
 

Impact of MRI technology on Alzheimer’s 

disease detection 

 

 

by 

Saruar Alam 

A Thesis Presented in Partial Fulfillment 

 Of the Requirement for the Degree of Master of Research 

 

Department of Computing  

Macquarie University 

22 April 2018 

 

 

 

 

 

 

 



i 
 

 

 

 

 

Statement of Originality 

 

 

This work has not previously been submitted for a degree or diploma in any university. To the best 

of my knowledge and belief, the thesis contains no material previously published or written by 

another person except where due reference is made in the thesis itself 

 

 

 

Saruar Alam 

Date: 22 April 2018 

 

 

 

 

 

 

 

 

 



ii 
 

 

 

 

 

Abstract 

 

 

Alzheimer’s disease (AD) can be detected using magnetic resonance imaging (MRI) based features 

and supervised classifiers. The subcortical and ventricular volumes change for AD patients. These 

volumes can be extracted from MRI by tools such as FreeSurfer and multi-atlas-based likelihood 

fusion (MALF) algorithm. Medical imaging centers typically use MRI protocols for brain scanning. 

These protocol differences include different scanner models with various operating parameters. The 

scanner models can have the same or different field strengths. A key factor in classifying multicentric 

MR subject images having different protocols is how different scanner models affect the extraction 

of features, and subsequent classification performance of a supervised classifier. We have 

investigated the classification performance of FreeSurfer and MALF based volume features together 

with Radial Basis Function Support Vector Machine and Extreme Learning Machine across different 

imaging protocols. We have also investigated both FreeSurfer and MALF, whose defined regions of 

the brain are most effective for the detection of the disease over different protocols. Our study result 

indicates marginal differences in classification performance across scanner models with the same or 

different field strengths when differentiating AD, Mild Cognitive Impairment, and Normal Controls. 

We have also observed differences in ranking order of the most effective regions. 
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Introduction 

 

 Background 

Dementia is a chronic and prolonged decline in cognitive performance which progressively develops, 

and depending on the type of dementia, can be associated with the formation of the β-amyloid 

plaques, synaptic dysfunction, damage to brain cells, and brain shrinkage. It subsequently causes the 

deterioration of memory, cognitive abilities, reasoning, and language [1]. According to a statistical 

report, over 135 million people worldwide will suffer from dementia by 2050 [2]., which is triple the 

current number of affected patients. Dementia is now a primary global health and social threat which 

will bring an enormous financial burden on families, and national healthcare system. 

Alzheimer’s disease (AD) and Frontotemporal dementia (FTD) are the most common forms of 

dementia. AD accounts for 60-80% of dementia cases [3], and FTD accounts for 4-20% [4]. The 

majority of dementia cases affect individuals above the age of 65 [5]. Other forms of dementia such 

as Parkinson’s Disease, Huntington’s disease, and vascular dementia are also prevalent [6]. The 

support cost of all AD patients alone is estimated to be $220 billion in the USA and $605 billion per 

year globally. The developed countries are also supporting research activities related to AD [2]. 



 

2 
 

Alzheimer’s disease has primarily three stages: mild AD, moderate AD, and severe AD. It also 

includes preclinical AD, Mild Cognitive Impairment (MCI), and other dementias associated with AD 

[7]–[9]. Clinical studies typically identify three groups, including normal controls (CN), MCI, and 

AD patients. MCI cohorts have some symptoms which are common with AD cohorts, but MCI 

subjects can do daily activities normally as healthy people do. An MCI subject stays cognitively stable 

for several years, then progresses to some type of dementia, especially to AD. The percentage of the 

MCI cohorts likely to convert to AD every year is between 10% and 30%, whereas the conversion 

rate from normal controls (CN) to MCI or AD is just 1-2% [10], [11]. Recent research suggests that 

early treatment of MCI may slow down the progression to AD [12], so it is highly valuable to study 

and predict the early stages of MCI. 

AD is diagnosed using both invasive and non-invasive methods. Non-invasive diagnosis methods 

don’t involve surgery, which reduces the risk of infection, the duration of hospital stay, and the 

possiblity of trauma [13]. Further, non-invasive methods are quicker, cheaper, and don’t require as 

much expertise to implement [14], [15]. For these reasons, it is preferable to use non-invasive or 

minimally invasive diagnostic methods provided they have sufficient accuracy. Our study is based 

on non-invasive medical imaging technology, specifically MRI, as a biomarker for AD/MCI 

detection. The original non-invasive diagnostic methods are based on clinical observation, patient 

history, and cognitive testing. Some clinical tests can reasonably assess the severity of AD such as 

MMSE (Mini-Mental State Examination) [16], AMTS (Abbreviated Mental Test Score) [17], 

modified MMSE (3MS) [18], CASI (Cognitive Abilities Screening Instrument) [19], and CDT (Clock 

Drawing Test) [20]. Despite their ability to recognize the cognitive status and various types of 

dementia, they are inadequate since the clinical test score does not necessarily correlate with memory 

and thinking disorders [21]. Also, some clinical tests tend to have educational, social, and cultural 

biases [21]. Other effective non-invasive diagnostic methods are based on medical imaging. Medical 

imaging assists to visualize degenerative histological changes, which includes amyloid plaques, 

hypo-metabolism, and the structural changes caused by neurological disorders. These histological can 

become apparent long before the disorder is clinically detectable [22]. The use of medical imaging 

revolutionizes the noninvasive diagnosis of dementia. The commonly used imaging methods are MRI 

(Magnetic Resonance Imaging), fMRI (functional MRI), SPECT (Single Photon Emission Computed 

Tomography), and PET (Positron Emission Tomography). MRI is also called structural MRI (sMRI) 

to differentiate it from functional MRI (fMRI). Throughout this thesis, we will use the terms MRI 

and MR imaging to refer to structural MRI. MRI applies radio waves in a strong magnetic field to 

construct a pictorial presentation of organs and tissue of the human body. Hence MRI can potentially 

be used as a biomarker for MCI and to assess the progression to AD. 
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The current approach to dementia diagnosis based on medical imaging needs human expertise 

which is labor and time intensive and prone to operator bias [23]. Therefore, the Computer Aided 

Diagnosis (CAD) is emerging so that the drawbacks of manual detection can be overcome. The goals 

of CAD-based methods for dementia are 1. Detecting AD from normal cohorts [24] 2. Differentiating 

AD from other types of dementia [25] 3. Separating several stages of dementia such as AD and MCI 

[26]  4. Finding the importance of various Regions of Interest (ROIs) of the human brain which are 

sensitive to the progression of AD [27] . Although a cure for the disease is not available, the CAD 

method assists in analyzing subtle change which may be a biomarker for progression of the disease. 

Specifically, CAD could be used to monitor the progression of brain atrophy to show the effectiveness 

of medications [12]. In addition, CAD methods may also help to predict the severity of the disease in 

the long run [28].  

MRI has the potential to detect biomarkers for AD/MCI. Three types of feature are usually 

extracted from MRI: Voxel-based, Vertex-based, and predefined ROI based. The voxel-based 

methods measure volumes of brain matter, specifically Grey Matter (GM), White Matter (WM), and 

Cerebral-Spinal Fluid (CSF) [29], [30]. The Vertex-based methods measure primarily the cortical 

thickness based on structural features [31]. The predefined ROI based methods measure the volume 

of specific regions of the brain such as hippocampus, amygdala, and the entorhinal cortex [32]–[34]. 

For all three feature extraction methods, an efficient segmentation or parcellation method is required 

to obtain an accurate measurement of a region of interest (ROI). These methods use template or atlas-

based parcellation algorithms to obtain improved segmentation accuracy [35], [36]. The template or 

atlas provides prior knowledge of the structure of the required brain regions. However, a standard 

template or atlas may not always be applicable. Moreover, a single atlas may have some biases such 

as age, gender, and protocol which influences the segmentation. Therefore, multi-atlas or multi-

template based methods are used which diversify the collection of atlases regarding age, gender or 

protocol. The use of multi-atlas methods achieves better segmentation accuracy [37].  

CAD-based methods differentiate the severity of dementia with the aid of a supervised 

classification algorithm [38]. The supervised classification algorithm uses features extracted from the 

MRI to train the classifier to differentiate dementia stages.  Corresponding features from independent 

images are used in the testing phase to assess the performance of the classifier. A classifier extracts 

generalization knowledge during training from the labeled subjects, and it predicts the label of an 

unknown subject based on that generalization knowledge. To achieve efficiency, the classifier 

requires input of an appropriate feature representation. However, the extraction methods for rich 

representative features should be computationally feasible. Also, the features should be non-

redundant and relevant to avoid poor training of the classifier [39]. The relevant features are either 
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combined or reduced dimensionally if the feature dimension is high before using them as input to the 

classifier [26]. We require an experimental design to assess the performance of the classifiers where 

each subject (or sample) is used for either training or testing, but not for both in a single classifier 

instance. Using the same subject for both training and testing introduces bias, and the performance 

measures would be unreliable [40]. 

MRI data originates in medical diagnostic centers, each of which employs different MRI 

acquisition protocols [41]. The protocols may differ in field strength (1.5 T or 3 T), scanner model or 

operating parameters of the scanner. Further, protocols used in a single center may change due to the 

replacement or upgrade of a scanner. Over the last two decades, the studies which are based on 

quantitative neuroimaging data have been primarily conducted on 1.5 T MRI images. But imaging 

equipment with a higher field strength has become available more recently, and gradually it is 

replacing the lower field strength image-based clinical assessment. A brain imaging center archives 

data from both low and high field strength scanners, and from different brands and models. Typical 

centers use different scanner models from different manufacturers such as Siemens, and GE 

Healthcare [41]. For example, two available models of Siemens are Symphony and TrioTim, and two 

available models of GE Healthcare are Signa HDX and Signa Excite. The protocol differences creates 

a dilemma for longitudinal studies because the study needs to collect data acquired in different time 

phases of an individual patient, but the imaging may be performed using different protocols [41].  

The protocol differences may affect the segmentation or parcellation of the entire brain whether 

the method is single or multi atlas/template based [42]. The pooling of the MRI data from multiple 

imaging centers is required to collect large-scale data to reliably analyze the progression stages of 

AD. However, theMRI acquisition methods followed by individual centers use different imaging field 

strengths or scanners with different data processing parameters, and several post-processing 

smoothing parameters. This difference may result in inaccurate measurement of volume or thickness 

of different regions, especially those regions where image quality is sensitive to differences in 

magnetic field strength. As a result, MRI based diagnostic methods may be affected. In other words, 

these differences may also affect the performance of a supervised classifier that is used to detect AD 

and MCI by processing features extracted from MRI data. The primary purpose of this thesis is to 

investigate the impact of protocol differences on AD and MCI detection. 

 Contribution of the study 

To date, a few comparative studies have explored the acquisition differences across scanner models 

with the same or different field strengths, and methods of measurement. These studies will be 
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reviewed in chapter 2. The analysis of the acquisition differences across different methods related to 

diagnosis of AD using a supervised classifier falls outside of the scope of those studies. In our study, 

we have addressed this research question. 

We have used two popular methods for structural volumetric measurements of various ROIs. 

These methods are FreeSurfer and Multi-atlas likelihood fusion (MALF) algorithm. We have 

considered two types of features from MRI, multi-atlas likelihood fusion-based structural volume, 

and FreeSurfer based volume. We have used two supervised classifiers, the frequently used Radial 

Basis Function SVM (RBF-SVM) [43], [44], and the more recently proposed Extremely Learning 

Machine (ELM) [45]. 

