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Abstract

Over the decades, the Wireless Cellular Network (WCN) and Wireless Local Area Net-
work (WLAN) have transformed into a gigantic eco-system feeding billions of portable
devices with an astronomical amount of the digital data. With modernization and
miniaturization of computer electronics, this amount of data is set to hit a record high
in the next few years. Unfortunately, current infrastructures of WCN and WLAN are
struggling to cope with the global demand due to severe scarcity of spectral resources
and outdated infrastructure. This lead to extensive research on the upcoming Fifth
Generation (5G) wireless network technology. The 5G technology aims to increase the
data rate by two orders of magnitude compared to the predecessor technology 4G. The
technologies listed to be the key enablers for 5G include, spatial multiplexing, device-to-
device communication, beam-forming and cognitive radio networks (self-configuration
networks). In this regard, geo-location information of the wireless devices is crucial
in bounding the large-scale interference between the devices to a level producing ac-
ceptable performance degradation. Moreover, accurate positioning information plays
a critical role in determining exclusion zones for wireless devices in networks, and this

enables maximal spectrum reuse and spectrum efficiency.

The thesis introduces several novel algorithms. Algorithms are introduced which
accurately determine the Direction Of Arrival (DOA) of the signal at a receiver. Using
these techniques at two or more receiving locations, the position of the radio transmitter
may be determined with great accuracy using triangulation. In addition, the thesis

proposes an algorithm to determine the position of a transmitting source using the

X1



xii ABSTRACT

Received Signal Strength (RSS) at several locations. The new DOA and RSS based
positioning algorithms are based upon the framework of compressive sensing (CS),
which is an emerging signal processing technique that offers superior recovery of a
signal using limited observations, especially when the signal is sparse in some given
bases.

For CS implementation of the DOA estimation, the problem is initially modeled
with the assumption that actual DOA is one of a quantized set of angles. With this
assumption, a dictionary matrix may be constructed which can be used in the CS
algorithm to find an estimated DOA which is an element of the set of quantized posi-
tions. In practical situations, the actual DOA is not always equal to an element of the
quantized set of grid points, and this implies that the estimated DOA will have some
quantization error. Since the number of antenna elements is typically much smaller
than the number of quantization points, the matrix formulation of the solution of the
vector indicating the DOA represent an under-determined set of equations. Compres-

sive sensing is used to determine the sparsest solution to the matrix equation.

A fundamentally new iterative algorithm to estimate the DOA of an incoming
signal in a wireless network is introduced in the thesis. This algorithm, which utilizes
compressive sensing as a foundation, eliminates the error induced due to discrete grid
quantization. This enables the estimation error performance of the algorithm to achieve
the theoretical Cramer Rao Lower Bound (CRLB) using just two iterations. The
algorithm requires extremely low computational complexity for implementation and
is general in nature. The proposed algorithm is demonstrated by applying it to two
antenna array geometries, the Uniform Circular Array (UCA) and Uniform Linear
Array (ULA). For both the UCA and the ULA, the CRLB performance is achieved by
the new algorithm. The relative performances of the UCA and ULA were compared.

The thesis also considers a novel multiresolution DOA estimation algorithm based
on CS that illustrates superior performance compared to the traditional techniques.
The multiresolution approach is also shown to be effective in reducing the computa-

tional complexity of the estimation process.

A novel RSS based localization algorithm is presented that offers improvement in



xiii

the structure of the dictionary matrix by selectively eliminating observations from
closely placed sensors. Similar observations lead to ill-conditioned dictionary matrices
and as a result, degrades the performance of CS processing. The study illustrates that
different random distributions of sensors have unique effects on the structure of the
measurement matrices.

An in-depth analysis on the impact of different parameters on the structure of
the dictionary matrix is presented. The analysis suggests that careful manipulation
of antenna array geometry parameters can significantly enhance the structure of the
dictionary matrix and therefore improve the estimation accuracy of the algorithm.

In summary, the thesis investigates localization techniques based on compressive
sensing processing. Several new, high-performance algorithms were described and their
performances and computational complexities were analyzed. The thesis establishes
a connection between the mathematical properties of the dictionary matrix and the
performance of the new localization techniques. Within classes of antenna array ge-
ometries, the dictionary matrix properties are used as an enabler for the selection of

antenna elements spacings that provided optimized DOA estimation performance.
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Introduction

1.1 Motivation

The inception of wireless communication dates back to 1897 with Marconi’s successful
demonstration of wireless telegraphy [4]. In the early days, a variety of consumer
applications adopted wireless system including: 1) television transmission using radio
transmitters, 2) point-to-point microwave circuits that formed the backbone of the
telephone network. Unfortunately, the wireless technology was replaced with modern
wired connections including optical fibre cable. The fast transmission speed of an
optical fibre provides a competitive advantage over the wireless systems and offers a
reliable low error rate data transmission. Surprisingly after the deployment of mobile
handsets in the early 1990s, which is primarily based on Wireless Communication

Systems (WCS), an opposite trend was observed. Wired telephone technology slowly

1



2 INTRODUCTION

started fading away and is partially replaced by hand-held mobile phones that were
part of a wireless cellular networks (WCN) [5].

One of the major reasons behind the popularity of WCN is the flexibility of access-
ing a cellular network virtually anywhere and at any time. This clearly indicates that
customers are now ready to sacrifice the reliability and performance of wired networks
for the ease and accessibility of WCNs. Traditionally WCN suffered from limited spec-
tral capacity and maximum network congestion. Such drawbacks prompted researchers
to explore alternatives in order to provide the service needed. The hard work in re-
search paid off with the development of Wireless Local Area Network (WLAN). A
new standard (Wi-Fi) was published in 1997 and began its journey with two vari-
ants, called 802.11b (operating on the 2.4 GHz band) and 802.11a (operating on the
5.8 GHz band) [6, 7]. WLAN offered high data rates at the expense of limited net-
work coverage (50 meters) compared to WCN (50 km). The backhaul of a WLAN
is usually supported by wired connections (copper or optical fibre). Soon after the
innovation of Wi-Fi standards, engineers and researchers immediately dived into the
development of prototypes that would comply with it. Thanks to advanced electronics,
miniaturization, and computerization of consumer devices became a reality. This led
to ground-breaking innovations such as tablets, laptops, smart-phones, iPods, wearable
smart-devices that are now able to connect themselves to the internet with the help
of Wi-Fi. The popularity of Wi-Fi was boosted due to the ability to connect multiple
devices to the internet at the same time. Often coupled with wireless capabilities,
these smart electronic devices have an unprecedented capacity to connect and share
information amongst themselves and with their users, leading to the promise of smarter
systems. Currently, the field of wireless communication has evolved into a monstrous
eco-system feeding billions of smart devices with an enormous amount of digital data.

According to CISCO’s visual networking index [8-10],

e The annual global internet traffic will reach 3.3 Zetabyte (ZB; 1000 Exabytes
[EB], EB; 1 billion Gigabytes [Gb]) by 2021. This is expected to be a 175%
increase from the 2016 global traffic of 1.2 ZB and accounts for a threefold increase

in the next 4 years.
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Fig. 1.1: Data downloads by Australian residents in terabytes (TB). Data collected
from ABS.

e Traffic from wireless and mobile devices will account for more than 63% of the
total internet traffic by 2021. Wireless devices will account for 63% of the aggre-
gated internet traffic, while wired devices will account for 37%. In 2016, wired

traffic accounted for 51%.

e The number of devices connected to the internet will be three times as high as
the global population by 2021. Due to the exponential increase in the number
of devices and their capability, internet traffic per capita will increase to 35 GB,

from 13.5 GB in 2016.

