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Abstract

Abstract argumentation frameworks are used to study various aspects of interaction between

arguments. One most fundamental such interaction is that some arguments may attack some

other arguments. In a sense, only those arguments finally matter that are successfully defended

against the attackers. Such arguments are called admissible. This thesis incorporates three

papers in this area of research, two of which are devoted to the admissibility of arguments.

The first paper introduces the notion of the admissibility backing of an argument – a minimal

set of admissible arguments that can successfully defend (respectively attack) a given argument

against its attackers (defenders). This paper shows how admissible backings can help us localize

the admissibility of an argument. It does so by separating those arguments that are relevant to

the admissibility of a given argument from those that are not. Independent corroboration for

this approach is provided by showing how major results in Dung’s approach to argumentation

can be obtained using admissibility backings.

The second paper explores the propagation of admissibility backings in the following sense:

under what condition, and in what way, an admissibility backing of a given argument will

contribute to the backing of a different argument? It is shown that under certain conditions,

the propagation is transitive. It is further shown how the propagation of admissibility backings

can be used to partition an argumentation framework to independent sub-frameworks. This is

indicative of an interesting approach to the splitting and merging of different argumentation

frameworks, a theoretical investigation of which is left for future research.

xiii



The last paper explores a novel approach to marrying the argumentation frameworks to de-

feasible reasoning. The desired goal behind this approach is that an argument that is deemed

justied in an argumentation framework should indeed satisfy our expectations as per defeasible

reasoning. The efficacy of this approach is shown by providing a mapping from it to Dung’s

argumentation framework.
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Chapter 1

Introduction

Arguments are an integral part of practical reasoning. Arguments are used both to represent how

we reason, and tell us how we should reason. In this breath, arguments are used in many facets

of our lives, from the mundane activities of the daily life, e.g., what laptop to buy, to the grand

issues such as the domain and limits of civil liberties. For instance, in recent years, there have

been a number of debates and subsequent reforms on issue of the same sex marriage. The pre-

sented arguments are sometimes simple and clear, and, sometimes long and complicated.

An argument is only prima facie justified.1 We accept an argument until we weigh it against its

counter arguments. Argumentation is then the process by which we weigh arguments against

their counter arguments. The field of Argumentation theory is the study of various facets of

arguments and argumentation. For instance, Rhetorics is the study of the ways arguments are

formulated and delivered within natural languages to persuade an audience. Radical Argumen-

tativism, Communication and Rhetoric, Formal Dialectics, Pragma-DiaIectics, Informal Logic

and the Formal Analysis of Fallacies are among other fields of studies in argumentation theory

[vE95].

In Artificial Intelligence, argumentation theory is presented as one of the approaches to non-

monotonic reasoning. Many authors have, though, argued that the applications of argumentation

1 In legal reasoning, Prima facie justified means justified at first glance.
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theory extend beyond the conventional readings of non-monotonic reasoning [PV01].

The monotonic reasoning is a form of reasoning where the drawn conclusions stay true regard-

less of the added premises represnting new findings. The classical deductive logics and the

mathematical reasoning are the two examples of monotonic reasoning.

The nonmonotonic reasoning, on the other hand, allows an existing conclusion to be retracted

on face of new information. Inductive reasoning is nonmonotonic. Since the early years of Ar-

tificial Intelligence, it is realized that any agent that needs to make decisions under uncertainty

is bound to appeal to some form of nonmonotonic reasoning.

The adoption of the formal argumentation theory to model nonmonotonic reasoning is now more

than three decades old. There are also many overlaps between the concepts in argumentation

theory and the works of philosophers Toulmin [Tou58], Chisholm [Chi66], Pollock [Pol67] and

Rescher [Res77]. All these works are presented under the subject defeasible reasoning, In an

unforma lsetting, nonmonotonic reasoning can be viewed as the counterpart of the defeasible

reasoning in philosophy. These works continue to be a valuable source of insight and inspiration

in argumentation theory. For instance, Toulmin’s model of arguments is used as a guiding tool

for formal representations of legal arguments [Ver09, BPWA13].

There are two well regarded surveys on the argumentation theory [CML00, PV01]. The two

surveys are complementary, and, thorough. There are though a few developments since then,

mostly in relation to the applications and extensions of argumentation frameworks, notably the

argumentation schemes [DPPS09, Sim11]. In this regard, there is not much that can be added

by this author to the overview of argumentation theory. We though need a platform to create a

point of view for this dissertation. The first half of this dissertation, the major half, uses Dung’s

abstract argumentation framework as its underlying framework. Dung’s abstract framework as

well as the semantics of argumentation theory is presented in the background chapter of this

thesis. The second half of the thesis is in relation to a more model theoretic friendly inference

2



1.1. AN OVERVIEW OF ARGUMENTATION THEORY

rules. A background theory for this half of the thesis requires an understanding of arguments

and attack relations, as well as, the argumentation schemes.

The introduction section is set to present both a general understanding of argumentation the-

ory while explicating relevant subjects to this thesis. The background section presents Dung’s

framework. The motivation section explains the general principles, goals and directions of this

dissertation. The conclusion chapter discusses how the envisaged directions can be followed.

We start with a brief account of the elements of argumentation theory.

1.1 An overview of argumentation theory

In reasoning by argumentation, an agent draws conclusions by constructing arguments. The

arguments are constructed from the agent’s knowledge base and the information at hand. The

agent then decides which conclusions to believe by the process of argumentation. The argu-

ments are generally constructed to serve the agent’s intentions [Pol87].

The formal argumentation theory is comprised of a number of elements. The elements are,

– the arguments,

– the counter arguments,

– the evidence,

– the schemes and the rationales.

The schemes and rationals themselves comprise,

– what constitutes an evidence,

– what constitutes an argument and a counter argument,

– how a counter argument impacts the plausibility of an argument,

– given a pool of arguments, what arguments can be coined plausible,

and whether or not there are forms (degrees) of plausibility, e.g., justified vs.

3



1.1. AN OVERVIEW OF ARGUMENTATION THEORY

provisionally acceptable, and, if there are then what they mean within the context of

qualitative reasoning,

– and finally, how to ensure that the conclusions of the justified arguments are

indeed what an agent expects to believe given all the information at hand,

i.e., whether or not the reasoning is sound with respect to the agents model of

the real world.

These elements are brought together as an argumentation framework or an argumentation sys-

tem. Under this description, argumentation theory is a form of reasoning with a distinct structure

where arguments are its primary building blocks.

The objective of research in the field of argumentation theory has therefore been the investi-

gation (the identification, elaboration, characterization, formulation and implementation) of the

various aspects of each and all of the above elements, often accompanied with a corresponding

framework. In the context of defeasible reasoning the most influential work in argumentation

theory is the work of John Pollock. Many of the adopted concepts, e.g., the attack relation or the

types of attack relations, and, the theories, e.g. the theory of warrant and the method of status

assignment, can be found within his works [Pol87, Pol92, Pol94, Pol96, Pol01, Pol10].

The most unifying work, though, is the introduction of Abstract argumentation frameworks by

Phan Minh Dung in 1995 [Dun95b]. In his seminal paper [Dun95b], Dung presents an abstract

argumentation framework where arguments are represented as abstract entities, free of their in-

ternal structure. The interaction among arguments is reduced to the argument, counter argument

relation. The argument, counter argument relation, called the attack relation, is then presented

as a binary relation between the two abstract frameworks. As part of major achievements of this

paper, Dung claims that,

“most of the major approaches to nonmonotonic reasoning and logic program-
ming are special forms of this theory of argumentation.”

This thesis uses Dung’s abstract argumentation framework as its underlying framework. Ac-
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The elements of formal argumentation theory

cordingly, a detailed account of Dung’s framework is provided in the background section of this

chapter.

Subsequently, the argumentation-theoretic semantics is applied to a number of nonmonotonic

reasoning systems, most notably in the area of logic programming [BTK93, KMD94, Dun95a,

DS95]. These works are culminated into a seminal paper by Bondarenko and et al. [BDKT97].

In their paper [BDKT97], the authors present a general argumentation-theoretic assumption

based framework for default reasoning that subsumes many of the approaches to nonmono-

tonic reasoning including the Theorists Logic and the Default Logic [McC80, Rei80, Moo84,

Poo88].

The argumentation-theoretic assumption based framework is inspired by the theorists approach

to default reasoning [Poo88]. The work uses the argumentation theoretic concepts, such as

attack relation between sets of assumption, and, argumentation theoretic semantics, e.g. the

admissibility semantics.

We now proceed by giving a short account of the elements of argumentation theory.

1.1.1 The elements of formal argumentation theory

1.1.1.1 Arguments

In defeasible reasoning, the large majority of realization of arguments follow a general scheme.

An argument is simply a scheme for encoding the reasonings of the sort –

for an agent, believing in the statements P1, · · · , Pn is a reason for believing the
statements Q1, · · · , Qm.

Hence, we may view arguments as mappings, by an agent, from the sets of statements to the sets

of statements. The statements P1 · · ·Pn is usually referred to as the premises of an argument

and the statements Q1, · · · , Qm its conclusions.

Furthermore, the underlying meanings, interpretation, of statements are left to the agent. This
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The elements of formal argumentation theory

makes the reasoning by argumentation a symbolic form of reasoning. As a consequence, it is

imperative to make sure that every argument contains all the information that pertains to the

justification of the argument, independent of how the rest of the world pans out. We call this

principle, the localization of the acceptability of an argument at the knowledge base (database)

level.

Various authors proposed different formulations of arguments, each based on their target ob-

jectives. These formulations tend to be heavily intertwined with the choice of the underlying

language and the schemes for arguments. Yet, almost all the formulations of arguments share

certain characteristics. A common practice is to construct arguments in the manner we construct

proofs in the classical logics. In these argumentation systems, the agent’s knowledge base con-

sists of a number of fixed inference rules of the sort P1, P2, · · · , Pn → Q. Accordingly, the

reasoning by argumentation is regarded as a form of qualitative rule based reasoning where

arguments provide the tentative proofs.

The inference rules may also be classified in terms of their defeasibility. Many of the proposed

frameworks employ two types of inference rules, the strict rules (the deductive rules) and the

defeasible rules. The argumentation systems that are based on logic programming with negation

as failure have adopted these two forms of inference rules [Dun95b].

It is the nature of defeasibility of arguments that determines how the conflict between the argu-

ments ought to be resolved. Naturally, any resolution between the conflicting arguments should

meet expectations of the agents involved. In addition, the inference rules may also be assigned

certain degrees of strengths [PS97, PS99, Pol01, Ben02].

Secondly, the arguments can be chained together such that conclusion of an argument may serve

as the premise of another. In this manner, arguments are usually presented as tree structures

of certain characteristics. Accordingly, it is common to represent arguments by the inference

graphs, or, as simple triangles where the base and the top represent the premises and the conclu-
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The elements of formal argumentation theory

sion of the argument. For instance, in Simari & Loui framework [SL92], arguments form tree

structures with some additional characteristics. The additional characteristic is being subjected

to the Occam’s Razor maxim. The principle of Occam’s razor is to provide a minimal proof for

the conclusion that also automatically prevents circular arguments.

Another distinct feature of the formulated arguments is that the pool of constructed arguments

tends to be monotonic. That is, a constructed argument cannot be removed from the pool of

arguments, upon the addition of new information. Simari & Loui’s framework is an exception

to this rule [SL92].

The source and the classifications of inference rules are themselves the subject of much re-

search. In the second half of this dissertation, we propose a schema for representing arguments

that extends beyond the conventional approaches.

1.1.1.2 Conflict between arguments

The issue of conflict between arguments is at the heart of argumentation theory. In general,

two arguments are considered to be conflicting if given a context, acceptance of one argument

prevents us from accepting the other. It is in this sense that arguments are regarded as tentative

proofs where the addition of information may make them no longer justified.

In common terminology, an argument that makes another argument inapplicable is said to be

the counter argument to that argument. In the literature, the counter argument-argument relation

is referred to as the defeat or the attack relation.

The distillation of disagreements between arguments to a simple counter argument-argument

relation is, however, not a straightforward affair [Pol94, Lou87, Lou89, PL92]. In fact, the

forms of conflict between arguments and how to resolve them is one of the most contested

subjects among the researchers, especially in the case of legal reasoning [PS99, Pra01a, PS04,

Ver01a]. Every now and then, a new type of conflict between arguments is identified, e.g., to

7



The elements of formal argumentation theory

attack the strength of an argument, or, to attack the attacking force of an argument [Mod06,

MGS08].

Pollock identifies two kinds of defeat relations in general, the rebutting and the undercutting

defeaters [Pol87]. A rebutting defeater could be any reason for denying the conclusion of an

argument. The rebutting defeaters have the distinct characteristic that they must present a con-

clusion that is contrary to the conclusion of the argument in question. In the literature, this

feature makes the rebutting defeat relation a symmetric defeat relation.

The undercutting defeaters, on the other hand, need not present a conclusion contradictory

to the conclusion of the argument. The undercutting defeaters attack the underlying defeasible

inference of the argument. For instance, when an argument attacks the reliability of the provided

reasoning, the argument undercuts that argument. An example that is commonly presented for

the undercutting defeat is [Pol87],

the red appearance of an object is a sufficient reason to believe that it is red. But,
appearing red under a red lighting no longer warrants to believe that the object is
red.

An undercutting defeater, therefore, need not show that the conclusion of the argument under

question is false. Hence, the undercutting defeat relation usually tends to be an asymmetric

relation.

In his writings, Pollock argues that all forms of defeat relation between arguments can be pre-

sented as the rebutting and the undercutting defeat relations. On the other hand, he also exten-

sively discusses another form of defeat among arguments that is exemplified by the Kyberg’s

Lottery paradox [Kyb61] (see appendix Lottery paradox).

Pollock presents the Lottery paradox in the context of collective defeat. The collective defeat

says while in a group of arguments no single argument can be said to be individually defeated,

the group is defeated as a whole. It is though difficult to reconcile the lottery paradox form of

collective defeat to either category of the rebutting or undercutting defeat relations.
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The elements of formal argumentation theory

In all the presented argumentation systems, attacking a subargument of an argument always

impacts the justification of the argument. The converse is however a hotly debated and unre-

solved subject. That is, whether or not there are circumstances where a rebutting attack man-

dates the retraction of any of the conclusions of subarguments of an argument, i.e., whether or

not, a rebutting attack can propagate from an argument to some of its subarguments [PV01].

Some of such issues resulted in a certain axiomatic account of argumentation theory [CA05,

CA07].

We can therefore see that the topic of an attack relation between arguments is a complicated,

demanding and sometimes a controversial subject. This issue itself is even more complicated

by the choice of an underlying language, and, how the arguments are constructed.

Following the literature, arguments are regarded as basic atoms in argumentation systems. This

feature allows for arguments not to be directly tied to any particular underlying language. The

choice of an underlying language, however, has a real impact on how the attack relation is

identified and resolved.

For instance, in the argumentation systems where the underlying language is a classical lan-

guage the attack relations are at the first instance symmetric. It is because, all the conflicts are

in the form of conflicts between two contradictory sentences P,¬P . We are then forced to have

a separate mechanism, e.g. specificity, to break the tie between the two attacking arguments. An

instance of such an argumentation framework is given in [BH01] where the underlying language

and the consequence relation are fully classical.

The assumption based frameworks are another instance where the choice of an underlying lan-

guage is directly tied to how we construct our database and how we define the attack relation

between arguments. In the assumption based frameworks, although the underlying framework

is a deductive framework, the inference rules do not automatically have a contrapositive coun-

terpart. This feature allows them to define a Dung’s style semantics based on the attack relation

9



The elements of formal argumentation theory

between sets of assumptions [KT96, BDKT97].

The other forms of attack relations are arguments attacking an attack relation [Mod09], attack

relation between sets of arguments [Boc02], the attack relation that reduces the strength of

an argument [Ben02], and the attack relation that reduces the strength of an attack relation

[MGS08].

Except in regard to the context dependent defeasible rules, the second half of this thesis, we

only deal with the Dung’s abstract argumentation framework. Most of the forms of attack rela-

tions, except in case of the Lottery paradox, fall within the purview of the binary attack relation

of Dung’s abstract framework. This happens in one of two ways. One way is to distill the attack

relations into the form of the rebutting and undercutting attack relations. The rebutting and un-

dercutting attack relations both can be represented in terms of binary attack relations. The other

way is to translate a corresponding argumentation framework into Dung’s abstract framework.

Hence, by adopting Dung’s framework, we implicitly showcase the span of applications of our

results.

Next, we discuss argumentation schemes. The subject of argumentation schemes argues for a

broader view of argumentation theory than its conventional presentation. The second part of

this thesis follows this line of thinking.

1.1.1.3 Argument schemes

Argumentation schemes are initially introduced to model arguments and the ensuing argumen-

tation in legal reasoning [Wal97], the kind of issues that involve expert opinion, witness testi-

mony and circumstantial evidence. It is then presented as a general approach for capturing a

wide range of practical reasoning.

The second half of this dissertation presents context sensitive defeasible rules. The relation be-

tween argumentation schemes and context sensitive defeasible rules is that practical arguments

10



The elements of formal argumentation theory

generally constitute two parts, the primary reasons and the ancillary reasons [Wal03b, Wal03a].

In his defense of argumentation schemes, Walton discusses the need for this type of argu-

ments.

“ An argument as used in a given case needs to be evaluated not just as a set of
premises and a single conclusion, but as an inference drawn in a context on a
balance of considerations. ”

Argumentation schemes are also associated with the issues regarding burden of proof and the

protocols for argumentation games [HPW04]. For instance to model the arguments of legal

reasoning, each argument scheme is designed to capture certain types of statements. Each state-

ment may involve a number of key elements such as expert opinion [Wal02, Pra01b, PRW03].

Each element may then open up new lines of inquiry and new arguments. The new arguments

then follow their own schemes such as the credibility, the relevance, or the impartiality of an

expert.

The field of argumentation schemes is fairly young, with many promises. The promises mostly

emanate from the range and the procedure of inquiries into what constitutes an admissible evi-

dence. In most of the approaches to nonmonotonic reasoning, the information is though always

taken to be true. 2 However, in reality, of which multiagent systems are an instance, this is

hardly true. On the other hand, what constitutes an admissible evidence is one of the pillars of

legal reasoning. Consequently, the norms and procedures for a systematic inquiry into estab-

lishing the admissibility of evidence has been under constant scrutiny and revision. Obviously,

there is much to be learned, on how to obtain and treat the information in a multiagent environ-

ment. Such studies will also be helpful in designing protocols for inter agent communication

[PS98, PRW05, Wal07, Wal10]. These efforts include the conversational contexts, and the pro-

tocols for inter agents’ negotiations e.g., negotiation by persuasion.

Many of works on the argumentation schemes make references to Toulmin’s general model

of arguments [Tou58]. Toulmin describes that an argument generally has five components,

2 There are some exceptions here and there all related to the research on the nonmonotonic reasoning with
non-prioritized information [FKIS02].
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data, conclusion, warrant, backing and rebuttal. The data and conclusion correspond to the

premises and conclusion of an argument. The warrant, backing and rebuttal are however more

intricate topics, subject to various interpretations and schemes. The warrant is the underlying

reasoning that connects data to conclusions. The rebuttal is all the situations where the warrant

fails to apply. The backing is the higher order reasoning that acts as a warrant for the warrant

itself. There are efforts to relate the Toulmin’s model of arguments to the current models of

argumentation [Ver05, Ver09].

1.1.1.4 Semantics

A large volume of research in argumentation theory is dedicated to the semantics of argumenta-

tion systems. This line of research has resulted in various semantics for various argumentation

systems. The earliest form of semantics is the theory of warrant, presented by Pollock as part

of his formal theory of defeasible reasoning. The theory of warrant was then adopted by some

early frameworks including [SL92].

The theory of warrant is centered around two concepts, one is the concept of reinstatement, and,

two, is the shift in the burden of proof. An argument that attacks some attackers of an argument,

is said to reinstate that argument against those attackers. The rationale, here, is that an argument

that is not justified cannot reject other arguments. Hence, an argument that successfully attacks

an argument, nullifies all the attack force of that argument.

Between the two concepts, reinstatement is the most visible concept within argumentation the-

ory, as it provides an abstraction at the level of what arguments can be labeled justified or

admissible. The notion of burden of proof is different. The difference is that within the notion

of burden of proof, there is a dynamic element that involves the search for counter arguments

[Pra01a, PRW05]. Respectively, what constitutes an admissible argument is a more lucid and

procedural concept. The notion of burden of proof is studied more within the domain of legal
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reasoning, argumentation by query and the argumentation games.

The theory of warrant is what some view as a procedural semantics. The procedural definitions

may also be treated as proof theories. To rectify the distinction between the two sides of theory

of warrant, the semantics and the proof theory, new semantics are proposed. These formulations

of semantics are the semantics by the status assignment or labeling 3 [Cam06a, Ver07], and, the

dialectical semantics which are somewhat the equivalent counterparts of the dialectical proof

theories.

The semantics by status assignment, labeling, the dialectical semantics and dialectical proof

theories are all centered around the concept of reinstatement. An argument is labeled in only if

it has no attacker or all its attackers are labeled out. Otherwise, the argument is labeled out. This

formulation of semantics defines the acceptability status of an argument by the acceptability

status of it attackers. Hence, they are sometimes referred to as the recursive definitions of

semantics [PV01].

The theory of warrant and especially the dialectical proof theories all closely mirror the same

process that we follow in debates, to seek and decide, the winning arguments. Some of the early

works on formalizing the dialectic procedure as a proof theory include the works [SCG+94,

PS96a]. The other variations of dialectical proof theories include [CS07, GRS07, DKT06].

The dialectical proof theories are sometimes presented in the form of argumentation games.

The argumentation games are initially introduced to account for the shift in the burden of proof

[PS98]. They then are adopted for the application of standard dialectic proof theory.

Argumentation games consists of two groups of agents engaged in a turn based adversarial

argumentation. The first group, the proponents, present the first argument. The challengers,

the opponents then present a counter argument. Then in turn each group present their counter

argument to an argument of the other group. It is then easy to see how argumentation games

3 The semantics by status assignment and the semantics by labeling are more or less the same theories.
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can be used for the dialectical proof theories. Argumentation games are however multi faceted

and involve other elements than just the dialectic proof trees. They involve, a protocol for the

game, a protocol for dialogues between agents and the inquiry protocols.

The most widely used semantics are though the fixed point semantics. The basic fixed point

semantics are the grounded, complete, preferred and stable semantics. These semantics are

first presented by Dung in conjunction with the introduction of abstract argumentation frame-

works.

1.1.1.5 Abstract argumentation systems

The central idea behind the abstract argumentation systems is that the rationale by which we

decide whether an argument is acceptable or not, is independent of any particular kind of an

argument or the internal structure of arguments [Pol87, Dun95b, Vre97].

In this regard, arguments can be regarded as abstract entities represented by some set of sym-

bols, where the only thing that determines the acceptability of arguments is the knowledge of an

attack relation between the arguments. The attack relation (a, b) states that argument a attacks

argument b.

The importance of abstract argumentation frameworks is well recognized in the literature.

His (Dung’s) article was a major breakthrough in three ways. It provided a gen-
eral and intuitive semantics for the consequence notions of argumentation logics
(and for non-monotonic logics in general); it made a precise comparison possible
between different argumentation systems (by translating them into his abstract
format); and it made a general study of formal properties of systems possible,
which are inherited by instantiations of his general theory [Pra10].

Dung’s abstract argumentation framework is the first and the simplest abstract argumentation

framework. Dung’s abstract argumentation framework AF is a tuple AF = 〈AR , ATT 〉,

comprised of a set of arguments AR, representing all (possible) arguments at hand, and, a set

of preconceived fixed tuples (a, b), known as the attack relation ATT between arguments. The
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centerpiece of Dung’s framework is the acceptance relation between a set of arguments and an

argument. If a set of S arguments can successfully fend off all the attackers of an argument a

then we say S accepts a.

For an argument to be deemed acceptable it needs to be accepted by some set of arguments

whose each of its arguments is acceptable. Otherwise, the argument is defended by some unwar-

ranted argument, making the whole defense unwarranted. In abstract argumentation frameworks

a set of arguments that can defend their members against any attacker is called an admissible

set of arguments. Hence,

we call an argument admissible if it is accepted by some admissible set, and,
dismissible if it is attacked by some admissible set.

It is easy to see how the two notions of acceptance and reinstatement are like the two sides of the

same coin. This fact is used to draw a two way translation between other proposed semantics,

e.g., the theory of warrant, unique and multiple status assignment, and, Dung’s presented fixed

point semantics. For instance, the semantics by multiple status assignment roughly corresponds

to the credulous semantics of preferred extensions.

Since their introduction, abstract argumentation frameworks have become the domain for mod-

eling various types of argument interactions and the corresponding semantics. Hence, we can

view the field of abstract argumentation theory as,

a study of the properties of the interactions among arguments, based on the given
set of relations between the abstract arguments.

A large portion of this dissertation can then be said to fall within the field of abstract argumenta-

tion theory. In this thesis, we take Dung’s abstract argumentation framework as the background

framework.
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1.1.2 Computational complexity of argumentation frameworks

The computational complexity is the study of computational cost of algorithms in answering

Decision problems. A decision problem is a problem whose answer is either yes or no (in other

words, whether or not an object belongs to a set.) We may now regard a problem as a decision

problem plus an algorithm for it. The computational cost is denoted by the computational cost

of type of the standard problem to which a problem can be translated.

A non-deterministic algorithm is an algorithm which takes different routes probabilistically

to the answer. Hence, each time it may reach its solution differently. Accordingly, a non-

deterministic polynomial time problem, i.e., an NP-problem, is a problem for which there is a

non-deterministic algorithm that can reach its solution in a polynomial time. On the other hand,

the class of NP-complete problems are the class of problems that although it is easy (can be

done in polynomial time) to verify a solution, there is no easy way to find a solution in the first

place. The co-NP is the class of problems for which the search for a counterexample is an NP

problem. Accordingly, the co-NP complete is the set of decision problems where the search for

no instances is an NP-Complete problem.

In regard to abstract argumentation theory, we are interested in the questions that relate to the

admissibility of arguments. The central questions are whether or not an argument is accepted or

attacked by some admissible set. A full study of complexity properties of argumentation frame-

works is done by Dunne et al. and Dimopoulos et al. [DT96, DNT99, DNT00, DNT02, DBC01,

DBC02, DB04, DW09, DHM+11]. Most of these studies cover the worst case scenarios.

In coherent systems (see background theory section), there are algorithms, e.g., the dialectical

proof theory methods, for finding whether or not an argument is credulously or skeptically

accepted. The credulous acceptance is found to be an NP-complete problem and the skeptical

acceptance to be a co-NPcomplete problem. The NPcomplete and co-NPcomplete problems are

regarded to be computationally expensive problems.
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In the first part of this thesis, we introduce admissibility backings of arguments. The admissi-

bility backings of arguments are our way to get around the complexity issues of argumentation

theory as suggested in [Vre06]. This is despite the fact that we cannot change the nature of com-

plexity problems of argumentation frameworks. In the next section, we present the motivation

behind this thesis.

1.2 The motivation

This dissertation consists of two parts. Although, each part deals with a different aspect of

formal argumentation theory, they both share a central theme, namely localization. The first

half of this dissertation investigates the localization of the admissibility of arguments, that is

purported by the admissibility semantics in the assumption based argumentation frameworks

[KT96, BDKT97]. The second half of this dissertation deals with the localization of a new

form of inference rules that covers a large spectrum of practical reasoning.

This thesis is motivated by two underlying principles of reasoning by argumentation. The two

principles are,4

• arguments localize reasons, and argumentation localizes reasoning;

• the reasoning by argumentation has two facets, the defeasible reasoning and the reasoning

by inquiry.

Neither of these principles are explicitly stated as principles. To explain the reason for why

these two are principles of reasoning by argumentation is beyond the scope of this dissertation,

and, more likely than not requires years of research and experience. Nonetheless, the two

4 The third principle is the place of intentional models of reasoning by argumentation. This principle is the
central motivating factor behind the context sensitive defeasible rules that constitute the second part of this disser-
tation. However, there are many different opinions on the role of intentional models of reasoning by argumentation.
Consequently, we had to present the motivating factor in terms of the non existence of intensional models of de-
feasible reasoning. There should however be a strong link between the intensional models of defeasible reasoning
and argument schemes.
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principles are pointed out by various researchers under various topics. Some of these topics are

the localization of reasons [Pea88, Par98], the role of defeaters [Pol87], the role of assumptions

[BDKT97], the roles and the lines of inquiry in reasoning by inquiry [Wal08, Wal03a].

1.2.1 Localization

By localization in general we mean,

Note 1.2.1.
the structuring of the knowledge base such that given a topic, the boundaries be-
tween the relevant and the irrelevant information can be effectively and efficiently
drawn.

The term localization itself is adopted from its use in the works of Judea Pearl [Pea88] in

causal reasoning (for further discussion, see appendix 5.2.2). In there, the term local is used as

regardless of other things. To localize the knowledge about an object X , we tie the knowledge

of X to only the knowledge of limited number of objects, W,Y, Z, etc. The objects W,Y, Z are

then regarded as the most directly relevant objects to X . The identification of objects W,Y, Z is

guided by a general scheme. The scheme is that if we know W,Y, Z then we can know X and

that any other information pertaining to other entities do not add to our knowledge of X . What

is knowable about an object is still bounded by the domain of knowledge base.

The localization of reasons in argumentation theory is done by drawing concise boundaries over

the applicability of inference rules. These boundaries are represented in the form of a connec-

tion between the antecedents, conclusion and the defeaters of the rule. In the same breath, we

may say that the Toulmin’s model of arguments, too, is set to localize the applicability of argu-

ments. Accordingly, there is the implicit assumption that the reasoning by argumentation has

an underlying working intentional model. The research on the intentional models of arguments

is implicitly discussed under the topic of argumentation schemes. Hence, we claim that,

Note 1.2.2.
the localization of defeasible inferences is one of the primary goals in the model-
ing of arguments.
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1.2.2 Argumentation theory is a two pronged approach to reasoning

In the natural world, almost all forms of reasoning are done via some form of feedback loops,

although, there are some solely feedforward systems, as well. Even the simple task of moving a

hand to a target position is done by the constant feedback about the position and the correction of

trajectory. The feedback information can be obtained passively or actively. The usual forms of

perception by the sensory apparatus constitute the passive forms of feedback, e.g., the passive

perception by vision or tactile senses. In practical reasoning, the active forms of feedback

are generally done by inquiry. The argument for some system of inquiry should then be self

evident.

Practical reasoning by nature is both defeasible and inaccurate. The most practical way to make

it less defeasible and more accurate is by the constant correction through better information.

The most practical way to obtain better information is by the intelligent inquiry. Hence, an

indispensable aspect of practical reasoning is the reasoning by inquiry.

Note 1.2.3.
The argumentation theory is (should), therefore, be a two pronged reasoning sys-
tem. The first part constitutes the reasoning as presented by many argumentation
frameworks. The second part should be the reasoning by inquiry.

The focus of research has, in large, been on the first phase of argumentation theory. However,

in recent years, the researchers are, gradually, turning their attention to the second phase of the

reasoning by argumentation which is how to conduct targeted inquiries.

In the literature, the inquiries fall within three categories. One form of inquiry is in regard to

argumentation by the adversarial process. The argumentation by adversarial process is usually

presented in the form of argumentation games. In argumentation games, the inquiry section is

part of the protocol or is the algorithm. The protocol is responsible for telling the proponents

or the opponents which arguments to present next. This form of inquiry is the most discussed

form of inquiry in the literature [PS98, DKT06, GRS07, TDH12].

Another discussed form of inquiry is in relation to the suppositional arguments [Pol90, Bod02].

19



Ancillary reasons and context sensitive inference rules

The suppositional arguments are also presented in the context of assumption based reasoning

[TK95]. The third form of inquiry is in relation to the argument schemes [Wal03a]. This form of

inquiry is exemplified by the inquiries about the reliability of (expert) witnesses [Ver01b].

A major goal of this dissertation is to assist the reasoning by inquiry, either by a more pragmatic

and yet localized defeasible inference rules, or, structure an argumentation framework through

the localization of the admissibility of its arguments. The following sections 1.2.3 and 1.2.4

summarize the problems we try to solve in this dissertation as well as the motivation behind

them.

1.2.3 Ancillary reasons and context sensitive inference rules

It is argued that the models of arguments that are based on the conventional models of defeasible

inference rules do not capture a wide range of practical reasoning. A number of authors then

introduced new models of arguments, all grouped under the name argument schemes.

In the spirit of this new impetus, we introduce an alternative representation of defeasible rules

that is context sensitive. The term context is borrowed from its references by Walton and Reed

[RG01]. We present these defeasible inference rules in line with the two principles, notes (1.2.2)

on page 18 and (1.2.3) on page 19. The main focus is though on the first principle of reducing

the gap between the intentional and the extensional models of argumentation systems. In model-

theoretic terms, a proper localization should capture, “what we get is what we expect to have”.

Every application of an infertence has a context. Hence, we made the context explicit in the

rule.

We effectively assume that there exists a local model associated with an inference rule. The

function of these local models is to capture the distinction between the relevant and the ir-

relevant context. Each local model presents the impact of context on the acceptability of an

inference. The applicability is encoded in terms of a status value. The status value ranges over
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the fully acceptable to provisionally defeated to outright defeated. In the process, we devise an

argumentation system based on these inference rules.

Furthermore, the context is represented in terms of the primary and ancillary reasons. The

inference rules are then presented in the usual form, “σ : P → Q, assuming not-R”. The

antecedent P is still taken as the primary reason to believe in Q and R as the abnormality

condition of the rule. For a rule to get triggered, the primary reasons need be present, as usual,

and, the rule fails if the abnormality condition is triggered. The distinction is that, now, in

addition to the primary reasons, P , there are also ancillary reasons in play. The ancillary reasons

represent the circumstances that either strengthen or weaken a given rule. The effect of ancillary

reasons is then encoded in a local model associated with the rule. In this manner, the inference

rules are still black boxes that both localize and capture the intended underlying explanation

associated with an inference [RG01, KR04, RW06].

1.2.4 A case for localizing admissibility of arguments

It is already established in the literature that the best way to investigate the issues regarding

admissibility of arguments, is by means of the abstract argumentation frameworks. Accordingly,

we present our study into the localization of admissibility of argument within Dung’s abstract

argumentation framework. For the definitions regarding the notion of admissibility, see either

section 1.3 or section 1.1.1.5.

The presented semantics of argumentation systems are all, more or less, centered around (i.e.,

built upon or translated into) admissible sets of arguments.

A central question in argumentation theory is whether or not an argument belongs
to an admissible set.

This central question is followed by its how-to question.

A central problem in argumentation theory is how to find that whether or not an
argument belongs to some admissible set.
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This problem, in general, is shown to be NP-complete [DBC02]. One thing we need to remem-

ber is that not every argument is relevant for the admissibility of an argument. Accordingly, one

approach in addressing this problem is to localize the question to only those arguments that play

a role in the admissibility of an argument.5 Within this context now, the problem of localization

is how to structure the knowledge such that the information is sorted by its relevance in regard

to answering certain questions. In relation to the argumentation theory, the questions for which

we seek answers are the ones in regard to the admissibility of arguments. The localization that

we seek is therefore the localization of admissibility.

The central goal of the first part of this dissertation is then,

the formulation and characterization of localization of the admissibility of argu-
ments. This also includes its propagation along the attack sequences, followed by
its applications.

The only arguments that are relevant in making an argument admissible (respectively dismis-

sible) are those that belong to some minimal admissible set that either accepts or attacks an

argument. It then becomes apparent that the localization of admissibility of arguments, can be

formulated in terms of the minimal admissible sets that accept or attack an argument.

We call these minimal admissible sets the admissibility backings of an argument. The term

backing is borrowed from the role of backings of an argument from Toulmin’s model of ar-

guments. In Toulmin’s model the role of backings is to support an argument [Tou58]. We

however distorted the term backings from supporting an argument to making the argument ad-

missible or inadmissible. To ease the discussion, whenever there is no ambiguity we refer to the

admissibility backings of arguments by the backings of arguments.

Our exploit of the minimal admissible sets hinges on one postulate and one assumption. The

postulate is that,

5 The term localization here is meant as the reduction of a global set to its relevant subsets.
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the minimal admissible sets that accept or attack an argument capture the minimal
requirement for the admissibility or dismissibility of that argument. Secondly, a
minimal admissible set that accepts or attacks an argument remains such a mini-
mal set irrespective of other arguments in the framework.

In Dung’s abstract argumentation framework, this postulate is rather one of the main properties

of admissibility. In [Dun95b], it is shown the set of all admissible sets form a complete partial

order with respect to the set inclusion.

The assumption for the exploit is less straightforward. But, it allows for the implications of the

postulate to extend to the twin issues of the dynamics of argumentation theory and the merging

of argumentation frameworks. The assumption requires that,

a minimal admissible set that accepts or attacks an argument to remain such min-
imal admissible set in a dynamic argumentation framework.

Obviously, there is no such guarantee. Hence, to bring the assumption into a workable condition

we need to make further considerations.

By the manner in which arguments are constructed, given a pool of information, there is a

good likelihood that we can construct arguments indefinitely. That is, at any instance of our

deliberations, we may have to consider an unbounded pool of arguments. However, though

not conclusive, for all intensive purposes, we only need to consider a finite number of argu-

ments. Firstly, every agent is resource bounded. So, it can only construct a limited number of

arguments. Secondly, the real world is dynamic. The construction of an unlimited number of

arguments is futile, as, they soon become irrelevant. Thirdly, it is known that as arguments get

larger in length, there is more chance of their defeat [Lou87]. Hence, we may safely assume

that we always work with a bounded pool of arguments.

We assume that we know all the arguments that are in play in a dynamic framework. This

assumption makes the backings of arguments ever more workable. We use the backings of ar-

guments to divide a framework into independent sub-argumentation frameworks. The full scope

of how an argumentation framework can be divided into sub-frameworks of distinct character-
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istics, is outside the scope of this thesis. However, to showcase the range of applications of the

backings of arguments, in the last section of the first part of this dissertation, chapter three, we

show how an argumentation framework can be partitioned into independent sub-frameworks.

The independence relation between each sub-framework is technically governed by where the

propagation of the backings halts.

How this lends itself to the dynamics of argumentation theory is that the arrival of new ar-

guments should only impact the relevant sub-argumentation frameworks and leave the inde-

pendent frameworks untouched. Moreover, if the new arguments are regarded as some sub-

argumentation framework themselves, then, the problem of addition of new arguments can be

framed in terms of the merging of two argumentation frameworks.

In short, to address the central problem of whether or not an argument is admissible that is

inherently a NP-complete problem, given that we only deal with a finite number of arguments,

we can reduce the search area to answer this question to a much smaller area.

From the above discussion, it is evident that we need to set up some basic structures for inves-

tigating many important issues in argumentation theory. Hence, we define the notion of sub-

argumentation framework relation. In this thesis, we do not however explore the potentials of

the sub-argumentation framework relation. It is, though, easy to see how the sub-argumentation

framework relation lends itself to discussions on a range of important topics such as the equiv-

alence relation between frameworks, the dependency relation between arguments, the admissi-

bility preserving mapping between frameworks, and the preservation of admissibility of a set of

arguments under certain conditions.

The utility of backings of arguments is not though limited to the efficient calculation of ad-

missible sets or the dynamics and the merging of frameworks. Another utility of backings of

arguments is in regard to the roles that arguments play in regard to the acceptability of another

argument. The reason for why such knowledge is important is self evident. For instance, if we
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wish to safeguard the admissibility of a certain argument, we need to know which arguments

are instrumental for the defense of that argument and fortify them.

The backings of arguments also provide a perfect ground for identifying which
arguments have a hand in the admissibility of an argument, and, what are their
significance.

A number of relationships between arguments are identified in the literature. The relationships

are all based on the attack relation. Naturally, these relationships cast some net over whether

or not an argument can have a role in the admissibility of another. The most primary relation

is the attack relation itself. The attack relation identifies the role attacker of an argument.

The next relations are the defense relation, the indirect attack relation and the indirect defense

relation.

These classifications of argument relations do not however identify whether or not the labeled

arguments do contribute to the admissibility of the target argument. For instance, the label

attacker does not necessarily imply that an attacker of an argument plays a part in rejection of

the argument. An attacker that itself is rejected, cannot reject an argument.

On the other hand, any member argument of some backing of an argument should play some

role in the admissibility of that argument. Accordingly, we can say an argument is active for

some argument, if it takes part in some backing of that argument. The followup question is

then,

whether or not the active argument relation is a transitive relation, and, if not,
then, under what conditions it is transitive.

The answer to above question brings us to the issue of propagation of backings of arguments

under the attack relation. What we mean by the propagation of backings, is the subset relation

between the backings of arguments. For instance, for an argument a and its defender b, is every

backing of a subset of some backing of b? The answer to this question also let us identify new

relations between arguments.

The first half of our work on the backings of arguments deals with the formulation, elaboration
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and characterization of the backings of arguments. The second half addresses the propagation

of backings of arguments along the sequence of attack relations, and, its connection with the

roles of arguments in regard to the admissibility or dismissibility of an argument. As already

mentioned, the propagation of backings can then help in splitting an argumentation framework

into sub-frameworks of distinct characteristics.

For any inquiry to be efficient and effective, we have to know what questions to ask. A struc-

tured knowledge base helps us in both the formulation of right questions and how to efficiently

answer them. Following our discussion, we can see how the admissibility backings of argu-

ments serve the second feature of the reasoning by argumentation, note (1.2.1) on page 18,

which is reasoning by inquiry.

Before we start, we should make a few additional remarks that would help on how the definitions

and results are constructed here. The notions of acceptance and admissibility are taken to be

the most fundamental concepts in the formal argumentation theory. These notions therefore

transcend their particular formulation in Dung’s framework.

Hence, where it is feasible, we center the definitions directly around the admissible and conflict

free sets. There are however instances where the definitions require references to some addi-

tional concepts. For instance, many of the presented relations embed some form of transitivity

property. By a transitivity property we mean the manner by which a certain construct propagates

(forward or backward) along the attack sequences. In this regard, the use of attack sequences

provides the most feasible way to capture a number of properties within a definition.

Furthermore, in the chapters regarding the backings of arguments, we make an attempt to follow

the following general format. Each discussion on a presented construct is comprised of three

parts. The first part introduces the construct and its definition. The second part deals with the

formulation of how the construct is realized. For instance, the conditions that would result in

two arguments to become incompatible. We call these formulations, the characterization of the
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construct (they can also be regarded as the base cases). Finally, the third part discusses the

propagation of the construct under the attack relation or along the lines of attack sequences.

In the next section, we discuss the background theory which is an account of Dung’s abstract

argumentation framework.

1.2.5 A summary of thesis achievements

In this section we provide a concise account of the achievements of this thesis. The major

achievements of each chapter are generally identified by the headings of each section of these

chapters. The problems that this thesis intends to address are explained in sections 1.2.4, 1.2.3

and the conclusion chapter.

