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Abstract

In this thesis, a method is presented to approximate a noise-free low-dimensional
continuous chaotic system (flow), using a single sample or multi-sampled scalar
time series containing high levels of measurement noise or low levels of dynamical
noise. The shadow-UPO noise reduction method (SUNR method) does not require
the prior embedding of data and operates directly on the sampled time series, thus
avoiding the limitations of Takens theorem and the estimation of embedding pa-
rameters when significant levels of noise are present. The method aims to overcome
the well-documented severe limitations of directly filtering noise-infected chaotic
time series, by focusing on nearly periodic orbit segments (‘shadow-UPOs’) shad-
owing the dense set of unstable periodic cycles (UPOs) that form the skeleton of
a chaotic system, each of which is locally amenable to linear filtering techniques.

The innovation is two-fold and comes from firstly deconstructing the chaotic
system into approximate cycles, where we are free to directly apply signal pro-
cessing techniques, based on the specific type of noise. Secondly, shadow-UPOs
are detectable in the presence of high noise using the observation that histograms
constructed from recurrence matrices are highly robust to noise.

Shadow-UPOs are located, allocated to categorical bins, and filtered. We firstly
utilise these to estimate the basis set of noise-free lower order UPOs, and estimate
individual maximal Lyapunov exponents for each UPO. Secondly, we approximate
the noise-free time series by replacing noise-infected near-cycles in the time series
with their noise-filtered counterparts. The resultant time series are sufficiently
noise-reduced that conventional algorithms can be used to subsequently estimate
the Lyapunov exponents that would otherwise not be computable.

The method is illustrated in detail as a case study of the Rossler system,
tested for various types of noise (uniform white, Gaussian white, high-frequency,
coloured and dynamical) and also on several chaotic systems with a range of dif-
fering topologies (Chua, Rabinovich-Fabrikant, Lu-Chen, Lorenz). Goodness of
fit metrics are defined, measured for each system and presented. We identified
limitations of the recurrence method of detecting cycles when dealing with higher
instability systems, and successfully modified the SUNR method for these.
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Notation

m The dimension of the delay vectors.
τ The time delay used for the delay vectors.
xi An element of the time series.
fi An element of the approximation of the time series.
ei A residual or error element: xi − fi.
h The time step used in numerical integration.
ε The critical radius.
Lp The Lp metric space.
dp The distance between two points using the Lp norm.

d(x, y) The distance from x to y.
RK4 The 4th order Runge Kutta numerical integration method.
GWN Gaussian white noise.
UWN Uniform white noise.
HFN High frequency noise.
SNR The signal to noise ratio.
FFT The Fast Fourier Transform.
SUNR The Shadow-UPO Noise Reduction method.
UPO Unstable periodic orbit.
R(i, j) The recurrence matrix.

Θ The Heaviside function.
H(i) The recurrence-histogram.
λmax The maximal Lyapunov exponent.
µx The mean of the time series x.
σ2 The variance of the time series x.
σxy The cross-covariance between two time series x and y.
rxy The cross-correlation between two variables x and y.

MAE The mean absolute error.
RMSE The root-mean-square error.
MME The mean maximum error.
R2 The coefficient of determination.
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Preface

Noise reduction of chaotic time series is inherently problematic in three main

ways. Firstly, directly applying conventional noise-reduction filters to a noise-

infected chaotic time series may destructively interfere with the system, effectively

corrupting the underlying data. Chaotic signals are intimately bound with the

noise in the system through the nonlinearities, and conventional noise reduction

methods that are recursive in nature tend to corrupt the underlying signal in the

process of reducing noise. Incorrect filtering will actually increase the correla-

tion dimension calculated by standard algorithms and will add an apparent extra

Lyapunov exponent to the system being studied. We are severely limited in the

selection of conventional filters, to only finite impulse response filters (FIR), which

fortunately includes the moving average type. The problem is exacerbated in part

because the Fourier frequency power spectrum of a chaotic signal appears similar

to broadband noise, so techniques based on frequency separation strategies also

run into trouble.

Secondly, existing noise reduction techniques for chaotic systems usually rely

on initially embedding the noise-infected time series in phase space. Embedding

noise-infected data in phase space may result in a devalued system that is not

topologically equivalent to the underlying noise-free system. Takens’ theorem re-

quires an infinitely long noise-free time series to guarantee topological equivalence

between the true chaotic attractor and that derived from the phase space recon-

struction. Algorithms to calculate the embedding parameters, the time delay, and

embedding dimension, are also highly sensitive to noise. These restrictions reduce

the robustness of the technique and limit the application to very low levels of

added noise. Existing noise-reduction techniques are often highly effective with

lower levels of measurement noise but generally do not perform well as the noise

level becomes significant (> 10%). There are few techniques to address dynamical

noise in chaotic time series.

Thirdly, algorithms to directly calculate chaotic system invariants such as the

maximal Lyapunov exponent from time series assume noise-free data and generally

2



Preface

perform poorly in the presence of noise. It is preferable to have a low residual noise

time series approximant to use directly in these algorithms, rather than apply the

algorithms to noisy data.

These three problems have significant consequences in the analysis of time

series data collected from experimentation. In practice, measurement noise and

dynamical noise are commonly present in experimental data. Sources of measure-

ment noise include finite precision measurements, truncation errors, and missing

data (both temporal and spatial). Dynamical noise arises from a feedback process

wherein a system is perturbed by a small random amount at each time step (noise

is added during the evolution of the system). An example of an experimental sys-

tem with both types of noise present is that of a chaotic laser; currently available

processing techniques of such measured time series data would greatly benefit from

improved noise reduction techniques. It is important to reduce the noise as much

as possible from the data in order to properly classify and quantify the underlying

chaotic dynamical system.

In this thesis, a new method is presented to reduce noise from a chaotic time se-

ries. The shadow-unstable periodic orbit noise reduction method (SUNR method)

approximates a noise-free low-dimensional continuous chaotic system (flow), us-

ing a single sample or multi-sampled scalar time series containing high levels of

measurement noise or low levels of dynamical noise. The SUNR method does not

require the prior embedding of data and operates directly on the sampled time

series, thus avoiding the limitations of Takens theorem and the estimation of em-

bedding parameters when significant levels of noise are present. The method aims

to overcome the limitations described above, by focusing on nearly periodic or-

bit segments (‘shadow-UPOs’) shadowing the dense set of unstable periodic orbits

that form the skeleton of a chaotic system, many of which are detectable using

recurrence techniques. In essence, the noise-infected time series is deconstructed

into a set of shadow-UPOs, each of which is locally amenable to linear filtering

techniques. The shadow-UPOs are filtered and subsequently replaced back into

the time series, resulting in an improved estimate of the noise-free time series.
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The principal innovation presented in this thesis is that of recognising that

a noise-infected time series may be approximated by a set of detected shadow-

UPOs – even in the presence of high levels of noise. It is known that noise-free

shadow-UPOs may be detected using recurrence methods. It is also known that re-

currence histograms are somewhat robust in the presence of noise. We have utilised

these two observations, to establish a shadow-UPO approximation of a time-series,

specifically designed for data infected with significant levels of noise. We further

improve the approximation by using detected partial (incomplete) shadow-UPOs

that contain valuable dynamical information.The second innovation is to recognise

that the individual detected noise-infected shadow-UPOs are amenable to targeted

conventional linear filtering techiques, depending on the type of noise (if known).

We can thus deconstruct a noisy data set into cycles, apply specialist noise filters,

and subsequently reconstruct the vastly noise-reduced time series. The third in-

novation is to apply averaging to the bins of detected of shadow-UPOs, providing

noise-reduced estimates of the individual lower order UPOs. We further are able

to estimate individual maximal Lyapunov exponents for each basis UPO using the

detected noise-infected shadow-UPOs. Fourthly, we demonstrate the successful

application of the SUNR method to a variety of model chaotic systems. We iden-

tified limitations of the recurrence method of detecting cycles when dealing with

higher instability systems, and successfully modified the SUNR method for these.

The method is illustrated in detail as a case study of the Rossler system, tested

for various types of noise (uniform white, Gaussian white, high-frequency, coloured

and dynamical) and also on several chaotic systems with a range of differing topolo-

gies (Chua, Rabinovich-Fabrikant, Lu-Chen, Lorenz). Goodness of fit metrics are

defined, measured for each system and presented. We did not test the method on

experimental data as this will be a comprehensive exercise, and it is planned for

future work.
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Chapter 1

Theoretical Foundations

1.1 Chapter Overview

In this chapter we start by providing a brief introduction to the theory of chaotic

dynamical systems. The noise reduction methodology presented later in Chapters

4 and 5 requires concepts from many areas of chaos theory. Our intention is not to

provide an exhaustive review but rather highlight and explain essential concepts

that will be called upon later in this thesis. We firstly introduce dynamical system

concepts including flows, nonlinearity and phase space. We present several defini-

tions of chaos, emphasising the intimate inextricable linkage to unstable periodic

orbits (UPOs). The Shadowing Lemma underpins the use of computed system

models with added noise and our approximation using shadow-cycle sequences ex-

tracted from the time series. Finally we discuss UPOs, which are fundamental

building blocks of chaotic attractors and the objects through which we facilitate

noise reduction. We present some key results of the theoretical framework (peri-

odic orbit theory), discuss briefly the detection of UPOs and review several papers

that provided motivation for this research.

1.2 Chaotic Dynamical Systems

The invention of smaller, faster, personal computers in the second half of the

twentieth century rapidly accelerated progress in understanding dynamical systems
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defined by nonlinear equations of motion. These developments have enlightened

the scientific community and profoundly altered our view and understanding of

the physical universe. It has been said that alongside the development of general

relativity and quantum mechanics, the discovery of chaos was the third great pillar

in twentieth century physical science [59]. It has also made us revise some long held

views, recognising that deterministic equations are not a guarantee of quantitative

predictability and that in fact deterministic systems may behave as if they are

stochastic.

Describing chaotic dynamical systems is relatively easy, whereas precisely defin-

ing chaotic dynamical systems is a much more complex matter. For this reason,

we will loosely describe these systems here and provide more rigorous definitions

later.

The term chaos was first used in the mathematical sense by Li and Yorke in 1975

[92] in their paper “period three implies chaos”, defining chaos in interval maps.

Mathematical chaos is the term used to describe the apparently complex behaviour

exhibited by simple, orderly, deterministic systems. Chaotic behaviour appears er-

ratic and random, somewhat like a system strongly perturbed by external random

“noise” or the sophisticated dynamics of a system with many degrees of freedom.

In reality, chaos can manifest itself in remarkably simple dynamical systems which

may be noise free and have only a few degrees of freedom and these systems are in

fact deterministic. In deterministic systems, provided we have exact knowledge of

the initial state at a specific time, it is theoretically possible to exactly predict the

future states of that system. Underlying the random-looking chaotic dynamics is

a set of defining mathematical equations, which may be known or unknown. The

objective of modern chaos theory is to reconcile this apparent dichotomy between

randomness and determinism. These systems lie somewhere in the continuum be-

tween predictable regular periodic or quasi-periodic behaviour and unpredictable,

stochastic behaviour. This was summarised nicely by Ian Stewart [136] as follows

“ Chaos is apparent stochastic behaviour occurring in a deterministic system”.
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Chaotic systems are defined by their remarkable sensitive dependence on initial

conditions (SDIC), and the key factor of this feature is nonlinearity in the defining

system equations. For such nonlinear systems, a small perturbation in a system

parameter or initial conditions can lead to swift and radical changes in both the

qualitative and quantitative evolution of the system. In practice, the sensitivity to

even minute perturbations in initial conditions is so significant that prediction of

long-term behaviour is impossible unless the system and its parameters are known

with infinite precision. The presence of chaos in a dynamical system means that

long-term predictions based on historic data are futile. This sensitivity to initial

conditions was nicely encapsulated in the following description of chaos by Edward

Lorenz:

“Chaos: When the present determines the future, but the approximate

present does not approximately determine the future”.

Let us now explore some of the core concepts referred to above.

1.3 Dynamical Systems

A dynamical system comprises a phase space and an evolution rule. The phase

space coordinates completely describe the state of the dynamical system at any

point in time. The evolution rule specifies the future values of all state variables,

given their current values. A “system” is a collective or aggregation of interacting

parts. Several examples of dynamical systems with mathematical models include

equations that describe the pattern of a heartbeat, a share market index, the

trajectory of a comet, and the size of a population of rabbits in the wild. At any

given time a dynamical system has a state given by a set of real numbers (a vector)

that can be represented by a point in an appropriate phase space (a geometrical

manifold). The evolution rule for a dynamical system is a function that outputs the

future states of the system, given the current state. For deterministic dynamical

systems, the evolution rule will yield a unique future state for any specified time

period. Alternatively, there are stochastic systems where random events also affect

the evolution of the state variables. Some evolution rules are defined in terms
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of distance (“spatial chaos”) rather than time (“temporal chaos”), however our

discussion will relate to temporal chaos.

Dynamical system evolution is generally described using two types of transfor-

mation rules. Firstly, for continuous-time systems (flows) the system equations

specify the time derivatives of the state variables in terms of their current (and

possible past) values. The state variables are real numbers that vary continuously

in time. The equation describing the motion of a simple pendulum is an exam-

ple of a continuous-time dynamical system. In contrast, for discrete-time systems

(maps) the system evolution is described recursively, with the future values of the

state variables expressed as functions of the current (and possibly past) values.

All physical systems are continuous-time systems at their most fundamental level.

However in practice, it is often useful to describe the system configurations in dis-

crete time and consider the system as it jumps from one configuration to the next.

Experimental sampling of position, amplitude or intensity data are examples of

systems modelled in discrete time.

Mathematically, dynamical systems are described by differential equations in

continuous-time and by difference equations in discrete-time. Static systems are

described by algebraic equations.

A deterministic dynamical system is defined by both a set of state variables

(or a state vector x(t)) that describes the state of a system at point in time t

and a dynamical law that specifies the temporal evolution of the corresponding

state variables. Nonlinear dynamical systems are usually defined by systems of

first order ordinary differential equations (ODEs). Many physical systems yield

higher order systems of ODEs, but it is relatively simple to reformulate them into

equivalent first order systems. We therefore do not lose any generality by confining

our attention to the systems of first order ODEs. Also, numerical methods designed

for higher order initial value problems usually require reformulation into first order

systems as a first step.
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An nth order continuous-time system may be defined by the following differential

equation:

x′(t) = f(x(t), p, t). (1.1)

The system variables are components of the vector function x and x(t) εRn is

the state at time t. The vector x′ refers to first time derivative of x. Also the

vector f : Rr → Rn , represents a smooth function of all of the system variables,

at fixed values of the k parameters p. The vector field f is said to generate a flow:

φ : Rr → Rn, (1.2)

where r = n+ k + 1.

Given an initial condition, x0 εRn and a time t0, an orbit or trajectory (solution

of Equation 1.1) passing through (or based at) x0 at time t0 is denoted as φt(x0, t0),

where φt(x, t) is a smooth function satisfying:

d

dt
φ(x, t)|t=τ = f(φ(x, t), p, t), (1.3a)

φt1+t2 = φt1 ◦ φt2 , (1.3b)

φ(x, t0) = x0. (1.3c)

Note that f can depend explicitly on time, as would be the case for driven

pendulum for example.

Because the time is explicit in Equation (1.1), f is said to be non-autonomous.

An autonomous differential equation is one where the independent variable does

not appear explicitly in the defining equations. If the independent variable is time,

they are called time-invariant systems. In many physical laws, the independent

variable is time. These laws are often formulated as autonomous systems because it

is reasonably assumed that the laws of nature are constant in time. There is a well

established canon of techniques to solve autonomous systems and non-autonomous
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systems can be reformulated as an equivalent autonomous system by including a

single additional ODE to the set of equations.

An nth - order discrete-time system can be described by a difference equation

of the form:

x(t+ 1) = F (x(t), p), (1.4)

where the function F : Rn+k → Rn is recursive, outputting an updated x at the

next time step, instead of a derivative as is the case with flows. The function F is

often referred to as a map that takes the system from one time step to the next.

A trajectory or orbit of a discrete system is a set of points {x(t+ 1)}∞t=0 in Rn.

The definitions for discrete systems are analogous to the ones described for

continuous-time systems and therefore will be omitted. Note however, that the

mapping function F might not necessarily be a bijection and thus the reverse

mapping of xt+1 into xt is not always uniquely defined. The implication is that state

information is partially lost as we iterate forward in time, with future outcomes

being unpredictable despite the system having a deterministic formulation.

Chaos may occur in nonlinear continuous-time systems with three or more

degrees of freedom. Degrees of freedom in systems characterised by ODEs refers

to the number of required first order autonomous ordinary differential equations.

The Poincare-Bendixson Theorem mandates that for differential equations in two

dimensions (i.e. the plane) only fixed points (time independent solutions) or limit

cycles (periodic orbits) are possible, and thus three dimensions is the minimum

required for chaos. In contrast, for discrete-time systems described by invertible

maps, chaos only requires two or more degrees of freedom; noninvertible maps in

one dimension can exhibit chaos. For discrete-time systems the degrees of freedom

are the same as the number of components of the state vector x(t). Linear systems

of finite dimension can never exhibit chaos. To exhibit chaos, a dynamical system

must be either nonlinear or infinite-dimensional.
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A great deal of research involving the extraction of unstable periodic orbits

(UPOs) from chaotic time series has been conducted for discrete time systems, as

maps are generally much simpler to work with, and are more well behaved, than

systems of differential equations representing flows. Also flows can be reduced to

lower dimensional mappings using carefully oriented Poincare sections. Differential

equations are used much more widely in science and engineering, and we shall thus

focus on continuous time systems of equations and their associated flows, with the

goal of designing a noise reduction method with real world applications.

1.4 Nonlinearity

The remarkable properties of chaos in a deterministic dynamical system are the

result of at least one nonlinear term within the defining system equations.

Most nonlinear systems cannot be solved using analytical methods. In contrast,

linear systems admit a superposition principle. They can be deconstructed into

multiple components, each of which can be solved individually and then recom-

bined into a solution. This principle often facilitates the simplification of highly

complex problems and underpins many mathematical techniques like Fourier anal-

ysis. A linear system is simply the sum of its parts. In contrast, nonlinear systems

cannot be deconstructed into manageable components and solved separately. They

have to be analysed directly regardless of their complexity; and this is interesting

and challenging.

The failure of the linear superposition principle for nonlinear ODEs, means

that many of the “bread and butter” mathematical techniques (such as Laplace

transforms and Fourier analysis) for solving linear ODEs have no utility for solving

nonlinear ODEs.

Nonlinearity quite commonly arises in even the simplest systems with interac-

tions between the components leading to emergent phenomena as chaos, solitons,

fractals, and meta/multi-stability. The following quotation by Stanislaw Ulam

nicely highlights this diversity:
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“Using a term like nonlinear science is like referring to the bulk of

zoology as the study of non-elephant animals.”

1.5 Phase Space

Dynamical systems theory (including chaos theory) seeks to explain the long-term

qualitative behaviour of dynamical systems. The inclusion of nonlinearities ren-

ders systems of differential equations extremely difficult, if not impossible to solve

analytically. Instead of aiming for exact solutions, the focus is generally shifted

towards determining whether or not the system will settle into a steady state,

finding the states that are possible and characterising how the system evolution

varies with differing initial states. It also assists understanding to have a visual

representation of the dynamical system.

The phase space (or state space) of a dynamical system is the set of all possible

states that the system may take. Each possible state of the dynamical system

is denoted by a unique point in the phase space. The minimum number of state

variables to fully represent the system is its dimensionality. The state of a system at

time t consists of all information needed to uniquely determine the future system

states for times beyond t. A phase space plot is a powerful visual tool which

may assist in holistic observation of the system and in developing mathematical

strategies to further analyse the system. If we view the chaotic system through

the lens of conventional linear techniques such as Fourier transforms, chaos may

simply appear as broadband noise. In contrast, the structure of an attractor in

phase space has remarkable fractal geometry and structure.

In a phase space, each system component is represented by an axis in a multidi-

mensional space. A point is embedded in the phase space for each possible state of

the system. The evolving system traces out a path through the high-dimensional

space, referred to as an orbit. In aggregate, the phase space represents all states

the system can assume. The geometrical object traced out by the evolving sys-

tem may illuminate qualities and properties of the system that would otherwise

go undetected. Although most commonly studied model chaotic systems are low-
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dimensional (and very few experimental “hyperchaotic” behaviours have actually

been detected), the phase space in general may contain a large number of dimen-

sions. Figure 1.1 [85] shows the phase space for a well known chemical reaction

(the Belousov-Zhabotinsky or B-Z reaction).

Figure 1.1: A “phase space” reconstruction in two dimensions of the chaotic dy-
namics of the bromide ion concentration in the classic Belousov-Zhabotinsky
chemical reaction. The plot represents the evolution of the bromide ion concen-
tration. The limit set is referred to as an attractor. The x axis is the measured
bromide ion concentration, and the y axis is the same “x” variable lagged or de-
layed by 124 points.
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1.6 The Definition of Chaos

Having described the key features of chaotic dynamical systems, let us now review

a more rigorous definition of chaos. Whilst there is no universal mathematical

definition of chaos, the most widely utilised definition of chaos is due to R. De-

vaney [38]. It nicely captures the essential features of chaotic dynamics and is

applicable to both continuous systems and discrete iterated mappings. It provides

an insightful perspective on the anatomy of chaos and in particular includes the

important presence of a “skeleton” of unstable periodic orbits that lie within the

chaotic attractor of the system.

Definition 1 Chaos (Devaney)

Let X be a compact metric space. A continuous function f : X → X is said to be

chaotic on X if f has the following three properties:

1. f is topologically transitive;

2. The periodic points of f are dense in X; and

3. f has a sensitive dependence on initial conditions.

Let us briefly explain each condition in turn.

Definition 2 Transitivity

f is topologically transitive if for all non-empty open sets U and V of X, there

exists a natural number k such that fk(U) ∩ V is non-empty.

The implication of this condition is that in the fullness of time, orbits origi-

nating from points contained in U will densely fill the phase space X. Topological

transitivity, also referred to as topological mixing means that eventually any given

region in its phase space will intersect with any other given region. This mathe-

matical concept of “mixing” aligns with the everyday meaning, like the mixing of

coloured dyes for example. The outcome of this concept is that clusters of initially

close points do not remain localised and are expelled into larger sets.
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Definition 3 Sensitive Dependence on Initial Conditions (SDIC)

A continuous map f of a compact metric space X into X is said to possess sensitive

dependence on initial conditions if there exists a positive ε such that for all x εX

and all δ > 0 there is some y which is within a distance δ of x and for some k,

d(fk(x), fk(y)) > ε. The number ε represents the maximum departure of orbits

and is called the sensitivity constant of f .

In practice, it is extremely difficult to accurately specify the initial conditions

of a dynamical system. This is a problem when coupled with sensitive dependence

on initial conditions (SDIC) as the system will be unpredictable, and determinism

will fail. In such systems we cannot approximate a given point with infinitesimally

close neighbours as all nearby points have completely different future trajectories.

The tiniest fluctuation in the current orbit may lead to wildly different future

outcomes.

Sensitivity to initial conditions is commonly referred to as the “butterfly ef-

fect”, an expression that emerged from the title of the paper by Edward Lorenz

[94] entitled “Predictability: Does the Flap of a Butterfly’s Wings in Brazil set off

a Tornado in Texas?”. This famous real world analogy has the flapping butterfly

wings causing a small change in the initial conditions of the weather system. This

subsequently initiates a chain of events ultimately resulting in a vastly different

system state than if the butterfly had not flapped its wings. We can also interpret

this phenomenon in terms of loss of information. A dynamical system initially

contains a finite amount of information, but as a consequence of the SDIC eventu-

ally becomes unpredictable, meaning information has been lost. This is the case

with weather modelling where forecasts are usually only possible for about 1 week

ahead.

Definition 4 Dense Periodic Points

Let X be an interval in R. Then a set A is said to be dense in X if for any x εX,

any open interval containing x must intersect A. In other words, for each δ > 0,

the open interval J = (x − δ, x + δ) contains a point of A. More generally, a set

A is dense on a metric space X if for any x εX, any open set containing x must

intersect A (contain a point of A).
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The requirement that periodic points must be dense means that periodic orbits

approach every point in the space arbitrarily closely. If we invert this concept, it

means that every point on the chaotic attractor is arbitrarily close to some point

on a periodic orbit. It is this central idea that we leverage in this thesis to develop

approximations to the noise-free chaotic attractor using detected noise-infected

periodic orbits.

It is a remarkable characteristic of chaotic systems that although most points

are non-periodic (not on a cycle), we cannot distinguish these points visually from

periodic points because there is always a periodic point arbitrarily close.

Let us briefly consider the strengths and weaknesses of the Devaney definition.

The definition is precise and compact. However it does not incorporate the stretch-

ing and folding mechanism that is necessary for chaotic dynamics. As a result of

this, it has been suggested that perhaps the Devaney definition is a consequence

of chaos rather than a condition of chaos. Also, the definition emphasises periodic

orbits rather than aperiodic, when it is the absence of periodicity that is the hall-

mark of chaos. However, as we shall see, the dense set of unstable periodic orbits

lies at the very heart of chaos.

There is a surprising counter-intuitive consequence of the Devaney definition.

The SDIC condition is mathematically redundant if the set X has an infinite num-

ber of elements. One would hardly imagine that the SDIC condition could be

redundant [8].

Theorem 5 (Banks et al. [8])

Let X be an infinite metric space and f a continuous function on X. If f is

topologically transitive and has dense periodic orbits, then f has sensitive

dependence on initial conditions. (i.e. transitivity + density of periodic points ⇒
sensitivity to initial conditions).

Transitivity and density are topological properties whereas sensitivity depends

on a metric. This elegant result makes it clear that chaos is a property re-

lying on the topological, and not the metric properties of a space. Also for
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completeness, Assaf and Gadbois have proven that this is the only redundancy.

Theorem 6 (Assaf and Gadbois [81])

1. Transitivity and sensitivity do not imply density of periodic points.

2. Density of periodic points and sensitivity do not imply transitivity.

If we restrict our attention to intervals, M. Vellekoop and R. Berglund have shown

that an even stronger result can be obtained [142]: on an interval, transitivity

implies chaos.

P. Touhey [140] proposed a new and natural definition of chaos, equivalent

to Devaney’s. He combines the topological conditions of transitivity and density

of periodic points into a single condition that yields a simple, concise, intuitive

definition:

Definition 7 (Touhey’s Definition of Chaos)

Let X be a metric space. A continuous function f from X to itself is said to be

“Chaotic” on X if given any U and V , non-empty open sets in X, there exists a

periodic point p εU and a non-negative integer k such that fk(p) ε V .

With this definition any pair of non-empty open subsets of X shares a periodic

point. This leads to the equivalencies of the following four statements; expressed

in terms of periodic points of the function f:

1. f is “Chaotic”,

2. f is (Devaney) Chaotic,

3. Any finite collection of non-empty open subsets of X shares a periodic point,

4. Any finite collection of non-empty open subsets of X shares infinitely many

periodic orbits.
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1.7 The Shadowing Lemma

The extreme sensitivity to initial conditions (SDIC) has serious implications for

the construction of a chaotic dynamical system by a computer using an itera-

tive numerical algorithm and an initial condition. A computed orbit will diverge

exponentially from the true underlying orbit because of approximations and trun-

cation errors inherent in the numerical and computing process. In a very short

time the computer generated orbit and the true orbit will be de-correlated. This

phenomenon brings into question the relationship between the actual physical be-

haviour of a chaotic system and any computed numerical model.

Fortunately the shadowing phenomenon (as described by Bowen’s Shadowing

Lemma) guarantees the existence of a true orbit that “shadows” the numerically

generated orbit (called the pseudo-orbit) for relatively long times. By “shadowing”

we mean it remains very close. Interestingly, this true shadow-orbit will be an orbit

with a different initial condition than the numerical orbit. The end result is that

the numerical model output does in fact “look like” a true orbit of the underlying

chaotic system after all.

Definition 8 Hyperbolic Set

A subset Λ of a smooth manifold M is said to have a hyperbolic structure with

respect to a smooth flow f if its tangent bundle may be split into two invariant sub-

bundles, one of which is contracting and the other is expanding under f, with respect

to some Riemannian metric on M . Such a subset is referred to as a hyperbolic

set. In the case where the entire manifold M is hyperbolic, the flow f is called an

Anosov diffeomorphism (more details appear in section 1.10).

Lemma 9 Shadowing Lemma (Bowen [12])

Given a map f : X → X of a metric space (X, d) to itself, define a ε− orbit as a

sequence (xn) of points such that xn+1 belongs to a ε−neighbourhood of f(xn), for

each n. Then, near a hyperbolic invariant set, the following statement holds. Let Λ

be a hyperbolic invariant set of a diffeomorphism f. There exists a neighbourhood

U of Λ with the following property: for any δ > 0 there exists ε > 0, such that

any (finite or infinite) ε− orbit that stays in U also stays in a δ− neighbourhood
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of some true orbit. For all (xn) with xn ε U , with d(xn+1, f(xn)) < ε, there exists

(yn) with yn+1 = f(yn), such that for all n, xn ε Uδ(yn) (where Uδ(yn) is the open

ball of radius δ centred at yn).

The theory states that every numerically computed orbit with rounding errors

at every step, stays uniformly close to some true orbit (with a different initial

point). The computer generated orbit is “shadowed” by a true one.

Let us now consider the further implications of adding noise to the chaotic mix.

Noise perturbs the paths of individual orbits in a chaotic system. Low levels of

added noise are unlikely to alter the qualitative properties of purely deterministic

orbits greatly. We can interpret the noise-infected orbit through the same lens we

viewed the orbit with computer truncation errors. If there is a true orbit shadowing

the noise-infected orbit, then we can have some confidence that the noise-infected

orbit will retain the same statistical properties for length scales exceeding those of

the noise. Note that the existence of a shadowing orbit alone does not guarantee

the statistical properties are the same.

Anasov and Bowen [4], [12] proved the result stated in the lemma for the

limited case of “everywhere hyperbolic” (Anasov) dynamical systems. Anasov

dynamical systems require that every point of the dynamics can be projected

onto manifolds where the motion is either exponentially expanding or contracting.

Anasov systems have no homoclinic tangencies, meaning the stable and unstable

manifolds are never parallel.

The Anasov-Bowen construction relies the absence of homoclinic tangencies.

It was previously thought that Anasov systems were the most common types of

chaotic systems. However, Lai [88] has shown the contrary—that most dynamical

systems do in fact have homoclinic tangencies. An interesting result by Farmer et

al. [17] shows that dynamical systems commonly exhibit a sensitive dependence on

parameters. Arbitrarily close to a parameter value that defines a chaotic attractor,

there is another parameter value that generates a stable periodic attractor. A

periodic orbit that is stable may be nudged by noise into becoming chaotic [27].
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In this situation the shadowing lemma is not true in general and there is no shadow-

orbit.

1.8 The Method of Delays

Takens [137] has shown that, if we measure any single state variable with suffi-

cient accuracy for a long period of time, it is possible to reconstruct the underlying

dynamic structure of the entire system from the single variable using delay coor-

dinates and an embedding procedure. Takens provided the first example of a

mathematical proof for reconstructing a diffeomorphic shadow manifold using de-

lays of a single time series. The central idea, that was earlier demonstrated by

Packard, Crutchfield, Farmer, and Shaw [109] is that under generic conditions, a

shadow manifold M ′ can be created using time-delayed observations based on a

single measurement function that is a smoothly invertible mapping with one-to-

one mapping to M . Although different in details such as the dimension of the

reconstructed space, the work by both contributors is similar in spirit.

Suppose that we have a measured time series of a single scalar variable x, con-

sisting of N points, x(N) = (x(t1), x(t2), ....., x(tN)). The time delay vectors con-

structed from the the single variable x(t) are:

y(ti) = [x(ti), x(ti + τ), ....., x(ti + (m− 1)τ)], i = 1, ...., N − (m− 1), (1.5)

where τ is the time delay (number of time steps), m is the embedding dimension

(dimension of the reconstructed space). As a result, the time series of N points

will generate M = N − (m− 1) vectors in the phase space. Let us now define the

concepts of an immersion and an embedding :

Definition 10 Immersion

An immersion is a differentiable function between differentiable manifolds whose

derivative is everywhere injective. Formally, suppose f : N →M is a smooth map

between manifolds. The map f is called an immersion if Dpf : TpM → Tf(p)N , is
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an injective function at every point p of M , where TpM denotes the tangent space

of a manifold M at a point p in M .

Definition 11 Embedding

Suppose f : N → M is a smooth map between manifolds. The map f is called an

embedding if f is an immersion which is a homeomorphism to its image.

A formal expression of Takens’ theorem follows.

Theorem 12 (Takens [137])

Let M be a compact manifold of dimension m. For pairs (φ, y), where Φ : M →M

is a smooth diffeomorphism (an invertible function that maps one differentiable

manifold to another such that both the function and its inverse are smooth) and

y : M → R a smooth function (at least C2), it is a generic property that the

(2m+ 1) delay observation map Φ(φ,y)(x) : M → R given by

Φ(φ,y) = (y(x), y ◦ φ(x), ...., y ◦ φ2m(x)), (1.6)

is an embedding.

1.9 Chaotic System Invariants

Experimental time series created from deterministic dynamical systems appear

stochastic when analysed with standard linear modeling techniques. As an exam-

ple, a time series constructed using the logistic map has the same autocorrelation

function as white noise. It is therefore critically important to be able to distinguish

chaotic systems from stochastic ones. With noise-free linear systems we may iden-

tify and characterise the signal using Fourier analysis. The locations of the sharp

peaks in the Fourier power spectrum characterise the physical system analysed.

If we increase power input to the system or start at a new time, the signal phase

will change but the location of Fourier spectrum peaks will be conserved; they

will not change. The characteristic frequencies or harmonics of the linear system

are dynamical invariants and may be used to qualitatively describe the underlying

physics.
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In a nonlinear dynamical system we have several key statistical metrics that

characterise the deterministic chaotic evolution. These invariants we refer to are

Lyapunov exponents, correlation dimension and entropy; each measuring impor-

tant features of the chaotic dynamics and geometry. These metrics which are

invariant under the dynamics and topological transformations are used as classi-

fiers. We shall confine our detailed discussion to Lyapunov exponents as this will

be a point of focus during the research discussion.

1.9.1 Stretching and Folding Mechanism

A chaotic attractor is a unique geometrical object created by the asymptotic states

of a chaotic system. The dynamics on the chaotic attractor are characterised by

the stretching and folding mechanism underlying chaos at the most fundamental

level. This is illustrated in Figure (1.2). The stretching aspect causes nearby orbits

to diverge. The folding aspect enforces boundedness by confining the dynamics to

a finite region in a subspace that is the minimal space embedding of the chaotic

attractor.

The folding creates a unique characteristic of chaotic attractors in that they

are characterised by a non-integer dimension (there are a multitude of non-integer

dimension measures). In non-chaotic systems, attractors such as fixed points and

limit cycles are characterised with integer dimension. The rate at which nearby

orbits diverge (as a result of SDIC) and fractal dimension are both properties of the

dynamical system that are independent of any specific orbit. The stretching and

folding process de-correlates nearby states on the attractor. The result is that the

long-term state that evolves from an initial condition containing any uncertainty

is entirely unpredictable.

The fractal dimensions characterise the scaling properties of the probability

distribution of the data in phase space (the invariant measure); entropy measures

do the same for transition probabilities from one part of the phase space to another.

For regular dynamics, points in a small ball will be mapped into another small ball

with all transition probabilities equal to zero except one. In contrast for a pure
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noise process, the future of a small ball of points is disconnected from the initial

state and completely unknown. Chaotic systems reside somewhere between these

two scenarios and entropies measure this loss of information about the state of

a system as a result of time evolution. For both fractal dimensions and entropy

measures definitions must include infinitely small scales and infinite times.

Figure 1.2: The stretching and folding mechanism that underpins chaos. The
figure demonstrated on a unit cycle, producing a result that looks very much
like the unstable periodic orbits we will later locate and extract from time series.
The twist is not necessary for chaos.

1.9.2 Metric and Dynamical Invariants

Invariants can be grouped into two categories: those use for characterising attrac-

tors and those used for classifying attractors. Metric invariants (fractal dimension)

and dynamical invariants (Lyapunov exponents) are restricted to characterising a

given attractor.
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Metric and dynamical invariants are real numbers that are invariant to coordi-

nate transformations but not to changes in the system control parameter values.

They are robust for a fixed experimental situation and are widely used. They are

highly useful when one wants to identify quantities that remain unchanged when

initial conditions on an orbit are changed or when perturbations are encountered

during the orbit. There are a multitude of definitions for each of these measures

of complexity as well as relationships between them, allowing us to compute one

from the other.

1.9.3 Topological Invariants

Topological invariants refer to properties that are preserved under homeomor-

phisms. They are useful to classify different types of chaos. A homeomorphism is

a bijective (one-to-one) mapping that is continuous and has a continuous inverse.

A homeomorphic function preserves the topology of a set. The concept of entropy

is an example of a topological invariant. The idea here is to uniquely classify

the system dynamics (as represented by a finite time series sample) as a specific

topological type. This is a little like the zoological classification of animals into

species. These systems will remain topologically the same under system parameter

changes. The development of this taxonomical model is still under development,

and includes topological/geometric concepts such as linking numbers, relative ro-

tation rates and template identification. There have been major contributions to

this work by Mindlin and Gilmore [104] and Gilmore [57].

Interestingly the key topological concepts are formulated in terms of unstable

periodic orbits (UPOs). Noise-reduction methods based around topological struc-

ture do not exist at this time (to the best of our knowledge) and are a potential area

of future research. Locating, extracting and filtering UPOs from a noise-infected

time series will provide useful inputs into this classification process.

UPOs are topological invariants that preserve the time ordering of data and

exist in abundance in a strange attractor. The stretching and folding mechanisms

that act to create a chaotic attractor also uniquely organise the UPOs embedded in
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the chaotic attractor. The organisation of the UPOs within the chaotic attractor

serves to identify the stretching and folding mechanisms that create the chaotic

attractor. Periodic orbit theory is an area of study focused on determining system

invariants using UPOs and was largely developed by Cvitanovic [28], [29].

1.9.4 Limitations of Estimated Invariants

There are several conceptual and practical challenges with all these invariant mea-

sures. There are however some limitations:

1. The underlying dynamical process is being observed through data collected

using a measurement process, which itself may perturb the data. If the

value of the measured quantity depends on the collection procedure then the

information is devalued as a reliable quantifier.

2. Secondly, they work well when the time series is simulated from a model

low-dimensional dynamical system, but most of them break down as soon as

noise is added to the series.

3. Thirdly, they are mathematical concepts and are not defined in terms of time

series of observations but rather in terms of infinitely finely sampled, infinite

length data sets. The finite length and sampling frequency of the measured

time series act to corrupt the invariant properties of the measured quantities.

One objective of this thesis is to determine the system invariants for noise-

infected, chaotic systems. Many existing numerical algorithms to compute chaotic

invariants require either prior knowledge of the defining system equations or a

time series that is relatively noise free, as we shall see in Chapter 2. Both these re-

quirements are highly restrictive in experimental situations. UPOs are topological

invariants that can be extracted from the noise-infected time series, noise-filtered,

and provide an excellent basis to calculate invariants.
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1.9.5 Lyapunov Exponents

Lyapunov exponents are a measure of the average rate of divergence of neighbouring

orbits (perturbed initial conditions) on a chaotic attractor, normally represented

by the symbol λ. These exponents are frequently used to diagnose the presence of

chaos and also may be used in the calculation of other invariant quantities such

as the fractal dimension of a chaotic attractor. Two orbits on a chaotic attractor

with nearby initial conditions will diverge exponentially at a rate specified by the

largest Lyapunov exponent [93].

Figure 1.3: A Lyapunov exponent is derived by considering the divergence of two
orbits that originate from nearby points.

Consider any two nearby orbits on a chaotic attractor:

x(t) = f t(x0), (1.7)

x(t) + δx(t) = f t(x0 + δx0), (1.8)

that start out in close proximity and subsequently diverge exponentially with

time. In some finite time they will be far apart, separated by the extent of the
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accessible phase space. For small t we have

‖δx(t‖ ≈ eλt ‖δx0‖ , (1.9)

where λ, the mean rate of separation of orbits is the largest Lyapunov exponent

(hereafter referred to as the maximal Lyapunov exponent or λmax).

The maximal Lyapunov exponent, calculated over a long time period, is an

average global measure of the rate at which nearby orbits diverge. The signs of

the individual Lyapunov exponents, particularly the positive ones, provide insight

into the chaotic system’s dynamics. The existence of at least one positive Lya-

punov exponent indicates the presence of chaos, but is not definitive. Perron’s

counterexample [90], [87] shows that a negative largest Lyapunov exponent does

not guarantee stability, and similarly that a positive largest Lyapunov exponent

does not in general guarantee chaos. Thus Lyapunov exponents in isolation are

indicative of chaos, but are insufficient to confirm chaos. The magnitude of the

most positive Lyapunov exponent is also a measure of the time scale over which

chaotic behaviour may be predicted. Similarly the magnitude of the most nega-

tive Lyapunov exponent indicates the time scale for transients to decay [49]. A

dynamical system with more than one positive Lyapunov exponent is referred to

as hyperchaotic [119].
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1.9.5.1 Lyapunov Exponents for Flows

Let us now derive an expression for the Lyapunov exponents of a flow. Consider

a ball of points in n-dimensional phase space and follow the orbit of each point

in the ball as time evolves. On a short time scale, this initial group of points will

either collapse to a single point, remain unchanged as a ball, or deform into an

ellipsoid [58] approximately as shown in Figure 1.4. The rate of deformation of this

small ball is the Lyapunov exponent. For the existence of a bounded attractor, we

require the overall dynamics to be dissipative (globally stable). The contraction

rate must exceed the expansion rate and the sum of all the Lyapunov exponents

must be negative.

Figure 1.4: The time evolution of an initially small sphere of principal axis ε =
ε1 = ε2 = ε3. With increasing time, the initial rotationally symmetric region
(ball) is gradually deformed into a ellipsoid.

Let us take a d -dimensional autonomous system of ordinary differential equa-

tions:

dx(t)

dt
= F (x; p), (1.10)
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where x is a vector of d state variables and p is a vector of parameters. A solution

φt for this system starting from some initial condition x0 would yield an orbit x(t).

If a small initial perturbation ε(0) = ε0 is applied to that orbit, the perturbed

orbit becomes φt(x0 + ε0). A Taylor series expansion gives

φt(x0 + ε0) = φt(x0) + J(t).ε0 +O(ε20), (1.11)

where O denotes the order of the correction factor and J(t) is the Jacobian

matrix given by the linearisation of φt around the point x0:

J(t) = (
∂φt(x0)

∂x0
) =

∂x(t)

∂x(0)
, (1.12)

J(i,j) =
∂xi(t)

∂xj(t)
, (1.13)

where xi(t) is the ith component of the state vector x at time t.

Thus, after linearising Equation (1.10) about the perturbation, the following

equation for the perturbation is obtained:

dε

dt
= J.ε(t). (1.14)

An initial perturbation, ε(0) = ε0, will evolve according to:

ε(t) = Φ(t)ε(0), (1.15)

where Φ(t) is the fundamental (transition) matrix solution of Equation (1.10)

associated with the orbit x(t).

For an appropriately chosen ε0, the exponential rate of expansion or contraction in

the direction of ε0 on the orbit passing through x0 defines the Lyapunov exponent

along that direction:

λi = lim
t→0

1

t
ln
‖ε(t)‖
‖ε0‖

, (1.16)
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where ‖.‖ denotes the vector norm on Rd.

The determinant of the Jacobian matrix describes the overall contraction of phase-

space volume (i.e. the dissipation in the system) and the eigenvalues describe

the divergence of nearby orbits. The Lyapunov exponents quantify the rate of

expansion of these eigenvalues:

λn = lim
t→0

1

t
ln
∥∥(nth eigenvalue of J(t))

∥∥ . (1.17)

A pair of close initial points will diverge at a rate dominated by the largest

Lyapunov exponent. This is unless the vector joining the respective starting points

is precisely orthogonal to the eigenvector associated with the largest eigenvalue of

the Jacobian.

The maximal Lyapunov exponent is most commonly calculated and discussed as

it is easiest to numerically calculate from a time series. It also generally yields the

greatest insight into the dynamics of the system. For experimental data, Lyapunov

exponents other than the maximal exponent have not found a lot of utility so far.

We can interpret the d Lyapunov exponents that comprise the Lyapunov spec-

trum as rates of expansion or contraction in the direction of the principal axes of

the infinitesimal ball shown in Figure 1.4. Wolf et al. [145] provide the following

geometrical interpretation. Since the phase has d dimensions, a set of d linearly

independent orthonormal basis vectors, y1, y2, ...., yd can be defined for this space.

