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Abstract

In this thesis, I develop a new discretisation scheme offered by wavelet analysis. Daubechies wavelets

of order K ≥ 3 are used to encode the quantum field theory of the 1D transverse Ising model

in a discrete approximation. I then analytically determine the energy spectrum, which is used to

construct the correlation matrix. This allows for the calculation of bipartite von Neumann entropy,

which acts a measure of entanglement entropy for block spin chains. These results are qualitatively

and quantitatively compared to the discrete and continuous Ising models as a gauge of the method’s

success as an alternative discretisation scheme.
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Everyone knows what a

curve is, until he has studied

enough mathematics to become

confused through the countless

number of possible exceptions.

Felix Klein

1
Introduction

The subtle interplay between the discrete and continuous has given rise to many rich studies within

physics and mathematics. Although the study of continuous parameters in field theory was developed

as a continuous extension to a discrete theory, given the experimental successes of quantum field

theory, it would seem that the former is a better representative for nature. The role of discrete theories,

therefore, is to function as a tool to shape our understanding of the continuous theories. The solubility

of discrete models, either through numerical tractability or analytic manipulations of finite quantities,

are one their greatest assets.

Unfortunately, the path between the discrete and continuous is not well lit, or even well defined for

the majority of discrete models. The process of deriving a continuous field from a discrete theory is

generally ad hoc and restricted to specific regimes in the discrete theory. Divergences that emerge in

the transition from countable to uncountable are tamed by selectively pairing limiting parameters. An

argument in favour of this process is that if hand-waving mathematics can still uncover truths about

nature, then the methods utilised are largely irrelevant. While still paying respect to the physics that
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our mathematical models are designed to study, the question remains as to whether one can develop

mathematically rigorous theories that are capable of utilising the tractability of discrete models, while

still being able to produce the powerful results of field theory.

A hint of the direction in which the answer may lie is offered by renormalisation. The theory was

built to deal with the divergences encountered in formal calculations of essentially all non-trivial

field theories. The insight key to the theory is that one does not measure bare observables; the net

electric charge of a wire is not simply the collective sum of individual electrons and protons. It is

a renormalised charge that is a result of the complex, many-body interactions averaged out to some

finite value at our observable length scale. This physical observation guided the ensuing mathematics,

and lead to a (debatable) unification between the formal theory and experimental results.

Returning to the controversial disjunction between discrete and continuous theories, this thesis pro-

poses study of a discretisation strategy built around renormalisation: the wavelet transform. Wavelets

are a mathematical construction developed to rigorously reflect the rescaling process. By applying

wavelets (specifically wavelets associated with the discrete wavelet transform) to continuum theories,

we seek to obtain a reversible path by which discrete and continuum theories can be linked. In addition,

the renormalisation process (being readily obtainable from wavelet theory) is encoded in the model

automatically.

The result of this thesis is the development of a discretised version of a continuous model, obtained

through the discrete wavelet transform. The goal of this thesis then to validate the result obtained.

The model chosen is the Ising model, which has well studied discrete and continuous variants. This

thesis utilises both models as benchmarks to validate the within-constructed wavelet-Ising model.

The second chapter of this thesis discusses three variants of the discrete Ising model, namely the one

and two dimensional classical model, the one dimensional quantum model as well as the continuous

Ising field theory. The third chapter discusses wavelet theory to the level of detail necessary for their

implementation in this research. The final chapter develops the discrete wavelet-Ising model, and

culminates by verifying continuum eigenenergies for the model, as well as qualitatively comparing

sub-system entanglement between the discrete quantum models through calculation of von Neumann

entropy.



Problems worthy

of attack

prove their worth

by hitting back.

Piet Hein

2
The Ising Model

The Ising model is a powerful model of cooperative phenomena: the physics of systems that evolve

in tandem. While the Ising model is intuitively simple to describe, it is associated with a deep well

of physics. The model effectively captures the phenomena of phase transitions (for dimension ≥ 2)

exhibited by ferromagnetic materials. There exists an analytic mapping from the 2D Ising model (in

the extreme anisotropic regime, where orthogonal lattice couplings divaricate) to the 1D quantum

Ising model, hence, solutions and qualitative results are shared by both models. The quantum model

is analytically solvable by means of Jordan-Wigner and Bogoliubov transformations, the former being

discussed in this chapter. As an extension of the quantum model, the corresponding field theory is

obtained in the thermodynamic limit of increasing lattice sites constrained to a fixed volume.

The Ising model was first investigated and named after the German physicist, Ernst Ising. While his

name is commonly attributed to the model, it was actually devised by Wilheim Lenz, who proposed

the model to Ising for his PhD thesis. During his thesis, Ising studied the one-dimensional model. Due

to mathematical circumstances specific to one-dimension, Ising correctly calculated that his model
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did not exhibit phase transitions, but erroneously conjectured that the same would be true in higher

dimensions.

Exhausted by his doctorate, Ising decided against continuing a career in physics and pursued business

instead. However, his efforts were not for naught, as his work was continued by others in the field. The

American chemist, Lars Onsager, devoted many years to developing solutions to the two-dimensional

case, and in 1944 published a paper [1] which is regarded as one of the most prominent papers in

statistical mechanics to date. The fame garnered by Onsager’s solution to the 2D case is well deserved,

and much of the applicability of the Ising model stems from the ability to obtain exact solutions to

the model via Onsager’s work. His result proved that the two-dimensional case exhibited a phase

transition at finite temperature, contrary to Ising’s assertion. The proposal by Onsager is now known

as the transfer matrix method.

2.1 The Classical Model

The classical Ising model considers an evenly spaced, one-dimensional chain of objects. The objects

have the restriction that they can only interact with their immediate neighbour, and they themselves

can exist as one of two variations. The simplest example is a sequence of magnets, where each magnet

is either aligned ‘upwards’ or ‘downwards’∗.

Given these circumstances, the Ising model associates an energy value to the system as a whole by

weighing contributions from each pair of neighbouring objects. A positive contribution is given by

similar neighbours, and a negative contribution by differing neighbours. These systems are often

studied in the presence of an external field, which is applied transversally to the chain.

As the statements above are extremely general, the model has the ability to be applied broadly to many

systems. The archetypal example previously mentioned is that of a chain of magnets, but another

realisations is chains of molecules. One can consider an evenly spaced sequence of two molecules,

where each site hosts exactly one of the two molecules. Another case is a chain of a single type of

molecule that is unevenly spaced. The staggered distribution can be captured by considering empty

sites to be occupied by ‘holes’, which analogously plays the role of the spin-down magnet.

∗An obvious limitation of this model is the lack of acknowledgement for superposition states, which any sensible

model of magnetism should incorporate. This gives motivation to consider the quantum model instead.
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Figure 2.1: An Ising chain with 32 sites

Formally, the Ising model is expressed as the equation

H({σ}) =
N−1∑
j=0

[
−Jj, j+1σjσj+1 − h jσj

]
(2.1)

Here, H is the familiar Hamiltonian of the system, containing all relevant information regarding the

system’s energy. Each object in the chain is denoted by σj ∈ {−1, 1}, and the sequence {σ} ≡

(σ0, σ1, . . . , σN−1) denotes the entire collection of objects. A particular choice for every element in

the chain is called a configuration. As an example, the configuration for which every second magnet

is spin down would be given by {σ} = (1, -1, 1, . . . ). The constants Jj, j+1 and h j allow for particular

sites to have greater influence over the overall energy. Generally one assumes symmetry over all sites

by imposing Jj, j+1 = J and h j = h. Under these simplifications, we have

H =
N−1∑
j=0

[
−Jσjσj+1 − hσj

]
(2.2)

The purpose of the overall minus sign is to ensure that the lowest energy configurations (in zero

external field: h = 0) of the system are ones where neighbouring pairs are similar: σjσj+1 = 1. This

corresponds to a ferromagnet, which has neighbouring domains that are magnetically coaligned.

2.1.1 Exact Solubility

The Ising model is often studied under the assumption of periodic boundary conditions, which is

implemented by imposing σN ≡ σ0. This is for convenience in later calculations, and the demand is

insignificant as physical realisations are ultimately interested in the thermodynamic limit of N → ∞.
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Non-periodic boundary conditions are considered in [2] and are noted to only function as bookkeeping,

rather than being fundamental to the model.