Chapter 2 is entirely dedicated to the localization of admissibility (or dismissibility) of argu-

ments within Dung’s abstract argumentation framework. The sets of arguments that localize

the admissibility of an argument are called the admissibility backings of that argument. The

admissibility backings of arguments are usually referred to as the backings of arguments. The

backings can be of two types, the positive backings, the backings that accept an argument, and,

the negative backings the backings that attack an argument. The major achievement of this

chapter are as follows.

1. The Sub-argumentation frameworks, and the normal sub-argumentation frameworks are

presented to serve the formal setting under which all the finding of this thesis and sub-

sequent future works can be succinctly represented. How the sub-argumentation frame-

works can be utilized for further studies is discussed in section 5.2.1.3 of the concluding

chapter.

2. A formal definition of the grounded admissible sets is given. Every argument that be-

longs to a grounded admissible set can be accepted beyond a reasonable doubt. Hence,

it is important to know which backings of arguments are grounded admissible sets. The
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grounded backings that are grounded admissible sets are referred to as the grounded back-

ings of an argument. Grounded backings are defined in section 2.4.

3. A detailed presentation of the admissibility backings of argument is given in section 2.4.

4. In section 2.4, it is shown that the findings in [Dun95b] presented in section 2.4.2, can be

recast in terms of the admissibility backings of arguments. Hence, the backings of argu-

ments can be considered as a viable construct within the abstract argumentation frame-

works.

5. In section 2.5, it is shown that there is a well defined relation between the backings of

an argument and the backings of its attackers. The relation between the backings of an

argument and those of its attackers are formulated in terms two algebraic operators
∑

and
∏

. A full list of the properties of the operators
∑

and
∏

are given in appendix 5.2.2.

The presented relation is in form of an equation. However, this equation cannot always be

easily solved. Hence, we presented a recursive algebraic function by which the backings

of an argument can be calculated. The function is called the backing function.

6. An important result of chapter 2 is using the backings of arguments to draw a precise

boundary over all arguments that are relevant to the admissibility or rejection of an ar-

gument (section 2.6). This is an important result because it directly relates to the depen-

dency relation between arguments. A distinct property of the admissibility backings is

that each backing operates independent of other arguments in the framework. The finding

presented here identifies the minimal sub-frameworks by which the admissibility status

of an argument is preserved under the sup-argumentation framework relation.

7. A major finding of chapter 2 is to provide the formal characterization of classes of frame-

works that are most suited to the motivation behind the backings of argument. The mo-

tivating principle in question is that the admissibility backings of an argument should

carry all the information pertinent to the admissibility situation of that argument. The
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identified class of frameworks are called the normally stable and compact argumentation

frameworks.

Since, the admissibility backings localize the admissibility of arguments, they provide a suitable

ground for investigating the functions that arguments may serve with respect to the admissibility

of other arguments. This is the focus of chapter 3 which uses the backings of arguments to

identify and characterize a number of roles that arguments play in regard to the admissibility of

another.The presented results can also be used for partitioning a framework into sub-frameworks

with distinct features. This would also serve as a prelude to the future work on the applications

of the admissibility backings in the partitioning and the merging of argumentation frameworks.

The major achievements of chapter 3 are as follows.

1. Four major argument relations are formally characterized. Their characterization also in-

cludes how these relations propagate along the sequences of attack relations, and, how

each role is related to another such that they exhaustively cover the sequences of attack

relations in an argumentation framework. Hence, they comprehensively address the prop-

agation of admissibility backings along the sequences of attack relations. These presented

relations can also be viewed as the roles one argument plays in regard to the admissibility

of another. The identified roles are the intercepted for, intercepting, critical for, incom-

patible with, and, redundant for arguments.

2. Another major achievement of this thesis is use of the intercepts to partition a framework

into independent sub-frameworks. These sub-frameworks are called the disjointed by in-

tercept sub-frameworks. The independence between such sub-frameworks states that any

change in one such sub-framework will not affect any of its non adjacent sub-frameworks.

This statement is one of the results of section 3.7.

Chapter 4 presents a new type of defeasible inference rules that are suitable for the common

instances of practical reasoning. The presented inference rules are called context sensitive rules.
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They reflect the fact that in many instances of practical reasoning, we not only use the primary

reasons to see whether or not the application of a specific inference rule is allowed, but, we

also use the ancillary reasons to fine-tune the application of the inference rule. The major

achievements of chapter 4 are as follows.

1. A defeasible argumentation framework is built based on the presented context sensitive

defeasible rules. The presented framework can augment the systems based on the conven-

tional default rules. The semantics that is provided for this framework is by translating

the framework into Dung’s abstract argumentation framework. The presented framework

therefore can be read under the standard semantics in the literature.

2. In section 4.2, by means of two examples it is shown that the current representations

of defeasible inference rules in the literature cannot account for the required reasoning,

if they are formulated and applied as intended. The required reasoning is a reasoning

that matches the expected outcome. In classical logics this property of the reasoning is

referred to as the soundness of the reasoning.

3. In this chapter we introduce the notion of missing arguments. The missing arguments

are the arguments that are either unknown or hidden to an agent, as shown by the exam-

ples in the motivation section 4.2. The importance of the missing arguments is that they

provide both an explanation and an account of the deficiencies in the treatment of attack

relation between conventional arguments. The deficiencies are highlighted with the two

motivating examples. It is the missing arguments that facilitate the means to translate the

presented framework into Dung’s abstract argumentation framework.

This sums up the major achievements of this thesis. Next, we present Dung’s abstract argumen-

tation framework that serves as the background theory for this thesis. Dung’s framework is the

most discussed work in the literature, and hardly needs any introduction. We therefore present

Dung’s framework within the context of this thesis. This includes stating and explicating all the
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relevant concepts and the findings of the paper [Dun95b] such as indirect attack relation, the

attack cycles and the grounded extensions. The background theory also includes the notations

and conventions that are consistently used within chapters 2 and 3 of this thesis. Chapter 4 uses

its own notations and conventions that are defined within the motivation section of chapter 4.

Thesis also includes an index of definitions and the defined symbols, e.g., the positive backings

or 〈 a 〉+.

1.3 Background theory, notations and conventions

In the first part of Introduction chapter, we provided a very short account of the basic idea be-

hind the abstract argumentation theory and Dung’s abstract argumentation framework. Dung’s

abstract framework is built around three central constructs. The three constructs are the con-

flict free sets, the acceptance relation and the admissible sets. Upon further studies, it is

both suggested and shown that the three notions transcend any particular argumentation frame-

work.

Dung’s abstract argumentation framework AF is a simple tuple AF = 〈AR , ATT 〉 where

AR is a pool of abstract arguments and ATT is a binary attack relation between arguments.

The binary attack relation (a, b) denotes that argument a attacks argument b.

Definition 1.3.1 (Dung95). An argumentation framework AF is a pair AF = 〈AR , ATT 〉,

where AR is a set of arguments, and ATT is a binary attack-relation on AR, i.e., ATT ⊆

AR× AR.

We first introduce the adopted notations and conventions.
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1.3.1 Notations and conventions

1.3.1.1 Notations

The multi character names denote the special objects regarding an abstract argumentation frame-

work, e.g., AR,ATT . The lower case English letters a, b, c, ai, · · · are used to denote argu-

ments, the upper case letters A,B,C,Ai, · · · the set of arguments, the upper case Calligraphy

lettersA,B, C,Ai, · · · the set of sets of arguments, and, the bold capital letters A,B,C,Ai, · · ·

the set of sets of sets of arguments. Hence, there is an ordering of kind a ∈ AR, A ∈ 2AR, A ∈

22
AR
, A ∈ 22

2AR

.

The functions and the objects outside argumentation framework are represented by Greek let-

ters. Moreover, throughout this thesis, any definition or result that is not original to this disser-

tation is marked by by its cited paper. For instance, Dung95 says that the corresponding result

comes from the paper [Dun95b].

1.3.1.2 Conventions

In this dissertation, we adopt the following terms and abbreviations. We say,

– a attacks b or a is a direct attacker of b and write a ↪→ b if (a, b) ∈ ATT ;

– a attacks a set S of arguments and write a ↪→S if a attacks some b ∈ S;

– S attacks a and write S ↪→ a, if some b ∈ S attacks a;

– S attacks a set T of arguments if S attacks some b ∈ T and write S ↪→T ;

– a is a direct defender of b if a attacks some attacker of b;

– a is admissible, if a is accepted by some admissible set (the acceptance relation is defined

later), and, a is dismissible, if a is attacked by some admissible set.

We denote the set of attackers of an argument a by a = {b | b ↪→ a}, and, the set of all arguments

that a attacks by
+
a = {b | a ↪→ b}. Correspondingly, we denote the set of attackers of a
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set S of arguments by S = {b | b ↪→S}, and, the set of all arguments that S attacks by
+

S = {b | S ↪→ b}.

In addition, we often use the term in/direct as an abbreviation for the expression direct or indi-

rect, and, where there is no ambiguity we use shorter names and references. For instance, by

admissibility backings or backings we mean admissibility backings of arguments. Moreover, in

the thesis we often need a second frameworkAF ∗ along withAF . In such instances, without ex-

plicitly stating, by an argumentation framework AF ∗ , we mean AF ∗ = 〈AR∗ , ATT ∗ 〉.

It is a common practice to represent abstract argumentation frameworks in the form of graphs.

The graphs are usually directed graphs where the nodes of a graph represent arguments and the

edges represent attack relation. Hence, the attack relation b ↪→ a is represented by a directed

edge from node b to node a.

1.3.2 Dung’s abstract argumentation framework

The first construct regarding the acceptance of arguments is the conflict freeness. The notion of a

conflict free set dictates that if we are to accept a set of arguments then the arguments should be

collectively acceptable. Otherwise, we protest that the painted picture is not a rational picture.

In Dung’s framework, the criterion for a conflict free set of arguments is reduced to the conflict

between the individual member arguments [Boc02].

Definition 1.3.2 (Dung95). A set S of arguments is said to be conflict free if and only if there

are no arguments a, b in S such that a attacks b.

Observation 1.3.3. A set S of arguments is conflict free if and only if S ∩ S = ∅.

The notion of conflict freeness, however, transcends its formulation in Dung’s framework. The

lottery paradox presents why the following definition of conflict freeness does not cover all

cases of conflict freeness. In the lottery paradox, all agents present the same argument that they

will not win the lottery. No argument is then in conflict with another argument, i.e., no argument
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attacks another argument. On the other hand, the lottery being a fair lottery, somebody has to

win the lottery. Hence, the set of all such arguments cannot be considered a conflict free set

(somebody has to win the lottery). To address this issue we can define conflict freeness with

respect to a set of arguments such that a set of arguments is conflict free if and only if it does not

attack itself. This alternative definition is in fact presented as one of the main lemmas in Dung’s

Framework, see lemma 1.3.9 below. A more formal approach is adopted in [Boc02, KT99]

where the notion of an attack relation includes the conflicts between sets of arguments.

The centerpiece of Dung’s framework, as distinctly highlighted in [Dun95b], is the acceptance

notion. We say, a set of arguments accepts an argument, if it defends that argument against any

and all attackers.

Definition 1.3.4 (Dung95). An argument a ∈ AR is acceptable with respect to a set S of

arguments if and only if S attacks any argument b ∈ AR that attacks a.

As a consequence, one can see that arguments that have no attackers are vacuously accepted by

any set of arguments, including the empty set.

Observation 1.3.5. A set T of arguments is accepted by S if and only if T ⊆
+

S.

The acceptance relation can also be formulated into an identifying marker for each particular

framework, named the characteristic function.

Definition 1.3.6 (Dung95). The characteristic function, denoted by θAF , of an argumentation

framework AF = 〈AR , ATT 〉 is defined as follows.

θAF : 2AR −→ 2AR

θAF (S) = {x | x is acceptable wrt S }.

It is not difficult to see that the characteristic function is monotonic with respect to set inclu-

sion.

Lemma 1.3.7 (Dung95). θAF is monotonic with respect to set inclusion.
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The next fundamental construct is the admissible set. A set of arguments is deemed to be

admissible if it can defend its members against any attacker while remaining conflict free.

Definition 1.3.8 (Dung95). A conflict free set S of arguments is said to be admissible if and

only if each argument in S is acceptable with respect to S.

Hence, we may say that, a set of arguments is admissible if it accepts itself. This result is

articulated as one of the main lemmas of [Dun95b].

Lemma 1.3.9 (Dung95). For a set S of arguments in an argumentation framework AF ,

1. S is conflict free if and only if S ↪→� S.

2. A conflict free set S is admissible if and only if S ⊆ θAF (S).

The admissible sets are therefore the main yardstick by which to phrase and answer the inquiries

regarding the acceptability of arguments. For instance, whether there are some admissible sets

that accept (or attack) a certain argument. We may also assign statuses to arguments that char-

acterize such general inquiries.

Definition 1.3.10. In an argumentation framework AF , we say that an argument is justified or

has the status justified if it is attacked by no admissible set; the argument is overruled if it is

accepted by no admissible set; and, an argument is provisionally defeated if it is both accepted

by some and attacked by some admissible set. This is known as the admissibility status of an

argument. Alternatively, we can represent the admissibility status of an argument by the status

assignment function, ε
AF

: AR −→ {0, 1
2
, 1} . The values 0, 1

2
, 1 respectively correspond to

the status overruled, provisionally defeated and justified.

One argument allows us to draw a few conclusions about a subject matter. Two arguments draw

a better picture than one argument, and three arguments give us more than two. Given the full

set of arguments AR, we can select a number of subsets of AR to draw conclusions about a

subject matter. The general question is then which subsets of AR to choose. To streamline

such lines of inquiries, the admissible sets are categorized into some general classes. These
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classes are often presented in the form of semantics of argumentation theory. In nonmonotonic

reasoning, we tend to refer to such classes the extensions of the framework. More accurately, an

extension is usually a complete subset of AR that adheres to some given criteria. The following

are some of the extensions of AR that categorize the admissible sets of a given argumentation

framework.

Definition 1.3.11 (Dung95). Let S be an admissible set in an argumentation framework AF .

1. S is called a complete extension if and only if each argument that is acceptable with

respect to S belongs to S.

2. S is said to be a preferred extension if and only if S is a maximal admissible set in AF

(maximal with respect to set inclusion).

3. S is called the grounded extension of AF , denoted by GR if and only if GR is the least

fixed point of θAF .

4. S is called a stable extension of AF if and only if S attacks any argument that does not

belong to S.

It is easy to see that a stable extension is a maximal conflict free set that attacks every argument

outside itself.

Observation 1.3.12. For a set S of arguments in an argumentation frameworkAF , S is a stable

extension if and only if S = AR−
+

S.

If we are interested in the fate of all the arguments, then the stable extensions are what we

need. But, as it is usually the case, the scope of our interest is narrow and concern only a

portion of all possible arguments. In this regard, the complete extensions provide a more local

and suitable information. To address such intents, the finer grained categories of admissible

sets are presented and categorized, e.g., the semistable semantics [Cam06a, Cam06b] or the

SCC-recursive semantics [BGG05].
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But, how fine grained a category of admissible sets should be so that we can answer whether or

not an argument is admissible? The main theorem of [Dun95b] states that any admissible set

that accepts or attacks the argument will do. The admissibility semantics in [BDKT97] follows

this finding.

Theorem 1.3.13 (Dung95). In an argumentation framework AF ,

1. the set of all admissible sets form a complete partial order with respect to set inclusion.

2. For each admissible set S, there is some preferred extension E such that S ⊆ E.

The theorem says that an admissible set remains admissible regardless of other arguments in

AR. As highlighted in the introduction, this is the property around which the first half of this

dissertation is built. The theorem also shows the reason for the admissible sets being regarded

as the basis by which the semantics of argumentation frameworks are defined.

The second part of the theorem puts the result of the first part into perspective by drawing the

subset relation between the various extensions. It is noted in [Dun95b] that since the empty set is

always admissible, every argumentation framework has at least one preferred extension.

Example 1.3.14. The following example summarizes the background theory so far. The figure

below shows the argumentation framework AF 1 = 〈AR , ATT 〉 where AR = {a, b, c, d, e},

ATT = {(d, c), (c, b), (b, a), (a, b), (b, e)}.

We can see that the set S = {d, c, b} accepts b, but, it is not a conflict free set. On the other

hand, T = {c} is a conflict free set and accepts e. However, T itself, is not an admissible set.

d c b a

e

AF1

// // ((
gg

??

The admissible, complete, preferred and grounded extensions of AF1 are:

Admissible sets: ∅, {d}, {d, a}, {a}, {d, b}, {a, e}, {d, a, e}.
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Complete extensions: {d}, {d, b}, {d, a, e}.

Preferred extensions: {d, a, e}, {d, b }.

Stable extensions: {d, a, e}, {d, b }.

Grounded extensions: {d}.

Following the above extensions, we see that

• Every grounded extension is a complete extension but not vice versa.

• Every preferred extension is a complete extension but not vice versa.

• Every stable extension is a preferred extension but not vice versa.

Moreover, as a pretext for the admissibility backings of arguments, we see that not every com-

plete extension is a minimal admissible set that accepts some argument. For instance, the set

W = {a} is a minimal admissible set that accepts a, but, W is not a complete extension.

The coherent frameworks are of special interest to the admissibility backings. The most straight-

forward class of coherent frameworks is the limited controversial frameworks, see theorem

1.3.16 below. A limited controversial argumentation framework is simply a framework that

does not contain any attack cycles of the odd length.

Definition 1.3.15 (Dung95). An argumentation framework is said to be coherent if each pre-

ferred extension ofAF is stable. We say that an argumentation framework is relatively grounded

if its grounded extension coincides with the intersection of all preferred extensions. An argu-

mentation framework is said to be limited controversial if there exists no infinite sequence of

arguments a0, a1, a2, · · · such that ai+1 is controversial with respect to ai.

Theorem 1.3.16 (Dung95). Every limited controversial argumentation framework is coherent.

Next, to highlight the role of arguments in relation to the admissibility of other arguments, we

borrow a number of terms from [Dun95b], e.g., an attack cycle. The first of these terms are the
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indirect attackers and the indirect defenders of an argument. The indirect attack and the indirect

defense relations are originally defined by means of attack sequences. The attack sequences are

also referred to as attack paths.

Definition 1.3.17 (Dung95). An argument b is said to be an indirect attacker of an argument a

if there exists a finite sequence of arguments a0, a1, · · · , a2n+1 such that a = a0, b = a2n and

for each 0 ≤ i ≤ n, ai+1 attacks ai. Respectively, b is said to be an indirect defender of a if b

attacks some indirect attacker of b. In addition, a is said to be a controversial argument for b if

and only if a is both an in/direct attacker and an in/direct defender of a. (The term in/direct is

read as direct or indirect).

Note that the in/direct attack, the in/direct defense, and the controversial relations, all are tran-

sitive under the attack relation. For instance, if a is controversial for b and b ↪→ c then a is

controversial for c as well. Next, we define the sets of arguments that form an attack cycle.

Although, we do not show it here, it is easy to see that in a limited controversial argumentation

framework, no two arguments in a cycle can be controversial with respect to another.

Definition 1.3.18 (A Variation of Dung95). A set L of arguments is called a cycle or to form an

attack cycle if and only if for any a, b ∈ L, there is some sequence of argument a0, a1, · · · , an

where ai+1 ↪→ ai, a0 = a, an = b.

Going back to example 1.3.14, the arguments a, b form an attack cycle (of even length). The

argument d is an indirect defender of the argument b and an indirect attacker of the argument

a. Many studies are carried out on Dung’s framework. These studies mostly deal with the

formation of the attack relation and and the ensuing semantics, e.g., the occurrence of odd

length attack cycles and how to treat them. But, we conclude the background theory on Dung’s

framework here.
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Chapter 2

The Localization of Admissibility and the
Admissibility Backings

2.1 Introduction

Since their inception, abstract argumentation frameworks have become a potent mean for study-

ing the various aspects of arguments interactions. Much of the research in this area is, though,

focused on defining the new semantics. The proposed semantics are generally in form the max-

imal sets of arguments that pertain certain characteristics.

In this chapter, we, however, take the opposite route, and attempt to localize the admissibility

of arguments, by means of minimal admissible sets that either accept or attack an argument.

We call these admissible sets, the admissibility backings of arguments. This chapter is focused

on the development, definition, and, investigation of the admissibility backings of arguments.

Accordingly, we identify certain classes of coherent argumentation frameworks that suit best

this endeavor.

In Dung’s argumentation framework, the set of all admissible sets form a complete partial order

with respect to the set inclusion. Hence, we can safely say that the admissibility backings of

an argument capture the minimal requirements for the admissibility or the dismissibility of an

argument.
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This chapter is structured as follows. In section two, we introduce the sub-argumentation frame-

work relation, but only as far as their relevance to this chapter. In section three, we present the

grounded admissible sets and their relation to the ground arguments. In section four, we present

the admissibility backings of arguments. In doing so, we first discuss the role of minimality

clause in definition of admissibility backings. We then present the relation between the admis-

sibility backings of an argument and of its attackers, and, the corresponding recursive function

with respect to the attack relation. We conclude this section by discussing the independency of

the admissibility backings. In section five, we present a class coherent argumentation frame-

works that reflect the admissibility backings best. In the last two sections, we discuss the related

research and conclusion.

2.2 Sub-argumentation frameworks

We build arguments based on the factual information at hand. When we receive new information

we naturally build new arguments. The addition of new arguments may, however, impact our

current findings about the standing arguments. The study of the changes in current findings with

respect to an argumentation framework upon addition of the new arguments is usually referred

to as the dynamics of argumentation theory. 1

One way to represent the addition of a new set of arguments A, is by extending the current

set AR to AR ∪ A. Another way is to have some function α that selects the arguments at

hand from a universal pool of arguments, where α(A) = AR ∪ A. We however opt to use

the sub-argumentation frameworks. In this manner, the dynamics of argumentation theory are

discussed, not in terms of the addition of new arguments, but presented with respect to the

sub-argumentation framework relation.

1 In the abstract argumentation frameworks, the addition of new arguments is expressive enough to represent the
subtraction of the arguments.We can model the subtraction of an argument by adding the attacker of the argument
to the mix.
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Definition 2.2.1. An argumentation framework AF ′ = 〈AR′ , ATT ′ 〉 is a sub-argumentation

framework of AF = 〈AR , ATT 〉, written as AF ′ v AF , if and only if AR′ ⊆ AR, ATT ′ ⊆

ATT . AF ′ is said to be a normal sub-argumentation framework of AF , written as AF ′ vNAF ,

if and only if, AF ′ v AF and for all a, b ∈ AR′, if (a, b) ∈ ATT then (a, b) ∈ ATT ′.

Observation 2.2.2. The sub-argumentation framework relation and the normal sub-argumentation

framework relation are both partial order relations.

The proof of this observation and the following results are given in appendix.

If an argument a does not play a role in relation to the acceptability of argument b, then we can

say the acceptability of b is independent of a. The following observation 2.2.4 crudely highlights

this independence relation with respect to the acceptability of arguments. The observation says

that the addition of new arguments or the attack relations that are not connected to a current

situation, do not affect the admissibility of the current arguments.

Definition 2.2.3. A sub-argumentation framework AF ′ = 〈AR′ , ATT ′ 〉 of an argumentation

frameworkAF is said to be closed under the attack relation inAF if and only ifAF ′ is a normal

sub-argumentation framework of AF , and, for all arguments a ∈ AR′, a ⊆ AR′.

Observation 2.2.4. A sub-argumentation framework AF ′ of AF is closed under the attack

relation in AF if and only if, for every argument a in AF ′, if b is an in/direct attacker or

in/direct defender of a in AF then b is in AF ′ as well.

Next, we represent the main result of this section that casts a wide net over the independence

relation between arguments. We present a more refined version of this result, in the admissibility

backings section 2.4.

Theorem 2.2.5. Let AF ′ vNAF be closed under the attack relation in AF . Then, if S is an

admissible set in AF ′, S is admissible in all AF ′′ where AF ′ v AF ′′ v AF .

Working with sub-argumentation frameworks has two additional benefits. Dung’s abstract ar-

gumentation framework is the simplest of the presented abstract argumentation frameworks.
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It however serves as the basis for many other abstract argumentation frameworks, known as

the extended abstract argumentation frameworks. In many of these frameworks, the attack

relation, is effectively more than a binary relation between arguments, e.g. [Ben02, Mod06,

MGS08].

For instance, in [Ben02], an attack from a to b is counted in the conventional sense only if b is

not preferred to a where the preference ordering among arguments is set by external measures.

Hence, to study the dynamics of argumentation theory, it is prudent to have the versatility of

playing with the attack relations as well as the pool of arguments, all under the same setting.

Working with sub-argumentation frameworks allows for such versatility.

The second advantage of working with the sub-argumentation frameworks is that it provides

room for the classification of the argumentation frameworks, where an argumentation frame-

work can be described in terms of its comprising classes of sub-frameworks. This formulation

of argumentation frameworks can in turn be utilized in relation to other important research ar-

eas such as the process of conjoining argumentation frameworks, e.g., [CMDK+07]. Under this

approach the process of conjoining the argumentation frameworks can be investigated in terms

of the conjoining of their sub-argumentation frameworks. All these topics are beyond the scope

of this thesis, but to avoid the recast of our findings in our future works, we opted to set the

setting for the dynamics of argumentation theory here.

2.3 Grounded admissible sets

The grounded extensions have a special place in both the argumentation theory and most of

the approaches to nonmonotonic reasoning. If we draw a mapping between arguments and

the statements that those arguments say about the world, then the statements that a grounded

extension makes can be believed beyond a reasonable doubt. This is a distinct property of

grounded extensions.
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In the search for the backings of an argument, it is therefore important to identify which back-

ings have this property of the grounded extensions. That is, which backings provide a beyond a

reasonable doubt defense for an argument.

This feature of grounded extensions is tightly connected to the property of the ground argu-

ments, those arguments that have no attackers. We however define the ground arguments based

on the universality of their acceptance.

Definition 2.3.1. An argument a is said to be a ground argument if and only if a ∈ θ(∅).

Observation 2.3.2. (1) a is a ground argument if and only if a = ∅, and, (2) For any set S of

arguments, θ(∅) ⊆ θ(S).

Given the distinct property of the grounded extensions, we would wish to identify other admis-

sible sets with this property that if we are given only the admissible set, every argument in the

admissible set can be accepted beyond a reasonable doubt. We call such admissible sets, the

grounded admissible sets (see definiton 2.3.4 below). The obvious approach for testing whether

an admissible set is grounded or not is to check if it is a subset of the grounded extension.

However, as the following example illustrates this approach is not conclusive.

Example 2.3.3. The following argumentation framework, AF2, has five nonempty admissible

sets S1, · · · , S5, with S3 being the grounded extension.

S1 = {a}, S2 = {a, c}, S3 = {a, c, e}, S4 = {c}, S5 = {c, e}.

a b c d e

AF2

// **jj // //

In this example, the admissible sets S1, · · · , S5 are subsets of the grounded extension S3,

however, only S1, S2, S3 are grounded in AF2. For instance, if we take the admissible set

S4 = {c, e}, neither c nor e can be accepted beyond a reasonable doubt with respect to S4. The
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argument c does not conclusively defeat b. For the conclusive defeat of b we need argument a.

But, a /∈ S4, hence S4 cannot be considered a grounded admissible set.

Example 2.3.3 suggests that the identification of the grounded admissible sets needs to be done

via their ground arguments. Hence, we tie the grounded admissible sets to their ground argu-

ments.

Definition 2.3.4. In an argumentation frameworkAF , the empty set∅ is a grounded admissible

set . Morevoer, if S is a grounded admissible set and S accepts a then S ∪ {a} is a grounded

admissible set, too. We denote the set of all grounded admissible sets by G.

Definition 2.3.5. An argument a is said to be grounded in an admissible set S if and only if

a ∈ S and there is some grounded admissible set T ⊆ S − {a} such that T accepts a.

A special feature of the characteristic function in relation to the ground arguments is the cu-

mulative property where θi(∅) ⊆ θi+1(∅). This suggests that we can alternatively define the

grounded admissible sets based on this cumulative structure that is entirely rooted in the ground

arguments. This property of the grounded admissible sets is presented in theorem 2.3.6 below.

To do this we need to identify the intended cumulative structure within a given set.

A comprehensive approach would be to define some non-trivial characteristic function θ̂(S)

that isolates the ground arguments responsible for the admissibility of a set S. A function that

accepts only the arguments that are non trivially defended by the set, e.g., θ̂(S) = θ(S) −

(θ(∅) − S). We however choose a simpler approach by curbing the characteristic function to

some given set S : θ̂(T ) = θ(T ) ∩ S.

Theorem 2.3.6. A finite set S of arguments is a grounded admissible set if and only if there is

a natural number m such that S = θ̂
m
(∅, S) where θ̂(T, S) = θ(T ) ∩ S.

As a consequence of the above theorem, we have what we expected from the start that the

grounded extension GR is the maximum grounded admissible set, i.e., GR =
⋃
S∈G

S, and that

any subset of GR must be rooted in some grounded admissible set subset of GR.

46



2.4. ADMISSIBILITY BACKINGS

Lemma 2.3.7. The grounded extension GR is the maximum (with respect to the set inclusion)

grounded admissible set. If S ⊆ GR is admissible then there is some minimal grounded

admissible set S ′ such that S ⊆ S ′.

Due to the importance of the grounded extensions, there are many questions of interest. For

instance, what are the maximal sub-frameworks and the minimal sup-frameworks of an argu-

mentation framework in which a set of arguments is a grounded admissible set? However, these

lines of inquiry are not directly related to this thesis. Hence, we end our discussion on the

grounded admissible sets, and, move to define the admissibility backings of arguments.

2.4 Admissibility Backings

The British logician Stephen Toulmin, as part of his general characterization of arguments,

presented a six-part model of an argument [Tou58]. He explains the warrant of an argument,

as the component of the argument that licenses the inference of the claim form the data of the

argument. The backing of an argument, in turn, is given as the support for the justification of

the warrant, in cases where the warrant of argument is challenged. The backing of an argument

is therefore generally regarded as the warrant for the warrant of an argument [Ver05].

In the context of abstract argumentation theory, given an envisaged pool of arguments, we

present the admissibility backings of an argument as minimal admissible sets that either accept

or reject an argument. We borrow the term backing, only due to the role of backings, that is to

protect the justification (warrant) of an argument against possible counter arguments. This is

however different from the usual use of backings of arguments in the literature.

Definition 2.4.1. Let S ∈ 2AR, a ∈ AR be given in some argumentation framework AF ,

and, G,P ,N respectively denote the class of grounded admissible sets, the admissible sets that

accept a, and, the admissible sets that attack a. Then, S is said to be a positive backing or a

backing for the acceptance of a if and only if S is either a minimal element of P or a minimal
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element of P ∩ G or both. Respectively, S ∈ N is a negative backing or a backing for the

rejection of a if and only if S is a minimal element of N or is a minimal element of N ∩ G.

A positive or negative backing that is a grounded admissible set is called a grounded backing .

The sets of all positive and negative backings of a are respectively denoted by 〈 a 〉+ and 〈 a 〉− .

In the previous section we pointed out the importance of the grounded admissible sets. However,

not every minimal grounded admissible set that accepts an argument is necessarily a minimal

admissible that accepts that argument, as was illustrated in example 2.3.3. Hence, in the defi-

nition of the backings of an argument, we give the grounded backings a special consideration

regarding the minimality condition.

In example 2.3.3, although S2 is the minimal grounded admissible set that accepts argument

e, S2 is not the minimal admissible set that accepts e. The only minimal admissible set that

accepts e is S4.

From this point on, unless it is stated otherwise, we refer to the admissibility backings only as

the backings, positive backings, or the negative backings, depending on the context, and, by a

minimal set, we mean a minimal set with respect to set inclusion.

2.4.1 The minimality clause of the admissibility backings

Some properties of the admissibility backings are due to the relation between the backings

themselves, and, some are the direct result of their definition of being a minimal admissible set

of a sort. We begin by characterizing minimal admissible sets that make up the admissibility

backings.

An admissible set that accepts an argument needs not to be strictly comprised of the arguments

that take part in the admissibility of the argument. For the backings however, due to the mini-

mality clause of their definition, they need to be comprised of only the relevant arguments. The

following lemma casts a wide boundary over the arguments that are relevant to the admissibility
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of an argument.

Lemma 2.4.2. Let DFa, ATa denote the set of in/direct defenders and the set of in/direct at-

tackers of an argument a in AF . If S ∈ 〈 a 〉+ then S ⊆ DFa, and, if S ∈ 〈 a 〉− then S ⊆ ATa.

Let S be some conflict-free set that accepts a. For S to be a minimal of such sets, every argument

in S must participate in the defense of a, i.e., there must be an onto mapping from a to S. We

however need one additional condition. That is, every argument c ∈ S must be necessary in S

for the defense of a. Hence, we define the notion of a critical defender.

Definition 2.4.3. An argument c is said to be a critical defender of a in S if and only if c is the

only argument in S that defends a against some b ∈ a.

Lemma 2.4.4. S ∈ 〈 a 〉+ only if for every c ∈ S there is some d ∈ S ∪ {a} such that c is a

critical defender of d in S.

Next, we like to see whether the backings of arguments can uniquely identify an argumentation

framework. We know that since the characteristic function is built upon the notion of defense, it

does not capture all the attack relations. Hence neither, the characteristic function, nor, the the

set of all admissible sets of an argumentation framework can uniquely identify argumentation

frameworks, as shown in the example 2.4.5. The backings, however, not only store the infor-

mation about the acceptance of arguments, they also hold the information about their rejection.

Despite this, due to the minimality clause in the definition of backings, there is still some infor-

mation loss. As a result, the backings do not capture all the information on the attack relations,

as shown in the second part of example 2.4.5. 2

Example 2.4.5. The following argumentation frameworks AF3 , AF4 share the same character-

istic function θAF3 = θAF4 = {a, b}, as well as the set of all admissible sets AAF3 = AAF4 =

{∅, {a}, {b}, {a, b}}. On the other hand, the admissibility backings of their arguments are dis-

2 A proper discussion of the unique identification of an argumentation framework involves the issue of the
equivalence relation among argumentation frameworks, the types of such equivalence relations, and, whether or
not they should be defined over the set of their sub-argumentation frameworks. Here, we however wanted to address
the main question of whether the backings hold sufficient information to uniquely reconstruct an argumentation
framework.
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tinct where 〈 c 〉− = {{a}}, 〈 d 〉− = {{b}} in AF3, while 〈 c 〉− = {{a}, {b}}, 〈 d 〉− =

{{a}, {b}} in AF4.

a b

c d

a b

c d

AF3 AF4

OO OO OO ??__ OO

The following figure shows that although the two argumentation frameworks AF5, AF6 below

are distinct, their respective arguments share the same backings. That is to say, there is some

one-to-one and onto function ψ from theAR inAF5 to theAR inAF6, such that, for all x ∈ AR

inAF5, we have 〈x 〉+ = 〈ψ(x) 〉+, and, 〈x 〉− = 〈ψ(x) 〉−. However, the set of attack relation,

ATT , of AF5 is different from the ATT of AF6.

a b

c d

e

a b

c d

e

AF5 AF6

OO OO??

?? OO

OO OO??

??

Hence, we remark that the admissibility backings do not always uniquely identify an argumen-

tation framework.

2.4.2 Admissibility backings and the core results of Dung95

If the admissibility backings are to be considered as a viable construct within the abstract argu-

mentation frameworks, it is necessary to show that the findings in [Dun95b] on the admissibility

of arguments can be recast in terms of the admissibility backings. The results are presented as

theorem 2.4.6, below. Theorem 2.4.6, however, does not reflect the intricacies of the minimality

condition of the admissibility backings.
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Theorem 2.4.6. Let a be an argument in an argumentation framework AF .

1. If AF has a stable extension then 〈 a 〉+ 6= ∅ or 〈 a 〉− 6= ∅.

2. If a is a ground argument then 〈 a 〉+ = {∅}, 〈 a 〉− = ∅.

3. If S ∈ 〈 a 〉− then a /∈ S.

4. IF S ∈ 〈 a 〉+ then for every b ∈ a, there is some T ∈ 〈 b 〉− such that T ⊆ S.

5. The following statements are equivalent.

(a) 〈 a 〉− = ∅.

(b) If b ∈ a then 〈 b 〉+ = ∅.

(c) The argument a belongs to all non-empty preferred extensions of AF .

6. The following statements are equivalent.

(a) 〈 a 〉+ = ∅.

(b) Either there is some b ∈ a, 〈 b 〉− = ∅ or there is no conflict free set S in AF such

that if b ∈ a then for some T ∈ 〈 b 〉−, T ⊆ S.

(c) The argument a belongs to no preferred extension.

The results of theorem 2.4.6 are in large straightforward. For instance, 2.4.6.1 states that the

existence of a stable extension ensures that every argument has some backings. The result

2.4.6.2 says that all the ground arguments have the same positive and negative backing. The

result 2.4.6.3 states that, since backings are conflict free sets, we expect an argument not to take

part in any of its negative backings. On the other hand, an argument that takes part in its own

defense, may belong to some of its positive backings.

As a note in passing, an argument can simultaneously belong to some positive and some negative

backing of another argument. In the following argumentation framework, AF7, the positive and
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negative backings of argument b are 〈 b 〉+ = {{a, b}}, 〈 b 〉− = {{a, e}}. Argument a is a

controversial argument for b. It can be seen that a belongs to both the positive and the negative

backings of b.

a

c

d e

b

AF7

44

''

**

//

44

tt

Due to the nature of the acceptance relation with respect to the attack relation, we expect a close

relation between the backings of an argument and the backings of its attackers. This relation is

partly presented by the results in theorems 2.4.6.5 and 2.4.6.6. The rest of this section is mostly

dedicated to the formulation, derivation and the implications of this relation. To capture this

relation we first define the operations +, ◦.

2.4.3 The operations + and ◦

The claim in 2.4.6.4, states that if b is an attacker of a then since any positive backing S of amust

attack b, it then must contain some negative backing T of b. To extend this result to all b ∈ a,

for every b ∈ a we must expect to find some Sb ∈ 〈 b 〉− such that
⋃
b∈a

Sb ⊆ S. Moreover, since

S ∈ 〈 a 〉+ due to the minimality condition, we also have S ⊆
⋃
b∈a

Sb. This leads us to expect the

positive backings for an argument to be somewhat a cross union of the negative backings of the

attackers of that argument. That is if a = {b, c}, 〈 b 〉− = {S1, S2}, 〈 c 〉− = {T1, T2}, and, ◦̇ is

the cross union operation, then 〈 a 〉+ = 〈 b 〉− ◦̇ 〈 c 〉− = {S1∪T1, S1∪T2, S2∪T1, S2∪T2}.

Definition 2.4.7. Given an argumentation framework AF = 〈AR , ATT 〉, the binary opera-

tions +̇, ◦̇ over 22
AR are defined as follows.

• A ∈ A +̇B if and only if A is a conflict free element of A ∪ B.

• A ∈ A ◦̇B if and only if A is a conflict free element of {A ∪B | A ∈ A, B ∈ B}.
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The operation ◦̇ as it stands, is still incomplete. We further need two additional adjustments.

We need to enforce the conflict freeness, and, the minimality condition. The frameworks AF8,

AF9, below highlight the need to amend the definiton of ◦̇ as it is.

The argumentation framework AF8 is a well discussed framework [BG04, Cam06b]. 3 Our

argument of interest is the argument c. If we blindly apply the proposed operation ◦̇ we will

have 〈 c 〉+ = 〈 b 〉− ◦̇ 〈 a 〉− = {{a}} ◦̇{{b}} = {{a, b}}. But, set {a, b} is not a conflict-free

set. Hence, the operation ◦̇ has to account for the safety of conflict free condition. The result of

theorem 2.4.6.6b corresponds to the same issue.

a b

c

d

AF8

CC

++

[[

ll

OO

a b

c d

e

AF9

OO :: OO

CC [[

The minimality constraint also needs to be ensured at every application of ◦̇. The reason is

that min(A) ∪ min(B) is not always equal to min(A ∪ B). The argumentation framework

AF9 illustrates why. Here, the argument of interest is e. In AF9, the arguments c, d, share the

negative backing {a} where 〈 c 〉− = {{a}}, 〈 d 〉− = {{a}, {b}}. The application of ◦̇ without

the proper adjustments yields 〈 e 〉+ = 〈 c 〉− ◦̇ 〈 d 〉− = {{a}} ◦̇{{a}, {b}} = {{a}, {a, b}}.

However, {a, b} is not a minimal element of 〈 e 〉+, and therefore is not an acceptable positive

backing for e.

To ensure that the desired constraints, the minimality condition and being conflict free, are

always met, we define the operations +, ◦ over 22AR?

. The special symbol ? denotes the admis-

3 AF8 is used to demonstrate that even in limited-controversial argumentation frameworks, the intersection of
all preferred extensions does not necessarily coincide with the grounded extension. In this case, the argument d is
not a grounded argument, while at the same time, it is accepted by all the preferred extensions. In general though,
it seems not to be the case that we can say, we accept d beyond all reasonable doubts.
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sible sets that are not grounded admissible sets.

Definition 2.4.8. For an argumentation framework AF , let AF ? = 〈AR? , ATT 〉, AR? =

AR ∪ {?}, and operations +̇, ◦̇ be defined over 22
AR?

. The binary operations +, ◦ over 22
AR?

are defined such that,

• A ∈ A+ B if and only if A is a minimal element of A +̇B.

• A ∈ A◦B if and only if A is a minimal element of A ◦̇B.

No backings of an argument both accepts and attacks an argument. Otherwise, it has to attack

itself. The following theorem presents this finding in terms of operation ◦. The second part of

the theorem uses the operation + to present the result of theorem 2.4.6.1.

Theorem 2.4.9. In a framework AF , for an argument a,

1. 〈 a 〉+ ◦̇〈 a 〉− = ∅.

2. If AF has a stable extension then 〈 a 〉+ +̇〈 a 〉− 6= ∅.

Next, we define the pairs of operations
∑̇
,
∏̇

and
∑
,
∏

in the usual way. Let A1,A2, · · ·

be a sequence of the sets Ai ∈ 22
AR where i ∈ N (the set of natural numbers).

∑̇
i∈N

Ai = ((A1 +̇A2) +̇A3) +̇ · · ·
∑
i∈N

Ai = ((A1 +A2) +A3) + · · ·

∏̇
i∈N

Ai = ((A1 ◦̇ A2) ◦̇ A3) ◦̇ · · ·
∏
i∈N

Ai = ((A1 ◦A2) ◦A3) ◦ · · ·

It can be seen that due to the commutativity and the associativity of +̇, ◦̇ and +, ◦, the opera-

tions
∑̇
,
∏̇

and
∑
,
∏

are both well defined. A full set of properties of +̇, ◦̇ and +, ◦ are

given in appendix.

