CunarprTeErR Four | 169

CHAPTER FOUR

4 ALGORITHMIC TRADING STRATEGY IDENTIFICATION
& MARKET QUALITY IMPACT USING UNSUPERVISED
LEARNING & AXIOMATIC FEATURE ATTRIBUTION

This chapter identifies, clusters and assesses the impact of different algorithmic trading (AT) strategies
on UK equity market quality. Three separate procedures are performed to lineate the connection between
algorithmic trading strategies identified in Chapter 2 and the optimised Deep Neural Network (DNN)
model developed in Chapter 3 and trained on the FTSE100 dataset defined in Section 3.3, before deriving
a conclusion regarding how different AT strategies impact market quality. First, internal dynamics of
the optimised DNN trained for each of the 802 ISIN-Date-Trader tuples, (S, D, B), derived from the
FTSE100 datasets are deconstructed by performing an axiomatic feature attribution decomposition to
understand the relative saliency of each element of the n-dimensional limit order book (LOB) input
feature vector x. A total of 323 LOB features are generated and holistically explained in Appendix A.
Integrated Gradients (Sundararajan, 2017) and DeepLIFT (Shrikumar, 2017) are backpropagation-based
feature attribution algorithms that provide insightful information regarding the relative saliency metric,
F1J, for the all feature inputs into a brokers DNN model. An assumption of this thesis is that features of
the state and dynamics of the LOB serve as inputs into AT algorithms, with those DNN features that
have higher feature importance representing core inputs into that firms’ trading algorithm. Next,
unsupervised machine learning methods are employed to cluster each Broker tuple into one of five AT
strategies — Automated Market Makers (AMM), Execution, Microstructural, Momentum and Technical
strategies - based on the feature importance values, FJ. Unsupervised machine learning algorithms infer
functions or structural patterns in data without the aid of a response variable or class label in the
observations. Identifying AT strategies requires an understanding of the financial and LOB features that
drive the behaviour and actions on the LOB of firms conducting those strategies. Due to the additive
properties of Integrated Gradients and DeepLIFT, raw features can be combined to build deeper levels
of abstraction. This allows for AT strategies to be segmented at both the raw feature level and from a
combined set of features. Various extensions of the K-Means unsupervised machine learning technique
are utilised, with focus on Spherical K-Means (Buchta, 2012), to partition individual AT firms into
interpretable, exclusive and distinct ‘strategy’ clusters based on results extracted from the feature
attribution analysis and derived from the DNN for each tuple. Finally, a comprehensive analysis of the

aggregated impact of each AT strategy on UK equity market quality is performed.

Accelerated adoption of algorithmic and high-frequency trading systems, technology and trading
methods by market participants provides exigencies for regulators and academics to understand the
dynamics of this new trader ecosystem and potential risks flowing into the real economy. Quantifying
the impact emanating from interactions and interdependencies between different AT strategies first
requires a model for identifying and categorising distinct market participants. AT is commonly
recognised under the nom de guerre of ‘high-frequency trading’ (HFT), a label that has garnered scrutiny

within regulator, investor and academic domains. HF'T firms have been identified by the Securities and

CunaprTeEr Four |170

Exchange Commission (SEC) as proprietary firms with co-located servers executing highly
‘sophisticated’ and ‘high-speed’ order submissions, routing and execution strategies over extremely low
latency algorithmic trading systems.?! This chapter provides no distinction between AT and HFT firms,
rather all AT market participants are differentiated based on their trading strategy as opposed to the
characteristics of the individual trading firm to allow for a holistic representation of the trader ecosystem.
Untangling the complexities of the trader environment by extracting the various algorithmic trading
strategies being conducted allows regulators to more accurately understand how markets function in
their contemporary iteration. Implementing this new paradigm of the trader ecosystem provides the
tools for policymakers to develop prescriptions using an empirical and diagnostic approach at the strategy
level of the market, rendering suppositions based on broad generalisations of traders, such as HFT,

irrelevant.

Machine learning models of the relationship between LOB features and trader actions have been deployed
in this chapter to categorise traders into one of five individual algorithmic trading strategies to analyse
the individual impact of these strategies on market quality. Previous academic literature has approached
the task of segmenting market participants using various techniques, specifically referred to as manual,
quantitative and machine learning classification methods. Several studies have focussed on
understanding the behaviour of market participants within the trading ecosystem by classifying firms
using a manual exchange or regulator identifier. Brogaard (2014) uses a flag developed by NASDAQ to
categorise firms that deploy HFT strategies. Hendershott (2013) similarly uses an exchange-identified
classification of orders placed by an automated system versus those placed by human traders. Benos
(2012) and Aquilina (2016) utilise a similar FCA proprietary dataset to that utilised in this chapter,
though they use a list of HFTs maintained by the regulator to classify firms. A second strand of
identification techniques have used quantitative analysis of a firms’ descriptive statistics to develop a
feature space from which classification is made using high-level rule-based heuristics. Kirilenko (2017)
and Baron (2017) implement a more complex descriptive statistic-based categorisation model using audit
trail data that classifies individual trading accounts as HFT, market-makers, fundamental buyers and
sellers, opportunistic traders and small traders. The authors use various intra-day metrics for
categorisation including inventory positions at close, net holdings through the trading day and trading
direction. Hasbrouck (2013) uses a measure of fast trading in the millisecond environment, referred to
as ‘strategic runs’, as a proxy for HFT activity. Australian Securities and Exchange Commission (ASIC)
(2013) has adopted a quantitative approach that identifies firms as engaging primarily in HFT activity
based on a scoring system comprising several metrics, including the speed of messages, order-to-trade
ratios, end of day positions and volume-weighted holding times. Finally, a recent strand of research has
begun using machine learning models to segment traders. Yang (2015) model trading behaviour as a
Markov Decision Process (MDP) and utilise Gaussian-based inverse reinforcement learning (IRL) and
dynamic programming (DP) to solve for the optimal reward function of individual market participants
that serves as a proxy for their decision-making process and actions. Their Gaussian-based IRL model
infers the reward function for traders conducting a strategy based on their actions given the state and
inherent market dynamics. This chapter extends the machine learning model literature by classifying

algorithmic traders using a trained DNN and axiomatic feature attribution technique that extracts the

' Securities Exchange Act Release No. 34-61358, 75 FR 3594, 3606 (January 21, 2010).

CHAaPTER Four |171

relative importance of LOB algorithmic inputs of those traders which is utilised to classify firms through

an unsupervised machine learning approach.

The structure of this chapter is as follows. Section 4.1 introduces feature attribution techniques employed
to analyse the internal dynamics of the optimised DNNs trained in the previous chapter. Feature
importance values are then quantified for each ISIN-Date-Trader tuple, (S,D,B). Section 4.2 involves
an evaluation of backpropagation-based feature attribution methods to determine the optimal choice of
what method to apply to derive importance metrics for each the data tuple. This dataset provides input
into the Spherical K-Means clustering algorithm employed in Section 4.3 to segment firms by the AT
strategy they deploy. Section 4.4 then assesses the aggregate impact of AT strategies on UK equity
market quality.

4.1 Axiomatic Attribution for Limit Order Book Features

This section analyses the internal dynamics optimised Deep Neural Networks (DNN) trained on the 802
unique FTSE100 CLOB ISIN-Date-Broker tuples, (S, D, B), which are developed in the previous chapter
of this thesis. The objective of this section is to compute feature attribution metrics, F7, for each of the
n-dimensional microstructural LOB feature input values, X, that serve as inputs into the DNN models.
Axiomatic feature attribution analysis is applied to each DNN by projecting the success or failure of
predicting the correct classifier, approximated by the DNNs non-linear mapping function y = f(x, w, b),
onto the n-dimensional microstructural LOB feature space, x € F. Quantifying feature attribution
metrics, FJ = [ry, ..., 1] € R, for each of the n features in vector X = [Xq,...,X,] € R", allows for a
determination of the strategy being conducted by an algorithmic trader based on the relative
contribution of certain features towards making correct predictions of the traders actions executed on
the LOB, y € A.

An assumption of this thesis is that LOB feature manifestly represents algorithmic inputs into a firm’s
trading strategy. Intuitively, there exists an inextricable connection between the state of the LOB
environment that an algorithmic trader exists within, X, and the underlying strategy for conducting
profitable actions, y, in that environment. Certain systemic elements of the LOB environment drive
traders’ behaviour more than others. Identifying the components of participants’ trading algorithms
serves as a reference point for using an unsupervised learning algorithm employed in Section 4.3 to
cluster traders into one of five trading strategies — Automated Market Making (AMM), Execution,
Microstructural, Momentum and Technical trading strategies. Once feature attribution values for each
Broker tuple have been quantified and traders clustered, the aggregate impact of different AT strategies

on various elements of market quality can then be inferred.

The ubiquitous nature of neural networks in the deep learning community is founded on and driven by
the strong theoretical principles (Bengio, 2012), computational efficiency and high performance (He,
2015) of these models. The successful praxis of deep learning techniques across various domains to attain
these state-of-the-art results in explaining complex and abstract representations has been coupled with
significant innovation in the internal components of DNNs. However, practitioners and academics in the
broader domain of statistics and mathematics have retained a degree of trepidation as to the utility of

these models given their reputation as a ‘blackbox’ machine learning model. A significant contention

CHAPTER FoOUR |172

with DNNs is their lack of transparency and interpretability, hindering practitioners’ comprehension of
the synaptic connections between inputs and outputs which serves as an impediment to the mainstream
adoption of machine intelligence (Mikolov, 2016). Feature attribution methods have the potential to
bridge the disparity between interpretability and performance innate to DNNs, allowing practitioners to
interact with and understand the traditionally opaque internal dynamics of the model. This potential is
being driven by the increasing application of feature attribution methods in the deep learning literature
used to better explain the relationship between inputs and predictions in neural networks (Shrikumar,
2017; Sundararajan 2017; Ancona, 2018).

Methods of feature attribution, also referred to as feature importance, are concerned with quantifying
the relative importance of individual elements comprising the input feature vector, X, depending on how
they improve the classification system of the DNN. Application of certain attribution methods allow for
the identification of the complex interdependencies that bind features within the classification system.
They also help understand why an accurate prediction of the output class is made using easily
interpretable importance metrics. Statistical representations of feature importance can also be deployed
as a tool for feature selection by diagnosing the contribution of various input feature elements, then

selecting a feature subset of the most ‘important’ features that improve performance (Heaton, 2017b).

The first part of this section explains the 323-dimensional LOB feature space utilised in the previous
chapter to train the non-linear DNN models with these features also defined in groups based on the
relevant strategy they are assumed to most commonly serve as algorithmic inputs into. The objective of
this section is to develop a feature attribution space, FJ € R323, for each DNN Broker tuples, (S, D, B).
To do so we next define, explore and then implement several methods for attributing feature saliency
for input vector elements of the optimised FTSE100 CLOB DNN tuples (S, D, B). Attribution methods
are categorised into correlation-based methods, synaptic weight methods, input perturbation approaches
and backpropagation-based approaches. Two input perturbation approaches are analysed including
occlusion methods (Heaton, 2017b; Zeiler, 2014), and the Locally Interpretable Model-Agnostic approach
(Ribeiro, 2016). Furthermore, four backpropagation-based approaches are considered including Layer-
Wise Relevance Propagation (Bach, 2015), Deep Taylor Decomposition (Montavon, 2017), DeepLIFT
(Shrikumar, 2017) and Integrated Gradients (Sundararajan, 2017).

4.1.1 Feature Grouping

The 323-dimensional LOB feature space employed to train the non-linear DNN mapping functions and
projected onto the corresponding feature attribution space, FJ € R323, provides critical information
about what motivates a trader to perform a particular action, y € A. The high dimensionality of the
dataset requires the implementation of a structural framework to relate feature importance metrics to
trading strategies. Section 2.3 introduced five primary algorithmic trading strategies deployed on UK
equity markets — Automated Market Makers (AMM), Execution, Microstructural, Momentum, and
Technical strategies. The list of relevant LOB features that drive these strategies, derived from literature
and domain knowledge, is also explained in Section 2.3, Section 2.4 and holistically defined in Appendix
A. In addition, several sub-strategies are developed to partition algorithmic trading strategies into even
more interpretable categories. Thus, raw features, F, have an attached strategy, S, and sub-strategy, U,

with computed importance metrics, FJ, for each individual (S,D, B) tuple. Raw features with similar

CHAPTER FoOouURr |173

attributes and properties are collected into the higher-level strategy segments to deconstruct the levels
of abstraction between complex features and higher-order trading strategies. This allows for strategy
identification and clustering to be performed across multiple dimensions — raw features, sub-strategies
and high-level algorithmic trading strategies — whilst maintaining a parsimonious model that allows for

easier interpretability of what features drive AT firms’ actions and explain specific AT strategies.

The lowest-order category is the set of 323 raw LOB features, F, which act as input data into the DNN.
The middle category, sub-strategies U, amalgamate raw features that have similar properties to provide
a more interpretable label that when grouped together explains an important LOB sub-strategy that
may be executed as part of a higher-order AT strategy, S. For example, raw features (F) feed into
Informed Trading sub-strategy (U) which itself feeds into the overarching Automated Market Making
strategy (S). Raw features attempt to explain the level of informed trading on the LOB. A subset of
features in the Informed Trading sub-strategy category is presented in Table 4.1.1. Traders with high
feature attribution values in this category can be seen as having their algorithms, which decide the
correct action to take, being influenced significantly by dynamic measures of informed trading in the
market. This sub-strategy combines raw features that relate to the probability of informed trading
metric, PIN, and the volume-probability of informed trading metric, VPIN, which are built using various

lags, techniques and hyper-parameter variables.

Strategy (S) Sub-strategy (U) Raw Feature (F)

AMM Informed Trading PINT.10
AMM Informed Trading PINT.100

AMM Informed Trading PINM.10

AMM Informed Trading PINM.100
AMM Informed Trading VPIN.BVC.10

AMM Informed Trading VPIN.BVC.20

AMM Informed Trading VPIN.TIL.10

AMM Informed Trading VPIN.TI.20

AMM Informed Trading PINT.10

TABLE 4.1.1 — Example of Feature Grouping methodology for the sub-strategy (U)of Informed Trading.

By way of further explanation, the five primary AT strategies defined in Section 2.3 are represented in
the first column of the feature list. These strategies encompass several sub-strategies which in turn have
raw features collapse into each segment. For example, stochastic oscillators are technical indicators used
by firms executing predominately Technical signal-based AT strategies. Thus, the raw features of
stochastic oscillators, such as the previous fifteen event period oscillator, SO.15, are incorporated into
the stochastic oscillator sub-strategy and ultimately within the Technical AT strategy category. This
schematic is presented in Table 4.1.2. The objective of group categorisation is to provide interpretability
of how individual raw feature attribution values, FJ, can be used ultimately to cluster trading firms into

one of the five primary AT strategy categories.

Strategy (S) Sub-strategy (U) Raw Feature (F)

Stochastic Oscillator ~ SO.E15

TABLE 4.1.2 — Example of Feature Grouping methodology for the raw feature value (F) of SO.E15.

CunapTeER FOURr |174

4.1.2 Distance Correlation & Mutual Information Methods

Understanding the univariate relationship between the FTSE100 CLOB n-dimensional feature set and
actions executed on the LOB can be performed using distance correlation and mutual information
metrics. These metrics provide a low-computational basis for understanding what features drive activity
on modern LOBs, though they are characterised by their parochial focus on only quasi-linear

relationships and their treatment of features independently, ignoring interaction effects between them.

Pearson correlation coefficients, py,, are a metaheuristic filter method commonly deployed as a feature
importance metric in machine learning models. The coefficients measure the linear correlation between
elements of the DNN input feature vector over the training data, X;, and their corresponding classifier,
y (Biesiada, 2007). Whilst correlation between input features and classifiers serves as a relatively useful
heuristic for determining the importance of a feature to predicting model outputs, it ignores both non-
linear relationships with the classifier and the potential improvement in classification accuracy from
abstract interactions between multiple features in the feature vector. An extended univariate filter
technique capable of measuring quasi-non-linear relationships is distance correlation, dpy,, which is a
function of distance covariance, dcovy,y, and the distance standard deviation for both the feature, doy;,
and classifier, doy, (Szekely, 2007):

covy,y p dcovy,y
pXi = pXi =
Ox, Oy doy,doy

Absolute distance correlations for all features are evaluated across the FTSE100 CLOB dataset for each
unique tuple, (§,D, B). Distance correlations are then averaged across all datasets to form importance
metrics at the individual feature-level and additionally for feature ‘sub-strategy groups’. Raw features
are grouped by the relevant sub-strategy and strategy to which they would most likely serve as an
algorithmic input into. A holistic explanation and rationale of how the feature grouping procedure is
offered in the previous part of this section, which additionally explains nomenclature used in the chapter

regarding feature groupings.

Results for the correlation analysis is presented in Figure 4.1.1 with a focus on the correlation between
20 interesting feature groups and two key actions — orders at the best bid, LO.B.P0, and bid market
orders, MO.B. The first point to note is that four of the five most correlated feature groups relate to an
individual algorithmic trading strategy. For example, momentum features are a key component of
Momentum-based strategies, quote offset for AMM, quoted spread for Microstructural and trader spread
for Execution type strategies or algorithms, with all four features having an average correlation higher
than 0.1 for the actions analysed. This indicates that the task of clustering firms by trading strategies
executed based on the importance of individual features to their trading algorithms may be possible. As
expected, raw features that are components of limit order imbalance, order flow, implementation shortfall
and RSI feature groups also have high correlations given their prevalence in the trading literature and

the ubiquity across the corporate trading environment.

The divergence between correlation values for limit orders, represented by red dots, and market orders,
represented by blue dots, is also studied. Results indicate that most of the feature group values are more
strongly correlated with limit orders which aligns with the findings from the confusion matrix analysis

in Section 3.6 where the market order actions were on average more difficult to predict for the DNN

CHAPTER FoUuURr |175

than limit orders. Latency arbitrage features deviate from this prescribed view as market orders have a
2.5 times higher correlation than limit orders on average, with similar results for volume traded though
at a smaller magnitude. These results are in line with expectations given that latency arbitrage features
relate to how traders react when price dynamics across trading venues are out of equilibrium. Note that
"arbitrage’ in this context is a slight misnomer as it does not relate to explicit risk-free profit but rather
an equalisation or crossing of the best bid and ask when considering the holistic UK equity market.
Thus, when latency arbitrage feature values are high, there will likely be a significantly higher probability
that traders will execute market orders on one or both sides of multiple exchange LLOBs to benefit from

discrepancies in best bid and ask prices across venues.

Acceleration -
Informed Trading -
Price Reversion -
Stochastic Oscilator -
Resilience -
VWAP -
MACD -
Inventory -
Trading Costs -

RSI- e B B

Action
LC.B.PO

Impl tation Shortfall -
mplementation Shortfa * MOB

Order Flow -

Market Depth -

Volume -

Limit Order Imbalance -
Trader Spread -
Quoted Spread -
Quote Offset -
Momentum -

Latency Arbitrage -

Feature Group

0.05 0.10
Correlation

FIGURE 4.1.1 - Distance correlation between trader actions and feature groups. Actions are bid limit at BBO (red) and market orders (blue).

An alternative filter-based feature importance proxy takes an information theoretic approach to develop

mutual information (MI) indicators, My, for each feature-classifier pair, X;,y. MI indicators for the

vy’
FTSE CLOB dataset are measured in entropy units, H(X;), which is a quantitative expression for the
pervading presence of a specific input feature value within the probability distribution P(X;). Therefore,
if the distribution of x; is biased towards a certain value a € x;, then the entropy for the feature
distribution is low, as there is minimal uncertainty as to its value. Alternatively, a uniform distribution
of the feature values will result in a higher entropy value. For feature importance purposes, the metric
Mly,y is developed for each feature, x;, which can be seen as a measure of the level of information that
is shared between the input feature and output values, y (Estevez, 2009). This requires the calculation
of the Kullback-Leibler divergence between the entropy of the input feature, H(X;), or the level of
uncertainty prior to knowing the output value, and the conditional entropy of the input feature value
given the output value, which is the residual uncertainty once the output value is revealed, H(x;|y).
High MI values indicate features with similar distributions to, or shared information with, the classifier,
acting as a proxy for higher feature importance. Given the continuous nature of features in the FTSE100

CLOB dataset, it is necessary to discretise the features into bins to approximate densities (Guyon, 2003).

P(Xi' Y))

Mly,y = H(x;) — H(x;ly) = - z P(x;,y)In <Wp(y)

H(A) = — zaEAp(a) In(P(a))

MI metrics to measure feature importance are presented in Figure 4.1.2 for 20 features averaged over

each unique dataset, (S, D, B), and feature group. The same graphical framework and trader actions are

CuapTeER FOUR |176

employed as in the correlation analysis. Results differ slightly from the correlation analysis, with several
new features included. Trader depth attains the highest feature attribution of 0.42 for limit orders, with
latency arbitrage the highest for market orders with a MI value of 0.39. The trader depth feature relates
to the level of current and lagged market depth for the individual trader executing the action, and
evidently, the probability distribution is closely related to limit orders at the best bid. As an example,
when a trader is performing an execution strategy to trade a fixed volume of shares, one would expect
them to update their orders with a new limit order when their relative depth position, that is their
current quantum of orders at the best bid, is low relative to the market. This could occur after another
large order is placed in the queue or an opposite market order has been executed, oscillating the best
bid-ask prices, though either way, the trader will seek to maintain their position in the best bid queue
to complete the execution strategy. Thus, the relative trader depth becomes an important feature for
execution-type algorithmic traders. Additionally, order arrival rates and aggressiveness levels attain high
Mly,y values of 0.38 and 0.35 for limit orders, respectively. Once more, this aligns with financial logic
and order flow theory (Toth, 2015), especially in high-frequency markets, that traders will follow a
herding mentality and place orders at the BBO as order arrival rates increase given the competitive
requirement of maintaining a high position in the order queue. Furthermore, higher aggressiveness levels
may proxy for amplified levels of informed trading on the LOB, with informed traders placing orders at
the BBO to profit from the demand for more immediate liquidity (Andersen, 2013; Ait-Sahalia, 2017).

Index Tick -
Momentum- &
RS- ———
Inventory -
Stochastic Oscilator- &——
Implementation Shortfall -
Informed Trading -

g‘ Trading Costs -

= Trader Spread - -—)

© Effective Spread - Action

g Quote Offset LOB.PO
3 uote set - AL L :

® MOB

g Market Depth -

L Chaikin Volatility -

Price Reversion -
Volatility -

Latency Arbitrage -
Aggressiveness -
Volume -

Order Arrival Rate -
Trader Depth -

0.‘1 UIZ U.‘S UI4
Mutual Information

FI1GURE 4.1.2 — Mutual Information metrics based on entropy and cross-entropy values for features and actions. Measured in entropy units.
Actions are bid limit orders at the BBO (red) and market orders (blue).

Both correlation and mutual information metrics provide a genesis non-model-based heuristic method
for determining what LOB features may be important to predict trader actions. The advantage of these
methods is their interpretability and comparability, with values scalable allowing them to be normalised
within a specific range, such as [0,1], with higher values indicating higher feature importance.
Furthermore, the measures are stable given their independence from the model, equalling the same value
regardless of what type of DNN is fitted. However, both these measures are a form of univariate feature
importance analysis as they test the statistical relationship between only the feature and the output
classifier, with feature importance considered independently of other features. This provides minimal
utility for truly attributing feature importance to traders given the critical role that complex feature

interdependencies and interactions play in predicting AT firms’ actions on modern LOB trading systems.

CHAPTER FouURr |177

4.1.3 Synaptic Weight-based Methods

Synaptic Weights are an embedded feature attribution technique that can be used to derive the saliency
measures of the FTSE100 CLOB dataset features implicitly from the internal dynamics of the DNN.
Specifically, the dynamics of the model investigated are the synaptic weight connections between input
feature neurons and the connecting neurons in a feedforward direction towards the output layer.
However, weight-based algorithms developed by Garson (1991) with extended iterations developed by
Goh (1995) and Olden (2004) among others, are pertinent for an analysis of feature importance in single-
layer neural networks but offer minimal application in deeper neural networks. Feature importance for
input features is measured by deconstructing the synaptic connections in the neural network and
applying operations to the weight values to derive importance. This section employs the Olden (2004)
method that sums all absolute weights, w; j, connecting the input feature x; to the output neuron y,
through all hidden layers, to derive a single feature importance value, Wy,. The logic of this method is
that weights convey relevant information regarding the utility of a feature in explaining an output and
can be seen as partially analogous to the coefficients of a regression model. The feature importance using

the synaptic weight-based attribution method is computed as:
1 . o
Wy, = Ez |Wi,j| where C is the number of synaptic weights
J

Conditional density plots of five individual raw features over the weight region [0,1] are presented in
Figure 4.1.3 with results tabulated over the 802 individual FTSE100 CLOB unique datasets, (S, D, B).
The horizontal axis represents the weight importance W, for a specific feature whilst the conditional
density is displayed on the vertical axis. From the results one can note that feature importance metrics
for quoted spreads measured over the past ten events, QS.E10, tend to remain stable with a conditional
probability density between 0.2 and 0.25 over the weight value range [0,1]. This indicates that the
relative importance of quoted spreads compared to the other features is similar for traders that place
both a low and high attribution to quoted spreads. In contrast, quote offset for the bid, QOB, has a
higher relative density in the low attribution values, indicating that these features are very important
for a smaller number of algorithmic traders’ algorithms, ostensibly predicted to be those traders

conducting automated market maker strategies.

As the synaptic weight attribution values increase, the number of firms that attain these saliency values
significantly decreases, with less than 0.01% of firms attaining an average synaptic weight feature
importance value greater than 2. Intuitively, this result is in line with expectations due to the deep
architecture employed in the DNN with 1300 hidden neuron parameters included in the model.
Evidently, a drawback of using the weight-based approach of Olden (2004) in high-dimensional, deep,
and wide neural networks is the voluminous array of weights from which it becomes difficult to extract
concordantial relationships between weights and feature attributions using linear techniques in highly

complex models with a predisposition for non-linear interactions and transformations.

CuarprTer Four |178

=1

o

(]
|

\/\/ Feature
w [o
HMAGDBJUQU

MOB.10

[JaoB
[JasEto

Conditional Density
(=)

=

[

o
\

w

0.00-

0.00 0.25 0.50 0.75 1.00
Weight Importance

FI1GURE 4.1.3 — Synaptic Weights based attribution method conditional density plot for five raw LOB features.

4.1.4 Input Perturbation Methods

Input perturbation methods attribute the importance of feature X; in a trained DNN by comparing the
performance of the non-corrupted network against one that perturbs, shuffles or removes the input
feature x;. Performance is generally measured by passing the actual and perturbed dataset through the
network and measuring the change in the cost function or output values. Various perturbation methods
have been developed to study the attribution of pixels in Convolutional Neural Networks (CNN)
(Zintgraf, 2017; Zeiler, 2014) and features in conventional feedforward DNNs (Breiman, 2001; Heaton,
2017b). Several input perturbation methods of feature attribution are explored and implemented on the
FTSE CLOB dataset including the Occlusion algorithms (Heaton, 2017b; Zeiler, 2014) and Locally
Interpretable Model-agnostic Explanation models (Ribeiro, 2016). Deficiencies in perturbation methods
exist in their high relative computational cost, especially when compared against backpropagation
methods, and instability in the presence of surprise artefacts where the DNN receives perturbed inputs

that may be outside the manifold of the trained dataset leading to abnormal predictions during inference.

4.1.4.1 Occlusion Analysis

Various feature importance wrapper algorithms have been employed in the literature, primarily in the
domain of image recognition, that utilise occlusion techniques to block, mask or shuffle input feature x;
before analysing the impact on the models’ performance as a way of attributing importance to that
feature (Zeiler, 2014; Heaton, 2017b). This section employs an occlusion input perturbation algorithm
to analyse the importance of FTSE100 CLOB features over the set of ISIN-Date-Broker
datasets, (§, D, B). The algorithm requires the fitting of the DNN for each dataset using the full input
feature vector. The learnt weights, network structure, cost function and learning algorithm of the DNN
are maintained throughout the application of the feature importance algorithm. The algorithm loops
through each individual input feature, X;, of the neural network and perturbs or shuffles that feature’s

value, Xp,, by drawing randomly without replacement from the values of the feature vector x. The

CunapTeER FOURr |179

change in loss, AL, between the non-corrupt, L(X,y), and perturbed dataset cost function, Lp(Xp,y), is
then computed. The decision to shuffle rather than fully remove or mask the input feature is based on
the rationale of maintaining the distributional and statistical properties of the feature vector, whilst still
inputting the feature into the DNN in a way that provides minimal information towards correctly
predicting the classifiers. The deviation in loss between the initial and perturbed neural networks is a

proxy for the importance, FJ, of the perturbed feature.

The occlusion input perturbation method is applied to the data with boxplots for 11 sub-strategy feature
groups depicted in Figure 4.1.4. Each boxplot is a representation of the change in loss metric, AL, which
serves as a proxy for feature importance given that higher loss values are associated with features critical
to the performance of the network, thus, explain trader actions in the FTSE100 CLOB dataset and
proxy as inputs into trader algorithms. From the figure it is apparent that when quoted spread feature
values are perturbed and shuffled randomly, the average AL is 16% higher for the trained DNNs,
represented by the white asterisk. Furthermore, the results for quoted spread feature groups indicate a
high degree of skewness toward higher losses when inputs are perturbed, illustrated by the upper quartile
value of 20.8%, with quartiles represented by the box hinges, and an upper whisker value of 51.1%,
represented by the thin line which extends 1.5 times the interquartile range. Beyond the whisker line
there are further outlier data points. Several other features analysed follow a similar pattern though
with smaller magnitudes, including the limit order imbalance, quote offset and latency arbitrage feature
groups. As expected all features attain mean change in loss values that are greater than zero, indicating
that shuffling the feature values and propagating them through the network induces a higher loss than
if the correct values were used. Several of the features have average loss changes close to zero, such as
informed trading and resilience feature groups, indicating that on average the DNNs loss function does

not increase significantly when their respective input features are perturbed.

Occlusion analysis provides an embedded model framework for assessing feature importance using the
actual trained DNN with the results presented showing the change in loss metric to be a valid measure
of feature importance. As discussed, the primary drawback from applying input perturbation methods
is the risk that surprise artefacts exist in the data leading to an unstable change in loss measure AL that
captures deficiencies in the model’s ability to process such artefacts, as opposed to the underlying feature
saliency properties. The FTSE100 CLOB dataset is susceptible to this concern given the nature of input
vector X as a mathematical representation of LOB phenomena, in contrast to image or text inputs that
allow for the user identification of artefact issues through visual inspection. Normalisation and
standardisation pre-processing techniques do combat this issue to a degree, but it is difficult to test for

robustness in the measure.

CuapTeER FOUR | 180

0.8~

] Feature Group

0.6~ H ; E3 Quoted Spread
H : E:l Limit Order Imbalance

o : ! E3 Quote Offset
3 s Bﬂ Latency Arbitrage
£ 04~ H E3 MACD
g,] Eh Trader Spread
5 I} ES Trading Costs
5 $ Trader Depth

02- E:El Volume

E:‘I Resilience
E E:El Informed Trading
0.0- L EEE EE —_—

0.18 0

spedd i aee eab o Qas‘) we fene 4Tl 09
aw,_eauv mpaa' quoe® La‘%f”"xw et (50T ang - ‘De" o st > et T o1
Lo X

Feature Group

FIGURE 4.1.4 — Occlusion analysis measuring change in loss, AL, from perturbations of input features, x, for 11 sub-strategy feature groups.

4.1.4.2 Locally Interpretable Model-Agnostic Explanations

The second perturbation-based method implemented is the Locally Interpretable Model-agnostic
Explanation (LIME) model (Ribeiro, 2016). The primary objective of the LIME approach for feature
importance is to define an interpretable explanation model, g: R™, within a class of linear models G where
g € G, that is both locally faithful and capable of approximating the global non-linear predictor function,
f:R, locally. The assumption of LIME is that the non-linear FTSE100 CLOB DNN predictor function,
f, optimised during training, must exist within an ‘interpretable’ representation (Ribeiro, 2016).
Mathematically, the interpretable explanation model g is chosen as that which minimises the function
(x). This function measures the local fidelity of model g in approximating the locality of the global
model f. That is, how well the linear model explains the non-linear model in a ‘locality region’ between
constants z and x, 9,. Additionally, the complexity of the linear model, @(g), is included in the objective

function to arrive at:

5(x) = argergin Cc(f,9.9,) +o(g)

LIME takes a model-agnostic approach to explaining complex machine learning models by separating
the original model from ex-post explanation and interpretability, given that many model types,
particularly very deep neural networks, still have ‘blackbox’ properties that minimise their
interpretability. This approach of model agnosticism allows for significant global non-linear model
flexibility given simpler local models are capable of approximately explaining any model irrespective of
their complexity, negotiating the flexibility-human interpretability trade-off (Freitas, 2014) inherent in
complex models. Feature importance metrics, FJ, are developed by quantifying the distance between
the complex non-linear DNN model predictions and the predicted values of the local linear approximate
model g on a local scale when minor perturbations are made in the input feature x;. The initial step of
LIME is to calculate these importance metrics for a specific data sample by first generating n
permutations of a sample instance being explained by perturbing the input feature. Predictions are made
by the complex DNN on the permuted dataset before computing a ‘weight’ metric for each input feature
that measures the proximity of the sample prediction of the complex DNN model f, for all permuted
observations, to the actual values of the non-permuted data. As a result, higher weighted features better

explain the complex non-linear DNN model’s predictor outcomes. Once the ‘weight’ metrics for the

CnarprTeEr Four |181

features are quantified, the most important m features are extracted from the complex DNN using a
feature selection criterion, before fitting the local linear model g to the permuted data using those m
features. Accordingly, the local linear model can predict its own ‘weights’ for each of the m features
using basic linear regression. These new weights serve as a proxy to explain the non-linear complex
model’s behaviour in the local region and evidently can be used as feature attribution measures for each

of the m features utilised for the analysis of the individual data sample.

LIME models of feature importance are fitted to the individual FTSE100 CLOB DNN trained to model
the relationship between LOB features and trader actions. Figure 4.1.5 provides a micro-level overview
of the results for a single DNN trained for one ISIN-Date-Broker tuple (S, D, B), for two near consecutive
limit orders placed at the best ask by the trader. The figure provides an analysis of the LIME feature
importance scores for 50 features that are chosen using a feature selection algorithm based on the
absolute feature importance weights of a linear fitted ridge regression that serves as a local approximate
for the DNNs non-linear function. Two separate samples are analysed for the action of a limit order at
the best ask, LLO.A.P0O, with the DNN softmax outputting probabilities of 0.99 and 0.96 for each sample,
with both samples correctly predicted by the DNN as the action taken by the trader.

An initial point to note is that both samples have slightly different features that explain each individual
action, even though the actions were executed within several seconds of each other. However, given that
both actions are performed within a close event time-frame, by the same trader and on the same security,
there is also a lot of commonality between the feature importance scores for both samples. For both
cases, LIME selects quote offset on the ask side, QOA, as the most important feature that contradicts
the DNN with a value of -0.16 and -0.14 for the first and second case, respectively. For example, the
trader may be in a situation where they are expected to widen the quotes on the ask side by placing a
limit order one or two ticks from the BBO, however, other features in the dataset may additionally serve
as an important input into the firm’s algorithm that motivates them to place the order at the BBO. The
next series of important features may fit this criterion. For example, the latency arbitrage feature,
LAOB, in the first case indicates that there is a disequilibrium across the UK trading venues for the
security being analysed at the best bid-ask, which may motivate the trader to place the order at the
best ask to gain from order queue priority. Additionally, three momentum features in the first case —
MOB.10, MOB.5, and MOA.5 — all have high importance feature values greater than 0.05 and support
the DNN model’s predictions. Once more a potential explanation overriding some of the contradictory
features such as QOA or the traders market depth features, MDTR.0, could be that excitatory
momentum signals are prevalent on the LOB, driving the motivation of the trader to place the order at
the ask BBO.

Arguments against implementing LIME as an attribution method for FTSE100 CLOB features are based
on its failure to meet the axiom described in the literature as ‘sensitivity’ (Sundararajan, 2017,
Shrikumar, 2017; Ancona, 2018). Meeting this axiom requires that samples which differ in a certain
feature, with a corresponding divergence in predictor classes, must place some non-zero attribution
towards that feature. When the DNNs non-linear function f flattens in a certain region, common when
ReLU activations are employed, it may be approximated by a local linear function. When predictions
are made by LIME they may not meet the ‘sensitivity’ axiom as oscillations in the non-zero feature
input value may remain on the flat region of the local linear model, thus, changes in the feature value

do not result in a non-zero feature attribution value, breaking the sensitivity axiom.

CunapTER FOUR | 182

Feature Attribution - LIME

GBO0BHAHKS39.1.6.2015 FIRM039

Case: 1 Case: 2

Label: LO.A.PO Label: LO.A.PO

Probability: 0.99 Probability: 0.96
oo I QoA
LioB [] HOB.5 []
HoB.10 [] HoB.10 I
1085 [] OAS []
HOAS] asEl]
HMDTR.0 | HMDTR.0 |
MOA10 [] MOA10 []
MOA100 |] MOA100 |]
MOB.100 |] MACDAS0.100 [|
MOA 1000 | MOB.100 [|
ACS [] MACDA10.20 |
OARAE1000 |] OARAE1000 []
PITRR |] MOA1000 |]
OERAE100 [] MOB.1000]
LOIRS0 [| as | 1
QS RS0 [] Qs.st []
\heBA 1020 - [Ep——]
QsEt [] D1 |]
asst |] QsR50 |
MACDA50.100 [| WACDB 50.100 |
Lon [] MD []
10B.1000 | LOLRS0 |
asTR [Lon [
o MACDB1020 [| ACA10 [
5 QoB [| QsEs0 [
§ VOLRE10 [OARAE100 []
Lot | | PITAXX30 []
VOLRS E10 [] PINML10 |
ACB.10 [} WACDB.10.20 |
VOLQS E20 [] TWAPTI [|
cLpn |] aoB | |
Lo NSt [| PITRR |]
PIRAX30 [] PIPAX10 | |
MD [| INDT5 []
QSR25 | | PITAX30 [|
VES | LAOA [|
D1 [] Lol |]
FIKBR EA0.E10 [] VE1000 [|
as [| ACS [|
PIPAX30 [| PIIKBR EA1.E60 [|
OLCE: [| VOLRSE10 [|
VPINTI.20 [| PIPAXX10 [|
LolR25 [| BOLU.S]
PIKBR EA1.EGD [] asTR []
el [| PIRAXX10 [|
[] SOCES []
[] VPINTI.20 | |
PIPAXX10 | RESOR E1 [|
PINML10 [] CPAS []
VPINTLAO [| VES
0.1 0.0 01 015 010 0105 0.00 0.0
Weight
[supvorts [l contraicts

FIGURE 4.1.5 — LIME model for two limit orders at the ask side of the BBO, LO.A.P0, for ISIN GBO0BH4HKS39, Date 1/6/2015, Undisclosed
Broker, 10:45 am. Both orders are placed within a one second timeframe. Label refers to the correct order classification and probability refers

to the models prediction of the correct class.

4.1.5 Backpropagation Approaches

The common binding concept behind backpropagation-based approaches to feature attribution is the
reliance on evaluating the gradients of the DNN output, y, with respect to individual input neurons, Xx;,
to derive saliency metrics for neuron i. These techniques differ from previous approaches given their
model-dependent nature with attribution based on the level and magnitude of signals propagating
through the DNN. Backpropagation-based approaches address the computational inefficiency of input
perturbation methods which require continuous permutations of the features to extract attribution whilst
backpropagation can be completed with a single pass forwards and backwards of an input feature through
the network. Several issues common to perturbation attribution methods, including the presence of
artefacts in the data, and basic gradient backpropagation methods, including the ‘saturation’ of gradient
and ‘threshold’ issues (Shrikumar, 2017), have been overcome by recent innovations in backpropagation
methods. In particular, Integrated Gradient (Sundararajan, 2017) and DeepLIFT (Shrikumar, 2017)
algorithms for feature attribution present reliable contemporary methods applicable to measuring the

saliency of FTSE100 CLOB DNN input features.