Applying a small initial perturbation, ε1,ε2,......, εd, along each of these directions,

d Lyapunov exponents may be also defined, λi, by Equation (1.16) . By arranging

the d principal axes of the ellipsoid in order from the most rapidly expanding to

most rapidly contracting, we may arrange the corresponding Lyapunov exponents

as follows:

λ1 ≥ λ2 ≥ ..... ≥ λd. (1.18)

This is the Lyapunov exponent spectrum. For small times t, the length of

the first principal axis is proportional to eλ1t. Similarly, the area defined by the
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first two principal axes is proportional to e(λ1+λ2)t. More generally, the volume

determined by the first k principal axes is proportional to e(λ1+λ2+λ3+...+λk)t. The

Lyapunov spectrum can thus be defined so that the exponential growth of a k -

volume element is given by the sum of the k largest Lyapunov exponents. We

can also interpret the volume change created by the expanding principal axes as

information created by the system. The Kolmogorov entropy (K ), representing

the average rate of information gain is equal to the total of the positive Lyapunov

exponents.

For all orbits x(t), with the exception of a fixed point, one of the λi will be zero,

meaning that perturbations occurring along the orbit neither diverge nor converge.

For a stable limit cycle, all other λi will be negative, indicating that perturbations

made orthogonal to that orbit will decay back onto it. If
∑
λi < 0 then the system

is dissipative, meaning that volumes in the phase space will contract overall. If a

system is dissipative and also has at least one positive Lyapunov exponent, then

that system is chaotic.

1.9.5.2 Lyapunov Exponents for Mappings

As already indicated, many physical systems can be modelled using finite-difference

equations or “mappings” of the form:

xk+1 = f(xk, µ), (1.19)

where x is a (single or multi-dimensional) vector of state variables, µ is a vector

of parameters, and k is an index indicating the iteration of the map. For example

mathematical biologists, often model population dynamics using discrete maps

where k counts successive generations of species.

Many mathematical techniques for continuous chaotic systems (flows) involve

the application of a Poincare section of the flow, resulting in mapping. Experi-

mental data that are digitally sampled or model chaotic systems obtained from

numerical integration using some finite time interval, ∆t, can also be interpreted

as a map. This type of finite-time mapping is employed to numerically estimate
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Lyapunov exponents from time series data. The difference between data deriving

from a map and data deriving from a flow is somewhat arbitrary. However data

deriving from a continuous flow will always exhibit at least one zero Lyapunov

exponent, for orbits perturbed along the flow neither diverge nor converge.

To define the Lyapunov exponent for discrete-time systems, consider how a

one-dimensional map:

xk+1 = f(xk, µ), (1.20)

evolves when started from two initial states, x0 and x0 + ε0, that are initially

very near to each other (i.e., ε0 very small). The separation between these two

points after n iterations of the map is defined as εn. If this separation evolves

approximately as:

|εn| ≈ |ε0| eλn, (1.21)

then λ is the Lyapunov exponent.

By taking logarithms of both sides we find a more precise expression for the

divergence of the two resulting orbits:

λ ≈ 1

n
ln

∣∣∣∣εnε0
∣∣∣∣ =

1

n
ln
|fn(x0 + ε0)− fn(x0)|

ε0
. (1.22)

We now take the limit of Equation (1.22) as n→∞. First, the remaining term

inside the logarithm is expanded using the chain rule:

fn(x0 + ε0)− fn(x0)

ε0
≈ (fn)′(x0) =

n−1∏
i=0

f ′(xi). (1.23)

Substituting this expression back into Equation (1.22), one obtains:

λ ≈ 1

n
ln

∣∣∣∣∣
n−1∏
i=0

f ′(xi)

∣∣∣∣∣ =
1

n

n−1∑
i=0

ln |f ′(xi)| . (1.24)
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Finally, the limit of this expression is taken as n→∞ to define the Lyapunov

exponent for the orbit starting at x0:

λ = lim
n→∞
{ 1

n

n−1∑
i=0

ln |f ′(xi)|}. (1.25)

For multi-dimensional mappings, this definition is extended to yield a spectrum

of Lyapunov exponents, (λ1 ≥ λ2 ≥ ..... ≥ λd) as before. These Lyapunov expo-

nents defined for discrete maps have the same interpretations and implications as

those defined for continuous-time systems.

1.9.5.3 Global and Local Lyapunov Exponents

The global Lyapunov exponents measure the average expansion or contraction of

infinitesimal perturbations to an orbit over a long time. If we have a very large time

series of noise-free data, where the time evolving orbit traverses the entire volume

of the attractor, we can calculate an estimate of this average. The global Lyapunov

exponent is useful in diagnosing the presence of chaos in a system and possibly

as an input to calculate other invariants. If we want to know more about orbital

divergence, we need to define local measures. In reality the orbit evolves along a

series of UPOs, sometimes completing entire circuits and other times transitioning

to the vicinity of another UPO due to the instability in the system.

Lyapunov exponents will vary along the orbital path and it is this context that

we suggest that short time Lyapunov exponents are a more meaningful measure of

orbital divergence than averages. The definitions for local and short time Lyapunov

exponents are as follows:
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Global : λ∞ = lim
n→∞

1

n
ln
‖δx(t)‖
‖δx(0)‖

, (1.26)

Short T ime : λT (x(t), δx(t)) =
1

T
ln
‖δx(t+ T )‖
‖δx(t)‖

, (1.27)

Local : λlocal = lim
t→0

1

T
ln
‖δx(t+ T )‖
‖δx(t)‖

. (1.28)

These are simply Lyapunov exponents defined over a shorter time periods.

The short time Lyapunov exponent is defined on a finite time interval, which is

particularly useful in the context of UPOs. The local Lyapunov exponent is the

limiting version of the short time Lyapunov exponent when the time interval tends

to zero. It measures how fast infinitesimal perturbations to a orbit at a given point

expand or contract after k time steps subsequent to the perturbation.

The short time Lyapunov exponents will usually vary materially with location

on the attractor. This variation is exacerbated when k is small, meaning that

predictability will vary greatly over the attractor. The local and short time local

measures are both dependent on initial points. The short time Lyapunov exponent

is also dependent on the length of the time interval. See [1] and [40], respectively,

for further mathematical details.

These localised measures are a more practical way of presenting Lyapunov ex-

ponents as they articulate more information than a single number. We propose

that a more meaningful representation of the divergence concept is in terms of Lya-

punov exponents of the set of lower order UPOs. UPOs are dense on the attractor

and any finite sampled (time series) orbit can be represented by an approximation

consisting of lower order UPOs. UPOs can be viewed as a basis or skeleton for

the chaotic attractor and each has a unique Lyapunov exponent. Representing

the attractor as a set of lower order UPOs and the Lyapunov exponent each is

a meaningful characterisation of the attractor. The concept has more merit than

arbitrarily calculating divergence for an orbit segment. We know that the orbit

will spend a significant amount of time near a small number of different types of
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UPO, and for each of these we know the orbital divergence. We represent the

Lyapunov signature as follows:

Lk = (λ1, λ2, .....λk), (1.29)

where we have selected the first k UPOs, ordered by period length from least to

greatest, to represent the system.

1.9.5.4 Units of Measurement for Lyapunov Exponents

The Lyapunov exponent is defined using the natural logarithm (base e) and it is

measured in units of 1/time. When considering the information - theoretic context,

the Lyapunov exponent may be expressed in base 2, where it equates to bits per

second. It may then be interpreted as the rate at which information about the

state of the system is being created or destroyed [108]. We shall use base e when

referring to the Lyapunov exponents in this thesis.
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1.10 Periodic Orbits in Chaotic Systems

We have seen that periodicity plays a crucial role in chaos theory. Periodic points

are at the heart of definitions of chaos and the infinite set of UPOs comprise the

skeleton of a chaotic attractor. To better understand the connections between

cycles and chaos we need explore the theory of Smooth dynamics, which is the

study of differentiable maps and flows.

Hyperbolic dynamical systems are a class of smooth dynamical systems where

the differential yields strong local, and sometimes global information about the

underlying dynamics. The hyperbolic behaviour is characterised by the expand-

ing and contracting sub-manifolds at a point and is caused by the stretching and

folding mechanism underpinning chaos. The tangent space at each point parti-

tions into contracting (or stable) and expanding (or unstable) subspaces. These

expanding and contracting sub-manifolds provide valuable insight and quantifiable

information about individual orbits and the topology of the system. Importantly,

the theory of hyperbolic dynamical systems provides a mathematical formalism

for the study of chaos.

Definition 13 Stable and Unstable Manifolds

The stable and unstable manifolds W s(x0) and W u(x0) of a saddle equilibrium

point x0 are

W s(x0) := {xεRn | lim
t→∞

φt(x) = x0, (1.30)

W u(x0) := {xεRn | lim
t→∞

φ−t(x) = x0. (1.31)

where φt is the flow defined in Equation 1.2.

Definition 14 Hyperbolic Attractor

A hyperbolic attractor requires the following two conditions to hold:

1. There exist stable and unstable manifolds at each point of the attractor whose

dimensions, ns and, nu, are the same for each point on the attractor, with

ns + nu = d, where d is the dimension of the phase space.
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2. There exists a constant K > 1 such that for all points, x, on the attractor,

if a vector u is chosen tangent to the unstable manifold, then

‖Df(x)u‖ ≥ K ‖u‖ , (1.32)

and if u is chosen tangent to the stable manifold

‖Df(x)u‖ ≤ ‖u‖ /K, (1.33)

where Df(x) denotes the Jacobian matrix of the map f evaluated at the point x.

Whilst not all systems of interest are hyperbolic, hyperbolic systems remain

important as they are more amenable mathematically. Much of the rigorous theory

of dynamical systems is prefaced with the assumption that the system is hyper-

bolic. It is believed that much of the theory of hyperbolic systems translates also

to non-hyperbolic systems, but there are few rigorous results.

1.10.1 Unstable Periodic Orbits

Unstable periodic orbits (UPOs) comprise the skeleton of, and are fundamental

in the definition of, a chaotic attractor. Within the chaotic attractor there are

densely embedded, an infinite number of UPOs of all possible periods.

We can view the time evolution of a chaotic orbit as traveling close to a UPO and

eventually jumping into the vicinity of another UPO. Time spent in the vicinity

of a UPO depends on the relative instability, noting that all these periodic orbits

are unstable. Figure 1.5 shows various UPOs detected from the Lorenz system by

Yamagita et al. in [147].

The set of UPOs is a dynamical invariant; their number, distribution, and

properties are conserved under a change of coordinates. Various chaotic invariants

such as Lyapunov exponents, fractal dimension measures and topological entropy

may be calculated using UPOs. Note that these calculations usually require a
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Figure 1.5: UPOs in Lorenz system

complete set of lower order UPOs and any calculation is subject to the errors

created in the determination of each UPO.

The closure of the set of UPOs defines a chaotic attractor, and generic chaotic

attractors can be approximated hierarchically using UPOs up to a given length.

UPO periods can vary according to the topology of the system. For example the

Rossler attractor has been shown to only admit UPOs that are multiples of a

fundamental period

T0 ∼= 2π. (1.34)

The Lorenz system does not have this integral subharmonic period structure.

UPOs provide a means to understand the rich dynamics and topology of a

chaotic system. They also provide an excellent basis for developing approximations

to the noise-free system, when our starting point is a noise-infected time series.
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1.10.2 Periodic Orbit Theory

Periodic orbit theory provides a formal framework for the unstable periodic or-

bits of a system. This knowledge enables us to utilise the properties of individual

solutions, such as their periods, location and stabilities, to estimate system quan-

tifiers like Lyapunov exponents, fractal dimension and entropies. Periodic orbit

theory expresses all long time averages of the chaotic dynamics in terms of cycle

expansions [28], [29]. Sums over periodic orbits (cycles) are ordered hierarchically

according to the orbit length.

In 1988, Cvitanovic [28] argued that for low dimension deterministic dynamical

systems, UPOs provide a detailed invariant characterisation with the following

virtues:

1. UPO symbol sequences are topological invariants – they provide the spatial

layout of the chaotic attractor;

2. UPO eigenvalues are metric invariants – they provide the scaling of each

section of the attractor;

3. UPOs are ordered hierarchically – lower order UPOs provide a good approx-

imation to the attractor and errors due to neglecting longer period UPOs

are bounded;

4. UPOs are robust – eigenvalues of lower order UPOs vary slowly with smooth

parameter changes;

5. Lower order cycles can be accurately extracted from experimental data.

Cvitanovic predicted that future investigations of experimental strange attrac-

tors would use deterministic noise smoothing techniques. This never happened to

any major degree, but is the focus of this thesis. He further demonstrated the

UPOs and their associated eigenvalues provide a theoretically optimal measure-

ment of the invariant properties of a dynamical system.
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We now summarise some of the key results of periodic orbit theory. The

following results require the assumptions that the attractor of f is both hyperbolic

and mixing. By mixing, we mean that for any two subsets A1, A2 in the phase

space, we have

lim
i→∞

µ[A1 ∩ f i(A2)] = µ(A1)µ(A2), (1.35)

where µ is the natural measure of the attractor (see Definition 1.2 of

Transitivity). In other words the system will evolve over time so that any given

open set in phase space will eventually overlap any other given region.

Denote the magnitudes of the eigenvalues of the Jacobian matrix for the p times

iterated map fp evaluated at the jth fixed point by λ1j, λ2j,.....λnj. Suppose that

the number of unstable eigenvalues (λij > 1), is given by nu, and further, that we

order them as follows:

λ1j ≥ ...λnuj ≥ 1 ≥ λ(nu+1)j ≥ ....λnj. (1.36)

Let Lj denote the product of unstable eigenvalues at the jth fixed point of fp,

Lj = λ1jλ2j......λnuj
. (1.37)

Then the principal result of the periodic orbit theory is the following. Given a

subset A of phase space, we may define its natural measure to be

µ(A) = lim
p→∞

µp(A), (1.38)

where

µp(A) =
∑
j

L−1j . (1.39)

The detailed mathematics underpinning these relationships are provided in Gre-

bogi and Ott [61], [62]. This result leads to several important consequences, for
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example, it can be shown that the Lyapunov exponents of f are given by:

lnλp = lim
p→∞

1

p

∑
j

L−1j, (1.40)

where for each p, Lj is defined by Equation (1.35). An analogous result exists for

the topological entropy:

hT = lim
p→∞

1

p
ln(Np), (1.41)

where Np denotes the number of fixed points of the map fp.

1.11 Detecting UPOs

There are now numerous examples of UPOs being detected in real life high dimen-

sional chaotic systems. UPOs were detected and analysed in a barotropic ocean

model by Kazantsev [79]. Rempel and Chian [113] discussed intermittency in space

plasma dynamics using UPOs. Kato and Yamada [76] and Kawahara and Kida

[78] extracted UPOs from fluid dynamics models and used these to characterise

turbulence properties. McKenzie [101] developed a recurrence plot based test to

search for chaotic behaviour in stock market indices and concluded from the results

that non-chaotic nonlinear behaviour is present. Gilmore [56] conducted a similar

exercise for currency exchange rates, finding similar results. These are just a few

of many examples.

As interest in UPOs has grown, so has the number of techniques to identify and

capture the lower order cycles. We note, importantly, that the instability of UPOs

makes them difficult to detect. Increasingly complex algorithms have developed

over time. Broadly these techniques can be divided into two groups; those utilising

recurrence matrices and those using more sophisticated Newton-Raphson type

methods. The Newton-Raphson methods reduce the continuous dynamical system

to a discrete one using Poincare sections. The method of So et al. [133], [132]

transforms the time series data using the local linear dynamics along an orbit,
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concentrating the transformed data on the periodic orbits. UPOs are subsequently

located and extracted by searching for peaks in a finite grid approximation of the

distribution function of the transformed data. Another approach, is to “stabilise”

UPOs using matrix transformations to convert unstable orbits into stable ones

[33], [34], [121], [122]. There are also methods using the Newton-Raphson-Mees

method [102], [22], with a damping coefficient, which eliminates the troublesome

Poincare section [116]. The Newton-Raphson methods are excellent for noise-free

data but do not accommodate noise in the data set and as one would expect, the

more sophisticated techniques are highly sensitive to even low levels of noise. We

will therefore not discuss these further.

Eckmann et al. [41] introduced the concept of recurrence plots as a tool to

study dynamical systems in 1987. Pioneering work in the area of using recurrence

plots to detect UPOs was done by Auerbach et al. [6], and is presented in the

highly cited paper, “Exploring chaotic motion through periodic orbits”. A simple

close returns technique was applied to the Henon map to extract lower order UPOs

and calculate invariants. The two key findings presented were:

1. For the Henon map one can extract all the UPOs of order n, for n not too

large, directly from the chaotic orbit, and calculate their stabilities (Lya-

punov exponents), and

2. this information can be used to describe important properties of general

chaotic sets.

This research has arguably been a major catalyst for the subsequent development

of UPO detection using recurrence techniques. Using a very simple form of close

returns and a noise-free time series of 200,000 points, all Henon UPOs up to

period 10 were detected. The eigenvalues of all the cycles were calculated using

a numerical technique and were with 1%—2% of true values, with errors in the

worst case being a factor of 2. Further, the topological entropy was estimated

using knowledge of the number of periodic orbits of period n and Equation (1.39).

44



Theoretical Foundations

Whilst this case study demonstrated the considerable strengths of employing

this approach, there are some considerations:

1. Close returns were applied to the Henon map in order to find UPOs. Whilst

we favor the method of close returns as the best UPO detection technique,

the method was applied to a simple two-dimensional map, which is relatively

easy to work with in contrast with higher-dimensional sampled flows or ex-

perimental data. UPOs for simple maps may contain 1—10 points, whereas

for a flow we may find 60 points in the period 1 cycle alone.

2. UPOs of all low-order periods may be detectable, but for highly unstable

systems this may require extremely long time series. The time series used

contained 200,000 points, which is long. In practice we use single samples or

repeated samples of 10,000 points. Processing large numbers of data points

can be problematic unless considerable processing power is employed.

3. Calculation of the Lyapunov exponent required considerable matrix multi-

plication, which can be a source of accumulated errors. Again, with simple

maps with a few points in each cycle, the matrix multiplication holds. How-

ever, with say 50 points in a cycle, multiplying fitted Jacobians at each point

can result in aggregated errors.

4. Finally, and most importantly, the method as presented does not allow for

noise. The addition of noise will ensure complete UPOs of some periods

are not detectable and the invariant calculations require all UPOs for the

calculation. Otherwise the method simply does not work.

Lathrop and Kostelich [89] extended this work to an experimental flow in 1989 in

a further landmark paper. The system studied was the Belousov-Zhabotinski (BZ)

chemical reaction[149] and a time series of 65,000 points was used. They observed

that 95% of points were clustered closely to UPOs up to period 8. Interestingly,

the BZ system exhibits cycle lengths of integral multiples of a fundamental period.

The BZ attractor and period 1, 2 and 3 cycles are shown below in Figure 1.6 from

the paper cited above.
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Importantly, the authors presented a method to calculate Lyapunov exponents

using the eigenvalues of each detected UPO type that did not rely on matrix

multiplication of Jacobians at each point of a UPO. Their method accommodated

flows. They subsequently estimated the information dimension using the Kaplan -

Yorke conjecture relationship and achieved reasonable results. Noise-infected data

was not considered as part of this research.

These two papers ([6] and [89]) laid the foundations for techniques that detect

UPOs using the method of recurrence matrices, and efforts to calculate estimates

of invariants using the UPO set.

Figure 1.6: (a) BZ Attractor, (b)–(d) Trajectories near UPOs of period 1,2 and
3.
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1.12 Summary and Discussion

In this chapter we have introduced the building blocks and conceptual tools re-

quired for the development of a noise-reduction technique for chaotic time series.

We firstly have introduced the fundamental concepts of maps and flows, non-

linearities and phase space. The Devaney definition of chaos is presented as it

provides insight on the anatomy of chaos; revealing the significance of unstable

periodic orbits (UPOs) at the most fundamental level in chaos. We also discuss

Touhey’s definition of chaos, which is expressed entirely in terms of periodic points.

We have described and formulated Lyapunov exponents for flows and maps, and

argued that the short time Lyapunov exponent set derived from the basis set of

lower order UPOs is a meaningful description of orbital divergence during the

evolution of a chaotic system in phase space.

The concepts introduced so far allow us to next introduce unstable periodic

orbits and periodic orbit theory. The periodic orbit theory of Cvitanovic pro-

vides a real framework for the application of UPOs in numerical methods. UPOs

comprise the skeleton of the attractor, are ordered hierarchically and are topolog-

ical invariants. After transients are eliminated, all points within a time series lie

within a small distance of a UPO and thus the set of lower order UPOs provides

an excellent basis through which we can approximate the time series (and thus the

attractor).

Detection of UPOs from a time series is the final tool we harness. There is

a large volume of research on locating and extracting UPOs from a time series.

Much of it relies on Newton-Raphson type methods, is computationally complex

and very effective for noise-free data. However, we are occupied with highly noise-

infected data and these techniques fail immediately in this case. Instead we will be

using recurrence methods or close returns plots to locate UPOs. These methods

are robust in the presence of noise and will be discussed in Chapter 3.

Finally we discuss and review two key papers that form the motivation and

platform for the research in this thesis. The pioneering work of Auerbach et al.
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[6] in finding the UPOs of a simple noise-free Henon map by using close returns,

and subsequently estimating invariants has been highly influential. Lathrop et al.

[89] extended this to flows by considering the experimental BZ system. Neither

of these authors specified addressed noise. Extending this type of approach to

accommodate noise is the focus of this thesis.

48



Chapter 2

Noise Reduction Techniques

2.1 Chapter Overview

In this chapter we start by briefly defining, comparing and discussing mea-

surement and dynamical noise as well as defining the signal to noise ratio. We

summarise how noise may actually induce chaos in a dynamical system and that

linear noise reduction tools cannot simply be applied to chaotic systems without

serious consequences. Non-noise related features of chaotic systems that are prob-

lematic in the context of numerical mathematics are reviewed as these have impli-

cations for numerical noise-reduction techniques. We further discuss the numerical

algorithms used to directly calculate chaotic invariants (Lyapunov exponents and

correlation dimension) and how noise affects them. Finally we categorise and crit-

ically review the multitude of noise reduction methods that have been proposed

by researchers, with a particular emphasis on the few techniques that utilise the

properties of UPOs.

2.2 Types of Noise

The simplest description of noise is that it is the “unwanted” part of the signal [74].

In reality, deterministic systems are a nice theoretical construct but are unlikely

to exist in nature as all systems interact with their surrounding environment and

are to some degree contaminated. Noise is problematic. It has been shown to
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interfere with or even invalidate numerical algorithms used for system identification

[148], [77] and parameter estimation [130]. Nonlinear deterministic dynamical

systems can evolve in highly erratic patterns autonomously, without the influence

of added noise. Although the generalised theory of chaotic dynamical systems is

now well established, many practical challenges arise when when translating the

theoretical concepts into methods for analysis of experimental or real world data

time series. The deterministic reference frame is best considered as a subset of

a broader structure involving fluctuations of the environment and of the chaotic

system itself.

In signal processing, noise is a general term for unwanted variations that perturb

a signal during detection, storage, transmission, processing, or conversion. Noise

is classified at a highly detailed level by its statistical properties (often referred to

as the “colour” of the noise) and by how it modifies the underlying or intended

signal. There are a multitude of very specific definitions. For measurement noise

(which gets added to the signal) categories include white noise, pink noise, black

noise, Gaussian noise, uniform noise, flicker noise, brown noise, Cauchy noise, just

to name a few. We will not require this level of detail just yet and will focus on

the broadest groupings of measurement (or observation) noise and dynamical (or

system) noise.

For an excellent classification of mathematical schemes by which noise is im-

posed on a dynamical system, the reader is referred to the paper by Argyris,

Andreadis, Pavlos and Athanasiou [5]. We shall follow their nomenclature, cate-

gorisation and formulation. When noise interferes with the evolution of a dynam-

ical system, it is called dynamical noise and may be formulated as an additive or

multiplicative expression. In contrast measurement noise does not influence the

evolution of the system. This is the key point of distinction and both types of

noise may take the form of an additive or multiplicative expression.
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We consider a flow (continuous in time) dynamical system in the Euclidean

space Rn defined by the equation:

x′ = f(x, µ, t), (2.1)

where: x εRr, µ εRk are vectors and t εR.

2.2.1 Measurement Noise

Measurement noise, also known as additive or observation noise does not enter

directly into the evolution of the dynamical system and is by far the easier to deal

with. In the presence of measurement noise we must study a new evolution X(t)

by directly applying the noise at a point in time to x(t) (the solution of Equation

(2.1)). In its most general form X(t) is defined by:

X(t) = K(x(t), t, w), (2.2)

where x = {x1, x2,...xr}, w = {w1, w2,....wr}, K is a function and w is a noise.

Measurement noise is further specified by whether it is an additive contribution

or multiplicative contribution to the new evolution equations:

Additive : X(t) = x(t) + w, (2.3)

Multiplicative : X(t) = h(w · x(t)), (2.4)

where h is a map.

The measured orbit is corrupted by measurement noise. Sources include finite

precision measurements, truncation errors, and missing data (both temporal and

spatial). If the additive error term is modeled by a random variable for example,

then an identically and normally distributed (IND) process may be written as:

w ∼ N(0, σ2
noise), (2.5)

where σ2 is the variance of the noise.
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2.2.2 Dynamical Noise

Dynamical noise, in contrast, appears as a disturbance that influences the evolution

of the dynamical system and is formulated as follows:

x′ = f(x, µ, t, w), (2.6)

where x εRn, µ εRk are vectors, t εR and w is a noise.

Dynamical noise arises from a feedback process wherein a system is perturbed

by a small random amount at each time step (noise is added during the evolution of

the system). Dynamical uncertainty refers to external fluctuations interacting with

and changing internal variables in the underlying system. Whilst measurement

uncertainty obscures the state vectors, dynamical uncertainty changes the actual

dynamics.

When the noise is added to the right hand side of Equation (2.6) we call it

additive dynamical noise. If noise is included as a perturbation within the function

f in Equation (2.6) we refer to it as multiplicative dynamical noise. The general

forms are as follows:

Additive : x′ = f(x, µ, t) + w, (2.7)

Multiplicative : x′ = f(x, g(µ,w), t), (2.8)

where x εRn, µ εRk are vectors, t εR and w is a noise and g a vector function.

Dynamical noise and measurement noise are two notions of the error that may

not be distinguishable a posteriori, based on the data only. Both descriptions

can be consistent to some extent with the same signal [25]. For strongly chaotic

systems that are everywhere hyperbolic (Axiom A systems), measurement noise

and dynamical noise can be mapped onto each other [134].
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For a noise reduction scheme to be practically useful, one should require that

it works at the very least in reducing measurement noise, and that it does not

produce nonsense in the case of dynamical noise.

Generally, dynamical noise induces much greater problems in data processing

than measurement noise, since in the latter case a nearby noise-free orbit of the

underlying deterministic system exists and can indeed be found to some degree

of accuracy by a proper noise reduction procedure. Also, what we interpret as

dynamical noise sometimes may be a part of higher dimensional deterministic

dynamics evolving with a small amplitude. Even if this is not so, dynamical noise

may be essential for the observed dynamics. For an interesting example using the

logistic equation (with the parameter a=1.9408), where Gaussian noise interacts

with the dynamics to nudges the orbit off the periodic orbit into a repeller, see

[135]. This example nicely illustrates that dynamical noise may have more severe

effects than simply smearing out some small-scale deterministic structures.

We will assume that any researcher employing the noise-reduction technique

presented in this thesis, does have knowledge of the type of noise present in the

measured time series, although does not necessarily need to know the magnitude of

the noise. Most results presented in this thesis will address high levels of measure-

ment noise and low-level additive dynamical noise. Similar expressions are defined

for maps and the categorisation is presented collectively in Figure 2.1 below, which

follows [5]. We shall provide specific formulations for measurement and dynamic

noise employed for our research in Chapter 5.

Finally, we wish to point out that not all noise is introduced to a system by

external factors. Many real physical systems produce noise-infected output as a

result of intrinsic noise (e.g. thermal). Whether this noise acts as dynamical or

measurement noise depends on the type of process. In [146], a chemical reaction

is investigated by Wu and Kapral. The process dynamics, when being well stirred,

are completely described by three coupled ordinary differential equations. If the

stirring is inadequate (or the diffusion process too slow), the dynamics in different

sections of the container become slightly out of phase. A global observable variable,
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like the concentration of one reactant thus becomes infected with noise. In this

example the intrinsic noise has all the characteristics of measurement noise.

Figure 2.1: Mathematical definitions of measurement and dynamical noise. We
will be using additive measurement noise and additive dynamical noise in our
modelling.
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2.3 Signal-to-Noise Ratio

The signal-to-noise ratio is defined as the ratio of the power of the signal (wanted

information) to the power of background noise (unwanted information). The noise-

infected signal may have a non-zero mean that can be subtracted off. Then if the

variance of the noise-free signal is σ2
signal and of the noise signal is σ2

noise, then

signal to noise ratio (SNR) is defined as:

SNR =
(σ2

signal

σ2
noise

)
, (2.9)

An alternative approach, which we use throughout this thesis, is defined in

terms of decibels:

SNRdB = 10. log10

(σ2
signal

σ2
noise

)
= 20. log10

(σsignal
σnoise

)
. (2.10)

To calculate the SNR for a noise-infected time series, when we know the noise-

free time series and noise vector (noisy time series - noise-free time series), we

use:

SNRTS = 20. log10

( rms(TSnoise−free)
rms(TSnoise−vector)

)
= 20. log10

(σTSnoise−free

σnoise−vector

)
. (2.11)

2.4 Noise Induced Chaos

The presence of noise itself can actually instigate chaos in a dynamical system.

Crutchfield et al. [26], [27] observed noise truncating a period-doubling cascade

and inducing chaos. Gao et al. [50], [52] have further confirmed and extended

Crutchfield’s work, finding that there are three necessary conditions required to

instigate chaos:

1. Firstly, the noise level has to be within a specific narrow band. Noise less

than the minimum is insufficient to trigger chaos, and noise above the band

maximum will dampen and destroy the induced chaos.
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2. Secondly, when the noise level of the signal is within the narrow band, the

adjacent chaotic states should still behave chaotically on finite scales.

3. The third and most critical condition requires that the periodic state, when

subjected to weak noise, should undergo a process that is considerably more

diffusive than Brownian motion. In the case of a specific period-doubling

cascade, the entire period-doubling sequence is terminated. The cascade is

masked by noise otherwise. Hwang et al. [69] have observed these conditions

in a semiconductor laser system.

It is worth briefly touching on the statistical framework of noise. The underly-

ing dynamical systems we work with in this thesis are Markov processes in discrete

time (as they are sampled). In a Markov process, the existing state completely de-

termines the probability distribution of the future states. Real dynamical systems

exhibiting dynamical noise are also examples of Markov processes. In experimen-

tal situations, the actual state of the Markov process itself is unknown (we cannot

measure it directly), and we rely on experimental measurements, usually a scalar

time series, that provide incomplete phase space information. These Markov pro-

cess as just described are referred to as hidden Markov processes (HMP).

Siefert et al. [129] have developed a quantitative method to differentiate be-

tween dynamical and measurement noise. Their method uses the theory of dif-

fusion processes (the theory of Kramers-Moyal coefficients) to estimate the mag-

nitude of both dynamical and measurement noise. The method does not require

knowledge of the system equations. For the case of a chaotic dynamics concurrently

infected by dynamical and measurement noise, they show how to numerically es-

timate the magnitude of both types of noise. As a consequence, they present a

criterion to verify the correct embedding for chaotic dynamics infected with dy-

namical noise. Similarly, Bottcher et al. [11] developed an approach using a broad

group of Langevin processes that describe a variety of complex dynamical systems.

Interestingly, these models rely on the underlying Markov properties holding, and

Kleinhans et al. [80] have shown that the presence of measurement noise spoils

these Markov properties.
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2.5 Finite Impulse Response Filters

We need to distinguish between recursive and non-recursive linear filters. The most

general linear filter takes a sequence xk of input points and produces a sequence

yk of output points by the formula:

yn =
M∑
k=0

ckxn−k +
N−1∑
j=0

djyn−j−1. (2.12)

The M + 1 coefficients ck and the N coefficients dj are fixed and define the filter

response. This filter produces each new output value using the current M previous

input values, and from its own N previous output values:

1. If N = 0, there is no second sum in Equation (2.12) and the filter is called

a finite impulse response (FIR) filter or non-recursive filter.

2. If N 6= 0, then it is called an infinite impulse response (IIR) filter or recursive

filter.

2.6 Limitations in Noise-Filtering Non-Linear

Data

Noise reduction for a time series may be considered as the filtering of a noisy signal

to extract a relatively clean signal. By definition, the noise is the unwanted part

of the data. An ideal filter would clean any noise from the time series, leaving

a pure signal, without interfering with the underlying dynamics in any way. We

could then reconstruct the chaotic attractor and measure the chaotic invariants

using established algorithms to fully characterise the attractor. When it comes to

nonlinear dynamical systems, the non-linearity of the system creates a multitude

of problems and it is difficult to apply a filter and not interfere with underlying

signal and produce flawed results.

It is difficult to find many simple and effective data filters in the body of

literature relating to nonlinear dynamical systems. Specialist non-linear filters do
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exist but are few and generally recursive in nature. We will see later that recursive

filters interfere with the underlying chaotic signal and cannot be employed for the

purposes of this thesis.

Most noise filters are in essence linear, and are inadequate when applied to non-

linear time series data. This deficiency is compounded further by the estimation

error implicit in each of the input assumptions that are usually required. Linear

filters that rely specifically on frequency considerations, to distinguish signal from

noise, are problematic when applied directly to chaotic data.

Fourier analysis is the conventional linear model adopted by practitioners to

approach the signal-noise problem. Data are transformed from the time domain

to the frequency domain, where we assume high-frequency components are mostly

noise. Components at frequencies greater than a fixed cut-off are attenuated. The

modified frequency domain signal is finally inverted to provide a noise-reduced

signal. Unfortunately the frequency domain power spectrum of a chaotic signal

has a broadband structure, making it indistinguishable from noise. As the signal

inhabits all frequencies, a frequency cut-off approach is inadequate and will in

fact alter the dynamics of the noise-reduced signal. It is as if the noise is deeply

intertwined with the signal as a result of the nonlinearities in the system. For

a useful comparison between Fourier spectra of regular and chaotic systems the

reader is referred to [39].

There is a plethora of other linear filters available [21], all specifically developed

to target noise with a particular characteristic. Each is very useful in the correct

context, but unfortunately none of these will be directly applicable to the entire

chaotic time series. However we do note that if large enough segments of the time

series can be viewed as approximately linear or periodic, then these noise-reduction

tools will be directly applicable and most useful.

It is surprising that the simple process of filtering a chaotic time series may

result in a time series with different underlying dynamics. Thus any dynamical

invariants calculated using such a noise-reduced chaotic time series will not be
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representative of the original system. Research by Badii et al. [7] reveals that a

low-pass filter effectively generates an additional Lyapunov exponent, depending

on the cut-off frequency used. For a sufficiently low cut-off frequency, the low-pass

filter may increase the fractal dimension of the reconstructed chaotic attractor.

Mitschke et al. [105] have presented an experimental example of this phenomenon

using data measured from an electronic circuit.

Fortunately, Broomhead et al. [13] proved that finite impulse response (FIR)

filters (finite-order and non-recursive filters), such as moving average filters, do not

have this effect. Therefore the universe of applicable filters for chaotic time series

is restricted to FIR filters and is applicable to non-stationary time series because

chaotic time series are generally strongly non-stationary.

2.7 Embedding of Noise-Infected Data

According to Takens’ theorem [137], when the embedding or reconstruction in

phase space is carried out correctly, the reconstructed dynamics are topologically

equivalent to the dynamics on an attractor in the original phase space. This means

that topological invariants of the system are conserved. The invariant properties

of the system that are conserved under the topological equivalence property of

the diffeomorphism (we actually only need a homomorphism) include singulari-

ties, closed orbits, attractor geometry and flows. For infinite noise free data sets

the choice of reconstruction parameters such as time delay is almost arbitrary

(providing the embedding dimension m is sufficiently high).

In the more realistic case of noise-infected data, the embedding process, even

optimised, is severely limited in the presence of noise. Takens’ theorem simply

does not allow for noise and reconstructing an attractor with noise-infected data

provides no guarantee that invariants are preserved. In practice, the embedding

parameters (m and τ) must be determined numerically and numerical algorithms

to determine these perform poorly, particularly for m when noise is present. Many

noise-reduction techniques for chaotic time series start with embedding the data in

phase space. This immediately restricts the procedure to very low levels of noise
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and arguably invalidates it for more significant levels of noise. Similarly, numerical

algorithms to estimate invariants also pre-embed the data and suffer the same flaw.

At this time, the effects on the Takens’ embedding of noise, both measurement

and dynamical, are not thoroughly understood. There is some empirical evidence

that the fidelity of the embedding may be somewhat resilient to measurement noise,

shown in [64]. Further, a more complex theory developed in [135] also suggests

such a robustness.

As a result of the concerns raised above, the method presented in Chapters 4

and 5 uses the scalar time series directly and avoids embedding the noise-infected

data.

2.8 Challenges in Approximating the True Dy-

namics

Having ruled out traditional non-linear techniques and IIR linear techniques, let us

consider the constraints in developing a new approach. Any algorithm to reduce

noise and uncover the true dynamics must address several key challenges that

result from the special nature of chaotic dynamics. Before proceeding to more

detailed discussions on noise reduction, we should mention that noise, although

problematic, is not the only factor affecting the integrity of analysis to find the

underlying signal. The following summary is distilled from an excellent summary

of non-noise factors presented in [83].

2.8.1 Measurement Function

The evolution of a low dimensional dynamical system may be expressed either as a

set of ordinary differential equations (ODEs ) or as a discrete mapping. Although

most real systems evolve continuously in time, data are always sampled discretely.

The noise-free dynamics of the underlying system can be obtained by starting with

some initial condition x0 and iterating a function f via:
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xn+1 = f(xn). (2.13)

The state of the system at any time tn is represented by a vector yn in some m-

dimensional phase space. A very long orbit will eventually define an attracting set

for practical purposes (theoretically we require the infinite time series) as all the

possibilities in phase space are eventually traversed. This attracting set, and the

invariant measures defined on it are the natural features to study from a nonlinear

dynamics perspective.

If the equations defining the system dynamics are not explicitly known, this

phase space is not directly accessible by a researcher. However, in typical situa-

tions, points on the dynamical attractor in the system phase space have a one-to-

one correspondence with measurements of a limited number of variables. This is a

powerful fact as by definition a point in phase space carries complete information

about the current system state. A one-to-one correspondence means the phase

space can be identified by measurements. This result is formalised in Takens’

Theorem (see Section 1.8).

Assume we can measure m variables simultaneously:

y(t) = (y1(t), y2(t), ...., ym(t)). (2.14)

This m-dimensional vector may be considered as a function of the system state

x(t) in the full system phase space.

y = F (x) = (f1(x), f2(x), ......., fm(x)). (2.15)

F is referred to as the measurement function and the m-dimensional vector

space occupied by the y vectors is known as the the reconstructed space (or em-

bedding space). The measurements are represented as a vector-valued function

F of x, as each measurement is a well-defined function of x (a consequence of

uniqueness of the states in the system). The measurement function F defines a
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one-to-one mapping between the original attractor states in phase space and the

set of m observation vectors, provided the embedding dimension m is sufficiently

large.

Experimental results will vary from theoretical formulations for a number of

reasons:

1. We usually cannot obtain yn directly and instead rely on the scalar values

generated by the measurement function F ,

2. Perturbations of yn, caused by a stochastic process or fluctuations in system

parameters may drive the system into being stochastic rather than deter-

ministic states.

3. The measured time series often represents a short, finite, segment of system

evolution. Depending on the ergodicity of the system the orbit segment

may explore most of the attractor, or malinger in a small neighbourhood.

Estimation error is always present from random fluctuations or due to the

discretisation involved in sampling.

Whilst Takens embedding theorem is underpinned by topological consider-

ations, we can understand the concept intuitively as follows. Suppose we can

measure a single system variable and its derivatives up to some order m. If the

dimension of the system is less than m, we then have sufficient information to

construct a set of m differential (or difference) equations. These m equations are

sufficient to completely define the dynamical system. Measuring m derivatives and

measuring the system at m different time intervals are equivalent, provided we use

a sufficiently high sampling rate, m.

Remarkably, provided certain conditions are met, the reconstructed attractor

contains the same information as the original system. The assumptions required

are that m is sufficiently large, the sampling rate is high enough, the time series

is sufficiently long and the measurement function F is twice differentiable [137].
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These conditions are unlikely to be met when working with real world data.

Firstly, the concept of obtaining “proxy” derivatives of the system state by record-

ing successive observations is greatly diminished when the data is infected with

noise. Higher order derivatives are extremely difficult to calculate numerically.

Further, the differentiability of F is violated by digitisation (both sampling and

quantisation) of the data. Regardless, experimenters generally assume that pro-

vided the conditions are loosely met the topology of the embedded attractor rea-

sonably resembles the topology of the underlying attractor M ; and the sequence

of embedded points evolves under a deterministic process that is approximately

equivalent to the evolution operator φ.

In order to focus the discussion in this thesis on the influence of noise, we

will assume throughout that the measured data are otherwise well behaved. By

this we mean that the signal would be to some extent predictable by exploiting

an underlying stationary deterministic rule if it were not for the noise. This is

the case for data sets that can be embedded in a low dimensional phase space,

which are stationary and which are not too short. Violation of each one of these

requirements leads to further complications that will not be addressed here.

2.8.2 Drifting Problem

Let us assume that m dimensions are sufficient to produce an embedding. We can

then write:

ym+1 = f(y1,y2,........, ym) + ηm+1, (2.16)

where ηm+1 represents an measurement noise term, and yi are the time series

elements.

The subscripts denote sequential elements in the time series and we refer to

this a forward-in-time representation of the dynamics. If we seek to find an ap-

proximation f ∗ to f , so we may estimate ym+1 as:

y∗m+1 = f ∗(y1,y2,........, ym). (2.17)
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We could start with the first m time series entries y1, y2, ........, ym and output a

prediction of ym+1 as y∗m+1. Then use y2, y3, ...., ym+1 to predict ym+2 as y∗m+2 and

so forth. This approach will adjust all the time series entries after the mth.

This process will fail to reduce noise if iterated by running each updated time

series back through the algorithm. For a chaotic time series, this approach will

produce output time series that drift further and further away from the original

due to errors in each yi being amplified as a result of the sensitivity to initial

conditions. In summary, we cannot extrapolate using previous points.

2.8.3 Curvature Problem

For some statistics derived from a chaotic time series, the curvature effect arising

from the curved shape of the attractor becomes highly material. From a technical

perspective, the curvature effect is closely linked to the limit assumption used in

calculating invariants (e.g. correlation dimension).

This effect is highly material with numerical techniques applied to time series

to estimate invariants such as correlation dimension and Lyapunov exponents and

arguably a severely limiting factor.

The sparsity patterns in relatively small scales also causes measurement bias

and is related to the lacunarity of the attractor. At this time, the relationship

between noise level and the bias in estimates caused by macroscopic geometric

effects has not been explained. Coban et al. [23] discuss a model for the curvature

effect based on the distribution of estimation errors.

2.8.4 Errors-in-Variables Problem

Many existing noise reduction methods rely heavily on the use of linear approx-

imations, in seeking to find a superior replacement orbit either on the attractor

directly or on a linearised subspace. The Euclidean or L2 metric, used for deter-

mining optimality is favoured in nonlinear systems analysis and thus the method

of least squares is employed. An example is the algorithm of Sano and Sawata
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[117] used to determine Lyapunov exponents, which relies heavily on least squares

calculations along the orbit.

The classical least squares problem assumes that:

yi = axi + b+ εi, (2.18)

where each observation yi is a linear function of the independent variable xi, and

the random variables εi are normally distributed with mean 0 and variance σ2.

We assume that the only error occurs in the measurement of yi, as the values of

xi are known exactly.

This assumption is invalidated when one deals with noisy input data. In fact,

all the observations are measured with some error. The classical least-squares

problem must be replaced by:

yi = a(xi + δi) + b+ εi. (2.19)

This is referred to as the errors-in-variables model. Here δi and εi are indepen-

dent, normally distributed random variables. The classical least squares estimate

is biased, i.e. the slope a is underestimated by an amount that depends on the

variance of the δi and is independent of the number of observations. Each iteration

of a noise reduction method, using ordinary least squares is inherently inaccurate

unless corrections are made to reduce the bias.

2.8.5 Ill-Conditioned Least Squares Models

Most low dimensional attractors have a fractal structure with points tending to

form a Cantor set of layers. The layers may be indistinguishable from a curve

because of the limited resolution and size of typical data sets. Sometimes the

points captured in a small ball surrounding a typical orbit may be coplanar, leading

to ill-conditioned least squares problems. The covariance matrix of measurements

is nearly singular. The numerically computed solution of an ill-conditioned least

squares problem has a large relative error, and the Jacobian matrix cannot be

65



Noise Reduction Techniques

calculated accurately. We may employ Singular Value Decomposition (SVD) to

detect these situations, and numerically computed singular values are seldom zero

due to round-off error. Large values of the condition number can be used instead

to detect ill-conditioning. The problem is exacerbated when data are only known

to finite accuracy.

2.8.6 Outliers and influential points

Influential points are relatively common and a serious issue in noise reduction

methods. These are small groups of points residing relatively far away from the

rest, and as a consequence of the stretching and folding mechanism, lead to difficul-

ties in accurate estimation of the Jacobian matrix. They may be outliers, resulting

from anomalies in the data, but in usually arise from the striated structure of the

attractor. Influential points are a heuristic notion; there is no formal definition.