Moreover, following the reduction property A◦B = A◦(A◦B), it can be shown that for any

two arbitrary indexing ι, ι′ : N −→ A of A ∈ 22
2AR

where N is the set of natural numbers,
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the product of ◦ over A is the same.

∏
i∈N

A ι(i) =
∏
i∈N

A ι′(i).

Hence, we omit the indexing and instead write

∏
A =

∏
A∈A

A.

2.5 The recursive property of admissibility backings

The relation between the backings of an argument and the backings of its attackers is what one

would expect. If S is an admissible set that accepts b ∈ a then S ∪ {b} will be an admissible

set that attacks a, and, if S is an admissible set that attacks all b ∈ a then S is an admissible set

that accepts a.

To distinguish between the grounded and not grounded backings, we define a bijective mapping

γ between 22
AR?

and 22
AR . The mapping γ maps every grounded backing into itself, and, every

not-grounded backing S into S ∪ {?}.

Definition 2.5.1. In an argumentation framework AF = 〈AR , ATT 〉, let D ⊆ 22
AR be the

space of backings of arguments in AF and AR ? = AR∪{?}. A bijective function γ from D to

D∗ ⊆ 22
AR?

is a function where ifA ∈ A andA is not a grounded backing thenA∪{?} ∈ γ(A).

The function γ assumes that we already know the backings of arguments including whether or

not they exist for an argument. Its only purpose is then to allow the use of operations +, ◦ over

the backings of arguments, as highlighted by the following observation.

Observation 2.5.2. Let γ be a function in definition 2.5.1, then, A ∈ γ−1(A) if and only if

A ∈ {S − {?} | S ∈ A}.

Now we can present the main theorem of this chapter which states the relation between the

backings of an argument and the backings of its attackers.
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Theorem 2.5.3. For an argument a and a set S of arguments,

1. 〈 a 〉− = γ−1( Z−) where Z− =
∑
b∈a

( {{b}} ◦ γ(〈 b 〉+) ).

2. 〈 a 〉+ = γ−1( Z+) where Z+ =


∏
b∈a

γ(〈 b 〉−) if a 6= ∅,

{∅ } otherwise.

3. S is not a grounded backing of a if S ∪ {?} ∈ Z+ ∪ Z−.

In formulating the backings of arguments, we inadvertently, also discussed the backings for a

set of arguments. That is, if we define the negative backing for a set of arguments as the minimal

admissible set that attacks every argument in the set, then, a positive backing for a is simply a

negative backing for the set B = a. Accordingly, we can define a positive backing for a set of

arguments as the minimal admissible set that accepts all the arguments in the set. We however

instead define operations of backings for a set of arguments with respect to the quantifiers some

and all. The following theorem presents this result.

Theorem 2.5.4. For a set A of arguments, let H,J denote the class of admissible sets that

accept all and accept some a ∈ A, and, K,L denote the class of admissible sets that attack all

and attack some a ∈ A.

1. S ∈ γ−1(
∏
a∈A

γ(〈 a 〉+) ) if and only if S is a minimal element of H or S is a minimal

element ofH ∩ G that accepts every a ∈ A.

2. S ∈ γ−1(
∑
a∈A

γ(〈 a 〉+) ) if and only if S is a minimal element of J or S is a minimal

element of J ∩ G that accepts some a ∈ A.

3. S ∈ γ−1(
∏
a∈A

γ(〈 a 〉−) ) if and only if S is a minimal element of K or S is a minimal

element of K ∩ G that attacks every a ∈ A.

4. S ∈ γ−1(
∑
a∈A

γ(〈 a 〉−) ) if and only if S is a minimal element of L or S is a minimal
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element of L ∩ G that attacks some a ∈ A.

Theorem 2.5.3 gives us two equations. The question is then whether or not we can derive the

backings of these arguments by solving these equations. For instance, we want to find 〈 e 〉+ in

frameworkAF10 below. We backtrack through the attack relations, and, write the corresponding

the equations. The operations ⊕,⊗ stand for +(γ) and ◦(γ).

〈 a 〉+ =〈 b 〉+ = 〈 d 〉+ = {∅}

〈x 〉− =γ−1( ({{a}} ⊗ 〈 a 〉+) + ({{b}} ⊕ 〈 b 〉+) ) = γ−1({{a}, {b}}) = {{a}, {b}}

〈 c 〉+ =〈x 〉− = {{a}, {b}}

〈 y 〉− =γ−1( ({{c}} ⊗ 〈 c 〉+) + ({{d}} ⊗ 〈 d 〉+) ) = γ−1({{a, c}, {b, c}}+ {{d}})

={{a, c}, {b, c}, {d}}

〈 e 〉+ =〈 y 〉− = {{a, c}, {b, c}, {d}}.

The substitution of one result for another yields 〈 e 〉+ = {{a, c}, {b, c}, {d}}.

a

b

x c

d

y e a b c

AF10 AF11

// 88 // //88 // ,,mm oo

Although solving of the above equations is straightforward. This is not always the case, as

difficulties may arise in the case of attack cycles. For instance, in AF11 above, if we write the
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backing equations,

〈 a 〉+ = 〈 b 〉−

〈 b 〉− = γ−1(({{a}} ⊗ (〈 a 〉+) + ({{c}} ⊗ 〈 c 〉+))

〈 c 〉+ = {∅}

we will have,

〈 a 〉+ = γ−1(({{a}} ⊗ 〈 a 〉+) + {{c}}).

Hence, in case of the attack cycles it is common to face equations of the form,

〈 a 〉+ = γ−1( (B ⊗ 〈 a 〉+) + C ), (2.1)

where solving them is not a straightforward matter. 4

To overcome this problem, we use the result of theorem 2.5.3, and, define the recursive backing

function ß(d, T, j). The function ß(d, T, j) is basically a different formulation of relation in

theorem 2.5.3. It uses only the bare bone information which is the attack relations. The function

ß(d, T, j) itself is a mapping between the domains D = AR × 2AR × {0, 1} and 22
AR∗ . The

element d is the argument for which the backing is derived. T keeps a track of all the arguments

visited. Hence, T ensures that the recursion path is finite, and, the function halts. The element

j ensures that the crosswise relation between the backings of an argument and those of its

attackers are followed correctly. The values j = 0, j = 1 respectively denote whether the

function corresponds to the negative or the positive backings of argument d.

Definition 2.5.5. A backing function ß(d, T, j) for a framework AF = 〈AR , ATT 〉 is a

4 The equation A = (A◦B) + C is in the same form as the equation (2.5.3). If in the right hand side of
the equation, we substitute A by B ◦ C, and the apply properties of +, ◦ given in appendix 5.2.2, we will get
(B ◦(B+C)) ◦ C= (B ◦B)+(B ◦ C)+C=B+C. Hence, the equation (2.5.3) has a solution 〈 a 〉+ = {{a}}+{{c}} =
{{a, c}}. However, we still need to show that this is the only solution.

We did not fully investigate how to find the solutions to multiple equations of the form of equation (2.5.3). We
instead decided to sidestep the issue by defining the recursive backing function.
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function from domain D = AR× 2AR × {0, 1} to 22
AR∗ where AR∗ = AR ∪ {?}.

ß(d, T, j) =





∑
b∈d

(ß(b, T ∪{d}, 1) ◦ {{b}}) if d 6= ∅, d /∈ T, j = 0

∏
b∈d

ß(b, T ∪{d}, 0) if d 6= ∅, d /∈ T, j = 1

{{?}} if d 6= ∅, d ∈ T


∅ if d = ∅, j = 0

{∅ } if d = ∅, j = 1

In definition of ß(d, T, j), the first pair of cases directly refer to the relation in theorem 2.5.3,

whereas the bottom three cases are in regard to the special conditions. The last pair of cases

are in regard to the ground arguments d where d = ∅. The other three cases regard to the not-

ground arguments. The value of ß(d, T, j) for ground arguments is a constant where ß(d, T, 0)

for 〈 d 〉− and ß(d, T, 1) for 〈 d 〉+ are respectively ∅, {∅}. The second case identifies whether

the recursion is traversed through an attack cycle. This is checked by the condition d /∈ T

where T holds the visited arguments. If so, then the value of ß(d, T, 1) includes the special

symbol ? marking that the identified set is not a grounded set.

The set T is a free variable in ß(d, T, j). Its role is to trace the recursion steps. To derive

the backings of an argument a, we therefore need to initialize the arguments of the function

ß(d, T, j) to values d = a, T = ∅. The operations
∑
,
∏

guarantee that the value of ß(a,∅, j)

is a set of sets where each member set is a minimal conflict free set that accepts or attacks a.

This makes the result of function ß(a,∅, j), the backings of argument a, as is shown by theorem

2.5.6 below.

Theorem 2.5.6. For a finite argumentation frameworkAF , a backing function ß(d, S, j) always
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halts. Moreover, for an argument a,

1. 〈 a 〉+ = γ−1( ß(a,∅, 1) ), and, 〈 a 〉− = γ−1( ß(a,∅, 0) ).

2. S is not a grounded backing of a if S ∪ {?} ∈ ß(a,∅, 1) ∪ ß(a,∅, 0).

The following example illustrates both the working of function ß(a,∅, j) and the approach

taken for the proof of theorem 2.5.6.

Example 2.5.7. The following diagram represents argumentation frameworkAF 12 = 〈AR , ATT 〉.

The goal is to test the findings of theorem 2.5.6 for argument a.

a

b1 b2

c1 c2 c3 c4

d1 d2

AF12

77 gg

CC [[ CC [[

OO ZZ @@

��

In the following, let ~x ∈ AR× 2AR × {0, 1}. For any ~x = (x, T, j), then the values of x, T are

specific to the particular ~x, while the value of j is free. We denote the values of ß(~x) for j = 1

and j = 0, each by ß1(~x) and ß0(~x).

Let ~a = (a,∅, j), we compute ß1(~a), ß0(~a) by directly following the definition 2.5.5. In doing

so, we also draw the route of recursion in terms of ~x, the arguments of function ß(~x).
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~a

~b1 ~b2

~c1 ~c2 ~c3

~d1

~c41

~c42 ~c4∗

~d21 ~d22

~d2∗

The recursion map of ß(~a)

99 ee

FF XX FF

OO

XX

OO OO

OO OO

OO

~a = (a,∅, j)
~b1 = (b1, {a}, j)
~b2 = (b2, {a}, j)
~c1 = (c1, {a, b1}, j)
~c2 = (c2, {a, b1}, j)
~d1 = (d1, {a, b1, c2}, j)
~c3 = (c3, {a, b2}, j)
~c41 = (c4, {a, b2}, j)
~d21 = (d2, {a, b2, c3}, j)
~d22 = (d2, {a, b2, c4}, j)
~c42 = (c4, {a, b2, c3, d2}, j)
~c4∗ = (c4, {a, b2, c4, d2}, j)
~d2∗ = (d2, {a, b2, c3, d2, c4}, j)

The corresponding values ß(~x) for the nodes ~x of the recursion map are as follows.

ß1(~d1) = ß1(~c1) = {∅}.

ß0(~d1) = ß0(~c1) = ∅.

ß1(~c2) = ß0(~d1) = ∅.

ß0(~c2) = {{d1}} ◦ ß1(~d1) = {{d1}} ◦{∅} = {{d1}}.

ß1(~b1) = ß0(~c1) ◦ ß0(~c2) = ∅ ◦ ß0(~c2) = ∅.

ß0(~b1) = ({{c1}} ◦ ß1(~c1)) + ({{c2}} ◦ ß1(~c2)) = ({{c1}} ◦{∅}) + ({{c2}} ◦∅)

= {{c1}}+∅ = {{c1}}.

ß1(~c4∗) = ß0(~c4∗) = ß1(~d2∗) = ß0(~d2∗) = {{?}}.

ß1(~c42) = ß0(~d2∗) = {{?}}.

ß0(~c42) = {{d2}} ◦ ß1(~d2∗) = {{d2}} ◦{{?}} = {{d2, ?}}.

ß1(~d22) = ß(~d4∗) = {{?}}.

ß0(~d22) = {{c4}} ◦ ß1(~c4∗) = {{c4}} ◦{{?}} = {{c4, ?}}.
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ß1(~d21) = ß0(~c42) = {{d2, ?}}.

ß0(~d21) = {{c4}} ◦ ß1(~c42) = {{c4}} ◦{{?}} = {{c4, ?}}.

ß1(~c3) = ß0(~d21) = {{c4, ?}}.

ß0(~c3) = {{d2}} ◦ ß1(~d21) = {{d2}} ◦{{d2, ?}} = {{d2, ?}}.

ß1(~c41) = ß0(~d22) = {{c4, ?}}.

ß0(~c41) = {{d2}} ◦ ß1(~d22) = {{d2}} ◦{{?}} = {{d2, ?}}.

ß1(~b2) = ß0(~c3) ◦ ß0(~c41) = {{d2, ?}} ◦{{d2, ?}} = {{}} = {{d2, ?}}.

ß0(~b2) = ({{c3}} ◦ ß1(~c3)) + ({{c4}} ◦ ß1(~c41)) = ({{c3}} ◦{{c4, ?}})+

({{c4}} ◦{{c4, ?}}) = {{c3, c4, ?}}+ {{c4, ?}} = {{c4, ?}}.

Hence, we can draw ß1(~a) and ß0(~a)

ß1(~a) = ß0(~b1) ◦ ß0(~b2) = {{c1}} ◦{{c4, ?}} = {{c1, c4, ?}}.

ß0(~a) = ({{b1}} ◦ ß1(~b1)) + ({{b2}} ◦ ß1(~b2)) = ({{b1}} ◦∅) + ({{b2}}

◦{{d2, ?}}) = ∅+ {{b2, d2, ?}} = {{b2, d2, ?}}.

Accordingly, 〈 a 〉+ and 〈 a 〉− are

〈 a 〉+ = {S − {?} | S ∈ ß1(a)} = {{c1, c4}},

〈 a 〉− = {S − {?} | S ∈ ß0(a)} = {{b2, d2}}.

The recursion in ß(~a) follows the attack relation. It is therefore not surprising to see that the

recursion map of ß(~a) looks parallel to the graphical representation of AF10 itself. The differ-

ence between an argumentation framework and its corresponding map is that the map contains

no cycle, and, it looks like a directed tree except may be for some leaf nodes. The reason for

62



2.6. THE INDEPENDENCY OF ADMISSIBILITY BACKINGS

this feature of the map lies in the tracking set T in (d, T, j). The tracking set T keep a record of

the elements in the path of the recursion. On the other hand, the backing function ensures that

the path does not contain any cycles. As a consequence, every set T is unique, except may be

for some leaf nodes.

2.6 The independency of admissibility backings

In theorem 2.2.5, we cast a wide net over the arguments that play no role in the acceptance or

rejection of an argument. In this section, we make this net precise, narrowing it down to the

member arguments of the backings of an argument. We start by recasting the finding in theorem

2.2.5 in terms of the backing functions.

Observation 2.6.1. For an argument a and a set S of arguments, if S ∩ Pa = ∅, where Pa is

the set of all in/direct attackers and in/direct defenders of a, then ß(a, S, j) = ß(a,∅, j).

The above observation states that in computing ß(a,∅, j), if we start with any irrelevant set S

and compute ß(a, S, j), we can then substitute the value of ß(a, S, j) for ß(a,∅, j). Conversely,

if we derive ß(a,∅, j), then, we can have the value of ß(a,∅, j) for any ß(a, S, j) where S

is an irrelevant set with respect to the attacking or defending of the argument a. This is a

useful property, as in deriving the ß(a,∅, j), we can use the found values for ß(b, S, j) of b the

in/direct attackers/defenders of a, for the original ß(b,∅, j), and, vice versa.

For instance, in example 2.5.7, we can take ß1(~c41) = {{c4, ?}} for 〈 c4 〉+ = ß(c4,∅, 1) =

{{c4, ?}}, and, ß0(~c41) = {{d2, ?}} for 〈 c4 〉− = ß(c4,∅, 0) = {{d2, ?}}.

We can improve on the results of theorem 2.2.5 and observation 2.6.1, by drawing a more

precise boundary for the set S in theorem 2.6.1. It should be no surprise that this boundary can

be identified by the members of backings of an argument. If an argument b, neither belongs to,

nor attacks a backing of an argument a, then b plays no role in relation to the admissibility of a.

The following theorem presents this finding.
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Theorem 2.6.2. For an argument a and sets S, T of arguments,

1. ß(a, S, j) = ß(a,∅, j) if and only if for all T ∈ 〈 a 〉+ ∪ 〈 a 〉−, both S ∩ T = ∅ and

S ↪→� T .

2. If ß(a, S, j) = ß(a,∅, j) and ß(a, T, j) = ß(a,∅, j) then ß(a, S ∪ T, j) = ß(a,∅, j).

We can further improve on the result of theorem 2.6.2. We can show that every backing of a,

accepts or rejects a independently of the other backings of a.

For every backing S of an argument a, there is a minimal sub- argumentation frameworkAFS v

AF that captures S. For AFS to capture S, it should contain both a and S, as well as, the

attack relation between the members of S and S, i.e, AFN
S = 〈ARS , ATTS 〉 v AF where

ARS = S ∪ S, ATTS = (ARS × ARS) ∩ ATT .

From the definition of backings, we observe that every backing of a, accepts or rejects a inde-

pendently of the other backings of a. One way to present this, is to say that the status of S as

a backing for a, is preserved, in any normal sub-argumentation framework of AF that contains

AFS . That is, for any S ∈ 〈 a 〉+ and any AF ′ A AFS , S is a minimal admissible set in AF ′

that accepts a, irrespective of whether or not other backings of a are present in AF ′. Moreover,

AFS is the minimal of such normal sub-argumentation frameworks for S.

Conversely, let AF be the class of argumentation frameworks AFT such that some admissible

set T accepts or rejects a, and that, T remains admissible in all AFi for which AFT v AFi.

Then, all minimal elements AF∗ of such sub-argumentation frameworks AF each coincides

with with some backing S of a.

This correspondence between the backings of arguments and the minimal sub-argumentation

frameworks in which the acceptance or rejection of a is preserved throughout the super frame-

works is presented as the following theorem.

Theorem 2.6.3. For an argument a in an argumentation framework AF ,
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1. For every backing S of a in AF there is some minimal AFS v AF under v , such

that for all AFi w AFS , S is a backing for a in AFi . Moreover, AFS contains no

controversial arguments, and, has one and only one preferred extension ES = S that

accepts (respectively rejects) a.

2. Conversely, if AFS is a minimal sub framework of AF that for all AFi w AFS , S is an

admissible set that accepts or rejects a in AFi , then S is a backing for a in AF .

3. For a backing S of a, its corresponding AF ∗S is given as, AF ∗S = 〈AR∗S , ATT ∗S 〉 vN

AF where AR∗S = S ∪ S. AF ∗S is the minimal normal sub-argumentation framework

that contains all minimal sub-argumentation frameworks AFS of result in (2.6.3.1).

There are two remarks to be made. The first is that the minimal normal sub-framework AF ∗S

may contain more than one backing of a. For instance, in framework AF7, the minimal normal

sub-framework for argument b is AF7 itself. AF7 however contains two backings of b, one

positive and one negative backing of b.

The second remark is that the minimal sub-frameworks in theorem 2.6.3 do not fully identify

the classAFma of minimal sub-frameworks AFm for which if a is accepted by some admissible

set then a is accepted by some admissible set in all normal sub-frameworks AF ′ where AFm v

AF ′ vN AF . The following example illustrates this remark.

Example 2.6.4. In the following framework AF13a, argument a1 has a positive backing B =

{d, b1} where 〈 a 〉+ = {{d, b1}}. The minimal sub-framework that includes a1 and B remains

a backing of a1 in all its sup-frameworks is AF13b. This is the result of theorem 2.6.3. However,

AF13b is not the only minimal sub-framework for which in all its normal sup-frameworks a1 has

positive backing. AF13c is such sub-framework. For AF13c, in all normal sub-frameworks AF ′

where AF13c v AF ′ vN AF , argument a1 has a positive backing.
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This concludes the results for how backings independently decide the admissibility of argu-

ments. In the next section, we present the class of argumentation frameworks that is the proper

fit for the admissibility backings.

2.7 The proper class of argumentation frameworks for ad-
missibility backings

The admissibility backings, in the manner they are defined, are simply a special class of ad-

missible sets that accept or reject an argument. In defining the admissibility backings, we do

not demand any special constraints on the argumentation framework, and, the presented results

stand for all argumentation frameworks including those with no stable extensions.

The motivation behind the admissibility backings, however, extends beyond their definition.

The motivation is to provide the full information regarding the admissibility of arguments. In

this section, we discuss how the notion of full information, is compromised in frameworks

which are not coherent. In response, we then identify a class of coherent frameworks that stay

true to this motivation.

In the background section, it is shown that a framework that is not coherent must have some
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attack cycle of odd length. The problems that the attack cycles of odd length and the incoherent

frameworks present, as well as, the treatment of those problems, are well discussed in the liter-

ature. The simplest form of attack cycles of odd length are self attacking arguments. In relation

to the ramifications of attack cycles of odd length, Dung’s framework does not distinguish be-

tween the self attacking arguments and the other forms of attack cycles of odd length. We view

that the self attacking arguments belong to the special class of absurd arguments. Hence, we

separate the self attacking arguments from the rest of the class of attack cycles of odd length.

We say an argumentation framework is rational if it does not contain any self attacking argu-

ment.

2.7.1 The rational argumentation frameworks

One of the oldest paradoxes in logic is the liar’s paradox [PV01]. Accepting the self attacking

arguments, poses the same logical paradox as is presented in the liar’s paradox. In regard to the

acceptance of an argument, there are generally two mutually exclusive choices, either to accept

the argument or to reject the argument.

In Dung’s framework, if we choose to accept a self attacking argument then we are forced

to reject all the arguments that it attacks, including the self attacking argument itself. This

is clearly a logical impossibility. Hence, between the choice of accepting or rejecting a self

attacking argument, we are always forced to reject the argument, independent of any particular

framework. In other words, a self attacking argument can never belong to any admissible set.

In this sense, we may claim that,

in the abstract argumentation frameworks the closest notion to the absurdity is
the self attacking arguments.

If we take a basic principle of rationality to be avoiding the absurdity, then, for an abstract

argumentation framework to be considered rational, we must either exclude the self attacking

arguments, or, any self attacking argument must be universally attacked by some metalogical
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constant argument, e.g., some universal empty-argument. We adopt the former approach.

Definition 2.7.1. We say an argumentation framework AF is rational if and only if AF does

not include any self attacking argument.

Observation 2.7.2. If AF is rational then all AF ′ v AF are rational too.

There is another major problem with the self attacking arguments. A self attacking argument

that does not have a admissible attackers, is neither accepted or attacked by any admissible set.

Let us call this the property U.

An argument is said to have property U if no admissible set either accepts or
attacks that argument. Hence, an argument a has property U if and only if
〈 a 〉+ = 〈 a 〉− = ∅.

The self attacking arguments that do not have an admissible attacker possess property U. The

problem that self attacking arguments with property U present, is that they initiate the prop-

agation of the property U onward (under the attack relation). That is, an argument which is

effectively defended (or attacked) by a self attacking argument, will possess the property U as

well. Hence, we are faced with a situation where an argument that itself is not self attacking,

is treated, with respect to all intensive purposes, like a self attacking argument. Obviously, this

does not make sense.

In Dung’s framework this problem can be tied to the nonexistence of stable extensions. For

instance, the argumentation framework AF14, below, does not have a stable extension. AF14

though has a grounded extension, namely {q}, which is also a complete and preferred exten-

sion. In AF14, none of the arguments a, d, e is accepted or attacked by an admissible set, and,

therefore none of these arguments have a positive or a negative backing.
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Under Dung’s admissibility semantics, the arguments that indirectly attack themselves are also

prone to have the property U. For instance, we can replace argument a in AF14 with an attack

cycle of odd length a, b, c, and get framework AF15. In AF15, arguments a, d, e still have no

positive or a negative backings. Hence, forcing an argumentation framework to be rational, does

not address our concerns regarding the arguments with no admissibility backings.

Now, the problem with arguments with no admissibility backings is that we are not clear how

to read them and treat them. The issue is that,5

how an argument that is not in conflict with any admissible set, not to be accepted
by some admissible set?
Conversely, how an argument that is not accepted by any admissible, not to be in
conflict with some admissible set ?

The treatment of this subject is beyond the scope of this thesis. We instead sidestep the issue

and focus on the motivation behind the backings of arguments. The motivation is to localize the

information regarding the admissibility of an argument, in form of the arguments responsible

for the acceptance or rejection of that argument. Clearly, the statement 〈 a 〉+ = 〈 a 〉− = ∅,

does not provide such information.

To account for this shortcoming, we have two options. For one, we can extend the definition of

admissibility backings, and, allow for a new category of backings, namely the in-inadmissible

sets, the set of arguments that are neither not conflict free, nor attacked by any admissible

set. The admissibility backings presented here, however, do not allow for the not conflict free

set of arguments. Hence, we go with the second option. We instead, focus our efforts on

identifying the class of argumentation frameworks where all arguments have some backings,

i.e., 〈 a 〉+ 6= ∅ or 〈 a 〉− 6= ∅. We call these classes of frameworks, the strongly, and, the

normally stable argumentation frameworks.

5 We can present this issue in terms of plausible models of the world. Let us assume that each admissible set
correspond to a (minimal) plausible model of the world that we can construct from the evidence at hand. Hence,
we are faced with a situation in which an argument is not in conflict with any plausible model of the world, and
yet, it cannot be included in any.
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2.7.2 The strongly stable and the normally stable argumentation frame-
works

A general approach to secure that every argument has some backing, is to ensure that the frame-

work has some stable extension, the theorem 2.4.6.1. The class of frameworks with some stable

extension, does not however, generalize the class of frameworks for which every argument has

some positive or some negative backings. For instance, in the framework AF16, below, every

argument is attacked or accepted by some admissible set, but, AF16, itself, does not have a

stable extension.
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In addition, it is not just enough for a framework to have some stable extension, but, all the

sub-argumentation frameworks of the framework should have some stable extension as well.

The reason for this provision is directly related to the discussion regarding the need for sub-

argumentation frameworks. For instance, an argumentation framework that has some stable

extension, may not have any stable extension after the addition of some new arguments. To this

end, we first define the strongly stable argumentation frameworks.

Definition 2.7.3. We say an argumentation framework AF is stable if and only if AF has some

stable extension. We say AF is strongly stable if and only if all AF ′, AF ′ v AF are stable.

Observation 2.7.4. Every sub-argumentation framework of a strongly stable argumentation

framework is strongly stable too.

We observe that the class of strongly stable argumentation frameworks is closed under the sub-

argumentation framework relation. It then follows that the class of strongly stable argumen-

tation frameworks form a partial order under the sub-argumentation framework relation. In
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addition, it turns out that the class of strongly stable argumentation frameworks equates with

the class of limited-controversial argumentation frameworks, as shown by theorem 2.7.5, be-

low.

Theorem 2.7.5. An argumentation frameworkAF is strongly stable if and only ifAF is limited-

controversial.

The limited-controversial argumentation frameworks are coherent. The advantage of working

with coherent frameworks is that, not only, every framework has some stable extension, but,

every preferred extension is a stable extension as well. The disadvantage of confining ourselves

to the limited-controversial frameworks is that they are too restrictive. An argumentation frame-

work is limited-controversial if and only if it contains no attack cycle of odd length. The issue

is that not all attack cycles of odd length are problematic or avoidable or the result of some rare

occurrences.
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For instance, all the three frameworks AF17, AF18, AF19, below, have some stable extension. It

is difficult to justify that the configuration inAF18 is some rare occurrence, or, the configuration

in AF17 is easily avoidable. In short, in order to cover a greater range of realistic, yet well

behaved, arguments interaction, we need to go beyond the strongly stable frameworks. We do

this by relaxing the requirement for, every sub-framework of a framework needs to be stable to

every normal sub-framework of a framework to be stable. When we consider admissibility of

arguments in the real sense, we need to take account the full arguments interactions, given by

the full set of attack relation. Consequently, we are only required to consider the stability of

normal sub-argumentation frameworks.
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Definition 2.7.6. We say an argumentation framework AF is normally stable if and only if all

AF ′, AF ′ vNAF are stable.

We observe that the class of normally stable frameworks is a superset of the class of strongly

stable frameworks. The class of normally stable frameworks is also closed under the normal

sub-argumentation framework relation, the observation 2.7.7, where they form a partial order

under the normal sub-argumentation framework relation.

Observation 2.7.7. In an argumentation framework AF ,

1. Every normally stable argumentation framework is rational.

2. Every strongly stable argumentation framework is normally stable too.

3. Every normal sub-argumentation framework of a normally stable argumentation frame-

work is normally stable too.

Following our example above, while none of the frameworks AF17, AF18, AF19, is a strongly

stable framework, the two intended frameworks AF17, AF18 are normally stable frameworks.

Hence, we use the frameworks AF17, AF18 to characterize the normally stable frameworks.

The distinctive feature of the frameworks AF17, AF18, is that, every attack cycle of odd length

L, contains an attack cycleL′ ⊂ L, of even length. It is easy to see that this property is preserved

through all the normal sub-frameworks of a framework. The theorem 2.7.8, below, stipulates

this characterization of the normally stable frameworks.

Theorem 2.7.8. An argumentation framework AF is normally stable if and only if every attack

cycle, L, of odd length, contains an attack cycle, L′, of even length.

One way to test the merits of normally stable frameworks, is by adding the new arguments

and attack relations to the mix while preserving the integrity of the current framework, i.e.,

keeping the new framework, a normal framework. We can see that, in case of the frameworks

AF17, AF18, if we introduce any new argument, the resulting framework will still be a stable
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framework. On the other hand, in case of AF19, if we add the new argument z where z ↪→ q, the

resulting framework is no longer a stable framework. This outcome can easily be explained by

theorem 2.7.8. The addition of a new argument z that attacks any current argument, effectively,

equates with removing the attacked argument from the framework. That is to say that we are

dealing with a normal sub-framework of the current framework. By theorem 2.7.8, any normal

sub-framework is still a stable framework. However, in the case of AF19, the resulting sub-

framework contains an attack cycle of odd length, and therefore, is not stable.

There is also a second matter of concern regarding framework AF19. It is that not all preferred

extensions in AF19 are stable extensions. As a result, we have a situation where 〈 b 〉+ 6= ∅ and

〈 b 〉− = ∅. Normally, when we are given, only the information 〈 b 〉+ 6= ∅, 〈 b 〉− = ∅, we

expect that since no admissible set has any conflict with b, b should to accepted by all admissible

sets. However, this is not the case. The information that b is not accepted by all admissible

sets, is not readily carried by the information in 〈 b 〉+, 〈 b 〉−. If we wish for the admissibility

backings to contain all the information that is deducible at the first glance, a framework needs

to be coherent. As it happens, every normally stable argumentation framework is a coherent

framework, as stated by the following theorem.

Theorem 2.7.9. Every normally stable argumentation framework is coherent.

Hence, we have come full a circle and defined a class of coherent frameworks that every normal

sub-framework of it is coherent as well, namely, normally stable frameworks.

In the motivation chapter, section 1.2.4, we stated our reasons for why its is prudent to work

with finite argumentation frameworks. Many of results in the literature, too, are presented in

relation to the finite argumentation frameworks. In this regard, we define the compact argu-

mentation frameworks. The compact frameworks maintain the important characteristic of finite

frameworks while relaxing the constraint on finiteness of the framework.
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2.7.3 Compact argumentation frameworks

In [Dun95b], an argumentation framework is said to be finitary if for every argument a, a is a

finite set. However, this property does not ensure that every argument is accepted or rejected by

some finite admissible set. For instance, the argumentation framework AF = 〈AR , ATT 〉,

where AR = {a1, a2, · · · }, ATT = {(ai+1, ai) | i : Natural number }, is a coherent finitary

argumentation framework, with two stables extensions. AF does not, however, have a finite

admissible set. To make sure that every argument, whether accepted or rejected, is accepted

or rejected by some finite admissible set, we define the compact argumentation frameworks.

This definition of a compact argumentation framework is originally presented in [Boc02]. We

present a slight variation of it here.

Definition 2.7.10. An argumentation framework AF = 〈AR , ATT 〉 is said to be compact if

and only if for all arguments a ∈ AR, the set of in/direct attackers and defenders of a, denoted

by DFa, ATa are both finite, i.e., DFa ∪ ATa is a finite set.

Observation 2.7.11. If AF is compact then all AF ′ v AF are compact too.

It can be seen that following the theorem 2.2.5, any result regarding a finite argumentation

equally holds for its corresponding infinite but compact argumentation framework.

In working with the admissibility backings of arguments, we effectively work with the normally

stable frameworks that are compact.

Definition 2.7.12. We call an argumentation framework AF to be a NSC-AF framework if

and only if it is both normally stable and compact.

This concludes our presentation of admissibility backings. There are a few studies that are

directly related to our work here, and, many that are indirectly related. In the next section, we

briefly discuss some of the related works.
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2.8 Related research

The most direct reference to the admissibility backings is the minimal admissible defense sets,

by Vreeswijk in [Vre06]. The motivation behind [Vre06], is to present an efficient algorithm

for calculating the admissible sets. The minimal admissible defense sets are then the nucleus

around which the algorithm is built. To test the computational efficiency of the algorithm, the

algorithm is run against a number of average and worst case scenarios. The computational

results are found to be promising.

The paper [Vre06] does not formally define minimal admissible defense sets. This can be

attributed to the motivation behind [Vre06] where the role of minimal admissible defense sets

is only to serve the algorithm. There is, however, a close relation between the algorithm in

[Vre06] and the backing functions. The output of the algorithm is similar to the output of

the backing function. The difference lies with the intention behind the algorithm that is to

efficiently produce the admissible sets. Hence, there is no formal verification, or otherwise, of

the minimality condition, that the presented admissible sets are indeed the minimal admissible

defense sets.

In relation to the related research on sub-argumentation frameworks, there are many implicit,

and, some explicit references. However, none of the works formally defines the sub-argumentation

framework relation. The explicit references are mostly in regard to the merging, splitting and the

dynamics of argumentation systems [CMDK+07, Bau11]. The implicit references are mostly

found in the proofs and definitions, in cases where only a subset of the whole set of arguments

is considered [Dun95b, BG04, Cam06a]. The implicit references are in large in regard to the

normal sub-argumentation frameworks.

Finally, there are a number works on how to treat the attack cycles of odd length, notably [BG04,

Cam06b]. Within the studies on the abstract argumentation frameworks, the approaches on how

to deal with the attack cycles of odd length, in general, fall within two mutually exclusive camps,
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those that attempt to provide a semantics for the attack cycles of odd length, and, the other camp

which includes those that consciously sidestep the issue. In this thesis, we consciously sidestep

them, as discussed in the previous section.

2.9 Summary

In this chapter, we presented the backings of arguments as the minimal admissible sets that

accept or reject an argument. In doing so, due to the importance of the grounded admissible

sets, we decided to distinguish between the grounded and the not-grounded backings.

An important contribution of this chapter is the formulation of the relationship between the

backings of an argument of those of its attackers, and, the recursive function that captures this

relation. There are still many follow up queries on the backings of argument. For instance,

the impact of an argument in relation to the acceptance of an argument. An important query

of such, is how the backings of arguments propagate through the attack relations, or simply the

propagation of backings.

For instance, if b is an in/direct defender of a, then, for any positive backing S of a, would we

find some positive backing T of b such that T ⊆ S? The propagation of backings also provides

a certain insight into the relations between arguments. The next chapter is therefore dedicated

to the investigation the propagation of admissibility backings.
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Chapter 3

The Role of one Argument in Admissibility
of another and the Propagation of
Admissibility Backings

3.1 Introduction

A central question in abstract argumentation frameworks is whether or not an argument is ad-

missible. One aspect of this question is, what roles arguments play in regard to the admissibility

of another. In this chapter, we employ the help of admissibility backings to identify and char-

acterize a number of such roles. Since the admissibility backings localize the admissibility of

arguments, they provide a suitable ground for investigating the functions that arguments may

serve with respect to the admissibility of others.

The identified roles are termed intercepted, critical, incompatible, and, redundant arguments.

Following the tradition in literature, these roles are presented in terms of relations among argu-

ments.

Furthermore, we identify these roles in a manner that directly relates to how the admissibility

backings propagate along the sequences of attack relations. Thus, in parallel, we address the

propagation of the admissibility backings, as well.
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The presented results can also be used for partitioning a framework into sub-frameworks with

distinct features. Hence, as a show case and the final part of our contribution, we demonstrate

how the intercepts can be used to partition a framework into independent sub-frameworks. This

would also serve as a prelude to the future work on the applications of the admissibility backings

in partitioning and merging of argumentation frameworks.

A number of relationships among arguments are already defined that identify whether or not

an arguments can have a role in the admissibility of another. Naturally, all these relations are

defined based on the attack relation. The classifications of current argument relations, e.g.

attacker of an argument, do not however identify whether or not the argument does contribute

to admissibility of the target argument.

In Dung’s framework, the manner by which arguments are considered to be admissible governs

a certain relation between the backings of an attacker of an argument and the backings of that

argument. The theorem 2.5.3 shows this relation. By the propagation of admissibility backings

of arguments, we mean how this relation propagates along the attack sequences. Consequently,

the role that arguments play in admissibility of another is directly related to propagation of the

backings of arguments.

The basic question that we are considering is,

Note 3.1.1.
if R ∈ 〈 b 〉+ ∪ 〈 b 〉− and a ∈ R, then, given any S ∈ 〈 a 〉+ ∪ 〈 a 〉−, is there some
T ∈ 〈 b 〉+ ∪ 〈 b 〉− such that S ⊆ T ?

In answering this question we can in turn identify certain relations among arguments that char-

acterize the roles that arguments play in admissibility of other arguments. This is the topic of

this chapter.
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3.2 Active arguments and attack sequences

Following the discussion above, not every argument, or, even every attacker or defender of an

argument is relevant to the admissibility of that argument. On the other hand, it can be said

that,

Note 3.2.1.
an argument that takes part in some backing of some argument plays a role in the
admissibility or the dismissibility of that argument.

Hence, we can expand on the role of in/direct attackers and in/direct defenders of an argument

by looking at whether or not they take part in some backing of that argument. We call these

in/direct attackers or in/direct defenders of an argument the active attackers and the active

defenders of that argument.

Definition 3.2.2. For arguments a, b, we say b is an active defender of a if and only if b ∈ S,

for some S ∈ 〈 a 〉+. We say b is an active attacker of a if and only if b ∈ S, for some

S ∈ 〈 a 〉−. We refer to b as an active argument for a if and only if b is an active defender or an

active attacker for a.

The claim (3.2.1) above says that an active argument b of an argument a is relevant to the

admissibility of argument a. If this is the case then b must be a member of some minimal sub-

argumentation framework for which the admissibility of a is preserved under sup-framework

relation. The theorem 2.6.3 on page 64 shows this conclusion to be correct.

The converse of claim (3.2.1) is, however, not necessarily correct. Not every argument that

does not appear in some backing of an argument can be deemed irrelevant in regard to the

admissibility of the argument. The converse is not correct in the case of controversial arguments,

as shown by the following example.

Example 3.2.3. In framework AF1 below, argument d is attacked by some admissible set and

belongs to no admissible set, i.e., 〈 d 〉+ = ∅, 〈 d 〉− = {{a, b}} 6= ∅. The minimal sub-

framework generated for {a, b}, is shown by AF1a. However, AF1a is not the only minimal
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sub-framework for which the admissibility status of d is preserved under sup-framework rela-

tion. AF1b is another of such minimal sub-framework. Hence, we have another minimal set of

argument that is important for the admissibility of d which is {b, c, y1}, making the arguments

c, y1 relevant for the admissibility status of d.
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One may then suggest that the notion of active arguments for an argument to be extended to the

attackers of active defenders or the active attackers of an argument, as well. The reason being,

since the defeat of attackers of active arguments is a necessary condition for admissibility of the

active arguments, they too must be directly relevant for admissibility of the original argument.

However, we opt to keep the definitions simple and leave them as they are. We leave the

handling of the controversial arguments as well as the dependency relation between arguments

as future work of this Thesis.

From the definition of active arguments, it is easy to see that there is a direct relation between

the transitivity of the active argument relation, presented by the question,

Note 3.2.4.
if a is an active argument for b and b is an active argument for c, then, is a an
active argument for c ?

and the propagation of backings, presented by the question (3.1.1) on page 78. In fact, it can

be shown that the questions (3.2.4) and (3.1.1) are related. The answer to both questions is,

generally, ‘yes’, unless, there are mitigating conditions. In sections3.5 and 3.6, we classify and

characterize the special conditions under which transitivity of the active argument relation fails.

Although, the answer to question (3.1.1) is not always ‘yes’, the answer to the question,

Note 3.2.5.
if a is an active argument for b, then, are there some admissibility backings S for
a and T for b such that S ⊆ T ?

is always ‘yes’, as presented by the following observation.
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Observation 3.2.6. For arguments a, b, c, if a ∈ T for some T ∈ 〈 b 〉+ or T ∈ 〈 b 〉−, then,

there is some S ∈ 〈 a 〉+ such that S ⊆ T , and, if c ∈ a, then, there is some R ∈ 〈 c 〉− such that

R ⊆ S ⊆ T .

The observation 3.2.6, states that once we know that an argument a is an active argument of an

argument b, we then know that some positive backing of a, as well as, some negative backings

of all its attackers are passed (with respect to set inclusion) to the backings of b.

The theorem 2.5.3 is a good point for studying the propagation of backings of arguments. Theo-

rem 2.5.3 shows the basics of how the backings of an attacker of an argument propagate into the

backings of the argument. Hence,we can say that a necessary condition for an argument a to be

an active argument for some argument b is that a has to be an active argument for some attacker

of b, as shown by the following observation. The converse is not necessarily true. There are

cases where the transitivity of active argument relation fails.

Observation 3.2.7. For two arguments a, b where a /∈ b, if a is not an active argument for any

c ∈ b then a is not an active argument for b.

Theorem 2.5.3 and observation 3.2.7, therefore, suggests that we can follow the chain by which

the backings propagate with respect to the attack sequences. Hence, we define the active attack

sequences as follows.

Definition 3.2.8. In an argumentation framework AF , an attack sequence π = (a0, a1, · · · ) of

a finite or countable length is said to be,

• positively active if and only if it is non empty (i.e, has a length greater than zero) and

every ai where i is an even number, is accepted by some admissible set in AF .

• negatively active if and only if it is non empty (i.e, has a length greater than zero) and

every ai where i is an odd number, is accepted by some admissible set in AF .

• active if and only if it is positively active or negatively active.
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• intercepted if and only if it is not active.

• partially intercepted if and only if it is an active attack sequence that has a non trivial

subsequence which is both positively and negatively active.

A sequence can be either or neither or both positively and negatively active. In definition 3.2.8,

we differentiate between the positively and negatively active sequences. A positively active

sequence can have a sub-sequence that is both positively and negatively active.

