referring the Table 4.2 of this

chapter, 1T t 0T = 1T . It shows that the given provenance graph matches that target section,

4.6 On Integrity of Provenance 107

therefore, we move to the access control policy section. Similarly, as Bob did not replace the

data, the result for atomic conditions (1) is ⊥P which merged by the operator 4 with outputs

of atomic condition (2) ∩ atomic condition (3). The final output of this policy is 1P. The

request to access the data was accepted.

Figure 4.9: Experiment

4.6 On Integrity of Provenance

In this provenance-aware system, as provenance is taken as a condition to evaluate ac-

cessibility, malicious manipulation or integrity damage to provenance graphs might result in

forged results of an evaluation. In such a scenario, an access control policy prohibits access

to a query when the targeted object is graded. Hence, if the graded operation in provenance

is lost or maliciously tampered with, the output of the atomic target would be changed from

1P to ⊥P, which might further result in a different result of the policy tree.

Hence, the systems can employ cryptography mechanisms to protect and confirm the

integrity of provenance and then make access control evaluation based on the provenance

graphs. In simple terms, the server can generate a key pair and send provenance owners the

public key to sign a digital signature with provenance. When provenance graphs are invoked

108 A fine-grained Policy Model for Provenance-based Access Control

to evaluate a query, the server checks the digital signature then process the evaluation.

4.7 Evaluation

The claimed contributions of this framework are that we introduce a four-valued decision

sets for each condition, and define a set of operators to merge the values of the “four-valued"

decisions. Apparently, the claimed requirements were established in the demonstration. The

experimental policies were successfully generated under this policy model. In addition, the

evaluation criterion can be applied to generate results of policies based on specific provenance

graphs.

In order to proof the availability and practicality of our proposed framework and to

evaluate its performance, we did experiments to implement policy generation and policy

algebras.

We did the experiments on a 3.40 GHz Intel Computer with 16GB of memory. The

machine’s operating system is Microsoft Windows 8 and the database is Oracle Database.

The goal of the experiments is to evaluate the time taken for generating policy and the time

taken to process the policy algebras. In this experiment, the size of the generated policies is

also examined in terms of atomic policies and policy operators.

We implemented synthetic datasets based on the version proposed by Wisconsin Bench-

mark [107]. We set up a random provenance-based access control policy generator to

generate atomic policies and policy operators. Each policy contains a random number of

atomic policies (>2) and a random number of operators (>1).

At first, the average time span to obtain provenance-based access control policies and

size of policies are measured. The whole policy generation processes include random atomic

policies selection to random operators selection. In the figures below, the left y-axis shows

the average time span (in seconds) to generate policies, and the x-axis indicates the numbers

of atomic targets.

Next, we simulate the process of policy algebras. Different from the process above, the

x-axis shows the numbers of operators for each policy, and the y-axis displays the time spans

to process the policy algebras. Obviously, the more operators of a policy take, the longer

time span to cost as the figure showed.

4.8 Conclusion 109

Figure 4.10: Experiment

4.8 Conclusion

In this chapter, we propose a fine-grained provenance-based access control policy model

by defining atomic condition and policy algebras, which utilise provenance as conditions to

determine accessibility of data. Specifically, several types of atomic targets are provided in

this chapter. Path atomic target takes attributes in provenance as conditions, which implies

that if certain operations are executed on the targeted data, it can or can not be accessed.

Associated atomic target takes both attributes of provenance and requests as conditions. This

indicates that if the requestor has performed certain operations on the targeted data, it can or

can not be accessed. Each atomic target takes the form of a string of vertices, where each

vertex is defined by a quaternion of attributes.

Moreover, the results for an atomic target of our provenance-based access control policy

is one element in a four-valued set. New logic operators to merge the four-valued results are

proposed in the chapter. We also did experiments to implement the proposed framework.

The time span to generate policies and implement policy algebras are measured.

110 A fine-grained Policy Model for Provenance-based Access Control

5
Purpose-based Access Policy on Provenance

and Data Algebra

Following the previous two chapters, we propose purpose-based access policies in this

chapter. Different from provenance-based policies that determine if a piece of data can be

accessed or not, purpose-based access policies determines for what purposes can data be

accessed. To determine that data can only be accessed for allowed purposes is a crucial

mechanism of access control. Because under certain scenarios, even though data is allowed

to be accessed, it can only be accessed for the permitted purposes for security consideration.

Particularly, the purposes can be classified as different sensitivity levels. Accordingly, we tai-

lor policy algebras to include internal and external policy operators for hierarchical purposes,

in order to merge purpose sets generated by individual policies.

112 Purpose-based Access Policy on Provenance and Data Algebra

5.1 Introduction

In provenance-aware systems, to preserve security and privacy of data and determine

proper access, traditional access control policies cannot address all the issues. Only gen-

erating decisions about whether a piece of data allowed to be accessed cannot meet all the

requirements of security protection. Access policies specify laws or preferences for intended

purposes, retention, condition, obligation etc. They also confine accessibility of data, such

as for which purposes can data be accessed. Hence, purpose-based access policies can spec-

ify restrictions that traditional access control policies can not realise, including determining

allowed and prohibited access purposes based on provenance.

Provenance can contribute to access policies. It can be noticed that provenance is closely

connected with access policies and can provide crucial information regarding the sensitivity

of data because provenance is a file which records historical operations performed on a piece

of data, where these historical operations can be related to which purposes the data can be

accessed for. Hence, provenance can be employed as conditions to map intended usages. For

example, an access policy can be defined as: only if a piece of data was submitted to an

educational institution, it can be used for the purposes of research and education. Clearly,

access purposes in our provenance-based access policies are determined by whether the

provenance contains the given partitions.

5.1.1 Related Work and Motivations

Several existing works proposed access policies [108][109] which map attributes in

queries, roles and system conditions to permitted usages, retention, condition, obligation, etc.

Byun et al. [108] presented a comprehensive approach for privacy-preserving access control

based on the notion of purpose. In their model, purpose information associated with a given

data element specifies the intended use of the data element. A key feature of their model is

that it allows multiple purposes to be associated with each data element and also supports

explicit prohibitions, thus allowing privacy officers to specify that some data should not be

used for certain purposes. A discussion arisen by Byun et al.[108] is that it would be more

advantageous to organize purposes in a directly acyclic graph instead of a tree construction.

However, In our framework, an acyclic graph is a better option to organise purposes, because

it can support the possibility that a node could have more than one ancestor and where it is

5.1 Introduction 113

closer to the nature of the relationship of purposes.

Based on the idea they proposed, we utilise provenance subgraphs as conditions for

access policies. because both the processes that have previously been done and also who

executed the processes are vital conditions in determining for what purposes a piece of data

can be accessed for. In our proposed provenance-based access policy, we not only employ

provenance partitions as conditions, but also distinguish the hierarchies of purposes, in order

to aware the different sensitivities of purposes. The hierarchies of purposes are mainly

when conflicted policy results arise. Another reason to define the different hierarchies of

purposes is that, when merging purpose sets determined by each policy, purposes in different

hierarchies should be combined via different operators. For instance, let a collection of

purpose be {Analysis, Admin, General-Purpose}, the sensitivity of the three elements are

Analysis > Admin > General-Purpose. It indicates that the General-Purpose is the least

sensitive purpose, which can be granted to the public, while the purpose of Analysis is the

most sensitive purpose in the set and can only be accessed by advanced users.

Accordingly, policy algebras to merge these purpose sets are also tailored in this chapter.

This will enhance the performance of algebras to distinctively combine purposes in different

hierarchies. To the best of our knowledge, previous access policy algebras to merge purpose

sets have not distinguished purposes in various hierarchies. Hence, it is attractive to define

functions which can combine purposes in different hierarchies by different operators, espe-

cially, when combining two collections of purposes. We hope to conjunct usages with a lower

rank and to take an intersection of usages with a higher rank.

Here, we provide a scenario as the application of this policy. When a request was sent

to a database aiming to access a piece of data. The database server refers to the access

policies and decides for which purposes can the nominated data being accessed. Let a sample

Policy A be: if the data was collected by the government, it can be used for data analysis;

if the data was reviewed by a university, it can be used for research and education. By

confirming with its provenance graph, the data are permitted to access for data analysisHH

which is the higher hierarchy purpose and research and educationLH which are the low

hierarchy purposes. Similarly, Policy B permits the data can be accessed by the same user for

auditingHH and education, marketingLH . The database system regulates that higher hierarchy

purposes granted by different policies are merged by the operator union and lower hierarchy

purposes are merged by the operator intersection. Hence, the final permitted purposes are

114 Purpose-based Access Policy on Provenance and Data Algebra

{data analysis, auditing}HH = {data analysis}HH ∪ {auditing}HH , and {education}LH =

{research and education}LH ∩ {education, marketing}LH .

5.1.2 Our Contributions

In this chapter, we propose a framework for purpose-based access policies on provenance.

Firstly, we define the semantics and syntax of atomic access policies which map conditions

to a set of permitted or prohibited usages. To the best of our knowledge, we are first to utilise

provenance as conditions to tailor access policies. We also define how to specify a set of

purposes for each policy.

Even though purposes were classified based on various sensitivities in previous work,

corresponding algebras have not previously been proposed. Concretely, to combine two sets

of purposes, purposes with different sensitivities are merged by different operators in this

work. Therefore, we particularly design functions for algebras of access policies involving

purposes. In addition, the algebras in this framework consist of internal algebra and external

algebra.

5.1.3 Chapter Organisation

This chapter was organised as:

• Provenance-based Access Policies is defined formally in Section 5.2, where we present

its system assumption, syntax, semantics and a case study.

• In Section 5.3 and Section 5.4, we propose the algebras by defining internal and external

operators.

• In Section 5.5, experiments to evaluate the policies are presented and the conclusion is

presented in Section 5.6.

5.2 Purpose-based Access Policy on Provenance 115

5.2 Purpose-based Access Policy on Provenance

In this chapter, we propose access policies that determine a set of allowed or prohibited

purposes based on provenance. As provenance logs operations performed on a piece of

data, the access purposes were determined according to the historical records. Historical

operations provide crucial clues for the sensitivity of data. Hence, the fine-grained access

policies map provenance and attribute in a request to a collection of allowed or prohibited

purposes.

5.2.1 System Architecture

Figure 5.1: System Architecture

The system architecture for purpose-based access policy is illustrated in Figure 5.1. This

system architecture can be applied to other policy models proposed in the previous two

chapters. In Chapter 3 and Chapter 4, we only showed the system assumption. For the

consideration of the balance of chapters, we provide the system architecture in this chapter.

The system architecture consists of Policy Administration Point (PAP) which generates access

policies and Policy Manager that retrieves policies or results of policies from other parties.

Context handler forwards access requests received by Policy Enforcement Point (PEP) to

Policy Decision Point (PDP) where the decisions are made according to policies. Moreover,

116 Purpose-based Access Policy on Provenance and Data Algebra

Policy Information Point (PIP) collects required attributes for the policy evaluation from

subject, environment, provenance etc. Particularly, provenance partitions are retrieved by the

context handler and sent to PDP, aiming to generate access purposes. There are two unique

features of the system architecture of this framework. One is retrieving provenance partitions

as conditions to generate access purposes, the other one is that PDP merges policies from

both internal policies and external policies to generate a final set of access purposes for a

given piece of data or query. During the process to produce data, it can be executed by more

than one data owners who would like to generate their own access policies. It motivates us

to propose a policy algebra to merge results of policies from various parties. In the end, the

final decision generated by PDP is sent to PEP for enforcement.

5.2.2 Semantics

Firstly, we define basic elements for the purpose-based access policies, including prove-

nance partitions as atomic policies, access trees to organise atomic policies, purpose graphs,

and purpose sets. Purpose graphs which list all possible access purposes are defined by a

system, where each policy determines a set of allowed and prohibited purposes in the purpose

graphs.

Definition 1 (Provenance Partition). We define provenance partition in Chapter 3 of this

thesis, which is a connected subgraph in provenance DAG. For a purpose-based access policy

on provenance, provenance partitions are utilised as conditions of a policy. Concretely, in

our framework, a provenance partition is a collection of vertices in a provenance DAG under

the OPM+, which represents one operation or a series of operations recorded in provenance.

The historical transactions propose cues for the sensitivity of data and are employed as pol-

icy restrictions, which can determine access purposes. Here we provide sample policies to

illustrate the connection between provenance and purposes.

(1) If a document has been reviewed by at least three educational experts, then it can be

accessed with the aim of education.

(2) If a file has been submitted before 2016 and graded by a teaching staff, it can not be

accessed for the purpose of revision.

5.2 Purpose-based Access Policy on Provenance 117

(3) If a piece of data was collected by the government, it can not be accessed for academic

research.

(4) If the data has been uploaded after two different reviews, it can be accessed for market

analysis.

(5) If the files have been reviewed after 2016, they can not be accessed for audit and

direct-use.

(6) If the files have been edited by Alice and revised in Sydney, they can be accessed for

service-maintenance and service-updates.

The conditions of purpose-based access policy on provenance and provenance-based ac-

cess policy are the same. The difference between them is that the former maps the conditions

to access purposes, and the latter maps conditions to a decision value. The decision of access

policy indicates if the data can or not be accessed. While access purposes are for which usages

can a piece of data to being accessed. Here we define the atomic conditions of purpose-based

access policy as:

-nullT is a condition;

-(vtype, vname) is a condition, where vtype is a vertices type and vname is a vertices name;

-(vtype, vname,a, f) is a condition, where v is a vertices, a is an attribute value and f is a

binary predicate.

-(vtype, vname, x, f) is a condition, where (vtype, vname) is a vertices, x is an attribute in a

query, and f is a binary predicate;

-a target is a string of (vtype, vname) or (vtype, vname,a, f) or (vtype, vname, x, f) expressed

over XPath.

A provenance partition is defined over XPath, which is a collection of vertices. It repre-

sents historical operations performed on a piece of data. Provenance partitions are conditions

of the policies. Moreover, the attributes of a query could also be utilised as conditions, which

is similar to the approach proposed in Chapter 4 of this thesis. We do not repeat it here.

Definition 2 (Atomic Condition Evaluation). The four-valued set for atomic policies is

118 Purpose-based Access Policy on Provenance and Data Algebra

{1p, 0p,⊥p, ×p}. Between totally matching a provenance partition (1p) and totally not match-

ing it (×p), there are two values (0p, ⊥p) to represent the status between them. Specifically, if

a provenance graph meets all attributes of a partition, it outputs 1p representing a total match;

if a provenance graph contains all the types of vertices name in a partitions, but it does not

meet all the attribute values, it output 0p; if a provenance graph only contains all the vertices

types in a partitions, but not meet vertices names and attributes, it outputs⊥p; if a provenance

graph does not meet any item, its result is ×p.

Definition 3 (Tree Structure). The condition of each policy is a combination of prove-

nance partitions which are organised under a tree structure. In the tree structure, leaf nodes

are atomic conditions (provenance partitions) and non-leaf nodes are operators to merge eval-

uation results of atomic conditions. The tree structure organises conditions that are merged

by logic operators. The output of an access tree structure is “Yes" or “No". “Yes" indicates to

grant a collection of access purposes, while “No" indicates not to grant a collection of access

purposes. Particularly, the operators to merge results of each condition include unary, binary

and u-ary defined in Chapter 4 of this thesis. They are still applicable to the framework in

this chapter.

Figure 5.2: Access Tree of Provenance Segments

Definition 4 (Purposes). An access purpose P implies the aim that a piece of data is

being accessed for, such as military, education, research, etc. Purpose-based access policies

define a collection of allowed and/or prohibited purposes for data.

5.2 Purpose-based Access Policy on Provenance 119

In our framework for purpose-based access policies on provenance, purposes with various

sensitivities are organised as a form of a directed acyclic graph (DAG). It is denoted as a

Purpose Graph (PG). In a PG, each node represents a purpose P. Nodes in a PG are displayed

in several layers and are linked by edges, where the relationship between an ancestor node and

a descendant node are generalisation and specialisation. In other words, purposes near the

root are more general, while the purposes on the leaf side are more specialised. Hence, each

descendent node is a more specialized purpose of its ancestor node. The sensitivity of the

hierarchical purposes varies, based on the layers they display. We distinguish the hierarchies

of purposes aiming to classify them based on the sensitivities, and further employ functions

to merge purposes with different hierarchies by different operations.

Particularly, there are existing works [108][109] organising purposes with a tree structure,

where each descendant can only have one ancestor. However, in our framework, we replace

the tree structure as a DAG. Because in a DAG, a single node can be associated with more

than one ancestor. It is more close to the nature of relationships of purposes. We propose

an example purpose DAG in Figure 5.3. In this example, Admin is a descendant of General

Purpose. Hence, it is a more specific purpose comparing with General Purpose.