The forecast clearly indicates that the smart sharing and wide connectivity of wireless
devices will exert a serious strain on the existing wireless technologies. Australia is
also not far behind in this global trend. The data from the Australian Bureau of
Statistics (ABS) and Australian Communication and Media Authority (ACMA) [11-

13] are combined to generate the bar diagram shown in Fig. 1.1. According to the
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statistics,

e The total volume of data downloaded in the three months ended 31 December
2016 was 2.6 million Terabytes (or 2.6 Exabytes). This is a 23.3% increase in
data downloads when compared with the three months ended 30 June 2016 and
a 50.8% increase in the year between December 2015 and December 2016.

e The volume of data downloaded via mobile handsets for the three months ended
31 December 2016 was 146,050 Terabytes. This was a 20.6% increase in data
downloads via mobile handsets from the three months ended 30 June 2016 and

a 61.0% increase in downloads in the year ended 31 December 2016.

In reality, the evolution of the wireless technology fails to match up to the ever-
growing demand for large data. In order to cater for the connectivity boom, an over-
haul of the existing technology is mandatory. In the past few decades, the WCN went
through several iterations of improvements. Since its inception, the WCN evolved from
its legacy standard of the first generation (1G) to the existing fourth generation (4G)
with current research focusing on the advancement of 4G and the implementation of the
upcoming fifth generation (5G) technology [14, 15]. The prime emphasis of 5G will be
on data rates and efficiency, with heavyweights such as Qualcomm and Nokia looking
at technologies which can cope with traffic growth of 1000 times [16]. A summary of
the standards, technologies adopted by the different generations are listed in Table. 1.1

Generations Standards Technology | Data Switching | Data Rate.
1G AMPS, TACS Analog Circuit NA
2G GSM, CDMA, EDGE Digital Circuit 236.8 kbps
3G UTMS, CDMA2000, HSPDA Digital Packet 384 kbps
4G LTE Advanced, WiMax Digital Packet 100 Mbps
5G Massive MIMO, D2D, M2M Digital Packet 10 Gbps

TABLE 1.1: A summary of the evolution of Wireless Cellular Networks.

Parallel to the development of the WCN, WLAN technology has significantly expanded
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its capability to provide high speed to Wi-Fi customers [17, 18]. The different gener-

ations of the WLAN and their corresponding technologies and data rates are listed in

Table. 1.2.
Generations Protocol Frequency Data Rate.

1st 802.11 2.4 GHz 2 Mbps

2G 802.11a, 802.11b || 5 GHz, 2.4 GHz | 54 Mbps, 25 Mbps
3G 802.11g 2.4 GHz 54 Mbps

4G 802.11n 5 GHz, 2.4 GHz 600 Mbps

5G 802.11ac 5 GHz 1.63 Gbps

5G 802.11ad 60 GHz 4.63 Gbps

TABLE 1.2: A summary of the evolution of Wireless Local Area Networks.

1.2 Emerging Technologies for 5G WCN

Although there has been no confirmed consensus on the architecture of 5G, researchers
have explored and proposed several alternatives that will offer cost-efficient improve-
ments compared to the existing 4G WCN [19-23]. The primary technologies and
approaches that can be adopted to satisfy the requirements of 5G can be classified as

follows.

1.2.1 Heterogeneous Networks (HetNets)

To cater for the high volume of digital data, one of the possible solutions can be
reducing the cell size. 5G will consist of a multi-tier heterogeneous networks consisting
of macro-cells integrated with large numbers of micro-cells coexisting at the same
time. Small cells will have a different flavour, as their area of coverage is smaller than
macro cells. By reducing the cell size, the spectral efficiency can be improved through

efficient frequency reuse [24]. At the same time, small cells also offer better network
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Fig. 1.2: A HetNet based 5G wireless network [1].

coverage as they can be easily deployed indoors such as home, office, university campus,
public vehicles etc. The concurrent operations of different classes of cells will make 5G
networks more dense than existing 4G [25]. High density and unplanned deployment
of small cells introduce inter-cell interference, which has been considered to be one of
the biggest drawbacks of HetNets. Additionally, due to the irregular shape and size of
the cell, inter-tier interference (between micro and macro cells) can be introduced [26].
To overcome this issue, sophisticated power control and resource allocation techniques
need to be considered. However, with accurate location information of the small cells
and macro cell, the aforementioned issues regarding inter-cell and intra-cell interference

can be significantly reduced [27].

1.2.2 Device-to-Device communication

Device to Device (D2D) communication has been widely praised to be a feasible so-
lution for high-density network problems [28, 29]. D2D communication forms a direct
link between two independent terminals in order to share information. In the current
4G cellular network, no standards are defined to establish a point-to-point (P2P) link
between two devices. As a result, all communication is required to be routed via a Base

Station (BS), which is extremely inefficient, especially when the devices are placed in
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Fig. 1.3: Coexistence architecture of several wireless technologies to enable reliable
high-speed data rate for 5G.

close proximity to each other. In scenarios where a large number of devices are involved,
this extra routing can result in internet traffic congestion, leading to bottlenecks and
latency in the communication process. Wireless D2D communication underlaying cel-
lular architecture can significantly improve the spectral efficiency, increasing the overall
throughput of the network [30]. In addition, network controlled D2D communication
will reduce the extra overhead and routing functionality of the macro BS. However,
D2D connections can be a major source of interference to other cell users (macro and
micro) if appropriate regulations are not imposed. Additionally, discovering neighbor-
ing nodes and establishing a link can be challenging, especially when a large number
of nodes are available [31]. But with sufficient positioning knowledge of the cellular
devices in a given cell, D2D communication will offer superior performance in terms of

network coverage, capacity, spectral efficiency and power consumption [32].
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1.2.3 Merging of WCN and WLAN

Offloading cellular traffic to WiFi and small cells is seen by operators as a key solution
for handling the demanding growth in mobile data traffic. This is considered as a
collaborative network system, where users have the ease to enjoy the best of each
world. Data offloading to WiFi is particularly attractive due to the low cost-per-bit
and availability of sufficient spectrum (2.4 GHz and 5 GHz) [33, 34]. The proposal aims
to lighten the burden on the cellular network, and at the same time it will concurrently
provide a higher throughput to the users. Although in theory, the proposal is very
promising, especially in dense areas offloading can be very complicated. One of the
reasons is guaranteeing a smooth handover between these two radio access technologies.
An unplanned offloading may result in an increase in the overall interference, causing
a degradation to the throughput and Quality of Service (QOS) of the network [35].
Moreover, in situations where there is a high concentration of cellular devices, WLAN
may not be well equipped to handle the number of users [36]. The efficiency of the
handover process and the interference mitigation technique is directly dependent on
the positioning of the node with respect to the BSs for WLAN and WCN. Accurate
geo-spatial information of the cellular devices can assist the BSs in offloading excess
traffic in specific areas with lower density networks. The process reduces network traffic

congestion and improves the QOS of the network.

