Chapter 6

Authentication of Transit Flows

In this chapter, we exploit the unique features of the k-sibling Intractable hashing
method in presenting two authentication schemes. In the first scheme, we propose a
method which enables intermediate nodes in IP communication networks to verify the
authenticity of transit flows. In the second scheme, we introduce a new one-time digital

signatures scheme.

6.1 Introduction

There has been considerable interest in group-based applications over the last few
years. There has also been a remarkable increase in real-time applications such as
online video/audio streaming which have special quality of service requirements. As
far as the security of these applications is concerned, new challenges (see Chapter
3) in designing security protocols for these applications have arisen. Usually, these
applications have special quality-of-service (QoS) requirements, and the security ser-
vices should be performed within its limits. One of the important security services
is source authentication. Typical authentication schemes such as digital signatures
have both high computational and space overhead, and hence they do not fulfill the
new requirements of these applications. On the other hand, Message Authentication
Codes (MAC) are more efficient, but they do not provide non-repudiation service.
Therefore, new techniques are required which can not only guarantee secure commu-
nication, but also maintain the efficiency of the application. This problem has been
well defined and explored in the literature and several techniques have been proposed
[31, 64, 122, 121, 133, 164].

In this chapter, we continue the work in the direction of developing efficient cryp-
tographic solutions for the problem of authentication in group communication. We
introduce new authentication schemes that are based on the idea of the k-sibling in-

tractable function family SIFF [170]. SIFF is a generalization of the universal one-way
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function family theorem (see also [18] ). It has the property that, given a set of initial
strings colliding with one another, it is infeasible to find another string that would col-
lide with the initial strings. This cryptographic concept has many useful applications in
security and we have used it to develop new authentication scheme. In this chapter, we
start by expanding the idea of SIFF to hierarchical SIFF. Then, we propose a scheme
for authenticating ‘transit’ flows in IP communication. To our best knowledge, this
topic has not been discussed elsewhere. Further, we propose a new one-time signature
scheme that is efficient in generation and verification of signatures and with minimum
space overhead which is suitable for end-to-end real-time applications.

This chapter is structured as follows. In the next section, we first illustrate the idea
of k-SIFF and then expand it into a Hierarchical k-SIFF. In Section 6.3, a scheme for
authenticating transit flow in communication networks is illustrated. In Section 6.4,

the k-sibling one-time signature is presented.

6.2 K-Sibling Intractable Hashing

The construction and security properties of k-sibling intractable hash functions are
discussed in [170]. Briefly, let U= U,U, be a family of functions mapping [(n) bit
into m(n) bit output strings. For two strings =,y € ™ where z # y, we say that z
and y collide with each other under u € U,, or x and y are siblings under u € U, if
u(z) = u(y).

In other words, sibling intractable hashing provides hashing that collides for &
messages selected by the designer. It can be seen as the concatenation of two functions:
universal hash function and collision-resistant hash function. More formally, we say

that a family of universal hash functions
U={U,:n=N}

holds the k-collision accessibility property if, for a collection X = {xy,...,z} of k
random input values U, (z;) = ... = Uy,(xy) where U, : {0,1}*™ — {0,1}*(™ and
£(n), L(n) are two polynomials in n (n is the security parameter and N is the set of

all natural numbers). A family of collision resistant hash functions
H={H,:n=N}

consists of functions that are one-way, and finding any pair of colliding messages is

computationally intractable. k-sibling intractable hash functions can be constructed
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as
kH, ={hou:h¢€ H,,u € U,}

where U, : {0,1}¥™ — {0,1}*™) and H, : {0,1}* — {0, 1} (the notation {0, 1}*
stands for strings of arbitrary length). U, is a collection of polynomials over G F(2¢™)

of degree k.

6.2.1 Hashing with a Single Polynomial

The designer of a k-sibling intractable hash function first takes an instance of a collision
intractable hash H : {0,1}* — {0,1} (such as SHA-1) and a collection of k messages

{mq,...,my} that are to collide. Next, she computes

randomly chooses v € GF(2%) and determines a polynomial U : {0,1}* — {0,1}* such
that
Ulz;))=afori=1,2,... k.

This can be done using the Lagrange interpolation. Having k points (z;,a); i =
1,...,k, it is easy to determine such a polynomial U(z) which is different from a
straight line. Note that £+ 1 points are needed to determine a polynomial of degree k.
Denote H = U o H. By construction H(m;) = o for all i =1,2,... k.
The hash function H can be characterized by the following properties:

e finding collisions (those incorporated by the designer in U as well as those existing
in H) is computationally intractable, assuming the attacker has the descriptions
of the two functions H and U. The descriptions must be available in a public,

read-only registry. Note that the description of U takes k+1 values from GF(2¢).

e the hash function treats messages as an unordered collection of elements. To
introduce an order, the designer needs to calculate H for an ordered sequence of
messages so that any message m; = (i, m;) where ¢ indicates the position of the

message in the sequence. In other words, H(i,m)) = a for alli =1,..., k.

Note that, if the number of colliding messages is large (say k& > 1000), then to compute
hash values, one would need to fetch k£ + 1 coefficients of polynomials U(z). This

introduces delays. Is there any other way to design k-sibling hashing?
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6.2.2 Hierarchical Sibling Intractable Hashing

Given k-sibling intractable hash function H®) and a set M = (m1, ..., my2) of mes-

sages. A k2-sibling intractable hash function denoted as
H*) — g® o g *)
is a collection of k£ 4 1 k-sibling intractable hash functions where
H, = U; o H with collisions in M; = (M1, .., Mit1)k)
fort=0,...,k—1, and
H; = Uy, o H with collisions in X = {h; = H;(M;);i=1,...,k}.

To find the hash value of a message, it is not necessary to know all polynomials Uj;.
For a message m € M;, it is sufficient to know two polynomials only, namely, U; and
U.

In general, sibling intractable hashing with £" colliding messages can be defined as
H*) — g® o g&—h

for r > 2. Similarly, to compute a hash value for a single message, it is necessary to
learn r polynomials of degree k.

The polynomials U; ;(x) are in fact arranged in a tree structure. The leaves of the
tree are Uy ; for j = 1,...,k""'. The next layer is created by polynomials Uy j; j =

1,...,k"? and so on. The root is U, ;. Figure 6.1 illustrates the concept graphically.

6.3 Authentication of Packets

Message authentication is an important service in information security. Typical au-
thentication schemes such as digital signatures use public-keys, while Message Authen-
tication Codes (MAC) use private keys. Digital signatures are known for their high
computation overhead, while MAC does not provide non-repudiation service. In cases
such as in IP communication, we may have a stream of independent messages to be au-
thenticated. Neither the typical digital signatures provides efficient solution, nor MAC
provides enough security service. Therefore, new techniques are required to provide
both security and efficiency.

A further motivation is the requirement by the intermediate nodes in IP network
for a technique to authenticate the packets in their transitions from source to destina-

tion. IPSec [90] is a security mechanism designed to provide security services for IP
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Figure 6.1: Hierarchical Sibling Hashing

communication. It provides source authentication, confidentiality, as well as integrity.
As far as source authentication is concerned, with the symmetric authentication option
provided by IPSec, only hop-by-hop authentication can be achieved. This means that
a node that receives a message only knows that it has originated from an authenticated
node when they share a common key in the domain. However, it would not be possible
for intermediate nodes along the path to check the authenticity of the messages. In
doing this, it would be possible to discover harmful actions such as a denial-of-service
attack in their early stages, before they are propagated to the destination. We seek a
mechanism that enables intermediate nodes to verify the source of the message.
Possible solutions are: for each message to be given a tag independent of the others,
or for the concatenation of all messages to be given a single common tag. In the first
method, the resulting tags may prove too impractical to be maintained, while in the
second method the validation of one message requires the use of all other unrelated
messages in recalculating the tag. A preferable method would be one that employs a
single common tag for all the messages in such a way that a message can be verified
individually without involving other messages. This can be achieved by using SIFF, in

which all messages are represented as a string of {(n) bits long.
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6.3.1 Awuthentication with Single Hashing

The security goal is to enable interested parties of the network (nodes) to authenti-
cate messages (packets) in transit. A natural restriction imposed on authentication is
that packets of the same message (generated by the same source) may travel through
different routes. In effect, a node may see a small subset of all packets generated by
the source. Those that are seen do not typically follow the initial order. Note that
authentication of packets based on some sort of chaining is useless. Our solution is

based on sibling intractable hashing.
Model

The scheme consists of the following cryptographic primitives:

e a secure signature scheme SG = (S, Vo, G()) for message authentication Sy is
the signing algorithm that for a given message m and a secret key sk produces
a signature or s = Sy, (m), Vi is the verification algorithm that for a public key
pk and a signature s returns 1 if the signature is valid and 0 if otherwise. G()
generates a pair of keys: sk, pk. The meaning of “secure” will not be discussed

here; the interested reader can consult relevant papers (see [14])
e a collision intractable hash function H, H : {0,1}* — {0,1}*
e n-sibling intractable hash function H

e a Public Key Infrastructure (PKI) that provides on demand authenticated public

keys of all potential senders (normally in the form of certificates)
Sender

1. The source (sender) takes a message M and splits it into n packets (datagrams).

In other words, M = (my, ..., m,) where m; is the i-th datagram,
2. Computes z; = H(m;) forall i =1,...,n,
3. Chooses randomly «,

4. Computes the coefficients u; from the polynomials U(z;) = « using Lagrange

interpolation for all e = 1,...,n,
5. Designs an SIFF instance for the message M such that:

H™ (my) = H™(my) = ... = H™(m,,)



6.3. Authentication of Packets 96

6.

Takes the sibling intractable hash H™ and computes the signature of the message
M as
s = Sy (H(H™ (M)||H (ug, . .., uy)), timestamp)

where

U(r) =up +wa + ... + u,z™u; € GF(2°),

and
H™(M) = a,

Puts the signature together with coefficients of U(h) into a read-only registry R

accessible to everybody.

Verifier

1

Receives datagrams m; and computes h; = H(m;) where i € {1,...,n},
Contacts the registry R and fetches the signature, coefficients u;, and «

Obtains the authenticated public key pk of the sender from the PKI facility,

. Checks the validity of the signature using the algorithm V,(s), if it is Ok, con-

tinue, otherwise, abort L,

Recovers the polynomial U(z) from the coefficients u; and « and form the poly-

nomial as in step 6 of the signing
Computes h' = U(h;),

Checks validity of h; = h', accept if it is OK; otherwise L.

Security

The security of the scheme is basically evaluated from the security of underlining com-

ponents: digital signature, hash function, and SIFF algorithms. However, one has to

note that the polynomial U(z) must be used by the sender to produce the final hash

value that is signed by the sender. This is done to prevent manipulation with the

structure of the sibling intractable hash function H™. The signature is used to prove

the genuineness of the polynomial components that are going to be fetched from the

registry by the verifier.
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Efficiency

Note that the verification of the first datagram is the most expensive as it will take
verification of signature (one exponentiation if signature is based on RSA or ElGamal)
that also involves calculation of hash h; = H(m;), computation of U(h;), and evaluation
of H(ug,...,u,). Any new message can be verified using one extra evaluation of H
and U. It computes the hash h; = H(m;) and computes h = U(h;). If b = h then,
it accepts the message; otherwise, it rejects it. As far as communication is concerned,
the verifier must fetch the signature and the polynomial U(z). Note that the length of
U(z) is almost the same as the whole message M. This seems to be the weakest point

of the construction.

6.3.2 Awuthentication with Hierarchical Hashing

In this case, the sibling intractable hashing is computed using a family of polynomials
Uyjwithi=1,...,rand y =1,..., k"~*. The message consists of n = k" datagrams.
To compute H™ (M) it is enough to fetch r polynomials of degree & (that is in a sense,
a path between a leaf and the root). If we choose k=2, then the verifier needs to
fetch 3 x log, n coefficients. With pre-determined single points for the polynomials,
the number can be reduced to 2 x log, n without security deterioration. Figure 6.2
illustrates the idea graphically.

The tree of polynomials must also be subject to hashing (to make the verifier sure
that she uses the correct instance of the sibling intractable hash). One good feature
is that the verifier would like to use explicitly all polynomials she has imported from
R. The signer may help the verifier by first using parallel hashing [43] (i.e. using
more than one processor to compute the hash value concurrently) for the polynomials
and storing in R all intermediate results of hashing. The verifier puts the polynomials
together with intermediate hash values to generate H(U) where U means collection of

all polynomials.

The advantage of hierarchical hashing is evident when we consider the storage
required to allow authentication of £ public values using the following approach. An
entity A authenticates ¢ public values Y7, Y5, ... Y, by registering each with a read-
only registry or trusted third party. This approach requires registration of ¢ public
values, which may raise storage issues at the registry when ¢ is large. In contrast, a

hierarchical hashing requires only a single value registered in the registry. If a public
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Figure 6.2: Authenticating messages with Hierarchical Sibling Hashing

key Y; of an entity A is the value corresponding to a leaf in an authentication tree,
and A wishes to provide B with information allowing B to verify the authenticity of
Y;, then A must (store and) provide to B both Y; and all hash values associated with
the authentication path from Y; to the root. In addition, B must have prior knowledge
and trust in the authenticity of the root value R. These values collectively guarantee
authenticity, analogous to the signature on the public-key certificate. The number of
values each party must store is log(t).

Consider the length (or the number of edges in) the path from each leaf to the root
in a binary tree. The length of the longest such path is minimized when the tree is
balanced, that is, when the tree is constructed such that all such paths differ in length
by at most one. The length of the path from leaf to the root in a balanced binary tree
containing ¢ leaves is about log(?).

Using a balanced binary tree as authentication tree, with ¢ public values as leaves,
and authenticating tree with ¢ public values as leaves, authenticating a public value
may be achieved by hashing log(t) values along the path to the root.

Authentication trees require only a single value which is the root value, in a tree

to be registered as authentic, but verification of the authenticity of any particular leaf
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value requires access to and hashing all values along the authentication path from leaf
to root.

To change a public (leaf) value or add more values to an authentication tree requires
re-computation of the label on the root vertex. For a large balanced tree, this may
involve a substantial computation. In all cases, re-establishing trust of all users in this
new root value is necessary.

