Chapter 1

Introduction

There has been great interest in the Internet society in the past few years in the
area of group communication. This interest stems from the emergence of new sorts of
applications that are based on group interaction or collaborative work among multiple
users distributed over various locations. There has also been a remarkable increase in
real-time streaming applications which have special quality of service requirements.

Examples of such emerging distributed, real-time and group-based applications
are online video conferences, video/audio streaming, shared white-board, multime-
dia teleconferencing, remote consultation/diagnosis systems for medical application,
e-learning, pay-TV, push media, and others.

These distributed and collaborative applications require scalable and efficient in-
formation exchange among the group members, and have fairly low latency message
delivery of both small and large messages.

The traditional mode of communication used over any network transportation is
unicast communication, which establishes a point-to-point link between two peers.
The unicast communication mode for applications based on group interactions would
be neither a scalable nor an efficient option. For example, for a group communication
consisting of n users, n X n unicast communication links would need to be established.
Therefore, there would be a considerable waste in network bandwidth and resources.

Because unicast failed to provide an efficient communication tool for group commu-
nications, there was a great need to establish a sophisticated infrastructure for group
communication over a wide area network such as the Internet that would be capable of
transporting data in a low bandwidth, with high speed, using an efficient mechanism,

and in a scalable manner.
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1.1 Multicast

In his pioneer work, Deering [47] established a framework for group communication
in distributed systems. More precisely, he founded and developed a group communi-
cation architecture, known as multicast, in which a source can send data to a group of
recipients in an efficient way.

Multicasting is a significant tool in a communications network because it enables
applications to scale, thereby offering service to many users without overloading the
network and, at the same time, preserving resources. Multicast became an important
mode of communication as well as a good platform for building group-oriented service.

The main problem in building a multicast architecture was how to deliver a message
to a group of recipients on a large-scale, dispersed network such as the Internet. In
network terminology, how would it be possible to build an efficient routing protocol
which could manage and deliver messages to distributed hosts in an efficient, scalable
and reliable way? The mechanism used by multicast is to send one copy of the message
(by the host); the multicast router would then duplicate the message to the group of
recipients using multicast routing protocol.

Multicast routing requires the building of a distribution tree in which multicast
data can be transmitted to the group members at the leaf of the distribution tree.
The multicast distribution tree is shaped using a multicast routing tree such as CBT,
DVMRP, MOSPF, PIM-SM, or PIM-DM. Any host can join a multicast group by using
group membership protocol such as IGMP which directs their subnet router to join a
multicast distribution tree. This allows IP multicast to scale to a large number of
participant hosts.

Multicast is not usually a one-direction operation or sender-to-receivers mode. Of-
ten, receivers send their acknowledgments back to the sender. This reverse direction
communication of multicast is called concast. Concast is a many-to-one communication
service, sometimes referred to as a Report-in style application, and it usually takes the
shape of receivers-to-sender.

There are also other communication modes which are multicast-related such as
anycast. Anycast communication allows a source to transmit a message to a single
destination node, out of a group of destination nodes. It is a sort of communication
model related to redirecting the client to the “best” server among multiple content

servers. The best is measured as the best among a combination of network criteria.
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1.2 Multicast Security

In multicast communication, potential security threats are similar to those encountered
in unicast transmissions. However, because of the inherent broad scope of a multicast
session, the potential for attacks may be greater than for unicast traffic. The nature
of multicast presents new problems that cannot be effectively dealt with using trivial
extensions of techniques for secure unicast. For example, in setting up a secure point-
to-point communication channel, one knows the identity of the part at the other end.
In a multicast session, it is typically not guaranteed to know who are present at a
session at a time.

Another side of the problem is group-oriented secure data exchange. Although using
O(n?) end-to-end secure channels can provide secure group communication between n
peers, such architecture loses all the advantage a multicast facility has over unicast.

Furthermore, the number of communication links traversed by wide-area network
multicast can potentially be greater than compared with a single unicast, where the
communication path is a collection of links and nodes.

Also, in group-oriented communication, an additional mechanism is needed to reli-
ably establish the identity of the originator of the message. Moreover, group-oriented
authentication and key distribution is not necessarily O(n?) pairwise authentication
because of the many possible interpretations of the meaning of belonging to a mul-
ticast session. Therefore, new protocols are needed to perform security functions to
control session organization and management, secure broadcast, and user access to the
network.

What is needed actually is a trusted multicast architecture to handle these security
issues in a coherent manner and to protect network services and applications. Apart
from satisfying the security requirement mentioned earlier, a desirable design should
also be compatible with existing network protocols, be scalable to global Internet, and
be transparent to the other network layers. The architecture also has to be flexible to
support a variety of policies.

In order to counter common threats to multicast communication, we can apply
several of the fundamental security services, including authentication, integrity, and
confidentiality. A secure multicast session may use all or a combination of these services
to achieve the desired security level. One of the main security services is authentication.

Authentication services provide assurance of participant host identity. An authen-

tication mechanism can be applied to several aspects of multicast communications.
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Above all, authentication is an essential part in providing access control in keying ma-
terial. Also, to identify the source of multicast traffic, an authentication mechanism can
be applied by the traffic source. Authentication may serve further to establish group
membership by identifying group members along with their data which are destined for
the group members. Protocols such as IP Authentication Header (AH) [88] can pro-
vide authentication for IP datagrams, and they may be used for host authentication.
Authentication is also an essential part of any key distribution protocol. Because of
the sensitive nature of the keying material, the authentication mechanism can identify
the source of the key material and provide a means to counter various masquerade
and replay attacks that may be launched against a secure multicast session. Applying
an authentication mechanism to transmitted multicast group data can also provide a
strong level of integrity protection. These mechanisms provide not only a level of as-
surance to receivers on data origination, but they may also provide indication of data

corruption.

1.3 Motivation and Methodology

A typical and complete multicast scenario starts when a host tries to join a multicast
environment using a membership protocol and becomes a member of a group. Based
on a successful membership, the host is able to send or receive messages to or from
other members of the group. When a sender sends a message to a group of recipients,
the operation takes the form of one-to-many communication. Consequently, receivers
would send their acknowledgments back to the sender in many-to-one mode. Traffic
may possibly pass through intermediate nodes in the network, between the sender and
receiver as transit flows.

Since, in multicast, a group of participants are involved in the communication,
source authentication is a major security service as a receiver of a message would not
be able to know whether the message is sent from a legitimate sender in the group.

Our goal in this work is to provide a sound solution to the problem of authentication
in multicast communication. We aim to provide an ideal authenticated multicast envi-
ronment. Existing protocols for multicast offer only partial solutions. Our methodology
is to study all the communication operations involved in multicast communication and
propose cryptographic solutions for the authentication problem for all the communica-
tion operations. This is unlike other studies in this field, which have only focused on

the sender-receivers side.
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Figure 1.1: Group-based communication modes

We have divided the authentication process in a multicast environment into the

following stages:
1. one-to-one (joining)
2. one-to-many (broadcasting)
3. many-to-one (concasting)
4. intermediate (transit)

Our approach is to find a new, innovative and efficient authentication scheme(s) at
each stage. Each stage has a different communication mode; therefore, designing an

authentication scheme should take this issue into consideration.

At the beginning, a host tries to join a multicast group. This is a very important
stage, where the group manager should not allow a non-trusted host to join the group.
Joining may be based on a cryptosystem such as public or private-key between host

and multicast manager.

The authentication scheme at the one-to-many mode has to consider the non-

repudiation service since group members share the same group key, and any member
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may re-send the message and masquerade as the original sender. Therefore, symmet-
ric key cryptosystems are not the proper solution. On the other hand, typical digital

signatures are costly operations.

At the many-to-one stage, the verification process should be efficient enough to han-

dle the overwhelming number of messages that need to be processed simultaneously.

At the intermediate stage, verification is performed over different and independent

datagrams.

In addition, we may also need to authenticate group-related communication modes
such as those related to redirecting the client to multiple content servers, which is also

known as anycast.

One of the techniques to improve the efficiency of authentication in group commu-
nication is to use one-time signatures, which can be used regardless of communication
mode described above. This method emerged from the observation that typical au-
thentication schemes such as digital signatures RSA [132] and ElGamal [57], have
both high computational and high space overhead; hence, they do not fulfill the new
requirements for most new applications. On the other hand, one-time signatures are
more efficient than the typical one, and many applications, or new devices with limited
power, are emerging that require efficient authentication evaluation as a result. There-
fore, new schemes using one-time signatures for group-based applications are proposed
which cannot only guarantee secure communication, but also maintain the efficiency

of operations.

1.4 Organization of the Thesis and Contributions

To fully cover all aspects of the topic in order to make it self-contained, we present in
the next two chapters a broad overview of the two joint fields of the study: cryptogra-

phy and multicast networking.

Chapter 2 provides the necessary background in cryptographic essentials. This
includes the introduction of private and public key cryptosystems, hashing, digital sig-

nature, and secret sharing scheme.
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In Chapter 3, we give a necessary background of multicast technology, and specif-
ically the motivation, evolution, structure, protocols and requirements. We also focus
on multicast security, and in particular on key-management as it plays a vital role in
information distribution. In conjunction with the remaining chapters, multicast secu-

rity, with focus on authentication, is described.

In Chapter 4, we survey and classify the proposals of the stream authentication
problem in the multicast environment and categorize them into a category which uses
digital signatures, and another category which uses MAC. New approaches for authen-
ticating digital streams using threshold techniques are introduced. The main advan-
tages of the new approaches are toleration of packet loss, up to a threshold number, and
having a minimum space overhead. These are most suitable for multicast applications
running over lossy, unreliable communication channels while retaining the security re-
quirement. We use linear polynomial and combinatorial design methods. The contents
of this chapter is to be found in our paper [6], which was published in the ICN’01

(International Conference in Networking 2001)

In Chapter 5, we turn to the inverse operation of multicast communication: concast
communication, the many-to-one communication mode. In this chapter, we propose
several schemes for authenticating concast communication based on the trustability of
the coordinator of the group. We use variants of sibling intractable hashing for trusted
nodes, the ElGamal signature scheme for untrusted nodes, and batch signatures for
networks of non-trusted modes. The contents of this chapter can be found in our pa-
per [5], which appeared in the proceedings of INDOCRYPT’02, (Third International
Conference on Cryptology in India 2002).

In Chapter 6, we study the possibility of authenticating messages passing through
intermediate nodes between source and destination. We exploit the unique features of
the k-sibling Intractable hashing method in presenting two authentication schemes. In
the first scheme, we propose a method which enables intermediate nodes in IP com-
munication networks to verify the authenticity of transit flows. In the second scheme,
we introduce a new one-time digital signatures scheme. The contents of this chapter
appeared in our paper [7], which has been published in the proceedings of the “Sixth

International Conference on Communication and Multimedia Security 2002 ” (CMS’02).
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Chapter 7 is a continuation of section 6.5 on the topic of using a one-time signature.
In this chapter, we focus on one-time signatures as an efficient cryptographic primitive
for authenticating group or broadcast communication. That is, we attempt to apply
one-time signatures for a situation where the right to execute signature operations is
shared by a group of signers, with or without the aid of a trusted party. We further
consider situations where such signing is accomplished with the aid of a proxy. To our
best knowledge, the problem of finding a group-oriented one-time signature, as well as
the problem of finding a proxy one-time signature, has not been discussed elsewhere.
The contents of this chapter is to be found in our paper [4], which appeared in the
proceedings of the “First MiAn International Conference in Applied Cryptography and
Network Security 2003” (ACNS’03).

In Chapter 8, we focus on authentication of anycast communication as a multicast-
related communication mode. This deals mainly with the problem of redirecting a
client to multiple content servers. The contents of this chapter is to be found in our
paper [3], which was published in the proceedings of MMM-ACNS-2003: the second
international workshop in “Mathematical Methods, Models and Architectures for Com-

puter Networks Security 2003”.

In Chapter 9 we propose a secure one-to-one authentication scheme based on a
secret sharing technique. The preliminary version of this protocol was published in
our paper [1]. The development of this protocol to a signcryption scheme appeared in
the proceedings of MMM-ACNS-2003: the second international workshop in “Math-
ematical Methods, Models and Architectures for Computer Networks Security 2003”[2].

Chapter 10 summarizes the work, and states directions of future work.

The chapters are organized according to the flow of information and correlation of

topics.



Chapter 2

Cryptographic Essentials

Cryptography is the science that deals with the design of algorithms, protocols and sys-
tems for solving or providing particular kinds of security services such as confidentiality,

integrity, authentication and non-repudiation.

e confidentiality is a service to keep the content of information secret from all but

those authorized to see it.
e integrity is a service which addresses the unauthorized alteration of data.

e authentication is a service related to identification. Two or more parties entering
into a communication should identify each other. Information delivered over a
channel should be authenticated as to the origin and the data contents. There-
fore, two types of authentication are known in Cryptology: entity and source

authentication, respectively.

e non-repudiation is a service which prevents an entity from denying previous com-
mitments or actions. When disputes arise due to an entity denying that certain
actions were taken, the non-repudiation service provides a means to resolve the

dispute.

More precisely, cryptography is the study of mathematical techniques related to
aspects of information security. Cryptography is also about the prevention and detec-
tion of cheating and other malicious activities. It also provides a designer with tools
to implement the required information protection or authentication. Applied cryptog-
raphy is about using the cryptographic primitives in developing security applications
and protocols. The important parameter in almost all modern cryptographic systems
is the key, which selects the particular transformation to be employed. The size of the
key space should be large enough to preclude exhaustive search.

In this chapter, we present the essential cryptographic primitives necessary for

designing the cryptographic protocols of the subsequent chapters.
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2.1 Terminology

Cryptography has developed an extensive vocabulary. There is a collection of ba-
sic terms that are discussed briefly in this section. These definitions are taken from
Menezes et al. [107]. Other terms will be introduced in this thesis as necessity arises.

A party is someone or something which sends, receives, or manipulates information.

The senderis the party in a communication system that is the legitimate transmitter
of information.

The receiver is the party in a communication system that is the intended recipient
of information.

An adversary is a party in a communication system that is neither the sender
nor receiver, and which tries to defeat the information security service being provided
between the sender and receiver.

Secrecy ensures that information flow between the sender and the receiver is unin-
telligible to outsiders. It protects information against threats based on eavesdropping.

Integrity enables the receiver to verify whether the message has been tampered with
by outsiders whilst in transit via an unsecured channel. It ensures that any modification
of the stream of messages will be detected.

An identification or party authentication assures the parties of their identity. Mes-
sage authentication provides evidence of the identity of the sender to the party which
receives a message.

A channel is a means of conveying information from one party to another.

A secure channel (or a private channel) is one from which an adversary does not have
the ability to reorder, delete, insert, or read. An insecure channel (or a public channel)
is one from which parties other than those for which the information is intended can
reorder, delete, insert, or read.

Encryption is the primitive cryptographic operation used to ensure secrecy or confi-
dentiality of information transmitted across an unsecured communication channel. The
encryption operation takes a piece of information, also called message or plaintext, and
transform it into a cryptogram or ciphertext using a secret cryptographic key.

Decryption is the reverse operation to encryption. The receiver who holds the
correct secret key can recover the message (plaintext) from the cryptogram (ciphertext).

The encryption algorithm (or decryption algorithm) is the procedure that gives
a step-by-step description of the encryption (or decryption) process. If there is no
need to distinguish encryption from decryption, we call them collectively ciphers or

cryptosystems.
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Private-key (also called symmetric) cryptosystems use the same secret key for en-
cryption and decryption. Although the encryption and decryption keys do not need to
be identical, the knowledge of one of them suffices to obtain the other.

Public-key (also called asymmetric) cryptosystems use a different key for encryption
and decryption. The knowledge of one key, however, does not allow the other to be
determined.

A one-way function is a function for which it is easy to compute its value from its
arguments(s), but it is “difficult” to reverse it, that is, to find its arguments(s) although
knowing its value.

Cryptanalysis is the study of mathematical techniques for attempting to defeat
information security services. A cryptanalyst is someone who engages in cryptanalysis.

Cryptology is the study of cryptography and cryptanalysis.

A cryptosystem or a cryptographic system is a general term referring to a set of
cryptographic primitives used to provide information security services. Most often this
term is used in conjunction with primitives providing confidentiality, that is encryption.

An encryption system is said to be breakable if a third party, without prior knowl-
edge of the key, can systematically recover plaintext from corresponding ciphertext
within some appropriate time frame. The objective of the following attacks is to sys-
tematically recover plaintext from ciphertext, or, even more drastically, to deduce the

decryption key.

e A ciphertext-only attack is one where the adversary (or cryptanalyst) tries to
deduce the decryption key or plaintext by observing ciphertext only. Any en-
cryption scheme vulnerable to this type of attack is considered to be completely

insecure.

e A known-plaintezt attack is one where the adversary has samples of both the
plaintext and its corresponding ciphertext, and is at liberty to make use of them

to reveal further the secret key.

e A chosen-plaintext attack is one where the adversary chooses plaintext, and is
then given corresponding ciphertext. Subsequently, the adversary uses the infor-
mation deduced in order to recover plaintext corresponding to previously unseen

ciphertext, or to find the key applied.

e An adaptive chosen-plaintext attack is a chosen-plaintext attack in which the
adversary makes a series of interactive queries, choosing subsequent plaintexts

based on the information from the previous encryptions.



2.2. Primitives 12

e A chosen-ciphertext attack is one where the adversary selects the ciphertext, and
is then given the corresponding plaintext. The objective is then to be able to

deduce the plaintext from different ciphertext (not seen before).

e An adaptive chosen-ciphertexrt attack is one where the adversary sends a large
number of ciphertexts to be decrypted, using the results of these decryptions
to select subsequent ciphertexts, and gradually to reveal information about an

encrypted message, or about the encryption key itself.