1.2.4 Cognitive Radio

Joseph Mitola III was credited with introducing the concept of Cognitive Radio (CR)
through the platform of Software Defined Radio (SDR). The cognitive cycle by Mitola

can be characterized in three states [37, 38] :

e Awareness - is the ability if the radio to measure, sense and be aware of its
environment and internal states. A radio may exhibit different levels of awareness
such as spectrum awareness, location awareness, user awareness and network

awareness.
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Fig. 1.4: Summary of Mitola’s and Hykin’s model of cognitive radio [2].

e Cognition - it’s the ability to process the information gathered from the awareness
stage of the cognitive process to make intelligent decisions about the operating
behavior of the radio in order to achieve the performance requirement of the

network.

e Adaptability - is the capability of dynamically adjusting certain operating param-
eters such as transmit power, carrier frequency, and modulation strategy without
requiring any modification to the hardware components. This quality enables
CR to readily integrate into an unknown environment without compromising the

balance of the network.

Dynamic spectrum access (DSA) is one the recognizable features of the CR that
aims to overcome the apparent spectrum scarcity problem by ensuring smart spectrum
allocation and effective utilization of the spectrum resources. DSA has two main objec-
tives: 1) highly reliable communication without affecting other users in the networks, 2)

efficient utilization of the radio spectrum. A Cognitive Radio Network (CRN) usually
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consists of two sets of users, primary/licensed users (PU) and secondary/unlicensed
users (SU) [39]. Since SUs have lower priority, the channel use is constrained by a
maximum acceptable level of interference to PUs. DSA provides a promising solution
by enabling both PUs and SUs to coexist in the frequency channel without causing
harmful interference to each other. DSA technology is based on the concept of learning
the radio environment information of the (PUs). The knowledge is then subsequently
used for transmitting parameter selection in the secondary user channel. This selec-
tion must be made with the dual requirements of SU communication effectiveness and
bounded interference to PUs [40]. The bounded interference to PUs can only be main-
tained if the PU locations and received power levels from other PUs are known by
SUs. In a CRN, often user terminals suffer from a hidden node problem, where an
SU is unaware of the existence of another PU placed beyond the network range of the
SU. This phenomenon interrupts a communication link and reduces the throughput of
the network. Avoiding these problems is challenging, and requires complete geograph-
ical information of both the SU and the PU. Therefore, to satisfy the performance

requirement of a CR positioning information of the users is of paramount importance.

1.2.5 Massive MIMO

Multiple-input/ multiple-output (MIMO) technology has attracted a lot of attention
in the field of research on the upcoming 5G cellular network for its advancement in
improving the reliability and capacity of the network. Massive MIMO is an upgraded
version of the existing MIMO technology, where a large number of antenna elements
are placed in a specific antenna geometry to enable high data rate transmission. The
introduction of mmWave frequency in wireless communication is responsible for paving
the path of MIMO development. At higher frequency the channel bandwidth is abun-
dant, offering 100x greater throughput than what is available in the traditional cellular
bands [41]. Moreover, due to the small wavelength of mmWave signals, dozens or even
hundreds of antenna elements can be bundled at the BSs, WiFi Access Points (APs)

and even at the portable cellular device. This makes the MIMO system incorporated
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with mmWave frequency a perfect recipe for the high capacity channel in dense net-
works [42]. With the use of a large number of antennas in a massive MIMO structure,
the noise, fading and hardware defects can be averaged because signals from a large
number of antennas can be combined together in the free space. This increases the
robustness of massive MIMO against fading and failure of the antenna elements. Mas-
sive MIMO aims to increase the capacity of a BS by several orders of magnitude while

simultaneously improving the radiated energy-efficiency.

Beamforming

Beamforming (BF) is a classic signal-processing technique, where multiple antennas
are adaptively phased to create a concentrated beam [43]. The technique provides an-
tenna array gains, thereby improving the signal-to-noise ratio (SNR) and an additional
radio link margin that mitigates the propagation loss. Also, BF helps to reduce the
co-channel interference because of the spatial selectivity of the directional antennas.
In D2D communication, BF promises highly directional adaptive antennas that can
be steered in various directions, to shine a concentrated beam towards a user [44].
However, without accurate positioning knowledge, BF can lead to wastage of spectral

resources and may introduce unwanted interference for other users [45, 46].

Spatial Multiplexing

Due to the advancement of MIMO technology integrated with BF techniques, Spatial
Multiplexing (SM) is a reality in WCN as well as in WLAN. SM involves sampling a
spatial domain into multiple pieces, enabling each of the antenna elements to shine a
concentrated beam simultaneously and in parallel on the same RF channel [47]. In a
typical cellular network design, the approach allows the BS to serve a large number of
cellular devices simultaneously, given that the cells do not overlap. For SM to work well,
the channel must provide sufficient decorrelation between the different closely spaced
antennas [48]. The technique offers multiplexing gain that increases the throughput of

the network by several orders of magnitude. Location information of the cell devices
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can greatly enhance the process, by helping the BS to direct a beam towards the in-
tended users [49]. Moreover, location information will considerably improve the energy
efficiency of the total output RF power of BS by restricting it from radiating towards
unwanted users. This is crucially important as existing infrastructures are subject to

large amount of power consumption.[50].

Jammer Identification

With the widespread use of WCNs and WLANS, the security of wireless communica-
tion has attracted considerable attention. Radio jamming is a technique adopted by
unauthorized users to deliberately block and interrupt wireless channels for authorized
users. It is usually conducted by using a transmitter to transmit at high power, so that
it overrides any signal at the receiver [51]. Radio jamming poses an unacceptable risk to
public safety by potentially preventing the transmission of emergency communications.

Cellular jammers do not distinguish between social or other cell phone conversations
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and an emergency call to a family member or a 911 emergency responder. Similarly,
GPS and Wi-Fi jammers maliciously disrupt both routine and critical communications
services. Jammers could also block more than just cell phone calls; these devices could
disrupt important communications services that operate on adjacent frequencies or,
worse, they could disrupt all communications within a broad frequency range [52]. To
mitigate these challenges, massive MIMO channels are used for directing an antenna
null towards an intended jammer and reducing the chances of a possible network fail-
ure. This is possible due to the availability of large null spaces that can be exploited for
directing a concentrated beam. However, without correctly detecting the geographic
position of the jammer, the process to null-out a jammer is challenging. Moreover,
the position information helps to carry out the location consistency check, that can be

used to differentiate between a legitimate user and a jammer [53, 54].