For instance, in framework AF2, the attack sequence π1 = (b, a, e) is intercepted where its

subsequence π2 = (a, e) is negatively active. In framework AF2a , the attack sequence π3 =

(c, f, d, b, a, e) is partially intercepted where it is negatively active and its subsequence π4 =

(c, f, d, b) is both positively and negatively active. In framework AF2b , the attack sequence

π5 = (b, a, c, a), too, is partially intercepted where it is negatively active and its subsequence

π6 = (a, c, a) is both positively and negatively active. In framework AF2c , all possible non

empty attack sequences are not intercepted where all the non empty attack sequences are both

positively and negatively active sequences.
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In addition, in all frameworks AF2, AF2a, AF2b , all the instances of intercepts and partial inter-

cepts of sequences happen in regard to the a change in the admissibility status of the consecutive

arguments a, b. The admissibility status ε of a, b in frameworks AF2, AF2a, AF2b are in turn

ε(a) = 0, ε(b) = 0, and, ε(a) = 0, ε(b) = 1/2, and, ε(a) = 1/2, ε(b) = 0. Hence, we use the

change in admissibility status of arguments along an attack sequence to characterize the active

and the intercepted sequences, as shown by the following lemma. 1

1 The characterization of partially intercepted attack sequences is more complicated. We classify the partially
intercepted sequences in the following sections. Since our main interest is with the active and the intercepted
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Lemma 3.2.9. An attack sequence is not active if and only if there are some consecutive ele-

ments ai, ai+1 on the sequence such that 〈 ai 〉+ = 〈 ai+1 〉+ = ∅.

Many studies on the abstract argumentation frameworks either employ the graphical represen-

tation of frameworks, or, are based on the graph theoretical terms and methods. The attack

sequences are directly parallel to thepaths between the nodes (arguments) in a graph representa-

tion of a framework. Hence, the use of attack sequences allows for a straightforward translation

of the results here into the graph theoretical terms.

Following observation 3.2.6, it easy to see that every active argument a for an argument b must

be on some active attack sequence from b to a, as shown by the following lemma.

Lemma 3.2.10. If b is an active argument for a, then, there is some active attack sequence from

a to b, such that b is an active argument for all arguments in the sequence.

From this point on, unless specified otherwise, by an active sequence we mean an active attack

sequence. In the following sections, we will look more closely at the relation between the

active arguments and the active attack sequences. First, we identify the points along an attack

sequence where the sequence stops being an active attack sequence. In such situations, we say

that the active sequence is intercepted. Hence, we first start with the intercepts.

3.3 Intercepts

In this section, we look at the lines where the propagation of backings fully stops. In such

incidences, we say that propagation of backings is intercepted. For an argument a, an attacker

of argument b, we normally expect that a backing of b to contain some backing of a. However, if

the attack sequence π = (b, a) is intercepted at b, then, this expectation shall not be met. Hence,

we define the notion of intercepts with respect to the attack sequences.

Definition 3.3.1. In an argumentation framework AF , we say an argument a is intercepted for

sequences, we only characterized the active and the intercepted sequences.
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an argument b if and only if all the attack sequence from b to a are intercepted or there are no

attack sequences from b to a.

We expect the intercepted arguments to be irrelevant to the admissibility of that argument. If

there is no attack sequence from b to a then a is vacuously irrelevant to the admissibility of b.

Definition 3.3.1 adheres to this expectation and says that if there are no attack sequences from

b to a then a is vacuously intercepted for b. Furthermore, following lemma 3.2.10 we see that

if all attack sequences from b to a are intercepted, then a cannot be an active argument for b, as

shown by the following observation.

Observation 3.3.2. For two arguments a, b, if a is intercepted for b then a is not an active

argument for b.

If we follow the characterization of active sequences, the lemma 3.2.9, it is clear that the inter-

cepts are related to the admissibility status of consecutive arguments ai, ai+1 along the attack

sequence. For an active attack sequence, if ai is not admissible then ai+1 should be admissible.

For an intercepted sequence, this however not the case. The following lemma uses this property

to characterize the intercepts.

Lemma 3.3.3. For an argument a where a ∈ b, a is intercepted for b if and only if 〈 a 〉+ = ∅

and there is some S ⊆ b− {a} such that
∏
c∈S

γ(〈 c 〉−) = ∅.

Following the above lemma, we see that for an intercept to occur we need some third argument,

namely c, to stop propagation of the negative backings of a for the defense of b. In such situa-

tions, we say that a is intercepted for b by c. Moreover, there can be more than one argument c

that intercepts a for b.

The propagation of intercepts happen both forward and backward under the attack relation. The

following lemma presents this by breaking the propagation of intercepts in terms of the attack

relation. The simple version of this lemma is such that if c is an attacker of b and a is intercepted

for c, then, a is also intercepted for b, the forward propagation. Similarly, if a is an attacker of
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c and c is intercepted for b then a is also intercepted for b, the backward propagation.

Lemma 3.3.4. For arguments a, b where a /∈ b, let C be the set of all c ∈ b for which a is an

in/direct attacker or an in/direct defender, and, D be the set of all d ∈ +
a where d is an in/direct

attacker or an in/direct defender of b.

1. If a is intercepted for all c ∈ C then a is intercepted for b.

2. If all d ∈ D are intercepted for b then a is intercepted for b.

Lemma 3.3.3 presents the base case for occurrences of the intercepts and lemma 3.3.4 describes

the propagation of the intercepts under the attack relation. We can therefore put the two lemmas

together and characterize the occurrences of intercepts, as shown by the theorem below.

Theorem 3.3.5. For arguments a, b, let D be the set of all arguments d ∈ +
a where d is an

in/direct attacker or an in/direct defender of b. Argument a is intercepted for b if and only if one

of the followings hold.

1. If a ∈ b then 〈 a 〉− 6= ∅ and there is some S ⊆ b− {a} such that 〈S 〉− = ∅.

2. If a /∈ b then for any d ∈ D, either a is intercepted for d or d is intercepted for b or both.

It is obvious that where the propagation of backings halts, the transitivity of the active argument

relation fails as well. The notion of intercepts, therefore, applies to both the active argument

relation and the active attack sequences. Hence, we can define the intercepts either in regard to

the backings of arguments or with respect to the attack sequences. For the reasons explained be-

fore, we opt to define the intercepts as a relation between arguments using the attack sequences.

The first stop in investigation of the role that arguments play with respect to the admissibility of

others is the critical argument relation.
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3.4 The critical arguments

For an argument a, arguments that do not belong to, or attacked by, any of the backings of a,

play no significant role in admissibility of a. By the same token, an argument that appear in

many of the backings of a, is expected to be very significant for the admissibility of a. An

argument becomes crucial for a, if its inclusion or removal will result in a total change in the

acceptability of a. We define the critical arguments as the arguments on which the admissibility

of an argument almost totally depends.2

For instance, in argumentation framework, AF3 below, if we remove either of arguments, b11 or

b12, argument a stays accepted by some admissible set in the resulting framework. On the other

hand, if we remove b2 then a is no longer accepted by any admissible set. Hence, we point out

that b2 is critical for the admissibility of a in AF3.

a

y1 y2 y3

b11 b12 b2

AF3

:: OO dd
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We do not deal with the dependency relations at this point. Hence we define, the notion of a

critical argument by means of the set membership by all admissible sets that accept or attack

an argument.

Definition 3.4.1. For two arguments a, b, argument b is said to be a critical defender for a if and

only if b is in every admissible set that accepts a. Respectively, b is said to be a critical attacker

of a, if b is in every admissible set that attacks a.

The above definition presents the critical arguments as the arguments whose acceptance is nec-

essary condition for the acceptance (or rejection) of an argument. In the same fashion, the

2 The word almost concerns the treatment of controversial arguments as presented by the example 3.2.3 of this
chapter and example 2.6.4 of chapter 2.
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defeat of all attackers of the critical arguments, is a must condition for the acceptance of that

argument. The following observation makes this case.

Observation 3.4.2. If a is a critical defender (or respectively critical attacker) of b, then, every

admissible set that accepts (or respectively attacks) b, attacks any attacker of a, as well.

3.4.1 The characterization of critical argument relation

The backings of an argument, are simply the minimal admissible sets that either accept or attack

an argument. We therefore expect, for a critical defender of an argument to belong to all the

positive, and, for a critical attacker of the argument, to belong to all the negative backings of

that argument, as stated by the following observation.

Observation 3.4.3. For arguments a, b in an argumentation framework AF ,

1. b is a critical defender for a if and only if b is in every positive backing of a,

2. b is a critical attacker for a if and only if b is in every negative backing of a.

Let us say that we have a set of arguments T where every argument in T is both admissible

and has some critical defender a. Then we expect every admissible subsets S of T , T ⊆ S to

contain all such critical defenders a. The following observation states this finding.

Observation 3.4.4. Let i be a natural number 1 ≤ i ≤ n for some natural number n. If ai

is a critical defender of an argument bi ∈ S, then, if S ∈ γ−1(
∏

1≤i≤n
γ(〈 bi 〉+) ) then ai ∈ S.

Respectively, if ai is a critical attacker of bi, then, if S ∈ γ(
∏

1≤i≤n
γ(〈 bi 〉−) ) then ai ∈ S.

On the other hand, not every argument has a critical defender or a critical attacker. Yet, there

are some combinations of arguments that are indispensable to the admissibility or dismissibility

of an argument. That is, if we remove that set of arguments, then there will be a change in

the admissibility of the argument. Hence, we are tempted to revise the definition of critical

arguments to the critical set of arguments.

Definition 3.4.5. In an argumentation framework AF , let C, S be two sets of arguments and a

87



The characterization of critical argument relation

be an argument in AF . C is a said to be a critical set for a if and only if C is a minimal set of

arguments such that for any admissible set T that accepts (respectively attacks) a, C ∩ T 6= ∅.

Accordingly, C is a critical set for S if and only if C is a minimal set of arguments such that for

any admissible set T that accepts (respectively attacks) every a ∈ S, C ∩ T 6= ∅.

The issue with critical sets of arguments is that there are potentially many such critical sets of

arguments. To list every critical set, is counter productive and against the (practical) motivation

behind the formulation of critical arguments. On the other hand, we need the critical set relation

to characterize the redundant argument relation, section 3.6. The following lemma states that

the critical set relation unde critical argument relation.

Theorem 3.4.6. Let a be some critical defender of argument b and S a critical set for a. Then,

there is a critical set W for b such that W ⊆ S.

Another property of critical argument relation is that the critical attacker relation is never re-

flexive while the critical defender relation can be reflexive. On the other hand, both the critical

attacker and defender relations can be symmetric or asymmetric relations, depending on the

particular framework.

We may be interested to know whether or not an argument can be at simultaneously both a

critical defender and a critical attacker of some argument. The answer is yes as shown by the

following example.

Example 3.4.7. In frameworkAF4, below, a is both a critical defender and a critical attacker for

d. InAF4, d has one positive and one negative backing, 〈 d 〉+ = {{a, c}}, 〈 d 〉− = {{a, b, x1}}.

It is easy to see that in cases where an argument, a, is both a critical defender and critical attacker

of some argument d, no backings of d attacks the argument, a. The reason is that since a is in all

backings of d, any backing of d that attacks a automatically becomes a self attacking set, which

leads to a contradiction. To test this, we can add an argument e where e and a symmetrically

attack each other. In the resulting framework, a is no longer a critical attacker of d.
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We may ask ourselves, how sensible are the cases as the one in AF4? In answer, we make

a reference to the simpler framework AF5. In AF5, argument a, for all intentional purposes,

defeats the defender of d, where otherwise without a, argument d would be fully accepted. AF5

has two preferred extensions P1 = {a, c}, P2 = {a, d}. P1 is of course the sensible extension. In

P2, however, we have argument d and its active indirect attacker a, both in the same extension.

The analysis so far covers only the base case for occurrences of the critical argument relation.

Next, we discuss the transitivity of critical argument relation.

3.4.2 The propagation of critical argument relation

In general, we expect, the critical argument relation to be a transitive relation. That is if we

are told an item a is critical for an item b, and, b is critical for c, we will then expect for a to

be critical for c. The presented notions of critical attacker and critical defender do meet this

expectation, as shown by the following theorem.

Theorem 3.4.8 (Transitivity property of critical argument relations). Let a, b, c, d be four argu-

ments in some AF = 〈AR , ATT 〉, and, the relations a R1 b, a R2 b stand for a is critical

defender b, and, a is a critical attacker for b. Then, the following transitive properties hold over

R1,R2 and ↪→ relations.

1. aR1 b, bR1 c then aR1 c .

2. aR1 b, bR2 c then aR2 c .

3. aR2 d, d ↪→ b, bR1 c then aR1 c .
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4. aR2 b, d ↪→ b, bR2 c then aR2 c .

Finally, we may like to know, how the acceptance of an argument depends on its critical de-

fenders and attackers. In general, the acceptability of an argument fully depends on its critical

defenders and attackers. That is, if we remove the critical defender of an argument, the argu-

ment will no longer be admissible. The controversial critical arguments are however exception

to this rule, as illustrated by the following example.

Example 3.4.9. In framework AF6, below, a is the critical attacker for c, and, the critical

defender for d. We can see that the removing of a has no effect on the admissibility of c, d.

This outcome is the result of a certain property of controversial arguments. The independence

relation is an important topic and deserves our full attention in it own rights. Hence, we leave

the discussion on the controversial arguments and its relation to the independence relation as a

future topic.

dc

y

b
a

x

AF6

++

;; //

##33 //

In the following sections, we will see the role that critical arguments play in identifying the

various relations among arguments.

3.5 Incompatible arguments

In Dung’s framework, an argument and its attacker are regarded to be conflicting arguments.

They are conflicting in the sense that they can never belong to the same admissible set. 3

There are, however, instances where a two non-conflicting arguments cannot belong to the same

3 The case that conflicting arguments cannot belong to the same admissible set is independent of any particular
framework.
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admissible set either.

For instance, in framework AF8 below, the arguments a1, a2 are each is accepted by some

admissible set, yet no admissible set can accept both arguments. We call these arguments the

incompatible arguments. We define the incompatible arguments in terms of admissible sets,

and, characterize them by means of their critical arguments. Moreover, this characterization is

directly related to the attack cycles of even length. In addition, we investigate the incompatible

argument relation in regard to the propagation of admissibility backings.

3.5.1 The Characterization of incompatible argument relation

We usually speak of the incompatibility of objects not in absolute terms, but, either in regard to

some specific context, or under some quantifying measure. However, in this work, we define

the incompatibility of arguments in the boolean terms, yes or no.

The conflict relation between arguments is characterized by the attack relation between argu-

ments. Accordingly, we define the incompatible arguments relation by extending the conflict

relation between arguments. We extend the criteria, one argument is attacked by another, to the

criteria that the admissible sets that accepts each argument attack another. In other words, the

two admissible sets accepting each argument cannot form (with respect to set union) a conflict

free set.

The frameworks AF7, AF8, below illustrate the characterization of the incompatible arguments

relation. In frameworkAF8, argument a1 is accepted by admissible set S1 = {b2} and argument

a2 is accepted by admissible set S2 = {b1}. The admissible sets S1, S2, however, conflict with

each other, and so, S2 ∪ S2 cannot be a conflict free set. As a result {a1, a2} is not accepted by

any admissible set.

We test our characterization of incompatible arguments in framework AF7. Similar to the

framework AF8, there is no admissible set that accepts {a1, a2}. Can we call the two arguments
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a1, a2 incompatible ? Our characterization says otherwise. The reason is that to be regarded

incompatible arguments, each argument should be accepted by some admissible set. But, no

admissible set accepts a2. Another way to look at this is that independent arguments cannot be

considered incompatible, and, arguments a1, a2 are clearly independent of each other.

We can further elaborate on the incompatible argument relation. We have so far define the

incompatible argument relation based on each argument to be accepted by some admissible set.

We can also define an incompatible argument relation based on each argument to be attacked

by some admissible set. It is possible to have two arguments such that while each argument is

attacked by some admissible set, no admissible set attacks both. Hence, we distinguish between

the two forms of incompatible argument relation. We call the former, the positively incompatible

arguments relation, and, the latter, the negatively incompatible arguments relation. This way,

we have a more refined notion of incompatibility that covers more cases.

The frameworks AF8, AF9, AF10 demonstrate that two forms of incompatible arguments re-

lations. In AF8, the two arguments a1, a2 are both positively and negatively incompatible,

whereas in AF9, a1, a2 are only positively incompatible, and, in AF10, a1, a2 are only nega-

tively incompatible.
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In addition, we need to remember that any two conflicting arguments are by default incompati-

ble arguments. Hence, we define the incompatible set of arguments as follows.

Definition 3.5.1. For an argument a in an argumentation framework AF = 〈AR , ATT 〉, let
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Ma, Na, respectively denote the class of admissible sets that accepts and attack argument a.

Next, for a set S of arguments, let M denote some maximal M ⊆ S such that for every a ∈M ,

Ma 6= ∅, and, respectively let ψ denote the selection functions over M where ψ(a) ∈ Ma.

Similarly, let N denote some maximal N ⊆ S such that for every a ∈ N , Na 6= ∅, and, φ

denote the respective selection functions over N where φ(a) ∈ Na.

• We say a set S of arguments is positively incompatible, if and only if, S is not conflict

free, or, for some a ∈ S, Ma 6= ∅ and there is no selection functions ψ, for which

W = S ∪
⋃
a∈M

ψ(a) is conflict free.

• We say a set S of arguments is negatively incompatible, if and only if, S is not conflict

free, or, for some a ∈ S, Na 6= ∅, and, there is no selection functions φ, for which

W =
⋃
a∈M

φ(a) is conflict free.

• We say, arguments a1, a2, · · · , an are positively (respectively negatively incompatible) if

and only if S = {a1, a2, · · · , an} is positively (respectively negatively) incompatible.

Following the definition above, we see that a not conflict free set is by default both positively

and negatively incompatible. On the other hand, the empty set is vacuously both positively and

negatively compatible. In addition, it follows that if two arguments are incompatible then the

admissible sets to which one belongs are in conflict with all the admissible sets to which the

other belongs. This mans that the incompatible arguments can essentially be traced back to the

attack cycles of even length. The following observation points out this finding.

Observation 3.5.2. For two admissible sets S, T , if a ∈ S is positively or negatively incompat-

ible with b ∈ T , then, S, T symmetrically attack each other.

We can test the definition 3.5.1 against set S = {a1, a2} in framework AF9. for argument a1, a2

we have

Ma1 = { {b11, b12} }, Na1 = { {b21, y11}, {b22, y12} }.
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Ma2 = { {b21, b22} }, Na2 = { {b11, y21}, {b12, y22} }.

The maximal set M,N ⊆ S which for every a ∈ M,N , there are some Ma ∈ Ma, Na ∈ Na

where Ma 6= ∅, Na 6= ∅ are M = S,N = S. For M there is no selection function ψ for

which S ∪
⋃
a∈M

ψ(a) is conflict free. Because, there is only one selection function ψ where

ψ(a1) = {b11, b12}, ψ(a2) = {b21, b22}, but, ψ(a1) ∪ ψ(a2) = {b11, b12, b21, b22} is not conflict

free. On the other hand, there is one selection φ where φ(a1) = {b21, y11}, φ(a2) = {b12, y22},

for which
⋃
a∈M

φ(a) = φa1 ∪ φa2 = {b21, y11, b12, y22} is conflict free. Therefore, S is positively

incompatible, but, it is not negatively incompatible.

Next, we provide an algebraic means for finding whether or not a set S of arguments is an

incompatible set. Since admissibility backings are the minimal admissible sets that accept or

reject arguments, there is an evident link between the backings of arguments and the incompat-

ibilities of arguments. Following the definitions of incompatibilities, we see that two arguments

a, b are positively incompatible if and only if 〈 a 〉+∪〈 b 〉+ 6= ∅ and 〈 a 〉+ ◦ 〈 b 〉+ = ∅. Respec-

tively, a, b are negatively incompatible if and only if 〈 a 〉− ∪ 〈 b 〉− 6= ∅ and 〈 a 〉− ◦ 〈 b 〉− = ∅.

The following theorem generalizes this finding.

Theorem 3.5.3. For a set S of arguments, letM,N denote the maximum subsets of S where for

every a ∈ M , 〈 a 〉+ 6= ∅, and, for every a ∈ N , 〈 a 〉− 6= ∅. A set S of arguments is positively

incompatible if and only if
∑
a∈S

γ( 〈 a 〉+) 6= ∅ and {S} ◦
∏
a∈M

γ( 〈 a 〉+) = ∅, and, is negatively

incompatible if and only if
∑
a∈S

γ( 〈 a 〉−) 6= ∅ and
∏
a∈N

γ( 〈 a 〉−) = ∅.

The theorem 3.5.3, offers a simple way to determine whether or not a set S of arguments is

incompatible. For instance, in frameworks AF7, AF8, AF9, AF10, we can draw the same con-

clusions for the incompatibility of arguments a1, a2, as before.

Example 3.5.4. Use theorem 3.5.3 to determine the incompatibility of arguments a1, a2 in

frameworks AF7, AF8, AF9, AF10.

In the following, sets S,M,N correspond to the sets S,M,N in theorem 3.5.3. All four frame-
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works share the same S = {a1, a2}, and, while for AF7, M = {a1}, N = {a2}, for the rest of

frameworks, M = N = {a1, a2}.

In AF7, S is neither positively nor negatively incompatible.

{S} ◦
∏
a∈M

γ( 〈 a 〉+) = S ◦ γ( 〈 a1 〉+) = S ◦ {{b1}} = {{a1, a2, b1}} 6= ∅.

∏
a∈N

γ( 〈 a 〉−) = γ(〈 a2 〉−) = {{b2}} 6= ∅.

In AF8, S is both positively and negatively incompatible.

{S} ◦
∏
a∈M

γ(〈 a 〉+) = {S} ◦ γ( 〈 a1 〉+) ◦ γ( 〈 a2 〉+) = {S} ◦ ({{b2, ?}} ◦ {{b1, ?}}) =

{S} ◦∅ = ∅.

∏
a∈M

γ( 〈 a 〉−) = γ( 〈 a1 〉−) ◦ γ(〈 a2 〉−) = {{b1, ?}} ◦ {{b2, ?}} = ∅.

In AF9, S is only positively incompatible.

{S} ◦
∏
a∈M

γ(〈 a 〉+) = {S} ◦ γ(〈 a1 〉+) ◦ γ(〈 a2 〉+) = {S} ◦{{b11, b12, ?}} ◦{{b21, b22, ?}} =

{S} ◦∅ = ∅.

∏
a∈N γ(〈 a 〉−) = γ(〈 a1 〉−) ◦ γ(〈 a2 〉−) = {{b21, y11, ?}, {b22, y12, ?}} ◦{{b11, y21, ?}, {b12, y22, ?}}

= {{b11, b22, y12, y21, ?}, {b12, b21, y11, y22, ?}} 6= ∅.

In AF10, S is only negatively incompatible.

{S} ◦
∏
a∈M

γ(〈 a 〉+) = {S} ◦ γ(〈 a1 〉+) ◦ γ(〈 a2 〉+) = {S} ◦{{b11, ?}, {b12}, ?} ◦{{b21, ?}, {b22, ?}}

= {S} ◦{{b11, b22, ?}, {b12, b21, ?}} = {{a1, a2, b11, b22, ?}, {a1, a2, b12, b21, ?}} 6=

∅.

∏
a∈N

γ( 〈 a 〉−) = γ( 〈 a1 〉−) ◦ γ( 〈 a2 〉−) = {{b21, b22, y1, ?}} ◦ {{b11, b12, y2, ?}} = ∅.

We can use theorem 3.5.3 to draw a more direct connection between the incompatibility of
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arguments and the attack cycles of even length, than the one stated by observation 3.5.2. If

two arguments are incompatible then they both have some positive and some negative back-

ings. Hence, the root of their admissibility lies within some attack cycles of even length. The

following observation states this finding.

Observation 3.5.5. For two distinct arguments a, b, if 〈 a 〉+ 6= ∅, 〈 b 〉+ 6= ∅ and 〈 a 〉+ ◦〈 b 〉+ =

∅ then 〈 a 〉− 6= ∅, 〈 b 〉− 6= ∅. Moreover, if 〈 a 〉− 6= ∅, 〈 b 〉− 6= ∅ and 〈 a 〉− ◦ 〈 b 〉− = ∅ then

〈 a 〉+ 6= ∅, 〈 b 〉+ 6= ∅.

We defined incompatibility of arguments with respect to sets of arguments, while at the same

time discussed and extended the notion of incompatibility as a relation among arguments. This

treatment of incompatibility allows us to study different aspects of compatibility.

3.5.2 The propagation of incompatible arguments relation

The incompatibility as a relation is not transitive. If a is incompatible (or compatible) with

b, and, b is incompatible (or compatible) with c, then, a is not necessarily incompatible (or

compatible) with c. On the other hand, we can say, the incompatibility over sets of arguments

is monotonic under set inclusion. This feature of incompatibility follows the property of not

being conflict free over sets of arguments which is monotonic under set inclusion.

Observation 3.5.6. The properties positively incompatible and negatively incompatible are

monotonic under set inclusion.

The incompatibility of arguments serves three basic roles. One is in relation to the acceptance of

arguments. The other is in conjunction with critical arguments. The last one is in relation to the

propagation of admissibility backings. In the followings, we will look at these three roles.

The first of these roles is in relation to the acceptance of arguments. To illustrate this function of

incompatibility of arguments, let us extend frameworks AF8, AF9, AF10 by argument d and at-

tack relations (a1, d), (a2, d). In all these frameworks, if d is to be accepted by some admissible
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set S, S must attack both a1 and a2. In AF8, AF10, arguments a1, a2 are negatively incompat-

ible, so, no admissible set attacks both a1, a2. Hence, d cannot belong to any admissible set.

On the other hand, in AF9, there is no such issue where a1, a2 are not negatively incompatible.

Hence, there is some admissible set that accepts d. The following observation generalizes this

finding.

Observation 3.5.7. For an argument a, 〈 a 〉+ = ∅ if and only if either for some b ∈ a where

〈 b 〉− = ∅ or there is some subset of a which is negatively incompatible.

We set to categorize the relation between arguments with respect to active attack sequences.

As part of categorization we can show that for two incompatible arguments there is always

some active attack sequence between some of their active arguments. That is if all the attack

sequences between their active arguments are intercepted then the two arguments cannot be

incompatible. The following lemma states this finding.

Lemma 3.5.8. 1. If two admissible sets S, T attack each other, then, there are some S ′ ⊆ S,

T ′ ⊆ T for which there is an active attack sequence between every a ∈ S ′ and b ∈ T ′.

2. If a, b are incompatible then there is some active attack sequence between an active ar-

gument for a and an active argument for b.

The second function of incompatibility of arguments is in regard to the critical argument rela-

tion; how the critical argument relation gives rise to the incompatible arguments relation, and,

how the incompatible arguments relation gives rise to the critical argument relation. Let us

first look at how the critical argument relation gives rise to the incompatible arguments rela-

tion.

We start with the simplest case. Let b be some critical defender of an argument a. Then, any

argument, c, that attacks b, will automatically conflict with any admissible set that accepts a.

Now, if c belongs to some admissible set itself, then, c becomes positively incompatible with a.

For example, in AF9, argument b12 attacks b11 where b11 is a critical defender of a1. Hence, b11
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is positively incompatible with a1. The following observation captures this finding.

Observation 3.5.9. For arguments a, b, c where a ↪→ b and a belongs to some admissible set,

if b is a critical defender of c, then, a is positively incompatible with c; and, if b is a critical

attacker of c, then, a is negatively incompatible with c.

We can generalize the above observation by replacing the clause, a ↪→ b and a belongs to some

admissible set by a and b are positively incompatible, which is the lemma below.

Lemma 3.5.10. For arguments a, b, c where a is positively incompatible with b, if b is a critical

defender of c, then a is positively incompatible with c, and, if b is a critical attacker of c, then a

is negatively incompatible with c.

We can further generalize the above lemma, and say that, if the critical defenders of arguments

are incompatible, then, so are the arguments, as presented by the following theorem. For ex-

ample, in AF9, since b11, b21, the critical defenders of a1, a2, are positively incompatible, a1, a2

are positively incompatible, too. The following theorem can also serve for the propagation of

incompatible arguments under the critical argument relation.

Theorem 3.5.11. For arguments a1, a2, b1, b2 where b1 is a critical defender for a1, and, b2 a

critical defender for a2, if b1 is positively incompatible with b2, then, a1 is positively incompat-

ible with a2, and, if b1 is negatively incompatible with b2, then, a1 is negatively incompatible

with a2.

So far, we only showed, how critical arguments can give rise to the incompatible arguments.

We still need to discuss how the incompatible arguments can give rise to the critical arguments.

However, it is best if we discuss the third key function of the incompatibility of arguments first.

The last of the key functions of incompatibility of arguments is in regard to the propagation of

admissibility backings.

There are a few special cases that prevent us to answer yes to the question (3.2.4). One of these

special cases is in relation to the incompatibility of arguments. The others will be discussed in
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the following sections. To visualize the problem, we present the following framework.

In framework AF11 below, b1, b2 are both critical defenders for argument a. The argument

b1 itself has one critical defender, namely, c1. Argument b2 has two positive backings, S1 =

{c2}, S2 = {d}. On the other hand, c1, c2 are both positively and negatively incompatible

arguments.
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The question in (3.2.4) asks, given that {c2} is a positive backing for b2 and b2 is a critical

defender of a then does c2 appear in some backing of a ? Normally, we expect the answer to

be yes, but, on this occasion, the answer is no. The reason is that c2 is incompatible with b1,

so, b1 and c2 cannot belong to any admissible set. On the other hand, b1 is a critical defender of

a, hence, any backing of a must have c2. Consequently, c2 cannot belong to any admissible set

that accepts a. The following lemma presents this finding.

Lemma 3.5.12. For arguments a, b, c, let a ∈ S for some S ∈ 〈 b 〉+ and b ∈ T for some

T ∈ 〈 c 〉+, then, a ∈ R for some R ∈ 〈 c 〉+ only if a is not positively incompatible with some

critical defender of c.

The above lemma is in the form of only if statement, and, does not characterize the propagation

of backings. The reason is, the incompatibility of arguments is only one of the conditions

that interferes with the propagation of backings. A gradual and then a full characterization of

propagation of backings will be presented in the following sections.

Next, to the question that how the incompatibility of arguments can give rise to the critical

arguments. From the previous section, we know that the critical argument relation is transitive.
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Let us consider the scenario where an argument a belongs to some positive backings of b, and,

b belongs to some positive backings of c, while a is not a critical defender for b. Argument a is

not a critical defender for b. Hence, the transitivity of critical argument relation does not apply

here. This however does not mean that a cannot be a critical argument for c.

As an example, in framework AF11 above, b2 is a critical defender for a, and d while being an

active defender of b2, is not a critical defender of b2. Yet, due to the incompatibility of c2 and

b2, c2 cannot belong to any positive backings of a. As a result, d becomes a critical defender for

a. This concludes our investigation of incompatibility of arguments.

3.6 Redundant Arguments

We follow up on the central question of (3.1.1) on page 78, that under what conditions, apart

from the incompatibility of arguments, an active defender of an argument b where b itself is an

active defender of some argument c, does not take part in any of the backings of argument c.

These, otherwise, to be active defenders (or attackers) of an argument, are then phrased to be

redundant for the admissibility of that argument.

All the instance of the redundant argument relation are due to the minimality clause in the

definition of backings of arguments. The frameworks AF15, AF16 below show the two basic

cases where an argument becomes redundant for the admissibility of another. InAF15, argument

b which is accepted by some admissible set does not take part in any of the negative backings

of argument a despite being a direct attacker of a. In AF16, b is this time a defender of a, but, it

still does not belong to any of the positive backings of a.
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The reason for argument b becoming redundant for the admissibility of a is simple. It is due

to the minimality clause of the admissibility backings. To show that b is not required for the

admissibility of a, we can remove b. If we do so, we see that the admissibility situation of

none of the arguments will change. On the other hand, if we remove c, then, the admissibility

situation of many arguments including a, will change. Accordingly, we define the positive

redundant and the negative redundant argument relations.

Definition 3.6.1. For two compatible arguments a, b, argument b is said to be positively redun-

dant for a if and only if there is a positively active attack sequence from a to b, but, b is not in

any positive backings of a. Respectively, b is said to be negatively redundant for a if and only

if b is an in/direct attacker of a and there is a negatively active attack sequence from a to b and

b is not in any negative backings of a.

The above definition uses the positive and negative active attack sequences. The active argument

relation pertains some strong dependency relation, such that if a is an active argument for b and

b an active argument for c then a is an active argument for c. On the other hand, the redundant

argument relation states a lack of a strong dependency relation in places where we normally

expect to find one. In this work, we do not address the dependency chains. Therefore, we

need to appeal to other means to state the role of dependency chains in regard to the redundant

argument relation. Our other means is to use the positive and negative active attack sequences.

From now on, unless specified otherwise, by the redundant relation or redundant argument, we

are referring to the redundant argument relation.

In our customary fashion, we are primarily interested in two aspects of the redundant relation

between arguments, the base case for how they are formed, and, how they propagate along the

attack sequences.
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3.6.1 The characterization of redundant argument relation

There is a strong connection between the redundant argument relation and the critical argu-

ment relation, as illustrated by frameworks AF15, AF16. To identify, elaborate and expand

on this connection, we employ the help of additional frameworks, AF15a, AF15b, AF15c and

AF16a, AF16b, AF16c that all are the extended forms of frameworks AF15, AF16.

Occurrences of the redundant argument relation can be traced back to two basic forms, shown in

AF15 , AF16. There is a certain condition under which an argument becomes redundant for an-

other. Frameworks AF15a , AF16a show how this required condition is preempted. Frameworks

AF15b , AF16b show the extended forms of the two basic cases of redundant argument relation

shown in AF15 , AF16. The extended forms of the redundancy relation rely on the critical set

relation instead of the critical argument relation. Finally, frameworks AF15c , AF16c show the

backward propagation of redundancy. This also includes the redundancy by transitivity property

of the redundant relation, under the attack relation.
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We first look at framework AF15, showing how an argument becomes negatively redundant for
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The characterization of redundant argument relation

another. InAF15, argument c is a critical defender for b. Hence, any admissible set that includes

b, is bound to include both c and some positive backing of c (in this instance, c has one positive

backing which the empty set). We then conclude that any admissible set that includes b cannot

be a minimal admissible set that attacks a. Hence, we hypothesize that,

a necessary condition for b to be a negatively redundant argument for a, is for
some attacker of a to be a critical defender for b.

We can test this hypothesis by making c, not a critical defender for b, as is shown in framework

AF15a. We see that, now, a has a negative backing that includes b, namely {c′, b}. The following

observation presents this.

Observation 3.6.2. For arguments a, b, c where b, c ∈ a, if c is a critical defender for b, then, b

is negatively redundant for a.

We can generalize observation 3.6.2, by expanding on the condition, c is a critical defender

for b. Looking at AF15, we see that all that is required to render argument b redundant for a is

some combination of attackers of a be critical for the admissibility of b. The framework AF15b

illustrates this finding. In AF15b , either c or c′ makes b admissible. On the other hand, either c

or c′ makes a automatically dismissible. Hence, b is redundant for the dismissibility of a. The

following lemma formulates this finding.

Lemma 3.6.3. For arguments a, b where 〈 a 〉− 6= ∅ and b ∈ a, argument b is negatively

redundant for a, if and only if, there is some critical set S for b such that S ⊆ a.

Next, we look at how the positive redundant relations are formed. In a similar fashion, we

start with the basic case, the framework AF16. In AF16 , any admissible set that accepts a,

must attack both y1 , y2. Moreover, any admissible set that attacks y2 , must include c, as well.

Now, since c attacks all the arguments that b attacks, effectively c makes b redundant for the

admissibility of a. Hence, we may hypothesize that,

a necessary condition for b to be a positively redundant argument for a is for some
critical defender of a to defend a against all the attackers of a that b attacks.

103



The characterization of redundant argument relation

Again, we can test this hypothesis, by making c, not a critical defender for a. In AF16a , we add

argument c′ where c′ attacks y2. We then see that b is no longer positively redundant for a, as a

now has a positive backing {b, c′}. The following observation states this finding.

Observation 3.6.4. For arguments a, b, c where b, c are two defenders of a, if c is a critical de-

fender of a and any not intercepted in/direct attacker of a that b attacks, c attacks that argument

as well, then, c makes b positively redundant for a.

Observation 3.6.4 captures the simplest form of positive redundant argument relation. We can

then generalize observation 3.6.4 by expanding the conditions in the antecedent of 3.6.4. Frame-

workAF16b shows a simple case of this generalization. InAF16b, instead of the critical defender

c, there is a set of defenders of a, namely {c, c′} that defend a against all its attackers. Again,

the presence of either c or c′ renders b redundant for the admissibility of a. The following

lemma formulates this generalization of the primary case in observation 3.6.4. The general-

ization of primary cases of positive redundant relation is, however, more complicated than the

generalization of the primary cases of negative redundant relation.

Lemma 3.6.5. For two admissible and compatible arguments a, b, let D denote the set of all

critical defenders of a, and, Y denote the set of all y ∈ a for which b is an active attacker of y

where Y 6= ∅, and, Π denote the set of all active attack sequences form y ∈ Y to b. Then, b is

positively redundant for a if and only if there is some critical set C for W = a − Y such that

for any π ∈ Π , there is some c on π where D ↪→ c, or, d ↪→ c for every d ∈ C.

We can test the above lemma against frameworks AF17a, AF17b below. In both frameworks,

argument a is admissible, where in AF17a, 〈 a 〉+ = {{c11}, {c21}, {c12}, {c22}}, and, in AF17b,

〈 a 〉+ = {{c11 , c22}, {c12 , c21}}. In both frameworks, b is an active attacker of z2 where z2 ∈ a.

Argument b however does not belong to any backings of a. Hence,we can say that in both

frameworks b is positively redundant for a.

Example 3.6.6. In the following frameworks AF17a, AF17b, use theorem 3.6.5 to show that b is

positively redundant for a.
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The parameters of lemma 3.6.5 for a in each framework are as follows. In both frameworks, a =

a, b = b,D the set of critical defenders of a isD = ∅, Y = {y ∈ a | b is an active attacker of y} =

{z2}, Π = π | active attack sequence from y ∈ Y to b = {(z2, d3, y3, b)}, and, W = a−Y =

{z1}. Although, z1 has no critical defender in both frameworks, z1 has some critical set C, defi-

nition 3.4.5, in both frameworks. In AF17a the critical set for W is C = {c11, c12, c21, c22}, and,

inAF17b the critical set forW is C = {c11, c21}. As a note, C by definition of critical sets is also

a critical set for a. Moreover, if we take any of the critical sets out of each framework, argument

d will be admissible and argument a will be rejected. We can see that in both framework, there

is some c on π = (z2, d3, y3, b) ∈ Π where c = y3 such that for every d ∈ C, d ↪→ c. Hence,

we can say that b is positively redundant for a.

Next, we look at how the redundant argument relation propagates along the attack sequences.

3.6.2 The propagation of redundant argument relation

The propagation of redundant argument relation can be both forward and backward under the

attack relation. In simple terms, if c is redundant for a, then, any active argument b for c will

also be redundant for a, unless, b can reach a by another active sequence. The reason is that any

active role that b is to play with respect to the admissibility of a, stops at c.
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The propagation of redundant argument relation

For instance, in frameworks AF15c , since b is negatively redundant for a, d is also negatively

redundant for a. Respectively, inAF16c , since b is positively redundant for a, d is also positively

redundant for a.

For the propagation of redundant relations to work, there are certain strings attached. The re-

quired condition is that there should be no other active attack sequences from a to b. Otherwise,

there are some active paths by which b can participate in the admissibility, or the dismissibility,

of a.

For instance, in AF15c, while d is negatively redundant for a, argument f is not. The reason

is that there is some attack sequence π, namely π = (a, e, y4, f), via which f becomes an

active attacker of a. Similarly in AF16c, although, d is positively redundant for a, d is not

positively redundant for e. This is so because, there is an active positive attack sequence π =

(e, y3, d).

The following theorem formulates these findings in regard to the propagation of redundant

argument relations. This formulation is, however, done with respect to the defense relation,

instead of the attack relation. 4

Lemma 3.6.7. For arguments a, b, let C be some set of arguments c such that C 6= ∅ and for

every active attack sequence π from a to b, there is some c ∈ C on π.

1. If b is an active defender for all c ∈ C, then,

(a) if all c ∈ C are positively redundant for a, then, b is positively redundant for a,

(b) if all c ∈ C are negatively redundant for a, then, b is negatively redundant for a.

2. If b is positively redundant for all c ∈ C, then,

(a) if all c ∈ C, are active defenders for a, then b is positively redundant for a,

4 To formulate the propagation of redundancies under the attack relations, the defeated arguments on active
paths must be termed and accounted. A number of additional definitions are required to account for these defeated
arguments. To avoid the additional definitions, we formulate the propagation of redundancy relations under the
defense relation.
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Redundancy by self-defense

(b) if all c ∈ C are active attackers for a, then b is negatively redundant for a.

The first part of lemma 3.6.7 addresses the backward propagation of redundancy relation along

the sequences of attack relations. In simple terms, if c is redundant for a, then, the active

in/direct attackers or defenders b of c will be redundant for a as well. The second part of lemma

3.6.7 deals with the forward propagation of redundancy relation. That is, if b is redundant for c,

then, b is redundant for all arguments a where c is an in/direct attacker or defender for a.

We can now put the three lemmas 3.6.5, 3.6.3, 3.6.7, the two base cases and the propagation

case, together and completely characterize the redundant argument relation. The following

theorem formulates this characterization.

Theorem 3.6.8. For two compatible arguments a, b, letD denote the set of all critical defenders

of a, Y denote the set of all y ∈ a for which b is an active attacker of y, and, Z,W denote the

sets of all z, w ∈ a for which there is, respectively, some positive attack sequence from z to b,

and, from w to b.

1. b is negatively redundant for a, if and only if, one of the lemmas 3.6.3, 3.6.7 applies with

respect to a and b.

2. b is positively redundant for a, if and only if, one of the lemmas 3.6.5, 3.6.7 applies with

respect to a and b.

One last issue is left to complete our discussion on how some arguments make other arguments

redundant for admissibility of an argument, and, that is in relation to the arguments that take

part in their own defense.

3.6.3 Redundancy by self-defense

We presented the backings as the minimal admissible sets of arguments that are sufficient for

the acceptance, or the rejection of an argument. In doing so, we intentionally overlooked one
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issue, and that is in regard to the arguments that take part in their own defense.

Whenever we contemplate the admissibility of an argument, by default we presume that the

argument is present. Hence, if we discuss the admissibility of an argument a that defends its

self against some attackers, we always assume that a is present. However, there is a chance

that a defends itself against some attacker b that a defender c of a also defends a against that

attacker, argument b. Now, since a is always present, a effectively makes c redundant for the

defence of a.