2.2 Primitives

One of the primitive operations of cryptography is encryption. Let us consider two par-
ties, a sender (Alice) and a receiver (Bob), who wish to communicate securely with each
other via an insecure channel which is controlled by an opponent !(Oscar). Encryption
schemes can be divided into two categories: private-key (or symmetric) schemes, and
public-key (or asymmetric) schemes. In a private key scheme, the same key is used for
encryption and decryption. Hence, when two parties want to communicate securely
with a symmetric encryption scheme, they need to exchange a private key in advance.
In a public key scheme, two different keys are used for encryption and decryption. The
key used for encryption, the public key, can be published, while the secret key used
for decryption must be kept secret. An advantage of this is that, while the key for
a symmetric encryption scheme must be exchanged securely, the public keys need to
be exchanged using public channels, but the exchanged keys need to be authenticated.
This is a much weaker requirement.

Both private key and public key encryption schemes consist of three algorithms: key
generation, encryption and decryption. The difference between these two encryption
schemes is reflected in the definition of security. The security of a public key encryption
scheme should also hold when the adversary is given the encryption key, whereas this
is not required for a private key encryption scheme because public key encryption
schemes allow each user to broadcast his/her encryption key. Any user may send
his/her encrypted messages to other users without agreeing on a private encryption

key in advance.

! Throughout this thesis, we use the terms adversary, attacker, and enemy for the same meaning.
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Models for evaluating security

The most important criterion to assess a cryptographic system is the security of the
system. There are different security metrics by which a cryptosystem may be evaluated.

Among them we consider the following:

e Unconditional Security

A cryptosystem is said to be unconditionally secure if an adversary having unlim-
ited computational resources cannot break the system. Unconditional security for
an encryption system is called perfect secrecy. For perfect secrecy, observation of
the ciphertext provides no information whatsoever to an adversary. A necessary
condition for a symmetric-key encryption system to be unconditionally secure is
that the key is at least as long as the message. The one-time pad [107] is an ex-
ample of an unconditionally secure encryption algorithm. Public-key encryption

schemes, however, cannot be unconditionally secure.

e Computational Security

This measures the amount of computational effort required, by the best currently-
known methods, to defeat a system. A proposed algorithm is said to be computa-
tionally secure if the perceived level of computation required to defeat it exceeds

the computational resources of the hypothetical adversary.

Most of the best known cryptosystems in current use are computationally secure.

The members of this class are sometimes called practically secure.

e Provable security

A cryptosystem is said to be provably secure if the difficulty of defeating it can
be shown as equivalent (reduced) to the difficulty of solving a well-known dif-
ficult problem such as integer factorization [62] or the computation of discrete
logarithms [117]. Provable security is considered to be adequate for most practi-
cal applications. Computational security includes provable security as a proper

subset.

2.3 Private Key Cryptosystems

A private-key cryptosystem (i.e. symmetric-key encryption) enables two parties, the

sender and the receiver, to communicate in secrecy via an insecure channel. Before any
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communication of messages takes place, both the sender and receiver must exchange the
secret key K € IC via a secure channel, which can be implemented using a messenger or
a registered mail. After exchanging the key, the sender can select a message M € M,
apply the encryption algorithm £ : M x K — C, and dispatch the cryptogram
C = Ex (M) through the insecure channel. The receiver, who knows the secret key K
(we assume that the encryption/decryption algorithms are publicly known), recreates
the message from the cryptogram using D : C x K — M, that is, M = Dg(C).

The encryption system works correctly if
Dk (Ex(M)) =M

for all keys K € K. Data Encryption Standard (DES) algorithm [118], is a private-
key cryptosystem which was developed at IBM in the mid 70s and used to be the
standard encryption algorithm for many years. Rijndael [41] was selected recently as

an advanced encryption standard (AES) to replace DES.

2.4 Public Key Cryptosystems

In private-key cryptosystems, both encryption and decryption keys are secret and ei-
ther the same or the knowledge of one of them is sufficient to determine the other.
The main drawback of applying private-key cryptosystems is that it requires the prior
communication of the key K between sender and receiver, via a secure channel before
any cryptogram is transmitted.

The main idea behind a public-key cryptosystem is that it might be possible to
design a system that uses two different keys, e and d, for encryption and decryption
respectively. The knowledge of one of these keys must not be sufficient (computation-
ally) to determine the other. Hence, one of the keys can be published in a directory or
public registry (this is where the name comes from).

Public key cryptography was invented in 1977 by Diffie and Hellman and was in-
troduced in their paper entitled “New Directions in Cryptography” [56]. Their basic

framework is as follows:
1. Find a computationally intractable problem I,

2. Build a cryptosystem based on I', in such a way that breaking the system is

equivalent to solving instances of the intractable problem I'.



2.4. Public Key Cryptosystems 15

Let {E. : e € K} be a set of encryption transformations and let {Dy : d € K} be the
set of corresponding decryption transformations, where /C is the key space. Consider
any pair of associated encryption/decryption transformations (E., Dg). Suppose that
each pair has the property that, knowing F, and giving a random ciphertext ¢ € C,
it is computationally infeasible to find the message m € M such that E.(m) = c.
This property implies that, given e, it is infeasible to determine the corresponding
decryption key d. E. is viewed here as a trapdoor one-way function. The key d is the
trapdoor information needed to compute the inverse function of E,. Here a trap-door
one way function means that it is easy to compute but hard to invert unless a trapdoor
(the secret key) is known.

Under these assumptions, consider the two-party communication between Alice and
Bob. Bob selects the key pair (e, d) and sends the encryption key e (called the public
key) to Alice over any channel, but keeps the decryption key d (called the private key)
secure and secret. Alice can subsequently send a message m to Bob by applying the
encryption transformation determined by Bob’s public key e to get ¢ = E.(m). Bob
can then decrypt the ciphertext ¢ by applying the inverse transformation Dy uniquely
determined by d. That is, m = Dy(c).

Consider an encryption scheme consisting of the sets of encryption and decryption
transformations F, :e € K and Dy : d € IC, respectively. The encryption method is
said to be a public key encryption scheme if for each associated encryption/decryption
key pair (e, d), one key, e (the public key), is made publicly available, while the other,
d (the private key), is kept secret.

It appears that the public-key scheme (PKS) is an ideal system, not requiring a
secure channel to pass the encryption key. This would imply that two entities could
communicate over an unsecured channel without ever having met to exchange keys.
Unfortunately, this is not the case. It can be shown how an active adversary can
defeat the system (decrypt messages intended for a second entity) without breaking the
encryption system. In this scenario, the adversary impersonates entity B by sending
entity A a public key, e, which A assumes (incorrectly) to be the public key of B.
The adversary intercepts encrypted messages from A to B, decrypts with its own
private key, ci, re-encrypts the message under B’s public key, e, and sends it on to
B. This attack highlights the necessity to authenticate public keys to achieve data
origin authentication of the public keys themselves. A must be convinced that he/she

is encrypting under the legitimate public key of B.
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2.4.1 The RSA Cryptosystem

Rivest, Shamir, and Adleman [132] were among the first to propose a concrete reali-
sation of a trap-door one-way function as introduced by Diffie and Hellman[56]. It is
based on the difficulty of computing the e-th root modulo a composite n, known as
the RSA problem. Given a positive integer n, which is a product of two distinct odd
primes p and ¢, a positive integer e such that ged(e, (p—1)(¢—1)) = 1, and an integer
¢, find an integer m such that m® = ¢ (mod n). The RSA encryption scheme works
as follows. Let p and ¢ be two safe primes (p = 2p' + 1, ¢ = 2¢' + 1 and p' and ¢
are also primes), n = pq, and let e be an integer satisfying gcd(e, p(n)) = 1, where
©(n) = (p—1)(¢ — 1). The public key of a recipient, Bob, is the pair (n,e). His secret
key is the triple (p, ¢, d), where d satisfies de = 1 (mod p(n)). To encrypt a message

m € [0,...,n — 1] for Bob, a sender Alice computes
c =m’ (mod n)

and sends ¢ to him. Bob can recover m using the secret value d as follows:
m = ¢ (mod n).

The correctness of this encryption method is seen as follows:

¢t = (m9)% = m (mod n)

This holds since ed = 1 (mod p(n)).

Security of RSA

The security of the scheme is based on the RSA problem. However, there are some
pitfalls that can make the system insecure. For instance, when e is chosen as a small
number for reasons of efficiency, a number of attacks are possible. Hastad showed
that when encrypting the same message for multiple recipients having the same public
exponent e but different modulo, the message can be computed from the cipher-texts
without knowing any of the corresponding secret keys [80]. Furthermore, if polynomial
relations among the encrypted messages are known, messages can also be recovered
[39]. Such attacks can be prevented by salting, that is, appending a random bit-string
to the message before encryption.

One obvious attack on the RSA cryptosystem is for a cryptanalyst to factorize the

integer n (since knowing the factors p and ¢ provides p(n) and hence the secret key
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d). So, if the RSA cryptosystem is to be secure, it is necessary that n must be large
enough so that factoring it will be computationally infeasible.

The RSA system is set up by receiver, Bob, who

e chooses two large and distinct primes p and ¢

computes n = p X ¢ and ¢(n) = (p—1)(q — 1),

selects at random the key 0 < e < ¢(n), such that ged(e, p(n)) =1

e computes the secret key d using the equation ed = 1 (mod ¢(n))

publishes n and e in a public directory registry as the public parameters of his
RSA system.

Simmons and Noris [146] have shown that the private key d can be computed using

their iteration attack (without factoring n),

2.4.2 The ElGamal Cryptosystem

Another notable public-key cryptosystem is the ElGamal [57]. This cryptosystem ap-
plies the discrete logarithm problem. (It can be seen as a special way of using the
Diffie-Hellman key exchange protocol.) In this system, messages, cryptograms, and
keys (public and secret) belong to a finite field GF(p).

Let G be a finite cyclic group of order ¢ and let ¢ € G be a generator of G such
that computing discrete logarithms in G is infeasible. In the original proposal, G was
chosen to be Z» (thus we have ord(g) = p — 1) where p is a large prime. In order to
encrypt a message m € G for Bob having the public key e = ¢?, Alice first chooses r
randomly in Z, and computes the pair (A, B) = (¢", ¢"m) being the cryptogram of m.
Bob, knowing the secret key d, can receive the message m by calculating

B ym  g¥m

_— = = =m
Ad grd grd

Alternatively, the role of the public key and the base can be interchanged and
become the following variant. Now a message can be encrypted by randomly selecting
an r in Z, and computing the pair (A, B) = (e, ¢"m). Decryption is performed by
calculating

B gm gm

14d—1 - erd—l - g’ =m
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In both schemes, the security is based on the assumed intractability of the Diffie-
Hellman problem. Note that these are probabilistic (non-deterministic) encryption
schemes, that is, there are many valid ciphertexts for a given message. Furthermore, if
a different r is used for every encryption, it is equivalent to the Decision Diffie-Hellman
problem [17] to decide whether two pairs (A, B) and (A’, B') both encrypt the same

message m.

Security of ElGamal

One obvious attack on the ElGamal cryptosystem is for a cryptanalyst to obtain the
random value r, using the first component of the cryptogram, and solve the discrete
logarithm for ¢g". If this can be done, it is simple to obtain the message m by computing
e” and applying its multiplicative inverse on the second component of the cryptogram.
Hence, if the ElGamal cryptosystem is to be secure, it is necessary that p must be large
enough that solving the discrete logarithm over GF(p) is computationally infeasible.
Let p be a prime such that the discrete logarithm problem in Z, is intractable, and
let 0 < g < p—1 be a primitive element. The following procedure shows how ElGamal

system can be setup by receiver (Bob).

e Bob chooses (uniformly at random) the secret key d, 0 <d <p—1
e he computes the public key, e = g¢ (mod p)

e Bob publishes ¢g,p and e in a public director as the parameters of his ElGamal

cryptosystem.

ElGamal considered methods that a cryptanalyst may use to break his system [57].
As pointed out, all the attacks seem to be as difficult as the discrete logarithm problem.
That is, the security of the ElGamal cryptosystem hinges on the difficulty of the discrete
logarithm problem. Note that these conjectures are based on the assumption that the
public parameters of the system are chosen properly. Bleichenbacher [24] has shown
that if the public parameters are not chosen carefully, a particular type of attack is
effective in forging an ElGamal signature. Since the secret key is not found in this
attack, the difficulty of forging an ElGamal signature is sometimes weaker than the
difficulty of the underlining discrete algorithm problem. Anderson and Vaudenay [9]
have also discussed the effect of choosing improper public parameters.

Note. The ElGamal system is recommended to be used once only for any single

integer r, 0 < r < p — 1. Every time Alice (or any one else) wants to send a message,
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she has to generate at random a new r. The violation of this requirement can be
exploited by an opponent , say Oscar, who wants to decrypt a cryptogram knowing
the message corresponding to another cryptogram. To illustrate this point, assume
that Alice was careless and sent two cryptograms using the same r. Let them be:
C = (c1,¢) = (g",mye”) and C = (é1,é) = (g7, mae”). Oscar computes,

Co my

Co My
which provides the opportunity to learn the message m; (or msy) knowing the message
my (or my).

The ElGamal encryption algorithm requires two exponentiation, namely ¢” (mod p)
and e (mod p) (which is about two times of the RSA system). Although these ex-
ponentiations can be sped up by selecting random exponent r having some particular
structure (e.g., having low Hamming weights), care must be taken that this does not
make the system prone for any possible attack.

Another disadvantage of ElGamal encryption is that there is a message expansion
by factor of 2. That is, the ciphertext is about twice as long as the corresponding

plaintext.

2.5 Digital Signatures

Hand-written signatures are used in everyday situations such as signing a document or
contract, or withdrawing money from a bank. Since a copy of a hand-written signature
can usually be distinguished from an original, the signer cannot deny the original
signature. This is why the signature is used to establish the responsibility of the signer
for signed messages.

One of the greatest achievements of modern cryptography is the invention of digital
signatures. Digital signatures should be in a sense similar to hand-written signatures.
Since a copy of an electronic document is identical to the original, digital signatures
have to create some sort of digital encapsulation for the document so that any in-
terference with either its contents or the signature will be detected with a very high
probability. In order to achieve this requirement, a digital signature on a message is
a special encryption of the message that can be applied only by the legitimate signer.
That is, in contrast to hand-written signatures, which are independent of the messages,
the digital signatures must somehow bind to the message.

Of course, in both hand-written and digital signature schemes a third party, the

receiver of the signature, must be able to verify the signature. A hand-written signature
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is verified by comparing it to other, authentic signatures. For example, in order to
withdraw money from a bank, the bank compares the signature with one which is
provided at the time when the account was opened. Verification of a digital signature,
however, needs the application of a particular (in general, a publicly-known) algorithm.
So, a digital signature scheme is a collection of three algorithms: a key generation
algorithm, a signing algorithm, and a verification algorithm. They must have the

following properties:

1. The key generation algorithm Gen : KL — e, d is used by each entity (signer and

verifier) to generate large secret key d and its corresponding public key e.

2. The secret key is used for signing messages, and the public key is used by the

other entities for verifying signatures.

3. The signing algorithm Sigy : K X M — 3 assigns a signature o = Sigy(M),
where M € M is a message, d € K is the secret key of the signer, and ) is the

set of all possible values of the signatures.

4. The signing algorithm executes in polynomial time when the secret key d is
known. For an opponent, who does not know the secret key, it should be com-
putationally intractable to forge a signature, that is, to find a valid signature for

a given message.

5. The verification algorithm V, : e x M x Y. — {yes, no} takes a public information
e € K of the signer, a message M € M and a given signature o € ). of the
message M. It returns “yes” if o is the signature of the message M; otherwise it

returns “no”.

6. The verification algorithm, in general, is a publicly known (polynomial time)
algorithm. Therefore, anyone can use it to check whether a message M matches

the signature o or not.

There are two main classes of digital signature schemes: digital signature schemes

with appendix, and digital signature schemes with message recovery.

2.5.1 Digital Signature Schemes with Appendix

This class of digital signatures requires the original message as input to the verification

algorithm. They rely on cryptographic hash functions and are the most commonly
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used in practice. An example of digital signature with appendix is the ElGamal [57]

signature scheme.

ElGamal Signature

The ElGamal signature scheme has been the subject of investigation by several authors,
and several variants of this signature have been introduced in the literature. In fact,
the ElGamal system is designed specifically for the purpose of signatures, as opposed to
the RSA system, which is suitable for both signature and other cryptographic purposes.

The ElGamal signature scheme is a non-deterministic signature scheme (like the
encryption scheme), that is, there are many valid signatures for a given message, since
the cryptogram depends on both the message and on the random value r chosen by
the sender.

Thus, the verification algorithm must be able to accept any of the valid signatures
as authentic. The description of the ElGamal signature scheme is as follows. As in the
ElGamal cryptosystem, let d be the secret key and e = g% be the public key. Assume
that Bob, the owner of the system, wishes to sign a message m , m € Z, such that

ged(r,p — 1) = 1, where r is randomly selected in Z, and calculates

T

z = g" (mod p)
Then, he solves the following congruences

M = d.x + r.y(mod p)
for variable y. The signature of the message is
0 = Slgd(M) = (xay)

Upon reception of m and o = (z,y), Alice (or anyone else who knows the public key

parameters of Bob’s ElGamal cryptosystems) can verify Bob’s signature using,

gV =" x gV

Note that possessing the pair (z,y) does not allow the message m to be recreated,
that is, the ElGamal signature is a digital signature with appendiz. In fact, there are
many pairs which match the message: for every random value r there is a pair (z,y).
The Schnorr scheme [137] is a well-known ElGamal-type digital signature scheme with
appendix. However, Nyberg and Rueppel [116] is an ElGamal-type signature scheme

but with message recovery.
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2.5.2 Digital Signature Schemes with Message Recovery

Digital signature schemes with message recovery have the feature that the message
signed can be recovered from the signature itself. In practice, this feature is of use for
short messages. This class of digital signatures does not require the knowledge of the
message for the verification algorithm. An example of digital signature with message

recovery is the RSA [132] signature scheme.