The computational cost involved in adding more values to a tree may motivate
constructing the new tree as an unbalanced tree with the new leaf value being the
right child of the root, and the old tree being the left. Another motivation for allowing
unbalanced trees arises when some leaf values are referred far more frequently than

others.

6.3.3 Security Issues
There follow some remarks on the security of the schemes:

e the scheme signs simultaneously all datagrams using a single signature. The
important difference of this scheme from other schemes is that verification of
datagrams can be done independently (or in parallel). In other words, to authen-

ticate datagrams, one does not need to know all datagrams,

e no authentication is required for the coefficients fetched from a read-only registry
(assuming coefficients have been fetched from the ‘right’ registry; otherwise, an
enemy can fake the packets). This is because, if entries are tampered with, then
packets will be rejected since the final hash recovered from the signature will be

different from the hash value obtained from the datagrams and the polynomial,

e the only security problem could be of denial-of-service attack when an enemy

may intentionally modify polynomial coefficients to reject the datagrams,
e in both flat and hierarchical k-sibling approaches, a single signature is required:

1. the description of public polynomial coefficients used in the k-sibling in-
tractable hashing takes about n integers each of size 160 bits for SHA-1,
where n is the number of packets of the message M and k > 2. If k=2, then

this number = 2n.

2. the scheme may be used against denial-of-service attacks. In particular, it
would be possible for receivers at the intermediate nodes to ignore those

packets that have failed to pass k-sibling hashing verification.
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e the authentication scheme described above could be used for both types of IP
data transfer modes: connection-oriented and connectionless. In the case of
connection-oriented communication, where a node or destination sees almost all
the packets of the message, flat sibling hash with a single polynomial U(x) of
degree n is best applicable. If, however, a node may see only a small fraction of
packets, as in connectionless communication, then the hierarchical sibling with

2-sibling hashing seems to be superior.

6.4 K-Sibling One-time Signature

One-time signatures derived their importance from their fast signature verification, in
contrast to typical digital signature schemes, which have either high generation or veri-
fication computation time. One-time signatures are a perfect option for authenticating
particular types of applications where receivers are short of computing resources, such
as chipcards, or for online applications, such as video/audio streaming, which requires
fast verification, as well as for centralized applications such as voting systems.

Lamport [97], Rabin [128], Merkle [108] and GMR [66] are well known examples of
one-time signature schemes. Although they differ in their approaches, they share the
same idea: only one message can be signed using the same key. Once the signature
is released, its private key is not used again; otherwise, it would be possible for an
adversary to compute the key, and hence given its name one-time signature. A more
description is found in Chapter 7.

One-time signatures have to be efficient and secure. Typically, the verification
of the signature is expected to be very efficient. Additionally, signatures have to be
initialized well ahead of the time when messages are to be signed and verified. This
allows the signer to pre-compute the signature parameters so that they can be fetched
by potential verifiers. Once the message is known, the signer can sign it quickly, and
receivers can verify the signed message efficiently. A distinct characteristic of one-time
signatures is that they are used once only. To sign a new message, the signer must
initialize the signature parameters (parameters of old signatures must not be reused).
The security of one-time signatures is measured by the difficulty of forging the signature
by an adversary who normally has access to a single pair: a message and its signature.

The main advantage of one-time signatures is that they only rely on one-way func-

tions without trapdoors. This can be implemented using a fast hash function such
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as SHA-1. One of the new approaches in designing such signatures is the BiBa one-
time signature [121]. BiBa is an acronym for Blns and BAlls. It uses the bins and
balls analogy to create a signature. To sign a message m, the signer first uses random
precomputed values generated in a way that a receiver can authenticate them with a
public key. These precomputed values are called SEALS (SEIf Authenticating vaLueS).
The signer then compute the hash of the message h = H(m)), and then computes the
hash function Gj. Now, the collision of SEALS under a hash function G} forms a
signature: Gy(s;) = Gp(s;j), where s; # s;. The BiBa signature exploits the birthday
paradox property, in that the signer who has a large number of balls finds a collision
(signature) with high probability, but a forger who only has a small number of balls
has a negligible probability of finding a signature.

The BiBa signature scheme has desirable features such as small authentication space
overhead and fast verification time. However, its public keys are very large, the time
needed to generate a signature is higher than any other known system, and it requires
parallel processors to find collision of SEALS. This makes signature generation a large
computation overhead. Also, it uses an ad hoc approach to find collisions among the

‘SEALS’ to the corresponding bin, which results in high signature generation time.

6.4.1 The Scheme

We propose a variant approach to BiBa by using the SIFF method. SIFF provides
hashing with a controlled number of easy-to-find collisions. In other words, we apply
a deterministic approach in finding a collision (signature). As for signatures based on
public-key cryptography, we assume that we are going to produce signatures for digests
of messages. Thus, suppose that messages to be signed are of constant length (160 bits
if we use SHA-1).

Let SIFF;(x) be an instance of k-sibling hash function that for & inputs x; o, . . ., Z; 51

produces the output «; or
SIFF;(I%]) = Q4 for ] = 0, ey k—1

The function applies a polynomial U;(z) = ;o + w12 + ... + u;p—12%! that collides

for the inputs z;g, ..., 251 Or
Ui(H (z;)) =

where H is a collision-resistant hash function. Assume that the message to be signed

is M = (mq,...,m;) where m; are v-bit sequences. The message M consists of vt
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bits (typically of the length 160 bits). To design our one-time signature we use the
sequence of ¢ instances of SIFF where each instance applies 2Y collisions, as shown in

the following algorithm:
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Initialization

The signer builds up the sequence of SIFF;(x) for i = 1,...,¢t. He starts from
SIFF;(z). First he picks up at random a sequence of 2V integers (whose length is
determined by the security parameter of the signature). Let the sequence be 7y j;
j=0,...,2"—1 and denote x1 ; = (11, 7). The signer chooses at random the output

a; and calculates the polynomial U;(z) such that
Ul(H(l'l,j)) = (1 fOI'j == ]_, .. .,2” -1

Next, he creates SIFF;(z) for i = 2,...,¢. For each i, he selects at random integers

(rij); 7=0,...,2" — 1, composes
Tij = (Ti,j,j, @i—1)
and calculates the polynomial U;(x) such that
Ui(H(z;;) =a; forj=1,...,2" -1

for a random «;. The polynomials U;(x) and the final value a; are made public in the

read-only authenticated registry; ¢ = 1,...,1.

Signing
Given a message M = (my,...,m;). The signer marks the input z;,,, and extracts
T1,m, and similarly determines r;,,, for i = 2,...,¢. The signature is

S(M) = (Timys- - Ttmy)

The pair (M, S(M)) is the signed message.
Verification

The verifier takes the pair (M, S(M)) and the public information, i.e. coefficients of
polynomials U;(z) and oy. Knowing # 7, = (71,m,,m1) and the polynomial U, (z), he
can compute &;. Next, he recreates the inputs &; 5, = (im,, M4, @) for i =2, ...t
If the last recovered @; is equal to «; recovered from the registry, the signature is

considered valid. Otherwise, it is rejected.
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6.4.2 Security Issues

Suppose that an adversary knows a signed message and tries to modify either message or
signature such that the forged (and signed) message passes verification. Obviously, the
adversary also knows the public information. Informally, if the adversary is successful
it means he was able to create either a new collision (which was not designed by the
signer) or was able to guess one of the strings r;,,. The first event is excluded if we
assume that the SIFF is collision resistant. The probability of the second event can be
made as small as required by choosing an appropriate length of the strings r; ;. It is
important to note that the above considerations are valid only if the public information

about signatures is authentic.

Definition 6.1 Existential Forgery on k-sibling one-time signature
Let v be the security parameter of the signature. We say that the probability of an
existential forgery (in polynomial time) of a k-sibling one-time signature is p(v) if there

exists a probabilistic adversary algorithm A having as the input:

e the function H
e the polynomials Uy, Us, ..., U,
o the value oy

e the observed message M = (my,ma,...,my) and its valid signature S(M) =

(rl,ml y'2,ma s - "Tt,mt)

which can produce, in polynomial time in v and with probability p(v), a message M' =

(my, mb, ...,my) # M and its valid signature S(M) = (s1, S2, ..., St)

Theorem 6.1 For each polynomial (), there is a value v of the security parameter,
such that the probability of an existential forgery (in polynomial time) of a k-sibling

one-time signature is less than 1/Q(v).

Proof. Let Q(v) be a polynomial where v is the security parameter of the signature.
Since all U;o H,i =1...t; are STFF, and therefore one-way functions, there exists a
value v such that Pr(UY o H(x) = UY o H(B(U; o H(x))) < 1/Q(v) for each i, each x
and for each probabilistic polynomial time algorithm B.

Assume a probabilistic adversary algorithm A as described in the existential forgery

definition.
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If we denote:

B =Ui(H((s51,m})))
((52, ml27 51)))
((53, mév 52)))

By = Ui(H ((s1, m3, Bi-1)))

then /Bt = O4.
Denote z1 = (rim;,m1), 1 = (s1,m1), and for 2 < w < ¢, xy = (Tymy s M, Cw—1)

and Yy, = (Sw, M, Buw—1). We consider two cases:
Case 1: There is an index w > 1 such that 8, = a,, and [,_1 # ay,_1. Then y, # x,.

Case 2: For all 1 = 1,2, ...,t, 3; = ;. Since M # m, there is an index 1 < w < ¢ such
that v, # x,.

In both cases, there is an index w such that y,, # x,.

We design a probabilistic adversary algorithm B which proceeds as follows:

1. simulates A and produces v polynomial p(v) a message m = (m/, m, ..., m}) and

its valid signature S(m’') = (s, sb, ..., s})

2. continues by computing

ar = Uy (H((r1,m,,m1)))
pr = Uy (H((s1,m})))
ay = Us(H((romy, ma, 1))
B2 = Us(H((s2,mb, 31)))

Qyy—1 = Uw (H((’rw,mwa My—1, aw72)))
/Bwfl - Uw (H((Swfla m{u;fla ﬁw72)))

then
_ _ /
sMw - - - ) w? -
(Twm s MMy 5 Ol 1) Ty #yw (sw m ﬁw 1)

and
Uw (H (yw)) = Uw(H (zy))
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Step 2 is deterministic and all values can be computed in polynomial time. Hence,

B can in polynomial time with probability p(v) compute two values z,, # y,, such that
Uy o H(xy) =U, o H(yy)

The one-wayness of U, o H implies that there is a value of v such that p(v) < 1/Q(v).
O

6.4.3 Performance Issues

The signature allows trading-off efficiency of verification against the workload neces-
sary to set up the signature system. This is a very important aspect of the signature.
Note, however, that the setup is done for each single message (this is one-time signa-
ture). Verification is done many times, typically as many times as there are different
recipients. Consider two extreme cases: the first with the longest signature, where
SIFFs are designed for binary messages or v = 1 (¢ is the largest), and the second with
t = 1. The first case permits a very efficient setup of the system with relatively small
public information. The price to pay is the bandwidth necessary to transport a very
long signature and verification consumes a large number of hash operations (as many

as bits in the signed message).

The second case applies to a relatively small number of SIFFs (¢ is small). The
setup is very expensive since any single SIFF applies large number of collisions, and in
effect the corresponding polynomials are very long. Receivers must fetch polynomial
coefficients for verification. Verification seems to be fast as it requires a small number

of hash operations. Signatures are relatively short.

Some scope for more efficient implementation exists if the strings r; ; are generated
differently. Note that, in fact the system applies £2¥ such strings, but only ¢ are used
as the signature. To reduce the necessary storage for keeping the strings by the signer,
it is reasonable to choose at random ¢ + 1 integers 7;;; 2 = 1,...,t and the integer R.
A polynomial G(z) of degree t can be designed such that G(0) = R and G(i) = r;,
for i = 1,...,t. Note that other r;; can be derived from the polynomial G(z). This
way of generation of r; ; is secure in the sense that signatures reveal ¢ points on G(z)

leaving a single point on G(z) unknown to the adversary.
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6.5 Summary

The sibling intractable hashing function family, or SIFF is a useful crytographic prim-
itive that might be used to solve a number of problems. In this chapter, we began by
expanding the idea of SIFF from a single polynomial structure to a hierarchical struc-
ture. The later SIFF structure is more efficient than the former in terms of computing
the hash values since it takes a tree shape, while the former takes a flat shape. We have
exploited the hierarchical SIFF to design a new authentication scheme that can verify
the authenticity of independent messages traversing from node to node in IP commu-
nication. In particular, we use the scheme to authenticate the source of packets at
intermediate nodes in a communication network. This problem has not been discussed
elsewhere in the literature. Also, we have used the SIFF to design a new one-time
digital signature which has low computation and space overhead. Recently, one-time
signatures have been the subject of research for authenticating group communication
applications as an efficient authentication tool, and this will be considered in the next

chapter.



Chapter 7

One-time Signatures for Authenticating
Group Communication

One-time signatures are an important and efficient authentication utility. Various
schemes already exist for classical one-way public-key cryptography. One-time signa-
tures have not been sufficiently explored in the literature in the branch of society-
oriented cryptography. Their particular properties make them suitable, as a potential
cryptographic primitive, for broadcast communication and group-based applications.
In this chapter, we contribute by filling this gap by introducing several group-based
one-time signature schemes of various versions: with proxy, with trusted party, and

without trusted party.

7.1 Introduction

As discussed earlier, one-time signatures are an important public-key cryptography
primitive. They derive their importance from their fast signature verification. This is
in contrast to the conventional digital signature schemes, which usually have high gen-
eration or verification computation time. One-time signatures can be an ideal option
for authenticating particular types of applications where receivers are of low power ca-
pability, such as smart carts, or for online applications, such as video/audio streaming,
which require fast verification, as well as for centralized-processing applications such
as polling systems.

On the other hand, groups play an important role in contemporary communica-
tion. Numerous examples of group applications include the stock exchange, collab-
orative tasks, and many other multicast applications. Group communication has a
(potentially) high communication overhead, and it is desirable that group members
can authenticate their communications efficiently. Cryptographic transformations by
a group of participants was the subject of investigation in so-called society-oriented

cryptography ([52], [27]). Unlike classical cryptography, society-oriented cryptography
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allows groups of cooperating participants to carry out cryptographic transformations.
That is, society-oriented cryptography requires distribution of the power of performing
a cryptographic transformation among a group of participants such that only des-
ignated subsets of the group can perform the required cryptographic operation, but
unauthorized subsets cannot do so.