This section introduces five gradient-based approaches for feature attribution — Gradient*Input
(Simonyan, 2014), Layer-wise Relevance Propagation (Bach, 2015), Deep Taylor Decompositions
(Montavon, 2017), DeepLIFT (Shrikumar, 2017) and Integrated Gradients (Sundararajan, 2017) - with
the approaches then evaluated to determine the relevant method to implement for the FTSE100 CLOB

CunapTeEr Four |183

dataset. The backpropagation-based approaches for DNNs are mathematically rooted in the partial
derivative of output w.r.t input, dy./0X;. Recent work by Ancona (2018) posits conditions of equivalence
and approximation between several of the methods and attempts to provide a unifying framework.
Henceforth, the term ‘gradient’ is used interchangeably with the analogous partial derivative of the

output w.r.t input term, unless specified otherwise.

4.1.5.1 Gradient*Input

Backpropagation of signals through the DNN is a common thread that connects the various attribution
methods explored in this section, with the Gradient*Input method (GI) serving as a theoretically
tractable and simple estimation of feature saliency (Simonyan, 2014). GI methods were initially
implemented by Simonyan (2014) as an instance-specific class saliency mapping technique to visualise
feature importance, or spatial support, by highlighting features, or pixels, on attribution maps, based on
the gradient of the classifier output w.r.t input pixel features in a deep CNN. Mathematically, these
methods measure feature saliency by computing the absolute partial derivative, dy./0X;, for the majority
class prediction, y., w.r.t the input feature vector, X;. Springenberg (2014) developed a ‘guided
backpropagation’ method similar to Simonyan (2014) in that feature importance is conditioned on
backpropagating gradients through the network, though the method suppresses negative gradients to
align with properties of the ReLU activation function employed in the author’s network. Intuitively,
larger absolute gradients require only a minimal perturbation to the input feature to drastically affect
the output classifier, thus, reinforcing the importance of that input feature value to the network.
Shrikumar (2017) extended these techniques to incorporate the magnitude of the input activation signal,

X;, culminating in the GI attribution for input feature i, r;, defined by:

_ |9y
axi

I i
The logic behind these scores is that gradients reflect the impact of an input feature on the classifier
value, indicating importance for explaining the neural networks relationship between features and
classifiers. Higher scores imply that features are more useful for classifying predictors. Several
observations regarding GI follow. First, the inclusion of the multiplicative input feature term, x;, allows
for the computation of a ‘local’ attribution measured by the expected change in output from an
infinitesimally small change in input around the input feature. Ancona (2018) differentiates the local
attribution method from global attribution methods that are explored by the following four
backpropagation algorithms in this section which quantify the marginal impact of a change in the input
feature on the output value relative to a baseline defined by the user. Second, GI employs the absolute
value of the gradient to attribute importance which prohibits the detection of information regarding
whether the importance is positive or negative resulting in less practical interpretability. Third, GI
methods commonly suffer from ‘saturation’ and ‘threshold’ issues common when backpropagating signals

through the network without applying any normalisation measures (Shrikumar, 2017).

Saturation occurs when a multitude of mathematical operations are applied through the non-linearities
of the backward pass, as gradients are multiplied across very deep networks using the chain rule to
derive the gradient of the output w.r.t input. Activation functions that have gradients with significant

saturation regions are most often affected as the gradient reduces to a near indecipherable and ultimately

CunarpTeErR Four |184

uninterpretable value (Glorot, 2010). Sundararajan (2017) also analysed vanilla gradient attribution
using the GoogleNet 22-layer deep CNN Inception architecture (Szegedy, 2014) trained on the ImageNet
dataset, positing that input gradients in and of themselves fail to provide accurate quantitative
attributions for the importance of individual pixel features. As identified, this is due to saturation of
backpropagated gradients which essentially are local linear approximations. Thresholding issues occur
due to discontinuities in the gradients for certain activation functions, particularly RelLUs. This results
in undesirable artefacts becoming prevalent in the feature attribution values, especially around the
threshold value where the discontinuity occurs as gradients shift significantly when input values lie on

either side of the threshold, providing a misleading interpretation of importance.

The introduction of exponential linear unit activation functions (Clevert, 2015) and batch normalisation
(Ioffe, 2015) for deep networks can go some way to alleviating the saturation and threshold issues.
However, there remain practical issues with employing the GI method which requires consideration of
other techniques that placate many of the concerns inherent in GI to provide more analytically tractable
attribution methods. Applying difference from reference or baseline global attribution methodologies

used in Integrated Gradients and DeepLIFT methods can overcome these issues (Ancona, 2018).

4.1.5.2 Layer-Wise Relevance Propagation

Layer-wise relevance propagation (LRP) is a rule-based method that performs feature attribution by
decomposing the probabilistic value outputted by the classifier predictor function of the DNN at layer
L, ¥, into a ‘relevance’ score measure, r, over the input vector x (Bach, 2015). Similar to other attribution
methods, higher relevance scores can be qualitatively interpreted as LOB features that provide stronger
evidence for the correct prediction of the action a trader executes on the LOB. For the DNN applied in
this chapter, LRP first requires the computation of relevance scores for each softmax output neuron,
rl = §., where, c € C, for all classes C. Relevance scores for output values are decomposed in a recursive
manner as signals propagate backwards through the network using a conservative relevance
redistribution procedure (Bach, 2015), attributing importance or ‘relevance’ scores for each neuron layer-
by-layer. Signals backpropagated through the network in the form of relevance scores maintain a
conservation property where the sum of scores in each layer should be approximately equal to the sum
over output values in §. The relevance score for neuron i € I in layer [, rl-l, is computed as a function of
scores in j € J neurons comprising the adjacent layer, er'l, and the series of input activation values
I+1 _

connecting the two hidden layers, z;7; wl-l' jx% + b%, using the recursive € rule (Bach, 2015), where € is

a minor permuted value. Feature importance using LRP can be defined as:

I+1.1+1

1 Zij T h 1 _ +1 (o £ ¢
r; = S where = T (Conservation property)
jierZij T € Lier i€l jeJ

The propagation rule is applied by iteratively distributing relevance scores layer-by-layer backwards
through the network before culminating at the input layer x where relevance scores of the vector, r?,
serve as a proxy for the attribution of each input feature to the output of the DNN. The LRP technique
overcomes many of the issues inherent in saturation or threshold concerns evident in the GI method
applied in the previous section. LRP also serves as an approximate alternative to a full Taylor-

decomposition of the DNN, explored in the next section.

CunarpTeEr Four |185

4.1.5.3 Deep Taylor Decompositions

Deep Taylor Decomposition (DTD) methods extend the relevance score method employed in LRP (Bach,
2015) and saliency map techniques (Simonyan, 2014) by performing a Taylor decomposition of the DNNs
output value, y, to obtain output layer relevance values, r (Montavon, 2017). These relevance signals
are then parsed backwards through the network to ultimately derive an attribution value for the feature
input vector X. The key component of the method is its application of a Taylor decomposition to
individual neurons that are independently projected onto an adjacent hidden layer in the direction of
the input layer, rather than as a collective which is the case in LRP methods. DTD relevance scores are
theoretically derived to meet the axiom of ‘consistency’, aligning attribution values for the input features

with total relevance in the DNN output (Montavon, 2017).

In a similar vein to LRP, the DTD method initialises relevance scores for neurons in the output layer
based on the softmax values outputted by the DNN. The algorithm iterates through recursive
decompositions that propagate relevance signals backwards through the deep network, first by
attributing importance to neurons in deeper layers that have higher levels of feature abstractions, before
terminating the process at the input layer. Determining the relevance score, rl-l, for hidden neuron i, xﬁ,
first requires the assumption that relevance scores for neurons in the adjacent layer, le.+17 can be
expressed in terms of a positive constant ¢; = 0, that represents the attribution of neuron j to the output
of the DNN in a local region, such that I']-l+1 = ijjl-ﬂ. Using the DNN architecture employed in this
chapter, the relevance score for neuron j can be distributed into neuron i in the lower layer using a
decomposition based on a first-order Taylor expansion of neuron j’s newly defined relevance score, ijjl-“.
The resulting expression, ril(j1+1); defines the individual attribution from neuron i in layer [towards the
output of neuron j in layer [+ 1, based on the partial derivative of the higher layer neurons activation
value w.r.t the lower layer’s neuron. The expansion also requires the setting of a unit root point, X;(;141),
in a region where score functions are infinitesimally small (Montavon, 2017), resulting in the relevance
computed as:
aritl
rin = G—1 (Xi — Ri(j1+1)
0%; Ki(j1+1)

Evidently, performing DTD feature attribution for a single neuron requires the computation of Taylor
decompositions and the setting of unit roots for all neurons in the adjacent contiguous layer of the DNN.
Unit roots can be set to the closest point in Euclidean space to the input neuron i’s activation value
when the feature space is unconstrained, as is the case for the exponential linear unit activation function
for the DNN employed in this chapter. According to Montavon (2017), the point for the unit root sits
at the intersection between two subspaces — a plane equation that constrains the forward propagated
input activation value for neuron j to zero, ZiX%Win + bl =0, and a line of maximum descent between
neuron i and j. Solving for the point where the subspaces connect results in the setting of the unit root
and quantification of the final backwards propagated relevance score from neuron j to neuron i, ril(1)

where i € I and [is the number of neurons in layer [, leading to:

2
B = (wi)) plt

CunapTeER FOUR | 186

Through the structural decomposition of the DNN into a multitude of relevance score sub-functions for
each neuron in the network, the DTD method can ultimately arrive at feature attribution scores for the
input vector, r®. Interestingly, after applying consistent Taylor decompositions (Montavon, 2017), the
DTD feature attribution rule transforms into a functional form similar to the synaptic weight-based
approaches of Olden (2004) and Goh (1995), where weights of the network, w, explain feature

importance.

4.1.5.4 DeepLIFT

DeepLIFT applies a novel computationally efficient backpropagation-based algorithm deployed with the
objective of attributing feature importance values, r, for elements of a non-linear DNN input feature
vector (Shrikumar, 2017). This technique overcomes the saturation and threshold issue identified in the
previous sections by framing feature importance as a deterministic function of the divergence between
input and output values from a reference point, determined by the network designer using domain
knowledge. Utilising the 'difference from reference’ approach allows the algorithm to overcome issues of
saturation when propagating a signal back from the output to input by shifting the input values away
from saturated regions into those with higher interpretable properties. Similarly, thresholding issues
arising due to discontinuities in the functions derivative are mitigated by avoiding artefacts or misleading
importance attribution values by using difference from reference adjustments that produce continuous
and logical functions. DeepLIFT is a particularly relevant attribution method for the FTSE100 CLOB
DNN datasets due to DeepLIFTs ability to solve for saturation and threshold issues, caused by the deep

architecture of the optimised model and the use of exponential linear unit activations in the network.

Following from the optimised DNN architecture employed to solve the mapping function, y = f(x,w, b),
for the Broker tuple datasets, DeepLIFT can be applied to both hidden, x!, and input, X, neurons in the
network. For the hidden layer [input, X!, composed of n feature elements in space R®, that feeds into
a target neuron in the adjacent layer, X}H, DeepLIFT first requires the definition of a corresponding
‘reference’ activation value, X(-)’Hl, from which the difference from reference activation value for neuron

J
Js AX}Jr1 = X]l-+1 —X](-)‘Hl, can be computed. The reference value is the activation value of the target
neuron when the DNN propagates the reference input forward, hence, once the input layer reference
values are defined, the hidden and output layer neurons reference values are determined naturally using
forward propagation of the new reference input values through the DNN. Thus, initial input reference
values are critical and require domain knowledge of the machine learning problem, though Shrikumar
(2017) provides guidance by recommending that references be set at values that provide a ‘neutral’ base
for comparison for which feature importance can be attributed. This chapter utilises activation values

of zero due to the normalised and zero mean centred nature of the FTSE100 DNN input feature data.

The DeepLIFT algorithm assigns feature importance or contribution scores of, r,

xlaxtHt for hidden layer
l neuron i, xll € R™, by backpropagating signals from neuron j in layer [+ 1 backwards through the
network towards the target neuron i in layer [. Target neuron contribution scores can be heuristically
explained as the difference in the output neuron from its reference, ijl-“, that is attributable to the
difference in the input or target neuron in the previous layer from its reference, Ax!. The algorithm

requires that the summation-to-delta property (Shrikumar, 2017) holds such that the sum of all input

CunaprTeEr Four | 187

neuron contribution scores for the n neurons in layer [, that are attributable to adjacent layer output

neuron j, should sum to the divergence in the output neuron from its reference:

n
— 1+1
z. rAxl!AXH'l = AXj

i=1 Jj

Multiplier values, m, 1, i+1, are calculated as the contribution score of neuron j to i, r, i, 1+1, divided
iBX; iBXj

A
by AX%, and is analogous to the partial derivative of the output with respect to the input value, over
finite differences. Shrikumar (2017) highlights the reliance on the ‘chain rule for multipliers’ to calculate
the multipliers between an input neuron a and output neuron c, where a is fully connected to the
adjacent hidden layer comprising b neurons, by using dynamic programming and backpropagation to

derive myy ax, through the summation of all b* neurons in adjacent layers, leading to:
rAxl!Axﬁ-+1
Ax%Ax;“ T T A Mpx,Ax, = My, Axp MAX, Ax
L !
b

m

Due to the non-linear and dense feedforward nature of the DNN architecture applied in this chapter, it
is necessary to deploy the DeepLIFT ‘RevealCancel’ rule to assign multipliers and corresponding
contribution scores to the networks neurons (Shrikumar, 2017). This requires an independent treatment
for the positive, Ax;r'lJrl
neuron and corresponding multiplier computations, that together sum to the total output difference from

. —I+1 . .
, and negative, AX;""", difference from reference activations for the output

reference, ijl-+1 (Shrikumar, 2017). Furthermore, the non-linear hidden layer activation functions of the
network require the algorithm to split how contributions flow through both the linear, z!*! =

)
Zi[(wilfrlxﬁ) + bjl-+1], and then non-linear, XJL“L1 = qﬁ(z}“), components of the DNN.

The ‘chain rule for multipliers’ provides a basis for decomposing the multiplier between neurons in

adjacent layers, m

Axlagitts into component multiplier elements, expressed using the backwards pass of
iBXj

I+1

x5z and zj" - X%. The affine transformed linear multiplier, m,_+/-1
i

¢ : S/ and the non-linear

Az

multiplier, m Ag /L g /-, Are attributed differently for the positive and negative components (+/—),
J j

leading to the computation of multipliers as:

- - I+1 Al 1+1 ; ;
mAX;r,zAz;r,m = mAXi—,lAz}_{—,l+1 = 1{wij Ax; > O}WU (linear connections)
AX;—,l+1 ij—,l+1 . .
M L4141 = — o m, i, —i+1 =——7 (non —linear connections)
j J Az, j j Az,

m =m (chaining linear and non — linear multipliers)

Ax%Axg-H AX%AZ;H mAzf“Ax}“

Evidently, the multiplier for the linear activation has an equivalent form for both the negative and

positive difference from reference activations. From the equations, the difference from reference for the

/ ", is taken as the average of the impact from the input

, with no terms added, and the impact when, Azj_/ +7 has been added.

. . +
output neuron for non-linear functions, Ax;

neuron with the same side, Az;'/ B

Shrikumar (2017) implements this method to minimise the risk of positive and negative differences from

reference values annulling each other. Application of the RevealCancel rule and computation of the

CunapTeErR Four | 188

multipliers, m

A

<laxt+1s allows for the derivation of the contribution, r,
i8Xj

Gl
Xl of neuron j, X;"°, to neuron
i in the preceding layer, X;, using the chain rule with the following equation:

l_+1AX%
J

r m

Ax%Ax}“ ~ Waxlax

Once the DeepLIFT algorithm selects the references for input features, forward propagates those
references through the network to calculate references and corresponding difference from reference values
for all other neurons, then computes the relevant multipliers for each linear and non-linear activation
between neurons, feature attribution can be performed for the FTSE100 CLOB DNN input features x.
A necessary adjustment for the softmax output layers utilised in the DNN architecture is to only consider
the preceding linear layer z* before the final softmax sigmoidal non-linearity is applied so as to not
violate the summation to delta property (Shrikumar, 2017). Feature importance attribution requires the
calculation of contribution scores for input feature neuron X; to output neuron y, Iaxay., Which is

determined using the chain rule for multipliers and normalised over all ¢ € C classes to derive:

1€
— ! —
Iax;aye = Maxay AX; I'ax;aye = Taxgdy, — Ezk_l TAx,Ayy,

DeepLIFT provides an axiomatic feature attribution algorithm that allows the individual saliency, FJ,

of the n-dimensional feature input vector for each Broker tuple DNN, (S, D, B), to be quantified.

4.1.5.5 Integrated Gradients

Sundararajan (2017) develops a computationally efficient backpropagation-based feature importance
method for neural networks that studies how ‘integrated gradients’ of scaled-down input feature
counterfactuals provide insightful information regarding relative feature saliency. Integrated gradients
(IG) provide an interesting model that combines elements of several previous backpropagation and input
perturbation approaches introduced. Attribution for DNNs is measured using backpropagation to
formulate the partial derivative, dy./0x;, of output predictors, y., w.r.t input features, X;, in a similar
vein to Gradient*Input methods. However, IG also utilises the concept of a baseline feature value, X,
similar to the reference points in DeepLIFT algorithms. At a high-level, IG integrates gradient values
on perturbed input features over discrete steps in the continuous domain linearly connecting the input

feature and its baseline, culminating in an estimated relative attribution measure for the feature, r;.

The IG method is built using an axiomatic framework to derive fundamental characteristics of feature
attribution that are prevalent in the IG method, including the presence of two axioms — ‘sensitivity’ and
‘implementation invariance’ — which are relevant for the FTSE100 CLOB dataset. These axioms
primarily address the saturation and threshold issue previously identified (Sundararajan, 2017). The
sensitivity axiom defines valid models as those that assign a non-zero attribution value to features whose
input value changes, relative to its baseline, with a corresponding, though not linear, shift in the
predicted classifier output value. Methods that attribute importance solely from the value of the gradient
w.r.t the feature will violate the sensitivity axiom. For example, a ReLLU activated network will have
zero gradients when the ReLLU is activated in the negative region, thus, even if a shift in the input value
correlates with a shift in the predictor value the gradient will compute zero and attribute no importance

to the input feature, violating the sensitivity axiom. Defining the input feature in context to its baseline

CunarprTeEr Four | 189

preserves the sensitivity axiom. The second axiom that IG maintains is implementation invariance that
requires functionally equivalent neural networks to compute the same attribution for feature inputs.
Sundararajan (2017) argues that IG methods of feature attribution meet these axioms. Further, they
argue that whilst the DeepLIFT (Shrikumar, 2017) methods meet the sensitivity axiom through their
use of baselines, they fail the implementation invariance axiom as the methods can yield different

attributions for the same input and outputs from different neural network implementations.

Sundararajan (2017) propose a method for overcoming saturation issues when using gradients for feature
importance by defining a series of @ € (0,1) scaled discrete perturbations interpolated between the input,
X;, and baseline, X;, feature value which serves as the counterfactual of the model for causal reasoning.
Setting the baseline requires domain expertise to determine a position in the feature input space of the
DNN where the impact on the output classifier predictor, y, is neutral. Thus, the baseline value should
attain a near-zero predictor value that conveys minimal information when signals of the output are
backpropagated through the network. Baseline values should also be chosen in a way that they shift the

input signal away from saturated areas.

IG attribution methods are applied to the FTSE100 CLOB DNNs, y = f(x,w,b), with feature
importance derived from projecting the softmax output classifier, y¢ = [0,1], for ¢ € C, approximated by
the mapping function f, onto the attached n-dimensional feature space x € R™. The method is used to
develop an individual feature attribution, rg,, for input feature x; with attached predictor class label c,
baseline counterfactual x;, and scalar variable a. To attain this objective, Sundararajan (2017) develops
a series of “interior gradients’, 0f (X{ +a(x; — x{)), initialised with a equal to zero, and attached baseline,
X;, before iteratively perturbing the feature value by a scalar factor over the domain between the original
and baseline input values, expressed by the term a(x; — X;). IG approaches compute a feature attribution
metric, Iy, for input neuron i by taking the integral of the interior gradients along the path from the

baseline input to the actual input value, such that:

L af(x' +ax—x"))
7%, da

6= &= x) |

a=0
IG provides a framework for measuring feature importance of the protagonist feature input x; by building
a representation of the collective impact of interior gradient counterfactual values using scalable
parameters across the space. Intuitively, low scalar values of a should highlight relatively important
features given that they have higher gradient magnitudes, though each scalar will provide only a single
distributed representation. Sundararajan (2017) argues that the IG approach meets the defined axioms
of completeness and sensitivity, given that the sum of all integrated gradients, or attribution values,

equals the difference between classifier prediction values of the original input y¢(x) and baseline y*(x").

To maintain analytical tractability this chapter implements an approximation method for computing
gradients as proposed by Sundararajan (2017). This requires a Riemman approximation of the integral
using the accumulation of interior gradients at m over sufficiently small discrete and equal intervals

along the linear path between the input and baseline counterfactuals, such that:

) eam O (x; + (L) i - xi))
B = = x) ())
' m/ £j=1 0x;

CuonarprTeEr Four | 190

4.2 Backpropagation-based Feature Attribution Evaluation &
Dataset Formulation

This section presents an empirical and qualitative evaluation of attribution methods in conjunction with
a consideration of their theoretical limitations, with a particular focus on backpropagation-based
approaches. The evaluation is performed to determine the optimal method for measuring the relevance
metric, FJ;, of LOB feature i, X;, when predicting trader action c, y., for the FTSE100 CLOB ISIN-
Date-Broker tuple, (S,D,B), datasets. Categorizing market participants by the type of algorithmic
trading strategy executed requires an understanding of the relevant features that are expected to act as
inputs into their trading algorithms. Once the important LOB features for a market participant are
determined, these traders can be clustered using an unsupervised learning algorithm to segment firms

by their trading strategy.

Limitations of attribution models extend to their evaluation (Sundararajan, 2017). In particular,
empirically quantifying a model’s performance of correctly attributing feature importance may conflate
errors in these measures that arise from both the incorrect specification of the DNN or the incorrect
projection of the attribution from the output predictions to the input feature space. For robustness,
several techniques are employed to evaluate attribution models. These include a visual inspection of
feature saliency maps (Bach, 2015) though this method can induce bias given its non-statistical nature
(Ancona, 2018), analysis of the change in ‘log-odds’ for output values when comparing a counterfactual
of the correct output (Shrikumar, 2017), and a ‘Sensitivity-n’ test based on correlations between
attributions and changes in output values (Ancona, 2018). The primary backpropagation-based feature
attribution methods analysed include — Gradient of output w.r.t to input (Simonyan, 2014),
Gradient*Input (Shrikumar, 2017), Layer-Wise Relevance Propagation (Bach, 2015), DeepLIFT
(Shrikumar, 2017) and Integrated Gradients (Sundararajan, 2017). The backpropagation-based feature
attribution evaluation is performed using three methods of saliency distributions, delta log-odd and
Sensitivity-n in Section 4.2.1, 4.2.2 and 4.2.3, respectively. The evaluation indicates that the two
axiomatic approaches of Integrated Gradients and DeepLIFT provide applicable feature attribution
methods for the FTSE100 CLOB DNN tuple datasets, which are used to extract the feature attribution
dataset used for clustering firms into different algorithmic trading strategies, as explained in Section
4.2.4

4.2.1 Saliency Distributions

Distributional properties and visualisations for individual raw feature saliency metrics are concurrently
developed to inform a qualitative evaluation of each attribution method’s applicability to the FTSE100
CLOB dataset. The importance scores for the five techniques — Gradient (G), Gradient*Input (GI),
Layer-Wise Propagation Relevance (LRP), DeepLIFT (DL) and Integrated Gradients (IG) — are
computed for each individual action of a brokers (S,D,B) tuple dataset. Raw importance values are
averaged across all actions, and normalised with Gaussian, N (0,1), to attain normalised importance
metrics for feature i, FJ;, which allows for positive scores to be interpreted as those features having

positive attribution to a DNNs predicted output, with the reverse case for negative scores.

CnapTeER Four |191

Feature importance distributions for nine separate raw features are presented in Figure 4.2.1 for the five
attribution methods. Evidently, comparison of the distributional properties of each method indicates a
strong similarity between four of the methods, with the Gradient method used in saliency mapping
(Simonyan, 2014) diverging for several of the features studied. Distributions for most of the features
have high density around zero with long tails extending into the positive region and relatively shorter
tails in the negative region. The Gradient method seems to have a significantly different distribution for
LOB features of the aggressive order arrival rate over ten events, OARA.E10, the volatility of the quoted
spread, VOLS.QS.E5, the stochastic oscillator, SO.E5, Chaikin volatility, VOLC.EbH, and latency
arbitrage flags on the ask side, LAOA. One potential explanation for why distributions differ from the
other backpropagation methods for these particular features is that the gradient method does not
inculcate negative impacts from changes of the feature on the output. Thus, features with raw offset
distributions are likely to have a less balanced positive versus negative impact, leading to the
distributions skewing when taking the absolute value. Ancona (2018) provides a theoretical explanation
for the divergence between pure Gradient and other backpropagation methods. They distinguish between
attribution methods which attempt to explain how changes in the output are impacted by minor
perturbations in the input feature, referred to as local methods, and those that measure the marginal
effect on the output value when an input diverges from a baseline value, referred to as global methods.
The Gradient method fits into the local attribution family given its measurement of saliency around the
individual feature value, x;, whilst the other techniques are global methods which, to a degree, measure
saliency across a spectrum between a baseline and the input feature, X; — x;. The similarity in the four
global backpropagation approaches indicates a positive result showing that these methods, which are

rooted in sound theoretical literature, tend to have well-aligned attribution metrics.

LAOA 0.4- QoA 0.5- OARA.E10
0.3- .
0.4-
03-
2 99- = = a-
= 02 = B 03
5 5 0z2- 5
[}] [
0.1- |
0.1 01-
0o-, T | T 0.0- T T T 0.0- T T T
-2 0 2 4 0 2 4 0 2 4
Raw Feature Raw Feature Raw Feature
VOLQS.E5 ES VPIN.TI.20
0.75-
0.4- 0.4-
= = Eonli
= = = 0.50
c = c
@ @ L+
o 02- 2 g2- o
0.25-
0.0- p p p 0.0- p p y 0.00- p p ;
0 2 4 0 2 4 0 2 4
Raw Feature Raw Feature Raw Feature
0.8- 12-
RSIA.10 SO.E5 06- VOLC.E5
06" 0.9-
ol = = 04-
2 opa- 2 06- 2
@ @ L+
=] [[
0.2-
0.2- 0.3-
0.0~ = T T T T] 0.0- T T T 0.0- T T T
-1 0 1 2 3 4 0 2 4 0 2 4
Raw Feature Raw Feature Raw Feature

Attribution Method l:‘ DL DG l:IG' l:‘ G l:‘ LRP

FI1GURE 4.2.1 - Saliency distributions for nine LOB raw features compared across five backpropagation-based attribution methods. Note that

the ‘purple’ in the graphs represents the combination of several overlapping density plots.

CHAPTER FoOouURr |192

The alignment of saliency distributions for the four global backpropagation attribution methods derives

from the underlying dominance of the partial derivative term, dy./0x;, in each models’ algorithms, and

the use of baseline references. Further exploration of the interrelationship between different models’

distributions involves a comparison of Kullback-Leibler (KL) Divergence distribution-wise asymmetric
p(x)

measures, KL(P|Q) = [p(x) In (ﬁ) dx, computed for each attribution method pair (P, Q).

Results are tabulated in a matrix form and visualised in Figure 4.2.2. Note that methods on the left of

the figure represent the P distribution whilst the top method is the Q distribution.

The first result to note is the high KL Divergence between Gradient attribution methods and competing
backpropagation-based methods. The large purple dots in the first row for each of the feature plots
represent a high KL divergence between the Gradient method and competing methods, with all KL values
being greater than one across the sample analysed. Divergence values greater than one indicate that the
distributional properties diverge significantly between comparative methods, which in the context of
information theory deems that Gradient distributions offer no ‘information’ regarding the distribution
of other model distributions. This result aligns directly with the visual inspection of saliency distributions
performed in the previous qualitative analysis where the low level of relative entropy between Gradient

and comparative distributions was evident in the non-aligned density plots.

The second interesting result is the low KL Divergence between the Gradient*Input and Layer-Wise
Relevance Propagation pair and the Integrated Gradients and DeepLIFT pair, for the nine features
analysed. These results align with theoretical work performed by Ancona (2018) who present a unified
framework for current backpropagation-based feature attribution models that investigate conditions of
equivalence between various methods. They prove that the Layer-wise Relevance Propagation method
is equivalent to the Gradient*Input when the non-linear activation function employed by the DNN is a
ReLU and the DNN employs no additive biases. The DNNs trained in this chapter have no bias terms
and utilise the exponential linear unit (ELU), an extension to ReL.U with similar activation and sparsity
properties, which explains the similarity between LRP and GI attribution distributions. Furthermore,
the relationship between DeepLIFT and Integrated Gradients has also been explored in the literature
(Ancona, 2018; Sundararajan, 2017). Both attribution methods measure the partial derivative, dy./0x;,
by using the difference from a reference or baseline input value, whilst also meeting the completeness
axiom (Sundararajan, 2017) as attribution values sum to the difference between the output value
calculated for the actual and baseline input features. Thus, both methods compute some attribution
measure FJ; based on the gradient over the continuous domain between the input and baseline. The low
KL Divergence for all features studied is indicative of the commonality between the DeepLIFT (DL)
and Integrated Gradient (IG) approach to attribution in one instance, and the Layer-wise Relevance
Propagation (LRP) and Gradient*Input (GI) in a second instance. KL Divergence metrics for all nine
features sit within a range from 0.004 to 0.012 for KL(DL|IG) and a range of 0.02 to 0.04 for KL(GI|LRP).

CunapTeER FOURr |193

LAOA QOA OARA.E10

Q . Q . Q .
> & e ORI ORI
9@ @ o S N N N 23 900 e
e o @f. Gl " A ¢ Gl e o
5 5 5
lRPF @ @ | kP @ @ lRP @& @ |2
1 L] L}
DL : DL ; DL :
q] a

VOLQS.E5 ES VPIN.TI.20

Q ., Q . Q .
S & S & o @ S & & e
cooeoel o000l -00ee}
sl + & @, cll» @ @[s - & @k
5 5 5
RP @ @ | lrP | @ @ |° rr @ @)
9 9 L]
DL : DL : oL e o
a a a

RSIA.10 SO.E5 VOLC.E5

R ., R . R .
S & o e & o ¢ e & o o
- OQ@OOl 0G0l 0000
« . o ok s - o of o @ O
5 5 5
_qp..j 7P @ @ | P @ @ :
DL : DL : DL :

FIGURE 4.2.2 — Kullback-Leibler Divergence distribution, KL(P|Q), for each attribution method pair (P,Q), analysed over nine raw LOB
features. Y-axis represents P distributions and x-axis Q distributions.

The qualitative analysis presented in this section provides evidence towards the assertion that using a
basic measure of the output partial derivative w.r.t input may not be an applicable feature attribution
technique. Further, the results of the density distribution and KL Divergence analysis indicates a high-
level of commonality between the four other attribution methods tested — Layer-wise Relevance
Propagation, Gradient*Input, Integrated Gradients and DeepLIFT — which aligns with the development
of theoretical frameworks of attribution methods that have found strong relations and equivalence

between the different formulations (Ancona, 2018).

4.2.2 Delta Log-Odds

Evaluation of feature attribution methods can be performed by comparing the log-odds of a DNN
prediction when all features are included and one when a subset of features are extricated from the
feature space. This evaluation technique involves several steps. First, the feature importance score, FJ;_,
related to DNN input feature x; and attached to actual output class ¢, are computed for all feature
elements i € n in the n-dimensional input feature vector x. Next, a confusion class ¢, is selected and the
same process is performed to calculate FJ;,. A feature subset is then selected by taking features with
the lowest 25% of feature importance divergences between the actual and confusion class, F7; ;= FI, —
F7J;,. These features represent those determined by the attribution model to be of similar importance to

the DNN for both classes. The log-odds evaluation technique occults these features, then propagates

CnapTeErR FoUur | 194

data through the network to calculate the log odds with a mask vector, of all zeros, applied to the
selected features. An empirical comparison is made between the original log odds value which measures
the difference or delta between predictions for the actual versus confusion class without any masking,
and the occulted log odds value which performs the same computations but using input feature vectors

with low FJ; .. masked. The final result is a delta log odds measure for each observation in a dataset

idif
ISIN-Date-Broker tuple, (S, D, B). Intuitively, the evaluation metric compares how well the importance

scores identify the correct class.

Delta log-odds evaluation metrics are computed for four of the backpropagation-based attribution
methods across the 802 unique FTSE100 CLOB DNN tuples. Note that LRP is not considered in this
experiment. This analysis is performed for one action only, limit orders at the best ask, LO.A.P0, with
ask market orders, MO.A, as the confusion class. The subset of features chosen to occlude is 25%. Various
other class pairs, including LO.B.B0O-MO.B and LO.A.P0-LO.A.P1 and masking levels, of 15% and 20%,
are tested for robustness with relatively similar results. The results for the delta log-odds analysis is
graphically depicted in Figure 4.2.3. Higher log odds indicate that the attribution method assigns higher
importance scores to features that are critical to the DNN differentiating between the actual and
confusion class. Evidently, Integrated Gradients using 100 discrete interior gradients marginally
outperforms DeepLLIFT using the RevealCancel rule algorithm with an average delta log-odds value of
12.1 compared to 11.85 for DeepLIFT. Both methods have similar boxplot distributions with a whisker
value, equal to 1.5 times the inter-quartile range, equalling approximately 9 in the bottom range for
both methods, with upper range values of 23.2 and 24.8 for DeepLIFT and Integrated Gradients,
respectively. Gradient*Input also performed relatively well with an average delta log odds value of 9.98
across all sample DNN tuples evaluated. The log odds between the actual and occluded DNNs when
features are masked using the Gradient method did not appear to be influenced significantly, with an

average change of only 0.56 over the datasets.

20
0
0
0 . .
- Attribution Method
)]
3 E:El Gradient
c $ Gradient*Input
g’: 10- $ DeepLIFT
% E:El Integrated Gradients
E=
O

0- ;1;
Gradient Gradient*Input DeepLIFT Integrated Gradients
Attribution Method

FIGURE 4.2.3 — Boxplot of delta log-loss for different feature attribution methods calculated over all (§,D, B) tuple datasets and implemented
using actions of limit order at best ask, LO.A.P0, as actual class and ask market order, MO.A, as confusion class. Mask is applied to 25% of

features based on feature importance scores computed by each method.

CunapTER FOUR |195

4.2.3 Sensitivity-n

Axiomatic frameworks for feature importance have widely described the principle that the total raw
non-normalised attribution for a subset of n features, RM = ¥;c,, FIM, for attribution method M, should
equal the change in output value when those features are removed, masked or occulted, 4, =y, —
Ve[Xien = 0], based on the axiom referred to in the literature as completeness (Sundararajan, 2017),
summation to delta (Shrikumar, 2017) and Sensitivity-n (Ancona, 2018). This section analyses the five
backpropagation attribution methods through an analytically tractable comparative framework using a
metric that generalises the sensitivity-n axiom, allowing for the methods to be evaluated against one
another to determine the utility of employing them on the FTSE100 CLOB datasets. The Sensitivity-n
measure developed has similar attributes to delta log odds but derives from a different mathematical

formulation (Ancona, 2018).

The Sensitivity-n evaluation technique samples a random subset of n features uniformly from the
dataset, without assumptions regarding correlations. These features are then masked before feeding the
input vector through the network and computing the deviation from the actual to new output value, or
delta output, of the occulted DNN, A. Pearson correlation coefficients are measured between the delta
output values and the total attribution of the n masked features, empirically determined for each

attribution method M, culminating in the Sensitivity-n metric:

pn' = corr(Ry!, An)

where RM = Z,E FIM and A, =y — Ye[Xien = 0]
en

Sensitivity-n metrics are computed for all five backpropagation attribution methods, M, using random
feature samples of n cardinality across the range (0,100) taken from the 323 features used in the
optimised DNN. Metrics are evaluated for each DNN and averaged over all FTSE100 CLOB DNN tuples
(S, D, B). Attribution methods with higher Sensitivity-n values indicate that the importance scores have
a stronger correlation with the impact on the output value when the features are masked. Thus, the
attribution method with high Sensitivity-n more accurately attributes the importance of features in
modelling the output. When n is zero the correlation will equal one, with correlations decreasing as the

number of features masked increase, that is, a higher n is used.

Results are graphically reported in Figure 4.2.4. The monotonic decrease in Sensitivity-n values as the
occluded sample subset size n increases aligns with the findings of Ancona (2018), given the logical
assertion that DNNs trained without salient features produce more disparate predictions of the output.
Evidently, the Integrated Gradient method performs best at feature attribution for the FTSE100 CLOB
dataset based on the Sensitivity-n metric. Integrated Gradient attribution values have a strong positive
correlation with the impact that these features have on the output value. Thus, when a subset of features
n with summed attribution RM are extricated from the DNN, the model’s output predictor delta, A4,
shifts in a similar direction and magnitude as the attribution RM. In other words, changes to an input
feature value have a strong corresponding influence on the output when the Integrated Gradient feature
importance values are high. Integrated Gradient methods maintain an average Sensitivity-n of 0.976
when a subset of 10 features are removed, which falls to an average of 0.812 when a sample n of 100

features is used. Both Integrated Gradient and DeepLIFT models tend to perform similarly over different

CunarprTeErR Four | 196

cardinality of n, with DeepLIFT maintaining a correlation of 0.793 between summed attributions and
delta output when n is 100. Layer-wise Relevance Propagation and Gradient*Input similarly attain
correlated results with both measures performing relatively well until the cardinality of 10 features, at
which point the correlation results tend to decrease sharply as more features are occulted from the

dataset. These methods attain Sensitivity-n metrics of 0.663 and 0.631, respectively, when n equals 100

features.
1.0- =
0.9-
Attribution.Method
c b
- G
L=
= 08- \ Gl
=
oL = LRP
5 DL
w
1G
0.7-
06-
1 10 100
n Cardinality
FIGURE 4.2.4 — Sensitivity-n metric computed for different attribution methods over n cardinality (0,100). The attribution methods analysed

include Gradient (G), Gradient*Input (GI), Layer-wise Relevance Propagation (LRP), DeepLIFT (DL) and Integrated Gradients (IG).
Cardinality refers to the number of features occluded from the dataset.

Evidently, both the axiomatic feature attribution methods of DeepLIFT and Integrated Gradients attain
stable and relatively accurate measures of feature saliency illustrated by the relatively high Sensitivity-
n metrics as the cardinality increases. These results align with the analysis performed in the previous
saliency distribution and delta log-odds sections. Essentially, both these attribution methods provide
unique but similar interpretations of how to solve the same problem of feature attribution in the
FTSE100 CLOB dataset.

There are several primary similarities between the DeepLIFT and Integrated Gradients models that
amplify their success. Both apply a backpropagation-based attribution approach with a focus on the
partial derivative of the output w.r.t the input, dy./dx;,. Furthermore, they take a global approach
(Ancona, 2018) to quantify the marginal impact on the DNN output predictor, y., from a minor
perturbation in the input feature vector relative to a baseline or reference value, X; —X;. The two
techniques also solve the saturation problem (Shrikumar, 2016) endemic to previous backpropagation
attribution methods. Both methods were also built using an axiomatic framework (Ancona, 2018) that
measures the feature saliency values holistically in a way that meets various axioms theoretically
important to feature attribution. Finally, both methods have additive properties (Lundberg, 2017) that

allow individual raw input feature scores to be combined using mathematical operations. In the context

CunapTeER FoOoUur | 197

of the algorithmic trader strategy identification procedure performed in the section after next, the
additive property allows for various raw features to be amalgamated in a way that provides
interpretability, compactness and explanatory power of the predicted LOB feature inputs for an
individual Broker tuple, (S,D, B), trading algorithm, serving as the basis for segmenting firms by the

algorithmic trading strategy being executed.

