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Abstract

Alzheimer’s disease (AD) can be detected using magnetic resonance imaging (MRI) based features
and supervised classifiers. The subcortical and ventricular volumes change for AD patients. These
volumes can be extracted from MRI by tools such as FreeSurfer and multi-atlas-based likelihood
fusion (MALF) algorithm. Medical imaging centers typically use MRI protocols for brain scanning.
These protocol differences include different scanner models with various operating parameters. The
scanner models can have the same or different field strengths. A key factor in classifying multicentric
MR subject images having different protocols is how different scanner models affect the extraction
of features, and subsequent classification performance of a supervised classifier. We have
investigated the classification performance of FreeSurfer and MALF based volume features together
with Radial Basis Function Support Vector Machine and Extreme Learning Machine across different
imaging protocols. We have also investigated both FreeSurfer and MALF, whose defined regions of
the brain are most effective for the detection of the disease over different protocols. Our study result
indicates marginal differences in classification performance across scanner models with the same or
different field strengths when differentiating AD, Mild Cognitive Impairment, and Normal Controls.

We have also observed differences in ranking order of the most effective regions.
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1

Introduction

1.1 Background

Dementia is a chronic and prolonged decline in cognitive performance which progressively develops,
and depending on the type of dementia, can be associated with the formation of the p-amyloid
plaques, synaptic dysfunction, damage to brain cells, and brain shrinkage. It subsequently causes the
deterioration of memory, cognitive abilities, reasoning, and language [1]. According to a statistical
report, over 135 million people worldwide will suffer from dementia by 2050 [2]., which is triple the
current number of affected patients. Dementia is now a primary global health and social threat which

will bring an enormous financial burden on families, and national healthcare system.

Alzheimer’s disease (AD) and Frontotemporal dementia (FTD) are the most common forms of
dementia. AD accounts for 60-80% of dementia cases [3], and FTD accounts for 4-20% [4]. The
majority of dementia cases affect individuals above the age of 65 [5]. Other forms of dementia such
as Parkinson’s Disease, Huntington’s disease, and vascular dementia are also prevalent [6]. The
support cost of all AD patients alone is estimated to be $220 billion in the USA and $605 billion per

year globally. The developed countries are also supporting research activities related to AD [2].



Alzheimer’s disease has primarily three stages: mild AD, moderate AD, and severe AD. It also
includes preclinical AD, Mild Cognitive Impairment (MCI), and other dementias associated with AD
[7]-9]. Clinical studies typically identify three groups, including normal controls (CN), MCI, and
AD patients. MCI cohorts have some symptoms which are common with AD cohorts, but MCI
subjects can do daily activities normally as healthy people do. An MCI subject stays cognitively stable
for several years, then progresses to some type of dementia, especially to AD. The percentage of the
MCI cohorts likely to convert to AD every year is between 10% and 30%, whereas the conversion
rate from normal controls (CN) to MCI or AD is just 1-2% [10], [11]. Recent research suggests that
early treatment of MCI may slow down the progression to AD [12], so it is highly valuable to study
and predict the early stages of MCI.

AD is diagnosed using both invasive and non-invasive methods. Non-invasive diagnosis methods
don’t involve surgery, which reduces the risk of infection, the duration of hospital stay, and the
possiblity of trauma [13]. Further, non-invasive methods are quicker, cheaper, and don’t require as
much expertise to implement [14], [15]. For these reasons, it is preferable to use non-invasive or
minimally invasive diagnostic methods provided they have sufficient accuracy. Our study is based
on non-invasive medical imaging technology, specifically MRI, as a biomarker for AD/MCI
detection. The original non-invasive diagnostic methods are based on clinical observation, patient
history, and cognitive testing. Some clinical tests can reasonably assess the severity of AD such as
MMSE (Mini-Mental State Examination) [16], AMTS (Abbreviated Mental Test Score) [17],
modified MMSE (3MS) [18], CASI (Cognitive Abilities Screening Instrument) [19], and CDT (Clock
Drawing Test) [20]. Despite their ability to recognize the cognitive status and various types of
dementia, they are inadequate since the clinical test score does not necessarily correlate with memory
and thinking disorders [21]. Also, some clinical tests tend to have educational, social, and cultural
biases [21]. Other effective non-invasive diagnostic methods are based on medical imaging. Medical
imaging assists to visualize degenerative histological changes, which includes amyloid plagues,
hypo-metabolism, and the structural changes caused by neurological disorders. These histological can
become apparent long before the disorder is clinically detectable [22]. The use of medical imaging
revolutionizes the noninvasive diagnosis of dementia. The commonly used imaging methods are MRI
(Magnetic Resonance Imaging), fMRI (functional MRI), SPECT (Single Photon Emission Computed
Tomography), and PET (Positron Emission Tomography). MRI is also called structural MRI (sSMRI)
to differentiate it from functional MRI (fMRI). Throughout this thesis, we will use the terms MRI
and MR imaging to refer to structural MRI. MRI applies radio waves in a strong magnetic field to
construct a pictorial presentation of organs and tissue of the human body. Hence MRI can potentially

be used as a biomarker for MCI and to assess the progression to AD.
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The current approach to dementia diagnosis based on medical imaging needs human expertise
which is labor and time intensive and prone to operator bias [23]. Therefore, the Computer Aided
Diagnosis (CAD) is emerging so that the drawbacks of manual detection can be overcome. The goals
of CAD-based methods for dementia are 1. Detecting AD from normal cohorts [24] 2. Differentiating
AD from other types of dementia [25] 3. Separating several stages of dementia such as AD and MCI
[26] 4. Finding the importance of various Regions of Interest (ROIs) of the human brain which are
sensitive to the progression of AD [27] . Although a cure for the disease is not available, the CAD
method assists in analyzing subtle change which may be a biomarker for progression of the disease.
Specifically, CAD could be used to monitor the progression of brain atrophy to show the effectiveness
of medications [12]. In addition, CAD methods may also help to predict the severity of the disease in
the long run [28].

MRI has the potential to detect biomarkers for AD/MCI. Three types of feature are usually
extracted from MRI: Voxel-based, Vertex-based, and predefined ROl based. The voxel-based
methods measure volumes of brain matter, specifically Grey Matter (GM), White Matter (WM), and
Cerebral-Spinal Fluid (CSF) [29], [30]. The Vertex-based methods measure primarily the cortical
thickness based on structural features [31]. The predefined ROI based methods measure the volume
of specific regions of the brain such as hippocampus, amygdala, and the entorhinal cortex [32]-[34].
For all three feature extraction methods, an efficient segmentation or parcellation method is required
to obtain an accurate measurement of a region of interest (ROI). These methods use template or atlas-
based parcellation algorithms to obtain improved segmentation accuracy [35], [36]. The template or
atlas provides prior knowledge of the structure of the required brain regions. However, a standard
template or atlas may not always be applicable. Moreover, a single atlas may have some biases such
as age, gender, and protocol which influences the segmentation. Therefore, multi-atlas or multi-
template based methods are used which diversify the collection of atlases regarding age, gender or

protocol. The use of multi-atlas methods achieves better segmentation accuracy [37].

CAD-based methods differentiate the severity of dementia with the aid of a supervised
classification algorithm [38]. The supervised classification algorithm uses features extracted from the
MRI to train the classifier to differentiate dementia stages. Corresponding features from independent
images are used in the testing phase to assess the performance of the classifier. A classifier extracts
generalization knowledge during training from the labeled subjects, and it predicts the label of an
unknown subject based on that generalization knowledge. To achieve efficiency, the classifier
requires input of an appropriate feature representation. However, the extraction methods for rich
representative features should be computationally feasible. Also, the features should be non-

redundant and relevant to avoid poor training of the classifier [39]. The relevant features are either
3



combined or reduced dimensionally if the feature dimension is high before using them as input to the
classifier [26]. We require an experimental design to assess the performance of the classifiers where
each subject (or sample) is used for either training or testing, but not for both in a single classifier
instance. Using the same subject for both training and testing introduces bias, and the performance

measures would be unreliable [40].

MRI data originates in medical diagnostic centers, each of which employs different MRI
acquisition protocols [41]. The protocols may differ in field strength (1.5 T or 3 T), scanner model or
operating parameters of the scanner. Further, protocols used in a single center may change due to the
replacement or upgrade of a scanner. Over the last two decades, the studies which are based on
quantitative neuroimaging data have been primarily conducted on 1.5 T MRI images. But imaging
equipment with a higher field strength has become available more recently, and gradually it is
replacing the lower field strength image-based clinical assessment. A brain imaging center archives
data from both low and high field strength scanners, and from different brands and models. Typical
centers use different scanner models from different manufacturers such as Siemens, and GE
Healthcare [41]. For example, two available models of Siemens are Symphony and TrioTim, and two
available models of GE Healthcare are Signa HDX and Signa Excite. The protocol differences creates
a dilemma for longitudinal studies because the study needs to collect data acquired in different time

phases of an individual patient, but the imaging may be performed using different protocols [41].

The protocol differences may affect the segmentation or parcellation of the entire brain whether
the method is single or multi atlas/template based [42]. The pooling of the MRI data from multiple
imaging centers is required to collect large-scale data to reliably analyze the progression stages of
AD. However, theMRI acquisition methods followed by individual centers use different imaging field
strengths or scanners with different data processing parameters, and several post-processing
smoothing parameters. This difference may result in inaccurate measurement of volume or thickness
of different regions, especially those regions where image quality is sensitive to differences in
magnetic field strength. As a result, MRI based diagnostic methods may be affected. In other words,
these differences may also affect the performance of a supervised classifier that is used to detect AD
and MCI by processing features extracted from MRI data. The primary purpose of this thesis is to

investigate the impact of protocol differences on AD and MCI detection.
1.2 Contribution of the study

To date, a few comparative studies have explored the acquisition differences across scanner models

with the same or different field strengths, and methods of measurement. These studies will be
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reviewed in chapter 2. The analysis of the acquisition differences across different methods related to
diagnosis of AD using a supervised classifier falls outside of the scope of those studies. In our study,
we have addressed this research question.

We have used two popular methods for structural volumetric measurements of various ROIs.
These methods are FreeSurfer and Multi-atlas likelihood fusion (MALF) algorithm. We have
considered two types of features from MRI, multi-atlas likelihood fusion-based structural volume,
and FreeSurfer based volume. We have used two supervised classifiers, the frequently used Radial
Basis Function SVM (RBF-SVM) [43], [44], and the more recently proposed Extremely Learning
Machine (ELM) [45].

In our thesis we have addressed the following research questions:

e We have investigated whether classification performance using MALF based structural
volume features varies across different protocols.

e We have investigated whether classification performance using FreeSurfer based volumetric
features varies across different protocols.

e We have compared performance result of two efficient supervised classifiers using both
MALF and FreeSurfer based volumetric features across different protocols

e We have studied both the MALF and FreeSurfer defined ROIs which are most significant
when detecting AD or MCI across different protocols.