With the recent interest in securing group and broadcast communication, there
has been a great demand for designing a new class of fast signature schemes that
can handle a vast number of signatures from broadcast or group-based applications
efficiently, rather than using typical signature schemes. Hence, there have been a
number of attempts in society-oriented cryptography to design signature schemes for
authenticating group-based scenarios.

Several schemes have been proposed that use classical authentication schemes such
as digital signatures (RSA [132], ElGamal [57]) for group-based transformations. How-
ever, these conventional methods typically have a high computational overhead, and
hence they may not fulfill the new requirements with regard to the efficiency of the
emerging applications. Besides, the nature of authenticating online real-time appli-
cations usually requires fast authentication. That is, the extra potential complexity
which is involved in the typical digital signatures to provide extra security adds more
computational time. In contrast, one-time signatures provide the required security
services with less computational overhead.

As mentioned, one-time signatures are potentially far more (computationally) ef-
ficient than classical authentication methods. This leads us to explore new ways of
improving the efficiency of authentication in group communication using one-time sig-
natures. That is, we attempt to apply one-time signatures for situations where the right
to execute signature operations is shared by a group of signers. We propose a scheme
for a threshold proxy signature. We achieve this by introducing a few intermediate
schemes. We combine the concepts of one-time signature and threshold group signa-
ture by using the idea of proxy signing. Proxy one-time signature was first used in [91]
to authenticate mobile agents in low-bandwidth communications. On the other hand,
and to the best of our knowledge, the problem of finding a group oriented one-time
signature has not been discussed elsewhere.

In this chapter, we begin by reviewing the relevant work in the area of one-time
signatures. To allow application of several one-time signature schemes in a common
way, we establish a construction model for the proposed protocols. To reach our goal,

we investigate the problem of one-time signature in two scenarios: with a proxy signer
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and with a group of signers. We start with one-time signature for the case when a signer
wants to delegate his one-time signature to a proxy who would sign on his behalf. Then
in Section 7.5, we show how it is possible to construct a threshold one-time signature
using the Shamir secret sharing method. This may happen with or without the aid of a

trusted party. Finally, in Section 7.6, we design a scheme for threshold proxy signature.

7.2 Related work

Lamport [97], Rabin [107], Merkle [108] and GMR [66] are well known examples of one-
time signature schemes. They share the same basic idea, and are based on committing
to secret keys via one-way functions. Rabin uses an interactive approach for verification
of signatures with the signer. These schemes differ in their approaches, but they share
the same idea: only one message can be signed using the same key. Once the signature
is released, its private key is not used again; otherwise, it would be possible for an
adversary to compute the secret key.

A new approach to designing such signatures is the BiBa one-time signature [121].
The BiBa signature exploits the birthday paradox property. A large number of secret
keys is used to find collisions among the generated keys associated with the message.
This way of signing requires a long pre-computational time. Reyzin and Reyzin [129]
solve BiBa’s disadvantage of having a very long signing time. Their idea is to calculate
the number of required keys according to the size of the message and pre-determined
length of the signature. Based on this, key generation would be very fast, and hence
signing is faster.

One-time signatures have been used in group communication for authenticating
streaming applications in multicast communication. Gennaro and Rohatchi [64] used a
chained method with one-time signature. Rohatchi used a k-times one-time signature
based on an on-line/off-line approach. Perrig used it in Tesla [122]. Al-Tbrahim et al
in [7] introduced k-sibling one-time signature for authenticating transit flows. Wang

et al in [162] used oblivious transfer protocol for designing proxy one-time signature.

7.3 A class of one-time signature schemes

In this section, we establish a model for one-time signature schemes. The model is not
aimed at introducing a new kind of signature. We want to set a common view of several

well-established signature schemes in order to be able to apply any one of them in our
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subsequent scenarios. Therefore, not every signature scheme in our model is secure,
and the properties of each such particular scheme are to be investigated separately.

Our model consists of a signer S and a verifier V' and is described for a security
parameter K > 0 as a tuple O = (M, X,Y, h,v,7) where M is the set of messages,
X,Y are finite sets, |X| > 2% h : X — Y is a one-way hash function (we assume
that for any polynomial @) the probability to find for a given y € Y in time Q(K)
a value x € X such that y = h(x) is less than Q(K)/2%) , v > 1 is an integer and
7 M — 2112} i a one-way function, where M — 21127} ig the set of values of M
that are subsets of 1,2,...,v. All parts of O are public. If a signer S sends a message
m € M to a verifier V', the signature creation and verification proceeds as follows:

Key generation

Signer S

1. chooses v random values s1, S, ..., s, € X (the secret keys of the signer)

2. computes v values p; = h(s1), po = h(s2),...,p, = h(s,) € Y and makes them
public.

Signing
Signer S
1. finds (jlaj?a"'ajr) :ﬂ-(m)7 (1 STS,U)

2. sends m and the signature (s, s;,,...,s;,) to the verifier V.

Verification

Verifier V

1. finds (jlaj?a e ajr) = ﬂ-(m)
2. computes hy = h(s;,), ho = h(sj,), ..., hr = h(s;,)
3. accepts the signature if and only if hy = pj, he = pj,, ..., he = pj,.

The model includes schemes like Lamport [97] or Merkle [108] as special cases. The
schemes of Rabin [128], GMR [66], BiBa [121] are of a different type. The “better
than BiBa” scheme of Reyzin and Reyzin [129], Bos and Chaum [26], and HORS++
of [125] belong to this model.
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7.4 A simple one-time proxy signature scheme

Delegation of rights is a common practice in the real world. A manager of an institution
may delegate to one of his deputies the capability to sign on behalf of the institution
while he is on holiday. For electronic transactions, a similar approach is needed to
delegate the manager’s digital signature to the deputy.

Proxy signature is a signature scheme where an original signer delegates his/her
signing capability to a proxy signer, and then the proxy signer creates a signature on
behalf of the original signer. When a receiver verifies a proxy signature, he verifies both
the signature itself and the original signer’s delegation. Mambo, Usuda and Okamoto
(MUO) in [105] established models for proxy signatures. They classified proxy signa-
tures, based on delegation type, as full delegation, partial delegation, and delegation
by warrant. In full delegation, the signer gives his secret key to the proxy. In partial
delegation, the signer creates a separate secret key for the proxy, but it is derived from
his secret key. In signing with warrant, the signer signs the public key. In addition,
they provide various constructions for proxy signature schemes with detailed security
description and analysis. Their proxy signatures provide various security services in-

cluding:

e Unforgeability. Only the proxy signer (besides the original signer) can create

a valid signature for the original signer.

e Proxy signer’s deviation. Each valid proxy signer’s signature can be detected

as her signature.

e Verifiability. A positive verification of a proxy’s signature guarantees that the

original signer has delegated the power of signing to the proxy.

e Distinguishability. A valid proxy’s signature can be distinguished from the

original signer’s signature (in polynomial time).

e Identifiability. The original signer can determine the identity of a proxy from

his signature (if there are more proxy signers).

e Undeniabilty. A proxy signer cannot disavow his valid signature.

Detailed discussion may be found in [105].

Zhang in [167] noticed that the Mambo scheme does not provide
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e Nonrepudiation. Neither the original nor the proxy signer can falsely deny

later that he generated a signature.

In [167], the scheme from [105] has been enhanced to provide nonrepudiation.

The scheme in [105] allows the proxy to sign an arbitrary number of messages.
Furthermore, using the warrant is not a systematic way to control the number of
signed messages in electronic communication. In some situations, the signer may need
to delegate his signature to the proxy for one-time/one-purpose only. For example,
a manager may want, for security or administrative reasons, to restrict the proxy to
signing on his behalf for one time only. Hence, a new type of proxy signature that is
more restricted than the Mambo approach is needed. An efficient one-time signature
can be used in this case. Kim et al. in [91] designed a one-time proxy signature using
fail-stop signature to provide authentication to mobile agents applications. In our
proposal, we use a class of one-time signatures, as described in Section 7.3, to design
a new one-time proxy signature.

If we consider a “classical” type of scheme, where the original signer shares his secret
keys with the proxy or generates new secret keys for the proxy, distinguishability and
non-repudiation are not guaranteed, since both the original and the proxy signer know
the secret keys. The character of a one-time signature allows us to adopt a principally
new approach, where the secret keys are generated and kept by the proxy only, and
the original signer has no share in the secret. The original signer only confirms the
public keys and stores them with a trusted party (registry). The security properties
such as unforgeability, proxy signer’s deviation, verifiability, and undeniability of the
scheme are the same as in the underlying one-time signature scheme O. Introducing
the proxy signer clearly does not cause any violation of these security properties unless
the signature scheme is used more than once by an unreliable proxy. Signing several
messages using the same set of keys reveals too many secret keys, and an eavesdropper
could easily sign a false message using them. Our suggested solution involves the
trusted party. Let us assume that, besides the public keys approved by the original
signer, one more value will be stored by the proxy when signing a message. However,
this action will be guarded by the trusted party and will not be allowed to be take place
more than once. When signing the message m, the proxy will store there the value
h(m). In an additional step, the verifier will compute h(m) for the received message
m and check it against the value from the registry. Since this value can be stored to

the registry just once, only one message can be legally signed. The scheme involves
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a signer S, a proxy P, a verifier V, and a trusted party T'P. It uses the one-time
signature scheme O = (M, X, Y, h,v, w) where X is a sufficiently large set. In addition,

we assume that h is extended to h: X UM — Y while still preserving its one-wayness.
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Key generation

Signer S
1. asks P to start generating secret keys.

Prozy P
1. chooses v secret numbers : sq,8o,...,5, € X
2. computes p; = h(s1),p2 = h(s2),...,py = h(sy)
3. passes (p1,p2,...,Py) t0 S.

Signer S

1. verifies that the p’s are from P (a one-time signature of P can be used for signing
the list of p’s)

2. makes (p1, pa, - - ., Py) public, registered to the name of S.
Signing
Proxy P

1. Computes (jlaj?a s ajr) = ﬂ—(m)

2. computes ¢ = h(m) and registers this value with TP as a one-time writable

value
3. sends (m, sj,,...,s;.) to V.

Verification

Verifier V

—_

. finds (51,72, -, jr) = w(mM)

2. computes hy = h(s;,), ho = h(sj,), ..., hr = h(sj,)
3. computes ¢’ = h(m)

4. fetches p;,,pj,,...,p; and ¢ from TP

5. accepts the signature if and only if by = pj,, ho = pj,, ..., h, =pj;, and ¢’ = q.
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The proxy uses its private keys, and the public keys are stored with a trusted party;
hence, the proxy cannot deny signing or revealing the secret to a third agent, which is a
danger occurring in most of the established proxy signature schemes. Since the signer
and the proxy do not share the same key, non-repudiation is achieved. Sending keys
by the proxy to the signer in the key generation phase does not compromise security
since these keys will become public in any case. The role of the original signer is to
endorse the public-keys generated by the proxy signer to the registry. This step is

crucial; otherwise, any agent may claim itself to be a proxy for the original signer.

7.5 A (t,n) threshold one-time signature scheme

A particularly interesting class of society-oriented cryptography is the threshold cryp-
tographic, which deals with transformation of subsets of ¢ or more participants from
a group of n members. A digital signature is an integer issued by a signer which de-
pends on both the signer’s secret key and the message to be signed. In conventional
cryptosystems, the signer is a single user. However, the process of signing may need
to be shared by a group of participants. The first attempts at designing a shared
signature were made by Boyd [27]. Threshold RSA [53] and Threshold ElGamal [101]
signatures are examples of threshold multisignature schemes that require the presence
of ¢t participants of the group to sign a message. Both schemes exploit the threshold
Shamir secret sharing method to generate shares of signatures.

Here, we attempt to expand the idea of threshold signatures from the conventional
cryptosystems transformations into one-time signatures in order to benefit from its
efficiency properties in speeding-up the verification process. Our model consists of
a group of signers S;,7 = 1,2,...,n and a verifier V. A one-time signature scheme
O = (M,F,Y,h,v,7) is used, where F is a finite field and Y is a finite set, and both
are sufficiently large. A threshold value ¢ < n is specified in advance. Not less than ¢

signers are required to sign a message.

7.5.1 A scheme with a trusted party

In our first scenario, two more parties are involved: a trusted distributor D, and a
trusted combiner C.

The idea behind this scheme is to let the distributor D choose the secret keys of
the general one-time signature scheme of the group.

The shares of these secret keys for the particular signers are computed by D using
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Figure 7.1: One-time signature polynomials interpolation

the Shamir secret sharing algorithm, and they are then distributed to the participants.
For each secret key s;, a distinct polynomial f; of degree ¢ — 1 with f;(0) = s; is
used to create secret shares. A public value z; is associated with each signer S;; his
secret share on the key s; is then s; ; = fj(x;). The set of polynomials comprising the
system is illustrated in Figure 7.1. Each intersection of a polynomial with the y axis
represents a secret key. Two or more shares of the same signer may be identical, since
several polynomials may have a common value in some of the points z; (the graphs
may intersect on a vertical line at ;). This clearly does not compromise the security
of the system, since this information is known only to D and to the signer. The secret
keys s; are chosen to be pairwise distinct; hence no two polynomial graphs intersect

on the y axis.