For instance, in framework AF18a below, argument a defends itself against b where b also de-

fends itself against c. Under the current formulation of backing of arguments, a has two positive

backings, 〈 a 〉+ = {{a}, {c}}.
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However, upon a closer inspection, we realize that argument c is effectively made redundant for

a. If a is present then there is no need for c to defend a against b. Hence, amakes c categorically

redundant for its admissibility, regardless of the sub-framework of choice.

The frameworksAF18b,AF18c show that the symmetric attack relation between a, b and between

b, c, as in AF18a, is a necessary condition for making c redundant for admissibility of a. The

reason is, in either framework AF18b, AF18c, we can find a sub-framework, for which c makes

a difference in the admissibility of a.

An underlying motivation behind the admissibility backings is for the backings to capture the

dependency of one argument for its admissibility upon the admissibility of another. Under this

motivation, {c} cannot be regarded as positive backing for a, as it serves no function in making

a admissible.
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To make sure that the backings are relevant to the minimal required condition for the admis-

sibility arguments, we are then left with two choices. Either amend the definition of backings

of arguments, or, leave the admissibility backings as they are and address the redundancy of

arguments by self defending arguments in another way.

We chose the latter option. Had we gone with the former option, we needed to define something

in the form of a proper backing of an argument, something along the lines, a positive backing

S for a is a proper positive backing for a if and only if it is either a grounded backing for a, or,

S∪{a} is the minimal member of {B | B = A∪{a}, A ∈ 〈 a 〉+}. To leave the formulation of

backings simple, we chose the latter option. The adverse effects of not changing the definition

of backings is little, as the redundancies not caught by the current definition of the backings do

not propagate forward. For instance, in AF18a whenever argument a participates in the attack

or the defense of an argument, the minimality clause in definition of the backings of arguments,

automatically makes c redundant for the admissibility of that argument. As an example, in

framework AF19a below, argument a makes c a redundant argument for both d and e.
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The same mechanism also stops the propagation of certain grounded backings. For instance,

in framework AF19b, {c} is a positive grounded backing for a. But, a, f make c a redundant

argument for both d, f . In other words, argument c is stopped to be an active argument for

d.

There is more to be said about the redundant argument relation, e.g. the conditional redun-

dant argument relation. By conditional redundant argument relation we mean given a sub-

frameworkAF ′ v AF , which arguments remain redundant for some argument a under the sup-
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framework relation. But, we stop our analysis of the redundant argument relation here.

3.6.4 Characterization of attack sequences by the roles of arguments

With the introduction of redundant argument relation, we can finally put the propagation of

backings and the active and intercepted attack sequences under one picture. The positive and

negative active attack sequences help us to distinguish between the redundant argument relation

and the intercepted argument relation. The redundant argument relation requires the existence

of some active attack sequence while the intercept relation requires the lack of such existence.

For instance, in framework AF14, all the attack sequences form a to d are intercepted. Hence,

the explanation for why d, an indirect defender of a, is not an active argument for a is that d is

intercepted for a.

With the introduction of redundant argument relation, we can finally put the propagation of

backings and the active and intercepted attack sequences under one picture as presented by

theorem 3.6.9 below. Theorem 3.6.9 classifies the roles that arguments play in relation to the

admissibility or dismissibility of other arguments in terms of the classification of attack se-

quences.

Theorem 3.6.9. For arguments a, b, let 〈 b 〉+ 6= ∅ and π an attack sequence from a to b.

1. π is positively active if and only if b is either an active defender or a positively redundant

argument for a.

2. π is negatively active if and only if b is either an active attacker or a negatively redundant

argument for a.

3. π is active if and only if b is either an active or a redundant or an incompatible argument

for a.

This concludes our analysis of the role of arguments and its relation with the active attack se-
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quences. In the next, section, we use a distinct feature of the intercepts in splitting a framework

into pseudo disjoint sub-frameworks.

3.7 Intercepts and the disjoint sub-frameworks

The intercepts have one distinct feature which is most useful for the partitioning and merging

of argumentation frameworks in that they split a framework into pseudo disjoint frameworks.

We next briefly investigate this feature of the intercepts. 5

In order to facilitate our discussion, we introduce the two operations +N ,−N over an argumen-

tation framework. The operations +N ,−N are the simplest of operations for the merging and

partitioning frameworks into the minimal normal sub-frameworks. Our attention here is solely

to establish the independence relation among frameworks. The establishing of independence

relation requires considering all the possible attack relations. For this reason, we define the

operations +N ,−N . The superscript ‘N’ is in regard to the closure by the minimal normal sub-

framework. The operations +N ,−N are then the minimal normal sub-frameworks that cover

the otherwise usual merging and splitting operations +,−.

The operations +N ,−N over an argumentation framework AF are given such that for any

AF1, AF2 v AF ,

AF1 +
N AF2 = AF3 if and only if AF3 is the minimum AF3 vNAF where

AF1, AF2 v AF3.

AF1 −N AF2 = AF3 if and only if AF3 is the minimum AF3 vN AF where
AF4 v AF3 and AF4 is the maximum AF4 v AF1 for which there is no non
empty AF5 where AF5 v AF4, AF5 v AF2.

It is easy to see that, for two sub-frameworks AF1, AF2, there are always two unique AF3, AF4

for which AF1 +N AF2 = AF3 and AF1 −N AF2 = AF3. Furthermore, for a sub-framework

5 Since in this work, we do not address the splitting and merging of argumentation frameworks, we only give a
brief attention to the function of intercepts in splitting a framework into pseudo disjoint frameworks.
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AF ′, the sub-framework AF ′′ = AF ′ +N AF ′ is the minimum normal sub-framework that

covers AF ′.

Next, given a set AF of sub-frameworks AFi vN AF , 1 ≤ i ≤ n where n is some natu-

ral number, we can define the operation
∑

over the sets of such AF in the usual way, such

that,

∑
AF ′∈AF

N
AF ′ = AF1 +N AF2 +N · · · +N AFn.

Furthermore, for two sub-frameworks AF1, AF2, we can define

their shared sub-frameworkAF3 vN AF as the minimum normal sub-framework
AF3 that covers the maximum sub-framework AF4 where AF4 v AF1, AF4 v
AF2. We call two sub-frameworks AF1, AF2 intersecting if have some shared

sub-framework, otherwise,we say, they are not-intersecting sub-frameworks.

The two sub-argumentation frameworks are said to be completely disconnected if there is no

undirected attack path from one to another. Hence, for two sub-frameworks AF1, AF2 v AF ,

we say,

AF1, AF2 are said to be disjoint if and only if there is no undirected attack path
from any argument in AF1 to any argument in AF2.

Any two disjoint sub-argumentation frameworks, both act like, and, can be treated like totally

independent frameworks. That is, any information regarding one sub-framework reveals no

information regarding the other.

In this work, we do not address the dependence/independence relations among the arguments,

and among the argumentation frameworks. However, to make our discussion clear, we provide

a more targeted readings of the term information and the independence relation between sub-

frameworks. We cap the domain of term information to the information on whether or not an

argument or a set of arguments is admissible.

Hence, the reading of independence relation between two sub-frameworks AF1, AF2 can be
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narrowed to,

Note 3.7.1.
AF1, AF2 are said to act like independent frameworks, if the admissibility of any
set in AF1 is independent of any argument in AF2, and vice versa.

We can further refine the notion of independence relation given in (3.7.1). We can replace the

expression admissibility of any set in AF1 is independent of any argument · · · in (3.7.1) by, if

we merge AF1 with AF2, then, all the admissible sets in the original AF1 remain admissible

after the merge.

The following lemma puts this reading of independence betweenAF1, AF2 into a more succinct

relation that if AF1, AF2 are to be considered independent then the set of admissible sets A3 in

the merged sub-framework AF3 is the product of set of admissible sets A1 in AF1 with the set

of admissible sets A2 in AF2, i.e., A3 = A1 ◦̇ A2.

Lemma 3.7.2. For two sub-frameworks AF 1 = 〈AR1 , ATT1 〉, AF 2 = 〈AR2 , ATT2 〉 of a

frameworkAF , letAF3 = AF1 +
NAF2 andA1,A2,A3,A31,A32 denote the sets of admissible

sets in AF1, AF2, AF3, A31 = {S | S = T ∩ AR1, T ∈ A3}, A32 = {S | S = T ∩ AR2, T ∈

A3}. Then, A31 = A1,A32 = A2 if and only if A3 = A1 ◦̇ A2.

In the following passages, we present lemma 3.7.5, an equivalent reading of the above lemma

that is in terms of the active argument and the intercepted relations. The formulation of the

sub-frameworks independence relation AF1, AF2 in lemma 3.7.2 is made in terms of the inde-

pendence among the admissible sets in AF1 against those in AF2. However, the state of relation

A3 = A1 ◦̇ A2 in lemma 3.7.2 may only be accidental, and, an outcome of circumstance with re-

spect to the current state ofAF1, AF2. A more solid claim to the independence ofAF1, AF2 can

be made in regard to the independence of admissible sets against all possible sub-frameworks

of AF1, AF2. Hence, we formulate the notion of independence relation in (3.7.1) as,

Note 3.7.3.
for all AF ′1 v AF1, AF ′2 v AF2, if AF ′3 = AF ′1 + AF ′2, then, A′3 = A′1 ◦̇ A′2
where A′1,A′2,A′3 denote the set of admissible sets in AF ′1, AF

′
2, AF

′
3.
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We can test the above formulation of independence relation with respect to the disjoint sub-

frameworks such that, for a framework AF ,

if AF is comprised of n disjoint sub-frameworks AFi, then, any AF ′ v AF is
also comprised of n number of disjoint frameworks AF ′i v AFi, and that, the set
of admissible sets A′ in AF ′ can be written as a product of the sets of admissible
sets A′i in AF ′i such that A′ =

∏̇
1≤i≤nA′i .

The above claim can be shown by a simple derivation form theorem 2.2.5. However, upon a

closer inspection of theorem 2.2.5, we also realize that any two closed sub-framework that do

not intersect also exhibit the same independency property as stated in the note 3.7.3. Hence,

for two sub-frameworks to be considered acting independently, they need not be completely

disconnected. All that is required is that they should not influence another.

We may then extrapolate that,

Note 3.7.4.
for two independent sub-frameworksAF1, AF2, neither any argument inAF2 can
be an active argument for any argument in AF1, nor, any argument in AF1 can be
an argument for any argument in AF2.

Hence, following note (3.7.4) above a new reading of lemma 3.7.2 can be given that is based

on the active argument relation. This new formulation is given as the first part of the following

lemma, 3.7.5. There is, though, a difference between the two lemmas. This time, the focus

is solely on the active argument relation with respect to the arguments in AF12, AF21, the non

shared sub-frameworks, i.e. AF12 = AF1 −N AF2 , AF2 −N AF1. Hence, we relax the

constraint A3 = A1 ◦̇ A2 on AF1, AF2.

Furthermore, to stay true to our analysis so far, in order to correctly consider two sub-frameworks

AF12, AF21 independent we need to apply the criteria (3.7.4) to all the pairings of AF ′1, AF
′
2

where AF ′1 v AF12 and AF ′2 v AF21, given that the shared sub-framework of AF1, AF2 re-

mains fixed and is always in play. Indeed if we do so, then the converse of the first part of

lemma 3.7.5 will also be true, as shown by the second part of lemma 3.7.5.

Lemma 3.7.5. For two sub-frameworks AF 1 = 〈AR1 , ATT1 〉, AF 2 = 〈AR2 , ATT2 〉 of a
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framework AF , let AF3 = AF1 +N AF2, AF12, AF21 denote AF12 = AF1 −N AF2, AF21 =

AF2 −N AF1, and AF4 be the shared sub-framework of AF1, AF2. For AF1, AF2 then let

AR12, AR21 beAR12 = AR1−AR2,AR21 = AR2−AR1, and,A1,A2,A3 each in turn denote

the set of admissible sets in AF1, AF2, AF3 and A∗1, A∗2, A∗13, A∗23 each be A∗1 = {S | S =

T ∩AR12, T ∈ A1},A∗2 = {S | S = T ∩AR21, T ∈ A2},A∗13 = {S | S = T ∩AR12, T ∈ A3},

A∗23 = {S | S = T ∩ AR21, T ∈ A3}.

1. If no argument of AF12 is an active argument for any argument of AF21 in AF3, and vice

versa, then A∗1 = A∗13 and A∗2 = A∗23.

2. The conserve is true provided that the result A∗1 = A∗13, A∗2 = A∗23 holds with respect

to all the sub-frameworks AF ′1, AF
′
2 of AF1, AF2 where AF4 v AF ′1 v AF1, AF4 v

AF ′2 v AF2, i.e. the shared sub-framework AF4 remains fixed.

One way to ensure that the condition (3.7.4) is met is by applying observation 3.3.2, and see

whether or not all argument in AF12 are intercepted for any argument in AF21, by some set of

arguments inAF4, and vice versa. In case this condition is met, we say the two sub-frameworks,

e.g. AF12, AF21, are to be disjointed by intercept.

Definition 3.7.6. Two sub-argumentation framework AF1, AF2 of a framework AF are said to

be disjointed by intercept in AF if and only if every argument in AF1 is intercepted for every

argument in AF2 and vice versa. Moreover, let AF3 be a non-intersecting sub-framework for

one or both sub-frameworks AF1, AF2. AF3 is said to disjoint AF1, AF2 by intercept if and

only if every sequence of attack relations between any argument in AF1 and AF2 is intercepted

by some set S of arguments in AF3.

It is then, that we can apply observation 3.3.2 and obtain the initial intent that for two disjointed

by intercept sub-frameworks, no argument in one is an active argument for another and vice

versa, as stated by the following observation.

Observation 3.7.7. Let AF1, AF2 be two sub-framework of AF . If AF1, AF2 are disjointed by
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intercept in AF , then, no argument of AF1 is an active argument for any argument of AF2 and

vice versa.

In light of the above observation, all that is required to ensure that the criteria (3.7.4) is met, is

to keep all the pairings of sub-frameworks AF ′1 v AF1, AF ′2 v AF2 disjointed by intercept.

Hence, we give the final version of lemma 3.7.2 that is based on the disjointed by intercept

sub-frameworks.

Lemma 3.7.8. Let two sub-frameworks AF1, AF2 be as described in lemma (3.7.5). Then, the

claims (3.7.5.1) and (3.7.5.2) hold for all the sub-frameworks AF ′1, AF
′
2 of AF1, AF2 where

AF4 v AF ′1 v AF1, AF4 v AF ′2 v AF2 if and only if AF4 disjoints AF12 and AF21 by

intercept in AF3.

To demonstrate the properties of the disjointed by intercept sub-frameworks we present the

following example 3.7.9. The frameworkAF12 is split into three sub-frameworksAF12a, AF12b,

AF12c where AF12b disjoints AF12a, AF12c by intercept. We will be looking at the working of

lemmas 3.7.2, 3.7.5, 3.7.8 with respect to the three sub-frameworks.

Example 3.7.9. The argumentation framework AF12, below, is split into three sub-frameworks

AF12a, AF12b, AF12c, such that AR12a = {e, a}, AR12b = {c, b, d, f}, AR12c = {h, g, p}, and,

AF12 = AF12a +N AF12b +N AF12c.

(i) The three sub-frameworks AF12a, AF12b, AF12c are obtained by removing the attack re-

lations (a, b), (f, g) from ATT12. The two attack relations (a, b), (f, g), each in turn corre-

spond to the arguments b and g where the corresponding attack sequences π1 = (b, a, e) and

π2 = (g, f, d, b, c) are intercepted by the set of arguments S1 = {c}, S2 = {h}.
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c
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(ii) It is easy to check that the three sub-frameworks AF12a, AF12b, AF12c are all disjointed

by intercepts in regard to another where AF12b disjoints AF12a, AF12c and AF12c disjoints itself

from AF12b.

Next, to test the results in lemmas 3.7.2, 3.7.5, 3.7.8, we construct the sub-frameworksAF12ab =

AF12a +N AF12b and AF12bc = AF12b +N AF12c. The respective set of non-trivial admissible

setsA,A12a,A12b,A12c,A12ab,A12bc for the sub-frameworks AF , AFa, AFb, AFc, AFab, AFbc

are —

A = {{e}} ◦̇{{c}, {c, d}} ◦̇{{h}, {h, p}},

A12a = {{e}},

A12b = {{c}, {c, d}},

A12c = {{h}, {h, p}},

A12ab = {{e}} ◦̇{{c}, {c, d}},

A12bc = {{c}, {c, d}} ◦̇{{h}, {h, p}}.

(iii) From the above values, we can easily see the claim of lemma 3.7.2 that,A = A12ab ◦̇ A12bc.

(iv) Next, we look at the claim of theorem 3.7.12 below. The claim is that since all sub-

frameworks AF12a , AF12b , AF12c are disjointed by intercept for another, the set of admissible

sets A12 in AF12 is a simple product of A12a , A12b , A12c , i.e., A12 = A12 ◦̇ A12b ◦̇ A12c .

To verify the claims of lemmas 3.7.5, 3.7.8, the sub-frameworks AF ′12 v AF12, AF ′12ab v

AF12ab, AF ′12bc v AF12bc are constructed such that AF ′12 = AF ′12a +N AF12b +N AF ′12c,

AF ′12ab = AF ′12a +N AF12b, AF ′12bc = AF12b +N AF ′12c , where AF ′12a v AF12a , AF ′12c v
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AF12c , and, the set of all admissible sets in AF ′12 , AF ′12ab , AF ′12bc be denoted by A′12 , A′12ab ,

A′12bc. In addition let A′∗12a , A′∗12c , A′∗12ab ,A′∗12bc denote A′∗12a = {S | S = T ∩ AR12a, T ∈

A′12} , A′∗12c = {S | S = T ∩ AR12c, T ∈ A′12} , A′∗12ab = {S | S = T ∩ AR12a, T ∈ A′12ab} ,

A′∗12bc = {S | S = T ∩ AR12c, T ∈ A′12bc}.

(v) We do not go through all sub-frameworks AF ′12 , AF ′12ab , AF ′12bc , but, it is easy to check

that for all such sub-frameworks,A′12 = A′12a ◦̇ A′12b ◦̇ A′12c holds, as presented in the lemmas

3.7.5, 3.7.8.

(vi) Next to the theorem 3.7.14, below, which is a generalization of lemma 3.7.8. The theorem

presents a variation of the claim in lemma 3.7.8. The claim here is that for all, AF ′12, A′12 ⊆

A′12ab ◦̇ A′12bc.

( vii) Finally, we can show case the result of theorem 3.7.12, below, which is also a generaliza-

tion of lemma 3.7.8. The theorem states that since AF12a is intercepted for both AF12b , AF12c.

The admissibility of any set in any sub-framework of AF12a does not affect the admissible sets

inAF12b , AF12c. That is, in all sub-frameworksAF ′′12 = AF ′12a+
NAF12bc, the set of admissible

sets A′′12 in AF ′′12 is a simple product of A′12a ,A12bc , i.e., A′′12 = A′12a ◦̇ A12bc .

In the above example, the framework AF is partitioned into disjointed sub-frameworks. This

partitioning ofAF has a number of distinct properties that are highlighted in the example. In the

followings, we can generalize the splitting of AF12 into disjointed by intercept sub-frameworks

and formulate the ensuing properties of such partitioning. First, we define the partitioning of a

framework into the disjointed by intercept sub-frameworks.

Definition 3.7.10. Let AF be a countable set of sub-frameworks of a framework AF . We

say AF to be a partition of AF into disjointed by intercept sub-frameworks if and only if

AF =
∑

AF ′∈AF

NAF ′, and, any two distinct AF ′, AF ′′ in AF are disjointed by intercept.

The following framework AF13 presents a schematic view of partitioning of a framework to

disjointed by intercept sub-frameworks AF1, AF2, · · · . The nodes here present the disjointed
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sub-frameworks, and, the arrows show the intercepted attack sequences. Any two non-adjacent

sub-framework is then intercepted by some in-between sub-frameworks. For instance, AF4 is

disjointed from AF1 by sub-frameworks AF2, AF3.

AF1

AF2

AF3

AF4

AF5

AF13

77

��

II

��
22

,,
??

��

Obviously, any two sub-frameworks that are disjointed by intercept cannot be intersecting.

Hence, any partition of a framework to disjointed by intercept sub-frameworks deals with the

non-intersecting sub-frameworks. Due to this property, we can construct a partial order � over

the class AF of all disjointing by intercept partitions of AF such that AF is a partial order

with a maximum and a minimum element. The following lemma states these two properties of

AF.

Lemma 3.7.11. Let AF be the class of all partitions of AF to disjointed by intercept sub-

frameworks. The order � over AF is defined such that for AF1,AF2 ∈ AF, AF1 � AF2 if

and only if for every AF1 ∈ AF1 there is some AF2 ∈ AF2 such that AF1 v AF2.

1. For any AF ∈ AF, all sub-frameworks in AF are non-intersecting.

2. The order � over AF is a partial order with a maximum element.

3. Let AFN be a subclass of AF such that for every AF ∈ AFN is a normal sub-framework

of AF . AFN then has a minimum element under �.

The section (iv) of example 3.7.9 illustrates that the admissibility of any admissible set in any

of the sub-frameworks of a disjointed by intercept partition does not depend on another sub-
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framework. Thus, the set of admissible sets of the whole framework is the product of the

admissible sets of each sub-framework. The following theorem presents this finding.

Theorem 3.7.12. Let AF be a partition of AF into disjointed by intercept sub-frameworks,

then, A =
∏

AF ′∈AF
A′ where A,A′ each is the set of admissible sets in AF,AF ′.

Following the results of example 3.7.9, we can see that AF12b plays a distinct role in regard

to a number of properties of the partitioning. All these properties stem from the fact that

AF12b is the adjacent intercepting sub-framework for AF12a where it separates AF12a from

AF12c. The following definition labels such sub-frameworks as the adjacent intercepting sub-

frameworks.

Definition 3.7.13. For two sub-frameworks AF ′, AF ′′ of a framework AF , we say AF ′ is the

adjacent intercepting sub-framework forAF ′′ inAF if and only if there is some attack sequence

π from some argument in AF ′′ for which some set of arguments in AF ′ intercepts π, and, no

set of arguments in a non-intersecting sub-framework with AF ′ intercepts any nontrivial sub-

sequence of π.

The primary role of the adjacent intercepting sub-frameworks AF ∗ is that they isolate the sub-

frameworks AF ′ for which they are intercepting, from those that intercept them AF0. As a

result, the admissibility of sets in AF ′ is shielded against any changes in the admissibility of

sets in AF0. For instance, in framework AF13, as long as AF2, AF3 are in play, the changes in

AF4 have no affect on the admissibility of any set in AF1. The following theorem is formulates

this property which is, in a manner, a generalization of lemma 3.7.8.

Theorem 3.7.14. Let AF be a partition of AF into disjointed by intercept sub-frameworks,

and, AF0 ∈ AF . For AF , AF0, let AF∗ ⊆ AF be the set of all sub-frameworks AF ′ ∈ AF∗

that are the adjacent intercepting sub-framework forAF0. ForAF∗, then, letAF ∗ =
∑

AF ′∈ÂF∗

NAF ′,

and, ÂF = AF − (AF∗ ∪ {AF0}), and, ÂF denote the corresponding sub-framework ÂF =∑
AF ′∈ÂF∗

NAF ′ for ÂF . In addition, For every AF ′0 v AF0, the sub-framework AF ◦ v AF with
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respect AF ′0 is AF ◦ = AF ∗
′
+N ÂF where AF ∗

′
= AF ∗ +N AF ′.

For every AF ′ and its corresponding AF ◦, ÂF , AF ∗
′
, and, their corresponding set of all

admissible sets, A◦, Â, A∗′ , it then holds that A◦ = Â ◦̇A∗′ .

One of the required conditions in the above theorem is that the isolated frameworks ÂF are

kept unchanged. In section (vi) of example 3.7.9, this constraint is relaxed with respect to

AF12a, AF12c. However, their separating sub-framework AF12b is still kept fixed. Under this

relaxed setting, the admissible sets of the separated sub-frameworks are no longer shielded

against change. However, the admissibility of arguments in one framework is shielded against

the changes in another framework. That is, an argument that is admissible in its sub-framework

will be admissible in the final merged framework. The following theorem formulates this find-

ing.

Theorem 3.7.15. Let AF be a partition of AF into disjointed by intercept sub-frameworks.

For AF , let AF∗ ⊆ AF be such that any two distinct AF ′, AF ′′ in AF∗ are disjointed by

intercept by some set of arguments in ÂF where ÂF =
∑

AF ′∈ÂF

NAF ′ and ÂF = AF −AF∗. For

AF∗, then, let AF∗′ denote some arbitrary set of sub-frameworks AF ′ vNAF such that for

each AF ′ there is one and only one AF ′′ ∈ AF∗ where AF ′ v AF ′′. For AF ′, then let AF ∗

be the sub-framework formed from all AF ′ ∈ AF∗′ where AF ∗ =
( ∑
AF ′∈AF ′

NAF ′
)
+N ÂF . For

every AF ′ and its corresponding AF ′, AF ∗, ÂF , and, their corresponding set of all admissible

sets, A′,A∗, Â it then holds that A∗ ⊆
( ∏
AF ′∈AF ′

A′
)
◦ Â.

In section (i) of example 3.7.9, the disjointed sub-framework AF12a , AF12b , AF12c are formed

by removing the links, i.e., the attack relations, in the intercepted attack sequences at the nodes

where the intercept occur. It is easy to see that if we remove all such attack relations from a

framework, we will then not have any intercepted path in the resulting sub-framework.

Removing of these attack relations may or may not result in more than one disjointed sub-

framework. Regardless, all the resulting sub-frameworks,
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Note 3.7.16.

1. are disjointed by intercept,
2. are comprised of only the active attack sequences, and therefore, cannot be

further divided into more disjointed sub-frameworks,
3. and, partition the framework into maximum (with respect to number) dis-

jointed by intercept sub-frameworks.

In the followings, we formulate the construction of these sub-frameworks and show that the

properties (1)-(4) above hold for them. We first begin by defining the sub-frameworks that

cannot be divided into disjointed by intercept sub-frameworks. We call such sub-frameworks

biased frameworks, because, all the defenders (respectively attackers) of the arguments are by

large either all admissible or all dismissible.

Definition 3.7.17. An argumentation frameworkAF is said to be biased if and only if all attack

sequences in AF are active.

Next, we show the relation between the second and the third properties in (3.7.16). In lemma

3.7.11, we defined the order� overAF, the class of partitions ofAF into disjointed by intercept

sub-frameworks. It is easy to see that under �, the minimal elements of � are the maximal

elements of AF in terms of size of a set. The following theorem shows, if there is a partition

AF of AF , as is obtained in example 3.7.9, then, AF is the maximum, in terms of number

of elements, possible partition of AF into disjointed by intercept sub-frameworks that we can

have.

Theorem 3.7.18. Let AF be the class of partitions of AF into disjointed by intercept sub-

frameworks, and, � be the order defined over AF in lemma 3.7.11.

1. If AF is the minimal element of AF under � then every AF ′ ∈ AF is biased.

2. There is a unique AF ∈ AF such that all AF ′ ∈ AF are biased and for all AF ′ ∈ AF,

AF ′ � AF , there is some AF ′′ ∈ AF ′ that is not biased. Furthermore, AF is equal in

size with any minimal element of AF under �.

Finally, we can deal with construction of the partitioning of AF that meets the desired prop-

erties, presented in theorem 3.7.18. The following theorem states that if we follow the same
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method of partitioning of a framework as is carried in example 3.7.9, we will have a partition

of AF that holds all the properties described in (3.7.16) above.

Theorem 3.7.19. For and argumentation framework AF = 〈AR , ATT 〉, let AF ∗ v AF be

constructed such that for all attack sequences π = (a, b) where π is intercepted at a, the attack

relation (b, a) is removed from ATT . The set AF of all disjointed sub-frameworks of AF ∗

then partitions AF into disjointed by intercept sub-frameworks such that every AF ′ ∈ AF is a

biased sub-framework of AF .

This concludes our discussion on the role of intercepts in partitioning a framework into dis-

jointed sub-frameworks. Obviously, there can be many ways to split a framework into sub-

frameworks with distinct properties. But, we leave that discussion as future work.

3.8 Summary

In this chapter we utilized the relationship between the admissibility backings of an argument

and the admissibility backings of its attackers so to address three important lines of inquiries

within argumentation theory. The three lines of inquiries are

• the relevance of an argument in regard to the admissibility of other arguments;

• the propagation of backings along the attack sequences; and,

• how to split a framework into sub-frameworks of distinct characteristics.

In this regard, we defined the active attack sequences and the intercepts. The active attack

sequences mark the lines on which the admissibility backings propagate. The intercepts cor-

respond to where the propagation of backings along the attack sequences halts. Hence, the

intercepts show the arguments arguments that are made irrelevant for the admissibility of some

argument, and, how they are made irrelevant.

Other presented arguments relations are the active argument relation, the critical argument re-
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lation, the incompatible argument relation and the redundant argument relation. The presented

argument relations are in one way or another related to each other. Accordingly, these argu-

ment relations are shown to be sufficient for determining whether or not admissibility backings

propagate along the attack sequences.

Not all the arguments on an active attack sequence of an argument play a part for the admis-

sibility of that argument. Such arguments are identified by the incompatible and redundant

argument relations. The identification of incompatible and redundant arguments are done with

the help of critical arguments. A critical argument for an argument is an argument that is indis-

pensable for the admissibility of that argument. Hence, an argument that is critical for another

argument can be neither incompatible or redundant for that argument.

The intercepts play a most distinct role in that they split an argumentation framework into

independent sub-frameworks. We marked these independent sub-frameworks as disjointed by

intercept sub-frameworks. Accordingly, the independence is meant that any change including

the addition of new arguments that happens to one sub-framework does not affect the other

disjointed frameworks.

As far as we know, there are no other research that address the same issues presented in this

chapter. Hence, we cannot site any related research. All the related research are in relation to

the admissibility backings of arguments that are discussed in chapter two. A list of possible

future work is discussed in the conclusion chapter of this dissertation. Hence, we conclude

chapter three.
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Chapter 4

Context Sensitive Defeasible Rules

4.1 Introduction

Defeasible argumentation systems are used to model commonsense and defeasible reasoning.

Current argumentation systems assume that an argument that appears to be justified also satisfies

our expectation in relation to the correct outcome, and, vice versa. In this chapter we present

an alternative representation of defeasible rules that adheres more to this assumption. The

proposed inference rules are called context sensitive rules. The context sensitive defeasible

rules are tailored for argumentation based reasoning. Effectively, we assume that a mechanism

exists that given an arbitrary inference rule, the mechanism tells us whether in a given situation

the rule is applicable. This mechanism is usually presented in terms of an abnormality condition

for the rule. Accordingly, we provide a mapping between our argumentation system and Dung’s

abstract argumentation theory to show the efficacy of the presented argumentation system.

The defeasibility of reasoning is captured in different ways in different frameworks. Roughly, in

the framework of default logic it is captured by assuming that the rules are defeasible, allowing

for alternative extensions depending on which set of defaults get activated. 1 Furthermore,

in case of conflicting rules, often rules of thumb such as specificity are used to break the tie

1 Informally, a default rule is of the form: If A is known as a matter of fact, and B can be assumed without
courting inconsistency, then C may be inferred. Thus, given a knowledge base, the rule itself tells, as it were,
whether or not it can be ”fired”.
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[Poo91, SL92, DS01]. 2 In circumscription, it is achieved by minimizing the extension of

abnormal predicates. In the case of argumentation, it is achieved by allowing some arguments

to defeat other arguments [McC86].

Most of the proposed inference rules are however context independent, in the sense that the con-

dition that makes a rule applicable is context independent. In our representation of defeasible

rules, we refer to the context independent abnormality conditions, the conclusive defeaters of a

rule.

This chapter is structured such that in the next section we present our motivation for the pro-

posed context sensitive rules, accompanied by two running examples. We continue by elaborat-

ing on the function of the proposed rules. We then develop an argumentation theory, in the usual

way, that is based on the attack and reinstatement relation between arguments. We then follow

to discuss the semantics of the formulated argumentation system. The semantics is provided by

means of a translation from the proposed system to Dung’s abstract argumentation framework.

As part of our discussion, we show that when only the conclusive defeaters are in play, the

proposed argumentation system produces the same outcome as systems based on conventional

default rules.

4.2 Motivation

From the outset we assume a propositional language L composed of countably many literals

(both positive and negative) and a set of defeasible inference rules R. Technically a rule is a

relation between a set of literals called premises and another literal called a conclusion.

Notation: An inference rule, d, is represented as d : a1, a2, ..., an → a where

a1, a2, ..., an, a ∈ L. We call bd(d) = {a1, a2, ..., an} the body of the rule, and,

2 Specificity reads as given two rules, applicable to a given context, the one that makes use of more specific
information takes precedence over the other. Thus, if we know Tweety is a penguin, and given the rules that birds
in general fly and penguins don’t, we should conclude that Tweety does not fly.
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hd(d) = a its head.

An argument is usually defined as a sequence of inferences from known premises (the contin-

gent knowledge) to a conclusion. Alternatively it is represented as an inference-tree-structure

embedded in the premises, or, as a pair of premises and conclusion. We use all these three

representations dictated by convenience.

We note that unlike the truth-based classical logical systems, argumentation systems are founded

upon justification [Nut01]. An argument is accepted in the absence of a justified counter argu-

ment. The counter argument against an argument is called the attacker [Dun95b] or the defeater

[Pol87] of an argument. We will be using the terms defeat and attack pretty much interchange-

ably. We say that a defeated argument is reinstated if its defeater gets defeated by an accepted

argument.

Furthermore, we use the Rebuttal and Undercutting defeats to model the defeat relations [Pol94,

PV01]. In argumentation systems, the accepted (justified) arguments that automatically as-

sumed to adhere to two general constraints.

1. An acceptable argument (including its conclusion) should meet our expectation in regard

to the available information,

2. An acceptable argument should be justified within the logic of the corresponding argu-

mentation system.

It is obvious that the two constraints are imperative to any argumentation system. A defeasible

inference rule is well crafted only if it preserves and conveys the relation that its antecedent

is a reason for believing its consequent. In this regard, we present two motivating examples

that show case, there are cases where ”well crafted” defeasible inference rules cannot always

accommodate the requirement set by the two constraints. That is, we either have to abandon

one or the other. Otherwise, we need to appeal to a more flexible presentation of defeat relation.

127



4.2. MOTIVATION

The new presentation, while still being based on the rebutting and undercutting defeats, it also

shows how the two forms of defeats can get toggled by the context.

In the first example we advocate the need to expand the notion of reinstatement of argument

to allow arguments to be reinstated without defeating the defeater. In the second example we

argue the need to allow asymmetrical-provisional-defeat relationship. We use the result of these

examples to introduce the representation of defeasible rules that we advocate. We argue that

our representation while simple, provides a more explanatory model of ”pragmatic reasoning”.

Moreover, the simplicity of the rules allows an argumentation system to meet one of the main

objectives of argumentation reasoning, namely to provide an explanation in line with human

reasoning [RG01, KR04, RW06, Ver01a].

We note in passing that since we have not yet introduced our own definition of an argument, in

the following examples, we represent arguments as sequences of inferences from premises, stan-

dard in the literature. We also depict arguments as triangles where the base represent premises

and top vertex conclusion of the argument. The attack relationship is shown by an arrow form

attacking to the attacked argument.

Example 4.2.1. A physiologist is studying a system that involves the secretion of hormones and

enzymes in presence of other hormones and enzymes. Let us assume that states of the system

are all describable in terms of atoms a, b, c, v, x, y, z where a, b, c mnemonically stands for, the

enzyme A,B,C is present, and, the atoms v, x, y, z stand for the hormone V,X, Y, Z is present.

Tables (4.1.a), (4.1.b) represent the results of careful experimentation for two alternative sce-

narios. Each table has two sections, Known Facts and Can be Believed. For instance, the row

one in table (4.1.a) states that if all we know is that the enzyme A is present then we are allowed

to believe that hormone Z is present, as well. Furthermore, the only difference between the

two scenarios is that in scenario (a) all hormones are detectable whereas in scenario (b) the

hormone Y is not detectable. Our question then is can we model both these scenarios in terms
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Known Can be
Facts Believed

a a z
a y a y
b b y
a b a b y
a b x a b x z
a b c a b c x z
. . . . . . . . . .

Known Can be
Facts Believed

a a z
b b
a b a b
a b x a b x z
a b c a b c x z
. . . . . . . . . .
. . . . . . . . . .

(a) y: detectable (b) y: not detectable

Visualization of tables (4.1.a), (4.1.b)
in terms of defeasible rules

Table Name Rule Defeater

Table 1(a)
d1 a→ z y
d2 b→ y x
d3 c→ x

Table 1(b)
d′1 a→ z b
d′2
d′3 c→ x

(c) The inferenc rules for (a) and (b)

Table 4.1: The results for the relation between hormons and enzymes in example (4.2.1)

of an argumentation system?

Furthermore, the knowledge that if all we know is that enzyme A is present then we are allowed

to believe hormone Z is present too is interpreted as presence of enzyme A is the primary

explanation for secretion of hormone Z (Enzymes generally act as catalysts), and is represented

in terms of defeasible inference rule a → z. The second row of table 1(a) is interpreted as the

presence of hormone Y acts as a suppressant for secretion of hormone Z. In argumentation

terms, the presence of hormone Y is therefore interpreted as an undercutting defeater for the

reasoning, from a and a→ z to z.

The result of construction of such defeasible inference rules and their associated undercutting

defeaters is given in table (4.1.c). It can be shown that the observed system, as expressed in

Table 1(a) can be modeled in terms of an argumentation system using the rules in table (4.1.c).
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An argumentation system carries as follows.

1. An argument is justified if it has no defeater, or, all its defeaters are defeated by justified

arguments.

2. An argument that has a justified defeater is overruled.

3. Only the conclusions supported by justified arguments are justified.

In the second scenario we assume that the hormone Y is not detectable. The result of exper-

imentation for this scenario is shown in table (4.1.b). Base on table (4.1.b), the presence of

enzyme B now acts as the undercutting defeater for the rule a→ z. The construction of defea-

sible rules for table (4.1.b) is given in table (4.1.c). We would now like to ask the same central

question could we still model this system in terms of an argumentation system?

The answer this time is far from obvious. For instance, if the contingent knowledge is {a, b, c},

i.e. the enzymes A,B,C are known to be present, are we allowed to believe in presence of

hormone Z?

Let an argument be represented as a sequence 〈s1, s2, ..., sn〉 of statements where the last state-

ment, sn is the conclusion. The sequence 〈sn〉 is then an argument with an empty set of premises

representing a single fact.

The arguments in relation to the secretion of hormone Z are as follows.

1. enzyme A is present is denoted as arg0 = 〈a〉.

2. “enzyme A is present and since enzyme A is the reason for secretion of hormone

Z, so hormone Z is present” is denoted as arg1 = 〈a, a→ z, z〉.

3. enzyme B is present is denoted as arg2 = 〈b〉.

4. “enzyme C is present and since enzyme C is the reason for secretion of hormone

X , so hormone X is present” is denoted as arg3 = 〈c, c→ x, x〉.

The only attack relationship is arg2 undercutting arg1 i.e. presence of enzyme B undercuts the
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reasoning a→ z. Therefore, arg1 is defeated by arg2, figure (4.1). Furthermore, since arg2 has

no defeater arg1 stays defeated (note: arg2 is a fact so it cannot have any defeaters). Yet, table

(4.1.b) indicates that despite the presence of enzyme B, if enzyme C is present we are allowed

to believe that enzyme A results in secretion of hormone Z.

As it can be seen in figure (4.1), the problem lies in arg3 being unable to reinstate arg4. The

only way to reinstate arg4 is to defeat arg2. But, as it is already noted arg2 is in essence an

observation and cannot be defeated. It is as if there is a missing argument arg4 as shown infigure

(4.1) by dotted lines (arg4 can be constructed from table (4.1.a)) where arg4 attacks arg1 and

arg3 reinstates arg1 against this attack.

2arg 3

x z

4

c

b

? (y)

b a

1

arg
arg arg

Figure 4.1: Arguments interaction for the scenario ({a, b, c} is given facts) in example 1

To fix this problem we could introduce an new defeasible rule (a, c) → z to independently

derive z. However, (a, c)→ z is an artificial construct. The explanation for belief in z lies only

in a. Hence, unless we introduce this rather artificial rule, our argumentation system will fall

short of matching the real system. To short, we would like to allow arguments to be reinstated

through context (not necessarily by attacking the attacker). We will also use the idea of missing

arguments in our translation to Dung’s Argumentation framework.

Our next example is a common example presented in [Pol87]. The idea is, under normal cir-

cumstances, an object that appears red can regarded red. However, if one learns that object is

seen under the red lighting, then, one an no longer argue that the object is red. The information

“red lighting” is the regarded as an undercutting defeater against the argument for the object

being red.
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4.2. MOTIVATION

The following example shows that this situation can be correctly formulated such that the ar-

gument for the object being red is only provisionally defeated. That is to say an intended

undercutting attack may result in a provisional defeat.

Example 4.2.2. In this example we argue that the common representation of this scenario in

terms of an argumentation system, figure (4.2.a), does not yield the expected outcome. How-

ever, an alternative representation, figure (4.2.b), gives the expected outcome. We take the

contingent knowledge and rule base to be {Ared, Lred} and {Ared → Ired} where A stands for

appears, I for is and L for lighting.

A2A1 A1 A3

A red L red

I red
L red I red I white

A red A L red,red

Fig. (a) Fig. (b)

Figure 4.2: Argumentation representation of the two alternative scenarios in example (4.2.2)

The argument for object is red in both depiction of this scenario, figures (4.2.a), and (4.2.b), is

A1 = 〈Ared, Ared → Ired, Ired〉. In the first representation, figure (4.2.a), the argument A1 is

undercut by the argument A2 = 〈Lred〉, and, consequently Ired gets status overruled [Pol87].

Yet, the expected answer is that the statement Ired is defensible as object is either red or white

(the status defensible is also referred to as provisionally defeated).

In an alternative representation where rule (Ared ∧ Lred) → Iwhite (or alternatively (Ared ∧

Lred) → ¬Ired) is added to the rule base, the resulting argument interaction, figure (4.2.b),

gives the expected outcome, i.e Ired is defensible. In figure (4.2.b), the two arguments A1 and

A3 = 〈Ared, Lred, (Ared ∧ Lred) → Iwhite, Iwhite〉 rebut each other leading to both arguments

being provisionally defeated. The argument for object being white in figure (4.2.b), shown by

dotted lines, could again be viewed as a missing argument in the first depiction of this scenario.

We therefore would like to allow undercutting attacks (or asymmetrical attacks in general) result
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in provisional defeat.

We take an inference rule to be like a black box with some underlying explanation similar to

the notion of conveyance given in [KR04]. 3 In every rule, antecedents are considered as the

primary reason for belief in the consequent. In addition, there are other ancillary reasons that

either strengthen or weaken a given rule.