Unlike ill conditioning, influential points do not necessarily affect the accuracy of

least squares solutions. Judgement is required in considering whether to discard

influential points.

2.8.7 Loss of Information

Usually the embedded orbit is constructed from a measured scalar time-series

through the use of delay vectors. The trajectory-based methods produce a re-

placement orbit that is usually not realisable as a delay vector reconstruction from

a scalar time series. This implies there is some loss of information about underlying

dynamics.

2.8.8 Summary of Limitations

There are many challenges in developing a noise-reduction technique for a chaotic

time series as we have seen in the previous section. For a more detailed review of

problems arising with estimating dynamics from data sets, see Kostelich [82]. The

noise is tightly intertwined with the nonlinear signal and it is near impossible to

separate the two without corrupting the underlying signal itself. Recursive filters

(IIR) damage the underlying signal, and this rules out most traditional filters, both
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linear and non-linear. In particular, direct application of Fourier filters runs into

problems as the chaotic signal looks like broadband noise and separation criteria

are difficult to define.

In the context of developing new, tailored techniques, there are further chal-

lenges. In particular, we cannot extrapolate existing data (recursive concept again)

and there are issues with the application of least squares to determine optimal-

ity as a result of noise in the data and the unusual geometry of chaotic attrac-

tors. Further, the curvature of the attractor provides limitations for any stepping

trajectory-based approaches.

Methods relying on firstly embedding the noise-infected data set are imme-

diately compromised as a result of data quantisation and finite sampling time.

Further, Takens theorem does not guarantee topological equality of an embed-

ding if noise is present. In such a case, one is unable to quantify whether the

approximation is valid or not.

The issues discussed in Section 2.8 are not just theoretical. While conducting

research for this thesis, nearly all of these problems were encountered in the data

analysis. In summing up, the most important considerations for an effective noise-

reduction filter for chaotic time series are that it must not be recursive (IIR) and

ideally not rely on an embedding as a starting point. All techniques will need to

also deal with curvature and the unusual geometry of chaotic systems. Techniques

that approximate the time series and attractor with a set of cycles (UPOs) or

approximate cycles will immediately remove many of the challenging barriers. We

summarise the attributes of an effective/ideal noise-reduction technique for chaotic

data below in Figure 2.2.
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ATTRIBUTES	OF	EFFECTIVE	NOISE-REDUCTION	TECHNIQUE	FOR	A	
CHAOTIC	TIME	SERIES		
Separate noise from signal (directly or indirectly)

Must not corrupt underlying signal (FIR method, locally linear approximation holds)

Handle a range of noise contamination from small to large. (> 10%)

Maximize use of information (e.g. time-ordering, geometry)

Prefer technique that operates directly on scalar time series and adds embedding 
techniques where appropriate 
Must be simple and easily programmable

Require low-level of user input/judgment

Work on experimental data (not just model systems)

Accommodate low levels of dynamical noise, as well as measurement noise

Immune to scaling considerations and allow for curvature 

Must not have unintended consequences or artefacts. (e.g. spurious dimensions 
added).

Filtered time series or attractor must be superior to the original in terms of minimization 
of a suitably defined error metric 

Figure 2.2: Summary of attributes of an ideal noise-reduction technique for ex-
perimentally determined chaotic time series

2.9 Estimating Invariants from Noise-Infected

Data

Noise complicates the entire field of nonlinear time series analysis immensely, in

that many algorithms are rendered useless by a few per cent of noise corruption

to the signal. Numerical algorithms to estimate the Lyapunov exponents (usually

the most positive) and correlation dimension are of greatest importance.
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Kostelich and Yorke [85] demonstrated with simple numerical experiments that

a noise level of 1% of the time-series extent makes it impossible to measure the

correlation dimension of the attractor using distances less than 3% of the attractor

extent.

Abarbanel [2] found that the negative Lyapunov exponent cannot be deter-

mined when the noise level is as small as 10−4, and none of the exponents can be

determined with satisfactory precision in the presence of 1% noise. This is true

even if the minimum required embedding dimension is known. Higher embedding

dimensions lead to the additional problem of spurious negative exponents.

Noise has a material impact for the numerical algorithms used to calculate the

global structural invariants of chaotic dynamics. Noise reduces the effective scaling

ranges for computations, since most of them have been derived under noise-free

assumptions. The range of scales accessible from the data set is a constraint,

limited above by the overall extent of the attractor and below by the amplitude of

the noise. With experimental data, noise makes all reconstructions non-invertible

and the quality of the reconstruction is a question of degree. Nearest neighbours

are commonly measured and utilised in determining noise reduction algorithms

and noise does corrupt this process also.

We also need to appreciate that higher dimensional dynamics with small am-

plitude may appear nearly identical to dynamical noise. From another viewpoint,

rather than separating noise from the underlying deterministic system, the chal-

lenge is that of separating the low-dimensional dynamics from a higher-dimensional

complex system.

2.9.1 Determining Lyapunov Exponents from Noisy Data

Numerical methods to determine Lyapunov exponents tend to estimate the largest

or maximal Lyapunov exponent (λmax). Other methods focus on determining just

the positive exponents and some estimate the full Lyapunov exponent spectrum.
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Techniques to estimate the spectrum of Lyapunov exponents for dynamical

systems with known mathematical models are well established. These include

algorithms published by Wolf et al. [145], Benettin et al. [9] and Shimada and

Nagashima [127].

Determination of these exponents from experimental time series is significantly

more difficult. Existing algorithms may be broadly categorised into two groups:

1. Trajectory-based, real space or direct methods (Wolf et al. [144], Rosenstein

et al. [114], Kantz [73]), and

2. Perturbation, tangent space or Jacobian methods (Sano & Sawada [117],

Eckmann et al. [42], Brown et al. [15], and Kruel et al. [86]).

A useful comparison of the relative efficiency and accuracy of methods is pro-

vided by Geist et al. [55].

All experiments are contaminated by noise in some form. Dynamical noise may

originate from within the system itself and certainly some level of measurement

noise is unavoidable in almost any experiment. Unfortunately, the presence of

such noise will lead any experiment to exhibit some form of SDIC, exponential or

otherwise. Using the descriptive language of Deissler and Farmer [37], a chaotic

system (λmax > 0) is a noise amplifier. After a perturbation occurs, the effects

of the perturbation are magnified over time by the systems intrinsic dynamics.

Thus, both the system itself and external perturbations contribute to the systems

unpredictability. A non-chaotic system (λmax < 0) is a noise muffler: the effects of

external perturbations decay asymptotically to zero over time. Any unpredictabil-

ity is solely due to perturbations.

Most of the commonly used methods for determining Lyapunov exponents im-

plicitly make the apriori assumption that the data come from a noise-free, strictly

deterministic system. Consequently, these methods are prone to false positives in

which non-chaotic data are misidentified as being chaotic [138], [11].
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Franca and Savi [48] conducted a comparison of the key numerical algorithms for

determining Lyapunov exponents using an analytical model of a damped driven

pendulum to provide examples of periodic and chaotic motions. They then su-

perimposed uniformly distributed random noise onto the resulting signals. The

simulated data was used to compare the relative sensitivity of the algorithms of

Sano and Sawada [117], Wolf et al. [145], Rosenstein [114], and Kantz [73], [75]

to measurement measurement noise. They found that the algorithms of Sano and

Sawada and Wolf et al. algorithms were especially sensitive to measurement noise,

whereas the algorithms from Rosenstein and Kantz were less so.

Many examples exist in the published literature where the estimation of Lya-

punov exponents fails to distinguish chaos from noise in time series data (e.g.,

[19], [138], [69], [126] ), which can lead to erroneous conclusions of “chaos” even

for periodic (e.g., [52] ) or completely random (e.g., [126] ) datasets that are not

chaotic at all.

Strictly speaking, the Lyapunov exponents “are not rigorously defined in the

presence of external noise” [144]. Several authors have questioned the validity

of even defining Lyapunov exponents in the presence of noise [110], [144], [44].

Without being able to determine with certainty that the cause of the SDIC found

in a given dataset was because of a deterministic process, an accurate diagnosis

of chaos is generally not possible. Thus, findings of positive Lyapunov exponents,

should never be taken in isolation as conclusive proof of chaos without further

evidence. Taking this a step further, Ellner and Turchin [44] have suggested that

“strict separation between chaotic and stochastic dynamics” may be “unnecessary

and misleading” for certain biological systems.

Lyapunov exponent estimation algorithms based on orbital divergence are not

robust to dynamical noise. In a chaotic system, some (or possibly all) of the

long-term unpredictability is internally generated by nonlinear causal relationships

among the state variables. Paired orbits will diverge even if λ < 0, simply because

they did not experience the same sequence of perturbations, so the estimate of λ is

positively biased, according to Sayers et al. [120]. Consider, for example, a system
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influenced by dynamical noise. No matter what the phase space structure of the

system is, two orbits starting nearby will always diverge if they are influenced by

different sequences of random perturbations. The same is true if the perturbations

are deterministic. Ellner [45] points out that the key to defining chaos in systems

with exogenous elements is to observe whether nearby orbits diverge when sub-

jected to precisely the same exogenous perturbation and present a method based

on mappings. A model for the effects of dynamical noise within chaotic dynamics

is still an open problem.

Gao et al. [51] have devised a scale-dependent Lyapunov exponent measure

(SDLE), along with an efficient algorithm to separate noise from chaos. The

authors define a framework, grouping different types of motion together and iden-

tifying different scale ranges where the various types of motions are manifested.

The authors assert the algorithm can be applied with some accuracy to short noisy

time series and readily classify the full spectrum of motions.

Finally, note that when driven by external noise, local instabilities in otherwise

stable dynamical motion can cause behaviour that looks quite similar to deter-

ministic chaos (see [37]). Microscopic fluctuations are amplified to create irregular

macroscopic variations in both the amplitude and phase of a signal. In contrast

to deterministic chaos, however, chaotic-looking behaviour generated by local in-

stabilities vanishes when external noise is eliminated. This behaviour is easily

confused with deterministic chaos. In an experiment where local instabilities are

suspected the best method to make the distinction from deterministic chaos is

to add external noise to the dominant source, and test for linear scaling of the

amplitude of noisy behaviour with the amplitude of the external noise.

In summary, existing numerical methods to estimate Lyapunov exponents are

not robust in the presence of any noise that is not extremely small.

2.9.2 Determining Fractal Dimensions from Noisy Data

Research on the effect of noise on dimension measurement has generally focused

on correlation dimension. There are other methods of measuring dimension but
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the correlation dimension is widely used. It has the advantage of being straight-

forwardly and quickly calculated, of being less noisy when only a small number of

points is available, and is often in agreement with other calculations of dimension.

In the case of dimension estimation, however, the effect of low-amplitude noise

is often not as significant as other effects. One might anticipate that the fractal

scaling within a given volume will break down at length scales equal to the noise

amplitude. However unless the system amplifies noise excessively, one does not

expect the scaling to be affected at length scales much larger than the noise am-

plitude. Although noise is amplified along the expansion directions of a chaotic

attractor, this effect does not have much influence on the dimension estimation

because the noise is amplified back onto the attractor. In other words, the noise

is drawn to the attractor and consequently has little effect on the scaling. Thus at

relatively low SNRs there is still a good range over which a fractal may be scaled.

Takens et al. [123] propose a simple method to estimate the correlation dimen-

sion of a noise-infected attractor. The method uses the fact that the noise induces

a bias in the observed differences of orbits, which tend to appear further apart

than they are. A correlation integral function is determined that allows for this

effect of noise, which is also assumed to be strictly bounded in magnitude. This

function is based on a rescaling of the interpoint distances on the attractor. The

assumption is that noisy orbits on the attractor stay within the proximity of the

uncorrupted orbits of the underlying (chaotic) dynamical system. The rescaled

correlation integral may be used to approximate the correlation dimension of the

underlying chaotic system. The noise is concurrently estimated, and in general

this will be underestimated.

Argyris et al. [5] investigated the effects of noise on the correlation dimension

D2 of chaotic attractors using a broad range of well known discrete and continu-

ous time dynamical systems. They initially chose small values for all parameters

and increased then gradually. Maximum values for parameters were chosen so

the attractor retained its geometric structure and a finite correlation dimension.

Numerical results revealed the presence of noise inflates the correlation dimension.
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For dynamical noise, the geometric structure of an attractor is unstable in the

sense that as the values of parameters are increased, the geometrical structure of

the attractor vanishes.

2.10 Principal Component Analysis for Signal

Noise Separation

Later we will approximate the chaotic dynamics by deconstructing it into a set of

shadow-UPOs, each of which is approximately a cycle and is amenable to linear

noise reduction techniques. Broadly speaking, there are two main techniques for

separating signal from noise for a linear system, PCA and Fourier -based filters.

Principal Component Analysis (PCA) is a widely used technique to reduce di-

mensionality of a data set and arises across multiple disciplines like engineering,

signal analysis, mathematics, physics and statistics, and in each case usually has a

different name. The various statistical methods like Principal Component Analysis

(PCA), Independent Components Analysis (ICA) and Kernel Principal Compo-

nents Analysis (KPCA) all refer to techniques or algorithms that utilise singular

value decomposition (SVD) as part of their method. The distinction here is that

in many cases SVD is a single step in a more complicated process. In engineering

these SVD method is referred to as Principal Orthogonal Decomposition (POD).

The method is also known as Singular Spectrum Analysis.

It is also important to note the distinction between PCA as an attractor re-

construction method and as a noise reduction tool. All subsequent discussion

concerning PCA will be in the context a method to reduce noise from a signal.

Also, to avoid confusion, we will refer to PCA as the noise reduction method,

noting that it uses SVD as part of the process.

Principal Component Analysis (PCA) reduces a large set of variables to a far

smaller set, whilst retaining as much information as possible. The assumption is

that whilst all of the original variables might be present in the expressions for prin-
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cipal components, the number of principal components required to represent the

data may be less than the number of original variables. PCA transforms a set of

observations of possibly correlated variables into a set of values of linearly uncorre-

lated variables referred to as principal components. The first principal component

accounts for as much of the variability as possible (i.e., has the greatest possible

variance). Each subsequent principal component has the highest variance possible

with the requirement that it is orthogonal to the preceding components. For a

set of n observations in p variables, the number of unique principal components is

min(n− 1, p).

The principal directions are defined by the eigenvectors of the covariance matrix

and form an uncorrelated orthogonal basis set. They are ranked using their eigen-

values with a higher eigenvalue denoting more explained variance. The method is

sensitive to the relative scaling of the original variables.

The SVD (Singular Value Decomposition) deconstructs a matrix Z into the

form

Z = SΣCT , (2.20)

where S is a orthogonal N × n matrix of eigenvectors of the covariance matrix

XXT , with N � n (in this context), C is a orthogonal n× n matrix of

eigenvectors of ZTZ and, Σ is the n× n diagonal matrix consisting of singular

values i.e. diag(σ1, σ1, ...., σn) , where entries σ1 ≥ σ1 ≥ ... ≥ σn ≥ 0.

For noise-reduction of the discrete measured time series {vi} with i = 1, 2, ...NT ,

where NT is the total number of data points, we generate a series of vectors

{zi εRn : i = 1, 2, ..., N}, (2.21)

and use these to construct a trajectory matrix X as follows:
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Figure 2.3: PCA: A dimension reduction tool that can be used to reduce a large
set of variables to a small set that still contains most of the information from the
larger set. We can use this method to separate noise from the signal.

Z =


zT1

zT2
...

zTN

 =


v1 v2 . . . vn

v2 v3 . . . vn+1

...
... . . .

...

vN vN+1 . . . vN+n−1

 , (2.22)

where N = NT−(n−1) is the embedding dimension. The trajectory matrix is just

the Takens embedding in phase space with τ = 1. If we write ZC = SΣ, we can

interpret the orbit as exploring an n-dimensional ellipsoid, where {ci} represent

directions and the {σi} represent lengths of the principal axes of the ellipsoid.

Noise causes all the singular values of the trajectory matrix Z to be non-zero.

If the noise is white, all the singular values σ2
i of the noise-free signal will be

uniformly shifted:
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σ2
i = σ2

i + σ2
noise , i = 1, 2, ..., k (2.23)

σ2
k+1 = ..... = σ2

n = σ2
noise, (2.24)

where σ2
noise are the singular values of the noise floor. We can in this case write

the trajectory matrix Z as:

Z = Z +NZ = [S1 S2]

[
Σ1 0

0 Σ2

][
CT

1

CT
2

]
, (2.25)

where Z is the deterministic part of Z, NZ is the noise-dominated part,

S1 εRN×k, S2 εRk×k and C1 εRn×k.

To separate the trajectory matrix Z from the noise-dominated part, one can es-

timate the deterministic part Z by using least squares or the minimum variance

estimate. The least squares estimate of Z is given by

Ze = S1Σ1C
T
1 , (2.26)

and the minimum variance estimate is given as

Ze =
S1

Σ1

(Σ2
1 − σ2

noiseIk)C
T
1 , (2.27)

where Ik is the k × k identity matrix.
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2.10.1 Relation to Fourier Analysis

PCA process has similarities with Fourier analysis. As with PCA, Fourier analysis

involves expansion of the original data in an orthogonal basis:

xpq =
∑

cpke
i.2πqk/m. (2.28)

If we normalise the vector {ei.2πqk/m}π and name it v′k, then:

xpq =
∑

bpkv
′
qk =

∑
upk′s′kv′qk, (2.29)

which generates the matrix equation X = U ′S ′V ′T , which is similar to Equation

(2.20) above. The key difference is that whilst the set {v′k} forms an orthonormal

basis, the set {u′k} does not. The PCA process, of filtering by concentrating on

the largest singular values, is similar to the low-pass cut-off approach of Fourier

analysis.

We will be using the Fourier filter to reduce noise from detected cycles in

Chapters 3 to 5. This Fourier technique could be replaced by PCA or supplemented

with PCA to reduce low levels of remaining residual noise. We prefer the Fourier

approach as it allows flexibility to target specific frequency ranges and also to

utilise signal processing strategies designed for specific types of noise.
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2.11 Review of Noise-Reduction Methods

We now look at directly separating noise from a time series. This includes tech-

niques specifically modelling and extracting the noise, exploiting the dynamical

aspects by extracting orbits, projective maps that separate signal and noise and

the fitting global functions to parts or all of the dynamics. Also, and importantly,

we discuss techniques that utilise the UPO approximation of a chaotic time series.

The following diagram shows a useful taxonomy of methods.

Figure 2.4: Taxonomical chart, broadly grouping noise-reduction methods that
follow the same approach.

All these approaches have their advantages and limitations, and it is fair to say

most work well with well-understood classic model chaotic systems with added
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Gaussian noise. The real challenge is to address real life systems with higher noise

levels and different types of noise. Thus there is a need for robust techniques that

counter the many difficulties highlighted previously and yield a good attractor

characterisation.

The key reference in this area, summarising noise-reduction methods was pre-

sented by Kostelich and Schreiber [83] in 1993 and this excellent material is heavily

referenced for the following summary.

The emphasis of this literature review is pre-embedded techniques, trajectory-

based methods and local projective maps as they form the core foundation of

research to date. The common thread running through all these methods is that

they seek either to employ an optimal linearisation to sections of the data where

a linearisation might accurately represent the signal, or to deconstruct the signal

into linear subspaces so the signal will separate from the noise as best as is possible.

These are common techniques, used frequently in applied mathematics.

We shall not consider advanced statistical techniques as they more appropriately

fall into the scope of statisticians. The fitting of global approximants is touched on

briefly as there is limited research in this area. Finally we look at the very limited

research into noise-reduction in chaos using UPOs, and recent developments in the

field.
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Figure 2.5: Summary of the noise-reduction techniques reviewed.

2.11.1 Pre-Embedded Data Methods

2.11.1.1 Moving Averages

The moving average filter is a simple low pass finite impulse response filter (FIR)

and thus does not destroy the underlying chaotic dynamics. Whilst being optimal

in the time domain in the sense of smoothing out white noise, it does have limita-

tions and is not an end solution in itself. The moving average is an exceptionally

good smoothing filter (output in the time domain), but an exceptionally bad low-

pass filter (output in the frequency domain). It is the worst filter for signals with
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a broadband profile in the frequency domain as there is no means to distinguish

one band of frequencies from another [131]. The moving average is highly effective

if our goal is to smooth out the fluctuations uniformly on the signal, to facilitate

the easier application of a numerical method requiring smoothness. We are mostly

limited to short-length centered moving averages. However, as a noise reduction

method it is left wanting unless noise has a mean of zero. The smoothing inherent

in this transformation assists greatly as a pre-processing tool, particularly in locat-

ing and identifying UPOs. It is an important part of the noise-reduction method

presented later in this thesis and will be discussed in Chapter 3. The following

two methods are focused on filtering the embedded data.

2.11.1.2 Sauer’s (Low-Pass Embedding) Method

Sauer [118] designed a four-step numerical iterative algorithm to reduce noise from

a discretely sampled input signal. It assumes that noise is additive and that the

user has an estimate of the noise. The first step of the method is to smooth

data locally into meaningful neighbourhoods, and this is achieved using a Fourier

transform directly with a selected window size of w. The highest 1
2
n frequency

contributions are attenuated (set to zero) for a selected even number n. The

remaining smoothed data set is subjected to the inverse FFT. This provides a

smoothed version of the windowed section of the signal. The idea here being to

reduce noise sufficiently to justify the subsequent embedding. The smoothed data

is subsequently embedded in phase space and organised into neighbourhoods of

size r, where r is a rough estimate of the magnitude of the noise.

SVD is then employed to calculate the principal directions of the data set. The

principal directions connect a fixed anchor point, say the center of mass of the

neighbourhood, to the embedded points. The remaining directions are eliminated,

resulting in a noise-reduced signal.

Finally, to minimise the introduction of new correlations in the noise from the

algorithm, the corrections are adjusted to ensure they add to zero. If the noise is

uncorrelated with the signal, the random noise in each embedding coordinate will

have mean zero. A multiple of the calculated correction is added to the raw data.
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The multiple is a number between 0 and 1, is small for the first iteration through

the data set, and is incremented by a fixed value for each pass as the data becomes

more consistent with a deterministic process. The Sauer method is summarised as

follows.

Figure 2.6: Summary of steps in Sauer low-pass embedding method.

Sauer thus utilised both a Fourier transformation and an SVD transformation;

two of the most powerful tools in signal analysis. The method worked well as

measured by the SNR with Rossler and Lorenz systems. The are several challenges

with the application of the model. Firstly, finding the appropriate windows within

the time series to apply low-pass Fourier filtering. Our SUNR method presented in

this thesis, will take a similar approach, but we define our windows using detected

complete and partial shadow-UPO sequences. Secondly, the initial low-pass filter

will not specifically address the “type” of noise that is present. Also the residual
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noise may be sufficiently high to invalidate the subsequent embedding. Finally, the

process of grouping points into noise-based neighbourhoods and applying SVD may

not eliminate any noise already removed using the Fourier low-pass filter.

The highlight of this work by Sauer is a very useful identity showing how the

application of multiple linear operators to the time delay vectors will still produce

an embedding. Define xi as a point on attractor that describes the state of the

system at time i. For measurement function h(x), we have yi = h(xi) is the ith

point of the time series. If we define the embedding map, E : A→ Rn:

E(xi) = [h(xi), h(xi−1), .....h(xi+n−1)] = (yi, yi+1, ......yi+n−1). (2.30)

Sauer et al. [118] have shown we are not restricted to E and can define a more

general embedding using linear combinations of the input time series:

F (xi) = P


xi

xi+1

...

xi+w+1

 =


p11 . . . p1w
...

...
...

pm1 . . . pmw




xi

xi+1

...

xi+w+1

 , (2.31)

P is a m× w matrix, which transforms the set of time-delay vectors. P produces

an embedding provided the rank of P is sufficiently large and P does not collapse

periodic points of the attractor of integral period less than equal to n. This

insight allows linear transformations of delay vectors, but does not preclude more

complex nonlinear transformations and in particular it does admit many of the

linear methods used commonly today.

Assuming we are conducting the attractor reconstruction using the method of

delays (noting most other methods can be shown to be mathematically equivalent),

we may apply a linear filter P , which we know will preserve the embedding. This

underpins the application of a range of signal processing techniques to the data,

in particular the Fourier transform of the data.
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2.11.1.3 Broomhead and King’s Application of PCA

Broomhead and King [14] were arguably the first researchers to take the Principal

Components Analysis (PCA) concept from signal analysis and apply it to non-

linear dynamical systems. They structured the delay windows (or results taking

n multiple samples of the time series) into a trajectory matrix. PCA was then

used to reconstruct the attractor, with the added advantage of eliminating data

redundancy and having a built-in noise filter. We explained the core concepts of

finding the embedding dimension and separating noise from signal using principal

axes in Section 2.10.

Interestingly, Grassberger et al. [60] have found that filtering based on basic

SVD is about as efficient as Fourier-based Wiener filtering, and usually better than

simple low-pass filtering. Broomhead et al. also employed the concept of taking

multiple readings (multisampling), so one may exploit the redundancy in the data

and employ Principal Components Analysis (PCA). Suppose we take p time series

of measurements and the time series at time i is denoted by

x = {y1i , y2i , .....y
p
i }. (2.32)

Each of the p time series contains the same dynamical information and similar

amounts of noise. The series with the largest variance has the smallest relative

noise level (highest SNR). We can employ the previous Sauer identity stating

that linear combinations of the delay vectors will preserve an embedding. Almost

every nonsingular linear combination Qi contains the same information about the

dynamics, where

Qi =

p∑
k=1

bky
k
i . (2.33)

One can select the Qi with the highest SNR ratio. This can be achieved

by maximising the variance of Qi subject to the constraint
p∑

k=1

bky
k
i = 1. The

required vector is the eigenvector corresponding to the largest eigenvalue of the
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p× p covariance matrix C whose (k, l)th component is

Ckl =
〈
ykyl

〉
−
〈
yk
〉 〈
yl
〉
, (2.34)

where the angular brackets denote the average value over all time steps. The

method [14] was illustrated on the Lorenz system without specific testing against

a range of noise types or levels.

2.11.2 Trajectory-Based Reconstruction Methods

The methods described in the previous section are in general linear methods ap-

plied to sections of the time series that are restricted in either the time or frequency

domain. They do not exploit the underlying dynamical behaviour to identify noise

perturbations and extract them from the underlying deterministic orbits. The se-

quence of elements in the time series provides valuable time-ordering information

that is desirable to utilise if at all possible. Trajectory-based techniques follow

the evolution of the orbit in time, averaging forwards and backwards in time to

smooth small segments and reduce the noise.

2.11.2.1 Schreiber - Grassberger One-Step Linearisation Method

Schreiber and Grassberger [125] designed a method where past and future ob-

servations are used to update or correct one or more observations in the middle,

with the goal of avoiding the drifting phenomenon. They define the dynamical

relationship between past and future values (including noise) through the implicit

relationship

F (y1, y2, .....ym+1) + ηm+1 = 0. (2.35)

They then take a linear approximation to F to find a least-squares estimate of

the value in the centre of the sequence

y∗(m/2) =
m+1∑

k=1, k 6=m/2

bkyk + c, (2.36)
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The coefficient b(m/2) is excluded to prevent a trivial fit.

To execute this method, given a time series y1, y2, ..., ym+1, one locates several

closely matching sequences of m + 1 observations. Write the middle value in

each sequence as a linear combination of the other entries in the time series as

per Equation (2.36). The linear coefficients (except bm/2) are determined using a

least-squares fit. In a similar way, use y2, ..., ym+1,ym+2, to determine a new set

of coefficients to estimate y∗(m/2+1), and so on to the end of the time series. This

process adjusts all but the first and last m/2 values. The output is a less noisy

time series if the linearisation is an accurate representation of the dynamics.

Schreiber [124] has presented a simpler version of this method, which yields

good results for short and noisy data sets. Essentially, the linear approximation in

Equation (2.36) is replaced with a constant term, which can be determined with

much less data. Only the central coordinate in the delay window is corrected as

only this coordinate is optimally controlled from past and future (its value is fixed

along both stable and unstable manifolds). The key optimiser in this approach is

the size of the neighbourhoods, ε. For the examples given, a value of ε of about

three times the amplitude σ of the noise works best. This method has the present

coordinate xi replaced by its mean value in N ε
i :

xcorri =
1

N ε
i

ε∑
i

xj, (2.37)

where N ε
i is the number of neighbours of xi for which

sup{|xj−k − xi−k| , ... |xj−l − xi+l|} ≡ ‖xj − xl‖sup < ε. (2.38)

That is, all segments of the orbits, which are close during a time lasting from k

iterations in the past to l iterations in the future, are employed in Equation

(2.37).
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The experimental studies were presented using the Henon Map and the Mackay-

Glass equation, both with added Gaussian noise. Results showed that the method

works best with moderate amounts of data and noise levels above 1%. This method

has formed the basis or motivation for many of the more advanced local projection

methods we shall discuss.

2.11.2.2 Kostelich-Yorke Two-Step Method

Kostelich and Yorke [84] leverage the delay-vector reconstruction method to reduce

noise. The evolving path on the chaotic attractor in phase space contains non-

local signal information. Their two-step iterative algorithm detects and corrects

errors in orbits resulting from noise. The method integrates a dynamical learning

technique with a least-squares orbit adjustment technique to create a modified

orbit.

The process firstly involves constructing a small ball around each point in the

time series. The subsequent evolution of the set of points encased in each ball is

then followed. A linear approximation to these dynamics is computed using the

Eckmann-Ruelle linearisation technique. This technique is shown in Figure 2.7,

referenced from [85]. Since we are taking discrete samples of the original signal,

we can consider points on the reconstructed attractor as iterates of an unknown

nonlinear map f . Assume the dynamics are given by

xn+1 = f(xn), (2.39)

where f is an unknown function, which is assumed to be at least piecewise

differentiable. Eckmann and Ruelle [43] propose the local linear approximation of

f

f(xref ) = Axref + b, (2.40)

that is computed using least squares. Here A is a m×m matrix approximating

the Jacobian matrix of partial derivatives of f evaluated at xref and b is an

m-vector. Suppose xref has k neighbours within a suitably small neighbourhood
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U . Linear regression is used to find the matrix A and vector b that minimize the

sum of squares

∑
j

‖xj+1 − (Axj + b)‖2 , (2.41)

where the sum runs over all indices j such that xj ε U . A different A and b are

computed for each neighbourhood on the reconstructed attractor.

To avoid the drift problem explained above, the linearisation must be followed

by a second step to adjust the orbit to be more consistent with the dynamics.

Trajectories are now adjusted to ensure distances are small between each point

and its pre-image, each fitted point and the original observation, and the fitted

point and its image. The desired orbit is thus {x∗i+k}
p
k=0 that minimizes the sum

of squares

S =

p∑
k=0

∥∥x∗i+k − f(x∗i+k−1)
∥∥2 + w

∥∥x∗i+k − xi+k∥∥2 +
∥∥x∗i+k+1 − f(x∗i+k)

∥∥2 , (2.42)

where f denotes the estimated dynamics at each point.

This outputs a sequence of scalar values. The distances between each point and

its image are weighted twice as heavily as the distance to the original observation

when w = 1. Larger values of w can be utilised when the input contains large

isolated errors so the orbit is not moved excessively.
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Figure 2.7: Summary of steps in two-step Kostelich Yorke Method.

As with all numerical methods this has some limitations. In relation to the

Eckmann-Ruelle linearisation, there are several difficulties which have been con-

sidered in detail by Kostelich in [82]. Two important considerations are as follows.

The accuracy of the approximation depends on how well a linear map describes

the dynamics and some regions of the attractor may contain few observations. A

larger ball size increases the number of available points but makes the nonlineari-

ties more prominent. This situation becomes more significant as the dimension of

the attractor increases. Also the linear least squares process produces biased esti-

mates of the matrix A and vector b because errors in measurement are present in

all the observations; the “errors in variables” problem. In relation to the correction

step, the minimisation exercise can be complicated. In particular, the Jacobian
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of f must be available. This step is more complex if f is not a piecewise linear

function. Strategies for this case are presented by Davies [36].

Kostelich and Yorke tested their method on experimental data captured from

the flow of noise-infected vortices in a Couette-Taylor experiment, where the at-

tractor is a limit cycle. The frequency domain profile is comprised of a fundamental

period and its various subharmonics above the noise floor. The two-step noise re-

duction method improved resolution of the limit cycle and the noise floor was

reduced significantly. Power was conserved in all harmonics, and some harmonics

that were were previously hidden by noise were revealed. The produced results

superior to those obtained using low pass (Butterworth) filter. When applied to a

Henon map with 1% added noise, it was found that 79% of that noise was removed.

2.11.2.3 Farmer-Sidorowich Optimal Shadowing Method

Hammel extended the original work of Anosov and Bowen relating to shadowing

in Axiom-A dynamical systems, to non-hyperbolic systems. Hammel [65] then

utilised the techniques employed in the proof of the shadowing lemma for a noise-

reduction method. The constraint defining a shadowing orbit is replaced by a

linear approximation.

For a specified noise-infected orbit y, we require an orbit x that minimises the

L2 distance between x and y, with the constraint xt+1 = f(xt) for t = 1, 2, ...., N−
1. This problem can be solved with the method of Lagrange multipliers and is

equivalent to minimising:

K =
N∑
t=1

‖yt − xt‖2 + 2
N−1∑
t=1

[f(xt)− xt+1]
Tλt, (2.43)

where {λi} are the Lagrange multipliers.

These equations are differentiated with respect to unknowns, and we search the

resulting system of equations for an extremum. f is usually nonlinear so there is no

closed form solution and a numerical method is required. Farmer and Sidorowich

[47] use Newton’s method, expanding f about a trial solution {x∗t}:
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f(xt) ≈ f(x∗t ) + f ′(x∗t )(xt − x∗t ), (2.44)

f ′(xt) ≈ f ′(x∗t ). (2.45)

One can now formulate the problem more efficiently by defining the following

expressions:

∆t = x∗t − xt = the deviation from the true orbit,

γt = yt − x∗t = the deviation from the noise-infected orbit,

εt = x∗t+1 − f(x∗t ) = the deviation from determinism, and

Jt = f ′(x∗t ) = the Jacobian at x∗t .

We seek a minimum of
N∑
t=1

‖γt‖
2, subject to the constraint that εt = 0 for

t = 1, 2, ...N .

Farmer and Sidorowich define an optimal solution, in the least-mean-squares

sense, to the shadowing problem and applied it as a noise-reduction method. They

employ a learning technique, and exploit the expanding and contracting behavior

to achieve a noise reduction. The linearised equations are now:

γt = JTt λt − λt−1 −∆t, (2.46)

∆t+1 = Jt∆t + εt. (2.47)

This can be written in matrix form as follows:

−1 JT1 · · · · · · · · · · · ·
J1 0 −1 · · · · · · · · ·
· · · −1 −1 JT2 · · · · · ·
· · · · · · J2 0 · · · · · ·
· · · · · · · · · · · · 0 −1

· · · · · · · · · · · · −1 −1





∆1

λ1

∆2

λ2
...

λN


=



γ1

−ε1
γ2

−ε2
...

−εN


. (2.48)
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If M denotes the (2N −1)× (2N −1) matrix in Equation (2.48), we can write this

concisely as:

Mv = w. (2.49)

When f is a d -dimensional dynamical system the elements of M are each d× d
matrices.

The next step is to invert M , and solve for v. This yields an updated ap-

proximation of the true shadowing orbit {xt} that is superior to the test solution

{x∗t}, after iterating by Newton’s method (replacing x∗t by xt after each iteration).

For optimal noise reduction, N must be as large as possible. Unfortunately the

structure of M is problematic as it becomes ill-conditioned for chaotic dynami-

cal systems. Approximate homoclinic orbits further cause M to be nearly rank

deficient.

The net result is that these factors make it difficult to invert M when N is

large. The ill-conditioning problem is addressed by using the method of manifold

decomposition. Manifold decomposition works by projecting the solution onto

the stable and unstable manifolds. It requires that orbits are free of homoclinic

tangencies. When the angular separation between stable and unstable manifolds

is too small, this method fails. The problem with homoclinic orbits can be tackled

using SVD - this algorithm is commonly used for inverting nearly rank deficient

matrices. It works well for short orbits with good noise reduction, even with

relatively high levels of initial noise. The difficulty here is that using SVD to

invert a n× n matrix is computationally expensive and for large n this process is

slow.

Farmer and Sidorowich blend these two techniques in a hybrid method. One

determines the stable and unstable manifolds at each point. A search is con-

ducted looking for points that have small angles between the stable and unstable

manifolds. Once these points are located, a SVD is carried out, inverting M for

short orbits (usually < 50 points) centered on these points. Manifold decomposi-

tion is then carried out for the full time series. The resulting orbit is tested for
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determinism. If not, then again perform the SVD on the places where it is not.

The method is tested on the Henon map with added noise and performs well.

If the function f is known, this method can in theory reduce noise to within the

margin of computer error over long orbits. If the function f is unknown and is to

be learned from the data (i.e. from embedding and global function fits), the ability

to reduce noise is constrained to the margin of error of the learning algorithm and

the length of the time series. Initial noise levels need to be low for the method to

converge. Results were favourable with the initial SNR as low as 50 dB.

Several features of this work are interesting and useful. Firstly, these authors

identify the real issues that exist as a result of homoclinic tangencies; a common

phenomenon now known to be present in most chaotic systems. Further, they

utilise both SVD and manifold decomposition to address the problems. Clearly

this method is computationally expensive, complex, requires user judgment and

best suited for situations where one has knowledge of the underlying dynamical

function f . Shadowing techniques in general, to the best of our knowledge, have

only been tested on two-dimensional maps.

94



Noise Reduction Techniques

2.11.3 Locally Geometric Projection Methods

The more promising methods to date for chaotic systems with moderate levels

of noise employ orthogonal projections on linear hyper-surfaces, followed by the

application of linear mathematical methods. There has been a significant amount

of research published in this area, most of it focusing on stepwise improvements

over the generic PCA approach. The methods/algorithms discussed in this section

are provided to illustrate key progress points in development of these methods.

The methods presented are designed for noise reduction with unknown dynamics

and take a non-parametric approach. The only assumption on the underlying

dynamics is smoothness. The algorithms are always based on the local analysis of

the data, which are scalar time series. These methods can all be viewed within a

common structure – the projection of neighbourhoods on suitable linear manifolds.

The key points of differentiation between methods are explained in terms of the

metric considered, neighbourhoods selected, and the goal pursued.

All methods start with the attractor reconstructed in phase space. It is a subset

of a smooth manifold in an m-dimensional phase space, so one may estimate the

local tangent plane at each point using singular value decomposition techniques.

The central concept is that noise leaks out from any point on the chaotic attractor

into dimensions higher than those of the attractor’s tangent space at that point.

By projecting the embedded data down from a higher dimensional space onto the

lower-dimensional tangent subspace we attenuate some of the noise from the signal.

The creation of a coordinate system by diagonalising a covariance matrix is

widely known concept in signal processing. A basis derived in this manner produces

an optimum compression of information. To isolate points in a set of interest

(i.e. a orbit in Rn) to a given accuracy the PCA basis minimises the number of

components to be specified, thus eliminating redundancy. For a given embedding

dimension, the average error caused by projecting onto the first v basis vectors

is minimised if only the first v singular vectors are retained. The standard basis

when we implement the method of delays is Rn. In contrast to PCA, this yields
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the worst possible information compression since the projections of the orbit onto

the basis vectors are all equal.

2.11.3.1 Single Framework for Projective Methods

Mera and Moran [103] have created a unified framework for projective noise re-

duction algorithms, relying on a theorem which shows how to define the linear

subspace which best fits data in Rn with respect to a given metric.

Theorem 15 (Mera and Moran [103])

Let A be a n × n symmetric positive definite matrix and let Lp be the set of p-

dimensional linear subspaces of Rn. The orthogonal projection of v εRn onto T εLp
with respect to metric δA−1 is given by:

PTv ≡ min
w εT

vA−1wT . (2.50)

We say that the linear subspace T εLp is the best linear subspace in Lp for the

points {Zk, k = 1, 2, ...., Nv} εR , with respect to the metric δA−1, if it minimises

over all T εLp:

Λ(T ) =
1

Nv

NV∑
i=1

(Zk − PTZk)tA−1(Zk − PTZk) (2.51)

This best linear subspace can be obtained through the eigenvectors of the n × n

matrix:

MZZ =
1

Nm

NV∑
k=1

ZkZ
t
k (2.52)

Definition 16 A system of vectors {w1, w2, ...wn} εRn is called an orthonormal

system of eigenvectors of MZZ in the metric δA if they satisfy:

1. There exist real numbers λi (i.e. eigenvalues) such that MZZwi = λiAwi,1 ≤
i ≤ n, and

2. wtiAwj = δij, for all i,j.
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Theorem 17 (Mera and Moran [103])

Let λ1 ≥ λ2 ≥ .... ≥ λn be the eigenvalues of MZZ in the metric δA, let {wi, i =

1, ..., n} be the corresponding orthonormal eigenvectors and, for 1 ≤ p ≤ n,

let B be the n × (n − p) matrix whose columns are the last n − p eigenvectors

{wp+1, wp+2, ....wn}. Then the best linear subspace in Lp with respect to the metric

δA−1 is given by:

Tp = span{Aw1, Aw2,.....Awp}, (2.53)

PTpZ = (1− ABBt)Z, Z εRn. (2.54)

2.11.3.2 The Cawley-Hsu-Sauer Method

Cawley and Hsu [18] and Sauer [118] suggested that noise in the observations

may be reduced by projecting the observations onto the subspace spanned by a

suitable collection of singular vectors at each point on the attractor. Both methods

are very similar although the specific embedding methods used differ slightly. The

method involves linear pre-filtering, local linearisation and the use of fitted maps.

The embedding space is Rm for a suitable m and the L2 metric is used. They take

the m-dimensional identity matrix as the matrix A in Theorem 12.

If we let Ui be a neighbourhood of Xm
i and let 〈Xm

i 〉Ui
be the centre of mass of

the points within Ui. The algorithm reduces the noise by projecting the data Zj =

Xm
j − 〈Xm

i 〉Ui
, Xm

j ε Ui onto the best d-dimensional subspace Td. The computed

estimate of xj is:

x′j = 〈Xm
i 〉Ui

+ αZj + (1− α)PTdZj, 0 ≤ α < 1 (2.55)

This procedure connects the noise-reduced time series to the original data

through the term αZj, in line with the goal of a pointwise reduction. The authors

justify this step as a means to soften the effects of rare statistical outliers. Since

each point of the scalar time series appears as a component of m consecutive delay
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vectors, the algorithm provides multiple estimations for almost all of the points of

the scalar time series. This problem is addressed by averaging such estimations.

Grassberger et al. [60] calculated a mathematical relationship between the

Cawley-Hsu-Sauer local linear projection method and the one-step

Schreiber-Grassberger trajectory method after providing a formalism encompass-

ing both methods. They concluded that the Cawley-Hsu-Sauer method is very effi-

cient for oversampled time series, but does have a significant theoretical drawback.

The first and last components of delay vectors are corrected; this is problematic

due to instabilities along the stable and unstable manifolds. Davies [35] showed

that the Cawley-Hsu-Sauer method is equivalent to noise reduction by the method

of gradient descent.

2.11.3.3 Modified Schreiber-Grassberger Method

This is an extension of the Schreiber and Grassberger one-step trajectory-method

discussed earlier, developed by Grassberger et al. [125] after comparing the Cawley-

Hsu-Sauer approach with the Schreiber-Grassberger one-step method, where they

showed the methods are closely related. This “optimised” method was constructed

to combine the strengths of these two methods and avoid their disadvantages where

possible. The key lesson from the analysis of these methods is that one should not

make large corrections to the outer components of delay vectors and also not

project by changing only a single coordinate.

Recall that after a previous embedding of the data in Rm for a suitable (odd)

value of m > 2d+ 1, the one-step algorithm proceeds to assign as the estimate of

the central coordinate of each m-vector Xm
i , a linear function of its m−1 remaining

coordinates. This linear function is estimated using a neighbourhood Ui of Xm
i

and it outputs a single estimate of each data point of the scalar time series. The

one-step method can be proven to be equivalent to the projection of Xm
i on the

best subspace of dimension m−1 with respect to the metric δA−1 , corresponding to

a diagonal matrix A with all its entries equal to zero, except the central coordinate

which is set equal to one. Since such a matrix is non-invertible, the authors take

a diagonal matrix whose diagonal entries are all very small (they use 0.001) and
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a single 1 in the central entry of the diagonal. The central coordinate plays a

special role. If the coordinate computed as a linear function were to be the last

coordinate, it would be ill-defined along the unstable manifold and a correction

of the first coordinate would be ill-defined along the stable manifold. Only the

central coordinate correctly takes into account information about both the past

and the future.

The Grassberger et al. method [60] further modifies this algorithm, so instead

of correcting just the central coordinate for each point Xm
i it corrects several

more coordinates. How many of these will be corrected and the dimension of the

projection subspaces are parameters of the algorithm since each data point of the

scalar time series appears as a central component of several delay vectors, the

average of such estimations gives the final estimate of the point. In the Mera-

Moran framework, the metric δA−1 is given by a diagonal matrix A with very small

entries, with the exception of the central coordinates which are equal to ones.