For any large ensemble∗, keeping track of individual interactions between elements quickly becomes

an intractable feat. The insight of statistical mechanics is the ansatz that most of the time, these

interactions even out. This is typically a valid assumption under equilibrium conditions. In this case

it becomes economical to consider the macroscopically measurable average values of the system. In

fact, it turns out to be but extremely accurate simplification, with deviations falling off proportionally

to
√

N . Variables of this nature are known as thermodynamic variables, and can generally all be

expressed in terms of a single function: the partition function. Due to the power of this function, a

statistical model in thermodynamic equilibrium is often described as ‘solved’ if the partition function

is analytically known.

The partition function takes the form

Z =
∑
{σ}

e−βH({σ}) (2.3)

where
∑
{σ} enumerates all possible configurations. For a system of N particles occupying one of two

states, there are 2N possible configurations. Without further simplifications, direct computation ofZ

quickly succumbs to the curse of dimensionality, and is an unwieldy problem for systems of merely

N ∼ 30. One cannot study a statistical system in detail without first addressing the partition function.

The solution offered by Onsager’s method, through various clever matrix identities (for details, see

[3]), allows for the partition function for the Ising model to be expressed as the trace of the Nth power

of the 2 × 2 transfer matrix,

Z = Tr
(
TN

)
= λN

1 + λ
N
2 (2.4)

In the large N limit, the larger of the two eigenvlaues dominates the expression.

2.1.2 Classical to Quantum Mapping

One dimensional models are invaluable for gathering intuition, but are limited in their physical

applicability. In particular, the lack of phase transitions in the classical case is one indication of the
∗Macroscopic systems are ensembles on the order of Avogadro’s constant: NA ≈ 1024.
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limitations of the model. A necessary generalisation to push this model towards practicality is to study

the multi-dimensional case. For the 2D case, we again consider binary objects with nearest neighbour

interactions, but we extend our notion of the chain to a N ×M lattice. The Hamiltonian for the square

lattice Ising model is given by

H =
N−1∑
j=0

M−1∑
k=0

[
−Jσk

j σ
k
j+1 − Kσk

j σ
k+1
j − hσk

j

]
(2.5)

Applying Onsager’s transfer matrix method to this model, one obtains a similar expression to eq. (2.4),

with an exponentially larger transfer matrix. However, the form of the transfer matrix closely resembles

that of an imaginary time path integral under the evolution of the quantum Ising model. The standard

link between statistical and quantum theories is established with the aid of a Wick rotation; the only

caveat in this case is that one also needs to consider a limiting regime of J and K , performed in a

specific way such that an exact mapping can be produced. For a discussion of details, one can consult

[4]. The existence of this mapping and the failures of the 1D Ising model to predict phase transitions

are motivation for us to consider the quantum model, in addition to the fact that the quantum model is

a self-contained and well studied model.

2.2 Quantum Ising Model

With motivation to study the quantum model established, we have the starting point for this thesis:

the quantum Ising model in one dimension. While the quantum Ising model has been studied

independently to its classical counterparts, the existence of the mapping means that results obtained

have implications for both systems.

By analogy with the 1D classical case, the Hamiltonian for the quantum Ising model is given by

(normalised to unit interaction coupling)

H =
N−1∑
j=0

[
−Z j Z j+1 − λX j

]
(2.6)

where X j and Z j are Pauli operators acting solely on the jth site in the chain. Explicitly, the Pauli

operators are (for a single qubit system)

X =

0 1

1 0

 Y =

0 −i

i 0

 Z =

1 0

0 −1

 (2.7)
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and the single-site operators are formally defined as a tensor product of N trivial identity operations,

with the jth operation corresponding to the relevant operation:

Z j ≡
( j−1⊗

k=0
I

)
Z ©«

N−1⊗
k= j+1

Iª®¬ (2.8)

The Hilbert space for this model is therefore the tensor product of N qubit spaces∗. In the classical

ferromagnetic model, we required the most energy favourable configuration to correspond to perfectly

aligned neighbours. This requirement is captured by the product of Z operators when evaluated in

the computational basis (the eigenbasis of
∏N−1

j=0 Z j). The lone X operator fulfils the role of our

transversally applied field. As previously, we assume periodic boundary conditions in the form of

ZN ≡ Z0. Thus, the relation between the classical and quantum models is twofold: one via analogy

with the 1D case, and again by the classical-to-quantum mapping.

While the above form is instructive in construction, for convenience of future calculations we consider

an alternate form. We invoke a global rotation given by H → Had ·H ·Had †. Under this rotation, the

Hamiltonian transforms as

H →
N−1∑
j=0

[
−X j X j+1 − λZ j

]
(2.9)

It is also worth noting that the Hamiltonian has a discrete, Z2 symmetry. This is shown by defining

the global identity and global spin-flip operators,

E ≡
N−1∏
j=0

I j P ≡
N−1∏
j=0

Z j (2.10)

and noting that both operators commute with the Hamiltonian. Under the operation of matrix multi-

plication, the two operators form a representation of the group (Z2,×) = {1,−1}, with E acting as the

identity element for the group.

2.2.1 Jordan-Wigner transformation

The typical analysis procedure for the Ising model begins by analysing the algebra associated with the

model, inherited from the Pauli matrices. The anomaly of the quantum model in its current statement
∗A qubit space is a Hilbert space spanned by two states.
†Had ≡ ∏N−1

j=0 Hadj denotes a Hadamard rotation applied to every site in the Ising chain. An individual rotation is

given by Had = 1√
2
(X + Z) and is considered a rotation due to the effect: Had · Z · Had→ X and Had · X · Had→ Z .
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is that it doesn’t obey typical algebras of fermions (or bosons). We would expect that the Ising model,

being a model developed to study magnetism, should correspond to fermions. This is rectified by the

Jordan-Wigner transformation.

The quantum Hamiltonian operates on the product of spin-1/2 spaces. Within each qubit space, the

algebra of the Pauli matrices is given by the anticommutation relations∗

{X j,Yj} = {Yj, Z j} = {Z j, X j} = 0

{X j, X j} = {Yj,Yj} = {Z j, Z j} = 2 (2.11)

Due to the construction of the single site operators eq. (2.8), the Pauli operators must commute on

different sites

[X j,Yk] = [Yj, Zk] = [Z j, Xk] = 0 ( j , k) (2.12)

In the study of a single mode Fermi oscillator, one introduces ladder and number operators

α j ≡
1
2

(
X j − iYj

)
α†j ≡

1
2

(
X j + iYj

)
Nj ≡ α†jα j (2.13)

However, one cannot meaningfully make this association for our model, as we would find that

such induced ladder operators would correspond to neither bosons nor fermions. They obey mixed

commutation relations:

{α j, α j} = 0 {α j, α
†
j } = 1 ( j = k)

[α j, αk] = 0 [α j, α
†
k] = 0 ( j , k) (2.14)

We would like to interpret our model as acting on a space of either fermions or bosons, so that we

can make use of the vast array of techniques from the study of such particles. The choice naturally

falls on fermions, given the fact that the model was initially designed to model magnetism. This

choice will eventually allow us to reduce the difficult problem of diagonalising H (a 2n × 2n matrix)

to the diagonalisation of its quadratic form (a 2n× 2n matrix), similar outcome to the reduction of the

classical partition function to the diagonalisation of the transfer matrix.

The solution to the mixed commutation relations is given by invoking the non-local Jordan-Wigner

transformation, defined as

c j ≡ ν jα j c†j ≡ ν jα
†
j (2.15)

∗We denote {a, b} as shorthand for ab + ba and [a, b] ≡ ab − ba.
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where ν j is a j-local spin-flip operator encompassing the non-local component of the transformation,

ν j ≡
j−1∏
l=0

Zl (2.16)

The intuition behind defining such an operator is that we find ν j and αk commute for j ≤ k, but

anticommute for j > k. This modification is the only requirement to obtain a purely fermionic theory.

From this transformation, products of ladder operators follow the modification α jαk → ±c jck , where

+ is taken for j ≤ k, and− only for j > k. This has the effect of transforming the commutation relations

to anticommutation relations at different sites, while preserving the existing same-site anticommutation

relations. A quick calculation verifies that (c†j , c j)N−1
j=0 obey the correct fermionic algebra

{c j, ck} = 0 {c j, c
†
k} = δ j k (2.17)

These operators are referred to as Jordan-Wigner fermions. Noting that ν2
j = 1,

Z j = c†j c j − c jc
†
j X j X j+1 =

(
c j − c†j

) (
c†j+1 + c j+1

)
(2.18)

we can now benefit from the earlier Hadamard rotation. These expressions allow us to express our

Hamiltonian in a fermionic basis. Doing so yields

H = −
N−1∑
j=0

[(
c j − c†j

) (
c†j+1 + c j+1

)
+ λ(c†j c j − c jc

†
j )
]

=

N−1∑
j=0

[
c†j c†j+1 + c†j c j+1 − c jc

†
j+1 − c jc j+1 − λc†j c j + λc jc

†
j

]
(2.19)

Note that the transformation of X j X j+1 relies on the order in which the operators appear (higher indices

to the right). The periodic term in the chain, XN−1X0, does not follow this pattern and we obtain a

boundary correction term. In the eventual limit of large N , the contribution from this lone term will

become insignificant, so we ignore it entirely.