In relation to how a rule works a justification function is provided that describes the conditions

under which a rule gets activated. The justification function maps a given context (represented

as a set of literals) into the operability space {0, 1/2, 1}, the values in question signaling, re-

spectively, whether the rule is acceptable right away, is provisionally defeated, or is outright

defeated.

As formal theories of argumentation get matured there is a growing interest to adapt these

theories for modeling various forms of human reasoning. We believe our approach is in line

with this goal. One approach is by the modeling of the natural language argumentation schemes

[RG01, KR04, RW06]. This approach involves,

1. The characterization and classification of stereotypical patterns of reasoning is theorized

in form of argumentation schemes [RW06].

2. The translation of formal arguments into natural language dialectic arguments [RG01].

In order to adapt formal argumentation theory to model argumentation schemes, the proposed

approaches extend the current theory [AC02, WMP05]. Amgoud and Cayrol [AC02] propose

a preference based argumentation framework that augments preferences among premises with

the attack relationship in Dung’s framework, while Wooldridge et al. [WMP05] propose a hi-

erarchical metalogical argumentation framework. Our approach, too, is an extension of current

argumentation theory with a central theme that each inference rule should have an underlying

3 A black-box view of inference rule allows for an element of intentionality in the rules [AP97] as longs as
there is an underlying explanation or a notion of conveyance.
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explanation. Explanations are a supposition in argumentation schemes [KR04] and a require-

ment for translation into natural language arguments. Argumentation schemes are a top down

approach, while our approach is a bottom up approach.

4.3 Defeasible reasoning system

By a defeasible reasoning system we mean a pair 〈L,R〉 where L is formal language, andR is

a set of inference rules [BDKT97].

In the last section we stated that if p→ q is an inference rule then our belief in p is the primary

reason for our belief in q and the circumstances affecting our belief in applicability of p → q

are the ancillary reasons.

Consider a rule d. If a context/circumstance do not affect d then d is applicable by default. How-

ever, if the circumstance affects the applicability of d then we should determine its effect. We

represent each circumstance Ci as a set of literals. Suppose C1, C2, ..., Cn are the circumstances

that affect applicability of d. Now, not all literals in a circumstance Ci affect the applicability of

d. Let for each circumstance Ci, its subset Ji ⊆ Ci, be the set of literals that affects rule d. Then

J =
⋃n
i=1 Ji is the set of all literals that affects the applicability of rule d. We would therefore

like to define a justification function for defeasible rule d by partitioning the space 2J into three

equivalence classes (equivalence w.r.t. the degree of acceptability of the rule d). The degree of

acceptability of the rule d is represented by values in the operability space {0, 1/2, 1}.

4.3.1 Defeasible inference rule

Accordingly, we assume every rule d is associated with three families of Td,Ud, and Fd of sets

of literals such that,

1. Td, Ud, and Fd partition a set 2Jd where Jd is called the justification domain of d.
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The assumption says that the three families, Td,Ud and Fd jointly exhaust all possible

observable states that determine applicability of rule d.

2. x and ¬x are not both in Jd.

3. If a ∈ bd(d), then a 6∈ Jd. The antecedent of a rule must already be believed for a rule to

be fired. Therefore, there is no special need to have the antecedent in Jd.

Definition 4.3.1. Let d be a rule with its three associated sets, Td,Ud,Fd, given above. The

justification function of a rule d is a function Hd : 2L −→ {0, 1/2, 1} where 4

Hd(X) =


1 if Rd(X) = ∅ or Rd(X) ∈ Td

0 if Rd(X) ∈ Fd

1/2 if Rd(X) ∈ Ud

and the relevance factor of X w.r.t. the rule d, denoted Rd(X), is the largest subset of X that is

also a member of (T
¯ d
∪Ud ∪ F

¯ d
) i.e. Rd(X) = X ∩ Jd.

The parameter X is intended to represent a circumstance. A tabular representation of justifi-

cation function is called justification matrix of the rule. It can be seen that if a context has no

relevance to the applicability of a rule then the rule is applicable. In other words, if Rd(X) = ∅

then Hd(X) = 1.

We next define what it means to say whether a rule is accepted or defeated, as well as, classifying

rules based on the justification function.

Definition 4.3.2. Let A ⊆ L be a set of sentences, and d ∈ R a rule.

1. A is said to

(a) accept d if and only if Hd(A) = 1.

(b) outright defeat d if and only if Hd(A) = 0.

4 While determining Td, Ud, and Fd require some effort, it is no more arduous than assigning strength to
arguments. However, in case of Justification Function there is the advantage of having a point of reference, i.e. the
circumstance.
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(c) provisionally defeat d if and only if Hd(A) = 1/2.

(d) conclusively defeat d if and only if Hd(A) = 0 and if A ⊆ B then Hd(B) = 0.

2. A rule d : a1, a2, ..., an → a in R is a normal rule if and only if {¬a} conclusively

defeats d.

3. A normal rule d ∈ R is a default rule if and only if Ud = ∅, and, every A ∈ Fd

conclusively defeats d. In addition, we call Fk
d = {A | A is the minimal set in Fd}, the

justification base of the default rule.

4. A rule d ∈ R is said to be indefeasible if and only if Fd = Td = Ud = ∅.

The terms outright-defeat and provisional-defeat are adopted from [Pol94]. An indefeasible

rule d is always acceptable, i.e. Hd(X) = 1 is always true. This makes indefeasible rules

synonymous to the material conditionals or the necessary knowledge in other argumentation

systems [DS01, SL92].

The conclusive defeat relation is an important property that is implicitly assumed in other ar-

gumentation systems. In a conclusive defeat the defeat condition is context independent viz. a

rule is always inapplicable in presence of a conclusive defeater.

We use the conclusive defeat relation to define normal rules. A normal rule is always defeated in

light of contrary evidence to its conclusion. Normal rules implicitly capture the rebuttal attacks.

They also ensure that no two arguments with contradictory conclusions are simultaneously jus-

tified. The above default rules are a special class of normal rules. In default rules all the defeat

conditions are conclusive defeat conditions. It can be argued that within our semantics default

rules would be equivalent to Reiter’s default rules.

Theorem 4.3.3. Given any set of sentences A ⊆ L and rule d ∈ R,

1. Hd(A) has one and only one value.

2. A normal rule d with Ud = ∅ is a default rule if and only if no A in Fd is a subset of B
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in Td.

3. If d is a default rule and Fk
d is its justification base then,

(a) for every A ∈ Fk
d, A is either a singleton or A = {a | a ∈ B and B ∈ Td}.

(b) for X ⊆ L, Hd(X) = 0 if and only if ∃A ∈ Fk
d such that A ⊆ X .

The theorem 4.3.3 is the first step to ensure that the proposed argumentation theory is well

defined. The results in theorem 4.3.3.2, 4.3.3.3 draw a parallel between default rules (as defined

in this work) and the conventional default rules e.g. Reiter default rules. Theorem 4.3.3.3 states

that if a context includes any member of Fk
d then rule d is in applicable. Hence, one can say that

members of Fk
d are similar to negation of grounded justification assumptions in Reiter default

rules. For instance, if d : b → f and Fk
d = {¬f, p, e}, then the equivalent Reiter default rule is

dr = b:f,¬p,¬e
f

, as shown by the followig examples.

Example 4.3.4. (the standard example in non-monotonic reasoning) A Bird can usually fly

unless it is a penguin or an emu. Let literals b, f, p, e mnemonically stand for Tweety is a bird,

can fly, is a penguin, is an emu. The example can be represented as a defeasible rule d : b→ f

is a default rule with the following justification function.

Td = Ud = ∅
Fd = {{p}, {e}, {¬f}, {p, e}, {p,¬f}, {e,¬f}, {p, e,¬f}}
Fk
d = {{p}, {e}, {¬f}}.

Example 4.3.5. Sam’s friends usually like ethnic foods unless they are hot and spicy. Though,

Thai green curry is hot and spicy, they still like it. Let the literals sf, ef, hs, tg mnemonically

represent Sam’s friends, like ethnic food, food is hot and spicy, and food is Thai green curry.

Sam’s friends usually like ethnic foods could therefore be represented as, d : sf → ef with the

justification function,

Ud = ∅ Td = {{tg}, {hs, tg}}
Fd = {{hs}, {¬ef}, {¬ef, tg}, {¬ef, tg, hs}}.
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Example 4.3.6. The behavior of the table (4.1.b), to the extent it is specified, can be captured

by assuming two inference rules d1, d2 where d1 : a → z is a normal rule, and, d2 : c → x is a

default rule.

d1 : a→ z
Td1 Ud1 Fd1

(1) (1/2) (0)
x b
x, b ¬z

¬z, b
¬z, x
¬z, x, b

d2 : c→ x
Td2 Ud2 Fd2

(1) (1/2) (0)
v
¬x
v,¬x

Table 4.2: The justification matrices of inference rules for table (4.1.b)

The respective justification functions, see table (4.2), are determined by,

Td1 = {{x}, {x, b}},Ud1 = ∅,Fd1 = {{b}, {¬z}, {¬z, b}, {¬zx}, {¬z, x, b}}.
Td2 = ∅, Ud2 = ∅, Fd2 = {{v}, {¬x}, {v,¬x}}.

4.3.2 Context sensitive arguments

We define an argument by a set of contingent facts, a set of inference rules and conclusion

of the argument. This definition of an argument is in line with those given in [SL92] and

[PV01]. Though, unlike the latter we do not include the length and the size of an argument as

its properties. The size of an argument might indicate its strength [Lou87], but, our position is

that information regarding strength of an argument should be within its inference rules.

Definition 4.3.7. Let D ⊆ R, A ⊆ L and a ∈ L, an argument Å is a tuple 〈A,D, a〉 such that

there exists a sequence of rules d1, . . . , dm ∈ D where,

1. a = hd(dm), and,

2. ∀di, 0<i≤m, either

(a) bd(di) = ∅ , or

138



Context sensitive arguments

(b) ∀aj ∈ bd(di), either aj ∈ A or there exists dk, 0<k<j such that aj = hd(dk).

3. No proper subsequence of A′ ⊂ A and D′ ⊂ D satisfy the two conditions above.

We denote A,D and a by AÅ, DÅ, aÅ, and, call AÅ the evidence and aÅ the conclusion of the

argument. Furthermore, we say an argument Å2 = 〈A2, D2, a2〉 is a subargument of Å1 =

〈A1, D1, a1〉, denoted by Å2 v Å1, if and only if D2 ⊆ D1.

In our system, arguments interact with other arguments indirectly through context. Arguments

create the context in which other arguments are accepted or rejected. The natural contribution

of an argument to a context is its conclusion. On the other hand, when we accept an argu-

ment we implicitly accept all its subarguments. Therefore, in a set of arguments, the effective

contribution of an argument to context is the conclusions of all its subarguments.

The set Cn(Å) = {x ∈ L | x = aÅi
, Åi v Å} is called the consequences of the argument Å. If

A is a set of arguments then Cn(A) =
⋃
iCn(Åi) where Åi ∈ A.

We are now in a position to extend the concept of justification function to that of defeasible

arguments. The justification function of an argument is defined by applying the weakest link

principle to its inference rules.

Definition 4.3.8. Given a defeasible argument Å = 〈A,D, a〉, its justification function GÅ(X)

is defined as GÅ : 2L −→ {0, 1/2, 1}, GÅ(X) = mind∈D(Hd(X)).

Furthermore, since we deal with sets of arguments we need to have a justification function of

an argument with respect to a set of arguments A. For that we substitute conclusions of the

arguments A for the set of sentences X in GÅ(X).

Definition 4.3.9. For an argument Å = 〈A,D, a〉, its justification function with respect to a set

of arguments is defined as HÅ(A) = GÅ(Cn(A)) where Cn(A) is the set of consequences of

all arguments in A.

Observation 4.3.10. For an argument Å = 〈A,D, a〉 in a defeasible reasoning system 〈L, R〉,
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1. GÅ(X), and HÅ(A) are well defined.

2. If B ⊆ Cn(A) conclusively defeats d ∈ D then HÅ(A) = 0.

The above observation states that justification function of an argument is well defined. Further-

more, any set of arguments that conclusively defeats some rule of an argument, conclusively

defeats that argument.

4.4 Context sensitive defeat and reinstatement relationships

The defeasiblity of arguments is captured by defeat relation between arguments. From pre-

sented defeat relationships, we are interested in undercutting attacks and rebuttal attacks. We

capture rebuttal attacks through defeasible property of normal inference rules, without explicitly

defining rebuttal attacks.

Unlike most argumentation systems where defeat is a direct binary relationship between indi-

vidual arguments, in this system a group of arguments can cause or remove the defeat-condition

for an argument, indirectly, via context. This property makes defeat a binary relationship be-

tween a group of arguments and an argument.

The phenomenon of separate arguments with same conclusion reenforcing each other is called

accrual of arguments. Whether accrual of arguments is a valid argumentation concept or not

is debatable [Pol02]. Nonetheless, since our defeat and reinstatement relationship is between

a group of arguments and an argument the intended meaning of accrual of arguments [Ver01a]

can be easily represented in this model of defeat relationship.

In a set of argumentsA, context is set by consequences (conclusions of all subarguments) of all

arguments in A. In order to show an argument set Ac attacks an argument Å in A, we need to

establish given an initial context Cn(A′) whereA′ ⊂ A, addition of Cn(Ac) results in Å being

defeated. The notion of defeat is connected to a decrease in degree of acceptability of Å that is
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a decrease in HÅ(A). Accordingly, if HÅ(A′) is reduced to 0 it is said Ac outrightly defeats Å,

and, if reduced to 1/2 provisionally defeats Å. In the same token, in order to reinstate Å,Ac (or

{Å1}) has to increase the degree of acceptability of Å.

An example of attack and reinstatement is shown in Figure 4.3 below. The large arrows from

arguments to context show contribution of arguments (their consequences) to the context. Let

us assume an initial scenario where A′ = {Å, Å1}, and Å is acceptable with respect to A′. If

we add Å2 to A′ a portion of Cn(Ac1) ⊂ Cn(A′) where Ac1 = {Å1, Å2} attacks Å (shown by

a circle). Yet, if add Å3 to the mix, Å becomes acceptable with respect to the new argument set

A. It is as if a portion of context of Ac2 = {Å2, Å3} reinstates Å against Ac1.

C1

A

Cn(     )

A
1

A

A
2

A
3

2

A

1A

Cn(     )

A3

A

Cn(     )

Cn(     )

C2

Cn(     )

A

A
context:

Figure 4.3: A schematic of arguments interaction

Definition 4.4.1. Let A, Ac = {Å1, Å2, ..., Ån} ⊆ A be sets of arguments, and Å ∈ A an

argument. We will say that the argument set Ac defeats the argument Å in A

1. outright if and only if ∃A′ ⊆ A such thatAc ⊆ A′ and HÅ(A′) = 0, andAc is a maximal

subset of A′ where HÅ(A′ \ {Åj}) 6= 0 for all Åj ∈ Ac,

2. provisionally if and only if ∃A′ ⊆ A such that Ac ⊆ A′ and HÅ(A′) = 1/2, and Ac is a

maximal subset of A′ where HÅ(A′ \ {Åj}) = 1 for all Åj ∈ Ac.

141



4.4. CONTEXT SENSITIVE DEFEAT AND REINSTATEMENT RELATIONSHIPS

3. Furthermore, we say,

(a) Ac is a defeat scenario for Å in A,

(b) the argument set A′ \ Ac is the defeat context of the corresponding defeat relation,

(c) a defeat scenario Ac is a conclusive defeater of Å in A if and only if for every

A′′ ⊆ A, if Ac ⊆ A′′ then HÅ(A′′) = 0. If Ac is conclusive defeater in any

arbitrary A then it is called TConclusive defeater of Å 5. If Ac outrightly defeats Å

and is not a conclusive defeater, we say it is a nonconclusive defeater of Å.

In definition above, the condition HÅ(A′) = 0 might have been enough to say A′ defeats Å.

However there is a section ofA′ that is responsible for the defeat and there is a section ofA′ that

acts as the context for the particular defeat scenario. We name the first part the defeater and the

second part the context for defeat. Now we are in a position to show the following results.

Theorem 4.4.2. Let A,A′ be two sets of arguments, A ⊆ A′, Å, Å′ ∈ A, Å a subargument of

Å′, and Ac a defeat scenario for Å in A then,

1. Ac is also a defeat scenario for Å in A′.

2. if Ac is a conclusive defeater of Å then Ac is also a conclusive defeater of Å′ in A.

3. If D, the set of all rules of arguments in A, is comprised of only indefeasible and default

rules then all defeaters of arguments in A are TConclusive defeaters where the context

of defeat is ∅. In addition, if both Ac is the minimal set of arguments where F ∈ Fk
d,

F ⊆ Cn(Ac), and, F is singleton set, then Ac is singleton set.

4. If Cn(Ac) conclusively defeats at least one defeasible rule in argument Å then Ac is a

conclusive defeater of Å (though, the reverse is not necessarily true.)

The results 3 and 4 of theorem 4.4.2 are the continuation of our attempt to draw a parallel

between argumentation systems that are built upon conventional default rules and this argu-

5’T’ for True in every argument set or universal defeater
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mentation system. In most argumentation systems defeat relation is a static relation. Theorem

4.4.2.1 states that the defeat relation between a defeat scenarioAc and an argument Å is a static

relation. However, this claim is contrary to our original claim that defeat relation is subject to

a context. The reason for this apparent conflict is that we want to keep the proposed argumen-

tation system in line with the conventional argumentation theories. In order to account for the

influence of context over defeat relation we define a reinstatement by context relation.

In current argumentation systems an argument is reinstated only when its defeater is defeated. In

our system arguments can reinstate other arguments by context without defeating their defeaters.

The parts 1(a) and 1(b) in the following definition are the conventional method of reinstatement

whereas parts 1(b) and 2(b) are exclusive to our system representing reinstatement by context. It

can be seen that in case of conclusive defeat scenarios there is no reinstatement by context.

Definition 4.4.3. Let A, Ac1 = {Å11, Å12, . . . , Å1n} ⊆ A and Ac2 = {Å21, Å22, . . . , Å2m} ⊆

A be three sets of argument and arguments Å ∈ A, and Ac2 be defeat scenarios for Å in A.

1. Ac1 is said to outrightly reinstate Å in A against Ac2 if and only if either,

(a) ∃Åi ∈ Ac2 such that Ac1 is an outright-defeat-scenario for Åi in A, or

(b) both

i. ∃A′ ⊆ A such that Ac1,Ac2 ⊆ A′, HÅ(A′) = 1 and

ii. A′ \ (Ac2 ∪ {Åj}) is a defeat context for Ac2 defeating Å for all Åj ∈ Ac1.

2. Ac1 provisionally reinstates Å in A against Ac2 if and only if Ac is not an an outright

defeat scenario for any argument Åi ∈ Ac2 and either,

(a) ∃Åi ∈ Ac2 such that Ac1 is a provisional defeat scenario for Åi ∈ Ac2 in A, or

(b) both

i. ∃A′ ⊆ A such that Ac2,Ac1 ⊆ A′, HÅ(A′) = 1/2, and
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ii. A′ \ (Ac2 ∪ {Åj}) is a defeat context for Ac2 outright defeating Å forall Åj ∈

Ac1.

We define an argumentation theory comprised of a set of arguments and all types of attack

and reinstatement relationships given above. In order to interpret this argumentation theory

into a Dung’s Argumentation framework, we require to identify our system with all classes

of attack and reinstatement relationships. The reason for this requirement is given in the next

section.

Definition 4.4.4. Given a defeasible reasoning system (L,R), an argumentation theory is a

tuple AT = 〈A,⊗,⊕〉 where A is a set of arguments constructed in (L,R), and ⊗,⊕ are the

defeat and reinstatement relationships between a set of arguments and an argument as defined

above. Furthermore, given (A,D) in (L,R), if A is all the possible arguments that can be

constructed in (A,D) then the argumentation theory AT = 〈A,⊗,⊕〉 is called an induced

argumentation theory from (A,D). In addition, AT is called context insensitive if all defeat

scenarios Ac ⊆ A are conclusive defeaters.

Theorem 4.4.5. Let AT〈A,⊗,⊕〉 be an argumentation theory and D the set of all rules in all

arguments in A. Then, if D is comprised of only indefeasible and default rules, AT will be

context insensitive.

The next example shows the attack and reinstatement relations at work. This example is a mod-

ified version of example given in [SL92, DS01]. The example also shows the role of primary

and ancillary reasons in an inference rule.

Example 4.4.6. Let L = {a,¬a, s,¬s, r,¬r, c,¬c, e,¬e} with the following readings,

a : Tom is a mature adult; s : Tom is a student;
r : Tom has very rich parents; c : Tom has a car; and e : Tom is employed.

All the inference rules are normal, constituting

R = {d1 : s→ ¬a, d2 : s→ ¬e, d3 : a→ ¬s, d4 : a→ c, d5 : a→ e,

d6 : c→ e, d7 : ¬e→ ¬c, d8 : r → c, d9 : e→ c}.
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d2: s→ ¬e
1 1/2 0

{r},
{c, r}

{c},
{a, r},
{a, c, r}

{a},
{a, c}

d4: a→ c
1 1/2 0

{r}, {e},
{s, r},
{s, e},
{r, e},
{s, r, a}

{s}

d5: a→ e
1 1/2 0

{s},
{c},
{r},
{c, s},
{c, r}

{s, r},
{s, r, c}

d6: c→ e
1 1/2 0

{a},
{r},
{s, a},
{a, r}

{s},
{s, r},
{s, a, r}

Table 4.3: The justification matrices of inference rules d2, d4, d5, d6 in example 4.4.6

The rules d1, d3, d8, and d9 are all default rules with no other defeater except the negation

of their consequents. The rule d7 is also a default rule, but having an additional conclusive

defeater, namely the scenario {r}. The justification matrices of rest of the rules are provided in

the tables below.

Let Å1 = 〈{s},∅, s〉, Å2 = 〈{r},∅, r〉, Å3 = 〈{a}, {d5}, e〉, and Å4 = 〈{c}, {d6}, e〉 be

arguments in an induced argumentation theory derived from 〈L,R). Then Ac1 = {Å1, Å2}

is a provisional defeat scenario for Å3 but not for Å4 and Ac2 = {Å1} is a provisional defeat

scenario for Å4 but not for Å3.

4.5 Semantics

The semantics of an argumentation system is determined by the rules of interaction between ar-

guments. There are a number of approaches to provide the semantics of argumentation systems

[PV01], e.g., assigning status to arguments [Pol94], defining the acceptable set(s) of arguments

[Dun95b, BDKT97] and using dialectic argumentation trees [SCG+94]. While there are minor

differences, the approaches are driven by the same intuition where a definition in one can be

an observation in another [Dun95b, QBVT05]. For instance in [Dun95b] it is shown the set
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of justified arguments in [Pol87] is equivalent to the grounded extension in [Dun95b]. Dung’s

Argumentation Framework is used as basis in a number of argumentation systems. We adopt

Dung’s framework in order to give an anatomical picture of this system’s behavior. We first

translate proposed argumentation theory into a Dung argumentation framework and then apply

Dung’s semantics to the interpreted arguments.

In general, systems that are built upon Dung’s system deal with conclusive defeats, and re-

instatement of arguments is by defeating of their defeaters, and the provisional-defeat is an

interpretation of multiple preferred extensions.

Figure 4.4 shows the underlying idea in translation to a Dung’s abstract argumentation frame-

work. Let AT be an argumentation theory where Å attacks Å2 and Å3; and Å1 reinstates Å3

against Å. For simplicity we use arguments instead of argument sets. If we translate AT by

one-to-one mapping between arguments in AT to arguments in AF , we get Å1 reinstating both

Å3 and Å2, figure 4.4.a. In figure 4.4.a Å1 defends Å3 against Å which also leads to defending

Å2. This translation is however incorrect. The reason is Å1 should only reinstate Å3. To obtain

the desired translation we borrow the idea of missing arguments from examples 4.2.1 and 4.2.2.

We assume there is an imaginary argument Å4, Å @ Å4. This imaginary argument is shown

by dotted lines in figure 4.4.b. Figure 4.4.b shows, it is Å4 that attacks Å3 and Å1 reinstates

Å3 by attacking Å4. This time a one-to-one translation to a Dung’s framework would yield Å3

reinstated and Å2 defeated. This result is the intended result. Hence, we need to distinguish

between various types of defeats and reinstatement in our translation.

Definition 4.5.1 (Translation). Let AF = 〈AR , ATT 〉 be a Dung argumentation framework,

and AT = 〈A,⊗,⊕〉 an argumentation theory in 〈L,R〉. An abstract argumentation framework

AF is a translation of AT if and only if,

1. there is a surjective function M1 : 2A −→ AR such that,

(a) For every Å ∈ A there is an α ∈ AR for {Å},
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A1
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A

A1
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3
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A
3

A

A 4

Argumentation Theory (AT)

Translation to Dung’s AF

Argumentation Theory (AT)

Translation to Dung’s AF

fig. (a)  Wrong Translation fig. (b) Desired Translation

Figure 4.4: Translation to Dung’s Argumentation Framework

(b) For every Ac where Ac ⊆ A is a defeat scenario or reinstatement scenario for

Å ∈ A there is an α ∈ AR (if Ac is singleton then α is the same as α in 1(a)),

(c) if Ac is a reinstatement by context scenario or a non-conclusive defeat scenario

there is one additional αij ∈ AR for each defeat or reinstatement case (indexes i and

j denote Ac and individual case j).

2. Given all α, αij ∈ AR as specified above then there is a surjective funcion M2 : 2A ×

2A −→ ATT where ATT is determined such that,

(a) if Ac1 is an outright defeat scenario for an argument Åk, and β standing for any β

mapped under M1 for Åk or any Ack that Åk is a member of then,

i. if Ac1 is a conclusive defeat scenario, then, αATTβ where α is the mapped

α ∈ AR for Ac1 ,

ii. ifAc1 is a non conclusive defeat scenario then αijATTβ where αij is the mapped

αij for the corresponding Ac1 defeating Åk,

iii. ifAc1 is a provisional defeat scenario for an argument Åk ∈ Ac2 then αijATTβ

and βATTαij where αij is the mapped αij for the corresponding Ac1 provision-

ally defeating Åk.

(b) if Ac1 is a reinstatement by context scenario for an argument Åk against the defeat

scenario Ac2, and αij , β
i
j are the mapped arguments in AR for Ac1 and Ac2 for this
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defeat reinstatement scenario then,

i. if Ac1 is an outright reinstatement scenario, then αijATTβ
i
j ,

ii. if Ac1 is a provisional reinstatement scenario then αijATTβ
i
j and βijATTα

i
j .

To define the domain of operation we implicitly adopted values of status of arguments in

[Pol94, PV01]. Assigning status to arguments is part of semantics in [Pol94]. We defined se-

mantics based on Dung’s semantics. We are yet to interpret semantics to values in the operaton

doamin. The relation between BDKT-argumentation [BDKT97] semantics, and Pollock argu-

mentation [Pol94] semantics is given in [QBVT05]. BDKT-argumentation semantics closely

follows semantics given in [Dun95b].

Definition 4.5.2. Let AT = 〈A,⊗,⊕〉 be an argumentation theory in a defeasible reasoning

system 〈L,R〉 and AF = 〈AR , ATT 〉 its interpreted Dung framework, the status assignment

function 6 E : A −→ {0, 1/2, 1} is

E(Å) =


1 if Xp is in all preferred extensions in AF
1/2 if Xp is in at least one, but not all the preferred extensions in AF
0 if Xp is in none of the preferred extensions in AF

where Xp is the mapped argument α in AR for {Å}. Furthermore, The status of a literal

x ∈ L is given by the status function S(x) = maxÅ∈A(E(Å)) where x ∈ Cn(Å), for any

x ∈
⋃

Å∈ACn(Å), otherwise S(x) = 0. The values 1, 1/2 and 0 stand for justified, defensible

and overruled.

The following observation ensures that semantics of an argumentation theory AT is well de-

fined.

Theorem 4.5.3. In an argumentation theory AT, every argument Å and literal a ∈ L has one

and only one status.

6 Instead of preferred semantics we could have given admissible semantics by saying E(Å) = 1 if Xp is in
an admissible extension where no attacker of Xp is in any admissible extensions, and E(Å) = 1/2 if at least one
attacker of Xp is also in a admissible extensions.
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The following example applies the above translatiion to the framework given in example 4.4.6.

Example 4.5.4. We extend example (4.4.6) as follows. Let A = {s, a, r} and AT = 〈A,⊗,⊕〉

be an induced argumentation theory from (A,R) wher,

A = { Å1 = 〈 {s}, ∅, s〉, Å2 = 〈 {a}, ∅, a〉, Å3 = 〈 {r}, ∅, r〉,

Å11 = 〈 {s}, {d1}, ¬a〉, Å12 = 〈 {s}, {d2}, ¬e〉, Å121 = 〈 {s}, {d2, d7}, ¬c〉,

Å21 = 〈 {a}, {d3}, ¬s〉, Å22 = 〈 {a}, {d4}, c〉, Å221 = 〈 {a}, {d4, d6}, e〉,

Å23 = 〈 {a}, {d5}, e〉, Å231 = 〈 {a}, {d5, d9}, c〉,

Å31 = 〈 {r}, {d8}, c〉, Å311 = 〈 {r}, {d8, d6}, e〉 }

The calculated state of Å ∈ A is:

E(Å) =


1 if Å ∈ A2

1/2 if Å ∈ A3

0 if Å ∈ (A \ (A2 ∪ A3))

where A2 = {Å1 , Å2 , Å3 , Å22 , Å221 , Å23 , Å231 , Å31},

and A3 = {Å12 , Å23 , Å231 , Å311}.

We define consistency in an argumentation theory based on its Dung’s AF translation. For an

argumentation theory to be consistent, no two justified arguments should have contradictory

conclusions. Since the acceptability of an argument is captured through admissible set(s) then

no two arguments in any given admissible set should have contradictory consequences.

Definition 4.5.5. An argumentation theory AT = 〈A,⊗,⊕〉 is said to be consistent if and only

if there is no a ∈ L such that a ∈ Cn(Å1), ¬a ∈ Cn(Å2), Å1, Å2 ∈ A, and, the corresponding

mapped arguments α1, α2 in the translation of AF belong to the same preferred extension.

Theorem 4.5.6. Fr an argumentation theory AT = 〈A,⊗,⊕〉,

1. If AT is consistent then ∀a ∈ L if S(a) = 1 then S(¬a) 6= 1 (note: ¬(¬a) = a).

2. Let D = D1 ∪D2 be the set of defeasible rules of all arguments in A where D1 is the set

of indefeasible and D2 the set of normal rules; and, C be the set of consequences of all

arguments in A (i.e. C =
⋃

Å∈ACn(Å)). Then,
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(a) if the induced argumentation theory AT′ from (C,D1) is consistent then AT is con-

sistent.

(b) The mapping in the translation of AT to AF is a bijective mapping. Moreover, if

Fk
d for all the rules d ∈ D2 is composed of singleton sets then AF is isomorphic to

the structure 〈A, R∗〉 where R∗ = {(Å1, Å2) ∈ A×A | Å1 defeats Å2}.

The first part of theorem 4.5.5 states that for an argumentation theory AT whose indefeasible

part is consistent, if its defeasible part is comprised of only normal rules, then, its is a consistent

argumentation theory. The second part of theorem 4.5.5 draws a parallel between our argumen-

tation system and argumentation systems that is based on default rules. The bijective mapping

means that there are no imaginary arguments in translation AF . Furthermore, if the defeaters

in default rules are singleton defeaters then AT has the same structure as its Dung’s translation

AF . By this theorem we conclude this chapter.

4.6 A Short Comparison with Other Defeasible Reasoning
Systems

In this section we briefly discuss how the defeasible rules we proposed relate to other rule based

defeasible reasoning systems, namely BDKT abstract assumption-based framework [BDKT97],

and the argumentation based Defeasible Logic [GMAB04]. These defeasible rules are essen-

tially assumption based defeasible rules applicable in the absence of any contrary evidence in

Fd and Ud. Our argumentation theory is therefore a form of assumption based default reasoning

theory. The language L and defeasible rules are similar to the language and rules in Defeasible

Logic where language, body and head of rules are comprised of literals.

In relation to BDKT, assuming that Ud in all rules is empty, expanding L to include sentences

with logical conjunction ’∧’ makes the proposed defeasible rules a form of grounded Reiter

defaults where the assumption is the negation of elements of Fd. It is already shown that
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an argumentation theory based on this modified version of rules can be captured by BDKT

framework [BDKT97]. However, in BDKT there is no direct means of addressing the Ud part

of a rule. In other words, in BDKT an acceptable set of assumptions can not to provisionally

defeat an assumption in a direct fashion.

In relation to Defeasible Logic, assumption based rules and the corresponding undercutting

attacks on the assumptions of rules can be represented in two ways depending on whether the

assumptions are explicitly or implicitly expressed. In our approach assumptions are implicitly

expressed. For a rule r : bd(r) ⇒ hd(r) with an implicit assumption a, r is divided into

two rules r1 : bd(r) ⇒ inf(r) and r2 : inf(r) ⇒ hd(r). 7 The undercutting attack on

the assumption of the rule can be expressed by rdft : ¬a ∼� ¬inf(r) (or, alternatively rdft :

¬a ⇒ ¬inf(r)). 8 Though undercutting attacks can be expressed in Defeasible Logic, attacks

themselves are invariant. So, we cannot represent reinstatement of a rule by context unless

we expand the rule base by additional rules as discussed in example 4.2.1. Furthermore, even

if we assume that there is no reinstatement by context (effectively making attacks invarient,)

a translation of Ud in terms of undercutting defeater would only make sense for ambiguity

blocking semantics [GMAB04] of Defeasible Logic. There is no direct means of addressing

Ud in terms of a defeater for an ambiguity propagating semantics [GMAB04].

As it can be seen the two reasons why this argumentation system cannot be directly expressed

in BDKT framework or in argumentation based Defeasible Logic are Ud and reinstatement by

context. In light of the results and discussion above, it can be argued that with appropriate

semantics, an induced argumentation theory from the proposed default rules can indeed be em-

bedded in both BDKT framework and Defeasible Logic. It is possible to envisage a schema for

translating a non-default rule to a set of new default rules, effectively constructing an argumen-

tation theory that consists of only indefeasible and default rules. The translated argumentation

7 Splitting rules in this fashion is originally proposed to express superiority relation among conflicting rules
[GMAB01].

8 The reverse translation, i.e. translating a Defeasible Logic rule to a Default Logic rule, is given in [?].
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theory will be equivalent to the original theory with respect to the status of literals in L. Such

translation allows us to capture a given argumentation theory in BDKT framework (or in De-

feasible Logic.) The schema is similar to the method used for translation to Dung’s Framework.

9

4.7 Discussion and future direction

In this chapter we proposed a simple representation of defeasible rules consisting of only liter-

als. Each defeasible rule is associated with a justification function. The justification function

effectively describes under what circumstances a rule cannot be applied. The antecedents of

a rule are the primary reasons for believing the consequent. The literals in the justification

function are taken to be the ancillary reasons that strengthen or weaken a rule. Unlike most

argumentation systems, in this system arguments attack or reinstate other arguments indirectly

via context. The context is the collection of consequences of arguments in a set of arguments.

We also provided a translation from this system to Dung’s abstract argumentation theory in way

of validating our approach.

Our investigation into defeasible rules in the context of argumentation systems is programmatic

in character. There are some important issues that have not yet been addressed.

1. Our system shares a problem regarding the non-normal Reiter defaults [Poo91] in relation

to two seemingly acceptable arguments that are built upon contradictory assumptions.

We will address this problem along the lines suggested in [BDKT97] where the conceded

assumptions are explicitly stated.

9 We provide only the basic idea behind the schema. For every rule d, we construct all possible sequences of
the form J1, J2, · · · , Jn where Ji ⊆ Jd , J1 ∈ Ud or Fd , Ji ⊂ Ji+1, and Ji+1 is the minimum Jk (with respect
to ⊆) that is not in the same class as Ji (class in terms of Td,Ud,Fd). For every distinct Ji+1 \ Ji we construct a
rule d∗i where bd(d∗i ) = Ji+1 \ Ji , hd(d∗i ) = a∗i ,Jd∗

i
= Fd∗

i
= {b∗i }, and a∗i = b∗i−1. In addition, bd(d∗1) = J1

and Jd∗
n
= Fd∗

n
= ∅; and, if Ji+1 ∈ Ud then a∗i−1 = b∗i . This way we extend 〈L,R〉 to 〈L∗,R∗〉 by newly

introduced a∗i , b
∗
i and d∗i . It can be shown that an argumentation theory from substitution of non-default rules with

the corresponding set of default rules is equivalent to the original theory with respect to L.
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2. In general, the contrapositives of default rules are not automatically allowed in defeasible

reasoning systems [BDKT97, Poo91]. Yet, it has been argued that the contrapositives of

defaults can help avoiding certain counterintuitive results [CA05].

In our future work we aim to show how a rule can be explained by other rules, including ex-

pressing non-default rules as a set of default rules. We will address introduction of logical

connectives in the antecedent of a rule, as well as, giving a more in depth comparison with

other defeasible reasoning systems.
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Chapter 5

Conclusion

In this dissertation we attempted to address two different aspect of formal argumentation the-

ory. Both serve the two governing features of reasoning by argumentation, the localization of a

reasoning to its relevant factors, and, the reasoning by inquiry. Accordingly, in chapters two and

three we presented the admissibility backings of arguments. The admissibility backings of argu-

ments localize the admissibility or dismissibility of arguments in an argumentation framework.

In chapter four, we presented a new type of defeasible inference rules, called context sensitive

rules. The context sensitive rules extend the reach of reasoning by argumentation to many in-

stances of practical reasoning. The presented findings can follow many avenues, especially, in

the case of the admissibility backings of arguments.

5.1 A summary of the thesis achievements

The following is a detailed summary of thesis achievement that was discussed in section 1.2.5.

5.1.1 Admissibility backings, its propagation, and the role that arguments
play in admissibility of others

The issues in artificial intelligence usually tend to interlace together, for instance the issues of

learning, contradiction and change are closely related. The classic example which is relevant
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to our topic is the twin problems of the searching and the sorting. Searching, when things are

unsorted, takes a lot more effort than when things are sorted. On the other hand, the sorting

itself requires searching. However, once things are sorted, the subsequent search and sorts take

the minimal effort.

The importance of the proper structuring of a knowledge base is therefore self evident, and, so a

central subject in all the fields of computer science, from the database design to the mapping of

Bayesian networks, to the constraint programming and constraint propagation. The formulation

of admissibility backings of arguments is aimed to follow this general goal. In chapter two, we

localized the admissibility of arguments in terms of the minimal admissible sets that accept or

attack an argument. We called these the (admissibility) backings of arguments. we called the

minimal admissible sets that accept an argument, the positive backings of an argument and the

minimal admissible sets that attack an argument, the negative backings of an argument.

The grounded admissible extensions are an important class of sets of arguments. They are

important because they identify arguments that have the property of being accepted beyond a

reasonable doubt [GW09]. Consequently, we presented a class of grounded admissible sets,

and distinguished between the grounded and the not-grounded admissibility backings.

We defined the admissibility backings free of any special requirement on the argumentation

frameworks. However, a motivating principle behind the admissibility backings of an argu-

ment is for them to carry all the information regarding the admissibility situation of that argu-

ment.

This motivation sets certain expectations on the backings of arguments. One of such require-

ments is that if an argument has no positive backings then we should expect for that argument

to have some negative backings. However, only a certain class of argumentation frameworks,

reflect fully this intention behind the backings of arguments. As part of our analysis, we charac-

terize this class of frameworks as the normally stable argumentation frameworks. Accordingly,
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we showed that a normally stable framework is a framework that both itself and all its normal

sub-frameworks are coherent.

Another major result of this thesis is the identification of the dependency relation between

the arguments. A distinct property of the admissibility backings is that each backing operates

independent of other arguments in the framework. Hence, whenever an admissibility backing

of an argument is present, the argument is duly accepted or rejected irrespective of the other

arguments in play. It is easy to see how this result sheds light on any notion of dependency

between the admissibility of arguments.

As part of our analysis, we also identified the relation between the admissibility backings of an

argument and the admissibility backings of its attackers. This relation is central to many of our

other findings. We presented this relation by means of two algebraic operators +, ◦. The alge-

braic relation between the admissibility backings of an argument and of its attackers also lends

itself to a recursive formulation. We also provided the operators +, ◦ and the accompanying re-

cursive formula with a number of simplification results. The simplification results are intended

to show how the process of finding the backings of arguments can be made efficient.

The relationship between the admissibility backings of an argument and the admissibility back-

ings of its attackers then sets us up in three interlacing directions. The three directions are, (1)

the relevance of an argument in regard to the admissibility of other arguments, (2) the propaga-

tion of backings along the attack sequences, and, (3) active attack sequences and the intercepts

provide us the means to split a framework into sub-frameworks of distinct characteristics.

The active attack sequences, in general, mark the lines on which the admissibility backings

propagate. In connection with the active attack sequences, we introduced the notion of inter-

cepts. The intercepts correspond to arguments that are made irrelevant for the admissibility of

some argument. An argument that is neither an in/direct attacker or an in/direct defender of

some argument a is by default intercepted for argument a. Hence, the intercepts identify one
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type of relation between arguments. The intercepts also play a distinct role in that they split an

argumentation framework into independent sub-frameworks.

The other presented arguments relations are the active argument relation, the critical argument

relation, the incompatible argument relation and the redundant argument relation.

Any argument that belongs to some backing of an argument is an active argument for that

argument. The admissibility backings are need to adhere to a certain minimality condition. As a

result, the propagation of active arguments along the active attack sequences is not guaranteed.

Furthermore, not all the arguments on an active attack sequence of an argument are active

arguments for that argument. Such arguments are identified by the incompatible and redundant

argument relations. The identification of incompatible and redundant arguments are done with

the help of critical arguments, arguments that are indispensable for the admissibility of an

argument.

5.1.2 Context sensitive defeasible rules

In chapter four of this thesis we presented the context sensitive rules. The context sensitive

rules are based on the practical consideration that many instances of inference not only involve

primary reasons but also involve ancillary reasons. The role of primary reasons is to trigger

whether or not an instance of a defeasible rule is applicable in the first place. The role of

ancillary reasons is to fine-tune the applicability of the rule once the primary reason signals

that the rule is relevant. In this sense, the ancillary reasons of a rule reflect the context for the

applicability of the rule. The aim is therefore to present an argumentation system that covers a

wider range of defeasible reasoning.

A feature of the introduced inference rules is that they subsume the conventional defeasible

rules, the default rules. Therefore, the presented argumentation system can augment the sys-

tems based on the conventional default rules. The provided semantics for this argumentation
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system is by means of translating it into Dung’s abstract argumentation framework. Hence, the

framework also meets the standard semantics in the literature.