Testing was carried out the Lorenz, Rossler and Henon systems. For highly-

sampled flows the performance of the method is shown to be as good as the Cawley-

Hsu-Sauer limit. The optimal algorithm and the best parameters depend on the

noise level, the sampling rate, and the length of the time series. The method is

slower than conventional linear filters but gives superior results, particularly for

low noise levels.

2.11.3.4 Hegger and Schreiber’s Multivariate Method

Hegger and Schreiber [66] extended the Grassberger-Schreiber one-step method to

multivariate time series. To capture the past information and the future estimate

of xi the algorithm operates in R3d taking the time series:

Zi = (Xi−1, Xi, Xi+1) εR3d, i = 2, ..., N − 1. (2.56)

The hypothesis is that the clean time series satisfies the following linear rela-

tionship for points zj near to zi:
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xj ∼ Bixj−1 + Cixj+1 + di, (2.57)

where Bi and Ci are d× d matrices and di is an d -dimensional vector, calculated

by solving the optimisation problem:

min
B,C,D

∑
j:XjεU

‖Xj − (BiXj−1 + CiXj+1 + di)‖2 , (2.58)

where Ui is a neighbourhood of Zi. Let Xcorr
i = BiXj−1 + CiXj+1 + di be the

estimate given by the linear model described above. The algorithm takes as the

estimate:

x′i = (1− α)Xi + αXcorr
i , 0 < α ≤ 1. (2.59)

It can be proved that Xcorr
i are the central coordinates of the orthogonal pro-

jection of Zi on the best linear d -dimensional subspace with respect to the metric

δA−1 where A is a diagonal matrix having all the entries almost null except for the

d central coordinates, which are ones. The method was tested successfully on the

Ikeda map and the Lorenz system. If multivariate data is available the method is

superior to scalar methods applied to the single coordinates.

2.11.3.5 Shin’s First Singular Value Method

Shin et al. [128] provide a simple iterative SVD method, which aims to improve

the quality of an embedding reconstruction by addressing the noise issue. They

point out that for the purposes of noise reduction (not reconstruction), one can

maximise the signal to noise ratio by finding a way to use only the first singular

value. This is important as attractors reconstructed using SVD methods may be

degraded by the contribution of singular values that are only slightly greater than

σnoise. To achieve this, the first singular value must contain most of the energy

of the deterministic signal, which will generally be the case when dealing with

low-dimensional systems.
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The method is simple in that only two parameters are required, the sampling

rate and the embedding dimension. A sinusoidal signal is used as a case study,

since the first singular value carries most of the energy of the signal. The singular

values are calculated explicitly, and an expression for the energy carried by the

first singular value is calculated, showing its dependence on sampling time and

embedding dimension. Given an estimated embedding dimension, the optimal

sampling frequency is deduced. For low dimensional systems, a sampling rate of

approximately ten times the cut-off frequency is shown to be sufficient. Once it

is ensured that the energy of the signal is compressed towards the first singular

value, then that singular value alone can be used to estimate x′i using Equations

(2.26) or (2.27). This will maximize the SNR of the recovered signal. We then get

x′e1 = σ1S1C
T
1 , (2.60)

x′e1 =
(σ2

1 − σ2
noise

σ1

)
S1C

T
1 , (2.61)

where S1 and C1 are the first columns of the corresponding singular vectors in

equation Equations (2.26) or (2.27).

This procedure can be considered as an optimal filtering as the singular vector

associated with the largest singular value is also the FIR filter which maximises the

output power. Thus Equations (2.60) or (2.61) may be interpreted as the optimal

FIR filter. Since x′e1 is only an estimate of the true deterministic part of x′, the

recovered signal is not noise free and several iterations are required. The First

Singular Value Method is summarised in Figure 2.8.
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Construct	trajectory	matrix	X	from	noisy	signal	s(k)	

Apply	SVD:						X=SΣCT	

Construct	matrix:	Xe1	
(1)  Xe1=σ1s1c1T					or					
(2)  	Xe1=(σi2-σnoise2	)(s1c1T	/σ1	)					

Obtain	noise	reduced	signal:	xe1	(k)	by	averaging	
each	column	of		Xe1			

Repeat	until:	
1.	σnoise≈0		or	
2.	||σnoisem-σnoise(m-1)||<	ϵ		
	
σnoisem	=	the	mth	iterated	noise	floor	
	ϵ	=	tolerance	
	

Figure 2.8: Summary of steps in Shin’s First Singular Value Method.
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2.11.3.6 Adaptive Local Geometric Projection

Leontitsis et al. [91] proposed an adaptive method to increase effectiveness of

noise reduction using local geometric projection. This study focused on one as-

pect of local geometric projection, the selection of the signal subspace eigendirec-

tions, showing its significance and highlighting the fact that subsequent algorithms

should build in this flexibility. The signal subspace is selected using the most sig-

nificant eigendirections of a neighbourhood and the remaining ones define the noise

subspace. A limitation of the other methods is that the choice of the number of

largest, most significant eigenvectors (defining the signal-space) is fixed before the

algorithm begins and remains constant for all local neighbourhoods, without acco-

modating their specific structure. The authors show that the number q of principal

eigenvectors does vary by neighbourhood. The generic fixed value of q is based on

a trial-and-error approach and a best guess. This adaptive approach allows q to

vary from neighbourhood to neighbourhood.

A simple criterion is presented to distinguish the significant eigendirections

using the maximum logarithmic difference between neighbourhood eigendirection

lengths. It is assumed that at least one eigendirection corresponds to the noise

subspace. This adaptive approach improves the algorithm.

The method is demonstrated using the Henon map, Lorenz flow and the Ikeda

map with added noise at 10%—30% as well as the NASDAQ Composite index.

Note the estimated noise in the NASDAQ was around 53%. Results were markedly

superior to those using a fixed parameter in defining principal eigendirections.
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2.11.4 Global Function Interpolation Models

Global model approaches seek to find a single function f ∗ which gives the best

fit to f , where the sum of squares is taken over all the data. The most common

approach is to express f ∗as a linear combination of a set of k basis functions:

f ∗ =
k∑
j=1

αiψj. (2.62)

The coefficients αj are selected to minimise the L2 approximation error, which is a

linear optimisation problem that can be solved by standard techniques. A popular

choice of basis functions ψj are radial basis functions [67], [72]

ψj = φ(‖cj − x‖). (2.63)

All basis functions have the same functional form and are distinguished only by

the different center points cj. A variety of choices are possible for φ(r) with exam-

ples including Gaussian functions, exponential functions, low-order polynomials,

and rational functions. The coefficients are usually obtained by minimising

e2 =
1

N

∑
[Si+m+1 − f ∗(si, si+1,.....si+m

)]2, (2.64)

where the sum includes all the elements in the time series. The numerical method

of choice for this least-squares problem is singular value decomposition (SVD).

The success of the method depends on the choice of the form of the basis

functions. In addition, one needs a strategy for choosing the centers cj and a

criterion for deciding how many basis functions are required. More basis functions

leads to closer approximations of the input time series. Of course the original map

f is not known, so as more centers are chosen we model more details of the noise-

infected data. When the number of basis functions equals the number of input

points, we have an interpolation between all the observations: the interpolation is

exact on the observations, the noise is interpreted as part of the dynamics, and

the function f ∗ cannot be used for trajectory adjustment.
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Although global function fits have some appeal, the choice of basis functions

introduces some bias. For instance, the accuracy of the dynamical approximations

at each point on the attractor depends in a nontrivial way on both the shape of

the basis functions, the distribution of the centers, and the curvature of the orbits.

The main advantage of global models is that they can provide stable fits even for

small amounts of data. An excellent reference for a summary of global nonlinear

approximants is by Aguirre and Letellier [3].

2.11.5 Noise Reduction using Unstable Periodic Orbits

There are few, if any, formalised noise-reduction techniques in the literature that

utilise the UPO approximation of a time series. The only publication we can

identify of significance in this area is that of Carroll [16]. Carroll’s work here

has served as motivation for our proposed SUNR (Shadow-UPO noise reduction)

method.

Carroll used the set of detected UPOs to build an approximation to the chaotic

time series by constructing all possible sequences of detected cycles and then select-

ing the best fit. This technique was presented in the context of chaos being used

as a communication signal. Communication signals are subject to large amounts

of measurement noise, and the purpose of the method was to produce an approx-

imation that recovered high-level properties, for example the type of attractor,

rather than detecting an exact copy of the noise-free signal. Carroll constructed

an approximate skeleton of the attractor by stringing together the detected UPOs.

This process is summarised in Figure 2.9.

Carroll’s work is set in the context of communication signals, and in particular

recognising an encrypted signal under the noise. In this case the central idea

is that an algorithm that detects UPOs under the noise layer and reconstructs

a time series according to a specified set of rules will act as a solid encryption

methodology.
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Figure 2.9: Summary of steps in Carroll’s UPO-based method.

If we are to use this research in a slightly different context, as a basic platform

to build upon to more accurately approximate a noise-free time series, then several

improvements can be made:

1. Although Carroll’s paper is framed in the context of noise-reduction it is

mostly concerned with being able to “identify” a signal under the noise.

No explicit reduction of noise is carried out. Shadow-UPOs detected from

the time series are amenable to linear noise-reduction techniques. Further,

specialist signal processing methods can be used that target different types

of noise.

2. Carroll uses the method of close returns to detect shadow-UPOs, clearly

aware of the resilience to noise of this method. The method can be modified

to improve cycle detection rates for significantly higher levels of noise.
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3. In the paper UPOs are concatenated in longer and longer sequences and

tested for correlation with segments of the noise-infected time series to de-

termine the best location of the approximating segment. This is not nec-

essary as the actual location of individual UPOs in the time series can be

recorded and stored. After shadow-UPOs are extracted and filtered, they

can be returned to their original location in the time series.

4. Incomplete or partial cycles were not discussed given the original encryption

context. However these appear in great numbers, contain valuable informa-

tion and can be used.

5. Non-UPO segments of the time series are discarded. These contain valuable

information about the dynamical system.

6. There are joining discontinuities that are problematic if the time series is

to be subsequently used in numerical algorithms requiring smoothness, to

calculate invariants. This problem is addressed by replacing cycles back

their original location after filtering.

In Chapters 4 and 5 we present a new noise-reduction method (the SUNR

method), which was motivated by this work. Features of the SUNR method in-

clude:

1. We detect shadow-UPOs using a modified recurrence matrix method. This

enhances detection rates for all noise levels and detecting cycles at higher

noise levels that otherwise would not be detected.

2. We reduce the noise on each cycle using a targeted strategy, depending on

the type of noise.

3. We utilise complete and partial cycles (defined as > 50%—80% of UPO

period), which cover a high percentage of the time series.

4. We replace noise-reduced cycles back into their original location in the time

series, reducing joining discontinuities.
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5. We utilise the entire time series. Sections not filtered using complete or

partial cycles are addressed with a simple centered moving average. The

moving average is a FIR filter and does not corrupt the underlying signal

and does not introduce a phase lag. It also only applies to a small section of

the time series.

6. We use multi-sampling where possible to further enhance results.

2.12 Recent Developments in Noise Reduction

The rapid development in noise-reduction techniques for chaotic dynamical sys-

tems occurred primarily in the two decades between between 1980 and 2000. There

has been a steady flow of research published since then, most of it as improvements

and extensions of the core techniques developed during that period. We now briefly

summarise several of the key developments since 2000.

2.12.1 Local Approximation using Polynomials

A novel variation on the local projective geometric method approach was published

by Jafari et al. in 2012. The data is initially embedded in phase space, and the

authors assert the method is insensitive to the choice of embedding parameters.

The conventional local projection model involves projecting measured orbits onto

the surface of a low dimensional attractor using PCA. The lower dimensional

attractor contains the signal and not the noise and is approximated using a local

tangent space. Typically a local tangent plane is fitted using a point and its near

neighbours. This can be thought of as a first-order linear approximation.

Jafari et al. choose to fit an n−degree polynomial in the local tangent space rather

than a plane. An adaptive process is prescribed that selects the value of n by taking

into account the local stretching and folding of the attractor. The method requires

that curvature is continuously calculated along the curve, which is problematic

when noise is present. Multiple iterations are recommended to reduce this problem.

Segments of the attractor with low curvature are modelled by polynomials of degree

1—3 and areas of high curvature are modelled with polynomials of degree 2—4.

The curves are fitted using least squares. This enhances the effectiveness and
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reduces the goodness of fit errors. Figure 2.10, from [71], illustrates the method,

showing a section of noisy orbit approximated with a fitted polynomial.

Figure 2.10: The red curve is a n-polynomial fitted using least squares with the
degree n estimated based on curvature.

The method is tested on the Lorenz system and also on real sunspot data.

For added noise levels of up to 20% the method results in a 50% improvement in

the SNR. This method is an excellent variation of the local projective geometry

method. In particular this method incorporates the curvature of the attractor.

The limitations are around measuring the curvature accurately throughout the

system evolution, fitting a polynomial that does reflect the true geometry and

potential end-point discontinuities between piecewise fitted polynomials.

2.12.2 Wavelet Transforms for Noise Reduction

There has been developing interest in reducing noise from chaotic signals using

wavelet transforms. At their most basic, wavelets are ‘mini waves’, existing for a

finite time then smoothly dying away. A wavelet transform differs from the Fourier
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transform in that the wavelet transform includes time as well as frequency infor-

mation, unlike the Fourier transform which utilises only frequency information.

This is very useful for non-stationary dynamical systems, like chaotic systems.

The Fourier Transform has a problem with resolution that may be likened to

the Heisenberg uncertainty principle in physics. One can either accurately locate

the frequency or the time of a signal, but not both. This dichotomy is illustrated

in Figure 2.11, as shown in [30]. Decomposing a signal into wavelets instead of

just frequencies can give superior resolution in the transformed domain. When a

Wavelet Transform is applied, the signal is transformed into the wavelet domain,

rather than the frequency domain.

Figure 2.11: For non-stationary signals we may know the frequency or the time
but not both.

The chaos noise-reduction problem using wavelets is formulated as follows. Let us

model the chaotic attractor xt using the relation:

xt = z(xt−1), (2.65)

where z is a real function with a bounded support.
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Assume the chaotic system is perturbed by noise and that as a result the

observable data is no longer xt but ut and the observed attractor is no longer z

but zε defined by:

ut = zε(ut−1). (2.66)

We now seek a transformation on zε so as to get an estimate of z. The input

signal is zε which we assume to be a squared-integrable function: zε εL2(R). We

want to deconstruct zε using a discrete dyadic real wavelet basis. This wavelet

basis is a countable subset of the function space L2(R). The wavelet functions are

defined as:

ψj,k : t εR 7−→ 2
j
2ψ(2jt− k), (2.67)

where ψ εL2(R) is the real mother wavelet, j εZ is the resolution level and k εZ
is the translation parameter. Popular mother wavelet types are the Haar wavelet

and the Daubechies wavelet.

There is a well defined process for calculating wavelet coefficients
ε
zj,k which are

the projections of zε on the subspace generated by the vector ψj,k. The inverse

wavelet transform consists of reconstructing the observed signal, zε, using each

translation and resolution level. The reconstructed signal for a given resolution

level j is called the detail signal :

Dj : t εR 7−→
∑
k εZ

zεj,kψj,k (2.68)

The entire reconstructed signal is the sum of the detail signals:

zε =
∑
j εZ

Dj (2.69)

This is the wavelet noise-reduction framework and Garcin et al. [53], [54],

equate the noise reduction problem to that of filtering the wavelet coefficients

using a thresholding function φ. The aim of the thresholding function is to select

the most significant vectors ψj,k from the wavelet basis and eliminate the noisy
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terms of the wavelet deconstruction, analogous to the PCA process. An expression

for the probability density of the wavelet coefficients is provided by the authors.

Interestingly, for dynamical noise, the expression is exact. A method is presented

to filter the wavelet coefficients of a discrete dynamical system infected with weak

noise, and henceforth construct estimates of the pure signal. They present the

example of a logistic and a Lorenz chaotic dynamical system and test on financial

data (oil prices and NOK/USD exchange rate), with good results.

Applying wavelets as a means of reducing noise from chaotic systems is an active

research area. Results to date indicate the method is effective with lower levels

of added noise (e.g. 10%) and has significant potential as a method to address

dynamical noise.

2.12.3 Dynamical Noise: Kalman-Takens Filter

If a parametric, mathematical model is available for a time series, filtering of low-

level dynamical noise may be possible using a Kalman-style filter. Although the

original Kalman filter applies to linear systems, in recent years the model has

been modified to accommodate non-linear model equations with close to optimal

forecasting capability. These include in particular, the extended Kalman filter and

the unscented Kalman filter, both which work on nonlinear systems.

The recursive algorithm runs in real time and is a two-step process, compris-

ing a prediction phase and an update phase. During the first predictive stage

the current values of state variables and their uncertainties are estimated using

the Kalman filter. The subsequent (noise-infected) values of the state variables

are then observed and used to revise the original estimates. The revision uses a

weighted average with the weights structured to favour estimates with higher cer-

tainty. It is not necessary to assume the errors have a Gaussian distribution when

applying the Kalman filter. However, should the errors be normally-distributed

the filter will output the exact conditional probability estimate.

The difficulty is that in many cases a parametric model will not be known

for an experimental time series. Recently, a method has been introduced that
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combines Takens’ non-parametric attractor reconstruction with Kalman filtering

[63]. The dynamics are reconstructed non-parametrically using delay vectors and

substituted for the parametric model. The Kalman-Takens’ algorithm has been

shown to filter additive noise-infected data with results comparable in performance

to parametric filtering techniques that utilise a mathematical model. Hamilton,

Berry and Sauer [64] studied the effect of the Kalman-Takens filter in the presence

of dynamical noise and found the performance of the method to be almost as good

as that achieved using the full parametric model.

Although one might expect the presence of dynamical noise to hamper the

attractor reconstruction using delay coordinates, Hamilton et al. did not find it

prohibitive. There is still work to be done on optimisation of the algorithm. This

technique is designed to be applied to the entire time series, but is unlikely to be

applicable to individual detected low-period shadow-UPOs unless high frequency

sampling is used. The method is also dependent on the estimation of the noise

covariance matrices required for the Kalman Filter: the noise covariance matrix

Q and the measurement noise covariance matrix R. These quantify the amount of

noise in the system. Process noise refers to the dynamical noise in the process. Q

tells how much variance and covariance there is. The diagonal of Q contains the

variance of each state variable, and off diagonal entries contain the covariance be-

tween the different state variables. R contains the variances of the measurements.

Q is in state space and R is in measurement space and the Kalman filter matrix H

converts these to a common space, and in nonlinear systems that must be linearised

that in some manner. Finally, delay-coordinate embedding of a noise-infected time

series is not guaranteed to be topologically equivalent to the noise-free time series

and the low-noise assumption of equivalence is likely to weaken as the amount of

noise increases.
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2.12.4 Smooth Orthogonal Decomposition Method

Local projective noise reduction using SVD does not utilise the temporal charac-

teristics of the time series. It only uses geometrical or topological properties of

the data. Chelidze [20] has developed an extension of the local projective noise

reduction method which accommodates both topological and temporal character-

istics of the time series. Rather than using SVD to identify the tangent subspace

of a chaotic attractor, Chelidze identifies a smooth subspace that locally embeds

the attractor. This is achieved by using smooth orthogonal decomposition (SOD)

of a bundle of nearest neighbour orbit strands. Temporal smoothness is imposed

on the noise-reduced time series by confining orbits to these subspaces.

Arrange the data representing n simultaneous measurements of d state variables

into a n× d matrix Y , with each column of Y having zero mean. The key idea is

to find a linear coordinate transformation of this matrix Y :

Q = YΨ, (2.70)

where the columns of QεRn×d are new smooth orthogonal coordinates (SOCs),

and smooth projective modes (SPMs) are given by the columns of Ψ εRd×d.

The smooth orthogonal decomposition is obtained by formulating Equation

(2.70) as an eigenvalue problem.

Chelidze tested the SOD method on model data using the Lorenz model and

a double-well Duffing oscillator with added noise. A broad range of metrics were

used, including power spectral densities, SNR’s, correlation sum, short-term or-

bital divergence and visual inspection of reconstructions. The SOD method was

compared with POD under a number of noise scenarios. POD performs well with

low noise levels, but fails at higher noise levels and loses any trace of determinism

at 80% noise.

2.12.5 Higher Order and Multi-scale Refinements

Recent research by Moore et al. [106] has focused on efficiency improvements in

local projective methods, motivated by the second order refinement by Kantz and
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Embedding	
Construct	delay	embedding	with	m	and	τ.	
Find	local	k	≤	m	and	global	d	≥	m	dimensions	for	trajectory	
strands.	
Partition	embedded	points	in	Y	into	kd-tree	for	fast	searching	

Padding	and	Filtering	
Identify	strands	using	false	nearest	neighbors.	
Apply	SOD	to	each	strand	in	bundle	to	find	k-dimensional	smooth	
approx.	to	all	d-dimensional	strands.	

	 	 	 	 	 	 	 	
	

Shifting	and	Averaging	
Replace	points	at	center	of	each	strand	by	approximation	
calculated	above.	
Estimate	filtered	point	using	smoothed	adjustments.	

Repeat	until	data	smoothed	or	criterion	met.	

Approximate base strand using weighted average of smoothed 
strands.

Figure 2.12: Summary of steps in the Smooth Orthogonal Decomposition
Method. Note that the process of using orbit strands, and also that of delay co-
ordinate embedding results in truncations in the matrix Y . These truncations
cause unwanted edge effects and are remedied in the padding and filtering step
of the algorithm.
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Schreiber in 2004 [74]. Kantz and Schreiber observed (from the Sauer method)

that the centres of mass of local neighbourhoods are not in general situated on

the attractor. To more correctly incorporate attractor geometry, they introduced

a second order correction, where first and second order centres of mass of local

neighbourhoods in phase space are combined into a weighted sum. This is then

used as the origin of the projective subspace.

Moore et al. extend the refinement approach of Kantz and Schreiber, developing

a mathematical model using higher order and multi-scale noise filters. The authors

assert that for low and moderate levels of added noise, a dual scale filter tends

to outperform existing local projective noise filters. They measure the increase

in SNR from 8 iterations of the dual scale filter and compare results with the

methods of Sauer, Cawley-Hsu, and Kantz-Schreiber using the Henon and Ikeda

maps as well as the Lorenz system. The method appears to be intended for long

orbits with a relatively low sampling rates. Their initial finding was that extending

these geometric considerations alone to higher order filters did not produce noise-

reduction that was superior to that produced by existing methods. However, when

the method was supplemented with statistical analysis to minimise attenuating

error, it resulted in filters that perform better than existing methods. The findings

are summarised as follows:

1. As noise increased from a low level (1%), higher order filters became relatively

more effective.

2. As the noise level achieved moderate levels (30%), geometrically-based filters

with high error attenuation begin to dominate in performance.

3. At the highest noise level considered (100%), conventional generic local pro-

jective filters were superior.

The results are interesting and show excellent noise reductions when the optimal

order-scale scenario is selected.
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2.13 Summary and Discussion

This chapter highlights the difficulties in removing noise from chaotic signals and

summarises the central concepts of existing techniques. It is not a simple process

and has resulted in a large canon of research. For practical purposes we broadly

define noise as measurement noise or dynamical noise, the key difference being the

recursive or feedback aspect of dynamical noise. The deeply nonlinear nature of

chaos implies signal and noise are closely intertwined and difficult to separate by

conventional linear or nonlinear techniques. The addition of noise to an evolving

dynamical system can in itself lead to a transition to chaos. Noise and SDIC both

radically alter the paths of individual orbits in a chaotic system. Fortunately we

are provided with some protection via the Shadowing Lemma which guarantees

the existence of a pseudo-orbit arbitrarily close to the true orbit, albeit the true

path originating from a different starting point. Numerically detected orbits are

in fact representative of the true dynamics of the system.

Filtering noise from chaotic systems is extremely tricky. Many filter types

that involve a recursive or feedback element (IIR filters) actually interact with

the signal itself, corrupting the results. We are severely limited in the selection of

conventional filters to just finite impulse filters (FIR), which fortunately include

moving averages. A further challenge is that the frequency domain power spectra

of chaotic data looks a lot like broadband noise and ad hoc application of Fourier

techniques that separate noise based of frequency considerations immediately run

into trouble. Incorrect filtering will actually increase the correlation dimension

and add an extra Lyapunov exponent to the system being studied. It has been

demonstrated that the addition of small amounts of noise will render the common

numerical algorithms to determine global structural invariants useless.

Whilst the interaction of filter with noise-infected signal is the most significant

challenge, there is a raft of other issues to be overcome with chaotic systems.

Included are curvature, drifting, the application of least squares with errors-in

variables, ill conditioned least squares and outliers. There is also a range of errors

arising from the use of measurement function in a practical situation. Finally,
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there is a difficulty with embedding noise-infected data that is on par with the

“Heisenberg uncertainty” type of noise-filter interaction discussed above. Takens

theorem does not apply to digitised or noise-infected data and an embedding of

such data cannot be guaranteed to be topologically equivalent to the real system.

We draw attention to the very useful Sauer identity stating that linear combi-

nations of the delay vectors will preserve an embedding. Research by Grassberger

et al. [60] comparing basic linear techniques for noise reduction reveals that filter-

ing based on basic SVD is about as efficient as Fourier-based filtering, and usually

better than simple low-pass filtering, another very useful result. We will need to

apply linear transformations to orbits (detected shadow-UPO segments). We pre-

fer Fourier techniques over PCA for noise-filtering due to the greater transparency

involved (ability to view results in detail in the frequency domain) and the su-

periority of the FTT in allowing targeted solutions depending on the frequency

domain power distribution of the noise.

These considerable complexities have resulted in the development of numerical

techniques, specifically designed to reduce noise from chaotic data. We have pro-

vided a broad classification system of known noise-reduction algorithms based on

the specific approach taken. Techniques applied to pre-embedded data vary from

the simple application of moving averages to more sophisticated approaches like

the method of Sauer, which applies a simple Fourier method and SVD to specific

neighbourhoods. Most published noise-reduction techniques to date either follow

step-wise along an orbit as time evolves or are local geometric projections on an

appropriate subspace. Both techniques are seeking opportunities to locally apply

linearisation or to locally separate signal and noise using a PCA technique. We

have reviewed examples of each main type of key current noise-reduction tech-

nique. Many methods are highly complex, unavailable in Matlab form and for

these reasons unlikely to be useful for non-mathematician experimenters.

The difficulty with trajectory models and local geometric projections is they

start with an embedding. So do the numerical algorithms to calculate metric and

dynamical invariants. We can reasonably assume that the Takens’ conditions hold
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approximately with low levels of noise and sufficiently sampled data. However,

once measurement noise increases (say > 10%), the validity of these methods

becomes immediately compromised and questionable. Further, methods that step

along an orbit run into scaling problems as noise becomes significant. We fully

appreciate that in practical situations, with high noise levels, that any result may

be preferable to no result. However, perhaps we can refine our approach to not

rely on the embedding.

We propose that there is scope to develop improved noise-reduction techniques

using UPOs. There has not been the vigorous development of techniques using

UPOs, as was seen for trajectory and local geometric projection approaches. The

key reference is that of Carroll [16], where a replacement time series is recon-

structed using UPOs stitched together in a manner to optimise cross-correlation.

This work is set in the context of communications and is a motivator of the method

presented in this thesis.

An attractor can be approximated by the sum of lower order UPOs. In later

chapters we will show how shadow-UPOs can be accurately detected from a highly

noise-infected time series, and as these are “approximately periodic”, the universe

of filtering tools expands vastly to include most conventional signal processing

techniques, including Fourier analysis and PCA. We can use these noise-reduced

shadow-UPOs to estimate the true noise-free UPOs and approximate the noise-free

time series. Also, the detection of shadow-UPOs does not necessarily require the

use of an embedding, eliminating a major concern about the validity of the result.

The time series can thus be represented by the filtered shadow-UPO sequences

provided the coverage of the time series by UPOs is sufficiently large and the

chaotic system is not too unstable. The approximated time series can be used

in conventional numerical algorithms to determine invariants if residual noise is

sufficiently low. If not, the approximation can be refined further using the existing

techniques applicable to low noise levels. The detection of multiple copies of UPOs

(to within a tolerance) allows averaging and provides as an output the set of noise-

reduced lower order UPOs. The collection of detected noise-reduced shadow-UPOs

lower order UPOs is valuable as the Lyapunov exponents of each UPO can be
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directly estimated from these. Multiple sampling of the noisy time series, coupled

with averaging can enhance these results significantly.

In the literature reviewed, sometimes a noise-reduction method has been tested

on a very simple two-dimensional map such as the Henon map and in other cases

a method has been tested on a more difficult flow such as the Lorenz system.

Methods are seldomly tested on multiple chaotic systems. Often methods are

tested for selected noise levels and the maximum noise levels that can be removed

are not stated. As a result it is difficult in some cases to understand the noise-levels

for which the method is effective and whether it performs better on some systems

than others. These factors, and the complexity of many models, make it difficult

to compare methods and appreciate which are most effective in practice.
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Chapter 3

Detection of Cycles in

Noise-Infected Chaotic Time

Series

3.1 Chapter Overview

Before we can reduce the noise from the cycles comprising a chaotic dynam-

ical system, we must first locate the cycles within the noise-infected time series.

Chapter 4 and 5 describe the development of the Shadow-UPO Noise Reduction

(SUNR) Method. One of the aims of this new method that we present is to detect,

capture and filter all complete and partial cycles that can be detected within the

constraints of the sampling regime. Naturally, we must assume the chaotic time

series to be analysed is of sufficiently low instability to allow the evolution of orbits

that remain in the vicinity of a UPO for at least one complete cycle or more; this

is necessary to facilitate the analysis.

In this chapter we describe the construction of the recurrence plot and the

factors affecting the information derived from it. There are two main methods in

the literature for detecting cycles in a noise-free time series. Firstly, the Newton-

Raphson type methods are highly effective at detecting cycles, but often require

seeded starting points and are highly sensitive to small levels of noise. They also
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usually require the careful use of Poincare sections which are sensitive to placement

direction. These models are thus not applicable in the context of medium to

high noise levels. The other cycle detection technique is uses close returns plots

or recurrence plots and histograms derived from the time series data. Strictly

speaking recurrence plots are close returns plots using embedded data. The original

concept of recurrence plots was devised and introduced by Eckmann et al. [41]

with the goal of detecting stationarity. However, both expressions are arguably

now used interchangeably. For consistency we will subsequently use the terms

“recurrence plots” or “recurrence matrices”, even if we are using scalar data. This

is our preferred approach as it searches for cyclic sequences of all periods at once

and may accomodate small amounts of noise.

We illustrate this approach for the noise-free Rossler system, looking closely at

the construction of the recurrence plot and the detection of cycles using a histogram

constructed from the recurrence matrix. There are a number of control factors

that determine the effectiveness of this technique. We examine each and consider

limitations of this method. We next consider the effect of noise on recurrence plots

and histograms and highlight that, although the histograms are somewhat resilient

to noise, the underlying cycles are “broken” and the number of detected complete

cycles falls off rapidly with increasing noise.

We modify the recurrence histogram method to accomodate high levels of mea-

surement noise with the goal of maximising use of available information. We

examine whether pre-embedding of the time series offers any advantages over use

of the scalar time series, and pre-process the data to enhance the detection rates

significantly. We also collect suitably long partial or incomplete cycles as in un-

stable systems these are numerous and contain valuable information about the

system dynamics; these may be subsequently noise-filtered.
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3.2 Nomenclature of Cycles

Attractors in chaotic regimes contain a dense set of UPOs, and unstable cycles of

all periods are present. There will be a minimum, fundamental period that we will

term T1 .

Subsequent cycles will named in order of increasing period T2, T3, ...., Tn where

n cycles are detected. In some cases, for example the Rossler system, there will

be a fundamental period T1 and a series of sub-harmonics, with Tk = k.T1 where

k is an integer.

In other cases there will be a series of harmonics, revealed as peaks on the recur-

rence histogram, not necessarily defined as integral multiples of the fundamental

period. In the Lorenz system, inspection of the symbolic dynamics reveals there

are multiple geometric possibilities for periods of each cycle. Although there are

multiple geometric possibilities, not all cycle types actually appear in simulations.

3.3 The Rossler Time Series

We now introduce the Rossler system [115] which we shall use as a heuristic ex-

ample throughout this thesis to demonstrate all aspects of our noise reduction

methodology (SUNR method). This system of three non-linear ordinary differ-

ential equations was originally created and studied by Otto Rossler. His inten-

tion was to construct a mathematical model that behaved similarly to the Lorenz

attractor, but was easier to study. The Rossler system contains a single nonlin-

earity and is lightly unstable (maximum Lyapunov exponent λmax = 0.079 s-1).

The Rossler equations are presented in Equations 3.1a–3.1c. We build our model

Rossler time series through numerical integration of these system equations using

the 4th order Runge-Kutta method. For our modelling purposes, we use system

parameters of (a, b, c) = (0.2, 0.2, 5.7), a time step of 0.1 and a starting point of

(x0, y0, z0) = (−8.3029,−3.7887, 3.3094). We will be using 10,000 model points in

the time series throughout this chapter, unless stated otherwise. The numerically
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integrated noise-free Rossler attractor is shown in Figure 3.1. In Figure 3.2 we

show the FFT spectrum of the Rossler time series, where we can see a well-defined

peak at the fundamental period T, but also observe amplitudes in many other

frequencies.

dx

dt
= −y − z, (3.1a)

dy

dt
= x+ ay, (3.1b)

dz

dt
= b+ (x− c), (3.1c)

Figure 3.1: Noise-free Rossler attractor obtained by numerically integrating
Equations (3.1a)–(3.1c) using the 4th order Runge-Kutta method. It is con-
structed from 10,000 points, sampled at a time step of 0.1.
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Figure 3.2: FFT amplitude spectrum of noise-free Rossler time series. The bot-
tom figure is in semi-log format. Whilst there is a clear peak, we note the broad-
band nature of the signal.

3.4 Detecting Noise-Free Shadow-UPOs

3.4.1 Recurrence Matrices

The phase space orbit represented by a scalar time series evolves near a given UPO

for a time, orbiting (or “shadowing”) around it before being repelled into another

region of the attractor. These shadowing orbits are referred to as pseudo-UPO

orbits or shadow-UPOs and we shall use the latter term. The evolving orbit can

be considered as “jumping” from a path near to one UPO to the next. The orbit

may complete multiple circuits or simply repel away before completing a single

circuit, depending on the level of instability of the UPO. All UPOs are unstable,

but some have greater instability than others. That is, orbits leave the vicinity

of different UPOs at slower or faster rates. UPOs that are more unstable will be

detected more frequently and others that are highly unstable may be difficult to

detect at all. Nearly all UPOs will be detected at least as a incomplete partial

cycle.
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Recurrence plots are specifically designed to detect this cyclic behavior. They

have been demonstrated to be highly useful in detecting cycles in time series data,

and a substantial body of research has now been established in this area.

Henri Poincare [111] first introduced the formal concept of recurrences. In the

modern context [41] introduced recurrence plots as an analytical tool for experi-

mental time-series and as a medium to visualise the periodic behavior of an orbit

through phase space. Subsequent research and publications by [143] and [99] have

advanced the study of recurrence plots to an independent field of study. The paper

by Marwan et al., “Recurrence plots for the analysis of complex systems” [99] is

a definitive reference in this area and considers the effectiveness of the method as

inputs vary.

Higher-dimensional phase spaces can only be visualised by projection into the

sub-spaces of dimension two or three. Building a recurrence plot enables us to in-

vestigate various aspects of the m-dimensional phase space orbit of time sequential

data through a concise two-dimensional representation. They are a valuable tool

for systems with varying underlying dynamics as they do not require the data to

be stationary. Non-stationarity is commonly the case with chaotic systems. Also

they may reveal hidden patterns and correlations in complex data series. Most

importantly, they also provide a simple robust means to detect periodic cycles in

the presence of noise.

The set of UPOs of an attractor is a dynamical invariant; their number, distri-

bution and properties “unfold” the structure of chaotic orbits. They can be used

indirectly to calculate other invariants, such as Lyapunov exponents, fractal di-

mension and topological entropy. Close returns resulting from near-periodic orbit

paths on the chaotic attractor manifest themselves as diagonal line segments on

the recurrence plot.

Let us consider the orbit T, represented by a finite discrete time series of length

N in the phase space of a dynamical system
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T = {−→xi}Ni=1. (3.2)

The recurrence matrix of this system is defined as:

R(i, j) =

{
1 if ~xi ≈ −→xj
0 if ~xi � ~xj

. (3.3)

The expression −→xi ≈ −→xj means that the two points are considered equal to

within a small error distance ε, which is commonly referred to as the threshold

corridor or critical radius when referring to the L2 distance metric. A recurrence

occurs when the orbit returns “near” to a location it has visited previously, within

a distance ε. This is further explained in Section 3.4.2. A compact version of this

equation is:

R(i, j) = Θ(ε− ‖−→xi −−→xj‖), 1 ≤ i, j ≤ N, (3.4)

where Θ is the Heaviside function, defined by:

Θ(x) =

{
1 if x ≥ 0

0 if x < 0
. (3.5)

The recurrence matrix contains information on every possible ε−recurrence in

binary notation with an ε−recurrence stored as a 1 and a non-recurrence by a 0.

All states of the system are compared with all other states and thus there are N2

elements in the recurrence matrix. Recurrence points are marked on the recurrence

plot with a black dot and non-recurrence points are marked with a white dot (i.e.

are unmarked). The recurrence plot is a thus a square plot comprised of black

dots denoting recurrence between indexed points to within a distance of ε. The

horizontal and vertical axes are labelled “t” and “t +i” respectively. There is an

upward diagonal in all recurrence plots arising from the fact that self-compared

vectors result in zero distances. We refer to this as the identity line.
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(a) Periodic function. (b) Gaussian white noise.

Figure 3.3: Recurrence plots for: (a) A periodic function y=sin(5πt/100). Note
the clear structure within the plot, and (b) Gaussian white noise with mean 0
and standard deviation 4.0. Note the snowy structure within the plot.

Deterministic time series will produce a recurrence plot with many short line

segments parallel to the identity line. In contrast, the recurrence plot of white

noise, will reveal no structure and a “snowy” appearance. These are illustrated in

Figure 3.3.

Building the recurrence matrix from the time series is an important first step

in locating cycles within a time series. From the recurrence matrix we will de-

termine the fundamental period of the chaotic system and other harmonics. The

determination of cycle periods using recurrence data is somewhat resilient to noise.

Our testing indicates periods remain determinable at added noise levels up to ap-

proximately 10%. Knowledge of the fundamental period and various harmonics

will allow us to locate the noise-infected cycles in the time series. For a detailed

theoretical analysis of the effect of noise on recurrence plots, the reader is referred

to [139].

The diagonal form of the recurrence plot is a useful visual tool, with cycles ap-

pearing as diagonal lines. However for locating and extracting cycles it is preferable

to see cycles appearing as horizontal lines, which is far more intuitive. This can

be achieved by instead determining the matrix with (i, j) entry,
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R(i+ j − 1(modN), j) 1 ≤ j ≤ N. (3.6)

The horizontal recurrence matrix and plot can either be calculated directly

from the formula or by permuting the columns of the recurrence matrix R(i, j). A

simple example is as follows. Let D be the difference matrix for a time series of 4

points: x1, x2, x3 and x4.

Ddiag =


‖x1 − x1‖ ‖x2 − x1‖ ‖x3 − x1‖ ‖x4 − x1‖
‖x1 − x2‖ ‖x2 − x2‖ ‖x3 − x2‖ ‖x4 − x2‖
‖x1 − x3‖ ‖x2 − x3‖ ‖x3 − x3‖ ‖x4 − x3‖
‖x1 − x4‖ ‖x2 − x4‖ ‖x3 − x4‖ ‖x4 − x4‖

 . (3.7)

The elements under the diagonal are duplicates of entries above the diagonal.

For horizontal plots we want the data in the following format:

Dhorz =


‖x1 − x1‖ ‖x2 − x2‖ ‖x3 − x3‖ ‖x4 − x4‖
‖x1 − x2‖ ‖x2 − x3‖ ‖x3 − x4‖ ‖x4 − x1‖
‖x1 − x3‖ ‖x2 − x4‖ ‖x3 − x1‖ ‖x4 − x2‖
‖x1 − x4‖ ‖x2 − x1‖ ‖x3 − x2‖ ‖x4 − x3‖

 . (3.8)

We can see that the jth column of Dhorz is obtained by permuting the jth column

of Ddiag upwards by (j − 1) steps. This relationship may be expressed as:

Dhorz(i, j) = Ddiag(i+ j − 1(mod 4), j). (3.9)

In Figure 3.4 we show horizontal recurrence plots of 1,000 points for specific

model chaotic systems that we will be using later. These plots have been derived

from the time series for the x -component of each of the systems, which are defined

in Chapter 5. One can see the remarkable range of geometric patterns reflecting

the diverse topology of the different systems.

In the following subsections we discuss factors affecting the construction of R

including the critical radius, sampling frequency, length of the time series, distance
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metric, maximum cycle length and initial point of the time series.

(a) Rossler system. (b) Lorenz system.

(c) Chua system.

(d) Rabinovich-Fabrikant system. (e) Lu-Chen.

Figure 3.4: Recurrence plots of 1,000 points (a) Rossler system, with a=b=0.2,
c=5.7 and the critical radius 1.5; (b) Lorenz system with ρ=28, b=8/3, σ=10
and the critical radius 1.8; (c) Chua system with α=9, β=100/7, b=-5/7 and the
critical radius 0.4; (d) Rabinovich-Fabrikant system with a=0.98, b=0.1 and the
critical radius 0.2, and (e) Lu-Chen system with a=36, b=3, c=30, u=0 and crit-
ical radius 0.8. The system equations and time steps are defined in Chapter 5.
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3.4.2 Critical Radius

For analysis of chaotic systems the selection of the critical radius parameter ε

is paramount as the orbit will revisit a past state in a “near periodic” manner,

but never exactly. The measure of “nearness” is provided by ε. The results are

sensitive to the choice of ε. If we select ε too small, we will find few recurrences

(false negatives) and little information about the dynamical system. We will not

be able to follow the orbit along a complete cycle, and will only find disconnected

partial cycle sequences. If we select ε too large, then we will capture artefacts

(false positives) and not be able to discern real cycles. Thus there is somewhat of

a juggling act in selecting a “best” value of ε. Further, the addition of noise will

distort the signal and require a larger ε value. This is balance between collecting

too many points and not enough points is illustrated in Figure 3.5.

ε1	

ε2	

ε3	

Figure 3.5: The critical radius is paramount in constructing the recurrence ma-
trix from the data points (dots). If we select a value that is too small (ε1) then
we will not capture enough periodic points. Alternatively, if we select a value
that is too large (ε3) we will capture points that are not periodic but simply in
the neighbourhood.

There are many different types of recurrence plots, each focusing on a specific

aspect of the presentation, in particular varying the definition of the neighbour-
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hood εi of the ith point. The most commonly used neighbourhood is that with

a fixed radius εi = ε, for all i. A fixed radius means that R(i, j) = R(j, i) and

thus the recurrence matrix is symmetric. This symmetry results in duplication of

information necessary (and thus processing) to detect and extract cycles and it

will be eliminated by modifying the recurrence matrix.

As already indicated, the choice of ε is more of an art than a science. Theil et

al. [139] quantified the errors arising from measurement noise, the probabilities of

false positives and false negatives, and simultaneously minimised these to provide

a their criterion for selection of an “optimal” critical radius ε. Their numerical

simulations indicated that:

ε ≥ 5σ, (3.10)

where σ is the standard deviation of the measurement noise.

If ε is smaller, the measurement noise will become a dominant effect when

detecting recurrence points. Alternatively, if ε is close to the standard deviation

of the underlying process, the density of recurrent points will be too great to

discern any detailed structure of the underlying dynamics. This rule of thumb in

selecting ε is applicable to a broad class of dynamical processes including higher

dimensional systems. We estimate this value ε5σ for each of the model systems

examined in the application of our noise-reduction algorithm and summarise the

results in Table 3.1. We express the critical radius, calculated using ε = 5σ as

a percentage of the maximum extent of the attractor, defined as the maximum

L2 distance between any two points on the attractor. This provides a means of

comparison with other rules for the critical radius which are expressed as such a

percentage.

This minimum value of ε sets a reasonable critical radius for noise levels less than

5%. However, it is apparent from our computations that the standard deviation of

the noise increases at a far greater rate than the width of the attractor, resulting

in impracticably large critical radii for higher noise levels. At this time there is no

maximum bound for the critical radius; and this is a topic for future research.
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By itself the critical radius is arbitrary so we scale it to the size of the chaotic

attractor. We express the critical radius as a percentage of the maximum attractor

extent, i.e. the maximum L2 distance between any two points on the attractor.

This inflates the critical radius when noise inflates the breadth of the attractor.

Many researchers restrict ε to between 2% and 5% of the time series or maximum

attractor extent.