For clarity, we detail the following Shamir threshold scheme, by which the dealer
distributes the shares of the secret keys sq, s9, ... among n participants. The combiner

is then able to recover the signature, provided he knows ¢ valid shares.
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Key generation and share distribution
Distributor D

1. chooses randomly v pairwise distinct elements s; € F,j=1,...,v

2. computes the v values p; = h(s;),j =1,...,v and makes them public

(registered to the group name)

3. chooses randomly n pairwise distinct non-zero elements x;,2 =1,...,n

from F' and makes them public

4. chooses randomly v polynomials f;(z) = fjo + fjaz + -+ fi12'™,
forj=1,..., v, satisfying f;(0) = fj 0 =s;

5. computes s;; = fi(z;),i=1,...,n,j=1,...,v

6. sends (s;;);j=1,..» by a secure channel to the signer S;,;i=1,....,n

(secret share for the partial signer S;)

Signing
Signer S;,i € {iy,i2,...,0;}

1. finds (j1, jo, ..., jr) = 7(m)

2. sends the partial signature (s; j,, S j,, - - -, Sij,) to C.
Combiner C

1. waits to receive partial signatures from (at least) ¢ signers S;,,..., S,

2. using Lagrange interpolation, recovers the polynomials f; (z), £ = 1,...

based on the conditions fj, (zi,) = Siyj,, - - - i (Tir) = Siv i
3. finds (8,5 Sjps -5 55,) = (fi1.05 Fin0s - - - s fi0)
4. sends (m, sj,, Sjy, ..., 5j,) to V.
Verification
Verifier V
1. finds (j1, ja, - - -, jr) = 7(m)
2. fetches pj,, k= 1,...,r from the registry

3. checks whether p;, = h(s;,), k=1,...,r.
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Since the usual Shamir perfect secret sharing is used, at least ¢ signers are necessary
to find any of the group secret keys. The fact that at most one message will be signed
using the same signature may be guaranteed by the trusted combiner, so the multiple
signature problem vanishes. In our scheme, the trusted distributor D knows all the
secret, keys; therefore, his reliability must be without doubt. The next version, without
a trusted party, avoids such strict requirements. Observe that the combiner C' knows
only those secret keys which are used for the signature and which will be revealed to
the verifier.

The computation of the shares involves nv times evaluation of a polynomial of
degree t — 1 by D and r times Lagrange interpolation of a polynomial of degree t — 1
by C. In addition, D, V and each partial signer must compute w(m) and D and V'
compute v and r values of the function h, respectively. The signers may compute 7 in
parallel. It is worth noting that the verification of the one-time signature scheme is as

efficient as without secret sharing.

7.5.2 A scheme without a trusted party

The scenario without a trusted party works the same way as the one with the trusted
party; the steps of the distributor D and combiner C' are performed by the signers

themselves. In particular, the set of n signers is used as a parallel n-processor computer.
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Key generation and share distribution

Signer S;,i=1,...,n

1. chooses randomly a non-zero element x; € F and makes (i, z;) public

2. chooses randomly s; € F' (secret key) for each j =1,...,v such that
(j—1)modn+1=1

3. computes the value p; = h(s;) and makes the pair (j, p;) public
(registered to the group name)

4. chooses randomly a polynomial f;(z) = fjo + fjax + -+ fiza2'™"
satisfying f;(0) = fjo0 = s,

5. computes sy = fi(zy), 7 =1,...,n

6. sends sy ; by a secure channel to the signer Sy, =1,...,n;
i" # i (secret share for the signer Sy)

Signing

Signer S;,i € {i1,i2,...,0;}

1. finds (51,72, .-, jr) = w(m)
2. sends the partial signature (s;, S j,, - - -, Si,j,): the triple (¢, jk, S, )
is sent to S;, where ¢ = (j, — l)mod t+1,k=1,2,...,r
3. using Lagrange interpolation, based on the conditions f;, (z;,) = si, j,» [, (Tiy) =
Siniins - - s Fin (Ti,) = Si,j.,recovers the polynomial f;, () for each complete ¢-
tuple (1, Jks Sivji)» - - - » (%, Jks iy 5, )) Teceived
4. for each polynomial f; recovered, finds s; = f,
5. for each polynomial f; recovered, sends (m, j, s;) to V.
Verification
Verifier V
1. finds (51,72, ..., 7r) = w(mM)
2. fetches p;,, K =1,...,r from the registry
3. waits until all triples (m, jk, s;,), k = 1,...,r have been received
4. checks whether p;, = h(s;,), k=1,...,n
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Let ¢ be the minimum length of a signature and v the total number of secret keys.
In our scheme, each of the n signers generates [v/n| secret keys. We claim that if
[v/n] (t — 1) < 1o, then at least ¢ out of the n signers are necessary to create a valid
signature. Indeed, (t—1) signers know at most [v/n] (t—1) secret keys. If the condition
holds, this is not enough to create a signature of length ry. On the other hand, the
multiple signatures problem arises again here. Several messages may be signed even
without malicious intention, since two independent subgroups of size ¢ may sign two
different messages. An improper solution of this problem may allow an existential
forgery in the following way. After a valid signature of some message is created, a
malicious agent (possibly identical with a subgroup of at most ¢t — 1 signers) may use
some of the secret keys from the signature, in combination with the secret keys known
to the subgroup of signers, to create a signature of a different message. This problem
may again be resolved by using the “trusted registry” as in Section 7.4; the scheme
and the proof of its security is provided in Section 7.6. We leave open the problem of
designing a better scheme for one-time signatures that would solve this problem.

The complexity considerations from Part 7.5.1 are valid, except that, instead of the
time necessary for computing nv polynomial values, the time for computing max(n,n [v/n]| ~
v) values is required, since the signers may compute in parallel. In a similar way, only
the time for [r/t] Lagrange interpolations is necessary. How realistic is the condition
[v/n] (t —1) < ry? If the scheme of Lamport ([97]) is used to sign a message of length
1, then v = 24 are generated, and the signature consists of y keys. Our condition is
satisfied if t < n/2 + 1.

7.6 A (t,n) threshold proxy one-time signature scheme

In this section, we combine the ideas from Section 7.5 and Section 7.4 and propose the
following model. A group of n signers S;,7 = 1,2,...,n wants to allow any subgroup
of at least t signers to sign a message using a one-time signature. In our solution, the
group will play the role of the original signer, who delegates his right to use a one-time
signature to any subgroup of ¢ < n (proxy). The signature is to be verified by a verifier
V. A one-time signature scheme O = (M, F,Y, h,v, 1) with the security parameter K
is used, where F' is a finite field and Y is a finite set, both sufficiently large. Again,
we assume that h is a one-way hash function, h : M U F' — Y. The trusted party TP
is required only to keep the public keys and to prevent repeated signing. The start of

the keys generation should be initiated in a suitable coordinated way.
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Key generation and share distribution

Signer S;,i=1,...,n

chooses randomly a non-zero element z; € F and makes (i,2;) public

chooses randomly s; € F (secret key) for each j =1,...,v such that

(j—1)modn+1=1
. computes the value p; = h(s;) and sends (j, p;) to TP

chooses randomly a polynomial f;(z) = fjo+ fjix + -+ + fj—12' ! satisfying
fi(0) = fio = s;

. computes sy ; = fi(xs), ' =1,...,n

sends sy ; by a secure channel to the signer Sy, =1,...,n,i" # i (secret share
b

for the signer Sy)

Trusted Party TP

1. verifies that each p; is from a proper S; (a one-time signature of S; can be used
for signing the pair (j, p;))
2. makes (p1,pa, ..., Py) public, registered to the name of the group.
Signing

Signer S;,i € {i1,ia, ... 0}

—_

. ﬁnds (jl;j?; cee 7j7‘) = ﬂ—(m)

. computes ¢ = h(m) and registers this value with T'P; if ¢ is different from a

value already registered with T'P, S; stops signing

sends the partial signature (S; ., Sij,, - - -, Sij,): the triple (i, jg, s;,) is sent to

Si, where ¢ = (j, — l)mod t + 1,k =1,2,...,7

using Lagrange interpolation, based on the conditions f;, (%;,) = S, ., fir (%iy) =
Sinijns - -3 1jx (Ti,) = Si,j,, Tecovers the polynomial f;, (z) for each complete ¢-
tuple (41, Jks Sir i )s - - - » (it Jks Siv g, )) Teceived.

. for each polynomial f; recovered, finds s; = f;,

. for each polynomial f; recovered, sends (m, j, s;) to V.
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Verification

Verifier V

1. after receiving the first triple (m, ji, s;,) finds (ji, jo, ..., ) = (M)
2. computes ¢’ = h(m)

3. fetches p;,, k=1,...,r and ¢ from TP

4. waits until all triples (m, ji, s;,), k =1,...,r are received

5. checks whether p;, = h(s;,), k=1,...,7 and ¢’ =q.

As in Part 7.5.2, each of the signers knows at most [v/n] secret keys of the group.
Therefore, (t—1) signers will not be enough to sign a message only if [v/n] (t—1) < o,
where 7( is the minimum signature length for messages under consideration. This fact

is, expressed more formally in the following theorem.

Theorem 7.1 Let Q) be a polynomial. Let [v/n]| (t —1) < ro. Assume an adversary
A who knows at most [v/n] (t — 1) secret keys and at most t — 1 shares for any secret
key. Then the probability that A will produce in time Q(K) a valid signature for some
message is less than Q(K)/2%.

Proof. Since [v/n] (t—1) < r¢, A has to find at least one additional value of a secret
key. To do this in time Q(K), A has to find either the share by breaking the perfect
secret sharing algorithm of Shamir, or the one-way function h. Neither can be done
with a probability greater than Q(K)/2%. O

We do not assume in the theorem that A has a knowledge of at least one valid
signature. If this is the case, then trying to forge a signature for another message
makes no sense, since the verifiction will fail on the information kept by the TP.
However, there is another problem connected to the involvement of the T'P which we
call a blocking attack. A malicious agent may send a fake hash of a message to the TP
without an intention of signing the message. This will block the possibility of any valid
signing by the group. This can be avoided by the following activity of the T'P. In the
key generation and share distribution part of the scheme, T'P chooses a random value
a; for each signer S; and sends it to S; by a secret channel. In step 2 of the signing
part, each .S; sends the pair h(m), h(h(m)||c;) to the T P. When the T'P receives ¢ such
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pairs, she registers the value h(m). The existence of T'P is therefore essential as part
of a solution to the problem, and we leave it as an open problem to find a simpler

solution not involving TP in the computations.

7.6.1 Special case: t=1

A particular case of interest in this scheme is when ¢ = 1, which depicts the anycast
model. The anycast authentication problem will be discussed in detail in the chapter.
Briefly, the anycast model represents the situation where any of a group of n servers
(signers) may provide the same (equivalent) service to a client (verifier). The method of
nominating the actual signer is an optimization problem, and it is done by the network
infrastructure based on a number of criteria such as less communication overhead or
more available memory, and so on. In the solution, an additional party (a group
coordinator) may behave as the original signer in our (1,n)-threshold scheme while
the servers behave as the proxies. The original signer delegates his power to n proxy
signers and the verifier verifies a message from “one” of the proxy signers. Although
the above (1,n)- threshold scheme of one-time signature is theoretically correct, it is
not of practical concern since the signer needs to generate different secret keys for each

proxy correspondence.

7.7 Summary

One-time signatures was already used in other studies of multicast security as an effi-
cient tool of authentication (e.g., [133]). However, it was not been used in the context
of group-oriented cryptography such as in threshold or proxy scenarios. In these sce-
narios, typical digital signatures schemes were usually in the picture. With the need
for efficient society-oriented methods, one-time signatures were the potential to fill this
gap. In this chapter, we have proposed several schemes related to authentication with
one-time signature. The first case deals with the implementation of a one-time sig-
nature in proxy delegation; the second shows how to use a (¢,n) threshold one-time
signature in a group of signers, and the third scheme combines the above two ideas
into a (¢,n) threshold proxy one-time signature. An extension to this work, left as an
open problem, is to design a one-time signature scheme to prevent multiple message

signing using the same set of one-time signature keys.



Chapter 8

Authentication of Anycast Communication

Anycast is a communication mode in which the same address is assigned to a group of
servers and a request sent for a service is routed to the “best” server. The measure of
best could be the number of hops, available bandwidth, load of the server, or any other
measure. With this scenario, any host could advertise itself as an anycast server in order
to launch a denial-of-service attack or provide false information. In this chapter, we

solve this problem by proposing an authentication scheme for anycast communication.

8.1 Introduction

The Internet is increasingly being viewed as providing services rather than just con-
nectivity. As this view has become more prevalent, the important considerations in
the provision of such services are reliability and availability of the services to meet
the demands of a large number of users; this is often referred to as scalability of the
service. There are many approaches to improving the scalability of a service, but the
common one is to replicate the servers. Server replication is the key approach for main-
taining user-perceived quality of service within a geographically widespread network.
This is empowered by the underlining network infrastructure known as anycast com-
munication. The anycasting communication paradigm is designed to support server
replication by allowing applications to easily select and communicate with the best
server, according to some performance policy criteria, in a group of content-equivalent
servers.

With regard to the above description of anycast communication, the system can
be subject to a number of security threats. In general, there are at least two security
issues in anycasting, which are mainly related to authentication. First, it is clear
that malevolent hosts could volunteer to serve an anycast address and divert anycast
datagrams from legitimate servers to themselves. Second, eavesdropping hosts could

reply to anycast queries with inaccurate information. Since there is no way to verify
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membership in an anycast address, there is no way to detect that the eavesdropping
host is not serving the anycast address to which the original query was sent. In both
scenarios, the security requirement is anycast server authenticity.

In this chapter, we consider the problem of authentication in anycast communica-
tion, and we propose an authentication solution which is closely related to the concept
of proxy signatures. In the next section, we review related work in the area of proxy
signatures, and then we describe the anycast model. Next, we describe the proposed
scheme and discuss the security and performance issues of the scheme. Finally, we

conclude with some remarks.

8.2 Related work

Delegation of rights is a common practice in the real world. A manager of an institution
may delegate to one of his deputies the capability to sign on behalf of the institution
while he is on holiday. For electronic transactions, a similar approach is needed to
delegate the manager’s digital signature to the deputy.

Proxy signature is a signature scheme where an original signer delegates his/her
signing capability to a proxy signer, and then the proxy signer creates a signature on
behalf of the original signer. When a receiver verifies a proxy signature, he verifies both
the signature itself and the original signer’s delegation. Mambo, Usuda and Okamoto
(MUO) [105] were the first to introduce the concept of proxy signature. They gave
various constructions of proxy signature schemes and their security analysis [105].

Lee et al [99] noticed that the MUO proxy scheme does not satisfy the strong
undeniability property, that is, a proxy signer can repudiate the fact that he has created
the signature. Based on this weakness, they classified proxy signature schemes into
strong and weak ones according to their undeniability property. Another important
criterion of classification is whether the proxy signature is prozy-protected or proxy-
unprotected. If it is proxy-protected, the original signer cannot first create or know the
proxy secret key, and therefore it cannot create a proxy signature. Other related types
of signatures are the multiproxy signature scheme [84] and the threshold scheme [167].
In this sort of signatures, there is a set (group) of proxies, rather than a single proxy,

collaborating to generate a proxy signature.
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8.2.1 The Schnorr signature

Let p,q be primes such that ¢ divides (p — 1) and ¢ > 2¥ where k is the security
parameter. Let g € Z7 and let H be a hash function with values in Z,. The Schnorr

signature scheme ([137]) can be described as follows:
Initialization

Signer
1. Chooses the secret key = € Z;
2. Computes the public key

y =g~" (mod p).