We have employed a data selection method described in chapter 4 to avoid double dipping and
calculated six terms (i.e., accuracy, sensitivity, specificity, precision, F1 score, and gmean) to measure
the performance of two classifiers (i.e., RBF-SVM, and ELM)

1.3 Thesis structure

The remainder of this thesis is organized as follows.

Chapter 2 briefly describes various types of features extracted from MRI used for the
classification, the effect of protocol difference in extracting those features and some prior works

related to this.

Chapter 3 describes the multi-atlas likelihood fusion method (MALF), and the reason for choosing
that method. It also includes a brief description of FreeSurfer based features, and two supervised
classifiers that are used in our study-Radial Basis Function Support Vector Machine (RBF-SVM),
and Extreme Learning Machine (ELM).



Chapter 4 provides details of the experimental approach. This chapter includes a brief description
of data, the different preprocessing steps it undergoes, feature selection method, feature ranking
method, parameters to measure the performance of a classifier, and the cross-validation technique.

Chapter 5 presents the results we have obtained, including the comparison of the two supervised
classifiers, and the two feature extraction methods. The chapter also includes the analysis of affected

brain ROIs which are extracted by the feature extraction method.

Finally, chapter 6 summarises the findings of our study mentioning some limitations of our work,

and also raises some research questions which we plan to address in future.



2
Background and Related works

The chapter briefly introduces the brain tissues relating to Alzheimer’s disease, and introduces
different types of features extracted from Magnetic Resonance Imaging (MRI) which include Voxel-
based, Vertex based, and Pre-defined ROI based. This chapter also discusses articles which use those
features as a biomarker, and supervised classifiers such as Support Vector Machine to analyze the
severity of the brain atrophy related to AD. Finally, this chapter also discusses the protocol differences

of MRI in relation to various feature extraction methods.
2.1 Background

Alzheimer's disease severely affects the memory, thinking capability, and intelligence of a patient
[1]. These factors are measured by cognitive tests such as MMSE (Mini-Mental State Examination)
[16] and AMTS (Abbreviated Mental Test Score) [17]. The severity of AD patient’s AD is diagnosed
with by these cognitive scores. However cognitive reserve influences these scores [46]. Cognitive
reserve or brain resilience depends on race, gender, class, education, age, etc. For example, people
from different education backgrounds have different cognitive scores despite having a similar severity
of brain damage [47]. Neuroimaging measurements are less affected by the biases mentioned above
[48]. Hence neuroimaging analysis has a higher potential to predict disease severity as compared to
neuropsychological measurement. In other words, the neuroimaging measurement is more reliable or

robust.



The brain undergoes several structural changes when a subject progresses to AD/MCI. The White
Matter (WM), Gray Matter (GM), and Cerebrospinal fluid (CSF) abnormalities are a diagnostic
pattern of Alzheimer’s disease. WM is nerve tissue existing in the central nervous system containing
primarily myelinated fibers, and it is almost white colored. GM is a reddish-gray colored nerve tissue
primarily composed of nerve cell bodies and dendrites. It also exists in the central nervous system
like WM. CSF is a watery fluid which is produced, absorbed, and flows in the ventricles of the brain
and around the surface of the brain and spinal cord. Atrophy of these tissues is observed when the
disease progresses. The regions of the brain where atrophy starts are the hippocampus, entorhinal
cortex, and amygdala [49], [50]. The major cause of cerebral atrophy in the hippocampus and
entorhinal cortex is the formation of senile plaques consisting of amyloid beta-42 protein [51].
Another reason for atrophy in the hippocampus is neurofibrillary tangles (NFT) which consist of tau
proteins [51]. When the disease progresses, hippocampus affects at the beginning [32]. But Xu et al.

[33] suggests entorhinal cortex affects at the beginning.
2.2 MRI as a biomarker

Magnetic resonance imaging (MRI) can discriminate between different types of tissue, and is a
noninvasive imaging technology. Therefore, the imaging marker, MRI, continues to be considered a
strong tool for the analysis of disorders in the central nervous system, particularly the brain. MRI
facilitates to quantify the density, shape, and volume of Gray Matter, White Matter, and CSF
structures in the cerebral brain. Various techniques are employed for morphometric analysis which
measures shape or volume of gray matter structures [52], [53]. Similarly, the shape or volume of white
matter and CSF structures are also measured. The tissue can be differentiated by different MR
imaging schedules. Three different types of MRI sequences are primarily available such as T1-
weighted, T2-weighted, and PD(Photon density)-weighted. Their significance regarding
characterizing of different tissues are shown in Table 2-1 below. The most commonly used schedule
for AD diagnosis is T1 weighted [54].

Table 2-1: Importance of T1-weighted, T2-weighted, and PD-weighted MR image

Importance
T1-weighted Good contrast between GM and WM.
GM-Dark gray, WM-lighter gray, and CSF- black
T2-weighted Good contrast between CSF and brain tissues
CSF- Bright
PD-weighted Good contrast between GM and WM

Little contrast between CSF and brain




2.3 MRI based features

The anatomical imaging such as MRI is frequently utilized in the clinical dementia diagnosis [33]. In
CAD, different types of features from MRI is used which corresponds to structural abnormalities of
the brain. The MRI-based features can be roughly categorized into three groups: voxel-based [55],
vertex-based [39], and pre-determined ROI-based [32], [50].

2.3.1 Voxel-based features or Tissue diffusion Map based features

A voxel is a volume element which represents a crucial region of the three dimensional (3D) space.
The voxel-based feature is obtained from a 3D volumetric space image of human the cerebral brain.
Voxel-based methods originated into the mid-1990s when Wright at al. [56] studied the gray matter
and white matter voxel values to diagnose schizophrenia. In the voxel-based method, the voxels of
the whole brain are partitioned or segmented into three different tissues (GM, WM, and CSF). The
GM voxel tends to provide more discriminatory information for AD or MCI detection as compared
to WM or CSF. Hence the focus of various studies is on GM voxels [29], [30]. The GM volume based
feature of entire brain with linear support vector machine stratifies AD from CN with promising
accuracy [57]. The study claims that the GM volume of hippocampus shrinks, subsequently other
neighboring cortex areas are affected. These conclusions are supported by other studies [32], [58],
[59]. Also, GM volume feature can be used to predict the conversion of MCI patients to AD using
supervised classifiers such as SVM, RVM (Relevance Vector Machine), and nearest neighbors [60],
[61]. SVM performs well as compared to the other classifiers applied in these studies. Another recent

study uses the GM volume patterns and SVM to stratify AD from normal controls [62].

The dimensionality of volume features becomes large when the voxels of the whole brain are
considered. Therefore, the region of Interest (ROI) based methods are implemented to overcome the
problem. In ROI methods, the voxels of brain regions are registered to a template by nonlinear
registration [63], [64]. As a result, the brain regions are deformed to match the template. The methods
such as Voxel-based morphometry (VBM) [65], deformation-based morphometry (DBM) [66], and
Tensor-based morphometry (TBM) [67] are most frequently used. In these methods, the density of
tissues (GM, WM, and CSF) is calculated from the regions which are defined by the atlas. VBM-type
methods quantify the regional tissue density of the original brain volume without considering the
deformation of it. However, two types approaches, DBM-type approaches and TBM-type procedures
measure the deformation field and the Jacobian of deformation, respectively. In MRI based AD
diagnosis, these measurements can be considered as input patterns for multivariate methods such as
Support Vector Machine or Extreme Learning Machine. Several studies report a promising accuracy
using these methods [68]—[70].



The parcellation of the whole brain or automatic warping of a brain to an atlas is not a trivial task.
The parcellation may not be adaptive to anatomical regions. That’s why adaptive parcellation is
applied where the whole brain image is grouped into the most discriminative areas and adaptive
features of those areas are extracted based on the correlations between the tissue volumes and other
classification parameters [71]. The predefined region based atlas may not always available. Also, the
parcellation based on a single atlas is prone to be affected by registration noise. Therefore, the
parcellation may not yield suitable discriminatory regions or features. The multi-atlas based warping
is used to address the problem [37], [72]. Several studies show that multi-atlas based method
outperforms single atlas-based method regarding the performance of AD detection [37], [72].
However, these methods are computationally intensive. The tissue maps from multiple atlases are
conventionally concatenated in those methods. The tissue information from all the atlases usually
doesn’t contribute uniformly to detect the severity of the disease. Although these atlases may
contribute equally, there will be redundant features. To eliminate the unnecessary features, the
weighted concatenation methods are applied using an ensemble SVM classifier [73]. To overcome
the potential bias relating to single template based studies, multi-template based feature extraction
method in conjunction with relationship induced sparse selection and ensemble SVM is proposed to
classify AD/MCI [74]. They have trained the feature selection method based on the knowledge of the
relationship among different templates and also similarity among different subjects

2.3.2 Vertex-based /Cortical Surface-based features

A vertex is an identifiable structural point in the brain. According to clinical studies, not only voxel
analysis helps to categorize the severity of AD but also vertex atrophy provides information to
distinguish AD, MCI from CN. Analysis of the cortical surface is a particular form of vertex-based
analysis. The cortical thickness is defined as thickness of different regions of cerebral cortex
measured in the cortical surface. The cortical thickness is correlated with the atrophy and the
histopathological changes caused by dementia [75]. Hence it can be used as an essential surrogate
marker to diagnose the disease. As a volumetric feature, cortical thickness gives promising
classification performance [31]. In addition to it, the cortical surface area is also an important feature
even though it is biologically uncorrelated with cortical thickness measurement [76]. For example,
Li et al. [77] have used cortical thickness, surface area, and other volumetric and geometric measures
for SVM based MCI classification. However, the features extracted from all vertices of the cortical
surface have the problem of large dimensionality. Park et al. [78] have used cortical thickness features
which have been derived from parameterized 3D meshes. They distinguished AD/MCI from CN
using principal component analysis (PCA) as a dimensionality reduction technique and support vector

machine (SVM).
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Manual parcellation is time intensive and prone to operator bias depending on an individual
expert. Researchers and the neuroanatomists propose various automated methods to parcellate the
cortical surface to overcome the drawback of manual parcellation. The automated methods are
primarily based on one of a specific template [79], watershed segmentation [80], and graph algorithm
[81]. In a template-driven warping method, local correspondence is formed between the applied
template and an individual subject. In a watershed-based approach, the cortical sulci are segmented
by the watershed transformation and manually labeled the detected regions by a trained
neuroanatomist. The cortical sulci are represented by vertices of a graph in graph-based methods. The
arcs which connect them establish their relationships. An automated parcellation method may
incorporate prior statistical information and cortical geometry [82]. Using the template driven
method, Desikan et al. [83] have stated that cortical thickness of entorhinal cortex and supramarginal
gyrus is most affected in AD. A similar claim has been made by another study where they observed
88.2% accuracy in SVM based AD/CN classification [84]. Wee at al. [39] have used regional mean
cortical thickness based features and multi-kernel Support Vector Machine. They have improved the
performance by forming additional correlative features where feature set is formed based on the
similarity of cortical thickness between a pair of brain ROIs. They achieved an accuracy of 92.35%
for AD/CN, 83.75% for AD/MCI, and 75.05% for MCI-C/MCI-NC classification.