4.2.4 Feature Attribution Dataset

Integrated Gradient (Sundararajan, 2017) and DeepLIFT RevealCancel rule (Shrikumar, 2017)
attribution methods are employed to quantify the degree of saliency or feature importance, FJ =
[ry, ...,] € R™, for each of the n features, X = [X4, ..., X,] € R™, which serve as input into the 802 unique
FTSE100 CLOB ISIN-Date-Broker tuple, (S, D, B), optimised Deep Neural Networks (DNN), represented

by the non-linear mapping functiony = f(x, w, b).

The resulting dataset includes a feature importance, FJ;, value for 323 LOB features used to train a
DNN for a single broker B on a specific ISIN § and trading date D. Feature importance values provide
a machine learning-modelled insight into the transitional dynamics of UK equity markets, identifying
LOB phenomena, X, that have good explanatory power when predicting the next action a trader is going
to execute, y € A, given the current state. Furthermore, these importance values provide a measure of
saliency for the LOB inputs into the trading algorithm of a market participant. Ultimately, an
unsupervised machine learning model can be fitted to the importance values for each Broker tuple,
(S,D,B), allowing them to be segmented into one of five algorithmic trading strategy categories —

Automated Market Makers (AMM), Execution, Microstructural, Momentum, and Technical strategies.

Raw Integrated Gradient (IG) and DeepLIFT (DL) feature importance values are extracted from each
sample action of the Broker tuple (§,D, B) DNN. The raw values undergo a pre-processing procedure by
summing the raw values over all actions the trader executes over the dataset, which is made possible
due to the additive properties of both IG and DL (Lundberg, 2017). These additive properties enable
feature importance values to be amalgamated using various frameworks and potentially could be used
to measure importance values over even smaller intervals than the trading day used in this chapter, such
as hours or minutes. For robustness, five separate optimised Broker tuple (§,D,B) DNNs are trained
and the IG and DL values are extracted and averaged over the five models. Furthermore, the raw feature
importance values for each tuple are normalised with a Gaussian distribution, N (0,1), to have a mean
zero centre and unit standard deviation. The pre-processing step culminates with a set of 323 normalised
F3J values for each Broker tuple that serve as input into the unsupervised machine learning clustering
algorithms introduced in the next section to categorise algorithmic trading firms, which is performed in
the next Section 4.3. The aggregate impact of these algorithmic trading strategies on UK equity market
quality is then analysed in Section 4.4.

CnapTeErR Four | 198

4.3 Algorithmic Trading Strategy Identification using
Unsupervised Machine Learning

Experiments in this section utilise unsupervised machine learning techniques, specifically K-Means and
its extensions, to cluster and classify each of the 802 multi-dimensional FTSE100 CLOB ISIN-Date-
Broker DNN tuples, (§,D, B), into one of five defined strategy clusters based on empirical observations
of feature attribution values, FJ, computed in the previous sections. Unsupervised learning algorithms
find patterns in unstructured data using high-dimensional partitioning rules of the FJ attribution values
at the raw feature and grouped strategy level. Several competing unsupervised machine learning methods
to K-Means, such as partitioning around medoids (PAM) and neural network-based self-organising maps
(SOM) are considered. PAM executes a similar algorithm to K-Means, but rather minimises an arbitrary
distance, generally absolute, rather than squared measures, when minimising the distance between
centroids and data points to be clustered. Hence, PAM is more robust to outliers and noise, given that
it does not penalise points by the square of their distance, which is less relevant for our dataset. SOMs
are unsupervised learning methods that learn to visualise multi-dimensional datasets by using topological
features to perform dimensionality reduction that scales the input feature vector into a lower dimensional
space. Whilst they provide interesting two-dimensional representations of relationships between
variables, we do not utilise this technique to partition data and define clusters, but rather rely on the

K-Means unsupervised method.

This section introduces K-Means models capable of clustering traders by the five identified algorithmic
trading strategies based on their raw feature importance scores. Four K-Means algorithms are defined
in Section 4.3.1, before being evaluated for their ability to cluster the feature attribution data in Section
4.3.2. Finally, the most applicable method, Spherical K-Means, is applied to the data in section 4.3.3
resulting in the clustering of firms into five categories representing a specific algorithmic trading strategy.
The algorithmic trading strategies are then empirically analysed for their impact on UK equity market

quality.

4.3.1 K-Means Models

K-Means (MacQueen, 1967) is an unsupervised machine learning algorithm with the objective of
clustering unlabelled n-dimensional quantitative input feature vector X, into one of k clusters where
k < n, with final cluster sets K = {Kj, ..., Kx}. This chapter evaluates the applicability of the Hartigan-
Wong K-Means algorithm (Hartigan, 1979) in clustering the FTSE100 CLOB feature attribution data.
The algorithm minimises the squared Euclidean distance between data points and the cluster centre
mean W;, which is equivalent to minimising the intra-class variance by reducing the sum of squared
distance in n-dimensional space between partitioned data points and the clusters centre or centroid. K-
Means iteratively assigns data points to the nearest cluster centroid in Euclidean space, ||X ! j”z, before
revaluating then updating centroids for each cluster. This process continues until the within-cluster
variation between data points reaches an acceptable minimum. At this point the K-Means algorithm
converges to an approximate solution, however the solution may converge at a non-optimal local

minimum. Thus, ensemble methods or multiple repetitions of the algorithm may be required, selecting

CnapTER FOoURr | 199

the iteration which minimises the within-cluster sum of squares (WCSS) K-Means objective function,

defined as:

k k
arg min E E ||x - p.j||2 = arg min E |K]-|Var(Kj)
K j=1 x€K; K j=1

Cluster centre seeds are initialised using the K-Means++ algorithm before K-Means optimisation is
performed (Arthur, 2007). This initialisation algorithm selects an initial centre at random before selecting
a new data point centre based on their probability distribution and weighted by the square of the
distance between the new data point and the initial centre. This process is performed iteratively until
the k cluster centres data points have been assigned. By utilising a distance-based initialisation scheme
for the centres, rather than a crude arbitrary selection like in the vanilla K-Means algorithm, the error
of the model can be reduced (Arthur, 2007). K-Means provides an efficient approximation for the solution
to the NP-hard problem of cluster partitioning of input data. However, vanilla K-Means algorithms tend
to perform poorly for datasets with noisy variables which remain similar across multiple clusters (Buchta,
2012).

4.3.1.1 Sparse K-Means

Sparse K-Means (SKM) attempts to correct for the susceptibility of vanilla K-Means to split variables
with similar attributes across different clusters when the dataset is inherently noisy, by performing
adaptive feature selection during training of the algorithm and utilising weight penalties to allow sparse
feature representations to be developed during clustering (Witten, 2010). The SKM model is most
applicable for high-dimensional datasets given that the adaptive feature subset allows the algorithm to
consider only the most relevant features, injecting sparse feature representations from which the
algorithm learns the clusters, K. Sparse K-Means requires a re-formulation of the WCSS minimisation
problem of vanilla K-Means into an objective function that attempts to maximise the weighted between-
cluster sum of squares (BCSS) subject to a series of weight constraints, w. These weights are infused
into the algorithm to drive sparsity in the complex dataset, comprising noisy data, by penalising outlier
data points with low weights and adding excitatory signals with higher weights for features that fit well
into a cluster. Weights are first initialised over the n LOB features to 1/+/n, before iterating through
two alternating algorithms of (1) solving for the vanilla K-Means to optimise the centroids before (2)

holding the cluster classes K fixed to maximise the BCSS with respect to weights w; for each feature

k
arg minz _ Z ||x — uj”z (D
K j=1 XEK]'

n N 2 k 2
argma) w) -l =Y S k@
w Jj=1 =1 m=1 x€K;

subject tow; = 0, |lw|> < 1,[|w|| <s V)

over all samples s, leading to:

The algorithm culminates in the segmenting of samples into K clusters subject to corresponding weights

w; for each of the samples feature values X;;.

CunarpTeERrR FoUur |200

4.3.1.2 Spherical K-Means

Extended versions of the Spherical K-Means partitioning algorithm apply a fixed-point heuristic that
iteratively assigns data points to their optimal cluster based on a cosine similarity distance metric, where
the distance between the data point and a fixed prototype or cluster centroid is minimised, before then
calculating the new optimal prototype or centroid for each cluster, analogous to the previously defined
K-Means algorithm (Buchta, 2012). The algorithm employs a cosine dissimilarity distance metric,

D(Xi,p j), which measures the angle between the it"* data point of the n-dimensional feature vector x;

and the prototype or centroid, pj, for j € K, in place of the Euclidean dissimilarity measure, ||X - |.1j||2,
used in vanilla K-Means. This implementation of the cosine similarity distance metric has been shown
to attain improved clustering performance over Euclidean measures, with the intuition that both the
direction and magnitude of feature values are critical elements in reassigning samples between clusters
as opposed to merely its magnitude (Strehl, 2000). Thus, spherical K-Means performs clustering in a
unit hypersphere with vectors normalised to unit length, ||x|| = 1. Membership criterion variable ug-l is
assigned the value one when the prototype falls within the class j otherwise zero, whilst the object weight
w; is a non-negative term weight representation that controls the importance of specific data points.
Setting the criterion softness exponent parameter m greater than one allows for ‘soft’ spherical
partitioning that relaxes the hard-spherical shape of the cluster (Buchta, 2012). The optimisation
algorithm for variable prototypes sets the centroids, also referred to as prototypes, which minimises the

following criterion function:
: m
arg mmz wul?D(x;,p;)
p ien,jeK

1 if protype class equals j

where D(x,p) =1—cos(x,p) uy = {0 otherwise

4.3.1.3 Hybrid Hierarchical K-Means

Hybrid Hierarchical K-Means clustering algorithms (Peterson, 2018; Nister, 2006) are a non-parametric
approach that combines K-Means algorithms with hierarchical clustering to address the sensitivity to
K-Means random initialisation, with the algorithm at risk of initialising into a weak region that results
in more ambiguous clustering. Hierarchical K-Means clustering first develops a hierarchy of clusters that
provide a series of k exemplar centroids for the dataset. These centroid data points, p;, defined for each
of the k clusters, form the initial centroids of a vanilla K-Means algorithm that clusters spherical groups.
Finally, an iterative optimisation procedure is performed to minimise the WCSS for cluster centroids
allowing for general rather than merely spherical shapes, leading to the reassignment of samples into
new clusters before the process is repeated. The primary deficiency in this method is that the number
hierarchical clusters k is determined implicitly by the algorithm based on initial partitions of the data,
thus, the algorithm is not robust to user selections of k. However, one can select a branching factor k
that recursively clusters lower order sub-clusters of the data by combining branches of the clustering
hierarchy. Ultimately, the algorithm performs quite similarly to vanilla K-Means, though it has been
shown to accelerate clustering speed over K-Means, with no added risk of selecting sub-optimal centroids
(Peterson, 2018).

CunarprTreEr Four |201

4.3.2 Model Evaluation & Clustering Properties

K-Means models introduced in the previous section are evaluated for their applicability of solving the
unsupervised machine learning problem of clustering the m FTSE100 CL.OB ISIN-Date-Broker DNN
tuples, (S, D, B), into one of five defined strategy clusters. The dataset for the m tuples is comprised of
feature attribution values, FJ € R", for the n-dimensional feature vectors used to train the DNN. The
resulting dataset is an m x n matrix comprising 802 Broker tuples, m, and 323 LOB features, n, derived
from the sample UK equity market data. This dataset is henceforth referred to as the feature importance
dataset, or FJ dataset for shorthand. Unsupervised K-Means clustering is used to cluster the 802 broker
data vectors in the FJ dataset into one of five algorithmic trading strategies defined in Section 2.3 —
Automated Market Maker (AMM), Execution, Microstructural, Momentum and Technical strategies —

based on the feature importance values calculated using Integrated Gradients and DeepLIFT.

This section first analyses the clustering tendency of the FJ dataset, before testing whether the optimal
number of clusters aligns with the objective of strategy clustering. Finally, a K-Means cluster validation
and evaluation of the previously introduced model iterations is performed to determine the optimal K-

Means partitioning model to use for the FJ dataset.

4.3.2.1 Clustering Tendency

The additive properties of Integrated Gradient and DeepLIFT allows FJ values to be summed over
multiple raw features, X, and group strategies, S, for each DNN tuple, (S, D, B), as explained in Section
4.2. Clustering tendency of the FJ dataset is performed on both the raw features and grouped strategies
to determine whether cluster analysis is in fact a feasible unsupervised machine learning technique for
grouping different algorithmic trading firms based on their feature importance scores. The Hopkins
statistic is a relevant statistical measure of clustering tendency and spatial randomness in a dataset,
developed by comparing the FJ dataset against a randomly generated dataset drawn from a uniform
distribution (Lawson, 1990). The distance, Di(pi,pj), between each data point, p; € FJ , drawn from
dataset FJ, and its nearest neighbour data point, p;, is compared against a similar distance metric,
M;(q;,q;), calculated for sampled artificial data points, q; € ¢, drawn randomly from a simulated
uniformly distributed dataset ¢, which are measured against their closest real-dataset point, q; € FJ .
The Hopkins statistic, H, is computed as a function of the average distance between real data points
and the randomly generated data points, Z?lel-(qi, q j), and the mean nearest neighbour distance in

the actual FJ dataset, Yi=q Di(pi,pj), such that:

_ Y Mi(qiq5)
Y Mi(qiq;) + X% Di(pipj)

The FJ dataset clustered by raw individual features attains a Hopkins H statistic of 0.198 indicating
that clusters are available in the FJ dataset (Banerjee, 2004). The fact that the statistic is closer to zero
and less than 0.5, statistically provides evidence against the null hypothesis, H = 1, that the dataset is
uniformly distributed with no interpretable clusters. Thus, one can conclude that the FJ dataset for raw
feature values is clusterable and apply K-Means unsupervised machine learning techniques to partition

the data. The Hopkins statistic for the FJ dataset grouped by Strategy segments S is lower at 0.138,

CHAPTER FOUR |202

which is expected given the lower dimensionality of the dataset when features are grouped, making
clusters easier to find, rather than attempting to separate a set of 323 raw features. The result indicates
that amalgamating and normalising feature importance scores over algorithmic trading strategy groups
improves the clusterability of the data, providing a useful alternative method to consider for clustering

strategies rather than clustering based on raw feature importance values.

Visual inspection of the clustering tendency of the FJ dataset is performed using a Visual Assessment
of cluster Tendency (VAT) algorithm that projects an ordered dissimilarity image (ODI) using an
ordered dissimilarity matrix (ODM). The ODM compares the distance between various data points or
objects in the dataset. Distance in this context is a function of Fuclidean distance between data points.

Matrix ordering is completed using hierarchical clustering.

Figure 4.3.1 presents the ODI generated using the VAT algorithm for the raw feature dataset and when
the feature dataset is grouped by strategies. Data points composed of the 323 feature importance scores
for a single (S, D, B) tuple data sample are represented on the diagonal. Given that these data samples
are identical with a dissimilarity measure of zero, they are depicted as dark blue. The light shades of
blue and white in both the figures indicates a higher level of dissimilarity between data points and a
higher clustering tendency. As expected, amalgamating feature importance by the features relevant
strategy for each DNN tuple illustrates a higher degree of dissimilarity, evident by the large number of
cells with values over two, than when utilising raw feature values. This aligns with the results of the
Hopkins statistical analysis. Evident for the figure, one can see clear degrees of separation and distance
between the various Broker tuples, based on their feature importance values, indicating that the FJ

dataset can be sufficiently clustered.

Raw Features Strategy Grouped Features

Distance .0.2.4 6 8

FIGURE 4.3.1 - Ordered Dissimilarity Image (ODI) for raw features (left image) and ODI for features grouped by AT strategy (right image),

representing the distance between each unique feature attribution tuple (S, D, B).

The low Hopkins statistics and visual inspection of the ODI indicates that the FJ dataset has good

clustering tendency, with data points for each Broker tuple separable in n-dimesional feature space.

CunapTER FOUR |203

4.3.2.2 Optimal Number of Clusters

Several methods are available in the literature for determining the optimal k or number of K-Means
clusters given the underlying FJ dataset to be partitioned. Optimal k requires a balance between high
interpretability from compressing data into a minimal number of clusters and improvement in cluster
accuracy and reduced intra-class variance when selecting a larger number of clusters. This section
performs an optimal cluster analysis on the FJ dataset with grouped strategy feature saliency values for
all DNN tuples, (S, D, B). Methods for selecting optimal k can be categorised into (1) statistical testing
methods including the Gap statistic, (2) direct methods which seek to optimise over a criterion,
particularly, within cluster sum of squares (WCSS), which includes the elbow method, and (3)

information criterion methods.

Gap Statistic (Tibshirani, 2001) methods are commonly used to choose an optimal k by selecting the
smallest k that maximises the gap statistic, Gap(k), up to the point where the increase in the gap
statistic begins to plateau. Formally, this is defined as the cluster point where Gap(k) = Gap(k + 1) —
Sk+1, Where sp,4 is one standard-error for the statistic, ensuring that model parsimony is balanced with
the desire to maximise the gap statistic. The gap statistic is measured by comparing the log WCSS
intra-cluster variation based on Euclidean distance for k clusters, log(W,), and their expected values
under a null uniform reference distribution calculated as the bootstrapped average intra-cluster variation
from B random uniformly distributed reference datasets that have different numbers of clusters, such
that:

1 B
Gap(k) = EZFI E*[log(Wi;)] — log(Wic)

The gap statistic for the FJ dataset is analysed with 100 reference datasets, B = 100, to extract robust
results which are graphically depicted in Figure 4.3.2(a). The recommended number of clusters from the
gap statistic is between 5 and 6 with a gap value of 0.41-0.42, at which point the increase in the gap
statistic is less than si, 4. Five clusters align well with the five algorithmic trading strategies analysed —
AMM, Execution, Technical, Microstructural and Momentum. From the data, it become apparent that
after nine clusters the gap statistic tends to plateau indicating that there is only a marginal benefit from
increasing the number of clusters past this point, though at a cost of loss in interpretability of the K-

Means models.

The ‘elbow method’ is a heuristic direct method used to confirm the interpretation of optimal clusters
k taken from the gap statistic by plotting the percentage of variance or WCSS as a function of k. By
selecting clusters that minimise WCSS, the data points will be compacted closely into regions, which
themselves are separated in multi-dimensional space from other clusters or regions. The objective is to
select the number of clusters at which point adding an additional cluster provides minimal gain in WCSS
variance reduction and information, given the reduction in interpretability from adding the additional
class. This point exists at the ‘elbow’ of the variance graph where the gradient tends to reduce. The gap
statistic indicates that five clusters is an optimal choice with further evidence for this result provided in
the elbow graph in Figure 4.3.2(b), which indicates that the information gained from the first five clusters
is significant and the marginal gain of reduced WCSS from adding additional clusters may not be

optimal.

CunarpTeErR Four |204

Akaike information criteria (AIC) and Bayesian information criterion (BIC) for expectation-
maximisation is an additional method for computing optimal k. Given that the K-Means model is similar
to a Gaussian mixture model, a likelihood for the model can be estimated. The method selects models
with the lowest BIC to compute the optimal number of clusters. BIC and AIC metrics are computed for
the FJ dataset over clusters k of one to ten. AIC is grounded in information theory and is similar to
BIC in that it provides an estimation of the relative quality of different statistical models such as K-
Means models with varied number of clusters. AIC is calculated using a penalty for the number of
parameters in the model, 2p, whilst BIC uses the penalty In(n) p where p is a fixed term. Both models
have a similar formulation that apply the penalty to the conditional probability of the n-dimensional
input vector X given the set of parameters, 8, that maximise the likelihood function for the model
analysed. Figure 4.3.2(c) presents the BIC and AIC metrics for a K-Means model fitted to the FJ dataset
as a function of k. In line with previous results, an ‘elbow point’ is evident around the five-cluster region
where the marginal decrease in AIC as k increases begins to plateau. Furthermore, the BIC metric is
minimised when k is around five before increasing in value as the number of clusters grows. Potential
drawbacks of using BIC metrics to determine optimal clusters is that they are less capable of processing
complex or high-dimensional datasets, though the FJ dataset is a relatively stable and simple dataset,
with less than 300,000 data point elements in total. Analysis of the comparative benefits of using AIC
versus BIC to approximate the optimal number of clusters has been mixed and depends on the

assumptions of the model and dataset employed (Vrieze, 2012).

An additional analysis is completed by fitting a series of BIC K-Means algorithms with varied attributes
in regard to how the clusters are initialised, the shape of the cluster, whether cluster volumes must be
equal or can vary and the assigned orientation of the representation space. Results in Figure 4.3.2(d)
are presented for eight common models, including an equal volume clusters with varied shape and
identity orientation (EVI), equal volume clusters with same shape and orientation clusters (EEV) and
variable volume clusters with equal shape and coordinate axes assigned orientation (VEI). One can see
that the BIC for a range of models indicates an optimal number of clusters between five and ten, though
most of the models offer only marginal improvement on the BIC after five clusters, providing further

evidence that five clusters is a near optimal k.

AIC =2p —2In(L) BIC =In(n)p—-2In(L) L =P(x|6)

CunapTER FOUR |205

(a) Gap Statistic Method (b) Elbow Method

4500 -

o 4000
E
__040- 2
= »
=3 W
o o
2 £
s 2 3500~
@ 035- <
o
© £
] =
s
O
030 \© 3000
0.25- : : 2500 - :
' ' ' [I I ' ' ' ' ' ' ' [i ' ' ' ' 0
1 2 3 4 5 & 7 8 9 10 1 2 3 4 5 8 7 8 9 10
Number of clusters k Number of clusters k
(c) Information Criterion Methods (d) BIC Methods
800~ : 3000 o 8
t o 2
© : 2 Q9
= ! S E
2 : 2 G 2000
15 ; § 5
I : 505 ®
8 500~ ' 2500 5 8
T j g £
£ : 3 &
] - B =
2 i g <
£ ! § & 300
2 400- : 20000 @
E ; = =
x ! o 5
< 3 5
300- : - 1500 -4000- : :
S S S S 12 8 4 5 8 7 8 9
t 2 3 4 5 6 7 8 9 10 Number of clusters k
Number of clusters k
-~ Ell -+ EEl —* VEl -+~ VEV
— AIC — BIC VIl = EVI == WVl - EEV

FIGURE 4.3.2 — Optimal number of clusters for the FTSE100 dataset using the (a) Gap-statistic method, (b) ‘elbow’ method, (¢) Information

“riterion Methods, and (d) various Bayesian Information Criterion Methods.

4.83.2.83 Cluster Validation for K-Means Partitioning

Cluster validation is a technique used to evaluate, compare and select the optimal K-Means based cluster
partitioning model, defined in the Section 4.3.1, based on their capability of effectively separating the
802 DNN tuples, (S,D,B), into five cohesive and independent algorithmic trading strategy categories.
Validation involves an evaluation of the K-Means models’ ability to control the trade-off between
maintaining distinct clusters and ensuring intra-cluster data points have low dissimilarity attributes.
The K-Means models tested include the Hartigan-Wong K-Means algorithm (Hartigan, 1979), Sparse K-
Means (Witten, 2010), Extended Spherical K-Means (Buchta, 2012), and a hybrid Hierarchical K-Means
clustering algorithm (Peterson, 2018).

Several methods of internal cluster validation are applied to the K-Means algorithms to evaluate their
internal clustering structure of the FJ dataset by measuring both the compactness and separation of
connections between clusters. Compactness requires cohesive clusters that have a low measure of within-
cluster variation or distance between intra-cluster data points. Separation is a competing objective to
compactness and requires clusters to be segregated in high-dimensional space by maximising the distance
between cluster centroids and the outlier data points of the nearest neighbour cluster. Distance measures
employed in this section are generally based on cosine cross-distances, D(x,p) = 1 — cos(x,p), between
data points, x, and other points of interest, p, such as a nearest neighbour cluster centroid or outlier

value.

CuarprTeErR Four |206

Spherical K-Means (SKM) tends to perform best at partitioning the FJ feature importance dataset into
separate and distinct clusters of five algorithmic trading strategies, according to results of the
comparative evaluation of different K-Means algorithms presented in Table 4.3.1. SKM attains the
lowest within-cluster sum of squares (WCSS) with a value of 15.63 indicating SKM algorithms find a
more optimal minimum of the K-means objective function during training than other comparative
methods. Sparse K-Means (SK) performs poorly with a WCSS of 30.63. One possible explanation is the
utilisation of complex and abstract representations of LOB features required for inputs into most
algorithmic trading strategies. SK uses sparse representations and dynamic feature sub-setting to fit a
K-Means algorithm that may perform well for high-dimensional data with minimal interaction effects
between features, but performs poorly for splitting the FTSE100 CLOB FJ dataset. Both vanilla K-
Means (KM) and Hierarchical K-Means (HKM) perform relatively similar, in line with the literature
(Peterson, 2018), attaining WCSS scores of 16.90 and 17.46, respectively, though both have higher
WCSS than SKM. The fact that HKM is slightly less capable of minimising WCSS relative to the KM
algorithm is expected given that HKM methods are highly sensitive to initialised values and are unlikely
to partition the data as successful for two reasons. First, HKM is not as capable as K-Means at capturing
critical information inherent in feature interactions. Second, the dataset lacks any single subset of feature
variables capable of explaining an algorithmic trading strategy sufficiently, an agreeable property for

well-functioning HKM partitions.

K-Means Algorithm

145 140 72 149

Min Cluster Size

Mean Cluster Diameter 0.77 0.71 0.80 0.80
Max Cluster Diameter 0.93 0.92 0.97 0.96
Mean Distance Within Clusters 0.15 0.12 0.20 0.16
Mean Distance Between Clusters 0.43 0.45 0.43 0.43
Within Cluster Sum of Squares 16.90 15.63 30.63 17.46
Mean Silhouette Width 0.42 0.43 0.21 0.42
Normalised Gamma (G) 0.52 0.53 0.48 0.52
Dunn Index (D) 1.36 1.61 1.04 1.36
Entropy of Cluster Distributions (E) 1.60 1.75 1.44 1.65

WB Ratio (WB) 0.36 0.32 0.46 0.36

Calinski-Harabasz Index (CH) 775.85 854.02 331.30 774.06

TABLE 4.3.1 — Cluster validation metrics comparing four K-Means algorithms applied to the feature importance dataset.

Additional statistical and heuristic measures are utilised in cluster validation to evaluate different K-
Means models with the measures reported in Table 4.3.1. The Normalised Gamma metric, G, is a
correlation coefficient that measures the dissimilarity between clusters (Halkidi, 2001). From the table
one can note that SKM models attain the highest Normalised Gamma value of 0.53, showing that the
clusters are better separated than other models. Dunn Index metrics, D, measures the minimum mean
dissimilarity between two different clusters relative to the maximum mean within cluster dissimilarity

across all clusters (Dunn, 1973). Valid clusters tend to have higher inter-cluster and lower intra-cluster

CunapTER FOURr |207

dissimilarities leading to higher Dunn Index values. Following from previous results, SKM once again
performs best with a Dunn Index value of 1.61, representing the fact that data points are compressed
within clusters and that clusters are well separated. The entropy between cluster distributions is also
measured to attain metric E, with results demonstrating that all models have relatively similar entropy
measures, though once more SKM is marginally higher than comparative models. A ratio, WB, of the
mean within cluster variance to the mean between cluster variance for each model is also calculated.
The normalised inverse of these variables is additionally measured by the Calinski-Harabasz Index
(Calinski, 1974), frequently referred to as the pseudo F Index. As expected, SKM models perform best
with the lowest WB ratio of 0.32 and highest Pseudo F Index of 854.02. Evidently KM and HKM models,
which are slight augmentation of the vanilla K-Means algorithm, perform relatively similar during cluster

validation. Validation of the different models’ compactness and separation are also studied.

Regarding the compactness of clusters, SKM attains the lowest mean and maximum cluster diameter of
0.71 and 0.92, respectively, among all K-Means models tested, compressing the data points within tighter
regions in n-dimensional feature space. Tighter clusters indicate that the data points in the same cluster,
representing the feature importance value for the 802 algorithmic trader tuple datasets, are relatively
similar compared to KM and HKM. Thus, traders defined within each cluster are executing similar
actions when faced with a given LOB state, indicating congruency in the strategies being executed.
Furthermore, SKM attains a mean distance within clusters of 0.12 which is 25% lower than the nearest

model, vanilla K-Means.

Cluster validation with respect to the structural separation of the data indicates that all models attain
relatively similar mean distances between clusters indicating that the separation of centroids across the
five models are comparable in terms of distance. SKM does attain the highest separation of 0.45 on
average across clusters, only marginally better than the 0.43 attained by the other three comparative
models. An additional method for validating intra-cluster consistency by measuring separation between
clusters is to display silhouette plots (Rousseeuw, 1987). These plots provide an individual measure per
data point i of the silhouette width, s;, that compares its intra-cluster cohesion, measured as a function
of the average distance b; of each point i from other points in the cluster and the average separation or
dissimilarity of i to the nearest neighbour cluster a;, such that:

b; — a; 1 om
§§=——— s= —z S; where m is the number of data points
max{a;, b;} mdsai=q

From Table 4.3.1, in conjunction with the set of Silhouette plots presented in Figure 4.3.3, one can see
that SKM attains the highest mean silhouette width of 0.43 which is marginally higher than vanilla K-
Means. Higher values of s indicate that data point clustering is correctly configured with data points
well matched within-cluster and matched poorly to the nearest neighbour cluster. From the figure one
can also note that the SKM silhouette plot shows that almost all data points for each cluster have a
positive s; value indicating well configured clustering and suitable selection of k, whereas for other K-
Means models the density of negative silhouette values is slightly higher, which indicates data points
are potentially incorrectly clustered. Once again, the SK model attains poor results with a mean
silhouette width of 0.21 demonstrating that most data points fall between two or more clusters. Finally,
narrower silhouette widths in the HKM algorithm potentially indicate that too few clusters have been

selected which again reinforces the limitations of hierarchical-type models in partitioned data.

CunarpTeERrR Four |208

K-Means Spherical KM Sparse KM Hierarchical KM
jinylaveeg s jonylaveeg s J1nylaveeg s J1nylaveeg s
198 | 0.62 © 28] 0% . 208 | 055
1: 284032

o145 | 024

© 208 | 055

© 151] 0.30

© 15T | 02T

-02 00 02 04 06 08 10
Silhouette width s,

Average sihouette width : 0.42

Z: 140 | 036

3: 147] 026

5: 144 | 031

00 02 04 085 08 1.0
Silhouette width s,

Average sihouette width : 0.43

2: 304|023

’3: 72025
‘ 41109 | -0.20
!5: 80 | 027

| I . S R . — —
-0.4 0.0 0.4 0.3
Silhouette width s

Average sihouette width © 0.21

r: 157 | 027
3. 151 | 0.30
40 145 | 024
' 062
T T T T T T 1

-02 00 02 04 06 08 1.0

Sihouette width 5,
Average sihouette width © 0.42

FIGURE 4.3.3 - Silhouette plots for each K-Means algorithm evaluated.

From the results presented in this model validation and evaluation section one can draw a conclusion
that the FTSE100 CLOB FJ dataset, composed of attribution measures for the 802 DNN tuples,
(S$,D,B), has a good clustering tendency with an optimal number of clusters of around five, aligning
with the objective of this chapter to segment DNN tuples by the five trading strategies identified.
Furthermore, Spherical K-Means models perform significantly better than comparative K-Means
methods based on the cluster validation evaluation performed and therefore, represent the model utilised

in segmenting algorithmic trading strategies in the next section.

4.3.3 Algorithmic Trading Strategy Identification

Spherical K-Means clustering is used to partition individual (8, D, B) tuple observations in the FJ dataset
into five semi-homogenous algorithmic trading strategies — Automated Market Making, Execution,
Technical Microstructural and Momentum strategies — based on structural patterns in the dataset. The
clustering algorithm results in a strategy label for each tuple. The following sections evaluate the efficacy

of the unsupervised K-Means algorithm at successfully portioning the FJ dataset.

4.3.3.1 FJ Structural Matriz

The FJ dataset of 802 individual (S, D, B) DNNs with attached feature attributions are well-partitioned
into the five algorithmic trading strategies defined in Section 2.3 by using Spherical K-Means
unsupervised machine learning algorithms to cluster the individual data points. The culmination of the
clustering algorithm is an algorithmic trading strategy label attached to each DNN tuple (S, D, B). Table
4.3.2 produces a summary statistic matrix for each of the five trading strategies listed in the left column,
along with the number of tuple observations of the clustered strategy. The average FJ percentage scores
for normalised raw features related to specific algorithmic trading strategies, listed along the header of
the matrix, are computed and averaged for each of the Broker tuples clustered into one strategies defined

along the vertical axis. These scores represent the percentage of the trading strategy explained by

CnapTeER FoOoUuRr |209

normalised Integrated Gradient and DeepLIFT feature attribution values amalgamated for features
relevant to the specific strategy. For example, the 19.5% value in the first row and fifth column is a
representation of the saliency of Technical strategy features, such as stochastic oscillators and Bollinger
Bands, for traders clustered using Spherical K-Means into the Automated Market Maker strategy

segment.

The resulting table matrix provides evidence that the clustered algorithmic trading strategies are well
defined principally by the relevant features identified as being important inputs into that strategy’s
algorithm. The separation of different strategies into semi-homogenous clusters based on LOB and
financial market features is evidenced by the high weight, and dominance, of the input features relevant
to that strategy in explaining trader actions on the LOB. This is represented by relatively high values
along the diagonals vis-a-vis values on the horizontal axis. All diagonal values attain a minimum
percentage of 30%, indicating that the strategies relevant features principally explain trader actions.
Momentum, AMM and Microstructural strategy clusters tend to perform best at segmenting algorithmic

traders by the features defined as important to these strategies in theory and academic literature. All

three strategies attain a minimum 40% of feature importance from relevant strategy features.

] 71 Value (%)
Spherical K-Means Strategy

AMM Execution Microstruct. Momentum Technical

Count

O Features Features Features Features Features
AMM Strategies 41.8% 17.3% 8.1% 13.3% .5

Execution Strategies 228 19.2% 30.4% 23.1% 1.2% 26.0%
Microstructural Strategies 140 19.8% 14.5% 40.0% 17.2% 7.5%
Momentum Strategies 200 19.7% 9.5% 10.7% 48.1% 12.0%

Technical Strategies 147 4.2% 21.3% 19.1% 24.6% 30.7%

TABLE 4.3.2 — Confusion Matrix with clustered strategies in the vertical column and the relevant feature importance scores for features that
related to each individual strategy along the horizontal axis. Diagonals represent the percentage of total importance scores for features that

relate to the clustered strategy.

Taking strategies partitioned into the Automated Market Maker’s cluster as an example, these firms
have an average normalised FJ percentage value of 41.8% for features determined to be relevant inputs
into AMM algorithms. These features include the traders relative quote offsets and positions, inventory
positions and control, risk aversion and market-making relevant trading costs. AMM clustered trading
firms FJ importance values for the other non-AMM LOB features have relatively lower saliency than
the AMM features, with only Technical strategy and Execution strategy features attaining FJ attribution
percentage values over 15%. Thus, firms conducting a primarily AMM strategy still place relative
importance on some Execution features, such as market impact metrics or resilience measures, and
Technical strategy relevant features, including price reversion, Chaikin volatility and stochastic oscillator
features. These results directly align with a primary hypothesis of this thesis that firms conducting
algorithmic trading over a multitudinous array of lit and dark equity LOBs no longer execute vanilla
trading strategies based on traditional concepts, such as inventory-management market making. Rather
traders conducting strategies such as market making infuse into their algorithms other features and
variables, such as whether latency arbitrage opportunities are available across trading venues, whether
short-term momentum signals are prevalent, or measures of the spread and depth of market liquidity,

that may spur a certain action given the state of the LOB. Thus, in certain situations it becomes

CuarprTeEr Four |210

pertinent for market makers to perform an action that may be antithetical to theoretical tenants of the
strategy, but ultimately aligns with the profit and business objectives of the firm, by placing importance
in these situations on various other features that are conceptually more relevant for competing rather

than traditional automated market making strategies.

Further analysis regarding the ability of Spherical K-Means to cluster firms by relevant strategy features
requires the computation of a dissimilarity or confusion metric that represents the group of alternative
strategy features that best explain traders’ actions conducting a specific cluster strategy. Table 4.3.3
presents the results for the nearest alternative strategy measured by absolute percentage distance,
dissimilarity importance values and difference between the strategies FJ importance values for the cluster
and alternative strategy. In line with the results above, AMM, Microstructural and Momentum strategies
seem to be well clustered given that the features relevant for these particular strategies provide a good
level of explanation for traders’ actions and assumed inputs into their algorithms. These strategies have
a minimum dissimilarity difference of 20%, representing a minimum 20% difference between the cluster
and alternative strategy features on average. Evidently, these three strategies are very well clustered by
their relevant features, for example, the actions on the LOB of algorithmic traders conducting
Microstructural strategies may be heavily influence by quoted spread and limit order imbalances,
Momentum strategies by high-frequency momentum and acceleration on the LOB, and AMM strategies

by inventory and quote offset positions, among others.

Technical and Execution strategies on the other hand stand out with a dissimilarity difference measure
of only 6.1% and 4.4%, respectively. From the data, Execution strategies commonly employ Technical
strategy features, such as stochastic oscillators, Bollinger Bands, and various technical price and volume
indicators. Intuitively, firms conducting Execution strategies take as input into their algorithms features
such as Technical indicators when seeking to liquidate a client’s parent order quickly and with minimal
market impact. Technical analysis of market prices, particularly high-frequency indicators such as
Relative Strength Index and Moving Average Convergence Divergence, will aid the Execution algorithms

placement strategy.

Overall the results show good separation between the clustered strategies as evident by the high feature
importance of relevant features to that strategy. However, the results also provide evidence towards the
hypothesis that firms do not conduct any one pure traditional algorithmic trading strategy but rather

generally execute some form of hybrid strategy skewed towards specific features of the clustered strategy.

Cluster Strategy Alternative Strategy FJ Value Dissimilarity Difference

TABLE 4.3.3 — Dissimilarity matrix for clustered strategies. Alternative strategy represents the strategy with the highest summed raw

importance values different to the clustered strategy.

CHAaAPTER Four |211

The mean FJ feature importance value for the clustered strategy is compared against the confusion
strategy for the 802 individual (§,D,B) DNNs using a Welch two-sided statistical t-test to determine
whether the means of the groups differ. Welch tests are deployed to account for potential differences in
each groups variance (Ruxton, 2006), with the assumption of normality for each groups distribution.
The null hypothesis that the means of the clustered and confusion feature importance values are equal
is rejected at the 0.001% significance level. Results for the t-test are presented in Table 4.3.4 with the
boxplot for cluster and dissimilarity strategy feature importance values shown in Figure 4.3.4. The test
returns a t-value of 23.01 supporting the hypothesis that the difference in means is not equal to zero at
the 0.001% confidence level, indicating a statistical difference between means. Evidently, Spherical K-
Means clustering has resulted in a good separation of the strategies, with the order placement activity

of traders conducting the cluster strategy primarily driven by the features relevant to that strategy.

This is further confirmed by the divergence in feature importance values evident in the boxplot figure.

Welch Two Sided T-test Value

Test statistic (T) 23.01%**

Degrees of Freedom 1266

TABLE 4.3.4 — Two-sided Welch t-test comparing the difference between the mean of the clustered strategy related feature importance scores
with the dissimilarity strategies feature importance scores. The test is performed across all strategies, stocks and dates in the original dataset.

* K and *** correspond to statistical significance at 0.05, 0.01 and 0.001 levels respectively.

06-
©
L&}
% 0.5-
Zo
o Strategy
£ 0.4- E:ﬂ Correct.Strategy
o EA Dissimilarity Strategy
=
©
LL
0.2-

Correct. Strategy Dissimilarity. Strategy
Strategy

FI1GURE 4.3.4 - Boxplots illustrating feature importance scores for the clustered strategy and dissimilarity strategy across all strategies, stocks
and dates in the original dataset.