In our thesis we have addressed the following research questions: 

• We have investigated whether classification performance using MALF based structural 

volume features varies across different protocols. 

• We have investigated whether classification performance using FreeSurfer based volumetric 

features varies across different protocols. 

• We have compared performance result of two efficient supervised classifiers using both 

MALF and FreeSurfer based volumetric features across different protocols 

• We have studied both the MALF and FreeSurfer defined ROIs which are most significant 

when detecting AD or MCI across different protocols. 

We have employed a data selection method described in chapter 4 to avoid double dipping and 

calculated six terms (i.e., accuracy, sensitivity, specificity, precision, F1 score, and gmean) to measure 

the performance of two classifiers (i.e., RBF-SVM, and ELM) 

 Thesis structure 

The remainder of this thesis is organized as follows. 

Chapter 2 briefly describes various types of features extracted from MRI used for the 

classification, the effect of protocol difference in extracting those features and some prior works 

related to this. 

Chapter 3 describes the multi-atlas likelihood fusion method (MALF), and the reason for choosing 

that method. It also includes a brief description of FreeSurfer based features, and two supervised 

classifiers that are used in our study-Radial Basis Function Support Vector Machine (RBF-SVM), 

and Extreme Learning Machine (ELM). 
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Chapter 4 provides details of the experimental approach. This chapter includes a brief description 

of data, the different preprocessing steps it undergoes, feature selection method, feature ranking 

method, parameters to measure the performance of a classifier, and the cross-validation technique. 

Chapter 5 presents the results we have obtained, including the comparison of the two supervised 

classifiers, and the two feature extraction methods. The chapter also includes the analysis of affected 

brain ROIs which are extracted by the feature extraction method. 

Finally, chapter 6 summarises the findings of our study mentioning some limitations of our work, 

and also raises some research questions which we plan to address in future. 
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Background and Related works 

 

The chapter briefly introduces the brain tissues relating to Alzheimer’s disease, and introduces 

different types of features extracted from Magnetic Resonance Imaging (MRI) which include Voxel-

based, Vertex based, and Pre-defined ROI based. This chapter also discusses articles which use those 

features as a biomarker, and supervised classifiers such as Support Vector Machine to analyze the 

severity of the brain atrophy related to AD. Finally, this chapter also discusses the protocol differences 

of MRI in relation to various feature extraction methods. 

 Background 

Alzheimer's disease severely affects the memory, thinking capability, and intelligence of a patient 

[1]. These factors are measured by cognitive tests such as MMSE (Mini-Mental State Examination) 

[16] and AMTS (Abbreviated Mental Test Score) [17]. The severity of AD patient’s AD is diagnosed 

with by these cognitive scores. However cognitive reserve influences these scores [46]. Cognitive 

reserve or brain resilience depends on race, gender, class, education, age, etc. For example, people 

from different education backgrounds have different cognitive scores despite having a similar severity 

of brain damage [47]. Neuroimaging measurements are less affected by the biases mentioned above 

[48]. Hence neuroimaging analysis has a higher potential to predict disease severity as compared to 

neuropsychological measurement. In other words, the neuroimaging measurement is more reliable or 

robust.  
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The brain undergoes several structural changes when a subject progresses to AD/MCI. The White 

Matter (WM), Gray Matter (GM), and Cerebrospinal fluid (CSF) abnormalities are a diagnostic 

pattern of Alzheimer’s disease. WM is nerve tissue existing in the central nervous system containing 

primarily myelinated fibers, and it is almost white colored. GM is a reddish-gray colored nerve tissue 

primarily composed of nerve cell bodies and dendrites. It also exists in the central nervous system 

like WM. CSF is a watery fluid which is produced, absorbed, and flows in the ventricles of the brain 

and around the surface of the brain and spinal cord. Atrophy of these tissues is observed when the 

disease progresses. The regions of the brain where atrophy starts are the hippocampus, entorhinal 

cortex, and amygdala [49], [50]. The major cause of cerebral atrophy in the hippocampus and 

entorhinal cortex is the formation of senile plaques consisting of amyloid beta-42 protein [51]. 

Another reason for atrophy in the hippocampus is neurofibrillary tangles (NFT) which consist of tau 

proteins [51]. When the disease progresses, hippocampus affects at the beginning [32]. But Xu et al. 

[33] suggests entorhinal cortex affects at the beginning.  

 MRI as a biomarker 

Magnetic resonance imaging (MRI) can discriminate between different types of tissue, and is a 

noninvasive imaging technology. Therefore, the imaging marker, MRI, continues to be considered a 

strong tool for the analysis of disorders in the central nervous system, particularly the brain. MRI 

facilitates to quantify the density, shape, and volume of Gray Matter, White Matter, and CSF 

structures in the cerebral brain. Various techniques are employed for morphometric analysis which 

measures shape or volume of gray matter structures [52], [53]. Similarly, the shape or volume of white 

matter and CSF structures are also measured. The tissue can be differentiated by different MR 

imaging schedules. Three different types of MRI sequences are primarily available such as T1-

weighted, T2-weighted, and PD(Photon density)-weighted. Their significance regarding 

characterizing of different tissues are shown in Table 2-1 below. The most commonly used schedule 

for AD diagnosis is T1 weighted [54]. 

Table 2-1: Importance of T1-weighted, T2-weighted, and PD-weighted MR image 

 Importance 

T1-weighted Good contrast between GM and WM. 

GM-Dark gray, WM-lighter gray, and CSF- black 

T2-weighted Good contrast between CSF and brain tissues 

CSF- Bright 

PD-weighted Good contrast between GM and WM 

Little contrast between CSF and brain 
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 MRI based features 

The anatomical imaging such as MRI is frequently utilized in the clinical dementia diagnosis [33]. In 

CAD, different types of features from MRI is used which corresponds to structural abnormalities of 

the brain. The MRI-based features can be roughly categorized into three groups: voxel-based [55], 

vertex-based [39], and pre-determined ROI-based [32], [50].  

 Voxel-based features or Tissue diffusion Map based features 

A voxel is a volume element which represents a crucial region of the three dimensional (3D) space. 

The voxel-based feature is obtained from a 3D volumetric space image of human the cerebral brain. 

Voxel-based methods originated into the mid-1990s when Wright at al. [56] studied the gray matter 

and white matter voxel values to diagnose schizophrenia. In the voxel-based method, the voxels of 

the whole brain are partitioned or segmented into three different tissues (GM, WM, and CSF). The 

GM voxel tends to provide more discriminatory information for AD or MCI detection as compared 

to WM or CSF. Hence the focus of various studies is on GM voxels [29], [30]. The GM volume based 

feature of entire brain with linear support vector machine stratifies AD from CN with promising 

accuracy [57]. The study claims that the GM volume of hippocampus shrinks, subsequently other 

neighboring cortex areas are affected.  These conclusions are supported by other studies [32], [58], 

[59]. Also, GM volume feature can be used to predict the conversion of MCI patients to AD using 

supervised classifiers such as SVM, RVM (Relevance Vector  Machine), and nearest neighbors [60], 

[61]. SVM performs well as compared to the other classifiers applied in these studies. Another recent 

study uses the GM volume patterns and SVM to stratify AD from normal controls [62]. 

The dimensionality of volume features becomes large when the voxels of the whole brain are 

considered. Therefore, the region of Interest (ROI) based methods are implemented to overcome the 

problem. In ROI methods, the voxels of brain regions are registered to a template by nonlinear 

registration [63], [64]. As a result, the brain regions are deformed to match the template. The methods 

such as Voxel-based morphometry (VBM) [65], deformation-based morphometry (DBM) [66], and 

Tensor-based morphometry (TBM) [67] are most frequently used. In these methods, the density of 

tissues (GM, WM, and CSF) is calculated from the regions which are defined by the atlas. VBM-type 

methods quantify the regional tissue density of the original brain volume without considering the 

deformation of it. However, two types approaches, DBM-type approaches and TBM-type procedures 

measure the deformation field and the Jacobian of deformation, respectively. In MRI based AD 

diagnosis, these measurements can be considered as input patterns for multivariate methods such as 

Support Vector Machine or Extreme Learning Machine. Several studies report a promising accuracy 

using these methods [68]–[70]. 
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The parcellation of the whole brain or automatic warping of a brain to an atlas is not a trivial task. 

The parcellation may not be adaptive to anatomical regions. That’s why adaptive parcellation is 

applied where the whole brain image is grouped into the most discriminative areas and adaptive 

features of those areas are extracted based on the correlations between the tissue volumes and other 

classification parameters [71]. The predefined region based atlas may not always available. Also, the 

parcellation based on a single atlas is prone to be affected by registration noise. Therefore, the 

parcellation may not yield suitable discriminatory regions or features. The multi-atlas based warping 

is used to address the problem [37], [72]. Several studies show that multi-atlas based method 

outperforms single atlas-based method regarding the performance of AD detection [37], [72]. 

However, these methods are computationally intensive. The tissue maps from multiple atlases are 

conventionally concatenated in those methods. The tissue information from all the atlases usually 

doesn’t contribute uniformly to detect the severity of the disease. Although these atlases may 

contribute equally, there will be redundant features. To eliminate the unnecessary features, the 

weighted concatenation methods are applied using an ensemble SVM classifier [73]. To overcome 

the potential bias relating to single template based studies, multi-template based feature extraction 

method in conjunction with relationship induced sparse selection and ensemble SVM is proposed to 

classify AD/MCI [74]. They have trained the feature selection method based on the knowledge of the 

relationship among different templates and also similarity among different subjects  

 Vertex-based /Cortical Surface-based features 

A vertex is an identifiable structural point in the brain. According to clinical studies, not only voxel 

analysis helps to categorize the severity of AD but also vertex atrophy provides information to 

distinguish AD, MCI from CN. Analysis of the cortical surface is a particular form of vertex-based 

analysis. The cortical thickness is defined as thickness of different regions of cerebral cortex 

measured in the cortical surface. The cortical thickness is correlated with the atrophy and the 

histopathological changes caused by dementia [75]. Hence it can be used as an essential surrogate 

marker to diagnose the disease. As a volumetric feature, cortical thickness gives promising 

classification performance [31]. In addition to it, the cortical surface area is also an important feature 

even though it is biologically uncorrelated with cortical thickness measurement [76].  For example, 

Li et al. [77] have used cortical thickness, surface area, and other volumetric and geometric measures 

for SVM based MCI classification. However, the features extracted from all vertices of the cortical 

surface have the problem of large dimensionality. Park et al. [78] have used cortical thickness features 

which have been derived from parameterized 3D meshes. They distinguished AD/MCI from CN 

using principal component analysis (PCA) as a dimensionality reduction technique and support vector 

machine (SVM).  
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Manual parcellation is time intensive and prone to operator bias depending on an individual 

expert. Researchers and the neuroanatomists propose various automated methods to parcellate the 

cortical surface to overcome the drawback of manual parcellation. The automated methods are 

primarily based on one of a specific template [79], watershed segmentation [80], and graph algorithm 

[81]. In a template-driven warping method, local correspondence is formed between the applied 

template and an individual subject. In a watershed-based approach, the cortical sulci are segmented 

by the watershed transformation and manually labeled the detected regions by a trained 

neuroanatomist. The cortical sulci are represented by vertices of a graph in graph-based methods. The 

arcs which connect them establish their relationships. An automated parcellation method may 

incorporate prior statistical information and cortical geometry [82]. Using the template driven 

method, Desikan et al. [83] have stated that cortical thickness of entorhinal cortex and supramarginal 

gyrus is most affected in AD. A similar claim has been made by another study where they observed 

88.2% accuracy in SVM based AD/CN classification [84]. Wee at al. [39] have used regional mean 

cortical thickness based features and multi-kernel Support Vector Machine. They have improved the 

performance by forming additional correlative features where feature set is formed based on the 

similarity of cortical thickness between a pair of brain ROIs. They achieved an accuracy of 92.35% 

for AD/CN, 83.75% for AD/MCI, and 75.05% for MCI-C/MCI-NC classification. 