RSA Signatures

In the RSA system, the signature algorithm is identical to the decryption. That is, to
sign a message m (0 < m < n) the owner of the secret key generates the signature
using

o =m? (mod n)

The verification of the signature, however, is similar to the encryption. That is, every-

one who the public key e can check the validity of (m, o) using
(0)¢ =m (mod n)

If the above equation is satisfied, then the signature is accepted as a valid signature.
Otherwise the signature is rejected as a forged one. Since the verification recovers
the message signed, this sort of RSA signature is a it digital signature with message
recovery

Note. As is seen, the signing algorithm produces a signature with the same length
as the message. This is unsatisfactory as it needs double space for storage, and double
bandwidth for transmission. Moreover, signing blocks may be subject to homomorphic
attack [44] by which the message could be revealed. In order to avoid this problem, we
shall assume, throughout this thesis, that a document (a message of arbitrary length)
is first hashed, and the signature is then produced for its digest. Obviously, the hashing
employed must be collision free and must avoid attacks which exploit existing algebraic

structures in both the signing algorithm and the hashing function (see [51]).

2.5.3 One-time Signatures

One-time signatures are another class of digital signatures which can be used to sign,
at most, one message; otherwise, signatures can be forged. A new public key is re-

quired for each message that is signed. One-time signatures were first proposed by
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Lamport [97] and Rabin [128] based on the idea of committing to secret keys by one-
way functions without trapdoors. This can be implemented using a fast hash function
such as SHA-1 (see Section 2.6), resulting in magnitudes faster than traditional digital
signatures. One-time signatures normally require the publishing of large amounts of
data to authenticate messages because each signature can be used only once.

With the spread of low-powered, resource-constrained, small devices, such as the
cell phone, pager, Palm pilot, and smart cards in recent years, one-time signatures have
attracted more and more attention as an alternative to the traditional signature based
on public-key cryptography.

Examples of other typical one-time signature schemes includes Merkle [108], GMR
[66], Bos and Chaum [26]. The BiBa [121], “better than BiBa” scheme of Reyzin and
Reyzin [129], HORS++ of [125], and k—Siblings of [7] are examples of some recent
approaches in designing one-time signatures. In Section 7.3, we established a model
for one-time signature schemes. The model is not aimed at introducing a new kind of
signature, but to set a common view of several well-established signature schemes.

One-time signatures may tend to be unwieldy when used to authenticate multiple
messages because additional data needs to be generated to both sign and verify each
new message. By contrast, with conventional signature schemes like RSA, the same
key pair can be used to authenticate multiple documents. There is a relatively effi-
cient implementation of one-time-like signatures by Merkle [108] called the Merkle-Tree

signature scheme which does not require new key pairs for each message.

2.5.4 Other Types of Digital Signatures

There are other types of special digital signatures in cryptography. They mainly involve
more than one signer or more than one message to be signed.
The following table summarizes a number of “non-classical” signature schemes ac-

cording to the number of participant signers and the number of messages to be signed.

Signer | Messages Schemes Example
1 n Batch Signature [60],[15]

t<n 1 Threshold Signature | [52],[63]
n 1 Multisignatures [27],[35]
n n Concast Signature [5]

Table 2.1: Special signature schemes
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2.5.5 Performance of Digital Signatures

In almost all digital signatures, schemes generation/verification of a signature requires
the performance of some exponentiation. For example, signature generation in El-
Gamal digital signature is relatively fast, requiring one modular exponentiation and
two modular multiplications. However, signature verification is more costly, requiring
three modular exponentiations and two modular multiplications. In contrast, RSA
signature generation requires four modular exponentiations, but signature verification
is significantly faster requiring few modular multiplications [107].

Since exponentiation is a costly operation, the design of efficient digital signature
schemes (from both the generation and verification points of view) has been the subject
of investigation by many researchers (see, for example, [61, 138, 55, 40]).

Currently, various applications use efficient forms of digital signatures to secure
their applications [70]. Smart cards use digital signature which is implemented in the

hardware as a silicon chip [72].

2.6 Hashing

There are several cryptographic applications which require the production of a short
fingerprint (or a digest) of a much longer document/message. Cryptographic appli-
cations of hashing include, amongst others, the generation of digital signatures and
message authentication. A hashing function h, in general, is a procedure that takes as

input a message M of arbitrary length and produces a digest h(M) of a fixed length.

2.6.1 Properties

In order to assess the security of a hash function, a commonly used criterion is the
collision freeness property. A hash function h is called collision free if finding messages
M, and M, with h(M;) = h(M,) is a hard problem [42]. A formal definition of a

collision free, also called strong one-way, hash function h is given as follows:
e h can be applied to any message or document, M, of any size.
e h produces a fixed size digest h(M).

e preimage resistant. Given h and M, it is easy to compute h(M), but it is com-
putationally intractable to find the message M for the given digest h(Af), that

is, h is one-way.
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e 2nd preimage resistant. Given the description of the hash function h, and a
chosen message M, it is computationally intractable to find another messages M

which collides with M, i.e., h(M) = h(M). That is, h is collision free 2. 2nd

preimage resistance is also equivalently termed weak collision resistance.
There are two major classes of hash function defined as follows:

1. A one-way hash function (OWHF) compresses messages of arbitrary length into
digests of fixed length. The function is preimage and 2nd preimage resistant.

Equivalently, the function is termed weak one-way hash function.

2. A collision resistant hash function (CRHF) is OWHF with additional proper-
ties: collision resistant and 2nd preimage resistant. Equivalently, the function is

termed strong one-way hash function.

Several constructions of hash functions (for different purposes and with different levels
of security) have been proposed in the literature (see, for example, [136], [168] and
[124])).

One important concept introduced by Naor and Yung [114] is the Universal One-
way Hash Function (UOWHEF) which comprises a collection of hash functions where
based on a probabilistic polynomial time algorithm that can determine and return a
hash function h on a specific argument. By definition: let H be a polynomial com-
putable and accessible hash function compressing ¢(n)-bit input into n-output strings
and F be a collision finder. H is a universal one-way hash function if for each F, for

each polynomial (), and for all sufficiently large n

00
P(F(z,h) #7) < o0

where z € X" and h €x H,,. The probability is computed over all h €x H,, z € ™
and the random choice of all finite strings that F could have been chosen.

The main difference between UOWHEF and OWHF is the way the hash function
is chosen. In the case of OWHEF, the hash function is fixed. For UOWHF, the hash
function is randomly chosen. Note that UOWHEF is 2nd preimage resistant.

Naor and Yung demonstrated how to construct a family of UOWHF by the com-
position of one-way permutation and a family of strongly universal hash functions
with collision accessibility property. Rompel [134] proved that universal one-way hash

function can be constructed from any one-way function.

2There are, obviously, many collisions for a hash function h, since the message source is much
larger than the digest source.
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Sibling Hashing

In some applications, it may be useful to have a hash scheme with an easy to find
collection of colliding messages. The calculation of other collisions should be compu-
tationally intractable. This can be achieved using a particular type of hash functions
called SIFF. The sibling intractable hash function (SIFF) has the property that given
a set of initial colliding strings, it is computationally infeasible to find another string
that would collide with the initial strings. It is constructed from applying two types

of functions: universal hash function and collision resistant hash function [170].

MD algorithms

MD2 [86], MD4 [130], and MD5 [131] are message-digest algorithms developed by
Rivest. They are meant for digital signature applications where a large message has to
be “compressed” in a secure manner before being signed with the private key. All three
algorithms take a message of arbitrary length and produce a 128-bit message digest.
While the structures of these algorithms are somewhat similar, the design of MD2 is
quite different from that of MD4 and MD5. MD2 was optimized for 8-bit machines
whereas MD4 and MD5 were aimed at 32-bit machines.

The Secure Hash Algorithm (SHA), the algorithm specified in the Secure Hash
Standard (SHS), was developed by NIST. SHA-1 [115] was a revision to SHA that
was published in 1994. Its design is very similar to the MD4 family of hash functions.
The algorithm takes a message of less than 264 bits in length and produces a 160-bit
message digest. The algorithm is slightly slower than MD5, but the larger message
digest makes it more secure against brute-force collision and inversion attacks.

It is worth mentioning that the MD family is no longer secure. SHA-1 is widely

acceptable and proved to be secure so far.

2.6.2 Keyed Hashing

A message authentication code (MAC) is a relatively short string which is attached
to a message to enable the receiver to decide whether the message comes from the
original sender. Clearly, to perform this role, the MAC must match the message and
the sender. As the message can be long and the MAC is relatively short, it must
directly or indirectly employ hashing. Additionally, the pair of communicating parties
is uniquely identified by a secret key shared by them. To produce or verify a MAC, the

parties must know the message m and the shared key. An adversary, on the other hand,
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knows the message pair (m,MAC) only. Applications of MACs allow the creation of
an authentication channel where the contents of the message is public but the message
source can be verified (the sender and the receiver must share the same key). Keyed
hash schemes produce digests which depend on not only messages but also secret keys
which are shared between the sender and the receiver. Consequently, hashing can be
done only by the holders of the secret key [124].

Given a family of hash functions
H,={hy:X* = X" | kex"},

any instance function Ay is indexed by a secret key k shared between two parties. A

keyed hash function H = H, | n € N is collision resistant if, for each n:

1. any instance function hj can be applied for messages of arbitrary length,
2. the function H is a trapdoor one-way function, that is

- given a key k£ and message m, it is easy (in polynomial time) to compute
the digest d = hi(m)

- for any polynomial size collection of pairs (m;, d; = hy(m;)); i =1,...,£4(n),

it is intractable to find the key k£ € 3", where ¢(n) is a polynomial in n.

3. without the knowledge of k, it is computationally difficult to find a collision, that

is, two distinct messages m, m' € 3" with the same digest d = hy(m) = hy(m’).

For an ideal collision resistant keyed hashing scheme, finding a collision could be done
either by applying an exhaustive search through the key space, which takes on the
average 2" ! operations, or by employing a variant of the birthday attack, which takes
O(2™?) steps.

Attacks on Hashing Functions

There are many methods of attack on hash schemes. The so-called birthday attack
is a general method which can be applied against any type of hash function. Some
others are special attacks such as the so called meet-in-the-middle attack that can be
launched against any scheme that uses block chaining. Others can only be launched
against smaller groups.

The birthday paradoz is stated as follows: what is the minimum number of pupils in

a classroom so the probability that at least two pupils have the same birthday is greater
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than 0.57 The answer is 23. This fact arises when drawing elements randomly, with
replacement, from a set of N elements, with high probability a repeated element will
be encountered after O(v/N). Equivalently, the birthday paradox can be employed to
attack hash functions, that is, it is easier to find collisions for a one-way hash function

than to find a pre-image of specific hash values.

2.6.3 Digital Signatures vs. Message Authentication Codes

Both signature schemes and message authentication codes are methods for validating
data, that is, verifying that the data was approved by a certain party (or set of parties).
The difference between signatures and message authentication is that signatures should
be universally verifiable, whereas authentication codes are only required to be verifiable
by parties that are also able to generate them.

The difference between signatures and message authentication codes is captured by
the security definition, and affects the possible applications of these schemes. In case
of message authentication, the verification-key is assumed to be kept secret (and so
these schemes are “private-key” type), whereas in the case of signature schemes the
verification key may be made public (and so these schemes are of the “public” type).

The difference between the two authentication methods arises from the difference
in the settings for which they are intended, which amounts to a difference in the
identity of the receivers and in the level of trust that the sender has in the receiver.
Typically, message authentication schemes are employed in cases where the receiver
is predetermined and is fully trusted by the sender, whereas signature schemes allow

validation of the authenticity of the data by anybody.

2.7 Secret Sharing Schemes

One of the fundamental concepts and techniques in cryptography is secret sharing.
This section will give the basic concepts of threshold secret sharing schemes which is

used later in the thesis.

2.7.1 Basic Concepts

A simple example can be used to illustrate the concept of secret sharing. For instance,
in a bank there is a vault that will be opened every day by three senior tellers but a

single teller is not to be trusted to open it. So the bank has to decide how to open
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it safely. They would like to have a way in which any two of the tellers can open the
vault but no single teller can open it. The system that allows this is (2,3) threshold
secret sharing scheme.

Assume that there is a key set K and the key K € K, the set S is the set of all
possible values of the shares, and P is the set of n principals. There is also a dealer D,
D ¢ P, who chooses the key K and assigns the shares among the n principals. If the
number of principals in B is equal to or greater than ¢, |S| > t and S < P, principals
in S can find out the key K. If less than ¢, principals cannot find any information of
the key K.

Formally, let ¢, n be positive integers, t < n. A (¢,n)-threshold scheme is a method
of sharing a key K among a set of n principals (denoted by P), in such a way that any
t principals can compute the value of K but no group of ¢ — 1 principals can do so.

Threshold secret sharing schemes were first introduced, independently, by Shamir
[139] and Blakley [22]. Shamir and Blakley schemes have been widely investigated in
the literature (for example, Asmuth and Bloom [10], Karnin et al. [87], Mignotte [109],
Kothari [93], Blakley and Meadows [23], Meadows [106], De Soete and Vedder [149],
Stinson and Vanstone [155], Laih et al. [96], Simmons [144, 143] and Blakley et al.
[21]). For a survey of different schemes, refer to Simmons [145] and Stinson [154].

A secret sharing scheme may have the following properties:

1. Perfectness: A secret sharing scheme is called perfect if all subsets of principals
that do not form a qualified set are unable to obtain any information about
the secret or about shares of other principals. Such schemes are also called
information theoretically secure. There are also computationally secure secret
sharing schemes, where it is infeasible to compute the secret for any subset not

in a qualified set (e.g., [33]).

2. Ideal: A perfect secret sharing scheme is called ideal if the size of the shares

equals the size of the secret.

3. Verifiable: A secret sharing scheme is called verifiable if each principal can verify
that he/she has indeed obtained a valid share, that is, the dealer need not be
trusted. Such a scheme was first proposed by Chor et al [36]. Verifiable secret
sharing schemes require a third algorithm wver, that takes as input a share, and
outputs true if and only if the share is valid. Hence, the principals can convince
themselves that the shares are valid. Schemes that also allow other entities to

validate the shares of all principals are called publicly verifiable [150].
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2.7.2 Shamir Threshold Scheme

There follows a brief review of the Shamir threshold scheme [139]. The Shamir (¢, n)
threshold scheme is based on polynomial interpolation. Given ¢ points in the two-
dimensional plane (z1,41),..., (2, y;) with distinct z;’s, there is one and only one
polynomial f(z) of degree at most ¢ — 1 such that y; = f(z;) for all i. The polynomial

is given by the Lagrange interpolation formula as follows:

x—xj

-

f@)=>_ui : (2.1)

i=1 =1 Ti — Xy
A

KL~

Let the secret be an element of a finite field, that is, K € GF(p), where p is a prime
number. Since polynomial interpolation is possible over GF'(p), Shamir suggests the
following algorithm for constructing a (¢,n) threshold scheme.

Set-up Phase:

1. The dealer, D, chooses n distinct non-zero elements of Z,, denoted z1,...,z,

and sends x; to P; via a public channel.

2. D secretly chooses (independently and randomly) ¢ — 1 elements of Z,, denoted

ai,...,a;_1 and forms the polynomial
-1
flx) =K+ az".
i=1
3. For 1 <4 < n, the dealer computes s;, where
si = f(x;) (mod p).
4. D gives (in private) share s; to principal P;.

Secret Reconstruction Phase:

Every subset of P, which has at least ¢ principals can apply the Lagrange interpolation
formula to reconstruct the polynomial and hence to recover the secret.

The principals do not need to reconstruct the polynomial f(z). The secret is the
constant term of the polynomial, that is, K = f(0). So, they can recover the secret
using;:

i1 Tik — Tij

t t _
K=Y sl Tk (mod p). (2.2)
=
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An alternative method of secret reconstruction is to solve linear equations in Z,.

Every set of at least ¢ principals can always form the following system of equations:

t—1

K+ a1T;1 + (ZQLIIZZI + -+ ai—1T; = 51
2 t—1

K+ ayxig + agxiy + - - + a1 = Sio

K+ aimy + asa?, + -+ + o=

1L4¢ T A2y Q1T = Sit

This can be written as:

2 t—1

]_ Ti1 .’Eil l‘ﬂ K Si1
2 t—1

1z x -+ T4 a Sio
2 t—1

Uoxy xy - my ay—q Sit

The leftmost matrix is a so-called Vandermonde matrix and its determinant det.A is

given by the following formula:

det A= [ (25— za)
1<k<j<t

Since all z;’s are distinct, no term (z;; — ;) is zero. Thus the determinant of a
Vandermonde matrix over a finite field is always non-zero and the above system of
equations has a unique solution over Z,. That is, every set of at least ¢ principals can
uniquely reconstruct the polynomial and hence recover the secret.
Note. The size of GF(p) must be large enough such that the selection of distinct and
non-zero elements x;’s is possible. That is, the required condition for constructing a
Shamir (¢,n) threshold scheme is that the prime number p (the size of the field) must
be greater than n (the number of principals in the system).

The computational cost of a secret sharing scheme is in solving a set of linear
systems of degree ¢, which is a polynomial time complexity problem. The Shamir

threshold scheme is an example of an ideal secret sharing scheme.

2.7.3 Verifiable Secret Sharing Scheme

One problem of secret sharing schemes is that they are not secure against cheating
principals who send false shares when the secret is to be recovered. Another problem
is that a cheating dealer could distribute false shares, so that different groups of prin-

cipals recover different secrets. Such problems arise in protocols for secure multi-party
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computations (see e.g., [19]), and can be solved with verifiable secret sharing (VSS)
schemes [36].
The object of verifiable secret sharing (VSS) is to resist malicious principals who

are:
1. A dealer sending incorrect shares to some or all of the principals, and
2. Principals submitting incorrect shares during the reconstruction stage.

A VSS scheme is a secret sharing scheme with an additional, interactive or non-
interactive algorithm which allows the principals to verify the validity of their shares.
In other words, all groups of principals recover the same value if their shares are valid
and this unique value is the secret if the dealer was honest.

In a VSS scheme, the principals can verify the validity of only their own share, but
they cannot know whether other principals (with whom they might be able to recover
the secret) have also received valid shares. This problem can be solved with publicly
verifiable secret sharing (PVSS).