To confirm Spherical K-Means’ separation of strategies, the spreads of the five algorithmic trading
strategies across ISINs is evaluated. The results presented in Table 4.3.5 indicates that strategies are
well partitioned into separately identifiable groups with proportional sizes to the specific ISIN’s trading
activity. All five ISINs studied in this chapter have a minimum of 19 Brokers categorised into each

algorithmic trading strategy.

CHAPTER Four |212

Spherical k-Means clustered Algorithmic Trading Strategy

TABLE 4.3.5 — Number of clustered strategies for each ISIN over the five trading dates in the FTSE100 dataset.

4.3.3.2 Dimensionality Reduction € Cluster Visualisation

Following the strategy identification process, dimensionality reduction is performed to allow for cluster
visualisation of the n-dimensional FJ dataset in both two and three-dimensional space. Principal
Component Analysis (PCA) is performed on the FJ data to identify correlations between feature
importance variables that allow an orthogonal linear transformation of the original data through a
projection onto a smaller dimension of principal components. The number of principal components p
must be less than or equal to the dimensionality of the dataset where n is the number of LOB raw or
strategy features. PCA with both two and three dimensions is performed to reduce the FJ feature set
into interpretable dimensions. Transformation of the data requires the selection of principal components
or dimensions that minimise the variance in the data, under the constraint that components are
orthogonal to preceding adjacent components, with the process performed iteratively by adding principal
components until p is equal to n and the variance is reduced to zero. The graphic in Figure 4.3.5
measures the reduction in variance as the number of principal components increases. The first principal
component selected is that with the maximum variation on points projected from the original dataset
onto a new principal p-dimensional axis, which is based on the direction and eigenvalues of the original
features. There is a clear reduction in variance from 1.34 for one principal component to 0.58 when five
principal components are included. These principal components are utilised to cluster original feature

importance values of each clustered strategy into interpretable dimensions.

1.2-
@
(&)
c10-
.©
@
=~

08-

06-

1 2 3 4 5
PCA

F1GURE 4.3.5 — Reductions in variance as the number of principal components increases.

CHAPTER Four |213

Figure 4.3.6 represents a two-dimensional ellipsoid fit to the FJ feature importance data with the
horizontal axis being the first principal component that explains 36.4% of the FJ data variance and the
vertical axis representing the second principal component which explains 23.5% of variance. Each
dimension can be viewed as eigenvectors of the covariance matrix between features of the dataset, with
the two eigenvectors together representing less than 60% of the total information computed by summing
all eigenvectors. The cluster plot of feature importance for each strategy projected into two-dimensions
indicates that the strategies are relatively well-separated, except for the Momentum strategy that
appears to cross the outlier barriers of the other strategies and reach towards their centroid values.
Visualising the clusters by truncating the transformation into three principal components can be
performed with a three-dimensional scatter plot, which is depicted for the AMM, Microstructural and
Momentum strategies in Figure 4.3.7. This visualisation identifies more clearly how the strategies begin
to show good separability and compression as the dimensions and principal components of the analysis
increases. All three strategies occupy a separate segment of the three-dimensional principal component
space with well-defined and comprehensible boundaries. Whilst PCA is a useful visualisation tool for
confirming that strategies are well clustered, it must be noted that the factors of the PCA are based on
the total variance in the FJ dataset rather than other underlying statistical properties, thus limiting the
interpretation of the analysis. To provide a more robust analysis, the next section studies the clustering

ability of Spherical K-Means at the raw feature-level.

Cluster plot

- m t,:;« o
3’*; L%"T__t ;;gw L
e Pk
B @ B8 Sy B

~ B+ T : cluster
-4
o E Execution
8 m Microstructural
(\\‘-’ [e }Technical
< E] Momentum
0 | AMM

-2 -1 0 1 2
Dim1 (36.4%)

FIGURE 4.3.6 — Two-dimensional scatter plot of the two highest principal components, representing 59.5% of variance in the FJ dataset. Dim

refers to the relevant principal component. Scatter dots represent an individual firm clustered into one of five defined strategies.

CHAPTER Four |214

* Momentum
* Microstructural
AMM
(o]
%
t) o
"
L —
Iy @
| 2 o o
e . &
ry
Ky O
"
] e vy -
g 3
2
(8] 7 [
0
A
-2 @
2 1 0 1 2 3

Comp.1

F1GURE 4.3.7 — Three-dimensional scatter plot of the three highest principal components. Comp refers to the relevant principal component.

Scatter dots represents an individual firm clustered into one of three strategies — AMM, Momentum, and Microstructural.

4.3.3.3 Robust Analysis of Strategy Clustering

Spherical K-Means has been shown to cluster the AT strategies relatively successfully, though a deeper
more robust analysis is performed in this section to confirm that the raw features attached to the
individual AT strategies, as per the theory set out in Section 2.3 and feature definitions in Appendix A,
corresponds with the feature importance values attained by firms clustered into those strategies. The
primary approach is to compare the distributions of several features that are deemed as important to a
specific AT strategy and analyse whether these raw features have high saliency values for firms clustered

into that strategy. Both a qualitative analysis and statistical testing approach are taken.

Figure 4.3.8 graphs the density distributions for 10 features — 2 features defined as important for each
of the five AT strategies assessed. The distributions for feature importance values, FJ, are compared for
firms that are clustered by the Spherical K-Means algorithm into the actual strategy cluster related to
that feature and firms that are clustered into an alternative strategy. For example, the first comparative
distribution plot in the top left corner examines distributions of feature attribution values for quote
offset on the ask features, QOA, separated by firms clustered as AMMs which are expected to have high
attribution values versus firms clustered as one of the other strategies, including Execution,
Microstructural, Momentum and Technical. The headings of each density plot indicate the relevant
strategy and the attached raw feature value. Evidently, all distributions show a clear divergence between
the labels with the raw feature assumed to be critical to the relevant AT strategy having feature
importance values with distributions shifted to the right into the positive region. For example, the
feature density plots for realised market impact, PIRA.X10, a critical LOB feature for firms attempting
to liquidate a client order under an agency agreement, demonstrates that the average feature importance
values for firms clustered in the Execution AT category are generally greater than zero, indicating that
the features are important inputs into the firms DNN and assumed trading strategy. In contrast, the
non-Execution AT clustered strategies have a distribution with a peak in the negative region
demonstrating the lower relevance placed by these strategies on this particular measure of realised

market impact. A similar relationship is prevalent in the other nine features studied.

CuHAPTER Four |215

AMM - QOA Execution - RESRR Microstructural - QS Momentum - MOAS Technical - VOLC.ES
1.00- 06"
a7s] 075" 0.9~
= = = z 04 ="
B g.s0- B 050 B 06- s s
c 05 c c c c
5 5 5 5 5
- - © ® s T gz
0.25- 025- 0a-
0.00- 0 0 i 0 U.UU'I 0 i 0 0 0o~ 0 0 0 0 0o~ 0 0 0 i 0 i 0o~ i 0 0 0
4 2 0 2 50 25 0.0 25 5.0 3 0 3 6 2 0 1 2 3 25 0.0 25 5.0
Feature_ Importance Feature_ Importance Feature_ Importance Feature_ Importance Feature_ Importance
Strategy l:lAMM l:l Other Strategy I:I Execution I:I Other Strategy l:IMicmstrumurall:l Othe Strategy l:l Womentum I:I Other Strategy l:l Te:nnicall:l Other
AMM - QOB Execution - PIRAX10 Microstructural - LOLRS Momentum - MOA_ 100 Technical - BOLU.10
1.00- 0.6-
0.8- 0.4-
d 0.6-
0.75 4
= = =" 2" ="
- - © = ga- ©
0.25- 0.2- 02- 01~
0.00- 0 0 i i 0o~ 0 0 0 0o~ 0 0 i i 0o~ 0 0 i 0o~ 0 i 0 0
-4 2 0 2 25 0.0 25 25 00 25 5.0 2 0 2 -2 0 2 4
Feature_ Importance Feature_Importance Feature_Importance Feature_Importance Feature_Importance

Strategy DAMM l:‘ Other Strategy l:‘ Execution l:lﬂlher Strategy I:lMit:mslruclurall:‘ Othe Strategy l:‘ Momentum l:l Other Strategy l:‘ Te:hnicall:l Other

FI1GURE 4.3.8 -~ Comparative density plots for ten LOB features based on feature importance scores. The red density plots represent feature
importance values for firms clustered into the strategy to which the feature being studied most directly is related to. For example, quote offset
on the ask side, QOA, relates to an AMM strategy, thus, red values represent feature importance values for QOA for firms clustered into the

AMM strategy. Conversely, the green density plots represent feature importance values for all other firms.

Statistical hypothesis tests are applied to the dataset using a Welch t-test to compare whether the means
of the two distributions are different across a range of features. That is, whether the average feature
importance for firms clustered into the strategy relevant to the feature is significantly different to the
average of the raw feature value for other firms. An analysis of all LOB features studied in this chapter
found that 91.4% of the features had a higher feature importance value mean for the firms clustered as
executing the strategy related to that feature compared to other AT firms. Furthermore, the difference
in means is statistically significant at the 1% level for 72% of features and at the 5% level for an
additional 7% of features. Table 4.3.6 reports the summary results of the analysis for the ten features

studied in this section which all show a statistically significant divergence in means at the 0.001% level.

Strategy Clustered Different Te'st.

Strategy Strategy Statistic
0.432 -0.129 -28.131%%*
Microstructural 1.251 -0.048 -12.400%*%*
Microstructural 1.695 -0.120 -15.197***

TABLE 4.3.6 — Comparison of average feature importance scores for firms clustered into the strategy related to the feature being studied versus

the average feature importance score for other firms. These values are reported in the first and second column, respectively. The third column
reports a statistical Welch t-test comparing whether means of the two are significantly different from zero. The test is performed across the

sample securities and dates in the original dataset. *, ** and *** correspond to statistical significance at 0.05, 0.01 and 0.001 levels respectively.

CunapTER FOUR |216

This section has provided explicit evidence that the Spherical K-Means clustering algorithm has
successfully partitioned the individual (§,D,B) tuple observations in the FJ dataset into five semi-
homogenous algorithmic trading strategy categories. These strategies are shown to have high feature
importance values for features that are assumed to serve as algorithmic inputs when executing those
strategies. The output of this section is a strategy label for each individual Broker tuple that defines
whether that firm is primarily conducting either an Automated Market Maker, Execution,
Microstructural, Momentum or Technical strategy. Following the strategy segmentation process, we can
now quantify the aggregate impact of each individual algorithmic trading strategy on UK equity market

quality.

4.4 Impact of Algorithmic Trading on Market Quality

The contemporary symposium of public and regulatory discourse debating the impact of machine-driven
algorithmic trading (AT) on the quality of financial markets is endemically fragmented. Dichotomised
debate within public, regulator, industry and academic domains has failed to reach a broad consensus
on the future role such actors should play in financial markets, an increasingly critical component of
real-economy wealth creation laying fertile ground for deeper rational academic analysis. This section
empirically examines the question of what impact different AT strategies have on various dimensions of
UK equity market quality. Strategies are identified by modelling the relationship between trader actions
and limit order book (LOB) features using Deep Neural Networks (DNNs), the axiomatic feature
attribution methods of Integrated Gradients and DeepLIFT and Spherical K-Means clustering
implemented in previous sections. Market quality on UK equity markets is generally assessed from a
perspective of market efficiency and the degree of market integrity. Market efficiency broadly
encompasses the domain of liquidity, price discovery and trading costs, whilst market integrity is
conceptually rooted in whether the legal rules and regulations governing trading are being adhered to
by market participants. Traditionally, academic literature on the subject of market quality has extended
across the spectrum between the two pillars of efficiency and integrity, though recent research has found

causal connections between the two (Aitken, 2018).

The primary focus of this section is the interrelationship between AT strategies and market efficiency
on UK equity markets. Specifically, how the aggregate trading activity of firms conducting these
strategies impacts attributes of market efficiency, including price discovery, market volatility, and LOB
liquidity. Price discovery is a characteristic of efficient markets that reflect financial information
implicitly in the market price of a security, with this information impounded quickly into the price once
available (Fama, 1998). Efficient markets generally require both high levels of liquidity, allowing traders
to transact large quantities in a security efficiently, low levels of volatility, to infuse trust in traders’
ability to manage risk when trading on secondary markets, and low transaction costs, allowing firms to
manage positions and risk. Interrelationships between the different market quality metrics are also
explored. Specifically, the decomposition of price discovery into information and volatility components
(Benos, 2012) is necessary to understand how noise in the form of excess volatility and information
impounded into markets interrelates. Analysis in this section utilises the FCA FTSE100 CLOB dataset
introduced in Section 3.3 that covers all millisecond-stamped messages between traders and the four

main UK equity venues over the period of June 2015 for five FTSE100 stocks. The analysis is performed

CHAPTER FoOURr |217

using an event-time framework which aligns with the predominate temporal conceptions of competitive
AT strategies (Gomber, 2013). Market quality is assessed based on trading activity on the London Stock
Exchange (LSE), the largest UK market in terms of volume, to control for noise in market quality

variables cross-venues.

Impact from algorithmic and high-frequency trading (HFT) on markets has been the focus of recent
investigations by regulators. MiFID II regulations implemented in 2018 place additional requirements
on AT firms within a framework aiming to improve transparency in EU financial markets. Recent
initiatives by the Financial Conduct Authority (FCA) have looked into whether HFTs exploit their
advantage in speed and technology, finding mixed results regarding how HFTs anticipate order flow
(Aquilina, 2016), and their role during periods of market stress when circuit breakers are triggered
(Bercich, 2017). A report published in 2014 by the European Securities and Markets Authority (ESMA)
analysed the level of HFT activity in EU equity markets without making significant conclusions
regarding the impact of this activity on market quality (ESMA, 2014). The Australian Securities and
Investment Commission (ASIC) undertook two recent reviews studying the role of HFT and dark
liquidity in Australian financial markets (ASIC, 2013; ASIC, 2015). Both reviews found that the
regulatory framework surrounding HF'T and AT in Australia is robust with market participants generally
able to adapt to the demands from faster electronic markets. These reviews instigated changes to market
integrity rules to improve transparency in dark markets and minimise the delineation of fiduciary
responsibilities when firms are acting as principals in an agency arrangement with retail investors. In
2015 the US Commodity Future Trading Commission (CFTC) proposed Regulation Automated Trading
that would apply additional transparency requirements, risk safeguards, and source code access
requirements on firms conducting automated trading on futures exchanges. The regulatory debate

surrounding the role and impact of AT is continually evolving.

This thesis adds to the body of literature on the topic of algorithmic trading and market quality in
electronic markets by studying AT from a new perspective, focusing on the specific algorithmic strategy
executed by the firm rather than some nebulous definition of what constitutes ‘high-frequency trading’.
Furthermore, this section focuses predominantly on the role of AT strategies at the ‘limit order’ level,
that is, how traders interact with the LOB by placing limit orders as opposed to at the ‘transaction’
level that analyses traders’ executions only. Causal links between AT and market quality are difficult
to identify due to the issue of endogeneity. The direction of causality in the relationship between AT
activity and market quality has multifarious elements that cannot be disentangled in the absence of a
market-wide exogenous shock that isolates the impact from only one variable. Thus, the results from
the impact of AT on market quality analysis must be considered in the context of this issue, however,

several methods are employed to overcome endogeneity so as to derive inferences on causality.

The impact from these distinct AT strategies is assessed using a robust econometric framework through
the dimensions of how AT impacts LOB liquidity in Section 4.4.1, short-term volatility in Section 4.4.2,

and the price discovery process in Section 4.4.3.

CHAPTER FouURr |218

4.4.1 Liquidity

The liquidity of a financial instrument is ostensibly represented by the current set of resting orders
available for immediate execution on the LOB. Despite its amorphic nature, liquidity plays a critical
role infusing trust in secondary financial markets. Liquid LOBs allow market participants to execute
trades quickly, cheaply and completely, serving as a fundamental element driving capital raising activity
in primary markets. Traditional inventory and information-based models of liquidity focussed on how
market makers provided liquidity at the best bid-ask spread depending on individual inventory levels
and measures of adverse selection, respectively. The fast-paced evolution in financial markets instigated
by evolutions in electronic trading, LOB matching systems, and direct market access models to
exchanges, has facilitated the rise of high-frequency markets with implications for how liquidity is viewed
by market participants and studied by academics. Literature on the interrelationship between trading
and liquidity has increasingly diverged from traditional models and focussed on conceptions of liquidity
relevant for high-frequency markets (Subrahmanyam, 2016). With this context, the following sections
analyse liquidity provision primarily at the limit order-level with less focus on liquidity at the transaction

level.

Stability in the supply of liquidity on the LOB in the form of passive order submissions is required for
financial markets to form and function. Liquidity is also an important function of efficient asset pricing
and trading costs with a natural negative correlation between stock prices and liquidity levels (Pastor,
2003). Evaporation of market liquidity caused by structural imbalances in the supply and funding of
liquidity was shown to be a precursor to the GFC in 2008 (Brunnermeier, 2009). The multi-faceted
nature of liquidity leads to a definition generally taken from the perspective of the market participant
for which the concept has relevance. For example, for institutional investors liquidity relates to the cost,
ease and timeliness of transacting in an asset (Pastor, 2003). Dimensions of liquidity at the
microstructural level can generally serve as a proxy for the quoted best bid-offer (BBO) spread, the level
of depth at the BBO, and the level of market resiliency. Quoted spreads at the BBO manifestly represent
the cost of buying and selling a single share at a point in time whilst market depth indicates the

theoretical limitations on the share volume that can be transacted at the BBO immediately.

Several studies have utilised event-study methodologies to analyse how the introduction of low-latency
trading mechanisms and electronic trading systems have impacted market liquidity. Results have
predominately shown a rise in liquidity, increased trading volumes, reduced risk of adverse selection and
tighter quoted spreads when low-latency technology was introduced on exchanges spawning beneficial
outcomes for market participants (Riordan, 2012; Hasbrouck, 2013). The growth of AT in equity markets
has also had a significant impact on the correlation structure of liquidity in financial markets. Auto-
correlations that previously existed over hours were shown to be occurring over periods of minutes or

seconds, generating short-term volatility (Smith, 2010).

Additional research has examined the role of AT and HFT firms in supplying liquidity during periods
of market stress. Groth (2011) provides evidence against the assertion that HFTs withdraw liquidity
during periods of high volatility. Additionally, Brogaard (2010) employs an exchange HF T-identifier for
NASDAQ securities over the period 2007-2009, finding that HFT liquidity supply improves vis-a-vis
non-HFT traders during market stress periods or shocks to the system in the form of new information

from earnings announcements. Additionally, Brogaard (2010) finds that HFTs are present at the BBO

CHAPTER FouURr |219

approximately 50% of the trading day. Similar results were reported by Hasbrouck (2013) using the
same NASDAQ dataset and a simultaneous equations methodology, providing evidence that low spreads

and high depth were correlated with increased HFT participation in trading.

Trading behaviour associated with placing limit orders at or within the BBO to reduce spreads, increase
market depth and profit from price disequilibrium is aligned with improved market quality, reduced
transaction costs from tighter spreads, and lower risk of adverse price impact from trading.
Understanding the liquidity provision activities of firms conducting different AT strategies via limit
order submissions and cancellations in order-driven markets is critical to assessing their overall impact
on market quality. Academic research has largely aligned with the view that HFT and AT activity
induce tighter quoted spreads (Malinova, 2013; Jovanovic, 2016). Both Jarnecic (2010) and Hendershott
(2013) analyse FTSE100 stocks and DAX30, respectively, finding that HFT and AT activity improve
market quality by increasing liquidity supply during profitable opportunities when quoted spreads widen.
Zhang (2011) and Carrion (2013) confirm these results by utilising a NASDAQ dataset to analyse the
impact of HF'T passive and aggressive intra-day behaviour on liquidity metrics. They find increased

HF'T passive activity when quoted spreads are wide and more aggressive trading when they are narrow.

Several hypotheses of why the prevalence of AT activity in modern markets has contributed to smaller
spreads are presented. First, Menkveld (2013) argues that AT strategies have largely emulated the
traditional role of market makers on high-frequency markets. Lower operational costs of these new
market makers allow for a competitive environment that ferments tighter quoted spreads. Second,
reductions in market frictions driven by the evolution in trading technology have had correlative effects
on firms cost of monitoring limit orders and executing transactions (Hasbrouck, 2013). Firms utilising
AT systems are able to supply more liquidity to LOBs driven by a lower risk of being adversely selected
stemming from their capability of updating quotes over minuscule time periods, reducing monitoring
and friction costs (Hendershott, 2013; Jovanovic, 2016). In a more recent and relevant study,
Subramanyam (2016) provides a comprehensive analysis of HFT limit order activity. The authors
measure HE'T liquidity provision metrics for HF T and non-HFT market participants on NASDAQ LOBs,
including order sizes, spreads and participation during periods of market stress. The authors find that

HFT liquidity providers overall enhance the quality of US equity markets.

4.4.1.1 Liquidity Supplying Characteristics of Algorithmic Trading Strategies

Liquidity in this section is explored along the dimensions of tightness in quoted spread and immediacy
from available market depth at the inside spread. These ex-ante market quality metrics arise naturally
from LOB data, and have significant implications for explicit trading costs, immediacy and possible size
of execution when trading in financial securities. In the following parts of this section, the liquidity

characteristics of AT strategies are studied at the limit-order level.

Descriptive statistics for the average volume submitted, cancelled and traded by firms grouped by AT
strategies are presented in Table 4.4.1. Metrics are measured as an average for each strategy over
intervals of 10 minutes throughout the trading day for the five securities studied in this chapter. Limit
orders for these metrics are studied only at the BBO representing limit orders submitted with a higher

probability of execution then if placed in a lower price queue several ticks from the BBO. The results

CuarprTeEr Four |220

indicate that firms conducting AMM AT strategies have the highest volume of submissions, with 88,193
shares submitted at the BBO on average every 10-minute period representing 31.2% of all order
submissions. As one would expect AMM firms also cancel the largest volume, 79,031 shares on average,
which can be logically deduced from the common finding that in fast-paced LOB environments high
order submission to cancellation rates tend to prevail (Kirilenko, 2017). Hence, there is a strong positive
correlation of 0.82 between order submission and cancellation volumes across all traders in the sample.
Despite the large volume of limit orders submitted by AMMSs, they only execute the second highest
average volume of trades per period, with Momentum strategies 17,886 shares per ten-minute period,
representing 33% of all transactions completed on average. Technical strategies tend to have the lowest

level of submissions, cancellations and trades on average.
Submissions Cancellations Trades
Strategy
Mean (SD) Mean (SD) Mean (SD)
88,193 79,031 11,724
AMM)
(43,605) (39,442) (8,038)
42,092 35,207 9,483
Execution ,
(30,184) (25,608) (7,497)
52,543 44,467 8,296
Microstructural
(33,104) (27,566) (6,325)
73,674 61,576 17,886
Momentum
(44,574) (37,962) (12,209)
26,193 21,610 6,778
Technical
(21,096) (17,428) (5,956)

TABLE 4.4.1 — Limit order volume submitted, cancelled and traded on average over 10-minute periods across the sample dataset. SD refers to

standard deviation.

Table 4.4.2 provides evidence of which firms are more likely to cancel BBO orders, shown in Panel A,
and execute BBO orders, shown in Panel B. From Panel A it is evident that AMM AT firms have the
highest execution ratio, at 46.6%, followed by Microstructural AT strategies, with a ratio of 46.5%.
Cancellation ratios represent the volume of orders cancelled at the BBO as a percentage of total volume
submitted and cancelled at the BBO, averaged over sample securities in the dataset. Technical strategies
have the lowest cancellation ratio of 41.37% which is less than the mean ratio of all firms by 1.6% and
statistically significant at the 1% level. Execution ratios are reported in Panel B with the metrics
computed as the volume executed by each AT strategy as a percentage of total volume submitted at the
BBO. Technical, Execution and Momentum strategies all attain higher execution ratios than the mean
with a significance level of at least 5%, reporting average ratios of 28.5%, 25.4% and 24.8%, respectively,
over the stocks studied. Note that these ratios are calculated based only on limit orders submitted at
the BBO and are significantly less when considering orders placed at all price points by these traders.
The primary reason for focusing on the BBO is its relevance in high-frequency markets where the cost
of placing limit orders on liquid LOBs is very low, deeming that liquidity supplied at the BBO queue is
paramount to quantifying the manifest impact of AT on market quality. The low execution ratios of
AMM and Microstructural strategies align with the result from Panel A showing relatively higher
cancellation ratios for these firms, though the difference from mean execution ratio of other firms is not

statistically significant.

CuHAaPTER Four |221

_ Cancellation Ratio (Panel A) Execution Ratio (Panel B)
_ Mean (SD) Difference (T) Mean (SD) Difference (T)

0.4655 0.0029 0.2073 -0.0163

AMM

(0.1054) (0.14) (0.2062) (-0.39)

0.4498 -0.0186 0.2537 0.0628**
Execution

(0.0583) (-1.61) (0.1119) (2.64)

0.4652 0.0030 0.1996 -0.0072
Microstructural

(0.1153) (0.12) (0.1145) (-0.34)

0.4518 -0.0166** 0.2476 0.0566***
Momentum

(0.0258) (-3.09) (0.0915) (3.90)

0.4137 -0.0554** 0.2851 0.0932**
Technical

(0.0792) (-3.21) (0.1370) (3.13)

TABLE 4.4.2 - Limit order cancellation ratios (Panel A) and execution ratios (Panel B). Cancellation ratio is the average ratio of limit order

volume cancelled at BBO prices to total cancellation and submission volume at BBO prices. Execution ratios refer to average volume traded
to volume submitted at the BBO. Differences are calculated as strategy ratio minus non-strategy ratio. Two-sided T-tests are performed. *, **
and *** indicate statistical significance at the 0.5, 0.01, and 0.001 levels, respectively.

Recent criticism from regulators regarding the high degree of order placements followed by immediate
cancellation precipitated action taken by trading venues to curb this behaviour.”? The MiFID II RTS 9
which took effect in 2018 now requires trading venues to set a cap on OTR’s for individual securities
which firms must adhere to each trading day. The results reported in Table 4.4.2 show that the low
dispersion between cancellation ratios for the different trader groups indicates some degree of
homogeneity in the order cancellation strategies of each group. Only AMM and Microstructural firms
have a higher cancellation ratio than the average ratio for non-strategy firms, and these results are not
statistically significant at the 5% level. These results provide some evidence against the utility of placing
restrictions on firms OTRs given that no specific strategy seems to be abusing the market and cancelling
significantly more orders, for given volumes executed, than other competing strategies. As a caveat, it
must be noted that small trading firms conducting less than 1,000 actions in a trading day for a given
security are not captured in this analysis and, as a result, further investigation is required as to whether
these firms may be abusing market integrity with very high OTRs. Additionally, the analysis focuses

only on the BBO and no limit orders placed at lower queue priority price points.

An analysis of the size of limit order submissions by AT strategy groups is summarised in Table 4.4.3.
The average order size is relatively stable across the different AT strategies. Technical strategies tend
to submit higher orders with an average size of 2,145 shares, though these results are volatile across the
sample stocks and not statistically significant. The statistical tests performed do indicate that the
Momentum average order size of 2,002 shares is higher than the mean sample size by 8.3%, a statistically
significant result at the 5% level. Only orders placed at the BBO are considered. There appears to be a
connection between the execution ratios reported previously and the order size, with Execution,
Momentum and Technical strategies having the highest order sizes, with average order sizes over 2,000

shares, and also the highest execution ratios.

2 See Securities Exchange Act Release No. 34-61358, 75 FR 3594, 3606 (January 21, 2010).

CHAPTER FouRr |222

Strategy Mean (SD) Difference (T)

1955.27 120.20

AMM

(1825.45) (0.67)

2041.79 206.72
Execution

(2176.44) (0.95)

1848.04 -47.07
Microstructural

(1772.68) (-0.53)

2001.59 166.52*
Momentum

(1771.13) (2.40)

2145.19 440.89
Technical

(2313.39) (1.19)

TABLE 4.4.3 — Limit order size is the average volume for orders submitted at the BBO. Differences are calculated as strategy order size minus
non-strategy order size. Two-sided T-tests are performed. *, ** and *** indicate statistical significance at the 0.5, 0.01, and 0.001 levels,
respectively.

Limit order survival times for orders placed at the BBO weighted by the volume size of the order is
reported for all five AT strategies in Table 4.4.4. Panel A reports the mean and standard deviation of
order survival times for all limit orders submitted at the BBO, that is, how many seconds the order
stayed on the LOB for, in addition to the difference of the specific strategy from the population mean.
A commensurate statistical t-test is performed to determine whether the means of the trader and non-
trader population are statistically different. Similarly, Panel B reports the statistics for limit orders that
were executed against as a transaction whilst Panel C reports order survival times for orders that were
cancelled. All order times are reported in seconds. An interesting result is the small order survival time
across all strategies with the mean survival time ranging from 17.97 seconds for Microstructural
strategies to 13.73 seconds for Execution strategies. A common result across the three panels is the low
survival time for orders placed by Execution strategies. Orders placed by Execution firms remain on the
LOB for 29.6% less time than the average trader, a result significant at the 5% level. This result is
highlighted further by the significantly lower survival time of only 8.67 seconds for orders that are
executed. Intuitively, one would expect Execution algorithms to place orders at the BBO when the price
meets their intrinsic value of the stock for which they are trading, given that these firms generally trade
in one direction, long or short, in a stock for periods of the day in order to meet a client’s objective of
liquidating or building a stock position. The results presented in this section provide evidence against
the assertion that certain types of predatory HFT strategies provide only transitory or phantom liquidity,
given the higher survival times of strategies that one could argue as HFT such as AMM, Momentum
and Microstructural, versus Execution algorithms which are likely to be run by institutional investors

such as banks or asset managers.

CHAPTER Four |223

_ Survival Time All (Panel A) Survival Time Trade (Panel B) | Survival Time Cancel (Panel C)

Mean (SD) Difference (T) Mean (SD) Difference (T) Mean (SD) Difference (T)

16.0838 -0.0308 8.6843 -0.2963 17.6211 -0.0523

AMM

(7.8268) (-0.18) (10.1972) (-1.32) (8.2048) (-0.35)

13.7298 -0.2962* 8.6667 -0.2081** 15.6043 -0.2600
Execution , ,

(7.7083) (-1.82) (5.0883) (-3.68) (9.8834) (-1.28)

17.9765 0.1619 12.7659 0.1268 19.2722 0.0948
Microstructural

(16.4219) (0.56) (17.0919) (0.47) (16.3134) (0.35)

16.5730 0.0243 13.9262 0.2483 17.9511 -0.0183
Momentum

(7.4481) (0.16) (12.2683) (1.42) (7.2034) (-0.18)
T 17.8178 0.1601 14.0800 0.2439 20.6734 0.2604

(13.2083) (0.70) (11.4133) (1.18) (13.9502) (1.15)

TABLE 4.4.4 — Limit order survival times refer to the length of time (in seconds) an order placed at the BBO remains on the LOB. Panel A
refers to all orders placed at the BBO, Panel B refers to orders at the BBO that are traded against, with Panel C referring to orders that left
the LOB by being cancelled. Differences are calculated as strategy order survival time minus non-strategy survival time. Two-sided T-tests are

performed. *, ** and *** indicate statistical significance at the 0.5, 0.01, and 0.001 levels, respectively.

Figure 4.4.1 graphically presents the average quoted spread to tick ratio (STR) for each AT strategy
over minute periods using rolling averages over the past five-minute observations. STRs are measured
through the trading day between 9 am and 4 pm to align with the conventions used in this chapter. One
can note the clear differentiation between AMM and Momentum strategies that maintain significantly
tighter spreads on average throughout the trading day than the other three strategies, with the ratio
stable around three ticks between the best bid and ask of that trader group. Volatility in the STR is
evident for all strategies around 1 pm, likely due to new information entering the UK markets when
trading begins in the US. This volatility is also evident for Microstructural and Technical strategies at
the 2:30 pm mark and AMM strategies around the 3 pm when other markets begin trading. An increase
in a firm’s STR is correlated with the perception of higher levels of informed trading on markets.
Therefore, firms with a less technologically advanced AT systems and higher latency speeds may increase
their spreads when a large burst of information enters the markets so as to not be adversely selected by
firms with higher information processing capacity that can interpret and trade off that new information
quicker. This potentially explains the widening of Technical and Execution strategies spreads at certain
times of the day, given that they commonly have less technologically capable systems as firms conducting

higher-frequency forms of trading.

Execution strategies tend to have a high average STR throughout the day though this begins to reduce
in the last hour or two of trading. One potential explanation could be the requirement for these firms
to liquidate or buy inventory to complete an order or meet client demands for liquidity. Similar patterns
are evident in the Momentum and AMM strategies, with some of these firms possibly conducting hybrid

strategies with both agency and proprietary trading components.

CHAPTER FoOUR |224

40-

Strategy
AMM
Execution
— Microstructural
== Momentum

30- Technical

Quoted Spread to Tick ratio

09:00 12:00 15:00
Time over Trading Day

FIGURE 4.4.1 — Average 5-minute rolling Quoted Spread to Tick (QST) ratio for all firms conducting a specific AT strategy. Measured over

the course of the trading day in one-minute increments between 9 am and 4 pm.

The shape of AT strategies LOB order distributions is illustrated in Figure 4.4.2. Each line represents
the average time-weighted LOB market depth distribution, measured in shares, for traders conducting
a specific AT strategy across all price queues up to five ticks from the BBO. All AT strategies tend to
maintain a similar order distribution of variable magnitudes, with lower market depth at the BBO, then
depth increasing up to price levels approximately three ticks from the BBO, P3, before reducing depth
for prices further from P3. Momentum strategies on average maintain the highest quantum of market
depth at the BBO, with 5107 shares available to be matched against by an incoming order on either
side of the LOB. As expected AMMSs also maintain relatively deeper liquidity positions on the BBO
queues though on average their market depth is 9.9% less than Momentum strategies. However, AMM
firms transact 34.4% less volume than Momentum firms, as evident in Table 4.4.1. Another interesting
result is the relative steepness of Execution LOB distributions when compared against Microstructural
strategies. Execution firms maintain smaller levels of depth at the BBO, though this increases in
proportion to Microstructural strategies as queues move further from the BBO, with Execution firms on
average maintaining 20.3% deeper depth at price points five ticks from the BBO. One potential
explanation for this behaviour could be the risk of adverse selection for Execution traders, who may not
want to expose a large parent order to the market that risks a predatory response from higher-speed

traders that could result in a larger price impact and implicit cost of trading the parent order.

6000 -

5000 Strategy
AMM
Execution
4000 - == Wicrostructural
== Momentum

Technical

Market Depth

3000 -

2000 -

BAQPS BAQP4 BAQP3 BAQP2 BAQP1 BAQPO BBQPD BBQP1 BBQ.P2 BBQP3 BBQP4 BBQAPS
Queue

FI1GURE 4.4.2 -~ Time-weighted average LOB market depth order distributions for all strategies at price points at and within five ticks of the
BBO. Market depth is measured in share volume.

CHAPTER FOUR |225

4.4.2 Volatility

This section assesses the contemporaneous, dynamic, causal and fundamental relationship between the
trading activity of different AT strategies and market disruptive intra-day price volatility. A low
volatility price environment is a central tenant of well-functioning and efficient financial markets that
motivates the congenial participation of traders in markets given their desire to control the risk of
investments. Volatile markets can potentially lead to rational risk-averse investors exiting the market
during periods of high volatility (Kirilenko, 2017). Volatility arises naturally on LOBs when new
information is introduced into the market resulting in a fundamental shift in the intrinsic equilibrium
value of a security, with prices fluctuating as traders interact and execute transactions on the LOB. In
the context of financial market trading, volatility can be viewed as a transaction cost given the risk that
market forces move prices adversely to orders placed on the LOB, leading to market makers potentially

increasing the spreads they offer institutional investors, making trading more expensive (Harris, 2003).

Price volatility during period t in this chapter is measured as the standard deviation in intra-day
logarithmic midprice (MP) returns, R, using an event clock conception of t. Mathematically, the metric

is defined as the standard deviation of logarithmic returns over period T, SD(R)VT. Separate metrics for
MP;
MPy_y

realised price volatility, VOLE, which utilises MP period returns over t, RR = log(), and high-low

mpf

—L), are tested. Realised returns
MP}

volatility, VOLYE, which takes high-low logarithmic returns, R¥: = log(

are the predominant academic standard for measuring volatility (Andersen, 2003), whilst using
logarithmic returns has also been shown to materially reduce the dispersion of measurement errors
(Alizadeh, 2002).

Modelling the relationship between AT activity and stock volatility requires consideration of both the
theoretical relationship between the variables and a set of statistical issues that arise due to endogeneity
in the dataset. One potential theorem of this relationship is that AT activity is materially influenced by
levels of price volatility given its impact on incentives for traders to take profitable positions, especially
short-term, in the market. A dichotomic logic on this continuum would infer that the strategic discourse
of AT firms themselves drives market volatility. The primary issue that arises when analysing the
relationship is the problem of endogeneity that occurs when independent variables are serially correlated
with the errors. In time series data this is generally due to auto-correlated errors or simultaneous
causality between dependent and independent variables. Specifically, for chronological clock-based
analysis the effect of multiple trades or quote updates at the BBO over short time periods can blur the
causal relationship between AT activity and volatility. Utilising lagged values of volatility as
instrumental variables given its auto-regressive nature could overcome this issue. However, finding a
comparative instrument for AT activity to quell endogeneity issues is difficult to attain given its low
auto-correlation. Rather, employing an event clock framework and utilising statistical techniques

presented in Section 4.4.2.4 are used to overcome the endogeneity issue.

Several studies have assessed the impact from AT, or more specifically HFT, on intra-day price volatility,
finding rather divergent results. The lack of a ubiquitous academic consensus regarding the relationship
between AT and volatility stems from both the plethora of research methodologies and trader

categorisation models employed. Generally, research can be categorised into one sub-category arguing

CHAPTER FOUR | 226

the virtues of algorithmic trading, concurring with the view that AT activity reduces volatility, whilst

a second sub-category highlights the negative role that AT has by making markets more volatile.

Research presenting evidence of a positive impact from AT on volatility is assessed. When price
movements are transitory, AT activity conducive to market quality will supply liquidity and trade in
the direction against these forces, whilst correlating trading in the direction of permanent price changes.
Brogaard (2010) utilises an exchange-identified dataset of 26 HFT firms trading in 120 NASDAQ and
BATS stocks over 2008-2009 to assess the impact of HF'T on market quality. The study finds HFTs that
aggressively supply liquidity trade primarily during periods of low market volatility. An extended study
on the impact from the exogenous event defined by the 2008 short sale ban in US stocks, asserted that
HFTs dampen volatility during periods of market stress (Brogaard, 2017). Hagstromer (2013) categorises
AT into traders conducting automated market making and opportunistic strategies on the NASDAQ-
OMX Stockholm exchange and use tick size changes as an exogenous instrument to conclude that both
forms of AT mitigate volatility. These authors argue against treating AT firms as a homogenous group
for the purpose of analysing market quality and formulating regulatory policy, a concept which is
implemented in this thesis. Chaboud (2014) find a correlation between various AT firms trading common
exchange rate permutations (USD, EUR, YEN) on foreign exchange markets, indicating a propensity in
the market for herding behaviour between computer-executed algorithmic strategies. However, despite
the correlation evidence of a negative causal link is found between the level of AT activity and market
volatility indicating that trading by automated algorithms subdues price movements. Brogaard (2014)
analyse the impact from HFT trading on the volatility of NASDAQ equity securities by employing a
state space model to differentiate between permanent and transitory price movements. The study finds
that HFTs generally trade against transitory pricing errors and in the direction of permanent price
changes, determining that HFT activity quells volatile price movements. Hendershott (2013) analyses
how the informational content from AT trades impacts the stability of prices for DAX30 composite
stocks over three trading weeks in 2007-2008. No evidence of a fundamental relationship between
volatility and AT activity is found in this study. Using a similar dataset and methodology, Groth (2011)
studies the contemporaneous relationship between volatility and HF T activity, finding that these traders
supply liquidity during stressful conditions with high market volatility. Menkveld (2013) analyses the
Dutch equity market during a period in 2007 when an HFT firm first entered the market, finding no

statistical impact from the new entrant on realised volatility.