The total number of Jordan-Wigner fermions is not constant in this model, as indicated by non-

conserving c jck and c†j c†k terms. Indeed, by defining the total fermion number and fermion parity

operators as

N =
N−1∑
j=0

c†j c j P = −eiπN =
N−1∏
j=0

(
2c†j c j − 1

)
(2.20)

we find that [H, N] , 0, but [H,P] = 0. This says that total fermion number is not conserved, but

fermion parity is (that is, the total number of fermions modulo 2). This commutativity is because the
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parity operator is nothing more than the global spin flip operator in the Jordan-Wigner basis, which

was already shown to commute with the Hamiltonian. The parity conservation property is often

associated with Cooper pairs in the BCS theory of superconductivity, as explored in [5]. We will push

this analogy further when we apply the Bogoliubov transformation in §4.2.2. The transformation is a

diagonalisation technique, initially developed to simplify the BCS Hamiltonian.

The Hamiltonian can also be condensed by introducing the spinors∗

c j ≡

c j

c†j

 c†j ≡
[
c†j c j

]
(2.21)

This tidies up the Hamiltonian†, resulting in

H =
N−1∑
j=0

[
c†j (Z + iY)c j+1 − λc†j Zc j

]
(2.22)

where Y and Z are Pauli matrices acting on the space of spinors. It is worth noting that all terms are

quadratic in the fermionic operators, and hence the expression can be assigned to a quadratic form.

Dropping the explicit index reference, we define

c ≡



c0

c†0
...

cN−1

c†N−1


c† ≡

[
c†0 c0 . . . c†N−1 cN−1

]
(2.23)

which gives

H = c†Υc (2.24)

where Υ is a symmetric matrix defined so that eq. (2.19) and eq. (2.24) agree (symmetry is achieved

by use of the anticommutation relations). Quadratic forms are an important representation, as the task

of diagonalising H can be reduced to diagonalising Υ. We will exploit this fact during the analysis

section of the final model.
∗The distinction between spinors and vectors is that the rotations of the former are performed by elements of SU(n),

whereas the latter by elements of SO(n). This difference is not important for this research, but vectors of fermions are

spinors. Spinors and transformations on them will be signified by boldface font.
†Note that in order for c†jck to form an inner product we must conjugate and transpose the elements of c†j .
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2.3 Continuum limit

Often with discrete theories, we can learn important details by considering behaviour in limiting cases.

For example, intuition for dealing with awkward summations involving vectors can be obtained by

considering the corresponding integrals of continuous functions. Although this makes the process

seem like nothing more than a mathematical trick for simplifying equations, this process is important

enough to have the entire subject of field theory devoted to it. This is because the continuous functions

(called fields) act as a far better representation for nature than the discrete analogues.

The field theory for the quantum Ising model is obtained by first introducing a spatial parameter to

the Ising chain. We can consider our N sites to be located on a disk (or Möbius strip, if one wishes

to consider antiperiodic boundary conditions), as shown in fig. 2.1. As the interaction strength is

assumed to be homogeneous, we assume a constant lattice spacing a.

Now, define the continuous operator spinor

c(x) ≡


c(x)

c†(x)

 (2.25)

The domain of c(x) is the interval x ∈ [0,V], where V ≡ Na represents the total length of the Ising

chain. We have appropriately named this continuous operator, as its form will be defined precisely by

our discrete spinors (c j)N−1
j=0 .

We endow our function with the continuous version of the fermionic anticommutation relations,

{c(x), c(y)} = 0

{c(x), c†(y)} = δ(x − y) (2.26)

The discrete operators can be expressed in terms of the new continuous operator. For each site j,

assign x j = ja and we have

c j = c(x j)

c j+1 = c(x j + a)

= c(x j) + a∂xc(x j) + O(a2) (2.27)
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To second order in a, the discrete Ising Hamiltonian becomes

H =
∑

j

[
c†j (Z + iY)c j+1 − λc†j Zc j

]
≈

∑
j

[
c†(x j)(Z + iY)c(x j) + ac†(x j)(Z + iY)∂xc(x j) − λc†(x j)Zc(x j)

]
=

∑
j

[
1 − λ

a
c†(x j)Zc(x j) + c†(x j)(Z + iY)∂xc(x j)

]
a (2.28)

which can readily be taken to the continuum. Note that c†(x j)Yc(x j) = 0 by the anticommutation

relations. Now consider the limit of our Hamiltonian as we take N → ∞ and a → 0 such that V

remains constant. We replace our discrete sums with integrals,

lim
N→∞
a→0

N−1∑
j=0

f (x j)a ≡
∫ V

0
f (x) dx (2.29)

which gives the field theory for the quantum Ising model in terms of Jordan-Wigner fermions

H =
∫ V

0

[
ic†(x)Y∂xc(x) + mc†(x)Zc(x)

]
dx (2.30)

Two items of note are the introduction of the constant mass∗ term, defined as

m ≡ lim
a→0
λ→1

1 − λ
a

(2.31)

The limit of a → 0 gives us our field theory, but we are forced to consider the critical (with respect

to λ) behaviour in order to maintain a sensible theory. The missing derivative term has also been

eliminated as a surface integral∫ V

0
c†(x)Z∂xc(x) dx =

∫ V

0

[
c†(x)∂xc(x) − c(x)∂xc†(x)

]
dx (2.32)

Note that the derivative operator, being linear, can be freely moved outside of the anticommutation

relations

{c(x), ∂xc†(x)} = lim
h→0

1
h

[
{c(x), c†(x + h)} − {c(x), c†(x)}

]
= 0 (2.33)

∗The interpretation of this term as mass comes from computing the equations of motion under this Hamiltonian. In

the Majorana representation, this Hamiltonian generates the equations of motion for a massive Majorana spinor in (1+1)D

[6].
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and as a result, we obtain∫ V

0

[
c†(x)∂xc(x) + ∂xc†(x)c(x)

]
dx =

∫ V

0
∂x

(
c†(x)c(x)

)
dx

=
[
c†(x)c(x)

]V
0

= c†(V)c(V) − c†(0)c(0) (2.34)

where the periodic (or antiperiodic) boundary conditions force this term to be zero.

We have now obtained a continuous field theory for the 1D quantum Ising model. The remaining

chapters are in service of developing discrete analogues of the Hamiltonian in eq. (2.30). The

discretised versions will be characterised with renormalisation in mind, and will be constructed in such

a way that the mapping between the continuous and discrete versions is as direct as possible. This is

achieved through wavelet analysis, which is a mathematical structure that incorporates renormalisation

into the very definition.



Nature uses only the longest

threads to weave her patterns,

so that each small piece of her

fabric reveals the organization

of the entire tapestry.

Richard Feynman

3
Wavelets

This chapter builds the background, motivation and technical details necessary for discussing wavelets.

We start by discussing the failures of some methods preceding wavelets, namely the windowed Fourier

transform. Wavelets are developed to directly combat the issues discussed, and accomplish this by

establishing the concept of a multiresolution analysis. Daubechies wavelets, the wavelet family utilised

in this thesis, are obtained when one imposes the condition of compact support on the scale andwavelet

functions. By analysing the implications of such a restriction, one uncovers a finite set associated

with each wavelet realisation. This means that Daubechies wavelets can be used to generate discrete

analogues of continuous theories.

3.1 Background & History

Wavelets are a tool that were developed to deal with shortcomings of Fourier analysis. The issue

with Fourier analysis is that ‘nice’ functions (the canonical example being square integrable functions:
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f ∈ L2(R)) with non-zero, compact support∗ cannot have a compactly supported Fourier transform

[7]. This is essentially a more technical statement of the Heisenberg uncertainty principle, and is

a well-known issue regarding studying continuous functions to arbitrary precision in both time and

frequency space (or position and momentum space) simultaneously.

Compact support is a natural restriction in the realm of signal analysis, which is where wavelets were

first developed. In this field, one typically analyses finite data over finite time intervals, which means

that signals are effectively modelled by compactly supported functions. Fourier analysis is an useful

technique for studying such signals, but one encounters the previously discussed complications through

blind application. As an extension to Fourier analysis, wavelets were able to satisfy the ambitious

goal of recovering both roughly localised time and roughly localised frequency information. Put less

formally, wavelets are able to obtain information regardingwhich frequency appearedwhen in a signal,

albeit to within a fundamentally limited degree of accuracy.