 Pre-determined ROI-based features 

Apart from the above voxel- and vertex-based methods, the predefined ROI-based feature 

discriminates the severity of the disease. Specific regions of the brain are affected when the disease 

progresses. The neurodegeneration happens progressively, starting at the medial temporal lobe, 

successively affecting the entorhinal cortex, hippocampus, limbic system, and neocortical areas [85].  

Several studies found the difference of hippocampal atrophy between AD/MCI and normal controls 

[39], [86]. Hence it is used as an essential biomarker in numerous studies [64], [87]. 

In the ROI-based method, segmentation is done before feature extraction. Manual segmentation 

is time-consuming and operator dependent. So several semi-automated methods of segmenting 

hippocampi and amygdala are studied [88]. Also, several fully automated methods are proposed 

which use probabilistic priors derived from an atlas and anatomical information from local anatomical 

patterns for segmentation [88]. This automated approach outperforms several semi-automatic 

methods regarding segmentation accuracy. The volume or shape of hippocampi or a weighted 

combination of both is used as a discriminatory feature to SVM which predicts MCI conversions from 

AD [89]. 
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 MRI based tools 

Researchers frequently use different automated tools such as FreeSurfer, Statistical Parametric 

Mapping (SPM), and FMRIB library (FSL) to segment brain tissues and measure volume from 

different regions of interest (ROIs). Among them, FreeSurfer and SPM are most commonly used. 

 FreeSurfer:  

FreeSurfer is an automated, efficient brain imaging tool to analyze structural MRI and functional MRI 

image. We have provided a brief detail of FreeSurfer in chapter 3. 

 Statistical Parametric Mapping (SPM) 

SPM (accessible at http://www.fil.ion.ucl.ac.uk/spm/) utilizes the unified segmentation [90].This 

unified segmentation is a probabilistic model which integrates tissue degradation, bias correction and 

image registration within the same generative model [90]. It generates partial volume segmentation 

outcomes for every type of tissue. To get the segmentation output, it uses tissue prior probability 

maps based on intensity values. From the segmented output, it calculates gray matter (GM), white 

matter (WM) and Cerebrospinal Fluid (CSF). Also, later version such as SPM8 includes the 

segmentation of some soft tissue maps, bone, and air/background. As a result, the probability of 

misclassification of non-brain tissue is reduced. 

 FMRIB Library(FSL)  

FSL (accessible at http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/) utilizes the SIENAX package for estimating 

brain tissue volumes one by one serially [91]. SIENAX starts by extracting brain and skull from the 

single full head MR image [92]. The brain image is then affine-registered to MNI152 space [93]. Next, 

tissue-type segmentation with partial volume estimation is performed [94], finally measuring GM, 

WM, and ventricular CSF. 

 Related MRI based AD diagnosis studies 

There is a great variety of specific MRI-based image features that have been used for AD diagnosis.  

Here, we review frequently used and recently proposed features.  

Cuingnet et al. [64] contrast ten different high-dimensional feature sets, classified using an SVM 

classifier. They have employed 509 baseline ADNI 1.5T MR images for classification of AD/MCI vs 

CN. Two approaches use only the hippocampal shape or volume, while the rest are whole-brain based 

approaches. These approaches use either cortical thickness steps or voxel-wise tissue density maps 
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for gray matter, white matter, and CSF. High accuracies in identifying AD patients from CN (around 

81% sensitivity and 95% specificity) are reported while using whole-brain approaches. Four of the 

ten approaches were capable of differentiating MCI patients who later  

Table 2-2: A summary of classification accuracy of different classifiers using different feature type. 

Study Type of 

Features 

Dataset Category of 

features 

Classifier Classification accuracy 

     AD/CN AD/MCI CN/MCI sMCI/pMCI 

(Liu et al.  

[73] ) 

M-ROI  AD-97  

pMCI-117 

sMCI-117 

CN-128 

Tissue 

density map 

based 

SVM 92.51 - - 78.88 

(Misra et al. 

[95]) 

S-ROI AD-56  

pMCI-27 

sMCI-76 

CN-66 

Tissue 

density map 

based 

SVM - - - 81.50 

(Salvatoreet 

al. [96] ) 

SUFR AD-137 

pMCI-76 

sMCI-134 

CN-162 

Tissue 

density map 

based 

SVM 76.00  - 72.00 66.00 

(Li et al. 

[77]) 

All vertices MCI-24 

CN-26 

Cortical 

Surface 

based 

SVM - - 80 - 

(Wee et al.,  

[39]) 

Atlas AD-198  

pMCI-89 

sMCI-111 

CN-200 

Cortical 

Surface 

based 

Multi-

kernel SVM 

92.35  79.24  83.75  75.05 

Lama et al. 

[97] 

Cortical 

thickness and 

surface area 

AD-70 

MCI-74 

CN-70 

Cortical 

Surface-

based 

Regularized 

ELM 

76.61 - - - 

(Sorensen et 

al. [98]) 

Hippocampus AD-101 

MCI-233 

pMCI-93 

sMCI-140 

CN-169 

Pre-defined 

ROI based 

SVM 91.20 - 76.40 74.20 

(Chincarini 

et al. [99]) 

Biologically 

selected 

regions 

AD-144 

pMCI-136 

sMCI-166 

CN-189 

Pre-defined 

ROI based 

SVM 97.00  92.00 74.00 

Zu et al. 

[100] 

Feature 

concatenation 

AD-51 

pMCI-43 

sMCI-56 

CN-52 

Multimodal 

(MRI and 

FDG-PET) 

Multi-

kernel  

SVM 

95.95 80.26 - 69.78 

Alam et al. 

[101] 

MRI bases 

texture 

AD-86  

CN-86 

Texture Twin SVM 92.65 - - - 

*SUFR-Supervised/unsupervised feature reduction, S-ROI-Single set adaptive ROIs, M-ROI-Multiple set adaptive ROIs, sMCI-stable mild cognitive 

impairment, pMCI-progressive mild cognitive impairment, and ELM-Extreme Learning Machine 
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progressed to AD (progressive MCI) from people who stayed stable for 18 weeks (stable MCI) 

marginally more correctly than the usual random classifier.  

The classification accuracy of different recent approaches such as SVM, ELM, and TSVM using 

different types of features and are summarised in Table 2-2. This table can’t be seen as the comparison 

of those methods because the different methods are tested on different data sets, some of which were 

captured using different imaging protocols. It provides a glance at contemporary approaches, their 

classification accuracy on different types of features. In these studies, MRI is acquired from either a 

single scanner model or multiple scanner models with the same or different field strengths  However, 

the limitation of these approaches is that they didn’t consider these protocol differences while using 

MRI data in their studies. They merged MR images ignoring these protocol differences.  

 Effects of MRI acquisition protocol difference 

The classification of AD is performed using features from MRI which may be acquired by 

different protocols. The protocol differences include different field strengths, different scanner 

models and different operating parameters used to acquire the MR images. These differences may 

impact the classification performance. Here, we review research on the effects of protocol differences 

in general and also as related specifically to AD diagnosis. 

The use of different field strength has pros and cons. For example, lower field strengths are less 

susceptible to chemical artifacts, and higher field strength images provide higher depth information 

for shape analysis and between class comparison [102], [103]. However, higher field strength has 

some limitations such as it is more vulnerable to chemical shift artifacts [102], [103]. Several articles 

regarding atrophy measurement distinguish 1.5 T and 3T field strength scans [104]–[106]. Some 

studies have encouraged to combine to use both field strengths [34], [107], some have posed concern 

regarding it [108], and some have proposed techniques to combine them [109]. 

There is the difference in the tissue signal when comparing 1.5T scan with its 3T counterpart 

[110]. These concerns related to topographic localization of regions or tissues across field strengths 

images. Because 3T images, using their higher contrast and greater signal-to-noise ratio (SNR), may 

improve the topographic localization of atrophy [104]. For instance, the number of lesion detection 

and observer agreement varies while rating 1.5 T and 3 T images by experts in this field [108]. 3T 

MRI had the greater inter-observer agreement. 3T shows more dysplasias, while 1.5T demonstrated 

more tissue reduction and mesial temporal sclerosis (MTS). Therefore, the diagnosis of patients may 

benefit from 3T scans if the patient suffers from dysplasia. The article also claims that the 

identification of lesion depends on scanner models. 
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In CAD regarding AD, the cortical thickness and volume features are extracted after segmenting 

brain tissues, and estimating Grey Matter (GM), WM (White Matter) and CSF (Cerebrospinal Fluid) 

volume. The segmentation and volume estimation of these tissues could be affected by field strengths, 

and scanner models. For example, a study revealed that gray matter and white matter volumes of a 

subject calculated by a tissue classification algorithm could vary depending on field strengths [111]. 

The estimated intracranial volume (eTIV) also differs systematically between 1.5 T and 3 T images 

of healthy subjects [105]. Additionally, the preliminary outcome from another study implies that 3T 

images may have the ability to detect volume differences that are not evident in 1.5T [104]. Also, a 

multi-atlas-based method claims that higher granularity level structural information of an image 

varies across different imaging protocols [112]. The level of granularity level is defined by the 

number of structural regions. Higher granularity level signifies higher number of structural regions. 

When granularity level increases, the protocol effect increase. The protocol difference in this 

particular paper includes three scanner manufactures and two magnetic field strength scans (1.5 T 

and 3T). Such disparity discourages to merge data across different imaging field strengths to measure 

subcortical brain volume measurement unless the difference is systematic, regular, detectable and 

suitable for correction [113]. 

In contrast, Scorzin et al. [34] have claimed no apparent differences of estimated volumes of 

hippocampus and amygdala based on 1.5 T and 3 T images irrespective of whether the segmentation 

method is manual or VBM based. Ho et al. [114] showed that sample size estimates for finding 

decaying rate atrophy using Tensor-based Morphometry (TBM) did not vary between 1.5T and 3T 

images. Goodro et al. [107] showed that for both the strengths, the correlation between subcortical 

volume of healthy cohorts and their age is strong. The correlation is similar for both the automated 

tools, Free Surfer and FSL, which are also used for subcortical segmentation. However, they have 

found that the degree of correlation varies based on age group. 

Several studies have attempted to find a way to combine data from 1.5 T and 3.0 T scanners. Most 

of these studies are template or atlas driven. For example, Keihaninejad et al. [105] have proposed an 

approach to measure intracranial volume (ICV) across the two field strengths. This approach is based 

on tissue probability mapping in MNI template space and reverse brain mask (RBM) for reverse 

normalization to native space. By using this approach, the intracranial volume becomes more similar 

across field strengths as compared with two other automated methods, FSL and SPM, which are also 

used to measure ICV. Also, a multi-atlas based automated hippocampal segmentation has been found 

to be accurate at both imaging field strengths [106] . By using this method, the estimated atrophy rate 

is similar for both 1.5 T and 3 T images of a longitudinal study of a subject. Also, another multi-atlas-

based study has proposed that lower granularity level features are ideal to use to achieve less impact 
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on different protocols [112]. Pfefferbaum et al.[109] have successfully integrated T1-weighted MR 

imaging data obtained with different field strengths. They have used a suitable regression-based 

correction method to boost the correspondence between two different field strengths with reference 

to estimating regional volume. 