Evidence supporting a negative impact on market quality arising from AT activity driving volatility is
equally available. Benos (2012) study a UK FTSE 100 dataset of four stocks over one week of trading
and employ a VAR methodology that finds a relationship between aggressive HFT activity and excess
volatility. However, this negative impact should be understood in the context of HFTs role in the wider
price discovery process. HF'Ts may have a high contribution to noise, or excess volatility, though their
information-to-noise contribution ratio is higher than non-HFT firms indicating that whilst a proportion
of their trading activity represents noise, a higher proportion has significant informational content that
improves price discovery and market quality overall. Boehmer (2015) provides additional evidence
towards the finding that AT activity speeds up price discovery and improves overall market quality at
the cost of heightened excess volatility. The study finds this result to be robust for different markets

using sample securities in 42 markets analysed over the period of 2001 to 2011. Several studies have

CHAPTER FOUR |227

found that HFTs exacerbate market volatility when they withdraw from markets, dump inventory, or

increase in activity (Huh, 2014; Easley, 2011).

The contention that liquidity evaporates when HFTs exit markets during periods of stress has been
studied extensively. These events are commonly referred to as flash crashes epitomised by the May 2010
‘Flash Crash’ on US futures markets that led to contagion of volatility across global markets.” An SEC
investigation of the event concluded that whilst HF'Ts did not initiate the flash crash, they compounded
the volatility in the market by contributing to an erosion of finite and rapidly diminishing liquidity
during the event that resulted in the ensuing disorder in markets (SEC, 2010). Kirilenko (2017) provides
a seminal analysis of the event to determine its primary cause, finding that whilst HFTs provided
liquidity to fundamental sellers during the initial drop in value, they may also have had a role in
accelerating the volatile conditions as they began to sell inventories during the price drop, thus,

compounding the growing demand for liquidity.

4.4.2.1 Contemporaneous Relationship

Despite the evidence that AT and HFT activity contributes positively to liquidity provision
(Hendershott, 2011) and more broadly to the price discovery process (Brogaard, 2010), criticism of HFT
activity has fixated on systematic risk from these traders withdrawing liquidity during periods of extreme
volatility where algorithms risk management protocols override the traditional AT strategies
implementation (Kirilenko, 2017; SEC, 2010). An initial assessment of the direct contemporaneous
relationship between different AT strategies and volatility is performed by comparing the abnormal
fraction of trading volume executed by traders conducting a specific strategy and realised volatility over
one-minute periods. A similar methodology is implemented by Brogaard (2010) and provides some

evidence of how AT firms operate during periods of varying volatility.

The contemporaneous relationship between AT strategies and volatility is visually depicted by
comparing the abnormal fraction of an AT strategy activity, sf#ZV, for strategies s € S against abnormal
volatility levels, VOLZBN | which is bucketed into ten bins of increasing volatility. Abnormal volatility is
measured as the percentage difference between actual period t, VOL; ., and average, VOL;, price volatility
weighted by stock standard deviation, o;, for a specific stock i. Volatility levels are then ranked from
lowest to highest before being placed into the ten groups of size N, with similar levels of abnormal
volatility levels. The anomalistic level of AT strategy activity is calculated for each period as the
percentage difference in AT activity, s;,, from the average activity level, §;, for stock i across all time
periods t. Abnormal volatility and activity levels are defined as:

VOL;, —VOL; 1

% —

VOLL g;

SABN _ 1 (Si,t - §l)
p - -
ZVOLQanp N, S;

voLipN =

The ‘Flash Crash’ term pertains to the series of events that occurred from 2:32-3:08pm on 6/5/10 that spurred significant turbulence on
market globally, resulting in a 1010.14 point decrease in the Dow Jones Index, the second largest intra-day point deviation in the indexes
history.

CuarpTER FOUR |228

Figure 4.4.3 provides a visual representation of the abnormal AT activity values s;,‘lBN for each of the p
deciles on the vertical axis against buckets of increasing realised volatility values, VOLfBN N p, on the
horizontal axis, for each of the five AT strategies studied. Thus, one can determine whether strategies
have abnormally high activity during periods of stressful market conditions. Volatility during the high
decile periods is on average 48.4% higher, whilst it is 34% lower as measured by the mid-quote price
realised volatility during average market conditions. The figure demonstrates that a contemporaneous
relationship exists between realised volatility and both AMM and Microstructural strategies, though in
opposite directions. Firms conducting AMM strategies tend to interact more with the order book during
periods of low volatility, submitting 6.4% extra orders on average at or within the BBO during event
periods in the lowest decile of volatility. Conversely, Microstructural strategies are placing 6.5% fewer
orders during these periods on a relative scale. The results are mirrored for the high volatility periods
where AMM firms decrease activity by 12.6% and Microstructural increase by 7.5%, with all metrics

measured on a relative scale averaged across the sample securities and dates.

The contemporaneous relationship between strategy activity and volatility is not as pronounced for the
other three strategies. However, there appears to be a slight negative relationship between abnormal AT
activity and volatility for AT firms conducting either Momentum or Execution strategies. Execution
firms in particular appear to reduce trading activity during periods of higher market stress as evident

by the 5.1% decrease in activity from an average relative baseline during the high volatility periods.

0.05-
=
=
£ 000- Strategy
< AMM
LT: Execution
T == Microstructural
§ ~ Momentum
2 0.0 Technical
O
<

-010-

Voaltility Bin

FI1GURE 4.4.3 — Contemporaneous relationship between AT activity and volatility for the five trading strategies analysed. Abnormal AT
activity for each strategy is measured as the percentage difference for a particular strategy from their baseline average activity levels using one-
minute periods of analysis. Abnormal volatility is computed in a similar manner before observations are binned into deciles and ranked in
ascending order.

This section provides an understanding of the contemporaneous relationship between AT strategy
activity and volatility. There is a pronounced correlation between current period volatility and both
Microstructural and AMM strategy activity, though in reverse directions. However, this analysis does
not infer any causal, statistical or fundamental relationship between the variables given the likely

endogeneity of the AT activity with respect to volatility.

CHAPTER FOUR |229

4.4.2.2 Dynamic Relationship

The issue of whether AT firms exit markets following periods of high volatility is a fundamental question
for regulators and market practitioners. This section analyses the dynamic relationship between AT
firms conducting a specific strategy and market volatility by developing a finite distributed lag model.
OLS regression is performed to assess how AT firms executing strategy s respond to price volatility in
the previous period, VOL;;_1, based on their net liquidity volume for stock i in period t, NL} ., measured
by bid minus ask volume at the best bid-ask (BBO) prices during t. In line with the event-clock
methodology used in this chapter, periods of t are set to 500 events which equates to approximately 30
to 60 second periods on average. Dummy variables are included in the OLS regression for the AT
strategy, DS, and for the top 1% of periods with the highest levels of volatility, D¥L. Interaction terms
are added to quantify the strategy-specific impact of volatility on AT firms’ net liquidity supply.
Following Subramanyam (2016), all continuous variables are standardised with mean zero and unit
variance by individual stock i. Furthermore, the set of control variables, §, are incorporated into the
OLS regressions. These control variables include a set of indicators that may affect volatility in the
macroeconomic context, including the FTSE Volatility Index (VFTSE), and a set of stock-specific
control variables, including firm market capitalisation to proxy for stock liquidity, and the inverse price
ratio as a proxy for transaction costs. The regression testing the relationship between AT firms’ liquidity

provision and volatility is specified as:
NL{, = ay+VOL;jy_q +D*+ D" + DS« VOL;;_1 + DS *VOL;y_1 * D"V + § + ¢;,

Table 4.4.5 presents the OLS regression results for the distributed lag model testing the dynamic
relationship between AT activity and volatility. The results demonstrate that the coefficient for lagged
volatility, VOL; 4, is positive and significant for all AT strategies implying that there is a net increase
in liquidity supply following a volatile period for all strategies. The variable most of interest is the
interaction effect between the strategy dummy variable and lagged volatility, D® * VOL; ;_4. This measure
provides a relative measure of how AT firms respond with limit orders following a period of volatility.
The negative and significant coefficient for AMM indicates that these firms reduce their net liquidity
supply by 3.5% following a one standard deviation increase in volatility compared to non-AMM traders.
Conversely, Momentum strategies have a significant positive coefficient implying that these firm increase
their net liquidity supply by 3% relative to other traders following a similar increase of one standard
deviation in volatility. Thus, while in absolute terms traders seem to be trading more in periods after
higher volatility, we can draw a different conclusion when studying behaviour in relative terms using
the lagged OLS regression. These results align with theoretical and empirical research on AMMs.
Empirically, AMM-type AT firms have been found to provide more liquidity in days with stable returns
(Anand, 2016) and tend to withdraw from market-making during high volatility periods (Easley, 2011).

The interaction term for extreme volatility periods, D * VOL;,_, * DV has negative coefficients for all
AT strategies. This implies that strategies are responding to extreme volatility periods by decreasing
net liquidity supply or withdrawing liquidity from the market. This relationship is statistically significant
for Execution and Momentum strategies at the 5% level and Microstructural strategies at the 1% level.
Evidently, following one-minute periods where volatility is in the top 1% highest volatility bracket,
Momentum strategies are expected to decrease net liquidity supply by 3.5% and Execution strategies by

2.7%. The decrease in Microstructural net liquidity supply has a higher magnitude of 4%. These results

CunapTER FoOoURr |230

indicate that whilst Momentum strategies generally increase net liquidity in a period following volatility,
this is not the case after periods of extreme volatility where traders tend to reduce the passive liquidity

supply resting on the LOB.

VoL, - 0,079 0.073%% 0.075%** 0,070+ 0,071
(10.56) (9.82) (10.07) (9.38) (9.54)
-0.002 0.001 -0.001 0.003 -0.002
(-0.19) (0.13) (:0.12) (0.24) (-0.18)
T -0.035%* 0.007 0.011 0.030%* 0.003
‘ (-1.96) (0.4) (0.6) (1.67) (-0.16)
D* «VOL,_, 0.015 0.0271* -0.040%* -0.035* 0.014
* D" (-0.95) (-1.78) (-2.61) (-2.31) (-0/86)
0.002 0.001 0.001 0.001 -0.000
(-0.14) (-:0.12) (-0.15) (-:0.13) (-0.09)

Srres 0.001%* 0.000%* 0.001%* 0.001%* 0.000%**
(2.53) (2.5) (2.05) (2.42) (2.71)
0.023 0.022 0.025 0.024 0.020
(0.14) (0.13) (0.15) (0.14) (0.12)

-1.443% -1.435%* 1167 -1.383%* -1.592%%x
(-2.53) (-2.5) (-2.05) (-2.42) (-2.71)

TABLE 4.4.5 — The table reports the coefficient estimates for the distributed lag OLS regression with the dependent variable being net liquidity
supply, NL}, of limit order submissions minus deletions at best bid-ask (BBO) prices for strategy s, stock i, in period t. The t-statistics are
presented in parentheses and derived from Newey-West corrected standard errors. *, ** and *** correspond to statistical significance at 0.05,
0.01 and 0.001 levels respectively. Regressions are performed by aggregating activity of traders conducting the same AT strategy and is
measured over the UK LSE LOB for five securities in June 2015. The lagged OLS regression estimated is: NLY, = ag + X7, D' + VOL;,_, +
D%+ DS« VOLy;_y + D % VOL;;_y x D"V 4+ § + €;,. The regression measures how net liquidity, NL;,, responds to price volatility in the previous
period, VOL;,_,. Dummy variables are included in the OLS regression for the AT strategy, D*, and variable D% that identifies 1% of periods
with the highest levels of volatility. The set of control variables, &, are incorporated into the OLS regressions. These control variables include
a set of indicators that may affect volatility in the macroeconomic context, including the VETSE Index, 8yprsg, and a set of stock-specific
control variables, including firm market capitalisation to proxy for stock liquidity, 8y, and the inverse, §;p, to proxy for estimated transaction

costs.

4.4.2.3 Causal Relationship

Robustness checks of the causal relationship between AT strategies’ activity and market volatility is
performed using a Granger non-causality panel regression test (Granger, 1969; Dumitrescu, 2012) that
identifies statistical causality when lagged variables of x exhibit a causal effect by increasing the accuracy
of predicting current values of y. It is necessary to contextualise the semantics of ‘causality’ commonly
viewed as a corollary of a statistical relationship between two variables. Variable x is said to Granger
cause variable y when lagged values of variable x precedes y to a defined significance level, indicating
that lagged variables of x provide information regarding the future value of y that drives its value.
Granger causality only allows for one to reject no causality rather than draw inference of whether one
variable ‘causes’ the other. The model setup in this section tests for bi-directional Granger causality at
the stock level between AT net liquidity supply levels for all different strategies, NLj,, and market
volatility, VOL;,, in stock i over periods event-time t comprising 100 relevant LOB events. These

variables are all defined in the previous section. Granger causality tests are performed by estimating the

CHAPTER FouRr |231

following equations for market volatility and net liquidity supply using a vector auto-regression VAR(n)
framework:
n

n
VOLi_t = Qg + Z alijNLf,t_j + Z azijVOLi_t_]- + Eit
j=1 j=1

n
BaijNLi e—j + ti
j=1

n
NL;; = Bo + Z B1ijVOL; ¢ +
j=1
The error disturbance terms &, and p;, represent variations in volatility and AT activity levels,
respectively, that are not captured by lagged independent and control variables. Granger causality is
tested over n = 5 evenly spaced period lags for each independent variable. Null hypotheses of no Granger

causality between AT activity and volatility are developed at the stock-level:
Hop: g = a1 = ap = 0; AT activity levels do not Granger cause volatility.
Hyg: Bo = B1 = P2 = 0; Volatility levels do not Granger cause AT activity.

Panel Granger Causality Tests are applied in this chapter to account for the stock-specific effects that
allow for a holistic interpretation of Granger causality between the AT activity and volatility variables
(Dumitrescu, 2012). Rejecting the null hypothesis Hys and failing to reject the second null hypothesis
Hyp demonstrates that lagged AT strategy net liquidity supply variables, s;;, can be used to predict

current period volatility, VOL; .. The opposite is true for the reverse case.

The Panel Granger Causality Test utilises a Z-Tilde, Z, test statistic, which incorporates parametric
Wald and F-tests performed implicitly, to test for Granger causality within the panel of stocks as a
whole. The process to test the null hypothesis of whether lagged coefficients of independent variables
are statistically different from zero across the panel data first requires performing F-tests for each stock,
in a similar vein to original Granger causality, before calculating an average standard adjusted Wald
statistic, W. The Wald test statistic, W, is a function of the maximum likelihood estimate of the
independent variable, X, the proposed variable value, x,, and variance matrix, var(x), and draws from
a Chi distribution, W ~ yZ. Based on the assumption that Wald statistics are i.i.d across all stocks, the
standardised Z-Tilde, Z, test statistic can be computed as a function of the average Wald statistic, the
number of panel samples, and observations. This leads to a final Z-Tilde statistic from which Panel
Granger Causality tests can be executed. The Panel Granger test is only capable of detecting causality

at the panel-level of multiple stocks (Lopez, 2017), rather than at the individual stock-level.

Bi-directional Panel Granger Causality Tests using five auto-regressive lags are tabulated in Table 4.4.6.
Standardized Z-Tilde statistics are reported with the attached significance level for the five individual
AT strategies along the horizontal axis and two relevant bidirectional tests along the vertical axis. Note
that the null Hy, is the hypothesis that lagged net liquidity variables for each strategy do not provide
information for the current volatility levels, that is net liquidity changes do not Granger cause volatility.

The opposite case is true for Hyg.

The key result is that the Hyp is rejected for all strategies and thus, the hypothesis that volatility in the
preceding periods does not influence current activity levels of AT strategies can be rejected. Lagged

volatility may provide useful information to predict whether AT firms are going to shift their net

CHAPTER FoOoURr |232

liquidity supply. This aligns directly with results in the previous sections that found correlations and
statistical relationships between lagged and contemporaneous volatility and increases in AT activity.
Furthermore, the null hypothesis Hy, that lagged net liquidity fluctuations of Execution and Momentum
strategies does not Granger cause current period volatility is not rejected. Both strategies have Z-Tilde
values of 0.84 and 1.49, respectively. The results can be interpreted as indicating that lagged net liquidity
supply variables for firms conducting Execution and Momentum strategies do not provide statistically

significant information regarding future volatility, across the sample securities studied.

VOL~ NL (Hop) 3.67%%x 7 5g% 1.99%

NLi~ VOL, (Hog) 10,807 4.21%% 4.86%% 3 .86%x 6.03%%%

TABLE 4.4.6 — This table summarises results for bidirectional Granger causality between volatility, VOL; and net liquidity supply, NL, for the

different AT strategies. *, ** and *** correspond to statistical significance at 0.05, 0.01 and 0.001 levels respectively.

4.4.2.4 Fundamental Relationship

Previous sections provide evidence that a contemporaneous, dynamic and statistical relationship exists
between different types of AT activity and market volatility for the sample analysed. However, it is
necessary to understand the fundamental relationship between the two variables given the endogeneity
issue where OLS coefficients may be biased, as previously discussed. Traditional methods to overcome
the issue of AT activity and volatility being endogenous variables include performing an instrumental
variable analysis (Chaboud, 2014) or testing around market-wide exogenous shocks (Caivano, 2015;
Brogaard, 2017) to obtain unbiased estimates of the coefficient variables. However, given that there is
no natural instrument for AT due to its near-zero auto-correlation, these methods are not an option.
Rather, this section extends the method used by Brogaard (2010) to overcome some of the issues caused
by the endogeneity problem by developing a hypothetical time series of prices that assume the specific
AT strategy being analysed was not prevalent in the market. One primary difference between the
approach utilised in this chapter is the focus on limit orders, that is, activity on the LOB rather than

just transaction data.

Testing the impact of AT strategies on volatility using this framework requires a comparison between
two price series. One price series maintains the behaviours of all traders in the environment throughout
the trading day modelling the actual price path, whilst a second alternative price path extricates a
specific trading strategies’ activity from the daily quotes as if the traders had not participated on the
LOB at all. Realised volatility is calculated for both price paths for each individual AT strategy and a
statistical test is performed to drive assertions regarding the fundamental relationship between AT
activity and volatility. Table 4.4.7 reports the results of the analysis for each strategy. The first two
columns compute the mean and standard deviation of volatility for alternative price paths when the
limit orders at the BBO placed by traders executing these strategies are annulled from the dataset. The
third column refers to the difference between the actual and alternative price path volatility. The
difference in means between the two paths is statistically analysed using a paired t-test that incorporates
Newey-West corrected errors to adjust for auto-correlation. The results demonstrate that all five AT
strategies have a statistically significant fundamental positive impact on volatility at the 0.001%

significance level when comparing the alternative hypothetical price path of no AT activity against the

CHAPTER FoOoUR |233

actual price path. AMM strategies appear to have the strongest dampening effect on volatility, such
that when they are removed from the dataset, volatility increases on average by 2.95%. On the opposite
side of the spectrum, Momentum strategy activity also reduces volatility levels though with a smaller
magnitude of only 0.19%, despite being the largest category by the number of orders placed at the BBO.
The results indicate that AMMs and Execution algorithms are two trading strategies that significantly

dampen volatility.

Strategy Mean (SD)

0.2858 2.95%***
AMM
(0.0330)
0.2830 1.93%***
Execution
(0.0349)
0.2797 0.75%***
Microstructural
(0.0404)
0.2781 0.19%***
Momentum
(0.0308)
0.2788 0.41%***
Technical
(0.0364)

TABLE 4.4.7 — Fundamental impact of AT strategies on price volatility through a statistical comparison of actual and alternative hypothetical
price paths when the specific AT strategy is annulled from the trading day dataset. Difference is measured between the two price paths in

percentage points. ¥, ¥* and *** correspond to statistical significance at 0.05, 0.01 and 0.001 levels respectively.

4.4.3 Price Discovery & Efficiency

This section compares the impact of firms conducting different AT strategies on price discovery and
efficiency. Price discovery refers to the ability of markets to impound information into prices effectively
whilst price efficiency defines the level of informational content available in prices. Modern high-
frequency financial markets increasingly rely on firms executing automated trading algorithms to aide
in the price formation process by supplying liquidity and transacting on the limit order book (LOB).
Incorporating new public and private information efficiently into prices is a critical component of price
discovery in well-functioning markets (O Hara, 2003; Brogaard, 2014). Theoretically, price discovery and
efficiency are improved, and institutional investors benefit, when informed trading by AT firms is
performed in the direction against transitory pricing errors caused by a significant demand for liquidity,
and in the direction of permanent price movements (Kyle, 1985). Intuitively, the price formation process
is also aided by AT firms capable of detecting price anomalies and placing limit orders in a way that
reverts prices back to their fair value. Regulators have an important role in creating a level playing field
that places legal limitations on trading certain sets of private information and ensuring firms have equal

opportunity to access timely and holistic market data.*

Academic research into the relationship between algorithmic or high-frequency trading and price
discovery is assessed. Brogaard (2014) analyses the impact of HFTs on price discovery and price
efficiency using a state-space model that decomposes price innovations into a permanent component that
represents information and a transitory component that represents transitory volatility. This process is

conducted using a Vector Autoregression (VAR) framework developed by Hasbrouck (1991, 1995) and

2 MiFID II (RTS 10) requires trading venues to provide fair and non-discriminatory fee structures and services.

CHAPTER FoOoURr |234

employed in various academic studies to decompose the components of price impact (Benos, 2012).
Brogaard (2014) finds that HFTs contribute to price efficiency by conducting informed liquidity
demanding trading in the direction of permanent trends and opposite to transitory pricing errors,
attaining revenues in excess of the spread and trading fees on average. Additionally, Brogaard (2014)
argues that whilst HF T's demanding liquidity impose adverse selection costs on non-HFT firms trading
with transitory errors, there is a net positive externality from improved efficiency of prices as aggressive
HFT activity reverts prices to their fair value. These results align with Hendershott (2013) and Chaboud
(2014) who use a regulator-identifier for HFT activity and study the Deutsche Bourse equity and foreign
exchange markets, respectively, finding evidence that HFT and ATs improve price efficiency. Similarly,
the adoption of faster trading technology in German equity markets was examined by Riordan (2012)
with the increased capacity to update limit orders over short time frames resulting in the supply-demand
liquidity dynamics of the market changing in a way that allowed for faster price discovery. Benos (2012)
utilises the VAR methodology and variance decomposition framework, similar to Brogaard (2014), to
decouple the price efficiency and noise component of market impact, from which the contributory impact
on each component from aggressive HF T activity can be measured. The authors found that aggressive

HFTs tend to have a greater contribution to both components than passive HF Ts.

The following analysis is conducted to assess the impact of different AT strategies on the price discovery
process. First, impulse response functions are developed to measure the price impact induced from AT
strategy activity, serving as a proxy for the level of private information impounded into different trading
strategies’ transactions and limit order actions. Next, a VAR Information Share methodology, involving
a Choleski variance decomposition technique, is performed to parse the price impact from AT strategy
activity into informational and noise components to quantify the contribution of different strategies to
price efficiency. Finally, a dynamic linear model with a recursive Kalman filter is fitted to the data to

estimate the permanent and transitory components of the efficient price attributed to each AT strategy.

4.4.3.1 Impulse Response Functions € Market Impact

Impulse response functions provide an econometric framework for assessing the role of various AT
strategies in improving price discovery on UK equity markets. Quantifying the level of private
information infused into actions executed by AT firms is performed using an event-time adaptation of
Hasbrouck’s k" order vector auto-regression (VAR) methodology (Hasbrouck, 1991, 1993, 1995). VAR
models can be used to ascertain the magnitude of price responses to information from various channels,
particularly public and trader-specific sources. These price responses are generally referred to as the
permanent price impact of a trader. Similar methodologies have been applied by Hendershott (2013),
Brogaard (2010) and Benos (2012) to assess the impact on price discovery from HFT, AT,

macroeconomic news, or some combination of all three.

Permanent price impact arising from the trading activity in period t attributed to AT firms conducting
strategy s serves as a proxy for the informational content of limit orders placed or trades executed by
these traders on the LOB. This proxy can be viewed as a derivative of the traders’ level of private
information and contribution to price discovery. The set of five AT strategies studied in this chapter are
analysed, including Automated Market Maker (AMM), Execution (EX), Microstructural (MS),

Momentum (MO) and Technical (TE) strategies, representing components s € S. The multivariate

CHAPTER FouRr |235

stochastic VAR (k) models the relationship between endogenous variables of log midpoint returns, R,
and signed order flows, O;, using k lags of each variable. OLS regression is used to test the significance
of the coefficients. For the purpose of this analysis, order flows are measured for each individual AT
strategy s,07, taking a positive value when these traders execute an aggressive buy and a negative

value when executing a negative sell. The VAR model is specified as:

k k k
Ry = § ajRe_; + § § BiO:_i + €o¢ 0f = 5SRt it E § 19 Of_; + &t
i=1 i=1 SES i= i=1

The return equation estimates the period t excess midpoint return, R;, as a function of both lagged
endogenous order flow and return variables, allowing temporal interdependencies between variables to
be captured by the model. Error terms for each equation, &;, have expected mean zero, with
contemporaneous variance-covariance matrix, E(€:€;) = Q. The matrix Q has non-diagonal covariance
components given that the order-flow equations are contemporaneously correlated to some extent.
Implicit within the VAR model is the assumption that causality between returns and order flow is
unidirectional, given that the excess return independent variables can be contemporaneously influenced
by order flow variables, though not vice versa, when depth at the BBO is extinguished by an incoming

aggressive order (Benos, 2012).

A VAR(5) model is estimated for strategies s € S using five lags over the trading period of 9 am to 4
pm to align with the contextual settings of this chapter. For example, testing for the price impact of AT
firms executing AMM strategies requires the estimation of a VAR model using regressions for the return,
R, order flow for AMMs, 0™, and order flow for non-AMMs. By amalgamating the price impact
measures of all firms conducting a specific AT strategy, one can draw inferences regarding the impact
of that strategy on the price discovery process. To do so, impulse response functions are developed by
first inverting the VAR model and applying a Choleski decomposition of the variance-covariance matrix,

Q, that results in the following vector moving average (VMA) model:

[Rg RR(L) - SR(L)”]
08

R3(L) -+ S5(L)
Decomposition into VMA form results in mutually orthogonal error terms, €,&; = I, that models causal

impulses or shocks to one error term & without being concerned with its correlation to other error terms.
Permanent price impact from aggressive trades by firms conducting different types of AT strategies is
estimated by the impulse response functions for the AT strategy, s®(L), where the T-period lag
polynomial can be expressed in the form sR(L) = ¥T_,sRL!. Each impulse response function estimates
the informational content and permanent impact of a trade innovation, or unexpected portion of the
trade, on the future price midpoint following an aggressive trade executed by traders conducting strategy

S.

Results for the impulse response functions of each trading strategy over 50 event periods for the VAR(5)
model are graphically depicted in Figure 4.4.4. Impulse response functions for all lagged events are
cumulatively summed over the event period for all individual trading strategies. Shaded areas represent
90% confidence intervals which are determined from a bootstrap distribution, ¥, based on the cumulated
impulse response function’s VAR coefficients (Benos, 2012). The y-axis is transformed to represent the

impact of impulses using a basis point (bp) metric which can be interpreted as the response of the

CunapTER FOUR |236

midpoint prices in bps after a transaction has been executed by a trader conducting the relevant AT
strategy. For robustness, impulse response functions were developed over both 100 and 300 event time

frames with results comparable to the analysis conducted over the 50-event time frames.

The results indicate that Momentum strategies have a significant long-term impact on prices, collectively
contributing more to price discovery and information than other AT strategies. Over the 50-event period,
the average price impact over the stocks studied is 2.2 bps when firms conducting Momentum strategies
execute a trade, with Execution strategies also contributing significant levels of information with an
average price impact of 0.96 bps. The higher price impact from Momentum strategies correlates with
the higher level of aggressive trading activity, given that Momentum strategies execute 23.3% of
aggressive trades whilst Execution strategies are only 16.6% of the time the aggressor, averaged across
all stocks. However, the proportional price impact from Momentum strategies is significantly higher than
other trader types. The source of the private information impounded in Momentum strategies trades
may come in the form of a faster imputation of real-time LOB data into their trading algorithms,
potentially due to more advanced low-latency algorithmic trading technology. These findings can be
considered in the context of Riordan (2012) and Brogaard (2014) who found a statistical difference
between the informational content of HFT' and non-HFTs trades, with HFT contributing more to price
discovery. Intuitively, the relatively low long-term price impact from Microstructural and Technical
strategies stems from their algorithmic inputs of micro and longer-term LOB phenomena, respectively,

that offers less informational content to the price discovery process.

Short-term price impact from Momentum strategies immediately following a trade innovation are highest
at 1.19 bps on average over the stocks analysed. Technical strategies have the smallest temporary price
impact of only 0.4 bps, however, these strategies represent only 7.9% of aggressive trades. Interestingly,
AMMSs have the second largest short-term impact from a price innovation of 0.99 bps which is 23%
higher than Execution strategies. However, over the 50-event period the Execution strategies price
impact remains stable whilst the permanent price impact from AMM trades gradually recedes. This
indicates that prices may be overreacting to trades by AMMs with the informational content of these

traders reassessed after the immediate impact.

[
(4]
\

20-
Strategy
15- == Execution
= AMM
== Technical

ey
o
'

== Microstructural

== lMomentum

o
(4]
\

Cumalated Impulse Response (bp)

o
=1
|

0 10 20 30 40 50
Events (t)

FI1GURE 4.4.4 - Impulse response functions for different AT strategies for all trades and quote updates on the LSE at the BBO. Individual
VAR models are used to estimate the cumulative price impact response from an impulse represented by an aggressive execution by traders
conducting relevant strategy s. Results are presented for 50 lagged events and averaged over five securities analysed within a week period.

Confidence intervals represented by the shaded areas are set at 90% using a bootstrap distribution estimated over 500 iterations.

CHAPTER FouRr |237

4.4.3.2 Information Share Analysis

Price formation on markets can further be examined by analysing the contribution of trades executed
and limit orders placed by different AT strategies to the price discovery process, rather than merely the
permanent price impact as analysed in the previous section. Hasbrouck (1995) suggests a VAR
‘Information Share’ methodology coupled with a variance decomposition technique to parse price impact
from AT strategy activity into informational and noise components. Information can be categorised as
‘public’, which is available to all traders and requires minimal analysis, or ‘private’, which may also be
public but requires processing and analysis in order to make an informed action. The Information Share
methodology has been employed to a degree by Benos (2012), Brogaard (2014) and Hendershott (2013)
to analyse the relative contribution of HFT and non-HFT traders to price discovery. We extend these
methods into the domain of AT by quantifying the contribution of different AT strategies to information

and noise in the price discovery process.

The Information Share methodology assumes that observed midpoint prices, MP;, have both a permanent
and transitory component. The permanent efficient price component from information can be defined as
MP;, which follows a random walk, g;. The transitory non-persistent stationary price component from

noise, K¢, is modelled as residual noise with no long-term impact on prices, such that Aim E(keyn) =0,
—00

leading to:
MP, = MP; + K,
MP; = MP;_; + ¢, 0.~iid(0,062) whereE(g,;) = 0,E(¢}) =02 and E(0;0;) =0 i#j

Decomposition of the observed price allows for midpoint returns to be expressed by Ry = MP, — MP;_; =
AP{ + Ak;. The permanent price impact from information is represented by the term AP and is estimated
using the VAR model specified in the previous section. Permanent impact terms have an approximate
information variance O'QZ, with deviations from the stochastic random walk representing noise and
incorporated into the transitory impact Ak, with corresponding noise variance o¢2. Variance

decompositions for both the efficient information price and transitory noise are performed separately.

The contribution of different AT strategies to information variance, 05, is estimated by decomposing
the variance into contributions from public information, (Zfio RLR)USZO, and private information,
(Z?io SlR)O'EZS, for each individual trading strategy s € S. This process extends from the VAR and related
VMA specified in the previous section. The VMA requires a Choleski decomposition of the VARs
variance-covariance matrix, based on the assumption that error terms in the matrix are mutually
orthogonal with unit variance. Extending from these models, the permanent price impact, AP}, and its
variance, 05, can be decomposed as follows for all strategies S to proxy for each AT strategies

contribution to price discovery:

o) o) &%) 2 0 2
AP} = (Z RR |eor + Z < sl-R) £t ot = <Z Rf) o2 + 2 (Z sf) o
SES =0 SES 0

i=0 1 i=0 i=
Price discovery is ascribed to individual AT strategies by decomposing the efficient price variance, 0'5,

into components of public and strategy-specific private information through the estimation of

contribution ratios. After fitting the VAR model, performing VMA transformations and estimating

CHAPTER FoOoUR |238

impulse response functions over 50 lags, the informational contribution ratio for each component can be
expressed as an average fraction of the price impact information variance for public and trader-specific

information:

(259, RR) 02, (250, AMR) 02 (230, EXR) 0% (330, MSF) 0% (330, MOR)’ 62, (330, TER) o
) 2)

2 ’ 02 05 ’ 2 ’ 02

0, 0 0

0 g,

0 g,

e

Decomposing individual AT strategy contributions to the transitory noise variance, 62, of the efficient
price noise component, k¢, is performed to complement the information variance decomposition in the
above to gain an overall view of how different traders impact information efficiency and price discovery
on UK equity markets. The transitory efficient price is assumed to follow a moving average process from
the VMA residuals € estimated using VAR and VMA models built in the previous section (Benos, 2012;
Hasbrouck, 1993). Thus, transitory prices can be expressed as a function of the residual errors, e,
coefficients for excess returns, @, and individual strategy s €S order flows, B7. Following from
Hasbrouck (1993) and Benos (2012), by combining the equations estimated for the VAR and VMA, and

treating residuals as a moving average process, the transitory noise price component, k;, with parameters,

Kt=z, ai550t+z' Z Biest
i=0 14 SES
at = (Z Rf) 5 = (Z)

i=0 i=0

a; and B, can be expressed as:

Variance decomposition of transitory variance GQZ is performed by using a lower bound for the transitory

standard deviation, g,, such that:

of = {i D @+ (35)2)1

Similar to the information decomposition, the contribution of different AT strategies and public
information to transitory noise variance can be formulated as a series of noise contribution ratios by
dividing both sides of the above equation by the noise variance and estimating components using
expected values of the 50-lag impulse response function developed in the previous section. The resulting
decomposition expresses the contribution of non-trading sources, (Zl-sgo(af)z), and individual trading
strategies s, (foo(ﬁis)z) to noise.

Results presented in Table 4.4.8 compare the contributions from each AT strategy to both information
and noise variance using contribution ratios computed from the decomposition of their respective
variances. A corresponding information to noise ratio is also calculated and tested for statistical

significance.

CHAPTER FoOUR |239

Information Noise Information-to-Nosie
Mean (SD) Mean (SD) Ratio (T)

Public 0.1441 0.1312

. 1.0986
Information (0.0208) (0.0321)
0.1476 0.1230

1.1993*
(0.0486) (0.0342)

0.1432 0.1702

Exec 0.8412
(0.0319) (0.0248)
0.0528 0.0871

ctural 0.6064**

(0.0145) (0.0187)
0.4573 0.4172

Momentum 1.0960*
(0.0432) (0.0341)
0.0548 0.0722

Techni 0.7585
(0.0051) (0.0067)

TABLE 4.4.8 — Each strategy is decomposed into variance and noise contributions, with the information-to-noise (ITR) ratio then computed.
This first requires an estimation of the VAR model defined in Section 4.4.3.1 for each stock in the sample over the period of analysis. The
VMA form is then defined using a Choleski decomposition. The observed midpoint price, MP;, is decomposed into an efficient permanent
component, MP{, and transitory component, k,. Variance decomposition for information, ng, and noise, 62, is then performed to compute the
fraction of each component attributable to the specific AT strategy and public information. A t-test is performed to test whether the ITR is

significantly different from zero. *, ** and *** correspond to statistical significance at 0.05, 0.01 and 0.001 levels respectively.

The table presents the information contribution ratios representing the impact of different information
sources on price discovery. Momentum strategies contribute 45.7% of the total efficient price information
variance averaged over the five stocks analysed. This result is consistent with the price impact metric
developed using impulse response functions in the previous sections that found Momentum strategies to
have the largest permanent price impact. Furthermore, Momentum strategies’ contributions are
significantly higher than their 23.3% share of aggressive trading, indicating that each trade contributes
nearly twice as much information in relative terms. Momentum strategies are shown to contribute more
information than the next three components combined, with public non-transaction related information
and private trader-specific information from AMM and Execution strategies each contributing between
14-15% of information in the price discovery process. The 14.4% level of public information contribution
is in line with results from Benos (2012) who studies a similar dataset over an earlier period. Given that
all five stocks studied in this chapter are positioned at the higher end of the FTSE100 market
capitalisation rankings, the intuition behind the high level of non-trader information is that these stocks
have significant coverage by the public, deeming that information regarding their fundamental value

infuses into the price from non-trader domains.

Additionally, Momentum strategies contribute predominately to the noise variance, 092, when the
variance is modelled as a moving average process of the previously expressed VMA model’s residuals
(Hasbrouck, 1993). The noise contribution of 41.7% by Momentum strategies is followed by Execution
strategies which contribute 17% to the variance of the efficient prices noise component and public

information which represents 13.1% of the total noise component.

The overall role of AT strategies in price discovery and informational efficiency can be computed by
comparing the information and noise contributions to derive an information-to-noise (ITN) ratio metric.
A t-test is performed to determine whether each strategies ITN is significantly different from one using
data across samples and dates for each AT strategy group. The ITN ratio for Momentum strategies,
public information and AMM are all above 1 with AMM attaining the highest ratio of 1.20. This implies

CunarprTeERrR FoUur |240

that AMMs provide more information than noise in their interactions on the LOB. Microstructural
strategies have the lowest ITN of 0.61, statistically significant at the 0.001% level. This indicates that
in aggregate firms conducting Microstructural strategies infuse significantly less information than noise
through their actions on the LOB. Intuitively, firms that utilise an order placement strategy based on
LOB features are not contributing new information to the price discovery process, but rather trading

based off micro-period changes in LOB dynamics.

The results from the VAR decomposition analysis can be compared against studies performed by
Hendershott (2011) and Brogaard (2014) who find that HF T's explain a larger proportion of the variance
in returns than non-HFTs. Concurrently, they find that HFTs also contribute to noise, with Hendershott
(2011) deeming 33% of noise variance as attributable to HFT, resulting in an ITN significantly lower
than one. In contrast, Benos (2012) measures the ITN of HFTs to be 1.13 on average over four stocks
studied on the UK equity market, using a similar dataset over an earlier period. It appears possible that
the HFT dataset used by Benos (2012) may flag certain firms conducting AMM and Momentum

strategies, possibly others, as HFTs given their higher ITN in the study performed in this section.

4.4.3.3 Dynamic Linear Model Analysis

Modelling the role of different AT strategies in the price discovery can also be performed using an event-
time Dynamic Linear Model (DLM) methodology as an alternative to VAR models (Brogaard, 2014).
DLMs, also referred to as state space models, utilise a recursive Kalman filter as an estimation algorithm
with the initial state vector formulated using an asymptotically unbiased Bayesian maximum likelihood
estimation. The primary difference with VAR Models employed by Hasbrouck (1991, 1993) is that DLM
state space models are infinite lag auto-regressive models, therefore the lag structure does not need to
be truncated (Hendershott, 2011). One similar attribute maintained in DLMs is the requirement to
perform a decomposition of the efficient price into permanent and transitory components in a similar

vein to Hasbrouck’s (1995) Information Share methodology.