Noise level Rossler Lorenz Chua R-F Lu Chen
1% 5σ 0.26 0.40 0.07 0.05 0.40

% Max Extent 1% 1% 1% 1% 1%
5% 5σ 1.28 1.97 0.34 0.24 1.96

% Max Extent 5% 3% 4% 6% 3%
10% 5σ 2.57 3.93 0.69 0.47 3.97

% Max Extent 9% 7% 9% 10% 7%
25% 5σ 6.35 9.82 1.71 1.19 9.86

% Max Extent 19% 16% 18% 22% 16%
50% 5σ 13.06 19.54 3.41 2.41 19.61

% Max Extent 32% 27% 32% 33% 27%
100% 5σ 25.86 39.32 6.87 4.73 39.74

% Max Extent 44% 37% 40% 43% 41%

Table 3.1: Summary of calculated values of ε=5σ for a group of model chaotic
systems with a range of additive (Gaussian white) noise. This is expressed as a
percentage of the maximum attractor extent, defined as the maximum L2 dis-
tance between any two points on the reconstructed attractor.

Noise level Rossler Lorenz Chua R-F Lu Chen
1% 1.4 2.8 0.4 0.2 2.9
5% 1.4 2.8 0.4 0.2 2.9
10% 1.5 2.9 0.4 0.2 2.9
25% 1.7 3.1 0.5 0.3 3.2
50% 2.1 3.7 0.5 0.4 3.7
100% 2.9 5.3 0.9 0.5 4.9

Table 3.2: Critical radius determined as 5% of the maximum L2 distance be-
tween any two points on the reconstructed attractor.

We calculate 5% of the time series width and attractor width for each of our

model systems and for a range of added noise levels; with results collected in Table
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3.2. We have found that as a rule of thumb, these 5% levels are a good guide to

setting the critical radius for noisy data in our modelling. Sometimes we will use a

higher percentage and sometimes less, depending on the geometry of the attractor.

3.4.3 Sampling Frequency

The recurrence histograms (which we will define and describe in more detail in

Section 3.4.8) constructed from recurrence matrices have been shown to be robust

in the presence of noise [104] and with respect to starting point when assembling

the time series.

As with all signal analysis, the result is highly sensitive to sampling frequency

and some trial and error is necessarily involved to find a good representation of the

system; neither under-sampled or over-sampled. Recurrence plots are sensitive to

sampling frequency. If we are restricted to sampling and recording a finite number

of points then the sampling frequency needs to be calibrated to ensure the data

captures the salient features of the underlying chaotic system. If we sample too

infrequently (under-sample) we are missing sensitive information encoded in the

data about the underlying dynamics. Similarly if we over-sample, we will have

difficulty in isolating the salient features for analysis. Under-sampling results in

aliasing in Fourier analysis. An estimate of the fundamental period can be made

from an initial sample and subsequent sampling times are calibrated to ensure

sufficient points are detected for this period. It is important to ensure the shortest

period cycle is well populated with data points (at least 50) for the application of

noise-reduction techniques later. In Figure 3.6 we provide examples of recurrence

histograms for under-sampled and over-sampled data.
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(a) Over-sampled. (b) Under-sampled.

Figure 3.6: (a) Recurrence-histogram from over-sampled Rossler system with
time step of 0.01. Although we have a large number of data points, they cor-
respond to a short time period and at best will allow us to identify the first
few shadow-UPOs only and over emphasise small fluctuations, (b) Recurrence-
histogram from under-sampled Rossler system with time step of 0.25. The data
is under-sampled and we do not have adequate information to determine clear
peaks. It is likely we are missing information in between peaks.

3.4.4 Length of Time Series

We use model time-series of 10,000 points, noting that in practical situations it may

be difficult to process extremely long time series (in excess of 20,000 points) given

the dimensions of the recurrence matrix is proportional to N2. If multi-sampling

is available, then the effectiveness of the method is enhanced significantly. There

is no obvious advantage to having a single long time series as the sensitivity to

initial conditions ensures repeated samples with different initial points will likely

provide sufficient information about the attractor. In Chapter 5, we will show how

multi-sampling can be effectively exploited to obtain much improved estimates of

UPOs, maximal Lyapunov exponents and reconstructed time series. Time series

length is a very significant factor in the computing resource requirements (of time

and memory).
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3.4.5 Distance Metric

A number of distance metrics may be used for determining nearness of points. We

use the L2 or Euclidean distance measure for determining periodicity as it is the

most intuitive.

3.4.6 Maximum Cycle Length

Longer cycles pose a particular problem as increased length results in greater op-

portunities for unavoidable transverse perturbations to appear. This may result

for example from experimental noise or floating point arithmetic on a computer.

Obviously there are limitations in maximum cycle size that arise from the recur-

rence matrix detection method and length of time series. A single cycle cannot be

longer than N/2, where N is the time series length when using this methodology.

The larger issue is the reduced trust in accuracy of longer and longer detected

cycles.

Fortunately a consequence of periodic orbit theory is that a chaotic system can

be well approximated by the sum of shorter length shadow-UPOs [28], [29]. We

can invest greater trust in the reliability of these and they are also present with

greater density within the system. Shorter cycles generally occur more frequently.

Multiple detected copies of short length shadow-UPOs are what is needed for our

method of noise-reduction via averaging.

Translating this into practical terms means specifying the maximum period to

be detected. As a general rule, we restricted the maximum detected shadow-UPO

length to 10T , where T is the fundamental period.
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3.4.7 Initial Point

The response of recurrence histograms to a change in initial point depends on the

ergodicity of the chaotic system; whether it travels equally to different locations

in time or tends to linger in specific neighbourhoods of the attractor. For the

Rossler system we note the recurrence histograms are robust in relation to initial

point provided the time series is sufficiently long to capture the dynamics. Exper-

imentation reveals different starting points generally result in the same identified

peaks but with different relative heights. This assumes the orbit travels relatively

uniformly around the attractor and does remain in small areas for long periods.

One can easily use the recurrence histogram to find an upper bound for the highest

detectable period for the given data set. In Figure 3.7, we show the effect on the

recurrence histogram for the Rossler system of having different initial points. The

peaks are still present at the same frequencies, but with different relative heights.

Multi-sampling the chaotic system from different starting points improves results

greatly.

(a) Initial point A. (b) Initial point B.

Figure 3.7: (a) Recurrence-histogram for Rossler system with initial points A (-
8.3029, -3.7887, 3.3094), (b) Recurrence-histogram for Rossler system with initial
point B (0.5010, 2.8851, 4.1555). The same harmonics are detected as above,
albeit with different relative peak height.
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3.4.8 Recurrence Histogram

Having selected an appropriate critical radius ε and constructed the reduced re-

currence matrix, we now determine the fundamental period T of the system and

the periods of other cycles. This is achieved by constructing a histogram that

summarises the information in the recurrence plot. The histogram summarises

the number of periodic points for each value of i :

H(i) =
N∑
j=1

Θ(ε− ‖xi − xj‖), (3.11)

where Θ is the Heaviside theta function as defined in Equation (3.5).

If the time series is chaotic, the histogram will contain a series of peaks, some-

times but not always evenly spaced. In Figure 3.8 we show the recurrence his-

togram constructed using the scalar values in time series. In Figure 3.9 we con-

struct the recurrence histogram using the embedded time series.

Figure 3.8: Top: Histogram derived from scalar time series, showing number of
points on Rossler attractor associated with each recurrence time. Bottom: Block
histogram showing cycle periods of identified peaks. The red and green lines are
explained in the text below.
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Figure 3.9: Top: Histogram derived from embedded time series, showing number
of points on Rossler attractor associated with each recurrence time. Bottom:
Block histogram showing cycle periods of identified peaks.

The peaks are identified as representing the fundamental period of the system

and subsequent harmonics. The peaks are obvious from the upper histogram

in Figure 3.8 and are identified and captured using a peak detection algorithm

in Matlab. The block histogram in the lower plot shows only the cycle periods

associated with the peaks and the frequency of points detected for each. The

diagonal red line in Figures (3.8) and (3.9) represents the period of each cycle and

thus represents the minimum number of detected points that must be in a bin for

a complete cycle to exist. In the examples provided the height of the histogram is

considerably greater than the red line showing that multiple complete cycles are

possible for each period. The green line represents the minimum number of points

required for a partial cycle of a given period.

The histogram counts the frequency of recurrence by summing along the rows

in the recurrence matrix, counting up all the 1’s. Note that a high peak of a

given period does not guarantee than many shadow-UPOs of this period have

been detected. It simply means a lot of periodic points have been detected. In
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the case of a relatively stable shadow-UPO many complete cycles will be collected.

In the case of a relatively unstable UPO we may see many incomplete partial

cycles appearing but few if any complete cycles. Also, stand alone uncorrelated

points which appear as fuzz on the scalar close returns plot, will be counted and

contribute to the height of the histogram peak (although not materially).

The non-zero baselines in the scalar data histogram correspond with diagonal

segments on the recurrence plot. As mentioned above, these are due to the fact

that in stationary data sets, upward trending segments of data are always followed

by downward trending segments, which create these spurious close returns. These

spurious points settle relatively uniformly in the base. This is “cleaned up” with

embedding as is evidenced in Figure 3.9.

In Figure 3.10 we show the effect on the recurrence histogram of varying the

critical radius. We can see that the effect of increasing the critical radius is to

sharpen the peaks, increasing the height and reducing the width. Although not

researched here it is suggested that perhaps the definition of the optimal critical

radius could be defined in terms of optimally resolving the peaks.
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Figure 3.10: Effect on the recurrence histogram of increasing the critical radius
from ε = 0.5 to ε = 2.0.

3.4.9 Is Embedding Necessary?

It is worth considering whether or not there is any advantage from firstly embed-

ding the time series in phase space and using these points to build the recurrence

matrix, or simply constructing the recurrence matrix using using the scalar time

series directly.

Increasing the embedding dimension “cleans up” the recurrence plot, removing

the “fuzz” [98]. This corresponds to removing single recurrence points (from the

uncorrelated states) and emphasises the horizontal structures (from the correlated

states). It is worth noting however, that spurious single points do not interfere

with the process of finding sequences of recurrent consecutive points (UPOs). Thus

although the appearance of uncorrelated points as “fuzz” on the recurrence plot

in unattractive, it does not cause any problems.
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Techniques have been developed for quantifying the structure in recurrence

plots developed from experimental data. Collectively these techniques are referred

to as Recurrence Quantification Analysis (RQA) and the key set of quantifying

techniques was devised by [141]. Each of these measures was explored by [70] and

they found that the same results could be obtained with or without embedding.

Regardless of measurement noise, it so happens that the errors associated with

the estimations involved in finding a suitable embedding dimension m and time

delay τ , can severely affect the result. Embedding can result in a significant

amount of spurious correlations in the system which then manifest in the recurrence

plot. Marwan et al. [99] show this effect can even produce distinct diagonally

orientated structures in a recurrence plot of a time series of uncorrelated values if

the embedding is high enough, although diagonal structures should be extremely

rare for such uncorrelated data.

This is best understood by considering uncorrelated Gaussian noise by itself and

analytically calculating the correlations that are induced from a non-optimal or

unsuitable embedding. Since the process is uncorrelated, the detected correlations

must be arising from the embedding process. The auto-covariance function of D2
ij

is constructed where Dij = ‖~xi −−→xj‖ is the distance function measured in the L2

metric. Interestingly, the resulting expression reveals that there will be peaks in the

auto-covariance function if the step size h, h+(j−1) , or (j−i)−h are equal to one

of the first (m-1) multiples of the time delay τ . These “false” peaks are not present

when no embedding is used (m=1). These spurious correlations induced by the

embedding lead to unwanted small-scale structures in the recurrence plot. Further,

the embedded data may result in false peaks in the histogram subsequently used

to determine the fundamental harmonic and subharmonics. The net result is

that if one wishes to use embedding, assuming noise is very low, the embedding

parameters must be chosen carefully and accurately.

Whilst acknowledging the sound theoretical arguments above, we still see con-

siderable utility in preparing recurrence matrices and plots using both scalar time

series data and embedded data, if possible. The primary source of information
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is the scalar data, however the embedded data can be most useful in clarifying

sections of the scalar–based recurrence histogram without clear peaks. We note

that the false peaks on the embedded data recurrence histogram will at best be

very small and peaks aligned on both the scalar-data recurrence histogram and

embedded-data recurrence histogram can be compared and valuable information

deduced. There are cases where the embedded data is clearly superior. It is

important to keep in mind we are usually seeking only the first ten or so cycles.

With experimental data from an unknown system or with material levels of

noise, we have fewer options. We earlier highlighted than Takens’ theorem does

not necessarily hold in the presence of experimental noise, and so unfolding the

data into phase space as a starting point appears somewhat problematic from the

outset. With a noise-infected embedding one simply cannot guarantee that the

reconstructed noise-infected is topologically equivalent to the underlying system

and that the dynamical invariants are preserved. In the case of an experimental

time series with significant noise, we thus have little choice but to work with the

scalar time series directly as estimation of embedding parameters is near impossible

with material noise.

If we are restricted to using a scalar time series, for purposes of identifying

UPOs, the recurrence histogram can be significantly improved by taking multiple

time series samples, each from a different initial point (we use the midpoint of the

current time series as the initial point for the new series) and combining results. In

Chapter 5 we will apply the SUNR method to multiple noise-infected time series

samples and use the noise-reduced approximant for each to directly estimate the

maximal Lyapunov exponent. We conducted this experiment on several different

chaotic systems of varying topology. For each system tested we found that by aver-

aging the Lyapunov exponents from multiple time series we obtain a considerably

more accurate result than that obtained from a single time series.
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3.5 Detecting Noise-Infected Shadow-UPOs

We now consider the effects of noise on the recurrence plot and the recurrence

histogram. The methods we are about to describe assume low dimensionality

of the chaotic system and thus that the system most likely has a single positive

Lyapunov exponent.

3.5.1 Recurrence Plot

The inclusion of measurement noise results in fewer detected complete cycles and

more incomplete partial cycles, in comparison with a noise-free scenario. As one

would expect this is because random noise will occasionally cause detected points to

fall outside the critical radius that otherwise would have been detected within the

critical radius. The illustrations in Figures 3.11a–3.11d reveal how, with increasing

noise, the horizontal lines in the recurrence plot corresponding to cycles become

fractured.

3.5.2 Recurrence Histogram

The recurrence histogram is remarkably resilient to noise in the presence of medium

to high levels of added noise [104]. It is this attribute of the recurrence methodology

that we exploit to locate and extract shadow-UPOs even in the presence of high

noise levels. Figure 3.12 illustrates the effect of increasing the Gaussian white noise

to 100%. Despite some degradation in the clarity of peaks, they are still easily

detectable. One interpretation of this result is that the intrinsic periodicity appears

to remain a dominant feature for high levels of added noise. This result similarly

applies for dynamical noise, where although the cycles are deformed by the noise,

for moderate noise levels the periodicity appears to remain intact. Although we

can determine the system harmonics in the presence of significant noise, this does

not guarantee we can detect full unbroken cycles.
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(a) GWN=0%. (b) GWN=25%.

(c) GWN=50%. (d) GWN=100%.

Figure 3.11: Recurrence plots of the Rossler system with Gaussian white noise
increased from 0% - 100%. Note the disintegration of the horizontal lines with
increasing additive noise.
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Figure 3.12: Effect of increasing noise levels on the Rossler recurrence histogram.
The robustness of the histogram is clear with peaks representing harmonics still
clearly detectable at 100% noise.

3.5.3 Location of Cycles in the Time Series

The recurrence histogram allows us to detect the periods of cycles. Peaks on the

histogram correspond to the period of the most frequently detected periodic points.

This information allows us to confine our search of the recurrence matrix to only

rows relating to these specific periods. Importantly, the presence of well-defined

peaks does not guarantee that we will find large volumes of complete cycles of these

periods. The number of detected complete cycles depends on the instability of the

chaotic system and level of noise present. The periods of the composite cycles

may adhere to a simple fundamental harmonic and associated sub-harmonics or a

more complex harmonic relationship. We detect the peaks using a peak detection

algorithm and extract the rows from the recurrence matrix that correspond to the

histogram peaks for more detailed analysis. This results in a reduced recurrence

matrix. This process is illustrated in Figure 3.13.

Each row of the reduced recurrence matrix corresponds to cycles of a specific

period and holds important information on them. The elements of a specified row
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are binary; either a ‘0’ or a ‘1’. For a row corresponding to period T, the presence

of a ‘1’ at a point indicates that another equivalent point has been detected T

points later in that row. The orbit has passed this point xi and subsequently

passed within a small ball centered at xi+T constructed using the critical radius

ε. A consecutive unbroken sequence of ‘1’s represents points on a shadow-UPO of

period T. The detected sequence may be of length L < T and in this case we have

an incomplete or partial cycle, where the orbit has moved away from the unstable

cycle. In other cases we may find a long sequence, encompassing multiple circuits

of a cycle, before the orbit finally breaks free. How long the orbit remains on

a cycle depends on the level of instability of that cycle. Shadow-UPOs of some

periods may be relatively less unstable than others, and appear multiple times

along the row of the reduced recurrence matrix as complete cycles or even multi-

circuit sequences. Other highly unstable cycles may only appear as incomplete

partial sequences of length less than T.
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T1	 T6	T5	T4	T3	T2	

(a) The periods identified from the peak identify harmonics of the system and
identify the relevant rows in the recurrence matrix to search for consecutive
periodic points. .

row	corresponding	to	T1	

row	corresponding	to	T2	

row	corresponding	to	T3	

row	corresponding	to	Tn	

Extract	rows	from	recurrence	matrix	that	correspond	to	the	harmonics	

(b) We extract rows in the recurrence matrix relating to the system harmon-
ics.

Figure 3.13: Locating and extracting rows from recurrence matrix that relate to
the system harmonics (UPO periods). 148
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Figure 3.14: For p1 − p5 to be deemed a cycle of period 5, the entire sequence
must repeat itself. This means p6 = p1, p7 = p2, .., p10 = p5 and so for every cycle
detected there is a second cycle and thus the cycles appear in conjugate pairs.

2 3

Period	4	cycle	and	conjugate	

Conjugate	of	cycle	1	
appears	again	as	cycle	2	

1

Two	consecutive	cycles	
are	detected	from	the	
CRP	but	3	are	present,	not	
4.	A	conjugate	cycle	is	
also	a	detected	as	part	of	
another	pair.	
	
For	a	continuous	string	of	
p	detected	cycles,	there	
are	p+1	present.	

2 3 41

Period	4	cycle	and	conjugate	 Period	4	cycle	and	conjugate	 Two	separated	
cycles	are	detected	
from	the	RM	but	4	
are	present.	Each	
has	a	conjugate	that	
does	not	appear	as	
black	dots.		

Figure 3.15: Two scenarios are presented where two cycles are detected as se-
quences of black dots on the recurrence plot. Top: Conjugate pairs are separated
in time and 4 cycles are detected. Bottom: Shadow-UPOs are consecutive and
the conjugate also appears as a detected cycle as part of another shadow-UPO
conjugate pair.
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3.5.3.1 Complete Cycles

The detection in a row of a sequence of ‘1’s longer the period T, means that we have

detected a cycle of period T but it also provides more information just this. This

method of detection requires cycles to appear in “conjugate” pairs. “Conjugate”

in this context refers to occurring in pairs. This is illustrated in Figure 3.14 for a

simple cycle. For a given critical radius, confirmed detection of a cycle requires an

unbroken sequence of consecutive points all of which must occur again exactly T

time steps later. There are several possibilities as to how shadow-UPOs and their

conjugates may appear, and it important to account for them correctly. Several

possibilities are illustrated in Figure 3.15. The recurrence methodology has a very

“strong” criteria for a cycle to be detected. Each cycle must have a successive

conjugate cycle.

3.5.3.2 Partial Cycles

These are sequences of periodic points that are not long enough to constitute a

complete circuit. Figure 3.16 shows a typical section of a row of period T in

the reduced recurrence matrix. The partial cycle also has a conjugate. Partial

cycles occur much more frequently than complete cycles and are valuable sources

of information. Clearly a very short partial sequence is less reliable than a near

complete cycle. Figures 3.17a–3.17b provide illustrations of various levels of cycle

completion.
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Multi-circuit	
sequence:	3	cycles		

Single	cycle	and	
conjugate:	length	>T	

Partial	cycle	and	
conjugate:	75%	of	
full	period	T	

Single	cycle	and	
conjugate:	length	>T	

Figure 3.16: Example of sequencing pattern of periodic points occurring along
row of reduced recurrence matrix corresponding to period T.

To utilise the data embodied in the partial cycles, we need to decide the min-

imum percentage of the period that is acceptable. This quantity is user-defined

and judgment is involved, with a key consideration being the degree of instability

of the extension path. If the orbits are well behaved after the cut off at the mini-

mum partial percentage, then perhaps a relatively high threshold is acceptable. If

orbits immediately diverge rapidly after the cut-off then perhaps a lower threshold

is required. For the relatively well-behaved Rossler system, we set the minimum

partial percentage in the range 50%–75% of the period T.

3.5.3.3 Artefact Cycles

There is an unintended consequence of the recurrence matrix method that results

in repeated multiple circuits of a lower order cycle being also captured as a higher

order cycle. These are detected cycles that do not have a fundamental period equal
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(a) Low completion % . (b) Higher completion %.

Figure 3.17: (a) Partial Rossler shadow-UPO (T=3) with completion percent-
ages 64.2% of a full period, shown in red. The orbits are extended for illustra-
tion purposes in blue, to the end of the period, (b) Partial Rossler shadow-UPO
(T=3) with completion percentages 94.3%. Clearly we will attribute greater
trust to the 94.3% partial cycle here than the 64.2% cycle above. Sections in
blue appear to be a continuation of the shadow-UPO but are (often just) outside
the critical radius.

to the measured period, and we refer to them as “artefact” cycles as they are a

consequence of the recurrence matrix detection methodology.

This is best illustrated by a simple example. Consider a cycle of period T

that traverses 4 laps of the cycle. This will appear in the recurrence plot as an

unbroken sequence of length 3T and will result in a detected sequence of length

4T once we account for the conjugate cycles. This will necessarily also appear as

a cycle of period 2T, with its conjugate being of length 2T. One can see these are

not cycles of minimum period 2T but are of a lesser period; these are accounted

for within the lower order detected cycles and are an artefact of the method. This

is illustrated with an example in Figure 3.18.
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Figure 3.18: Example of artefact cycles. We see a sequence consisting of 4 con-
secutive circuits of a period 1 shadow-UPO. This will also be detected as two
consecutive period 2 shadow-UPOs. The latter are redundant and must be
deleted from the UPO location matrix.

These artefact cycles should be deleted from the cycle location matrix, as they

are misleading when it comes to averaging binned cycles later. In the context

of approximating the noise-free time series by replacing the relevant sections of

the noise-infected time series with noise-reduced cycles, the artefact cycles are

inconsequential and will most likely just be filtered twice. However, it is incorrect

to treat these artefacts as distinct higher order cycles when seeking a complete set

of all detectable and noise-reduced UPOs for other purposes.

There are a number of ways to eliminate these artefact cycles. Firstly, they can

be visually observed in the summary data and deleted. We highlight 3 examples

in Table 3.3 for the Rossler time series. This is an easy task with a small number

of detected UPO sequences, but more difficult with multi-sampling or longer data

sets.

A simple algorithm can be constructed to identify artefact cycles. Starting

with lower order cycles and progressing to higher order cycles we can search for
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the following attributes:

1. At least 4 complete consecutive circuits are required for an artefact cycle to

occur. These are relatively uncommon and multi-circuits with more 4 loops

can be identified and isolated.

2. For each of these multi-circuits sequences of period T, search for cycles of

period 2T, with starting points nearby. Due to the use of a critical radius

and noise, the start points may differ by a few points (we require start points

to be within 1–3 points).

3. Note that we are generally dealing with cycles of maximum period 10T. In

the case of eliminating artefact cycles from higher order period multiples,

one needs to test the factorisation of the longer cycle for multiples of the

lower order cycle being tested. For example a detected sequence of length

20T (i.e. a period 10T and conjugate) could be two 5T cycles-conjugate

pairs.

As a general rule, the application of (a) and (b) together will suffice to remove any

artefact cycles.
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Start End Period T Period Number Extra Recurr. Matrix
Multiple Full Cycles Points Row Number

1738 1878 60 1 2 21 1
2794 3106 60 1 5 13 2
3908 4050 60 1 2 23 3
4552 4745 60 1 3 14 4
6248 6503 60 1 4 16 5
7360 7672 60 1 5 13 6
565 992 118 2 3 74 7
1855 2266 118 2 3 58 8
2796 3113 118 2 2 82 9
6250 6565 118 2 2 80 10
7362 7679 118 2 2 82 11
860 1264 176 3 2 53 12
2269 2671 176 3 2 51 13
3322 3784 176 3 2 111 14
4026 4428 176 3 2 51 15
4786 5742 176 3 5 77 16
5663 6205 176 3 3 15 17
6485 6854 176 3 2 18 18
6775 7237 176 3 2 111 19
1564 2049 236 4 2 14 20
4899 5660 352 6 2 58 21
5311 6064 352 6 2 50 22

Table 3.3: Location matrix for detected full shadow-UPOs of noise-free Rossler
attractor with critical radius =1.0 and 8,000 points. These locate the first 22
UPO sequences in the time series. A similar matrix is compiled for partial cy-
cles. Artefact period 2 cycles highlighted in blue. These must be deleted as they
are duplicates of the period 1 cycles shown in green.
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3.6 Augmented Detection Rate using Moving

Average Filter

In Figure 3.11 we showed the disintegration of the horizontal line sequences in the

recurrence plot that occur as a result of measurement noise. We also demonstrated

the high resilience of the recurrence histogram to noise and that even with high

levels of added noise we can still determine the periods of the underlying UPO set.

The difficulty is that we are now only able to detect a few, if any complete (and

not fractured) UPOs, even though we know the UPO periods.

The effect of noise is to fracture the horizontal lines representing UPO sequences

in the recurrence plot, greatly reducing the power of the recurrence method to cap-

ture UPOs. We have explored ways to “restore” the broken sequences in order to

extract complete cycles (start and end points) in a manner that preserves the in-

formation in the sequences. Interestingly, we have found that the simple act of

pre-processing the data with a narrow-window centered moving average achieves

this goal and significantly enhances the UPO detection rate. We typically use an

11-point window, that is, 5 points either side of the central point. The tempo-

ral autocorrelation associated with moving averages is negated by using a centred

moving window, preserving the phase of the data with no phase lag introduced.

The moving average smears the noise sufficiently to bridge the fractures, restoring

continuity. It brings individual perturbations that are “breaking” the continuity

of cycles back to within the detection hyper-cylinder of critical radius ε. Results

for 11 point and 21 point moving average windows are shown in Table 3.4. The

11 point moving average appears well-calibrated, but the 21 point window has

detected too many cycles (false positives). We subsequently have found that this

idea of recovering the signal from a recurrence plot using a moving average (low-

pass) filter was originally discovered by Mindlin and Gilmore in [104].

Increasing the filter window length increases the number of cycles detected. For

small window size the moving average pre-filter enhances the quality of the UPO

capture process significantly. However there are obviously limitations to the filter
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Noise Level No Pre-Filter 11 Point MA 21 Point MA
Pre-Filter Pre-Filter

0% 82 82 116
1% 82 84 118
5% 74 86 122
10% 12 88 108
20% 0 94 106
50% 0 10 70
100% 0 0 2

Table 3.4: Effect of centred moving average pre-filter on number of shadow-
UPOs detected.

window length, after which the signal is smeared. We prefer to keep the window

length as short as possible as the goal is not to utilize it as a low-pass filter but

rather to restore the continuity of complete cycle sequences. Before using the

method of moving averages, one should first be able to decide the length of the

smallest cycle associated with the data. As a general rule, we like to maintain at

least 50 points in the fundamental or period 1 UPO, and in this case 11 points

(5 either side of the central value) lies well within cycle length. In Table 3.4 we

summarise the effect for various noise levels, of the length of the moving average

pre-filter on the number of complete cycles detected in the Rossler example. We

can see that no complete shadow-UPOs are detectable from the data with added

noise in excess of 10%. The 11 point filter results in more cycles being detected from

noisy data than with no pre-filter, particularly for the higher noise levels (up to

50% noise). The 21 point filter results in even more cycles being detected, but may

be detecting spurious cycles that are not shadow-UPOs. In Figure 3.19 we show the

recurrence plot for a pre-filtered Rossler time series with 100% added noise. This

can be compared with Figure 3.11d, where most structure has disintegrated due

to the noise. Figure 3.19 shows clear structure, similar to the noise-free scenario

shown in Figure 3.11a, and highlights the restorative effect of the moving average.
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Figure 3.19: Recurrence plot of Rossler system with 100% added Gaussian white
noise, illustrating the restorative effect (compare with Figure 3.11d) the moving
average pre-filter has on the horizontal shadow-UPO lines.

This approach not only restores UPO continuity for detection purposes, but

also preserves phase synchronicity and does not corrupt the underlying chaotic

signal. This is the step required to enable the use of the powerful cycle detecting

capability of the recurrence matrix method in high noise scenarios.

Finally, we reiterate that it is important not to draw any conclusions from the

relative height of the recurrence histogram peaks. The purpose of the histogram is

to locate the fundamental period and other harmonics of the chaotic system and

the peaks simply identify these. The peaks represent numbers of detected periodic

points and this alone does not guarantee the existence of complete cycles within

the recurrence matrix. A tall peak may simply represent a multitude of short

broken sequences of consecutive periodic points from a relatively unstable cycle.

A shorter peak may nicely represent several complete cycles from a relatively less

unstable cycle. Also note that artefact cycles inflate the height of their relevant

histogram peaks. If we construct a revised histogram, after the elimination of

artefact cycles, we will see shorter peaks as period multiple increases.
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3.7 Summary and Discussion

In this chapter we describe a modified recurrence matrix method to locate shadow-

UPOs in a noise-infected chaotic time series.

We have selected recurrence methods to locate cycles for several reasons.

Firstly, the more sophisticated, Newton-Raphson type methods are not appro-

priate for an environment with medium to high noise. They are complex for

the non-mathematician, rely on initial conditions for convergence, usually require

an embedding and may require well-placed Poincare sections. Recurrence matrix

methods are more effective in the presence of significant noise. Detection of cyclic

orbit-sequences shadowing UPOs need not rely on an embedding so the issues with

finding correct time delays, embedding dimensions and Takens theorem in the pres-

ence of noise are removed. Secondly, the recurrence histograms constructed using

detected periodic points are resilient to high levels of noise, almost conserving

periodicity; and one can thus locate cycles accurately under difficult conditions.

Next we describe how to construct recurrence matrices and recurrence his-

tograms. The system harmonics are distinguished as peaks on the recurrence

histogram and this information identifies the rows of the recurrence matrix to

search for periodic sequences. Without modification, the recurrence histogram is

quite resilient to noise, clearly revealing peaks at noise levels up to 10%, some-

times more. We apply a search algorithm to the rows of the reduced recurrence

matrix corresponding to each detected period, looking for unbroken sequences of

consecutive points (denoted as 1’s) and recording the location in the time series

of detected complete cycles and sufficiently long partial cycles. These will later be

extracted for noise-reduction.

The critical input for recurrence matrix methods is the critical radius ε. We

tested the criteria that states an optimal minimum value of ε ≥ 5σ, using 5 different

model chaotic systems. We found that this rule appears to be reasonable for noise

levels less than 5%, but quickly inflates to impractical levels in the presence of

higher levels of noise. Instead we prefer to define a maximum, recommending
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5%—10% of the attractor extent, depending on attractor geometry and suggest

testing carefully. We found this approach works better with higher noise levels.

We discuss the use of embedded data versus scalar data to locate system har-

monics. For all systems modelled, we found that recurrence histograms constructed

from scalar data were adequate and in many cases superior to those using the em-

bedded data. This is further supported by research and has a theoretical basis

[70]. Whilst acknowledging that use of embedding noise-infected data in the close

returns matrix is logically weak, we still regard the embedded data as highly use-

ful adjunct in the practical context. In some cases the embedded histogram will

greatly assist in identifying histogram peaks that are not resolved adequately in

the scalar histogram. We have found it beneficial to run both scenarios and use the

scalar histogram as the base case. We also considered the effects on the recurrence

histogram of varying the initial point and sampling frequency. We emphasise the

advantages of using multiple time series samples whenever possible.

It is important when extracting cycles, to understand how cycles are manifested

in the recurrence matrix and the processing considerations of the methodology.

The cycles necessarily appear in conjugate pairs, there may be a phase difference

between detected cycles of the same period and “artefact” cycles naturally arise as

a consequence of the method. Artefact cycles are consecutive multiple circuits of

certain lower order cycles appearing as higher order cycles and we describe how to

remove them. It is best to store cycle information as indices linking cycle location

back to time series.

We next examined the effect of noise on recurrence plots and recurrence his-

tograms. As noise increases we observe that the horizontal lines on the recurrence

plot become fractured. This is the effect of noise perturbing underlying cycle points

to outside the critical radius tube. This phenomenon eventually manifests in the

peaks of the recurrence histogram becoming less and less distinguishable. Even

if peaks remain distinguishable, the subsequent search of the recurrence matrix

results in mostly incomplete (broken) cycles. We modify the recurrence method

to improve detection rates in the high noise situation and to maximise use of the

160



Detection of Cycles in Noise-Infected Chaotic Time Series

data.

To accomodate higher noise levels, we pre-process the noise-infected time series

with a narrow-window (11 point) centered moving average that smears the larger

noise fluctuations and effectively repairs cycle continuity, so that they may be

detected. Importantly, this is not being used as a noise filter but as a technique

to enhance the effectiveness of locating cycles. Cycle information, including phase

is preserved provided we ensure sampling frequency allows the moving average

window length to form a small portion of a single cycle. Pre-processing the time

series in the manner allows us to resolve cycles with noise levels up to 50% and in

some cases 100%, detecting nearly as many cycles as in the noise-free scenario.

Partial or incomplete cycles, defined as sequences comprising more than a

certain percentage of a period (say 50%) are detected and stored also. The rigour

of the recurrence method requires the partial cycle sequence is replicated T time

steps later in the time series. These contain valuable information and are very

frequent due to the instability in chaotic systems. In some cases they are all we

can detect. Short partial cycles are of little use as they are highly unstable and

are not representative of the underlying UPO, and some judgment is required in

defining the minimum accepted length of a partial cycle. However, nearly complete

partial cycles are sufficiently stable to detect, may be filtered and will be useful in

approximating the noise-free time series in Chapter 5.
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Chapter 4

Shadow UPO Noise Reduction

Method

4.1 Chapter Overview

Chaotic motion can be viewed as an aperiodic orbit wandering among and shad-

owing an infinite set of UPOs. The attractor is the closure of, and thus can be

approximated by, the set of UPOs and the unstable cycles can be imagined as

a sort of skeleton supporting the dynamics of phase space. In particular, they

provide an invariant topological characterisation of the dynamics, so estimating a

basis set of lower order UPOs from noisy data is a worthwhile objective. If we can

estimate the set of noise-free UPOs, then we have the ingredients to qualitatively

define the chaotic system and also to calculate qualitative measures such as the

maximal Lyapunov exponent.

This chapter describes the application of our new shadow-UPO noise reduction

(SUNR) method to chaotic time series with lower instability (i.e. at the lower

end of the range 0 < λmax ≤ 1). In these systems the instability is sufficiently

low that we are likely to be able to detect sufficient complete shadow-UPOs of all

periods to estimate a full noise free basis set of individual lower order UPOs. We

cannot specify exactly how low the maximal exponent must be. The criteria of

suitability here is that we can find at least 50% of the time series using detected
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complete cycles. Otherwise the system is too chaotic for this approach and we defer

further consideration to the time series approximation model presented in Chapter

5. Examples of chaotic systems where this technique is appropriate include the

Rossler and Lorenz systems.

We use the Rossler system to demonstrate the reduction of measurement noise

using the SUNR method. We apply the methods of Chapter 3 to detect and

capture complete and partial cycles from the model (measurement) noise-infected

Rossler time series. We use the detected and binned shadow-UPOs to estimate a

set of noise-free lower-order basis UPOs and demonstrate the process using multi-

sampling. The binned cycle data are used to numerically calculate the short time

Lyapunov exponent for each lower order UPO. We have included a number of

figures to illustrate the applied mathematical processes required and to provide a

visual aid in understanding the dynamics.

Before demonstrating the SUNR technique, we begin by developing the frame-

work for constructing model time series for experimentation and testing. We define

and discuss the various types of measurement noise (uniform noise, Gaussian noise,

high-frequency noise and pink noise) and dynamical noise that we will be using to

test our approximation of the chaotic noise-free time series in Chapter 5.

4.2 Modelling Measurement and Dynamical Noise

The model Rossler time series is constructed by numerically integrating the Rossler

system equations using the 4th order Runge-Kutta method, as discussed in Section

3.1. This time series will be corrupted by various types of noise and the various

stages of the SUNR process will be examined.

4.2.1 Uniform White Noise (UWN)

The term “white noise” does not refer to a specific type of noise signal, but to

a statistical model describing a random signal that has equal power distributed

across all frequencies. Thus the FFT power spectrum in the frequency domain
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of white noise is flat. White noise is comprised of all frequencies (with constant

power at all these frequencies) and thus is analogous to white light emitting all the

frequencies in the same proportion. When we use discrete time, as in sampling,

white noise is a discrete uncorrelated signal with zero mean and a finite variance.

Being uncorrelated in time does not restrict the values a signal can take. Any

distribution of values is possible (although it must have zero DC component). The

values could be uniformly distributed or assume a Gaussian or Poisson distribution

for example. White noise is the generalised mean-square derivative of the Wiener

process or Brownian motion.

If we let R1(i) ε [−1/2, 1/2] be a random number, n be the percentage noise

factor, xnf be the noise-free time series, and σnf be the standard deviation of the

noise-free time series, then the noise-infected time series xuwn is:

xUWN(i) = xnf (i) + nR1(i)σnf . (4.1)

This serves as a simple model of a noise-floor for experimental apparatus (base-

line instrument noise measurement). For example, thermal noise produced in

active electronic components tends to be both uniform and white.

In Figure 4.1 we show the time series for the Rossler system, both noise-free

and with 25% added uniform white noise. In Figure 4.2 we show a time series of

just the uniform noise and its frequency domain profile after a FFT, where we see

all frequencies present.
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Figure 4.1: 1,000 points of the x-coordinate time series for the Rossler attractor
with (a) the noise-free scenario and (b) 25% added uniform white noise.

Figure 4.2: (a) Uniform white noise (25% of Rossler signal), and (b) the FFT of
the uniform white noise in (a).
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In the case above we have added uniform noise with mean 0. If the added

noise has a non-zero mean, we will see a spike in the FFT plot. This is commonly

referred to as “DC bias”. If for example, we add uniform white noise, using

R1(i) ε [0, 1], rather than R1(i) ε [−1/2, 1/2] then the mean is equal to 1/2. This

tall spike dominates the frequency spectrum and masks whether or not energy in

the signal is uniformly distributed in the frequency domain. Subtracting the mean

from the noise signal results again in the spectrum shown in Figure 4.2. It is for

this reason we construct our model noise-free time series with zero mean. When

dealing with an experimental time series, we need to subtract the mean from the

data before proceeding with the analysis. The Rossler attractor with 25% added

uniform noise is shown in Figure 4.3.

Figure 4.3: Rossler attractor with 25% uniform white noise added using Equa-
tion 4.1.

4.2.2 Gaussian White Noise (GWN)

If each sample has a normal distribution with zero mean, the signal is said to be

Gaussian white noise. Since the mean of this noise is zero, we do not need to

adjust for a DC bias.
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If we let R2(i) ε [−∞,+∞] be a random number that is normally distributed, n

be the noise factor and σnf be the standard deviation of the noise-free time series,

then the noise-infected time series xGWN is:

xGWN(i) = xnf (i) + nR2(i)σnf. (4.2)

Additive white Gaussian noise (GWN) is a basic noise model used in informa-

tion theory to model the effect of many random processes that occur in nature.

It has a normal distribution in the time domain with mean 0. The central limit

theorem of probability theory states that the summation of many random pro-

cesses converges to a Gaussian or normal distribution. Examples in nature are

the thermal vibrations of atoms in conductors (referred to as thermal noise or

Johnson-Nyquist noise) and black body radiation from warm celestial objects like

the Earth and Sun.

Figure 4.4: Rossler attractor with 25% Gaussian white noise added using Equa-
tion 4.2.
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4.2.3 High Frequency Noise (HFN)

High Frequency Noise (HFN) is more difficult to construct and involves directly

building the noise vector in the frequency domain. If we define R2(i), σnf and n as

before and define k as the minimum frequency after which the high frequency noise

acts on the signal. Let y(i) = nR2(i)σnf for i = 1, ...., N , and let z = FFT (y).

Define w as follows:

w(j) =

{
0 for j < k,

z(j) for j ≥ k.
. (4.3)

Then the high frequency noise vector is

HFN(i) = IFFT (w)(i) i = 1, ....., N, (4.4)

where IFFT denotes the inverse FFT. The high frequency noise time series is finally

added to the noise-free signal as follows:

xHFN(i) = xnf (i) +HFN(i) i = 1, ..., N, (4.5)

In Figure 4.5 we show the high-frequency noise signal in the time domain and

frequency domain. In Figure 4.6 the HFN is added to the Rossler signal. The

difficulty of meaningfully reducing HFN is exemplified in Figure 4.7.
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Figure 4.5: Top: High frequency noise time series in time domain. Bottom: Fre-
quency domain, where high frequency noise is added for all frequencies above
f =1.0.

Figure 4.6: Example of adding high frequency noise (HFN) to noise-free Rossler
signal. In this case HFN is added to frequencies > 1.0.
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Figure 4.7: Rossler attractor with added high frequency noise. The SNR is 4.0
dB for this example.

4.2.4 Coloured Noise ( 1/fµ noise)

Coloured noise (or 1/fµ noise) refers to a signal or process with a power density

spectrum (in the frequency domain) that obeys an inverse power law of the signal

frequency. The value of the power µ determines the “colour” of the noise. We

will illustrate using pink noise or 1/f noise, so named from the pink appearance

of visible light with this power spectrum. For pink noise, each halving or doubling

of the frequency carries an equal amount of noise energy.

Pink noise is pervasive and occurs in a multitude of physical, biological and

economic systems. Examples of pink noise in physical systems include waves lap-

ping on the beach, fluctuations in tide and river heights, leaves rustling on trees,

the flow of traffic and the pulsation of a Quasar. It is omnipresent in nearly all

electronic devices (referred to as flicker noise) as resistance in the solid-state elec-

tronics. Biological examples include reflex times, heart beat rhythms and neural

activity. Pitch and loudness fluctuations in speech and music are pink noises.
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If we define R2(i), σnf and n as before and let y(i) = nR2(i)σnf for i = 1, ...., N ,

and let z = FFT (y). Define w as follows:

w(j) = F (fj)z(y), j = 1, ....., N, (4.6)

where F (fj) represents the weighting at frequency fj. Then the pink noise vector

is:

PN(i) = IFFT (w)(i) i = 1, ....., N, (4.7)

where again IFFT denotes the inverse FFT. The pink noise time series is finally

added to the noise-free signal as follows:

xPN(i) = xnf (i) + PN(i). (4.8)

In Figure 4.8 we show the noise-free Rossler time series and also the same time

series with pink noise added and SNR of 4.0 dB. In Figure 4.9 we have isolated

the pink noise time series and also show its profile in the frequency domain. The

skewing of energy distribution towards the lower frequencies is apparent and we

can see that a low-pass filter will be of little use here. We show the pink noise

infected Rossler attractor in Figure 4.10.
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Figure 4.8: Top: 1,000 points of the x -coordinate time series for the noise-free
Rossler attractor. Bottom: contains added pink (1/f ) noise with SNR=4.0 dB.

Figure 4.9: Pink or 1/f noise, extracted from the signal (top) and its FFT (bot-
tom). The SNR is 4.0 dB for this example.
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Figure 4.10: Rossler attractor with added pink (1/f ) noise and the SNR is 4.0
dB.

In Chapter 5 we will explore scenarios involving the four types of measurement

noise we have introduced above. We further consider scenarios with low levels of

added dynamical noise.

4.2.5 Dynamical (or System) Noise

As discussed in Chapter 2, measurement noise does not influence the evolution of

the system. In contrast, dynamical noise appears as a disturbance that influences

the evolution of the dynamical system. Dynamical noise is added to each iterate of

the variable in the numerical integrator in the following manner. If the numerical

integrator (e.g. Runge-Kutta method) is denoted by F, with step-size h, and the

time-series is of length N , then the numerical integration process for noise-free

data can be described as:

xi+1 = F (xi, h) i = 1, ...., N − 1. (4.9)

(4.10)
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We add the dynamical noise as follows:

xi+1 = F (xi +Ni, h), (4.11a)

Ni = nxiR2(i), i = 1, ..., N − 1, (4.11b)

where n is the noise factor used to roughly calibrate to the desired SNR ratio.

We cannot pre-define the dynamical noise level as it varies randomly per iterate

as a function of R2(i). We calculate the SNR for the time series at the end of the

numerical integration process. The best we can do to control the overall SNR is

to vary n. Often, the iterates exponentially diverge rapidly.

Thus at the end of each iteration we add an increment to the iterate xi+1;

the increment is found by multiplying xi by the product of a noise factor and a

random number with Gaussian distribution (we could alternately use a uniformly

distributed random number). In practice only small increments can be added, as

the numerical integration process will diverge rapidly otherwise.