Figure 5.3: Purpose DAG

Definition 5 (Purpose Sets). A purpose set defined in each access policy is a collection

of purposes in a purpose DAG. Formally, let a set of purposes ∈ PG be a purpose set, which

is denoted as PS.

• Ancestors (P), denoted by P↑. In a PG, P↑ is the set of all ancestor nodes of P, including

p itself. For instance, in the example purpose DAG provided above, AnalysisP↑ =

120 Purpose-based Access Policy on Provenance and Data Algebra

{Analysis, Record, Admin, General Purpose}.

• Partial Ancestors (P), denoted by P↑α. In a PG, P↑α is the set of α ancestor nodes of P

including p itself. For instance, AnalysisP↑3 = {Analysis, Record, Admin}.

• Descendants (P), denoted by P↓. In a PG, P↓ is the set of all ancestor nodes of

P, including p itself. For instance, AdminP↓ = {Admin, Audit, Record, Analysis,

Service-Maintain, Service-Offers}.

• Partial Descendants (P), denoted by P↓β. In a PG, P↓β is the set of β ancestor nodes of

P including p itself. For instance, AdminP↓3 = {Admin, Record, Analysis}.

• Pl denotes the set of all ancestors and descendants of P in aPG, where Pl = P↑ + P↓. For

instance, RecordPl = {General Purpose, Admin, Record, Analysis, Service-Maintain,

Service-Offers}.

Definition 6 (Allowed Purpose and Prohibited Purpose). A purpose set could be denoted

as Allowed Purpose (AP) and Prohibitive Purpose (PP). Namely, AP indicates a collection

of permissible purposes by which users can access for, while PP indicates a collection of

prohibited purposes which not allow access for users.

5.2.3 Syntax

Following the semantics of elements of purpose-based policies on provenance, we define

its syntax. The syntax is a carrier of policy models. We select a syntax which is different

from the XACML proposed in Chapter 3, because the conditions for purpose-based access

policies are relatively less. Therefore, we believe the applied syntax is more close to the

nature of this policy model.

Generally, the policy model is tailored under the assumption that an expression of con-

ditions (provenance partitions) maps to a collection of purposes. Namely, if a provenance

contains certain provenance partitions, then it can be accessed for a collection of purposes

and should be prohibited by another set of purposes.

5.2 Purpose-based Access Policy on Provenance 121

Explanation Policy Type 1 {Provenance Partitions→AP} In one type of purpose-based

access policies on provenance, it maps a tree structure of provenance partitions to a collection

of allowed purposes. It indicates that if provenance partitions in a targeted provenance graph

meet the access tree structure, the provenance graph can be accessed by the set of allowed

purposes.

F (AP,PGi, AccessTree j) = {AP | ∃ProvPartition ∈ PGi & ProvPartition ⊆ AccessTree j }

The inputs are a targeted provenance graph and an access tree which is the policy. The

access tree consists of provenance partitions as leaf nodes and operators as non-leaf nodes.

The evaluation result for each provenance partition is value in a four-valued decision set. The

operators which are non-leaf nodes merge values for all non-leaf nodes and generate final

results for an access tree. If the result is 1P, which implies that the provenance matches the

access tree. Further, the purposes of the policy can be granted.

Explanation Policy Type 2 {Provenance Partitions→PP} This maps a combination of

provenance partitions to a collection of prohibited purposes, which defines if provenance

partitions in a targeted provenance graph meet the access tree structure, then the data can not

be accessed for the set of prohibited purposes.

F (PP,PGi, AccessTree j) = {PP | ∃ProvPartition ∈ PGi &

ProvPartition ⊆ AccessTree j }

Explanation Policy Type 3 {Provenance Partitions→ AP|PP} This maps a combination

of provenance partitions to a collection of allowed purposes and prohibited purposes. It

grants a set of allowed purposes and a set of prohibited purposes to the request.

F (AP&PP,PGi, AccessTree j) =

{AP&PP | ∃ProvPartition ∈ PGi & ProvPartition ⊆ AccessTree j }

122 Purpose-based Access Policy on Provenance and Data Algebra

Explanation Policy Type 4 {Provenance Partitions|Data Labels→AP&PP} However, in

an access policy, the input is not restricted to provenance partitions. While it may include data

labels from the data and queries. It includes the subject that is the users attempt to access the

data, categories of a piece of data etc. For the example below, when the targeted provenance

graph meets the access tree, the requestor is within the list of applicable subjects, and the

categories of data are within the list of applicable category, a collection of permissible and/or

prohibited access purposes can be applied.

F (AP&PP,PGi, AccessTree j) =

{AP&PP | ∃ProvPartition ∈ PGi & ProvPartition ⊆ AccessTree j

&∃s((s ∈ Sn) ∧ (r � s)) &∃k((k ∈ Kn) ∧ (KD(i) ⊆ k))}

5.2.4 Case Study

We propose a case study to implement our proposed access policies. Under the scenario

illustrated in Figure 5.4, data is transferred from System of Records A to System of Records

B. The provenance-based access policy determines which purposes the data can be accessed

for when the data is delivered to System of Records B. For each piece of Data (i), there are

several attributes attaching to the content of data q = QD(i), which is shown as:

Data (i) = {q = QD(i); k = KD(i); g = GD(i); p = PD(i) }

• Category k = KD(i) is a tag attached to a piece of data, which is an attribute used to

describe properties of the content q. For instance, if a piece of data is labeled a category

of “Medical Records", it might be allowed to be used for diagnose purpose. Hence,

the category is a condition in the policy to determine possible access purposes.

• Provenance Graph g = GD(i) is attached with data to record historical transactions

performed on data. In this system, we employ OPM+ which takes the form of a

directed acyclic graph (DAG). In this framework, provenance is employed as conditions

to determine access purposes.

5.2 Purpose-based Access Policy on Provenance 123

• Purpose p = PD(i) lists a set of access purposes attached with Data (i), which is

generated by the data producers. The final allowed purposes in the repository should

be determined by both of the attached purposes and policy results.

Figure 5.4: A Case Study

Each System of Records (SOR) is attached to System of Records Notices (SORN). A

piece of data delivers between two SOR. Let one SOR be the source s, and the other one is

the repository r. The data repository has an associated SORN n = N(r) which lists rules. A

rule maps tags of data including k, g, p for permitted purposes. Similarly, the source database

defines rules to determine the purposes. For a piece of data i, the intersection of purposes

from source, repository and p = PD(i) is the permitted usages.

124 Purpose-based Access Policy on Provenance and Data Algebra

Data(i) = {QD(i); KD(i)=assignment; GD(i); PD(i)={education} }

Request: a user with a role of student asks to access Data(i)

< Sample Policy from the Source>

< Subject > students; teaching staff < /Subject >

< Category > assignments; exam paper < /Category >

< ProvenancePartitions >

directed provenance path= (wasSubmittedBy |Submit,\v∗,wasGradedby |Grade)

< /ProvenancePartitions >

< AP > education; research < /AP >

< PP > access investigation < /PP >

</Sample Policy from the Source>

< Sample Policy from the Repository>

< subject > students; teaching staff < /subject >

< category > assignments; exam paper < /category >

< ProvenancePartitions >

directed provenance path= (wasSubmittedBy |Submit,\v∗,wasGradedby |Grade)

< /ProvenancePartitions >

< /AccessTreePS >

< AP > education; analysis < /AP >

< PP > research < /PP >

</Sample Policy from the Repository>

We propose a simple example to illustrate the purpose-based access policies on prove-

nance. Assume a user with a role of student asks to access Data(i). The policy from the

Source determines a set of allowed and prohibited purposes. Under this scenario, the users are

allowed to access Data(i) for the purposes of education & research. Similarly, the Repository

also decides that Data(i) can be accessed for education & analysis but not research. Fi-

nally, the intersection for purposes determined by Source, Repository and PD(i) is education.

Hence, Data(i) can only be accessed for education for the request.

5.3 Internal Policies Algebra

For purpose-based access policies in provenance-aware systems, internal policy algebras

are required to combine purpose sets generated by individual policies within a system. While

5.3 Internal Policies Algebra 125

external policy algebras integrate results of policies from different parties. Firstly, we explore

the demands for internal policy algebras.

Under the system assumption of this framework, the sensitivity levels of purposes can

be identifiable, because the purposes in policies are defined for the shared purpose DAGs in

a system, where the hierarchies of each purpose are initially defined. Hence, it is possible

to identify the hierarchy of each purpose within a system and further distinctively process

purposes in different hierarchies. Therefore, for internal algebras, we create functions to

process purposes with various distinct hierarchies.

In terms of the motivation, for purposes in DAG are tailored hierarchically, purposes

are usually displayed from generalisation to specialisation in the graphs, based on various

sensitivities. Semantically, under most scenarios, general purposes are less sensitive and are

more easily to grant the permission. While specific purposes are more sensitive and should be

cautious to grant the permission. Consequently, purposes in different hierarchies are merged

with different operators. For example, it enforces maximum privilege (by Addition (+)) for

general usage, and minimum privilege (by Conjunction (&)) for more specific usages.

Therefore, in this section, we firstly propose basic operations to merge purposes sets.

Then, functions that are constructed by basic operations are defined, in order to propose an

approach to merge purposes in distinctly different hierarchies.

5.3.1 Basic Operators

Basic operators are elements of constructed functions for policy algebras, and they are

classified as symmetric operators and asymmetric operators. Specifically, for a symmetric

operator, when the two expressions besides it switch, the result does not change. Namely, let

∗ be an asymmetric operator, S1 and S2 be two sets of purposes. S1 ∗ S2 = S2 ∗ S1, while,

when the sequence of two expressions beside a symmetric operator switch, the result changes.

Hence, let • be a symmetric operator, S1 ∗ S2 , S2 ∗ S1. Below, we define 5 asymmetric

operators and 1 symmetric operators, which are tailored to merge purpose sets.

• Union (+). Addition of the sets S1 and S2 results in a combined set SI , in which it

concludes all the data items from both of the sets. It merges two sets of purposes by

126 Purpose-based Access Policy on Provenance and Data Algebra

returning their union and returns the maximum scope of the purposes of both. This is

shown as:

SI = [[S1 + S2]] = [[S1]] ∪ [[S2]]

• Intersection (&). Intersection of the sets S1 and S2 returns a set of data items, in which

it contains the data items existing at both sets. Namely, it emerges two sets by returning

their intersection. Intuitively, intersection returns purposes that in both purpose sets.

This can be shown as:

SI = [[S1&S2]] = [[S1]] ∩ [[S2]]

• Difference (�). The difference of sets S1 and S2 returns data items which only appear

in one set but not both. Namely, it returns a set of purposes which are agreed by one

policy but not agreed by both.

SI = [[S1 � S2]] = [[S1 + S2]] - [[S1&S2]]

• Precedence (↑ 4). It compares the hierarchies of data items with highest hierarchies

(the top purposes) in both sets and outputs only one set with the higher top purpose.

Particularly, we define two functions to return the highest hierarchy of purposes in the

set as Max (Sm, Sn). Similarly, Min (Sm, Sn) returns the lowest hierarchy of purposes

in the set.

Operator Semantics [[]]e symmetry

S1 + S2 [[S1]]e ∪ [[S2]]e S1 + S2 = S1 + S2 (symmetric)

S1&S2 [[S1]]e ∩ [[S2]]e S1&S2 = S1&S2 (symmetric)

S1 � S2 [[S1 + S2]] - [[S1&S2]] S1 � S2 = S1 � S2 (symmetric)

S1 ↑ 4S2 Si{I=maximum(Max(S1),Max(S2))} S1 ↑ 4S2 = S1 ↑ 4S2 (symmetric)

S1 ↓ 4S2 Si{I=minimum(Max(S1),Max(S2))} S1 ↓ 4S2 = S1 ↓ 4S2 (symmetric)

S1 ↑ 5S2 Si{I=maximum(Min(S1),Min(S2))} S1 ↑ 5S2 = S1 ↑ 5S2 (symmetric)

S1 ↓ 5S2 Si{I=minimum(Min(S1),Min(S2))} S1 ↓ 5S2 = S1 ↓ 5S2 (symmetric)

S1 − S2 S1 - [[S1&S2]] S1 − S2 , S1 + S2 (asymmetric)

Table 5.1: Schema of Basic Operators

5.3 Internal Policies Algebra 127

SI = [[S1 ↑ 4S2]] (I ∈{1,2}; I = maximum {Max(Si), Max(Si)})

• Precedence (↓ 4). This compares the hierarchies of data items with the highest hierar-

chies in both sets and outputs only one set with the higher top purpose.

SI = [[S1 ↓ 4S2]] (I ∈{1,2}; I = minimum {Max(Si), Max(Si)})

• Precedence (↑ 5). This compares the hierarchies of data items with the lowest hierar-

chies (the bottom purpose) in both sets, and outputs only one set with the higher bottom

purpose.

SI = [[S1 ↑ 5S2]] (I ∈{1,2}; I = maximum {Min(Si), Min(Si)})

• Precedence (↓ 5). It compares the hierarchies of data items with the lowest hierarchies

in both sets, and outputs only one set with the lower bottom purpose.

SI = [[S1 ↓ 5S2]] (I ∈{1,2}; I = minimum {Min(Si), Min(Si)})

• Subtraction (-). Subtraction of the sets S1 and S2 returns the items in S1 subtracting

those appear in S2, which is an asymmetric operator. Namely, when two sets shift

positions beside the operator of subtraction, the result changes.

SI = [[S1 − S2]] = S1 - [[S1&S2]]

SI = [[S2 − S1]] = S2 - [[S1&S2]]

5.3.2 Functions for Internal Policy Algebras

Based on the basic data algebra operators, we define functions to process hierarchical

purpose sets. In terms of the motivation, we assume the sensitivity of purposes under a

DAG structure is hierarchical. Specifically, the more specific usages should be regarded

as the more sensitive ones to be accessed. Therefore, data algebras tend to combine two

sets of hierarchical purposes by various operators. Specifically, when combining two sets

of hierarchical purposes, we would like to conjunct lower-hierarchy purposes and take the

128 Purpose-based Access Policy on Provenance and Data Algebra

intersection of higher-hierarchy purposes to generate a combined set.

Firstly of all, we propose two approaches for dividing a set of purposes as a higher hierar-

chical subset and a lower hierarchical subset. One approach is that each hierarchy of purpose

is defined for the purpose DAG. Namely, it defines which collection of purposes within a

system is higher hierarchically and which collection of purposes is lower hierarchically. Two

sample purpose sets from the graph in Figure 5.3 are presented below to illustrate this. High

hierarchical (HH) purposes and low hierarchical (LH) purposes are defined along with the

generation of purpose DAGs, where the elements above the dashed line are lower hierarchy

purposes and purposes below the dashed line are higher hierarchy purposes. The two sample

purpose sets are:

Recordl
1
2= {Admin, Record, Analysis, Service-Maintain, Service-offers}= {Admin,

Record }HH + {Analysis, Service-Maintain, Service-offers}LH

Marketingl
1
4= {General Purpose, Marketing, Direct-use, D-Email, D-Phone, Service-

offers, Service-Updates}= {Admin, Record}HH + {Analysis, Service-Maintain, Service-

offers}LH

Under the default definition of the Purpose DAG, the purposes of the high hierarchy in

Recordl
1
2 is {Admin, Record}, while the low hierarchy purposes are {Analysis, Service-

Maintain, Service-offers}. Similarly, the high and low hierarchical sets in Marketingl
1
4 are

{Admin, Record} and {Analysis, Service-Maintain, Service-offers} respectively.

For the other approach to dividing purpose sets, it is determined by the central purposes

of the sets. The central purpose is the keyword to define a set of purposes. In the following

examples. Record and Education are the central purposes. Specifically, when two purpose

sets are merged, the central purposes are compared. The central purpose of higher hierarchy

determines the position of the parting line, where the row it stays at and below are the high

hierarchical purposes. The rest are the low hierarchical purposes. To illustrate this, we still

pick up two sample purpose sets from the graph in Figure 5.3.

5.3 Internal Policies Algebra 129

Recordl
1
2 = {Analysis, Record, Admin, General Purpose} = {Admin, Record }HH +

{Analysis, Service-Maintain, Service-offers}LH

Educationl = {Optimise, AI, Research, Study, Eduction, General Purpose} = {Optimise,

AI, Research }HH + {Study, Eduction, General Purpose}LH

To classify each purpose set as a high hierarchical set and a low hierarchical set, the

central purposes which are Record and Education should be compared first. The purposes

are displayed from top to bottom according to the order as from generalised purposes to

specific purposes, so Hierarchy (Record) > Hierarchy (Education). The row where Record

stays at and the those below are high hierarchical purposes, and the rest are low hierarchical

purposes. Therefore, the high hierarchical collections for each set are {Admin, Record }HH

and {Optimise, AI, Research }HH . All the rest are purposes of the low hierarchy.