Model for PVSS

A typical secret sharing scheme consists of a dealer, n, principals Pj,---, P,, and an
access structure A C 2{ The access structure is monotone, which means that if
A€ Aand A C B then B € A. For instance, in a threshold secret sharing scheme
with threshold k, the access structure is defined as A = {A € 2{7}||A| > k}, which
means that any coalition of at least £ principals can recover the secret.

To share a secret s among the principals, the dealer runs an algorithm Share
Share(s) = (s1,- -+, 8n)

to compute the shares. The dealer then sends each share s; secretly to Py, =1,:--,n.
If a group of principals wants to recover the secret, they run an algorithm Recover,

which has the property that
VA € A: Recover({s;|i € A}) = s,

and that for all A ¢ A it is computationally infeasible to calculate s from {s;|i € A}.
Thus, only those coalitions of principals belonging to the access structure A are able
to recover the secret s.

In a VSS scheme, an additional, possibly interactive algorithm Verify allows the

principals to verify the validity of their shares:
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JuVA e A: (Vie A:Verify(s;) =1) = Recover({s;|i € A} = u),

and u = s if the dealer is honest.
In a PVSS scheme, a public encryption function F; is assigned to each principal P;,
such that only he knows the corresponding decryption function D;. The dealer now

uses the public encryption functions to distribute the shares by calculating

and publishing the encrypted shares S;. To verify the validity of all the encrypted
shares, there is an algorithm PubVerify with the property that

JuvA e 2tbn

(PubVerify({S;|i € A}) = 1) = Recover({D;(S;)|i € A}) =u

and u = s if the dealer is honest. In other words, if a set of encrypted shares is “good”
according to PubVerify, then the honest principals can decrypt them and recover the
secret. Note that PubVerify can be executed even if the principals have not received
their shares so far. To run PubVerify, it may be necessary to communicate with
the dealer (but not with any principal). A PVSS scheme is called non-interactive

if PubVerify requires no interaction with the dealer at all.

2.8 Cryptographic Protocols

A cryptographic protocol or cryptographic scheme is an algorithm defined by a sequence
of steps precisely specifying the actions required for two or more entities to achieve a
specific objective (see [107]).

Protocols play a major role in cryptography and are essential in meeting crypto-
graphic goals such as privacy, confidentiality, data integrity, entity authentication or
identification, message authentication, signature and authorization.

A protocol failure occurs when a mechanism fails to meet the goals for which it
was intended, in a manner whereby an adversary gains advantage not necessarily by
breaking an underlying primitive such as an encryption algorithm directly, but by
manipulating the protocol or mechanism itself [107].

There are many reasons that can cause the failure of protocols, examples are:



2.8. Cryptographic Protocols 34

1. Weaknesses in a particular cryptographic primitive which may be amplified by

the protocol or mechanism;

2. Claimed or assumed security guarantees which are overstated or not clearly un-

derstood; and

3. The oversight of some principle applicable to a broad class of primitives, such as

encryption.

When designing cryptographic protocols and schemes, the following two steps are

essential:
1. Identification of all assumptions in the protocol or mechanism design; and

2. For each assumption, determination of the effect on the security objective if that

assumption is violated.

A commonly accepted methodology for analyzing the security of cryptographic
protocols consists of the following two steps. One first designs an ideal system in which
all parties (including adversary) have oracle access to a truly random function, and then
proves the security of this ideal system. Next, one replaces the random oracle by “good
cryptocraphic hashing function” providing all parties (including the adversary) with
succinct description of this function. Thus, one obtains an implementation of this ideal
system in a world where random oracle does not exist. This methodology was explicitly
formulated in [17].



Chapter 3

Multicast: Structure and Security

Multicast has become an important mode of communication as well as a good platform
for building group-oriented services. However, to be used for trusted communication,
current multicast schemes must be supplemented by mechanisms for protecting traffic,
controlling participation, and restricting access of unauthorized users to data exchanged
by the participants. In this chapter, we first review the fundamentals of multicast tech-
nology, and then we consider the issues and mechanisms for building a secure multicast
environment. We survey the group-key management and distribution protocols since

they are the corner-stone for building a multicast security architecture.

3.1 Multicast Illustrated

There are three fundamental types of communication modes in the internet: unicast,
broadcast, and multicast. While unicast is a point-to-point communication, broadcast
is a one-to-all communication, multicast is a one-to-group communication. Multicast is
a relatively new communication mode and it is becoming an important tool in network-
ing communications. It has become an essential tool particularly with the exponential
growth of internet users, with the emergence of group-based applications, and with the

extensive use of the Mbone (Multicast Backbone of the Internet).

Multicasting Advantages

Multicasting delivers high-bandwidth applications without overloading networks. As
a result, it is ideal for distributing multimedia content across intranets and the Inter-
net. Multicasting makes implementing hungry-bandwidth applications such as push-
technology and video server applications without concern about traffic bottlenecks.
Multicasting benefits organizations where large numbers of individuals must receive

the same information. At the same time, it is a suitable solution for communicating

35
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real-time information to large audiences, including sales and press conferences, because
it sends the information only once, to multiple recipients. This is an efficient way of
saving bandwidth and maintaining scalability of the service.

IP multicasting enhances the organization network by enabling a wide variety of
applications, and by improving productivity and competitiveness of an enterprise. Mul-
ticasting is an ideal infrastructure for collaborative high bandwidth applications. Ex-
amples of such applications are teleconferencing, news feeds, pay-TV, on-line video, live
stock quotes, Internet games, shared white-boarding, webcasting and many others.

The immediate advantage of multicasting is reducing bandwidth requirements. The
sender is not required to transmit as many sequential or concurrent packets and is
available for other tasks. To appreciate this, consider a host that wants to send a
message to a group of n users. If unicast communication is used, then n different
unicast connections need to be established between the sender and the receivers. Using
multicast communication, the host would only need to send the message once, and the
multicast infrastructure would duplicate the message to the rest of the group members
in an efficient way. Yet, if n users of the group want to communicate with each
other, then an n x n unicast connection is needed. The other advantage of multicast
communication is that it can save alot of network resources in the already congested
environment.

Multicast is becoming more demanded in the IP networks and, at the same time,
more challenging to be applied in other types of networks such as Wireless, mobile,
and ATM networks [140]. Multicasting does, however, require some changes in the
networking infrastructure and desktops, including selecting special routing protocols,
and setting up switching and securing intranets.

The only difference between a multicast and unicast IP packet, in terms of address-
ing, is the presence of a ‘group address’ in the the destination address field of the 1P
header. Instead of Class A, B, or C IP destination address, multicasting employs a
Class D address format, which ranges from 224.0.0.0 to 239.255.255.255.

Multicasting is not a connection-oriented mode of communication. IP is a connection-
less environment (lossy) and a multicast datagram is delivered to destination group
members with the same “best effort” reliability as a standard unicast IP datagram.
This means that multicast datagrams are not guaranteed to reach all members of a

group, nor to arrive in the same order in which they were transmitted [156].
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How Multicasting Works

Multicasting is typically formed by creating a group where participants place their
information which is destined to all other participants of the group. This group can
be in the form of a newspaper, IP address or Asynchronous Transfer Mode (ATM)
address.

Membership to a multicast group is often highly dynamic, with receivers entering
and leaving the multicast session without the permission or explicit knowledge of other
hosts. Hosts join a multicast group using IGMP [46, 59, 30]. Once a host joins the
group, it can exchange information with the rest of the group members.

As with unicast communication mode, multicast also requires a router for the trans-
portability of information through the network. Multicast routers require a multicast
routing protocol such as MOSPF [111], DVMRP [159], or PIM [50]. The mechanism
used by the multicast in the Internet is to construct a multicast tree at the network
layer that spans to all group members. The key issue is to have an efficient routing pro-
tocol that enables the transmission of the packets from a sender to a group of receivers.
Many of the multicast protocols were developed to ensure efficient routing of multicast
data. The objective of the routing protocols is to create an optimum multicast deliv-
ery path through the network. These routing protocols use a variety of algorithms to
achieve the most efficient delivery process. The efficiency is measured by the shortest

available path only to those clients who want to receive it.

Additional Multicast Requirement

The additional requirement includes secure data transmission to recipients to ensure
both confidentiality and integrity of the messages. A number of security protocols have
also been developed to ensure secure multicast group communication. Other studies
have focused on reliability [104].

The purpose of this chapter is first to give an evolutionary survey of the multicast
routing protocols, and then to give a brief survey of multicast security proposals in the

literature.

3.2 Multicast Evolution

Multicast technology has been developed based on a number of techniques and protocols
that formed the story of its evolution [120, 103].
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RPF

The starting point was the development of the Reverse Path Forwarding (RPF) al-
gorithm which solves the problem of looping in broadcast networks. The problem is
caused by a sender sending a packet to multiple recipients, where there is a chance for
intermediate routers to receive a duplicate of the same packet from neighboring routers.
The rule adopted at a router is to accept packets that only arrive from the interface
that it received the packets from. Although RPF solves the problem of looping, it
did not solve the problem of group membership. Therefore, RPF was considered as a

technique used to build a broadcast tree rather than a multicast tree [20].

IGMP

The next requirement was in developing a method to allow a participant to join a
communication group. Internet Group Multicast Protocol (IGMP) is a protocol used
between a host on a subnet and the corresponding router that it wants to join in a
particular TP multicast group. Usually, the router advertises for a group membership
by sending queries to hosts of the subnet and expecting replies from the host requesting
membership to the group. When a host is interested in joining a particular multicast
group, it uses the IGMP protocol to join the group. When a host leaves a group, the
router stops sending data to it and frees bandwidth on the network segment of the host.
IGMP is a standard TCP/IP protocol. IGMP was the result of the pioneer work of
Deering [47] in defining multicast and its requirement in the late 1980s. Two versions

of this protocol were proposed [46, 59], and the third is under standardization [30].

TRPB

The group membership IGMP was augmented with RPF to provide Truncated Reverse
Path Broadcasting protocol (TRPB), to enjoy the best of the two features of IGMP
and RPF: building a loop free multicast. In this scheme, the membership of hosts is
taken into account when deciding to broadcast packets to a group. If there are no
members of a group in the subnet, then the router will not forward the packet. While
this technique reduce the traffic on the leaf subnet, it does not reduce traffic on the

core network.
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DVMRP

With the rise of group membership protocol and robustness of unicast network layer
routing algorithms, the first multicast routing protocol was developed. Distance Vector
Multicast Routing Protocol (DVMRP) refines truncated broadcasting by using a mech-
anism called pruning [159]. DVMRP is based on the network layer link state routing
algorithm in which the router computes the shortest path to destinations based on
information gathered from the advertisement of the adjacent routers. When a router
gets the flooded packets, it knows if it is useful for it or not. That is, if there are no
group members on the subnet, it sends a prune message unsteadily towards the sender.
In this case, the unwanted branches of the spanning tree are pruned off. DVMRP is
soft state, that is, the state of the router regarding the group membership is timed-out,

and new flooding will allow new hosts requiring membership to graft the membership.

MOSPF

While DVMRP was based on the unicast routing protocol RIP [81] to compute the
shortest path, Multicast Open Shortest Path First (MOSPF) [111] is another multicast
routing protocol that is based on the link-state unicast routing protocol OSPF [112,
113]. OSPF advertises the state of its directly attached links and, based on these
advertisements, each router builds its database. The MOSPF-enabled routers maintain
multicast group membership information in addition to topological information. Based
on these two pieces of information, MOSPF routers compute the shortest path from
the sender to the group members using Dijkstra’s shortest path algorithm. MOSPF
uses two techniques: one for intra-area multicasting and another for inter-multicasting.

Both use extra necessary extensions.

CBT

Core Based Tree (CBT) is another interesting multicast network-layer multicast routing
protocol, which uses a single bi-directional, shared tree for a group [13, 11]. This is
in contrast to several other protocols, such as DVMRP, which rely on a source-based
shortest path tree. Theoretically, DVMRP creates as many delivery trees as the number
of senders. However, there is a single delivery tree in CBT regardless of the number of
senders. The main advantage of using a single shared tree per group is the reduction
of state information that needs to be maintained at each router. For example, in a

scheme like DVMRP, which uses source-based shortest path trees, a router may need to
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maintain as many as n entries of the form (S;, G) for i = 1 to n where S; is the source
address, GG is the multicast-group address, and n is the number of senders. In CBT,
on the other hand, a router needs to maintain only a single shared entry irrespective
of number of senders. This is a scalable advantage in CBT because the greater the
number of routing table entries, the longer is the search time for finding the correct
outgoing interface. As the number of multicast sessions increases, the performance
of the router will decrease. The second advantage of CBT is saving communication
bandwidth. Since flood and prune of DVMRP leads to a tremendous waste of network
resources, CBT is designed to setup explicit join and leave messages from the members
of the multicast session. A CBT consists of a core router, a Designed Router (DR)
that is directly attached to the hosts, and intermediate routers along the branches of
CBT from DR to the core. CBT protocol is distinguished by its provision of its own

protocol header.

PIM

Protocol Independent Multicast (PIM), unlike other multicast routing protocols such
as DVMRP or MOSPF, does not depend on any particular unicast routing protocol.
PIM can cooperate with any unicast routing protocol. PIM has two modes: dense
mode and sparse mode. Dense modes are designed for networks densely populated
with members of a multicast group, while sparse mode is designed for network sparsely
populated networks. The dense mode is the same as DVMRP in that it makes sense to
flood the data to host, but the difference is that PIM does not depend on any unicast
routing protocol. PIM has its unique architecture [50, 48, 49].

Mbone

To do IP multicasting on the Internet, all routers in the Internet have to be multicast
capable, that is, each router needs to support multicast protocols such as DVMRP,
MOSPF, PIM or CBT. In addition, the routers connected to subnets need to support
IGMP. However, many of the existing routers on the Internet do not support any
multicast routing protocol.

This leads to a chicken-and-egg problem in the sense that, on one hand, IP multicast
cannot be deployed without the support of router vendors, while on the other hand,
the router vendor would not support IP multicast before the technology is robust.

The circular dependency was broken by building multicast-capable subnets at the

periphery of the Internet, and interconnecting them using IP tunnels. The main idea
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is to transmit IP multicast packets on the MBone encapsulated in regular IP packets
so that they look like normal unicast IP datagrams to the intervening routers. The
encapsulation is done in such a way that the tunnel endpoint receiving the encapsulated
packet knows that the payload of the IP packet is another IP packet. The tunnel
endpoint will then strip off the packet and forward the packet to local host, or re-

encapsulate again to the next hop.

3.3 Multicast Security

Securing multicast networks has become a lively area of research and a challenging
topic. The security challenge for multicasting is in providing an effective method of
controlling access to the group resources that is as efficient as the underlying multicast.
There are many different ways of looking at multicast security, and many different
security requirements depending on the application.

To use multicast for trusted communication, the multicast architecture should be
supplemented with mechanisms for protecting traffic, controlling participation, and
restricting access of unauthorized users to the data exchanged by the participants. In
other words, what is needed is a security architecture for multicast infrastructure.

Potential security threats to multicast communications are similar to those encoun-
tered in unicast transmissions. An adversary may eavesdrop on confidential communi-
cation, disrupt or distort a session data exchange, inject unauthorized or bogus traffic,
block a session progress, masquerade as someone else to join in a session or initiate and
operate a bogus session. However, because of the inherent broad scope of a multicast
session, the potential for attacks may be greater than for unicast traffic.

The nature of multicast presents new problems that cannot be effectively dealt
with using trivial extensions of techniques for secure unicast. For example, in unicast
communications, peers know the identity of the other part. In a dynamic multicast
session, on the other hand, knowing who are present within the session is typically not
guaranteed. Furthermore, the number of communication links traversed by wide-area
multicast can potentially be far greater compared with a single unicast, where the
communication path is a collection of links and nodes between just one source and
one destination. Therefore, multicast intrinsically creates more opportunity for traffic
intercepting.

The easiest way to ensure security in a group-oriented communication is to estab-

lish O(n?) secure unicast channels using IPSec [88, 89, 90]. However, this loses the
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advantage and the flavor of the multicast facility over unicast, and has additional over-
head. Also, there is no security control over who can register a session or who can
join or leave a session. From the above argument, one can appreciate the need for a
trusted multicast architecture to handle these security issues in a coherent manner and
to protect network services and applications [68, 95, 12]. Therefore, we conclude that
multicast communication is at a substantially increased risk and complexity compared
to unicast communication.

In the study of multicast security, one can establish a taxonomy of the distinguishing

security concerns, which can be listed in the following categories:

1. Multicast group characteristics: what the characteristics of the participant mem-

bers as well as their data are .

2. Group Key management: or how to distribute the group key securely to group

members in an efficient and secure manner.

3. Source Authentication: how to make sure of the identity of a participant host

from which the information originated.

It is worth mentioning another low-level but vital security issue in multicast, which
will not be discussed in detail: the security of multicast routing. Routing protocols dy-
namically configure the packet forwarding function in a network, which allows for the
continued delivery of packets in spite of changes in network topology. These changes
typically occur due to the ongoing emerging, failure, and repair of network links and
routing nodes which the protocols have been designed to accommodate. The com-
promise of the routing function in a network can lead to the denial of service attack,
the disclosure of network traffic, or the inaccurate accounting of network resources
usage. Current routing protocols, including multicast routing protocols such as MO-
SPF, DVMRP, CBT and PIM, contain few, if any, mechanism to provide security
for their operation. Securing routing protocols has been the subject of some studies
[69, 141, 148, 147].