Learning from the so far discussed and other issues within harmonic analysis, wavelets are a carefully

constructed orthonormal basis for L2(R). Daubechies wavelets, in particular, are an orthonormal

wavelet basis that is also compactly supported. The set of wavelets generates the wavelet transform,

which maps a function to a representative set of expansion coefficients. This transform respects

the Heisenberg uncertainty principle by dynamically sacrificing frequency precision when temporal

information is more important, and vice versa. Fundamental to such a technique is the framework of

a multiresolution analysis. A multiresolution analysis is a decomposition of a signal into a hierarchy

of individual decompositions, each to be interpreted as a ‘scaled’ representation of the original

signal. Historically, the motivation for such a procedure has roots in renormalisation theory, and,

tautologically, the relevance of wavelets to this research are their renormalisation properties.

3.2 Multiresolution Analysis

The concept of a multiresolution analysis revolves around building successive approximations for a

function that are consistent with one another. We associate each approximation with an index which

will be referred to as the scale or resolution.

Discussion of multiresolution analysis starts by considering a collection of indexed vector spaces,Vj

∗Support is the region in the domain of a function that maps to non-zero outputs. A compact interval is closed and

bounded.
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Figure 3.1: A collection of nested vector spaces. Each space is fully contained within the others in

the hierarchy.

(as depicted in fig. 3.1), that satisfy the following 6 properties [8]:

1. · · · ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ . . . ; this condition implies that there is an ordering to

the set of spaces. This condition (in combination with condition 4) means that higher indexed

spaces capture the intricacies of lower indexed spaces, and more.

2.
⋂

j∈ZVj = {0}; this condition removes unnecessary redundancy, and leads to the linear inde-

pendence of the wavelet basis generated.

3.
⋃

j∈ZVj = L2(R); whichmeans thatP∞ f = f , wherePn is the projector ontoVn and f ∈ L2(R).

This implies that a basis forV∞ will also be a suitable basis basis for L2(R), or equivalently, for

arbitrarily small Euclidean error ε , there exists someVn such that |Pn f − f | < ε .

4. f (x) ∈ V0 ←→ f (2 j x) ∈ Vj ; this condition captures the ‘multiresolution’ aspect, and is the

property that relates all of the spaces together. All spaces in the chain are rescaled versions

of the base space, V0. A rescaling is a transformation of the domain of f by x → 2x (i.e.

shrinking support in the case of compactly supported functions).

5. f (x) ∈ V0 −→ f (x − n) ∈ V0 for all j ∈ Z; here we assume that the spaces are invariant under

integer translations. An integer translation is a transformations of the domain of f by x → x− j.

6. There exists s ∈ V0 such that {s0
j (x) ≡ s(x − j)} j∈Z is an orthonormal basis for V0; the final

condition builds upon the previous one and assumes that there is some function in the space for

which its integer translates form an orthonormal basis for the space. Note that this condition,

together with condition 4, implies that if {s0
j } j∈Z is an orthonormal basis forV0, then {sn

j } j∈Z is

an orthonormal basis forVn (where sn
j ≡
√

2
n
s(2nx − j)).
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Figure 3.2: Sample functions that are constant over intervals of length 1 and length 1
2 .

3.2.1 Haar Wavelets

As a concrete example of one such wavelet system, consider the set of Haar scale functions, defined as

s(x) =


1 x ∈ [0, 1)

0 otherwise
(3.1)

The corresponding wavelet functions (discussed in detail in section §3.2.3) is given by

w(x) =


1 x ∈ [0, 1

2 )

−1 x ∈ [12, 1)

0 otherwise

(3.2)

One can verify that integer translations of the scale function, s, generate a basis for the vector space

of functions that are constant over intervals of unit length (and are square integrable). By rescaling

the scale function by a factor of 2, one can generate a basis for the vector space of square integrable

functions that are constant over intervals of length 1
2 (fig. 3.2). Further rescaling reveals a nested set of

vector spaces (condition 1) that satisfy all of the necessary conditions listed above, and the collection

of translated, rescaled wavelet functions form the Haar wavelet basis.

Chronologically, the Haar basis was discovered long before the concept of wavelets was ever formally

defined. They were retroactively appointed the post-nominal title of wavelet once the subject was

developed. In the discussion of wavelets, the Haar wavelets serve as the most intuitive example of a

wavelet system (as they can be easily sketched and visualised, whereas general Daubechies wavelets are

universally computer generated), and their existence motivated research into finding other compactly

supported scale functions—ideally with increased regularity.
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3.2.2 The Scaling Equation

From the definition of a multiresolution analysis, we can immediately generate the most important

equation in the discussion of wavelets: the scaling equation.

From condition 1, s ∈ V0 means that s ∈ V1. Therefore, we should be able to express s as a linear

combination of the basis for V1, given by conditions 4 and 6. This leads to the Daubechies scaling

equation

s(x) =
√

2
2K−1∑

j=0
h j s(2x − j) (3.3)

which is a renormalisation group equation. It is not an exaggeration to claim that this equation is

the most important one in the discussion of wavelets, as this equation alone defines the exact form

of the essential scale function, s. The coefficients H = {h j}2K−1
j=0 are called filter coefficients, and

the set H∗ is called a filter. They are obtained through h j = 〈s1
j , s

0
0〉 with the standard L2(R) inner

product: 〈 f , g〉 ≡
∫ ∞
−∞ f ∗(x)g(x) dx. The integer K is called the wavelet index, and it determines the

total number of non-zero filter coefficients. Manipulations of the scaling equation that respect the

orthogonality of integer translations reveal that the number of filter coefficients must be even. The

compact support of s is due to the finite number of filter coefficients.

Since the scaling equation is homogeneous and s is compactly supported (i.e. V0 ⊂ L1(R)), we

are free to set normalisation. This is also known as the scale-fixing condition and is expressed as∫ ∞
−∞ s(x) dx = 1. The remarkable property of the scaling equation is that due to the recursive nature of

the equation (along with the conditions 2 and 3), simply knowing H is enough to completely determine

s, and by extension, V0. Note that each value of K generates a unique scaling function, and we will

soon see that the wavelet index also determines the degree of regularity (smoothness) of s.

3.2.3 The Wavelet Equation

Now that we have a basis for each space determined, we should note that as a corollary, we have

constructed frame for L2(R) in the form of {sn
j } j,n∈Z. Since we seek a basis, we should remove

unnecessary redundancy from this set. This is the point at which wavelets enter the picture. We start

∗Because of the independent histories of the respective fields, an inevitable clash of notation occurs as H now refers

to the filter and to a Hamiltonian. It should be clear from context which interpretation is implied.



22 Wavelets

0.0 0.5 1.0 1.5 2.0 2.5 3.0
1.5

1.0

0.5

0.0

0.5

1.0

1.5

 = 2

Scaling function
Wavelet function

0 1 2 3 4 5

1.0

0.5

0.0

0.5

1.0

1.5

 = 3

Scaling function
Wavelet function

0 2 4 6 8 10

1.0

0.5

0.0

0.5

1.0

 = 6

Scaling function
Wavelet function

0 5 10 15 20
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
 = 12

Scaling function
Wavelet function

Figure 3.3: Daubechies scale and wavelet functions for indices K = 2, 3, 6 and 12. As K increases,

so does the support and smoothness of each function. The effect of higher order vanishing moments

manifests in the narrowing of the distributions relative to its support.

by defining the orthocomplement∗ ofV0 withinV1 to beW0

V1 = V0 ⊕W0 (3.4)

The spaceW0 will be the home for our wavelet function w: the partner† to the scaling function s. Let

w ∈ W0 ⊂ V1 be a special function such that integer translates of this function form an orthonormal

basis forW0. From the multiresolution axioms, we obtain a similar equation to the scaling equation.

We express w as a linear combination of basis elements ofV1,

w(x) =
√

2
2K−1∑

j=0
g j s(2x − j) (3.5)

∗Two subspaces, V,W ⊂ U are complementary if for any u ∈ U, there exists v ∈ V,w ∈ W such that u = v + w. We

say that V and W are orthogonal if 〈v,w〉 = 0 for all v and w. Orthocomplement is the natural amalgamation of the two

terms, and means that every u has a unique decomposition in terms of V and W .
†These functions are often referred to as mother and father wavelet functions respectively.
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which generates the Daubechies wavelet equation. If we choose the filter∗ G = {g j}2K−1
j=0 such that

g j = (−1) j h2K−1− j (that is, in the reverse order with alternating signs), then integer translates of w do

indeed form a basis forW0, while still satisfying the orthogonality condition 〈s0
j ,w

0
j ′〉 = 0. It follows

that knowing H is enough to determine G, which uniquely determines both s and w.