2.3.3 Pre-determined ROI-based features

Apart from the above voxel- and vertex-based methods, the predefined ROI-based feature
discriminates the severity of the disease. Specific regions of the brain are affected when the disease
progresses. The neurodegeneration happens progressively, starting at the medial temporal lobe,
successively affecting the entorhinal cortex, hippocampus, limbic system, and neocortical areas [85].
Several studies found the difference of hippocampal atrophy between AD/MCI and normal controls

[39], [86]. Hence it is used as an essential biomarker in numerous studies [64], [87].

In the ROI-based method, segmentation is done before feature extraction. Manual segmentation
is time-consuming and operator dependent. So several semi-automated methods of segmenting
hippocampi and amygdala are studied [88]. Also, several fully automated methods are proposed
which use probabilistic priors derived from an atlas and anatomical information from local anatomical
patterns for segmentation [88]. This automated approach outperforms several semi-automatic
methods regarding segmentation accuracy. The volume or shape of hippocampi or a weighted
combination of both is used as a discriminatory feature to SVM which predicts MCI conversions from
AD [89].
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2.4 MRI based tools

Researchers frequently use different automated tools such as FreeSurfer, Statistical Parametric
Mapping (SPM), and FMRIB library (FSL) to segment brain tissues and measure volume from
different regions of interest (ROIs). Among them, FreeSurfer and SPM are most commonly used.

2.4.1 FreeSurfer:

FreeSurfer is an automated, efficient brain imaging tool to analyze structural MRI and functional MRI

image. We have provided a brief detail of FreeSurfer in chapter 3.
2.4.2 Statistical Parametric Mapping (SPM)

SPM (accessible at http://www.fil.ion.ucl.ac.uk/spm/) utilizes the unified segmentation [90].This
unified segmentation is a probabilistic model which integrates tissue degradation, bias correction and
image registration within the same generative model [90]. It generates partial volume segmentation
outcomes for every type of tissue. To get the segmentation output, it uses tissue prior probability
maps based on intensity values. From the segmented output, it calculates gray matter (GM), white
matter (WM) and Cerebrospinal Fluid (CSF). Also, later version such as SPM8 includes the
segmentation of some soft tissue maps, bone, and air/background. As a result, the probability of

misclassification of non-brain tissue is reduced.
2.43 FMRIB Library(FSL)

FSL (accessible at http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/) utilizes the SIENAX package for estimating
brain tissue volumes one by one serially [91]. SIENAX starts by extracting brain and skull from the
single full head MR image [92]. The brain image is then affine-registered to MNI1152 space [93]. Next,
tissue-type segmentation with partial volume estimation is performed [94], finally measuring GM,
WM, and ventricular CSF.

2.5 Related MRI based AD diagnosis studies

There is a great variety of specific MRI-based image features that have been used for AD diagnosis.

Here, we review frequently used and recently proposed features.

Cuingnet et al. [64] contrast ten different high-dimensional feature sets, classified using an SVM
classifier. They have employed 509 baseline ADNI 1.5T MR images for classification of AD/MCI vs
CN. Two approaches use only the hippocampal shape or volume, while the rest are whole-brain based

approaches. These approaches use either cortical thickness steps or voxel-wise tissue density maps

12



for gray matter, white matter, and CSF. High accuracies in identifying AD patients from CN (around

81% sensitivity and 95% specificity) are reported while using whole-brain approaches. Four of the

ten approaches were capable of differentiating MCI patients who later

Table 2-2: A summary of classification accuracy of different classifiers using different feature type.

Study Type of Dataset Category of Classifier Classification accuracy
Features features
AD/CN AD/MCI  CN/MCI  sMCIl/pMCI
(Liu et al. M-ROI AD-97 Tissue SVM 92.51 - - 78.88
[73]) pMCI-117 density map
sMCI-117 based
CN-128
(Misra et al. S-ROI AD-56 Tissue SVM - - - 81.50
[95]) pMCI-27 density map
sMCI-76 based
CN-66
(Salvatoreet SUFR AD-137 Tissue SVM 76.00 - 72.00 66.00
al. [96]) pMCI-76 density map
sMCI-134 based
CN-162
(Li et al. Allvertices MCI-24 Cortical SVM - - 80 -
[77]) CN-26 Surface
based
(Wee et al, Atlas AD-198 Cortical Multi- 92.35 79.24 83.75 75.05
[39]) pMCI-89 Surface kernel SVM
sMCI-111 based
CN-200
Lama et al. Cortical AD-70 Cortical Regularized  76.61 - - -
[97] thickness and MCI-74 Surface- ELM
surface area CN-70 based
(Sorensen et Hippocampus  AD-101 Pre-defined SVM 91.20 - 76.40 74.20
al. [98]) MCI-233 ROI based
pMCI-93
sMCI-140
CN-169
(Chincarini Biologically AD-144 Pre-defined SVM 97.00 92.00 74.00
etal. [gg]) selected pMCI-136 ROI based
regions sMCI-166
CN-189
Zu et al. Feature AD-51 Multimodal ~ Multi- 95.95 80.26 - 69.78
[100] concatenation pMCI-43 (MRl and kernel
sMCI-56 FDG-PET) SVM
CN-52
Alam et al. MRI bases AD-86 Texture Twin SVM 92.65 - - -
[101] texture CN-86

*SUFR-Supervised/unsupervised feature reduction, S-ROI-Single set adaptive ROIs, M-ROI-Multiple set adaptive ROIls, sMCl-stable mild cognitive

impairment, pMClI-progressive mild cognitive impairment, and ELM-Extreme Learning Machine
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progressed to AD (progressive MCI) from people who stayed stable for 18 weeks (stable MCI)

marginally more correctly than the usual random classifier.

The classification accuracy of different recent approaches such as SVM, ELM, and TSVM using
different types of features and are summarised in Table 2-2. This table can’t be seen as the comparison
of those methods because the different methods are tested on different data sets, some of which were
captured using different imaging protocols. It provides a glance at contemporary approaches, their
classification accuracy on different types of features. In these studies, MRI is acquired from either a
single scanner model or multiple scanner models with the same or different field strengths However,
the limitation of these approaches is that they didn’t consider these protocol differences while using

MRI data in their studies. They merged MR images ignoring these protocol differences.

2.6 Effects of MRI acquisition protocol difference

The classification of AD is performed using features from MRI which may be acquired by
different protocols. The protocol differences include different field strengths, different scanner
models and different operating parameters used to acquire the MR images. These differences may
impact the classification performance. Here, we review research on the effects of protocol differences

in general and also as related specifically to AD diagnosis.

The use of different field strength has pros and cons. For example, lower field strengths are less
susceptible to chemical artifacts, and higher field strength images provide higher depth information
for shape analysis and between class comparison [102], [103]. However, higher field strength has
some limitations such as it is more vulnerable to chemical shift artifacts [102], [103]. Several articles
regarding atrophy measurement distinguish 1.5 T and 3T field strength scans [104]-[106]. Some
studies have encouraged to combine to use both field strengths [34], [107], some have posed concern
regarding it [108], and some have proposed techniques to combine them [109].

There is the difference in the tissue signal when comparing 1.5T scan with its 3T counterpart
[110]. These concerns related to topographic localization of regions or tissues across field strengths
images. Because 3T images, using their higher contrast and greater signal-to-noise ratio (SNR), may
improve the topographic localization of atrophy [104]. For instance, the number of lesion detection
and observer agreement varies while rating 1.5 T and 3 T images by experts in this field [108]. 3T
MRI had the greater inter-observer agreement. 3T shows more dysplasias, while 1.5T demonstrated
more tissue reduction and mesial temporal sclerosis (MTS). Therefore, the diagnosis of patients may
benefit from 3T scans if the patient suffers from dysplasia. The article also claims that the

identification of lesion depends on scanner models.
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In CAD regarding AD, the cortical thickness and volume features are extracted after segmenting
brain tissues, and estimating Grey Matter (GM), WM (White Matter) and CSF (Cerebrospinal Fluid)
volume. The segmentation and volume estimation of these tissues could be affected by field strengths,
and scanner models. For example, a study revealed that gray matter and white matter volumes of a
subject calculated by a tissue classification algorithm could vary depending on field strengths [111].
The estimated intracranial volume (eTIV) also differs systematically between 1.5 T and 3 T images
of healthy subjects [105]. Additionally, the preliminary outcome from another study implies that 3T
images may have the ability to detect volume differences that are not evident in 1.5T [104]. Also, a
multi-atlas-based method claims that higher granularity level structural information of an image
varies across different imaging protocols [112]. The level of granularity level is defined by the
number of structural regions. Higher granularity level signifies higher number of structural regions.
When granularity level increases, the protocol effect increase. The protocol difference in this
particular paper includes three scanner manufactures and two magnetic field strength scans (1.5 T
and 3T). Such disparity discourages to merge data across different imaging field strengths to measure
subcortical brain volume measurement unless the difference is systematic, regular, detectable and

suitable for correction [113].

In contrast, Scorzin et al. [34] have claimed no apparent differences of estimated volumes of
hippocampus and amygdala based on 1.5 T and 3 T images irrespective of whether the segmentation
method is manual or VBM based. Ho et al. [114] showed that sample size estimates for finding
decaying rate atrophy using Tensor-based Morphometry (TBM) did not vary between 1.5T and 3T
images. Goodro et al. [107] showed that for both the strengths, the correlation between subcortical
volume of healthy cohorts and their age is strong. The correlation is similar for both the automated
tools, Free Surfer and FSL, which are also used for subcortical segmentation. However, they have

found that the degree of correlation varies based on age group.

Several studies have attempted to find a way to combine data from 1.5 T and 3.0 T scanners. Most
of these studies are template or atlas driven. For example, Keihaninejad et al. [105] have proposed an
approach to measure intracranial volume (ICV) across the two field strengths. This approach is based
on tissue probability mapping in MNI template space and reverse brain mask (RBM) for reverse
normalization to native space. By using this approach, the intracranial volume becomes more similar
across field strengths as compared with two other automated methods, FSL and SPM, which are also
used to measure ICV. Also, a multi-atlas based automated hippocampal segmentation has been found
to be accurate at both imaging field strengths [106] . By using this method, the estimated atrophy rate
is similar for both 1.5 T and 3 T images of a longitudinal study of a subject. Also, another multi-atlas-

based study has proposed that lower granularity level features are ideal to use to achieve less impact
15



on different protocols [112]. Pfefferbaum et al.[109] have successfully integrated T1-weighted MR
imaging data obtained with different field strengths. They have used a suitable regression-based
correction method to boost the correspondence between two different field strengths with reference

to estimating regional volume.