An important achievement of chapter four is the introduction of the missing arguments. The

missing arguments highlight the deficiencies in the conventional treatment of attack relation.

These deficiencies were highlighted with two motivating examples. The examples show a most

basic case where some otherwise legitimate arguments can be hidden or unknown to an agent.

The role of missing argument are then explicated with respect to the attack and reinstatement

relations. The chapter four finally shows how to account for the existence of missing arguments

in terms of the current approaches to the formal argumentation theory. Under this interpretation

of the role of the missing arguments we provided a concise reading of the presented framework

in Dung’s framework.

In order to address the role of missing arguments in relation to attack relation, we defined a new

form of attack relation where an argument attacks an attack relation. A consequence of this is

that arguments can reinstate other arguments without attacking their attackers. But, instead they

attack the attack relation. The missing arguments provide the explanation that why this new

form of attack relation is still in line with the conventional attack relation. The explanation is

that the reinstating argument conventionally attacks the hidden missing argument.

We should note that the attack relation between an argument and an attack relation is already

presented in [Mod06]. The difference between our new attack relation and the one presented

in [Mod06] is that ours is presented and accounted for under the notion of missing argu-

ments.
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5.2 Future work

5.2.1 Splitting, merging, and the dynamics of argumentation theory

The main motivating factor behind the formulation of backings of arguments is to setup a back-

ground theory to address some of the important issues in argumentation theory, including the

splitting, merging, the dependence relation, and, the dynamics of argumentation theory.

In section 3.7 we split a framework into independent sub-frameworks. Continuing on this work,

we want to split a framework into sub-framework of distinct characteristics. Each characteristic

is set to identify a class of argumentation frameworks. Accordingly, we want theses classes of

argumentation frameworks to have certain properties of their own.

Each class of framework is set to preserve certain information that is efficiently accessible.

There should also be certain relations between the classes of frameworks so that the frameworks

of the same or different class can be formulated, merged, and split into frameworks of the same

or a different class.

The goal is to formulate operations for the translation, merging, and split of a framework that

are in terms of the operations between the backings of arguments in each class of argumentation

framework. In this regard, we envisage to employ the positive and negative attack sequences,

and the intercepts as well as their relations with respect to each other. The reason for this

choice is that the positive and negative attack sequences, in one form or another, preserve the

propagation of the backings where the fall out is mapped by the intercepts.

The split of a framework depends on what type of information we wish to preserve in each class

of framework. In turn, the type of information is determined by what sort of question we want

to answer. The preservation of information is then guided by where the lines of dependence

or independence relations are drawn. Consequently, the future work should first address the

dependence relation between arguments with respect to their admissibility.
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5.2.1.1 The dependence relation between the arguments with respect to their admissibil-
ity

The domain of our inquiry is set by the questions we want to answer. Each domain of inquiry

then identifies its own corresponding independence relation. For instance, we may set the de-

pendence relation in regard to changes in the admissibility status of an argument, or, in the

backings of an argument, or, the backings of attackers of an argument.

We can follow all such forms of independence relation between arguments along the lines of

active attack sequences. One crude way to test for the dependence relation is removing an

argument and look for the ensuing changes (with respect to the domain of inquiry). If any

change is noticed then a dependence relation is in play.

To establish the independence relation requires careful considerations. To establish an indepen-

dence relation, we need to consider all possible scenarios that involve the arguments in question.

We denote all possible cases through the sub-framework relation, as we have done in this thesis

(see sections 2.6 and 3.7). In a similar fashion it is also possible to address the conditional inde-

pendence relation where the condition is represented by a sub-framework. We can then employ

the statements of the form AFc v AF ′ v AF ′′ where AFc represents the condition in place.

That is, given AFc , the answers to certain inquiries do not change between AF ′, AF ′′.

5.2.1.2 The future work in regard to the sub-argumentation framework relation

The study of sub-argumentation framework relation ranges over many topics. One applica-

tion of sub-argumentation framework is in formulation of the equivalence relation(s) between

frameworks.

In formulating an equivalence relation, we generally use some mapping from one framework to

another. The mappings are in general intended to preserve certain characteristics. Accordingly,

the mappings can be admissibility preserving, admissibility status preserving, etc,. Regardless
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of the mapping that we use, the equivalence relation under a mapping should not only hold over

the two frameworks, but it should also hold over all their sub-frameworks, or at least over a

class of their sub-frameworks.

Furthermore, the sub-argumentation framework relation forms a partial order. The range of

operators one can define with respect to partial orders is well studied in the literature, all with

their own distinct properties and utilities. Accordingly, one area of study of sub-argumentation

framework relation is in regard to the operators we can define over them. In this thesis, we

presented two of such operators, +N ,−N when we discussed the splitting of a framework into

independent sub-frameworks..

5.2.1.3 The subargument relations

The subargument relation is well known within the literature, and it is recognized to be a fun-

damental relation between arguments with important applications. It is fundamental because,

it directly relates to the semantics. Accordingly, it has important applications, as it has the

potential to apply certain type of cut property.

The connection between subargument relation and the semantics of argumentation systems is

generally expressed in terms of the weakest link principle. It says that an argument is accepted

only if all its subarguments are accepted. This principle is generally agreed among the research

community. There are however additional intricate issues for which the verdicts are not yet

finalized [PV01].

Regardless, the expansion of Dung’s framework by the subargument relation under the weak-

est link principle is a straightforward task. Naturally, being still within Dung’s framework,

we can claim that all our results so far equally hold for a Dung’s framework with a subargu-

ment relation. However, what interest us is the types of substructures that the subargument

relation ensues, and, how these substructures can be formulated in terms of the backings of
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argument.

5.2.1.4 Strength of arguments

In general we aim to model strength of arguments in form of a partial or total order over argu-

ments. The current approaches to model the strength of arguments are derived by the application

of some preference or priority order over defeasible inference rules. The same concept is then

adopted to the abstract argumentation frameworks [PS96b, AC98, AP02, Ben02].

Within the current literature it is implicitly assumed that the preference are provided by an

external source. How these preferences are obtained or how reliable they are, are separate

questions. Hence, it is assumed that these preferences are as given. Many of these approaches

also provide certain calculus on how to resolve the tie between the conflicting arguments by

means of the provided preferences. Thus, such preferences effectively determine the semantics

of an argumentation system, e.g., the framework in [Ben02]. However, it is not shown that after

application of the provided calculus the result shall meet our expectations, i.e., whether or not

our reasoning by such calculus is sound.

We however view the strength of arguments as a measurement derived from arguments interac-

tions within an argumentation system. This way the strength of arguments is a measurement that

we obtain from an argumentation system, and not building an argumentation system from such

preferences that are accompanied with its own calculus. Hence, it is the semantics of an argu-

mentation system that provides the strength of an argument and not the other way around.

Our approach for measuring the strength of arguments is simple. Given a set of sub-argumentation

frameworks, we calculate how admissible an argument is with respect to the set. Roughly speak-

ing, an argument that is admissible in more sub-frameworks is stronger than an argument that is

admissible in less number of sub-frameworks. It is the rule of survival at the face of uncertainty,

the stronger survives.
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In this thesis, we directly tied the admissibility of an argument to its backings. Hence, without

going into details, we can see that the more positive backings an argument has, and the more

these positive backings can survive different frameworks, the stronger the argument is. Hence,

the findings in thesis serve as a background theory by which we can derive and explain this mea-

sure. The background theory can also account for the conditional measures and the conditional

independence relation. For instance, we can reason that given availability of some arguments,

one argument is always stronger than another. The underlying theory that explains this finding

is that the given set of arguments safeguard more positive backings of the first argument than

those of the second argument.

This modeling of strength of arguments will be more useful after the inclusion of the subar-

gument and the independence relations. For instance, in [Lou87], Loui presents a number of

heuristic rules of thumb about why to prefer one conflicting set of arguments over another. Some

of his presented rules of thumb are classified under the the directness of an argument which in

turn translates into the size of an argument by the number of its subargument. For example it is

said that a longer argument tends to be weaker than a shorter argument. In other words, an ar-

gument that has less number of subarguments tends to be a stronger argument than an argument

that has more subarguments. Using our approach along with the subargument relation, we can

show the validity of these heuristic assumptions.

5.2.2 Future work for context sensitive defeasible rules

There are a number of future inquiries we can pursue in regard to the context based argumenta-

tion system. We briefly mention a few.

One line of inquiry is to present an abstract context based argumentation framework. We have

already translated the current context based framework into Dung’s abstract framework. Hence,

it is feasible to have an abstract context based framework.
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All that is required is to equip either of the frameworks in [Boc02] or [NP06] with the ability for

a set of arguments to attack an attack relation. The two extended abstract frameworks in [Boc02,

NP06] allow for an attack relation where a set of arguments can attack an argument. Moreover,

the attack relation between an argument and an attack relation is already presented in [Mod06].

Hence, the resulting framework will be a combination of these three frameworks.

There are three other future inquiries. Currently as it stands we use a justification table and

a corresponding justification function to state how the ancillary reasons influence the applica-

bility of a rule. However, to properly follow the underlying theme of our motivation, we need

to encode the interaction between the primary reasons and ancillary reasons in terms of the

corroborating and conflicting reasons, instead of a justification status.

Another line of future research is to ensure that there are no redundancies in the justification

table. A justification table should not be reducible to smaller justification tables.

Finally, it will be interesting to seek a connection between the presented defeasible rules and

the argumentation schemes. For instance, we may investigate how the missing arguments can

account for the enthymeme in arguments that are modeled based on the arguments in natural

languages. In these cases, the implied or presumed premises act as the context to draw a con-

clusion or attack other arguments. The context can lead us to identify the missing or hidden

arguments. The identification of missing arguments will then help us to explicate whether or

not a context is used properly.
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Lottery Paradox

The lottery paradox assumes a fair lottery of 10000 tickets where there will be one winner. Let

Pi denote the argument that the ith ticket will not win. We have then 10000 arguments, one

argument for each ticket. By the “statistical syllogism”, one can claim that all the arguments

P1, · · · , P10000 are prima facie justified. The question is whether or not we could accept all the

arguments P1 to P10000.

Obviously, since someone has to win, the conjunction of conclusions of all the 10000 arguments

is false. The overall verdict to whether or not we can accept all the 10000 arguments, is that we

cannot. 1

The rational is that if two non-contradictory arguments are accepted, then, conjunction of their

conclusions should be accepted, too. In the case of lottery paradox, we are faced with a situation

that no single argument attacks another. The paradox is that while we cannot not dismiss any

single argument, we cannot accept them either. Pollock presents this as a form of collective

defeat. The other forms of collective defeat relate to what is commonly referred to as the even

and odd length attack sequences. It is difficult to relate the lottery paradox form of collective

defeat to either category of the rebutting or undercutting defeat relation.

1 Despite the rational put by Pollock, I am not convinced, why we cannot accept all the 10000 arguments.
All the arguments appear to be good. The only argument that we cannot accept is that we can conjunct the
10000 conclusions. We are not warranted to conjunct the conclusions, on the account that it undermines the
normality assumption, the assumption under which all arguments of any kind are constructed. Otherwise, we
cannot accept any argument. The argument for the conjunction of 10000 conclusions is therefore a self defeating
argument. This though is against the adopted consensus in the literature, that the strict rules have the unconditional
warrant of to be applied anywhere, anytime. In this case, the strict rule is in the form of material conditional,
“Q1, Q2, · · · , Q10000 =⇒ Q1 ∧Q2 ∧ · · · ∧Q10000”, where Qi is the conclusion of the argument Pi.
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Bayesian Belief Networks and
Argumentations

In Bayesian belief networks, the locality of inference between two adjacent nodes is safeguarded

by the postulates of the independence relation. Roughly speaking, in Bayesian belief networks,

the locality is captured by the directed causal link between two adjacent nodes. In Markov

network, there are no directed causal links. In Markov network, the locality is instead captured

by the blanket of a node. A blanket for a node is the boundary nodes of a node.

There are a number of works on drawing a connection between the argumentation systems and

the Bayesian belief networks. Non of the works however makes a general mapping from one

reasoning system to another. The attempts generally fall within three categories. They either

build some form of an argumentation framework based on the rational behind the Bayesian

belief networks [FNL13], or, form the data produced by the network [NP07], or, they draw a

parallel between the two systems of reasoning by heuristic analysis [Vre04].

There are still many issues to be resolved before drawing a mapping between the Bayesian

networks and argumentation systems. For instance, one of the early topics that still to be con-

clusively discussed is the two way reading of contrapositive and abductive inference rules in a

Bayesian network [Poo92, Poo93b, Poo93a, Poo97, Poo00]. If there was such a reading then

relation between an inference rule and its abductive and contrapositive rule would be clear. But

this is not the case.

In most argumentation systems, given an inference rule, its contrapositive, and, its abductive
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form (if the abductive form applies), must explicitly be stated in the knowledge base. These

restrictions are in large due to the technical reasons associated with the particular argumenta-

tion system. For instance, in the assumption based argumentation frameworks, that are largely

implemented in the form of logic programming, the contrapositive of inference rules are not

automatically available.

One simple example is the inductive inference that if something is red then it appears red.

The contrapositive of this inference is, if something does not appear red then it is not red. Its

abductive from is, if something appears red then it is red.

In the statistical syllogism, from the “most P s are Qs”, we construct the rule P → Q. Ratio-

nally, assuming that our universe is not just comprised of entities with the property P , we are

allowed to think that if something is not Q then it is probably not P either. For instance, let us

take the inference that if something is a bird then it flies. In most frameworks, we automatically

cannot have its contrapositive which is if something does not fly the it is not a bird. However,

we normally expect that if something does not fly then it is not a bird. We can see this type of

expectations when playing games like Twenty Questions or I spy with my little eye. In either

game, if we are asked whether or not something flies, and the answer is no, we then think that

the mystery object is not a bird.
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The properties of +, ◦ and +̇, ◦̇
operators

In an argumentation framework, the admissible sets create a partial order with respect to the set

inclusion. Hence, it is no surprise that the operations ◦,+ and ◦̇, +̇, pairwise, do possess many

properties of a semiring. the following theorem presents this finding.

Theorem .0.1 ( The properties of the operations ◦,+ and ◦̇, +̇ ).

In the followings A,B, C are each a set of sets of arguments in some argumentation framework

AF = 〈AR , ATT 〉, and, ⊗ stands for the operations ◦, ◦̇ and ⊕ stands for +, +̇. Moreover

any combination of ⊕,⊗ refers to a corresponding combination of +, ◦ or +̇, ◦̇.

1. A⊗∅ = ∅⊗A = ∅. (Absorbing Element)

If no B ∈ B is conflict free then A⊗ B = B ⊗A = ∅.

2. A⊗ B = B ⊗A. (Commutativity Property)

A⊕ B = B ⊕A.

3. (A⊗ B)⊗ C = A⊗ (B ⊗ C). (Associativity Property)

(A⊕ B)⊕ C = A⊕ (B ⊕ C).

4. A⊗ (B ⊕ C) = (A⊗ B)⊕ (A⊗ C). (Distribution of ⊗ over ⊕)

5. The Reduction Properties

(a) A⊗A ⊆ A.
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(b) A⊕A = A⊗A = A⊕∅ = A⊗ {∅}.

(c) Every A ∈ A⊕A is a conflict free minimal element ofA if and only if A⊕∅ = A.

(d) A⊗A = (A⊗A)⊗A.

(e) If A = B then A⊕ C = B ⊕ C and A⊗ C = B ⊗ C.

(f) A⊕ C = B ⊕ C if and only if A⊕∅ = B ⊕∅.

(g) A⊗ B = A⊗ (A⊗ B).

(h) {A} ⊗ {B} = ∅⊕ {A ∪B}.

(i) A⊕ B ⊆ A ∪ B.

(j) A⊗ (B ∪ C) = A⊗ (B ⊕ C).

(k) A⊕∅ = ∅ if and only if A = ∅ or ∀A ∈ A, A is not conflict free.

(l) A⊕ B = ∅ if and only if A⊕∅ = ∅ or B ⊕∅ = ∅.

(m) A ⊗ B = ∅ if and only if A ⊕ ∅ = ∅ or B ⊕ ∅ = ∅ or (∀A ∈ A ⊕ ∅ and

∀B ∈ B ⊕∅, A ∪B is not conflict-free).

The proof of .0.1. We first show that the stated properties hold for +, ◦. Then by using the

properties of +, ◦ as the reference we show that the properties also hold for +̇ and ◦̇.

The first property is the direct result of the first condition of definition 2.4.8 and the minimality

condition in definition (2.4.8).

The commutativity and the associativity properties are both the direct result of the commutativ-

ity and associativity properties of operations ∪ and minimality in definitions 2.4.8.

To show the distribution of ◦ over +, let D ∈ A◦(B + C). Then D = A ∪ E where E ∈ B

or E ∈ C. Hence, D ∈ A◦B or D ∈ A◦C. Conversely, if D ∈ (A◦B) + (A◦C) then

D = A ∪ E where E ∈ B or E ∈ C. Hence, E ∈ (B + C), and, therefore, D ∈ A◦(B + C).

174



The proof for reduction properties is straightforward. In regard to the last reduction property,

property (k), it is easy to see that ifA is a minimal, conflict free element of B∪C thenA ∈ B+C

is as well. Conversely if A is a minimal conflict free element of B+C, then, A ∈ B∪C. Hence,

we can say that A◦(B ∪ C) = A◦(B + C).

We observe that for any setsA,B, C, the setD of the minimal sets, and, the set E of the grounded

minimal sets in A◦B ◦ C, and, their respective counter parts D′, E ′ in (A◦̇B)◦̇C are equal, i.e.

D = D′ and E = E ′.

We can see that both pairs of operations stop short of forming a semiring. The reason is that,

neither pair, in general, has a unique absorbing or idempotent element. For instance, any set A

that all of its member sets are not conflict free sets, can act as an absorbing element.

We can rectify this short coming by constraining our domainR toR ⊆ 2AR whereR is closed

under set union ∪, and, for any A ∈ R, any A,B ∈ A, A ↪→� B and A ⊂� B. Hence, it

is possible to make sure that the operations +, ◦ will form a semi-ring over some domain R.

Furthermore, to ensure such constraint over 2AR, is applicable with respect to the backings

of arguments, we need to make sure that no argument of any cycle is controversial for any

argument in AF .
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Proofs for chapter 2

The proof of observation (2.2.2).

We observe that all the three identifying properties of a partial order, the reflexive, the anti-

symmetric and the transitive property, are all directly entailed from the definitions of the sub-

argumentation framework, and, the normal sub-argumentation framework.

The proof of observation (2.2.4).

We observe that if a, b are in AF ′, b an in/direct attacker or defender of a in AF , then, if c ∈ b

in AF then c is in AF ′ as well.

The proof of theorem (2.2.5).

Let AF ′ = 〈AR′ , ATT ′ 〉, for an argument a either a ∈ AR′ or a /∈ AR′. By assumption if

a /∈ AR′ then a ↪→� S, hence S accepts S against all a /∈ AR′. S also accepts S against all

a ∈ AR′. Hence, S accepts S against all arguments in AF .

Proof of observation (2.3.2).

The proof is trivial. If a ∈ θ(∅) then a cannot have any attacker, because ∅ has no argument to

defend a against any attacker. Conversely, if a has no attacker, then a needs no defender, that is

to say it is vacuously defended by any argument.

The proof of theorem (2.3.6).

The proof of (2.3.6) (Left-to-Right). The assumption is that S is a grounded admissible set.

177



For S, we construct sets Ai, Si as follows. Let Si+1 = Si − Ai+1, Ai+1 = {d | d ∈ Si −

B, d ∈ θ̂(Si − {d}, S)} where B = θ̂(∅, S), S0 = S,A0 = ∅. We can see that since S is a

grounded admissible set, then (1) every Si is, by definition, a grounded admissible set, and (2)

Si = θ̂(Si+1, S). The sequence S0, S1, S2, · · · is a monotonically decreasing sequence with

respect to set inclusion. Hence, there exists some m such that for every n ≥ m, Sn = Sn+1 =

B, An+1 = ∅. Following (2), we will then have S = θ̂
m
(∅, S).

The proof of (2.3.6) (Right-to-Left). Let Si = θ̂
m
(∅, S). Since by assumption Sm = S, we have

(1) S0 6= ∅, and, (2) Si+1 = θ̂
i+1

(∅, S) = θ̂(Si, S). Hence, every Si, 0 ≤ i ≤ m is a grounded

admissible set, including S = Sm.

The proof of lemma (2.3.7).

The proof of (2.3.7.1). We know that (1) G = θ∞(∅) (G is the least fixed point of θ, and, (2) if

R ⊇ T is conflict free then θi(T ) ⊆ θi(R). For any T ⊆ θ(∅), we therefore have θ∞(T ) ⊆ G.

Hence, by theorem (2.3.6), the grounded extension G is the maximum grounded admissible set.

The proof of (2.3.7.2) is trivial. LetA be the set of T ⊆ G such that S ⊆ T and T is a grounded

admissible set. Following the first part of this lemma, since G ∈ A, then A 6= ∅. Now since A

is a finite, it must have a minimal element, satisfying the intended result.

The proof of lemma (2.4.2).

Let S ′ = S ∩Da where S be a minimal admissible set accepts a. S ′ accepts a because if b ∈ S

is a defender of a then b ∈ S ′. S ′ is admissible, because, (1) for any b ∈ S ′ if c ↪→ b then there

is some d ∈ S such that d ↪→ c, and (2) if b ∈ S and d ∈ Db then d ∈ S ′. Hence, we conclude

that S = S ′ ⊆ Da.

Similarly, let S be a minimal admissible set that attacks a, and, S ′ = S ∩ Da. Then, (1) there

is some b ∈ S ′ such that b ↪→ a, and, (2) S ′ is an admissible set that accepts b (because, for
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any b ∈ S ′ if c ↪→ b then there is some d ∈ S ′ such that d ↪→ c.) Hence, we conclude that

S = S ′ ⊆ Da.

The proof of lemma (2.4.4).

The proof is by contradiction. Let S ∈ 〈 a 〉+ and assume that there is some c ∈ S that is not

a critical defender of any argument in S ∪ {a} with respect to S. Let T = S − {c}, then by

assumption, if b ↪→W where W = T ∪ {a} then T ↪→ c. T is therefore an admissible set that

accepts a, and, T ⊂ S. But, this contradicting the assumption that S is a minimal set that

accepts a.

The proof of theorem (2.4.6).

The proof of (2.4.6.1) If AF has stable extension E, then, vy definition, for an argument a,

either a ∈ E or E ↪→ a. If a ∈ E then there is some S minimal subset of E that accepts a,

and, if E ↪→ b then there is some minimal subset of E that attacks a. Hence, 〈 a 〉+ 6= ∅ or

〈 a 〉− 6= ∅.

The proof of (2.4.6.2) is trivial.

The proof of (2.4.6.3). Let a ∈ S for some S ∈ 〈 a 〉− then by lemma (2.4.2), a ∈ ATa. But,

this contradicts the assumption that AF is a rational argumentation framework.

The proof of (2.4.6.4). Let S ∈ 〈 a 〉+ and b ∈ a. By definition 2.4.1, S is both admissible and

attacks b. Thus, there is some minimal admissible set S ′ ⊆ S that S ′ ↪→ b. Hence, S ′ ∈ 〈 b 〉−.

The proof of (2.4.6.5). Let 〈 a 〉− = ∅ then by definition 2.4.1, there is no admissible set that

attacks a. Hence, by definition a belongs to all non empty preferred extensions. On the other

hand, if a ∈ E for some preferred extension E. Then, there is some minimal subset of E with

respect to set inclusion that accepts a. Hence, 〈 a 〉− 6= ∅ and S ∈ 〈 a 〉−. We can therefore say

that (2.4.6.5a) and (2.4.6.5b) are equivalent.
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Next, if 〈 a 〉− = ∅ then for all b ∈ a, 〈 b 〉+ = ∅. If not, then for some b ∈ a, 〈 b 〉+ 6= ∅ then

there is some minimal admissible set S that accepts b, and, therefore attacks a, contradicting

the initial assumption. On the other hand, if for all b ∈ a, 〈 b 〉+ = ∅ then by definition there is

no admissible set that attacks a (if a set S attacks a then S must have some attacker of a). We

can therefore say that (2.4.6.5a) and (2.4.6.5c) are equivalent.

The proof of (2.4.6.6). If 〈 a 〉+ = ∅, then there is no admissible set that accepts a. Thus, there

is no preferred extension that accepts a. Conversely, if no preferred extension accepts a then

〈 a 〉+ = ∅. Hence, we can say that (2.4.6.6a) and (2.4.6.6c) are equivalent.

Let 〈 b 〉− = ∅ for some b ∈ a, then by (2.4.6.5), no admissible set attacks b. Hence, no

admissible set accepts a which means 〈 a 〉+ = ∅. Next, let us assume (1) for all b ∈ a, 〈 b 〉− 6=

∅, and, (2) there is no conflict free set S such that if b ∈ a then there is T ∈ 〈 b 〉− such that

Si ⊆ S. By (2.4.6.4), if S ∈ 〈 a 〉+ then for each b ∈ a, there is some T ∈ 〈 b 〉− such that

T ⊆ S. However, by assumption there is no such conflict free set, hence, 〈 a 〉+ = ∅. (?)

On the other hand, Let 〈 a 〉+ = ∅, then by (2.4.6.1) 〈 a 〉− 6= ∅. Let S ∈ 〈 a 〉− then there

is some b ∈ a, b ∈ S, 〈 b 〉+ 6= ∅. Let B denote the set of all such b. It is either (1) for

some b ∈ B, 〈 b 〉− = ∅, or (2) for all b ∈ B, 〈 b 〉− 6= ∅. Let it be the case (2) where for all

b ∈ B, 〈 b 〉− 6= ∅. Let us assume that there is a conflict free set W such that for all b ∈ B there

is some T ∈ 〈 b 〉−, T ⊆ W . (??)

Let, R =
⋃

T⊆W
T . R is an admissible set because any argument in R is acceptable by some

T ⊆ R. R also accepts a, because, for any b ∈ a,R ↪→ b. Hence, 〈 a 〉+ 6= ∅, but this

contradicts the initial assumption that 〈 a 〉+ = ∅. Hence, the (??) is incorrect, and there is no

such presumed conflict free set T . (? ? ?)

From the above results (??),(? ? ?) we conclude that (2.4.6.6a) and (2.4.6.6b) are equivalent as

well.
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The Proof of theorem (2.4.9).

First we shoe that 〈 a 〉+ ◦̇〈 a 〉− = ∅. If either 〈 a 〉+ = ∅ or 〈 a 〉− = ∅ then 〈 a 〉+ ◦̇〈 a 〉− = ∅

by defult. So, let us assume that both are not nul. If so, then, the every S ∈ 〈 a 〉+ ◦̇〈 a 〉− both

accepts and attacks a. Hence, S is a self attackiing set. But, this means, 〈 a 〉+ ◦̇〈 a 〉− = ∅.

The proof of second part of theorem is self evident. In framework with a stable extension, at

last one admissible set either accepts or attacks an argument. Hence, 〈 a 〉+ +̇〈 a 〉− 6= ∅.

The Proof of observation (2.5.2).

The proof is self evident. It directly follows from definition (2.5.1).

The Proof of theorem (2.5.3).

The proof of (2.5.3.1) where 〈 a 〉− = ∅. From the results (.0.1.6h), (.0.1.6i) in appendix 5.2.2,

we have
∑̇
b∈a

( {{b}} ◦̇ 〈 b 〉+ ) = ∅ if and only if (∀b ∈ a)(〈 b 〉+ = ∅). Using the results in

(2.4.6.5a),(2.4.6.5b), we then have 〈 a 〉− = ∅ if and only if
∑̇
b∈a

( {{b}} ◦̇ 〈 b 〉+ ) = ∅.

The proof of (2.5.3.1) from left to right where 〈 a 〉− 6= ∅. Let Z−=
∑
b∈a

({{b}} ◦ γ(〈 b 〉+) ). We

want to show that if S ∈ 〈 a 〉− then S ∈ γ−1(Z−). Let S ∈ 〈 a 〉−, then by definition (2.4.1),

there is some b ∈ S such that b ∈ a. Let Sb be defined as Sb = S − {b} if b is acceptable by

S − {b}, otherwise, Sb = S.

We claim Sb ∈ 〈 b 〉+. If not then there must exist some S ′b ∈ 〈 b 〉+ such that S ′b ⊂ Sb. However,

this contradicts the minimality assumption in S ∈ 〈 a 〉−, because S ′ = S ′b ∪ {b}, S ′ ↪→ a but

S ′ ⊂ S. Having Sb ∈ 〈 b 〉+, then S = Sb ∪ {b} ∈ γ−1(Z−). Because, if S /∈ Z− then by

definition of +, there is some c ∈ a such that {c} ∪ Sc ⊂ S for some Sc ∈ γ−1(〈 c 〉+). Hence,

the set {c} ∪ Sc is an admissible set that attacks a. But this contradicts the assumption that

S ∈ γ−1(〈 a 〉−). Thus, S ∈ Z−, which means 〈 a 〉− ⊆ γ−1(Z−).

The proof of (2.5.3.1) from right to left where 〈 a 〉− 6= ∅. Let S ∈ Z− then S = {b}∪Sb where

b ∈ a, Sb ∈ 〈 b 〉+, 〈 b 〉+ 6= ∅. By definition of +, ◦, S is a minimal admissible set that attacks
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a. Hence, S ∈ 〈 a 〉− which means γ−1(Z−) ⊆ 〈 a 〉−.

The proof of (2.5.3.2) where 〈 a 〉+ = ∅. By theorem (.0.1.6i), we have
∏

b∈a〈 b 〉− = ∅ if and

only if (∃b ∈ a)(〈 b 〉− = ∅) or for every selection of A1 ∈ 〈 b1 〉+, A2 ∈ 〈 b2 〉+, · · · , An ∈

〈 bn 〉+, a = {b1, · · · , bn}, the set
⋃
Ai is not a conflict- free set. Hence, by using the results

in (2.4.6.6a), (2.4.6.6b), we have 〈 a 〉+ = ∅ if and only if
∏̇
b∈a
〈 b 〉− = ∅.

The proof of (2.5.3.2) where 〈 a 〉+ 6= ∅. If a is a ground argument, the claim 〈 a 〉+ = {∅}

holds by default. Hence, we assume that a is not a ground argument. In the following Z+ is

defined as Z+ =
∏

b∈a γ(〈 b 〉−).

The proof of (2.5.3.2) from left to right, where 〈 a 〉+ 6= ∅, and, a is not a ground argument. Let

S ∈ 〈 a 〉+ then S is the minimal admissible that for any b ∈ b, there is some Sb ∈ 〈 b 〉− such

that Sb ⊆ S. Hence, by definition of
∏

, S ∈ γ−1(Z+), and so, 〈 a 〉+ ⊆ Z+.

The proof of (2.5.3.2) from right to left, where 〈 a 〉+ 6= ∅, and, a is not a ground argument.

Let S ∈ γ−1(Z+) then by definition S is the minimal admissible set that attacks every b ∈ a.

Hence, S is a minimal admissible set that accepts a, and so S ∈ 〈 a 〉+ which in turn means

γ−1(Z+) ⊆ 〈 a 〉+.

The proof of (2.5.3.3) The proof directly follows from observation (2.5.2).

The proof of theorem (2.5.4).

The proof of (2.5.4.1). Let S be a minimal element of either H or H ∩ G. Then S should be

minimal element that for all a ∈ A, there is some Sa ∈ 〈 a 〉+ such that Sa ⊆ S. If so, then,

S ∈ γ−1(
∏
a∈A

γ(〈 a 〉+) ). Conversely, let S ∈ γ−1(
∏
a∈A

γ(〈 a 〉+) ) then by definition, there is no

proper subset of S that accepts every a ∈ A. Hence, S is either a minimal element of H or a

minimal element ofH ∩ G or both.

The proof of (2.5.4.3). The results (2.5.4.3) and (2.5.3.2) are essentially the same result that are

said in different context. Hence, the proof for (2.5.4.3) is the same as the proof for (2.5.3.2).
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The proof of (2.5.4.2) and (2.5.4.4). The proof directly follows from property of operation
∑

that
∑
Ai∈A

Ai = ∅ if and only if every Ai = ∅.

The proof of theorem (2.5.6).

To show (2.5.6), we first introduce a number of notations, and terms. In relation to definition

2.5.5, we represent the members in D and 2D by ~d ∈ D, and ~D ∈ 2D, and, denote the

elements of ~d = (d, T, j) by

b~d :ac = d, b~d :Sc = T, b~d :jc = j.

In the same manner, we denote the corresponding elements for a set ~D ⊆ D by

b ~D :ac = {d | d = b~d :ac, ~d ∈ ~D }, and etc.

We define j as the complement of j in {0, 1} as

j = 1 if and only if j = 0.

From the definition (2.5.5), we see that the recursion in backing function traverses form each

ß(~b) to the next ß(~c) such that ~b = (b, Tb, j), ~c = (c, Tb ∪ {b}, j), c ∈ b. To capture this

relation between~b , ~c, we extend the notation d, defined for arguments d ∈ AR, to the members

~d = (d, T, j) ∈ D.

b ~d c ={(b, T ′, j′) | b ∈ d, d /∈ T, T ′ = T ∪ {d}, j′ = j}.

Next, to map the recursion path, for a given ~d ∈ D, we construct tree-like structures called

γ-structures. A γ-structure, γ~d for a given ~d ∈ D is a directed graph such that

1. the nodes of γ~d belong to D where ~d is the root node,

2. if ~c , b~c :jc = 1 is a node of γ~d then~b ∈ b ~c c is the child node of ~c,

183



3. if~b , b~b :jc = 0 is a node of γ~d where b ~b c 6= ∅, then,~b has one and only one child node

~c ∈ b ~b c in γ~d .

The γ-structure is almost a tree structure, except maybe at the leaf nodes. The reason is that the

child nodes of distinct parents have distinct tracking set b~c :Sc. Hence, no node has more than

one parent except maybe at the leaf nodes by which a cycle is denoted.

For the reference purposes, we call the descendant nodes ~b of a node ~c, the in/direct defender

of ~c in γ~d if b~b : jc = b~c : jc and the in/direct attackers of ~c, otherwise. (note: for a node ~c to

regarded as an in/direct defender or attacker of some node~b in γ~d , ~c needs to be a descendant

node of~b in γ~d .)

We observe that for each ~d ∈ D, we can reconstruct the ß(~d) from its γ-structures γ~d . To do

that, for each γ-structure we define a function ψγ as follows, where ~B denotes the set of child

nodes of ~c.

1. If ~c is a leaf-node of γ then ψγ(~c) = ß(~c),

2. otherwise

(a) if b~c :jc = 1 then ψγ(~c) =
∏
~b∈ ~B

ψγ(~b),

(b) if b~c :jc = 0 then ψγ(~c) =
∑
~b∈ ~B
{b~b :ac} ◦ψγ(~b).

Let ~d be of some ~d ∈ D and Γ~d denote the set of all γ-structures, γ~d , of ~d. Then, by a simple

application of induction we can show that

ß(~d) =
∑
γ~d∈Γ~d

ψγ~d (1)

We observe that the equation (1) holds for ~c that are the leaf nodes the γ-structures γd. Next,

we suppose that the equation (1) holds for all ~b ∈ ~d. If b~d : jc = 0 then (1) holds, straight from

the definition of backing function. Next, to draw ß~d where b~d :jc = 1, we substitute every ß(~b),
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~b ∈ ~d with its equivalent from the equation (1).

ß(~d) =
∏
~b∈~d

ß(~b) =
∏
~b∈~d

∑
γ~b∈Γ~b

ψγ~b


By the distributive property of ◦ over + with then have,

ß(~d) =
∑
Λ∈Λ~d

∏
γ~b∈Λ

ψγ~b


where Λ~d is the set of collections Λ such that for each ~b ∈ ~d there is one and only one γ~b in

Γ . On the other hand, by definition of the γ-structure, any γ~d is simply a collection of γ~b ∈ Λ

with the root node ~d. Hence, we can say,

ß(~d) =
∑
γ~d∈Γ~d

ψγ~d

For a leaf node ~c, the ψ(~c) is a singleton set. Moreover, for a node ~c, if ψγ(~b) of all its child

nodes~b are singleton sets, then, ψγ(~c) is a singleton set, too. Hence, by a simple application of

induction, we can say,

ψγ~d(
~d) = ∅ or ψγ~d(

~d) = {{W}}. (2)

From the definition of ψ-function, We observe that,

if b~d :jc = 1 then ψγ~d = ∅ iff for some leaf-node ~c, ψγ~d(~c) = ∅. (3)

Next, to find the set W , let ~W 1, ~W 0 each denote the set of in/direct defending and in/direct

attacking nodes of ~d in γ~d , then,

if ψγ(~d) 6= ∅ then W − {?} = {b ~W :ac}, where

~W = ~W 1 if b~d :jc = 1, and, ~W = ~W 0 otherwise. (4)
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Next, in order to find the minimal ψγ~d(
~d), we define the class of ΓM

~d
in Γ~d. The class ΓM

~d
is the

set of all γM~d such that every node ~c , b~c :jc = 1 in γM~d is the unique child of some parent in γM~d ,

unless it is ~d. (To characterize γM~d we employed a variation of the notion critical defender.) We

observe that, for each γ~d there is some γM~d in Γ~d such that γM~d is a subgraph of γ~d. Moreover, for

each γ~d and its corresponding γM~d , if γ~d 6= ∅ then ψγM
~d
(~d) ⊆ ψγ~d(

~d). Hence, following theorem

(.0.1), the reduction properties for
∑

, we can say,

ß(~d) =
∑

γ~d∈Γ
M
~d

ψγ~d (5)

The proof of (2.5.6.1) directly follows from the fact that the tracking set T in ß(d, T, j) is

monotonically increasing with the the supremum AR.

To prove (2.5.6.2.1), we need to show,

〈 a 〉+ = {S − {?} | S ∈ ß(a,∅, 1)}. (6)

〈 a 〉− = {S − {?} | S ∈ ß(a,∅, 0)}. (7)

The proof of (7) directly follows from (6). We first show (6). The trivial case is when a is a

ground argument for which by definition ß(a,∅, 0) = {∅}. Hence, S ∈ ß(a,∅, 0) if and only

if S = ∅, where S is the minimal set that accepts a.

Next, we proceed with the non-trivial case where a 6= ∅. Let ~a = (a,∅, 1). To show, if

S ∈ 〈 a 〉+ then S ∈ ß(~a), for every S ∈ 〈 a 〉+ we construct a γ-structure for ~a, denoted by γS ,

such that

if S ∈ 〈 a 〉+ then S = W − {?}, W = ψγS(~a) ∈ ß(~a). (8)

In order to construct γS , we define a function µ from Z =
⋃
c∈R c to S where R = S ∪ {a}.

Since, S ∈ 〈 a 〉+, there exists such function µ where by definition for every b ∈ Z there is only

one µ(b) ∈ S. We construct γS as follows. Let ~a be the root node. If ~c = (c, Tc, 1) is a node of
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γS then ~b = (b, Tb ∪ {c}, 0), b ∈ (c) is a child node of ~c in γS . If (b, Tb, 0) is a node of γS then

(µ(b), Tb∪{b}, 1 is the child node of~b in γS . It is easy to check that γS is a minimal γ-structure

for ~a. Hence, by (17), (18) we have S = µ(R) = W − {?} = ψγS(~a) ∈ ß(~a).

We next show that the converse of (19) holds as well, that is,

if S ∈ ß(~a) then S − {?} ∈ 〈 a 〉+. (9)

If S ∈ ß(~a) then we know that there is a γ-structure, γM~a , where S = ψγM
~a
(~a). By result (3), if

W ∈ ψγ~a , then, for all leaf-nodes ~c of γM~a , ß(~c) 6= ∅. Thus, for every in/direct defending node

~d of ~a in γM~a , d = b~d :ac is accepted by b ~W :ac where b ~W :ac is the set of in/direct defending

nodes of ~a in γM~a . Hence, S ∈ ß(~a) is an admissible set that accepts a. Moreover, since any

S ∈ ß(~a) is a minimal element of ß(~a), S is a minimal admissible set that accepts a. If S is not

minimal then there is some S ′ ∈ 〈 a 〉+, S ′ ⊂ S where by (19) S ′ ∈ ß(~a), contradicting that S is

the minimal element of ß(~a). We can therefore conclude that the result (21) holds. The results

(19), (21) conclude the proof of (2.5.6.2.1).

We next show that the second claim of (2.5.6.2) holds, that is if S ∈ ß(~a) and ? ∈ S then

W = S − {?} is not a grounded backing of a.

The proof is by contradiction. Let ? ∈ S, S ∈ ß(~a),W = S − {?} and W be a grounded

admissible set. For W we construct an argumentation framework AFW = 〈ARW , ATTW 〉

where ARW = W ∪W and ATTW is selected as follows.

If W is a grounded admissible set then by lemma (2.3.6) we can define a strict partial order ≺

on W such that d ≺ c if d ∈ θ̂ i
(∅, S), c /∈ θ̂ i and d is an in/direct defender of c.

Next, we define ATTW such that (a, b) ∈ ATTW if and only if (1) a ∈ ARW , b ∈

ARW , (a, b) ∈ ATT , (2) if there is some (c, b) ∈ ATT, c ∈ ARW then a ≺ b, and, (3)

for every in/direct attacker b of a there is only one c ∈ ARW such that (c, b) ∈ ATTW .
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From the definition of AFW , We observe that (1) W is the backing of a in AFW , (2) there are

no attack cycles in AFW , and, (3) we can build a γ-structure, γW , for ~a = (a,∅, 1, a) such

that for every parent-child (~b,~c) in γW , (c, b) ∈ ATTW where c = b~c :ac, b = b~b :ac, and, vice

versa.

Since AFW contains no attack cycles, we have, ψγW = {W}, W ∈ ß(~a). This, however, leads

to a contradiction, because, both W,S ∈ ß(~a) and W ⊂ S. Hence, W cannot be a grounded

admissible set.

Thus far, we proved (2.5.6.1), (2.5.6.2.2) and 〈 a 〉+ = {S − {?} | S ∈ ß(a,∅, 1)}, the first

part of (2.5.6.2.1). To complete the proof of (2.5.6), we are left to show the second part of

(2.5.6.2.1), which is 〈 a 〉− = {S − {?} | S ∈ ß(a,∅, 0)}.

By theorem (2.5.3), we know that,

S ∈ 〈 a 〉− if and only if S ∈
∑
b∈a

{{b}} ◦〈 b 〉+.

By the results shown so far, we also know that,

∑
b∈a

{{b}} ◦〈 b 〉+ = {S − {?} | S ∈
∑
b∈a

{{b}} ◦ ß(b,∅, 1) }.