After dividing purposes of each set as two collections based on their hierarchies, we define

the functions to merge purpose sets. Let H Ai represents high hierarchy allowed purposes,

HPi represents high hierarchy prohibited purposes, L Ai represents low allowed purposes,

and LPi represents low prohibited purposes, the u-ary operators are defined as below:

f⊕(Si,Sj) = Si ⊕ Sj =
(H Ai&H Aj)−(HPi−HPj)

(L Ai+L Aj)−(LPi−LPj)

f	(Si,Sj) = Si 	 Sj =
(H Ai&H Aj)−(HPi&HPj)

(L Ai+L Aj)−(LPi&LPj)

f⊗(Si,Sj) = Si ⊗ Sj =
(H Ai&H Aj)−(HPi−HPj)

(L Ai+L Aj)−(LPi&LPj)

f�(Si,Sj) = Si � Sj =
(H Ai&H Aj)−(HPi&HPj)

(L Ai+L Aj)−(LPi−LPj)

f�(Si,Sj) = Si � Sj =
(H Ai+H Aj)−(HPi−HPj)

(L Ai+L Aj)−(LPi&LPj)

f](Si,Sj) = Si] Sj =
(H Ai+H Aj)−(HPi−HPj)

(L Ai+L Aj)−(LPi&LPj)

fu(Si,Sj) = Si u Sj =
(H Ai+H Aj)−(HPi&HPj)

(L Ai+L Aj)−(LPi&LPj)

fe(Si,Sj) = Si e Sj =
(H Ai+H Aj)−(HPi&HPj)

(L Ai&L Aj)−(LPi&LPj)

130 Purpose-based Access Policy on Provenance and Data Algebra

fd(Si,Sj) = Si d Sj =
(H Ai+H Aj)−(HPi&HPj)

(L Ai&L Aj)−(LPi−LPj)

f�(Si,Sj) = Si � Sj =
(H Ai�H Aj)−(HPi−HPj)

(L Ai�L Aj)−(LPi&LPj)

f�(Si,Sj) = Si � Sj =
(H Ai�H Aj)−(HPi−HPi)

(L Ai+L Aj)−(LPi&LPj)

f�(Si,Sj) = Si � Sj =
(H Ai+H Aj)−(HPi−HPj)

(L Ai�L Aj)−(LPi&LPj)

f>(Si,Sj) = Si > Sj =
(H Ai�H Aj)−(HPi−HPj)

(L Ai&L Aj)−(LPi&LPj)

The functions merge purposes in different hierarchies with different operators. These

functions are utilised for internal algebras of this framework. In terms of which functions

should be used and how to combine functions as an expression, this should be determined

by each system’s default settings or the policies. The integration of policies may involve

multiple operators, hence we define the concept of FIDA expressions.

DEFINITION 9: A FIDA expression is defined as:

-If S is a set, then S is a FIDA expression;

-If S1 and S2 are FIDA expressions, so is a function f (Si, Sj).

-If function fα(Si,Sj) is a FIDA expression, fβ(Sm,Sn) is another FIDA expression, so are

fα(Si,Sj) • fβ(Sm,Sn), where • is a function.

In an expression, Intersection and Precedence operators take high priorities, while Addi-

tion and Subtraction take low priorities. For the same priority operators, calculations should

be run from left to right. For example, S1&S2 + S3 . S4 is interpreted as (S1&S2) + (S3 . S4).

A function could also merge more than two purpose sets. A FIDA expression can be

defined as in the example below:

f (S1,S2, ...Sn) =
∑n

i=1 H Ai−
∑n

i=1 HPi

�n
i=1L Ai−&n

i=1LPi

5.4 External Policy Algebra 131

5.4 External Policy Algebra

External policy algebras are tailored to merge policy results from different parties. Let us

imagine the situation where a piece of data was delivered from a source to a recipient. The

source, recipient and even data owners generate access policies for the piece of data, after

which we propose external policy algebras to merge results from various parties, in order to

generate a final intended purpose for the data.

The algebras can be generated by a server viewed as a third party or by the recipient.

However, as policies from different authorities cannot be generated from uninformed purpose

DAGs, the hierarchies of purposes are not based on the same criteria anymore. Hence, we do

not distinguish the hierarchies of purposes when sets of purposes are merged.

Following, based on basic operators defined in the previous section, we define functions

for external policy algebra, wherem and n are two parties. The functions are defined to merge

results from two parties. Further, an expression consisting of several functions could merge

various parties flexibly. The functions to merge purpose sets from multi-parties are defined

below, where AP represents allowed purposes and PP represent prohibited purposes. APm

is the allowed purposes for Sm; PPm is the prohibited purposes for Sm; APn is the allowed

purposes for Sn; PPn is the prohibited purposes for Sn.

F1(Sm,Sn) = (APm + APn) − (PPm&PPn)

F2(Sm,Sn) = (APm + APn) − (PPm − PPn)

F3(Sm,Sn) = (APm&APn) − (PPm&PPn)

F4(Sm,Sn) = (APm&APn) − (PPm − PPn)

F5(Sm,Sn) = (APm � APn) − (PPm / PPn)

F6(Sm,Sn) = (APm � APn) − (PPm . PPn)

F7(Sm,Sn) = (APm 4 APn) − (PPm � PPn)

F8(Sm,Sn) = (APm 5 APn) − (PPm&PPn)

The functions for external algebras generally produce intended purposes as IP = AP -

PP. However, the basic operators to merge the allowed purposes AP and prohibited purposes

132 Purpose-based Access Policy on Provenance and Data Algebra

PP are different. Such as F1 combines allowed purposes by Addition (+), while it takes the

intersection (&) for prohibited purposes.

Moreover, an expression to merge purpose sets from more than two parties could consist

of a set of external policy functions. This expression is defined as:

DEFINITION 10: A FIDA expression for the functions of external algebra:

-If S is a set, then S is a FIDA expression;

-If S1 and S2 are FIDA expressions, so is a function F (Si, Sj).

-If function Fα(Si,Sj) is a FIDA expression, Fβ(Sm,Sn) is another FIDA expression, so are

Fα(Si,Sj) • Fβ(Sm,Sn), where • is a function.

5.5 Evaluation

Wedid experiments to evaluate the performance of the proposed policies and data algebras.

We implement the process of policy generation and internal policy algebras and external

algebras. The purpose hierarchy has been taken into consideration for the implementation.

We process the experiments on a 3.40 GHz Intel Computer with 16GB of memory. The

machine’s operating system is Microsoft Windows 8 and the database is Oracle Database.

We set up synthetic datasets based on the version proposed by Wisconsin Benchmark [107].

To be more specific, every database consists of 3 numeric and 6 string columns, we set

up data values refer to the specification from the paper [107]. The provenance model is

OPM+ proposed in Chapter 3, and 200 purposes were generated. Particularly, in the policy

generation phrase, the 200 purposes are randomly selected to attach to policies.

After establishing provenance graphs and purposes, we tested the time span for the policy

generation. The aim to do this experiment is to compare the time costs for each type of

policies. The more complicated of a policy contains more restrictions, the longer time

requires generating the policy. To measure the time of generating a policy, it counts from

generating random provenance subgraphs, then combing with conditions and access purposes

randomly. Thus, the reported time takes the whole policy generating process into account.

We repeated the process ten times, and take the average time to draw the figure. Following,

5.6 Conclusion and Future work 133

we implemented the policy algebras proposed in this chapter as well. We compare the time

span for internal policy algebras and external policy algebras. The experiment also records

the average values of ten times of simulation. Notably, the internal policy algebras take longer

time compared with the external policy algebras, because in our framework, only the internal

policy algebras distinguish the hierarchies of purposes. Hence, internal policy algebras

calling more functions take longer time than external policy algebras in the implementation.

Figure 5.5: Experiment

Figure 5.6: A Case Study

5.6 Conclusion and Future work

In this chapter, purpose-based access policies on provenance are proposed, in order to

establish a comprehensive scope of access control mechanisms on provenance. First, we

define the policy model including syntax and semantics, which maps attributes in provenance

134 Purpose-based Access Policy on Provenance and Data Algebra

to allowed and prohibited purpose sets. The policies determine which purposes a piece

of data can be accessed for, and this is based on whether the provenance contains certain

provenance partitions. Moreover, as the sensitivities of purposes are different, the purposes

are classified as various hierarchies in this framework.

We define internal and external policy algebras for purpose-based access policies. To the

best of our knowledge, we define the functions that merge purposes in various hierarchies

by different basic operators for the first time. Moreover, external policy algebras to merge

policies from multi-parties are also created.

Pages 135-158 of this thesis have been removed as they contain published material. Please
refer to the following citation for details of the article contained in these pages.

Fan X., Varadharajan V., Hitchens M. (2015) Provenance Based Classification Access Policy
System Based on Encrypted Search for Cloud Data Storage. In: Lopez J., Mitchell C. (eds)
Information Security. ISC 2015. Lecture Notes in Computer Science, vol 9290. Springer,
Cham

DOI: https://doi.org/10.1007/978-3-319-23318-5_16

https://doi.org/10.1007/978-3-319-23318-5_16

7
Provenance-based Encryption Scheme for

Fine-grained Access Control

In this chapter, we propose an encryption scheme to implement provenance-based access

control policies. The scheme we proposed is based on an existing attribute-based encryption

scheme. The goal of the proposed technique is that the scheme could generate keys by a fast

approach when the access tree structures share similar conditions.

7.1 Introduction

Our proposed scheme could be utilised for the application of Cloud Computing. As a new

emerging computing paradigm, Cloud Computing merges techniques of utility computing,

virtual and distributed systems and service-oriented architecture [124]. In the last a few

years, cloud computing research has raised a tide of academical and industrial interest. It has

been viewed as the fifth utility[125] after water, gas, electricity, and telecommunication and

160 Provenance-based Encryption Scheme for Fine-grained Access Control

holds optimistic prospects for development. Cloud Servers provides centralised outsourced

services to reduce the cost of computing, data management, and also enhances efficiencies

and flexibility. Cloud computing models have been classified as, Software as a Service

(SaaS), Platform as a Service (PaaS) and Infrastructure as a Service (IaaS), the three main

types. As a result of its benefits, cloud computing has been widely utilised in a market, such

as web-based email (Microsoft, Google, Yahoo etc.), Dropbox, IBM’s Blue Cloud and so on.

In the market, cloud computing applications have proven to bring abundant profit for service

providers and cloud customers.

However, security and privacy concerns are some of themain obstacles to the development

and extensive utilisation of cloud computing. On the one hand, cloud servers are not entirely

trusted never to embezzle users’ documents to strive for their profit; on the other hand, as

large-scale and diversified data processing, adequate security protection against malicious

attackers is a challenge. Techniques involving preservation of security in the cloud still need

considerable improvement.

Aside from preserving confidentiality, efficient fine-granted access management is an-

other requirement for service-oriented cloud computing. Servers are expected to identify

authentications accurately and also to permit access to service to eligible users and customers

and block unauthorised access. For instance, for a company’s data storage in the cloud,

the access rights to documents/data are defined by access policies. Based on the policies,

only nominated senior managers and leaders can read some sensitive commercial strategies.

Effective access control not only supports information and service delivery but also defends

from attacks.

7.1.1 Our Contributions

In this chapter, we propose a Provenance-based Encryption (PBE) scheme for fine-grained

access control. PBE extends from ciphertext policy attribute-based access control (CP-

ABE)[21], which implements provenance-based access control policies.

We propose an assumption to implement provenance-based access control policies in

the Cloud. In the Cloud, a file could be generated by several data owners. Each data owner

generates an access control policy for the section of data they contribute. As the access control

policies are based on the provenance, PBE is able to generate keys and encrypt sections of a

7.1 Introduction 161

file according to the provenance-based access control policies.

In terms of the motivation for this proposed work, the calculation for a large number

of public keys for encrypting data is time-consuming. There is an approach that is able to

generate the keys much more efficiently when the conditions of access control policies exist

overlapping. Under provenance-based access control policy model, since the conditions of a

large number of policies are selected from a provenance graph attaching with the data. Even

though the conditions for each policy might be different, there might exist overlapping of

conditions among policies. Another reason to result in the overlapping is that the sections of

data produced by different owners shared the same history/provenance. Thus, our proposed

technique performswell to implement provenance-based access control policies by improving

the efficiency of algorithms.

To be more specific, we propose an approach to calculate keys for encryption when a tree

of access structure grows from T to T’. This is more efficient than running the encryption

according to T’ from scratch, since all the components in the old ciphertext corresponding to

the leaf nodes can be reused.

7.1.2 Chapter Organisation

The organisation of the chapter is shown as follows.

• Related work on attribute-based encryption and provenance-based access control is

presented in Section 7.2.

• In Section 7.3, we present the system model in the cloud and the security assumptions.

• In Section 7.4, the Open Provenance Model and our provenance-based access control

policy are illustrated.

• Then, followed by a preliminary in Section 7.5, the algorithms in PBE are shown in

Section 7.6.

• We prove the security of PBE and discuss its performance in Section 7.7.

• In the end, we conclude the chapter in Section 7.8.

162 Provenance-based Encryption Scheme for Fine-grained Access Control

7.2 Related Work

Here, we review attribute-based encryption (ABE) schemes. Initially, the idea of ABE

was introduced by Sahai and Waters [126] as a new type of Identity-Based Encryption (IBE)

scheme which is called Fuzzy Identify-Based Encryption in this chapter. In Fuzzy IBE, a set

of attributes is viewed as an identity, and the ciphertext is encrypted by an identityW, while

each identity is associated with a private key. Hence, a private key for an identifyW′ can

decrypt the ciphertext encrypted byW, only if the identitiesW andW′ are close to each

other, and it leaves a few open problems such as missing of expressibility of its threshold.

In ABE, private keys and ciphertext are associated with sets of attributes or access struc-

tures over attributes. If and only if private keys match encrypted attributes, then the ciphertext

can be decrypted. Based on either attributes or policies over access structures associated with

private keys, ABE schemes are classified as key-policy attribute-based encryption (KP-ABE)

and Ciphertext-policy attribute-based encryption (CP-ABE).

In 2006, an original KP-ABEwas presented by Goyal et al.[103]. In this scheme, a private

key is generated by a monotonic access tree structure, while a ciphertext is encrypted by a

set of attributes. Only if the encrypted attributes match the private keys, can the ciphertext

be decrypted? On the contrary, in CP-ABE[21] the associations with ciphertext and private

keys are switched. Namely, the access policies are utilised to encrypt, and private keys are

generated by attributes. As a result, CP-ABE is seen to be conceptually closer to classic

access control models.

However, these classic schemes cannot satisfy various access control applications. Some

extended schemes are proposed. An ABE encryption scheme linked with non-monotonic

access structure is presented by Ostrovsky et al. in 2007[127]. In this scheme, the difference

from the previous schemes is that any type of access formula over attributes can be expressed,

as the monotonic access structure was moved to non-monotonic access structure. The

algorithm was achieved by introducing an approach of revocation.

Subsequently, Wang et al. provided a hierarchical attribute-based encryption scheme

[128] which combines CP-ABE and an identity-based encryption scheme[123]. The system

for the scheme consists of four parties: root master, domain masters, data owners and users.

The private keys are generated hierarchically: the root master generates first level keys and

distributes to domain masters; then domain masters use domain master keys to generate secret

7.3 System Architecture and the Policies 163

keys for authorised users. This scheme achieves full delegation and revocation and it was

proven to be semantically secure. However, it is difficult to implement, as it does not organise

the relationship well between attributes and domain authorities. Namely, one attribute might

be managed by multiple domain authorities.

Bobby et al. proposed a ciphertext-policy attribute-set-based encryption (ASBE) scheme

[129] to support efficiency and flexibility in regulating attributes of users. In CP-ABE, at-

tributes are organised as a single set. ASBE extends it by introducing a recursive set structure.

It sets different values to attributes, which can also address revocation issues. However, a

delegation algorithm is missing from the work. Based on this paper, Wan et al.[124] intro-

duced a Hierarchical attribute-set-based encryption (HASBE) in Cloud Computing. Similar

to the system model with ASBE, this scheme achieves flexible attribute set combinations and

revocation of users. HASBE generates hierarchical keys for domain managers and authorised

users.

7.3 System Architecture and the Policies

7.3.1 System Architecutre

First of all, we propose a system assumption under which PBE performs. The system

consists of four parties which are a cloud server provider, data producers, data consumers

and a trusted authority, illustrated in Figure 7.1 below.

The cloud service provider manages files stored in the Cloud. It stores ciphertext from

data producers and allows data consumers to download ciphertext based on their own interest.

In this system, we assume that a file might be generated by multiple producers. For instance,

a doctor generates a case file for a patient. The case file could be continuing supplemented

by the diagnosis from doctors and nursing reports from nurses. In order to preserve the

confidentiality of the files, they are encrypted to store in the Cloud. However, the security

sensitivity of the sections generated by different entities might be different. The reports from

nurses could be reviewed by both doctors and nurses, but the doctors’ diagnosis can only be

accessed by doctors. It indicates that the access control policies for each section are generated

based on the provenance.