2.7 Conclusion

We have discussed several MRI based features relating to Alzheimer’s disease, various tools such as
FreeSurfer, SPM, and FSL which are used to extract features from MRI. We have presented various
classification approaches which use MRI based features and several classifiers such as SVM, ELM,
and TWSVM. Among them, we have found that SVM is more frequently used in AD diagnosis. We
have also presented various challenges because of having different protocols of MRI and reviewed

several methods which attempted to solve the problem.

16



AD Diagnostic Models

This chapter describes the AD detection algorithms that we have used to investigate the impact of
protocol differences on the diagnosis of AD/MCI. The algorithms primarily comprise first extracting
feature representation from a subject MR image and then training a supervised classifier using those
features. The features have been extracted using either MALF based subcortical and ventricular
structures, or FreeSurfer based subcortical volumes. We have chosen these two methods as widely
used representatives of the current state-of-the-art in brain feature extraction for AD diagnosis. Our
primary focus is to address the research question of whether the protocol differences affect the
performance and whether these two mainstream methods are robust to those differences. These two
methods, MALF based and FreeSurfer based, are briefly described below. We have also chosen
supervised classifiers SVM and ELM to analyze the classification performance across protocol
differences. These two algorithms are also briefly described. This chapter also discusses the reasons

for choosing these algorithms for the investigation of the impact of protocol differences.
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3.1 Background

It is important to evaluate the way the progression of AD affects specific anatomical structures and
to know the correlation between the various cognitive scores and anatomical phenotypes of the brain
structure. To achieve this, it is necessary to first segment the brain structures or regions of interest.
Manual segmentation done by a neuroanatomist is not feasible as it is time intensive, and operator
dependent. Therefore, the fully automated and accurate segmentation techniques are required to
enable large-scale neuroimaging research. Atlas-based segmentation techniques are widespread in the

research area of brain image analysis.

A brain atlas comprises the information of several brain structures/regions in order to supervise
the delineation of the structures while performing segmentation of a brain image. The easiest
approach is to provide a visual representation of certain brain structures, and then let the anatomists
specify the borders between structures that are nearby. An atlas might be generated from a subject or
an average of various subjects or the data based on a particular study/project by the trained
neuroanatomist in this field [115]. To achieve anatomical variability, it is recommended to employ
multiple atlases, so as to diversify the information that delineates of a structure. This diversification
encourages researchers to use various multi-atlas-based segmentation procedures. The use of atlas-
driven features from MRI is widespread in automated AD diagnosis. The multi-atlas-based study is
a trend which addresses several drawbacks of protocol difference in several studies as we have
mentioned in chapter 2. For these reasons, we have chosen a multi-atlas based approach as one of the

feature extraction methods to study the impact of protocol differences.
3.2 Multi-atlas based pipeline

The two-level hierarchical pipeline algorithm, Multi-Atlas Likelihood Fusion (MALF) has been
discussed in this section [116]. Most automated multi-atlas-based methods don’t include skull
stripping. However, the MALF method has integrated two stages sequentially: skull stripping and

brain tissue segmentation.

The brain regions need to be separated from non-brain regions to achieve accurate registration
and segmentation of a subject image. An essential step in multi-atlas-based segmentation would be
to register the MR image of a subject to an atlas template by nonlinear registration. To guarantee
accurate registration between a subject and an atlas, it normally requires an initial step to separate the
main brain regions from additional "non-brain™ regions. This method is known as "skull-stripping."
The method largely relies on the intensity and geometric features of the input MR image. The noise

originating from the fluctuation of intensity and geometric features of the image poses a huge
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challenge to achieve robust skull stripped image output across different field strengths and scanner
models. Other factors such as age of the subject and the resolution of the MR image may also
influence the robustness and segmentation accuracy of a method.

Accurate skull stripping is necessary for the three types of MR based feature that we have
described in chapter 2 which include atlas-driven volume features, cortical thickness/surface area-
based features, and pre-defined ROI based features. Unintentional incorporation of brain tissue with
non-brain tissue may lead to inexact feature measurement of various regions/structures of the brain
which are located near the skull boundary. This may affect the classification performance. Several

automated skull-stripping approaches are commonly used [117], [118].

MALF based skull tripping relies on the downsampling the subject image and applying small
deformations. Therefore, this process is much faster. The process creates a preliminary brain mask of
four groups: GM, WM, CSF, and lateral ventricles (LV) where the background pixels and skull
information are filtered out. Then the brain mask is post-processed such as filling the holes, and

smoothing the broken boundary and eliminate small regions by applying morphological operations.

This automated pipeline comprises two hierarchical stages as shown in Figure 3-3. The first level

follows three preprocessing steps as explained below.

e Firstly, transform the MR images of a subject and 19 atlases it has employed linearly to
Montreal Neurological Institute (MNI) standard template space. In the standard space, the N4
algorithm is used to sharpen the image histogram peak and correct the intensity homogeneity.

e Secondly, perform the nonlinear transformation between the MR image of a subject image
and 19 atlases employing Large Deformation Diffeomorphic Metric Mapping (LDDMM).
This subject image is aligned with all defined structures from those atlases.

e From the transformed space, a bias field is created which is measured from the dissimilarity

in intensity of defined structures between the subject image and the atlases.

The second level again uses LDDMM with three steps varying the degree of elasticity to three
different values. Thus, the subject image gets all defined structure levels from those atlases for second
time. This level segments the subcortical and ventricular structures of the subject image. This method
provides a rich representation of features from a subject image at five different ontology levels which
are called granularity levels. The number of brain structures is 8, 19, 54, 136, and 282 for each of the
five granularity levels, respectively. All the structures defined at granularity level 3 are mentioned in
Table 3-1. One slice of MALF based structures of each protocol is shown in Figure 3-1 where each

ROI colors are encoded by z score. At higher granularity levels, the structures of the lower granularity
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(@) GE Signa HDX

(b) GE Signa Excite

(c) Siemens Symphony

(d) Siemens TrioTim

Figure 3-1: MALF based segmentation of four different subjects over four scanner models

Table 3-1:MALF based segmented structures (54 Nos) at 3rd granularity level

Structure Name Structure Name Structure Name Structure Name Structure Name
AnteriorWM_L CinguSul_R Insula_R midbrain_R PosteriorWM_L
AnteriorWM_R CorpusCallosum_L IV_ventricle Occipital_L PosteriorWM_R
BasalForebrain_L CorpusCallosum_R LateralVentricle_L Occipital_R SylvianFissureExt_L
BasalForebrain_R Frontal_L LateralVentricle_R OcciptSul_L SylvianFissureExt_R
BasalGang_L Frontal_R Limbic_L OcciptSul_R Temporal_L
BasalGang_R FrontSul_L Limbic_R Parietal_L Temporal_R
CentralSul_L FrontSul_R LimbicWM_L Parietal_R TempSul_L
CentralSul_R I11_ventricle LimbicWM_R ParietSul_L TempSul_R
Cerebellum_L InferiorWM_L Medulla_L ParietSul_R Thalamus_L
Cerebellum_R InferiorWM_R Medulla_R Pons_L Thalamus_R
CinguSul_L Insula_L midbrain_L Pons R

(@) Granularity level 3 (b) Granularity level 5

Figure 3-2: MALF based segmentation of a subject image at two granularity levels

are further subdivided to extract more microstructure. For example, all the structures of level 3 and
level 4 are subdivided further to get the structures at level 5 as shown in Figure 3-2. Therefore, when
the granularity level increases, the number of structures increases, and the size/volume of each

structure reduces.

Several articles investigate the segmentation accuracy and robustness of the MALF based
approach [112], [116]. For example, Tang et al. [116] have analyzed the segmentation accuracy of
MALF algorithm at both the first and second levels, and compared with other conventional skull
stripping and fusion based methods. They have considered two kinds of dataset such as pediatric data

(3T) and elderly cohorts suffering from dementia (1.5 T) for their experiment. At the first level, the
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method overcomes the drawbacks such as segmented distortion and inaccuracy manifested by both
the hybrid watershed algorithm (HWA, adopted by FreeSurfer) and by the brain extraction tool (BET,
implemented by FSL). At the second level, the segmentation of subcortical and ventricular structures
is compared with FreeSurfer and FSL. MALF outperforms both other methods [116]. They have also
compared the MALF based method with other level fusion-based segmentation approaches
(STAPLE, Spatial STAPLE, and ANTS+PICSL) [119]-[121]. Regarding segmentation accuracy,
MALF is superior to two of them (STAPLE, and Spatial STAPLE), and similar to the remaining
approach (ANTS+PICSL). However, they have also revealed that MALF achieves higher

segmentation accuracy for the pediatric data (3T) as compared to the elderly data (1.5 T).

The MALF method provides better segmentation accuracy compared to the other methods
discussed above, both in skull stripping and segmentation of subcortical and ventricular structures.
For these reasons, we have chosen the MALF pipeline to represent the multi-atlas based approaches

in our study.

As mentioned in chapter 2, Liang et al. [112] studied the robustness of MALF using AD/MCI
data over six different protocols. In particular, they considered the impact of granularity levels over
protocol differences. These protocols include three scanner manufactures with two magnetic field
strengths. The whole brain was segmented into subcortical and ventricular structures at five
granularity levels. Total five types of granularity levels have been defined and the total number of
brain regions range from 6 to 286 throughout the phases. The variability of brain volumes is studied
corresponding to age, the protocol, and diagnosis of AD from NC and MCI. They considered 120
cohorts from ADNI with six different protocols comprised of 72 normal subjects and 48 AD cohorts.
They found no significant protocol difference with images having granularity levels 1-4, but the effect
had been observed at granularity level 5. In other words, when granularity increases, the measurement
precision decreases and the protocol effect increases. It is harder to define reproducibility of smaller
regions, and more contrast difference is apparent when the granularity of image is higher. The age
effect is observed throughout granularity levels. Hence, lower granularity level study is ideal to
achieve less impact of different protocols. The degree of effect of protocol difference is minor while

categorizing the well described (conventional) anatomical features of AD patients.

However, we have not come across any study to investigate how the protocol difference varies
the classification performance of AD/MCI from CN, and the ranking of different ROIs which
contributes to detecting AD/MCI.
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Figure 3-3: Schematic diagram of MALF based segmentation

Therefore, we have investigated the classification performance of the MALF based method over
different imaging protocols. The protocol differences include four different scanner models, three
with 1.5T field strength and one with 3T field strength. .