Signing of a message m

Signer

Chooses a random K € Z.
Computes 7 = g% mod p.
Computes e = H(m,r) mod q.
Computes s = K + ex mod gq.

A

Sends (m,r, s) to the client.

Verification of the signature (r,s) of m
Verifier
1. Computes e = H(m,r) mod q.
2. Checks whether r = ¢g*y® (mod p).
3. Accepts if the check is OK; otherwise, REJECT.

8.2.2 Schnorr-based proxy signatures

Proxy signature schemes could be designed using any standard and secure signature
scheme. However, because the Schnorr scheme proved to be an elegant and secure sig-
nature scheme in the random oracle model [126], a number of proxy signature schemes
that use the discrete logarithmic problem apply the Schnorr scheme as the standard
signature algorithm.

Boldyreva, Palacio, and Warinschi in [25] proposed a provably secure scheme called
the Triple-Schnorr proxy signature scheme, which is modified from the [92] scheme, for
warrant-based delegation. They also presented a formal definition and security notion
for their proxy signature.

Lee, Kim and Kim (LKK) in [99] proposed a Schnorr warrant-based proxy signature
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scheme (see Section 7.4 for types of delegations and security requirements). The same
authors in [98] claimed that their Schnorr-based LKK scheme is as secure as the Schnorr
scheme and satisfies all the security requirements. Wang et al in [161] prove that the

schemes in [99, 98| are insecure, and provide a security analysis to their work.

8.3 Anycast Scenario

Anycast addressing has become a part of the IPv6 new generation internet protocol
([83]). In anycast communication, a common IP address (anycast address) is used
to define a group of servers that provide the same service. A client sender desiring to
communicate with only one of the servers sends datagrams with the IP anycast address.
The datagram is routed using an anycast-enabled router to the best server of the group.
Recall that the best server is elected based on a criterion such as the minimum number
of hops, more available bandwidth, or least load on the server. Anycasting simplifies
the task of finding an appropriate server considerably. Users, instead of manually
consulting a list of servers and choosing the best one, can be connected to the best
server automatically. The client does not care which of the servers is assigned to him
for the communication. In fact, various servers may participate in the different parts
of one communication session.

It is worth mentioning that the concept of anycasting is related to multicasting.
While multicasting involves building and maintaining a distribution tree from a single
server to multiple clients, anycasting involves the concept of redirecting the client to a

server from a group of servers.

8.3.1 The Model

The model for anycast communication as depicted in Figure 8.1 consists of a group
of anycast servers A, A,,..., A,, and a client C. We introduce an authentication
scheme based on an additional agent called a group coordinator GG. The group coor-
dinator is the main player in the setting and is considered as the original signer. The
group coordinator is considered to have the power to distribute the signature rights
for the whole anycast group. She delegates her rights to all servers in the group, and
therefore it is used to prevent malicious hosts from pretending that they are the any-

cast group members.
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The communication in the model consists of two phases:

1. Initialization. The communication of each server with the group coordinator. A
signature delegation algorithm is used in this communication. Each server starts

playing the role of the coordinator’s proxy.

2. The actual serving. The anycast server uses the delegated signature, together

with the proof of his delegation.

Group Coordinator D

Delegations

Y

i (3) (B ORONO

Connection

Client C

Figure 8.1: Anycast Model

In this model, we assume that all communications between players in the model are
done in public (i.e. insecure) channels. We assume that the communication from the
servers to the client is based on the authentication of the servers by a suitable signature
scheme. We also assume that the security attacks may be launched externally by an
adversary, or internally by any of the anycast players in the model.

In our solution, described in the next section, we will apply a Schnorr-based digital
signature scheme (as described in [138]), which was obtained by improving the scheme
from [167].
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In summary, the key characteristics of the model are:

1. it is applied to multiple proxies,

2. each proxy has the delegation, but each message is signed by one proxy only,
3. it uses a partial delegation mode,

4. it assumes the existence of a trusted third party to solve possible disputes,
5. it uses insecure public communication channels,

6. it assumes that all messages exchanged between the coordinator and any of the
anycast servers during key exchange protocol are authenticated. The authenti-

cation should include the identities of both communication parties.

8.3.2 Security Requirements

The security requirement for an anycast model is similar to the requirement of a typical
proxy signature which was first specified in [105] and already mentioned in Section 7.4.
It basically inherits the security properties of the original Schnorr signature scheme

and of the signature delegation scheme ([167].

For our model, we list these requirements to fit the anycast scenario settings:

R1) Verifiability: From the proxy signature, a verifier can be convinced of the group

coordinator’s agreement to the signed message.

R2) Strong Unforgeability. Only the group coordinator can authorize a new anycast

server. In particular, an existing anycast server cannot do the same.

R3) Identifiability. The identity of an anycast server A; can be determined from the

server’s signature.

R4) Strong Undeniability. The server A; cannot deny that he (or someone to whom

he revealed his secret) is the author of the signature.

R5) Nonrepudiability: The group coordinator should not compute a valid proxy key

pair under the name of the proxy signer.
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8.4 The Anycast Scheme

In our anycast scheme, the group coordinator G' will play the role of the original
signer, which delegates his signature rights to all the members of the anycast group
which act as proxy signers. His public key y will be the public key of the whole group
of anycast servers. For this delegation, we propose using the nonrepudiable proxy
signature scheme from [167] based on the scheme from [105].

Assume a group of anycast servers A, As,...,A,, a client C' and a group
coordinator G. Let p,q be large primes such that ¢ divides (p — 1) and let ¢ €
7 = GF(p). Let M be the set of messages (not necessarily of uniform length) and
H : M — Z, be a hash function.

In the initialization part, we assume that the group coordinator G has already

chosen his secret key x, and public key y = g”mod p is registered with the trusted
party.
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Group Coordinator G

1. Foreach 1 <i<n,
chooses a random value z; € Z,,
computes u; = g*mod p and

sends u; to the i-th proxy-server.

Computes v; = t;2 + z; (mod q).

Server A,

1. Chooses a random K € Z;.
2. Computes r = g¥modp.

3. Computes e = H(m,r).

4. Computes s = K + expmod ¢
5. Sends (m,r,s,t;) to the client.

Sends v; to the i-th Proxy server.

Initialization

Server A; (i=1,...,n)

Repeatedly selects a random
value o; € Z,; until the value
t; = g*u;mod p belongs to Z,

and sends ¢; to the Coordinator.

Computes zp, = v; + a; (mod q)
Checks the equality
g*7i = ylit;mod p.

Accepts xp, as her secret proxy key.

Accepts y; = yit;mod p
as her public proxy key

Signing of a message m and verification of the signature

Client C

Computes e = H(m,r).
Verifies

r = g*(y'it;)"¢(mod p).
Accepts; if the check is OK,
otherwise, REJECT.
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8.4.1 Security Issues

We can identify a number of possible forgery attacks against our anycast model which

can have different strengths and can be used in different settings. The security threats

to the anycast model include attacks similar to those existing for proxy signature

schemes, as well as extra attacks possible due to the existence of multiple proxy servers

in the anycast group.

We examine the following attacks in the anycast model.

T1)

T2)

Existential Forgery: In this attack, an adversary tries to forge a proxy signature.
He outputs a valid proxy signature o for a message m, which was not signed by a
proxy signer. The security of this attack is measured by the difficulty of produc-
ing an existential forgery under adaptive chosen-message attack. The difficulty
of forging the server’s signatures follows from the properties of the underlying
Schnorr signature scheme, and it can be reduced to the difficulty of solving the
discrete logarithm problem (DLP) which has been proven to be secure in the
random oracle model [126]. The existence of this attack violates the security
requirements R2, R3, and R4.

Dishonest group coordinator: The group coordinator produces a valid proxy sig-
nature which looks as if it was generated by a proxy. Formally, if G wants to sign

a message pretending to be A;, he has to use the public key

Y=yt =g

that is, he uses z; as the actual key. To find x;, he needs to solve the equations:

g% =yt
gmp — gmtiga,-gz,-
gmp—xti—ti — gai

Finding ), is equivalent to finding x, — xt; — t; since xt; and ¢; are known to G.
This is equivalent to DLP because «; is a random number chosen by the proxy.

The existence of this attack violates the security requirements R4 and Rb5.
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T3)

T4)

T5)

T6)

Impersonating Prozy: In this scenario, we assume a fake proxy A not designated
as anycast proxy signer by G. A pretends to be an anycast proxy signer by forg-
ing a valid proxy key pair without the coordinator’s agreement. However, this
attack is difficult since the knowledge of the secret key x of the original signer
is necessary to create a secret proxy key for the new server. Finding a suitable
value of #; to be used in the verification algorithm is as difficult as finding the
value of x, and basically requires solving the discrete logarithm problem. The

existence of this attack violates the security requirement R2.

Dishonest proxy signer: Here, a dishonest proxy signer can cheat to get a sig-
nature generated by the original signer on any message. As described in [100]
this attack is possible on any scheme belonging to some variants of ElGamal-type
signature (including Schnorr signature). For this attack to take place during the
proxy key generation phase is indeed possible. However, as illustrated in [65], a
cheating attack is successful only if it is not detectable. They showed that the
original signer can prove that the proxy signer was cheating in the key delegation
protocol. In our anycast scheme, G is not using his pair of keys (z, y) for signing,
so forging the signature does not make sense. However, the keys (z,y) may be
misused as proxy keys with the value ¢; = 1. This can be easily prevented by not
allowing the use of ¢, = 1 in the verification scheme. The existence of this attack

violates the security requirement R1.

Transferring Attack: In this scenario, an adversary converts the proxy signature
o into a new one &, where ¢ is also a valid proxy signature, but on behalf of
a different original signer. Note that, in our scheme, the proxy signer can be
identified based solely on the value ¢;, where G must have a record of the proxy
authentication of ¢;. The attacker does not have such a valid record if the au-
thentication includes the identification of both G and A;. The existence of this

attack violates the security requirements R2.

Colluding attack: In this attack, the adversary’s goal is to reveal the secret key
x of the original signer by getting available information from some (or all) proxy
servers of the anycast group. This approach does not seem to have a greater

chance of success than getting multiple signatures from a single proxy in the
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underlying signature delegation scheme. This follows from the fact that distinct
random values z; and «; are used to generate the secret proxy keys xp, for distinct
anycast servers. The existence of this attack violates the security requirements
R2.

A remark may be raised with regard to the security requirement R3. Note that we
have not required a strong identification as is required in other proxy schemes. This is
because the identification of A; by the client C' is not desirable in anycast applications.
The client should deal with the anycast servers group seemingly as if dealing with a
single server. So, from the client’s (verifier’s) perspective, it is not vital to know by
which server she has been served (signed). However, in case of a dispute, the identity
of the anycast signer can be revealed from the value ¢;, with the cooperation of GG, who

has the authentication of A; on ¢;.

Warrant-based vs. Partial-delegation

Using partial delegation, as in our scheme, provides sufficient security services to our
anycast application and with less computational overhead. However, delegation by war-
rant provides more security services, but with extra computational overhead involved.
In fact, this is the dilemma between efficiency and security between warrant-based
and partial-delegation proxy signatures. While it was possible to provide a rigorous
security proof to warrant-based delegation protocols [25], it was difficult to find a such
to partial-delegation based proxy signature protocols. This is the reason behind the
insecurity of most partial-delegation based schemes (see [161]). The provably secure
Triple-Schnorr proxy signature scheme by Boldyreva et alin [25] could be, however, ap-
plied in our anycast scheme, but it would not be an efficient authentication solution to
anycast communication. The choice between using warrant-based or partial-delegation
sort of delegation (from security perspective) is ‘application-specific’. One of the most
necessary features of authenticating group-based applications is the efficiency. In our
opinion, partial-delegation proxy-signatures protocols could be used securely, but with

careful selected security requirements.

8.4.2 Performance Issues

Considering the performance issues, the initialization phase requires, besides several

multiplications, at least four exponentiation mod p to create a secret key for one server.
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However, this is done just once, and thus this part of the computational complexity need
not be of great concern. Signing of a message by a server requires one exponentiation,
and verification by the client requires three exponentiations. However, in the frequent
case where a single server sends several messages to the same client, the value y't; can
be kept in the client’s memory and need not be computed repeatedly.

In comparison with delegation by warrant, partial delegation is far less computa-
tionally expensive. In warrant-based schemes, the original signer needs to sign the
warrant in roughly the same amount of time required for standard signing, but the
verifier requires twice the time to verify a standard signature. In a discrete logarithm
based scheme such as the Schnorr signature scheme, a proxy signature requires four
modular exponentiations, while it needs two normal signatures verification when used
with partial delegation. Yet, because of the nature of anycast application, it is not
recommended to impose warrants on servers for delegation and verification; otherwise,

it would increase communication overhead and turn out to be impractical.

8.5 Summary

Anycast is a new communication mode in the context of group communication in
which a server is selected from a group of servers based on some criterion such as the
greater bandwidth available to the server or the less utilized server. It is the defacto of
multicast communication. The anycast paradigm is usually used in server replication
environments to provide service availablity. Anycast become part of the IP version 6
suite. The security of anycast communication has been discussed here, and we have
focused on the authentication aspects since any server can pretend to belong to the
anycast group. Our solution is a variant of the proxy signature scheme. An extension
of this work may investigate the possibility of authenticating distributed anycast servers

over different environments of different authentication methods.



Chapter 9

Authentication of Joining Operation

IP multicast is a dynamic and scalable communication mode. Any host can join a
multicast group, by using a group membership protocol IGMP, without its identifi-
cation information being released or known to other nodes. From the perspective of
extendability, this is an attractive feature, but from a security perspective it represents
a shortcoming. In this chapter, the secret sharing technique is used to construct two
variants of signature schemes. The first scheme proposes a designated verifier signa-
ture to provide authenticity to a specified verifier. To provide both authenticity and

privacy, a signcryption scheme (based on the same idea) is then introduced.