DLMs maintain the Vector Autoregression model assumption that the efficient log mid-quote price can
be decomposed into permanent and transitory components, MP, = MP; + k. The efficient price captures
permanent price increments, MP{, and a transitory component that represents residual noise, K;.
Furthermore, the permanent efficient price component can be modelled as a martingale, MP{ = MP;_; +
&, where &~iid(0,02). Based on Hendershott (2011) and Brogaard (2014), the martingale term & can
be specified as a function of the surprise innovation, ai, in the trading activity of AT strategy firm s.
This surprise innovation is estimated as the residual of a VAR(k) model of the period t net order flow
of bid minus ask volume, 07, which is regressed against k lagged variables of itself, with ten lags used
for this experiment. After the VAR model is fitted and residuals estimated, a DLM state space model is

deployed to estimate the permanent price impact, &, for stock i and AT strategy s, specified as:
& = afé}i + 1i

As identified, 5L§t represents the surprise innovation of the signed order flow, 07, of AT strategy s for
stock i which is computed as the residuals of the VAR(5) model. Price movements that arise independent

of the trading activity of AT firms is represented by the variable y;. Furthermore, the transitory pricing

CHAPTER FoOUR |241

error component k; which is assumed to be stationary, is estimated by the DLM state space model using

a single lagged period auto-regressive model of order flow variables for strategy s, 0, giving:
Kie = @°Kki_1 + B0 + iy

DLM state space models measure the impact of different AT strategies on price discovery. An individual
model is built for each ISIN-Date pair using the maximum likelihood estimates of model parameters
before applying a Kalman Filter and smoothing technique to decompose permanent and transitory price
components (Brogaard, 2014; Menkveld, 2013). Each dataset encompasses a valid sample to estimate
the state-space model, which requires the log mid-quote for each price innovation and the signed order
flow volume for traders conducting specific AT strategies. Furthermore, the covariance between the
permanent price impact error, ui,, and transitory pricing error, w;,, is assumed to be zero, that is, the

errors are uncorrelated such that Cov(uf,, w?,) = 0.

Results for the DLM analysis are reported in Table 4.4.9. Panel A and B split the results into
complementary permanent and transitory price components. In line with the results of previous sections,
all trading strategies’ order flow activity have a statistically significant positive correlation with
permanent changes to the efficient price. ATs conducting Momentum strategies tend to induce the
highest impact on the efficient price from trading activity, with a £10,000 positive order flow surprise,
5%0, predicted by the DLM state space model to have a 0.81 bps permanent price impact. High
coefficients can also be viewed as a proxy for the level of informed trading. The result that Momentum
and Execution strategies have the highest informational content impounded into their order flow aligns

with the analysis performed in the previous Section 4.4.3.1 using impulse response functions.

Transitory price component coefficients, 8%, are negatively correlated with trading activity for all
strategies except for Microstructural strategies. These coefficients proxy for the level of noise induced
by traders on the LOB with negative values indicating that firms trade against noise or transitory pricing
errors. Firms executing Technical and AMM strategies have the lowest transitory coefficients of -2.82
and -2.03, respectively, indicating that these firms trade in the direction opposite to transitory pricing
errors and contribute the most to price efficiency. Evidently, Microstructural strategies have a positive
transitory component coefficient which indicates that these firm on average trade with pricing errors,
potentially compounding volatility and noise on the LOB. This aligns with the low information-to-noise
ratio computed for Microstructural firms in the previous section when applying a VAR Information
decomposition method. The coefficients for the lagged auto-regressive error term, %, in the transitory

pricing error model are stable in the 1.06 to 1.28 range on average.

In traditional market-making models risk-neutral AMMSs supply liquidity on the LOB and trade when
matched against by informed traders with superior private information (Cartea, 2018). Traders
consistent with this behaviour would have high DLM regression coefficients for the surprise innovation
term, @}, and low coefficients for the order flow term in the transitory equation, B7. From the results it
appears that AT firms clustered by the Spherical K-Means algorithm into the AMM category on average
meet the behaviour of AMMs as expected from the theoretical risk-neutral models, attaining a low

transitory coefficient and a high surprise innovation coefficient.

Microstructural strategies’ positive transitory equation order flow coefficient, %, indicates that these

strategies may be trading with temporary price disconnections from equilibrium which has three

CHAPTER FOUR |242

potential explanations. First, traders behaving in this manner will generally be performing some form of
risk management procedure, such as liquidating a position in a short time period. In these cases, it
becomes necessary to trade quickly, even if that means trading in the direction of only temporary price
changes. A second explanation may be that firms conducting Microstructural strategies are potentially
being adversely selected by more informed traders. Thirdly, a nefarious explanation could be that some
Microstructural strategies are engaging in market manipulation. Both the SEC (2010) and Brogaard
(2014) explain a situation where a ‘proprietary trading firm’ places an order to establish a new BBO
price, before matching the order with themselves from the opposite direction. This behaviour is related
to multiple manipulative trading strategies. However, an analysis of the average ratio of trades executed
against the same broker to those executed against a different broker indicates that Microstructural

strategies ratio have a ratio in the mid-range of the five AT strategies being analysed, indicating the

nefarious explanation may not be the case.

Permanent (Panel A) Transitory (Panel B)

a’® A5 \2 S S s \2
Strategy D a(07,) ¢ ﬁ > a(03,)
. Bps/£10,000 £10.000 Bps/£10,000 DT

0.65%+* -2.01%*

AMM 0.19 1.28 0.21
(18.71) (-2.04)
0.76+*+* -1.74

Execution 0.13 1.27 0.14
(24.68) (-1.23)
0.67+F%* 0.45

Microstructural 0.11 1.18 0.12
(11.67) (0.41)
0.81%+** -0.07

Momentum 0.20 1.06 0.22
(20.17) (-0.01)
0.75%%* -2.82

Technical 0.06 1.09 0.37
(14.13) (-1.24)

TABLE 4.4.9 — Permanent (Panel A) and Transitory (Panel B) price components of the Dynamic Linear Model (DLM) with Kalman filter

estimated over all sample securities. *, ** and *** for T-stat in brackets correspond to statistical significance at 0.05, 0.01 and 0.001 levels.

4.5 Conclusion

In this chapter, we utilise feature attribution methods to assess the internal dynamics of each DNN
trained for a specific ISIN-Date-Broker tuple, (S,D,B), that allows for the extraction of feature
importance values for individual algorithmic traders. This enabled firms to be clustered by the
algorithmic trading strategy being executed using deep and machine learning methods before evaluating

the aggregate impact of each strategy on UK equity market quality.

Backpropagation-based feature attribution methods of DeepLIFT (Shrikumar, 2017) and Integrated
Gradients (Sundararajan, 2017) are employed to quantify the microstructural LOB feature importance
values for each of the 802 unique FTSE100 CLOB ISIN-Date-Broker tuple, (S, D, B), DNN models. We
first analyse and assess various distance correlation, synaptic weights, input perturbation and
backpropagation attribution methods. The analysis indicates that Integrated Gradients and DeepLIFT
have the highest degree of accuracy when computing feature importance metrics based on the relative
attribution analysis measures of delta-log odds (Shrikumar, 2017) and Sensitivity-n (Acona, 2018).
Feature attribution methods are employed to bridge the disparity between interpretability and

performance innate to DNNs, commonly viewed as ‘blackbox’ models, allowing practitioners to interact

CHAPTER FoOUR |243

with and understand the traditionally opaque internal dynamics of the model. An assumption of this
thesis is that LOB features manifestly represent algorithmic inputs into a firm’s trading strategy.
Intuitively, there exists an inextricable connection between the state of the LOB environment that an
algorithmic trader exists within and the underlying strategy for conducting profitable actions in that
environment. Certain systemic elements of the LOB environment drive traders’ behaviour more than
others. Quantifying the degree to which certain features motivate a firm to perform a certain action on
the LOB provides a basis for determining what type of algorithmic trading strategy that firm is
employing. This chapter untangles the complex interdependencies between LOB features using
Integrated Gradients and DeepLIFT methods, resulting in interpretable statistical representations of

feature saliency for each unique tuple, (S, D, B), summarised in the FJ described in Section 4.2.4.

Unsupervised Spherical K-Means algorithms (Buchta, 2012) are used next to cluster unique trader tuples,
(S, D, B), into one of five algorithmic trading strategies — Automated Market Making (AMM), Execution,
Microstructural, Momentum and Technical strategies - based on their feature importance values, FJ.
We employ an unsupervised machine learning method to infer structural patterns in the feature
importance datasets without the aid of any response variable or class label. The dataset is shown to
have a good clustering tendency with an optimal number of clusters, five, that matches the number of
trading strategies being analysed. We perform cluster validation to confirm that the Spherical K-Means
is the optimal K-Means algorithm for separating the FTSE100 feature attribution dataset. The result of
this procedure is the partitioning of algorithmic trading firms into the five interpretable, exclusive and
distinct strategy clusters, underpinned by a robust analysis and visualisation of the clustered firms. We
find evidence that firms clustered into specific algorithmic trading strategy groups have higher feature

importance values for features that are specific and relevant to that particular strategy.

Finally, we extend the contemporary symposium of public and regulatory discourse debating the impact
of machine-driven algorithmic trading on the quality of financial markets by approaching the subject
from a perspective that places the algorithmic trading strategy as the unit of analysis rather than the
firm type. The aggregate impact of each algorithmic trading strategy on UK equity market quality was

empirically assessed along dimensions of liquidity, volatility and price discovery.

Assessing the liquidity characteristics of each algorithmic trading strategy, we find that Momentum and
AMM strategies provide the largest proportion of liquidity on UK equity markets, partaking in 33% of
transactions and submitting 31.2% of orders at the BBO, respectively. These two strategies also have
the tightest aggregate quoted spreads and market depth on average throughout the trading day. This
analysis underpins the importance of Momentum and AMM strategies to the efficient functioning of

markets given the critical role of liquidity as an essential pillar of market quality.

Assessing the relationship between algorithmic trading and volatility requires consideration of the
relationship along contemporaneous, dynamic and fundamental dimensions. We find that
Microstructural strategies have a positive and AMM strategies a negative contemporaneous relationship

between the activity level of each strategy and realised volatility on the LOB.

Studying the dynamic relationship between the variables using an OLS regression with interaction effects
we find that AMMs decrease their net liquidity supply by 3.5% and Momentum strategies increase their
net liquidity supply by 3% relative to other traders, following a one standard deviation increase in

volatility. These results align with theoretical and empirical research on AMMs. Empirically, AMM-type

CnapTER FOUR |244

firms have been found to provide more liquidity in days with stable returns (Anand, 2016) and tend to
withdraw from market-making during high volatility periods (Easley, 2011). However, this behaviour of
Momentum strategies supplying net liquidity following volatile trading periods does not extend to periods
of ‘extreme’ volatility. All firms tend to decrease net liquidity supply following periods when volatility
is extreme, though Momentum and Microstructural strategies decrease net liquidity supply significantly

more than the other strategies analysed.

We also analyse the fundamental relationship between algorithmic trading and volatility by performing
an experiment comparing actual price paths with alternative price paths that would exist if a specific
trading strategy was not implemented on the LOB, attempting to control for endogeneity. We find that
firms conducting AMM strategies on the LOB lead to a 2.95% reduction in volatility, the largest decrease
among the strategies analysed, whilst deploying Momentum strategies on the LOB reduces volatility by
only 0.19% on average, the lowest among the strategies analysed. One can conclude that each strategy
reacts to, and induces, volatility in a unique way, neither of which is seen as particularly harmful to
market quality. However, we note that the role of Microstructural strategies in inducing volatility and
their withdrawal from the market during periods of stress requires further investigation given that the

results indicate they significantly reduce their net liquidity supply following periods of volatility.

Assessing the interrelationship between algorithmic trading strategies and the price discovery process
requires consideration of how these traders contribute both information and noise during price formation
through their actions. To assess this relationship, we utilise impulse response functions, a vector

autoregression Information Share methodology (Hasbrouck, 1995) and Dynamic Linear Models.

We first compute impulse response functions for each strategy to quantify the permanent and temporary
price impact induced by each algorithmic trading strategies’ activity. Price impact can serve as a proxy
for the level of private information infused into these strategies’ transactions and LOB actions. The
results indicate that Momentum strategies have the largest long-term impact on prices collectively
contributing more to price discovery than other strategies, though these firms do represent the largest
group of traders by activity. Over a H0-event period the average price impact for the stocks studied is
2.2 bps when firms conducting Momentum strategies execute a trade, with Execution strategies also
contributing significant levels of information with an average price impact of 0.96 bps. Short-term
temporary price impact from Momentum strategies immediately following a trade innovation are highest
at 1.19 bps on average for the stocks analysed. Technical strategies have the smallest temporary price

impact of 0.4 bps, however, these strategies represent only 7.9% of aggressive trades.

A vector autoregression (VAR) Information Share methodology, developed by Hasbrouck (1995), coupled
with a Choleski variance decomposition technique is employed next to parse price impact from the
activity of each algorithmic trading strategy activity into informational and noise components. The
results indicate that Momentum strategies contribute 45.7% of the total efficient price information
variance and 41.7% of the noise variance, on average, across the sample securities. However, in relative
terms, firms conducting AMM strategies are shown to have the highest information-to-noise (ITR)
contribution ratio of 1.20, whilst Momentum strategies have a ratio of 1.10. Microstructural strategies
are shown to have the lowest ratio of 0.61. This implies that Momentum and AMMs provide more
information than noise in their interactions on the LOB, with the reverse true for Microstructural

strategies. This suggests that in aggregate, firms conducting Microstructural strategies infuse

CHAPTER FoOoUR |245

significantly less information than noise through their actions on the LOB. In line with expectations,
firms conducting Microstructural strategies that utilise an order placement strategy based on
microstructural LOB features are not contributing new information to the price discovery process, but

rather trading based off micro-period changes in LOB dynamics.

An analysis of the impact of algorithmic trading strategies on the price discovery process is the final
experiment performed. We use an event-time infinite lag auto-regressive Dynamic Linear Model (DLM)
methodology with a recursive Kalman filter, as an alternative to the VAR methodology. The DLM state
space model allows for an estimation of the permanent price impact and transitory pricing error for each
algorithmic trading strategy. In respect to permanent price impact, the results indicate that algorithmic
trading firms conducting Momentum strategies tend to have the highest impact on the efficient price,
with a £10,000 positive order flow surprise predicted by the DLM state space model to have a 0.81 bps
permanent price impact. Execution strategies have the second largest impact. One can view these large
permanent price impact values as indicative of higher informational content impounded into their order
flow, which serves as a proxy for the level of informed trading. In respect to transitory pricing errors,
firms executing Technical and AMM strategies are shown to have the lowest transitory coefficients of -
2.82 and -2.03, respectively, demonstrating that these firms trade in the direction opposite to transitory
pricing errors and contribute the most to price efficiency. Microstructural strategies are found to have a
positive transitory component coefficient, which indicates that these firms, on average, trade in the

direction of pricing errors, potentially compounding volatility and noise on the LOB.

This chapter has highlighted the relative benefits and detriments of different algorithmic trading
strategies for UK equity market quality. Primarily, we note that AMM and Momentum strategies tend
to provide a significant portion of liquidity to UK lit order books. Furthermore, firms conducting
Momentum strategies tend to increase their net liquidity supply following periods of volatility, whilst
AMM strategies are found to reduce realised volatility through their presence on the LOB more than all
other strategies. Finally, both strategies are shown to have a positive impact on the price discovery
process with significant informational content impounded into their interactions with the LOB.
Conversely, firms conducting Microstructural strategies have been found to exit the market by reducing
their net liquidity supply, relative to other firms, following periods of induced market volatility.
Furthermore, the noise contribution of Microstructural strategies is significantly higher than the
informational content of their interactions with the LOB, indicating that they induce more noise than
they provide information. This negative effect on price discovery and market quality overall is evident

by the result that they trade in the direction of transitory pricing errors, compounding market volatility.

Accelerated adoption of advanced automated trading systems, technology and algorithms by market
participants provides exigencies for regulators and academics to understand the dynamics of the
contemporary trader ecosystem. Untangling the complexities of the trader ecosystem by extracting the
various algorithmic trading strategies being conducted allows regulators to more accurately understand
how markets function in their contemporary iteration. Regulators interested in viewing markets through
the lens of the algorithmic trading strategy being deployed rather than the type of firm trading on
financial markets can note these results with interest. Implementing this new paradigm of the trader
ecosystem provides the tools for policymakers to develop policy prescriptions for modern markets using

an empirical and diagnostic approach at the strategy level of the market, as exemplified in this chapter.

(o Five | 246

CHAPTER FI1VE

5 PREDICTING LiMiT ORDER BOOK DYNAMICS
USING DEEP RECURRENT REINFORCEMENT LEARNING

Evolution in financial markets and automated trading systems over the past decade has added increasing
complexity to how one approaches the task of understanding, modelling and assessing the dynamics of
the limit order book (LOB). Previous chapters have utilised deep learning techniques to model
algorithmic trading strategies by solving for the non-linear relationship between a trader’s actions or
behaviour and a set of LOB features that explain the state of financial markets exposed to the trader.
This section extends that analysis by considering how to model the complex non-linear dynamics of

LOBs populated with algorithmic traders conducting various strategies.

The approach which we implement in this chapter is to model the dynamics of the LOB using deep
learning methods, specifically Recurrent Neural Networks (RNN) and deep Recurrent Reinforcement
Learning (RL). The RNN-type models defined in this section are capable of extracting highly abstract
feature representations of the LOB state at any point in event-time, which incorporates temporal
dependencies from past states intrinsically within the model (Graves, 2005; Cho, 2014). Thus, we perform
iterative machine learning of patterns in the LOB by optimising a mapping function that relates the
input feature explaining the state of the LOB at t, xt, to the prediction of how the LOB dynamics will
evolve in the future, yt. Models in this section are trained on a sample of five securities traded during
October 2017 which are extracted from the FTSE 100 UK equity data defined in Section 3.3. The
objective is to predict the dynamics of the LOB over time. Specifically, three separate experiments are
conducted to attain this goal. First, we predict the next trader action on the LOB at or within the best
bid-ask price (BBO), which includes limit orders submitted either at or within the BBO to form a new
midpoint price, or market orders that transact against opposite side liquidity. Next, the directional
evolution of the LOB is studied by fitting a model to predict what the next price change of the midpoint
will be using a joint distribution of the best bid-ask (Sirignano, 2016), that is, will the price move up or
down. Finally, we use machine intelligence to deduce what the price of a security will be after x events.
The unique approach taken in this chapter to modelling sequences of the LOB to predict future price
dynamics extends on previous theoretical and empirical research in the deep learning community
(Sirignano, 2016; Dixon, 2017).

This chapter focuses purely on the LOB as a multi-class queuing system that solves for the ‘search’
problem confronting traders seeking to buy or sell a security, as defined in Section 2.2. The previous
sections have utilised features of the LOB inherent to each trader, however, we revert from this
methodology by building a feature space using a spatial-temporal representation of the aggregated
liquidity profile for a specific security extracted from the LOB. One can also view the LOB as a
decentralised unitary system, founded on principles ascribed from the microstructural rules of trading
venues hosting these LOBs, which amalgamates a disparate group of heterogeneous traders conducting
primarily algorithmic trading strategies. The resulting inherent discontinuities, stochasticity and

instabilities projected from the LOB into a trader’s algorithm requires that trader to consider complex

(Five | 247

non-linear variable interactions, a high-dimensional action and feature space, and the near-infinite array
of intrinsic trader-specific variables. This paradigm of trading makes modelling the various elements of
contemporary high-frequency LOBs quite difficult, though of critical importance to regulators,
policymakers and practitioners. Training a model capable of capturing these dynamics efficiently and
effectively allows regulators and policymakers to understand what phenomena is driving aggregate
market behaviour to ensure markets are operating correctly. Policymakers can draw inferences around
how the LOB evolves and when combined with the results from the previous chapters, draw potential
implications of the interrelationship between the LOB dynamics and the execution of various algorithmic
trading strategies on the order book. This is consequential for regulators considering ‘algorithm testing
and compliance’ procedures of paths of regulations, which has been raised recently by the CFTC in the
proposed Regulation Automated Trading in 2015. Furthermore, utilising machine learning models as
predictors of LOB dynamics can be used by traders conducting algorithmic trading strategies, as explored
in previous chapters, to improve their order placement algorithms, adjusting orders in an efficient way

that minimises adverse selection costs and maximises trading profits.

Academic research on modelling LOB dynamics has traditionally been dominated by theoretical
equilibrium and stochastic models which have largely failed when empirically tested against real-world
high-frequency data. Recently, the use of machine learning methods to perform the task of modelling
LOB dynamics has been driven by the supply of data-driven optimisation techniques which make it
possible to capture abstract non-linear representations in the data (Kercheval, 2015; Sirignano, 2016;
Dixon, 2017). The application of such techniques is necessitated by the complex multi-dimensional
nature of the market microstructure and trading environment exposed to traders when implementing an
optimal algorithmic trading strategy. Further, shifting boundaries in the competitive environment
manifesting in the dominance of ultra-low-latency systems (Boehmer, 2016) has driven significant
investment in trading architecture and machine learning algorithms when conducting order placement

strategies and operations on LOBs.

Deep Recurrent Neural Networks utilised in this section to model LOB dynamics are deep learning
models that extend the temporal dimension of feedforward Deep Neural Networks (DNN) by
incorporating biological foundations of cognitive memory into the neural network architecture using
recurrent feedback connections. RNNs are a connectionist system that allows information to pass across
sequential time steps, which allows temporal dependencies in the data to be captured and modelled. The
impounding of a ‘memory’ component into the neural network solves for the implicit limitation in DNN
models that assume independence among data samples. Memory is maintained in the network using an
explicit recurrent hidden state representation that inculcates information about past states and sequence
observations. Thus, we are able to model the sequential time-variant dynamics of the LOB data by
learning a hierarchical system across the temporal manifold of past LOB states with significant flexibility
and minimal mathematical constraints or assumptions. RNNs also allow contextual information of the
LOB features to be incorporated into the model using a spatial-temporal dimension grounded in the
RNNs explicit architectural feedback loops. Whilst RNNs are a generalist model with various
architectural schematics, we focus predominately on simple Elman RNNs (Elman, 1990), Long-Short
Term Memory (Hochreiter, 1997) and Gated Recurrent Unit (Cho, 2014), neural network architectures,

with the infusion of an RNN approximator into a Deep Q-Network RL model also utilised.

(. F1ve | 248

Modelling LOB dynamics using Recurrent Neural Networks and Recurrent Reinforcement Learning is
performed in this chapter to predict how prices evolve on LOBs. We first explore in Section 5.1 the vast
academic literature that has analysed the question of how to model the LOB using various equilibrium,
stochastic and machine learning models. Section 5.2 introduces the deep RNN as a dynamical system
underpinned by neurophysiological conceptions of memory. As explained, these models are capable of
modelling long-term temporal dependencies in the LOB data. The unique attributes of RNNs in
modelling these dynamics are also explored, along with additional architectural components that improve
the predictive capabilities of the models which build upon the DNN theory introduced in Section 3.1.
Section 5.3 theoretically explains the deep reinforcement learning techniques employed to improve the
RNN predictions of the LOB dynamics. In Section 5.4 we explain the data used for analysis which
includes five sample securities traded over the month of October 2017, extracted from the FTSE100
dataset defined in Section 3.3. We first evaluate various design configurations, components and
architecture of RNNs in Section 5.5 to develop a robust and efficient optimised model applicable for the
FTSE100 dataset, which is defined in Section 5.6. Finally, RNNs with and without auxiliary
reinforcement learning connections are then trained on the data to infer predictions with the results
presented in Section 5.7. We perform three separate experiments to predict the next trader action at or
within the best bid offer price (BBO), predict the next midpoint price change of the LOB, and finally

to predict the future midpoint price of a security after x events.

5.1 Literature Review on Modelling Limit Order Books

Academic research focussed on developing analytically tractable microstructural models of limit order
book (LOB) dynamics have traditionally adopted either an equilibrium or stochastic based approach to
explain the evolution of the LOB. The debate on whether these approaches provide practical real-world
relevance for solving issues such as optimal order placement or algorithmic trading strategies in
contemporary high-frequency markets has been ongoing. Recently, machine learning approaches to
modelling the dynamics of the LOB have arisen, driven by the vast data resources available to

researchers and practitioners (Gould, 2013).

Theoretical equilibrium models of LOB dynamics maintain strong assumptions regarding unobservable
parameters, such as trader utility, generally within a perfect-rationality framework. The dynamics of the
LOB derive naturally as theoretical traders execute optimal order placement strategies given defined
market conditions and constrictive modelling assumptions. Stochastic models of LOB dynamics generally
populate theoretical markets with zero-intelligence (ZI) traders and allow for parameters to be modelled
as stochastic processes and empirically estimated by relaxing certain auxiliary assumptions of the
theoretical approaches. Specifically, stochastic models consider the aggregate behaviour of traders. For
example, order arrivals, executions and cancellations can be modelled as stochastic processes that occur
with probability sample from some distribution, commonly Poisson for order arrival rates (Cont, 2010).
Thus, it becomes possible to empirically assess the validity and robustness of the dynamical model by
testing against real-world high-frequency data. Whilst stochastic models provide a more analytically
tractable method of analysing the dynamics of the LOB, both theoretical equilibrium and stochastic
models are difficult to apply in fragmented high-frequency markets. This is primarily due to the

(. F1ve | 249

complexities of algorithmic trading strategies and non-linear interrelationships and auto-correlations

between features of the LOB, that simple models fail to encapsulate.

Within this context, data-driven machine learning models of LOB dynamics have been designed with
minimal restrictive assumptions allowing the problem to be solved by developing complex abstract
feature representation spaces that encapsulate the current state of the LOB, as opposed to those derived
from theoretical models. Optimisation algorithms are applied to minimise some objective function w.r.t
learnable parameters, generally using a gradient-descent based approach, culminating in a model capable
of explaining real-world phenomena based on empirical evidence rather than theoretical principles that
may result in a nebulous conception of the LOB not aligned with empirical facts. Machine learning
models do not represent a panacea for solving financial modelling tasks with high degrees of complexity
but rather serve as a structured method for modelling phenomena that require extraction of highly

abstract patterns in multi-dimensional data not amenable to current statistics-based approaches.

In this section, we assess existing dynamic equilibrium, stochastic and machine learning models of LOB
dynamics. Understanding the theoretical and practical implications of LOB models is rudimentary in

our ability to more accurately formulate our own model of the LOB using deep learning methods.

5.1.1 Dynamic Equilibrium Models

Equilibrium-based approaches to modelling LOB dynamics were an initial attempt at building stylised
theoretical models of trader behaviour that solved for the shape of liquidity on the LOB in equilibrium,
subject to several confined auxiliary assumptions including perfect rationality, to ensure analytical
tractability (Parlour, 1998; Foucault, 2005; Rosu, 2009). The practical utility from applying these
theoretical models in complex real-world environments is minimal given the constraints imposed on
interpretability by the unrealistic assumptions. Dynamic equilibrium models are a theoretical-based
approach that present LOB dynamics as arising naturally from the optimisation of discrete choice
optimal order placement trading strategies for individual traders. Strategy optimisation is performed by
modelling the LOB as a dynamic risk-neutral multi-period multi-trader sequential game. The nature of
sequential games dictates that traders arriving at the LOB do so in a strategic manner that incorporates

into their decision-making process information from the actions of previous traders.

Foucault (1999) solves for the optimal order placement strategy by developing a game theory-based
dynamic model of the LOB as a multi-step game where traders arrive sequentially and have a binary
decision of whether to place a limit order or execute a market order against a resting limit order. If the
order is unexecuted it otherwise expires, with games played through a continuous process until
termination. The incoming trader uses an order placement cut-off strategy where the decision to submit
either a market or limit order is split by a specific threshold value that is a function of the traders’
private fundamental valuation of the asset and the current resting limit order price. Foucault (1999)
finds that the primordial determinant of the trading decision is the asset’s level of price volatility, with
lower volatility reducing the probability of being picked-off by an informed trader and favouring the use
of market orders given the lower order execution probability of limit orders. LOB dynamics evolve
iteratively as traders enter and exit the market. Despite the tractability of the model, its ability to

provide real-world interpretations for order flow and LOB dynamics is hindered by the constraints of

(2 F1ve | 250

the models’ assumptions, particularly the expiration of the order after a single session and the random

nature of the order arrival times.

The assumption of expiring orders is relaxed in Parlour (1998) which also models the LOB as a dynamic
multi-step sequential game with similar binary order decisions but restricts the price-grid state space so
that traders can only place limit orders at a single tick from the current price and orders are not able
to be cancelled. Similar to Foucault (1999), the order placement decisions require a consideration of fill
rates which endogenously depend on the state of the LOB, including the price and size of the current
market depth, and the impact of the order on the incentives of future traders. Optimal trading strategies
are also based on a cut-off strategy, though with consideration of both sides of the LOB, with the
consequential cut-off decision being whether the estimated fill probability meets a specific threshold.
The model predicts that when fill rates exceed this threshold then traders should submit a limit order,

otherwise below the threshold indicates that the submission of a market order is more agreeable.

Dynamic equilibrium models of LOB dynamics and optimal endogenous order placement strategies were
extended by Foucault (2005) utilises a multi-price grid to model the behaviours of strategic liquidity
traders with asymmetric information and differing levels of patience. Several strong assumptions are
built into the model, including sequential arrival, homogenous orders, order placement constrained to
order submissions of limit orders at the BBO and market orders. A trader’s decision of what order to
place is modelled as a function of liquidity costs for immediacy versus delayed execution. Deriving a
function and solving for the profit maximising order placement strategy leads the authors to find that
the primordial determinants of the LOB dynamics are the order arrival rates and the proportion of
traders that are patient across the market. They also show that a higher tick size has the effect of traders
submitting relatively aggressive orders, which leads to tighter spreads and increased resiliency of markets
to replenish liquidity at the best bid-ask spread. According to Foucault (2005), the order placement
strategy involves a j-limit order, which creates a spread of j € {0, ..., s — 1} ticks, for every possible spread
s €{1,...,K}, and given tick size A. The optimal order placement trading strategy for trader i, 0;(.),
maximises the trader’s profit determined by the traders’ specific valuation of the asset, m;(j). The profit
is positive if the price improvement, jA, exceeds the waiting time cost function, 6;T(j), which is composed
of the time expected to execute the j-limit order, T(j), and a trader-specific summation of the explicit

and implicit market impact costs of executing a trade in monetary terms, §;, such that: ,E{ronax y wi(j) =
j€{0,..s—

jA —8;T(j). Solving the function for the optimal trading strategy requires an estimation of the
endogenous expected execution waiting time which is a non-decreasing function in j such that traders
are only able to attain a better execution price, a higher j, as the expected waiting times increase. The
minimum spread that trader i is willing to place limit orders, referred to as the ‘reservation spread’ jR,
occurs at the point when the profit function, m;(j), is greater than zero. This reservation spread for
trader i is a ceiling function of the traders total trading costs, §;, and the rate of executing orders per
unit of time, p, such that j& = ceiling[8;/uA]. The model assumes that all other execution parameters
are determined, that all orders are the same volume and that traders are heterogeneous with differing
levels of patience and transaction costs. When a ‘patient’ traders’ reservation spread, jR, is less than the
markets inside BBO spread, S, such that j8 < S, then the trader will avoid crossing the spread by placing
a passive limit order at their reservation spread. However, when the inside BBO spread is less than the
reservation spread, such that j& > S, then the patient trader should place an aggressive market order

that crosses the spread in order to avoid costs arising from the risk of not executing at the current price.

(. F1ive | 251

The assumption that arrival rates are time-invariant, that all orders are the same volume and that all
orders that arrive on the order book lead to a spread reduction are impractical in real-life LOB’s.
However, the model forms a framework of how LOB dynamics are modelled using dynamic equilibrium

models.

Dynamic equilibrium-based models of LOB dynamics where a trader has a binary choice between
submitting a limit or market order have been extended in the case of asymmetric information where
‘informed’ traders with knowledge regarding the fundamental asset value are differentiated from those
that are ‘uninformed’ (Kyle, 1985; Rosu, 2009). Several studies have also relaxed the assumption of

endogenous orders but maintained the concept of continuous time and continuous pricing assumptions.

Goettler (2004) builds on Parlour’s (1998) LOB theoretical work by considering in their model the
continuous nature of the LOB as a Bayesian game with asymmetric information where traders randomly
arrive at the LOB based on a Poisson stochastic sequential process. When traders arrive at the LOB
they decide whether to purchase information regarding the common fundamental value of the asset to
supplement their private valuation such that the trader becomes informed. Then they decide whether
to place an order on one of multiple price points, then leave the market, returning once again based on
an independent random Poisson stochastic process to either modify or cancel their active orders. The
authors find that speculators, traders focusing purely on profit, are incentivised to purchase information
and submit certain orders depending on the level of price volatility. Periods of lower fundamental price
volatility favour a strategy of not buying information and submitting limit orders which increases the
provision of liquidity on the LOB. However, Goettler’s (2005) advance into real-world LOB dynamics

comes at the cost of a lack of theoretical tractability of the model.

Rosu (2009) relaxes the constraint on strategic behaviour by traders in Foucault (2005) through a
continuous-time dynamic perfect-rationality model of numerous anonymous and symmetrically informed
liquidity traders arriving sequentially at the LOB. These traders are able to act strategically, with all
actions available, by not just submitting limit or market orders, but also modifying and cancelling active
orders, which allows for contemporaneous competition between traders in real-time. Rosu (2009) and
Foucault (2005) both find that in equilibrium patient traders submit limit orders and impatient traders
submit market orders, with implicit costs from the loss of utility waiting to execute an order a key
determinant of the optimal trading strategy of whether to submit a limit or market order and the

aggressiveness of the limit order.

Minimising market impact is a primary consideration in many theoretical perfect-rationality dynamic
models of the LOB and optimal order placement strategies (Bouchaud, 2009; Gould, 2013). Bertsimas
(1998) develop a random-walk model of the LOB prices, which is unrealistic in practice, to derive the
optimal order placement strategy that minimises both explicit trading costs and implicit market impact
costs. They show that under the assumption that exogenous information impacts the LOB prices, then
the optimal strategy is to adjust trading quantities at each discrete-time period. Obizhaeva (2013) and
Alfonsi (2010) extend the Bertsimas (1998) execution problem with a continuous-time model of the LOB.
Alfonsi (2010) uses constraining assumptions and finds that the optimal strategy to minimise market
impact costs involves submitting a large initial market order to stimulate liquidity, followed by small
limit orders of the same size, and finally a large market order to complete the parent order. Further

discussion on market impact models are presented in Section 2.3.5.2.

(. F1ve | 252

5.1.2 Stochastic Models

The general ambiguity and lack of real-world applications emanating from equilibrium-based models of
LOB dynamics have led to contemporary market practitioners modelling the state dynamics of electronic
LOB’s using stochastic or machine learning approaches, which have greatly expanded our cognisance of

the mathematical intricacies of LOBs.

Stochastic models of LOB dynamics model the statistical mechanics of the LOB using either discrete-
time or continuous-time stochastic models driven by zero-intelligence (ZI) traders whose order flow is
governed by random stochastic processes. This approach differs from equilibrium-based approaches that
utilise some specific utility maximisation function to model LOB dynamics. In stochastic approaches,
complex optimal trading strategies utilise real-time constructions of the LOB and stochastic models to
derive specific information and predictions of certain events occurring based on the probability of that
event, such as a shift in price when a queue at the best bid-ask is depleted, given the value of exogenous
variables such as the current state of the LOB. The simplicity of stochastic LOB models’ assumptions
and constraints, whilst inconsistent with real-world situations, allows for the models’ statistical outputs
and predictive power to be quantified, evaluated, and tested empirically against real-world data, without
the need for complex simulations, in the absence of auxiliary assumptions (Gould, 2013). Stochastic
approaches are not generally trader-centric in that the complex strategic interactions between traders
within a game-theoretical environment is not explicitly incorporated into the model as is the case with
the equilibrium -based dynamic equilibrium models (Foucault, 2005; Rosu, 2009), but rather order flows
are represented as stochastic random processes with statistical techniques used to analyse the dynamics
of the LOB (Cont, 2010).

Several discrete-time stochastic models have sought to explain the dynamics of the LOB using discrete
transitions of the LOB state rather than the analogue of continuous-time models which are more common
and model the LOB using infinitely divisible parameters. Guo (2017) uses a correlated random walk
discrete-time model of the LOB price dynamics that is similar to Brownian motion models but with
mean-reversion properties, to solve for the optimal order placement strategy for one side of the LOB.
The single-sided model of the LOB assumes that the spread is always one tick and prices only ever move
one tick at a time. The model undergoes dimension reduction based on the correlated random walks
generalised reflection principle. The best ask price at time t, A, = Yf_, X;, is assumed to follow a
correlated random walk using parameter, X;, as a Markov chain on {£1} with initial probability, p =
P(X; = 1), for p € [0,1]. The initial probability of the price dynamics, p, is a measure of market
momentum or order imbalance at the LOB inside spread, and the probability of a limit order being

executed is given by gq. Choosing p <% makes the model mean-reverting, which has been empirically

proven using high-frequency datasets (Cont, 2013). The optimal order placement strategy solves the
Markov decision problem with structure (A;, X;) where the cost of each action over each time step is
solved recursively. The set of actions available to the trader at t, A = {Act",Actt, ActM}, have
corresponding costs at t = 1 of cost¥, costt, cost™, for no, limit, and market orders, respectively. Both
costl and costV are linear functions relative to p, with cost™ constant. The value function for
purchasing a unit of shares by the end of the execution horizon at T, V,(X;,al), is a function of the
policy taken at t, af, such that the optimal policy, at’, satisfies for any policy at, so that Vt(Xt, at*) <
Ve(Xe,ab).

(. F1ve | 253

The dynamic multi-stage model of Guo (2017) solves for the optimal trading strategy of whether to use
a limit, market or no order based on two explicit threshold levels - at the intersection of the limit and
market cost expression and the intersection of the limit and no order cost expression. The expressions
and the intersections between them are a function of three variables - the mean-reversion scalar factor,
the remaining trading time for the strategy and the level of market momentum. General conclusions of
the model include that the optimal trading strategy increases in its level of conservativeness as the
trading time decreases, limit orders are more commonly used when their transaction costs are lower,
market orders are more common when the level of mean reversion is lower, and in general, the strategy

is very sensitive to the estimates of the LOB model parameters.

Continues-time stochastic models of the LOB dynamics use stochastic elements of the trading process
that evolves in continuous time within a ZI framework. The assumption of ZI traders and stochastic
elements of the trading process provide market participants with analytical expressions of relevant real-
time features of the LOB, that can then be estimated using historical data, and which have become
exigent requirements of many low-latency high-frequency algorithmic trading order placement trading
strategies, thus their relevance in contemporary financial markets. These models utilise queuing systems
where the price and position of an order, the depth of the queue at a particular price, and the predicted
waiting times within the queue, are key features used to explain the dynamics of the price-time priority
matching LOB’s at the microstructural level. Defining these features within the model are critical to

facilitating optimal trading strategies with lower waiting times and higher execution probabilities.

Cont (2010) models the high-frequency dynamics of the LOB as a continuous-time multi-class queuing
system that follows stochastic Markov processes to predict various transitional conditional probabilities
of events of interest or changes in the LOB based on the current state of the LOB. Previous models that
applied stochastic continuous-time models of the LOB utilised unconditional or steady-state distributions
of LOB features as opposed to conditional probabilities, and also required the assumption that the
relative prices of limit orders were uniformly distributed rather than based on power-law distributions
(Bouchard, 2009). These continuous-time models built on more simplistic discrete-time models where
traders reach the LOB in discrete time-steps (Maslov, 2000). The analytically tractable stochastic
queuing model of the LOB as a continuous-time Markov chain, developed by Cont (2010), defines the
LOB using an n-dimensional state space, encompassing all possible price points, and transition rate
dynamics. The LOB evolves as order flow events occur - market and limit orders are submitted and
limit orders are cancelled - at different rates based on a power-law depending on the order prices
proximity to the bid-ask spread, an empirical feature of LOB’s determined by Bouchaud (2002). These
mutually independent order flow events are modelled as independent Poisson processes, though some
studies have replaced the use of the Poisson process exponential distributions by using a Hawkes process
to model arrival rate functions that place greater emphasis on recently arrived orders, which leads to
order clusters more closely aligned with empirical findings (Toke, 2012). Practical real-world LOB’s
high-frequency time-series datasets can be used to estimate the parameters of the model, such as the
average size and arrival rate functions of limit and market orders, and cancellation rate functions. This
information from the LOB in conjunction with the LOB model can be used to predict the conditional
probabilities of certain events occurring based on a given state of the LOB, such as the probability of
the mid-price increasing versus decreasing based on the shape of the LOB. This process is conducted

through either simulations or using conditional Laplace transformations of specific random variable, X,

(. F1ve | 254

based on a certain event, A. Several of the hypothesis formulated by Cont (2010) fail when exposed to
real-world high-frequency data, indicating that a data-driven machine learning model may be more

applicable when modelling LOB dynamics.