3.3.1 Multicast group characteristics

There are a number of parameters that characterize a multicast group. These param-

eters crucially affect which security architecture should be used [31]. For example:

e group size can vary from a few to thousands of participants
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e member characteristics can vary from pocket to mainframe computers
e member joining to multicast group can be static or dynamic

e membership control center that has information about group membership, and

the life time of the group
e number and type of senders can be single or multiple parties sending data

e volume and type of traffic can be heavy traffic and with real-time arrival such as

online application

3.3.2 Group key management and distribution

Key management is the most challenging multicast security problem. The goal of key
management is to distribute the group key securely to the group members, who can
then use it to encrypt or decrypt the multicast data. The advantage of having a group
key is that a sender avoids having to encipher traffic individually for each receiver. Key
management deals with issues like bandwidth scalability, the number of key messages
exchanged with increasing group size, initializing the multicast group members with
group key, and re-keying the group members in case of joining or leaving. Specifically,

it deals with answers to the following problems:

How to authenticate potential group members

How to distribute the group key securely

How to revoke membership of leaving members

How to prevent joining members from access to past group communication

How to refresh the group key periodically

How to log for information and allow for external auditing

The problem of key management for group communication has been the topic of
many studies [110, 32, 163, 37, 151, 160, 78, 74, 127]. Some, if not all, of these proposals
suffer from drawbacks. The most common is the lack of scalability in the context of re-
keying. One case which requires group re-king is for membership revocation. This is an
essential security requirement, as an old group member must not be able to participate

in any of the group’s future activities. Also, a recent group member must not be able
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to access any of the past group activities. Therefore, re-keying and refreshing group
members at every change in group status, by joining or leaving members, is a complex
problem, and an efficient and scalable re-keying algorithm is required.

Because of their importance and in order to cover the important aspects of multicast
security, we give in the following paragraphs a brief overview of several key distribution
protocols. They could be categorized into manual, as in the first scheme; centralized,
as in the second; pairwise keying similar to the third one; or based on hierarchical

trees, as those in the last two protocols.

Manual Key Distribution

In this scheme, the symmetric key is delivered without the use of public key exchange.
The root of multicast session would distribute the group key and spare group key to
group participants through centralized physical intermediate locations. At predeter-
mined time or in case the group key has compromised, the spare group key is used
instead. Manual keying is not appropriate for dynamic sessions in which membership
is not defined prior to the start of the session. However, this scheme is useful in some

military environments with a well-structured key distribution architecture.

Key Distribution Centers (KDC)

There are several electronic mechanisms for generating and distributing symmetric
keys to several computers (for example, communication groups). These techniques
generally rely on a Key Distribution Center (KDC) to act as a group coordinator,
between the group members, in setting up the symmetric group-key. Military systems
such as BLACKER, STU- II/BELLFIELD, and EKMS, and commercial systems such
as X9.17 and Kerberos, all operate using dedicated KDCs. A group key request is
sent to the KDC via various means (on- or off-line). The KDC acting as an access
controller decides whether or not the request is proper, that is, all members of a
group are cleared to receive all the data on a group). The KDC would then call up
each individual member of the group and download the symmetric key. When each
member has the key, the KDC would notify the requester, and then secure group
communication could begin. While this was certainly faster than manual techniques,
it still requires considerable of set-up time. Also, a third party whose primary interest
is not the communication needs to become involved. KDC does not scale for wide-area
multicasting where group members may be widely distributed across the internet-work,

and a wide-area group may be densely populated.
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Group Key Management Protocol (GKMP)

The KDC protocol suffers from several problems. One essential problem is the setup
latency time especially when the site becomes overloaded. Because KDC provides
access control to every group, the workload is concentrated on one site and is subject
to a single point of failure, as well as being subject to performance bottleneck. Because
KDC also keeps valuable information, it is vulnerable to compromise, which makes it
attractive target for potential attackers.

Unlike KDC protocols, which depend on a central key distribution authority to
create and distribute encryption keys to participants, Group Key Management Proto-
col (GKMP) provides the ability to create and distribute keys within arbitrary-sized
groups without the intervention of a global/centralized key manager [79]. The GKMP
combines techniques developed for creation of pairwise keys with techniques used to
distribute keys from a KDC (i.e., symmetric encryption of keys) to distribute a sym-
metric key to a group of hosts. GKMP delegates the access control, key generation, and
distribution functions to the communicating entities themselves rather than relying on
a third party (KDC) for these functions. GKMP works for sender initiated multicast
protocols and receiver-initiated protocols.

For the sender-initiated multicast protocols, the GKMP operation starts by the cre-
ation of a the Group Key. The GKM application, operating on behalf of the originator,
selects one member of the group, contacts it, and creates a group key packet (GKP). A
GKP contains the current group traffic encrypting key (GTEK) and future group key
encrypting key (GKEK). The GKM application then identifies itself as the group key
controller, which the member validates, under cover of the GTEK. After creation of
the GKP, the group controller distributes the Group Key by contacting each member
of the group, creating a session key package (SKP), validating their permissions (check
member’s certificate against group parameters), and creating a group rekey. When the
group needs to be rekeyed, the originating GKM application selects a member, creates
a new GKP, creates a new GRP (which is encrypted in the previously distributed next
GKEK) and broadcasts it to the group.

For the receiver-initiated multicast protocols, the GKMP operation starts by the
selection of Group Key Controller, a group member who will be made responsible for
initial group establishment and periodic generation and dissemination of new GRPs.
There is no need for the selected controller to be the controller for all time, but at any
one time only one controller may be active for each group. Selection of controller may

be made through a voting system, by a simple default (the first to transmit to the
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group is the controller), or configuration. The group rekey and group redistribution is
essentially identical to the sender-initiated multicast protocol.

In general, GKMP is a complex protocol, but one of the essential concepts behind
it, is the delegation of group control to the group members. This avoids potential single

points of failure, communication congestion, and processor overloading.

Core Based Tree (CBT) Key Distribution

Network Layer multicast protocols such as DVMRP and MOSPF do not have their
own protocol header and so cannot provide security in themselves. They must rely on
whatever security is provided by IP. On the other hand, CBT multicast protocol makes
explicit provision for security: it has its own protocol header, which eliminates the
need for other security protocols such as IPSec to provide security services. A Scalable
Multicast Key Distribution (SMKD) scheme is built based on this architecture. CBT
is based on hard-state type of routers, that is, routers on the delivery tree know the
identity of their tree neighbors. The CBT architecture [13, 11] not only provides a
solution to the secure joining to the multicast tree, but also provides a solution to the
multicast key distribution. The key distribution algorithm can take the advantage of
the hard state by appending security information into hard state of the tree, such as
access control list, the group key, and the key encryption key. The algorithm contains
the following: (1) the initiating host first communicates, via asymmetric encryption,
to the Access Control List to a core router, which acts initially as GKDC; (2) the core
router generates the group key and the key encryption key; (3) when a new non-core
router joins to become a part of the multicast tree, the core router authenticates the new
non-core router and “passes” some functionality of GKDC to the non-core router using
asymmetric encryption; and (4) the multicast tree expands, the authenticated non-core
router further authenticates other new incoming non-core routers, and distributes the
security information such as group key and access control list. This approach is highly
scalable since each group has a group key distribution center, and is thus regarded as
a true distributed KDC. However, it is tied to a specific routing protocol, and does not
provide a separation between routing and security. One main assumption is made to
put trust on the routers, since each router in the delivery tree obtains the same keys

as the group initiated.



3.3. Multicast Security 47

K, / g\ K
Ka/ \Kb Kc/ \Kd
NN NN

Ky K, K; K4 Ks Ks K5 Kg

Figure 3.1: Hierarchical Tree key distribution

Hierarchical Tree key distribution

The Hierarchical Tree Key distribution of Wallner et al [160] is an efficient and scal-
able approach that supports dynamic group membership. It focuses on initializing the
multicast group with a common net key and rekeying the multicast group. It also
identifies techniques, which allows for secure compromise recovery, while being robust
against collusion of excluded users. Those features have not been addressed in other
multicast key distribution proposals. The objective of this scheme includes minimiz-
ing the time required for setup, storage space for each end user and total number of
transmissions required for setup, rekey and maintenance. In this scheme, the nodes are
arranged in a tree-shaped structure which is basically a root, intermediate nodes, and
the leaf. Each element of the structure holds a key supported by the key server of the
group. Each leaf holds a pairwise key established between the server and the member,
each intermediate node also holds a key generated by the server, and finally the root
holds the group key. The key server sends to each member (leaf) a sequence of keys
consisting of all keys on the path from the root to the leaf. To ensure security, each
key is encrypted with the previous key in the sequence.

For example, in Figure 3.1, user 3 receives intermediate keys K}, K., K,, where K,
is encrypted with K3, K, is encrypted with K}, and K is encrypted with K. If user 3
is to be expelled, then it requires the key server to generate the keys K, K., K,. Each
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new key is encrypted using its two immediate child leaves. In our case, K is encrypted
with Ky, K, is encrypted with both key K, and K,, and K, is encrypted with both
child keys K, and K;. Thus, given a group of size /N, each membership update rekey
requires log(N) number of key exchanges.

Although this scheme is optimal in terms of number of rekeying operations, Chu et
al [37] define two problems with this scheme. First, there is a security loophole where
the key server sends a rekey message but the senders it do not receive on time. As
a result, the sender continues to encrypt the message with the old group key. In the
meantime, a recent expelled member is still able to decrypt multicast data using the
old group key, which is considered a security violation. The second problem of this
technique is the failure of the algorithm in the presence of a long network delay or lost

messages.

3.3.3 Source authentication

The other distinguishing security problem in multicast is source authentication. Au-
thentication services provide assurance to a participating party of the identity and the
data of the sender. It guards messages against impersonation, substitution or spoofing.
Within the authentication process, a group member is able to verify that the group
communication originates from a source within a group; this is called group authentica-
tion. The process by which group members are able to verify the identity of the sender
of the data to the group members is called source authentication. Authentication is
also an essential part of any key distribution protocol. Applying an authentication
mechanism to transmitted multicast group data provides a strong level of integrity.

Loosely speaking, a scheme for message authentication should satisfy the following;:

e cach of the communicating parties can efficiently produce an authentication tag

to any message of his choice;

e each of the communicating parties can efficiently verify whether a given string is

an authentication tag of a given message; but

e it is infeasible for an external adversary (i.e., party other than the communicating
parties) to produce authentication tags to messages not sent by the communicat-

ing parties.

An ideal broadcast authentication protocol should be efficient for the sender and the

receiver, have a small communication overhead, allow the receiver to authenticate each
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individual packet, provide perfect robustness to packet loss, and scale to large numbers
of receivers. Some other issues which are related to authentication are ensuring non-
repudiation and providing anonymity services (that is, to hide the identity of the group
member). These requirements make an efficient authentication scheme in multicast
much harder.

Our focus in this thesis is on source authentication. In multicast, we can identify

four stages in which source authentication should be performed:

Joining mode

Currently, group membership management in IP multicast and anycast can be used
in order to launch denial-of-service attacks. The root of the problem is that routers
cannot determine if a given host is authorized to join a group. Therefore, some sort
of authentication protocol is needed to restrict the access to group members. The
authentication process should start from the beginning, when a host joins a multicast
group. This takes the form of one-to-one relationship between the host and multicast
group administrator or router. An important condition is that only legitimate users
are able to join the multicast group.

Their are two optional solutions for this problem:
e authentication with symmetric-key
e authentication with digital signature

With symmetric-key authentication mechanisms, there is no knowledge difference
between senders and receivers since they both use the same key. In other words, an
entity that is able to check the validity of a received message is also able to create valid
messages itself. This means that all participating IGMP entities must trust each other.
An IGMP host that receives a query message with a valid authentication value cannot
know, for example, whether this query really came from the querier or from another
host impersonating the querier.

With digital signature, it is possible to check the identity of the sender, and it is

always possible to check if the receiver tries to repudiate the original message to a third
party.
One-to-many mode

At this stage, a group member may need to send a message to the rest of the group

members. A recipient may need to verify if this message was sent from a legitimate
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group member. This takes the form of one-to-many mode.

A typical scenario of this sort of multicast communication is radio or TV broadcast-
ing. Most of the research on source authentication has concentrated on this mode. For
example, authenticating streaming applications are important and challenging prob-
lem. The problem of continuous stream authentication is solved for the case of one
sender and once receiver via standard mechanism such as IPSec. The sender and re-
ceiver agree on a secret key which is used in conjunction with a message authentication
code (MAC) to ensure authenticity of each packet of the stream.

In the case of of multiple receivers, however, the problem become much harder
to solve, because the symmetric-key approach would allow any one of the receivers
holding a key to forge the packets or claim it be the original sender. Alternatively, the
sender can use digital signatures to sign every packet with its private key. This solution
provides adequate authentication, but digital signatures are prohibitively inefficient.

Real-time data streams are lossy, which makes the security problem even harder.
With many receivers, we typically have a high variance among the bandwidth of the re-
ceivers, with high packet loss for the receivers with relatively low bandwidth. Moreover,
authenticity should take place even in the presence of packet loss.

The main features of an efficient broadcast authentication protocol are the following
[121]:

o Ffficient generation and verification. The generation and verification overhead
for authentication information should be small. It is important that the veri-
fication overhead is small, since a large number of receivers need to verify the
authentication information, and some receivers might have restricted computa-

tion power.

e [nstant authentication. Many applications such as stock quote broadcasts, are
delay sensitive, and require real-time data authentication. Thus, no packet buf-

feting is required at signing or at verification.

e Individual message authentication. The receiver can authenticate each individual

message it receives.

e Robustness to packet loss. Internet broadcasting is lossy in nature and many
application lost packets are not retransmitted. Hence, the authentication protocol

should tolerate packet loss.
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e small size overhead. Since each message is authenticated independently and in-
stantly, each message carries authentication information. The ideal scheme is the

once which holds the least size overhead.

e Scalability. Broadcast application have a potentially large number of receivers.

The authentication information should be independent of the number of receivers.

Many-to-one mode

Source authentication in multicast is not restricted to one-to-many communication.
Report-in style applications, polling data collection, auctions, and juke box usually
send their acknowledgment back to the sender in many-to-one mode. The original
sender (the receiver and verifier now) needs to check the authenticity of these messages.
The main problem which may face the verifier is the implosion of messages that need
to be authenticated. The receivers usually send back their acknowledgments almost
simultaneously; therefore, verification should be extremely efficient and fast to process

the large number of messages.

Intermediate nodes

In any communication network, authenticating a flow at transit nodes is preferred.
This is recommended to stop special sorts of attacks such as denial of service in their

early stages before they are propagated to the rest of the network nodes.

Multicast-related modes

Anycast address is a group address that is assigned to more than one interface. As
opposed to multicast, a packet sent to the address would not be routed to all members
of the group, but to the source’s nearest one only. A host that wants to join an anycast

group will have to use a group membership protocol.



Chapter 4

Authentication of Multicast Streams

We first classify the stream authentication problem in the multicast environment and
group them into signing and MAC approaches. A new approach for authenticating
digital streams using Threshold Techniques is introduced. The main advantages of the
new approach are in tolerating packet loss, up to a threshold number, and having a
minimum space overhead. It is most suitable for multicast applications running over
lossy, unreliable communication channels while retaining the security requirement. We
use linear equations based on Lagrange polynomial interpolation and Combinatorial

Design methods.

4.1 Introduction

Communication in a computer network may be established as a unicast or multicast
connection. In a unicast connection, messages are flowing from a single sender to a
single recipient. In a multicast connection, however, a single sender transmits messages
to many receivers. Distribution of pay-TV channels is typically done using multicast
communication. Protection of multicast messages normally includes both their confi-
dentiality and authenticity. However, in the majority of network services, confidential-
ity does not seem to be the main concern. Authentication of messages is normally the
main security goal. This is true in the Internet environment where most web pages are
publicly available while their authentication is the major security worry: the lack of
proper authentication is always an attractive target for hackers with an inclination for
practical jokes.

Source authentication is the main theme of this chapter. This problem has already
been addressed for unicast connections. For instance, the IPSec [90, 88, 89] protocol
suite or IP version 6 on the network layer supports source authentication. Higher layers
on the OSI reference model make use of authentication services provided by Secure

Socket Layer (SSL). Authentication is normally based on message authentication codes

52
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(MACs) generated using private-key cryptography, where the sender and receiver share
the same secret key. This approach cannot be easily extended to cover authentication
for multicast connections. Public-key cryptography offers an alternative solution for
authentication which is ideal for multicast communication; the transmitted message is
digitally signed by the sender (holder of the secret key) and everybody can verify the
validity of the signed message by using the matching public key. Unfortunately, both
generation and verification of digital signatures are very expensive as they consume a
large amount of computing resources. Additionally, digital signatures are excessively
long, normally more than 778-bits, consuming extra channel bandwidth.

Multicast is commonly used for many real-time applications such as multimedia
communication for distant learning and dissemination of digital video. Some distinctive

features of multicasting include:

e possible packet loss at some (or perhaps all) destinations, here there is no stan-

dard reliable multicast IP protocol yet

e the application tolerates some packet loss but does not tolerate an excessive delay.
Authentication of multicast messages (streams) has to

e provide strong security: no outsider is able to insert packets with forged contents;

all packets accepted at destinations have to be genuine

e tolerate loss of packets: any outsider or/and noisy channel may erase a strictly
defined number of packets. The number is typically determined by the applica-
tion. The application refuses to work correctly if the number of accessible packets

drops below the limit

e be fast and efficient

This chapter is structured as follows. Section 4.2 reviews related work. Section 4.3
describes the model and states the assumptions for a multicast environment in which
the proposed solutions are to be based. In Section 4.4, we present two schemes using
linear equations; and in Section 4.5 we present two schemes based on Combinatorial

Designs.
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4.2 Related Work

The naive solution to authenticate a digital stream is to sign each packet in the stream
individually. This way of authentication does not allow detection of the change of
order, loss, duplication, and so on. The receiver checks the signatures of packets as
they arrive and stops processing the stream immediately if an invalid signature is
discovered. Although immediate authentication is possible using this technique, it is
extremely inefficient and impractical since it incurs very high computational and space
overhead per packet. The problem is worst in broadcast communication.

There are many interesting works that deal with multicast stream authentication
(see [64, 31, 164, 122, 133, 67] ). The common feature and key idea to most of the
above techniques is to amortize a number of authentication operations in one opera-
tion, but they differ in their way of handling security or manner of authentication in
case of packet loss. The solutions proposed there can be divided into two broad classes.
The first includes solutions based on MACs (private-key cryptography). The second
employs digital signatures (public-key cryptography).