9.1 Introduction

A simple and at the same time vital operation in multicast communication is when a
host uses a membership protocol such as Internet Group Membership Protocol (IGMP)
to join a multicast environment and to become a member of the group. Based on a
successful membership, the host is able to send or receive messages from other members
of the group. The joining operation is a dynamic feature which allows a host to join
and leave a group at any time without notice.

On one hand, in the current IP multicast models, the source of the multicast data is
never aware of the identities of the receivers of multicast data. Although some applica-
tions may not need membership identification information, such as public information
transmissions, others (for example subscription services and conferencing applications)
may require precise information about receivership of the multicast group.

On the other hand, the current standards of IGMP protocol (version 1 and 2)
[46, 59] do not incorporate security features. Other application layer authentication
protocols are either not efficient or do not provide sufficient security services [73],
and version 3 is not yet standardized. In either case, authenticating the source of the

communication is an essential requirement in the joining operation.
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In fact, the joining operation of the multicast is the easiest and the most vulnerable
to security threats of all other phases of multicast communication which have been
discussed earlier. This is because it is the first gateway for intruders on launch their
attacks to a multicast system. The communication mode in the previous phases used
to be ‘internal’ between the communication nodes and hidden from typical users. Also,
launching an attack demands great expertise and professionalism. However, in joining
the operation, the user has direct access to the multicast environment, and this is
therefore of great security concern. Hence, it is not only the authentication that is a
concern, but also the confidentiality, and the integrity of the exchanged information is
an additional possible essential requirement. This integration of security services in a
protocol is essential for modern security protocols.

Because of this necessity of securing the communication between the host and the
group manager, we propose the following two protocols. The first protocol proposes
a designated verifier signature (DVS) to provide peer authentication between a host
and group manager. In other words, a host can convince one and only one specified
recipient (the group manager) that it is legitimate user. However, unlike standard
digital signatures, nobody else can be convinced about their validity or invalidity, nor
does it not provide the non-repudiation property of traditional digital signatures. The
idea then is extended to a second protocol known as signcryption which provide not only
authenticity, but also confidentiality and integrity. The two cryptographic protocols
are based on the concept of verifiable secret sharing. Section 9.3 illustrates how to

generate a signature from the Shamir secret sharing method.

9.2 Related Work

The main contribution of digital signatures has been to provide authentication based
on public-key cryptography. This was an essential requirement in many applications
for many years. However, the different needs of digital signatures in the diverse and
modern applications have required special variations to fulfill the stringent requirements
imposed by these applications.

For example, typical digital signatures such as RSA or ElGamal (Section 2.5) pro-
vide authentication with non-repudiation. In this sort of signatures, anyone having a
copy of the signature can check its validity. However, this self-authentication property
is not always desirable, for example in some scenarios where personal private informa-

tion such as medical records, tax information, or personal transactions, should not be
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exposed to the public. It is intended for verification for a specific verifier only.

This variation of digital signatures is called designated verifier signatures (DVS)
and it was firstly proposed by Jakobson, Sako, and Impagliazzo [85], and independently
by Chaum [34]. Vergnaud and Laguillaumie in [158] provide a new scheme with a
formal security model. The DVS are intended for a specific and unique designated
verifier: the only one who can check their validity. Such signatures have numerous
applications. For example, in group communication, a group (multicast) manager
requires, for security reasons, to control the joining of users into a multicast domain.
Therefore, a protocol that authenticates the joining of a particular host to a group is
required. The verification is performed by a one-and-only-one entity, that is, the group
manager. Calls for tenders, electronic voting, electronic auction or distributed contract
signing are other examples. It can be noticed that a very efficient way to produce
DVS is to use MAC or HMAC under the symmetric-key cryptography. Therefore,
prior exchange of the secret keys is required in secure channels. A DVS scheme is
called asymmetric if it uses a public-key cryptosystem. DVS in general do not provide
non-repudiation, as is the case in any typical digital signature. Later, Vergnaud and
Laguillaumie in [157] generalized the idea of DVS into multi-designated verifiers, where
more than one verifier can be designated for verification.

DVS was one possible variation to digital signatures in terms of restricting the
verifiers. Another variation to digital signature in terms of extending the function-
ality is required. Typical digital signatures provide authenticity but do not provide
confidentiality of information, whereas in some applications, both confidentiality and
authenticity are required. Therefore, another variation of digital signatures is needed
to provide both privacy and authenticity. This sort of digital signature is called sign-
cryption, and it was first introduced by Zheng [169] at Crypto 1997. For example, stock
exchange communication requires authentication of the source of multicast as well as

encryption of the private data.

9.3 Theoretical Description and Construction

The main structure of our system is based on the Shamir threshold secret sharing
method described in Section 2.7. The main idea relates to the concept of verifiable
secret sharing, illustrated in Section 2.7.3.

Shamir’s (t,n) threshold scheme (¢ < n) is a method by which a trusted party

computes secret shares s;, 1 < i < n from initial secret s, such that any ¢ or more users
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who pool their shares may easily recover s, but any group knowing only ¢t — 1 or fewer
shares may not. Shamir secret sharing is based on Lagrange polynomial interpolation,
and on the fact that a univariate polynomial y = f(x) of degree ¢ —1 is uniquely defined
by ¢ points (z;,y;) with distinct x; (since these define ¢ linearly independent equations
in ¢ unknowns). All calculations are done in GF(p) where the prime p is selected to

satisfy the security requirements. The scheme is constructed by a trusted party.

Since Shamir secret sharing attempts to create a unique polynomial which passes
through a number of points, it can be exploited to produce a signature for a message.
When the points (or shares later) were designed to be the signer and the verifier keys,
then a mutual correlation is established and peer-to-peer authentication is possible.

The main idea of our construction is to treat the message that needs to be au-
thenticated as a secret, as in a secret sharing scheme, and then to generate shares
of the secret. The challenge for the verifier is to reconstruct the secret based on the
knowledge of the shares, much as any secret sharing technique. If the verifier is able to
compute the secret based on valid shares, this proves that the message is genuine since
mathematically only unique points (shares) can reconstruct the secret. Any difference
in the points would not reconstruct the message (secret). The selection or generation of
shares should be difficult in order to prevent the adversary from forging the signature.

The main components of the construction are (3,3) Shamir secret sharing scheme,
an intractable hash function H, and the Diffie-Hellman key-agreement cryptosystem
[56]. The hash function is used as a one-way function. The Diffie-Hellman cryptosystem
is used to establish a shared secret key over public channel. The public keys of the
signer and the verifier are used as shares in the Shamir secret sharing system, and at
the same time they provide strong authentication and mutual correspondence between
the two communication parties.

Suppose two parties A and B want to establish an authentication relationship using
their key pairs (ska, pka), (skp, pkp) respectively, where sk is the secret key and pk is
the public key. Then, three points of the following shape need to be created:

o = pkiFa B =pka, s = H(m||«)
where
f0) =5 f(1) =a,f(2)=p
The signature of the message m is 0 = f(3).

This means that the triplet «, 5 and o are the shares of (3,3) Shamir scheme with

the secret s. Hence, the system is constructed from three linear equations in three
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unknowns, and therefore, using the Lagrange interpolation function, it is possible to

determine a unique polynomial f(z) of three parameters and of degree two:

f(z) = fo+ fiz+ for®

In a protocol, A, the sender sends the message m and its signature o to the verifier
B. The verifier collects the authentic value of  from the public registry and computes
the value a and the hash value of the received message. Then it takes the triplet o, (3
and o and computes the secret s’. The verification of the signature is successful if s =
s'; otherwise, it is rejected.

Note that the generated signature from the above formula is deterministic. To
make it non-deterministic (or probabilistic), the parameter a can be raised to a random
number, say ¢ € [1,q — 1], for prime q.

The use of the Diffie-Hellman cryptosystem has two benefits. First, it establishes a
relationship between the signer and verifier. Second, it simplifies the task of exchanging
the parameters of the interpolation polynomial between signer and verifier. Each of
the principals can compute the parameters without extra communication overhead.
Note also that the signature is only verified by the corresponding peer which has been

designated by the sender.

9.4 Designated Verifier Signature

The concept of DVS was explained in the first two sections of this chapter. We gave
a preamble with its theoretic construction in the previous section. In this section, we

define the formal security model of our DVS scheme.

9.4.1 Formal Definition of DVS scheme

Definition 9.1 (Designated Verifier Signature Scheme). Given an (interactive
probabilistic Turing machines) entities A and B, and an integer k, an asymmetric DVS

with security parameter k is defined by the following:

- a setup algorithm (Setup): it is a probabilistic algorithm which takes as input

a security parameter k and outputs the public parameters pc,

- a key generation algorithm for signer (SKeyGen): it is a probabilistic algo-
rithm which takes as input the public parameters pc and an entity A, and outputs

a pair of secret/public keys (pka, ska),
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- a key generation algorithm for verifier (VKeyGen): it is a probabilistic algo-
rithm which takes as input the public parameters pc and an entity B, and outputs

a pair of secret/public keys (skg, pkg),

- designated verifier signing algorithm (Sign): it takes as input a message m,
a secret key sk, and the public key of the verifier pkg, and outputs designated

verifier signature o of m. This algorithm could be probabilistic or deterministic,

- designated verification algorithm (Verify) it takes as input a designated ver-
ifier signature o, a message m, a public key pk,, and secret key skg, and tests
whether o is a valid designated verifier signature of m with respect to the keys.

It returns L if the signature is invalid. This is a deterministic function.

In brief, DVS = (Setup, SKeyGen, VKeyGen, Sign, Verify)

9.4.2 Security Notions

Attacks against digital signature schemes can be defined according to the goals of the
adversary and to the resources that it can use. The strongest security notion, defined by
Goldwasser, Micali and Rivest in [66], is known as existential forgery against adaptive
chosen message attack (EF-CMA)!. An adversary A, given the public key of the verifier
B, as well as access to the hash function H, to a signing oracle > and to a verification
oracle T is allowed to query the verification oracle on any couple message/signature
of its choice. In the adversary answer, there is a natural restriction that the returned
message/signature has not been obtained from the signing oracle. This is because,
if the adversary can return a signature obtained from the signing oracle, then this
signature is by definition valid, and the forge is trivial. This is the natural restriction

of all the signature schemes.

Security against existential forgery under chosen message attack.

Let A be EF-CMA-adversary. We consider the following experiment:

!By ‘strong’, we mean the difficulty and the vitality of the attack
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ef—cma

Experiment Expfe (k)
pc < DV S.Setup(k)
(pkp, skp) < DV S.VkeyGen(pc, B)
(pka, sks) < DV S.SKeyGen(pc, A)
(m, o) < A*>T (pka, pkpg)
Return DVS.Verify(pc, m, o, pka, skp)

where A has access to the oracles H,X, T, and to the keys pka, pkp. A is allowed
to query the signing oracle on the challenge message m, but is supposed to output a
signature of the message m not given by ¥. We define the success of the adversary A

to implement the existential forgery under chosen message attack as follows:

ef—cma ef—cma

SuchVS,A(k) = PT[EfUpDVS,A = 1]

Security assumptions for Diffie-Hellman (DH) problems

An interesting new class of computational problems is called gap problems [119].
A gap problem is a coupling of inverting and decisional problems. More precisely, this
problem is to solve an inverting problem with the help of an oracle for a decisional
problem. The following are formal definitions and assumptions [158]:

Let G be a group of prime order ¢, and g be a generator of G. We define the

following problems:

- Computational Diffie-Hellman (CDH): let a and b be two integers smaller

than ¢. Given g%, ¢°, compute g.

- Decisional Diffie-Hellman (DDH): let a, b and ¢ be three integers smaller
than ¢. Given g%, ¢°, ¢°, decide whether ¢ = ab mod q.

- Gap Diffie-Hellman (GDH): let a and b be two integers smaller than ¢. Given
g%, ¢°, compute g% with the help of a DDH oracle.

Definition 9.2 Prime-order-DH-parameter-generator.

A prime-order-DH-parameter-generator is a probabilistic algorithm that on security
parameter input k outputs a triple (q,9,G) satisfying the following conditions: q is a
prime with 2871 < ¢ < 2%, G is a group of order ¢, and g generates G.

GDH. Let Gen be a prime-order-DH-parameter-generator. Let D be an adversary
that takes on input (X,Y) € G? and returns an element of Z € G. We consider the

following random experiments, where k is a security parameter:
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Experiment Expgjel;%p(k)

(¢,9,G) « Gen(k)
setup < (¢, 9, G)

x <+ [0,g—1], X « ¢*
y < [0,g 1LY g
7 < D(setup, X,Y)Ppou
Return 1 if Z = ¢™,

0 otherwise

We define the corresponding success of D in solving the GDH problem
Succgiehn,l)(k) = Pr[Expgjehn,D(k) = 1]

Definition 9.3 (GDH assumption) Lett € N and e € |0,1]. GDH is said to be

, o dh
(t,€)-secure if no adversary D running in time t has success Succg,, p(k) > €.

Definition 9.4 (Security against existential forgery). Let B an entity, k and t
be integers and e be a real in [0,1]. A Designated Verifier Signature DVS with security
parameter k is said to be (t,e) EF-CMA secure if no adversary A running in time t has

ef—cma
a success Succpys (k) > €.

9.4.3 The DVS Scheme

The scheme consists of three parts: initialization, signing, and verification.

At the initialization phase, the scheme first establishes a Diffie-Hellman public-key
system for both signer and verifier. At the signing phase, the signer runs the (Sign)
algorithm using the message, its public key, and the Verifier public key as parameters
to generate the signature. At the verification phase, the Verifier applies the (Verify) to
recompute the secret based on its public key, the Signer public key, and the signature.
If the secret and the message are the same, the authentication is accepted; otherwise

it is rejected.



9.4. Designated Verifier Signature 145

Initialization

1. Setup : choose g as primitive element in GF(q) using security parameter k,
2. SKeyGen: choose Signer secret key sk, and compute pk, = g**4,

3. VKeyGen: choose Verifier secret key skp and compute pkp = ¢**3

Sign (Signer A):

1. let
a:pksBkAa ﬂ:pkA

2. choose t €p [1,q — 1]
3. compute the secret s = H(m||a!)

4. design the polynomial
f(x) = fo+ fix + for®
such that
fO=s, f)=a",  [f(2)=p

(There are three equations and three unknowns, so there is a unique f(x).)