In Figure 4.11 we show the noise-free Rossler time series (blue) and the Rossler

time series infected with dynamical noise. We observe the difference from measure-

ment noise, which appears as fluctuations around the (intact) underlying signal.

The dynamical noise actually disturbs and perturbs the geometry of the underlying

signal itself, as well as introducing a phase lag. In Figure 4.12 we have overlaid the

two time series shown in Figure 4.11 for comparison purposes and observe that the

dynamical noise has altered the geometry and phase of the signal itself. In Figure

4.13 we have isolated the dynamical noise time series and calculated its FFT. We

provide a closer view of the FFT in Figure 4.14. The dynamical noise manifests at

all frequencies, and in particular at the key harmonics associated with the noise-

free time series. The broadband nature of this noise makes it unlikely that we

can remove noise with a simple frequency selection strategy. In Figure 4.15 we

show the dynamical noise-infected Rossler attractor, which appears very smooth

in contrast to the measurement noise scenario, which contains many jagged varia-

tions around the underlying path. The noise is “baked” into the signal making it

extremely difficult to remove.
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Figure 4.11: Rossler attractor with added dynamical noise and SNR = 4.89 dB.

Figure 4.12: We have overlaid the dynamical noise-infected signal (red) with the
noise-free signal.

.
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Figure 4.13: Gaussian dynamical noise, extracted from the signal.

Figure 4.14: Closer view of FFT of Gaussian dynamical noise, extracted from
the signal.

177



Shadow UPO Noise Reduction Method

Figure 4.15: Rossler attractor with Gaussian dynamical noise and SNR= 4.89
dB. The attractor appears very smooth in contrast with the measurement noise
scenario.

4.3 Heuristic Example: The Rossler System

We now demonstrate the application of the process for estimating lower order

UPOs using a numerically integrated model time series for the Rossler system

with step-size h = 0.1 and 25% added white Gaussian noise. As in Chapter 3 all

time series will contain 10,000 points unless stated otherwise. We described the

detection and extraction process for shadow-UPOs using recurrence matrices and

histograms in Chapter 3. In this chapter we will focus on processing the detected

shadow-UPOs to estimate the set of lower order UPOs.

4.3.1 Filter and Critical Radius Choices

Detection and extraction of shadow-UPOs requires the construction of an N ×N
recurrence matrix, where N is the length of the time series. This is the most com-

putationally demanding aspect of the approach. The time required to construct

a recurrence matrix grows as O(N2). This is still considerably faster than the

O(N3) required by the Newton-method style algorithms in the literature for noise-
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free UPO detection. To minimise processing time, our model noise-infected time

series are limited to containing 8,000—10,000 points. For this practical reason, the

analysis of multiple samples of the time series is easier to work with than a single

long time series and will capture the same information, provided starting points

are sufficiently varied. In the example in this section, we used Rossler time series

with parameter values as defined in Section 3.3 and time series of 8,000–10,000

points.

A short pre-filter window is used with 5 points either side of the central value

(11 point window). For higher levels of noise this may be extended to a wider

window size. The application of this pre-filter allows us to detect and identify

cycles with noise levels of 25%—50% or even greater, in contrast with 5%—10%

for the unadjusted noise-infected time series. It also ensures that small sections of

the noise-infected time series that cannot be extracted and noise-filtered directly

at least have the noise reduced somewhat.

For the model Rossler system, we use a critical radius ε = 1.6, which corre-

sponds to approximately 5% of the attractor extent.

4.3.2 Results and Coverage Ratio

Having identified the harmonics in the attractor and extracted the complete and

partial shadow-UPO sequences, we next examine how successful this set is at cov-

ering the time series from which it is extracted. If we are to use the set of extracted

shadow-UPOs to approximate the time series, it needs to cover a significant per-

centage of that time series. For the time series defined above, Figure 4.16 shows

the coverage attained using complete cycles only. Figure 4.17 shows the coverage

by partial cycles only and Figure 4.18 shows the result of using both complete and

partial cycles. We can see the overall coverage rate is excellent and that partial

cycles can make a significant contribution.
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Figure 4.16: Coverage of time series by detected complete cycles is shown in the
above plot. The blue lines represent coverage for each period (vertical axis) and
the lower red line represents the overall coverage of 78.6%.

Figure 4.17: Coverage of time series by detected partial cycles (> 50% period)
is shown in the above plot. The green lines represent coverage for each period
and the lower red line represents the overall coverage of 89.6%. The vertical axis
represents period expressed as a multiple of the fundamental period.
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Figure 4.18: Coverage of time series by all detected cycles (complete and partial)
is shown in the above plot. The black lines represent coverage for each period
and the lower red line represents the overall coverage of 98.6%. The vertical axis
represents period expressed as a multiple of the fundamental period.

Reviewing the coverage plots above, complete cycles comprise nearly 80% of

time series, partial cycles comprise 96% and the combination of both covers 99% of

the time series. We also see that all periods up to 10T, where T is the fundamental

period, are present in this single sample; either as complete cycles or partial cycles.

We summarise variation in cover rates as the critical radius varies for the Rossler

system in the Table 4.1 below. We observe that the rate of improvement in the

cover ratio for complete cycles increases most rapidly until the critical radius equals

1.6, then falls off. Partial cycles provide a high level of coverage throughout and

thus are a valuable source of information.
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Critical Radius Cover Ratio Cover Ratio Cover Ratio
Full Cycles Partial Cycles All Cycles

0.5 36.8% 40.4% 67.1%
0.6 36.8% 47.7% 74.2%
0.7 36.8% 58.0% 85.6%
0.8 36.8% 49.9% 74.4%
0.9 46.5% 62.4% 81.5%
1.0 48.8% 57.7% 81.2%
1.1 55.5% 67.8% 89.1%
1.2 52.5% 67.3% 87.0%
1.3 55.6% 74.8% 93.7%
1.4 58.6% 81.0% 94.9%
1.5 70.5% 83.9% 97.8%
1.6 78.6% 89.6% 98.6%
1.7 83.2% 89.0% 96.9%
1.8 83.2% 91.0% 98.1%
1.9 83.8% 93.0% 98.4%
2.0 87.5% 95.6% 98.5%
2.1 89.8% 96.1% 99.5%
2.2 91.3% 97.5% 99.5%
2.3 91.4% 97.7% 100.0%
2.4 91.4% 98.3% 100.0%

Table 4.1: Variation in coverage levels of the noise-free Rossler time series with
critical radius.

4.4 Reducing Noise from Detected Cycles

The technique adopted to reduce noise from individual cycles is dependent on the

type of noise. If for example we are dealing with measurement high frequency

noise, the approach adopted will be a low-pass filter or cut-off in the frequency

domain after a FFT transformation. For noise types that inhabit a broad range of

frequencies like Gaussian and uniform white noise, the cut-off has limited success

and simply averaging a bin full of equivalent cycles is likely to get a better result.

We demonstrate the averaging approach using the Rossler system. In Chapter 5

we will illustrate using more targeted signal processing approaches in the frequency

domain.
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4.4.1 Highly Populated Bins

The simplest way to establish a set of noise-reduced UPOs is to take the average

within each bin containing multiple copies of continuous shadowing orbits that

are very close to the underlying UPO at every point. Bins containing the most

copies will provide the highest quality estimate of the underlying noise-free UPO.

Usually we see a reduction in the detection frequency as the periodic order of

cycles increases, however this is highly dependent on the stability of the cycle and

the visitation time by the sampling orbit, and is no hard and fast rule.

The collection of shadow-UPOs extracted from the time series are to be sorted

into bins of equal period. In the case of evenly spaced peaks on the histogram,

corresponding to a cycle structure of a fundamental period and sub-harmonics,

there should be little confusion about which cycle type each is. However in the

case where peaks are not evenly spaced and some are relatively close to others,

it is important they are allocated correctly. It is important to note that detected

complete shadow-UPOs of the same period are almost certain to have different

initial and final points and will need to be cyclically permuted to align before

averaging. Figures 4.19 and 4.20 below illustrate this point. To synchronise the

phase of all cycles in a bin, we select the first cycle X as the anchor. We then

compare all other cycles Y with X and determine the phase shift to synchronise

them. This is achieved by finding the phase lag corresponding to the maximum of

the cross correlation rxy. In Figure 4.21 we show a shadow-UPO after it has been

cyclically permuted to line up with the “anchor” cycle and we observe the small

“bend” that arises. The averaging of cycles smoothes out these bends. Also, in

these figures we see the small discontinuity between start and end points caused

by the instability inherent in the dynamics. The size of the gap is limited by the

critical radius, ensuring we do not capture cycle sequences that are too divergent

from the true UPO.

An unintended consequence of the recurrence method is that in certain cases re-

peated multiple circuits of a cycle are also captured as higher order cycles. These

detected cycles have lower periods, this is a consequence of the recurrence his-

togram cycle detection methodology. These “artefact” cycles must be eliminated
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when searching for cycles of unique period, and the methodology to do this was

discussed in Chapter 3.

Figure 4.19: Detected shadow-UPOs will display a discontinuity between start
and end points, as the orbit is unstable and is shadowing the underlying UPO.
This is a period 3T noise-free cycle.

Figure 4.20: Another detected period 3T shadow-UPO from noise-free Rossler
system. Each has a different start-end point and these are out of step when rep-
resented as a time series or delay vector. One shadow-UPO must be cyclically
permuted to align with the other before they may be averaged.
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Figure 4.21: A period 2T noise-free cycle that is cyclically permuted by 94
points to align with the anchor. Note the “bend” is formed from the divergent
start-end points of the un-permuted cycle.

We now illustrate the averaging of binned shadow-UPOs using the simple case of

Rossler system with 5% added GWN. Twenty shadow-UPOs of period 3T were

identified. The shadow-UPOs in each bin are first cyclically aligned by maximising

the cross correlation between each pair of cycles. Once optimally aligned they are

averaged point-wise. The average is shown in Figure 4.22 in red and the individual

cycles in blue. We can see nice clustering around the average in this case.

Figure 4.22: Plots of 20 detected period 3T shadow-UPOs and their average.
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4.4.2 Lightly Populated Bins

If repeat sampling is possible, we suggest taking many samples and heavily popu-

lating the bins, so a very accurate average is produced for common cycles, and we

find at least 10 occurrences for “rare” highly unstable periods.

In the event of having few detected pairs, then we are limited in the quality of

averaging. If a cycle is detected, then a minimum of 2 copies will be detected as

a result of the recurrence matrix methodology. The rare exception is where the

conjugate cycle, detected using the scalar recurrence matrix, ends after the last

point of the delay vector (but still lies within the scalar time series). We exclude

these conjugates as there is insufficient data to find the delay vector. We can

average all the detected cycles in a bin to estimate the underlying noise-free UPO,

regardless of whether we have 100 cycles or 2 cycles. If there are only 2 copies of a

cycle then this is the best we can do for the fixed length single time series sample.

We prefer to take a different approach to UPOs where we only have detected a

small number of complete cycles. We note that all detected cycles are approxima-

tions to the underlying UPO and are orbits passing nearby and eventually veering

off. Thus there is a “gap” or discontinuity between start and end points of the

detected cycles, as highlighted in Figure 4.19 above.

We apply a Fourier filter to the “least unstable” of the few detected cycles. Be-

fore applying the Fourier filter we transform the cycle to join the end points. This

is a simple linear end-point smoothing transformation, preserving the essential

features of the cycle and an example for a period 5T shadow-UPO is illustrated in

Figure 4.23. The “least unstable” example of the underlying UPO is the detected

cycle with shortest discontinuity between the start and end point using the L2

metric. The smallest gap corresponds to “least unstable” of the detected cycles as

it divergences the least during the measured time period and is the best approx-

imation to the closed underlying UPO. The end-point transformation is reversed

after the Fourier filter is applied. In Figure 4.24 and Figure 4.25 we illustrate this

process for the simple case of noise-infected Rossler shadow-UPO of period 11T
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using a time series of 8,000 points and a critical radius of 1.6. We were only able

to detect a single pair of these 11T cycles and thus cannot apply averaging.

Figure 4.23: Original period 5T Rossler shadow-UPO is shown in blue. The red
line shows the transformed UPO with end point smoothing.

Figure 4.24: Plot of the period 11T “most stable” detected shadow-UPO con-
taining 25% GWN from a time series of 8,000 points (smallest end-gap).
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Figure 4.25: Plots of the period 11T “most stable” detected higher frequency
shadow-UPO after the application of a Fourier filter, removing unwanted har-
monics directly.

4.5 UPO Estimation using Multi-sampling

In this section we illustrate how to use multi-sampling for estimates of the lower

order noise-free Rossler UPOs. We take multiple samples of noise-free data and

then with 25% added Gaussian white noise. Multiple samples of time series were

constructed of the Rossler system, using the mid point of the current sample as the

initial point of the subsequent sample. The results of 50 samples of 8,000 points

are shown below. The use of multiple samples is preferred as bins containing more

cycles of a given period will yield a better average and a single noise-free Rossler

time series is unlikely to yield all lower order UPOs. Some will just be too unstable

to locate using a single sample. For the single Rossler time series used in Section

4.4, we were unable to detect the period 7 cycle. However, with 50 time series

samples, we were able to detect 4 full period 7 cycles.
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4.5.1 Lower Order UPOs from Noise-Free Time Series

In Figure 4.26 we show a recurrence histogram, aggregating the results of using 50

noise-free time series. Each time series was generated using the methods described

previously and searched for shadow-UPOs. Complete shadow-UPOs are in blue

and the partial shadow-UPOs are in red. Shadow-UPOs of periods T, 2T, 3T and

6T are very dominant with large numbers detected. We will be able to derive good

approximations to UPOs of these periods. In contrast, the period 7T shadow-

UPO is very difficult to detect and we need to make the best of the examples

detected. We can also see the significance of partial cycles for periods 4T, 5T,

7T and 8T where the numbers of complete cycles are relatively small. Tables 4.2

and 4.3 summarise the number of cycles detected and the percentage of the totals

contributed by each period. We detected shadow-UPOs of up to period 12T and

see that those of periods T -3T comprise the 63% of total detected cycles.

Figure 4.26: Histogram representation of complete and partial cycles detected
from 50 noise-free Rossler system time series samples, each of length 8,000
points.
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Period Number of Full Cycles Number of Partial Cycles
1 811 293
2 282 714
3 1015 675
4 29 140
5 49 219
6 240 472
7 4 56
8 24 207
9 83 122
10 26 113
11 31 67
12 10 45

Table 4.2: Summary table of number of detected cycles by period from 50 noise-
free time series samples.

Integer Period % Full Cycles % Partial Cycles % Total
1 31% 9% 19%
2 11% 23% 17%
3 39% 22% 30%
4 1% 5% 3%
5 2% 7% 5%
6 9% 15% 12%
7 0% 2% 1%
8 1% 7% 4%
9 3% 4% 4%
10 1% 4% 2%
11 1% 2% 2%
12 0% 1% 1%

Table 4.3: Summary table of number of detected cycles by period from 50 noise-
free time series samples. Full cycles comprise 45% of the total. Approximately
63% of detected cycles are of periods T=1 to T=3.

In Figures 4.27 and 4.28 we present estimates of all the lower order UPOs up to

period 12T. Each was calculated by averaging the appropriate bin of synchronised

shadow-UPOs.
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(a) Period 1 cycle. (b) Period 2 cycle.

(c) Period 3 cycle. (d) Period 4 cycle.

(e) Period 5 cycle. (f) Period 6 cycle.

Figure 4.27: Estimates of complete set of lower order noise-free Rossler UPOs
(periods 1-6), calculating by averaging detected cycles from 50 samples of the
noise-free time series.

191



Shadow UPO Noise Reduction Method

(a) Period 7 cycle. (b) Period 8 cycle.

(c) Period 9 cycle. (d) Period 10 cycle.

(e) Period 11 cycle. (f) Period 12 cycle.

Figure 4.28: Estimates of complete set of lower order noise-free Rossler UPOs
(periods 7-12), calculating by averaging detected cycles from 50 samples of the
noise-free time series.
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4.5.2 Lower Order UPOs from Time Series with 25%

Added Noise

Figure 4.29 shows the recurrence histogram aggregating the numbers of shadow-

UPOs detected from 50 noise-infected Rossler time series. The pattern is similar

to that in Figure 5.26, with the lower order periods T –3T dominating the result.

In Tables 4.4 and 4.5 we summarise the numbers of noise-infected shadow-UPOs

detected, noting that now nearer to 80% of the cycles detected are periods T –3T.

Also partial shadow-UPOs have increased as a proportion of total detected cycles,

and complete cycles reduced as expected due to noise.

Figure 4.29: Histogram representation of complete and partial cycles detected
from 50 pre-filtered noise-infected (25%) Rossler system time series samples,
each of length 8,000 points.
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Period Number of Full Cycles Number of Partial Cycles Total Cycles
1 1124 3600 4724
2 623 990 1613
3 1201 1118 2319
4 34 246 280
5 59 253 312
6 288 463 751
7 2 134 136
8 69 143 212
9 59 209 268
10 22 127 149
11 28 97 125
12 27 79 106

Table 4.4: Full and partial cycles detected from 50 noise-infected time series
samples of 8,000 points from the pre-filtered Rossler system with 25% added
GWN noise, each of length 8,000 points. There is a significant increase in the
number of T=1 partial cycles as expected.

Period % Full Cycles % Partial Cycles % Total
1 32% 48% 43%
2 18% 13% 15%
3 34% 15% 21%
4 1% 3% 3%
5 2% 3% 3%
6 8% 6% 7%
7 0% 2% 1%
8 2% 2% 2%
9 2% 3% 2%
10 1% 2% 1%
11 1% 1% 1%
12 1% 1% 1%

Table 4.5: Summary table of number of detected cycles by period from 50 noise-
infected time series samples. Full cycles comprise 32% of the total number of
cycles detected.

In Figure 4.30 we provide several examples of individual noise-infected shadow-

UPOs prior to noise-filtering. In Figure 4.31 we show the estimates of noise-free
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UPOs after averaging the binned data. The results in this section show that we can

still get good estimates of the lower order UPOs using noise-infected data, however

we rely on a smaller number of detected complete cycles and the approximation is

not as accurate using bins that are lightly populated.
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(a) Period 1 cycle. (b) Period 2 cycle.

(c) Period 3 cycle. (d) Period 6 cycle.

(e) Period 9 cycle.

Figure 4.30: Examples of original 25% noise-infected Rossler shadow-UPOs (pe-
riods T, 2T, 3T, 6T and 9T).
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(a) Period 1 cycle. (b) Period 2 cycle.

(c) Period 3 cycle. (d) Period 6 cycle.

(e) Period 9 cycle.

Figure 4.31: Estimates of Rossler UPOs (periods T, 2T, 3T, 6T and 9T) after
averaging the detected and synchronised noise-infected shadow-UPOs.

197



Shadow UPO Noise Reduction Method

4.6 Lyapunov Exponent of Individual UPOs

Using the SUNR method described in previous sections, we obtain collections

of shadow-UPOs in bins. We have shown that if we can accumulate sufficiently

large numbers of noise-infected cycles in each bin, then they may be individually

filtered or averaged to reduce noise and estimate the underlying lower order UPOs

directly. Large pools of cycles containing measurement noise appear to respond

well to averaging and provide solid estimates of the UPOs. In particular, averaging

can reduce broadband noise that is difficult to address using Fourier techniques

involving frequency selection.

The lower order UPOs form a useful basis for describing the attractor. The

attractor may be approximated by UPOs and retain its inherent characteristics.

The average maximal Lyapunov exponent is a useful indicator of the presence

of chaos and the degree of orbital divergence within a chaotic system. However,

as discussed in Chapter 1, within a local neighbourhood, orbits shear apart or

converge in accordance with the short time Lyapunov exponents representing the

specific dynamics of that neighbourhood. Short time Lyapunov exponents are

defined in Equation (1.27). The length of each lower order UPO provides an

excellent measure of “short time”. We propose that a highly meaningful definition

of orbital divergence is defined in terms of the short time Lyapunov exponents of

the lower order UPOs.

During the time evolution of an orbit, it will journey along a path “near” a

lower order UPO. It could be traveling on a much higher order cycle near the

lower order cycle, but for quantitative purposes it does not matter. If we can

calculate a short time Lyapunov exponent for each lower order UPO, then this

will approximately describe the deformation of path from the start to the end of

the cycle. Furthermore to calculate the short time Lyapunov exponent for the

cycle, we only need start and end point data. We therefore wish to calculate short

time Lyapunov exponents for UPOs of each lower order period and refer to these

as UPO Lyapunov exponents.
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The data stored in the bins when estimating the noise-free basis set of lower

order UPOs can be used to directly calculate a short time Lyapunov exponent

for each cycle period. The UPO Lyapunov exponents may then be combined in a

weighted average to estimate the global or average maximal Lyapunov exponent.

The methodology we adopt to estimating local periodic Lyapunov exponents

is based on a technique used by Sano and Sawada [117] to compute the Lyapunov

exponents of a noise-free time series, but we shall modify it for cycles. The Sano-

Sawada technique identifies a set of points within a small ball of radius ε of a

selected point. A matrix of difference vectors is constructed between each point in

the ε-ball and the selected point xj. Each point in the ball is evolved forward by n

time steps and again the matrix of difference vectors is constructed. A linearisation

is constructed between the start and end difference matrices:

ξ(t) = At.ξ(0), (4.12)

where ξ(t) is the resultant difference matrix at time t and At is a linear operator

which maps tangent vector ξ(0) to ξ(t) and is in fact the Jacobian J(t).

The Lyapunov exponents are determined as the eigenvalues of J(t). Another

point is then selected with sufficient neighbours within an ε-ball and the procedure

is repeated, and so forth. The final set of Lyapunov exponents is calculated by

averaging all those determined along the orbit. We shall modify this process for

cycles, where we know that once suitably synchronised, the start points all fall

within an ε-ball for an appropriately selected value of ε.

Define a small ball of radius ε, centered at the jth entry in the time series; xj .

Let us find the set of points {xri} with i = 1, 2, ..., N included within this ball:

{yi} = {(xri − xj) : ‖(xri − xj)‖ ≤ ε}, (4.13)

where yi is the displacement vector between xri and xj. We use the L2

(Euclidean) norm for the distance calculation.
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After the passing of a time interval τ = p∆t, the cycle point xj will now

progressed to xj+p and the neighbouring points {xri} within the ball will have

progressed to {xri+p}. Now if we consider displacement vectors, our initial dis-

placement vector yi = (xri − xj) is mapped to the set

{zi} = {(xri+p
− xj+p) : ‖(xri − xj)‖ ≤ ε}. (4.14)

We assume the radius ε is sufficiently small for the displacement vectors {yi}
and {zi} to be reasonable approximations of the tangent vectors in the tangent

space. We can now represent the evolution of yi to zi as the matrix equation:

zi = Bjy
i. (4.15)

The N ×N matrix Bj is an approximation at xj of the flow map J t.

The next step is to optimize the estimation of the flow map Bj using the data

stored in {yi} and {zi} and for this the least-squares error algorithm is applied.

This minimises the average of the L2 distance norm between zi and Bjy
i with

respect to all components of Bj as follows:

min
Bj

S = min
Bj

N∑
i=1

∥∥zi −Bjy
i
∥∥2 . (4.16)

The eigenvalues of Bj are the estimates of the local cycle Lyapunov exponents

at xj. This is illustrated by the diagram in Figure 4.32 below.

In order to apply this technique to binned shadow-UPOs we need to synchronise

the cycles as they will not necessarily all be in phase. We can synchronise cycles

using the time lag associated with maximum cross-correlation values as before.

The method requires we construct a matrix Z of start points and a matrix Y of

end points for each bin. Applying noise-reduction methods to each shadow-UPO

in a given bin is unlikely to yield much improvement given we are using single

points and will deal with the noise through the averaging process inherent in using

a set of cycles.

200



Shadow UPO Noise Reduction Method

Figure 4.32: We are fitting an approximate linear mapping to the displacement
vectors in the ball of radius ε centered on x1 and following their evolution for p
time steps (1 period), where the central point will be x1+p. The Lyapunov expo-
nents for a cycle bin will be determined as the eigenvalues of the N × N matrix
Bj .

Figures 4.33 shows the importance of synchronising shadow-UPOs as initial

points may be well out of step with each other. In Figure 4.33 we show as red

dots the starting points of 383 individual cycles, collected from 12 sample time

series of 10,000 points each. They are widely distributed. We need to synchronise

cycles, aligning the start points as closely as possible to calculate difference vectors

between points included in a ε-ball centred at an “anchor” point. In Figure 4.34 we

show the same 383 cycles after they have been aligned using the cross-correlation

of each with an “anchor” cycle. The start points are now sufficiently close to

calculate a matrix of difference vectors. The “anchor” point is identified as that
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Figure 4.33: The set of detected complete period 3T cycles from 12 samples of
10,000 points. In total there are 383 cycles shown in blue. The start points are
illustrated in red and are highly dispersed.

with minimum total L2 distance to all the other points. We also eliminate any

isolated points that remain too far from our “anchor” point, in this case a distance

of more than 1.6.

Figure 4.34: The set of detected 383 period 3T cycles, with start points synchro-
nised.
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Period Weight Noise=0% Noise=25%
UPO LE UPO LE

1 15.2% 0.081 0.087
2 10.9% 0.059 0.063
3 35.5% 0.084 0.090
4 2.4% 0.060 0.065
5 3.0% 0.081 0.086
6 15.9% 0.081 0.087
7 2.8% 0.063 0.068
8 3.2% 0.084 0.090
9 3.9% 0.087 0.094
10 7.1% 0.087 0.093

Table 4.6: Maximal Lyapunov exponents calculated for individual Rossler UPOs
(Periods 1-10), using the Sano-Sawada methodology described above, adapted to
bundles of shadow-UPOs. The weighted average estimates of the average global
Lyapunov exponent are 0.08 (1/s) and 0.09(1/s) using noise-free and noise-
filtered cycle bundles, respectively.

The estimated noise-free values and noise-reduced values of the UPO Lyapunov

exponents are collected in Table 4.6 above. We found that 10 samples of the time

series were sufficient obtain reasonable estimates of the short time Lyapunov ex-

ponents. The weights are calculated for both noise-free and 25% noise-infected

shadow-UPOs from the pre-filtered data using the proportion of periodic points

of a given period to the total. The total points of a given period are calculated

by summing across the row of the reduced recurrence matrix. The noise-free and

noise-reduced UPO Lyapunov exponents are reasonably close. By constructing a

difference matrix using many periodic points collected within a ball and calculating

the start-end point vectorial divergence after one period, we are also effectively av-

eraging out noise without having to individually filter entire cycles. The weighted

average estimates of the average global Lyapunov exponent are 0.08 s-1 and 0.09

s-1 using noise-free and noise-filtered cycle bundles, respectively.
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4.7 Summary and Discussion

In this chapter we described the process of creating model chaotic time series with

added noise for the purpose of testing the shadow-UPO based noise reduction

(SUNR) method, a methodology for detection, extraction, processing and noise-

filtering of the detected shadow-UPOs from a noisy time series. The time series is

simply created through numerical integration of the system equations. We show

how to generate time series infected by any of uniform white, Gaussian white,

high frequency and pink measurement noise. We also specify the process for adding

dynamical noise in Section 4.2.5. At this stage we focus on a single chaotic system,

the Rossler system, to illustrate the SUNR method. The process will be repeated

in Chapter 5 for several other systems with differing levels of added noise.

Our focus in this chapter is addressing chaotic time series with lower instability

(i.e. at the lower end of the range 0 < λmax ≤ 1). For these systems the recurrence

histogram model for detecting harmonics and shadow-UPO locations will detect a

sizeable number of complete cycles. This may not be the case for more strongly

chaotic systems and the necessary modifications are addressed in Chapter 5. We

provide a heuristic example using the Rossler system, and show how to produce

estimates of the basis set of noise-free lower order UPOs, using binning and simple

averaging. We treat bins with many detected cycles differently than those with

only a few. Highly populated bins are amenable to averaging after synchronising

detected orbits, as many will be out of step. If the noise has specific characteris-

tics amenable to a frequency attenuation technique, then we suggest individually

filtering each cycle in the frequency domain using a FFT. For less populated bins

we select the “least unstable” cycle for Fourier filtering, where the selected cycle

has the smallest gap between start and end point. The averaging approach is

particularly useful when noise is broadband in nature (e.g. Gaussian) and it is

difficult to eliminate using frequency selection approaches.

Using a single noise-free Rossler time series we can detect most different lower

order UPOs but are unlikely to find all. Some will just be too unstable to locate

using a single sample. For the Rossler system the period 7 cycle is difficult to
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detect for example. We thus apply multi-sampling and confirm the benefits of this

approach. We usually get many examples of each cycle. Initially, using a noise-free

Rossler time series we detect all UPOs up to period 12 and using averaging we ob-

tain excellent approximations of the underlying UPOs. We then apply the method

to a Rossler time series with 25% Gaussian white noise added, and again find all of

the lower order cycles. The noise-reduced UPO approximations appear to closely

match the estimates from noise-free data, and the goodness of fit considerations

are addressed in Chapter 5.

Finally we propose that the set of lower order UPOs coupled with their associ-

ated short time Lyapunov signature form a meaningful description of the chaotic

system. The problem of orbital divergence is then discretised down to a set of

UPO Lyapunov exponents describing the divergence depending upon which UPO

the orbit is traveling on or near to. A short time Lyapunov exponent can be cal-

culated for each UPO period using the data bins we have already populated to

determine the noise-free UPO basis set. The binned data is not noise-filtered as

the method employed to determine the UPO Lyapunov exponents only uses start-

end points and multiple cycles, implicitly noise-filtering the result. To calculate

an average short time Lyapunov exponent using synchronised clustered shadow-

UPOs, we modify a technique used by Sano and Sawada [117] that was applied

to general segments of orbit. This numerical technique was also originally used

by Lathrop and Kostelich [84] in the context of UPOs for the B-Z system, but

not as a noise reduction tool. The average maximal Lyapunov exponent for the

system may be estimated using a weighted average, using the relative proportions

of periodic points. We illustrate for the Rossler system with 25% added GWN,

obtaining a set of maximal UPO Lyapunov exponents and estimates of the global

average Lyapunov exponent that are approximately equal to the true result.
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Chapter 5

Adaptions for Higher Instability

Systems

5.1 Chapter Overview

In this chapter we consider the noise-reduction problem for chaotic dynamical sys-

tems with greater instability than those discussed in Chapter 4. In these systems

the instability is such that we may not be able to detect sufficient complete cycles

of all periods to estimate a full noise free basis set of lower order UPOs. The insta-

bility may result in only specific periods being detectable, fewer complete cycles

and more partial cycles; or both. For these time series we can still apply the bin-

ning and filtering version of the SUNR method that was described and illustrated

in Chapter 4. However we may obtain an incomplete set of noise-free basis UPO

estimates, each with less statistical credibility than those derived from bins with

large numbers of detected cycles.

For these systems with higher instability we may not be able to obtain noise-free

estimates of the lower order UPOs, but we can still estimate the noise-free time

series. Provided the residual noise is sufficiently low in the approximated noise-free

time series, we may then characterise the chaotic dynamical system by using this

approximation in the conventional numerical algorithms to determine invariants.

This alternative approach involves individually noise-filtering all complete and
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partial shadow-UPOs and using these to construct an approximation of the noise-

free time series. In this way we maximise use of the available information.

For such chaotic systems the SUNR method is again, for consistency, illustrated

using a noise-infected time series derived from the chaotic Rossler system and

we explore the effect of different types of measurement noise and different levels

of noise. We detect, extract and process complete and partial cycles from the

noise-infected data using our modified recurrence plot and recurrence histogram.

For comparative purposes, noise is reduced from detected cyclic sequences using a

simple Fourier low-pass filter. We emphasise that filtering individual shadow-UPOs

allows greater noise reduction if we know the type of noise and can apply specific

signal processing techniques. We illustrate with an example using pink noise and

a targeted approach to separating the signal from the noise with excellent results.

The noise-reduced approximation of the underlying time series is then used to

directly calculate the maximal Lyapunov exponent using the Wolf algorithm and

results are discussed. We also test the SUNR method on time series infected with

dynamical noise, analyse the results and identify the limitations. Based on the

observation that dynamic noise infected time series remain smooth but deformed,

we present a simple alternative approach for dynamical noise using multi-sampling.

Finally, we test the SUNR method on several other chaotic systems of varying

topology including the Chua, Lorenz, Rabinovich-Fabrikant and Lu-Chen systems.

As in Chapter 3 and 4, all time series considered will contain 10,000 points unless

stated otherwise. We measure goodness of fit results and estimate the maximal

Lyapunov exponent in each case. The SUNR method works well for the relatively

“low-instability” Rossler, Lorenz and Chua systems and this is confirmed by our

goodness of fit results. The Rabinovich-Fabrikant system is introduced as an

example of where the recurrence matrix detection method runs into difficulty. The

Lu-Chen system is included as an example of a “higher-instability” system and

we vary our approach to detecting cycles for these systems to get more favourable

results. We apply the SUNR method to multi-sampled data taken from the Rossler,

Lorenz and Chua systems, averaging the estimated noise-free Lyapunov exponent

results and see that this approach significantly improves the computed results.

208



Adaptions for Higher Instability Systems

Before we summarise the results described above, we first define a set of per-

formance metrics to measure the goodness of fit between the approximation and

the noise-free time series. In all cases the SNR is reduced; however, this single

measure is inadequate to measure the overall effectiveness of the approximation

and better metrics are required for this purpose.

5.2 Goodness of Fit Measures for Time Series

The SUNR method produces as output an approximation of the noise-free time

series, and we need to assess the goodness of fit of that approximation. There has

been much discussion in the literature around the best method to test for equality

of time series. The goal is to find a distance or statistical measure that will indicate

the level of similarity or dissimilarity between time series. An excellent summary

of methods is provided in the user guide for the TSdist software [107]. Following

the categorisation introduced in [46], the time series distance measures can be

divided into four categories and we describe each briefly.

Shape-based measures : This category of distance measures is based on directly

comparing the data values and the shape of the series in different ways. Primary

focus is on Lp distances derived from the norms. These are defined distance met-

rics that can only compare series of the same length. Also included in this class

are distance measures designed to accommodate variations in the time series un-

der comparison. The Dissim distance for example is designed for when sampling

rates are different. In order to overcome the restrictions of rigid distances such as

Euclidean distance, other similarity measures have been specifically developed. A

popular approach is Dynamic Time Warping (DTW) [10]. This distance measure

is specifically designed able to deal with transformations such as local warping and

shifting, and allows the comparison between series of different lengths.

Edit-based Measures : Edit distance calculates the similarity between two se-

quences of strings based on the idea of counting the minimum number of edit op-

erations (delete, insert and replace) that are necessary to transform one sequence

into the other.
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Features-based Measures : This category of distance measures focuses on extract-

ing a set of features from the time series and calculating the similarity between

these features. Examples are Pearson’s correlation and Fourier coefficients based

distance.

Structure-based measures : Structure-based distances are designed to identify

higher-level structures in long series. Structure-based distances include (i) model-

based approaches, where a model is fit to each series and the comparison is made

between models, and (ii) complexity-based models, where the similarity between

two series is measured based on the quantity of shared information.

As well as direct goodness of fit measures like those described above, there are

also measures derived from the time series like dynamical invariants; in particular

the maximal Lyapunov exponent. We will also be calculating these and comparing

with the noise-free scenario.

5.3 Goodness of Fit Measures Applied

Our view is that there is no single perfect method to measure the quality of the

approximation; it is best to apply a number of different metrics that measure the

most important qualities of the specific approximation and view the results collec-

tively. Given we have two time series of the same length and sampling frequency,

we apply the Lp distance measures, also calculate a features-based (statistical)

metric and a measure of phase synchronicity. We will measure the goodness of

fit between the approximation and original noise-infected data for both the scalar

time series and the associated delay vectors. The distance measures can diverge

exponentially rapidly if the two time series are even slightly out of phase so en-

suring phase synchronicity is imperative. Our goodness of fit (GOF) measures are

summarised as follows.
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5.3.1 Distance Measures

Let x = (x1, x2, ......, xn) and y = (y1, y2, ......, yn) be two time series. The entries

in these time series may be a single scalar value or a m-dimensional point in phase

space (a delay vector). The L1, L2 and L∞ distances are d1 =
n∑
i=1

|xi − yi| , d2 ={
n∑
i=1

(xi − yi)2
}1/2

and d∞ = max |xi − yi| respectively.

The goodness of fit measure using the L1 norm is the mean absolute error,

MAE = d1/n. The L1 norm accommodates outliers without giving them a higher

weighting and produces a lower error in such cases when compared to the L2 norm.

The goodness of fit measure using the L2 norm is the root mean square error,

RMSE = d2/
√
n. The RMSE represents the standard deviation of the residuals

(prediction errors) and is a measure of the spread. Since the errors are squared

before they are averaged, the RMSE gives a relatively high weight to large errors.

The RMSE is a measure of the “quality” of an estimator, it is always non-negative,

rotationally invariant, and values closer to zero are better. Like the standard

deviation, the RMSE has the same units of measurement as the quantity being

estimated.

The goodness of fit measure using the L∞ norm is the mean maximum error,

MME = d∞/n. This is where the distance between two vectors is the greatest

along any coordinate dimension. It highlights the “worst” dimensional fit at each

point and we would like this as small as possible.

5.3.2 Coefficient of Determination or R2

In statistics, the coefficient of determination denoted by R2 is a measure of pre-

dictability between a dependent variable and an independent variable. R2 repre-

sents the proportion of the variance in the dependent variable that results from

using the independent variable to predict the dependent variable. It measures

the effectiveness of the model at replicating observed outcomes. Let our time se-

ries x have n values denoted by x1, x2, ......xn. Each value of x has an associated
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predicted (or modelled) value f1, f2, ......fn, where f is the prediction vector.

Define the set of residuals (or errors) as ei = xi − fi and the mean of the

observed data x as usual by:

x =
1

n

n∑
i=1

xi. (5.1)

The variability of the time series can be expressed using three “sums of squares”

quantities; the total sum of squares SStot, the explained sum of squares SSreg

and the residual sum of squares SSres. These are defined as SStot =
n∑
i=1

(xi − x)2,

SSreg =
n∑
i=1

(fi − x)2, and SSres =
n∑
i=1

(xi − fi)2 respectively.

The coefficient of determination, R2 is defined as:

R2 ≡ 1− SSres
SStot

. (5.2)

R2 is related to the proportion of unexplained variance (PUV), with the ratio

term comparing the variance of the errors in the model (unexplained variance)

with the data’s total variance as:

R2 ≡ 1− PUV. (5.3)

For example if R2 = 0.64, then 64% of the variability between the two variables

is explained using the dependent variable. The outstanding 36% of the variability

is still unaccounted for. The coefficient of determination, R2, will take values

between 0 and 1.

There are a number of interpretations of the coefficient of determination in

use. Firstly, it is commonly used in the context of least squares regression. In

that case R2 represents the square of the Pearson correlation coefficient relating

the regressor and the response variable. The other context is broader, where

predicted values are generated from a more general model, not necessarily linear
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least squares regression. This is the context with which we utilise R2. In this case,

R2 is calculated as:

R2 = r2xf , (5.4)

where rxf is the correlation coefficient between the x data values and the modelled

values. The R2 value is thus a measure of the goodness of fit of the predictor that

is constructed from the modelled values.

5.3.3 Phase Lag using Cross Correlation

The purpose of this metric is to ascertain the amount of any phase shift intro-

duced as a result of the approximation process. For the comparison between the

approximant and noise-free time series we determine the overall maximum of the

cross-correlation between them and the lag associated with the maximum. If we

are given two time series, xt and yt , we can delay xt by T samples and then

calculate the cross-covariance between the two signals as follows:

σxy(T ) =
1

(N − 1)

N∑
t=1

(xt−T − µx)(yt − µy). (5.5)

where µx and µy are the respective means of each time series with N samples. The

cross-correlation function is the normalised version:

rxy(T ) =
σxy(T )√

σxx(0)σyy(0)
. (5.6)

Note that σxx(0) = σ2
x and σyy(0) = σ2

y are the variances of the respective

signals so that

rxy =
σxy
σxσy

. (5.7)
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(a) Phase-shifted time series˙fig:a (b) Cross-correlation˙

Figure 5.1: (a) Two identical signals that are out of phase by 20 time steps, (b)
Plot of cross-correlation between the two time series that are out of phase by 20
steps shown in Fig (5.1). Note the clear peak at time lag=20.

We express the phase lag (if any) as number of time steps required to ensure

maximum of the cross-correlation between the time series.

5.4 Heuristic Example: The Rossler System

We demonstrate the SUNR process using a numerically integrated model time

series for the Rossler system with step-size h = 0.1 and 25% added white Gaussian

noise. The noise-infected attractor is shown in Figure 4.8.

5.4.1 Detecting and Extracting Complete and Partial Cy-

cles

As shown in Chapter 3, we construct the recurrence histogram which is highly

resilient to measurement noise. We apply a critical radius of 1.6 (approximately

5% of the attractor extent) to detect periodic points, using the scalar time series

without embedding. We observe the horizontal lines on the recurrence plot corre-

sponding to sequences of consecutive points with the same period. We summarise

the detected shadow-UPOs in Table 5.1, where each period is a multiple of the

fundamental period T (approximately 60 time steps).
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Figure 5.2: Horizontal recurrence plot using pre-filtered scalar Rossler time se-
ries, containing 25% added white Gaussian noise. Horizontal segments represent
shadow-UPOs.

Figure 5.3: Histogram derived from the recurrence matrix. Peaks represent peri-
odic points occurring with the greatest frequency. The associated frequencies are
shown more clearly on the bar chart.
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Period Period Number of Full Number of Partial
Number Cycles Cycles

1 60 27 18
2 118 13 20
3 177 12 33
4 236 0 6
5 294 3 6
6 352 4 9
7 470 0 2
8 528 0 2
9 587 0 2
10 645 0 2

Total 59 100

Table 5.1: Detected Rossler shadow-UPOs of each period. Partial cycles are se-
quences of length ≥ 50% of a period.

The recurrence plot and recurrence histogram are shown in Figures 5.2 and 5.3

respectively. Histogram peaks are identified using the peak detection algorithm in

Matlab. The “findpeak” function returns a vector with the local maxima (peaks)

of the input signal vector. A local peak is a data sample that is either larger than

its two neighbouring samples; and they represent periodic points occurring with

greatest frequency. In the case of a chaotic system with relatively low instability

(small maximal Lyapunov exponent) we will likely detect many complete cycles

at periods corresponding to the peaks. For chaotic systems that are highly unsta-

ble (large maximal Lyapunov exponent) we may only detect partial or incomplete

cycle sequences. The location of peaks, in the presence of high levels of measure-

ment noise, is enhanced considerably by pre-filtering the noise-infected data with

a centered moving average. In Figure 5.3 the associated periods are shown more

clearly on the lower bar chart. The red line represents the height of a complete

cycle period and the green line represents the minimum number of points for a

partial cycle to be included. The bar heights must be above these lines for at least

one shadow-UPO or partial shadow-UPO to be detected. In this example there

are many periodic points detected in excess of the minimum.
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Using the information on peak periods, we extract the relevant rows relating to

these periods from the recurrence matrix and search for sequences of consecutive

periodic points. The recurrence matrix method implicitly requires two consecutive

complete cycles to be present to acknowledge that cycle. Thus complete cycles ap-

pear in consecutive conjugate pairs and this is accommodated in our methodology.

5.4.2 Filtering Complete Cycles to Reduce Measurement

Noise

After linearly transforming the detected cycles using an end-point smoothing

transformation to ensure they are closed (end points join), we next apply an ap-

propriate noise filter to each complete cycle. This transformation is inverted after

noise filtering. In this case, for illustration purposes we use a Fourier filter in the

frequency domain, removing all amplitudes attached to frequencies > 0.8. See

Figures 5.4–5.7 below for an example of a detected cycle of period 5T that is

noise-filtered using a cut-off (low-pass) filter.

Figure 5.4: Complete period 5T cycle. Top: Noise-free. Bottom: 25% added
Gaussian white noise.
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Figure 5.5: Trace of x -coordinate for noisy period 5T shadow-UPO, before and
after end point smoothing.

In this illustrative example, the Fourier filter acts as a low pass filter and is

similar to the application of a moving average. In practice, the type of noise will

vary and more advanced signal processing techniques can be applied to the closed

cycle. This can be expected to yield significantly better results than with a simple

low-pass filter.
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Figure 5.6: Period 5T shadow-UPO before (Top) and after (Bottom) the appli-
cation of the low-pass filter. There is a marked improvement in quality of the
cycle.

Figure 5.7: Period 5T shadow-UPO. Direct comparison in phase space of cycle
before (blue) and after the application of the low-pass filter (red).
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(a) Period 2 cycle. (b) Period 3 cycle.

(c) Period 5 cycle. (d) Period 6 cycle.

Figure 5.8: One can see the noise-filtered cycles (period 2, 3, 5 and 6) merge rea-
sonably smoothly with the underlying time series.

In this case, and for the other systems tested later, we have found a fixed

frequency cut-off is applicable for cycles of all periods, however individual cut-offs

can be varied by period if required.