 Conclusion 

We have discussed several MRI based features relating to Alzheimer’s disease, various tools such as 

FreeSurfer, SPM, and FSL which are used to extract features from MRI. We have presented various 

classification approaches which use MRI based features and several classifiers such as SVM, ELM, 

and TWSVM. Among them, we have found that SVM is more frequently used in AD diagnosis. We 

have also presented various challenges because of having different protocols of MRI and reviewed 

several methods which attempted to solve the problem. 
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AD Diagnostic Models 

 

This chapter describes the AD detection algorithms that we have used to investigate the impact of 

protocol differences on the diagnosis of AD/MCI. The algorithms primarily comprise first extracting 

feature representation from a subject MR image and then training a supervised classifier using those 

features. The features have been extracted using either MALF based subcortical and ventricular 

structures, or FreeSurfer based subcortical volumes. We have chosen these two methods as widely 

used representatives of the current state-of-the-art in brain feature extraction for AD diagnosis. Our 

primary focus is to address the research question of whether the protocol differences affect the 

performance and whether these two mainstream methods are robust to those differences. These two 

methods, MALF based and FreeSurfer based, are briefly described below. We have also chosen 

supervised classifiers SVM and ELM to analyze the classification performance across protocol 

differences. These two algorithms are also briefly described. This chapter also discusses the reasons 

for choosing these algorithms for the investigation of the impact of protocol differences. 
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 Background 

It is important to evaluate the way the progression of AD affects specific anatomical structures and 

to know the correlation between the various cognitive scores and anatomical phenotypes of the brain 

structure. To achieve this, it is necessary to first segment the brain structures or regions of interest. 

Manual segmentation done by a neuroanatomist is not feasible as it is time intensive, and operator 

dependent. Therefore, the fully automated and accurate segmentation techniques are required to 

enable large-scale neuroimaging research. Atlas-based segmentation techniques are widespread in the 

research area of brain image analysis. 

A brain atlas comprises the information of several brain structures/regions in order to supervise 

the delineation of the structures while performing segmentation of a brain image. The easiest 

approach is to provide a visual representation of certain brain structures, and then let the anatomists 

specify the borders between structures that are nearby. An atlas might be generated from a subject or 

an average of various subjects or the data based on a particular study/project by the trained 

neuroanatomist in this field [115]. To achieve anatomical variability, it is recommended to employ 

multiple atlases, so as to diversify the information that delineates of a structure. This diversification 

encourages researchers to use various multi-atlas-based segmentation procedures. The use of atlas-

driven features from MRI is widespread in automated AD diagnosis. The multi-atlas-based study is 

a trend which addresses several drawbacks of protocol difference in several studies as we have 

mentioned in chapter 2. For these reasons, we have chosen a multi-atlas based approach as one of the 

feature extraction methods to study the impact of protocol differences.  

 Multi-atlas based pipeline 

The two-level hierarchical pipeline algorithm, Multi-Atlas Likelihood Fusion (MALF) has been 

discussed in this section [116]. Most automated multi-atlas-based methods don’t include skull 

stripping. However, the MALF method has integrated two stages sequentially: skull stripping and 

brain tissue segmentation. 

The brain regions need to be separated from non-brain regions to achieve accurate registration 

and segmentation of a subject image. An essential step in multi-atlas-based segmentation would be 

to register the MR image of a subject to an atlas template by nonlinear registration. To guarantee 

accurate registration between a subject and an atlas, it normally requires an initial step to separate the 

main brain regions from additional "non-brain" regions. This method is known as "skull-stripping." 

The method largely relies on the intensity and geometric features of the input MR image. The noise 

originating from the fluctuation of intensity and geometric features of the image poses a huge 
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challenge to achieve robust skull stripped image output across different field strengths and scanner 

models. Other factors such as age of the subject and the resolution of the MR image may also 

influence the robustness and segmentation accuracy of a method. 

Accurate skull stripping is necessary for the three types of MR based feature that we have 

described in chapter 2 which include atlas-driven volume features, cortical thickness/surface area-

based features, and pre-defined ROI based features. Unintentional incorporation of brain tissue with 

non-brain tissue may lead to inexact feature measurement of various regions/structures of the brain 

which are located near the skull boundary. This may affect the classification performance. Several 

automated skull-stripping approaches are commonly used [117], [118]. 

MALF based skull tripping relies on the downsampling the subject image and applying small 

deformations. Therefore, this process is much faster. The process creates a preliminary brain mask of 

four groups: GM, WM, CSF, and lateral ventricles (LV) where the background pixels and skull 

information are filtered out. Then the brain mask is post-processed such as filling the holes, and 

smoothing the broken boundary and eliminate small regions by applying morphological operations.  

This automated pipeline comprises two hierarchical stages as shown in Figure 3-3. The first level 

follows three preprocessing steps as explained below. 

• Firstly, transform the MR images of a subject and 19 atlases it has employed linearly to 

Montreal Neurological Institute (MNI) standard template space. In the standard space, the N4 

algorithm is used to sharpen the image histogram peak and correct the intensity homogeneity. 

• Secondly, perform the nonlinear transformation between the MR image of a subject image 

and 19 atlases employing Large Deformation Diffeomorphic Metric Mapping (LDDMM). 

This subject image is aligned with all defined structures from those atlases.  

• From the transformed space, a bias field is created which is measured from the dissimilarity 

in intensity of defined structures between the subject image and the atlases.   

 The second level again uses LDDMM with three steps varying the degree of elasticity to three 

different values. Thus, the subject image gets all defined structure levels from those atlases for second 

time. This level segments the subcortical and ventricular structures of the subject image. This method 

provides a rich representation of features from a subject image at five different ontology levels which 

are called granularity levels. The number of brain structures is 8, 19, 54, 136, and 282 for each of the 

five granularity levels, respectively. All the structures defined at granularity level 3 are mentioned in 

Table 3-1. One slice of MALF based structures of each protocol is shown in Figure 3-1 where each 

ROI colors are encoded by z score. At higher granularity levels, the structures of the lower granularity  
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(a) GE Signa HDX 

 

(b) GE Signa Excite 

 

(c) Siemens Symphony 

 

(d) Siemens TrioTim 

Figure 3-1: MALF based segmentation of four different subjects over four scanner models 

Table 3-1:MALF based segmented structures (54 Nos) at 3rd granularity level 

Structure Name Structure Name Structure Name Structure Name Structure Name 

AnteriorWM_L 

AnteriorWM_R 

BasalForebrain_L 

BasalForebrain_R 

BasalGang_L 

BasalGang_R 

CentralSul_L 

CentralSul_R 

Cerebellum_L 

Cerebellum_R 

CinguSul_L 

CinguSul_R 

CorpusCallosum_L 

CorpusCallosum_R 

Frontal_L 

Frontal_R 

FrontSul_L 

FrontSul_R 

III_ventricle 

InferiorWM_L 

InferiorWM_R 

Insula_L 

Insula_R 

IV_ventricle 

LateralVentricle_L 

LateralVentricle_R 

Limbic_L 

Limbic_R 

LimbicWM_L 

LimbicWM_R 

Medulla_L 

Medulla_R 

midbrain_L 

midbrain_R 

Occipital_L 

Occipital_R 

OcciptSul_L 

OcciptSul_R 

Parietal_L 

Parietal_R 

ParietSul_L 

ParietSul_R 

Pons_L 

Pons_R 

PosteriorWM_L 

PosteriorWM_R 

SylvianFissureExt_L 

SylvianFissureExt_R 

Temporal_L 

Temporal_R 

TempSul_L 

TempSul_R 

Thalamus_L 

Thalamus_R 

 

 

(a) Granularity level 3 

 

(b) Granularity level 5 

Figure 3-2: MALF based segmentation of a subject image at two granularity levels 

are further subdivided to extract more microstructure. For example, all the structures of level 3 and 

level 4 are subdivided further to get the structures at level 5 as shown in Figure 3-2. Therefore, when 

the granularity level increases, the number of structures increases, and the size/volume of each 

structure reduces. 

Several articles investigate the segmentation accuracy and robustness of the MALF based 

approach [112], [116]. For example, Tang et al. [116] have analyzed the segmentation accuracy of 

MALF algorithm at both the first and second levels, and compared with other conventional skull 

stripping and fusion based methods. They have considered two kinds of dataset such as pediatric data 

(3T) and elderly cohorts suffering from dementia (1.5 T) for their experiment. At the first level, the 
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method overcomes the drawbacks such as segmented distortion and inaccuracy manifested by both 

the hybrid watershed algorithm (HWA, adopted by FreeSurfer) and by the brain extraction tool (BET, 

implemented by FSL). At the second level, the segmentation of subcortical and ventricular structures 

is compared with FreeSurfer and FSL. MALF outperforms both other methods [116]. They have also 

compared the MALF based method with other level fusion-based segmentation approaches 

(STAPLE, Spatial STAPLE, and ANTS+PICSL) [119]–[121]. Regarding segmentation accuracy, 

MALF is superior to two of them (STAPLE, and Spatial STAPLE), and similar to the remaining 

approach (ANTS+PICSL). However, they have also revealed that MALF achieves higher 

segmentation accuracy for the pediatric data (3T) as compared to the elderly data (1.5 T). 

The MALF method provides better segmentation accuracy compared to the other methods 

discussed above, both in skull stripping and segmentation of subcortical and ventricular structures. 

For these reasons, we have chosen the MALF pipeline to represent the multi-atlas based approaches 

in our study.  

As mentioned in chapter 2, Liang et al. [112] studied the robustness of MALF using AD/MCI 

data over six different protocols. In particular, they considered the impact of granularity levels over 

protocol differences. These protocols include three scanner manufactures with two magnetic field 

strengths. The whole brain was segmented into subcortical and ventricular structures at five 

granularity levels. Total five types of granularity levels have been defined and the total number of 

brain regions range from 6 to 286 throughout the phases. The variability of brain volumes is studied 

corresponding to age, the protocol, and diagnosis of AD from NC and MCI. They considered 120 

cohorts from ADNI with six different protocols comprised of 72 normal subjects and 48 AD cohorts. 

They found no significant protocol difference with images having granularity levels 1-4, but the effect 

had been observed at granularity level 5. In other words, when granularity increases, the measurement 

precision decreases and the protocol effect increases. It is harder to define reproducibility of smaller 

regions, and more contrast difference is apparent when the granularity of image is higher. The age 

effect is observed throughout granularity levels. Hence, lower granularity level study is ideal to 

achieve less impact of different protocols. The degree of effect of protocol difference is minor while 

categorizing the well described (conventional) anatomical features of AD patients. 

However, we have not come across any study to investigate how the protocol difference varies 

the classification performance of AD/MCI from CN, and the ranking of different ROIs which 

contributes to detecting AD/MCI.  
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Input MRI Preprocessing

Atlas set 1

(Six whole brain labels)

Skull-stripping

(fast MALF)

Atlas set 2

(Internal brain structure 

labels)

Skullless MRI

Brain structure 

segmentation

MALF based 

segmenation

 

Figure 3-3: Schematic diagram of MALF based segmentation 

Therefore, we have investigated the classification performance of the MALF based method over 

different imaging protocols. The protocol differences include four different scanner models, three 

with 1.5T field strength and one with 3T field strength. .  