5. compute the signature o = f(3).

(the triplet: o, § and o are shares of (3,3) Shamir scheme with the secret s)
6. transmit (m,o,t) to the verifier.
Verify (Verifier B):
1. fetch pky
2. compute o = pk*F®
3. compute the secret s’ = H(ml|a!)

4. compute the secret s based on the triplet «, 3, t and o

5. if s = &' then accept, otherwise return L
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9.4.4 Security Analysis

Theorem 9.1 Let A be an EF — CMA — adversary against DVS in the random oracle
model, which produces an ezistential forgery with probability ¢ = Succ%(,%’j’j(k), within
time t, making qx, qs and gy queries to the hash oracle H, to the signing oracle ¥ and

to the verifying oracle (respectively). Then there ezist € € 10, 1] and t € N verifying:

€>e— (‘IH‘HIEI)C‘IE'HIT
t <t+(qu+q2)((qn + q=)Tppn + Trap + ax(Tpory + Toom)) + auTpoy

such that GDH can be solved with probability €, within time t; where Troly, TEqgp and
Tppr denote the time complexity for constructing the polynomial f, time complexity
for evaluating an exponentiation in G, and the time complexity of the DDH oracle,

respectively.

Proof. A proof of security is a polynomial time reduction from solving a well-
established problem to breaking the GDH cryptographic primitive. The proof of
security is carried out in the random oracle model [17]. In this model, hash functions
are idealized as oracles which output a random value for each new input value.

The goal here is to prove that breaking the scheme is as difficult as breaking the
Gap-Diffie-Hellman (GDH) problem. The idea of the proof is to simulate the overall
outer environment of the adversary, and to take control of all the oracles to whom the
adversary has access. We adopt the Shoup method [142] in using games to prove the
security of the scheme. Each game is a variation of the previous one, beginning with
the original real attack game, that is, the adversary faces the idealized oracles. In each
of the following games, we replace the oracles by simulation with slight modifications
so that it introduce some useful information to the adversary to help break the hard
problem. We have to take care to make the underlining distributions indistinquishable
from the real ones. Roughly speaking, the adversary does not see the difference in
behaviour between the random and real games.

Since we apply a randomized signature generation, the security of the scheme is
tightly related to the Gap-Diffie-Hellman assumption. However, the underlying con-
struction is based on Shamir secret sharing; and the security of Shamir secret sharing
has been discussed in [139)].

Let (u,v) be a random instance of the GDH problem. We will simulate a machine
which computes g*¥ using Decisional Diffie-Hellman oracle, if we note that U = ¢ and
V=yg"
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Gamegq

Game;

Game,

We consider an EF-CMA-adversary A outputting an existential forgery with prob-
ability Succ%{,%f’j, with time ¢. The key generation algorithm (for the signer and
for the verifier) is run once and it produces two pairs of keys (sk4,pks) and
(skp,pkp). The adversary A is fed with pks and pkp, and querying the ran-
dom oracle H, the signing oracle X, and the verifying oracle Y, outputs a triple

(m*, o*,t*), such that (m*, 0%, t*) has not been obtained from the signing oracle.

We denote by ¢%, ¢x and ¢y the number of queries from the random oracle,
signing oracle, and the verifying oracle respectively. For a signing query on a
message m, we first ask a hash value of m and when the adversary outputs its
forgery, one furthermore checks? whether it is actually valid or not. Therefore at
most gy + qs are asked to the hash oracle and at most ¢y + 1 queries are asked
to the verifying oracle during this game. In any Game;, we denote by Forge; the

event DVS.Verify(m*, o*, pka, skg) = 1. By definition we have:

f—
Pr(Forgeg| = Succhy sy

We modify the simulation by replacing pka by U and pkg by V. The distribution
of (ska, pka, skp, pkp) is unchanged since (U, V') is a random instance of the GDH
problem. Note that the probability of both random variables U and V are the
same if the public keys are chosen at random in the group G' (which is obviously
the case if G a ¢-prime order group generated by ¢, and the public keys are

computed as ¢* with x chosen at random in [1, g]. Therefore:

Pr[Forge;] = Pr[Forgey]

In this game, we simulate the random oracle H and maintain an appropriate list,

denoted H-List. For any query (m, ) € {0,1}* x (g) we do the following:

— we check whether the random oracle H-List contains a quadruple (m, «, L, s).

If it does, we output s as the answer to the oracle call.

— if not, we browse the signing oracle H-List and check for all 5-tuple (m, L
,s,0,t) for whether a, U, V' is a valid Diffie-Hellman triple. If it is, we give

s as answer, and have a solution to our problem

2extra check to simplify the proof; otherwise, extra steps are needed to subtract from the success
probability
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— if not, we look for a (m, L, 1,0,t), test whether a, U, V"' is a valid Diffie-
Hellman triple, and if it is, we compute s f(0) after having computed f such
that £(1) = o, £(2) = V, and f(3) = o

— otherwise, we pick at random s € (g), record (m, «, L, s) in the H-List, and
output s as the answer to the oracle call. In the random oracle model, this

game is clearly identical to the previous one. Therefore, we get:
Pr[Forge,] = Pr[Forge;]

Game; In this game, we simulate the signing oracle X for any message m whose signature

is queried to X by the adversary. We pick ¢ € [1,¢ — 1] at random.

— If the H-List of ¥ includes a 5-tuple (m,?,7,0,t), we abort the simulation;

— else, we browse the H-List of # and check for each quadruple (m,«, L,7),
whether (o, U, V?) is a valid Diffie-Hellman triple. If it does, we abort the

simulation;

— otherwise, we pick o € (g) and add the 5-tuple (m, L, L, 0,t) to the H-List

and (o,t) as the signature of m.

Since there are at most gy + ¢x, messages queried to the random oracle , the
new simulation aborts with a probability of at most (g +¢x)27*. Otherwise, this
new oracle perfectly simulates the signature. Summing up for all signing queries,

we obtain
ax + q=qs

| Pr]Forges] — Pr[Forge,]| < o

Game, In this game, we simulate the verifying oracle Y. For any pair message/signature

(m,o,t) whose verification is queried

— we check whether the H-List includes a 5-tuple (m,?,s,?,7). If it does not,

we reject the signature,

— for each (m,«, L,s) in the H-List we construct the polynomial f(x) such
that f(2) = U, f(0) = s, and f(1) = «; we accept the signature if and only
if there exists a f such that f(3) = o and «, U, V" is a valid Diffie-Hellman
triple;

— if the H-List includes 5-tuple (m, L, L, 0,t), we accept the signature.
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This simulation makes a difference only in the first step if o is a valid signature
on m, while (m, «) has not been queried from H. Since H(m,«) is uniformly
distributed, the equality s = H(m, a) happens with probability 2~*. Summing

up for all verification queries, we get

| Pr{Forges] — Pr[Forges]| < g—z

The result output signature (m*,o*,t*) has not been obtained from ¥. From
o*,V, s*, we can compute f such that f(1) = ¢“**", and so f(1)'/*" gives a solution
to the GDH problem.

Summing up the above inequalities, we obtain:

(qu + ¢s)gs + qr

Succ&h ., (k) > Succiy (k) — 5

Gamey

O

Note that the hashed message is the result of the concatenation of the message and the
value o in order to associate the sender’s tag with the message to prevent possible replay
attacks. Only the verifier who established the Diffie-Hellman public-key with client is
able to generate the value a. Obviously, the scheme does not provide non-repudiation
service, but this is not a concern in our application for mutual authentication between

a host and a trusted group manager.

9.4.5 Performance Issues

Concerning the running time, we have:

t <t+ (gu+as)((gs + @) Topn + Tiwp + ¢x(Troiy + Toom)) + auTproy

where Tpyiy, Ty and Tppy denotes the time complexity for constructing f, time
complexity of the exponentiation, and the complexity of the DDH oracle respectively.

The operations involved at the signing and verification phase are almost the same:

e one cheap hash function on the message

e a number of flops (of multiplications and divisions of Lagrange interpolation

function)

e one modular exponentiation

The modular exponentiation would not be expensive if we relax the security condition
and set short key sizes without degradation. The overall signature size is 160 bits when
using SHA-1 hashing.
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9.5 Digital Signcryption

The scheme in the previous section provides peer authentication between peer enti-
ties. The proposed scheme in this section provides authenticity and privacy as well as
integrity and identifiability all-in-one shot.

The first attempt to combine more than one security service in a single algorithm
was by Zheng [169] at Crypto 1997 in his pioneer work. He addressed the question
of the cost of secure and authenticated message delivery: whether it is possible to
transfer a message of arbitrary length in a secure and authenticated way with an
expense less than that required by signature-then-encryption. There, the goal was
to provide simultaneously encryption and digital signature in a single step and at a
cost less than individually signing and then encrypting. His motivation was based on
an observation that signature generation and encryption consumes processor cycles,
and also introduces “expanded” bits (i.e. size) to an original message. Hence, the
cost of cryptographic operation on a message is typically measured in the message
expansion rate and computational time invested by both sender and recipient. With
typical standard sign-then-encrypt, the cost of delivering a message in a secure and
authenticated way is essentially the sum of the cost of digital signature and that of
encryption. The answer to the question in [169] was proposed by an approach based
on the discrete logarithm problem of a shortened form of El-Gamal based signatures.
In this approach, the secret key k was divided into two short sub-keys k; and ks; the
first was used for encryption, and the latter for signing. Zheng left as an open and
challenging problem the design of other signcryption schemes employing any public-
key cryptosystem such as RSA, or any other computationally hard problem. Later,
in [152], Steinfeld and Zheng introduced another signcryption scheme based on the
problem of integer factorization. The problem was also expanded to symmetric-key
setting in other works [94]. Other studies by Bellare et al [16, 14], An et al [8], and
others [123] have studied the fundamentals of this cryptographic primitive and have
set its security proofs.

Our proposed scheme provides more services than typical signcryption. It provides
not only privacy and authenticity, but also integrity. The transmitted signature requires
minimum space overhead, hence it is superior in saving the bandwidth, especially in
congested communication channels. The verification is efficient and requires relatively
small computation time. The scheme is useful in applications which require strong
security, yet with low space overhead. Our design is focused on authentication of the

joining operation to a multicast group and on providing confidentiality as well.
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9.5.1 Model of Security

We briefly review the security notions for encryption and signature schemes.

Signature Scheme

Description As described earlier, digital signature scheme Y is defined as

> = (GenSig, Sig, Ver).

Security Notions Attacks against signature schemes can be classified according to the
goals of the adversary and to the resources that it can use. The strongest (i.e. vital and
difficult) attack is called an existential forgery, which means the attacker can provide
a single message/signature pair. When the scheme prevents this kind of forgery, it is
said to be Non Ezistentially Forgeable (NEF). When the attacker has access to a list
of valid messages/signatures pairs, then the attack is called a known-message attack
(KMA). However, if this list contains messages randomly and uniformly chosen, the
attack is then termed a random message attack (RMA). Finally, the message may be

chosen, adaptively, by the adversary himself, and this is called a chosen-message attack
(CMA).

Public-Key Encryption

Description Asymmetric encryption or public-key encryption scheme [] is defined by

three algorithms:

e GenEnc, the key generation algorithm which, on input 1%, where k is the security

parameter, produces a pair (pk,sk) of public and private keys;

e Enc, the encryption algorithm which, on input of a plaintext m and a public key

pk, outputs a ciphertext c;

e Dec, the decryption algorithm which, on input of a ciphertext ¢ and private key

sk, outputs the associated plaintext m (or L, if ¢ is an invalid ciphertext).

Security Notation A strong security notion is so-called semantic security, or what is
also called indistinguishability of encryptions [14], IND. This means that if an attacker
has some information about the plaintext, the view of the ciphertext should not leak
any additional information. This security notion more formally considers the advantage

an adversary can gain when trying to guess which of two messages which has been



9.5.  Digital Signcryption 152

encrypted. In other words, an adversary is seen as a 2-stage Turning machine (A, As),
and the advantage Adviﬁj (A) should be negligible for any adversary, where
[ (pk,sk) < Gen(1¥), (mg, ms, ¢) < A;(pk), ] X

Advi (A) = 2 x Pr
[ b e {0,1}, c = Encp(my) : Ag(mg, my,s,¢) =b J

On the other hand, an attacker can use many kinds of attacks, depending on the
information available to him. First, in the public-key setting, the adversary can encrypt
any message of its choice with the public key: this scenario is called chosen-message
attack, and is denoted by CMA. An extended scenario allows the adversary restricted
or unrestricted access to various oracles. The strongest attack is the chosen-ciphertext
attack scenario denoted CCA2 [14] which can be accessed adaptively on the decryption

oracle.

9.5.2 Formal Definition

Description: A signcryption scheme SC provides joint encryption and signing and is

defined by three algorithms:

e Gen, the key generation algorithm which, for a security parameter k, outputs a
pair of keys (SDK,VEK). SDK is the user’s sign/decrypt key, which is kept secret,
and VEK is the user’s verify /encrypt key, which is made public.

e SigEnc, the encryption and signing algorithm which, for a message m, the public

key of the receiver VEKpg, and the private key of the sender SDK,, produces

o= SigEncSDK,VEK(m)

e VerDec, the decryption and verifying algorithm which, for s — ciphertext o, the
private key SDKp of the receiver, and the public key VEK 4 of the sender, recov-
ers the message m = VERDECygk spk (o). If this algorithm fails to recover the

message or to verify authenticity, it returns L.

Security Notions For the security notions of a signcryption, one can combine the
classical ones from signature [66] and from encryption [14] under adaptive attacks.
With an access to the public information, PUB = (VEK,4, VEKp), and oracle access
to the functionalities of both A and B (i.e. access to the signeryption and to the

de-signeryption oracles), the adversary should be able to break:

e authenticity NEF — produce a valid s-ciphertert of a new message, and thus

provide an existential forgery;
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e confidentiality IND - break the indistinguishability of c-ciphertext

Definition 9.5 A signcryption scheme is secure if it achieves IND/NEF under adaptive

attacks.

For any adversary A that runs an adaptive attack, we denote by Advi=™(A) its
probability of success in forging a new valid s-ciphertert. In the same way, we denote

by Advird=<?(A) its advantage in distinguishing c-ciphertexts.