We recursively repeat the orthogonal decomposition to achieve a direct sum representation for any

space in the chain

Vn = V0 ⊕
n−1⊕
k=0
Wk (3.6)

Each spaceWn is spanned by the set {wn
j } j∈Z which are integer translates of a rescaled version of the

wavelet function: wn
j (x) ≡

√
2

n
w(2nx − j). If we continue ad infinitum, we have a set of spaces that

satisfy (by condition 3)

L2(R) =
∞⊕

k=−∞
Wk (3.7)

and the set {wk
j } j,k∈Z are an orthonormal basis for L2(R). We can, however, choose to impose a

(physically motivated) scale cutoff n,

L2(R) ≈ Vn = V0 ⊕
n−1⊕
k=0
Wk (3.8)

Now Vn represents the minimum scale at which we choose to represent out functions, V0 acts as a

summary for all large-scale degrees of freedom andWk represents a chain of corrections required

to obtain finer approximations. In renormalisation language, we associate Vn with a UV-cutoff

momentum,V0 with low momentum andWk with renormalised states [9].

3.2.4 Vanishing Moments

The first wavelet was developed by Alfréd Haar in 1910s [10], who constructed the Haar basis for

L2(R) long before the theory of wavelets was formalised. The Haar basis is a dyadic set of rescaled

and juxtaposed tophat functions which are highly localised (small support), but also non-regular (as

they are discontinuous). More than half a century later in the 1980s, Daubechies generalised the Haar
∗H and G are sometimes referred to as a low-pass and band-pass filters, particularly in engineering contexts. Elements

ofVn can be thought of approximations for functions up to a certain degree n, meaningVn attenuates finer details. Each

Wn yields approximations only within the scale range n to n + 1.
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basis by developing a family of compactly supported scale functions. The Daubechies wavelets had

larger support, but were also smoother (differentiable to higher degrees). The size of the support and

degree of regularity of the Daubechies wavelet are both characterised by the wavelet index, K.

The smoothness of the Daubechies wavelet essentially comes from the fact that they satisfy the

vanishing moments condition:∫ ∞

−∞
xmw(x) dx = 0 m ∈ {0, . . . ,K − 1} (3.9)

This condition allows higher order wavelets act as better approximations to C∞ class functions, and

means that wavelets can exactly represent functions in L2 ⋂
CK−2.

Note that the scaling equation has 2K degrees of freedom, given by the set of 2K filter coefficients.

Demanding orthogonality of integer translates of the scale function leads toK−1 linearly independent

restrictions on the filter. The compact support of the scale function effectively adds another restriction,

square integrability another, and the vanishing moments condition the final K − 1 (the case m = 0

is not linearly independent from the rest). This means that the Daubechies wavelets are the minimal

family of compactly supported wavelets.

3.2.5 Overlap Integrals

In the proceeding chapter, we will be required to evaluate integrals of the following forms

D00
j j ′ ≡

∫
s0

j (x)∂xs0
j ′(x) dx

C0k ′
j j ′ ≡

∫
s0

j (x)∂xw
k ′
j ′ (x) dx

Bk0
j j ′ ≡

∫
wk

j (x)∂xs0
j ′(x) dx

Akk ′
j j ′ ≡

∫
wk

j (x)∂xw
k ′
j ′ (x) dx (3.10)

These integrals are computed by Beylkin [11] by substituting the scaling equation into the above

expressions and resolving the resulting recursion relations. Interestingly, the values are all rational,

albeit difficult to obtain analytically for large K. These values are well defined for K ≥ 2.
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3.2.6 Summary

As a summary of this quite technical section, we have obtained a set of subspaces for L2(R) satisfying

conditions 1–6. Each space has a basis given by integer translates of rescaled versions of a single

scaling function, s. The collection of bases generated by the scale function, however, is overcomplete

when considered as a basis for L2(R). The wavelet function, w, accompanies the scale function and

scaled integer translates of this function are a complete basis for L2(R). The pair satisfy the scaling

and wavelet equations eq. (3.3) and eq. (3.5) respectively, as well as the orthogonality relations

〈sn
j , s

n
j ′〉 =

∫ ∞

−∞
sn

j (x)s
n
j ′(x) dx = δ j j ′

〈sn
j ,w

n′
j ′ 〉 =

∫ ∞

−∞
sn

j (x)w
n′
j ′ (x) dx = 0 (n′ ≥ n)

〈wn
j ,w

n′
j ′ 〉 =

∫ ∞

−∞
wn

j (x)w
n′
j ′ (x) dx = δ j j ′δnn′ (3.11)

The wavelet function satisfies the vanishing moments condition eq. (3.9) for a given wavelet index,K.

3.3 Discrete Wavelet Transform

We now use the results from the previous sections to construct the discrete wavelet transform. The

decomposition of L2(R) in eq. (3.8) can be used to formulate discrete approximations for any function

in f ∈ L2(R).

Formally, we have the equality

f (x) = lim
n→∞

2nV−1∑
j=0
〈 f , sn

j 〉s
n
j (x)

=

V−1∑
j=0
〈 f , s0

j 〉s
0
j (x) + lim

n→∞

n−1∑
k=0

2kV−1∑
j=0
〈 f ,wk

j 〉w
k
j (x) (3.12)

The first expression represents the process of projecting f onto the subspace V∞. The expansion

coefficients, 〈 f , sn
j 〉, completely characterise f (that is, if f1 and f2 have the same set of expansion

coefficients, then f1 = f2). The second expression describes a process where we project onto a

chosen coarsest scale (denoted by s0) and add an infinite chain of finer details (denoted by wk for each

k ∈ [0,∞)) until we have a perfect recreation of our starting function. An approximation is given by
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simply truncating the limit to a finite value (that is, projecting f ontoVn for a finite n)

f (x) ≈
2nV−1∑

j=0
〈 f , sn

j 〉s
n
j (x)

=

V−1∑
j=0
〈 f , s0

j 〉s
0
j (x) +

n−1∑
k=0

2kV−1∑
j=0
〈 f ,wk

j 〉w
k
j (x) (3.13)

Since f is characterised by its expansion coefficients, we conclude that the collection of expansion

coefficients are a discrete analogue for the original function.



Argument is conclusive, but it

does not remove doubt, so that

the mind may rest in the sure

knowledge of the truth, unless

it finds it by the method of

experiment.

Roger Bacon

4
Wavelet-Ising Model

Armed with the basics of wavelet theory, we now apply wavelet analysis to our continuous field

operators from section 2.2. This will give us an approximate Hamiltonian, but our specific choice

of wavelet family (Daubechies wavelets) will also have the side-effect of creating an entirely new set

of discrete fermionic ladder operators. The new Hamiltonian is the main result of this thesis, and

bares semblance to the original, discrete Ising model as the continuum eigenenergies for both models

are equivalent. The link between the models is strengthened by qualitatively considering results for

both; namely pairwise ground state correlations as a function of separation length, and ground state

sucbchain entanglement entropy.

Before we dive into the process, we must first note that the previous discussion regarding L2(R) is

overly general for our purposes. Our model only considers periodic, square integrable functions over

the interval I = [0,V]. We rectify this by restricting our integrals to I, and enforce periodicity in the

form of s0
V ≡ s0

0. This has implications on the minimum size of V , since the scaling equation relates

s0
0(x) to {s

1
0, . . . , s

1
2K−1}. V must be large enough to contain 2K translates of s1

0 ≡ s(2x), meaning
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V ≥ K. If this condition were not met, it would be impossible to satisfy both the scaling equation and

all of the vanishingmoments conditions, and so a different wavelet family would have to be considered.

Since we only investigate Daubechies wavelets in this thesis, we enforce V ≥ K. Additionally, in

order to avoid discontinuities in the scale field and its derivative, we assume K ≥ 3.