The plots in Figure 5.8a–5.8d show the cycles of several periods after noise-

reduction using the Fourier filter. One can see a clear improvement, especially

given the high levels of added white noise.
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5.4.3 Filtering Partial Cycles to Reduce Measurement

Noise

We now utilise the valuable information contained in partial cycles which in this

case are required to be of length greater than 50% of the period. The detection

criteria demanded by the recurrence matrix method means that each detected par-

tial cycle sequence of period T has been repeated T points later in the time series.

There are a multitude of these partial cycles in any chaotic dynamical system of

higher instability, where most orbits, more often than not, do not complete two

full trajectories in the vicinity of a UPO. In this case there are 104 partial cycles

detected and they contain valuable information. Directly applying Fourier tech-

niques to these incomplete cycles will result in artefacts appearing due to the Gibbs

phenomenon induced by discontinuities. These will be problematic is providing a

filtered partial cycle.

To make these partial cycles more amenable to Fourier methods, the simplest

way is to “mirror” the partial signal x of length L. If it is of length L, create a

temporary new closed cycle xmirror as follows:

xmirror(i) =

{
x(i) for i = 1, 2, .., L,

x(2L− i) for i = L+ 1, ..., 2L.
(5.8)

The new ‘hybrid’ partial cycle is of length 2L and consists of the concatenation

of the partial signal x and its “flipped” mirror image in the line x = L. The

temporary new cycle is not supposed to represent the true cycle as we are missing

information on the completion of the cycle. It is merely a useful construct for the

purposes of noise filtering. The new hybrid partial cycle now has starting and end

points matching, it is symmetrical and the FFT amplitudes are doubled at each

frequency. We are assuming that the partial cycle is sufficiently long enough to

retain informational integrity with respect to the true cycle. After using the same

cut-off employed for complete cycles, we take the first half of noise-filtered xmirror

as our signal. We found this technique to be very effective for partial cycles. We

illustrate an example of a hybrid partial cycle of period 7T below in Figure 5.9.
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Figure 5.9: Hybrid partial cycle of period 7T constructed by “mirroring” the
original partial cycle. This is an artificial construct in order to apply Fourier fil-
tering to the partial cycle without start-end point artefacts becoming a problem.

In Figure 5.10 we show a period 7T partial shadow-UPO before and after

applying a Fourier filter. We have colour coded the partial cycle and see that it

joins smoothly either side in the time series. The same period 7T cycle is shown

in three-dimensional phase space in Figure 5.11. The fully noise-reduced Rossler

attractor is shown in Figure 5.12 and one can see visually that it is a considerable

improvement of the noisy attractor. In Figure 5.13 we show the noise-filtered

partial cycles of periods 1T, 2T, 3T, 4T, 6T, 8T, 9T and 10T.

These detected and noise-reduced complete and partial shadow-UPOs will be

placed back into the same location in the approximating time series. The location

of each cycle (the start and end point) is stored in a matrix when the cycles are

detected using the recurrence matrix method. This location indexing makes it

easy to extract the cycles for noise-reduction and to return them subsequently. By

returning filtered cycles to their original location in the time series, we reduce any

“joining” discontinuities significantly. This is illustrated by the smooth joins in

Figure 5.10 and Figure 5.13.
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Figure 5.10: The joins between the underlying time series are relatively smooth.
Top: Pre-filtered with a moving average. Bottom: Noise-filtered partial cycles
(Bottom)

Figure 5.11: Partial cycle of period 7T, shown in phase space before and after
noise-reduction.
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Figure 5.12: The original noise-infected attractor and approximation using
noise filtered complete and partial detected shadow-UPOs. The coverage rate
is 97.93%.
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Figure 5.13: Noise-filtered partial cycles of period 1T, 2T, 3T, 4T, 6T, 8T, 9T
and 10T.
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5.4.4 Goodness of Fit of Approximant

In this section, we replace the noise-infected sequences of the moving average pre-

filtered time series with the corresponding noise-reduced sequences and test the

goodness of fit using the measures defined previously. We compare the goodness

of fit of the final approximant to the original (noise-free) time series. We also

compare the noise-infected time series and the moving average pre-filtered time

series to the noise-free time series.

These comparisons are summarised in Table 5.2 below. A brief explanation

of each comparison is as follows. The noise-infected time-series is compared to

the noise-free (clean) time series. This is our baseline position against which

we may compare an approximant. The moving average pre-filtered time-series

is compared to the noise-free (clean) time series. This is our “worst case” noise

filter as the moving average (low-pass) filter is the worst filter for signals with a

broadband profile in the frequency domain as there is no means to distinguish

one band of frequencies from another. The SUNR time series approximation is

compared to the noise-free time series. The goodness of fit metrics quantify the

effectiveness of the approximation. For our noise-reduction model to be successful,

we require a significant improvement in the metrics when compared with the base

scenario (noise-infected compared with noise-free). The least we will expect from

our noise-reduction method is to produce results equivalent to the moving average

comparison. For illustrative purposes we are using a simple low-pass filter and

results are expected to be similar to those resulting from the moving average filter

and indeed this is the case. The advantage of the SUNR method is that we can

specifically tailor the noise-reduction technique for each cycle, based on the type

of noise, to maximise the goodness of fit.

Comparisons are made using delay vectors constructed from the various series

(with embedding dimension 3 and time delay 7).

The data in Table 5.1 shows that in this case the approximant is superior to

the noise-infected time series and delay vector as expected on all metrics.
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Delay Vectors Noise vs. Clean MA vs. Clean Approx. vs. Clean
MAE 3.06 1.31 1.27
RMSE 4.90 1.01 0.89
MME 1.08 0.43 0.45
Rˆ2 93.85% 98.73% 98.87%

Table 5.2: Goodness of fit of the SUNR approximation to the Rossler time series
with 25% added GWN.

5.4.5 Variation of Approximation with Noise Type

Most research in the area of noise reduction is restricted to additive Gaussian

white noise. Also the few research papers highlighting the apparent robustness of

recurrence histograms to noise consider only Gaussian white noise and, to the best

of our knowledge, this conclusion has not been confirmed for other types of noise.

We now explore the consequences for cycle detection, and for the approximation

more broadly, as we vary the type and level of the added noise.

Firstly we compare results for each type of measurement noise with a SNR fixed

at 4.0 dB (25% added noise) and summarise these in Table 5.3.

Noise Type Number of Number of Cover Ratio Cover Ratio
Full Cycles Partial Cycles Full Cycles All Cycles

High Frequency 62 124 64% 98%
Gaussian white 66 106 65% 96%
Uniform white 104 120 92% 99%
1/f 69 153 41% 80%

Table 5.3: Detection and coverage rates for Rossler system, by type of additive
noise.

We observe that cycles are more difficult to detect when noise is confined to a

section of the frequency domain (high frequency and coloured noise) rather than

broadly across all modes. Typically the required critical radius is higher in these

cases corresponding to 5%–10% of the (wider) maximum attractor extent. We

observe that the robustness of the recurrence plot detection method remains intact

in the presence of higher levels of added noise and when the noise type is varied.

227



Adaptions for Higher Instability Systems

Noise Type MAE RMSE MME Phase Lag R2

Noise vs. Clean (HFN) 7.80 31.70 2.71 0 62.4%
Approx. (HFN) 0.51 0.28 0.19 0 99.6%
Noise vs Clean (GWN) 3.06 4.90 1.08 0 93.8%
Approx. (GWN: cut-off=1.0) 1.44 1.09 0.54 0 98.6%
Approx. (GWN: cut-off=2.5) 2.18 2.51 0.80 0 96.9%
Noise vs Clean (UWN) 0.96 0.41 0.32 0 99.5%
Approx. (UWN: cut-off=1.0) 0.46 0.11 0.17 0 99.9%
Approx. (UWN: cut-off=2.5) 0.65 0.21 0.24 0 99.7%
Noise vs. Clean (1/f) 7.77 31.75 1.91 0 60.2%
1/f (cut-off) 6.88 24.90 1.43 0 68.9%
1/f (targeted filter) 1.74 6.71 0.17 0 91.3%

Table 5.4: Comparison of goodness of fit metrics for SUNR method approxi-
mant. We compare each with the base case of the noise-free delay vector versus
the 25% noise case (listed as Noise vs. Clean). All approximations are in phase
with the noise-free time series.

As expected the method performs best for high frequency added noise where the

cut-off is definitive and the noise is neatly removed. For this case the improvement

over the noise-infected time series and fit is excellent.

In Table 5.4 we summarise the goodness of fit results for the SUNR approxima-

tions for various types of measurement noise. We provide two cut-off scenarios for

both the Gaussian white noise and Uniform white noise, representing aggressive

and relaxed cut-off scenarios. The case where the cut-off value is 1 corresponds

to the cut-off used for the high-frequency noise and retains just the key peaks.

The case where the cut-off value is 2.5 is less aggressive and retains many higher

frequency amplitudes. These give us a range of results. These results for Gaussian

white noise are vastly superior to the base case but slightly inferior to the high

frequency noise case as noise is spread across all frequencies and some noise is

retained at the lower frequencies and not cut off. The results for uniform white

noise are noticeably better than for Gaussian white noise. We may conclude that

a simple targeted cut-off approach will provide excellent results for high frequency

noise, Gaussian white noise and uniform white noise without requiring a deeper

knowledge of signal analysis.
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In the next section we consider pink noise in more depth.

5.4.6 Targeted Noise-Filtering Example: Pink Noise

As expected, the results for pink noise using a straight cut-off are a little better

than the base case but not by much. This is because much of the noise is retained

in the lower frequencies and low-pass truncation is simply inadequate. We also

had to apply a longer moving average pre-filter (window of 21 points) and a higher

critical radius of 2.8 (> 5% of attractor extent) to detect a useful number of the

cycles. This is illustrated in Figure 5.14(a) where we can see the shadow-UPO,

after the low-pass filter, is still very noisy.

If however we apply a more targeted signal processing technique, superior re-

sults can be achieved. We can firstly approximate the SNR using a noise-tracking

algorithm. There are a number of algorithms available to estimate the amplitude

of the measurement noise without apriori knowledge of the underlying signal. An

example is the method for non-stationary nonlinear data by Hu et al. [68]. There

are also simpler updating methods involving sliding windows. The noise can be

modelled by combining the estimated noise amplitude with the frequency domain

geometry (1/f ). With this information in hand we reduced each frequency bin

using a calculated gain constant to remove the pink noise. In Figure 5.14(b) we

see the improvement of using a targeted signal processing method. The period 3T

cycle is now significantly noise-reduced. The goodness of fit results of the approxi-

mated time series are shown in Table 5.4 and are a considerable improvement over

the low-pass filter.

The key point illustrated here is the SUNR method converts the intractable

problem of filtering a high-noise chaotic time series into that of individually noise-

filtering a series of shadow-UPOs where the results will be as good as the signal

processing technique adopted. Fortunately there is a rich canon of signal processing

techniques, tailored to each type of noise, that can be exploited to optimise results.
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(a) Pink noise with FFT filter. (b) Pink noise with targeted filter.

Figure 5.14: (a) Cycle of period 3, with added pink noise having a SNR=4.0 dB
(top) after being filtered with a simple cut-off. Experimenting with the cut-off
does not improve the result much. This type of noise requires a different ap-
proach, (b) The same cycle of period 3, with noise-removed using a more sophis-
ticated technique targeted at pink noise; a far better result.

Figure 5.15: Trace of x - coordinate versus time of period 3T shadow-UPO (see
Figure 5.14). We show the pink noise-infected (SNR=4.0 dB) shadow-UPO in
blue. The noise-filtered version in red was obtained by modeling and subtracting
the noise.
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5.4.7 Variation of Approximation with Noise Level

Now let us explore how the approximation varies as added noise increases. We use

Gaussian white noise in this case to illustrate the results. We note that coverage

rates reduce with increasing noise, as one would expect. We used a critical radius

of 1.8 for noise levels up to and including 25%. For the 50% and 100% added noise

scenarios we used critical radii of 5% of the noise-infected attractor maximum

extent (distance between two points) values of 2.4 and 2.8 respectively. We used a

moving average window of 11 points (5 points either side of central value) for all

noise up to 50%. For the 100% we needed to double the moving average window

width to 21 points to obtain satisfactory results.

Table 5.5 summarises the goodness of fit results and we observe that the fitted

approximations are always superior to that of the base case of noise-infected time

series versus noise-free time series in all cases. In particular the important average

L2 distance for the approximant is around only 20% of that for the base case. The

R2 statistical measure shows considerable superiority for higher noise levels (50%

and 100%).

We also use the approximation of the noise-free time series to calculate the

maximal or positive Lyapunov exponent using the Wolf numerical algorithm [145].

We have established a reference set of maximal Lyapunov exponents for each of

the chaotic systems studied in this thesis for comparison purposes. These Lya-

punov exponents were calculated directly using noise-free data and the Matlab

LET toolbox, as well as checking published results. They are as follows: Rossler

(λmax = 0.07 s-1), Lorenz (λmax = 0.91 s-1), Chua (λmax = 0.28 s-1), Rabinovich-

Fabrikant (λmax = 0.07 s-1) and Lu-Chen (λmax = 1.75 s-1).

The Wolf algorithm typically fails for signals with noise in excess of 5%–10%.

The results show that the SUNR filtered signal produces reasonable results up to

25% noise. Thereafter, residual noise is presumably affecting the results some-

what. Note the trend is clear with increasing noise. However, even at 100% noise

we are still seeing a positive maximal Lyapunov exponent, signalling the system
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is chaotic. This is a considerable improvement in determining the maximum Lya-

punov exponent with higher noise levels.

Noise Level Coverage % Comparison MAE RMSE MME R2 LE
5% 99.33% Base 0.61 0.20 0.22 99.75% 0.079

Fitted 0.34 0.07 0.13 99.91% 0.066
10% 99.33% Base 1.22 0.78 0.43 99.02%

Fitted 0.60 0.19 0.22 99.75% 0.064
15% 99.34% Base 1.85 1.79 0.67 97.76%

Fitted 0.85 0.38 0.32 99.52% 0.070
20% 99.35% Base 2.47 3.18 0.89 96.02%

Fitted 1.12 0.66 0.43 99.17% 0.071
25% 98.36% Base 3.07 4.88 1.08 93.88%

Fitted 1.39 1.03 0.51 98.70% 0.084
50% 79.17% Base 6.11 19.61 2.17 75.38%

Fitted 2.70 3.85 0.98 95.17% 0.111
100% 85.53 Base 12.27 78.04 4.32 2.10%

Fitted 5.27 14.82 1.90 81.50% 0.155

Table 5.5: Variation in goodness of fit for Rossler system (time step=0.1), with
added Gaussian white noise level. The maximal (positive) Lyapunov exponent
is estimated using Wolf’s algorithm. The value derived for the noise-free time
series is LE=0.079 (base e) (1/sec).
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5.5 Filtering Dynamical Noise from Time Series

5.5.1 Locating and Extracting Cycles

In section 4.2 we discussed the effect of dynamical noise on a signal. Measurement

noise is a random variation around a true underlying signal. Regardless of the

amount of added noise, the signal is still on the “inside”. Dynamical noise is very

different in that it actually deforms the signal itself into a new signal. Thus one

cannot strictly speak of “separating” the signal from dynamical noise. They are

not combined and separable. At best we can try to undo the effect of the dynamical

noise somewhat.

We showed earlier how the influence of dynamical noise perturbs and deforms

the underlying signal, changing its shape. Provided the dynamic noise does not

deform the signal too much, we can still locate the cycles using recurrence tech-

niques. In Table 5.6 we summarise the numbers of complete and partial cycles

detected from the dynamical noise-infected Rossler time series.

Period Period Number of Full Number of Partial
Number Cycles Cycles

1 60 14 12
2 118 15 14
3 177 23 15
4 236 0 8
5 294 0 6
6 352 4 8
7 470 4 0
8 528 0 10
9 587 0 2
10 645 0 0

Total 60 75

Table 5.6: Detected Rossler shadow-UPOs from dynamical noise-infected time
series (time step = 0.1). Partial cycles are sequences of length ≥ 50% of a pe-
riod.
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Figure 5.16: Period 3T shadow-UPO without noise shown in red. The addition
of dynamical noise deforms the entire orbit (blue) and may shift the phase.

Figure 5.17: FFT of noise-free signal (blue), the dynamical noise (red) and the
noise-infected signal (black). There is no easy way to recover the unperturbed
signal.
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Figure 5.16 shows a noise-free period 3T shadow-UPO (red) and the effect

of adding dynamical noise (blue). The dynamical noise can be seen to deform

the cycle and cause a phase shift. From these illustrations we can conclude that

Fourier techniques that rely on frequency separation between signal and noise

cannot succeed here. Figure 5.17 shows that the dynamical noise inhabits the

same frequencies as the signal.

The removal of dynamical noise from time series is a complex area of research,

without a lot of published material and to the best of our knowledge, no off-the-

shelf software solutions or commonly used approach.

5.5.2 SUNR Approach with Multi-sampling

We attempted several simple approaches to reducing dynamical noise from

detected shadow-UPOs. Application of a band-pass filter around the central peak

still results in a very poor fit, significantly worse that a moving average (which also

yields a poor result). Transforming the signal using logarithms, with the sign of

each value preserved also does not improve the results (this method may improve

results for multiplicative measurement noise).

The clear finding here is that any frequency domain separation method will

not suffice as the dynamical noise is intermeshed with the signal at the same

frequencies and a different technique is required. Cycles are irrevocably changed

by dynamical noise and the best we can hope for is that the lower order cycles of

each period, whilst being deformed, remain within the critical radius (as required

by the Shadowing Lemma). Interestingly, we have found that the perturbed cycles

are still detectable for a relatively low signal-to-noise ratios and this suggests an

approach to reducing the effect of the dynamical noise. As the dynamical noise

increases the reduction in number of cycles counted in the lower-period bins in a

measure of when the model comes under stress. As long as we detect the same

number of cycles in each bin as for low-levels of dynamical noise, the deformations

caused by increasing dynamical noise further are insufficient to break the model.
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We demonstrated earlier in Chapter 4 how to obtain a complete set of additive

noise-reduced lower order UPOs for the model Rossler system using multiple time

series samples. Shadow-UPOs were detected, binned and averaged, with the objec-

tive of measurement noise averaging out in highly populated bins. We can adopt a

similar approach for a dynamical noise-infected system provided multiple samples

could be collected. The approximation is usually dominated by lower order cycles

(periods 1T–3T ), and we typically capture a great number of these. The dynam-

ical noise added will be typically Gaussian or uniform, both with a mean of zero.

The central idea is that the cycle deformations for lower order cycles will even out,

with “overs” cancelling “unders”; at least enough to provide a better estimate

of the noise-free UPO. For some iterations, if the dynamical noise is sufficiently

low the subsequent iteration will remain on the same path. In other cases the

orbit will be nudged onto another . The detected deformed cycles are essentially a

blend of nearby near-UPOs with the orbit jumping around from one to the other

occasionally. Averaging a pool of these will arguably provide an estimate of the

underlying UPO, albeit not perfect.

Period Period Number of Cycles
Number Averaged

1 60 194
2 118 101
3 177 219
4 236 6
5 294 11
6 352 50
7 470 6
8 528 12
9 587 2
10 645 4

Table 5.7: Shadow-UPOs detected from 20 samples of a dynamical noise-infected
time series, each of length 10,000 points.

A summary of numbers of detected shadow-UPOs is presented in Table 5.9.

The corresponding recurrence histogram for 10 samples of 10,000 points is shown

in Figure 5.18, where we see a large number of period T–3T. We estimated the
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noise-free UPOs by averaging the binned cycles of each period as before. Figure

5.19 shows the 219 period 3T, dynamical noise-infected shadow-UPOs that were

captured from 10 Rossler time series samples. The average is shown in red. Results

were similar for the lower order cycles with period T–6T.

Figure 5.18: Recurrence histogram of aggregated detected Rossler shadow-UPOs
from 10 time series of 10,000 points each. We clearly have a great number of
periods T–3T cycles and partial cycles. The average SNR for these 10 samples is
4.64 dB.

We subsequently compared the UPO estimates derived from the dynamical

noise-infected time series with those derived from 10 samples of the noise free time

series. Results are shown below in Figure 5.20.
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Figure 5.19: We averaged the 219 period 3T dynamical noise-infected Rossler
shadow-UPOs that were captured from 10 time series samples. Results were sim-
ilar for the lower order cycles with period T—6T.

We replaced only complete cycles in a dynamical noise-infected model Rossler time

series of 10,000 points with estimated noise-free cycles of each period less than 10T

derived from multi-sample averaging. We did not utilise partial cycles and deleted

cycles requiring permutation of more than 3 time steps to synchronise with the

most common cycle orientation. This reduced complexity and still retained large

numbers of cycles for averaging.

Comparison SNR (dB) MAE RMSE MME R2

5,000 points
Noise vs. Clean 7.07 33.55 1.81 58.2%
Approx vs. Clean 3.78 6.69 23.11 1.69 71.2%

10,000 points
Noise vs. Clean 9.53 46.91 2.44 41.2%
Approx vs. Clean 5.14 6.33 23.55 1.69 70.5%

Table 5.8: Goodness of fit of the approximant derived by averaging equivalent
cycles from multiple samples. We used 15 samples of 5,000 and 10,000 points
respectively, with dynamical noise added to determine average cycles.
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(a) Period 1 cycle. (b) Period 2 cycle.

(c) Period 3 cycle. (d) Period 4 cycle.

(e) Period 6 cycle. (f) Period 8 cycle.

Figure 5.20: Comparison between noise-free UPOs and estimates using multiple-
samples of a dynamical noise infected time series. One can see that these are
reasonable approximations.
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We tested this approach on many individual time series, each with a SNR around

this level and the example shown in the table is representative of these cases. The

average SNRs of the samples used to estimate UPOs were 3.78 dB (around 25%

noise) and 5.14 dB (around 20% noise) respectively. The approximant shows

improvement on all the metrics when compared to the original noise-infected case

but the results at this point are not highly compelling. We made the following

observations:

1. This approach will likely provide a reasonable approximation for low lev-

els of dynamical noise. However, any perturbation added in this manner

to a chaotic system quickly inflates and the resultant SNR is only broadly

controllable.

2. Changing the length of the time series used in multi-sampling appears to

make little difference. The goodness of fit results obtained time series samples

of 5,000 points are similar to those for sample time series of 10,000 points.

3. Limiting the approximation to using only lower order averaged cycles, for

example periods T–3T only also appears to make little difference. One might

expect that shorter cycles are less “deformed”, but this does not appear to

be the case. These cycles recur frequently along the evolution of the orbit

and are deformed.

We conclude that this approach does show promise in a challenging situation

where few, if any, techniques work. Further research is required in this area to

improve the precision of the approximation.

5.5.3 Simple Approach to Dynamical Noise

The end goal of approximating the noise-free time series is to have “usable” data

that may be deployed within conventional numerical algorithms (that generally

require noise-free data) to calculate invariants, in particular the maximal Lya-

punov exponent. One would expect that any noise would result in diffusion of the

attractor and an over-estimate of positive Lyapunov exponents. However, a key

observation so far has been that dynamical noise-infected data, although deformed,
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remains smooth and appears to show some resilience in retaining the integrity of

structure. This is evidenced by recurrence histograms retaining integrity with

clear peaks and the average of binned deformed cycles of a given period closely

resembling the cycles in the noise-free data.

With this in mind, we tested the strength of the Wolf numerical algorithm for

calculating maximal Lyapunov exponents when the time series data contains dy-

namical noise. Note that we found this method, which tracks the evolving orbit in

small steps, failed with relatively low measurement noise. Such a trajectory-based

method requires smooth steps forward in time and a relatively low point density

(replacement points outside the noise scale). Surprisingly, we found this method

to be highly robust in the presence of dynamical noise. We constructed multi-

ple dynamical noise-infected Rossler time-series, running each directly through

the Wolf algorithm and estimating the maximal Lyapunov exponent. Subsequent

time series were started from the mid-point of the previous time series and up to

50 time-series were tested. Similarly, we constructed 50 noise-free Rossler time

series using the same methodology and compared results.

These results are illustrated in Figure 5.21. The averages determined from the

noise-free data and dynamical noise-infected data are approximately equal. For

the SNR=5.35 dB case the averages are 0.0703 s-1 and 0.0696 s-1 respectively and

for the SNR=6.68 dB case the averages are 0.0694 s-1 and 0.0695 s-1 respectively.

This exercise was repeated multiple times and in all cases the results very close to

each other. This would seem a good result considering the level of noise involved.
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(a) SNR=5.35 dB

(b) SNR=6.68 dB

Figure 5.21: (a) Maximal Lyapunov exponents calculated for 50 Rossler time
series, both noise-free and with dynamical noise using the Wolf algorithm. Two
scenarios are presented (a): SNR=5.35 dB and (b) SNR=6.68 dB.
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This suggests that a pragmatic approach for a chaotic system infected with dy-

namical noise is to simply estimate the maximal Lyapunov exponent using multiple

time-series sampling and the Wolf algorithm directly; averaging the results. We

also tested this approach on the Lorenz system with results shown in Figure 5.22.

Figure 5.22: Maximal Lyapunov exponents calculated for 50 Lorenz time series,
both noise-free and with dynamical noise using the Wolf algorithm. The average
noise-free LE equals 0.97 s-1 (Top plot) and the average noise-infected LE equals
0.96 s-1 (Bottom plot). The SNR equals -1.4 dB indicating the signal is heavily
infected by noise.

To test whether this approach was only applicable to systems with relatively

low instability, we tested it on a highly chaotic system; the Lu-Chen system. The

maximal Lyapunov exponent for this system is in the range 1.5–1.8 s-1 and is thus

highly unstable. The results are shown above in Figure 5.23.
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Figure 5.23: Maximal Lyapunov exponents calculated for 50 Lu-Chen time se-
ries, both noise-free and with dynamical noise using the Wolf algorithm. The
average noise-free LE equals 1.65 s-1 (Top plot) and the average noise-infected
LE equals 1.68 s-1 (Bottom plot). The SNR equals -2.9 dB indicating the signal
is swamped by noise.

It is interesting to see that for all 3 systems, the average LE calculated using

the dynamical noise-infected time series is indeed very close to that determined

from the noise-free time series, albeit with more volatility between readings for the

the more chaotic systems.
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5.6 Results for Other Chaotic Systems

We have demonstrated in the case study above that the approximation to the

noise-free Rossler time series using the SUNR method will show marked improve-

ments in goodness of fit metrics, when compared to the time series infected with

measurement noise. Also the resultant noise-reduced time series will generally

have sufficiently low residual noise that the conventional Wolf algorithm can be

deployed to determine the maximal Lyapunov exponent. We now tackle several

other lower dimensional chaotic systems with differing topologies as follows.

5.6.1 The Chua System

The Chua system equations [100] are as follows:

dx

dt
= α(y − x− h(x)), (5.9a)

dy

dt
= x− y + z, (5.9b)

dz

dt
= −βy, (5.9c)

where h(x) = bx+1
2
(a−b)(|x+ 1|−|x− 1|). The parameters chosen are (α, β, a, b) =

(0.9, 100/7,−8/7,−5/7), time step h = 0.05 and initial point is (x0, y0, z0) =

(0.1, 0.1, 0.1). The numerically integrated Chua attractor is shown in three dimen-

sional phase space in Figure 5.24.

The Chua circuit is the simplest electronic circuit exhibiting chaos, and its

double-scroll attractor has been the subject of much study. The Chua equations,

like the Rossler equations, only contain only one nonlinearity, in this case added

through the piecewise-linear function h(x) defined by the parameters a and b.

These define the slope of the inner and outer segments of h(x). (By contrast, the

Lorenz equations contain 3 nonlinear terms, each consisting of the product of two

variables). The geometrical structure of the attractor is remarkable, containing an
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infinite number of oppositely directed, concentric cycles. Locally, the geometry of

each cross-section appears to be a fractal across all scales.

Figure 5.24: Attractor for the noise-free Chua system, obtained by numerical
integration of Equations 5.17a–5.17c using 10,000 points and a time step of 0.05.

Figure 5.25: The Chua attractor with 25% added Gaussian white noise.
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The recurrence histogram for the noise-infected Chua time series is shown in

Figure 5.26. Peaks identifying the fundamental period and other harmonics are

identifiable and we were able to extract many complete and partial shadow-UPOs.

In Figure 5.27 we provide an example of a complete period 2T shadow-UPO,

that was extracted and noise-filtered using a simple Fourier low pass filter. The

same cycle is shown in phase space in Figure 5.28, where we can better see the

improvement from filtering.

Figure 5.26: Recurrence histogram for Chua system with critical radius 0.5.
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Figure 5.27: The top plot shows a Chua shadow-UPO of period 2T , infected
with 25% added Gaussian white noise. The FFT is shown in the middle plot,
and the noise-reduced cycle is shown in the bottom plot.

Figure 5.28: Chua shadow-UPO of period 2T , both infected with 25% added
Gaussian white noise (blue) and noise-filtered using the FFT (red) .
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Noise Level Coverage % Comparison MAE RMSE MME R2 LE
5% 93.41% Base 0.16 0.01 0.06 99.76% 0.28

Fitted 0.08 0.00 0.02 99.91% 0.27
10% 93.03% Base 0.33 0.06 0.12 99.00%

Fitted 0.13 0.01 0.04 99.83% 0.25
15% 92.09% Base 0.49 0.12 0.17 97.80%

Fitted 0.18 0.02 0.05 99.67% 0.26
20% 92.09% Base 0.65 0.22 0.23 96.06%

Fitted 0.23 0.03 0.06 99.48% 0.29
25% 85.67% Base 0.83 0.36 0.30 93.58%

Fitted 0.28 0.04 0.08 99.22% 0.27
50% 53.90% Base 1.65 1.44 0.49 74.32%

Fitted 0.56 0.17 0.16 97.00% 0.27
100% 28.23% Base 3.28 5.64 1.18 52.14%

Fitted 1.03 0.56 0.29 90.23% 0.26

Table 5.9: Variation in goodness of fit of the SUNR approximant for Chua sys-
tem with added Gaussian white noise. The maximal (positive) Lyapunov expo-
nent is estimated using Wolf’s algorithm. The value derived for the noise-free
time series is LE=0.28 (base e)(1/sec). The time step is 0.05.

In Table 5.9 we summarise the goodness of fit results for the SUNR approximant

for the Chua system for added GWN up to 100%. The distance metrics show

excellent reductions throughout the entire noise range and in particular at the

higher noise levels. At 50% added noise the distance metrics are similar to the

values for an unfiltered time series with 15% added noise. At 100% the coverage

rate is low (28.23%) and the result is dominated by the effects of moving average

pre-filter. The R2 values show a good fit, retaining values greater than 99% up

to 25% noise and 97% at 50% noise. The estimates of the maximal Lyapunov

exponent fluctuate a little but are close estimates of the true value (λmax = 0.28

s-1).
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5.6.2 The Lorenz System

The Lorenz system [95] is defined by the following nonlinear equations:

dx

dt
= σ(y − x), (5.10a)

dy

dt
= rx− y − xz, (5.10b)

dz

dt
= xy − bz, (5.10c)

where the parameters are (σ, r, b) = (28, 8/3, 10), the time step h = 0.01 and

initial point is (x0, y0, z0) = (1, 1, 1). The noise-free Lorenz attractor is shown

below in Figure 5.29.

Figure 5.29: Lorenz chaotic attractor (noise-free) obtained by numerically inte-
grating Equations 5.19a–5.19c using the 4th order Runge-Kutta method. There
are 10,000 points with time step of 0.01.
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Figure 5.30: Histogram derived from recurrence matrix of Lorenz system.

The recurrence histogram for the noise-infected Lorenz time series is shown in

Figure 5.30. Peaks identifying the fundamental period and other harmonics are

clearly identifiable and we were able to extract many complete and partial lower-

order shadow-UPOs. Most of the shadow-UPOs detected were of the low periods

T–3T, but they provide sufficient coverage (>75% of time series). In Figure 5.31

we show examples of the lower order shadow-UPOs detected. In Figure 5.32 we

provide an example of a period 3T shadow-UPO before and after noise-filtering.
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Figure 5.31: Examples of detected lower order shadow-UPOs.

Figure 5.32: Noise-reduced cycle of period 3T.
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Noise Level Coverage % Comparison MAE RMSE MME R2 LE
5% 85.34% Base 0.94 0.47 0.34 99.75% 0.93

Fitted 0.46 0.15 0.12 99.92% 0.96
10% 82.56% Base 1.91 1.92 0.69 98.97%

Fitted 0.72 0.30 0.20 99.84% 0.94
15% 81.78% Base 2.79 4.06 0.99 97.82%

Fitted 0.97 0.51 0.25 99.73% 0.93
20% 80.26% Base 3.79 7.45 1.34 96.00%

Fitted 1.26 0.84 0.35 99.55% 0.94
25% 78..49% Base 4.68 11.34 1.69 93.90%

Fitted 1.55 1.29 0.46 99.32% 0.96
50% 50.24% Base 9.34 45.85 3.32 75.36%

Fitted 3.03 5.07 0.82 97.21% 0.99
100% 26.66% Base 18.72 181.74 6.60 52.40%

Fitted 6.01 19.61 1.63 89.60% 0.95

Table 5.10: Variation in goodness of fit of the SUNR approximant for Lorenz
system with added Gaussian white noise. The maximal (positive) Lyapunov ex-
ponent is estimated using Wolf’s algorithm. The value derived for the noise-free
time series is LE=0.93 (base e). The time step is 0.01.

In Table 5.10 we summarise the goodness of fit results for the SUNR approx-

imant for the Lorenz system for added GWN up to 100%. The distance metrics

show excellent reductions throughout the entire noise range and particular at the

higher noise levels. At 50% added noise the distance metrics are similar to the

values for an unfiltered time series with 15% added noise. At 100% the coverage

rate is low (28.23%) and the result is dominated by the effects of moving average

pre-filter. The R2 values show a good fit, retaining values greater than 99% up

to 25% noise and 97% at 50% noise. The estimates of the maximal Lyapunov

exponent fluctuate a little and are a little higher the true value (λmax = 0.91 s-1).

Estimates of the maximal Lyapunov exponent using numerical algorithms can vary

slightly depending on the calibration of the algorithm (the input parameters) and

our noise-free estimate is λmax = 0.93 s-1, so our starting position is slightly higher

than the true value. The highest estimate is ( λmax = 0.99 s-1 for noise at 50%) is

only 6.5% from our noise-free estimate.
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5.6.3 The Rabinovich-Fabrikant System

The Rabinovich–Fabrikant equations [112] are a set of three coupled ordinary dif-

ferential equations exhibiting chaotic behavior for certain values of the parameters.

It is not a highly unstable system with the maximal Lyapunov exponent typically

less than 0.5 s-1 for the examples studied in the literature. We include this system

as an example where the recurrence matrix method of cycle detection runs into

problems. This system was originally presented as a mathematical model of the

stochasticity arising from the modulation instability in a non-equilibrium dissi-

pative medium. It is a simplification of a complex nonlinear parabolic equation

modelling various physical systems, such as wind waves on water, and concentra-

tion waves during chemical reactions in a medium where diffusion may occur. The

equations model a real physical system (not an artificial model) and a rigorous

mathematical analysis cannot be carried out due to the strong nonlinearity.

The Rabinovich–Fabrikant (RF) system is an example of a chaotic system that is

difficult to analyse [32], largely due to the quadratic and cubic terms in the system

equations. Danca et al. have found that different attractors can be obtained for the

same parameters by using different methods of numerical integration or different

step sizes in the integration. It also thus poses real challenges to numerical methods

for ODEs [31]. The system behavior depends mostly on the parameter a, and to

a lesser extent on b. The system has several different chaotic attractors with

different shapes (see [31]). Also, having five equilibrium points, the RF system

is topologically non-equivalent to many classical systems, such as the Lorenz and

Rossler systems. The Rabinovich–Fabrikant system is defined by the following

nonlinear equations:

dx

dt
= y(z − 1 + x2) + bx, (5.11a)

dy

dt
= x(3z + 1− x2) + by, (5.11b)

dz

dt
= −2z(a+ xy), (5.11c)

where the parameters are (a, b) = (0.98, 1.0), time step h = 0.2 and initial point
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is (x0, y0, z0) = (0.1, 0.1, 0.1).

The numerically integrated Rabinovich–Fabrikant attractor is shown in three

dimensional phase space in Figure 5.32a. Every orbit in the system is invariant

under the transformation:

T (x, y, z)→ T (−x,−y, z). (5.12)

The Rabinovich–Fabrikant system is remarkable in that a detailed study re-

veals so many chaotic features, for example, the coexistence between several types

of attractors, cycling chaos, hidden attractors and transient chaos. One of the

most interesting features is that different attractors can be obtained for the same

parameters by using different step sizes in the integration. For some values of

the parameter a, the results depend drastically on the step-size, the initial condi-

tions, and the numerical methods used. The standard Runge-Kutta method RK4,

utilised in this thesis, generally gives more accurate results, although in some cases

these are strongly dependent on the step-size h.

255



Adaptions for Higher Instability Systems

(a) Noise-free

(b) GWN=25%

Figure 5.33: (a) Rabinovich-Fabrikant chaotic attractor (noise-free) with param-
eters ( a, b) = (0.98, 1.0), time step=0.2 and initial point =(0.1,0.1,0.1). This is
our illustrative case. (b) The same Rabinovich-Fabrikant chaotic attractor with
25% added Gaussian white noise. 256
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Noise Level Coverage % Comparison MAE RMSE MME R2 LE
5% 52.73% Base 0.11 0.01 0.04 99.75% 0.079

Fitted 0.09 0.01 0.03 99.76% 0.073
10% 49.94% Base 0.23 0.03 0.08 99.00%

Fitted 0.11 0.01 0.04 99.69% 0.069
15% 49.96% Base 0.34 0.06 0.12 0.98%

Fitted 0.14 0.01 0.05 1.00% 0.074
20% 51.36% Base 0.46 0.11 0.17 95.88%

Fitted 0.18 0.02 0.06 99.34% 0.061
25% 47.71% Base 0.57 0.17 0.20 93.74%

Fitted 0.21 0.02 0.07 99.15% 0.073
50% 47.12% Base 1.13 0.67 0.40 75.36%

Fitted 0.38 0.04 0.09 99.76% 0.076

Table 5.11: Goodness of fit of the SUNR approximant. Clearly the approxima-
tion is superior to the noisy time series on all goodness of fit metrics and we are
able to directly calculate an estimate of the maximal Lyapunov exponent. The
time step is 0.2.

We apply the SUNR technique illustrated previously to locate and filter the time

series. Analysis of the goodness of fit data in Table 5.11 shows a very similar

results to those obtained from the Chua and Rossler systems. The distance metrics

(particularly the RMSE) show excellent reductions throughout the entire noise

range including at the higher noise levels. As with the other systems, for 50%

added noise the distance metrics are similar to the values for an unfiltered time

series with 15% added noise. The coverage rate remains close to 50% for all noise

levels and is almost completely comprised of partial shadow-UPOs. If we restricted

ourselves to complete cycles only, we would be unable to produce any approximant.

The recurrence histogram is shown in Figure 5.34 and we can see clear peaks. Thus

for this very difficult system we can construct an approximation using only partial

cycles. The R2 values show a good fit, retaining values greater than 99% up to 50%

noise. The estimates of the maximal Lyapunov exponent fluctuate a little but are

close estimates of the true value (λmax = 0.079 s-1). The recurrence matrix method

requires the orbit to complete two loops near a UPO before being “detected”. This

is a strong condition and in this case we capture few complete cycles (although

they clearly exist). As stated, we do capture a great number of partial cycles. This
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outcome is a result of recurrence matrix methodology rather than because of high

instability in the system.

Figure 5.34: The recurrence histogram for the Rabinovich-Fabrikant chaotic at-
tractor with 25% added Gaussian white noise. Note although we identify periods
with peaks, we find few complete cycles but many partial cycles.

There are three cases where the recurrence histogram approach may not yield

useful results. Firstly, when orbits that are highly chaotic (very unstable) and

unlikely to remain on a specific cycle for any appreciable time and we may not

detect complete cycles. The Lu-Chen system, which we will examine shortly, is

such an example. This was clear from the recurrence plot in Figure 3.2e where few

horizontal lines of any length were visible. In this case we may detect partial cycles

only. A second situation is where cycle periods are not distributed as discrete sub-

harmonics of a fundamental period, but rather as a near continuous spectrum.

An example is a system that spirals outwards, taking a few more steps in each

subsequent cycle. A third situation is where the orbit evolution is complicated

and where cycles do not complete double loops near a UPO. They may complete a

(complex) single cycle pattern, before moving on and perhaps retracing a similar

single cycle later. The Rabinovich–Fabrikant system appears to exhibit this type

of evolution based on observation of the time series and slowly evolving the system
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forward in time. The cycles of the RF system are “bunched”, remaining in a tube-

like formation and are stable enough to detect partial cycles with discrete periods.

For these situations the recurrence matrix methodology may be found wanting and

other approachs to the cycle detection phase of the SUNR need to be considered.

Figure 5.35: The FFT of the noise-free time series reveals a complex mixture of
frequencies within the Rabinovich-Fabrikant system.

One might expect a single fundamental frequency peak with wide sides rep-

resenting the orbits, to be visible in the Fourier spectral response (Figure 5.35);

however the orbit does not evolve by traversing single laps of the attractor loop.

A closer look at nearby detected cycles reveals a multitude of paths where for ex-

ample the trajectory may orbit the small end nodes a single time or several times

before proceeding. This behavior makes it difficult to categorise individual UPOs.

An example is provided in Figure 5.36. In systems with sub-harmonics and simple

distinct cycle patterns, the recurrence method works extremely well and provides

strength and rigor in specifically identifying individual cycles. However our ob-

jective is primarily to identify “near-cycles” for noise-reduction purposes and all

we require is that start and end points are near each other with relatively smooth

and uncomplicated dynamics in between. In these situations where the attractor

does not travel widely and fill out the available space, we will tend to see long
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Figure 5.36: A cycle of the Rabinovich-Fabrikant chaotic attractor, both noise-
free (Top) and with 25% added Gaussian white noise (Bottom). The path fol-
lowed by the orbit is highly complex and not easily deconstructed into simple
UPOs. However, there are a multitude of cycles present, which can be individu-
ally filtered provided they can be extracted.

repetitive, similar looking cycles. These may not be shadow-UPOs but we can still

easily extract and filter these, provided our goal is simply to reduce noise from the

time series.

This limitation of the recurrence method matrix suggests we modify the cycle

detection methodology employed within the SUNR method. The cyclical structure

of the Rabinovich–Fabrikant system is particularly obvious from the attractor and

also from the time series as shown in Figure 5.37 below. We see in Figure 5.37a

that the cycles are well formed and clear, although without any apparent order of

appearance. In order to more easily locate and filter cycles, we relax the strong

close returns condition of requiring at least two consecutive circuits to be deemed

a cycle. Instead we identify the local minima as start and end points of cycles. We

first pre-process the data with a moving average filter to increase resolution of the

local minima and detect the minima by modifying the peak detection algorithm
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in Matlab. In Figure (5.37b) we have segmented the noisy time series into approx-

imate cycles using local minima and requiring that start-end points are within a

given distance tolerance of each other (in this case 0.75). Individual cycles are

filtered as before and replaced back at their original location in the time series.

We illustrate several of the detected cycles in Figure 5.38 below.

(a) Rabinovich-Fabrikant time series.

(b) Local minima.

Figure 5.37: (a) Time series for the Rabinovich-Fabrikant chaotic attractor, both
noise-free (Top) and with 25% added Gaussian white noise (Bottom). (b) Min-
ima (below) of noise-infected Rabinovich-Fabrikant system.
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(a) T=67 points. (b) T=148 points.

(c) T=201 points. (d) T=283 points.

Figure 5.38: Cycles from the noise-free Rabinovich-Fabrikant system.

Noise Level Coverage % Comparison MAE RMSE MME R2 LE
5% 96.51% Base 0.11 0.00 0.04 99.76% 0.079

Fitted 0.10 0.00 0.03 99.74% 0.073
10% 96.45% Base 0.23 0.03 0.08 99.00%

Fitted 0.11 0.01 0.04 99.68% 0.087
15% 96.43% Base 0.34 0.06 0.12 97.74%

Fitted 0.14 0.01 0.05 99.57% 0.079
20% 96.56% Base 0.46 0.11 0.17 95.59%

Fitted 0.17 0.02 0.05 99.38% 0.079
25% 99.11% Base 0.57 0.17 0.20 93.84%

Fitted 0.20 0.02 0.06 99.24% 0.072
50% 98.91% Base 1.15 0.69 0.41 74.93%

Fitted 0.33 0.06 0.10 97.88% 0.076

Table 5.12: Goodness of fit of approximant to Rabinovich-Fabrikant system
based on segmentation into cycles using local minima. Results are similar to
those obtained from the SUNR method. The time step is 0.2.
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The goodness of fit of the SUNR approximant determined using local minima

are summarised in Table 5.12. The results are very similar to those using the

recurrence matrix method of detecting cycles, albeit with higher coverage rates.