Gennaro and Rohatchi (GR) [64] used digital signatures to authenticate multicast
streams. They considered two cases: on-line and off-line. In the off-line version, they
used a chaining of packets. The digest of packet P; depends on its predecessor Pj,.
The first packet is signed using a one-time signature. This technique is efficient and
introduces a minimum packet redundancy but does not tolerate packet loss. In the
on-line version, each packet is signed using one-time signature and the packet contains
the public key that is used to verify the signature of the preceding packet.

Wong and Lam (WL) [64] applied Merkle signature trees to sign a stream of packets.
In this scheme, a block of packets are buffered to form a leaf of a tree, in which the
message digests of the packets are computed and the root of the tree is signed. The
root is the hash of all message digests of the block. Each packet attaches the hashes of
other packets in the block as well as the root of the tree to form ancillary information.
The number of attached hashes depends on the degree of the tree. They use star,
two-level tree, and full binary tree. The scheme is designed to run at sufficient speed
for real-time applications, to add a bearable space overhead from authentication data,
and to tolerate packet loss gracefully. It was argued in [4] that this scheme increases
per-packet computation with packet loss rate, especially in the case of mobile receivers
that have smaller computational power and thus have higher packet loss. In their work

they tried to overcome this shortcoming by proposing an enhanced scheme.
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Rohatchi [133] extended the idea of [64] by computing hash values ahead of time to
reduce the time delay for signing a packet. He extended the one-time signature scheme
to a k-time signature scheme, and reduced the communication and space overhead of
one-time signature scheme. The scheme uses 270 bytes for signature, the server has
to compute 350 off-line hash values, and the client needs 184 hash values to verify the
signature.

MACs were used in [31] and [122]. As we mentioned earlier, using MACs for
multicasting needs special care. The scheme of Canettie et al uses asymmetric MAC.
The idea behind this technique is that the sender holds n keys and shares half of
these keys with each receiver of a group such that no two receivers hold the same set
of keys that are held by another receiver. The keys are distributed in such a way
that it guarantees that no receivers up to W could collide to reveal the n keys held
by the sender; otherwise it would violate the security condition of the scheme. The
sender sends a packet attached with n number of MAC’s per packet, while the receiver
verifies only the MAC’s in the packet that holds its corresponding keys, and ignores
the rest. This solution does not suffer from the packet loss problem, and each packet is
authenticated individually. However, it suffers from the space overhead incurred from
extra digest messages attached to each packet.

Another proposal based on MACs is used in Tesla [122]. It uses MACs with delayed
key disclosure sent by the sender using a chaining technique on a periodic basis. The
idea is to let the sender attach to each packet a MAC, which is computed using a
key k£ known only to it. The receiver buffers the received packet without being able
to authenticate it. In time period d, which is set in advance, the sender discloses the
key k that is used to authenticate the buffered packet on the receiver side. Packets
that are received after the time period are discarded. Actually, the key k is used to
authenticate all the packets in the period interval d. The sender and receiver have to
synchronize their timing to ensure correct key disclosures.

Golle and Modadugu (GM) in [67] exploit the idea in [64] and introduce a scheme
which resists a random packet loss rather than worst-case packet-loss. They prove that
their scheme is resistant to burst packet loss given the resources available to the sender
and the receiver, and that it has the lowest communication overhead among other the

proposals.
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4.3 The Model

Messages we would like to authenticate come from a single source and are distributed
to multiple destinations (multicasting). Authentication by signing the whole message
is not an option when the message is very long or, alternatively, if the transmission
of the message may take an unspecified period of time (the length of message is not
known beforehand). Real-time live TV communication is of this type. On the other
hand, a vendor who offers a video channel normally knows the length of the transmitted
message, so the verification of message authenticity could be done at the very end of
the movie, but it can fail with a very high probability in case of some lost or/and
existence of corrupted packets (multicast connections are not reliable).

Given a long message M (also called a stream), the message is divided into blocks
of well-defined size, each block consisting of n datagrams (packets). Assume that the

stream is authenticated by signing blocks. There are two possibilities:

1. blocks in the stream are signed independently; attackers may change the order
of blocks without receivers noticing it. To prevent this, blocks may contain the
sequence number or other time-stamped information. This possibility is suitable
for applications that tolerate loss of blocks. For instance, for live TV, loss of a

block is typically perceived as a momentary freeze of the frame;

2. blocks are signed in a chaining mode; the signature of the current block depends
on its contents and on all its predecessors. Attackers are no longer able to ma-
nipulate the order of blocks. Loss of a block, however, makes authentication of
all blocks following the lost block impossible. This option suits applications that

do not tolerate loss of blocks.

Consider a block B which consists of n datagrams so B = (my,...,m,). Our

attention focuses on authentication of a single block so that:

1. verification of authenticity of blocks is always successful if receivers obtain at
least t datagrams (out of n sent); authentication tolerates loss of up to d =n —t¢

packets,

2. expansion of packet contents is minimal; redundancy introduced to the block is

minimal under the assumption that authentication tolerates loss of d datagrams;

3. generation of signatures and their verification is efficient, that is, computing
resources consumed by them is reasonable (in other words, the delay caused by

them is tolerable by the applications run by receivers).
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The last point needs further elaboration. The sender (source) is normally much
more powerful than recipients. If this is true, then authentication can be performed as

follows:

e a powerful sender generates (expensive) digital signatures independently for each
block;

e a receiver applies batch verification of signatures, that is, merges signatures of

blocks and the result can be verified as a single signature.

This solution is quite attractive, especially for applications which tolerate longer delays,
in which the validity of blocks can be asserted only after receiving the last signature in
the batch. However, this solution must be applied with extreme caution as attackers
may inject invalid signatures and false messages which will cancel each other in the
batch (the verification process gives OK when, in fact, false blocks have been injected
to the stream).

More formally, the stream authentication scheme is a collection of three algorithms:

e (Sk, P,) = GEN(1Y): is a key generation algorithm that generates the secret-key

Sk and the corresponding public-key Py, based on some security parameter v,

e A = AUTHEN(B, Si): generates authenticator A for a block B with the aid of the

sender secret key Sy,

e Ver(B, A, Sy): verifies authenticator A which is attached to the block B using
sender’s public key Py. The result is binary and can be either OK or FAIL.

The scheme must :

e tolerate loss of packets within the block: any ¢ out of n packets allows the running

of the algorithm Ver, which can generate either OK or FAIL

e be secure: any malicious/accidental change of either contents or order of packets

within the block must be detected by receivers,

e introduce minimal redundancy to the block B, or in other words, the bandwidth

expansion should be minimal

e be efficient: execution of both algorithms AUTHEN and VER should consume a
small amount of computing resources (if the sender is powerful, then efficiency of
AUTHEN is not crucial). The above requirements are typically referred to as the

design goals.
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4.4 Stream Authentication Based on Linear Equa-

tions

We start from the following authentication scheme, which authenticates a single block
B using a digital signature generated for the hash value of the block B. The verification
algorithm can be run if all hash values of packets are available. In our scheme, ¢ hash
values are obtained directly from packets (we assume that ¢ packets from the block
have arrived safely at the destination). The missing d hash values are computed from

the information attached to an extra packet m,,. Specifically,

- n: is the total number of packets to be sent in a block B.

- t: is the threshold number of packets needed to arrive safely at the destination
in order to be able to authenticate the whole block B

- d: is the number of packets in the block B that is tolerated to loss.
Therefore, the relation between the above parameters could be formulated as:

n=t+d, d<t<n.
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4.4.1 Scheme 1

AUTHEN (B, Sj,):

. Divide the message block B into n datagrams my,...,m,

. Create h; = H(m;) for i =1, ..., n where H is a collision resistant

hash function such as SHA-1

. Form a polynomial F(z) =", hja'*

and compute d control values F(j) for j =1,...,d, where d <t

. Compute the message digest D = H(hq,...,hy)
. Sign the computed value D using a strong cryptographic signature Sigy

. Return datagram:

Mgy = F(L), ..., [|F(d)]|Sigr(D, Sg),

where

Sigk(D, Sk)

is the digital signature generated in step 5.

Ver (B, M1, Pr):

. The block must contain at least ¢t datagrams, where ¢t < n.

If this does not hold or m,; does not exist, the algorithm returns FAIL

. If the number of packets in the block is at least ¢, then order the datagrams

correctly so that the sequence is identical with the one in the source

with at most d missing datagrams

. Find all the hash values h; for the packets from B.

Note that at least ¢ hash values are generated.

. Compute the missing hash values for lost datagrams from the d control values

F(j), where j = 1,...,d. In other words, solve the system of linear equations

generated from the control values.

. Verify the signature using a native (to signature) verification algorithm and the

public key of the sender. If the signature is correct, return OK; otherwise, exit
FAIL.
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Consider the design goals. The first goal, tolerance for packet loss, is not achieved.
The scheme works only if the (n + 1)-th packet containing control values arrives at
the destination. Consider the case when ¢t < n packets arrive safely at the destination
together with the last packet m,.;. Without loss of generality, assume that these
packets are my ... m;. The receiver can run the verification algorithm VER if it is able
to compute the digest D of the whole block. To do this, it must be able to recover
the hash values of all packets. First, they compute values directly from the available
packets. Next, they compute the missing ones from the control values accessible in the

(n + 1)-th packet. In other words, they solve the following system of linear equations:

F(l)—a1 = ht+1+---+hn

F(2) —ay = hyy x28+...+h, x 27!

F(d)—ag = hyr xd + ...+ h, xd" !

where

ar = hi + hor + ...+ hyrt™!

for r=1,...,d.
The above system of linear equations always has a solution as that characterized by
a Vandermonde matrix that is always nonsingular (whose determinant is nonzero).
Having all hash values, the receiver computes the digest D of the block B and verifies
the signature (using the sender’s public key).

We believe that the security of the scheme is equivalent to the security of the
underlying digital signature (assuming that the hash function is collision resistant). To
see this, it is enough to note that the only difference between the underlying signature
and the signature used in the stream authentication scheme is the way the verification
is being performed. For stream authentication, the verifier computes at least ¢ hash
values from packets that safely arrived at the destination, while d (or fewer) missing
ones are computed from the control values. For the original signature scheme, the
verifier computes all hash values directly from messages.

Data expansion is indeed minimal as the receivers get the minimum necessary in-

formation to successfully run the verification algorithm. This statement is true on the
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assumption that hash values are much smaller than the payload of datagrams. In prac-
tice, the length of a hash value is 128 bits (for MD5)" or 160 bits (for SHA-1) while
the maximum length of packets in X-25 is 8192 bits.

4.4.2 Scheme 2

As noted, the scheme considered above is not tolerant of the loss of packets. More
specifically, the absence of the (n+ 1)-th packet precludes the receiver from getting the
system of linear equations, which are necessary to generate the digest D of the block
B.

The algorithm in the next pages presents the second scheme, which does tolerate a
loss of d packets. The main idea is to distribute the content of the (n + 1)-th packet
among other packets using a system of linear equations (in a fashion very similar to
what has been done for hash values).

The only aspect of this scheme which needs some clarification is how the receiver
reconstructs the redundant message R, or equivalently finds the polynomial R(x).
Note that the receiver knows at least ¢ points lying on the polynomial R(x). As
the polynomial is of the degree (¢ — 1), any ¢ different points uniquely determine a
polynomial, which contains that points. This can be done very efficiently using the

Lagrange interpolation.

IMD5 is a no more secure message digest algorithm
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AUTHEN (B, Sy) :

1. Divide the message block B into n pieces:

my, ..., My

2. Compute:

forte=1,...,n  and the block digest
D:H(hl,,hn)
where H is a collision resistant hash function.

3. Create a polynomial:

F(z)=> hz'!
i=1

4. Form a redundant message:

k= (FOIF@)....[[F(d)]Sig(D, Sk))
and split it into ¢ pieces of the same size, i.e.
R=by,...,0i_1
where Sigy is a strong cryptographic signature s.
5. Create a polynomial:
R(x) =bg + bz +...+b_ 2"

and define n control values R(1),..., R(n) that are assigned to respective data-

grams.

6. Return the sequence of datagrams each of the form for i =1,... n.
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Ver(B, P) :

1. The block B must contain at least ¢ datagrams. If this does not hold, the

algorithm returns FAIL.

. If the number of packets in B is at least ¢, then order the datagrams correctly so

the that sequence is identical with the one in the source with at most d missing

datagrams.

. From each datagram extract the contents and the corresponding control value

R(i).

. Find all the hash values h; for the packets from B. Note that at least ¢ hash

values are generated directly from m;.

. Assemble a system of linear equations from the available control values R(i),

solve it and determine the redundant message:

R = (bg,...,bt_l)

. Extract the control values F'(i;) for the missing j and reconstruct the hash

values of missing datagrams.

. Verify the signature using a native (to signature) verification algorithm and the

public key of the sender. If the signature is correct return OK; otherwise, exit
FAIL.
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4.5 Stream Authentication Based on

Combinatorial Designs

In this section, combinatorial design methods will be used to distribute message digests
in each of the packets in such a way that all message digests are retrieved when at most

d packets are lost. Two methods are represented here.

4.5.1 Balanced Incomplete Block Design

The arrangement of the message digests into the packets uses the combinatorial tech-
nique of Balanced Incomplete Block Design (BIBD) [71]. A BIBD (v,b, k,r,\) is an
arrangement of v distinct objects into b blocks such that each block contains exactly &
distinct objects, and each object occurs in exactly r different blocks. In BIBD, every
(unordered) pair of distinct objects occurs together in exactly A blocks. In our case,
the objects are the message digests, and the blocks are the packets. The problem is
to distribute the v message digests into the b packets in such a way that each message
digest appears in r packets, and each packet holds & different message digests. By the
very definition of BIBD, if up to d = r — 1 of such packets are lost, we can still retrieve
all the £ message digests from the remaining ¢t = v — d received packets.

As an example, suppose we have v = 7 message digests that need to be distributed
over b = 7 packets. Then, a BIBD (7, 7, 3, 3, 1) will allow us to retrieve all the 7
message digests from any ¢t = 5 of the received packets (i.e. 30% packet loss), as the

following listing of the packets shows (the message digests are coded to integers 0 . ..6):

Py: 0,1,3
P :1 2 4
P: 2 3,5
Py 3, 4,6
Py: 4,5 0
Ps: 5 6,1
Bs: 6,0, 2

This special case when v = b is called the Symmetric Balanced Incomplete Block
Design (SBIBD). The necessary condition for this sort of design is AM(v — 1) = k(k —

1). Since in our applications, the number of message digests is always equal to the
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number of packets, and as each packet has a corresponding message digest, we will
always exclusively deal with SBIBD in these applications. Note that it is possible to
further reduce the number of message digests in the above example in each packet to
2 messages, since it is possible to compute the message digest of the holding packet

directly from the packet itself. The enhancement is as follows:

F: 1,3
P2 4
Py: 3,5
P;: 4,6
Py: 5 0
Ps: 6,1
FPs: 0, 2

There are many ways of constructing SBIBD designs that are found in the literature
and for different choices of parameters. Our choice was focused on the design that yields
the highest ratio of k£ to v, that is, the minimum number of message digests that needs
to be carried by each packet, relative to the total number of packets that need to be
present to authenticate a block. In other words, we are looking for a high ratio of
packet loss while still able to authenticate the block. Colbourn and Dinitz [38] list
over 12 families of SBIBD(v, k, A) designs for various values of parameters. One of these
families refers to Hadamard designs, and they correspond to designs with parameters
v=2"—1,k=2"1—1and A\ = n—1. A Hadamard SBIBD design exists if and only
if H(4n) exists, where H is a Hadamard matrix of order n x n. The ratio of k to v is
as high as approximately half, which means it is possible to authenticate the block in
the presence of half of the packets of the block (i.e. 50% packet loss).

To construct a Hadamard matrix for a group of 2" packets, the matrix is normalized
by suitable row and column negations. Removing the first row and column leaves a
2n=1 % 2"=1 matrix, the core of the Hadamard matrix. Replace all -1 entries with 0
entries, the result is an SBIBD(2"7!,2"~! n —1). The 1 entries actually represents the
arrangements of the v entries (message digests) over b (packets). These matrices designs

could be prepared according to the proper sizes and selected during the implementation.
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To construct such a method, a number of packets of size 2" are grouped to form a block.
Then, a Hadamard matrix of order 2" x 2" is constructed. Finally, message digests are
assigned to the corresponding packet index in the block according to the Hadamard
matrix [58].

One advantage of the SBIBD approach is that there is no additional computation
overhead cost involved in computing the threshold parameters and retrieving them by
sender and receiver. The additional space overhead is minimum compared to other

techniques as in [31, 164].

4.5.2 Rotational Designs

Another dynamic, simple and easy way in which it is possible to control the degree of
the threshold is by using Rotational Designs. The example in Table 4.1 demonstrates

the distribution of 6 message digests over a block of 7 packets.

Packet Number | Attached Message Digests
0 11213415 6
1 2(3|4|5|6 0
2 314151610 1
3 415|601 2
4 506012 3
5t 6(0[1(2]3 4
6 0(1]2(3]|4 5

Table 4.1: Distribution of message digests using SBIBD

In this distribution, v = b =7 and kK = r = 6. The column represents the packet
number and message digests of packets it holds, and the rows represent the message
digests distribution over packets. Now, if we want to apply the threshold scheme and
require only one space overhead per packet but with high availability (i.e. one packet
loss maximum), then the first row only of table 4.1 will be distributed. If, however,
two message digests are attached to each packet, then a maximum of two packets are
tolerated to loss. Therefore, the first and the second row distribution will be applied
only and so on. The distribution in Table 4.1 is the worst case, and typically used in the
Wong and Lam scheme [164]. Formally speaking, each packet holds the message digests
of the rest of the packets in the block, and consequently each block is authenticated
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individually. Obviously, their solution suffers from space-overhead (large packet size)
resulting from appending the message digests to the original packet, and this is even

worse when counting the block signature space.

4.6 Comparative Analysis

In this section, we evaluate the efficiency of our two methods of stream authentication
protocols by setting a comparison of the performance against other known or standard

algorithms.

4.6.1 Linear Equations method

It was argued at the beginning of this chapter that using typical digital signature for
authenticating digital stream by signing each packet in a block of stream is an expensive
operation. Rather, we proposed using linear equations. To illustrate this, we compare
the complexity of our proposed protocol in Section 4.4 against the complexity of the
Digital Signature Algorithm (DSA). We choose ElGamal [57] digital signature as one
of the algorithms which belongs in this category.