164 Provenance-based Encryption Scheme for Fine-grained Access Control

The trusted authority grants keys to data consumers based on their credentials, only

when the private keys match the corresponding access structures, can the users decrypt the

ciphertext. Data users download ciphertext of their interest and utilise their keys to decrypt

the files. The ciphertext can be encrypted by access control policies, where the encryption

keys are various combinations of attributes. The more corresponding access structures a user

can satisfy, the more sections can the user decrypt.

Figure 7.1: The System Architecture

7.3.2 Threat Model

The cloud provider is assumed untrustworthy and might be compromised by with mali-

cious users attempting to obtain the content of stored files. Hence, the files sent to the cloud

are encrypted against attack. A producer generates a piece of data and encrypts it by a set of

attributes under a structure defined by itself. The attributes could be roles of users, features

of users and processes or dependency paths from provenance.

Each user generates provenance-based access control policies for the section of data they

generated. These restrictions or conditions for different policies could be similar. Just as

the example shown in Figure 7.2, the data owner generates a section of data M and they

tailored a policy for accessing M. While another data owner generates another piece of data

M′ and developed the access control policy as the Figure 7.3. The example shows that access

7.3 System Architecture and the Policies 165

control policies for different sections can be different but might share the same conditions.

Specifically, to decrypt a ciphertext a user has to provide the following credentials: {“Faculty

of Science" | | “Faculty of Engineering"; “Female" & “>25 years old" & “Driving Licence";

“A permit to read files been graded"}. Following, the access control structure for M′ grows

which requires the users to provide one more credential (IEEE members) in order to decrypt

the section.

There are some security concerns under this system. Some users will also try to access the

files beyond their privileges. For example, a student may want to obtain the answers of exams

in advance and boosting its performance. To do so, they may collude with other students,

or even with the server. Moreover, we assume all the parties in our system is preloaded

with secret/public key pairs, and traditional challenge-response protocols can carry out entity

authentication.

Figure 7.2: Example Policy Structures A

From the example, even though the pieces of data might be encrypted by different access

structures, the access structures are relevant to each other. To be more specific, when a user’s

credentials satisfy the access structure for a section of ciphertext of a file, another piece of

ciphertext might require a user to provide one or more credentials to decrypt. In other words,

access structures for two sections in a file are relevant, and one access tree might be the

subtree for another access tree.

Our proposed scheme provides an approach to fast generate keys for the related access

control structures. Thus, a PBE scheme enables encryption plaintext based on provenance-

based access control policies to be fast and agile.

166 Provenance-based Encryption Scheme for Fine-grained Access Control

Figure 7.3: Example Policy Structures B

7.3.3 Provenance-based Access Control Policy

The provenance-based access control policies are defined by encryptors who are also

the producers of data. The policies are organised under a tree structure which is illustrated

in detail as follows. Data consumers could access a file when their credentials meet the

access control policies. Notably, in our provenance-based access policies, we employ prove-

nance partitions as access control conditions. The example provenance partitions could be:

{“Graded by professors"; “Submitted by a doctor"; “Generated by Microsoft Company"}.

These provenance partitions are recorded in provenance graphs.

7.4 Provenance-based Partitioned Encryption Scheme

7.4.1 Algorithms

Our proposed PBE includes four basic algorithms: Setup, Encrypt, EncryptPlus, KeyGen,

and Decrypt. We define each algorithm as follow:

Setup. The setup algorithm takes the implicit security parameter as input and outputs the

public parameters PK and a master key MK. It keeps MK hidden.

7.4 Provenance-based Partitioned Encryption Scheme 167

Encrypt (PK, M, T). This algorithm encrypts data with public parameters PK and the

corresponding access tree which consists of a set of attributes. It encrypts plaintext and

produces ciphertext. Only users who own attributes to satisfy its access trees could decrypt

the message.

EncryptPlus (PK, M∗,Y , T ∗). It develops access trees and generates new roots to encrypt

plaintext. This process could be repeated.

Key Generation (MK, S). The key generation algorithm generates private keys by taking

master keys MK and a set of attributes S as input. The private keys will be sent to users to

decrypt messages.

Decrypt (PK, CT, SK). The inputs of a decrypted algorithm are ciphertext; public pa-

rameters PK with access trees and private keys SK, which are a set of attributes. If users’

attributes satisfy one or more access trees, and they can decrypt the corresponding sections

of data.

7.4.2 PBE Scheme

Our PBE scheme develops from ABE schemes to implement provenance-based access

control policies. Under the system assumes that each data owner generates an access control

policy for the section of data she contributes. As the access control policies are based on the

provenance, the access control structures for the sections in a file are related. PBE is able

to generate keys and encrypt each section of a file according to the provenance-based access

control policies.

Concretely, we propose an approach to calculate keys for encryption when a tree of access

structure grows from T to T’. This is more efficient than running the encryption according

to T’ from scratch, since all the components in the old ciphertext corresponding to the leaf

nodes can be reused.

168 Provenance-based Encryption Scheme for Fine-grained Access Control

Particularly, in order to allow the method to work, we assume the root s=qR(0) of the old

tree T must be known by the producer that will grow the tree to T’ and generate a new root for

the new tree. If the producer is the same encryptor for the old ciphertext, obviously, she knows

the values. However, if the producer is different from the one who created the old ciphertext,

then the producer must obtain the value of qR(0) from the previous producer/encryptor.

Setup Initially, the setup algorithm will select a bilinear group G0 of prime order p with

generator g. Then it will randomly choose two exponents {α, β} ∈ Zp. It keeps the master

key MK (β, gα) secreatly and generates public keys as:

{PK = G0, g, h=gβ, f=g1/β, e(g,g)α}

Encrypt(PK , M , T). The encryption algorithm encrypts a messageM under the tree

access structure T . Firstly, the algorithm chooses a polynomial qx for each node x in the tree

T in a top-down manner. Starting with the root node R, the algorithm chooses a random s

∈ Zp and sets qR(0) = s. For each node x in the tree T , set the degree dx of the polynomial

qx to be one less than the threshold value kx of that node, that is, dx = kx - 1. It sets qx(0) =

qparent(x) (index(x)) and chooses dx other points randomly to define qx . Let, Y be the set of

leaf nodes in T . The ciphertext is then constructed by giving the tree access structure T and

computing

CT = (T , C̃ =M1e(g,g)αs, C =hs, ∀ y ∈ Y : Cy= gqy(0), C′y = H(att(y))qy(0))

EncryptPlus(PK , M∗, Y , T ∗). When a producer adds a piece of data message M∗ to the

original message M , if the confidentiality of M∗ is more sensitive than M , the producer de-

fines that data consumers have to provide a few more attributes than the original combination

of attributes for decrypting M∗.

The producer develops the access tree and generates a new root node, namely, the previous

tree is a subtree of the new tree. Firstly, s=qR(0) was shared with the producer to develop the

access tree. These new polynomials are generated in a down-top-down manner: it starts with

the node connecting to the previous root, in a down-top manner to the new root; then from the

new root, generating polynomials for the rest nodes in a top-down manner. It stops when all

7.4 Provenance-based Partitioned Encryption Scheme 169

the polynomials are generated. Each polynomial for new nodes is generated as: the degree dx

for new nodes’ polynomial qx is still, dx=qx-1, setting coefficient and constant as unknowns.

The polynomials should satisfy qx(0) = qparent(x) (index(x)). Hence, this polynomial gives

an equation of the unknowns. In other words, the selected random numbers have to satisfy

the equation. Then, each new node is generated one by one. When the polynomial (qR(0∗) =

s∗) for the new root node was generated, utilizing previous methods to define polynomial for

other new nodes in the tree, then, encrypt M∗ as

CT∗ = (T ∗, C̃∗ =M∗1 e(g,g)αs∗ , C∗ =hs∗ , ∀ y ∈ Y ∗ : C∗y= gqy∗(0), C′∗y = H(att(y))qy
∗(0))

Figure 7.4: Generating new polynomials

The access structure could continue to be developed by repeating the algorithm Encrypt-

Plus. Particularly, data producers can generate the new root when a threshold is “Or". In this

way, when a user’s attributes satisfy any/both sides of the subtree, the user satisfies the access

structure.

KeyGen (MK,S). The key generation algorithm will take each set of attributes as input

and generate keys based on the attributes set. It chooses a random r ∈ Zp, and random r j ∈

Zp for each attribute j ∈ Si. Then it computes the key as below

SKi = (D= g(α+r)/β, ∀ j ∈ Si: D j = gr · H(j)rj , D j
′= grj)

Decrypt (CT, SK). Data consumers utilise their private keys to decrypt ciphertext. Ci-

phertext could be decrypted when the private keys satisfy the corresponding access structure.

170 Provenance-based Encryption Scheme for Fine-grained Access Control

To decrypt a piece of ciphertext Mk , this algorithm takes a ciphertext CTk = (T , C̃k,Ck , ∀ y

∈ Y : Cy k,C
′
y k), a private key SK, which is associated with a set of attributes, and a node x

from Tk .

If the node x is a leaf node, we define i= att(x) and define as follows: if i ∈ S, then

DecryptNode(CTk ,SK,x)= e(Di,Ckx)

e(D′i,Ckx′)
= e(gr ·H(i)ri ,hqx (0))

e(gri ,H(i)qx (0)) = e(g,g)rqx(0)

If i < S, then we let DecryptNode(CTk ,SK,x)= ⊥

We now consider the case when x is not a leaf node. The algorithm DecryptNode (CTk ,

SK, x) proceeds as: for all nodes z that are children of x, it calls DecryptNode (CTk , SK, z)

and stores the output as Fz. Let Sx be an arbitrary kx − sized set of child nodes z such that

Fz ,⊥. If no such set exists then the node was not satisfied and the function returns ⊥.

Otherwise, it computes Fx and returns the following result.

Fx =
∏

z∈Sx F
∆i,S′x

(0)
z , wherei=index(z)

S′x={index(z):z∈Sx}

=
∏

z∈Sx (e(g,g)
r ·qz(0))∆i,S′x (0)

=
∏

z∈Sx (e(g,g)
r ·qparent(z)(index(z)))

∆i,S′x
(0) (by construction)

=
∏

z∈Sx (e(g,g)
r ·qx(i))

∆i,S′x
(0)

=e(g,g)r ·qx(0) (using polynomial interpolation)

Now that we have completed the definition of the function DecryptNode, the algorithm

starts by calling this function on the root node R of the tree T. If the tree is satisfied by S, we

get A= DecryptNode (CTk , SK, r)= e(g,g)rqR(0) = e(g,g)rsk . The algorithm now decrypts by

calculating

C̃k/(e(Ck,D)/A) = C̃k(e(hsk ,g(α+r)/β)/e(g,g)rsk)=Mk

7.5 Security Proof 171

7.5 Security Proof

As PBE is extended from CP-ABE, we prove the security of PBE based on the security of

CP-ABE. Namely, if any vulnerability can break our proposed scheme, it can break CP-ABE.

Hence, PBE is expected to be secure under the random oracle model and the generic bilinear

group model as CP-ABE.

7.5.1 Security Model for PBE

Next, we define a security model for our provenance-based encryption scheme. This

model describing interactions between a challenger and an adversary, allows the adversary

to query for any secret keys which are unable to decrypt the challenged ciphertext. In PBE,

the ciphertext is encrypted by an access structure and privates keys are associated with

a set of attributes. Hence, in this security model, the adversary selects an access structure

for encryption to be challenged and queries for secrets keys do not satisfy this access structure.

Setup. The challenger generates public and private keys and sends public keys to the

adversary.

Phase 1. The adversary queries master keys by sending sets of attributes S1,S2, ...Sq.

The challenger runs algorithm Key Generation to generate the secret key SKi based on the

attribute set Si and sends it back to the adversary.

Challenge. The adversary sends two equal length messages M0,M1 and a challenge

access structure T . None of the previously queried sets satisfy T . Then the challenger

selects b ∈ {0,1} randomly and encrypts Mb. Next, the ciphertext CTb will be sent back to

the challenger.

Phase 2. The adversary repeats phase 1 to send attribute sets Sq+1, Sq+2, ... for a query,

where these sets still do not satisfy the challenged access structure. The challenger calculates

corresponding keys and sends them back to the adversary.

Guess. Finally, the adversary makes a guess and outputs b′. It wins the game if b′=b.

The advantage to winning this game is defined as Pr[b′ = b] − 1/2.

172 Provenance-based Encryption Scheme for Fine-grained Access Control

7.5.2 Security Proof

Definition 1: If all polynomial time adversaries have at most a negligible advantage in

the security game, then the PBE scheme is secure.

Theorem 1: Assume there is no polytime adversary with a non-negligible advantage to

break the security of CP-ABE, then there is no polytime adversary with a non-negligible

advantage which can break the security of PBE.

Proof: We simulate PBE under the above security model. Assume there is an adversary

A against our presented PBE scheme with a non-negligible advantage. We can construct an

adversary B with nonnegligible, using A, to break CP-ABE scheme. The security model

of CP-ABE[21] consists of five algorithms which are Setup, Phase1, Challenge, Phase2, and

Guess.

• Initialisation. The adversary B gets CP-ABE public key, PK = {G, g, h=gβ, f=g1/β,

e(g,g)α}, but the adversary does not know the corresponding secret key SK = (β, gα)

for access structure A.

• Setup. Adversary B develops access structure A to generate A∗ and delivers the public

key to adversary A.

• Phase 1. In querying phase 1, adversary A queries a set of private keys S, where

S can not satisfy A∗. To answer these queries, the adversary sends them to CP-ABE

challenger and receives the private keys:

SKi = (D= g(α+r)/β, ∀ j ∈ Si: D j = gr · H(j)rj , D j
′= grj)

• Challenge. When Phase 1 stops, adversary A generate two messages M0, M1 ∈ G and

an access structure T to be challenged. B delivers M0 and M1 to CP-ABE challenger

which sent the ciphertext back, CT = (τ, C̃ =M1e(g,g)αs), C =hs, ∀ y ∈ Y : Cy= gqy(0),

C′y = H(att(y))qy(0)). Following, B calculate ciphertext for adversary A as CT∗ =

7.6 Discussion 173

(T ∗, C̃∗ =M∗1 e(g,g)αs∗ , C∗ =hs∗ , ∀ y ∈ Y ∗ : C∗y= gqy∗(0), C′∗y = H(att(y))qy
∗(0)). The

ciphertext CT∗ will be sent to A.

• Phase2. Repeating algorithms in Phase1, B answers queries from adversary A.

• Guess. In the end, adversary A make a guess b′ ∈ {0, 1}, and adversary B answers

its own game by giving b′. Based on the CP-ABE security model, the advantage of B

against PBE is

AdvB = |Pr[b = b′] − 1/2| = AdvA

The above proof indicates A cannot make a correct guess as adversary B has a nonneg-

ligible advantage against the CP-ABE scheme.

7.6 Discussion

Our scheme is extended from CP-ABE[21]. Hence we illustrate security features of PBE

comparing CP-ABE.

Fine-grained Access Control. As we employ historical transactions as attributes, our

system supports provenance-based access control policies. It supports more expressions

of policy conditions compared to CP-ABE. For instance, in this system, whether owning a

credential on the permission to “review graded files" could be set as an access restriction.

In practice, comparing traditional attributes in CP-ABE, processes performed on files might

be more significant to classify the files and further make access decisions. Introducing

transactions in provenance as attributes supports more accurate and reasonable policies.

Flexibility. File co-authors could develop new access structures upon the original access

structure based on their preferences. They could require data consumers to provide more

attributes to access their generated data, in order to enhance the security preservation of

specific content.

Efficiency. Considering the efficiency and computational cost, for both developing access

structure by data producers and also computing the hidden elements from data consumers, the

solution proposed in this chapter is efficient and has a low computational cost. Specifically,

when data consumers calculate the original root of the original access tree, based on the

174 Provenance-based Encryption Scheme for Fine-grained Access Control

result, they continue a few steps to compute roots of new access trees. This approach is

practical to implement in reality.

Expressiveness. As our scheme develops from CP-ABE rather than KP-ABE, the plain-

text is encrypted by policies, and keys are associated with attributes. Therefore, this solution

is more natural to implement access control policies.

7.7 Conclusion

In this chapter, we provide a scheme to implement fine-grained access control policies

based on provenance, which is PBE scheme. It is an extension of Attribute-based Encryption

schemes. PBE scheme encrypts ciphertext based on provenance-based access control poli-

cies, and it proposes an approach to fast generate encryption keys under related access tree

structures. Furthermore, we prove the security of PBE under the random oracle model and

the generic bilinear group model based on the security of CP-ABE. In the end, we discuss

the properties of the PBE scheme by comparing it with CP-ABE.