1.3 Challenges and Objectives

The journey of the localization algorithms initially started by studying the position
of the sun and moon and using their positions to navigate travelers on the ground
and sea with coarse precision. Early technologies were supported by the compass,
that relied on the earth’s magnetic field for navigation purposes. Currently, the most
reputable localization technology, the Global Positioning System (GPS), started its
journey as an aid for the military services. The research was fostered by the Department
of Defence (DoD) of the United States of America (USA) when its first Navigation
System with Timing and Ranging (NAVSTAR) satellite was launched in 1978 [55].
GPS became available for civilian applications in the early 1990s and today almost all
smartphones and automobiles are equipped with this technology. Miniaturization of
chips and low-cost electronics are considered to be the major contributors to escalating
GPS’s popularity. Currently, GPS provides two levels of service: Standard Positioning
Service (SPS) which uses the coarse acquisition (C/A) code on the L1 frequency, and
Precise Positioning Service (PPS) which uses the P(Y) code on both the L1 and L2

frequencies. The PPS service is reserved for military purposes and is restricted for
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civilian use. Among the top GPS performers, users could expect positional accuracies
within approximately 5 m of the true position in open-sky settings, 7 m in young forest
conditions, and 10 m under closed canopies [56]. Apart from the numerous benefits,
GPS technology also has its fair share of drawbacks. The main GPS error source is due
to inaccurate time-keeping by the receiver’s clock. Microwave radio signals traveling
at the speed of light from at least four satellites are used by the receiver’s built-in
computer to calculate its position, altitude, and velocity. Small discrepancies between
the GPS receiver’s onboard clock and GPS time, which synchronizes the whole global
positioning system, mean that distances calculated can drift significantly. Since GPS
technology relies on satellite signals, the received signal is always a distorted version of
the transmitted signal. This is due to reflections, refractions, scattering and shadowing
of the electromagnetic waves by structural obstacles [57]. In cases of heavy distortion
especially in an indoor environment (tunnel, building, etc), pin pointing a user becomes
a difficult task for existing GPS.

According to the CiSCO visual networking index, by the end of 2021, the number
of portable devices that requires an accurate location information will be hitting the
11 billion mark [58]. In reality, equipping each of these devices with a GPS unit is
not a cost-effective solution and requires an extensive revamp of the existing network
infrastructure. In order to cater for the surge of smart devices and to maintain a
reliable connectivity between them, innovative cost-effective positioning systems are
mandatory. The challenges of localization technology in a world of inter-connected
devices are relatively complex. A large number of smart applications are hosted on
these devices that demand for different precision accuracy in order to adapt to a diverse
radio environment. The accuracy and precision requirements for these applications are
quite diversified and range from centimeters in gaming to meters in indoor geo-location,
to tens of meters in turn-by-turn direction, and hundreds of meters for Location Based
Service (LBS) in targeted areas [59]. Some of the open challenges in positioning a

transmitting device are listed as follows [60-63]:

e Positioning a cellular device in crowded environments during outdoor events such

as stadiums, or indoors, such as large lecture halls, is an existing challenge for
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a number of smart-applications environments. GPS is restricted by its limited
accuracy and is not suitable for determining two closely spaced devices with

superior accuracy.

e Indoor localization systems are still in their infancy and are mostly dominated by
the influence of interference, line-of-sight obstructions, and multi-path. The most
commonly used technologies for indoor localization are WiFi, Radio Frequency
Identification (RFID) and Bluetooth, with localization ranges of a few meters.
The aforementioned wireless technologies have a limited signal coverage and only
performs for a short range. Due to degradations of satellite signal strength, GPS

fails miserably in indoor settings.

e Finding cost-efficient positioning systems that can be purchased off the shelf is
another long-standing problem. The products that offer superior accuracy are
either restricted due to government regulation or are beyond the purchase range

of a civilian.

e The requirement of a large number of static nodes or sometimes referred as an-
chor nodes in order to accurately locate a smart device. The number of nodes
significantly increases in indoor scenario compared to outdoor which in many

cases are not a realistic option.

e Another challenge for localization is positioning flying smart robots in indoor and
outdoor areas. 3D localization needed for these flying robots demands accuracy
on the order of the size of these robots to navigate them intelligently without any

crash incident.

Current technologies fail to address the challenges listed above and even if they are
available, they are not cost-effective. A summary of the existing positioning technolo-
gies is listed in Table. 1.3. This gives an indication of the accuracy of these technologies

with their respective disadvantages.



16 INTRODUCTION

Technology | Accuracy Disadvantages.
GPS 6 m - 10 m || slow computation, processing time, susceptible to reflection
Cellular 4m-T7m heavily patented and limited modification
Bluetooth | 8 m - 15 m coverage range is limited
WiFi lm-5m short range, multipath and obstruction from structures
RFID 5m-10m short range, limited coverage

TABLE 1.3: A summary of existing positioning technologies with their respective accuracies
and disadvantages.

1.4 Compressive Sensing: A Solution

To cater for this diverse range of limitations, the solution is required to be robust and
agile, with the intelligence to select suitable techniques that satisfy the needs of the
respective applications. Compressive Sensing (CS) is an emerging technique, that has
created significant hype in the field of signal processing. The technique offers the recon-
struction of a signal using lower sampling rate than the celebrated Nyquist-Shannon
theorem and has attracted considerable interest in research areas of information the-
ory, computer science, image processing, electronics engineer, and acoustics. CS-based
techniques are build upon the framework that many physical quantities are intrinsically
or extrinsically sparse and can be represented by a few nonzero expansion coefficients,
with respect to suitable expansion bases. CS asserts that one can recover a certain
signal from far fewer samples or measurements than traditional methods use. To make
this possible, CS relies on two characteristics: 1) sparsity, which expresses the idea
that the information rate of a continuous signal may be much smaller than suggested

by its bandwidth, and 2) incoherence which pertains to the system modality [64—67].

Despite the ground-breaking success of the CS, its development is thus far focused
on a signal with sparse representation in finite discrete dictionaries. However, in practi-
cal applications such as radar, array processing, and remote sensing, the signals encoun-
tered are specified by a continuous parameter. In order to reduce the computational
complexity, researchers have adopted a procedure of discretizing the continuous param-

eter space into a set of finite grid points. CS relies on a pattern matching technique
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where the observation signal is matched with a predefined finite dictionary matrix,
which is rectangular in shape (i.e, the number of rows are smaller than the number of
columns). While this strategy resulted in significant reduction in sampling rate (lower

than Nyquist-Shannon), discretization has its own set of drawbacks [68-70] -

e The structure of the dictionary matrix is often dictated by the physical properties
of the sensing process (e.g., the laws of wave propagation) as well as by constraints
associated with the respective grid points. As a result, the luxury of selecting a

structured dictionary matrix is limited.

e In cases when the true parameter does not lie on the grid points, the signals
cannot be sparsely represented by a discrete dictionary. This results in a mis-
match between the observed signal and the dictionary matrix that causes the

poor reconstruction of a signal.

e [t is difficult to characterize the performance of discretization using standard com-
pressed sensing analyses. While on one hand, finer discretization introduces high
coherence of signals at the grid points, on the other hand, coarser discretization

leads to insufficient information in the dictionary matrix.

e Although finer grids yield an improvement in signal reconstruction error, very

fine grids often lead to instability in the structure of the dictionary matrix.

e Even at the finest grid resolution, the signal reconstruction error will always be
bounded by the error induced due to grid quantization. As a result, the recon-
struction error will never converge to the theoretical Cramér-Rao lower bound

(CRLB) of signal estimation.