4.1 Discretised Hamiltonian

We apply the approximation process in eq. (3.12) to the fermionic field operator from §2.3. For

notational convenience, we define Vn ≡ 2nV . The approximations are given by

c(x) ≈
Vn−1∑
j=0

r j,nsn
j (x)

∂xc(x) ≈
Vn−1∑
j=0

r j,n∂xsn
j (x) (4.1)

The expansion coefficients are given by

r j,n ≡

r j,n

r†j,n

 =
∫ V

0
c(x)sn

j (x) dx

=


〈c, sn

j 〉

〈c†, sn
j 〉

 (4.2)

Due to the scale orthogonality relations in eq. (3.11), (r†j,n, r j,n) j∈Z qualifies as a set of fermionic ladder

operators

{r j,n, r j ′,n} = 0 {r j,n, r
†
j ′,n} = δ j j ′ (4.3)

Applying these expressions to the fermionic Hamiltonian in eq. (2.19) gives

H =
∫ V

0
ic†(x)Y∂xc(x) + mc†(x)Zc(x) dx

≈ i
∑
j j ′

r†j,nYr j ′,nDnn
j j ′ + m

∑
j

r†j,nZr j,n (4.4)

where we have used the orthogonality relations for s and the overlap integrals from eq. (3.10).

Proposition 1 in [11] states that D only depends on the difference between j and j′, so we can

equivalently define l ≡ j − j′ and Dnn
j j ′ → Dnn

l . Additionally, the proposition asserts that D00
l = 0
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whenever |l | > 2(K − 1) = J. Both of these observations lead to the expression

H = i
Vn−1∑
j=0

J∑
l=−J

r†j,nYr( j+l),nDnn
l + m

Vn−1∑
j=0

r†j,nZr j,n (4.5)

We have now successfully obtained a discrete, wavelet-based, pseudo-Ising model. The ‘pseudo’

prefix denotes the important distinction between this model and the original, which is that we no

longer have nearest-neighbour coupling. Instead, the interaction length is governed entirely by the

wavelet index, K. It might seem that these long-range interactions would draw a complete distinction

between the base Ising model and this new model. However, by construction, we know that both

models have the same continuum limit, and should (at least qualitatively) behave similarly. In the next

section, we will construct a simplified version of this model, which will be used to compare to the

discrete Ising model.

4.2 Diagonalisation of the Model

In this section we construct a basis transformation whichmaps the existingmodel to a set of uncoupled,

Fermi oscillators. These fermions are called Bogoliubov fermions, in honour of the author for the

method, Nikolay Bogoliubov. The method was initially developed to simplify the Hamiltonian in the

BCS theory of superconductivity[12], but the approach can be broadly applied to Hamiltonians that

are quadratic in ladder operators (a related transformation is also defined for bosonic systems). The

periodic Ising model is unique in that the exact transformation only requires two relatively easy steps.

Being uncoupled, the dynamics of the Bogoliubov fermions are very simply to study. For example,

we uncover the ground state of our Hamiltonian simply by identifying the state which is annihilated by

everyBogoliubov annihilation operator. Wewill use the ground state and the diagonalisedHamiltonian

to analyse entanglement in the following section.

4.2.1 Fourier Transform

Before directly diagonalising our Hamiltonian, we observe that it is translationally invariant. This

means that the quadratic form of the Hamiltonian will be a pseudo-circulant matrix, comprised of

blocks that are individually circulant. A property of circulant matrices is that they are diagonalised

by the discrete Fourier transform, which implies that the quadratic form for our model will be almost

diagonal when expressed in momentum space.
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We invoke the discrete Fourier transform, defined as

r j,n =
1
√

V

Vn−1∑
k=0

pk,ne−
2πi
Vn

j k

r†j,n =
1
√

V

Vn−1∑
k=0

p†k,ne
2πi
Vn

j k (4.6)

for the second scale term, we have

r( j+l),n =
1
√

V

Vn−1∑
k ′=0

pk ′,ne−
2πi
Vn

j k ′e−
2πi
Vn

lk ′

r†( j+l),n =
1
√

V

Vn−1∑
k ′=0

p†k ′,ne
2πi
Vn

j k ′e
2πi
Vn

lk ′ (4.7)

The unitarity of the Fourier transform guarantees that the anticommutation relations are preserved,

{p j,n, p j ′,n} = 0 {p j,n, p†j ′,n} = δ j j ′ (4.8)

We will now return to the non-spinor representation for our Hamiltonian. By invoking the Fourier

transformation and with judicious use of the Dirichlet kernel identity: 1
Vn

∑Vn−1
j=n e

2πi
Vn

j(k−k ′)
= δkk ′, the

model simplifies to

H =
Vn−1∑
k=0

J∑
l=−J

Dnn
l

(
p†k,np†−k,ne−

2πi
Vn

lk − pk,np−k,ne
2πi
Vn

lk
)
+ m

Vn−1∑
k=0

(
p†k,npk,n − pk,np†k,n

)
(4.9)

This can be tidied up by noting Dnn
l = −Dnn

−l is an odd function of l, so we introduce

Qk ≡
J∑

l=−J
Dnn

l e−
2πi
Vn

lk

= −2i
J∑

l=1
Dnn

l sin
(
2π
Vn

lk
)

(4.10)

Under this simplification, the Hamiltonian reads

H =
Vn−1∑
k=0

[
Qk p†k,np†−k,n −Q−k pk,np−k,n + m

(
p†k,npk,n − pk,np†k,n

)]
(4.11)

Since all terms are periodic (that is p(k+V),n ≡ pk,n and Qk+V = Qk) we can selectively rearrange the

sums as follows
Vn−1∑
k=0

Q−k pk,np−k,n = Q0p0,np0,n +Q−1p1,np−1,n + · · · +Q1−Vn p(Vn−1),np(1−Vn),n

= Q0p0,np0,n +Q1−Vn p(Vn−1),np(1−Vn),n + · · · +Q−1p1,np−1,n

= Q0p0,np0,n +Q1p−1,np1,n + · · · +QVn−1p(1−Vn),np(Vn−1),n

=

Vn−1∑
k=0

Qk p−k,npk,n (4.12)
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We apply this procedure only to the second and last terms in eq. (4.11). This gives

H =
Vn−1∑
k=0

[
Qk p†k,np†−k,n −Qk p−k,npk,n + m

(
p†k,npk,n − p−k,np†−k,n

)]
=

Vn−1∑
k=0

[
p†k,n p−k,n

] 
m Qk

−Qk −m




pk,n

p†−k,n

 (4.13)

which is considerably easier to diagonalise, as the double sum of eq. (4.5) has now been reduced to a

single sum, although with more complicated coefficients.

4.2.2 Bogoliubov Transform

With the simplified Hamiltonian, the final step will produce a diagonalised Hamiltonian. That is, we

seek to express the Hamiltonian in the form

H ∝
Vn−1∑
k=0

ωkη
†
k,nηk,n + const. (4.14)

where (η†k,n, ηk,n)Vn−1
k=0 are fermionic operators satisfying the correct fermionic algebra and ωk are the

corresponding eigenenergies. To perform such a feat, we utilise the Bogoliubov transformation

ηk,n = uk pk,n + ivk p†−k,n η−k,n = u−k p−k,n + iv−k p†k,n

η†k,n = uk p†k,n − ivk p−k,n η†−k,n = u−k p†−k,n − iv−k pk,n (4.15)

In order to preserve the anticommutation relations, we have the conditions

{η j,n, η
†
k,n} = δ j k {η j,n, ηk,n} = 0

⇒ u2
k + v

2
k = 1 ⇒ ukv−k = −u−kvk (4.16)

the second of which is satisfied if uk and vk are an even and odd function of k respectively. We choose

uk and vk , subject to the specified constraints, such that H becomes diagonalised. The transformation

above can be summarised by the unitary transformations
ηk,n

η†−k,n

 =

uk ivk

ivk uk




pk,n

p†−k,n


[
η†k,n η−k,n

]
=

[
p†k,n p−k,n

] 
uk −ivk

−ivk uk


= Uk


pk,n

p†−k,n

 =
[
p†k,n p−k,n

]
U†k (4.17)
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where Uk is clearly unitary. Invoking the inverse transformation, the Hamiltonian reads

H =
Vn−1∑
k=0

[
η†k,n η−k,n

] 
uk ivk

ivk uk




m Qk

−Qk −m




uk −ivk

−ivk uk



ηk,n

η†−k,n

 (4.18)

We wish for the matrix terms to be diagonal, that is UkAkU†k = Ωk . This implies that the columns of

U†k are eigenvectors of Ak , 
m Qk

−Qk −m




uk

−ivk

 = ωk


uk

−ivk

 (4.19)

with eigenvalues

ωk = ±
√

m2 −Q2
k (4.20)

From the eigenvector equation we obtain explicit expressions for uk and vk (note that u−k = uk and

v−k = −vk , as required for the anticommutation relations to hold)
uk

vk

 =
1√

(m + ωk)2 −Q2
k


m + ωk

iQk

 (4.21)

Expanding the Hamiltonian out in this basis gives

H =
Vn−1∑
k=0

[
η†k,n η−k,n

] 
ωk 0

0 −ωk



ηk,n

η†−k,n


=

Vn−1∑
k=0

ωkη
†
k,nηk,n − ωkη−k,nη

†
−k,n (4.22)

We now apply the anticommutation relations and repeat the trick from earlier of selectively rearranging

the second term and exploiting periodicity. Doing so (and noting ω−k = ωk) gives

H = 2
Vn−1∑
k=0

ωk

(
η†k,nηk,n −

1
2

)

H = 2
Vn−1∑
k=0

√√√√
m2 +

[
2

2(K−1)∑
l=1

Dnn
l sin

(
2π
Vn

kl
)]2

η†k,nηk,n + E0 (4.23)

where E0 ≡ −
∑

k ωk is the ground state energy of the system.