To competently perform rectify-

ing security service, two critical

incident response elements are

necessary: information and or-

ganisation.

Robert E. Davis

8
Conclusion

Even though provenance research has been explored in recent years, it still stays at its initial

stage. The goal of policies proposed in this thesis is that utilizing provenance as conditions

to determine whether data can be accessed or not. Two major aspects are proposed including

three access control policy frameworks involving provenance and two cryptographic schemes

to implement the policies.

Our proposed policies are based on OPM+, which supports more fine-grained access con-

trol policies. At the first time, we renovated several existing policies models by introducing

new created elements to support fine-grained access control policies involving provenance.

These new techniques serve provenance related policies at a better performance, as prove-

nance graphs usually contain a large number of records and attributes. Moreover, our policies

languages are proofed by the experiments that they are able to define provenance partitions

properly.

Following, we summarize and conclude our main contributions in the thesis one by one:

176 Conclusion

1. PACLP: A Partition-Based Access Control Policy Language for Provenance

Wepropose a fine-grained provenance access control language PACLP under the extended

OPM (OPM+). The OPM+ containing attribute sets facilitates more fine-grained access

control policies. Moreover, in this framework, various types of provenance partitions are

defined. The partitions which are a collection of connected vertices can be expressed by

XPath. Succinctly, our proposed policy language is able to definewhich provenance partitions

can (or can not) be accessed and how to transform the partitions under specific conditions.

Moreover, we also present algorithms to evaluate a request based on access control policies

and transform graphs for returning permitted provenance subgraphs to the requestors.

We did experiments to implement PACLP, which shows our proposed language models

can express more fine-grained policies. In the experiments, we measure the numbers of

provenance partitions can be expressed by PACLP and other policy model [42]. The results

indicate that PACLP could define more partitions comparing with the other model. The

experiments to simulate policy generation and individual policy results merging are also

implemented.

2. A fine-grained Policy Model for Provenance-based Access Control

We propose a fine-grained Provenance-based Access Control framework for defining

atomic targets and policy algebras, which utilises provenance as conditions to determine the

accessibility of data. Specifically, three types of atomic targets are provided. Path atomic

target only employs attributes in provenance as conditions, which implies that if certain

operations have been performed on the data, it can be accessed or not for certain requestors.

Associated atomic target takes both attributes of provenance and requests as policy conditions.

It denotes that if the requestor has performed certain operations on the targeted data, it can

be accessed or not. Both atomic targets take a form of a string of vertices linked by Xpath,

where each vertex is defined by a quaternion of attributes.

Moreover, the result of an atomic target of our provenance-based access control policy

is one value in a four-valued decision set. The atomic targets are organised under a tree

structure. New logic operators to merge the four-valued results are proposed accordingly.

We evaluate the policy generation and policy algebras under the proposed framework.

Because of the transformation from atomic targets to atomic conditions, the access control

177

section usually takes longer time compared with the target section.

3. Purpose-based Privacy Policies on Purposes and the Policy Algebras

Further, purpose-based privacy policies on provenance are proposed, in order to establish

a comprehensive scope of access control mechanisms on provenance. First, we define

the policy model including syntax and semantics. This maps attributes in provenance to

allowed and prohibited purposes sets. Particularly, the purposes with different sensitivities

are classified as various levels.

We define internal and external policy algebras for the purpose-based policies. Differing

from previous policy algebras to the best our knowledge, we are the first to define functions

to merge two purpose sets with elements in different sensitive levels by various operators.

Moreover, external policy algebras to merge policy results from multi-parties are also pre-

sented. Similar to the previous two chapters, we did experiments to evaluate the policymodel.

4. Provenance-based Classification Policy Based on Encrypted Search for Cloud

Data Storage

We propose a Provenance-based Classification Policy that is able to classify encrypted

files based on provenance. To preserve the confidentiality of provenance, the provenance

itself is in an encrypted form. Hence, we propose a scheme which enables the cloud server to

check whether the provenance contains the specific keywords without decrypting it. Namely,

the scheme allows searching encrypted provenance. Furthermore, the scheme is also able to

check the identity of users who sent these files. We have described the scheme in detail and

developed a provenance-based classification security game. In addition, we prove that the

proposed scheme is semantically secure based on a hard problem.

5. Provenance-based Hierarchical Encryption for Fine-grained Access Control in

Cloud Computing

In the end, we propose a scheme to implement fine-grained access control policies based

on provenance, which is the PBE scheme. It is an extension of Attribute-based Encryption

schemes. Sections of a piece of data might be generated by various data owners who attach

provenance-based access control policies based on their own preferences. The PBE scheme

178 Conclusion

encrypts the sections based on each access control policy, and it proposes an approach to

generate keys for encryption under related access tree structures. Furthermore, we prove

the security of PBE under the random oracle model and the generic bilinear group model

based on the security of CP-ABE. Moreover, we discuss the properties of PBE scheme by

comparing it with CP-ABE.

8.1 Future Work

In relation to the access control on provenance, but we will endeavor to solve these prob-

lems with further work in the future.

1. Mechanisms to Update Access Control Policies on Provenance

As provenance data is dynamic and develops along with continuing operations performed

on data, access control policies might be updated as required. Hence, mechanisms to delete

or change provenance partitions defined in access control policies should be proposed.

2. System Architecture

Other than simple tailoring access control policies, there are more approaches to facil-

itate access control on provenance, including designing proper system architectures. The

application to construct a personalised database by combining several useful databases will

implement statement-level access control and version management.

3. Cryptographic Schemes

Cryptographic schemes are tools to implement access control policies. Therefore, more

schemes are expected to be tailored for access control policies on provenance especially for

key management and distribution, when multi-parities generate access control policies for a

piece of data.

A
Appendix

A.1 Cryptography Tools

In this section, we introduce cryptographical tools relevant to this thesis, including group,

filed, bilinear groups, hash function, random oracle model, public-key encryption, and digital

signature.

A.1.1 Group

A group consists of a set of elements and an operation which is executed between any

two elements in the set. The formal definition of a group is described as follows:

Definition 11. (Group) A group (G,⊗) is a set G equipped with an operation ⊗, and satisfies

the following properties:

Closure. For all g, h ∈ G, g ⊗ h ∈ G;

180 Appendix

Associativity. For all g, h, η ∈ G, (g ⊗ h) ⊗ η = g ⊗ (h ⊗ η);

Identity. There exists 1G ∈ G called the identity of (G,⊗), such that 1G ⊗ g = g ⊗ 1G = g for

all g ∈ G;

Inverse. For all g ∈ G, there exists g−1 ∈ G called the inverse of g such that g ⊗ g−1 =

g−1 ⊗ g = 1G.

For simplicity, a group (G,⊗) is often denoted as G when the operation ⊗ is clear. The

number of the elements in G is called the order of G and denoted as |G |. A group G is a

finite group if |G | is finite; otherwise, it is an infinite group. A group G is an Abelian group

if for all g, h ∈ G, g ⊗ h = h ⊗ g.

Let G(1`) be a group generator which takes as input 1` and outputs a group G with order

p, namely G(1`) → (p,G).

Definition 12. (Order of Group Element) Suppose that g ∈ G, the order of g in G is the least

i ∈ Z+ such that gi = 1G. If for all i ∈ Z+, gi , 1G, the order of g is infinite. The order of g

is denoted as ord(g).

Especially, if any element in a group G can be expressed by a specially element in G, G

is called as a cyclic group. The formal definition of a cyclic group is as follows:

Definition 13. (Cyclic Group.) A group G is a cyclic group if there exists g ∈ G, for all

h ∈ G, there exists i ∈ Z such that h = gi. The element g is called as a generator of the

group G. G is said to be generated by g and denoted as G = 〈g〉.

A.1.2 Field

A field consists of a set of elements and two operations defined between any two elements

in the set. The formal definition of a field is described as follows.

Definition 14. (Field) A field (F,⊕,⊗) consists of a set F and two operations: addition ⊕ and

multiplication ⊗, and satisfies the following properties.

Addition Group. (F,⊕) is an Abelian group. The identity of the group (F,⊕) is denoted as 0F
and called additive identity or zero-element;

A.1 Cryptography Tools 181

Multiplication Group. Let F∗ = F − {0F}. (F∗,⊗) is an Abelian group. The identity of the

group (F∗,⊗) is denoted as 1F and called as multiplicative identity;

Distributivity. For all g, h, η ∈ F, (g ⊕ h) ⊗ η = (g ⊗ η) ⊕ (h ⊗ η).

A.1.3 Bilinear Maps

Let G1 and G2 be two groups of multiplicative cyclic groups of prime order p, and g be a

generator of G, A bilinear map is a map e: G*G→ G with the following properties:

1. Bilinearity: for all u, v ∈ G and a, b ∈ Zp∗, e(ua, vb) = e(u, v)ab.

2. Non-degeneracy: e(g,g), 1.

3. Computable: for any u,v ∈ G, e(u,v) can be computed.

A.1.4 Bilinear Groups

In this section, we review the knowledge related to bilinear group.

Definition 15. (Bilinear Map [78]) Suppose that G1, G2 and GT are three cyclic groups with

the same order p. Let g and h be the generators of G1 and G2, respectively. A bilinear map

(pairing) is a map e : G1 × G2 → GT satisfying the following properties :

Bilinearity. For all x ∈ G1, y ∈ G2 and a, b ∈ Zp, e(xa, yb) = e(x, y)ab.

Non-degeneracy. e(g, h) , 1GT where 1GT is the identity of the group GT .

Computability. For all x ∈ G1 and y ∈ G2, there exists an efficient algorithm to compute

e(x, y).

Definition 16. (Bilinear Groups [130]) G1,G2, and GT constitute a bilinear group if there

exists a bilinear map e : G1 × G2 → GT , where |G1 | = |G2 | = |GT | = p.

Galbraith, Paterson and Smart [130] divided pairing operations used in cryptography into

three types:

• G1 = G2;

182 Appendix

• G1 , G2, there exists an efficiently computable homomorphism map ψ : G1 → G2;

• G1 , G2, there are no efficiently computable homomorphism maps between groups

G1 and G2.

We say that a pairing is symmetric if G1 = G2 and denote the symmetric bilinear group

as (e, p,G1,GT). Pairing is often constructed on suitable elliptic curves, so its efficiency is

determined by the selected elliptic curves. When selecting elliptic curves for a pairing, two

factors must be considered: the group size l of the elliptic curves and the embedding degree

d. Generally, to achieve the security of 1,024-bit RSA, the two parameters l and d should

satisfy l × d ≥ 1,024 [131, 132].

In the rest of this thesis, we denote GG(1`) → (e, p,G1,G2,GT) as a bilinear group

generator which takes as input 1` and outputs bilinear groups (e, p,G1,G2,GT) with order p

and a bilinear map e : G1 × G2 → GT .

A.1.5 Hash Function

Carter and Wegman [133] introduced the universal classes of hash functions and divided

them into tree types. Roughly speaking, a hash function H : {0,1}∗ → {0,1}λ is a deter-

ministic function which maps a bit string with any length to a bit string with fixed length λ.

A hash function should meet the following properties [134]:

• Mixing Transformation. The output of H should be computationally indistinguishable

from a uniform binary string in [0,2λ];

• Pre-image Resistance. Given a value y, it is computationally infeasible to find a value

x such that y = H(x);

• Collusion Resistance. It is computationally infeasible to find x , y such that H(x) =

H(y).

Hash function is an important cryptographical primitive and has been used as a building

block to design encryption schemes [117], digital signature schemes[135], message authen-

tication code (MAC) scheme [136], etc.

A.2 Access Tree 183

A.1.6 Random Oracle Model

A hash function should satisfy the mixing transformation property, namely, the output

of a hash function is computationally indistinguishable from the uniform distribution over

its output’s space. If the output of a hash function is uniform distribution over its output’s

space, it is a very powerful and ideal hash function called random oracle [134]. A random

oracle is a powerful hash function as it combines the properties: deterministic, efficient and

uniform output. Furthermore, a random oracle is an ideal hash function as there is nothing

so powerful in computing mechanism or machinery in current computing models.

Bellare and Rogaway [135] introduced the notion of random oracle model. In this model,

a special entity called Simulator can simulate every party’s behavior. So, whenever a party

wants to obtain the output of a random oracleH on a value x, he must make a random oracle

query on the value x to the Simulator. The Simulatormaintains aH -table consisting of pairs

(z,H(z)). For a query on the value x, the Simulator checks whether x is listed in the table. If

it is in the table, the Simulator responds with the value H(x) (deterministic); otherwise, the

Simulator creates a new valueH(x) uniformly at random from the output’s space ofH , adds

the pair (x,H(x)) to the table and responds withH(x) (uniform).

Random oracle model is a very effective tool to prove the security of cryptographic

protocols. Generally, protocols designed in this model are more efficient than those designed

in a standard model, whereas, a scheme even though it is proven to be secure in the random

oracle model does not necessarily guarantee that it is secure in the standard model [137].

Unless otherwise specified, by saying a scheme is secure, we mean that it is secure in the

standard model in this thesis.

A.2 Access Tree

Definition 1 (Access Structure[138]). We assume {P1,P2, ...Pn} to be a set of parties. A

collection A ∈ 2{P1,P2,...Pn} is monotone if ∀ B,C: if B ∈ A and B ⊆ C then C ∈ A. An access

structure (respectively, monotone access structure) is a collection (respectively, monotone

collection) A of non-empty subsets of {P1,P2, ...Pn}, i.e., A∈ 2{P1,P2,...Pn} \{∅}. The sets in

A are called the authorised sets, and the sets not in A are called the unauthorised sets. In our

policies, the parties are taken as attributes. Then, the access structure A contains a set of

184 Appendix

authorised attributes.

Access Tree T [21]. Let T be a tree with root r. The leaf nodes are set as attributes, and

each non-leaf node represents a threshold gate which is described by a threshold value and

its children. If numx is the number of children of a node x and kx is its threshold value, then

0 < kx < numx . When kx = 1, the threshold gate is an OR gate; when kx = numx , it is an

AND gate; when 1 < kx < numx , it satisfies at least any kx attributes.

Satisfying an Access Tree[21]. Let T be an access tree with root r. Assume Tx(r) is a

subtree of T with a root node x. For every subtree, if x is a non-leaf node, it returns 1 if and

only if at least kx of its children nodes returns 1; if x is a leaf node, it returns 1 if the attribute

satisfies x or belongs to a subclass of x.

Attributes of the Access Tree. In our proposed system, the attributes could be credentials

on user’s roles, features, processes executed on data, dependencies paths from provenance

etc.

References

[1] L. Moreau, B. Clifford, J. Freire, J. Futrelle, Y. Gil, P. T. Groth, N. Kwasnikowska,

S. Miles, P. Missier, J. Myers, B. Plale, Y. Simmhan, E. G. Stephan, and J. V. den

Bussche. The open provenance model core specification (v1.1). pp. 743–756 (2011).

[2] Q. Ni, S. Xu, E. Bertino, R. S. Sandhu, and W. Han. An access control language

for a general provenance model. In Secure Data Management, 6th VLDB Workshop,

SDM 2009, Lyon, France, August 28, 2009. Proceedings, pp. 68–88 (2009). URL

http://dx.doi.org/10.1007/978-3-642-04219-5_5.

[3] L. Sun, J. Park, D. Nguyen, and R. S. Sandhu. A provenance-aware access control

framework with typed provenance. IEEE Trans. Dependable Sec. Comput. 13(4), 411

(2016). URL http://dx.doi.org/10.1109/TDSC.2015.2410793.

[4] A. M. Bates, B. Mood, M. Valafar, and K. R. B. Butler. Towards secure provenance-

based access control in cloud environments. In Third ACM Conference on Data and

Application Security and Privacy, CODASPY’13, San Antonio, TX, USA, February 18-

20, 2013, pp. 277–284 (2013). URL http://doi.acm.org/10.1145/2435349.2435389.

[5] L. Fang, W. Susilo, C. Ge, and J. Wang. Public key encryption with keyword search

secure against keyword guessing attacks without random oracle. Inf. Sci. 238, 221

(2013). URL http://dx.doi.org/10.1016/j.ins.2013.03.008.

[6] W. Yau, S. Heng, and B. Goi. Off-line keyword guessing attacks on recent public key

encryption with keyword search schemes. In Autonomic and Trusted Computing, 5th

International Conference, ATC 2008, Oslo, Norway, June 23-25, 2008, Proceedings,

pp. 100–105 (2008). URL http://dx.doi.org/10.1007/978-3-540-69295-9_10.

http://dx.doi.org/10.1007/978-3-642-04219-5_5
http://dx.doi.org/10.1109/TDSC.2015.2410793
http://doi.acm.org/10.1145/2435349.2435389
http://dx.doi.org/10.1016/j.ins.2013.03.008
http://dx.doi.org/10.1007/978-3-540-69295-9_10

186 References

[7] D. Boneh, G. D. Crescenzo, R. Ostrovsky, and G. Persiano. Public key encryption

with keyword search. In Advances in Cryptology - EUROCRYPT 2004, International

Conference on the Theory and Applications of Cryptographic Techniques, Interlaken,

Switzerland, May 2-6, 2004, Proceedings, pp. 506–522 (2004). URL http://dx.doi.

org/10.1007/978-3-540-24676-3_30.