The biggest question is whether it is possible to develop a localization algorithm

taking advantage of the strengths of CS while simultaneously suppressing the respective

drawbacks?
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1.5 Main Contributions

This thesis highlights the innovation of three fundamentally new localization approaches
based on the framework of CS. In this thesis, we consider range-based localization
schemes that include accurately determining the position of a node using the re-
ceived signal strength (RSS) in one case and the direction of arrival/angle of arrival
(DOA/AOA) information another case. Along with the introduction of three funda-
mentally noble localization techniques based on RSS and DOA, the thesis focused on
answering some of the open-ended questions arising from the drawbacks of the known

CS technologies. Some of the key scientific contributions of this thesis are as follows

e A fundamentally new high-resolution DOA estimation algorithm has been pro-
posed. The algorithm has the ability to determine the DOA of an incoming signal
impinging on a antenna array from any possible direction in the range [—m, 7).
Simulation results indicate that the MSE of the estimate is on the theoretical
Cramér-Rao lower bound (CRLB) of DOA estimation. And no other algorithm
can perform better than the CRLB.

e A simple iterative signal processing technique has been proposed that utilizes
the largest two coefficients of the recovered sparse vector using CS technique, to
estimate a DOA that may not be an element of the quantized grid points. The
technique offers an innovative solution to the legacy problem of grid quantization
in CS processing and can be adopted for any estimation algorithm based on CS.
The simplicity and effectiveness of the algorithm are detailed in the convergence

proof for the technique.

e A comparison analysis of the computational complexity of the algorithm is also
presented. It has been shown through extensive simulations that the algorithm
achieves the CRLB using only a single snapshot (i.e, one time instant) of the
incoming signal. On the other hand, traditional DOA-based estimation tech-

niques rely heavily on a large number of snapshots to converge to an accurate
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estimate. Compared to the existing technique, our proposed algorithm has sig-
nificantly lower computational complexity, making it an attractive option for
practical hardware implementation. In addition high performance filtering tech-

niques may be effectively applied to sequences of DOA estimate

e The performance of the proposed algorithm is demonstrated by applying it to two
well-known antenna array geometries, the Uniform Circular Array (UCA) and the
Uniform Linear Array (ULA). For both these antenna geometries, the algorithm
achieved the CRLB performance. The results also suggest that the proposed
technique can be adapted for a wide range of antenna geometries, indicating the

robustness and compatibility of the algorithm.

e For both a UCA and a ULA, an in-depth analysis was carried out to investigate
the impact of different antenna parameters on the performance of the algorithm.
The analysis led to the establishment of a relationship between the number of
antenna elements and the number of discrete grid points that is required for
any CS framework to effectively recover the sparse vector. To the best of our

knowledge, no other paper in the literature has addressed this issue.

e For both the antenna geometries, we analyzed the influence of the approximate
sparsity level of the recovered sparse vector on the MSE performance of the algo-
rithm. Especially for estimating a DOA in between the discrete grid points, the
importance of sparsity level is crucial. It has been illustrated through simulation
results that, in order to accurately detect the DOA of a transmitting source, the
approximate sparsity level of the recovered vector is required to be twice the

number of sources available.

e We present a detailed study on the structure of the dictionary matrices for both
UCA and ULA. Especially for a UCA, the study indicated that antenna param-
eters, such as the number of antenna elements and the inter-element spacing,
play a crucial role in determining the fitness of the dictionary matrices. Based

on the study, we propose a simple but effective way of selecting optimal antenna
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parameters that not only improves the structure of the matrix but also reduces
the DOA estimation error. Some interesting features of UCA geometry have
been discovered in this process that may motivate future theoretical research on
UCA antennas. To the best of our knowledge, there has been no prior literature
on such work and this will undoubtedly be the first dissertation to identify the

significance of this research outcome.

The structure of the dictionary matrices is analyzed from the perspective of a
transform operation. A set of well-known transform operations are integrated
with the aim to study their respective impacts on the dictionary matrices of both
the UCA and the ULA. The research suggests that Discrete Cosine Transform
(DCT) and Discrete Fourier Transform (DFT) performs similarly to the bench-
mark Karhunen-Loeve Transform (KLT). It also highlights that the addition of
a transform operation does not provide any significant improvements to the con-

dition of the dictionary matrices.

A performance comparison between the two antenna geometries UCA and ULA
are presented. The comparison clearly outlines the advantages and disadvantages
of both UCA and ULA when incorporated with a CS-based DOA estimation
algorithm. The simulation results show that, for a restricted angular domain
between [—7/2,7/2), ULA offers a better estimate than UCA. However, when
a UCA with optimal array parameters is considered, the UCA has a superior

performance to the ULA.

A novel multiresolution DOA estimation algorithm based on CS has been pro-
posed that has superior performance compared to the traditional DOA estimation
approaches. The multiresolution approach achieves a reduction in the MSE by
a factor of ten when compared to high-resolution beam scan techniques. It has
also been shown that the algorithm achieves a reduction in computation com-
plexity by a factor of nine when compared to a traditional CS algorithm using

finer resolution.
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e A novel RSS localization algorithm based on a CS platform is described in this
thesis. The proposed technique selectively eliminates sensors such that they are
separated by a minimum geographic distance. The method yields a selective set
of sensors that improve the localization accuracy by 20% and reduces the error by
57% when compared to a random deployment of sensors. The research provides
an in-depth analysis on the impact of different random distribution techniques

on the structure of the dictionary matrix and on the estimation process.

1.6 Organization

This dissertation follows the non-traditional ” Thesis-by-Publication” format which has
been approved by the Macquarie University Higher Degree Research Office. It consists
of a general introduction, background, and a list of my major scientific publications.
The thesis materials are the original texts and graphics of my publications, published

or in review, that have been reformatted to improve readability.

1.6.1 Included in Thesis Dissertation

The thesis dissertation consists of the following publications which are presented in

order from Chapter 3 to Chapter 7 respectively.

e A. Biswas, S. Reisenfeld, ” Highly Accurate Off-Grid Direction of Arrival Estima-

tion using a Novel Iterative Technique,” To be Submitted.

e A. Biswas, S. Reisenfeld, ” A Nowvel Signal Processing Technique to Estimate the
Off-Grid Direction of Arrival using a Uniform Linear Array,” To be Submitted.

e A. Biswas, S. Reisenfeld, ” Performance comparison of a Uniform Circular Array
and Uniform Linear Array using an Iterative Compressive Sensing Framework,”

To be Submitted.

e A. Biswas, S. Reisenfeld, L. Goratti, M. Hedley and Z. Chen, ” Multiresolution
Compressive Sensing algorithm to detect off-grid direction of arrival,” 2016 10th
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International Conference on Signal Processing and Communication Systems (IC-

SPCS), Gold Coast, QLD, 2016, pp. 1-6.

e A. Biswas, S. Reisenfeld, M. Hedley and Z. Chen, ” Effective sensor position-
ing to localize target transmitters in a cognitive radio network”, EAI Endorsed

Transactions on Cognitive Communications, vol. 16, no. 6, pp. 4, 2016.

1.7 Author Contribution

In all the publications listed above, I was responsible for conducting all the major
investigations, analyses, simulations, data processing, drafting and writing. A/Prof.
Sam Reisenfeld, my principal supervisor, has provided invaluable support, guidance
and advice at every stage in generating the publications. He also played a pivotal role
in the process of reviewing the technical content and proofreading all the chapters of
this thesis. Dr Mark Hedley and Dr Zhou Chen from CSIRO supported me through the
investigation of the system model for the last two chapters. Dr Leonardo Goratti from
CREATE-NET was responsible for directing towards the research of DOA estimation
and supported me in proof reading chapter 5. Dr Keith Imrie from Macquarie Univesity
added valuable contributions to the thesis by editing the chapters in order to reduce

inconsistencies and proof reading the content.