Blanchet (2013) construct a continuous-time model of the full LOB dynamics as a multi-class queuing
system with specific stylised features relevant in low-latency markets, such as, power-law tails, high
cancellation rates, and fast order rates. Parameters are estimated empirically, such as the long-run
distribution of LOB spreads and arrival rates. The authors model the distribution of orders on the LOB
with power-law decaying tails, such that there is a functional relative correlation between orders close
to the BBO and those further out. Furthermore, the cancellation rate for orders closer to the book are
higher than those further out. Conflating these two components of the model leads to the postulation
that in equilibrium the probability that an order is executed before it is cancelled is the same at all price
points in the LOB at a single point in time. They use a two-dimensional Markov process model to draw
a connection between the power-law tails of the LOB distribution, cancellation policies, and the
asymptotic LOB regime, with the power-law tails from the distribution of returns. Their model can be
calibrated using high-frequency datasets in order to estimate both price return distributions and order
distributions within the LOB.

Cont (2013) builds a simplified one-dimensional reduced-form version of the Cont (2010) model by
proposing a stochastic Markovian queuing model where the price dynamics of the LOB, including the
arrivals of limit and market orders and cancellations, depend only on the best bid and ask queues and
is driven primarily by bid-ask order flow imbalances. The reduced-form model, in smaller state space
87 x N?, aggregates all visible order flow into a consolidated LOB which consists of two interacting
queues at the best bid price, PZ, with bid depth, V;Z, and the best ask price, P2, with ask depth, VA, at
time t, and with tick size, §. All other orders outside the best bid-ask depicted as ‘reservoirs’ with
distributions a function of the size of the best bid and ask queues. LOB events include the usual limit,
market or cancellation orders. The prices of the best bid and ask change when a queue is depleted, with
the new queue depth volume, which is not kept in memory, based on a stationary variable drawn from
a certain distribution, f. The model also incorporates the arrival rates of new limit orders, 4, and the
rate of limit order cancellations or market orders, u + 8, which are driven by Poisson processes and can
all be estimated from high-frequency datasets. Cont’s (2013) Markovian model develops, in an
endogenous manner, analytical expressions for relevant parameters of interest conditional on the state
of the LOB, using only the arrival rate parameters and the order queue depth function f. These
analytical expressions of LOB market properties include the probability of price changes, the distribution
of time durations between price changes, price volatility, and the distribution and auto-correlations of

price movements.

Gao (2018) extends the work on microscopic LOB models of Cont (2010) by modelling the stochastic
LOB dynamics as a continuous-time Markov-chain (CTMC) with the shape of the LOB explained by a
state space of finite series of price points with attached depth volumes. Cont (2010) effectively derives
analytical expressions of the LOB by utilising Laplace transformations to measure steady-state
conditional probabilities of events in CTMC. An interesting concept is to utilise transient probability
distributions, by which the distribution of a system depends on time t, even though this distribution is
likely to approach a steady-state distribution based on its initial stationary distribution as t approaches

infinity. However, computing transient distributions for multi-dimensional CTMC’s, given the

(. F1ve | 255

potentially large n-dimensional state space, especially for small tick sizes, is computationally expensive.
Thus, Gao’s (2018) dynamical model of the transient behaviour for the full LOB utilises the theory of
hydrodynamic limits to approximate Cont’s (2010) high-dimensional CTMC model, in order to
understand the transient behaviour of the CTMC and approximate the transient distribution of the
LOB.

Guo (2015) analyses the dynamics of the LOB queuing system which is impacted by the series of market
and limit order submission and cancellations placed with the trading exchange. They focus on how
traders’ queue positions impact the probability of the order being executed, which in previous studies
was assumed constant (Cont, 2013), or as dependent on order arrival rates based on a homogeneous
Poisson stochastic process (Cont, 2010). Guo (2015) models the queues under two-dimensional Brownian
motion with the mean and covariance based on general technical conditions of ergodicity and stationarity
of order arrival rates and sizes. They allow for flexibility in the assumptions involving order-arrival
processes which can be modelled as Poisson or Hawkes processes, common to many LOB models (Large,
2007; Abergel, 2015), or other stochastic processes. A key component of the model is that once a queue
is depleted, the new queue is randomly initialised using the stochastic process explained above, thus,
managing a representation of the whole LOB is not required. Fluctuations in order positions follow a
mean-reverting Gaussian process at a speed proportional to order submission and cancellation rates,
where the mean-reverting level is the approximation of the evolution of the stochastic process, or the

fluid limit, relative to the queue length modified by the intensity of limit, market and cancellation orders.

Maglaras (2015) models the financial market as a stochastic network that evolves a decentralised multi-
class parallel queuing system, represented as individual trading exchanges, in order to solve for optimal
routing and trading strategies and LOB dynamics in fragmented markets where traders are able to access
multiple exchange LOB’s. Traders are modelled as self-interested atomistic heterogeneous agents driven
to place limit or market orders on a particular queue, in this case an exchange, based on its execution
metrics, such as fill rates and probability of execution, conditions, such as best bid-ask prices and market
depths, and rules of the exchange, such as liquidity rebates or trading fees. Trading firms are
heterogeneous agents with their optimal trading and routing strategy dependent on their interpretation
of the real-time information regarding the state of the market, including the execution metrics, conditions
and rules of each exchange, in addition to their heterogeneous individual strategic parameters, including
their level of patience, risk of execution delay, and fundamental price. Maglaras (2015) find that the
equilibrium for the whole decentralised market meets the so-called multiplicative state space collapse
property (Bramson, 1998), where the length of the queue incentivises new orders joining and attracting
market orders to execute against current limit orders in the queue. Hence, it is the anticipated delay of
waiting in the queue, related to the length of the depth, which motivates the optimal order placement

decision of whether to submit limit orders or market orders and drives the dynamics of the LOB.

Chen (2017) considered the role of hidden orders in LOB dynamics building a dynamic programming
multi-stage model of the LOB dynamics to optimise the limit order placement decision under certain
market conditions. The model builds convexity assumptions for its parameters in certain situations to
produce a closed-form analytical solution for the optimal trading strategy for risk-neutral traders seeking
to trade a target volume. The optimal solution minimises execution costs by balancing the trade-off
between lower execution probabilities from hidden limit orders and higher signalling risk from visible

limit orders.

(2 F1ve | 256

5.1.3 Machine-Learning Models

Research into the application of machine learning methods to model LOB dynamics has arisen in recent
years. One could posit that the increased prevalence of the methods in the literature to solve the task
of modelling the LOBs has been driven by the vast data available for consumption regarding events on
cross-market LOBs and the wider financial market. Another potential reason is the general misalignment
between the statistical assumptions of certain parameters in stochastic models of the LOB and the
empirical evidence from high-frequency markets that compute divergent distributions from that expected
by the models. Stochastic models are particularly difficult to apply in high-frequency markets where
disparate algorithmic trading strategies can influence LOB distributions in contradictory manners for
different reasons. Furthermore, the strong assumptions and prohibitive limitations of stochastic models
detract from the application of these models by practitioners require them to be amenable to changing
situations and able to run in an online environment. Thus, data-driven deep learning and machine
learning models capable of untangling complex features by building abstract representations of the LOB

are most pertinent for modelling the LOB dynamics in contemporary financial markets.

Modelling the evolution of the LOB by predicting future price movements using Recurrent Neural
Networks and Reinforcement Learning is a key theme of this thesis. Machine learning models trained to
predict dynamics of the LOB have been applied through the use of Support Vector Machines (Kercheval,
2015), Deep Neural Networks (Sirignano, 2016) and Recurrent Neural Networks (Dixon, 2017).

Kercheval (2015) develop a multi-class SVM that utilises a feature representation space composed of
price and volume-based metrics of the LOB to predict how midpoint prices of the LOB will evolve given
the state of the LOB. They use class labels of up, down and stationary for each vector of the LOB state
as it evolves in real-time. The technique utilised to separate features into basic, time-insensitive and
time-sensitive categories is interesting and merits consideration for integration into this thesis. Several
time-sensitive features, which includes order acceleration, relative intensity measures and price
derivatives w.r.t time, are incorporated into the feature set used to train RNNs in this chapter based on
an event-time conception. Furthermore, feature selection using information gain criteria, whilst not
commonly employed in neural networks given the embedded nature of the feature selection performed

by the network, is tested for relevance in our setting.

Sirignano (2016) builds a predictive framework for how prices of the LOB will evolve using a ‘spatial’
DNN architecture that models the joint distribution of the bid and ask in future periods conditional on
the current LOB distribution. The spatial DNN considers the whole local structure distribution of orders
deep into the LOB, over 50 price points from the BBO, rather than truncating the LOB to within x
ticks of the BBO as is the case in this chapter. For DNNs designed with ReLU activations, the author
proves that the spatial DNN is well-posed with a positive mass as price points approach infinity. The
study finds that the DNN outperforms non-linear models such as logistic regression and other naive
empirical models including SVMs. This thesis diverges from the spatial DNN employed in Sirignano
(2016), which focussed on risk modelling that required the retention of information deep in the order
book, by considering only the distribution of the LOB around the BBO prices. The truncated LOB state
is developed given that our focus is on LOB dynamics and algorithmic trading over micro time-periods

where the BBO and price queues nearby are most pertinent for the analysis performed.

(2 Five | 257

RNNs have been previously utilised in the literature to model LOB dynamics (Dixon, 2017). Dixon
(2017) models the LOB dynamics for E-Mini S&P500 futures as a sequence machine learning
classification task solved by training an RNN to predict whether the midpoint of a security will move
up, down or stay neutral, at any given point in time. The model is trained using LOB data for E-Mini
S&P500 futures traded on the CME over the month of August 2016. RNNs impute features related to
the LOB market depth and order flow for both sides of the LOB. The architecture employed in the
study is a basic Elman RNN given that the authors find minimal benefit of using LSTMs to extract
longer-term temporal dependencies. Dixon (2017) finds that predicting neutral price movements is
significantly easier than determining when price changes will be up or down, which attained average F1
scores of 16.1% and 16.5, respectively. One issue with the methodology applied is the significant class
imbalance problem of the classifier, with over 99% of samples classed as having a ‘neutral’ price change,
which requires significant data augmentation and ‘balancing’ procedures that oversample these neutral
price movements and can create instabilities and discontinuities in the recurrence of the neural network.
This thesis extends the Dixon (2017) model to apply to equity markets using more expressive
architectures capable of finding patterns along temporal dimensions, a more complex and abstract feature
representation space, a differently defined task that predicts price changes and the next sign of a price

change on the LOB in addition to performing other prediction tasks.

5.2 Deep Recurrent Neural Networks

Deep Recurrent Neural Networks (RNN) are dynamic deep learning models that extend the temporal
dimension of feedforward Deep Neural Networks (DNN) by incorporating biological foundations of
cognitive memory into the neural network architecture using recurrent feedback connections. RNNs are
a connectionist system where information passes across sequential time steps, allowing temporal
dependencies in the data to be captured and modelled. The impounding of a ‘memory’ component into
the neural network solves for the implicit limitation in DNN models that assume independence among
data samples. Thus, the sequential nature of limit order book (LOB) time series data is ostensibly suited
to RNN models which are capable of learning a hierarchical system across the temporal manifold. In
particular, modelling the dynamics of the LOB using RNN machine learning methods allows for
significant flexibility with minimal mathematical constraints or assumptions, making these models

capable of capturing the time-variant dynamics of the LOB system (Schafer, 2007).

The inherent flexible nature of RNNs derives from their ability to incorporate contextual information
using a spatial-temporal dimension grounded in the models’ explicit architectural feedback loops,
allowing for time to be represented recursively. RNNs are a generalist model with various types of
networks and architectures employed in the literature, though a common element involves the series of
operations and transformations applied to a memory component. Memory is maintained in the network
using an explicit recurrent distributed hidden state representation, h, that impounds information about
past states and sequence observations. Integrating past information into the current time context
encapsulates relevant historical information, allowing temporal dependencies between data in various
time epochs to be captured by the RNN. The hidden state memory, h, is iteratively updated based on
new information received in the form of an input feature vector in the current period t. In this way,

RNNs are referred to as dynamical systems where information regarding the whole sequence is

(2 F1ve | 258

maintained in memory, allowing long-term dependencies to inform network predictions of an output

value at time t.

In a similar vein to DNNs, recurrent networks employ optimisation algorithms to approximate the non-
linear mapping function, y = f(x), that relates a set of sequential observations x = {x!,...,x"}, with
elemental vectors comprising features that explain the current observable phenomena within the system,
to its corresponding class label, y = {y?!,...,y'}. As discussed, RNNs relax the assumption inherent in
feed-forward DNNs that input and output vectors are independent of each other, by developing an
internal state composed of sequences of inputs which are dynamically updated depending on the internal
memory, h, developed through previous computations of the sequence. The highly expressive nature of
RNN5s extend from the integration of this recursive internal memory component into its architecture and
is evident by their ability to compute any representable function under certain assumptions (Siegelmann,
1995). These assumptions include full network connectivity, a finite number of recurrent connections,
and sigmoidal activated neurons. In this way, RNN systems are Turing complete, capable of simulating

any arbitrary Turing machine for a given input.

The next sections introduce the neurological framework that motivates the RNN memory component
before explaining the conception of RNNs as a dynamical system and the importance of capturing
temporal dependencies to build expressive memory representations. Building from this section, expressive
and high capacity deep RNN architectures are theoretically defined with a specific focus on Elman RNNs
(Elman, 1990), Long-Short Term Memory (Hochreiter, 1997) and Gated Recurrent Units (Cho, 2014).
Finally, we introduce new concepts specific to RNN architectures that build upon the theoretical
derivations from Section 3.1, with a particular focus on layer normalisation (Ba, 2016), recurrent dropout
(Gal, 2016) and scaled exponential linear units (Klambauer, 2017).

5.2.1 Neurophysiological Conceptions of Memory

Recurrent connections along temporal dimensions inform the RNNs internal memory at t,ht, by
providing a conduit for information pertaining to historical states to enter the network and inform the
current context. Modelling machine intelligence memory components in RNN models draws significantly
from neuroscience research, with specific roots in the quasi-analogous role of working memory in human
neurology. Congruent with the theoretical foundations of hidden RNN states, working memory is a
component of a human’s cognitive system that performs operations and manipulations to new
information entering the system. This new ‘stimuli’ motivates decision-making on what and how to
execute an action, before storing the memory for future retention when required to perform actions

relevant to that memory.

Memory is universally limited by capacity constraints. Several theories have been proposed to explain
the capacity of memory to transiently maintain temporal dependency representations of history that

provide contextual information for forthcoming decisions and actions.

An iterated multicomponent model of working memory (Baddeley, 2008) places at its radial point the
‘central executive’ which serves as a rule-based arbiter of how sensory memory propagates into both
long-term memory systems and prioritises short-term decision making. Working memory regulates how

short-term information is captured. The key concepts in this theory are selection and priority, that is,

(. F1ve | 259

the working memory selects what stimuli need to be addressed, for example, what phenomena need to
be impounded into memory, and the magnitude of response. Three additional components of working
memory connect to both short and long-term memory. This includes the phonological store, which
provides memory maintenance for speech-based information, the visuospatial sketchpad, which provides
memory for spatial contexts (Baddeley, 2008), and an episodic buffer that acts as a flexible recurrent
connection between long and short-term memory, in which operations are performed involving how

information flows through the system.

Limited resource models (Palmer, 1990) do not apply quantifiable boundaries on memory capacity but
rather model the qualitative capacity of memory as a system with limited resources to capture interesting
phenomena, for example images or numbers, measured as a function of precision and quality. The theory
posits that memory is a finite resource that is able to be shared over multiple representations which can
be accessed concurrently. The quality of memory depends significantly on the resources allocated and
level of noise inherent in certain internal representations of past stimuli that are coded into memory
(Ma, 2014). Noise is a function of both explicit random corruptions in a perception of the stimuli being
memorised and the number of stimuli imputed into memory, such that noise increases when the number
of stimuli in memory reaches some threshold, reducing the quality of working memory learning new

representations.

Flexible resource models (Bays, 2008) hypothesise diversity in memory resource capacity with non-
critical information rescinded from the representational manifold. Recall precision is modelled on the
assumption that a voluntary control component modulates the allocation of memory resources depending
on the importance of the stimuli. Empirical studies have found evidence towards the hypothesis that
memory resources are not distributed evenly but rather are regulated by the level of priority given to
different items (Gorgoraptis, 2011). Decay is a pervasive concept in theoretical models of working
memory, including resource models. Barrouillet (2004) introduced a resource-sharing model of working
memory where decay occurs when memory representations are not maintained or retrieved over time.
The quality of working memory regarding a representation decays when attention is switched to an
alternative task which frays the original memory depending on the ‘cognitive load’ placed on the resource

system by the new task.

Theoretical research into human cognition and working memory has both motivated and enhanced the
design, architecture and configuration of RNNs trained to solve real-world problems. The task of
modelling LOB dynamics is analogous to that of a human trader in the past that sought to predict how
markets would evolve so as to inform their optimal limit order placement strategy. One can posit that
the transfer of decision-making ‘central executive’ from human to algorithm is a manifestation of the
pervading algorithmic trading dominated markets as explored in previous chapters of this thesis.
Algorithmic traders have largely replaced human traders in the contemporary iteration of financial
markets. Thus, algorithms or deep learning techniques such as RNNs are commonly used to solve the
optimal order placement decision problem. This nexus between deep learning models of the LOB and
algorithmic trading strategies used to solve for optimal order placement is explored throughout the rest

of this chapter.

(o Five | 260

5.2.2 Dynamical Systems

RNNs are a representation of a dynamical system in which the state or memory of the system at discrete-
time t, h®, undergoes an iterative updating procedure when new stimuli, §, enters the system. For the
purpose of this chapter, the sequential series of LOB input feature vectors, x = {x%, ..., X"}, represent the
set of external signals, §, which flow into the RNN system. Updating the memory component of the
RNN dynamical system is performed over a sequential time series in a recursive manner that utilises
dynamic programming. The iterated hidden state, ht, is updated by applying a non-linear activation
function, f, to the previous state, h®~1, and the set of external signals, &, represented by the input

feature vector for that time period, x¢, such that:
ht = f(ht—l;xt) — f(f(ht—z;xt—l);xt)

Evidently, the current hidden state is defined as a recursion of itself, influenced only by its past value
and new information entering the network in the form of input signals. Hidden states in RNNs generally
have the architectural trait of being a fixed length vector. Thus, there exist mathematical limitations on
the quantum of memory capable of being projected forward from previous states. As datasets iterate
with time, t = T, the hidden state expels information due to its fixed nature and potentially long
historical time series. RNN architectures deviate in how they maintain this memory state and can be
differentiated by the capacity and connectedness of this memory unit within the network. Recent
innovations in RNN architectures have addressed the capacity constraints of RNNs to maintain long-
term memory by externalising the memory component of the network into a storage bank that maintains

very long-term dependencies and information (Graves, 2014).

5.2.3 Temporal Dependencies

In this chapter, an RNN is employed to model the LOB dynamics of UK equity markets, a process
analogous to predicting the future state of a financial time series system. Long-term temporal
dependencies are a ubiquitous characteristic of financial time series-based systems in that the current
state of financial system derives from the historical actions and behaviour of agents within the system.
RNNs capture long-term dependencies within the memory component of the network, h, which is a
function of the past states of the system. In the context of LOB dynamics, observations of previous
states of the LOB, explained by the feature vector X, in conjunction with the transitions between states,
can be rationally expected to influence predictions regarding how the state will evolve between event
time t and t + 1. Thus, highly expressive RNNs implicitly model temporal dependencies within their
prediction of future state transitions. When temporal dependencies ameliorate over small intervals, the
need for RNN architectures declines and the non-linear mapping function of the input-output

relationship may be better modelled using a feedforward DNN.

The high-frequency nature of modern LOBs magnifies the exigencies of modelling the states of financial
markets and LOBs in near real-time, with common algorithmic trading strategies employing ultra-low
latency systems capable of processing stimuli and deciding on a commensurate response at the
millisecond level (Boehmer, 2017). This evolutionary change in market dynamics and algorithmic trading
systems has instigated a divagation from chronological conceptions of time in trading, with event-time

cyclical clocks dominating the contemporary trading environment (Aldridge, 2013). Thus, whilst the

(F1ve | 261

temporal dependencies between LOB states may seem tenuous when considering that multiple trading
actions may be executed over a single millisecond, the shift towards event-time clocks in trading has
changed the nature of these dependencies to consider how states transition between single or multiple
events. The time continuum has been flattened and stretched over a dynamic event space. For example,
when modelling LOB dynamics, one would not look at dependencies between quoted spreads over
intervals of seconds, but rather over intervals of either single events or a period of lagged observations
in event-time. Furthermore, capturing temporal dependencies in high-frequency data is necessary given
that patterns may exist in the data over micro-time frames as traders with slow algorithmic trading

systems take longer to impute and process new stimuli entering the system.

RNNs withdraw from the assumption inherent in DNNs that input vectors are independent by
integrating temporal dependencies within the models’ architectures. Traditional methods of modelling
temporal connections between non-concurrent events in finance using techniques such as Markov models

and moving windows, can more efficiently be performed by a neural network with recurrent connections.

5.2.4 Deep Network Architectures

Deep recurrent neural network architectures control how information propagates through various layers
of recurrent neurons that connect input feature vectors at t, xt, with their predictor output, y¢. The
dynamical nature of RNNs introduces the concept of the hidden state, ht, that is recursively determined
as a function of the prior transitory state, h®~!, and a set of external signals. The inherent recursive
nature of RNN models allows past hidden states to be incorporated within a dynamical system that
allows depth along temporal dimensions that is non-existent in standard feedforward DNNs. Depth in
the context of this chapter also refers to the number of hidden recurrent layers in the network that apply
a non-linearity, allowing a larger hierarchical function representation space with increasingly abstract
LOB features, in a way that extends basic RNN architectures that have relatively shallow architectures
(Salehinejad, 2018). RNNs are parameterised by weight matrices that are shared across temporal

dimensions of the network.

Design configurations of the RNN architecture regulate how information propagates through the network
in the form of a temporal input feature vector, xt, hidden states, ht~1, and during the backpropagation
of error signals, 8, when learning. For deep networks, all hidden layers | € L are calculated in a recursive
manner beginning at the input vector xt that propagates through the network and terminating at the
output layer L with a consequent prediction, §¢. The objective of robust deep RNN architectures is to
formulate accurate temporal predictors, §¢, when measured against actual outputs, y¢, within the
framework of a cost function, £. Networks consist of a multifarious array of synaptic weight connections
between neurons in the model whose design and configuration depends on the RNN architecture
deployed. Given their differentiable properties, the learnable parameters of the network are generally

optimised using gradient-descent or second-order algorithms.

Constructing networks with deep architectures is predicated on the hypothesis that deeper structures
increase the representation space of possible non-linear mapping functions capable of being learnt by a
machine learning model (Bengio, 2009), improving the expressiveness and capacity of these models

(Hermans, 2013; Graves, 2013; Pascanu, 2013). Deeper neural networks have been shown to further

(o Five | 262

increase feature abstractions, disentangling underlying features critical for formulating better predictors
(Glorot, 2011) and simpler data manifolds (Bengio, 2013). Empirical studies grounded in deep learning
theory have provided evidence towards the hypothesis that deeper architectures improve the accuracy
of RNNs (Pascanu, 2014), Convolutional Neural Networks (Goodfellow, 2013), and feedforward DNNs
in general (He, 2015).

Depth can be added to the RNN model by either stacking L recurrent and fully connected hidden layers
between the input and output layers, Xt — §¢, to build more abstract feature representations (Hermans,
2013), or by deepening the non-linear connections between hidden state transitions, h*~! - hf, to
enhance long-term dependencies (Pascanu, 2013). The ultimate objective of incorporating additional
layers into the network is to improve the accuracy of the predictor, §¢. In this chapter, we focus on
adding depth between the input and output layers, Xt — §¢, to allow variations in complex LOB features
to be disentangled, providing more predictive power. For robustness, experiments are conducted to
ascertain the benefits of adding layer connections between hidden state transitions, h*~! — ht. The
results indicate that the process is computationally prohibitive and overly complex without any

commensurate improvement in the RNNs predictive ability.

RNN layers are trained iteratively during backpropagation using similar techniques as in feedforward
DNN training. However, augmenting RNN structures with deeper layers requires significantly more
computational resources due to the series of non-linear operations between states in both temporal and
spatial dimensions during forward propagation. This also requires the computation of more complex
differentials and memory-intensive storage of recursive signals during the dynamic programming
component of backpropagation. The exponential increase in non-linearity operations applied between
and across both time-dependent and input-dependent components of the RNN also magnifies the risk of
vanishing or exploding gradients (Hochreiter, 1998) common to sigmoidal activated RNNs. The
vanishing gradient stops the gradient from flowing backwards during training, stunting learning and
slowing convergence (Graves, 2005, Graves 2008). In addition, the model will fail to learn long-term
dependencies if gradients between hidden state layers saturate. These gradient issues are largely
overcome by selecting a model architecture with an internal recursive component existent within each
neuron of the network (Hochreiter, 1998). When deepening layers between hidden states, saturation
issues are overcome by forming direct connections between previous hidden states and input components
of the network (Pascanu, 2013), to restrict how and to what extent the non-linearity is applied. Later

sections address these issues.

The next three sections provide an exposition of the RNN architectures employed in this chapter,
including the Elman Recurrent Neural Network (Elman, 1990), the Long-Short Term Memory
(Hochreiter, 1997), and the Gated Recurrent Unit RNN (Cho, 2014). All RNN architectures employ
hidden layer activation functions, ¢, to apply non-linearity to neurons in the network and an output
activation function, ¢, that provides a probabilistic interpretation of the output value. Both activations
must be differentiable over time. Activation functions commonly employed in RNN architectures from
the sigmoidal family include hyperbolic TanH, ¢rqny(2), and sigmoid, ¢gigmoeia(2). Rectifier functions
including ReLU, ¢gery(2), and ELU, ¢g1y(2), are commonly utilised in RNNs to allow more sparsity in
neuron activations and gradients. Section 3.1.5 introduces, defines, explains and critiques common
activation functions generally used in neural networks. Output activation functions, ¢, generally take

the form of a softmax to allow for a probabilistic interpretation of the output neurons.

(. F1ve | 263
5.2.4.1 Elman Recurrent Neural Network

Conventional deep recurrent networks in the form of Elman RNNs represent a baseline architecture from
which more expressive contemporary networks have evolved (Elman, 1990). The Elman RNN is a non-
linear dynamical system that takes as input an n-dimensional temporal feature vector at event time t,

£ ..., xT). Input vectors feed

xt = (xy,...,x,), that represents an element of the dataset sequence (x1,...,x
into and through a series of | € L feedforward fully-connected hidden layers composed of j hidden state
neurons, h} = (hltll,...,hlt,j), representing the dynamic memory component of the system which for
simplicity is defined as vectors of the same length j for all layers. These hidden state neurons are
connected to previous transitory hidden states, hi~*, through recurrent feedback loops over time. States
initialise at value h® which we set to zero. The objective of the deep RNN is to predict the output at
time ¢, §¢, which can be compared to the relevant element in the actual sequence of outputs
(v%,...,y¥% ...,y7) to compute the cost function £. Elman RNNs have been applied to forecasting LOB
dynamics in US futures markets by Dixon (2017), modelling of gene regulatory network (Mandal, 2006)
and for predicting missing time series variables by concatenating the RNN process with particle swarm

optimisation to derive a hybrid optimisation algorithm (Cai, 2007).

For the special case of the first layer, | = 1, the state is composed of the input vector, xt, which represents
an algorithmic trader’s contemporaneous view of LOB features. In the case of the first hidden layer,
hidden state neurons, h¢, are computed by applying an activation function, ¢;, to the input activation
value, z!, equal to the sum of the affine transformation of the input feature vector, X, and learnable
synaptic weight matrices connecting input and hidden state neurons, wy, with the affine transformation
of the previous hidden state vector, h{™1, and weight matrices connecting the previous and current
hidden state, u;, with a final bias term added, b;. In a similar vein, hidden state neurons in hidden layer
[, hi, equal the output of the activation, ¢,;, applied to the input activation value, zf. This input
activation value is composed of the affine transform of the previous hidden layers hidden state output
with the relevant weight matrix, w;h{_,, plus the previous hidden state vector of the same layer, u;hf™1,
with the added bias term for the layer, b;. Finally, output predictor vectors at time t in final layer L,
y¢, utilise the output activation function, ¢, which is applied to the input activation value, zf, after
taking the affine transformation of the previous layers hidden state, h_,, and weight matrix connecting
the previous adjacent and output layer, w;, plus bias term for the output layer, b;. In this chapter,
softmax output activation functions are used to provide a normalised probabilistic interpretation of the
predicted class of the RNN at time t.

The RNN is explained by the set of learnable parameters which can be concatenated into an expression,
6 = (w,u,b). These parameters are optimised using gradient-descent methods. A schematic illustration
of simple Elman RNNs is provided in Figure 5.2.1, with the relevant mathematical formulations for the

input, hidden and output layers given as:
z! « wixt +uhi™! + b, h « ¢,(z}) (Input Layer)
zf « whi_; + uyh!™! + b, hi « ¢,(z}) (Hidden Layer)

yt<whi_;+b, V' <o) (Output Layer)

ConarpTeER FI1ve |264

t
hi,

FIGURE 5.2.1 — Schematic illustration of the Elman RNN architecture for a cell in layer I, hf « ¢,(z}), as a function of input from the previous
layer in the current time period, hi_;, and from the same cell in the previous time period, h{™*, parametrised by their respective learnable
weights w; and u;, which are optimised during training. Note that the bias term, b;, is not shown for simplicity.

Conventional Elman RNNs are extremely expressive models but commonly fail during optimisation due
to the tendency of gradients from long-term dependencies computed during training to suffer from the
‘vanishing gradient’ problem (Hochreiter, 1991; Bengio, 1994; Hochreiter, 1998). Gradients for sigmoidal-
activated RNN data points further in the past from time t tend to have very small gradients caused by
the multitude of multiplicative and exponential operations applied to hidden states, h, over time steps
to compute error signals during backpropagation when optimising the recurrent weight matrix, u. This
results in the magnitude of the gradient shrinking at an exponential rate over t. Hence, RNNs fail to
incorporate long-range dependencies in the current time step t given that gradients further back in time

become tiny and fail to propagate valuable historical information through the network.

Two primordial approaches to alleviating the vanishing gradient problem have centred on developing
more stable optimisation algorithms than SGD and augmenting the non-linear architecture of the RNN
to decrease the risk of gradients from past states saturating. Various second-order Hessian-free methods
that derive information from the second derivative of the cost function have been deployed as an
alternative learning algorithm to SGD (Martens, 2010). When the ratio of the first and second-order
gradients is stable, one can draw information about the gradient’s past state from the second-order
gradient, from which gradients further in the past can be stably propagated through the network during
training (Martens, 2010). Furthermore, gradient descent optimisation algorithms that incorporate
Nesterov momentum have also been applied with the objective of solving for vanishing gradients of past
states (Sutskever, 2013). The method more commonly applied in the literature to solve the vanishing
gradient problem is reparametrising the RNN model using a Long-Short Term Memory (Graves, 2005)
or Gated Recurrent Unit (Cho, 2014) architecture rather than the more simplistic Elman RNN model.
These models utilise SGD during learning but the inherent nature of the non-linear recurrent connections
in their architecture result in past gradients flowing successfully through the network allowing for long-

term dependencies to be incorporated into the RNN. Both these models are explored in following sections.

(A P . Five | 265
5.2.4.2 Long-Short Term Memory

Long-Short Term Memory (LSTM) RNNs were built in response to the limited capability of gradient
descent-based optimisation algorithms to solve for the preponderance of Elman RNNs to suffer from
vanishing gradient issues that led to a failure of these models to impound temporal dependencies during
training (Hochreiter, 1997; Gers, 2000; Graves, 2005). The original LSTM architecture addressed the
issue of vanishing gradients by incorporating an internal recurrent ‘memory cell within each hidden
layer neuron which regulates information flows through the network using soft multiplicative auxiliary
‘gated connections’ (Hochreiter, 1997). Future extensions of the RNN included the addition of ‘peephole’
connections (Gers, 2000) between the internal memory cell and the neurons gated connections, and the
implementation of the backpropagation through time (BPTT) optimisation algorithm to train RNNs
(Graves, 2005; Greff, 2017). This chapter utilises the RNN model architecture developed and employed
by Graves (2005).

Memory cells, gated and peephole connections are an innovative design element in LSTMs. Memory cells
allow the neurons within the network to maintain an iterative state over temporal dimensions, whilst
non-linear gated connections control information flow internally within the LSTM. The practical value
derived from using peephole connections to link the internal memory cell state to the LSTM gates when
being updated, is that the RNN is capable of better measuring timing between different stimuli being
received. LSTM networks have been applied to supervised machine learning problems in various domains
successfully including text recognition (Graves, 2013), acoustic modelling (Sak, 2014), speech recognition
(Graves, 2014) and machine translation (Sutskever, 2014).

LSTMs are employed to model LOB dynamics by incorporating temporal dependencies in contextual
high-frequency data from prior states, h®™1, into the current state of the LOB, ht. This improves the
model’s predictions of how the LOB will evolve given this current state at t. LSTMs perform this
function by developing conceptual LSTM blocks or units that are analogous to hidden state neurons in
the simple Elman RNN, though with an internal recurrence inside the blocks. LSTM blocks maintain an
internal ‘memory cell’ state, m, an integral atomistic component of the block where information of past
states is stored as memory. These LSTM blocks only take in information through connections from
adjacent hidden and input layers or from connections to past hidden states, ultimately controlling how
information is propagated through the network. Memory cells expand across temporal dimensions of the
LSTM in the same vein as simple RNNs (Maass, 2007). The primary difference in approach occurs within
the structure of the LSTM block which utilises a series of soft multiplicative ‘gates’ to regulate how data
flows through the internal structure of the LSTM block and how it is coded into the internal memory

cell, m{, as expressed for layer [at time t.

The architecturally inherent condition of vanishing and exploding gradients common to Elman RNNs is
solved by LSTMs through the partial linearisation of connections between past hidden states, ht™1,
which flow into LSTM blocks (Hochreiter, 1997). The Elman RNN applied a non-linear activation to
the past hidden states that resulted in gradients of states further in the past quickly saturating, with no
information regarding those states flowing forward, rescinding the temporal dependencies critical to RNN
learning. LSTMs correct this issue by applying a self-recurrent connection to internal memory cells, m,
within the LSTM block and setting fixed weights, equal to one, for this connection. Furthermore, the

risk of exploding gradients can be minimised by applying a truncation to the partial derivatives of the

(. F1veEe | 266

RNNs updated hidden state w.r.t its past state, dht/0h*"1;z = 1. Hence, the gradient of the hidden
state, ht, flows through self-recurrent loops through time along paths of long duration, ameliorating the
risk of the gradient exploding or vanishing. Extensions to the architecture using peephole LSTMs
employed in this chapter utilise a ‘forget’ gate (Gers, 2000) which results in the partial derivative,
Oht/oht™! = f, where the forget gate value f' controls how memory dissipates during learning and
temporal iterations. When the memory state remains stable, perhaps due to irrelevant new stimuli
entering the system, the memory cell maintains the gradients’ error over this period rather than decaying
the memory as is the case in Elman RNNs as gradients reduce with time. This allows LSTMs to retain
past information from the memory cell over longer periods (Le, 2015). In addition to solving for vanishing
gradients, the Graves (2005) LSTM RNN configuration provides a neurologically more realistic
interpretation of hidden state memory by allowing memory to be expelled from the system slowly over
time, rather than rarely as in the original LSTM (Hochreiter, 1997), or almost immediately as is the
case for the Elman RNN (Elman, 1990). The result is an LSTM RNN capable of learning patterns from
data with complex interdependencies across temporal dimensions by preserving signals and
backpropagated errors over longer time periods than standard Elman RNNs, whilst minimising the

vanishing gradient issues.

Deep LSTM RNNs employed in this chapter arrange each hidden layer of the network with depth L as
a series of LSTM blocks. Information flows into the network in the form of an input feature vector
received at t, X, data from previous hidden states, h{™1, and previous states of the internal memory

1 as expressed for layer [= 1. The internal memory cell represents useful information that is

cell, m§~
maintained from previous memory states. Evidently, there appears to be two ‘memory’ states, h and m,
that together form the total amalgamated memory of the RNN. The external past hidden state, h, is
conceptualised as a short-term memory element that influences LSTM information flows and learning
over the recent history of t. Conversely, the memory cell element, m, incorporates longer-term
information, with its prime objective being to alleviate the vanishing gradient problem by including a

recurrent connection internally within the LSTM block (Graves, 2005).

LSTM blocks are composed of an internal data cell df, three information regulation gates — an input, if,
forget, ff, and output, o} gate - and an internal memory cell m§, which together control information
movements into, within and out of the block. All gate vectors generally have the same dimension and
shape of the hidden state. Evidently, following the introduction of gates into the LSTM architecture,
the number of parameters in the RNN increases by a factor of four when compared to the simple Elman
network (Mikolov, 2012). Elements within the LSTM blocks are connected through either input vectors
from the previous adjacent layer, the previous hidden state, or internally between each other through
peephole connections, which for clarity are defined by the synaptic weight terms Wy ynit, Vi ynie, W unie
respectively, for layer l. The subscript, unit, for the weights and biases in the networks relate to the

internal unit of the LSTM from which information in the connection flows forward.

The exposition that follows explains the architecture and components of the LSTM RNN, with
consideration given to how LSTM blocks operate in the first hidden layer of the network, [= 1, which
can be extrapolated to all other hidden layers [€ L as information propagates in a forward and fully-

connected manner from the input to output layers of the network for time period t.

(. F1ve | 267

The data cell, df, represents the raw information received by the network from the input feature vector
at t, xt, and the previous hidden state, h{™!, parameterised by weights, Wy ,, and, u; n,, respectively.
The equation of the cell includes bias term, by ,,. A non-linear hyperbolic TanH function, ¢rgny, is
applied to the input activation value to derive the updated data cell values. Data cell values have
consequences for how the LSTM memory cell is updated and for what information flows from the LSTM

block towards neurons in adjacent layers, as explained further below.
di = ¢TanH(W1,th + ul,mhi_1 + bl,m)

The ‘input’ gate, i, controls what information from the previous state memory cell, m{~!, will be
updated given the new data received from the current feature vector, x¢, and the previous hidden state,
h!{~!. Information flows are regulated by the learnable weight parameters for the input vectors, wy ;, the
previous hidden state, uy ;, along with the weights connecting the previous memory cell with the input
gate through the peephole connection, vy ;. Input gates generally employ a sigmoidal logistic activation,
®sigmoia to squash the output into a range between zero and one, with the value of the gate representing
how ‘important’ it is for each of the internal memory cell elements to be updated given the new data

received.
st _ t t—1 t—1
i{ = Gsigmoia(W1,i Xt +ug hi™ +v; ;mi™t + by ;)

In a similar manner, the ‘forget’ gate, ff, provides a blocking mechanism through a peephole connection

to decay or terminate irrelevant internal memory cell elements, m§~!