The MALF based approach is fully automated and is implemented in MRICloud with multiple
sets of atlases. We have selected 19 adult atlases with age range from 50-90 which is similar to our
dataset.

3.3 FreeSurfer features based pipeline

FreeSurfer is a frequently used tool that provides a fully automated processing stream to extract and
analyse features from structural MRI brain images. FreeSurfer is open source and free. Considering
its widespread use in MRI based CAD studies, we have chosen this tool to study the impact of
protocol differences. While feeding a subject MR image to FreeSurfer pipeline, the image undergoes
various stages such as strength non-uniformity correction [122], affine transformation to a common
template, intensity normalization, elimination of non-brain tissue [123], linear and non-linear
registration to a probabilistic brain atlas and labeling of cortical and subcortical structures/regions
[124]. FreeSurfer extracts volumetric features, and thickness and surface area features of cortical
parcellation [125]. The volume of subcortical structures is extracted by using FreeSurfer. FreeSurfer
also measures estimated total intracranial volume (eTIV), the volumes of the ventricular and corpus
callosum regions after aggregating each volume from its corresponding sub-regions. The FreeSurfer
package also provides visualization tools to examine various functional/anatomical regions of the
brain. We have run the FreeSurfer tool with default settings with the recon-all command. We have
extracted all volumes the defined regions from the stat documents that Freesurfer produces using the
‘asegstats2table’ command. The subcortical volume regions are mentioned in Table 3-2. One slice of

subcortically segmented images of four protocols are shown in Figures 3-4(a) through 3-4(d). In these
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(a) GE Signa HDX (b) GE Signa Excite (c) Siemens Symphony (d) Siemens TrioTim

Figure 3-4: FreeSurfer based subcortical segmentation of four different subjects over four scanner models

Table 3-2:FreeSurfer based subcortical segmented structures

Structure Name Structure Name Structure Name Structure Name Structure Name
3rd-Ventricle CC_Posterior Left-Hippocampus rhSurfaceHoles Right-Pallidum
4th-Ventricle CortexVol Left-Inf-Lat-Vent Right-Accumbens-area | Right-Putamen
5th-Ventricle CSF Left-Lateral-Ventricle Right-Amygdala Right-Thalamus-Proper
BrainSegVol EstimatedTotallntraCr | Left-Pallidum Right-Caudate Right-VentralDC
BrainSegVolNotVent anialVol Left-Putamen Right-Cerebellum- Right-vessel
BrainSegVolNotVentSurf Left-Accumbens-area Left-Thalamus-Proper Cortex SubCortGrayVol
BrainSegVol-to-eTIV Left-Amygdala Left-VentralDC Right-Cerebellum- SupraTentorialVVol
Brain-Stem Left-Caudate Left-vessel White-Matter SupraTentorial VoINotV
CC_Anterior Left-Cerebellum- IhCortexVol Right-choroid-plexus ent
CC_Central Cortex IhSurfaceHoles Right-Hippocampus SupraTentorial VoINotV
CC_Mid_Anterior Left-Cerebellum- MaskVol Right-Inf-Lat-Vent entVox
CC_Mid_Posterior White-Matter MaskVol-to-eTIV Right-Lateral- SurfaceHoles
Left-choroid-plexus Optic-Chiasm Ventricle TotalGrayVol
rhCortex\Vol WM-hypointensities

images, each ROI has a specific RGB color code. We have also investigated the classification

performance using those FreeSurfer based features over different imaging protocols.
3.4 Supervised learning algorithms

We have briefly discussed the algorithms we have applied in our study. As we have seen in chapter
2, several studies based on SVM and K-SVM using ADNI dataset have shown that these have good
potential to distinguish AD from NC and MCI. SVM performs better as compared to other classifiers
such as Bayesian, and random forest. The referenced studies either used exclusively 1.5 T images or
used both field strengths (1.5 T and 3T) without considering the impact of the protocol differences
due to different scanner models with possibly different field strengths. Therefore, in our study, KSVM
(RBF Kernel) has been trained and tested to obtain the performance result for detection of AD and
MCI while considering the protocol differences. The performance is compared with another efficient
classifier, Extreme Learning machine (ELM). The proposed overall classification approach is shown

in Figure 3.5.
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Figure 3-5:Schematic diagram of the proposed approach

3.4.1 Support Vector Machine

The Support Vector Machine is an efficient binary classification algorithm which creates a decision
surface. The decision surface is a line for two-dimensional data and a hyperplane for higher
dimensional data. It can separate two classes by studying the distinctness of the training set which
contains samples of both classes. The classifier solves the hyperplane equation in such a way that the
distance between the hyperplane and the support vectors is maximal. SVM separates the feature
vectors between two classes while maximizing the margin between the data and the decision surface
[44] as illustrated in Figure 3-6. The hyperplane equation can be solved in primal or in dual form. In
dual form, the hyperplane equation is optimized by Lagrange multiplier [126].

Kernel SVM (KSVM) is very useful to deal with the classification problem of linearly non-
separable data. If the data points are not linearly separable, the data is mapped into a higher
dimensional space to achieve separability. KSVM applies linear SVM in the higher dimensional
space. Several kernel mapping methods such as RBF (Radial Basis Function), Polynomial Kernel,
and sigmoid kernel are commonly used. The most frequently used kernel among them is RBF kernel

because of its robustness as compared to other kernels (i.e. Polynomial Kernel) [127], [128].
3.4.1.1 SVM Training

Let the training setbe T ={(X, ¥, )}, , where X € R"is the training input data and its corresponding
class level is y, e{-1,+1}. It is required to find the maximum-margin hyperplane that divides one

group (+1) from the other (-1).
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Maximum margin

Figure 3-6: Linear Support Vector Machine

The kernel mapping function, ®:R* - R (f >d), embeds the feature set in a higher dimensional space

to make it linearly separable.

The kernel mapping can be represented as

K =k(x,Xx") =(D(x), (X)) = D(x)" D(x") (3-1)
K(x,x") =exp(~y || x=x'|I"), >0 (3-2)

The decision boundary at kernel space is denoted by

f(X) =W g(x)+w, (3-3)
The hyperplane can be represented as

f(x)=0 or w' f(x)+w, =0 (3-4)

Where, W is weight vector which is normal to the hyperplane, and w, is a bias term.

When f(x) >0 ,then Y=+1 and f(x)<0 ,then y=-1
The primal formulation of SVM with L1 soft margin regularization can be solved as a primal problem,
.1 ’ 4
min> [w|? +CY &
w,wo 2 )

sty ((w, (X)) + W) 1= &, Vi, (3-5)
>0
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Where, C is the trade-off parameter of training error and margin, and &, is a slack vector with non-

zero elements. In our study, we have selected the optimized value of C from the range of -1 to 3 and

the optimized value of » from the range of -4 to 1 based on the performance of the RBF-SVM.

3.4.2 Extreme Learning Machine

Extreme Learning Machine is an emerging efficient pattern classification algorithm [129]
successfully used in various research fields. It has gained great breakthrough in fields such as image
enhancement, video application [130], medical application [97], [131], and ship detection [132]. The
ELM has very fast learning speed, better generalization performance compared to gradient-based
algorithm such as back-propagation methods, and is less prone to problems like local minima,
improper learning rate, and overfitting, etc. ELM is flexible with hidden activation functions. It has
the advantage of comparatively superior performance over SVM and its variants [133]. We have
applied extreme machine learning rather than using deep learning-based classification because deep
learning models need a large number of sample for optimum performance. The ELM algorithm
exhibits higher performance when the dataset is small. It is basically a single hidden layer feedforward
neural network (SLFN).

3.4.2.1 ELM Training
Again, let the training set be T ={(X,¥,)}.,, where X €R"is the input training data and its

corresponding class level isy. e{—1,+1}. The output function of single hidden layer SLFN with L

hidden neurons can be denoted as

Figure 3-7: ELM SLFN approach
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L

Where, g, is the weight matrix of the output, h(x)=h (a,,b,x) k=1...,L is the output of the
network with respect to its training sample x;, h(:) is a nonlinear continuous function, and a,,b, are

the corresponding parameters of k —th hidden neuron. The method selects the optimized parameters

by minimizing the error function ||H £ -Y ||. The steps of a SLFN is shown in Figure 3-7. It assigns

the hidden node parameters randomly with the strategy of tuning-free training unlike

other conventional iterative weight updating based neural network. As a result, it is less
computationally intensive [134]. The optimization problem can be solved by least squares (LS)

algorithm easily [135]. The network output weights are solved by a dual optimization problem [136].

3.5 Conclusion

We have extracted features from subcortical and ventricular regions using both five granularity levels
based MALF and Freesurfer methods. The MALF based methods are hierarchical and include skull
stripping. The skull stripping in MALF is also more accurate as compared to hybrid watershed-based
skull stripping employed by FreeSurfer, and brain extraction tool (BET) adopted by FSL. MALF
separates various non-brain regions where the other two methods consider those regions as a part of
the brain. Accurate separation of non-brain regions is important because it may affect nonlinear
registration of the subject image with an atlas which eventually influences parcellation (segmentation)
of the brain into subcortical and ventricular regions. Also, at the second hierarchical level, MALF
provides several brain structures located in subcortical and ventricular regions at five different
granularity levels. The number of structures varies based on the granularity levels. Higher granularity
levels provide features from a greater number of regions. It is important to see how such a robust
method performs over different protocols and also investigate whether affected regions/structures
remain the same or vary while using different protocols. Since FreeSurfer subcortical volume
structures are also frequently used by the neuro research community, it is also very important to verify
the robustness of this method over protocol difference regarding classification accuracy. As far as
methods to measure the classification accuracy, SVM performs better in most of the studies. So, we
have used SVM. We have applied another efficient recent supervised method, the ELM classifier, to
compare with the performance of SVM because other studies claim superior performance for ELM

compared to SVM.
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4

Data and experimental work

This chapter describes the data used for the two different tools used in our experiment. It also includes
various feature selection methods such as the t-test and Support Vector Machine Recursive Feature

Elimination (SVM-RFE), and validation technique we have employed.
4.1 Dataset

Data used in the preparation of this thesis were obtained from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database (http:// adni.loni.usc.edu). The ADNI was launched in 2003 as a public-
private partnership led by Principal Investigator Michael W. Weiner, MD. The primary goal of the
ADNI is to test whether serial MRI, positron emission tomography (PET), other biological markers,

and clinical and neuropsychological assessment can be combined to measure the progression of MCI

and early-onset Alzheimer’s disease AD. For up-to-date information, visit www.adni-info.org.