1.8 Dissertation Outline

The thesis has been structured as follows

e Chapter 2 provides an overview of the framework of CS. The chapter will high-
light the mathematical model of CS signal-recovery techniques and will provide a
brief summary of the existing CS algorithms in the literature. An analysis of the
construction of dictionary matrix will be presented, followed by the introduction

of quantifiable parameters that will be used to characterize the structure of the
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matrix. A comprehensive review of the literature available on CS-based localiza-
tion and CS-based DOA estimation algorithm will be presented. The literature

will be used to compare some of the key contribution achieved in this dissertation.

e In Chapter 3, we analyze the effect of the proposed algorithm by applying it
to a UCA as the receiving node. The paper focuses on both on-grid and off-
grid DOA estimation cases and describes the iterative algorithm that eliminates
the quantization error in the CS framework and enables the estimation error to
converge to the CRLB using just two iterative operations. The performance of
the algorithm is validated by comparing the MSE with the theoretical CRLB as
well as well-known DOA estimation techniques. Moreover, an analytic approach
is used to evaluate the impact of the antenna parameters of a Uniform Circular
Array (UCA) on the construction of the dictionary matrix. It will be shown
via mathematical analysis as well as through MATLAB simulations that careful
manipulation of antenna parameters can significantly improve the structure of

the dictionary matrix, hence resulting in an accurate estimate.

e In Chapter 4, we apply the proposed high-resolution DOA estimation algorithm
to a ULA as the receiving node. A ULA possesses some unique features in terms
of the construction of the dictionary matrix which are highlighted in details in this
chapter. An MSE performance comparison is presented to validate the effective-
ness of the algorithm when compared with well-known techniques. A relationship
between the number of antenna elements and the number of discrete angular grid
points is established in this paper. The relationship shows a parametric trade-
off between computational complexity and estimation accuracy of the proposed

algorithm.

e Chapter 5 provides a comparison study for the problem of direction-of-arrival
(DOA) estimation using the uniform circular array (UCA) and uniform linear
array (ULA) antenna geometries. The advantages and disadvantages of each of
the antenna geometries are highlighted with respect to being integrated with the

CS-based estimation algorithm. The paper also provides a detailed analysis of
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the structure of the measurement matrices that are constructed using the array
response vector (ARV) for each of the two antenna geometries. The analysis
indicates that careful exploitation of the antenna array parameters of a UCA can
greatly enhance the DOA estimate, eventually leading to a lower MSE than that
of a ULA.

Chapter 6 describes the novel multi-resolution CS-based DOA detection algo-
rithm, which can perform independently of the transmitter being located at a
quantized grid point and uses fewer signal snapshots to detect the incoming DOA.
The algorithm shows the power of the multi-resolution technique in significantly
reducing the computational complexity when compared to traditional CS-based
approaches. Extensive simulation results are presented that shows that the tech-

nique outperforms the high-resolution beam-scan technique by achieving a lower

MSE of the DOA estimate.

Chapter 7 showcases a novel RSS-based localization algorithm built on the frame-
work of CS techniques. The chapter evaluates the ability of different CS based
techniques to determine the location of a node that is positioned at some discrete
geo-location grid points. Two different deployment strategies of sensor nodes are
analyzed and their impact on the localization accuracy is verified via extensive
simulation. The influence of the sensor deployment strategies on the structure of

the dictionary matrix is investigated.

Chapter 8 outlines the conclusion of the dissertation, highlighting the major
findings and innovations of our work. A list of future research directions is also

provided in this chapter.



Literature Review

In this chapter, we aim to provide an overview of the some of the existing estima-
tion techniques while detailing out their respective advantages and disadvantages. The
reader will also be introduced to the theory of Compressive Sensing and different CS-
based schemes that have been highlighted in the literature. In addition to that, a detailed
literature review on various CS-based DOA estimation methods will be presented, mainly
emphasizing on scenarios, where the transmitting source is located in between the grid
points. Finally, the chapter will provide a comparison of our contribution against some

of leading research outcome in this field.
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2.1 Range Measurement

In order to accurately locate a cell user or a wireless node in a network, the details of the

position estimation process, theoretical limits, practical limitations and sources of error

should be well understood. The problem of localization is the process of finding location

information of an unknown transmitting node in a given coordinate system. The

localization process consists of two steps: 1) distance measurement between neighboring

nodes and 2) geometric calculation using the distance measurements to position the

node in a coordinate system. The family of distance measurement technique can be

classified into two categories as follows [71]

e Range based - In range based techniques, the location of a node is computed by

measuring the distance between an unknown node and an Anchor Node (AN),
where ANs are special nodes that are aware of their geographic location in ad-
vance either from GPS or by from Global Position System (GPS) or by virtue of
being manually placed. A signal sometimes known as pilot or beacon is exchanged
between the AN and an unknown node. The physical properties of communica-
tion signal such as timing, directionality or signal strength are being utilized for

estimating the distance.

Range Free - In the range-free cases, there is no need for distance measurement,
as a result they do not rely on having a dedicated AN. With range-free tech-
niques, instead of estimating distances between sensor nodes, other approaches
are used to determine an unknown nodes location at a coarser granularity. These
approaches can be grouped into techniques based on area, hop count, and neigh-
borhood information. Estimation of the distance in range-free techniques is based
on measuring the number of hops between any pairs of the nodes and distance
estimation through numerical or statistical methods using the information con-

cerning the number of connections for each sensor.
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Fig. 2.1: Flowchart detailing the categories of various range-based and range-free
localization techniques.

A flow chart showing different localization approaches is shown in Fig. 2.1. Range-free
localization scheme is outside the scope of this thesis and our proposed algorithm fo-
cuses only range-based techniques. A popular family of range-based distance measure-
ment methods includes the Received Signal Strength (RSS), Time of Arrival (TOA),
Time Difference of Arrival (TDOA) and Angle of Arrival (AOA) or Direction of Arrival
(DOA) [72, 73].