The MALF based approach is fully automated and is implemented in MRICloud with multiple 

sets of atlases. We have selected 19 adult atlases with age range from 50-90 which is similar to our 

dataset.  

 FreeSurfer features based pipeline 

FreeSurfer is a frequently used tool that provides a fully automated processing stream to extract and 

analyse features from structural MRI brain images.  FreeSurfer is open source and free. Considering 

its widespread use in MRI based CAD studies, we have chosen this tool to study the impact of 

protocol differences. While feeding a subject MR image to FreeSurfer pipeline, the image undergoes 

various stages such as strength non-uniformity correction [122], affine transformation to a common 

template, intensity normalization, elimination of non-brain tissue [123], linear and non-linear 

registration to a probabilistic brain atlas and labeling of cortical and subcortical structures/regions 

[124]. FreeSurfer extracts volumetric features, and thickness and surface area features of cortical 

parcellation [125]. The volume of subcortical structures is extracted by using FreeSurfer. FreeSurfer 

also measures estimated total intracranial volume (eTIV), the volumes of the ventricular and corpus 

callosum regions after aggregating each volume from its corresponding sub-regions. The FreeSurfer 

package also provides visualization tools to examine various functional/anatomical regions of the 

brain. We have run the FreeSurfer tool with default settings with the recon-all command. We have 

extracted all volumes the defined regions from the stat documents that Freesurfer produces using the 

'asegstats2table' command. The subcortical volume regions are mentioned in Table 3-2. One slice of 

subcortically segmented images of four protocols are shown in Figures 3-4(a) through 3-4(d). In these  
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(a) GE Signa HDX 

 

(b) GE Signa Excite 

 

(c) Siemens Symphony 

 

(d) Siemens TrioTim 

Figure 3-4: FreeSurfer based subcortical segmentation of four different subjects over four scanner models 

Table 3-2:FreeSurfer based subcortical segmented structures 

Structure Name Structure Name Structure Name Structure Name Structure Name 

3rd-Ventricle 

4th-Ventricle 

5th-Ventricle 

BrainSegVol 

BrainSegVolNotVent 

BrainSegVolNotVentSurf 

BrainSegVol-to-eTIV 

Brain-Stem 

CC_Anterior 

CC_Central 

CC_Mid_Anterior 

CC_Mid_Posterior 

CC_Posterior 

CortexVol 

CSF 

EstimatedTotalIntraCr

anialVol 

Left-Accumbens-area 

Left-Amygdala 

Left-Caudate 

Left-Cerebellum-

Cortex 

Left-Cerebellum-

White-Matter 

Left-choroid-plexus 

Left-Hippocampus 

Left-Inf-Lat-Vent 

Left-Lateral-Ventricle 

Left-Pallidum 

Left-Putamen 

Left-Thalamus-Proper 

Left-VentralDC 

Left-vessel 

lhCortexVol 

lhSurfaceHoles 

MaskVol 

MaskVol-to-eTIV 

Optic-Chiasm 

rhCortexVol 

rhSurfaceHoles 

Right-Accumbens-area 

Right-Amygdala 

Right-Caudate 

Right-Cerebellum-
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images, each ROI has a specific RGB color code. We have also investigated the classification 

performance using those FreeSurfer based features over different imaging protocols. 

 Supervised learning algorithms 

We have briefly discussed the algorithms we have applied in our study. As we have seen in chapter 

2, several studies based on SVM and K-SVM using ADNI dataset have shown that these have good 

potential to distinguish AD from NC and MCI. SVM performs better as compared to other classifiers 

such as Bayesian, and random forest. The referenced studies either used exclusively 1.5 T images or 

used both field strengths (1.5 T and 3T) without considering the impact of the protocol differences 

due to different scanner models with possibly different field strengths. Therefore, in our study, KSVM 

(RBF Kernel) has been trained and tested to obtain the performance result for detection of AD and 

MCI while considering the protocol differences. The performance is compared with another efficient 

classifier, Extreme Learning machine (ELM). The proposed overall classification approach is shown 

in Figure 3.5.  
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Figure 3-5:Schematic diagram of the proposed approach 

 Support Vector Machine 

The Support Vector Machine is an efficient binary classification algorithm which creates a decision 

surface. The decision surface is a line for two-dimensional data and a hyperplane for higher 

dimensional data. It can separate two classes by studying the distinctness of the training set which 

contains samples of both classes. The classifier solves the hyperplane equation in such a way that the 

distance between the hyperplane and the support vectors is maximal.  SVM separates the feature 

vectors between two classes while maximizing the margin between the data and the decision surface 

[44] as illustrated in Figure 3-6. The hyperplane equation can be solved in primal or in dual form. In 

dual form, the hyperplane equation is optimized by Lagrange multiplier [126]. 

Kernel SVM (KSVM) is very useful to deal with the classification problem of linearly non-

separable data. If the data points are not linearly separable, the data is mapped into a higher 

dimensional space to achieve separability. KSVM applies linear SVM in the higher dimensional 

space. Several kernel mapping methods such as RBF (Radial Basis Function), Polynomial Kernel, 

and sigmoid kernel are commonly used. The most frequently used kernel among them is RBF kernel 

because of its robustness as compared to other kernels (i.e. Polynomial Kernel) [127], [128]. 

 SVM Training 

Let the training set be 1{( , )}n

i i iT x y == , where 
d

ix R is the training input data and its corresponding 

class level is { 1, 1}iy  − + . It is required to find the maximum-margin hyperplane that divides one 

group (+1) from the other (-1).  
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Figure 3-6: Linear Support Vector Machine 

The kernel mapping function, : ( )d fR R f d →  , embeds the feature set in a higher dimensional space 

to make it linearly separable. 

The kernel mapping can be represented as  

( , ') ( ), ( ') ( ) ( ')TK k x x x x x x= =    =   (3-1) 

2( , ') exp( || ' || ), 0K x x x x = − −   (3-2) 

The decision boundary at kernel space is denoted by 

0( ) ( )Tf x w x w= +  
(3-3) 

The hyperplane can be represented as  

(x) 0f = or 
0( ) 0Tw f x w+ =  (3-4) 

Where, w  is weight vector which is normal to the hyperplane, and 
0w is a bias term. 

When ( ) 0f x  , then 1y = +  and ( ) 0f x  , then 1y = −  

The primal formulation of SVM with L1 soft margin regularization can be solved as a primal problem, 
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Where, C is the trade-off parameter of training error and margin, and 1*n
 
is a slack vector with non-

zero elements. In our study, we have selected the optimized value of C from the range of -1 to 3 and 

the optimized value of   from the range of -4 to 1 based on the performance of the RBF-SVM. 

 Extreme Learning Machine 

Extreme Learning Machine is an emerging efficient pattern classification algorithm [129] 

successfully used in various research fields. It has gained great breakthrough in fields such as image 

enhancement, video application [130], medical application [97], [131], and ship detection [132]. The 

ELM has very fast learning speed, better generalization performance compared to gradient-based 

algorithm such as back-propagation methods, and is less prone to problems like local minima, 

improper learning rate, and overfitting, etc.  ELM is flexible with hidden activation functions. It has 

the advantage of comparatively superior performance over SVM and its variants [133]. We have 

applied extreme machine learning rather than using deep learning-based classification because deep 

learning models need a large number of sample for optimum performance. The ELM algorithm 

exhibits higher performance when the dataset is small. It is basically a single hidden layer feedforward 

neural network (SLFN).  

 ELM Training 

Again, let the training set be 1{( , )}n

i i iT x y == , where 
d

ix R is the input training data and its 

corresponding class level is { 1, 1}iy  − + . The output function of single hidden layer SLFN with L 

hidden neurons can be denoted as  

 

   

 

 

  

 

Figure 3-7: ELM SLFN approach 
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( ) ( , , ) ( ) , 1,...,
1

L
f x h a b x h x i Ni i ik k k kk

 = = =
=

 

 

(3-6) 

Where, 
k is the weight matrix of the output,  ( ) ( , , ), 1,...,i k k k ih x h a b x k L= =  is the output of the 

network with respect to its training sample xi
, (:)h  is a nonlinear continuous function, and ,k ka b  are 

the corresponding parameters of k th− hidden neuron. The method selects the optimized parameters 

by minimizing the error function || || .H Y −  The steps of a SLFN is shown in Figure 3-7. It assigns 

the hidden node parameters randomly with the strategy of tuning-free training unlike 

other conventional iterative weight updating based neural network. As a result, it is less 

computationally intensive [134]. The optimization problem can be solved by least squares (LS) 

algorithm easily [135]. The network output weights are solved by a dual optimization problem [136]. 

 Conclusion 

We have extracted features from subcortical and ventricular regions using both five granularity levels 

based MALF and Freesurfer methods. The MALF based methods are hierarchical and include skull 

stripping. The skull stripping in MALF is also more accurate as compared to hybrid watershed-based 

skull stripping employed by FreeSurfer, and brain extraction tool (BET) adopted by FSL. MALF 

separates various non-brain regions where the other two methods consider those regions as a part of 

the brain. Accurate separation of non-brain regions is important because it may affect nonlinear 

registration of the subject image with an atlas which eventually influences parcellation (segmentation) 

of the brain into subcortical and ventricular regions. Also, at the second hierarchical level, MALF 

provides several brain structures located in subcortical and ventricular regions at five different 

granularity levels. The number of structures varies based on the granularity levels. Higher granularity 

levels provide features from a greater number of regions. It is important to see how such a robust 

method performs over different protocols and also investigate whether affected regions/structures 

remain the same or vary while using different protocols. Since FreeSurfer subcortical volume 

structures are also frequently used by the neuro research community, it is also very important to verify 

the robustness of this method over protocol difference regarding classification accuracy. As far as 

methods to measure the classification accuracy, SVM performs better in most of the studies. So, we 

have used SVM. We have applied another efficient recent supervised method, the ELM classifier, to 

compare with the performance of SVM because other studies claim superior performance for ELM 

compared to SVM. 
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Data and experimental work 

 

This chapter describes the data used for the two different tools used in our experiment. It also includes 

various feature selection methods such as the t-test and Support Vector Machine Recursive Feature 

Elimination (SVM-RFE), and validation technique we have employed. 

 Dataset 

Data used in the preparation of this thesis were obtained from the Alzheimer’s Disease Neuroimaging 

Initiative (ADNI) database (http:// adni.loni.usc.edu). The ADNI was launched in 2003 as a public-

private partnership led by Principal Investigator Michael W. Weiner, MD. The primary goal of the 

ADNI is to test whether serial MRI, positron emission tomography (PET), other biological markers, 

and clinical and neuropsychological assessment can be combined to measure the progression of MCI 

and early-onset Alzheimer’s disease AD. For up-to-date information, visit www.adni-info.org. 

Alzheimer’s Disease Neuroimaging Initiative (ADNI) is an ongoing, longitudinal, multicenter 

study [41]. The project has three phases: ADNI-1, ADNI-GO, ADNI-2, and ADNI-3. The ADNI-1 

phase has both 1.5 and 3 T MR imaging scans, whereas other phases have only 3T scans. ADNI 

included other imaging biomarkers such as Diffusion Tensor Imaging (DTI) and Functional 

MRI(fMRI) after the ADNI-1 phase. This is described in Table 4.1. 

http://www.adni-info.org/


 

29 
 

Our experiment uses the magnetization-prepared rapid gradient-echo (MP-RAGE) sequence 

because MPRAGE provides both high tissue contrast and covers whole brain with high spatial 

resolution with a limited number of scans [137]. 