ElGamal signature generation for a generator «, a secret key k, and random prime
p is relatively fast, requiring one modular exponentiation (a* mod p), the extended
Euclidean algorithm (for computing £~ mod (p — 1)), and two modular multiplica-
tions. Modular subtraction is negligible when compared with modular multiplication.
The exponentiation and application of the extended Euclidean algorithm can be done
off-line, in which case signature generation (in instances where precomputation is pos-

sible) requires only two (on-line) modular multiplications [107].

ElGamal signature verification is more costly, requiring three exponentiations. Each

3
2

average, for a total cost of g[log p| multiplications. Signature verification calculations

exponentiation (using naive techniques) requires 2[log p|] modular multiplications, on
are all performed modulo p, while signature generation calculations are done modulo p
and modulo (p — 1) [107]. The total cost of ElGamal signature to sign a single packet
for both generation and verification equals 5 modulo exponentiation operations which
is equal to (5% (9/2) x log(p)). If a block B contains n = 512 packets, then the total
cost for signing and verifying the block for p = 512 equals 512 x (5 x (9/2) x log(512)).



4.6. Comparative Analysis 68

Now, the calculation of the complexity of our scheme is derived by computing the
cost of generating the control packet which requires d evaluations of polynomial of
degree n. This can be computed by Horner’s method [29], yielding complexity of d xn
multiplications.

The cost of verification can be derived by solving a system of linear equations of the
values held in the control packet m, ;. This packet holds all the information needed
to recover the authentication information of the d missing packets needed to verify the
arriving ¢ packets. Specifically, the cost of solving a system of linear equations using

Gauss-Jordan Elimination [29] requires a number of multiplications which equal to

%+ﬁ—% (4.1)
We also add to the equation 4.1 the cost of signing the value D by ElGamal signa-
ture, which has a cost of 5 modulo exponentiations. Also, we add 2(d * n) multiplica-
tions, which is equivalent to the cost of solving a system of d linear equations with the
same number of unknowns.
d? 5d

5+ - 3+2(d*n)+5((§) log ) (4.2)

Our goal is to estimate the highest d which makes our scheme better in cost than
ElGamal signatures. By running a computer program, for a block B of n = 512 packets,
and for p = 512, we find that our scheme is better than ElGamal if d < 216, that is,
when setting the loss of packets in a block for a maximum 40% of the total size of the
block. Otherwise, ElGamal signature would be rather less expensive in total. This also

logically means that, when increasing d, then the complexity tends to increase.

4.6.2 Combinatorial Design method

We compare our protocol SBIBD with the proposed protocols found in Section 4.2,
namely Wong and Lam (WL), Tesla, Gennaro and Rohatchi (GR), and Gole. Note that
the scheme proposed in (WL) came in three basic flavors depending on the ancillary
information which is organized within a group of packets. Note also that Tesla uses a
keyed hashing method.

To establish a common platform, consider a stream that is divided into blocks of
16 packets. Assume that all the protocols run a hashing algorithm which produces 20
bytes as a message digest (regardless of keying or non-keying algorithms). Assume a
single digital signature is generated by the sender and verified by the receiver for each

block. The following table summaries the comparison:
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Scheme | Signature | Hash | Overhead Loss Delay
WL star 1 17 340 any 0
WL tree 1 21 160 any 0

Gole 1 16 43 burst 16
Tesla 1 17 40 any 0
GR 1 16 20 no 0
SBIBD 1 16 120 threshold 7

Table 4.2: A Comparison of multicast authentication schemes

Legend: WL: Wong & Lam, GM: Golle & Modadugu, GR: Gennaro & Rohatchi

e Signature: the number of signing operation per block
e Hash: the total number of hashes computed by the sender
e Overhead: the overhead per packet in bytes

e Delay: the delay (in number of packets) on the receiver side before authentication

is possible
e Loss: possibility of authentication in loss of packets scenarios

Each of the above protocols has a side effect. For example, although Tesla is efficient
and versatile, its main drawback is that it requires time synchronizing between the
sender and receivers (with some margin). Keys are disclosed in a time interval after
sending the packet to the receiver. As a prerequisite security condition of the protocol,
a receiver must obtain a packet before the next packet can be sent from the sender.
The basic Tesla protocol does not provide non-repudiation security service since it
uses MAC. An improved version of Tesla was introduced also in [122]; this provides
non-repudiation using a digital signature.

GR is extremely efficient, but its drawback is that it is not resistant to packet loss.
The GM approach is elegant, but it has a delay time equal to the entire block size. Our
threshold approach of SBIBD is similar to GM, but it has less delay time, with higher
overhead size. SBIBD threshold delay of verification still has less overhead size than
the WL approach. Our approach can tolerate packet loss up to a threshold number
equal to almost half of the block size.

WL provides an important feature in permitting immediate authentication per
packet without buffering a range of packets before authentication could be possible.

The penalty is in high space overhead carried in each packet.
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SBIBD, as a threshold approach, is an intermediate solution between the WL and
GR approaches. It allows average packet overhead and average waiting time (presence
only of half of the block packets before start authentication i.e. 50% packet loss). Also,
it is flexible because of the ability to control the overhead in advance.

We emphasize on the observation in [31], and draw the following conclusion: in
multicast applications, no single security protocol could fit all the scenarios of the
diverse applications. For instance, some of the authentication protocol may work more
efficiently in special environment than other protocols. For example, the GR approach
may be an excellent option in a connection-oriented communication network, where
packet loss is rare. The GM approach may be suitable in networks with bursty losses
of packets. SBIBD, as an example of the threshold approach, has the main benefit
in its dynamic behavior. That is, it can be tuned to, according to the environment
of the application. If the packet loss is high, the packet can be turned to hold more
ancillary information. On the other hand, in error-free communications or virtual-
circuits networks such as ATM networks, which guarantee quality of service packets
can be tuned to carry less ancillary information.

The proposals above focus on handling the efficiency rather than security since
most of the security of these approaches depends on the underlying digital signature or
keyed-hashing. GR, for example assumes an efficient one-time signature. Tesla, on the
other hand, uses keyed MAC, and has a special mechanism to handle key disclosing.
There are other security concerns. For example, since authentication is block-based, an
attacker may manipulate the order of the blocks. Consider a piece of information that
needs to be treated as one object with other pieces of information (for example, salary
with employee name), but which is found in packets that happen to be on different
blocks. Reordering the blocks may delude to produce an authentic block, but in fact
the information has not been correctly represented. Hence, sequencing the blocks and
ordering is a necessary condition for methods which use blocks for authentication.
Also, in the block-based authentication schemes, because a stream is divided evenly or
randomly, each packet or block does not have any physical meaning itself. Therefore,
the receiver may not get correct, useful information from a single packet or block unless
its context (previous and following packet/block) is correctly received. When a packet
is lost, its contiguous packets or blocks may not be usable. Wu, Ma and Xu in [165]

suggested an object-based streaming authentication solution to solve this problem.
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4.7 Summary

Streaming applications such as pay-TV have become very popular in recent years.
Using multicast infrastructure is the best platform to transport this sort of application.
However, authenticating the source of the multicast is a major concern. The problem
has already been addressed in a number of proposals. In this chapter, we first classified
these proposals; then, we investigated the problem in an unreliable communication
environment. Different schemes based on threshold methods have been proposed. The
threshold method provides flexibility in controlling the amount of ancillary information
needed to be carried in a packet. The schemes try to avoid the drawbacks of other
proposals. In general, they have less overhead space and can tolerate packet loss up
to a threshold number. In fact, it is difficult to have a single protocol that can fit the
diverse scenarios of multicast. Therefore, the diversity of protocols in multicast is not

strange.



Chapter 5

Authentication of Concast Communication

In this chapter we consider the problem of finding an efficient signature verification
scheme when the number of signatures is significantly large and the verifier is relatively
weak. In particular, we tackle the problem of message authentication in many-to-one
communication networks, known as concast communication.

The chapter presents three signature screening algorithms for a variant of ElGamal-
type digital signatures. The cost for these schemes is n applications of hash functions,
2n modular multiplications, and n modular additions plus, the verification of one digital
signature, where n is the number of signatures.

The chapter also presents a solution to the open problem of finding a fast screening

signature for non-RSA digital signature schemes.

5.1 Introduction

One of the greatest outcomes of the invention of public-key cryptography [56] is the
digital signature. It creates a sort of digital encapsulation for the document such that
any interference with either its contents or the signature has a very high probability of
being detected. Because of this characteristic, the digital signature plays an important
role in authentication systems. Since digital signatures are transmitted in public chan-
nels, they are subject to a variety of attacks, and therefore the verification of digital
signatures is a common practice. A verification of digital signature needs to apply a
particular (in general, a publicly-known) algorithm. So, a digital signature scheme is

a collection of two algorithms, and it must have the following properties:

1. The signing algorithm Sig, : K x M — X generates a signature o = Sigy (M),
where M € M is a message, K € K is the secret key of the signer, and X is the

set of all possible values of the signatures.

2. The signing algorithm executes in polynomial time when the secret key K is

72
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known. For an opponent who does not know the secret key, it should be compu-
tationally intractable to forge a signature, that is, to find a valid signature for a

given message and for a given signer.

3. The verification algorithm Vj : k x M x ¥ — {yes, no} takes public information
k € K of the signer, a message M € M and a given signature o € X of the
message M. It returns “yes” if o is the signature of the message M; otherwise it

returns “no”.

4. The verification algorithm, in general, is a publicly known (polynomial time)
algorithm. Therefore, anyone can use it to check whether a message M matches

the signature o or not.

Several digital signature schemes, for different purposes, have been introduced in
the literature of public-key cryptography. In original digital signature schemes (e.g.,
[132, 57]), both parties of the system (the signer and the verifier) are individuals. The
invention of society and group oriented cryptography [52] led to the generation and/or
verification of digital signatures by a group of participants rather than individuals
(see, for example, [27, 54, 75, 45]). In almost all of these digital signature schemes,
the generation /verification of a signature requires the performance of some exponentia-
tion. Since exponentiation is a costly operation, the design of efficient digital signature
schemes (from both the generation and verification points of view) has been the sub-
ject of investigation by many researchers (see, for example, [61, 138, 55, 40]). The
efficiency of the system is of paramount importance when the number of verifications
is significantly large (e.g., when a bank issues a large number of electronic coins and

the customer wishes to verify the correctness of the coins).

5.1.1 Related Work

In our schemes, verification of a digital signature implies also modular exponentia-
tion. Thus, previous works on improving the performance of modular exponentiation
[28, 135] and batch verification of modular exponentiation [60, 15] are highly relevant
to this work. Bellare et al in [15] introduced new technique for batch verification
using modular exponentiation. In their work, a batch instance consists of a sequence
(x1,91),s - - - (Tn, yn), and the query is whether or not y; = ¢* for alli = 1,...n (where
¢ is a primitive element in a group). Their proposed algorithms solve this problem

with an error probability of 27¢ for a predetermined parameter /.
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They have also considered batch verification for the RSA signatures, where the
verification relation is modular exponentiation with a common exponent. That is, given
a sequence of pairs (M;, 0;), one would like to verify the ith signature by checking that
of = H(M;) mod N, where H(.) is a hash function and e, N are the RSA public key
and modulus respectively. In their solution to this particular case (also called screening

algorithm) the batch instance (M;, 0;), i = 1,2,...,n passes the test if

(1:11 a> - i:ﬁlH(Mi) (mod N).

It is obvious that the batch instance (M, za), (M, x/«) is incorrect, but it passes their
verification test. However, they have shown that this is not really a problem from a
screening perspective, since one wants to make sure that M has been sighted by the
legitimate signer, even though the signature is not correct. They have proved that if
RSA is one-way, then an adversary cannot produce such a batch instance that was
never signed by the signer but still passes their test.

Note that, in their work [15], fast screening algorithms for other signature schemes
and several other issues have been left as open problems.

Batch verification is a useful technique for our solution to the concast scenario as

it is described in Section 5.2.

5.1.2 Concast Scenario

Multicast is a one-to-many communication mode that has greatly interested the re-
search community in the past few years as a tool for delivering messages to a group of
recipients in an efficient way. The main benefit behind deploying multicast is that it
minimizes the bandwidth utilization in the already congested network [55, 6].
Multicast communication is usually not a one-way direction communication. A
group of recipients, in reliable multicast applications for example, may contact the
sender as a feedback acknowledgment. A wide range of many-to-one applications
also includes shared-whiteboard, collaborative applications, and report-in style appli-
cations. This sort of many-to-one communication is known as concast communication.
The well-known mplosion problem in broadcast communication is addressed here.
The problem occurs when a receiver is overwhelmed with messages from different
senders and has to process them efficiently. The problem of implosion could be worse if
the signature verification is required to authenticate a group of messages. In this case,

an efficient authentication scheme is required to alleviate the burden on the receiver.
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Therefore, concast communication can be considered, from the security perspective, as
a many-signers/one-verifier problem.

In this chapter, we present different schemes that solve this problem. Our first
scheme works with the help of a trusted combiner. The second scheme works with
no help from a trusted party, but requires interaction between signatories. The third

scheme, however, minimizes the interaction between parties in the system.

5.2 The Model

Given a sequence of signatures (M, 01), ..., (M,, 0,), a recipient, with relatively small
computing resources accessible to him, wishes to verify these signatures. The naive
method is to verify each signature individually and to accept the whole set if all signa-
tures pass the verification algorithm. Obviously, this is a very time consuming task and
is not applicable for a recipient with small computing power. An alternative method
could be to use the batch verification strategy, in which a randomly selected subset of
signatures is verified, and, if that subset passes the verification, then we accept (with
some probability) that the whole sequence will pass the verification algorithm. How-
ever, this technique might only be acceptable if there is an efficient and trusted entity
between the receiver and the senders.

A desirable solution could be if the verifier can perform a signature screening and
accept the whole set of signatures if they pass the test. In other words, screening
is the task of determining whether the signer has at some point authenticated the
text M;, rather than the task of checking that the particular string o; provided is a
valid signature of M;. Note that the screening technique of [15] does not seem to
be applicable for RSA based signatures in a concast environment. In Section 5.5, we

present a signature screening for a variant of ElGamal [57] type digital signatures.

5.3 Components of the System

This section considers the basic tools which we will use for the implementation of our

schemes.

5.3.1 Communication Channel

Each signer and the verifier is connected to a common broadcast medium with the

property that messages sent to the channel instantly reach every party connected to
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it. We assume that the broadcast channel is public, that is, everybody can listen to all
information communicated via the channel, but cannot modify it. These assumptions
for this model of communication channel may seem somewhat unrealistic (i.e. does
not fit the Internet or cellular network). However, the purpose of these assumptions
is to focus on the proposed protocol at a high level. It is worth noting that these
assumptions can be substituted with standard cryptographic techniques for achieving
privacy and authenticity using for example signcryption primitive (e.g., see Section
9.5).

5.3.2 Signature Scheme

We employ a variant of ElGamal-type digital signature, which is a slightly modified
version of a signature that has been used in [116]. Let p,q be large primes such that
q/(p—1), and let g € Z, = GF(p) be an element of order ¢. Let H(.) be an appropriate
hash function that hashes messages of arbitrary length into an element of Z,. Also let
x; € Z, be the secret key and y; = ¢%  (mod p) be the public key associated with user
u;. The values p, q, g, y;, and the hash function H(.), are the common parameters in

the network.

Signature Generation:
In order to sign a message m = H(M) € Z,, the signer chooses a random & and

computes

r = mg* (mod p) (5.1)

s = k—r'z; (modq) (5.2)

where 7' =7 (mod gq).
Verification:

The verifier accepts the signature (M, s, r) if the following equation holds true:
H(M) = g*y; v (mod p) (5.3)

else, return L (fail indication).
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5.3.3 An Approach to Digital Multisignature

In society and group oriented cryptography, it is required that a cryptographic trans-
formation be performed by a group of participants rather than an individual. Let
U ={u,...,u,} be the set of all users and assume that the group policy requires that
a group signature is to be mutually generated by all group members. This is known
as a multisignature scheme. The group signature on message m = H(M) € Z, can be

generated using the following protocol:

Signature Generation:

1. Each u; chooses a random k; € Z, and computes r; = mg % (mod p).

2. After all participants broadcast their r;, every signatory calculates r = [];-, r;
(mod p).
3. Each w; (i =1,...,n) generates his signature as s; = k; — r'z; (mod ¢), where

/

r'=r (mod q).

4. Each w; (i = 1,...,n) sends his partial signature (s;,r;) of message m to the

combiner (through the public channel).

5. Once all partial group signatures are received, the group signature of message m

can be generated as (s, ), where
n
s=>_s (mod g).
i=1

Verification:

The verification of the group signature is similar to the verification of an individual
signature. Note that the secret key of the group is, in fact, z = >7 ; x; (mod ¢), and
the public key of the group is y =", v; (mod p). The verifier accepts the signature
(M,r, s) if the following equation holds true:

m" = ¢°y"r (mod p)

Note that the concast scenario is different from the multisignature scheme in at least

two ways:

e In a concast environment, the set of users (signatories) is not fixed.

e In a concast environment, each user may sign a different message.
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5.4 Concast Signatures

Before introducing the Concast scheme, let us start with a warm-up solution as a

preamble to the idea.

5.4.1 Warm-up Solution

Let users uq,...,u, wish to sign the messages my,...,m, respectively, where m; =
H(M;). Consider the following protocol, which works in almost the same manner as

multisignature schemes, although the messages are different.

Signature Generation:
1. Each u; chooses a random k; € Z, and computes r; = m;g* (mod p).

2. After all participants broadcast their r;, every signatory calculates r = [/ r;

(mod p).

3. Each u; (1 = 1,...,n) generates his signature as s; = k; — r’xz; (mod ¢), where

!

r=r (mod q).
4. Each u; (i =1,...,n) sends his signature (M;, s;, ;) through the public channel.