Alzheimer’s Disease Neuroimaging Initiative (ADNI) is an ongoing, longitudinal, multicenter
study [41]. The project has three phases: ADNI-1, ADNI-GO, ADNI-2, and ADNI-3. The ADNI-1
phase has both 1.5 and 3 T MR imaging scans, whereas other phases have only 3T scans. ADNI
included other imaging biomarkers such as Diffusion Tensor Imaging (DTI) and Functional
MRI(fMRI) after the ADNI-1 phase. This is described in Table 4.1.
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Our experiment uses the magnetization-prepared rapid gradient-echo (MP-RAGE) sequence
because MPRAGE provides both high tissue contrast and covers whole brain with high spatial

resolution with a limited number of scans [137].

The data used in our thesis was acquired by MRI scanners from two different manufacturers:
General Electric Healthcare (GE) and Siemens. It consists of two models of GE scanner, the Signa
HDX and the Signa Excite, and two models of Siemens, the Symphony and the TrioTim. The Siemens

TrioTim model has a 3T magnetic field strength whereas the other scanners are 1.5 T only.
4.1.1 Data for the Multi-Atlas Likelihood fusion (MALF) based algorithms

We ran the MALF algorithm in MRICloud (https://braingps.mricloud.org/) which is a service for
registered users only. It is a high-throughput cloud-based software as a service (SaaS) which has high
computation capability and supported by NSF XSEDE at the User Computational Anatomy Portal
[138].

We downloaded 1200 images from the ADNI website, and randomly selected one scan from
multiple scans for each subject. These selected subjects have been described in Table 4-2. Since
MRICloud software requires the images in a specific orientation, we downloaded raw dicom format
images and converted to the analyzer format (IMG/HDR) before executing the multi-atlas-based
methods. All the downloaded dicom scans were not preprocessed. All the pre-processing methods are

integrated in the MRICloud pipeline.
4.1.2 Data for the FreeSurfer based Method

CBRAIN is also a cloud based service which facilitates to use multiples neuroimaging tools which
need high computing power [139]. CBRAIN facilitates the use of FreeSurfer on their server for
registered users. The MRI data used for FreeSurfer is available from the ADNI website. It is ideal to
use preprocessed data where several imaging artifacts are corrected. The preprocessed data are in nifti
format. Therefore, 1200 images have been downloaded in nifti format. When downloading, some nifti
files got corrupted, and we did not include those corrupted files. As a result, not all the images we
have used here are the same as the data used in MALF based approach. We randomly selected one
scan from multiple scans of each subject. The selected subjects have been briefly described in Table
4.-3.
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Table 4-1: Different phases of ADNI project

Projects 1.5TMRI 3T MRI DTI fMRI Weighted Image
ADNI-1 Yes Yes No No T1/T2/PD
ADNI-GO No Yes Yes Yes T1/T2/PD
ADNI-2 No Yes Yes Yes T1/T2/PD
ADNI-3 No Yes Yes Yes T1/T2/PD
Table 4-2: Imaging parameters used in MALF based approach

Group Age Scanner models Field strength (3T) Number of subjects

CN 64.3-90.8 GE HDX 15 40

CN 70.1-91.8 GE Excite 15 83

CN 62.2-95.3 Siemens Symphony 15 42

CN 56.1-90.2 Siemens TrioTim 3 92

AD 56.4-90.9 GE HDX 15 56

AD 55.2-91.3 GE Excite 15 74

AD 57.9-88.8 Siemens Symphony 15 35

AD 56-89.1 Siemens TrioTim 3 67

MCI 55.8-89.4 GE HDX 15 51

MCI 55.2-88.2 GE Excite 15 72

MCI 56.3-91.9 Siemens Symphony 15 50

MCI 55.1-93.5 Siemens TrioTim 3 75

Each MPRAGE image undergoes three kinds of preprocessing phases

Gradwarp: This method corrects the image geometry which is distorted by the scanner. In
practice, the strength of gradient field doesn’t vary linearly with the distance from magnet

isocenter. This gradient non-linearity distorts the image geometry. Gradwarp corrects this

distortion.

B1 non-uniformity: The method uses calibration of time-varying radio frequency field (B1)
parameters to correct the artifacts of an image. This artifact, the non-uniformity in image

intensity occurs when the degree of uniformity at head coil and receiver coil varies during

Radio Frequency(RF) transmission.

N3: This method normalizes the non-uniform intensities, sharpening the histogram of an

image which is already preprocessed through the Grad warp and B1 non-uniformity correction

methods.
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4.1.3 Differences between the data sets

The FreeSurfer implementation requires images in nifti format, whereas the MALF
implementation that we are using requires images in dicom format. We downloaded ADNI MRI
images in both formats, but we found that some images were corrupted in one format but not the
other. Since the goal of our study is to determine whether protocol differences impact the
classification performance, there is no need to compare the feature extraction methods with each
other. In fact, it is preferable to perform independent experiments for each feature classification
method to reduce the impact of sampling. For these reasons, we have selected subject images
randomly and independently for each scanner model from the data available for each technique. Thus
we have constructed two different datasets that are as independent as possible. We make no claim
regarding the comparison of performance results between these two methods for AD/MCI detection

but focus on the impact of protocol differences on the classification performance.

4.2 Methods to avoid double dipping

In the ADNI project, longitudinal data is available where MRI scans of a subject were collected again
after a specific period (baseline, six months,12 months, etc.). Meanwhile, some subject progressed to
another stage which is related to the degree of brain severity. For example, a normal control may
progress to MCI or an MCI cohort may progress to AD. The classification problem needs to avoid
double dipping where a test subject shouldn’t also be used in training phase. Otherwise, this will
introduce bias in performance because the classifier will have prior knowledge of the test subjects
during the training period. We applied the following steps to avoid double dipping:

e Eliminate converted patients from the groups. For instance, if a subject covert from MCI to
AD at a later stage, then the subject is eliminated from both groups.

e Randomize and rearrange remaining subjects with AD and the remaining subjects from CN
separately.

e Split AD set and CN set into 5 folds separately

e Randomly select one fold from AD set and one fold from CN set, concatenate them to create
ADCN testing set

e Select remaining four folds from AD set and four folds from CN, concatenate them to create
ADCN training set.

A similar approach was implemented while classifying AD vs MCI and CN vs MCI.
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Table 4-3: Imaging parameters used in FreeSurfer

Group Age Scanner models Field strength (3T) Number of subjects
CN 64.2-90.8 GE HDX 15 41
CN 70.1-9.8 GE Excite 15 62
CN 62.2-95.3 Siemens Symphony 15 19
CN 56.1-90.2 Siemens TrioTim 3 82
AD 56.4-90.9 GE HDX 15 49
AD 55.2-91.3 GE Excite 15 60
AD 57.9-88.8 Siemens Symphony 15 34
AD 56-89.1 Siemens TrioTim 3 54
MCI 55.8-89.4 GE HDX 15 40
MCI 55.2-88.2 GE Excite 15 67
MCI 56.3-91.9 Siemens Symphony 15 52
MCI 55.1-93.5 Siemens TrioTim 3 70

Table 4-4: Selected data for MALF and FreeSurfer based approach

Classification | Model of the scanners | Dataset for MALF Dataset for FreeSurfer
sets
GE Signa HDX AD=40, CN=40 AD=41, CN=41
AD vs CN GE Signa Excite AD=74, CN=74 AD=60, CN=60
Siemens Symphony AD=35, CN=35 AD=19, CN=19
Siemens TrioTim AD=67, CN=67 AD=54, CN=54
GE Signa HDX AD=51, MCI=51 AD=40, MCI=40
AD vs MClI GE Signa Excite AD=72, MCI=72 AD=60, MCI=60
Siemens Symphony AD=35, MCI=35 AD=34, MCI=34
Siemens TrioTim AD=67, MCI=67 AD=54, MCI=54
GE Signa HDX CN=40, MCI=40 CN=40, MCI=40
CN vs MCI GE Signa Excite CN=72, MCI=72 CN=62, MCI=62
Siemens Symphony CN=42, MCI=42 CN=19, MCI=19
Siemens TrioTim CN=75, MCI=75 CN=70, MCI=70

We have balanced the data to have the same number of samples for each group to calculate balanced

classification performance as shown in Table 4-4.

4.3 Feature Ranking by the two-sample t test

The evaluation of the statistical significance of data is widely used to find out the degree of difference
between two groups. The two sample t-test is performed on two random groups where the both the
groups are assumed to be normally distributed. The frequently used term to measure the level of
significance is called p-value. The p-value of a sample less than 0.05 means that the test rejects the

null hypothesis that two groups have the same mean. The features can be ordered based on the p-

value. Smaller p-values indicate more significant features.
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In our experiment, one sample is a feature of healthy controls, another sample is the corresponding
feature of the AD cohorts. The groups are independent. Therefore, the two-sample t-test is applied
here. The features acquired from different imaging structures or different ROIs are ranked based on
its capability to separate the two groups. The feature ranking is done using the p-value of two sample

t-tests.
4.4 Support Vector Machine Recursive Feature Elimination (SVM-RFE)

We obtain features of every subject after applying the MALF algorithm and FreeSurfer tool to the
MRI data. The extracted features from each defined Region of Interest don’t necessarily contribute
to the classification tasks. Discarding unnecessary data is efficient. Moreover, large feature
dimensionality in classification problem is a curse for generalization. To obtain useful training of
supervised algorithms, the input data should be non-redundant and highly relevant to avoid overfitting
and underfitting. The use of fewer features not only increases the classification performance but also
reduces the classification time. The SVM-RFE method employs the support vector machine (SVM)
algorithm which is one of the most efficient and well-established methods for binary classification
[140]. It applies the RFE based ranking criteria. The features are ranked based on the weights of the
SVM primal problem.

SVM RFE has four main steps

e Selecting a subset of feature space or a feature subspace
e Training and testing in the sub-feature space
e Ranking the features based on the coefficients of SVM primal problem

e Drop the features whose rank are below the threshold value.

The algorithm of SVM-RFE is summarized below.

44.1 SVM-RFE algorithm:

Let the training dataset {(X;, ¥;)}1, where . < re, its corresponding class level is Y, e{-1+1}.
The surviving training set is

s =5;(:]), where j=1,..,¢,¢ <=n, indices of surviving of features,

Then, SVM classifier is trained. The coefficients in the dual form are calculated. Consecutively, the

weights of the primal form are measured from those coefficients.
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W= Zak Vi Xy « is a coefficient optimized at the dual form
k

The ranking value is computed as

k= (Wi )2 forall i

The features having smaller ranking values or weights are computed
f =argmin(c)

Then the feature ranking values are updated, and some features are discarded which have smaller

ranking values. This process continues until no feature survives.
4.5 Evaluation matrices

The performance result can be measured using a confusion matrix, as shown in Table 4.5. The
cohorts who are correctly labeled by the classifier are located diagonally [141]. These are true
positives (TP) which denotes correctly classified patients and true negatives (TN) which corresponds
to correctly labeled healthy controls. The off-diagonal elements are false positives (FP) which
represents the number of healthy controls incorrectly classified as patients, and false negatives (FN)
which denotes the number of patients wrongly labeled as healthy. Our experiment employs six terms
to measure the performance of the classifier. These are accuracy, sensitivity, specificity, precision, f-

measure, and g-mean.