The data used in our thesis was acquired by MRI scanners from two different manufacturers: 

General Electric Healthcare (GE) and Siemens. It consists of two models of GE scanner, the Signa 

HDX and the Signa Excite, and two models of Siemens, the Symphony and the TrioTim. The Siemens 

TrioTim model has a 3T magnetic field strength whereas the other scanners are 1.5 T only. 

 Data for the Multi-Atlas Likelihood fusion (MALF) based algorithms 

We ran the MALF algorithm in MRICloud (https://braingps.mricloud.org/) which is a service for 

registered users only. It is a high-throughput cloud-based software as a service (SaaS) which has high 

computation capability and supported by NSF XSEDE at the User Computational Anatomy Portal 

[138]. 

We downloaded 1200 images from the ADNI website, and randomly selected one scan from 

multiple scans for each subject. These selected subjects have been described in Table 4-2. Since 

MRICloud software requires the images in a specific orientation, we downloaded raw dicom format 

images and converted to the analyzer format (IMG/HDR) before executing the multi-atlas-based 

methods. All the downloaded dicom scans were not preprocessed. All the pre-processing methods are 

integrated in the MRICloud pipeline. 

 Data for the FreeSurfer based Method 

CBRAIN is also a cloud based service which facilitates to use multiples neuroimaging tools which 

need high computing power [139]. CBRAIN facilitates the use of FreeSurfer on their server for 

registered users. The MRI data used for FreeSurfer is available from the ADNI website. It is ideal to 

use preprocessed data where several imaging artifacts are corrected. The preprocessed data are in nifti 

format. Therefore, 1200 images have been downloaded in nifti format. When downloading, some nifti 

files got corrupted, and we did not include those corrupted files. As a result, not all the images we 

have used here are the same as the data used in MALF based approach. We randomly selected one 

scan from multiple scans of each subject. The selected subjects have been briefly described in Table 

4.-3.  
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Table 4-1: Different phases of ADNI project 

Projects 1.5TMRI 3T MRI DTI fMRI Weighted Image 

ADNI-1 Yes Yes No No T1/T2/PD 

ADNI-GO No Yes Yes Yes T1/T2/PD 

ADNI-2 No Yes Yes Yes T1/T2/PD 

ADNI-3 No Yes Yes Yes T1/T2/PD 

Table 4-2: Imaging parameters used in MALF based approach 

Group Age Scanner models Field strength (3T) Number of subjects 

CN 64.3-90.8 GE HDX 1.5 40 

CN 70.1-91.8 GE Excite 1.5 83 

CN 62.2-95.3 Siemens Symphony 1.5 42 

CN 56.1-90.2 Siemens TrioTim 3 92 

AD 56.4-90.9 GE HDX 1.5 56 

AD 55.2-91.3 GE Excite 1.5 74 

AD 57.9-88.8 Siemens Symphony 1.5 35 

AD 56-89.1 Siemens TrioTim 3 67 

MCI 55.8-89.4 GE HDX 1.5 51 

MCI 55.2-88.2 GE Excite 1.5 72 

MCI 56.3-91.9 Siemens Symphony 1.5 50 

MCI 55.1-93.5 Siemens TrioTim 3 75 

Each MPRAGE image undergoes three kinds of preprocessing phases 

• Gradwarp: This method corrects the image geometry which is distorted by the scanner. In 

practice, the strength of gradient field doesn’t vary linearly with the distance from magnet 

isocenter. This gradient non-linearity distorts the image geometry. Gradwarp corrects this 

distortion. 

• B1 non-uniformity: The method uses calibration of time-varying radio frequency field (B1) 

parameters to correct the artifacts of an image. This artifact, the non-uniformity in image 

intensity occurs when the degree of uniformity at head coil and receiver coil varies during 

Radio Frequency(RF) transmission. 

• N3: This method normalizes the non-uniform intensities, sharpening the histogram of an 

image which is already preprocessed through the Grad warp and B1 non-uniformity correction 

methods.  
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 Differences between the data sets 

The FreeSurfer implementation requires images in nifti format, whereas the MALF 

implementation that we are using requires images in dicom format.  We downloaded ADNI MRI 

images in both formats, but we found that some images were corrupted in one format but not the 

other. Since the goal of our study is to determine whether protocol differences impact the 

classification performance, there is no need to compare the feature extraction methods with each 

other.  In fact, it is preferable to perform independent experiments for each feature classification 

method to reduce the impact of sampling.  For these reasons, we have selected subject images 

randomly and independently for each scanner model from the data available for each technique. Thus 

we have constructed two different datasets that are as independent as possible.  We make no claim 

regarding the comparison of performance results between these two methods for AD/MCI detection 

but focus on the impact of protocol differences on the classification performance. 

 

 Methods to avoid double dipping 

In the ADNI project, longitudinal data is available where MRI scans of a subject were collected again 

after a specific period (baseline, six months,12 months, etc.). Meanwhile, some subject progressed to 

another stage which is related to the degree of brain severity. For example, a normal control may 

progress to MCI or an MCI cohort may progress to AD. The classification problem needs to avoid 

double dipping where a test subject shouldn’t also be used in training phase. Otherwise, this will 

introduce bias in performance because the classifier will have prior knowledge of the test subjects 

during the training period. We applied the following steps to avoid double dipping:  

• Eliminate converted patients from the groups. For instance, if a subject covert from MCI to 

AD at a later stage, then the subject is eliminated from both groups.  

• Randomize and rearrange remaining subjects with AD and the remaining subjects from CN 

separately. 

• Split AD set and CN set into 5 folds separately 

• Randomly select one fold from AD set and one fold from CN set, concatenate them to create 

ADCN testing set 

• Select remaining four folds from AD set and four folds from CN, concatenate them to create 

ADCN training set. 

A similar approach was implemented while classifying AD vs MCI and CN vs MCI. 
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Table 4-3: Imaging parameters used in FreeSurfer 

Group Age Scanner models Field strength (3T) Number of subjects 

CN 64.2-90.8 GE HDX 1.5 41 

CN 70.1-9.8 GE Excite 1.5 62 

CN 62.2-95.3 Siemens Symphony 1.5 19 

CN 56.1-90.2 Siemens TrioTim 3 82 

AD 56.4-90.9 GE HDX 1.5 49 

AD 55.2-91.3 GE Excite 1.5 60 

AD 57.9-88.8 Siemens Symphony 1.5 34 

AD 56-89.1 Siemens TrioTim 3 54 

MCI 55.8-89.4 GE HDX 1.5 40 

MCI 55.2-88.2 GE Excite 1.5 67 

MCI 56.3-91.9 Siemens Symphony 1.5 52 

MCI 55.1-93.5 Siemens TrioTim 3 70 

Table 4-4: Selected data for MALF and FreeSurfer based approach 

Classification 

sets 

Model of the scanners Dataset for MALF  Dataset for FreeSurfer 

 

AD vs CN 

GE Signa HDX AD=40, CN=40 AD=41, CN=41 

GE Signa Excite AD=74, CN=74 AD=60, CN=60 

Siemens Symphony AD=35, CN=35 AD=19, CN=19 

Siemens TrioTim AD=67, CN=67 AD=54, CN=54 

 

AD vs MCI 

GE Signa HDX AD=51, MCI=51 AD=40, MCI=40 

GE Signa Excite AD=72, MCI=72 AD=60, MCI=60 

Siemens Symphony AD=35, MCI=35 AD=34, MCI=34 

Siemens TrioTim AD=67, MCI=67 AD=54, MCI=54 

 

CN vs MCI 

GE Signa HDX CN=40, MCI=40 CN=40, MCI=40 

GE Signa Excite CN=72, MCI=72 CN=62, MCI=62 

Siemens Symphony CN=42, MCI=42 CN=19, MCI=19 

Siemens TrioTim CN=75, MCI=75 CN=70, MCI=70 

 

We have balanced the data to have the same number of samples for each group to calculate balanced 

classification performance as shown in Table 4-4. 

 Feature Ranking by the two-sample t test 

The evaluation of the statistical significance of data is widely used to find out the degree of difference 

between two groups. The two sample t-test is performed on two random groups where the both the 

groups are assumed to be normally distributed. The frequently used term to measure the level of 

significance is called p-value. The p-value of a sample less than 0.05 means that the test rejects the 

null hypothesis that two groups have the same mean. The features can be ordered based on the p-

value. Smaller p-values indicate more significant features. 
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In our experiment, one sample is a feature of healthy controls, another sample is the corresponding 

feature of the AD cohorts. The groups are independent. Therefore, the two-sample t-test is applied 

here. The features acquired from different imaging structures or different ROIs are ranked based on 

its capability to separate the two groups. The feature ranking is done using the p-value of two sample 

t-tests. 

 Support Vector Machine Recursive Feature Elimination (SVM-RFE) 

We obtain features of every subject after applying the MALF algorithm and FreeSurfer tool to the 

MRI data. The extracted features from each defined Region of Interest don’t necessarily contribute 

to the classification tasks. Discarding unnecessary data is efficient. Moreover, large feature 

dimensionality in classification problem is a curse for generalization. To obtain useful training of 

supervised algorithms, the input data should be non-redundant and highly relevant to avoid overfitting 

and underfitting. The use of fewer features not only increases the classification performance but also 

reduces the classification time. The SVM-RFE method employs the support vector machine (SVM) 

algorithm which is one of the most efficient and well-established methods for binary classification 

[140]. It applies the RFE based ranking criteria. The features are ranked based on the weights of the 

SVM primal problem.   

SVM RFE has four main steps 

• Selecting a subset of feature space or a feature subspace 

• Training and testing in the sub-feature space 

• Ranking the features based on the coefficients of SVM primal problem 

• Drop the features whose rank are below the threshold value. 

The algorithm of SVM-RFE is summarized below. 

 SVM-RFE algorithm: 

Let the training dataset 1{( , )}n

i i ix y = , where d

ix R , its corresponding class level is { 1, 1}iy  − + . 

The surviving training set is 

(:, j)s si i= , where j 1,..., , n= = , indices of surviving of features,  

Then, SVM classifier is trained. The coefficients in the dual form are calculated. Consecutively, the 

weights of the primal form are measured from those coefficients. 
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k k k

k

w y x=         is a coefficient optimized at the dual form 

The ranking value is computed as 

( )
2

r wi i= for all i  

The features having smaller ranking values or weights are computed  

argmin( )f c=  

Then the feature ranking values are updated, and some features are discarded which have smaller 

ranking values. This process continues until no feature survives. 

 Evaluation matrices 

The performance result can be measured using a confusion matrix, as shown in Table 4.5. The 

cohorts who are correctly labeled by the classifier are located diagonally [141]. These are true 

positives (TP) which denotes correctly classified patients and true negatives (TN) which corresponds 

to correctly labeled healthy controls. The off-diagonal elements are false positives (FP) which 

represents the number of healthy controls incorrectly classified as patients, and false negatives (FN) 

which denotes the number of patients wrongly labeled as healthy. Our experiment employs six terms 

to measure the performance of the classifier. These are accuracy, sensitivity, specificity, precision, f-

measure, and g-mean.  

The accuracy can be defined as the proportion of subjects correctly labeled compared to the total 

number of subjects. 

 

TP TN
accuracy

TP TN FP FN

+
=

+ + +
 

 

The sensitivity is the proportion of true positives relative to the total number of patients. 
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Table 4-5: Confusion matrix for a binary classifier 

True Class Predicted Class 

P (Patients) H (Controls) 

P (Patients) TP FN 

H (Controls) FP TN 

 

The specificity can be defined as true negative rate relative to the total number of controls. 

specificit
TN

T F
y

N P
=

+
 

 

The precision is the positive predictive value. 