, with weights, vy r. The forget gate
represents memory elements that are no longer relevant for predicting the RNN classifier, given
information signals flowing into the LSTM block from the current input feature vector, X*, parameterised
by synaptic weights, wy ¢, and the previous hidden state, h{~1, with weights, u, s, and bias term, by f.
The forget gate is manifestly a representation of what elements on the internal memory cell should be
extricated from the LSTM block given the new data received from the feature vector and previous hidden

state. Sigmoid activation functions, ¢g;gmoeiq, are utilised in the forget gate.
ff = bsigmoia(We X +uy shi™ + vy ;mi™" + b, f)

Following the computation of the values for the data cell, d}, input gate, i{, and forget gate, ff, one can

1

now update the internal memory cell state of the LSTM unit iteratively at time t, m{~! - m{. The new

cell state, m§, simply forgets memory no longer required, ffm§=1

, and incorporates new data into memory
depending on its relevance, i{d{. The updated internal memory cell state is then connected across
temporal dimensions to the same LSTM block in the next time period, t + 1, in a continuous and
iterative process until learning terminates. One can note the LSTM architecture applies an identity
function to the memory cell, solving for the vanishing gradient problem due to the absence of any non-
linear transfer between cells, allowing information from past states to contribute to the current memory

update in a stable way that performs well during backpropagation.
m{ « fim{~! +i{d}

The final requirement of the LSTM block is to compute both the output of the LSTM block, o}, and
the updated hidden state for the block, hY, that is then incorporated along temporal dimensions into
LSTM blocks in the next time iteration, t + 1. The output gate amalgamates information from the input

feature vector, xt, previous hidden state, h{™1, and updated memory cell, m§, parameterised by weights,

CuarTER FI1ve |268

Wi o, Uy 4, Vq o, Tespectively, with added bias term, b, ,. Non-linearity in the form of a sigmoid activation,
®sigmoia, is applied. The output value, o}, implies the portion of the internal LSTM state that should
be exposed to the external environment and represents the input value into LSTM blocks in the adjacent
hidden layer deeper in the recurrent network. Once output values are computed they can be used to

update the hidden state parameter, h{™* — hi.

t _ t t—1 t
0; = ¢Sigmoid (wl,ox + ul,ohl + Vl,oml + bl,o)

hg = og(pTanH(mi)

Hidden state output values, h¢, continue propagating forward through the network layer-by-layer until
the final output layer is reached at which point the output vector §¢ is predicted. The output layer
computes the softmax of the previous layers hidden state output value resulting in the model’s general

prediction:
vt = @(h))

A schematic illustration of the LSTM RNN is given in Figure 5.2.2 for an individual LSTM cell in layer

Figure 5.2.2 — Schematic illustration of the Long-Short Term Memory RNN architecture for a cell in layer [, hf = 0f@¢rqny (mf). The diagram
notes the relevant inputs into each gate and the commensurate activation function, where ¢ represents a sigmoid and ¢; a hyperbolic TanH
activation. Purple lines indicate temporal connections between LSTM cells and blue lines indicate feedforward connections between stacked
hidden layers in the LSTM RNN. Dashed black lines indicate peephole connections where gates are a function of the previous time period
memory cell, m{™!, and the thick black lines represent weighted connections within the LSTM. Note that the memory cell is a recurrent unit

that updates internally within the LSTM, m! « ffm{~! + ifd}. Further note that the bias terms, b;, are not shown for simplicity.

LSTM RNNs are trained using backpropagation through time (BPTT) to optimise learnable parameters,
(w,u,v,b), within a cost function framework, explained in later sections. Furthermore, it is noted that
the application of sigmoidal and hyperbolic tangent activation functions, whilst theoretically tractable,
is not a prerequisite and one can draw from the rectifier family of functions to perform this task, which
we do in this chapter. Incorporating a recurrent memory cell within the neuronal architecture of the
RNN by extending the Elman RNN results in the amelioration of the vanishing gradient problem and

the maintenance of temporal dependencies within the model.

(: F1ve | 269

5.2.4.3 Gated Recurrent Units

Gated Recurrent Unit (GRU) RNNs utilise a simplified gated architecture that modulates information
flows through the network and captures temporal dependencies over different time scales using an
adaptive control mechanism rather than a separate memory cell as is the case with LSTMs (Cho, 2014;
Chung, 2014). The GRU RNN operates in the same manner as an LSTM network though with the
LSTM block replaced by a GRU with its own internal dynamics and weighted gating system. The
reparameterisation process undergone in converting GRU to LSTM architectures results in a reduction
of learnable parameters. Both networks focus on updating the hidden state, h, for each unit or block in
the architecture, based on information from both past states and forward propagated input feature

vectors, though differ in their formulation of the state and its level of importance in maintaining memory.

GRUs fully expose their state to the network whilst LSTMs utilise memory cells to internalise the state
and memory within each LSTM block, with exposure to the network adaptively controlled by their
output gates (Cho, 2014). Both networks maintain temporal dependencies with past hidden states in a
way that alleviates the vanishing gradient problem (Chung, 2014). GRU RNN architectures have been
shown to perform competitively against LSTM architectures for solving various machine learning
problems for temporal data in terms of generalisation power, convergence speed and training stability
(Cho, 2014; Chung, 2014; Greff, 2017; Bahdanau, 2014). Other studies have noted the superiority of the

GRU architecture over LSTMs in areas such as text and speech recognition (Jozefowicz, 2015).

GRUs can be viewed as neuronal components of an RNN arranged in layers which are fully connected
in a sequential process from the input to output layer, similar to the LSTM. These units control how
the input feature vector, xt, flows into the first layer of the network, before updating hidden states for
each of the GRU units, hf, then propagated forwards through the network towards the output layer.
For deep RNNs, this process continues iteratively and sequentially from the input towards the output
layer through [€ L hidden layers. The critical element of GRUs is their use of a two-gated system to
control how this process is conducted. GRU units are analogous to LSTM blocks, though they deviate
from the LSTM structure by extricating the implicit memory cell, eliminating peephole connections and

reducing the number of gated connections to only two — an update gate, at, and a reset gate, rt.

GRUs replace the memory cell with the LSTM system by maintaining memory explicitly through the
hidden state elements, h®. The GRU RNN is designed in a way that the computed hidden state flows
concurrently both through the network at time t to arrive at an output predictor, §¢, for input x¢, and
across temporal dimensions when the network is exposed to new information at t + 1. The schematic
representation of deep RNNs built with GRUs is presented in Figure 5.2.3. From the figure, it is evident
that the hidden state is a critical element of the RNN given its temporal and dynamic linkages through
the network. The holistic depiction of the GRU RNN architecture explains how information flows from
the input feature vector towards the first hidden layer of the network where [= 1. For deeper networks
employed in this chapter, the mathematical formulations can be extended for all [€ L layers. Similar
to the LSTM section, superscripts refer to the event time step in which the sample vector is received,
and subscripts refer to the relevant layer and in the case of learnable weight parameters, the directional

flow of information through the synaptic connections.

(. Five | 270

Information flows into GRU neuron in the form of an input feature vector received at t, x¢, and a
previous hidden state, h{™1. The hidden state is then updated, hi~! - h{, based on information that
flows through the reset and update gates of the GRU. The updated hidden state then serves as input
into the next hidden layer and as the prior hidden state in the next time step. Hidden states are updated
in GRUs depending on both the fully exposed previous hidden state, hi™!, and a candidate hidden state,
h!, whose values are influenced by how the previous state propagates through the reset gate, rf.
Ultimately, the update gate, al, determines in what proportion the previous hidden state and candidate

state influence the new value of the updated hidden state.

Reset gates for layer | at time t, rf, are employed by GRU networks to modulate how temporal
dependencies explicitly defined in the prior hidden state, h{™!, are combined with new input feature
data, X, and maintained in memory. The intuition behind the reset gate is that when it activates with
low values it implicitly ‘shuts’ information flowing from previous hidden states of the network, essentially
deleting prior memory, analogous to how memory cells maintain critical information from past states of
LSTM blocks. Hence, the reset gate executes the important neurologically-motivated task of forgetting
past data from past hidden states, hi™%; i > 0. The reset gate for the first layer, rf, is computed by
applying an additive operation to the affine transformation of the input vector and relevant connective
weights between the input and the reset gate, wy,x*, and the affine transformation of the previous
hidden state and connecting weights between the hidden state and reset gate, u; hi™!, with an added
bias term, bir. Sigmoid activations are generally then applied to the summed input activation value to
limit the output within an interpretable range. The weight terms w and u control to what extent the
prior state information should be maintained or extricated from memory given the new information that

has just entered the network at t.
l'f = ¢Sigmoid (wl,rxt + ul,rhg_l + bg,r)

The reset gate is employed when setting the intermediate state’s activation value, h'i, to adaptively
control the quantum and level of prior state dependencies considered for inclusion in the updated hidden
state at t. The updated intermediate state can be interpreted as a vector containing the critical
information from prior states after forgetting past information no longer useful as determined by the

reset gate. The intermediate state’s activation is defined as:
h'] = rfh{?

Hidden state values, h}, for GRUs are updated through a sequential process that requires the formulation
of a candidate hidden state, h%, which serves as a proxy for what the new state should be and derives
from the intermediate hidden state variable, h';, previously calculated. Candidate hidden state values,
h¢, are computed as the sum of the affine transformation for both the input vector and connecting
weights, wl_hxt, and the updated intermediate state vector and respective weights, ul,hh’§7 plus the bias

term, by . A hyperbolic TanH activation non-linearity is applied to this input value.
3 t
hi = Prann(Wipxt +ugzh's +by)

Both the candidate state, hf, and the prior hidden state vectors, hi=!, propagate forwards through the
GRU cell and into the update gate vector, af, which amalgamates the input and forget gates inherent
in the LSTM architecture into a single element that controls changes to the memory of the hidden state

neuron, h. The procedure taken to compute the update gate for the first layer of the network, aj,

CHAPTER FI1VE |271

involves a similar procedure to calculating input gates in LSTM blocks without any peephole
connections. Update gates sum the affine transformation between the input feature vector and the
synaptic weights connecting the input and first hidden layer update gate, wy x‘, with the affine
transformation of the previous hidden state and its connecting weight, u; shi™%, plus bias term, b ..
Sigmoid activation functions transform the input activation value into a value between zero and one in

a way that modulates the quantum of information flowing into the GRUs memory.
ai = ¢Sigmoid (Wl,axt + ul,ahi_1 + bi,a)

Hidden state values, hi, are then updated by applying a linear interpolation between the prior hidden
state, h{™1, and the candidate hidden state, hf, with the proportion of each element determined by the

update gate, af.
ht = (1 - adhi" + ath

Updated hidden states are a manifestation of the recurrent memory component for GRU RNNs. These
values are propagated forwards through the network towards the output layer to help form a prediction,
y¢, given the input features, and across the temporal dimensions of the network as a prior hidden state,
h, at time t + 1. Once values are propagated layer-by-layer through the deep RNN, an output predictor,

ot

y

resulting in the output prediction:

, is computed and mapped to the input feature vector, using a softmax, ¢, output activation function,

§¢ = p(o})

A schematic illustration of the GRU RNN is given in Figure 5.2.3 for an individual GRU cell located in
layer L.

2 A«\V;;{Ai—-—— ‘—aé‘%‘\‘{(4

=S AP = A\ o) e
QOO QOO b a
é"g =, .

A A M‘\(‘« Wiq | hi_
VSN v he_, o
>
Y gr

’ ' <]
h-y— 0 <] e

Figure 5.2.3 — Schematic illustration of the Gated Recurrent Unit RNN architecture for a cell in layer [, hi = (1 —a$)h{~* + athi. The diagram
notes the relevant inputs into each gate and the commensurate activation function, where ¢ represents a sigmoid and ¢; a hyperbolic TanH
activation. Purple lines indicate temporal connections between GRU cells and blue lines indicate feedforward connections between stacked
hidden layers in the GRU RNN. Thick black lines represent weighted connections within the LSTM. Note that the bias terms, b;, are not

shown for simplicity.

(Five | 272

Both LSTM and GRU RNNs deviate from the traditional Elman RNN by maintaining temporal
dependencies from prior hidden states and incorporating new relevant information into the system at t,
as encapsulated by the memory components of each network. Memory is maintained using gated
connections which are updated iteratively rather than through wholesale new computations of the hidden
state as is the case with Elman RNNs. The primary difference between the architectures is the use of a
memory cell in the LSTM that controls how memory is exposed in both the internal block using peephole
connections and to the external system through output gates. In contrast, GRUs expose their hidden
state or memory directly to the network in the form of an updated hidden state value, h. A primordial
innovation of the GRU is its combinatorial treatment of the input and forget gates of the LSTM block,
which together are ingratiated into the candidate hidden state that enters the update gate of the GRU.
This process involves information from previous hidden states in prior time steps being controlled at the
update gate of the GRU, rather than through separate or disconnected processes as is the case in the
LSTM block.

5.2.5 Network Optimisation

Optimisation of learnable weight and bias parameters for RNNs is predicated on a similar suite of
techniques that are employed in feedforward DNNs that were explored in Section 3.1. The objective of
RNN optimisation is to train a network that most accurately approximates the mapping function of the
training dataset, y* = f(x%,9). Functions need to be generalisable to real-world domains. Neural
networks are trained by augmenting learnable parameters, 9, in a way that minimises the networks
defined cost function, £, which provides a framework for comparing the prediction of the model, §¢, with

the actual output class, y¢, over all classes ¢ € C.

Cost functions, £, employed when modelling LOB dynamics with RNNs evaluate the accuracy of the
model at predicting the correct future price change on the LOB at time ¢, y¢, by comparing it against
the RNN model’s output prediction, §¢. Modelling LOB dynamics generally requires the prediction of a
specific class, for example, whether the best bid price will increase or decrease over the period t + At.
Thus, predicting a class from a fixed subset requires the use of softmax activation functions to allow a
probabilistic interpretation of output predictors of the network. Several cost functions work well when
comparing probability distributions of the actual output and RNN predictor, with Mean Square Error
(MSE) relevant for output distributions with a Gaussian shape, and a cross-entropy (CE) cost function
more applicable for modelling the loss from outputs with arbitrary distributions. Cost functions relevant
to framing the neural network optimisation problem in this chapter are defined comprehensively in
Section 3.1.6.

First-order gradient descent-based learning algorithms are utilised in this chapter as a greedy method

to minimise the differentiable cost function through an iterative process of evaluating gradients of the
oL o
99, " 09,

using a specific optimisation algorithm. Optimisation is performed using mini-batches of training

learnable parameters w.r.t the loss function, VgL = [], before updating those parameters

samples, with the learnable parameters updated over each batch. The size of the mini-batch is selected
to be large enough to ensure efficient use of computational resources and small enough to minimise the

risk of too much noise impacting the convergence of the RNN. The full suite of optimisation algorithms

(o Frve | 273

and strategies common to the deep learning literature are set out in Section 3.1.8. One critical difference
of optimising RNNs that diverges from DNN training procedures is the use of Backpropagation Through
Time (BPTT) to calculate gradients during learning. Furthermore, RNNs utilise parameter sharing such
that parameter matrices are maintained across temporal dimensions in the network. This requires the
assumption of stationarity over the conditional probability distribution of parameter vector, 8, at time

t + 1 given the value of the variables at t.

5.2.5.1 Adaptive Moment Estimation Algorithms

Adaptive gradient descent-based optimisation algorithms use momentum and learning rate annealing
techniques to improve the performance and computational efficiency vis-a-vis vanilla stochastic gradient
descent (SGD). Momentum methods induce acceleration into the weight updates in the direction of a
persistent reduction in the cost function error, depending on the ‘friction’ along the curvature of the
error surface inherent in the gradients computed over time. Learning annealing is the process of
dynamically adapting the learning rate parameter for a specific schedule or training iteration. Adaptive
optimisation algorithms that use momentum and learning annealing are able to stabilise oscillations of
weights during BPTT around a local minimum region by reducing the learning rate parameter and

commensurate kinetic energy in the weight updates over iterations.

The primary optimisation algorithms employed in this chapter derive from Adaptive Moment Estimation
(Adam), a first-order adaptive stochastic optimisation algorithm (Kingma, 2015). Adam maintains a
decaying squared gradient learning annealing inversion, V/™, whilst augmenting and smoothing the
gradient term by incorporating a momentum component, M{", that takes the exponentially decaying
mean of past iterations gradients whilst adding a bias correction to account for zero-centred vector
initialisation. Both the learning rate annealing denominator and the gradient momentum term vectors
are initialised towards zero and hence, it is necessary to counteract the biased moment estimates using
bias-corrected estimates, I7im, and, Mlm This involves scaling both annealing and momentum variables
by the exponentiate of their respective bias terms, Sy, . € [0,1), depending on the number of iterations
m, resulting in scale factors of (8;)™, and, (8;)™, respectively. The value of hyper-parameter bias term
1 should be chosen to provide less relevance to weights further in the past, especially when the vector
was initialised, than those calculated in more recent iterations. In addition, f, needs to be sufficiently
large to drive convergence through decreased learning rates when the weights are near the local minimum
as the neural network cements specific patterns and the gradients increase in sparsity (Kingma, 2015).
Recent innovations by Dozat (2016) have introduced Nesterov Momentum components into the adaptive

moment estimation algorithms.

5.2.5.2 Backpropagation Through Time

Recurrent neural networks in this chapter are trained to minimise errors in the cost function, £, by
applying a truncated backpropagation through time (BPTT) based learning algorithm to optimise the
learnable parameters of the network (Werbos, 1990). Utilising BPTT allows for longer-term temporal
dependencies to be maintained in the hidden state and memory cell component of the network that can

be retained for future time periods. BPTT develops a closed-form solution for RNNs which allows

CunapTER FI1vE |274

gradient information to propagate through the network from cost function errors to update networks
weight matrices w,u,v. This procedure requires an unfolding of the RNNs layer structure over the
temporal dimension axis t € t’, redirecting recurrent connections within the network to form direct
connections between hidden states. This results in a directed acyclic graph with weights inextricably
linked to their respective layers, analogous to a feedforward DNN, from which gradients of the cost
function w.r.t the network’s learnable parameters can be computed. The chain rule and dynamic
programming are applied iteratively using first-order optimisation techniques defined in Section 3.1.8.
Truncated BPTT is also used to reduce the computational complexity of the learning process whilst still
capturing long-term dependencies by limiting the event periods over which BPTT is applied during the
backward pass. For the LOB dynamics modelled in this chapter truncating the algorithm is necessary
given the extremely long sequences inherent in financial time series data. This technique of truncating
the BPTT algorithm has been applied successfully for various machine learning tasks including natural

language processing (Mikolov, 2012).

BPTT involves the calculation of partial derivatives of the cost function, £, w.r.t learnable parameters,
9, including weights connecting adjacent layers in a deep RNN, w, recurrent weights connected to past
hidden states, u, and internal weights for LSTM or GRUs, v. In addition, the bias term, b, is also
updated using BPTT. Algorithm 5.1 defines the backpropagation pass specifically for an LSTM RNN

following the unrolling of a network. The first procedure requires the computation of deltas for the

hidden state output, Sht = L and additionally for elements of the LSTM block. This process is

oht’
performed iteratively in a backwards direction from the output towards the input, culminating in the
computation of the input vector delta, §x'. Once this process has been completed for all layers, [€ L,
and over the truncated time periods unrolled by the RNN, t € t’, gradients of the learnable parameters
can be computed. Algorithm 5.1 defines the final partial derivates for the cost function w.r.t learnable

3]
parameters, a—g. Adam optimisation is then applied to update the parameters.

CHAPTER FIVE |275

Algorithm 5.1 — LSTM BPTT with ADAM

Initialise LSTM weight vectors w, u, v, and bias term b.

oL

Define delta for hidden state Sht = ont

for each layer | € L and time t € t' do
8hi 1 = W, 8dit +uy;8if " +uy 67 + 1y, 80f" +8° where 8° is a vector of 8 from [+ 1
80! = oh! - tanh(m}) - o¢
Sm{ = 8h{,, - o' - (1 — tanh?(m")) + v;;8i{*! + v, (8f/ T + v, ,60f + (Sm‘*! - f1+1)
§d" = dm’ - i’ - (1 — tanh?(d"))
Sit = 8mt-dt-it- (1 —1iY)
8ft =8mt -m~1-ft.(1—f")
8hi = w; ,,6d} + wy;5if + wl,fﬁff +w; 80 where hi equals input vector x* for the first layer

end for
Compute gradients for LSTM learnable parameters
for each layer | € L, gate g € {d,i,f,h}, and time t € t' do
by g = Liet ng
8wy g = X,(88f, 8hy) where h! equals input vector x* for the first layer

Su; ;= Y, (881", 8hi, 1) where hf,; equals output vector §* for the final layer
8V ; = Ve b - it
8Vif = et m* - §f**
8Vio = Dier m‘ - 8o0°
end for
Update learnable parameters using ADAM optimisation algorithm
for each layer | € L and parameter vector 9 = [b, w, u, v] comprising all elements i
initialise M° « 0,V? <« 0,m « 0
while 9™ has not converged do
M™ < B M™ 1 + (1 - f,)69"
V™« BV + (1 = B,)(897)?

/\m m

M™ < 1-(B)™

/\m m

Vi e 1-(B)™

9?”1 < an B (x/\”/:lue . Mm)
end while

return learnable parameter gl

5.2.6 Layer Normalisation

Layer normalisation (LN) is a technique for reducing computational resources required to train RNNs
(Ba, 2016). The method uses an approach analogous to batch normalisation (BN) (Ioffe, 2015) introduced
in Section 3.1.11. However, rather than applying the normalisation to the mini-batch of training samples
that inputs into the neural network during training, LN takes the summed inputs for a layer composed
of recurrent neurons for a single input sample and normalises across temporal dimensions. Similar to
BN, the normalisation procedure is performed before the non-linearity is applied through the activation

function. Thus, LN is essentially a transposition of the BN algorithm with the normalisation process for

(. F1ve | 276

LN occurring at each time step. Most of the networks employed in this chapter utilise approximately
100-500 time step recursions during training which is similar to the number of samples, 128 to 256, used
to train the DNNs in Chapter 3. Hence, the impact on computational time is fairly similar for each

method.

LN was developed in response to the success of BN at improving computational speed whilst solving the
problem of ‘internal covariate shift’ intrinsic to very deep feedforward networks. BN does not apply well
to RNNs in general given that BN computes the statistics for each neuron as a moving average requiring
the storing of mean and standard deviation statistics at each time period, which is difficult when training
neural networks that model temporal dependencies across very large event-time periods (Cooijmans,
2016).

For an RNN with n neurons defined for layer [, one can define the hidden state for neuron i in that
layer as hf‘i, which is derived as the input vector, xt, at time t, propagates through the network layer-
by-layer combining with other elements of the RNN in the process, before inputting in layer l. Hidden
state neurons serve as both the input into the next sequential layer towards the output and as the
hidden state across the linear temporal domain into the next time period. Layer normalisation is applied
to recurrent layers of the network by normalising each hidden state neuron hii by shifting the value by
the mean of all hidden state neuron values in the layer, uf, and scaling that value by the standard
deviation for that layer, of, before the non-linearity, ¢;, is applied. Similar to BN, the LN technique
applies an identity transformation to scale and shift the normalised activation input values by

parameters, y, and, f, respectively, which maintains the dimensions of the hidden state variable, leading

V(Li)
Ul
1 n 1 n 2
t=_§ ht. t_ _E ht. — 4t
My nlai, b 9 n i=1(i H

The LN procedure results in faster computations during training and a more stable RNN particularly

to:

when there are complex inter-neuron connections as is generally the case with deep recurrent networks
(Ba, 2016).

5.2.7 Recurrent Dropout

Regularisation techniques are commonly employed in RNNs given their tendency to overfit to the
training data during optimisation. Several regularisation strategies were introduced for DNNs in Section
3.4.9 with the most applicable being dropout which prevents neurons from co-adapting during training
by fitting a randomly generated mask that drops neurons in the network with probability p (Hinton,
2012b; Srivastava, 2014). Neurons extricated from the data manifold are not updated during training

optimisation.

In this study, two forms of dropout are applied to the RNNs. Standard dropout is applied for neurons
connected between the input, recurrent and output layers in the RNN and within the recurrent layer

itself to the memory cell or hidden state vectors, depending on the RNN, using a form of recurrent

(2 Five | 277

dropout. Recent studies have demonstrated the deficiency in both network stability and predictive power
when applying dropout naively to the recurrent connections in RNNs which has been attributed to the
noise applied implicitly to recurrent connections (Pachitariu, 2013) and to the disruption caused to the
internal dynamics of the RNN (Pham, 2014), when dropping random neurons. To solve for these issues,
we employ a recurrent dropout method for RNNs introduced by Gal (2016) that largely averts the
stability concerns when naively applying dropout to recurrent layers after each batch size has been fed
into the network by using a Bayesian approximate inference technique that involves fitting the same

mask for all neurons during a single epoch training iteration.

5.2.8 Self-Normalising Neural Networks

Scaled exponential linear units (SELU) are a non-linear activation function applied to ‘self-normalising
neural networks’ (Klambauer, 2017) and are employed in this chapter when training RNN models of
LOB dynamics. SELUs extend the activation functions holistically explored in Section 3.1.5, particularly
the exponential linear unit (ELU) function which is part of the rectifier activation family (Clevert, 2015).
ELUs activate in an analogous manner to traditional hard-zero bounded ReL.U functions, though with
a smooth negative region bounded by hyper-parameter a. This has the added impact of allowing the
function to saturate, rather than be constant in the negative region, therefore inducing a noise robust
deactivation state. The primary benefit of ELUs is that they perform a bias-shift correction that pushes
the mean activation output value of a vanilla ReLU network towards zero mean and unit variance. This
theoretically tractable property is conducive to neural networks as it results in tensors being propagated
through the network in a way that maintains the activation distribution for each layer, that is, with
mean zero and unit variance. However, whilst ELU corrects for the bias shift to a degree, the fixed
parameter boundary of the ELU activated network still generates discontinuities between the activations
passed between layers. Both layer normalisation (Ba, 2016) and batch normalisation (loffe, 2015)
algorithms have been proposed to perform the normalisation process explicitly to correct for non-zero
mean and unit variance activations, however, this process can be internalised within the network’s non-
linearity by utilising the SELU activation function. Klambauer (2017) utilises the Banach fixed-point
theorem neuron to prove that SELU activation values converge to zero mean and unit variance. SELUs
control for the zero mean through their property of having activation values in both positive and negative
regions. Furthermore, they also control the shape of the saturation region which allows for the variance
of the network activations to be regulated. Finally, the inclusion of a scalar, 4 > 1, allows for the
activation to modulate the influence of network layers closer and further from the input layer. The result
is the SELU activation function that executed implicit self-normalisation. The form of the SELU is that
of an ELU activation, multiplied by a scalar, 4. Furthermore, both the scalar and the negative bound
hyper-parameter, a, are learnable parameters, with estimates derived in Klambauer (2017) provided

with the activation function:

z ifz>0
bseLu(2) = A{a(ez “1) ifz<0 A>1 €=16733, 1=1.0507

(Five | 278

5.3 Deep Reinforcement Learning

Deep reinforcement learning (RL) is a computational approach to designing machine intelligence which
extrapolates human conceptions of learning and optimal behaviour through interactions with the
environment. As machine intelligence systems begin to supersede human cognitive capabilities in the
realm of market microstructure and trading, RL techniques present themselves as a useful model to
understand how and why limit order books (LOB) evolve over time. Whilst the ability to acquire and
apply knowledge is increasingly being outsourced to intelligent machines, the nature of how machines
learn does not diverge significantly from humans. All humans are faced with an environment beyond
their comprehension, there are almost an infinite series of situations one can find themselves in and
decisions that can be made, all played out in real-time, yet over time humans form intelligence as they
learn to acquire and utilise knowledge. The crux of this intelligence is gained by interacting with one’s
environment to test what is possible, garner information and knowledge, and then to formulate what is

desirable. This concept is the foundation of deep reinforcement learning.

The following sections introduce the Markov Decision Process as the primary paradigm employed in RL.
We define dynamic programming as the exact method to solve for optimal behaviour with an RL system
using Bellman Optimality equations and off-policy Q-Learning, though we note that this technique is
not computationally tractable for complex systems such as modelling LOB dynamics. Finally, we provide
a brief exposition of more relevant model-free methods that utilise approximate RL before introducing
the Deep Recurrent Q-Network (DRQN) employed in this chapter to predict the future price dynamics
of LOBs.

5.3.1 Markov Decision Process & Dynamic Programming

LOB dynamics can be modelled as a stochastic optimal control problem in a dynamic system within a
discrete event time framework in which traders make decisions to maximise some reward function. RL
is the machine learning response to this type of control optimisation problem involving state-based
agents making sequential decisions within a dynamic system analogous to a Markov Decision Processes
(MDP) (Howard, 1960, Sutton, 1998).

Mathematically, MDP RL systems involve a state space, S, and action space available to the agent in a
certain state, A(S;), in which agents receive information about the current state, s; € S, and execute an
available action, a; € A(s;), across a sequence of discrete time periods t € T. The state space represents
the different configurations of the system and encompasses all observable and relevant features in the
environment at present that are used by the agent to make a decision and which cannot be arbitrarily
altered by the agent (Sutton, 1998). Hence, past observations of the environment, actions taken, and
rewards received are not explicitly included within an RL algorithm, but rather the relevant historical

components are captured and infused into the current state space.

The stochastic transition of the state from s; towards s;,; upon execution of an action, a;, based on
transition probability P,, presents the agent with a reward signal, 1,1, € R, where R represents the real
value rewards available to the agent. The transition process is rooted in the logic that once an agent

engages with the environment, the current state is dynamically transformed. The reward represents a

(Five | 279

scalar feedback signal which is a real value number that infers the current position of the agent. Reward
signals define the task of the agent and as a result are computed external to the agent who is not able
to arbitrarily alter them (Sutton, 1998). A discount factor, y, can be applied to the reward function to
differentiate between value attributed to past and present returns, avoiding the problem of infinite
returns in a cyclic Markov process. Hence, the MDP for modelling an agent’s decision process can be
defined through a five-factor tuple, M = (§,A, P, R, y).

Critical assumptions of MDPs include that the current state is completely observable and that it
holistically captures all relevant information required by the agent to execute optimal actions, including
knowledge garnered through past experiences. Mathematically, MDPs require that the conditional
probability distribution of transitioning to successor states and receiving rewards given the current state
and action space are independent of past states and actions, hence meet the Markov property. The
distinguishing feature of RL systems is that no explicit representation of the correct behaviour or action
to take is presented to the agent. Rather, through the agents’ interaction with the environment they
receive evaluative feedback signals from the actions they take which indicate how successful an action

is and potential ways of making better decisions (Sutton, 2012).

The RL machine learning paradigm depicts agents as conducting a defined policy that maps states to
actions, m(a;|s;), informing agents optimal actions independent of the epoch period. The MDP M and
policy m fully define agents behaviour with the objective of selecting a policy that maximises cumulative
expected discount returns (Watkins, 1989; Sutton, 2012). At any point t in an MDP we calculate the
cumulative discounted return from the current state and across an episode of k actions to the terminating
time period T, based on the sequence of rewards 7; and discount factor y, as Gy = Yx_o ¥ *Trrk+1, Where
y € [0,1] and || < o0 : k > t. Solving for the optimal policy requires the use of a state-action value or
Q-function to represent the desirability of being in state s; and taking action a; before following policy
n (Watkins, 1992). The Q-function can also be decomposed into both an immediate reward, 13,4, and
the discounted value of the successor state, yQr(S¢4+1,ar4+1), which allows for it to be reformulated using
a recursive Bellman equation (Sutton, 1998), with the following consistency condition holding for all

state values s € § and any policy m:

T

Vkr(5t+k' Apik) |7T] = E[re41 + ¥Qr(Ser1, Apr1)]
k=0

Qn(st' at) =E [

The mathematical structure of the Bellman Optimality equations inherently encapsulates the principle
of optimality which presupposes that whatever state the agent is currently in they should take the best
action and then must continue to act optimally afterwards (Bellman, 1957). Rational agents in RL
systems with MDP settings select an optimal policy m* which solves the MDP M and maximises the
cumulative expected returns at any point for a given state s and expected transition probability,
P(St4115t, ar), based on optimal decision rules which maximise the Q-function, Q,+(s, a), giving:

Qn(st,ar) =r(sp,ar) + VE?(st+1|st, a) [atﬂrenﬁétﬂ){Q”*(SHl' ar+1)}

Dynamic programming (DP) algorithms are an RL method that used to solve for the optimal Q-function
and policy if an agent has complete information regarding the elements of a discretised, stationary and
fully known environment of the MDP environment M (Bellman, 1957; Watkins, 1989). DP involves

(. F1ve | 280

breaking the overall RL problem into smaller sub-problems, solving for each problem, and then storing
the solutions in a memory-based tabular data structure. This technique of memoisation attempts to
overcome the ‘curse of dimensionality’ in which the rise in number of explanatory features exponentially
increases the state space possibilities, requiring the caching of computationally expensive functions and
processes into memory. DP requires the application of the Bellman Optimality equation to solve for the
optimal policy " at convergence using iterative learning methods such as value iteration or generalised

policy iteration.

It becomes infeasible to solve an RL problem in many real-world problems with DP when the
assumptions of a fully known MDP are not met. Even for complex RL problems with fully known MDPs,
the curse of dimensionality, where the number of variables required to be computed grows exponentially
with the dimensionality of the state space, rendering the agent unable to solve for optimisation given
the bounded computational constraints. To account for the shortcomings of DP, model-free and
approximate methods of RL have been developed to truncate the computational requirements for solving
complex problems. These methods draw their architectural roots in DP but relaxing the assumption that
complete knowledge of the environment is required. Rather, agents learn by interacting with the

environment to determine the optimal Q-function and hence the optimal policy for the agent to follow.

LOB dynamics in modern market microstructure environments have the capability of being explained
through an MDP framework and solved for using RL methods. However, the complexity of this
environment and the infeasible computational capability required for optimisation with basic control
methods requires consideration of approximate RL methods. Furthermore, these methods can be
amalgamated with Recurrent Neural Network (RNN) models to optimise an agents’ policy using model-

free Deep QQ-Learning approximation methods, which is the key RL model deployed in this chapter.

5.3.2 Model-Free Reinforcement Learning

Model-free methods of control optimisation can be utilised to break Bellman’s curse of dimensionality in
an environment with unknown state transition dynamics when reward functions are non-stationary in
nature, or in cases where the MDP is well defined it may be too computationally expensive to solve for
optimal behaviour using DP. Agents learn by extracting samples of experience by interacting directly
with the environment to formulate some value function and hence an optimal policy. The sample
trajectories and expectations supplant the full reward function R and transition dynamics P, and thus,

do not require full knowledge of the MDP environment dynamics to solve for optimal behaviour.

Model-free reinforcement learning techniques approach the agents’ control optimisation problem through
a synchronous iterative process of policy evaluation and policy improvement based on sample trajectories.
Policy evaluation involves performing backup and updates to an agents’ Q-functions based on their
freshest samples of experience. Secondly, exploratory e-greedy policy improvement is performed to derive
a better policy for the agent based on the updated Q-functions. This continuous cycle of policy evaluation

and improvement is executed until convergence at the optimal Q-function and optimal policy.

In this chapter we, focus on off-policy Q-Learning methods to learn a deterministic optimal policy by
sampling from episodic experiences of executing policies 7y, and using these samples to improve the Q-

function using generalised policy iteration to better approximate m. Q-Learning is a model-free Temporal

(Five | 281

Difference algorithm which is rooted in the same architecture of the SARSA algorithm (Rummery, 1994),
but rather learns the optimal Q-function through off-policy learning (Watkins, 1989; Singh, 2000). Q-
Learning begins by initialising an arbitrary Q-function function, Qy, , and updates the function based on
an observed reward and state transition tuple (S;, @;, Sg41,7t41), based on a learning rate a. The process
of updating the function, Qg, (s, a;), involves taking the e-greedy action, a;4;, with respect to the

successor state-action value function, Q;(Seyq1,Arsq):

an(st' ag) < an(st; a) +a <7”t+1 +y [a max Q¢(Ses1, A1) | — an(st' at))

t+1€A(Se+1)

This update is performed independently of the policy m, being followed, though the policy will still

determine how the agent moves through the system and what state-action pairs are visited and updated.

Once the policy evaluation is complete the agent performs e-Greedy in the Limit with Infinite
Exploration (GLIE) improvement by choosing the e-greedy action with respect to the updated function,
Qr,(St,A¢), for each state-action pair. This procedure determines that the agent should perform
exploration with probability € by selecting a random one of m actions in the set A(s;) which are
available to the agent in state s;. With probability, 1 — €, the agent exploits their current knowledge by
acting greedily with respect to the state-action value function, Qp,, which involves selecting a policy
from all available actions in the current state, A(sy), which maximises the agents cumulative expected

discounted rewards. The GLIE method requires the epsilon value to decay asymptotically to zero, € « %,

as more sample episodes are conducted, satisfying the Bellman conditions of optimality by ensuring that
all state-action pairs are explored infinitely multiple times and that eventually the policy converges on

a greedy policy.

Exploratory e-GLIE policy improvement bridges the exploitation versus exploration dichotomy
manifested in the competitive tension between the agents’ desire to exploit current knowledge to
maximise rewards, and their quest for broader knowledge through the exploration of the environment.
An agent that follows a deterministic policy my will only view the state-action pairs for which the policy
specifies, whilst there may be utility gained from learning the values of non-policy actions available to
the agent. Conducting exploration ensures an agent transitions to states previously unvisited, and
through interacting with new and diverse components of the environment the agent may acquire new
knowledge and potentially increase the upper bound of rewards available. The e-GLIE policy
improvement leads to the new policy w4 for state s; of:

arg max Qy, (s¢,a;) with probability 1 — € 1
M41(St) < € — GLIE (an (st at)) where a; = { at€A(st) _ N €

random a; € A with probability €,
Q-Learning algorithms converge asymptotically to the optimal state-action value function, Q.+, under
the assumptions that states are visited infinitely often which is achieved using episodic GLIE e-greedy

policy improvement (Singh, 2000).

5.3.3 Deep Recurrent Q-Networks

Modern LOBs are a highly complex system explained by a near infinite state space of potential financial

variables and an action space composed of a multifarious array of order types that can be placed at

(v Five | 282

minute price point constrained only by the trading venues tick size. Modelling this complex system can
be performed using approximate RL in the form of a Deep Recurrent Q-Network (DRQN). This model
requires a divagation from the tabular representation of state and action values utilised in Q-Learning
to one where Q-function values are approximated using a Recurrent Neural Network (RNN) in a quasi
neuro-dynamic programming framework. Various iterations of DRQN models have been successfully
applied to generate music (Jacques, 2017), whilst standard Deep Q-Networks have been used to attain

and surpass human-level abilities when playing computer games (van Hasselt, 2016).

In complex systems, Q-functions may be approximated using value function approximation by
generalising the state-action space rather than calling directly into a large cached state-action tabular
database. Value function approximation uses supervised learning methods such as neural networks by
taking examples of desirable value functions and extrapolating these to develop a general non-linear
approximation of the entire value function. Function approximators must account for problems where
the data is non-stationary and samples are not independent and identically distributed, given that the
probability distribution of the random variables in the model change with time. The advantage for using
value function approximations is that multiple state or state-action pairs with very similar attributes
where the difference between them has only a minuscule impact on the value of being in that state-
action pair, can be compacted together into a single value function, allowing for scalability in very

complex RL systems such as LOBs.

Q-function or state-action value function approximation estimates the true value function, Q,(s, a), for
policy m, using a parametric function approximator, 0, (s, a, w) = Q. (s, a), with parameter weight vector
w. The true Q-function, Q,, represents the actual discounted cumulative reward from being in state s,
taking action a, and then following policy m. A DRQN parameterised by w can be trained to find an
estimate of the current policy Q-function that is closest to the optimal policy Q-function such that,
0.(s,a, W) = Q,+(s,a). The weights of the DRQN are optimised through this process using stochastic
gradient descent (SGD) or adaptive gradient descent optimisation techniques presented in Section 3.1.8
and Section 5.2.5 by minimising the mean squared error (MSE) cost function, £L(w), with respect to the
parameter of weights w, over a distribution of inputs. The MSE for weight w estimates the sum of the

squared differ