2.1.1 Signal Strength
Received Signal Strength

In a WCN or in a WLAN, a wireless node transmits a radio signal that propagates in
the surrounding of the transmitter. RSS (Received Signal Strength) or RSSI (Received
Signal Strength Indicator) is defined as the voltage measured when a transmitted signal
is being received at the receivers end. The RSS is often measured as power which is
the square of the received voltage. In free space the signal power decays proportionally
to the square of the distance between the transmitter and receiver. Apart from the
decay, a signal traveling between two neighboring nodes also experiences a fast fading

due to multipath and shadowing which is due to the presence of obstacles in the Line
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Fig. 2.2: Degradation of signal power over distance drg.

of Sight (LOS) of the transmitted signal. Ideally, averaging the RSS measurement over
a sufficiently long time interval excludes the effects of multipath fading and shadowing,
which results in a pathloss model. In a typical model, where the transmit power and

pathloss model in known is priori, the received power can be obtained as follows

Pr = Pr — PL(drg) (2.1)

where Pg and Pr are the received and transmitted power respectively measured in dB.
The pathloss model in dB is represented as PL(drr) which is a function of the distance

between the transmitter 7" and the receiver R. The pathloss in dB can be expressed as

d
PL(drg) = K + 10 1og10(dLR) +a, (2.2)
0

where

drg is transmission distance in meters,
dy is the reference distance of the antenna far field,
7 is the propagation loss exponent,

a is the shadowing loss in dB.

k is a unit-less constant that relies on the antenna characteristics and the average
channel attenuation and K = 10log,,(k) [74]. a accounts for the random attenuation

of signal strength due to shadowing, where «, in dB, is a Gaussian random variable with
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zero mean and standard deviation o45 = 5.5 dB. This model was used in [75] for both
multipath and log-normal shadowing characterization. After few steps of mathematical

manipulations the distance can be retrieves as

drr = dol0PLdrr)—K—a)/10n) (2.3)

Error in Measurement

To date, implementations using RSS based approaches have enjoyed a cost advan-
tage by not requiring specialized hardware. This makes RSS-based techniques very
attractive from a cost-performance standpoint to engineers wishing to offer integrated
RSS-based positioning solutions. However, one of the major drawbacks in the anoma-
lies in accurately measuring the true RSS. The radio environment in a WCN or a
WLAN is notoriously unpredictable and changes dynamically for different scenarios
[76]. As a result, claiming to have prior knowledge of the shadowing and multipath
effect is not a realistic assumption. For short range communication and LOS signal
RSS achieves a reasonable estimate, however, it degrades significantly in case of long
range. This is due in part because, in reality, propagation in any cell is far from a
purely circular pattern based on an ideal path loss model [77]. Theoretical RSS models
in their purest form do not provide for the measurement or consideration of variations
seen within actual sites, typically assuming only well-known values for path loss and

shadow fading [78].

2.1.2 Timing
Time of Arrival

Time of Arrival (TOA) systems is based on the precise measurement of the arrival
time of a signal transmitted from a mobile device to several receiving sensors. Because
the transmitted signals travel with a known velocity (approximately the speed of light
¢ = 3 x 10%m/s), the distance between the mobile device and each receiving sensor

can be determined from the elapsed propagation time of the signal traveling between
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Fig. 2.3: Illustration of time delay of a signal when received at receiver placed at
different geographic location.

them. The TOA technique requires very precise knowledge of the transmission start
time(s) and must ensure that all receiving nodes, as well as the transmitted nodes, are
accurately synchronized with a precise time source. Let us consider a transmitter T’
that radiates a signal at time ¢7 that is being received at the receiver R at time tg,
then the time delay due to signal propagation between the transmitter 7" and receiver

R is

trr = tgr — tr, (2.4)

and the transmission distance is calculated as

dTR =c X trpg. (25)
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Time Difference of Arrival

Time synchronizing both receiver R and transmitter 7" may not be a practical option
especially in a scenario where the receiver is in a passive mode. To overcome this
issue, Time Difference of Arrival (TDOA) has been introduced. TDOA techniques are
based on estimating the difference in the arrival times of the signal from the source at
multiple receivers. Because of this, TDOA does not require the use of a synchronized
time source at the point of transmission (i.e. the transmitter) in order to resolve time-
stamps. In TDOA techniques, a transmission with an unknown starting time is received
at various receiving sensors, with only the receivers requiring time synchronization. In
this approach, at least three time-synchronized receiving sensors are required. As
shown in Fig. 2.3 , when a source 7T transmits a signal, the receiving nodes Ry, Rs
and Rj3 receives the signal with time-stamps tg1, tgo and tg3 respectively. The TDOA

of the signal between the receivers R1 and R2 can be expressed as

TDOAR1R2 = tRl - tRZ (26)

and the distance between the receivers can be calculated as

deRQ =cX TDOARlRQ. (27)

The distance equation in 2.7 is used to construct a hyperbola with foci at the locations
of both receiving sensors A and B. This hyperbola represents the locus of all the points
in the x-y plane, the difference of whose distances from the two foci is equal to dgigo
meters. TDOA implementations are rooted upon a mathematical concept known as

hyperbolic lateration which will be discussed in Section 2.2.

Sources of Error

A drawback of the TOA and TDOA approaches is the requirement for precise time
synchronization of all stations. Given the high propagation speeds, very small discrep-

ancies in time synchronization can result in very large errors in location accuracy [79].
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For example, a time measurement error as small as 100 nanoseconds can result in a lo-
calization error of 30 meters. TOA-based positioning solutions are typically challenged
in environments where a large amount of multipath, interference, or noise may exist.
In case of multipath scenarios, the signals arrive very soon after the LOS signal, and
their contributions to the cross-correlation obscure the location of the peak from the
LOS signal which contaminates the time measurements. Moreover, the LOS signal can
be severely attenuated compared to the late-arriving multipath components, causing
it to be embedded inside the noise, causing large positive errors in the TOA estimate

80, 81].

2.1.3 Directionality

Direction of Arrival

The Direction of Arrival (DOA) or Angle of Arrival (AOA) method utilizes the multi-
array antennas to estimate the direction of arrival of the signal of interest. Thus a
single DOA measurement restricts the source location along a line in the estimated
DOA. If at least two such DOA estimates are available from two antennas at two
different locations, the position of the signal source can be located at the intersection
of the lines of bearings from the two antennas. To estimate the DOA, algorithms are
used that exploit the phase differences or other signal characteristics between closely
spaced antenna elements of an antenna array and employ phase-alignment methods
for beam/null steering. The spacing of antenna elements within the antenna array
is typically less than 1/2 wavelength of all received signals [82]. This is required to
produce phase differences on the order of radians or less to avoid ambiguities in the
DOA estimate. The resolution of DOA estimates improves as the baseline distances
between antenna elements increase. However, this improvement is at the expense of
ambiguities. As a result, DOA estimation methods are often used with short baselines
to reduce or eliminate the ambiguities and at other times with long baselines to improve

resolution.
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Antenna Element

Fig. 2.4: A uniform linear array with M elements, where 6 is the azimuth angle of
arrival of the received signal

Let us consider M isotropic antenna elements placed in a straight line with an inter-
element spacing of d = A/2, where \ is the signal wavelength. A travelling plane
wavefront impinges on the antenna elements from some unknown direction . The
incoming wave satisfies the narrowband assumption that the phase difference between
the upper and lower band edges of the propagation across the entire array is small.

The complex output at the antenna array is given as

Xura = Avra(0)Pura +nura, (2.8)

where Xyra is an M x 1 array output vector corrupted with noise. The M x 1
noise vector is represented as mypa where the entries are statistically independent
and Gaussian distributed with zero mean and variance o2, and Py is the complex
envelope of the source at the receiving array. In (2.8), Aypa(f) is the M x 1 array

response vector (ARV) for an incoming plane wave from the direction 6 and is generally
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given as

AULA(Q) = [1 e—Jksin(@)dura ... —jksin(6)(M—1)dyra T (2.9)

The ARVyra in (2.9) represents the relative phases of the received signals at the an-
tenna elements where k = 27 /) is the wavenumber or phase propagation factor. The
aim of this work is to find the incident azimuth angle 6 using the relative phase differ-

ence between the antenna elements. Fig. 2.4 shows the system model.