We can use this expression and the relative ease of renormalisation in the wavelet expression to

compare the spectrum of our model with the continuum Ising model. If we restrict the discussion to
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low momenta, then in the resolution limit n→∞ we make the approximation

sin
(

2π
2nV

kl
)
≈ 2πk

2nV
l

=
k̃
2n l (4.24)

One can employ change of variables to verify Dnn
l = 2nD00

l . In the resolution limit, the energy of such

a state becomes

ω2
k = m2 +

[
2
J∑

l=1
D00

l l k̃

]2

(4.25)

By utilising proposition 1 in [11] (which is
∑J

l=1 D00
l l = −1/2), this expression simplifies to

ω2
k = m2 + k̃2 (4.26)

which is the low momentum dispersion relation for the continuum Ising model.

To summarise the process above, we combine eq. (4.6) with eq. (4.15) to condense the entire mapping

as a single, unitary transformation, W

ηk,n =
uk + ivk√

V

Vn−1∑
j=0

(
r j,n + r†j,n

)
e

2πi
Vn

j k

η[n] =Wr[n] (4.27)

where the lack of position index implies the spinor representation

η[n] =



η0,n

η†0,n
...

η(Vn−1),n

η†(Vn−1),n


r[n] =



r0,n

r†0,n
...

r(Vn−1),n

r†(Vn−1),n


(4.28)

4.3 Entanglement Entropy

In this section, I compute the block chain entropy of the wavelet-Ising model eq. (4.5) and compare to

the traditional Ising model eq. (2.19). A block in the Ising model is a contiguous sequence of fermion

sites, which partitions the Ising chain into two sections. Because of the translational invariance of the

model, only the length of the block needs to be considered, and not its relative position. One computes
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the von Neumann entropy through calculation of the reduced density matrix. As computing the partial

trace is a somewhat involved process, a preferred method to obtaining von Neumann entropy is given

by considering the correlation matrix, which I define below. The process for computing entropy is

detailed in [13], and what follows is largely a reproduction of their process applied to the wavelet-Ising

model.

4.3.1 Majorana Representation

The Ising model is most naturally described in the language of Majorana spinors, as the dynamics of

the Ising field theory correspond to that of free Majorana fermions [6]. Furthermore, we will exploit

the compact representation and symplectic structure of the Majorana correlation matrix.

We define the Majorana representation by the transformation

gL
j,n = η

†
j,n + η j,n gR

j,n =
η j,n − η†j,n

i
(4.29)

The Majorana operators are Hermitian and obey the Majorana anticommutation algebra

{gσj,n, g
ρ
j,n} = 2δ j kδσρ (4.30)

In the Majorana representation, the diagonalised Hamiltonian has symplectic structure (with constant

additive terms omitted)

H =
i
2

Vn−1∑
k=0

ωk

(
gL

k,ng
R
k,n − g

R
k,ng

L
k,n

)
=

i
2

Vn−1∑
k=0

ωk

[
gL

k,n gR
k,n

] 
0 1

−1 0



gL

k,n

gR
k,n

 (4.31)

4.3.2 Correlation Matrix

In the fermionic representation, the ground state of H satisfies the property ηk,n |G〉 = 0 for every

choice of k. By making use of the anticommutation relations of the Bogoliubov fermions, we can

readily obtain the expectation values for single operators and operator products. Let 〈M〉 denote the
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ground state expectation value of the operator M: 〈G |M |G〉. We have

〈η j,n〉 = 〈η†j,n〉 = 0

〈η j,nηk,n〉 = 〈η†j,nη
†
k,n〉 = 0

〈η†j,nηk,n〉 = 0

〈η j,nη
†
k,n〉 = δ j k (4.32)

If required, we can make use of Wick’s theorem to reduce expectation values for longer products (for

example, 〈η j,nη
†
k,nηr,nη

†
p,n〉) to combinations of the one and two operator expectation values enumerated

in eq. (4.32). Since the ground state is characterised entirely by first and second moments, it is called

a Gaussian state.

In the Majorana representation, all of the above expectation values can be summarised into a single

expression

〈gσj,ng
ρ
k,n〉 = δ j kδσρ + iΓG

σρ; j k (4.33)

where

ΓG =

Vn−1⊕
j=0


0 1

−1 0

 (4.34)

The latter two indices ofΓG specify a block location, and the first two indices represent a locationwithin

the block (LL corresponds to the upper left, LR corresponds to the upper right, etc). Equation (4.33)

is the Majorana correlation matrix. The benefit of the Majorana representation is essentially the

compactness of this expression, and the subsequent calculation of the von Neumann entropy will be

straightforward given this equation. It is simple to directly verify that ΓG accounts for the expectation

values 〈ηk,nηk,n〉, 〈η†k,nη
†
k,n〉, 〈ηk,nη

†
k,n〉 and 〈η

†
k,nηk,n〉.

In addition to Bogoliubov-Majorana operators, we can construct Majorana operators for the coupled

wavelet-Ising model, eq. (4.5). We invoke the same transformation as eq. (4.29)

bL
j,n = r†j,n + r j,n bR

j,n =
r j,n − r†j,n

i
(4.35)

which again satisfy the Majorana algebra

{bσj , b
ρ
k} = 2δ j kδσρ (4.36)
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In terms of the Majorana operators, the wavelet-Ising model eq. (4.5) takes the form

H = − i
2

Vn−1∑
j=0

J∑
l=−J

bT
j,nXb( j+l),nDnn

l −
m
2

Vn−1∑
j=0

bT
j,nYb j,n (4.37)

where

b j,n ≡

bL

j,n

bR
j,n

 b†j,n = bT
j,n ≡

[
bL

j,n bR
j,n

]
(4.38)

Since this Hamiltonian is quadratic in Majorana operators, we can assign it a corresponding quadratic

form

H =
i
2

Vn−1∑
j=0

Vn−1∑
k=0

∑
σ,ρ∈{L,R}

S j k
σρbσj [n]b

ρ
k [n] (4.39)

Here we have opted to promote the scale-index to discrete function argument for the sake of clarity.

The antisymmetric matrix S j k
σρ takes the form

S =



S0 −S1 −S2 . . . S3 S2 S1

S1 S0 −S1 . . . S4 S3 S2

S2 S1 S0 . . . S5 S4 S3
...

. . .
...

−S1 −S2 −S3 . . . S2 S1 S0


(4.40)

with

S0 =


0 −m

m 0

 S j =


0 Dnn

j

Dnn
j 0

 for j > 0 (4.41)

Again, as implied by the structure of eq. (4.40), one should think of S j k
σρ as block matrix. The upper

indices specify the location of the block, and the lower indices specify the position within the block.

Next, we determine the form of the correlation matrix for these coupled Majorana operators. It will

be determined by the Fourier and Bogoliubov transformations computed above.

4.3.3 Symplectic Diagonalisation

The diagonalisation of the wavelet-Ising model was achieved through use of a Fourier transform,

followed by a Bogoliubov transformation. Both operations are summarised as a single unitary trans-

formation, W. This unitary transforms the quadratic form for eq. (4.5) into a diagonal matrix of
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eigenvalues

H = r†[n]Tr[n]

⇒W†TW = Ω (4.42)

In theMajorana representation, the freeHamiltonian quadratic form is symplectic, rather than diagonal.

The process of mapping an antisymmetric matrix to its symplectic form is entirely contingent on

knowing W explicitly. By symplectic form, we mean a matrix that is of the form of ΓG.