TP
precision

TP FP
=

+
 

 

F1 measure is the harmonic mean of precision and sensitivity. 

 

1 2
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F
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+
 

 

Gmean of the geometric mean of sensitivity and specificity. 

 

*Gmean sensitivity specificity=  

 Cross-Validation 

The Cross-validation (CV) technique evaluates the performance of the predictive model which makes 

predictions on unknown or new datasets. This CV portions a dataset and uses a subset of input data 

for training an algorithm and the remaining subset for testing. At each fold, the training subset is used 

to train a supervised learning algorithm with the corresponding testing set is used to assess the 

performance. This process is repeated k times for k-fold CV. It randomly partitions data into k folds, 

the data from k-1 folds are employed as the training set, and the remaining data from one fold is used 

for testing. This process is repeated k times so that every subject is used in k-1 training set and one 

testing set. 

In our thesis, at each round of iteration, all the six measures which are described above are 

calculated. We ran this 5-cross-validation 30 times. At each run, the data in training and testing fold 

are shuffled randomly. Then we calculated the average and standard deviation of those six measures. 



 

36 
 

Testing Fold Training Fold Training Fold Training Fold Training FoldIteration 1

Training Fold Testing Fold Training Fold Training Fold Training FoldIteration 2

Training Fold Training Fold Testing Fold Training Fold Training FoldIteration 3

Training Fold Training Fold Training Fold Testing Fold Training FoldIteration 4

Training Fold Training Fold Training Fold Training Fold Testing FoldIteration 5

 

Figure 4-1: Illustration of 5-fold cross-validation 

 Used Tools/Packages 

In our thesis, we have used these tools/methods: FreeSurfer, MALF pipeline, SVM-Recursive 

Feature Elimination, RBF-SVM, and ELM. We ran FreeSurfer in the cbrain cloud [139], MALF 

pipeline in the MRICloud [138], and all other methods in MATLAB R2017a. We used LibSVM 

library for running RBF-SVM [142]. We used the code for ELM from 

ntu.edu.sg/home/egbhuang/elm_codes.html, and SVM-RFE from 

mathworks.com/matlabcentral/fileexchange/50701-feature-selection-with-svm-rfe. We modified 

those codes as per our requirement. 
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Result and Discussion 

 

We have investigated the robustness of the predictive method using multiple granularity levels across 

four sets of data having different protocols. The predictive performance is measured using two 

supervised classifiers, RBF-SVM and ELM. We have also identified the most affected regions due to 

the progression of the disease across those sets of data. We have also performed a similar investigation 

using FreeSurfer based subcortical volume features. 

 Feature setup for classification 

We have used a feature selection method after extracting subcortical and ventricular features using 

MALF pipeline and FreeSurfer, and measured the classification performance. SVM recursive feature 

elimination (SVM-RFE) has worked as a feature selection method here. SVM-RFE selects the most 

discriminatory regional features based on weights of the hyperplane. In other words, it selects features 

based on the separability of the data during classification. This method has been described in chapter 

4.  

After filtering out less significant features, we train two supervised classifiers, RBF kernel SVM 

and ELM over four different sets of data having the different protocols (GE Signa HDX, GE Signa 

excite, Siemens Symphony, and Siemens TrioTim). We have calculated the classification 
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performance result of AD/CN (AD vs CN), AD/MCI, and CN/MCI in terms of six performance 

measures (accuracy, sensitivity, specificity, precision, F1 score, and gmean). We have applied 5-fold 

cross-validation, and run the entire process 30 times, for a total of 150 classification experiments. 

Finally, we have calculated performance using the mean and standard deviation over all folds of 30 

runs. 

 Classification performance of Multi-atlas-based pipeline 

We have analyzed the classification performance using MALF based ventricular and subcortical 

structures over multiple granularity levels as input feature to the two classifiers RBF-SVM and ELM. 

 Performance of RBF kernel SVM classifier 

We have analyzed the performance of RBF SVM over four different scanner models. The 

performance accuracy while separating AD from CN is shown in Figure 5-1(a). At granularity level 

5, the performance accuracy is 87.75%, 85.97%, 86.61%, and 84.61% for the four different scanner 

models. Across all scanners, the highest granularity level 5 provides better accuracy than lower 

granularity levels ranging from granularity level 1-4. The accuracy increases consistently for levels 

3-5. However, the accuracy fluctuates from level 1 to level 3. For three scanners, GE Signa HDX, 

Siemens Symphony, and Siemens TrioTim, granularity level 2 outperform levels 1 and 3. But for GE 

Signa Excite, granularity level 2 performs worse than levels 1 and 3. The accuracy at granularity level 

1 is lowest across all scanners except GE Signa Excite where granularity level 2 exhibits the lowest 

accuracy. All the performance measures for granularity level 5 for all models are shown in Figure 5-

2(a). The performance depicts that GE Signa HDX scanner outperforms other scanner models here. 

We have measured the AD/MCI classification performance for all scanner models in similar way. 

The performance accuracy is depicted in Figure 5-1(b), and performance result at granularity level 5 

is depicted in Figure 5-2(b). The performance accuracy at granularity level 5 is 69.13%, 66.21%, 

69.80%, and 76.07% for the four different scanner models. Granularity level 5 provides better 

accuracy than the lower granularity levels (granularity levels 1-4) for all scanners except Siemens 

Symphony where level 3 provides the highest accuracy. The accuracy rises considerably when the 

granularity level increases from 2 to 5 for all scanner models except Siemens Symphony.  

In case of Siemens Symphony scanner, the accuracy shows variation across all granularity levels 

where level 3 performs slightly better than level 5. For all scanners, accuracy at granularity level 1 is 

slightly better or equal as compared to granularity level 2. Figure 5-2(b) depicts that the performance 

result of the Siemens TrioTim scanner outperforms other scanner models. 
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We have also recorded CN/MCI classification performance for all scanner models across all 

granularity levels. At granularity level 5, the accuracy of the four models is 72.91%, 75.47%, 75.04%, 

and 72.2% as shown in Figure. 5-1(c). Granularity level 5 provides better accuracy than levels 1-4 

for three scanners, GE Signa HDX, Siemens Symphony, and Siemens TrioTim. But in case of GE 

Signa Excite model, accuracy at granularity level 5 is slightly less that at level 4. Considering GE 

Signa Excite and Siemens TrioTim, the accuracy increases considerably when the granularity level 

increases from 1 to 3. But for the other two models, granularity level 2 performs slightly better than 

levels 1 and 3. The lowest level performs worst across scanners except GE Signa HDX where the 

accuracy at level 3 is lowest. Figure 5-2 (c) exhibits all the performance measures for granularity 

level 5. The performance result indicates that GE Signa Excite and Siemens Symphony scanners 

perform comparably and outperforms other scanner models here. 

 

 

(a) AD vs CN 

 

(b) AD vs MCI 

 

(c) CN vs MCI 

 

 

Figure 5-1: Performance accuracy of MALF based method using RBF-SVM over four different protocols 
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(a) AD vs CN 

 

(b) AD vs MCI 

 

(c) CN vs MCI 

 

 

Figure 5-2: Performance result of MALF based features at granularity level 5 using RBF-SVM over four different protocols 

 Performance of ELM classifier 

We have analyzed the performance of ELM over granularity levels 3 through 5, and the same four 

scanner models. We omitted recording the performance results for granularity levels 1 and 2 as the 

performance of RBF-SVM consistently shows poor result over these granularity levels.  

When classifying AD/CN, the accuracy is higher for GE scanners at granularity level 5, than at 

other levels. These scanners have accuracy of 91.37% for Signa HDX and 87.80% for Signa Excite 

as shown in Figure 5-3(a). But for the two models of Siemens, accuracy at granularity level 4 is 

85.05% and 83.91% which is slightly better than level 5, and significantly higher than level 3. The 

lowest granularity level provides the lowest performance across all scanners as shown in Figure 5-

4(a). 

When classifying AD from MCI, the performance at level 5 is higher than levels 3 and 4 for both 

GE and Siemens scanners across their models as shown in 5-3(b). The accuracy is up to 66%, and 

67.04% for GE scanners, and 67.94% and 78.38% for Siemens. The lowest granularity level provides 

lower accuracy for all scanners. Figure 5-4(b) depicts the performance result indicating that GE Signa 

HDX, GE Signa Excite and Siemens Symphony scanner models perform comparably with each other. 

Siemens TrioTim outperforms the other scanner models here. 
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(a) AD vs CN 

 

(b) AD vs MCI 

 

(c) CN vs MCI 

 

 

Figure 5-3: Performance accuracy of MALF based method using ELM over four different protocols 

 

(a) AD vs CN 

 

(b) AD vs MCI 

 

(c) CN vs MCI 

 

 

 

Figure 5-4: Performance result of MALF based features at granularity level 5 using ELM over four different protocols 

When classifying CN vs MCI, GE scanners and Siemens Symphony performs similarly across all 

granularity levels having the highest accuracy about 74% at level 5 as shown in Figure 5-3(c). The 

accuracy increases from level 3 to level 5 considerably for Siemens scanners, while for GE scanners 

level 4 performs better as compared to levels 3 and 5. Across all scanners, the lower granularity level 

3 performs worse. The performance results show that Siemens TrioTim performs poorly compared 

to the other three scanner models as shown in Figure 5-4(c). 
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(a) AD vs CN 

 

(b) AD vs MCI 

 

(c) CN vs MCI 

 

 

Figure 5-5: Comparison of ELM and SVM at granularity level 5 of MALF based method 

We have analyzed three classification sets (AD vs CN, AD vs MCI, and CN vs MCI) across 

granularity levels and four scanner models using RBF-SVM and ELM. RBF SVM and ELM perform 

quite similarly to each other for all the scanners as depicted in Figure 5-5(a) through 5-5(c). For both 

the classifiers, the highest granularity level tends to provide better classification performance, and the 

lowest granularity level offers poor performance across all scanners. We suggest that this is because 

the highest granularity level provides information about the microstructure of the brain. Atrophy 

changes in the microstructures when the disease progresses may contribute to improving the training 

of the classifier. GE Signa HDX performs better for AD/CN classification, while GE Signa Excite 

and Siemens Symphony perform better for CN/MCI classification across both classifiers. Siemens 

TrioTim performs better for AD/MCI classification across both the classifiers, but not for AD/CN or 

CN/MCI classification despite having 3 T subject images as compared to the other scanners. This 

indicates that a scanner model having 3 T field strength image data does not necessarily ensure better 

classification performance. Classification performance also depends on the robustness of the 

algorithm for measuring brain structures across various scanner models with the same or different 

field strengths (1.5 T, and 3 T), and on the particular dataset. 

 Classification performance of FeeSurfer based methods 

We have analyzed the classification performance using FreeSurfer defined subcortical volume-based 

features and the two classifiers RBF-SVM and ELM. 
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 Performance using RBF SVM classifier 

When classifying AD vs CN using RBF SVM, the highest accuracy has been achieved by the Siemens 

scanners. The accuracy of Symphony and TrioTim is 86.66%, and 86.16%, respectively. Siemens 

scanners perform better that GE scanners as depicted in Figure 5-6 (a).  