Verification:

1. After receiving n signatures (M, s1,71), ..., (M, Sn, ), the verifier computes

n n
s=>s (modgq), and m=]]H(M;) modp
i=1 i=1
2. The verification of the combined signature (m, s, r) is the same as in the under-

lying signature scheme, that is, the signatures are accepted if

s, r

m=g°y"r (mod p)

otherwise, return L.

Performance Issues
Given n signatures (Mi, s1,71),...,(My, Sn, ) the scheme requires n applications of
hash functions (to generate H(M;),i = 1,...,n), n modular multiplications (to com-

pute m), n modular multiplications (to compute r), and n modular additions (to
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generate s) in order to construct the combined signature (m,s,r). After getting the
signature (m, s, ), the verifier needs to verify a single signature as in the underlying
digital signature scheme. This means, from an efficiency point of view, that the cost
of our scheme is n applications of hash functions, 2n modular multiplications, and n
modular additions, plus the verification of one digital signature.

However, from a practical point of view, the scheme needs some interaction (i.e.
message exchange) between the signatories. Although this is a common practice in
almost all society-oriented cryptographic systems, it may not be reasonable in a concast
environment, since the signatories may not form a group. In the next scheme, we will

present, a protocol that works with no interaction between the signatories.

5.4.2 The Concast Scheme

We now present a modified version to the previous algorithm in which no interaction be-
tween the signatories is required. In this algorithm, instead of broadcasting r; = m;g "
by each user u; and then computing r, in the beginning of each time period, a random
value R is broadcast to the network. (This value, R, plays the role of r in the previous
algorithm.) The time period is chosen such that no signatory generates more than one
signature in a time period. That is, all signatures generated in time period ¢; use a

common parameter [2; which is broadcast by the verifier.

Signature Generation:

1. In the beginning of time period ¢;, the verifier broadcasts a random value R; €p
L.

2. Each u; chooses a random k; and computes r; = m;g ™"

(mod p).
3. Each u; generates his signature as s; = ki—Rgxi (mod ¢), where R;- = R; mod ¢.
4. u; sends his signature (M;, s;, ;) through the public channel.

Verification:

1. After receiving n signatures (M, s1,71),...,(M,, Sy, r,) in time period j, the

verifier

e calculates 7,1 = R; x (TI_,7;) ™" mod p,
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e chooses a random £k, and calculates s,,1 = kpi1 — R;:vnﬂ (mod q),
where x,, 1 is the secret key of the verifier. That is, the verifier signs a
message My = H(Myy1) such that r,,1 = mpp19 "+ (mod p). Note
that, knowing r,,, and k,., it is easy to calculate m,,,, although the
verifier does not know (and does not need to know) the relevant message

M, (since the underlying hash function is one-way).

2. The verifier computes

n+1 n+1
m = [[ m: mod p and s=Y_s (mod q)
i=1 i=1

3. The combined signature (m, s,r) is accepted if
m=g*y"iR; (mod p)

Remark: The purpose of signing a dummy message by the verifier is to transform
the verification of the signatures received into the general verification formula used in
the proposed multisignature scheme. Note that this type of signature generation is
not a security problem since the message cannot be chosen by the forgery signer. In
fact, if M is chosen first, then the pair (s,r) must be calculated such that ¢*y"'r is
equal to a predetermined value. Knowing the public values of g and y and choosing
one of the parameters r (or s), achieving a correct result requires solving a discrete
logarithm problem for the other parameter. Considering the fact that ' = r mod ¢,
one cannot select 1’ and s randomly and then solve the equation r = H (M) x (g°y" )~

for calculating r.

5.4.3 Stinson Attack

After publishing [5], Stinson in [153] has shown that the Concast Scheme above is
insecure. In order to illustrate the attack, let a legitimate user, u; wish to sign a given
message, M;. To sign the message M;, user u; follows the algorithm given in Scheme 3

and computes the (r;, s;) such that:
) ) /. . R.
H(M;) = m; = righ = g0 = gsiy 5y, (5.4)

It is not difficult to see that anyone can generate the pair (r}, s;) that satisfies equation

(5.4) o

e choose a random value s,
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/
_si

e compute 7} = H(M;)g y;Rj

IS,-

77 2%

(5.4).

e (], s}) is a signature on the message M;, since it satisfies the verification equation

In other words, anybody can sign any message on behalf of any user.

The attack on the Concast Signature works because the calculated value r; (by user
u;) is not determined by the parameter R}. In the original signature scheme, the value
r, calculated in equation 5.1, is used in equation 5.2 in order to generate the signature.
That is, one cannot forge a signature because it requires the discovery of a value r
such that it satisfies equation 5.3, where 7’ = r (mod p) (see [116] for more detail and

formal discussion on the security of this signature scheme).

5.4.4 Secured Concast

In this section, a modification to the Concast scheme is accordingly proposed by the
authors of [5] to fix this security flaw by employing the idea of small exponent test
which is used in [15].
Small exponent test:

Let g be a generator of group G of prime order ¢, and (x1,41),..., (Tn, yn) with
x; € Zy, ¥i € G, and a security parameter w. The query is whether or not y; = ¢* for

alli=1,...,n.
1. Choose wy,...,w, € {0,1}" at random.
2. Compute z = Y7, z;w; (mod q), and y = ], y;".
3. if y = ¢” then accept, else reject.

Signature Generation:

1. In the beginning of time period ¢;, the verifier broadcasts a random value R; €p

Z, and a prime security parameter W; = {0,1}" .

2. Each u; chooses a random k; and computes 7; = m;g % (mod p), where m; =

H(M;) and M; is the message in which the user u; wishes to sign.
3. Each u; computes w; = r; (mod W;)

4. Each u; generates his signature as s; = k; — Rjw;z; (mod q), where R =

R; mod q.



5.4. Concast Signatures 82

5. u; sends his signature (M;, s;, ;) through the public channel.

Verification:
1. After receiving n signatures (M, s1,71),..., (My, Sp, 1) in time period ¢;, the
verifier computes y = [[;; " mod p,

2. The verifier combines the signatures using

n

r=][r (modp), m=][[m: (modp) and s=>s (modq)
i=1 =1

i=1
3. The combined signature (m, s, r) is accepted if

m = gsngr (mod p)

Security Issues

Given a message M, a forger may try to find a pair (r,s) such that:
H(m) — gser’,r’

where r' =7 (mod W) and R, W are random values chosen by the verifier (out of

the signer’s control). We observe the following cases:

1. if r is fixed, then computing s is equivalent to solving a discrete logarithm problem
over GF(p), which is believed to be a difficult problem.

2. If s is fixed, then r could be computed from the following equation:

r=H(M)g 'y (5-5)

Solving equation (5.5) for r, such that ' = r mod W, cannot be done in polyno-
mial time. In fact, if W = ¢, then this scheme is as secure as the original scheme
in [116]. The proposed scheme, however, possesses a mechanism that disrupts an
attack which utilizes the choice of the small value for W. That is, the verifier
chooses the time period so that solving equation (5.5) for the given R; and W;
would not be feasible. For example, choosing a 50-bit random binary string, W,
will provide reasonable security for acceptable time periods. The probability of
successful heuristic attack is approximately 2°° and we are not aware of any other

efficient way of solving equation (5.5).
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Note that implementing a system which is valid for a particular time period
is a well-known technique that has been applied in many other cryptographic
systems. For example, proactive secret sharing [82] provides the secrecy of long-
living secrets by regularly redistributing new shares of the secret (and discarding

old shares) among shareholders.

3. Another possible attack could be if a forger tries to solve the equation (5.5) for
both r and s simultaneously, but we are not aware of any efficient algorithm to
do that.

Remark Knowing a legitimate signature of a message, it may not be possible to
generate another correct signature for that message. This is not a security problem,
because the message has been accepted to be signed by the legitimate signer. Moreover,
knowing one or more legitimate signatures may help one to generate a sequence of
signatures such that their combination can pass the screening test, but none of them
(individually) can pass the verification. This is not a security problem in signature
screening test (for more detail see the original paper [15]).

Performance Issues

The cost of our scheme is n applications of hash functions, 2n modular multiplica-
tions, and n modular additions, plus the verification of one digital signature.

The main advantage of this scheme is that there is no need for any interaction
among the users. Indeed, the major shortcoming of all interactive systems is that the
system must be highly synchronized. For example, in signature generation applications
one cannot generate his signature before all participants have broadcast their computed

value (r;, in our protocols).

5.5 Fast Screening for a Non-RSA Signature Scheme

We first recall that screening means the task of determining whether the signer has
at some point authenticated the message rather than the task of checking that the
particular string is a valid signature of the message.

In [15], finding fast screening algorithms for signature schemes other than RSA has
been left as an open problem. That is, instead of n signatories, a signer generates
a large number of signatures and a receiver wishes to verify all these signatures (e.g.,
when a bank issues a large number of electronic coins and the customer wishes to verify
the correctness of coins). We observe that this problem can be solved as a special case

in our proposed schemes.
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In ElGamal-type signatures, however, the signer must use a fresh random number
for every signature; otherwise, it compromises the secrecy of the secret key of the signer.
Hence, performance of the proposed schemes, which use a common random number
in the generation of n different messages in a concast environment, is not acceptable
in this case. In order to avoid this problem, the signer needs to follow the original

signature scheme (see Section 5.3.2).

Before presenting the scheme, we establish the model of security.

5.5.1 Model of Security

A digital signature scheme ) consists of three algorithms [66]:

e GenSig, the key generation algorithm which, on input 1", where w is the security

parameter, outputs a pair (x,y) of matching private and public keys;

e Sig, the signature generation algorithm which receives a message M and the

private key x, and outputs a signature (s,r) = Sig, (M);

e Ver, the verification algorithm which receives a candidate signature s, a message
M and a public key y, and returns an answer Ver, (M, s,r) as to whether or not
(s,7)is a valid signature on M with respect to y. In other words, Ver,,(M,s,r) =
1 would mean a valid signature to the message, whereas Ver,,(M, s,r) = 0 means

an invalid signature to the message.

Definition 5.1 A Screening test means, given a sequence of instances

(M, 81,71)s -y (My, Sp,rn) of 3, then we say batch instance is correct if the test
Ver o (M;, si,ri) = 1 for all i € 1,...,n, and incorrect if there is some i € 1,...,n
for which Very,(M;, s;,r;) = 0.

Security Notions Attacks against a fast screening signature scheme can be classified
according to the goals of the adversary. The strongest attack is called existential
forgery, which means that the attacker can provide a single message/signature pair
which passes the screening test. When the scheme prevents this kind of forgery it
is said to be Non Eristentially Forgeable (NEF). When the attacker has access to a
list of valid message/signature pairs then this attack is called known-message attack
(KMA). This list may contain messages randomly and uniformly chosen, and the attack

is thus termed a random message attack (RMA). Finally, the message may be chosen,
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adaptively, by the adversary himself, and generate signatures that pass our screening

test: this is a chosen-message attack (CMA).

5.5.2 The Screening Scheme

Sig: (Signature Generation)

Let x and y = ¢* be the secret and public keys of the signer respectively. Also, let m;
(1 =1,...,n) be the hash values (or any other encoding) of messages Mj,..., M,.

In order to sign m,, the signer performs the following steps:
1. generates a random k; and computes r; = m;g*¥  (mod p).

!

2. generates a signature on message m; as s; = k; — iz (mod g),

where 7 = r; mod q.

3. sends all signatures (M;, s;, ;) to the receiver.

Ver: (Verification)

1. After receiving n signatures (M, s1,71), ..., (Mpy, Sn, ), the verifier calculates
n n n
r=][r (modp), m=][m (modp), and s=> s (modq)
i=1 i=1 i=1

2. The verification of the combined signature (m, s, r) is the same as in the under-

lying signature scheme, that is, the signatures are accepted if
s, T

m=g*y"r (mod p)

otherwise, they are rejected.
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5.5.3 Security Analysis

The main issue in security consideration of a digital signature is to determine whether
an adversary, without knowing the secret key, is able to generate a signature of a
message which has never been signed by the legitimate signer but which passes the
verification test; this is called existential forgery. This is a general question, and the
answer is given in the security analysis of the underlying digital signature. (Obviously,
a digital signature that allows forgery will be considered completely useless.)

In our signature screening algorithms, however, one would like to check whether
it is possible to have a sequence of signatures that passes the test but contains fake
signatures. We begin our security analysis of this type of attack with the following

theorem.

Theorem 5.1 Given a set, S, consisting of n digital signatures

(M, 81,71)y .-y (My, Sp, 1) that pass our screening test, it is impossible to find two
subsets A and B such that ANB =0, S = AUB, and signatures in A (or B) pass the
test but signatures in B (or A) fail the test.

Proof. Without loss of generality, let A = (M, s1,71), ..., (My, s¢,r¢) and
B = (Mp1,S0e1,7041)s -+ (My, Sy, 70), for an integer 1 < ¢ < n. Define

V4 l V4 l l
ma=ITmi, sa=>si, ka=> ki, ya=[lyi, andra=]]n
i=1 =1 =1 =1

i=1
Similarly, mg, sg, kp,yB, and rp can be defined. Note that, we have m = my x mp,
s=ss+sp, k=ka+kp, y=yaXxyp,and r = r  xrg. Let the sequence of signatures
in the set A pass our screening test. The sequence of signatures in A forms a combined

signature (ma, s4,74) such that

¢ ¢
sa=Y_ Si=ka—1"> z; (modq)
i=1 i=1

and thus the verification implies that the following equation must be true
ms = g¢*yhra (mod p). (5.6)
On the other hand, the set of all signatures in the set S also passes the test, that is,
s, r

m = g*y"r (mod p)

which can be written as
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maXmp = ¢4 X g8 Xy Xyhxraxrg (mod p). (5.7)
Now, dividing both sides of equation (5.7) by equation (5.6) gives
mp = g*"ygre  (mod p)

which indicates that the sequence of signatures in the set B also passes the test.

An immediate consequence of Theorem 5.1 is that:

Theorem 5.2 If a set, S = {(Mi,$1,71), ..., (My, Sy, ms)} that passes our screening
test consists of some fake signatures, then the set of all fake signatures must also pass

the screening test.

Proof. Split the sequence of signatures in S into two sets A and B, such that A
consists of all genuine signatures but B consists of all fake signatures. Using Theorem

5.1, since A passes the test, B must also pass the test.

Corollary 5.3 Given a set S, consisting of n digital signatures
(M, 81,71)5 -y (My, Sp,10) that passes our screening test, it is impossible that S con-
tains only one fake signature. That is, either there exists no fake signature in S or

there is more than one fake signature in S.

Note that, knowing a signature (M, s,7), it is easy to form a set of fake signatures
that passes the screening test. For example, in order to form a set of ¢ fake signatures,
one can form a set of ¢ pairs (s;, ;) such that s = Y, s; and » = [J¢_, r;. Clearly,
this set of ¢ fake signatures (M, sq,71), ..., (M, sg, 1) passes our screening test. This is
similar to the problem identified in [15]. We observe that it is not difficult to overcome
this problem. In particular, it is easy to deal with this problem in the RSA type
signatures of [15] (the RSA signature is deterministic and thus a message cannot have
different signatures). That is to say, a sequence with such instances will be easily
detected as faulty sequences. However, we observe another way to create a faulty
sequence of signatures that passes the screening test. The method is applicable to
both our schemes and the scheme introduced in [15]. Let (My,01,),...,(M,,0,) be a
sequence of n genuine signatures. Obviously, this set passes the screening test. On the
other hand, the set (M, o)), .., (Mpn,0xmn)), where 7(.) is a random permutation
over {1,2,...,n}, also passes the screening test. This means that, no matter how

secure the underlying digital signatures are, it is always possible to produce a sequence
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of faulty signatures (in the above manner) that passes the signature screening test.
However, as mentioned in [15], this is not a security problem since these attacks do
not succeed without knowing the signatures of the messages, that is, the messages must
be signed by legitimate signers.

Another serious threat to the scheme could be if an adversary can select messages
of his own choice and then generate a (set of) signature(s) that pass(es) our screening
test, which is also known as a chosen-message attack. The following theorem indicates

the security assurance of our screening technique.

Theorem 5.4 Let a set, S, consist of n digital signatures (M;, s;,1;), i =1,...,n that
passes our screening test. If the underlying digital signature is secure then S does not

contain a message that has never been signed by a legitimate signer.

Proof. Let A C S and A consist of all messages that have never been signed by
legitimate signers. Obviously, the set of all signatures in A passes the verification test
and thus a set of unauthorized users can sign a message in a multisignature manner,
which is not the case.

In multisignature schemes, if a set of unauthorized users tries to forge a signature, or
when a malicious user tries to prevent the process of signature generation, the generated
group signature is not genuine and it fails to pass the verification test. The following
theorem presents an efficient algorithm to detect such a faulty signature (malicious

user).

Theorem 5.5 Let a set, S, consist of n digital signatures (M, s;, 1), i =1,...,n and
let S fail to pass our screening test. There exists an O(logn) running time algorithm

that detects a faulty signature (a malicious user).

Proof. The following algorithm, which is an instance of the binary search algorithm,

works properly, based on our results so far.

1. Split the set S into two subsets (with almost equal sizes) and submit one of them
to the verification algorithm. If the set of signatures in this subset passes the
verification test, then the other subset cannot do so (i.e. the faulty signature is

in the other subset); otherwise, this set contains the faulty signature.

2. Repeat step 1 on the subset that cannot pass the verification test as long as the

cardinality of the set is larger than one.



5.6. Summary 89

5.6 Summary

The authentication of many-to-one group communication has not been investigated in
the literature. With the emergence of concast communication applications, an efficient
authentication scheme and protocol is required. The essence of the problem is to
have an efficient scheme that can be fast enough to verify a large number of messages
instantly. Typical authentication methods such as digital signature are not suitable for
the concast problem. We have proposed three different authentication schemes for this
communication mode. We found that screening of batch signatures is very efficient
method for such a problem. Also, we suggested a solution to the open problem of
finding a fast screening signature for non-RSA digital signature schemes. A possible
extension to this work, which we leave as an open problem, is to design a signcryption

scheme for concast communication mode, which provides both authenticity and privacy.