To cast S into symplectic form, we first note that it is real and antisymmetric (as opposed to T,

the fermionic quadratic form, which was necessarily real and symmetric). As multiplying an anti-

symmetric matrix by i produces a Hermitian matrix, the eigenvalues of an antisymmetric matrix are

always zero or pure imaginary, and come in conjugate pairs. A real matrix cannot map real vectors

to complex vectors, and so the imaginary eigenvalues iωk must correspond to complex eigenvectors,

zk = βk + iγk . The eigenvector corresponding to −iωk is z̄k = βk − iγk . We then construct an

orthogonal matrix ∆ whose columns are

∆ =
[
β0 γ0 β1 γ1 . . . βVn−1 γVn−1

]
(4.43)

This matrix casts S into symplectic form:

∆S∆T =

Vn−1⊕
j=0


0 ω j

−ω j 0

 (4.44)

which means that ∆ is precisely the transformation from coupled to free Majorana operators,

b[n] = ∆g[n] (4.45)

The correlation matrix for the coupled Majoranas,

〈bσj,nbρk,n〉 = δ j kδσρ + iΓB
σρ; j k (4.46)

is also determined by our newly obtained orthogonal matrix via

ΓB = ∆T ΓG∆ (4.47)

This matrix has elements

ΓB =



Π0 Π1 Π2 . . . ΠVn−1

−Π1 Π0 Π1
...

−Π2 −Π1 Π0
...

...
. . .

...

−ΠVn−1 . . . . . . . . . Π0


, Πl =


0 ql

−ql 0

 (4.48)
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where ql are numerically determined and l ≡ j − k specifies block position.

4.3.4 Block Chain Entropy

Block chain entropy is a metric to analyse the degree of entanglement within an Ising chain. If |G〉 is

the ground state (a pure state) and ρ is the associated density matrix, then by calculating the reduced

density matrix, ρM ,

ρM = TrVn−M |G〉〈G | (4.49)

one can quantify entanglement as a function of block length using von Neumann entropy. Formally,

von Neumann entropy is given by the equation

SM = −Tr
{
ρM log2 ρM

}
(4.50)

where S denotes the von Neumann entropy, ρ is the density matrix for the ground state and ρM is the

reduced densitymatrix for a block of length M . Rather than obtaining ρM directly through computation

of partial traces, an alternative (and simpler) process is locally diagonalise the Hamiltonian and work

with the reduced correlation matrix instead [14]. This method is the process followed by [15], where

they analyse the XY model, a generalisation of the Ising model. We obtain the reduced correlation

matrix by truncation of the final Vn − M rows and columns of ΓB,

Γ
B
M =



Π0 Π1 Π2 . . . ΠM−1

−Π1 Π0 Π1
...

−Π2 −Π1 Π0
...

...
. . .

...

−ΠM−1 . . . . . . . . . Π0


(4.51)

Just as ΓB is associated with the set of coupled Majorana operators (bL
j,n, b

R
j,n)

Vn−1
j=0 , the reduced form,

ΓB
M , is associated with the truncated set (bL

j,n, b
R
j,n)M−1

j=0 . We symplectically diagonalise this matrix,

ΓF
M = ∆̃ΓB

M∆̃T

ΓF
M =

M−1⊕
j=0


0 ν j

−ν j 0

 (4.52)

to obtain part of the correlation matrix for the uncorrelated Majorana modes, ( f L
j,n, f R

j,n)M−1
j=0 . These

Majorana operators give rise to a set of uncorrelated fermionic operators,

ψ j,n =
f L
j,n + i f R

j,n

2
ψ†j,n =

f L
j,n − i f R

j,n

2
(4.53)
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Figure 4.1: Von Neumann entropy of block chains as a function of chain length for both the quantum

Ising model (eq. (2.30)) and the wavelet-Ising model (eq. (4.5)) for K = 3. Chain length 700.

which, by direct substitution, have product expectation values

〈ψ j,nψk,n〉 = 0 〈ψ†j,nψk,n〉 = δ j k
1 − ν j

2
〈ψ j,nψ

†
k,n〉 = δ j k

1 + ν j

2
(4.54)

and, of course, all operators satisfy the necessary anticommutation relations

{ψ j,n, ψk,n} = 0 {ψ j,nψ
†
k,n,} = δ j k { f σj,n, f ρk,n} = 2δ j kδσρ (4.55)
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Being completely uncorrelated, the density matrix in this basis is a product state,

ρM = π0 ⊗ π1 ⊗ · · · ⊗ πM−1 (4.56)

where π j is the reduced density matrix for the jth site, each of which has eigenvalues (1 ± ν j)/2. For

a product state, the total chain entropy is given by the sum of individual entropies on each subspace,

SM =

M−1∑
j=0
H2

(1 + ν j

2

)
(4.57)

where H2(x) = −x log2 x − (1 − x) log2(1 − x) is the binary entropy function—applicable due to the

form of the eigenvalues.

Figure 4.1 shows numerical calculation the entropy for both the traditional Isingmodel and thewavelet-

Ising model. I do not expect the results to exactly correspond to one another, as the parameters m

and λ do not have an exactly representable relationship when both are finite. However, it appears

that the entropy of the models have similar characteristics, both exhibiting strong saturation for short

chain length M ∼ 10. This implies finite or exponentially decaying correlation length, which is a

well known result for the Ising model [16]. Due to the decaying correlation length, the entropy is

effectively independent of the total length of the chain.

The vector space equality stated in eq. (3.6) establishes a different perspective of the model. If the

model is expressed in the wavelet representation, one can calculate the subchain entropy by following

a similar procedure to the one used in this thesis. In this representation, the scale of the model

appears as an explicit parameter, giving a tunable dial to analyse renormalisation flow with. This is

an important feature, and is the ultimate motivation of constructing such a reformulation in terms of

wavelets. Unfortunately, analysis of this nature was beyond the scope of this project, and is instead

suggested as an immediate extension to this work.



All truths are easy to understand

once they are discovered—the

point is to discover them.

Galileo Galilei

5
Conclusion

This thesis explores the construction of a wavelet-based discrete approximation (eq. (4.5)) to the field

theory of the 1D quantum Ising model (eq. (2.30)). The discretisation scheme allows for the recovery

of the continuous model in the resolution limit n→ ∞. The energy spectrum and ground state of the

approximation are analytically determined and the series of transformations undertaken are explicitly

detailed. Through numerical simulations, the the subchain entanglement entropy of the wavelet-Ising

model is compared to the traditional discrete Ising model.

The quantum Ising model is obtained both by analogy with the classical case, and as a result of an exact

mapping between statistical mechanics and quantum mechanics. The quantum Ising model maps to a

system of spinless fermions via a process described by the non-local Jordan-Wigner transformation.

A continuous model is obtained in the limit as the number of sites (N → ∞), site separation distance

(a→ 0) and symmetry breaking parameter (λ → 1) uniformly tend to their respective limits. The

discrete wavelet transform is applied to the continuous model, resulting in the wavelet-Ising model.

This transformation encodes the continuous fields as discrete analogues. The degree of error in the
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approximation is captured by the scale index, n, and the error tends to zero as n → ∞. There are

multiple wavelet encoding schemes; the choice in this thesis was Daubechies wavelets of orderK ≥ 3.

Once the wavelet-Ising model is generated, it is diagonalised through means of a Fourier transform,

succeeded by a Bogoliubov transform. The free theory is then used to analyse the coupled theory

by quantifying entanglement through calculation of the von Neumann entropy for a truncated density

matrix.

The motivation for developing a wavelet-based alternative to quantum field theory ultimately comes

from renormalisation. The process of renormalisation is built into the foundations of wavelet theory,

and the continuum limit for a discrete wavelet theory is mathematically well defined. The aim of

this thesis is to generate results that give validation to a wavelet-based approach to renormalisation.

Discretisation strategies can be used to analyse continuous theories that may otherwise require subtle

arguments; the benefit of the wavelet-based approach is that one remains within the comfort of a

discrete framework that is readily generalised to the continuum. The results obtained in this thesis

support the claim that a wavelet-discretised theory can act in place of other, more ad hoc discrete

models.

There are many immediate extensions to this work. The most obvious is granted by exploiting the

vector space equality of eq. (3.6) to generate the scale-wavelet representation of the model (as opposed

to a representation of purely scale fields). In this picture, one obtains a resolution degree of freedom,

which allows the renormalisation aspects of the theory to be studied directly. Additionally, the study

of bipartite entanglement was only one of many well known quantities regarding the Ising model that

are of interest. Additionally, there are schemes for investigating inter-scale correlations, utilising the

full scale-wavelet representation of the wavelet theory. One such example is explored in [9], where

the authors study the (1 + 1)D scalar bosonic field theory. As a renormalisable fermionic theory, the

wavelet-Ising model may add alternative insights to the results of their methodology.
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