[8] D. J. Park, K. Kim, and P. J. Lee. Public key encryption with conjunctive field keyword

search. In Information Security Applications, 5th International Workshop, WISA 2004,

Jeju Island, Korea, August 23-25, 2004, Revised Selected Papers, pp. 73–86 (2004).

URL http://dx.doi.org/10.1007/978-3-540-31815-6_7.

[9] J. Baek, R. Safavi-Naini, and W. Susilo. Public key encryption with keyword search

revisited. In Computational Science and Its Applications - ICCSA 2008, International

Conference, Perugia, Italy, June 30 - July 3, 2008, Proceedings, Part I, pp. 1249–1259

(2008). URL http://dx.doi.org/10.1007/978-3-540-69839-5_96.

[10] J. Baek, R. Safavi-Naini, and W. Susilo. On the integration of public key data encryp-

tion and public key encryption with keyword search. In Information Security, 9th Inter-

national Conference, ISC 2006, Samos Island, Greece, August 30 - September 2, 2006,

Proceedings, pp. 217–232 (2006). URL http://dx.doi.org/10.1007/11836810_16.

[11] A. Cuzzocrea. Big data provenance: State-of-the-art analysis and emerging research

challenges. In Proceedings of the Workshops of the EDBT/ICDT 2016 Joint Confer-

ence, EDBT/ICDTWorkshops 2016, Bordeaux, France, March 15, 2016. (2016). URL

http://ceur-ws.org/Vol-1558/paper37.pdf.

[12] R. Sandhu and P.Samarati. Access control: Principles and practice. IEEE Communi-

cations Magazine(Sept.) pp. 40–48 (1994).

[13] L. Kerr and J. Alves-Foss. Combining mandatory and attribute-based access control.

In 49th Hawaii International Conference on System Sciences, HICSS 2016, Koloa,

HI, USA, January 5-8, 2016, pp. 2616–2623 (2016). URL http://dx.doi.org/10.1109/

HICSS.2016.328.

[14] D. Nguyen, J. Park, and R. S. Sandhu. A provenance-based access control model for

dynamic separation of duties. InEleventh Annual International Conference on Privacy,

Security and Trust, PST 2013, 10-12 July, 2013, Tarragona, Catalonia, Spain, July

10-12, 2013, pp. 247–256 (2013). URL http://dx.doi.org/10.1109/PST.2013.6596060.

http://dx.doi.org/10.1007/978-3-540-24676-3_30
http://dx.doi.org/10.1007/978-3-540-24676-3_30
http://dx.doi.org/10.1007/978-3-540-31815-6_7
http://dx.doi.org/10.1007/978-3-540-69839-5_96
http://dx.doi.org/10.1007/11836810_16
http://ceur-ws.org/Vol-1558/paper37.pdf
http://dx.doi.org/10.1109/HICSS.2016.328
http://dx.doi.org/10.1109/HICSS.2016.328
http://dx.doi.org/10.1109/PST.2013.6596060

References 187

[15] O. Benjelloun, A. D. Sarma, A. Y. Halevy, M. Theobald, and J. Widom. Databases

with uncertainty and lineage. VLDB J. 17(2), 243 (2008). URL http://dx.doi.org/10.

1007/s00778-007-0080-z.

[16] P. Buneman, A. Chapman, and J. Cheney. Provenance management in curated

databases. In Proceedings of the ACM SIGMOD International Conference on Man-

agement of Data, Chicago, Illinois, USA, June 27-29, 2006, pp. 539–550 (2006). URL

http://doi.acm.org/10.1145/1142473.1142534.

[17] M. K. Anand, S. Bowers, T. M. McPhillips, and B. Ludäscher. Efficient provenance

storage over nested data collections. In EDBT 2009, 12th International Conference on

Extending Database Technology, Saint Petersburg, Russia, March 24-26, 2009, Pro-

ceedings, pp. 958–969 (2009). URL http://doi.acm.org/10.1145/1516360.1516470.

[18] T. Heinis and G. Alonso. Efficient lineage tracking for scientific workflows. In Pro-

ceedings of the ACM SIGMOD International Conference on Management of Data,

SIGMOD 2008, Vancouver, BC, Canada, June 10-12, 2008, pp. 1007–1018 (2008).

URL http://doi.acm.org/10.1145/1376616.1376716.

[19] J. Crampton and C. Morisset. Ptacl: A language for attribute-based access control

in open systems. In Principles of Security and Trust - First International Conference,

POST 2012, Held as Part of the European Joint Conferences on Theory and Practice

of Software, ETAPS 2012, Tallinn, Estonia, March 24 - April 1, 2012, Proceedings,

pp. 390–409 (2012). URL http://dx.doi.org/10.1007/978-3-642-28641-4_21.

[20] D. Boneh and M. K. Franklin. Identity-based encryption from the weil pairing.

In Advances in Cryptology - CRYPTO 2001, 21st Annual International Cryptology

Conference, Santa Barbara, California, USA, August 19-23, 2001, Proceedings, pp.

213–229 (2001). URL http://dx.doi.org/10.1007/3-540-44647-8_13.

[21] J. Bethencourt, A. Sahai, and B.Waters. Ciphertext-policy attribute-based encryption.

In 2007 IEEE Symposium on Security and Privacy (S&P 2007), 20-23 May 2007,

Oakland, California, USA, pp. 321–334 (2007). URL http://dx.doi.org/10.1109/SP.

2007.11.

[22] S. B. Davidson and S. Roy. Provenance: Privacy and security .

http://dx.doi.org/10.1007/s00778-007-0080-z
http://dx.doi.org/10.1007/s00778-007-0080-z
http://doi.acm.org/10.1145/1142473.1142534
http://doi.acm.org/10.1145/1516360.1516470
http://doi.acm.org/10.1145/1376616.1376716
http://dx.doi.org/10.1007/978-3-642-28641-4_21
http://dx.doi.org/10.1007/3-540-44647-8_13
http://dx.doi.org/10.1109/SP.2007.11
http://dx.doi.org/10.1109/SP.2007.11

188 References

[23] B. Lee, A. Awad, and M. Awad. Towards secure provenance in the cloud: A survey.

In 8th IEEE/ACM International Conference on Utility and Cloud Computing, UCC

2015, Limassol, Cyprus, December 7-10, 2015, pp. 577–582 (2015). URL http:

//doi.ieeecomputersociety.org/10.1109/UCC.2015.102.

[24] Y. S. Tan, R. K. L. Ko, and G. Holmes. Security and data accountability in distributed

systems: A provenance survey. In 10th IEEE International Conference on High

Performance Computing and Communications & 2013 IEEE International Conference

on Embedded and Ubiquitous Computing, HPCC/EUC 2013, Zhangjiajie, China,

November 13-15, 2013, pp. 1571–1578 (2013). URL https://doi.org/10.1109/HPCC.

and.EUC.2013.221.

[25] Y. Simmhan, B. Plale, and D. Gannon. A survey of data provenance in e-science. SIG-

MOD Record 34(3), 31 (2005). URL http://doi.acm.org/10.1145/1084805.1084812.

[26] N. N. Vijayakumar and B. Plale. Towards low overhead provenance tracking in

near real-time stream filtering. In Provenance and Annotation of Data, International

Provenance and Annotation Workshop, IPAW 2006, Chicago, IL, USA, May 3-5, 2006,

Revised Selected Papers, pp. 46–54 (2006). URL https://doi.org/10.1007/11890850_6.

[27] A. Lesas, O. Boucelma, and J. Lacroix. PBAC4M: provenance-based access con-

trol for mobile. In Proceedings of the 14th EAI International Conference on Mobile

and Ubiquitous Systems: Computing, Networking and Services, Melbourne, Aus-

tralia, November 7-10, 2017., pp. 529–530 (2017). URL http://doi.acm.org/10.1145/

3144457.3144513.

[28] T. Ma, H. Wang, J. Cao, J. Yong, and Y. Zhao. Access control management with

provenance in healthcare environments. In 20th IEEE International Conference on

Computer Supported Cooperative Work in Design, CSCWD 2016, Nanchang, China,

May 4-6, 2016, pp. 545–550 (2016). URL https://doi.org/10.1109/CSCWD.2016.

7566048.

[29] The U.S. Public Law. 107-204 (The Public Company Accounting Reform and Investor

Protection Act, 2002).

[30] L. Moreau and I. T. Foster, eds. Provenance and Annotation of Data, International

Provenance and Annotation Workshop, IPAW 2006, Chicago, IL, USA, May 3-5, 2006,

http://doi.ieeecomputersociety.org/10.1109/UCC.2015.102
http://doi.ieeecomputersociety.org/10.1109/UCC.2015.102
https://doi.org/10.1109/HPCC.and.EUC.2013.221
https://doi.org/10.1109/HPCC.and.EUC.2013.221
http://doi.acm.org/10.1145/1084805.1084812
https://doi.org/10.1007/11890850_6
http://doi.acm.org/10.1145/3144457.3144513
http://doi.acm.org/10.1145/3144457.3144513
https://doi.org/10.1109/CSCWD.2016.7566048
https://doi.org/10.1109/CSCWD.2016.7566048

References 189

Revised Selected Papers, vol. 4145 of Lecture Notes in Computer Science (Springer,

2006).

[31] J. Freire, D. Koop, and L. Moreau, eds. Provenance and Annotation of Data and

Processes, Second International Provenance and Annotation Workshop, IPAW 2008,

Salt Lake City, UT, USA, June 17-18, 2008. Revised Selected Papers, vol. 5272 of

Lecture Notes in Computer Science (Springer, 2008).

[32] D. L. McGuinness, J. Michaelis, and L. Moreau, eds. Provenance and Annotation

of Data and Processes - Third International Provenance and Annotation Workshop,

IPAW 2010, Troy, NY, USA, June 15-16, 2010. Revised Selected Papers, vol. 6378 of

Lecture Notes in Computer Science (Springer, 2010). URL http://dx.doi.org/10.1007/

978-3-642-17819-1.

[33] P. T. Groth and J. Frew, eds. Provenance and Annotation of Data and Processes - 4th

International Provenance and Annotation Workshop, IPAW 2012, Santa Barbara, CA,

USA, June 19-21, 2012, Revised Selected Papers, vol. 7525 of Lecture Notes in Com-

puter Science (Springer, 2012). URL http://dx.doi.org/10.1007/978-3-642-34222-6.

[34] B. Ludäscher andB. Plale, eds. Provenance andAnnotation ofData andProcesses - 5th

International Provenance and Annotation Workshop, IPAW 2014, Cologne, Germany,

June 9-13, 2014. Revised Selected Papers, vol. 8628 of Lecture Notes in Computer

Science (Springer, 2015). URL http://dx.doi.org/10.1007/978-3-319-16462-5.

[35] E. R. Lindgreen and I. S. Herschberg. On the validity of the bell-la padula model. Com-

puters & Security 13(4), 317 (1994). URL http://dx.doi.org/10.1016/0167-4048(94)

90023-X.

[36] R. S. Sandhu. On five definitions of data integrity. In Database Security, VII: Status

and Prospects, Proceedings of the IFIP WG11.3 Working Conference on Database

Security, Lake Guntersville, Alabama, USA, 12-15 September, 1993, pp. 257–267

(1993).

[37] R. Zhou, C. Xu, W. Li, and J. Zhao. An id-based hierarchical access control scheme

with constant size public parameter. I. J. Network Security 18(5), 960 (2016). URL

http://ijns.femto.com.tw/contents/ijns-v18-n5/ijns-2016-v18-n5-p960-968.pdf.

[38] P. D. McDaniel. Data provenance and security. IEEE Security & Privacy 9(2), 83

(2011). URL https://doi.org/10.1109/MSP.2011.27.

http://dx.doi.org/10.1007/978-3-642-17819-1
http://dx.doi.org/10.1007/978-3-642-17819-1
http://dx.doi.org/10.1007/978-3-642-34222-6
http://dx.doi.org/10.1007/978-3-319-16462-5
http://dx.doi.org/10.1016/0167-4048(94)90023-X
http://dx.doi.org/10.1016/0167-4048(94)90023-X
http://ijns.femto.com.tw/contents/ijns-v18-n5/ijns-2016-v18-n5-p960-968.pdf
https://doi.org/10.1109/MSP.2011.27

190 References

[39] F. A. Bhuyan, S. Lu, R. G. Reynolds, I. Ahmed, and J. Zhang. Quality analysis for

scientific workflow provenance access control policies. In 2018 IEEE International

Conference on Services Computing, SCC 2018, San Francisco, CA, USA, July 2-7,

2018, pp. 261–264 (2018). URL https://doi.org/10.1109/SCC.2018.00044.

[40] L. González-Manzano, M. Slaymaker, J. M. de Fuentes, and D. Vayenas.

Soneuconabcpro: An access control model for social networks with translucent user

provenance. In Security and Privacy in Communication Networks - SecureComm

2017 International Workshops, ATCS and SePrIoT, Niagara Falls, ON, Canada, Oc-

tober 22-25, 2017, Proceedings, pp. 234–252 (2017). URL https://doi.org/10.1007/

978-3-319-78816-6_17.

[41] U. Braun, A. Shinnar, and M. I. Seltzer. Securing provenance. In 3rd USENIX

Workshop on Hot Topics in Security, HotSec’08, San Jose, CA, USA, July 29, 2008,

Proceedings (2008). URL http://www.usenix.org/events/hotsec08/tech/full_papers/

braun/braun.pdf.

[42] T. Cadenhead, V. Khadilkar, M. Kantarcioglu, and B. M. Thuraisingham. A language

for provenance access control. InFirst ACMConference onData andApplication Secu-

rity and Privacy, CODASPY 2011, San Antonio, TX, USA, February 21-23, 2011, Pro-

ceedings, pp. 133–144 (2011). URL http://doi.acm.org/10.1145/1943513.1943532.

[43] L. Moreau. The foundations for provenance on the web. Foundations and Trends in

Web Science 2(2-3), 99 (2010). URL http://dx.doi.org/10.1561/1800000010.

[44] R. Dánger, V. Curcin, P. Missier, and J. Bryans. Access control and view generation

for provenance graphs. Future Generation Comp. Syst. 49, 8 (2015). URL http:

//dx.doi.org/10.1016/j.future.2015.01.014.

[45] L. Chen, P. Edwards, J. D. Nelson, and T. J. Norman. An access control model

for protecting provenance graphs. In 13th Annual Conference on Privacy, Security

and Trust, PST 2015, Izmir, Turkey, July 21-23, 2015, pp. 125–132 (2015). URL

http://dx.doi.org/10.1109/PST.2015.7232963.

[46] K. Kuwabara and S. Yasunaga. Use of metadata for access control and version

management in RDF database. In Knowledge-Based and Intelligent Information and

Engineering Systems - 15th International Conference, KES 2011, Kaiserslautern,

https://doi.org/10.1109/SCC.2018.00044
https://doi.org/10.1007/978-3-319-78816-6_17
https://doi.org/10.1007/978-3-319-78816-6_17
http://www.usenix.org/events/hotsec08/tech/full_papers/braun/braun.pdf
http://www.usenix.org/events/hotsec08/tech/full_papers/braun/braun.pdf
http://doi.acm.org/10.1145/1943513.1943532
http://dx.doi.org/10.1561/1800000010
http://dx.doi.org/10.1016/j.future.2015.01.014
http://dx.doi.org/10.1016/j.future.2015.01.014
http://dx.doi.org/10.1109/PST.2015.7232963

References 191

Germany, September 12-14, 2011, Proceedings, Part I, pp. 326–336 (2011). URL

http://dx.doi.org/10.1007/978-3-642-23851-2_34.

[47] E. Bertino, A. A. Jabal, S. B. Calo, C. Makaya, M. Touma, D. C. Verma, and

C. Williams. Provenance-based analytics services for access control policies. In

2017 IEEE World Congress on Services, SERVICES 2017, Honolulu, HI, USA, June

25-30, 2017, pp. 94–101 (2017). URL https://doi.org/10.1109/SERVICES.2017.24.

[48] F. Capobianco, C. Skalka, and T. Jaeger. ACCESSPROV: tracking the provenance

of access control decisions. In 9th USENIX Workshop on the Theory and Practice

of Provenance, TaPP 2017, Seattle, WA, USA, June 23, 2017. (2017). URL https:

//www.usenix.org/conference/tapp17/workshop-program/presentation/capobianco.