The accuracy can be defined as the proportion of subjects correctly labeled compared to the total

number of subjects.

TP+TN

accuracy =
TP+TN +FP+FN

The sensitivity is the proportion of true positives relative to the total number of patients.

TP

sensitivity = ——
TP+ FN
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Table 4-5: Confusion matrix for a binary classifier

True Class Predicted Class

p (Patients) H (Controls)
p (Patients) TP FN
H (Controls) FP TN

The specificity can be defined as true negative rate relative to the total number of controls.

TN

specificity = -
+

The precision is the positive predictive value.

TP

precision =
TP+FP

F1 measure is the harmonic mean of precision and sensitivity.

precision * sensitivity
precision + sensitivity

F, score =2

Gmean of the geometric mean of sensitivity and specificity.

Gmean = Jsensitivity*specificity

4.6 Cross-Validation

The Cross-validation (CV) technique evaluates the performance of the predictive model which makes
predictions on unknown or new datasets. This CV portions a dataset and uses a subset of input data
for training an algorithm and the remaining subset for testing. At each fold, the training subset is used
to train a supervised learning algorithm with the corresponding testing set is used to assess the
performance. This process is repeated k times for k-fold CV. It randomly partitions data into k folds,
the data from k-1 folds are employed as the training set, and the remaining data from one fold is used
for testing. This process is repeated k times so that every subject is used in k-1 training set and one

testing set.

In our thesis, at each round of iteration, all the six measures which are described above are
calculated. We ran this 5-cross-validation 30 times. At each run, the data in training and testing fold

are shuffled randomly. Then we calculated the average and standard deviation of those six measures.
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Iteration 1]

- Training Fold | Training Fold | Training Fold | Training Fold

Iteration 2| Training Fold Training Fold | Training Fold | Training Fold

Iteration 3| Training Fold | Training Fold - Training Fold | Training Fold
Iteration 4| Training Fold | Training Fold | Training Fold - Training Fold

Iteration 5| Training Fold | Training Fold | Training Fold | Training Fold -

Figure 4-1: Illustration of 5-fold cross-validation

|

4.7 Used Tools/Packages

In our thesis, we have used these tools/methods: FreeSurfer, MALF pipeline, SVM-Recursive
Feature Elimination, RBF-SVM, and ELM. We ran FreeSurfer in the cbrain cloud [139], MALF
pipeline in the MRICloud [138], and all other methods in MATLAB R2017a. We used LibSVM
library for running RBF-SVM [142]. We used the code for ELM from
ntu.edu.sg/home/egbhuang/elm_codes.html, and SVM-RFE from
mathworks.com/matlabcentral/fileexchange/50701-feature-selection-with-svm-rfe. We modified

those codes as per our requirement.
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5

Result and Discussion

We have investigated the robustness of the predictive method using multiple granularity levels across
four sets of data having different protocols. The predictive performance is measured using two
supervised classifiers, RBF-SVM and ELM. We have also identified the most affected regions due to
the progression of the disease across those sets of data. We have also performed a similar investigation

using FreeSurfer based subcortical volume features.
5.1 Feature setup for classification

We have used a feature selection method after extracting subcortical and ventricular features using
MALF pipeline and FreeSurfer, and measured the classification performance. SVM recursive feature
elimination (SVM-RFE) has worked as a feature selection method here. SVM-RFE selects the most
discriminatory regional features based on weights of the hyperplane. In other words, it selects features
based on the separability of the data during classification. This method has been described in chapter
4.

After filtering out less significant features, we train two supervised classifiers, RBF kernel SVM
and ELM over four different sets of data having the different protocols (GE Signa HDX, GE Signa

excite, Siemens Symphony, and Siemens TrioTim). We have calculated the classification
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performance result of AD/CN (AD vs CN), AD/MCI, and CN/MCI in terms of six performance
measures (accuracy, sensitivity, specificity, precision, F1 score, and gmean). We have applied 5-fold
cross-validation, and run the entire process 30 times, for a total of 150 classification experiments.
Finally, we have calculated performance using the mean and standard deviation over all folds of 30

runs.
5.2 Classification performance of Multi-atlas-based pipeline

We have analyzed the classification performance using MALF based ventricular and subcortical

structures over multiple granularity levels as input feature to the two classifiers RBF-SVM and ELM.
5.2.1 Performance of RBF kernel SVM classifier

We have analyzed the performance of RBF SVM over four different scanner models. The
performance accuracy while separating AD from CN is shown in Figure 5-1(a). At granularity level
5, the performance accuracy is 87.75%, 85.97%, 86.61%, and 84.61% for the four different scanner
models. Across all scanners, the highest granularity level 5 provides better accuracy than lower
granularity levels ranging from granularity level 1-4. The accuracy increases consistently for levels
3-5. However, the accuracy fluctuates from level 1 to level 3. For three scanners, GE Sigha HDX,
Siemens Symphony, and Siemens TrioTim, granularity level 2 outperform levels 1 and 3. But for GE
Signa Excite, granularity level 2 performs worse than levels 1 and 3. The accuracy at granularity level
1 is lowest across all scanners except GE Signa Excite where granularity level 2 exhibits the lowest
accuracy. All the performance measures for granularity level 5 for all models are shown in Figure 5-

2(a). The performance depicts that GE Signa HDX scanner outperforms other scanner models here.

We have measured the AD/MCI classification performance for all scanner models in similar way.
The performance accuracy is depicted in Figure 5-1(b), and performance result at granularity level 5
is depicted in Figure 5-2(b). The performance accuracy at granularity level 5 is 69.13%, 66.21%,
69.80%, and 76.07% for the four different scanner models. Granularity level 5 provides better
accuracy than the lower granularity levels (granularity levels 1-4) for all scanners except Siemens
Symphony where level 3 provides the highest accuracy. The accuracy rises considerably when the

granularity level increases from 2 to 5 for all scanner models except Siemens Symphony.

In case of Siemens Symphony scanner, the accuracy shows variation across all granularity levels
where level 3 performs slightly better than level 5. For all scanners, accuracy at granularity level 1 is
slightly better or equal as compared to granularity level 2. Figure 5-2(b) depicts that the performance

result of the Siemens TrioTim scanner outperforms other scanner models.
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We have also recorded CN/MCI classification performance for all scanner models across all
granularity levels. At granularity level 5, the accuracy of the four models is 72.91%, 75.47%, 75.04%,
and 72.2% as shown in Figure. 5-1(c). Granularity level 5 provides better accuracy than levels 1-4
for three scanners, GE Signa HDX, Siemens Symphony, and Siemens TrioTim. But in case of GE
Signa Excite model, accuracy at granularity level 5 is slightly less that at level 4. Considering GE
Signa Excite and Siemens TrioTim, the accuracy increases considerably when the granularity level
increases from 1 to 3. But for the other two models, granularity level 2 performs slightly better than
levels 1 and 3. The lowest level performs worst across scanners except GE Signa HDX where the
accuracy at level 3 is lowest. Figure 5-2 (c) exhibits all the performance measures for granularity
level 5. The performance result indicates that GE Signa Excite and Siemens Symphony scanners
perform comparably and outperforms other scanner models here.
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Figure 5-1: Performance accuracy of MALF based method using RBF-SVM over four different protocols
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Figure 5-2: Performance result of MALF based features at granularity level 5 using RBF-SVM over four different protocols

5.2.2 Performance of ELM classifier

We have analyzed the performance of ELM over granularity levels 3 through 5, and the same four
scanner models. We omitted recording the performance results for granularity levels 1 and 2 as the

performance of RBF-SVM consistently shows poor result over these granularity levels.

When classifying AD/CN, the accuracy is higher for GE scanners at granularity level 5, than at
other levels. These scanners have accuracy of 91.37% for Signa HDX and 87.80% for Signa Excite
as shown in Figure 5-3(a). But for the two models of Siemens, accuracy at granularity level 4 is
85.05% and 83.91% which is slightly better than level 5, and significantly higher than level 3. The
lowest granularity level provides the lowest performance across all scanners as shown in Figure 5-
4(a).

When classifying AD from MCI, the performance at level 5 is higher than levels 3 and 4 for both
GE and Siemens scanners across their models as shown in 5-3(b). The accuracy is up to 66%, and
67.04% for GE scanners, and 67.94% and 78.38% for Siemens. The lowest granularity level provides
lower accuracy for all scanners. Figure 5-4(b) depicts the performance result indicating that GE Signa
HDX, GE Signa Excite and Siemens Symphony scanner models perform comparably with each other.
Siemens TrioTim outperforms the other scanner models here.
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Figure 5-3: Performance accuracy of MALF based method using ELM over four different protocols
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Figure 5-4: Performance result of MALF based features at granularity level 5 using ELM over four different protocols

When classifying CN vs MCI, GE scanners and Siemens Symphony performs similarly across all
granularity levels having the highest accuracy about 74% at level 5 as shown in Figure 5-3(c). The
accuracy increases from level 3 to level 5 considerably for Siemens scanners, while for GE scanners
level 4 performs better as compared to levels 3 and 5. Across all scanners, the lower granularity level
3 performs worse. The performance results show that Siemens TrioTim performs poorly compared
to the other three scanner models as shown in Figure 5-4(c).
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We have analyzed three classification sets (AD vs CN, AD vs MCI, and CN vs MCI) across
granularity levels and four scanner models using RBF-SVM and ELM. RBF SVM and ELM perform
quite similarly to each other for all the scanners as depicted in Figure 5-5(a) through 5-5(c). For both
the classifiers, the highest granularity level tends to provide better classification performance, and the
lowest granularity level offers poor performance across all scanners. We suggest that this is because
the highest granularity level provides information about the microstructure of the brain. Atrophy
changes in the microstructures when the disease progresses may contribute to improving the training
of the classifier. GE Signa HDX performs better for AD/CN classification, while GE Signa Excite
and Siemens Symphony perform better for CN/MCI classification across both classifiers. Siemens
TrioTim performs better for AD/MCI classification across both the classifiers, but not for AD/CN or
CN/MCI classification despite having 3 T subject images as compared to the other scanners. This
indicates that a scanner model having 3 T field strength image data does not necessarily ensure better
classification performance. Classification performance also depends on the robustness of the
algorithm for measuring brain structures across various scanner models with the same or different
field strengths (1.5 T, and 3 T), and on the particular dataset.