9.5.3 Description

The main objective of signcryption is to provide both encryption and authentication.
In the SC scheme, for encryption, an efficient public-key cryptosystem algorithm [T is
used, and for authentication, a signing scheme }_ is used. The secret sharing method is
used as a template to include both objectives in terms of shares. As described in section
9.3, the idea is to fix a secret, and to relate to the secret a number of parameters or
shares. To achieve this, we need to define parameters (shares) for the system. Here, we
use the (2,2) threshold secret sharing method. The sender A constructs the polynomial
and secret. The challenge for the receiver B, therefore, is to reconstruct the secret based
on the knowledge of the received values.

The building blocks of the SC signcryption scheme comprises the following primitive

cryptographic components:

an encryption public-key cryptosystem [] = (GenEnc, Enc, Dec),

a digital signature scheme Y. = (GenSig, Sig, Ver),

a one-way hash function H,

threshold Shamir secret sharing SSS.
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9.5.4 The SC Scheme

Gen(1%) = GenSig(1*) x GenEnc(1¥)

One first gets (sky, pk;) < GenSig(1%) and (sky, pko) < GenEnc(1¥).
Then, let SDK = (skyq, sky) and VEK = (pky, pka).

SigEnCSDKA,VEKB (m) A

1. compute h = H(m)
2. compute s = Sigspk , (h)
3. compute ¢ = Encyex, (m)

4. design the polynomial

such that

(There are two equations and two unknowns so there is a unique f(z).)

5. compute the signature o = f(2).
(the couple: o and s are shares of (2,2) SSS with the secret c)

6. transmit (s,0) to the receiver.

VerDecVEKA,SDKB(s, O’) : B

1. compute the secret ¢ based on the values s and o
2. compute m = Decspk, (¢)

3. compute h = H(m)

4. compute h' = Veryek, ()

5. if h = A/, then accept, otherwise return L
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9.5.5 Security Issues

The sender constructs the signature o in an elegant way using the secret sharing tech-
nique. The original message and its ciphertext are compact in o. The receiver recon-
structs the value ¢ from shares s and o by solving a set of equations using the Lagrange
interpolation function. Once c is retrieved, m could be retrieved as well by decrypting
the value c¢. Consequently, it would be possible to compute the hash of the message m
to get the value h. The decryption of the value s would result in the value A'. If the
computed hash value h from m is the same as the value A’ resulting from decrypting
the value s, then this proves the authenticity of the message sent through the pair
(s,0).

The transmitted message is not clear for opponents and can be revealed only by the
designated receiver. The adversary, in the worst case, can only reveal the ciphertext
c. Therefore, the known attacks to manipulate clear messages to find collisions to
signatures are not possible. If we assume that an adversary was able to manipulate
either the cipher message s or the signature o itself, then it would be easily found by the
integrity check of the derived message digest h. The verification which is performed on
the signature o is achieved by the secret sharing technique, which adds extra security
privilege to the system. The identity of the signer could be derived since the signer is
signing by its private key.

Hence, the scheme provides all-in-one security services. It provides confidentiality,
authenticity and integrity. Yet, under certain conditions shown, it is efficient compared
to the services and to other schemes. For efficiency purposes, we relax the security
condition and use short keys, and the security objectives are still retained.

The security of the overall signcryption scheme depends on the security of the

underlying building block components, and specifically:

1. The public-key cryptosystem is used to encrypt the message m to c. The choice
of selecting a specific public-key cryptosystem [] was not declared. This property
gives the system more design flexibility. However, we assume [] to be semanti-
cally secure against a chosen cipher attack, i.e. IND — CCA2. For the sake of
efficiency, and also considering the security, we may relax some security proper-
ties of the underlying structures. In particular, we relax the security properties of

the asymmetric key system and choose short keys without security deterioration.

Proposition 9.2 Let [T be a IND — CCA2 secure asymmetric encryption scheme;
then any scheme SCx n associated with [] is IND — CCA2 secure.
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ind—cca
SCs 1,4

against SCy ;r within time ¢, making g, ¢s, and ¢p queries to the random ora-

More precisely, for any IND — CCA2 adversary A which takes advantage Adv

cles, the signing oracle, and the decrypting oracle respectively, there exists an
IND — CCA2 adversary A’ against [[, making ¢y queries to the random oracles,
gp queries to the decrypting oracles, within time ¢ + O(1), which has the same
advantage as A:

ind—cca __ ind—cca
Advyy 5 = Advsc

This property ensures the semantic security of SC scheme.

. The digital signature scheme is used to sign the message. Again, the choice of

selecting the scheme was not specified. However, we assume a digital signature
scheme which is secure against existential forgery of chosen message attack. As

a result, we achieve the following:

Proposition 9.3 Let ¥ be an EF — CMA-secure digital signature scheme, then

any scheme SCx, 11 associated to ¥ is EF — CMA secure.

ef —cma
SCs.n,a

More precisely, for any EF — CMA, adversary A which takes advantage Adv
against SCy n within time ¢, making ¢y, ¢», and ¢p queries to the random ora-
cles, the signing oracle, and the decrypting oracle respectively, there exists an
EF — CMA adversary A’ against ¥, making ¢z queries to the random oracles,
gs queries to the signing oracles, within time ¢ + O(1), which has the same
advantage as A:
Adv§ 5™ = Adve T

This property ensures the existential unforgeability of the SC scheme against

chosen message attack.

. The security of the hash function. We strongly emphasize the selection of a

collision-resistant one-way hash function H which takes an arbitrary size string
and generates a string of size I: H : {0,1}* — {0,1}!. SHA-1 is proven to be a
secure message digest algorithm. It generates 160 bits of message digest, which

makes it secure enough against well-known attacks.

. The security of Shamir secret sharing SSS. The security of Shamir secret sharing

is discussed in [139]. There, the assumptions and requirements for security of the
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system are listed. The main concern of the security is related to the perfectness
of the secret sharing method. In general, the system is perfect when shares
are selected randomly. In the scheme, the system is of degree one with two
parameters. Thus, at least one random share is needed. The other share could
be selective without any security side effect. The chosen share in our scheme is
the secret ¢. However, for the random value, we consider s is the random share
because, from a security perspective, the system would be as secure with s as it
is secure with a real random share. This claim is true since the share s is actually
a signed parameter by a private key. The share o is computed from the other

shares, and hence it is secure.

9.5.6 Performance Issues

The operations involved at the signing and verification phase are almost the same:

e encryption/decryption operation. We assume a very efficient public-key algo-

rithm. The type of algorithm is non-important.
e one cheap hash function on the message

e a number of flops (of multiplications and divisions of the Lagrange interpolation

function)

Generating and extracting the secret ¢ from the system requires a number of op-
erations including multiplications and divisions. Generally, the overall Lagrange op-
erations are of O(n?). Specifically, they include (n + 1) multiplications for n times.
Also, a number of (n+ 1) divisions are required. In our system, we have 3 parameters;
thus, the approximate number of operations is almost 15 flops per message. Also, there
is one hash computation of the message. The modular exponentiation would not be
expensive if we relax the security condition and set short key sizes. The performance
also depends on with the size of the message m and the key to compute the value c.
We already assumed short keys without losing security robustness. So the signing and
verification process should be fast. The overall signature size is 160 bits according to
SHA-1 message digest and 160 bits for the value ¢. Since more security services are

included, the total cost is higher than the cost of signcryption schemes.

Note that the values s,h and c are in the same ring Z, and hence have the same

size. In fact, this equals the size of the digest resulting from the hash function; for
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example, the SHA-1 hash function outputs 160 bits of message digest. This size is
sufficient for our multicast joining case as the purpose is to authenticate with privacy
a specific and short message of the joining host such as its group-name or user-name.
A general purpose scheme, using the same idea above but with a different technique,

was developed by Pieprzyk and Pointcheval in [123].

9.6 Summary

In this chapter, we have exploited the idea of the Shamir threshold secret sharing
method to develop two variants of digital signatures. The first scheme proposes a
designated verifier signature to allow a specific verifier to verify the signature of a
specific signer. In the context of group communication, this scheme could be used
as a cryptographic protocol for peer authentication to allow a verifier to verify the
authenticity of the host before joining a group.

In the second scheme, we used the same idea to develop a protocol to provide
authenticity, privacy, and integrity all-in-one shot and with less computational cost as
well as communication overhead. The scheme is flexible and is not restricted to any
particular cryptosystem, and it could be designed with any cryptographic cryptosystem
as far as it satisfies security requirement. This primitive is known as “signcryption”.
In the context of group communication, the protocol could be used in cases where the

joining operation requires not only authenticity, but also privacy and integrity.
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Conclusion and Future Directions

Source authentication is a major security service in modern communication networks.
For broadcasting applications such as pay-TV it is an essential requirement for receivers
to receive authentic information. It is always possible for an adversary or enemy to
either inject, intercept, tamper with, or reproduce the original stream of broadcasting.
This is a crucial issue in the contemporary communication services, especially with the
current advances in telecommunication technology on one side, and the new techniques
used by hackers in breaching communication systems on the other.

Given this concern, modern communication systems should be provided with a
sophisticated security infrastructure that is designed to provide complete information
protection. To achieve this requirement in a multicast environment, clients (or users)
of a service must first register themselves with the service provider. Based on successful
registration, service providers can provide authentic and private information. Not only
this, but clients may also need to send data back to the original senders, who become
in this case the receivers. They in turn need their information to be secure.

The goal of this thesis, when it was started in the beginning of year 2000 and during
the early days of the prolific research in multicast security, was to build a complete
authentication system. By ‘complete’, we mean that all communications involved in the
group environment should be authenticated. We always believed that partial secured
systems would not provide enough security to systems. Therefore, our theme in this
thesis was “building an ideal authentication system”.

The methodology we followed was studying multicast technology and the security
of multicast as well as the related communication paradigms. We focused in particular
on source authentication. Authentication in group and multicast communication is
a challenging problem as one needs to consider the efficiency and security which is
either not practical or not provided in the conventional authentication methods. Our
methodology was to study the problem from all directions. We also looked into the

defacto modes of communications to multicast. We first reviewed the literature and
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state-of-the-art techniques. Then we filled the gap and considered unexplored situations
and scenarios. Our strategy was to propose, whenever possible, more than a solution
to one single case problem.

The contributions in this thesis consists of more than twelve cryptographic proto-
cols along with security and efficiency analysis or discussion. The contents of this thesis
were published as academic papers in prestigious conference proceedings and appeared
in the Lecture Notes of Computer Science series as well as in Kluwer Academic Pub-
lisher. Typically, the papers were reviewed and refereed by at least three international
experts in cryptography and networks. The cryptographic protocols were designed to
solve difficult group authentication problems. Some of our papers, contributing this
thesis, were the key ideas and motivations for other author papers, for example the
concast signature, the proxy one-time signature, and the group threshold one-time sig-
nature. The other topics such as authentication of anycast communication was the
first academic paper to discuss this issue. We started the topic of authenticating of
transit flows as further open for investigation as no such protocol existed to our best
knowledge at that time. Our work in designated verifier signature and signcryption
coincides with other works in the same topic but with different approaches, scope and
purposes. We are the first to use the secret sharing method rather than the discrete
logarithmic problem.

We covered conventional digital signatures, group signatures, multi-signatures, proxy
signatures, one-time signatures, batch signatures, designated-verifier-signature and oth-
ers. Also, we invented a new sort of digital signatures such as concast signatures, k-
siblings one-time signatures, secret-sharing-based signatures such as the signcryption
and the designated verifier signature. The contributions extended also to solving open
problems such as the one in Section 5.5. For the first time, One-time signatures were

used for proxy and threshold society-oriented cryptography.

10.1 Summary

The theme of this thesis is developing cryptographic protocols for authentication group
communications. The thesis starts with an introduction of the problem under study.
In Chapter 2, we give an overview of cryptographic primitives used for building au-
thentication protocols such as the public key cryptosystem, private key cryptosystem,
hashing, digital signature, and secret sharing schemes.

Then, in Chapter 3, an overview of multicast communication networks was given,
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along with discussion of its security related issues. Chapters 4, 5, 6, 7, 8 and 9 were
dedicated to the contributions.

In Chapter 4, we have introduced authentication schemes based on linear equations
and used combinatorial designs to authenticate multicast streams. In Chapter 5, we
proposed three different authentication schemes for the concast communication mode.
Also, we suggested a solution to the open problem of finding a fast screening signature
for non-RSA digital signature schemes. In Chapter 6, we exploited the siblings hashing
method to design a new authentication scheme that can verify the authenticity of
transit messages at the intermediate nodes in a communication network. We have also
used it to design a new one-time digital signature which has low computation and space
overhead. In Chapter 7, we develop techniques to use one-time signatures in threshold
and proxy group communication. In Chapter 8, we studied the authentication of a
special sort of group communication know as anycast communication, as the de facto
to multicast communication. In Chapter 9, we proposed a new designated verifier
signature and new signcryption schemes based on the Shamir threshold secret sharing

technique. Both were used in the context of authenticating peer communication.

10.2 Future Directions

There are several topics that are the subject for ongoing investigation by researchers in
the area of source authentication in group and multicast communication. We indicated
some of them at the summary section of the chapters and we outline them and other

directions in this section.

Batch Signatures for Group Authentication

The extension of the threshold scheme in Chapter 4 may be developed into a fast
batch verification algorithm for a digital signature algorithm that considers the order
of received packets [77, 76, 102, 166].

Authentication of Many-to-Many Communication

Another interesting problem related to group communication is many-to-many commu-
nication. Multiple source groups have special requirements for denial-of-service attack
protection and for minimizing states needed for sender authentication. There is only

one paper so far on this problem [55].
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Authentication Using Secret Sharing Methods

In Chapter 9, we considered Shamir secret sharing techniques. A possible authenti-
cation technique may be investigated for other secret sharing techniques such as the
Blakley scheme [22]. Many versions of verifiable secret sharing techniques may be

further exploited for authentication purposes [150].

Authentication of Transit Flows

We shed light on this unexplored problem. We proposed the authentication of transit
flows by hierarchical sibling and leave it as an open problem to evaluate and analyze

its security and efficiency, or develop a more efficient protocol than the proposed are.

Signcryption for Concast Communication

In Chapter 5, we only discussed how to authenticate concast communication. An
interesting problem would be to provide both authenticity and privacy, which is known

as signcryption, to concast communication.