 

 

(a) AD vs CN 

 

(b) AD vs MCI 

 

(c) CN vs MCI 

 

 

Figure 5-6: Performance result of FreeSurfer based method using RBF-SVM over four difference protocols 

 

 

(a) AD vs CN 

 

(b) AD vs MCI 

 

(c) CN vs MCI 

 

 

Figure 5-7: Performance result of FreeSurfer based method using ELM over four difference protocols 
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For AD vs MCI classification, Siemens scanners account for the highest accuracy, about 78% across 

its two models. Figure 5.6(b) shows that Siemens scanners perform better than the GE scanners. For 

CN-vs MCI classification, GE Signa HDX provides the highest accuracy of 70.20%. Figure 5-6(c) 

shows that GE scanner performs well when compared with two models of Siemens. 

 Performance using ELM classifier 

Figures 5-7(a) through 5-7(c) depict the performance of AD vs CN, AD vs MCI, and CN vs MCI 

using the ELM classifier. For the classification of AD/CN, Siemens Symphony achieved the highest 

accuracy with 83.66% which is considerably higher than the other three models of scanners. For AD 

vs MCI classification, Siemens Symphony again provided the highest accuracy with 76.95% as 

compare with the other three models. For both the classification methods, RBF-SVM and ELM, 

Siemens scanners exhibit better performance than GE scanners.  However, considering CN vs MCI 

classification, GE Signa Excite performs better in comparison with other models. In this case, a GE 

scanner provides better classification performance as compared to Siemens scanners. 

Siemens TrioTim performs better for AD/CN and AD/MCI classification across both the 

classifiers, but not for CN/MCI classification despite having 3 T subject images as compared to 1.5T 

for the other scanners. For CN/MCI classification, Signa HDX outperforms other scanner models 

across both the classifiers. This reinforces the results of the MALF based method which showed that 

a scanner model having 3 T subject image dataset does not necessarily ensure better classification 

performance even though 3T provides better topological localization of different brain structures with 

higher contrast as discussed in section 2.6. Classification performance also depends on the robustness 

of the algorithm for measuring brain structures across different scanner models, and on the dataset 

we use. 

 Ranking MALF and FreeSurfer based features 

We have ranked the features by applying a feature ranking method which uses a t-test to assign scores 

to features for all the classification sets (AD vs CN, AD vs MCI, and CN vs MCI) across all scanners. 

The ranking of MALF based subcortical, ventricular structures is depicted in Figures 5-8 through 5-

10, and FreeSurfer based subcortical segmented structures are shown in Figures 5-11 through 5-13. 

Considering the ranking of MALF structures for AD/CN classification across all scanners, the 

most affected regions detected are basal forebrain, thalamus, SylvianFissureExt, and Lateral Ventricle 

as shown in Figures 5-8(a) through 5-8(d). The lateral ventricle ranks highest for GE Signa Excite 

but the other three scanners detect basal forebrain as the most affected regions. For AD/MCI 

classification, BasalForebrain is the highest ranked features across all the scanners as shown in 
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Figures 5-9(a) through 5-9(d). For CN/MCI classification, the highest-ranking feature for GE Signal 

HDX, GE Signa Excite, Siemens Symphony, Siemens TrioTim are Parietal_L, SylvianFissureExt_R, 

FrontSul_R, and CentralSul_L, respectively. The ranks are shown in Figures 5-10(a) through 5-10(d). 

When using FreeSurfer, the features from subcortical regions such as hippocampus, amygdala, 

and Inferior Latera Ventricles feature rank among the highest for all classification sets across all 

scanner models are shown in Figures 5-11 through 5-13. Hippocampus ranks highest in some scanners 

such as GE Signa HDX and GE Signa Excite. In contrast, amygdala ranks highest for Siemens 

TrioTim. This finding backs the claims of previous studies where some researchers declare that 

AD/MCI affects the hippocampus and amygdala [32]–[34]. For GE scanners, the highest ranked 

features are also hippocampus, lateral ventricle, and amygdala. But the Symphony model lists 

Cerebellum Cortex as the most affected regions while TrioTim shows the inferior lateral ventricles 

as the most affected region. 

 

 

 

(a) Signa HDX 

 

(b) Signa Excite 

 

(c) Siemens Symphony 

 

(d) Siemens TrioTim 

 

Figure 5-8:  Ranking of MALF based features at granularity level 3 while classifying AD/CN 
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(e) Signa HDX 

 

(f) Signa Excite 

 

(g) Siemens Symphony 

 

(h) Siemens TrioTim 

 

Figure 5-9:  Ranking of MALF based features at granularity level 3 while classifying AD/MCI 

 

(a) Signa HDX 

 

(b) Signa Excite 

 

(c) Siemens Symphony 

 

(d) Siemens TrioTim 

Figure 5-10: Ranking of MALF based features at granularity level 3 while classifying CN/MCI 
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(a) Signa HDX 

 

(b) Signa Excite 

 

(c) Siemens Symphony 

 

(d) Siemens TrioTim 

 

Figure 5-11: Ranking of FreeSurfer based features while classifying AD/CN 

 

(a) Signa HDX 

 

(b) Signa Excite 

 

(c) Siemens Symphony 

 

(d) Siemens TrioTim 

 

Figure 5-12: Ranking of FreeSurfer based features while classifying AD/MCI 
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(a) Signa HDX 

 

(b) Signa Excite 

 

(c) Siemens Symphony 

 

(d) Siemens TrioTim 

 

Figure 5-13: Ranking of FreeSurfer based features while classifying CN/MCI 

 

Different scanners perform reasonably well for AD/MCI detection. We have observed minor 

difference over protocols regarding classification performance and ranking order for both FreeSurfer 

and MALF based regions.Although there is a minor difference, it does not mean that the data from 

the different scanners can be merged into a single large dataset because the classifier can adapt to 

each scanner when it is trained on data from only one scanner. Although the rank order marginally 

varies, this may not impact the classification performance because other similar significant ROIs can 

take the same role as the representative features. Also, our classification methods consider several 

ROIs when classifying one group from other. Despite having different ranking order, these features 

might still be available in the feature set. As long as these features remain in feature set, it does not 

impact the classification performance 

 Conclusion 

We have explained the result we have obtained after using RBF-SVM and ELM over four different 

types of scanner data. We have observed marginal differences in performance result when comparing 

classification performance of the scanners across three classification tasks: AD vs CN, AD vs MCI, 

and CN vs MCI. For MALF based features, and for both classifiers, the best performance is achieved 

by different scanners for each of the three classification tasks: Signa HDX for AD vs CN, Siemens 

TrioTim for AD vs MCI and the other two scanners for CN vs MCI. For FreeSurfer based features, 
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Siemens TrioTim performs better for AD vs CN and AD vs MCI classifications across both 

classifiers, while Signa HDX performs better for CN vs MCI classification across both classifiers. 

We have also observed that the ranking orders of the most important features vary for all the three 

classification sets. However, it is difficult to make a claim that these differences occur due to protocol 

differences because other factors also influence these minor differences. 
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Conclusion 

 

 Research Summary 

We have described the full automated multi-atlas-based brain parcellation tool (MALF) which uses 

multiple atlases, and extracts subcortical, ventricular structural volume from a subject image at five 

granularity levels which ranges from 1 to 5. We have also briefly described an efficient automated 

tool, FreeSurfer, which segments brain into various subcortical regions, and measures volume from 

those regions. These two robust tools were used to extract features from MRI data collected using 

four different types of protocols which include scanners having the same or different field strengths. 

The robustness of these two types of feature extraction methods over protocol differences is 

discussed. The robustness has been discussed in terms of classification performance and ranking of 

the most effective ROIs. We have also described the data which are used to obtain the features along 

with several preprocessing methods and a feature selection approach, SVM Recursive Feature 

Elimination, where features are selected based its SVM weight vector. A method is explained to avoid 

double dipping so that features of a subject do not get involved in both training and testing phase 

during the classification. Supervised classifiers, SVM and ELM have been explained. These are used 

to disease stage of a subject (i.e., AD, CN, and MCI). We have recorded the classification 

performance using 5 fold cross-validation technique and running the program multiple times where 

different subset of data is randomly assigns to a fold at each run. We have also used a t test based 
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feature ranking method which ranks all the regions of the brain based on the statistical significance 

for separating two classes. 

When analyzing multi-atlas likelihood fusion-based granularity analysis, it is evident that a higher 

granularity level provides better classification performance across the protocols. This is because the 

higher granularity level provides more detailed information of microstructures. That is used to train 

the supervised classifier. Simens TrioTim performs better for AD/MCI classification, but not for 

AD/CN or CN/MCI classification set when using MALF based features and two classifiers, ELM and 

RBF-SVM. When using FreeSurfer based features, Siemens TrioTim performs better for AD/CN, 

and AD/MCI classification across both the classifiers, but not for CN/MCI classification. Both 

classifiers, SVM and ELM, provides similar performance. There is no evidence in our study for 

superiority of one classifier over the other. We can’t claim the superiority of a classifier over another 

classifier in performance in our study/dataset as some other studies 

Considering the ranking of affected ROIs, we have shown that the ranking order of different brain 

structures/regions varies across different protocols. In many cases, the difference in the rank ordering 

would not impact disease detection.  However, we have overserved some cases where most important 

regions are significantly different for different protocols. For example, when ranking features for 

CN/MCI, the important MALF based regions are noticeably different across all protocols and 

FreeSurfer based regions are significantly different for all Siemens models These differences may 

impact the detection performance. 

 The limitations of our study 

It is difficult to make strong claims regarding the reason for the differences in classification 

performance or ranking order of ROIs because these deferences may be affected by several factors. 

For example, the number of applied atlases may affect the performance result. If the atlas set 

introduces bias, this may change the extracted features and the classification performance The 

limitations of our study are explained below.  

• Limited data: We need to investigate and generalize the effect of protocol differences using 

a large of number of subjects. A large of number of unique participants having different 

severity stages of dementia and different protocols is difficult to collect. The publicly 

available datasets are limited. ADNI data, which we have used, is the largest publicly available 

dataset for Alzheimer’s disease. 

• Unpaired data: It is ideal to use paired data. Data we have used in our study is not paired 

where MR images of a subject for all the protocols at a specific time point is not available. 



 

52 
 

• Age gap: The age differences are not considered. It is hard to get data of certain age range 

(i.e 5-10 years gap) over all the protocols. We have elderly data in broad range. During that 

time, a subject may undergo different kind of brain severity related disease, which may affect 

brain tissues, eventually affect the subcortical or ventricular structures of a brain which is 

crucial features of our study. 

• Scanning Time of a day: The time of a day when subject images were scanned is not 

considered. The tissue density in a brain MRI may vary depending on the time of a day. For 

example Nakamura et al. [143] have shown that brain volume is higher in the morning. 

 Future Work 

We will endeavour to work in large paired dataset to investigate the protocol difference and compare 

results with the present study. Then, we intend to develop some regression-based correction method 

to eliminate bias introduced by scanning time of a day, age, gender, and scanner model differences. 
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List of symbols 

 

 

 

AD    Alzheimer Disease 

ADNI     Alzheimer’s Disease Neuroimaging Initiative 

MALF    Multi-Atlas Likelihood Fusion 

CAD     Computer Aided Diagnosis 

CDR     Clinical Dementia Rating 

VBM    Voxel Based Morphometry 

HC    Healthy Controls 

MCI    Mild Cognitive Impairment 

MRI    Magnetic Resonance Image 

NC/CN   Normal Controls 

SVM    Support Vector Machine 

ELM    Extreme Learning Machine 

RBF    Radial Basis Function 

ROI    Region of Interest 
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