5.3 Classification performance of FeeSurfer based methods

We have analyzed the classification performance using FreeSurfer defined subcortical volume-based
features and the two classifiers RBF-SVM and ELM.
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5.3.1 Performance using RBF SVM classifier

When classifying AD vs CN using RBF SVM, the highest accuracy has been achieved by the Siemens
scanners. The accuracy of Symphony and TrioTim is 86.66%, and 86.16%, respectively. Siemens

scanners perform better that GE scanners as depicted in Figure 5-6 (a).
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Figure 5-6: Performance result of FreeSurfer based method using RBF-SVM over four difference protocols
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Figure 5-7: Performance result of FreeSurfer based method using ELM over four difference protocols
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For AD vs MCI classification, Siemens scanners account for the highest accuracy, about 78% across
its two models. Figure 5.6(b) shows that Siemens scanners perform better than the GE scanners. For
CN-vs MCI classification, GE Signa HDX provides the highest accuracy of 70.20%. Figure 5-6(c)

shows that GE scanner performs well when compared with two models of Siemens.

5.3.2 Performance using ELM classifier

Figures 5-7(a) through 5-7(c) depict the performance of AD vs CN, AD vs MCI, and CN vs MCI
using the ELM classifier. For the classification of AD/CN, Siemens Symphony achieved the highest
accuracy with 83.66% which is considerably higher than the other three models of scanners. For AD
vs MCI classification, Siemens Symphony again provided the highest accuracy with 76.95% as
compare with the other three models. For both the classification methods, RBF-SVM and ELM,
Siemens scanners exhibit better performance than GE scanners. However, considering CN vs MCI
classification, GE Signa Excite performs better in comparison with other models. In this case, a GE

scanner provides better classification performance as compared to Siemens scanners.

Siemens TrioTim performs better for AD/CN and AD/MCI classification across both the
classifiers, but not for CN/MCI classification despite having 3 T subject images as compared to 1.5T
for the other scanners. For CN/MCI classification, Signa HDX outperforms other scanner models
across both the classifiers. This reinforces the results of the MALF based method which showed that
a scanner model having 3 T subject image dataset does not necessarily ensure better classification
performance even though 3T provides better topological localization of different brain structures with
higher contrast as discussed in section 2.6. Classification performance also depends on the robustness
of the algorithm for measuring brain structures across different scanner models, and on the dataset

We use.

5.4 Ranking MALF and FreeSurfer based features

We have ranked the features by applying a feature ranking method which uses a t-test to assign scores
to features for all the classification sets (AD vs CN, AD vs MCI, and CN vs MCI) across all scanners.
The ranking of MALF based subcortical, ventricular structures is depicted in Figures 5-8 through 5-

10, and FreeSurfer based subcortical segmented structures are shown in Figures 5-11 through 5-13.

Considering the ranking of MALF structures for AD/CN classification across all scanners, the
most affected regions detected are basal forebrain, thalamus, SylvianFissureExt, and Lateral VVentricle
as shown in Figures 5-8(a) through 5-8(d). The lateral ventricle ranks highest for GE Signa Excite
but the other three scanners detect basal forebrain as the most affected regions. For AD/MCI

classification, BasalForebrain is the highest ranked features across all the scanners as shown in
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Figures 5-9(a) through 5-9(d). For CN/MCI classification, the highest-ranking feature for GE Signal
HDX, GE Signa Excite, Siemens Symphony, Siemens TrioTim are Parietal_L, SylvianFissureExt_R,
FrontSul_R, and CentralSul_L, respectively. The ranks are shown in Figures 5-10(a) through 5-10(d).

When using FreeSurfer, the features from subcortical regions such as hippocampus, amygdala,
and Inferior Latera Ventricles feature rank among the highest for all classification sets across all
scanner models are shown in Figures 5-11 through 5-13. Hippocampus ranks highest in some scanners
such as GE Signa HDX and GE Signa Excite. In contrast, amygdala ranks highest for Siemens
TrioTim. This finding backs the claims of previous studies where some researchers declare that
AD/MCI affects the hippocampus and amygdala [32]-[34]. For GE scanners, the highest ranked
features are also hippocampus, lateral ventricle, and amygdala. But the Symphony model lists
Cerebellum Cortex as the most affected regions while TrioTim shows the inferior lateral ventricles

as the most affected region.
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Figure 5-8: Ranking of MALF based features at granularity level 3 while classifying AD/CN
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Figure 5-10: Ranking of MALF based features at granularity level 3 while classifying CN/MCI
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Figure 5-11: Ranking of FreeSurfer based features while classifying AD/CN
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Figure 5-12: Ranking of FreeSurfer based features while classifying AD/MCI
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(c) Siemens Symphony

(d) Siemens TrioTim

Figure 5-13: Ranking of FreeSurfer based features while classifying CN/MCI

Different scanners perform reasonably well for AD/MCI detection. We have observed minor
difference over protocols regarding classification performance and ranking order for both FreeSurfer
and MALF based regions.Although there is a minor difference, it does not mean that the data from
the different scanners can be merged into a single large dataset because the classifier can adapt to
each scanner when it is trained on data from only one scanner. Although the rank order marginally
varies, this may not impact the classification performance because other similar significant ROIs can
take the same role as the representative features. Also, our classification methods consider several
ROIs when classifying one group from other. Despite having different ranking order, these features
might still be available in the feature set. As long as these features remain in feature set, it does not
impact the classification performance

5.5 Conclusion

We have explained the result we have obtained after using RBF-SVM and ELM over four different
types of scanner data. We have observed marginal differences in performance result when comparing
classification performance of the scanners across three classification tasks: AD vs CN, AD vs MCI,
and CN vs MCI. For MALF based features, and for both classifiers, the best performance is achieved
by different scanners for each of the three classification tasks: Signa HDX for AD vs CN, Siemens

TrioTim for AD vs MCI and the other two scanners for CN vs MCI. For FreeSurfer based features,
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Siemens TrioTim performs better for AD vs CN and AD vs MCI classifications across both
classifiers, while Signa HDX performs better for CN vs MCI classification across both classifiers.
We have also observed that the ranking orders of the most important features vary for all the three
classification sets. However, it is difficult to make a claim that these differences occur due to protocol

differences because other factors also influence these minor differences.
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6

Conclusion

6.1 Research Summary

We have described the full automated multi-atlas-based brain parcellation tool (MALF) which uses
multiple atlases, and extracts subcortical, ventricular structural volume from a subject image at five
granularity levels which ranges from 1 to 5. We have also briefly described an efficient automated
tool, FreeSurfer, which segments brain into various subcortical regions, and measures volume from
those regions. These two robust tools were used to extract features from MRI data collected using
four different types of protocols which include scanners having the same or different field strengths.
The robustness of these two types of feature extraction methods over protocol differences is
discussed. The robustness has been discussed in terms of classification performance and ranking of
the most effective ROIs. We have also described the data which are used to obtain the features along
with several preprocessing methods and a feature selection approach, SVM Recursive Feature
Elimination, where features are selected based its SVM weight vector. A method is explained to avoid
double dipping so that features of a subject do not get involved in both training and testing phase
during the classification. Supervised classifiers, SVM and ELM have been explained. These are used
to disease stage of a subject (i.e., AD, CN, and MCI). We have recorded the classification
performance using 5 fold cross-validation technique and running the program multiple times where

different subset of data is randomly assigns to a fold at each run. We have also used a t test based
50



feature ranking method which ranks all the regions of the brain based on the statistical significance

for separating two classes.

When analyzing multi-atlas likelihood fusion-based granularity analysis, it is evident that a higher
granularity level provides better classification performance across the protocols. This is because the
higher granularity level provides more detailed information of microstructures. That is used to train
the supervised classifier. Simens TrioTim performs better for AD/MCI classification, but not for
AD/CN or CN/MCI classification set when using MALF based features and two classifiers, ELM and
RBF-SVM. When using FreeSurfer based features, Siemens TrioTim performs better for AD/CN,
and AD/MCI classification across both the classifiers, but not for CN/MCI classification. Both
classifiers, SVM and ELM, provides similar performance. There is no evidence in our study for
superiority of one classifier over the other. We can’t claim the superiority of a classifier over another

classifier in performance in our study/dataset as some other studies

Considering the ranking of affected ROIs, we have shown that the ranking order of different brain
structures/regions varies across different protocols. In many cases, the difference in the rank ordering
would not impact disease detection. However, we have overserved some cases where most important
regions are significantly different for different protocols. For example, when ranking features for
CN/MCI, the important MALF based regions are noticeably different across all protocols and
FreeSurfer based regions are significantly different for all Siemens models These differences may
impact the detection performance.

6.2 The limitations of our study

It is difficult to make strong claims regarding the reason for the differences in classification
performance or ranking order of ROIs because these deferences may be affected by several factors.
For example, the number of applied atlases may affect the performance result. If the atlas set
introduces bias, this may change the extracted features and the classification performance The

limitations of our study are explained below.

e Limited data: We need to investigate and generalize the effect of protocol differences using
a large of number of subjects. A large of number of unique participants having different
severity stages of dementia and different protocols is difficult to collect. The publicly
available datasets are limited. ADNI data, which we have used, is the largest publicly available
dataset for Alzheimer’s disease.

e Unpaired data: It is ideal to use paired data. Data we have used in our study is not paired
where MR images of a subject for all the protocols at a specific time point is not available.
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e Age gap: The age differences are not considered. It is hard to get data of certain age range
(i.e 5-10 years gap) over all the protocols. We have elderly data in broad range. During that
time, a subject may undergo different kind of brain severity related disease, which may affect
brain tissues, eventually affect the subcortical or ventricular structures of a brain which is
crucial features of our study.

e Scanning Time of a day: The time of a day when subject images were scanned is not
considered. The tissue density in a brain MRI may vary depending on the time of a day. For

example Nakamura et al. [143] have shown that brain volume is higher in the morning.

6.3 Future Work

We will endeavour to work in large paired dataset to investigate the protocol difference and compare
results with the present study. Then, we intend to develop some regression-based correction method

to eliminate bias introduced by scanning time of a day, age, gender, and scanner model differences.
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List of symbols

AD Alzheimer Disease

ADNI Alzheimer’s Disease Neuroimaging Initiative
MALF Multi-Atlas Likelihood Fusion
CAD Computer Aided Diagnosis
CDR Clinical Dementia Rating
VBM Voxel Based Morphometry
HC Healthy Controls

MCI Mild Cognitive Impairment
MRI Magnetic Resonance Image
NC/CN Normal Controls

SVM Support Vector Machine

ELM Extreme Learning Machine
RBF Radial Basis Function

ROI Region of Interest
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