Hence, if we show that,

∑
b∈a

{{b}} ◦ ß(b,∅, 1) =
∑
b∈a

{{b}} ◦ ß(b, {a}, 1), (10)

then, we can claim the result (7),

〈 a 〉− = {S − {?} | S ∈
∑
b∈a

{{b}} ◦ ß(b,∅, 1) }

= {S − {?} | S ∈
∑
b∈a

{{b}} ◦ ß(b, {a}, 1) }

= {S − {?} | S ∈ ß(a,∅, 0) }.
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We observe that every γ-structure, γ~b∗ , for ~b∗ = (b, {a}, 1) is a subgraph of some γ-structure,

γ~b , for ~b = (b,∅, 1). Let γ~b∗ , be a γ-structure with a leaf node ~a′, b~a′ : ac = a. Since b ∈ a,

there is some γ-structure, γ~b , that is identical to γ~b∗ except that ~a′ in γ~b , now has a leaf child

node ~b′, b~b′ :ac = b. It then follows that,

{{b}} ◦ψγ~b∗ = {{b}} ◦ψγ~b∗ .

Hence, we can say,

∀b ∈ a,

1. {{b}} ◦ ß(b, {a}, 1) ⊆ {{b}} ◦ ß(b,∅, 1),

2. if W ∈ ({{b}} ◦ ß(b,∅, 1)− {{b}} ◦ ß(b, {a}, 1))

then ∃c,∃R, c ∈ a, R ∈ {{c}} ◦ ß(c, {a}, 1)

such that R ∈ G, R ⊆ W. (11)

Following (11), we can then conclude that,

∑
b∈a

{{b}} ◦ ß(b,∅, 1) =
∑
b∈a

{{b}} ◦ ß(b, {a}, 1). (12)

and so, we have completed the proof of theorem (2.5.6).

The proof of observation (2.6.1).

The proof for (2.6.1) directly follows from theorm (2.2.5). Let AF ′, AF ′′ be as defined in

(2.2.5). From one hand, AF does not contain any members of S. On the other hand, ß(a,∅, j)

remains unchanged in all AF ′′ v AF ′. Hence, we can conclude that any S ′ ⊆ S has no impact

on ß(a,∅, j), and therefore, ß(a, S, j) = ß(a,∅, j).

The proof of theorem (2.6.2).

The proof for (2.6.2) and (2.6.1.2), both have the same underlying principle which closely
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resembles the proof of (2.6.1). However, they instead, directly follows from the theorem (2.6.3).

LetAFa be the class of all minimal argumentation frameworksAFS in (2.6.2.1) for all backings

S of the argument a. Let AF a = 〈ARa , ATTa 〉 be the least upper bound sub-argumentation

framework in AF . We observe that AFa is the normal sub-argumentation framework in AF

such that ARa = W ∪W where W =
⋃
R∈S S and S = 〈 a 〉+ ∪ 〈 a 〉−. Hence, AF contains

only the members of backings of a or any argument that attacks those members.

By assumption, for sets S, T , we have S ∩ ARa = ∅ and T ∩ ARa = ∅. Let AF ′ A AFa

and S ′ ⊆ S, T ′ ⊆ T . From one hand, AFa does not contain any members of S or T . On

the other hand, by theorem (2.6.3), ß(a,∅, j) remains unchanged in all AF ′ A AFa. Hence,

we can conclude that any S ′ ⊆ S has no impact on ß(a,∅, j), and therefore, ß(a, S, j) =

ß(a,∅, j). For the same reason, if both ß(a, S, j) = ß(a,∅, j) and ß(a, T, j) = ß(a,∅, j) then

ß(a, S ∪ T, j) = ß(a,∅, j).

The proof of theorem (2.6.3).

The proof of (2.6.3.1). Let S be some backing of a, and, µ : S −→ S some function for S

such that if c = µ(b) then (c, b) ∈ ATT . It can be seen that since S is a backing for a, for

every backing S, there is some function µ, where µ, is an onto function that selects exactly one

attacker in S, for every b ∈ S.

We then construct the argumentation framework AF S = 〈ARS , ATTS 〉 v AF for S, such

that ARS = S ∪ S and (c, b) ∈ ATTS if and only if (c, b) ∈ ATT, c ∈ ARS, b ∈ ARS and if

c ∈ S, b ∈ S then c = µ(b).

The claim is that this AFS is the intended minimal AFS v AF . We observe that for any such

AFi w AFS , for all b in AFi, if b in AFi attacks some d ∈ ARS then by the initial assumption

that S is admissible in AF , there is some c ∈ ARS that c ↪→ b. Hence, S is admissible in all

such AFi.
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To show that AFS is such minimal sub-argumentation framework, we show that for any AF j =

〈ARj , ATTj 〉whereARj ⊂ ARi orATTj ⊂ ATTS , S is not admissible inAFj . By definition

of the function µ, for every attacker b of S, there is only one (c, b) ∈ ATTS . Hence, if S is

admissible in AFj then ATTj ⊂� ATTS .

ARj ⊂ ARS is not possible either. First, since S is a backing of a in AF , then S ⊆ ARj .

Consequently, if ARj ⊂ ARS then there is some b ∈ ARS, b /∈ ARj, b ↪→S. However, if b is

not a member ofAFj then by the definition of sub- argumentation frameworks and the definition

of function µS , no argument in AFj attacks b. But if so, we can then construct an argumentation

framework AFj @ AFk where AFk is the same as AFj , except for b. However, S is no longer

admissible in AFk as there is no c ∈ S that attacks b in AFk. Hence, ARj ⊂� ARS .

Moreover, since S is the set of all in/direct defenders (respectively in/direct attackers) of a in

AFS , S must be the only preferred extension in AFS that accepts (respectively rejects a.

Next, we show that AFS contains no controversial argument. From one hand, any controversial

argument in AFS must be a member of S. On the other hand, no member of S can be contro-

versial for a, otherwise, S will not be a conflict-free set. Hence, AFS contains no controversial

arguments.

The proof of (2.6.3.2). Let AFS be such minimal argumentation framework for which the con-

dition in (2.6.3.2) holds. If S is not a backing for a then there is some backing W of a where

W ⊂ S. For such set W , by( 2.6.3.1), we can construct AFW @ AFS that satisfies the premise

of (2.6.3.2). This, however, is in contradiction with the initial assumption that AFS is such

minimal sub-argumentation framework. Hence, there is no backing W of a where W ⊂ S.

The proof of (2.6.3.3). Let AFS be the set of such minimal sub-argumentation frameworks for

S. It is then easy to see that the normal sub-argumentation framework AFS is the least upper

bound normal sub-argumentation framework in AF for AFS .
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The proof of observation (2.7.2).

The proof directly follows from the definition of a rational argumentation framework.

The proof of observation (2.7.4).

The proof directly follows from the definition of strongly stable argumentation frameworks, and

the fact that the sub-argumentation framework relation is a partial order relations.

The proof of theorem (2.7.5).

The proof of (2.7.5) is straight forward. By theorem (1.3.16) every limited-controversial frame-

work is coherent. On the other hand, if AF is not limited-controversial then we can isolate a

sub-argumentation framework of AF that consists of only attack cycles of odd-length. Hence,

limited-controversial argumentation frameworks identify the class of strongly stable argumen-

tation frameworks.

The proof of observation (2.7.7).

The proof directly follows from the definitions of rational, strongly and normally stable frame-

works, and, the fact that the sub-argumentation framework relation and the normal sub-argumentation

framework relation, both, are partial order relations.

The proof of theorem (2.7.8).

The proof of (2.7.8), from left to right, is straight forward. Let us assume that the framework in

question is normally stable, but, there is some minimal attack cycle, L, of odd length, that does

not contains an attack cycle of even length. Let, AFL = 〈L , ATTL 〉 vNAF . Since, AFL

contains only an attack cycle of odd length, AFL cannot be a stable framework. This, however,

contradicts the assumption that AF is a normally stable framework.

The proof of (2.7.8), from right to left, is by contradiction. Let AF be some argumentation

framework such that, while AF satisfies the condition in (2.7.8), AF has no stable extensions.
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Let A be the set of all arguments in AF that are neither accepted nor attacked by some admis-

sible set, and, the relation � be some order on U such that for any a, b ∈ U , a � b if and only if

a is an in/direct defender or an in/direct attacker of b. Since, U is countable, it must have some

minimal element under �.

Let V be the set of minimal elements in U , and, M the set of all admissible sets in AF . By

assumption, for any a ∈ V , a is neither accepted or attacked by any S ∈ M. Next, for any

a ∈ V , there must be some b ∈ V such that a, b belong to some attack cycle of odd length.

(note: a, b belong to an attack cycle if there are attack sequences, one from a to b, and, the

other from b to a.) Otherwise, either a ⊆ AR − U or there is an even length cycle L such

that L ⊆ (AR − U) ∪ L. In either case, a is either accepted or attacked by some S ∈ M,

contradicting the assumption that a ∈ V . Hence, all a ∈ V belong to some attack cycle of odd

length.

Let AF V = 〈ARV , ATTV 〉 vN AF where ARV = V . We show that AFV has a stable

extension by appealing to the induction principle.

Let a1, a2, · · · , an be some arbitrary enumeration of a ∈ V , and, AFi vNAFV for 1 ≤ i ≤ n

where AF i = 〈ARi , ATTi 〉, AR1 = {a1}, ARi = ARi−1 ∪ {ai}. We want to show that if

AFi−1 is such that for any AF ′i−1, AF
′
i−1 vNAFi−1, AF ′i−1 has some stable extension, then, any

AF ′i , where AF ′i vNAFi, has some stable extension as well.

Let∆ = {E+, E−, ai}whereE+ denotes some stable extension inAFi−1, and, E− = ARi−1−

E+. There are eight possible scenarios, δ, of attack relation between members of ∆ in AFi,

where δ ⊆ ∆×∆. The scenarios δ that do not entail (E+, E−), (E−, E+) are not possible. Of

the remaining scenarios,

if ai ↪→� E+ or E+ ↪→ ai, then, E+ is a stable extension of AFi , (13)

if ai ↪→E+ and ARi−1 ↪→� ai, then, AFi has some stable extension. (14)
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The result (13) is self evident. To show (14), let W = ARi−1 − {a | ai ↪→� a}, and, AFW vN

AFi−1, where AFW = 〈ARW , ATTW 〉, ARW = W . By assumption, AFW has some stable

extension E+
W , by which, E+

W ∪ {ai} is a stable extension in AFi. Only two possible scenarios

remain.

E+ ↪→� ai, E
− ↪→ ai, ai ↪→E+, ai ↪→� E−. (15)

E+ ↪→� ai, E
− ↪→ ai, ai ↪→E+, ai ↪→E−. (16)

The scenario (16) is similar to the scenario (15). Hence, we proceed with the scenario (15),

showing that, AFi in (15) has some stable extension.

Let c, b denote the elements c ∈ E+, b ∈ E− for which b ↪→ ai, ai ↪→ c. If b belongs to some

stable extension of AFi−1 or c ↪→ ai, then, by (13), AFi has some stable extension, and, our

intended objective is reached. If that is not the case, then,

neither any b belongs to some stable extension of AFi−1, nor, any c ↪→ ai. (17)

Next, letA denote the set of all admissible sets in AFi−1, and, T be the maximum element ofA

for which c /∈ T . We observe that the admissibility of T is independent of c. Hence, by lemma

(.0.2),

T is admissible in AFi. (18)

Next, let R = {a | a ∈ ARi, a /∈ T, T ↪→� a} ∪ {ai}, and, C denote the class of attack cycles,

C, of odd length in R, characterized by some attack sequence, π, π = (c, x1, · · · , xm, ai, c),

xj ∈ R, 1 ≤ j ≤ m, for which π has no repeating member except c. Next, let AFR =

〈ARR , ATTR 〉, ARR = R, and, AFW = 〈ARW , ATTW 〉, ARW =
⋃
C∈C C be the normal

sub-argumentation frameworks of AFi. Either, AFC has some stable extension, or, not.

Let EW be the stable extension of AFW . From EW , we then construct W ∗ and AFW ∗ =
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〈ARW ∗ , ATTW ∗ 〉, where, AFW ∗ vN AFR, W ∗ = R − (W ∪ W+), W+ = {a | a ∈

R,EW ↪→ a}. By assumption, AFW ∗ has some stable extension, EW ∗ , where, by construc-

tion, neither EW ↪→EW ∗ , nor, EW ∗ ↪→EW . Hence, we can say that ER = EW ∪EW ∗ is a stable

extension in AFR. Moreover, since T ↪→� ER, we can also say that T ∪ER is a stable extension

in AFi. Hence, we can say that,

if AFW has a stable extension then AFi has a stable extension. (19)

Hence, to proceed with the proof by contradiction, we assume thatAFW has no stable extension.

Next, to simplify the matters, for the moment,

we assume that there are only one such b, c, where, c ∈ E+, b ∈ E−. (20)

By assumption, for every C ∈ C, there is some attack cycle of even length LC such that LC ⊂ C

and b, ai, c ∈ L. Any even length attack cycle LC can be partitioned into two (maximal) conflict

free sets L1
C , L

2
C . Without loss of generality, let ai, xm ∈ L1. We observe that, not only, L1

C

defends itself against all its attackers in LC , but also,

L1
C defends itself against all its attackers in C, and, attacks any a ∈ (C − L1

C). (21)

Next, for all members of C, no two L1
C attack another. Because, if there are someC,C ′ ∈ C such

that L1
C ↪→L1

C′ , then, there is some C ′′ ∈ C where C ′′ ⊆ C ∪ C ′, C ′′ 6= C, C ′′ 6= C ′. Hence,

there is some LC′′ for which three is some C ′′′ ∈ C, such that, C ′′′ ⊂ C and L1
C′ ↪→L1

C′′′ ,

or, C ′′′ ⊂ C ′ and L1
C′′′ ↪→L1

C . In either case, the process shall continue, and since C ′′′ is a

monotonically decreasing set, each time, C ′′, C ′′′ result in the existence of a new smaller attack

cycle of odd length. The process halts when either ai ↪→ b or c ↪→ ai. However, this contradicts

the assumption in (15).

Let L1
W be the set union of all such L1

C . L1
W , by (21), defends itself against all its attackers in
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W and attacks any argument in W − L1
W . Hence, we can say that,

L1
W is a stable extension of AFW . (22)

This however contradicts the assumption that AFW has no stable extensions.

Next, we remove the restriction set by the assumption in (20), ad, allow for multiple b, c, where,

c ∈ E+, b ∈ E−. This however has no impact on the arguments made so fas, and therefore,

has no impact on the result (22). One way to visualize this is by extending AFW by arguments

c′, c′′, b′, b′′ where b′ ↪→ b′′, c′ ↪→ c′′ and for all such b, c, b ↪→ b′, c ↪→ c′. Our new b, c now are

b′′, c′′ which are the only b, c with respect to the new extended AFW .

Finally, we show that any AF ′i vNAFi has some stable extension. This result directly follows

from the fact that the enumeration of ARV is done arbitrarily, and, our results are independent

of any particular enumeration of ARV .

The proof of theorem (2.7.9).

Let AF = 〈AR , ATT 〉 be a normally stable argumentation framework and E a preferred

extension in AF . We need to show that E is a stable extension in AF . Let F = {a | a ∈

AR,E ↪→ a}, W = E ∪F , and, V = AR−W . If E is not a stable extension in AF , then, V 6=

∅. Next, let AFE , AFV be the normal sub-argumentation frameworks of AF , constructed from

E, V , i.e., AFE vNAF , AFV vNAF , AFE = 〈ARE , ATTE 〉, AFE = 〈ARE , ATTE 〉,

ARE = E, ARV = V . By assumption, AFV has some stable extension EV where EV 6= ∅. By

assumption, E ↪→� EV , hence, E ∪ EV should be admissible in AF . However, this contradicts

the assumption that E is a preferred extension in AF , because, E ⊂ EV .

The proof of observation (2.7.11).

The proof directly follows from the definition of a compact argumentation framework.
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Lemma .0.2. Let S be an admissible set in some AF = 〈AR , ATT 〉. Then, S remains

admissible in AF ∗, AF ∗ w AF , AF ∗ = 〈AR∗ , ATT ∗ 〉 if for all (a, b) ∈ ATT ∗ − ATT ,

either b /∈ S or S ∩ a 6= ∅ in AF ∗.

The proof of lemma .0.2.

The proof is self evident. We observe that for all a ∈ AR∗, if a ↪→S then S ↪→ a. Hence, S

remains admissible in AF ∗.
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Proofs for chapter 3

The proof of observation (3.2.6).

The reason is obvious. The minimality condition of backings, require that T cannot dispense

with any of its arguments including b. Hence, it must contain some minimal subset that accepts

c. This minimal subset is in turn a backing of b.

The proof of observation (3.2.7).

We observe that if a is not an active argument for any c ∈ b then a /∈ S, a /∈ T , for any c ∈ b,

any S ∈ 〈 c 〉+ and any T ∈ 〈 c 〉−. Hence,by definition of operation ◦,+, a /∈ S, a /∈ T , for any

S ∈ 〈 b 〉+ and any T ∈ 〈 b 〉−.

The proof of lemma (3.2.9).

We observe that if the condition does not hold, then, either for all odd numbers i, or, for all

even numbers i, 〈 ai 〉+ 6= ∅. However, this contradicts the original assumption that the attack

sequence is not active.

The proof of lemma (3.2.10).

If a is an active argument for b, then a belongs to some backing of b. The, by definition, there

is some active attack sequence from b to a.

The proof of observation (3.3.2).

The proof directly follows from definition of intercepts, definition (3.3.1).
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The proof of lemma (3.3.3).

The proof from right to left. By assumption, if 〈S 〉− = ∅ then 〈 b 〉+ = ∅. Hence, there is

some non trivial attack sequence from b to a, namely π0 = (b, a) while all the attack sequences

π from b to a are intercepted. Hence, we can say that a is intercepted for b.

The proof from left to right. If 〈 a 〉+ 6= ∅ then π0 is not intercepted, and, so a is not intercepted

for b, contradicting the original assumption. Hence, let 〈 a 〉+ = ∅. Next if there is no such

S ⊆ b − {a} where 〈S 〉− = ∅ then there is some admissible set that attacks all the attackers

of b. Hence, 〈 b 〉+ 6= ∅ which contradicts the original assumption that 〈 b 〉+ = ∅.

The proof of lemma (3.3.4).

The proof is trivial. We observe that for either case (3.3.4.1) or (3.3.4.2), there is no active

attack sequence from b to a. Hence, a is intercepted for b.

The proof of theorem (3.3.5).

The proof from left to right. Let a ∈ b then by lemma 3.3.3 there must be some S ⊆ b−{a} such

that 〈S 〉− = ∅. Next, let a /∈ b. Now, if there is some d ∈ D such that neither d is intercepted

for b nor a is intercepted for d, then, there is some attack sequence from b to a which is active.

This however contradicts the original assumption that a is intercepted for b.

The proof from right to left is directly followed from lemmas 3.3.3 and 3.3.4.

The proof of observation (3.4.2).

The proof is straight forward. Every admissible set that accepts a, must attack all c ∈ a. Hence,

by the definition of critical argument, defender or attacker, every admissible set that accepts, or

respectively attacks, b, must also attack c.

The proof of observation (3.4.3).

The proof is trivial following from the definition of backings of an argument that for every
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admissible set T that accepts a there is some admissible set S ∈ 〈 a 〉+ that S ⊆ T . Similarly,

for every admissible set T that attacks a there is some admissible set S ∈ 〈 a 〉− that S ⊆ T .

The proof of observation (3.4.4).

The proof is self evident. It follows directly from the definition of
∏

and critical arguments.

The proof of theorem (3.4.6).

We show the proof of 3.4.6 by means of contradiction. A critical defender (resp. attacker)

belong to all positive (resp. negative) backings of an argument. Hence, there is some minimal

set B of negatively critical arguments for the acceptance of a such that for any c ∈ C there is

some T ∈ 〈B 〉+ where c ∈ T . Let B be the set of such minimal sets B.

Now, if the claim of 3.4.6 then for all B ∈ B there is some W ∈ 〈B 〉− where W ∩ C = ∅.

However, if this is the case then there is some S ∈ 〈 a 〉+ such that W ⊆ S, S ∩ C = ∅,

contradicting the initial assumption that for all S ∈ 〈 a 〉+, S ∩ C 6= ∅.

The proof of theorem (3.4.8). The proof of (3.4.8.1), (3.4.8.2) is trivial and directly follows for

the definitions of critical attacker and defender of an argument, and, the partial order over subset

relations. For the proof of (3.4.8.3), (3.4.8.4), if d ∈ b then all positive backing of b must attack

d, and therefore, include a. Hence, a must respectively belong to all admissible sets that accept

or respectively attack c.

The proof of (3.5.2).

The proof is straightforward, resulting from the fact that if the union of two admissible sets is

not a conflict free set, then, the two set must symmetrically attack each other.

The proof of theorem (3.5.3).

The proof is trivial. It directly follows from the definitions of the incompatible arguments and

201



the backings of an argument. In addition, for any A ∈ 22
AR , if S is not conflict free, then,

{S} ◦̇A = ∅.

The proof of observation (3.5.5).

The proof is straightforward. We only show the proof for first part of the observation. The proof

for the second part is identical to the proof for the first part, with a minor adjustment that we

need to replace all occurrences of 〈x 〉+ with 〈x 〉−, and, vice versa.

If 〈 a 〉+ 6= ∅, 〈 b 〉+ 6= ∅ and 〈 a 〉+ ◦̇〈 b 〉+ = ∅, then, by theorem (3.5.3), a, b are positively

incompatible. Moreover, for any S ∈ 〈 a 〉+, and, any T ∈ 〈 b 〉+, the sets S ∪ {a} and T ∪ {b}

are admissible. Then, by observation (3.5.2), either a or S is attacked by some admissible set.

Hence, for both a, b, 〈 a 〉− 6= ∅, 〈 b 〉− 6= ∅.

The proof of observation (3.5.6).

The proof is trivial. We observe that if the conditions of definition (3.5.1) hold for the setsM,N

of definition (3.5.1), those conditions will hold for any superset of M,N as well.

The proof of Observation (3.5.7).

Obviously, if for some b ∈ a, 〈 b 〉− = ∅, then, 〈 a 〉+ =
∏̇
b∈a
〈 b 〉− = ∅. Similarly, if there

is some subset of a that is negatively incompatible, then, by theorem (3.5.3), again, 〈 a 〉+ =∏̇
b∈a
〈 b 〉− = ∅.

The proof of lemma (3.5.8).

The proof of (3.5.8.1). If two admissible sets T1, T2 attack each other, then there are some

admissible subsets of each admissible set, S1 ⊆ T1, S2 ⊆ T2 that attack ech other, i.e., S1 ↪→S2

and S2 ↪→S1. Hence, for every a1 ∈ S1 , a2 ∈ S2, there is some attack sequence π1 from a1

to a2 and some attack sequence π2 from a2 to a1 . By the virtue of the assumption that every
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argument on both π1 , π2 is admisible, every argument in either attack sequence has a positive

backings. As a result, both attack sequences are active.

The proof of (3.5.8.2). If two arguments a, b are incompatible then for any pair of their backings,

S1 ∈ 〈 a 〉+ and S2 ∈ 〈 b 〉+, we have S1 ↪→S2, S2 ↪→S1. Following the first part of this lemma,

we can the say, there are active arguments c ∈ S1 for a and d ∈ S2 for b such that the path

between c and d is not intercepted.

The proof of observation (3.5.9).

The proof for the first part of observation. Let S = {a, c}. By definition, if b is a critical

defender of c, then, by assumption, 〈 c 〉+ 6= ∅, and, b ∈ R, for every R ∈ 〈 c 〉+. Therefore,

a, b ∈ T , for every T ∈ {S} ◦̇〈 c 〉+, and, since a ↪→ b, no T will be conflict free. The proof

for the second part of observation is identical to the proof for the first part, except we need to

replace 〈 c 〉+ with 〈 c 〉−.

The proof of lemma (3.5.10).

The proof is similar to the proof of lemma (3.5.9). Let S = {a, c}. For the first part of lemma, by

definition, if b is a critical defender of c, then, by assumption, 〈 c 〉+ 6= ∅, and, b ∈ R, for every

R ∈ 〈 c 〉+. Therefore, a, b ∈ T , for every T ∈ {S} ◦̇〈 c 〉+. Next, since a and b are positively

incompatible, no admissible set T can accept both a and b, and, therefore, {S} ◦̇〈 c 〉+ = ∅.

The proof for the second part of lemma is identical to the proof for the first part, except we need

to replace 〈 c 〉+ with 〈 c 〉−.

The proof of theorem (3.5.11).

Since, b2 is positively incompatible with b1, a critical defender of a1, then, by lemma (3.5.10),

a1, b2 are positively incompatible arguments. Next, since a1, b2 are positively incompatible, and,

b2 is a critical defender of a2, by lemma (3.5.10), a1, a2 are positively incompatible. The proof
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of the second part of theorem is identical to the proof for the first half, with the difference that

we need to replace all the instances positively incompatible with negatively incompatible.

The proof of lemma (3.5.12).

The proof is straightforward. If an argument is positively incompatible with an argument, it

then cannot be in any admissible set that accepts the argument which also includes the positive

backings of the argument.

The proof of observation (3.6.2).

The proof is simple. By assumption, c is a critical for b. Thus, for any admissible set T , if b ∈ T

then there is some admissible set W ⊂ T , W ↪→ a where W = R ∪ {c}, R ∈ 〈 c 〉+. Hence, T

cannot be a negative backing for a.

The proof of lemma (3.6.3).

The proof is similar to the proof for (3.6.2). The proof from right to left. By assumption, for

every T ∈ 〈 b 〉+, S ∩ T 6= ∅, so, for every T there is some d ∈ a, and, some R ∈ 〈 d 〉+ such

that R ∪ {d} ⊆ T . Hence, T cannot be a negative backing for a.

The proof from left to right. Suppose, b is negatively redundant for a, and, there is no such set

S ⊂ a such that for every T ∈ 〈 b 〉+, S ∩ T 6= ∅. If so, then, there is some R ∈ 〈 b 〉+ where,

for every c ∈ a−{b} and for every W ∈ 〈 c 〉+, R ⊂� W . Hence, R∪ {b} is a negative backing

for a which contradicts the original premise.

The proof of observation (3.6.4).

The proof is by contradiction. By assumption, c is a critical for a. Thus, for any S ∈ 〈 a 〉+, if

b ∈ S then there is some admissible set T = S − {b} that accepts a. Because, since c ∈ S,

then T attacks all the arguments that S attacks, and so, accepts all the arguments that S accepts.

Hence, S cannot be a positive backing for a.
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The proof of lemma (3.6.5).

Let, P denote the set of all arguments c where for any π ∈ Π , there is some c on π such that

D ↪→ c, or, d ↪→ c for every d ∈ C.

The proof from right to left is by contradiction. For any T ∈ 〈Y 〉+, let b ∈ T and Q = P ∩ T ,

then, T can be partitioned into Tb, TQ where Tb accepts Q and b ∈ Tb. By assumption in the

antecedent, for any such Q, for any arbitrary d ∈ C, there is some V ⊆ D ∪ {d} such that V

accepts Q.

Next, sinceQ is on every π ∈ Π , AF ∗, there is a subset TQ of T such that if an admissible setR

acceptsQ thenR∪TQ is admissible. Hence, there is someR ∈ 〈V 〉+ such that Z∪TQ ∈ 〈Y 〉−

where Z = R ∪ V .

Thus, we can conclude, for any T ∈ 〈Y 〉−, where T = Tb ∪ TQ, b ∈ Tb, there is some Z,

independent of the choice of d ∈ C, such that Z ∪ TQ ∈ 〈Y 〉−.

Now, if there is some Sb ∈ 〈 a 〉+ where b ∈ Sb, Sb must be in the form of Sb = Tb ∪ TQ ∪ TW

where TW ∈ 〈W 〉−. However, by the results so far, for any such Sb, there is some SZ ∈ 〈 a 〉+

where SZ = Z ∪ TQ ∪ TW .

Next, since d ∈ C is chosen arbitrarily, and, by assumption C is a positive critical set and D is

the set of critical defenders of b, we then have Z ⊆ TW for which SZ = TQ ∪ TW .

Thus, we can say, for any Sb there is some SZ such that SZ ⊂ Sb. This, however, leads to a

contradiction.

The proof from left to right is also by contradiction. Let us suppose that b is a positively

redundant argument for a while the conditions in the consequent of lemma are not fully met.

That is, there is some positively active attack sequence π for which no argument c on π is either

attacked by D, or, is attacked by all d ∈ C. Let y ∈ Y , be the corresponding y for this attack

sequence π.
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If we follow the construction above, for this y ∈ Y , there is some T ∈ 〈 y 〉−, for which we can

make sure that there is some SZ such that SZ ⊂ ST . Hence, ST accepts a while no subset of ST

accepts a. Hence, ST must be a positive backing for a. However, since b ∈ ST , w then have a

contradiction where by assumption b is positively redundant for a.

The proof of theorem (3.6.7).

The proof for (3.6.7.1a). If for all c ∈ C, b is an active defender for c and c is positively

redundant for a, then, there is some active attack sequence from a to b. Next, since, for all

c ∈ C and all T ∈ 〈 a 〉+, c /∈ T , and, there is no other active attack sequence from a to b that

does not pass through some c ∈ C, we can conclude that b /∈ T for all T ∈ 〈 a 〉+. Otherwise,

we will have some c ∈ C, for which c ∈ T , for some T ∈ 〈 a 〉+ which contradicts the original

premise. The proof for (3.6.7.1b) is the same as the proof for (3.6.7.1a) with the difference that

every instance of positively redundant should be changed with negatively redundant.

The proof for (3.6.7.2a). If for all c ∈ C, c is an active defender for a and b is positively

redundant for c, then, there is some active attack sequence from a to b. Next, since, for all

c ∈ C and all T ∈ 〈 c 〉+, b /∈ T , and, there is no other active attack sequence from a to b that

does not pass through some c ∈ C, we can conclude that b /∈ T for all T ∈ 〈 a 〉+. Otherwise,

we will have some c ∈ C, for which b ∈ T , for some T ∈ 〈 c 〉+, and, since there is some

R ∈ 〈 a 〉+ where c ∈ R, then, there is some W ∈ 〈 a 〉+ that b ∈ W . This, however, contradicts

the original premise. The proof for (3.6.7.2b) is almost identical to the proof for The proof for

(3.6.7.2a).

The proof of theorem (3.6.8).

The proof of (3.6.8.1).

The proof of (3.6.8.2). If Y 6= then by lemma (3.6.5) b is positively redundant for a. Otherwise,

let Y = ∅.
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The proof from right to left. We observe that W 6= ∅. Because, otherwise, there is no positive

attack sequence from a to be, and, so b cannot be positively redundant for a. Next, if there

is some w ∈ W for which b is not negatively redundant, then, Y 6= ∅ which contradicts the

original premise.

The proof from left to right. By definition if b is negatively redundant for all w ∈ W , then, for

all w ∈ W , there is no T ∈ 〈w 〉− where b ∈ T . Hence, b /∈ S for all S ∈ 〈 a 〉+ which means b

is positively redundant for a.

The proof of lemma (3.6.9).

The proof of (3.6.9.1). Let π be a positively active attack sequence. Then, by definition b is

neither intercepted nor is positively incompatible with a. If b is not an active defender for a,

then, b is by definition positively redundant for a. Conversely, if b is an active defender or

positively redundant for a, then, by definition, π is a positively active attack sequence.

The proof of (3.6.9.2) and (3.6.9.3) are similar to the proof of (3.6.9.1).

The proof of lemma (3.7.2).

The proof from right to left is self evident. Hence, we only present the proof from left to

right. If A3 6= A1 ◦A2 then there is some S3 ∈ A3 such that for all S1 ∈ A1, S2 ∈ A2,

S3 − (S1 ∪ S2) 6= ∅. However, this contradicts the original assumption about A31,A32.

The proof of lemma (3.7.5).

The proof of (3.7.5.1). Let AF1, AF2 and etc., be generally referred by AF i = 〈ARi , ATTi 〉.

If no a1 ∈ AR1 is an active argument for any a2 ∈ AR2 in AF , then, for any arguments

a2 ∈ AR2, all the backings S of a2 are S ⊆ AR23. Consequently, for all arguments in AR2,

they have the same backings in AF23 as they have in AF . Hence, w can say that A∗2 = A∗23.

The same can be said with respect to the arguments in AF1, for which we then have A∗1 = A∗13.
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The proof of (3.7.5.2). The proof is by contradiction. If the claim of does not hold then, without

loss of generality, there is some a1 ∈ AR1 that is an active argument for some a2 ∈ AR2. If

that is the case then there are some AF ′1, AF
′
2 in which a1 is a critical argument argument for a2

such that the admissibility of a2 changes depending on whether or not a1 is in AF ′ = AF ′1 +N

AF ′2+
NAF3. Under this condition, it is then easy to see that the original premise thatA∗′2 = A∗′23

is violated where A∗′2 = {S | S = T ∩ AR′2, T ∈ A′}, A∗
′

23 = {S | S = T ∩ AR′2, T ∈ A′23}.

Hence, If no a1 ∈ AR1 can be an active argument for any a2 ∈ AR2 in AF , and vice versa.

The proof of observation (3.7.7).

The proof directly follows from observation (3.3.2) and the definition (3.7.6).

The proof of lemma (3.7.8).

The proof follows naturally from lemma (3.7.5) and the definition (3.7.6) of “disjoint by inter-

cept”.

The proof of lemma (3.7.11).

The proof is trivial. If any two sub-frameworks are intersecting, then, they cannot be disjointed

by intercept. Hence, they must be non-intersecting.

The proof of theorem(3.7.12).

If two sub-framework are disjointed by intercept then no argument in one sub-framework is

an active argument for any argument another sub-framework. Hence, all the backings of all

the arguments in a sub-framework is decided by the arguments in that framework, and, so the

admissible sets in all the sub-frameworks stand on their own. Therefore, A =
∏

AF ′∈AF
A′.

The proof of theorem(3.7.14).

The proof of this theorem directly follows from the proof of theorem (3.7.12). We observe that
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in all sub-frameworks AF ◦, all sub-frameworks in ÂF ∪ {AF ∗′} are disjointed by intercept.

By theorem (3.7.12), we then have, A◦ =
∏

AF ′∈ÂF
A′ ◦̇ A∗′ = Â ◦̇A∗′ .

The proof of theorem(3.7.15).

The proof is by the induction principle. Let AF ′ = {AF1, AF2, · · · } be some enumeration

of AF ′, for which the corresponding sub-frameworks AF ∗i are constructed such that AF ∗1 =

AF1 +N ÂF , and, AF ∗i+1 = AF ∗i +N AFi+1.

We need to show that for each AF ∗i+1, the set of admissible sets A∗i+1,A∗i ,Ai in their respective

sub-frameworks AF ∗i+1, AF
∗
i , AFi form A∗i+1 ⊆ A∗i ◦̇ Ai+1.

Following the first original premises that any two distinct AF ′, AF ′′ in AF are disjointed by

intercept, and, the definitions of disjointed by intercept frameworks and intercepted attack se-

quences, we can conclude that, all S ∈ Â remain admissible in any AF ∗i . The reason is, all the

attacks from arguments inAF ∗i to arguments in ÂF are to the arguments a for which 〈 a 〉+ = ∅,

〈 a 〉− 6= ∅. Hence, the admissibility of no § ∈ Â is changed. (res 1)

Next, following the second original premise that any two distinct AF ′, AF ′′ in AF∗ are dis-

jointed by intercept by some set of arguments in ÂF , and, the definitions of disjointed by

intercept frameworks and intercepted attack sequences, we can see that, all the attacks from

arguments in AF ∗i to arguments in AFi+1 are by the arguments a in ÂF for which 〈 a 〉+ = ∅,

〈 a 〉− 6= ∅. Hence, an argument b in AFi+1 that is defended against all its attackers by some

admissible set in AFi+1, is still defended against all its attackers in AF ∗i+1. (res 2)

Following the results (res 1), (res 2) above, we can then conclude, for every AF ∗i , AF ∗i+1, the

relation A∗i+1 ⊆ A∗i ◦̇ Ai+1 holds.

The proof of lemma (3.7.18).

The proof of (3.7.18.1). The proof is trivial, if AF ′ ∈ AF is not polarized then some attack
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relation can be removed where the resulting AF ′ is still in AF. This however contradicts the

original assumption that AF is the minimal element of AF.

The proof of (3.7.18.2) from right to left. Let AF ′′ @ AF ′, and, AF ′′′ = AF ′ −N AF ′′.

By assumption that AF ′ ∈ AF is polarized, AF ′′′ cannot be disjointed by intercept for AF ′′.

Hence, AF ′′ must only be missing some attack relations from AF ′. If so, then AF ′ cannot be

the element of AF′. Because, since, AF ′ ∈ AF is polarized, the removal of any attack relation

may affect the admissibility of argument in some sub-framework of AF ′. Hence, AF must be

the minimum element of AF′.

The proof of (3.7.18) from left to right. IfAF is the minimum element of AF′ then no argument

or attack relation can be removed from any AF ′ ∈ AF . Hence, AF ′

The proof of theorem (3.7.19).

The proof is simple. By definition ofAF , all AF ′ ∈ AF are disjointed by intercept where their

normal sum,
∑N is AF . Again, by the definition, all AF ′ ∈ AF contain no intercepted attack

sequences, and thus, they will be biased sub-frameworks of AF .
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Proofs for chapter 4

The proof of theorem (4.3.3).

Prooof of (4.3.3.1). Td,Ud,Fd are mutually exclusive, therefore Hd(A) has one and only one

value.

Proof of (4.3.3.2) from left to right. If ∃A ∈ Fd thatA is a subset ofB ∈ Td then not allA ∈ Fd

are conclusive defeaters of d which is contradictory to the assumption.

Proof of (4.3.3.2) from right to left. If no A ∈ Fd is a subset of B ∈ Td then for ∀A ∈ Fd, A is

a conclusive defeater of d making d a default rule.

Proof of (4.3.3.3.a). The members in Fd create a partial order w.r.t set inclusion. Since every

A ∈ Fk
d is a minimal set in Fd then no proper subset of A is in Fd. Hence, if A is not a singleton

then all its members should belong to some B ∈ Td. Otherwise, it contradicts the assumption.

Proof of (4.3.3.3.b). Accordingly, if Hd(X) = 0 then ∃C ∈ Fd such that C ⊆ X otherwise

Hd(X) 6= 0. So, there is A ∈ Fk
d ssuch that A ⊆ C. Conversely, if there is A ∈ Fk

d such that

A ⊆ X then by definition of the conclusive defeater Hd(X) = 0.

The proof of observation (4.3.10).

The function mind∈D(Hd(X)) has one and only one value for a given argument. Next, the

definition of conclusive defeat implies that defeat is context independent so mind∈D (Hd(X)) =

0 is context independent.
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The proof of theorem (4.4.2).

Proof of (4.4.2.1). By definition of defeat relationship, ∃A1 ⊆ A such that given defeat condi-

tions are satisfied (for outright or provisional defeat). Now, since A1 is also subset of A′, the

same defeat conditions are still satisfied in relation to A′.

Proof of (4.4.2.2). By definition of conclusive defeat scenario, ∀A′′ and Ac ⊆ A′′ ⊆ A then

∃d ∈ DÅ such that Hd(Cn(A
′′)) = 0. Moreover, since Å @ Å

′
we have d ∈ DÅ′ . Hence,

HÅ′(A′′) = 0 or Ac is a conclusive defeat scenario for Å
′
in A.

Proof of (4.4.2.3). Let Ac be a defeater of Å in A then by definition (4.4.1), Cn(Ac) are

defeaters of a rule d ∈ DÅ and by the second part of this theorem, F ⊆ Cn(Ac) where F ∈ Fk
d.

Therefore,Ac is a TConclusive defeat scenario (observation (4.3.10) and definition TConclusive

defeat scenario). Next, if Ac is not the minimal set where F ⊆ Cn(Ac) then there is A′c ⊂ Ac

such that F ⊆ Cn(A′c). This means HÅ(A′ \ {Åj}) = 0 contradicting the defeat condition in

definiton (4.4.1.1) (A′ is theA′ in definition (4.4.1.1) and Åj ∈ (Ac \A′c). For the same reason

(i.e. Ac being the maximal set in definition (4.4.1.1)) the context of defeat isA′ \Ac = ∅, and,

if F ∈ Fk
d is singleton then Ac will be singleton.

Proof of (4.4.2.4). Cn(Ac) defeating a rule d implies HÅ(A′′) = 0 for any A′′ such that

Ac ⊆ A′′.

The proof of theorem (4.4.5).

IfD is only comprised of indefeasible or default rules then either arguments have no defeaters or

any argument setAc that defeats an argument inA is its conclusive defeater (theorem (4.4.2.3)).

Furthermore, any attack by a conclusive defeater cannot be reinstated by context (HÅ(A′) where

Ac ⊆ A′ is always zero).

The proof of theorem (4.5.3).

The Status function E is sum of three partial functions with exclusive domains. Moreover, from
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definition of Translation, every {Å} is mapped to one and only one argument α ∈ AR of AF .

Hence, every argument has one and only one status. The status function S is a “max function”,

therefore, every literal also has one and only one status.

The proof of theorem (4.5.6).

Proof of (4.5.6.1). If S(a) = 1 and S(¬a) = 1 then there are two justified arguments Å1, Å2 ∈ A

where a ∈ Cn(A1) and ¬a ∈ Cn(A2). Thus, their mapped arguments α1, α2 in Dung’s AF

belong to all preferred extensions contradicting the initial assumption.

Proof of (4.5.6.2.a). If AT is not consistent then there are two arguments Å1, Å2 ∈ A such that

a ∈ Cn(Å1) and ¬a ∈ Cn(Å2). Hence, there are two rules d1, d2 ∈ D such that hd(d1) = a

and hd(d2) = ¬a. Now, if one of the d1 or d2 is a normal rule then the corresponding argu-

ment should have been conclusively defeated by the other argument and so not to be accepted.

Therefore, d1 and d2 should both be indefeasible rules. But, if d1 and d2 are both indefeasible

rules then the induced argumentation theory AT ′ from (bd(d1) ∪ bd(d2), {d1, d2}) would be

inconsistent which is contradictory to the initial assumption.

Proof of (4.5.6.2.b). According to theorem (4.4.5), AT is context insensitive, therefore, rules

1(c), 2(a)(ii), 2(a)(iii), 2(b) of translation are not applied. Hence, the mapping M1 and M2 are

one-to-one and consequently bijective mappings. Now, if all members of Fk
d are singletons then

all Ac in AT are singletons (theorem (4.4.2.3)). Thus, by rule 1(b) of translation, arguments

in AF = 〈AR , ATT 〉 are bijective mappings of singleton argument sets in AT. Hence, M1

acts like a bijective function from A to AR. Moreover, since all attack relations in ATT are

bijective mappings from the domain {Z | Z is a singleton set} × {Z | Z is a singleton set}

(all Ac are singletons), M2 acts like a bijective function from R∗ to ATT . Hence, 〈A, R∗〉 and

〈AR,ATT 〉 are two isomorphic structures.
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