[49] J. Park, D. Nguyen, and R. S. Sandhu. A provenance-based access control model.

In Tenth Annual International Conference on Privacy, Security and Trust, PST 2012,

Paris, France, July 16-18, 2012, pp. 137–144 (2012). URL http://dx.doi.org/10.1109/

PST.2012.6297930.

[50] J. Lacroix and O. Boucelma. Provenance-based access control in the cloud. In 2013

IEEE International Conference on Services Computing, Santa Clara, CA, USA, June

28 - July 3, 2013, pp. 755–756 (2013). URL http://dx.doi.org/10.1109/SCC.2013.51.

[51] D. Nguyen, J. Park, and R. S. Sandhu. Adopting provenance-based access control in

openstack cloud iaas. In Network and System Security - 8th International Conference,

NSS 2014, Xi’an, China, October 15-17, 2014, Proceedings, pp. 15–27 (2014). URL

http://dx.doi.org/10.1007/978-3-319-11698-3_2.

[52] M. Decat, B. Lagaisse, and W. Joosen. Scalable and secure concurrent evaluation of

history-based access control policies. In Proceedings of the 31st Annual Computer

Security Applications Conference, Los Angeles, CA, USA, December 7-11, 2015, pp.

281–290 (2015). URL http://doi.acm.org/10.1145/2818000.2818008.

[53] F. Yan and P. W. L. Fong. Efficient IRM enforcement of history-based access control

policies. In Proceedings of the 2009 ACM Symposium on Information, Computer and

Communications Security, ASIACCS 2009, Sydney, Australia, March 10-12, 2009, pp.

35–46 (2009). URL http://doi.acm.org/10.1145/1533057.1533066.

http://dx.doi.org/10.1007/978-3-642-23851-2_34
https://doi.org/10.1109/SERVICES.2017.24
https://www.usenix.org/conference/tapp17/workshop-program/presentation/capobianco
https://www.usenix.org/conference/tapp17/workshop-program/presentation/capobianco
http://dx.doi.org/10.1109/PST.2012.6297930
http://dx.doi.org/10.1109/PST.2012.6297930
http://dx.doi.org/10.1109/SCC.2013.51
http://dx.doi.org/10.1007/978-3-319-11698-3_2
http://doi.acm.org/10.1145/2818000.2818008
http://doi.acm.org/10.1145/1533057.1533066

192 References

[54] P. A. Bonatti, S. D. C. di Vimercati, and P. Samarati. An algebra for composing

access control policies. ACM Trans. Inf. Syst. Secur. 5(1), 1 (2002). URL http:

//doi.acm.org/10.1145/504909.504910.

[55] D. Wijesekera and S. Jajodia. A propositional policy algebra for access control. ACM

Trans. Inf. Syst. Secur. 6(2), 286 (2003). URL http://doi.acm.org/10.1145/762476.

762481.

[56] P. Rao, D. Lin, E. Bertino, N. Li, and J. Lobo. An algebra for fine-grained integration of

XACML policies. In SACMAT 2009, 14th ACM Symposium on Access Control Models

and Technologies, Stresa, Italy, June 3-5, 2009, Proceedings, pp. 63–72 (2009). URL

http://doi.acm.org/10.1145/1542207.1542218.

[57] Q. Ni, E. Bertino, and J. Lobo. D-algebra for composing access control policy

decisions. In Proceedings of the 2009 ACM Symposium on Information, Computer

and Communications Security, ASIACCS 2009, Sydney, Australia, March 10-12, 2009,

pp. 298–309 (2009). URL http://doi.acm.org/10.1145/1533057.1533097.

[58] C. Hanson, T. Berners-Lee, L. Kagal, G. J. Sussman, and D. J. Weitzner. Data-

purpose algebra: Modeling data usage policies. In 8th IEEE International Workshop

on Policies for Distributed Systems and Networks (POLICY 2007), 13-15 June 2007,

Bologna, Italy, pp. 173–177 (2007). URL http://doi.ieeecomputersociety.org/10.1109/

POLICY.2007.14.

[59] E. Bertino, G. Ghinita, M. Kantarcioglu, D. Nguyen, J. Park, R. S. Sandhu, S. Sultana,

B. M. Thuraisingham, and S. Xu. A roadmap for privacy-enhanced secure data

provenance. J. Intell. Inf. Syst. 43(3), 481 (2014). URL http://dx.doi.org/10.1007/

s10844-014-0322-7.

[60] S. R. Hussain, C. Wang, S. Sultana, and E. Bertino. Secure data provenance compres-

sion using arithmetic coding in wireless sensor networks. In IEEE 33rd International

Performance Computing and Communications Conference, IPCCC 2014, Austin, TX,

USA, December 5-7, 2014, pp. 1–10 (2014). URL http://dx.doi.org/10.1109/PCCC.

2014.7017068.

[61] J. Li, X. Chen, Q. Huang, and D. S. Wong. Digital provenance: Enabling secure data

forensics in cloud computing. Future Generation Comp. Syst. 37, 259 (2014). URL

http://dx.doi.org/10.1016/j.future.2013.10.006.

http://doi.acm.org/10.1145/504909.504910
http://doi.acm.org/10.1145/504909.504910
http://doi.acm.org/10.1145/762476.762481
http://doi.acm.org/10.1145/762476.762481
http://doi.acm.org/10.1145/1542207.1542218
http://doi.acm.org/10.1145/1533057.1533097
http://doi.ieeecomputersociety.org/10.1109/POLICY.2007.14
http://doi.ieeecomputersociety.org/10.1109/POLICY.2007.14
http://dx.doi.org/10.1007/s10844-014-0322-7
http://dx.doi.org/10.1007/s10844-014-0322-7
http://dx.doi.org/10.1109/PCCC.2014.7017068
http://dx.doi.org/10.1109/PCCC.2014.7017068
http://dx.doi.org/10.1016/j.future.2013.10.006

References 193

[62] S. S. M. Chow, C. Chu, X. Huang, J. Zhou, and R. H. Deng. Dynamic secure cloud

storage with provenance. In Cryptography and Security: From Theory to Applications

- Essays Dedicated to Jean-Jacques Quisquater on the Occasion of His 65th Birthday,

pp. 442–464 (2012). URL http://dx.doi.org/10.1007/978-3-642-28368-0_28.

[63] D. Boneh, G. D. Crescenzo, R. Ostrovsky, and G. Persiano. Public key encryption

with keyword search. IACR Cryptology ePrint Archive 2003, 195 (2003). URL

http://eprint.iacr.org/2003/195.

[64] D. Boneh and B. Waters. Conjunctive, subset, and range queries on encrypted data.

In Theory of Cryptography, 4th Theory of Cryptography Conference, TCC 2007, Am-

sterdam, The Netherlands, February 21-24, 2007, Proceedings, pp. 535–554 (2007).

URL http://dx.doi.org/10.1007/978-3-540-70936-7_29.

[65] B. R. Waters, D. Balfanz, G. Durfee, and D. K. Smetters. Building an encrypted

and searchable audit log. In Proceedings of the Network and Distributed System

Security Symposium, NDSS 2004, San Diego, California, USA (2004). URL http:

//www.isoc.org/isoc/conferences/ndss/04/proceedings/Papers/Waters.pdf.

[66] M. Abdalla, M. Bellare, D. Catalano, E. Kiltz, T. Kohno, T. Lange, J. Malone-Lee,

G. Neven, P. Paillier, and H. Shi. Searchable encryption revisited: Consistency

properties, relation to anonymous ibe, and extensions. In Advances in Cryptology -

CRYPTO 2005: 25th Annual International Cryptology Conference, Santa Barbara,

California, USA, August 14-18, 2005, Proceedings, pp. 205–222 (2005). URL http:

//dx.doi.org/10.1007/11535218_13.

[67] D. Khader. Public key encryption with keyword search based on k-resilient IBE. In

Computational Science and Its Applications - ICCSA 2007, International Conference,

Kuala Lumpur, Malaysia, August 26-29, 2007. Proceedings. Part III, pp. 1086–1095

(2007). URL http://dx.doi.org/10.1007/978-3-540-74484-9_95.

[68] G. D. Crescenzo and V. Saraswat. Public key encryption with searchable keywords

based on jacobi symbols. In Progress in Cryptology - INDOCRYPT 2007, 8th Interna-

tional Conference on Cryptology in India, Chennai, India, December 9-13, 2007, Pro-

ceedings, pp. 282–296 (2007). URL http://dx.doi.org/10.1007/978-3-540-77026-8_

21.

http://dx.doi.org/10.1007/978-3-642-28368-0_28
http://eprint.iacr.org/2003/195
http://dx.doi.org/10.1007/978-3-540-70936-7_29
http://www.isoc.org/isoc/conferences/ndss/04/proceedings/Papers/Waters.pdf
http://www.isoc.org/isoc/conferences/ndss/04/proceedings/Papers/Waters.pdf
http://dx.doi.org/10.1007/11535218_13
http://dx.doi.org/10.1007/11535218_13
http://dx.doi.org/10.1007/978-3-540-74484-9_95
http://dx.doi.org/10.1007/978-3-540-77026-8_21
http://dx.doi.org/10.1007/978-3-540-77026-8_21

194 References

[69] C. Cocks. An identity based encryption scheme based on quadratic residues. In

Cryptography and Coding, 8th IMA International Conference, Cirencester, UK, De-

cember 17-19, 2001, Proceedings, pp. 360–363 (2001). URL http://dx.doi.org/10.

1007/3-540-45325-3_32.

[70] H. S. Rhee, J. H. Park, W. Susilo, and D. H. Lee. Improved searchable public

key encryption with designated tester. In Proceedings of the 2009 ACM Symposium

on Information, Computer and Communications Security, ASIACCS 2009, Sydney,

Australia, March 10-12, 2009, pp. 376–379 (2009). URL http://doi.acm.org/10.1145/

1533057.1533108.

[71] K. Emura, A. Miyaji, M. S. Rahman, and K. Omote. Generic constructions of secure-

channel free searchable encryption with adaptive security. Security and Communica-

tion Networks 8(8), 1547 (2015). URL http://dx.doi.org/10.1002/sec.1103.

[72] J. W. Byun, H. S. Rhee, H. Park, and D. H. Lee. Off-line keyword guessing attacks

on recent keyword search schemes over encrypted data. In Secure Data Management,

Third VLDB Workshop, SDM 2006, Seoul, Korea, September 10-11, 2006, Proceed-

ings, pp. 75–83 (2006). URL http://dx.doi.org/10.1007/11844662_6.

[73] H. S. Rhee, W. Susilo, and H. Kim. Secure searchable public key encryption scheme

against keyword guessing attacks. IEICE Electronic Express 6(5), 237 (2009). URL

http://dx.doi.org/10.1587/elex.6.237.

[74] H. S. Rhee, J. H. Park, W. Susilo, and D. H. Lee. Trapdoor security in a search-

able public-key encryption scheme with a designated tester. Journal of Systems and

Software 83(5), 763 (2010). URL http://dx.doi.org/10.1016/j.jss.2009.11.726.

[75] I. R. Jeong, J. O. Kwon, D. Hong, and D. H. Lee. Constructing PEKS schemes secure

against keyword guessing attacks is possible? Computer Communications 32(2), 394

(2009). URL http://dx.doi.org/10.1016/j.comcom.2008.11.018.

[76] A. Sahai and B. Waters. Fuzzy identity-based encryption. In R. Cramer, ed., Proceed-

ings: Advances in Cryptology - EUROCRYPT 2005, vol. 3494 of Lecture Notes in

Computer Science, pp. 457–473 (Springer, Aarhus, Denmark, 2005).

[77] A. Shamir. Identity-based cryptosystems and signature scheme. In G. R. Blakley and

D. Chaum, eds., Proceedings: Advances in Cryptology - CRYPTO 1984, vol. 196 of

http://dx.doi.org/10.1007/3-540-45325-3_32
http://dx.doi.org/10.1007/3-540-45325-3_32
http://doi.acm.org/10.1145/1533057.1533108
http://doi.acm.org/10.1145/1533057.1533108
http://dx.doi.org/10.1002/sec.1103
http://dx.doi.org/10.1007/11844662_6
http://dx.doi.org/10.1587/elex.6.237
http://dx.doi.org/10.1016/j.jss.2009.11.726
http://dx.doi.org/10.1016/j.comcom.2008.11.018

References 195

Lecture Notes in Computer Science, pp. 47–53 (Springer, Santa Barbara, California,

USA, 1984).

[78] D. Boneh and M. Franklin. Identity-based encryption from the weil pairing. In

J. Kilian, ed., Proceedings: Advances in Cryptology - CRYPTO 2001, vol. 2139 of

Lecture Notes in Computer Science, pp. 213–229 (Springer, Santa Barbara, California,

USA, 2001).

[79] J. Bethencourt, A. Sahai, and B.Waters. Ciphertext-policy attribute-based encryption.

In Proceedings: IEEE Symposium on Security and Privacy - S & P 2007, pp. 321–334

(Oakland, California, USA, 2007).

[80] L. Cheung and C. Newport. Provably secure ciphertext policy abe. In P. Ning, S. D. C.

di Vimercati, and P. F. Syverson, eds., Proceedings: ACM Conference on Computer

and Communications Security-CCS 2007, pp. 456–465 (ACM, Alexandria, Virginia,

USA, 2007).

[81] J. Herranz, F. Laguillaumie, and C. Ráfols. Constant size ciphertexts in threshold

attribute-based encryption. In P. Q. Nguyen and D. Pointcheval, eds., Proceedings:

Public Key Cryptography-PKC 2010, Lecture Notes in Computer Science, pp. 19–34

(Springer, Paris, France, 2010).

[82] A. Lewko, T. Okamoto, A. Sahai, K. Takashima, and B.Waters. Fully secure functional

encryption: Attribute-based encryption and (hierarchical) inner product encryption.

In H. Gilbert, ed., Proceedings: Advances in Cryptology - EUROCRYPT 2010, vol.

6110 of Lecture Notes in Computer Science, pp. 62–91 (Springer, Riviera, French,

2010).

[83] B. Waters. Ciphertext-policy attribute-based encryption: An expressive, efficient, and

provably secure realization. In D. Catalano, N. Fazio, R. Gennaro, and A. Nicolosi,

eds., Proceedings: Public Key Cryptography - PKC 2011, vol. 6571 of Lecture Notes

in Computer Science, pp. 53–70 (Springer, aormina, Italy, 2011).

[84] V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-based encryption for fine-

grained access control of encrypted data. In A. Juels, R. N. Wright, and S. D. C.

di Vimercati, eds., Proceedings: 13th ACM Conference on Computer and Communi-

cations Security - CCS 2006, pp. 89–98 (ACM, Alexandria, VA, USA, 2006).

196 References

[85] R. Ostrovsky, A. Sahai, and B.Waters. Attribute-based encryption with non-monotonic

access structures. In P. Ning, S. D. C. di Vimercati, and P. F. Syverson, eds., Proceed-

ings: ACM Conference on Computer and Communications Security - CCS 2007, pp.

159–203 (Alexandria, Virginia, USA, 2007).

[86] M. Chase. Multi-authority attribute based encryption. In S. P. Vadhan, ed., Pro-

ceedings: Theory of Cryptography Conference-TCC’07, vol. 4392 of Lecture Notes in

Computer Science, pp. 515–534 (Springer, Amsterdam, The Netherlands, 2007).

[87] M. Chase and S. S. Chow. Improving privacy and security in multi-authority attribute-

based encryption. In E. Al-Shaer, S. Jha, and A. D. Keromytis, eds., Proceedings:

ACM Conference on Computer and Communications Security-CCS’09, pp. 121–130

(ACM, Chicago, Illinois, USA, 2009).

[88] A. Beimel. Secure Schemes for Secret Sharing and Key Distribution. Phd thesis, Israel

Institute of Technology, Technion, Haifa, Israel (1996).

[89] N. Attrapadung and H. Imai. Dual-policy attribute based encryption. In M. Abdalla,

D. Pointcheval, P.-A. Fouque, and D. Vergnaud, eds., Proceedings: Applied Cryp-

tography and Network Security-ACNS 2009, vol. 5536 of Lecture Notes in Computer

Science, pp. 168–185 (Springer, Paris-Rocquencourt, France, 2009).

[90] A. Rial and B. Preneel. Blind attribute-based encryption and oblivious transfer with

fine-grained access control. In Benelux Workshop on Information and System Security

- WISSec’10, pp. 1–20 (2010).

[91] J. Hur and D. K. Noh. Attribute-based access control with efficient revocation in data

outsourcing systems. IEEE Transactions on Parallel and Distributed Systems 22(7),

1214 (2011).

[92] S. Yu, C. Wang, K. Ren, and W. Lou. Achieving secure, scalable, and fine-grained

data access control in cloud computing. In Proceedings: IEEE INFOCOM 2010, pp.