The similarity of results is supportive of the SUNR approach, but more importantly

is illustrative of the fact that chaotic attractors, although very periodic in structure

are often very different in how they evolve along cycles in time. Finding cycles may

require some creativity in approach and require examination of the system. Note

that in all cases there was no phase lag between the noise-free time series and the

approximation. Finally, in Figure 5.38 we show the approximation to the noise-

free Rabinovich-Fabrikant attractor, that was constructed using the local minima

approach to cycle detection.

Figure 5.39: Attractor for noise-reduced Rabinovich-Fabrikant system using time
series local minima.
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5.6.4 The Lu-Chen System

Multiscroll attractors (attractors with multiple scrolls in a single attractor))

include the Lu-Chen attractor, the Rabinovich-Fabrikant attractor, the modified

Chen chaotic attractor, the Duffing attractor, and the modified Chua chaotic at-

tractor. The Lu-Chen chaotic system [97], [96] is an example of a system that lies

topologically “in between” the Lorenz/Rossler and Lu-Chen/Chua systems. The

Lu-Chen system is is defined by the following nonlinear equations:

dx

dt
= a(y − x), (5.13a)

dy

dt
= x− xz + cy + u, (5.13b)

dz

dt
= xy − bz, (5.13c)

where the parameters are (a, b, c, u) = (36, 3, 20, 0), time step h = 0.01 and

starting point is (x0, y0, z0) = (0.1, 0.3,−0.6). The noise-free Lu-Chen attractor is

shown in Figure 5.40a.

The Lu-Chen system is highly chaotic (λmax = 1.75 s-1) and the recurrence matrix

approach to detecting shadow-UPOs does not identify cycles. This is an example

of a system where the instability is such that the orbit will not evolve near to

any specific UPO long enough for it to be detected. This instability was observed

visually in Figure 3.2e where horizontal lines of any significant length were not

visible on the recurrence plot. This recurrence histogram is shown in Figure 5.40b

and we see that peaks are not clearly discernable. Shadow-UPOs of many periods

are present but we cannot detect any material amount of complete or partial cycles.

There are clearly complete cycles present in this system but they are not detectable

using the recurrence matrix method.

Nonetheless, the recurrence matrix approach is still an excellent first option

approach as the rigor involved does ensure cycles are near real UPOs and can

be discretely binned and analysed, with the goal of calculating a basis set of

lower order noise-free UPOs. The recurrence plot histogram also provides valuable
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information about cyclic point distribution, and in fact, we can often still detect

the system harmonics, even if we cannot recover the actual cycles.

(a) Noise-free Lu-Chen attractor.

(b) Recurrence-histogram.

Figure 5.40: (a) The double-scroll Lu Chen attractor using a time step of 0.01,
(b) Histogram derived from recurrence matrix of Lu Chen system. Several peaks
are identified but no complete cycles are identified within those peak harmonics.
There are periodic points of all frequencies present, but this does not guarantee
an unbroken repeated sequence will occur.
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Unlike the Rabinovich-Fabrikant system, the Lu-Chen does not appear to evolve

in highly complex cycle patterns. However, it is unlikely to complete two complete

consecutive loops near a UPO and is thus also not detectable using recurrence

methods. For some attractors, particularly those of a more unstable nature, the

orbit will simply not evolve in this manner. We show the frequency domain profile

of the Lu-Chen signal after transformation using the FFT which shows a very broad

distribution of frequencies and emphasises the instability in this system. The Lu-

Chen system may be well be an example of a system with adjacent periods that

are just a few points apart, with the orbit spiralling in and out. This hypothesis

requires further investigation.

Figure 5.41: The FFT of the noise-free Lu-Chen system. One can see the almost
continuous spectrum of cycle periods that define the attractor.

As an alternative to the recurrence matrix method, we again identify the local

minima as start and end points of cycles. We follow the previous methodology,

deconstructing the time series into approximate cycles, by first pre-processing the

data with a moving average filter and detecting the minima. In Figure 5.42b we

have segmented the noisy time series into approximate cycles using local minima
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and requiring that start-end points are within a given distance tolerance of each

other (in this case 0.5). Individual cycles are filtered as before and replaced at

their original location in the time series.

(a) Lu-Chen time series.

(b) Local minima.

Figure 5.42: (a) Time series of Lu Chen system, both noise-free (top) and noise-
infected (below). The periodicity, although irregular, is obvious, (b) Local min-
ima (below) of noise-infected Lu Chen system.
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(a) T=100 points. (b) T=170 points.

(c) T=206 points. (d) T=372 points.

Figure 5.43: Cycles from the noise-free Lu-Chen system.

Figure 5.44: Gaussian white noise-infected Lu-Chen cycle of 202 points, before
(Top) and after FFT filter (Bottom) to remove 25% added GWN.
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The highly cyclic structure of the system is visible in the time series shown in

Figure 5.42a and in Figure 5.43 we show 4 of the detected cycles using the local

minima approach. In Figure 5.44 we show a noise-free cycle of period 202 time

steps and the noise-reduced cycle after the application of the Fourier filter. We

now consider the goodness of fit of the approximant.

Noise Level Coverage % Comparison MAE RMSE MME R2 LE
5% 97.87% Base 0.93 0.45 0.33 99.76% 1.74

Fitted 1.31 1.35 0.40 99.28% 1.82
10% 97.10% Base 1.88 1.85 0.66 99.01%

Fitted 1.58 1.94 0.54 98.96% 1.93
15% 96.71% Base 2.84 4.22 0.99 97.74%

Fitted 1.74 2.14 0.55 98.85% 1.82
20% 90.53% Base 3.82 7.65 1.33 95.89%

Fitted 1.93 2.45 0.58 98.69% 1.95
25% 94.49% Base 4.73 11.65 1.67 93.75%

Fitted 2.07 2.77 0.64 98.51% 2.02
50% 96.68% Base 9.60 48.27 3.40 74.09%

Fitted 3.08 5.35 0.86 97.12% 2.31
100% 96.75 Base 18.78 185.54 6.75 4.54%

Fitted 5.32 14.68 1.39 92.13% 2.37

Table 5.13: Goodness of fit of approximant to Lu Chen system based on segmen-
tation into cycles using local minima. The maximal (positive) Lyapunov expo-
nent is estimated using Wolf’s algorithm. The value derived for the noise-free
time series is LE=1.75 (base e)(1/sec). The time step is 0.01.

These goodness of fit results are considerable improvements over the base case

that compares the noise-free and noise-infected signals. The improvements are

noticeably not as great as for the chaotic systems of lower-instability presented as

examples so far. The estimate of the maximal Lyapunov exponent inflates with

the noise and is reasonable, in the context of the high instability, up to 20%–25%

added noise. For highly unstable chaotic systems it is unlikely we will recover the

maximal Lyapunov exponent precisely and will have to accept some error in the

result. Finally in Figure 5.45 we show the SUNR approximation to the Lu-Chen

system with 25% added GWN.
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Figure 5.45: Approximation of Lu-Chen attractor, after reducing 25% added
Gaussian white noise. The time step is 0.01.
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5.7 Improving Results by Multi-Sampling

In most experimental situations, the experimenter will be able to capture multiple

samples of a time series, rather than just a single set of points. We have modelled

this situation for each of our 3 main model chaotic systems: Rossler, Lorenz and

Chua. We constructed a looping model, using randomised starting points, that

builds a model noise-infected (GWN) time series and steps through each process

of the SUNR method, finally outputting an approximation of each noise-free time

series. We then use the SUNR approximant to estimate the maximal Lyapunov

exponent using Wolf’s algorithm. The results are shown in Figures 5.46–5.48

below. In each case we constructed 50 time series samples of 10,000 points each

and added 25% GWN.

Figure 5.46: Estimate of maximal Lyapunov exponent using 50 Rossler time se-
ries samples. Estimate using noise-free samples is 0.079 s-1 (shown in blue) and
noise-infected samples is 0.081 s-1 (shown in red).
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Figure 5.47: Estimate of maximal Lyapunov exponent using 50 Chua time series
samples. Estimate using noise-free samples is 0.29 s-1 (shown in blue) and noise-
infected samples is 0.29 s-1 (shown in red).

Figure 5.48: Estimate of maximal Lyapunov exponent using 50 Lorenz time se-
ries samples. Estimate using noise-free samples is 0.91 s-1 (shown in blue) and
noise-infected samples is 0.92 s-1 (shown in red).
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The multi-sampling averages out variations in the SUNR estimates of the max-

imal Lyapunov exponent and provides a more accurate result. In Table 5.5 we

summarise the estimate of the average noise-free maximal Lyapunov exponent

using both the noise-free data and the noise-infected data.

System LE (Noise-free) LE (25% GWN) True Value
Rossler 0.079 0.081 0.079
Chua 0.29 0.29 0.28
Lorenz 0.91 0.92 0.91

Table 5.14: Summary of average estimates of maximal Lyapunov exponents us-
ing 50 time series samples and the SUNR method.
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5.8 Summary and Discussion

Our focus in this chapter is adapting the SUNR method to chaotic time series

with higher instability (i.e. at the higher end of the range 0 < λmax ≤ 1). In

these systems the instability is such that we may not be able to detect sufficient

complete cycles of all periods to estimate a full noise-free basis set of individual

lower order UPOs. The instability may result in not all periods being detectable,

fewer complete cycles and more partial cycles; or both. For these systems with

higher instability we can still estimate the noise-free time series. This will also

utilise the valuable information contained in the partial shadow-UPOs. Provided

the residual noise is sufficiently low in the approximated noise-free time series, we

may then determine invariants by using this approximation in the conventional nu-

merical algorithms. This alternative approach involves individually noise-filtering

all detected complete and partial shadow-UPOs and using these to construct an

approximation of the noise-free time series. In this way we maximise use of the

available information.

The SUNR method for these higher instability chaotic systems will produce

an approximation to the noise-free time series. We thus start by defining a set of

goodness of fit metrics for comparing two time series for equality. The set of GOF

metrics we use includes the three point-wise distance metrics (MAE, RMSE and

MME), the coefficient of determination (R2) and phase lag.

We provide a heuristic example using the Rossler system with 25% added GWN,

detecting and extracting complete and partial cycles using the noise-resilient re-

currence histogram. We describe methods to reduce the noise from both complete

and partial shadow-UPOs. Complete shadow-UPOs have a small start-end point

discontinuity, limited in size by the critical radius. We apply an end-point smooth-

ing (EPS) transformation to these complete cycles, to eliminate artefacts of the

Fourier transform before applying a FFT and filtering noise in the frequency do-

main. The linear EPS transformation is inverted after filtering. Partial cycles are

transformed in hybrid complete cycles by concatenating the partial cycle and its

mirror image (”mirroring”). Again, this reduces the problems arising from incom-
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plete cycles when the FFT is applied. These are similarly filtered in the frequency

domain, inverted and the original partial shadow-UPO is recovered. We applied

this methodology to a single Rossler time series and the goodness of fit metrics

were significantly improved relative to the noise-infected state. As expected, the

results of using a simple cut-off low-pass filter produced results similar to that of

a moving average filter.

A strength of this method is that if we have knowledge of the type of mea-

surement noise we can use a targeted filter in the frequency domain rather than

a simple cut-off, which is a worst-case approach for any broadband type of noise.

We illustrate using the low-pass filter with the knowledge that any targeted noise-

reduction filter will produce superior results and testing the SUNR method this

way produces the most conservative results. We apply the simple low-pass filter

to time series with different types of added noise (Uniform white, Gaussian white,

high-frequency and pink coloured) and observe that detection of unique cycles is

better when noise is broadband and not localised in the frequency spectrum. It

is also more difficult to remove noise from a signal in these cases and there is a

detection-noise reduction trade off. We provide a simple example using pink noise

to demonstrate how targeted noise-reduction strategies based on the type of noise

will produce excellent results. By deconstructing the time series into approximate

cycles, we may apply the best noise-reduction technique locally to each cycle.

We consider the variation in results for the Rossler example as measurement

noise is increased from 0% to 100%. The SUNR approximation to the noise-

free time series has sufficiently low residual noise to produce a good estimate of

the maximal Lyapunov exponent for noise levels up to 25%. Between 50% and

100% the Lyapunov exponent estimate increases by a factor of two, most likely

due to residual noise being a little high. To address noise at 50% or 100% level,

the approximation can be re-filtered by a more sophisticated technique to reduce

residual noise further.

The SUNR method was applied to the Rossler example with dynamical noise

added but estimates of the maximal Lyapunov exponent were not very accurate
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(possibly because we cannot use partial cycles). We see how dynamical noise de-

forms the shadow-UPOs but retains smoothness and occupies the same frequencies

as the signal in the frequency domain, making it highly problematic. We subse-

quently tried multi-sampling and collected shadow-UPOs in bins. If we assume the

dynamical noise to have a Gaussian distribution with mean zero, then the defor-

mations should average out over sufficiently many samples (the chaotic attractor is

bounded in phase space). The detected shadow-UPOs were averaged as in Chap-

ter 4 and we compared the estimated noise-free UPOs with those obtained using

the noise-free time series. We observed that the estimated noise-free UPOs were

reasonably good approximations to the true UPOs, although not highly accurate.

The dynamical noise based estimates are sufficiently close to the true UPOs for

qualitative use, for example classifying the chaotic attractor.

Noting that dynamical noise appears to conserve cycles (up to a point) and does

not destroy smoothness in the cycles, we found that directly using a dynamical

noise-infected Rossler time series in the numerical algorithm by Wolf to estimate

maximal Lyapunov exponents did not cause the algorithm to fail. Results did vary

from one time series to another, so we used multiple samples (50) and averaged the

result. Surprisingly we found the average determined by multi-sampling was a very

good estimate of the noise-free result. The exercise was repeated multiple times

and tested on the Lorenz and Chua systems with excellent results also. Further

research is required to understand the mechanism here, but this is a useful result.

Finally we presented results after application of the SUNR method to sev-

eral other systems of varying topology, including the Chua, Lorenz, Rabinovich-

Fabrikant and Lu-Chen systems. The SUNR method works well for the relatively

low-instability Rossler, Lorenz and Chua systems, reducing high levels of measure-

ment noise and producing sensible estimates of the maximal Lyapunov exponent.

The Rabinovich-Fabrikant system is presented as example of a low-instability

system with topology that is problematic for the recurrence matrix method of

detecting cycles. It has a relatively small maximal Lyapunov exponent (0.07)

and yet we did not detect any complete shadow-UPOs but many partial shadow-
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UPOs. This system evolves, tracing out complicated single cycles that do not

repeating immediately. The recurrence method of detecting cycles will not detect

the complete cycles. We did however detect large numbers of partial cycles and

obtained stable goodness of fit results using the recurrence method. This is a

case demonstrating the value of partial shadow-UPOs as without these we would

not get a result at all. Realising the limitations of the recurrence matrix method

for this system, we modified the cycle detection process employed by the SUNR

method, using local minima in time series to partition the time series into “cycle-

like” segments (which are not necessarily shadow-UPOs). We then subsequently

applied the FFT noise filter to each cycle and obtained good estimates of the

maximal Lyapunov exponent. Goodness of fits were similar for both detection

methods, further validating the results.

For highly unstable systems, the SUNR method simply fails to work as we

cannot detect sufficient complete or partial shadow-UPOs. This is evidenced using

the Lu-Chen system which is highly chaotic with maximal Lyapunov exponent of

1.75 s-1. Again, realising the limitations of the recurrence matrix method for

highly unstable systems, we used the local minima cycle detection approach. We

obtained estimates of the maximal Lyapunov exponent (between 1.75 s-1 and 2.0

s-1). This modified approach yielded a result when the recurrence method did

not, highlighting that we need to adapt the cycle detection methodology to the

topology of the chaotic system.

Finally we generated multiple samples for each of the Rossler, Lorenz and

Chua systems, obtaining a SUNR approximation to each sample. We then applied

the Wolf algorithm to each approximated time series, averaging the results. This

averaging process provides accurate estimates of the maximal Lyapunov exponent

for the systems tested.
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Chapter 6

Summary and Outlook

6.1 Thesis Summary

In this thesis we have presented, tested and assessed a noise-reduction method

(the shadow-UPO noise reduction method) that is applicable to scalar time series

sampled from low-dimensional chaotic dynamical systems with medium to high

levels of measurement noise or low levels of dynamical noise. The method was

developed to tackle the difficulties associated with reducing noise from sampled

chaotic time series.

6.1.1 Challenges in Noise Reduction and Invariant Esti-

mation from Chaotic Time Series

The direct application of many conventional noise-reduction filters to a chaotic

time series may destructively interfere with the system, effectively corrupting the

underlying data. Chaotic signals are intimately bound with the noise in the system

through the nonlinearities, and conventional noise reduction methods that are

recursive in nature tend to corrupt the underlying signal in the process of reducing

noise. Incorrect filtering will actually increase the correlation dimension calculated

using standard algorithms and will add an apparent extra Lyapunov exponent to

the system being studied. We are severely limited in the selection of conventional

filters to just finite impulse response filters (FIR), which fortunately includes the
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moving average type. The problem is exacerbated in part because the Fourier

frequency power spectrum of a chaotic signal appears similar to broadband noise,

so techniques based on frequency separation strategies also run into trouble.

Existing noise reduction techniques for chaotic systems usually rely on initially

embedding the noise-infected time series in phase space. Embedding noise-infected

data in phase space may result in a devalued system that is not topologically equiv-

alent to the underlying noise-free system. Takens’ theorem requires an infinitely

long noise-free time series to guarantee topological equivalence between the true

chaotic attractor and that derived from the phase space reconstruction. Algorithms

to calculate the embedding parameters, the time delay, and embedding dimension,

are also highly sensitive to noise. These restrictions reduce the robustness of the

technique and limit the application to very low levels of added noise. Existing

noise-reduction techniques are often highly effective with lower levels of measure-

ment noise but generally do not perform well as the noise level becomes significant

(> 10%). There are few techniques to address dynamical noise in chaotic time

series.

Algorithms to directly calculate chaotic system invariants such as the maximal

Lyapunov exponent from time series assume noise-free data and generally per-

form poorly in the presence of noise. It is preferable to have a low residual noise

time series approximant to use directly in these algorithms, rather than apply the

algorithms to noisy data.

6.1.2 Conceptual Framework

The SUNR method is constructed based on three important observations. First

is the idea that the highly cyclic composition of a chaotic attractor provides an

excellent means to partition the attractor for noise-reduction purposes. Replacing

an intractable noise-infected chaotic time series with a collection of near-cycles,

all of which are amenable to targeted linear noise-filtering techniques, is the basis

of an approach. Further, the cycles (UPOs) are well established within a formal

framework. The formalism of the periodic orbit theory of Cvitanovic provides a

280



Summary and Outlook

useful framework for the application of numerical methods to UPOs. The set of

lower order UPOs provides a natural basis through which we can approximate the

time series (and thus the attractor). UPOs are dense on the chaotic attractor

meaning that all points within a time series lie within a very small distance of

a UPO, usually a lower-order UPO. Many orbits “shadow” the UPOs (and thus

we refer to them as shadow-UPOs), with the orbit segments being very nearly

periodic but may have a small gap between the start point and end point due to

the instability in the system.

UPOs are natural features of a chaotic system. They are the most fundamen-

tal element in the definition of chaos, a consequence of the stretching and folding

mechanism that underpins chaos. They comprise the “skeleton” of the attractor,

are ordered hierarchically and are topological invariants. Noise and sensitive de-

pendence on initial conditions both radically alter the paths of individual orbits

in a chaotic system. However we are provided with some protection through the

Shadowing Lemma that assures us that there is a shadow-UPO arbitrarily close to

the true path, albeit the truth path with a different starting point. Numerically

detected shadow-UPOs are representative of the true dynamics of the system. We

also propose that the set of lower order UPOs coupled with their associated short

time Lyapunov signature form a meaningful description of the chaotic system.

The problem of orbital divergence is then discretised down to a set of UPO Lya-

punov exponents describing the divergence depending upon which UPO the orbit

is traveling on or near to.

The second observation is that cycle detection using recurrence matrices/plots

and recurrence histograms is quite robust in the presence of higher noise levels (up

to 10%), with peaks representing harmonics of the system remaining detectable

when noise is present. This observation appears to have been first made in the

early 1990’s by Mindlin and Gilpin [104] in the context of the topology of chaos,

where they considered close returns plots. They noted resilience to noise of the

recurrence-histogram and commented on this. This means that the periods of

the UPOs and location of shadow-UPOs may be determined in the presence of

measurement noise.
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The third consideration is that if we deconstruct the time series into a set of

shadow-UPOs, then specific signal-processing techniques based on the type of noise

may be bought to the fore to remove noise more effectively. Most noise-reduction

techniques in chaos research assume the noise is GWN and do not discriminate

between types of noise. Not all noise is the same. With this approach we have

the flexibility to bring more sophisticated noise-reduction solutions tailored to the

character of the noise.

These are the fundamental ingredients to construct an approximation of a

noise-infected time series: we know the system may be approximated by cycles,

we can locate the cycles in the presence of high levels of noise and we can utilise

specialised noise-reduction techniques.

6.1.3 The Shadow-UPO Noise Reduction (SUNR) Method

We developed this conceptual framework into a noise-reduction method, with the

objective of maximising use of cycle information (shadow-UPOs) derived from the

noisy time series. This required a number of innovations.

Firstly we found that recurrence-histograms constructed from just the scalar

time series are more than adequate to locate system harmonics and often superior

to those constructed from pre-embedded data. Thus we avoid the problematic

pre-embedding of highly noise-infected data.

We also modified the recurrence-histogram cycle detection methodology to de-

tect and locate shadow-UPOs in the presence of higher noise levels. The recurrence-

histogram will facilitate identification of the UPO periods (system harmonics) with

very high noise levels (up to 200% in some cases), but the shadow-UPOs will not

be detectable from the recurrence plot for noise levels greater than 10%. Increasing

the noise level fractures the horizontal lines on the recurrence plot that represent

complete and partial shadow-UPOs. We found that pre-processing the data with a

short-window centered moving average filter (low-pass filter) will enable detection

of cycles at very high levels of added noise (up to 100%). This phenomenon was
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discovered by Eckmann et al. in 1987 [41]. This pre-processing of data is not being

used as a noise-filter but rather as a technique to enhance the effectiveness of locat-

ing cycles and importantly, it does not introduce a phase-shift in the time series.

Smoothing of the noise recovers cycle detection rates almost to noise-free levels,

with the smoothed noise bridging and weakly re-connecting the cycle sequences

that were fractured by the noise.

Critical radius ε and sampling frequency are the two key factors in locating

and extracting shadow-UPOs. For the critical radius, we tested the rule of thumb

that recommends an optimal minimum value of ε ≥ 5σ, where σ is the standard

deviation of the noise [139] and found it to be reasonable for noise levels less than

5%, but not suitable for higher levels of noise. Also we require the critical radius

as large as possible without comprising integrity. We find that using 5%–10% of

the maximum attractor extent as a practical maximum critical radius works well

for higher noise levels. Also, the result is highly sensitive to sampling frequency

and some trial and error is necessary involved ensure a good representation of the

system is collected, neither under-sampled or over-sampled. It is important to

ensure the shortest cycle is well populated with at least 50 data points.

There are a number of technical issues to understand when locating, extracting,

processing and storing cycles and we have described them within the thesis. In

particular one needs to aware the detected shadow-UPOs occur in conjugate pairs,

that detected shadow-UPOs may be out of phase and require synchronisation for

comparison or subsequent processing; artefact cycles will necessarily be detected

and must be removed from the accounting (and we provided an algorithm to do

so).

The subsequent treatment of the detected and binned shadow-UPOs depends

on the instability of the underlying chaotic system. We have determined that

these techniques work well on systems with maximal Lyapunov exponent less

than 1. This includes most well known low dimensional chaotic systems. The

SUNR method takes a different approach depending on where the Lyapunov ex-

ponent lies within the instability range (0 < LEmax < 1) s-1. The key differentiator
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here is whether we detect large numbers of complete shadow-UPOs (lower insta-

bility) or few complete cycles (higher instability). There is no quantitative rule

here and this can be simply determined by observation of the recurrence plot.

For systems with lower instability many complete cycles will be detected and

can be used to estimate all the complete basis set of lower order UPOs. One

should detect, extract and bin the lower order complete cycles. For bins con-

taining significant numbers of shadow-UPOs, first synchronise these cycles using

cross-correlation and them average them pointwise. The averaging process will re-

duce the noise and is particularly useful for broadband noise, where Fourier-based

frequency separation approaches will not perform well. If the noise has specific

characteristics amenable to a frequency attenuation technique, then we suggest

individually filtering each cycle in the frequency domain using a FFT. For poorly

populated bins, select a single cycle, the “least unstable” shadow-UPO. This is

the one with smallest L2 distance between start and end points and noise is then

reduced using a Fourier filter. The binned data may also be used to estimate

short time Lyapunov exponents for each UPO using a modified version of the

Sano-Sawada algorithm. The modified algorithm is applied to the cluster of syn-

chronised cycles of a given period and does not require the shadow-UPOs to first

be noise filtered as the method implicitly averages the data. The average maximal

Lyapunov exponent for the system may be estimated using a weighted average,

using the relative proportions of periodic points.

For systems of higher instability, there will be insufficient detected complete

cycles to estimate the individual noise-free UPOs. In this case approximate the

noise-free time series instead, by individually Fourier filtering each detected com-

plete and partial shadow-UPO. Although we cannot estimate individual UPOs,

we can now utilise partial shadow-UPOs which are present in large numbers and

contain valuable information. All noise filtered shadow-UPOs are reinserted back

at their original location in the pre-filtered time series. This means that the re-

maining sequences of points that have not been detected as shadow-UPOs are at

least noise-reduced by the moving average. In our examples, these typically com-

prise a small percentage of the time series (less than 10%–20%). Before applying
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the targeted noise-reduction strategy in the frequency domain, we transform both

the complete and partial shadow-UPOs to ensure they are complete cycles (closed

ends). This avoids artefacts of the Fourier transform that arise from incomplete

cycles. For complete shadow-UPOs apply a linear end-point smoothing transform

is applied to close the small start-end gap. For partial shadow-UPOs construct a

hybrid cycle by concatenating the cycle and its “mirrored” version to ensure the

Fourier filter works as described. After all transformed smooth cycles are noise-

filtered, the transformations are reversed, leaving the noise-reduced complete and

partial shadow-UPOs.

The time series approximation can and should be made for lower-instability

time series also as it utilises the valuable partial shadow-UPO information and it

may provide a more robust estimate of the maximal Lyapunov exponent than that

calculated using the estimated individual UPOs.

Finally we emphasise the importance of using multiple samples of the time

series. The SUNR method will produce results for systems of lower or higher

instability with single sufficiently long time series. If multi-sampling is available,

then the effectiveness of the method is multiplied and this is demonstrated in

our results. There is no specific advantage to having a single long time series,

as generally the ergodicity will ensure that repeated samples with different initial

points provide sufficient information about the attractor.

6.1.4 Results from the SUNR Method

We used a model Rossler time series with 25% added GWN noise as a heuristic

example to illustrate the SUNR method in detail. The Rossler example was used

as a test case case for the methods designed for both low-instability and high-

instability chaotic systems. Although the Rossler system has low-instability, we

also analyse it using methods for high-instability systems.

For the lower-instability case of a single Rossler time series we can estimate most

lower order UPOs but not all periods up to 12T ; in particular period 7T is difficult
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to detect. However, using multi-sampling we detect many complete cycles of each

period and calculate excellent noise-free estimates of all UPOs with periods from

1T to 12T , where T is the fundamental period. These compare well with those

derived from noise-free multi-samples. For the lower-instability chaotic system we

also calculate the short time Lyapunov exponents using the methodology laid out

in Chapter 4. The noise-reduced versions are similar to the noise-free estimates

and the weighted average estimates of the global maximal Lyapunov are similar

to each other and the true result.

We defined a set of goodness of fit metrics applicable to time series to measure

the effectiveness of the noise-reduced time series approximation. These include

three distance measures (AME, RMSE, MME), a statistical measure (the coef-

ficient of determination, R2) and a phase lag measure. We then approximated

the single 25% noise-infected Rossler time series using the SUNR method, noise-

filtering all detected transformed cycles in the frequency domain after a FFT. The

final approximation is obviously a significant improvement on the noisy time series

and demonstrates results similar to a moving average; which is what we expect in

this example. The method yields excellent results for higher levels of noise (up to

50%–100%) and all noise types tested (Uniform white noise, Gaussian white noise,

high-frequency noise and pink noise).

The SUNR method was applied to the model Rossler system with dynamical

noise added. For a single time series (10,000 points) the results were not strikingly

good. Our research illustrates how dynamical noise deforms the shadow-UPOs but

retains smoothness and occupies the same frequencies as the signal in the frequency

domain, making it highly problematic. We subsequently tried multi-sampling and

collected complete shadow-UPOs in bins. If we assume the dynamical noise to have

a Gaussian distribution with mean zero, then the deformations should largely aver-

age out over sufficiently many samples (because the chaotic attractor is bounded in

phase space). The detected shadow-UPOs were averaged and compared with the

estimated noise-free UPOs obtained using the noise-free time series. We observed

that the estimated noise-free UPOs were reasonably good approximations to the

true UPOs, although not highly accurate. The dynamical noise based estimates
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are sufficiently close to the true UPOs for qualitative use, for example classifying

the chaotic attractor. Observing that dynamical noise appears to conserve cycles

(up to a point) and does not destroy smoothness in the cycles, we experimented

with directly using a dynamical noise-infected Rossler time series in the numerical

algorithm by Wolf to estimate maximal Lyapunov exponents. The Wolf algorithm

relies on smoothness of data and this is one reason it fails with relatively low lev-

els of measurement noise. However this is not the case with smoother dynamical

noise. Results did vary from one time series to another, so we used multiple sam-

ples (50) and averaged the result. Surprisingly we found the average determined

by multi-sampling was a very good estimate of the noise-free result, with maximal

Lyapunov estimates of λmax = 0.7 s-1 for the Rossler system, λmax = 0.96 s-1 for

the Lorenz system and λmax = 1.68 s-1 for the highly chaotic Lu-Chen system.

The exercise was repeated multiple times and tested on the Lorenz and Chua sys-

tems with excellent results also. Further research is required to understand the

mechanism here, but this is a useful result.

We next tested the SUNR time series approximation on a single noise-infected

time series of other chaotic systems of varying topology including the Chua, Lorenz,

Rabinovich-Fabrikant and Lu-Chen systems. The SUNR time series approximation

works well for the chaotic Rossler (λmax = 0.07 s-1), Chua (λmax = 0.28 s-1) and

Lorenz systems (λmax = 0.91 s-1), all of which have maximal Lyapunov exponents

less than 1 s-1. The SUNR method produced a noise-free time series approximation

with significantly reduced levels of measurement noise on all the goodness of fit

metrics. Estimation of maximal Lyapunov exponent using the noise-reduced time

series approximation in the Wolf algorithm produced accurate estimates.

For highly unstable chaotic systems the recurrence-histogram cycle detection

method simply did not detect enough cycles to construct a good approximation

to the noise-free time series. No orbit remains on a single shadow-UPO long

enough to provide useful information. This is evidenced by the Lu-Chen system

which is highly chaotic, with maximal Lyapunov exponent at least 1.75 s-1. The

SUNR method simply failed to work for this system as we could not detect suffi-

cient shadow-UPOs. Realising the limitations of the recurrence matrix method for
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highly unstable systems, we tried a different approach, using local minima to par-

tition the time series into “cycle-like” segments. For the Lu-Chen system, where

we could not get a result at all using recurrence matrices, we did obtain a result

but note the approach could not accomodate very high levels of noise (>25%).

The Rabinovich-Fabrikant system is an example of a system with a small max-

imal Lyapunov exponent (< 0.1 s-1) which behaves as an extremely unstable sys-

tem. We obtained stable goodness of fit results using the recurrence method,

where most detected cycles were partial cycles and obtained consistent estimates

of the maximal Lyapunov exponent for various levels of noise. We also tested the

method of using local minima to detect cycles (not shadow-UPOs) and we obtained

similar results to those obtained using recurrence matrices. Using local minima

we find many complete cycles that do not immediately repeat and are thus not

detected using the recurrence methodology.

Our testing demonstrated that the recurrence-histogram method for detecting

shadow-UPOs works well for most chaotic systems, but not all chaotic systems and

its usefulness depends on the topology of the attractor. The recurrence method

of detecting shadow-UPOs has been utilised on a small number of chaotic systems

in the literature (e.g. Henon map and Rossler system) where is works well and

one could draw the conclusion it translates equally to other chaotic systems. It

appears to work well for systems with low to moderate instability where the orbit

travels several times in the vicinity of a UPO before shearing off onto another

cycle. The exceptions occur when the system is so unstable that the orbit never

travels near a specific cycle for very long, or when the orbit has a complicated

evolution where cycles are traced out but not consecutively. The advantages of

the recurrence-histogram method greatly outweigh any disadvantages and it should

be a first option. We highlight that in these exceptional cases other techniques

should be applied for cycle detection and noise-filtering purposes and that this is

an area with more research is required.

Finally we conducted multi-sampling testing for each of the Rossler, Lorenz and

Chua systems, obtaining a SUNR time series approximation of the noise-free time
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series from each sample. We then applied the Wolf numerical Lyapunov exponent

algorithm to each approximated time series, averaging the results. This averag-

ing process provides a much more accurate estimate of the maximal Lyapunov

exponent of the noise-free chaotic systems tested.

The SUNR method should not be viewed as a cure for all noise-infected time

series. Rather, the method is targeted at reducing as much noise as possible

from a medium to high noise-infected signal, to produce a result that is far more

useful than the starting position for subsequent use. The resultant signal will

still contain some noise, but at greatly reduced levels. This presents a superb

opportunity for the application of the other, more sophisticated trajectory-based

or locally projective techniques that can retain integrity and cleave further low

levels of residual noise.

Whilst we have researched multi-sampling for a number of model systems and

tested the efficacy of the SUNR method, it would be natural to now extend the

method to experimental systems such as lasers. The value would be two-fold; we

could assess the efficacy of the SUNR method on a physical system and secondly

explore the various types of noise for such a system.

6.2 Limitations of SUNR Method

6.2.1 Chaotic System Factors

As with all numerical methods applied to experimental data, there are a number of

limitations. The limitations of the SUNR method depend primarily on two factors,

the degree of instability of the chaotic dynamical system and the effectiveness of

the technique used to detect and locate shadow-UPOs under a layer of noise.

The SUNR Method is applicable to experimentally determined time series of

data from low dimensional chaotic dynamical systems. Numerous chaotic systems

in nature appear to be well represented by a low dimensional attractor so the

method has practical applications. In an experimental context there are numerous
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systems that lend themselves to this technique. An example is laser research

for chaotic dynamical regimes, where multiple time series samples may be easily

captured for analysis. Similarly, in the medical research context, multiple time

series may be collected of heartbeat data.

The SUNR method requires that the chaotic system is not too highly unstable.

Our experimentation indicates that the maximal Lyapunov exponent should be

not much larger than 1. Fortunately this includes most common chaotic systems

like the Rossler, Lorenz, Ueda, Duffing and Chua systems. For systems with

extreme instability, the evolving orbit will not remain on any shadow-UPO for any

significant period of time and we are thus unable to detect any meaningful cycle

information for noise-reduction. Such systems, loosely speaking, are at the far end

of the spectrum between chaotic and turbulent and special techniques will need

devised to accommodate their dynamics for noise reduction.

Chaotic systems within the acceptable range of instability, may be partitioned

in two groups—those with detectable complete lower order shadow-UPOs and

those at the other end of the instability range where we detect some complete but

mostly partial shadow-UPOs. Deciding which group describes the chaotic system

under examination belongs to is a simple exercise. For the lower instability group,

we may approximate a basis set of lower order noise-free UPOs and estimate their

short time Lyapunov exponents and also approximate the noise-free time series.

For the chaotic systems at the other end of the instability range, we are limited to

an approximation of the noise-free time series, which may subsequently be used in

numerical algorithms to estimate the invariants.

6.2.2 Shadow-UPO Detection Factors

The SUNR method is generally applicable to a broad range of measurement noise

types (e.g. Gaussian, coloured). For best results it requires a knowledge of the

type of noise and the quality of the noise reduction depends on the availability of

specialist linear signal processing techniques applicable to the noise type. The type

of noise can usually be characterised from the frequency domain power spectrum
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and a knowledge of the physical and experimental system. Fortunately there are

a great number of tailored noise-reduction techniques available, targeting specific

types of noise.

The testing results indicate that the SUNR method can address measurement

noise levels up to 100% of signal. The recurrence-histogram method can identify

the chaotic system harmonics for very high levels of noise (we could still resolve

histogram peaks at 200% measurement noise). The research indicates that the

limiting factor is finding the start and end points of the complete and partial

shadow-UPOs when noise is greater than 10%. The use of the moving average

pre-filter increased the detection threshold from 10% noise to 50%–100% noise,

but there is a limit. It is also applicable for dynamical noise at low levels where

cycle sequences retain start to end point stability without significant phase shift.

For systems with sufficiently low instability to admit complete and partial cy-

cles, the subsequent detection of shadow-UPOs using the recurrence-histogram

depends on the combination of sampling frequency and critical radius. There

is currently no optimal relationship between these two factors and some exper-

imentation and trial and error is required. Visualisation of the recurrence plot

and recurrence-histogram assists this process greatly. Further, the recurrence-

histogram approach necessarily requires two consecutive circuits of a given cycle

for it to be detected as a cycle. This excludes single cycles that repeat, but not

immediately. For these cases, other techniques need to be developed that exploit

the cyclic nature of chaotic systems.

This method does require user judgment and oversight and at present cannot be

fully automated. It is a multi-step process that requires user input and judgment

at each step. The payoff is a method that will provide a reasonable result where

many other methods fail, and it is relatively simple and practical.
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6.3 Future Research

Surprisingly, there has been little research into chaotic noise-reduction tech-

niques using topological invariants such as UPOs. Given the significance of these

in the architecture of chaotic attractors at a fundamental level, the opportunity

exists to greatly expand research in this area. The geometry of chaotic attractors

is often very complex and somewhat confronting. Fortunately, for most common

chaotic systems this complexity can be reduced to a set of shadow-UPOs that are

individually relatively simple to work with. UPOs are dense on the attractor and

this alone necessitates that every point is very near a UPO, and commonly a lower

order UPO in particular. This immediately opens doors and provides pathways to

improved approximation techniques.

There is some scope for further research in optimising the recurrence-histogram

cycle-detection approach. Essential to the process of separating signal from noise

is locating and extracting lower order shadow-UPOs. It provides a very powerful

probe to identify signals masked by significant measurement noise. The recurrence-

histogram approach is a first priority as it strictly identifies all repeated sequences

of points for all periods in the data and the periods corresponding to histogram

peaks represent the most frequently occurring periodic points. The methodology

captures cycles of the same period in conjugate pairs, both contained within a tube

having radius equal to the critical radius; this is a strong condition. This infor-

mation is useful in searching for cycle sequences, however a recurrence-histogram

peak does not guarantee the existence of complete cycles of that period, but just

a greater likelihood of detecting them. There is scope to modify this approach

further for improved efficiency.

It would be interesting to determine the relationship between sampling fre-

quency, critical radius and noise level analytically, searching for possible relation-

ships, bounds and an optimisation rule. Several levers drive the effectiveness of the

recurrence matrix detection method. Foremost is the critical radius, which defines

a thin tube surrounding a given shadow-UPO, within which we consider any other

cycle equivalent provided the entire cycle is encompassed within the tube. We
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found that the minimum value of ε ≥ 5σ for the critical radius is only suitable for

noise levels <10%. Our scenario modelling suggests setting the critical radius less

than 5%–10% of the attractor extent. This is somewhat arbitrary; it is unlikely to

be truly applicable for all systems.

The recurrence-matrix method is excellent for detecting system harmonics and

locating shadow-UPOs, provided the data is pre-processed with a moving average

as demonstrated in this thesis. This approach has been shown to be effective for

most commonly studied chaotic systems (with maximal Lyapunov exponent <1

s-1) with high levels of any many types of measurement noise. This approach has its

limitations when systems are highly chaotic and almost turbulent. However, there

are systems lying in between these instability regimes. The recurrence-histogram

of some systems will not detect a usable number of shadow-UPOs, but many cycles

are clearly present. There are chaotic systems that are sufficiently unstable so as

to not traverse at least two circuits of a cycle, which is the minimum requirement

for detection using the recurrence method. In all likelihood the orbit may just

jump from cycle to cycle and at best complete single circuits or at worst complete

only partial cycles. The recurrence histogram may fail to show clear well-defined

peaks and in such a case, we need to seek other approaches to detect cycles. For

the Rabinovich-Fabrikant system we observed this dynamic and utilised the single

cycles in the time series data directly. We observed the presence of many complete

single cycles, often recurring later, but never completing two circuits consecutively.

Just as recurrence-histograms are robust in the presence of noise, so too are local

maxima and minima in the time series, especially if a centered moving average pre-

filter is applied first. We identified the cycles using local minima and the criterion

that a cycle is completed at a subsequent local minima, provided the L2 distance

between the two minima is very small. We were careful to view the individual cycles

and ensure that we were filtering proper cycles. This “work-around” provided good

results; however there is an opportunity to more fully develop this search model

or others that will accomodate this type of orbital instability.

Our objective is to locate and extract all cycles that are detectable. The fre-

quency with which complete cycles appear depends both on the ergodicity and the
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level of instability of the system. If the orbit does not traverse near a UPO very

often, then our time series sample may not include it. If the system has high insta-

bility, we may not travel near UPOs long enough to detect them. In our research,

we assume the instability of the chaotic system is fixed and that the exercise is one

of detection efficiency. However, there are merits to exploring the use of invariant

stability transforms to change the stability of the UPOs in the underlying system.

These stabilising techniques have been used in Newton-Raphson type UPO detec-

tion algorithms for noise-free data [121][24]. The topological invariance of UPOs

may allow such transformations to work in the presence of high levels of noise.

A stabilised highly noise-infected time series will still be amenable to the SUNR

method and such a process would shift the system down the instability spectrum,

resulting in a far better approximation.

Partial shadow-UPO data may be more fully utilised. There are usually large

numbers of partial cycles, where perhaps 50%–75% of the complete cycle of a given

period is detected. For shadow-UPOs with periods having instability at the higher

end of the acceptable range, often only partial cycles will be detected. These

contain valuable information about the system and often cover a high percentage

of the time series. Captured partial cycles that are sufficiently long, of periods

stable enough for us to have already captured multiple samples, could be used in

improving averages and constructing estimates of complete cycles. A collection of

partial cycles, where no complete cycles have been detected is also useful as each

partial cycle fulfils our stability criteria on its path. Methods could be developed

to reconstruct complete cycles by blending the relevant sequences from different

partial cycles and averaging. It would also be useful to develop criteria for the

minimum percentage of a complete cycle for a partial cycle to be included, rather

than the 50%–75% we use based on observing the future evolution of examples.

Dynamical noise is inherently problematic and few techniques exist to identify

the underlying chaotic signal with even low levels of dynamic noise present. For

the chaotic systems studied we observe that dynamical noise smoothly deforms

cycles, but the end points remain remarkably well anchored and with very small

phase shift. This is almost as if cycles are conserved (but deformed) under dy-
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namical noise provided instability is less than a certain level. These observations

provide a good starting point for deeper research in systems with instability that

is not too great. The smoothness of the noise is a great asset when applying

numerical algorithms that incrementally step forward in time in small steps. It

would be useful to test dynamically noise-infected time-series in a wider range of

conventional numerical algorithms to calculate invariants, using multi-sampling

and averaging (as we did with the Rossler system) and explore the stability of the

results. Also existing algorithms for invariants may be able to be modified slightly

to accomodate the characteristics of dynamical noise.

A major research project that would be highly valued is a rigorous like-for-like

numerical performance comparison of the available noise reduction techniques for

chaotic systems. This would require testing a broad set of chaotic systems under

a set of scenarios involving different types of noise, including dynamical noise,

and using a wide range of noise levels. Many published research papers involve a

single “standard” chaotic system and noise scenarios are confined to simple GWN.

Computer code would need to be constructed directly from the research papers.

This would be a significant undertaking, as Matlab code is generally not available

for existing methods (many are from 20 years ago) and such a comparison would be

highly useful to assess the relative merits of various techniques. There are no such

comparisons in the majority of existing papers for these reasons. For these reasons

we also did not compare the SUNR method with other techniques in a like-for-like

comparison. It would be a useful exercise for a researcher to construct the code

for all major methods (make it available), compare the methods and publish the

results.

We have tested a range of model systems using several known types of mea-

surement noise (UWN, GWN, HFN, Coloured noise). The ability to reduce known

types of noise using existing signal processing noise reduction tools is a strength

of the method. We appreciate that other types of noise exist and these need to be

addressed in real world data. This is an area of focus for future research, where

additional techniques may need to be developed.
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Noise is closely intertwined with the signal in chaotic systems and over the years

researchers have constructed many remarkable algorithms to separate the two. All

the methods have their merits and pitfalls, as described in Chapter 2 and the field

in still open to further developments. The literature shows there was an intense

focus on local geometric projection noise reduction methods during the mid 1990s.

Around this time UPO detection research shifted to more theoretical aspects and

practical applications focused on controlling chaos. It appears the streams never

converged and the field is still open for further developments. There is considerable

room to advance the field by working in terms of the cycle approximation where

the vast body of mathematics relating to cycles and that from signal processing is

available and can be deployed.
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