534–542 (IEEE, San Diego, CA, USA, 2010).

[93] S. Yu, K. Ren, andW. Lou. FDAC: Toward fine-grained data access control in wireless

sensor networks. IEEE Transactions on Parallel and Distributed Systems 22(4), 673

(2011).

References 197

[94] S. M Üuller, S. Katzenbeisser, and C. Eckert. Distributed attribute-based encryption. In

P. J. Lee and J. H. Cheon, eds., Proceedings: Information Security and Cryptology-

ICISC’08, vol. 5461 of Lecture Notes in Computer Science, pp. 20–36 (Springer, Seoul,

Korea, 2008).

[95] R. Gennaro, S. law Jarecki, H. Krawczyk, , and T. Rabin. Secure distributed key gen-

eration for discrete-log based cryptosystems. In J. Stern, ed., Proceedings: Advances

in Cryptology-EUROCRYPT’99, vol. 1592 of Lecture Notes in Computer Science, pp.

295–310 (Springer, Prague, Czech Republic, 1999).

[96] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Robust threshold DSS signatures.

Information and Computation 164(1), 54 (2001).

[97] H. Lin, Z. Cao, X. Liang, and J. Shao. Secure threshold multi-authority attribute based

encryption without a central authority. In D. R. Chowdhury, V. Rijmen, and A. Das,

eds., Proceedings: International Conference on Cryptology in India-INDOCRYPT’08,

vol. 5365 of Lecture Notes in Computer Science, pp. 426–436 (Springer, Kharagpur,

India, 2008).

[98] M. Naor, B. Pinkas, and O. Reingold. Distributed pseudo -random functions and

KDCs. In J. Stern, ed., Proceedings: Advances in Cryptology - EUROCRYPT 1999,

vol. 1592 of Lecture Notes in Computer Science, pp. 327–346 (Springer, Prague, Czech

Republic, 1999).

[99] Z. Liu, Z. Cao, Q. Huang, D. S. Wong, and T. H. Yuen. Fully secure multi-authority

ciphertext-policy attribute-based encryption without random oracles. In V. Atluri and

C. Diaz, eds., Proceeedings: European Symposium on Research in Computer Security

- ESORICS 2011, vol. 6879 of Lecture Notes in Computer Scienc, p. 278297 (Springer,

Leuven, Belgium, 2011).

[100] A. Lewko and B.Waters. Decentralizing attribute-based encryption. In K. G. Paterson,

ed., Proceedings: Advances in Cryptology - EUROCRYPT 2011, vol. 6632 of Lecture

Notes in Computer Science, pp. 568–588 (Springer, Tallinn, Estonia, 2011).

[101] J. Li, Q. Huang, X. Chen, S. S. M. Chow, D. S. Wong, and D. Xie. Multi-authority

ciphertext-policy attribute-based encryption with accountability. In Proceedings:

ACM Symposium on Information, Computer and Communications Security - ASIACCS

2011, pp. 386–390 (ACM, 2011).

198 References

[102] S. Abriola, M. E. Descotte, and S. Figueira. Model theory of xpath on data trees.

part II: binary bisimulation and definability. Inf. Comput. 255, 195 (2017). URL

https://doi.org/10.1016/j.ic.2017.01.002.

[103] V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-based encryption for fine-

grained access control of encrypted data. In Proceedings of the 13th ACM Conference

onComputer andCommunications Security, CCS 2006, Alexandria, VA,USA, Ioctober

30 - November 3, 2006, pp. 89–98 (2006). URL http://doi.acm.org/10.1145/1180405.

1180418.

[104] A. N. Ravari, J. H. Jafarian, M. Amini, and R. Jalili. GTHBAC: A generalized temporal

history based access control model. Telecommunication Systems 45(2-3), 111 (2010).

URL http://dx.doi.org/10.1007/s11235-009-9239-9.

[105] S.Kleene. Introduction to metamathematics. (D. Van Nostrand, Princeton, NJ, 1950).

[106] W. H. Jobe. Functional completeness and canonical forms in many-valued logics. J.

Symb. Log. 27(4), 409 (1962). URL http://dx.doi.org/10.2307/2964548.

[107] D. Bitton, D. J. DeWitt, and C. Turbyfill. Benchmarking database systems A systematic

approach. In 9th International Conference on Very Large Data Bases, October 31

- November 2, 1983, Florence, Italy, Proceedings, pp. 8–19 (1983). URL http:

//www.vldb.org/conf/1983/P008.PDF.

[108] J. Byun and N. Li. Purpose based access control for privacy protection in rela-

tional database systems. VLDB J. 17(4), 603 (2008). URL http://dx.doi.org/10.1007/

s00778-006-0023-0.

[109] L. Lin, J. Hu, and J. Zhang. Packet: a privacy-aware access control policy composition

method for services composition in cloud environments. Frontiers of Computer Science

10(6), 1142 (2016). URL http://dx.doi.org/10.1007/s11704-016-5503-9.

[110] A. Banerjee and D. A. Naumann. History-based access control and secure infor-

mation flow. In Construction and Analysis of Safe, Secure, and Interoperable Smart

Devices, International Workshop, CASSIS 2004, Marseille, France, March 10-14,

2004, Revised Selected Papers, pp. 27–48 (2004). URL http://dx.doi.org/10.1007/

978-3-540-30569-9_2.

https://doi.org/10.1016/j.ic.2017.01.002
http://doi.acm.org/10.1145/1180405.1180418
http://doi.acm.org/10.1145/1180405.1180418
http://dx.doi.org/10.1007/s11235-009-9239-9
http://dx.doi.org/10.2307/2964548
http://www.vldb.org/conf/1983/P008.PDF
http://www.vldb.org/conf/1983/P008.PDF
http://dx.doi.org/10.1007/s00778-006-0023-0
http://dx.doi.org/10.1007/s00778-006-0023-0
http://dx.doi.org/10.1007/s11704-016-5503-9
http://dx.doi.org/10.1007/978-3-540-30569-9_2
http://dx.doi.org/10.1007/978-3-540-30569-9_2

References 199

[111] K. Krukow, M. Nielsen, and V. Sassone. A logical framework for history-based access

control and reputation systems. Journal of Computer Security 16(1), 63 (2008). URL

http://content.iospress.com/articles/journal-of-computer-security/jcs299.

[112] W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Transactions on

Information Theory IT-22(6), 644 (1976).

[113] C. Rackoff and D. R. Simon. Non-interactive zero-knowledge proof of knowledge and

chosen ciphertext attack. In J. Feigenbaum, ed.,Proceedings: Advances inCryptology -

CRYPTO 1991, vol. 576 of Lecture Notes in Computer Science, pp. 129–140 (Springer,

Santa Barbara, California, USA, 1992).

[114] T. ElGamal. A public key cryptosystem and a signature scheme based on discrete

logarithms. IEEE Transactions on Information Theory IT-31(4), 469 (1985).

[115] R. L. Rivest, A. Shamir, and L. M. Adleman. A method for obtaining digital signatures

and public-key cryptosystems. Communications of the ACM 21(2), 121 (1978).

[116] R. Cramer and V. Shoup. A practical public key cryptosystem provably secure against

adaptive chosen ciphertext attack. In H. Krawczyk, ed., Proceedings: Advances in

Cryptology - CRYPTO 19998, vol. 1462 of Lecture Notes in Computer Science, pp.

13–25 (Springer, Santa Barbara, California, USA, 1998).

[117] E. Fujisaki, T. Okamoto, D. Pointcheval, and J. Stern. Rsa-oaep is secure under the

rsa assumption. In J. Kilian, ed., Proccedings: Advances in Cryptology - CRYPTO

2001, vol. 2139 of Lecture Notes in Computer Science, pp. 260–274 (Springer, Santa

Barbara, California, USA, 2001).

[118] S. Goldwasser, S. Micali, and R. L. Rivest. A digital signature scheme secure against

adaptive chosen-message attacks. SIAM Journal on Computing 17(2), 281 (1988).

[119] A.M.Odlyzko.Discrete logarithms in finite fields and their cryptographic significance.

In T. Beth, N. Cot, and I. Ingemarsson, eds., Proceedings: Advances in Cryptology -

CRYPTO 1984, vol. 209 of Lecture Notes in Computer Science, pp. 224–314 (Springer,

Paris, France, 1985).

[120] U. M. . Maurer. Towards the equivalence of breaking the diffie-hellman protocol and

computing discrete logarithms. In Proceedings: Advances in Cryptology - CRYPTO

http://content.iospress.com/articles/journal-of-computer-security/jcs299

200 References

1994, vol. 839 of Lecture Notes in Computer Science, pp. 271–281 (Springer, Santa

Barbara, California, USA, 1994).

[121] D. Boneh. The decision diflie-hellman problem. In J. P. Buhler, ed., Proceedings:

Algorithmic Number Theory - ANT 1998, vol. 1423 of Lecture Notes in Computer

Science, pp. 48–63 (Springer, Portland, Oregon, USA, 1998).

[122] J. Groth and A. Sahai. Efficient non-interactive proof systems for bilinear groups.

In Advances in Cryptology - EUROCRYPT 2008, 27th Annual International Confer-

ence on the Theory and Applications of Cryptographic Techniques, Istanbul, Turkey,

April 13-17, 2008. Proceedings, pp. 415–432 (2008). URL https://doi.org/10.1007/

978-3-540-78967-3_24.

[123] D. Boneh, X. Boyen, and E. Goh. Hierarchical identity based encryption with con-

stant size ciphertext. In Advances in Cryptology - EUROCRYPT 2005, 24th Annual

International Conference on the Theory and Applications of Cryptographic Tech-

niques, Aarhus, Denmark, May 22-26, 2005, Proceedings, pp. 440–456 (2005). URL

http://dx.doi.org/10.1007/11426639_26.

[124] Z. Wan, J. Liu, and R. H. Deng. HASBE: A hierarchical attribute-based solution for

flexible and scalable access control in cloud computing. IEEE Trans. Information

Forensics and Security 7(2), 743 (2012). URL http://dx.doi.org/10.1109/TIFS.2011.

2172209.

[125] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic. Cloud computing and

emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th

utility. Future Generation Comp. Syst. 25(6), 599 (2009). URL http://dx.doi.org/10.

1016/j.future.2008.12.001.

[126] A. Sahai and B. Waters. Fuzzy identity-based encryption. In Advances in Cryptology -

EUROCRYPT 2005, 24th Annual International Conference on the Theory and Applica-

tions of Cryptographic Techniques, Aarhus, Denmark, May 22-26, 2005, Proceedings,

pp. 457–473 (2005). URL http://dx.doi.org/10.1007/11426639_27.

[127] R. Ostrovsky, A. Sahai, and B.Waters. Attribute-based encryption with non-monotonic

access structures. IACR Cryptology ePrint Archive 2007, 323 (2007). URL http:

//eprint.iacr.org/2007/323.

https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1007/978-3-540-78967-3_24
http://dx.doi.org/10.1007/11426639_26
http://dx.doi.org/10.1109/TIFS.2011.2172209
http://dx.doi.org/10.1109/TIFS.2011.2172209
http://dx.doi.org/10.1016/j.future.2008.12.001
http://dx.doi.org/10.1016/j.future.2008.12.001
http://dx.doi.org/10.1007/11426639_27
http://eprint.iacr.org/2007/323
http://eprint.iacr.org/2007/323

References 201

[128] G. Wang, Q. Liu, J. Wu, and M. Guo. Hierarchical attribute-based encryption and

scalable user revocation for sharing data in cloud servers. Computers & Security

30(5), 320 (2011). URL http://dx.doi.org/10.1016/j.cose.2011.05.006.

[129] R. Bobba, H. Khurana, and M. Prabhakaran. Attribute-sets: A practically motivated

enhancement to attribute-based encryption. IACR Cryptology ePrint Archive 2009,

371 (2009). URL http://eprint.iacr.org/2009/371.

[130] S. D. Galbraith, K. G. Paterson, and N. P. Smart. Pairings for cryptographers. Discrete

Applied Mathematics 156(16), 3113 (2008).

[131] B. Lynn. The pairing-based cryptography (PBC) library (2006).

Http://crypto.stanford.edu/pbc/.

[132] D. R. L. Brown. Standards for Efficient Cryptography SEC 2: Recom-

mended Elliptic Curve Domain Parameters. Certicom Research, 2.0 ed. (2010).

Http://www.secg.org/download/aid-784/sec2-v2.pdf.

[133] J. Carter and M. N. Wegman. Universalclasses of hashfunctions. Journal of Computer

and System Sciences 18(2), 143 (1979).

[134] W.Mao.Moden Cyptography Theory &Practice (Prentice Hall Professional Technical

Reference, Upper Saddle River, New Jersey, USA, 2003).

[135] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing

efficient protocols. In D. E. Denning, R. Pyle, R. Ganesan, R. S. Sandhu, and V. Ashby,

eds., Proceedings: ACM conference on Computer and communications security - CCS

1993, pp. 62–73 (ACM, Fairfax, VA, USA, 1993).

[136] M. Bellare, R. Canetti, and H. Krawczyk. Keying hash functions for message authen-

tication. In N. Koblitz, ed., Proceedings: Advances in Cryptology - CRYPTO 1996,

vol. 1109 of Lecture Notes in Computer Science, pp. 1–15 (Springer, Santa Barbara,

California, USA, 1996).

[137] R. Canetti, O. Goldreich, and S. Halevi. The random oracle methodology, revisited. In

J. S. Vitter, ed., Proceedings: ACM Symposium on the Theory of Computing - STOC

1998, pp. 209–218 (ACM, Dallas, Texas, USA, 1998).

[138] A. Beimel. Secure schemes for secret sharing and key distribution. PhD thesis (1996).

http://dx.doi.org/10.1016/j.cose.2011.05.006
http://eprint.iacr.org/2009/371

	Acknowledgements
	List of Publications
	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Contributions
	Roadmap of the Thesis

	Literature Review
	Introduction
	Provenance Background and Models
	Access-Control Policy
	Basic Access Control Policy Models
	Provenance Access Control
	Provenance-based Access Control
	Policy Algebra

	Cryptographic Techniques for Implementing Access Control Policies
	Confidentiality of Provenance
	Public-key Encryption with Keyword-Search Schemes (PEKS)
	Attribute-based Encryption for Access Control
	Multiple-Authority Attribute-based Encryption

	Conclusion

	PACLP: A Partition-Based Access Control Policy Language for Provenance
	Introduction
	Related Work and Motivations
	Our Contribution
	Chapter Organisation

	Provenance Access Control
	Workflow of the Framework

	The Basics of the language
	Partition-based Access Control Language (PACLP)
	The System Assumption
	Language Items
	The Grammar
	Case Study

	the Algorithms
	Evaluation
	Conclusion

	A fine-grained Policy Model for Provenance-based Access Control
	Introduction
	Related Work and Motivations
	Our Contribution
	Chapter Organisation

	the System Assumption
	Target Policies
	Atomic Target
	Atomic Target Evaluation
	Operators
	Target Equivalence
	On functional Completeness

	Access Control Policy
	Policy Operators

	A case study
	On Integrity of Provenance
	Evaluation
	Conclusion

	Purpose-based Access Policy on Provenance and Data Algebra
	Introduction
	Related Work and Motivations
	Our Contributions
	Chapter Organisation

	Purpose-based Access Policy on Provenance
	System Architecture
	Semantics
	Syntax
	Case Study

	Internal Policies Algebra
	Basic Operators
	Functions for Internal Policy Algebras

	External Policy Algebra
	Evaluation
	Conclusion and Future work

	Provenance-based Classification Policy based on Encrypted Search
	Introduction
	Our Contributions
	Chapter Organisation

	Related Work
	System Architecture and the Policies
	System Architecture
	Provenance-based Classification Policy
	Public-Key Encryption
	Digital Signature

	Provenance-based Classification Scheme
	Algorithms
	Schemes

	Complexity Assumptions
	Computational Diffie-Hellman Assumption
	Decisional Diflie-Hellman Assumption
	Computational Bilinear Diffie-Hellman
	Decisional Bilinear Diffie-Hellman Assumption
	Symmetric External Diffie-Hellman Assumption

	Security Proof
	Conclusion

	Provenance-based Encryption Scheme for Fine-grained Access Control
	Introduction
	Our Contributions
	Chapter Organisation

	Related Work
	System Architecture and the Policies
	System Architecutre
	Threat Model
	Provenance-based Access Control Policy

	Provenance-based Partitioned Encryption Scheme
	Algorithms
	PBE Scheme

	Security Proof
	Security Model for PBE
	Security Proof

	Discussion
	Conclusion

	Conclusion
	Future Work

	Appendix
	Cryptography Tools
	Group
	Field
	Bilinear Maps
	Bilinear Groups
	Hash Function
	Random Oracle Model

	Access Tree

	References