2.1.4 Source of Error

A common drawback that DOA shares with some of the other techniques mentioned
are its susceptibility to multipath interference. As stated earlier, DOA works well in
situations with a direct line of sight, but suffers from decreased accuracy and precision
when confronted with signal reflections from surrounding objects [83]. For accurate
DOA estimates, it is crucial that the signals coming from the source to the antenna
arrays must be coming from the Line-Of-Sight (LOS) direction. Additionally, the
installation of the array is considerably high and are sometimes not cost-effective.
Another factor is the issue of antenna array element calibration, especially in case of
heavy winds or storms a minute change in the physical arrangement of the array can

cause severe degradation in the DOA estimation [84].

2.2 Geometric Calculation

Positioning a node involves obtaining a range measurement by exploiting some if the
physical parameters of a transmitted signal. This step is followed by geometric calcu-

lation using the range measurements to pin point the position of a transmitting node.
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Fig. 2.5: Trilalterion technique to determine the position of a transmitter given that
the range is measured using TOA or RSS based techniques.

2.2.1 Trilateration

In geometry, trilateration is the process of determining absolute or relative locations of
points by measurement of distances, using the geometry of circles, spheres or triangles.
Fig. 2.5 illustrates the concept of trilateration using the range measurement obtained
using TOA and RSS techniques. In Fig. 2.5 the three receivers R1, R2 and R3 have
measured the distance for the transmitter T to be ry, ro and r3 respectively. Using each
of the calculated distance value a circular plot around the respective receiving sensor is
drawn. From the individual perspective of each receiver, the transmitter T is believed
to reside somewhere along the locus of their respective circular plots. In some cases,
there may be more than one possible solution for the location of mobile device station
T, even when using three remote sensors to perform trilateration. In these cases, four
or more receiving sensors are can be employed to the improve the accuracy of the result

71, 73).
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2.2.2 Hyperbola Intersection

Unlike RSS and TOA techniques, TDOA does not directly provide a range measure-
ment. TDOA implementations are rooted upon a mathematical concept known as
hyperbolic lateration. In this approach, at least three time-synchronized receiving sen-
sors are required. The value of TDOAR;gs can be used to construct a hyperbola with
foci at the locations of both receiving sensors R1 and R2. This hyperbola represents
the locus of all the points in the x-y plane, the difference of whose distances from the
two foci is equal to dgiro meters. Mathematically, this represents all possible locations

of mobile device T such that.

|dTR1 - dTR2| = dR1R2 (21())

The probable location of mobile station T can then be represented by a point along
this hyperbola. To further resolve the location of station T, a third receiving sensor
at location R3 is used to calculate the message time difference of arrival between
sensors R3 and R1. Similarly, one more hyperbola is generated from TDOA gr3. The
intersecting point where these two hyperbolas are used to deduce the position of the

transmitter T [71, 73]. Fig. 2.6 illustrates the hyperbolic lateration.

2.2.3 Triangulation

The Angle of Arrival (AOA) technique, sometimes referred to as Direction of Arrival
(DOA), locates the mobile station by determining the angle of incidence at which sig-
nals arrive at the receiving sensor. Let us consider a transmitter T, with a bearing of 6,
and 6, respectively from the receivers R1 and R2. Assuming the DOA/AOA are mea-
sured accurately at the receivers, geometric relationships can then be used to estimate
location from the intersection of two lines of bearing (LoBs) formed by a radial line to
each receiving sensor, as illustrated in Figure 2-5. In a two-dimensional plane, at least
two receiving sensors are required for location estimation with improved accuracy com-

ing from at least three or more receiving sensors (triangulation). In its purest form that
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Fig. 2.6: The intersection of two hyperbola resulted from the TDOA measurement
between two receivers, to provide the position of transmitter T.

is, (where clear line-of-sight is evident between the mobile device T and receiving phase
array sensors R1 and R2), mechanically-agile directional antennas deployed at the re-
ceiving sensors are adjusted to the point of highest signal strength [71, 73]. Fig. 2.7
illustrates the triangulation process. In practical commercial and military implementa-
tions of DOA, multiple element antenna arrays are used to sample the receiving signal,
thereby eliminating the need for more complex and maintenance-intensive mechanical
antenna systems. Electronic switching can be performed between arrays or portions
of each array, and mathematical computations handled by a background computing

system used to extract the angles of incidence.

2.3 Compressive Sensing

The pioneering work of Nyquist and Shannon on sampling continuous-time band sig-

nals demonstrates that images, videos, and other data can be extracted from a set of
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Fig. 2.7: The intersection point of line of bearing to estimation the position of the
transmitter.

uniformly spaced samples taken at the so-called Nyquist rate of twice the highest fre-
quency present in the signal of interest. Unfortunately, in many emerging applications,
the resulting Nyquist rate is so high that it becomes too costly, or even physically impos-
sible, to build devices capable of acquiring samples at the necessary rate. Thus, despite
extraordinary advances in computational power, the acquisition and processing of sig-
nals in application areas such as imaging, video, medical imaging, remote surveillance,
spectroscopy, and genomic data analysis continue to pose a tremendous challenge. To
address the computational challenges involved in dealing with high dimensional data,
we turn our focus towards compression techniques that aims at finding the most concise
representation of a signal that is able to achieve a feasible level of acceptable distortion.
One of the well-known techniques for signal compression is transform coding, that relies
on obtaining a basis that provides sparse or compressible representation of a signal on
a basis of interest. The sparse representation refers to a signal of length N, that can be
represented with K << N coeflicients. In other words, both sparse and compressible

signals can be represented with high fidelity by preserving only the values and locations
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Fig. 2.8: Framework of Compressive Sensing technique.

of the largest coefficients of the signal. This process is called sparse approximation and
forms the foundation of transform coding schemes that exploit signal sparsity and com-

pressibility, including the JPEG, JPEG2000, MPEG, and MP3 standards.

Compressive Sensing (CS) is a new framework for signal acquisition that enables
a significant reduction in the sampling and computation cost for sensing signals that
have a sparse representation on a given basis. In classical Nyquist-Shannon theorem,
the signal is first sampled at high data rate and then the sampled data is compressed.
While sensing a compressible signal CS relies on finding ways to directly sense the
data in a compressed form and this is the fundamental idea behind CS. The field of
CS gained enormous popularity due to the work of Candes, Romberg, and Tao and of
Donoho, who showed that a finite-dimensional signal having a sparse or compressible
representation can be recovered from a small set of linear, nonadaptive measurements
[85-88]. The design of these measurement schemes and their extensions to practical

data models and acquisition systems are central challenges in the field of CS.

CS differs from classical sampling in three important respects [64, 89],
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e First, sampling theory typically considers infinite length, continuous-time signals.
In contrast, CS is a mathematical theory focused on measuring finite-dimensional

vectors in RV,

e Second, rather than sampling the signal at specific points in time, CS systems
typically acquire measurements in the form of inner products between the signal

and more general test functions.

e Thirdly, the two frameworks differ in the manner in which they deal with signal
recovery, i.e., the problem of recovering the original signal from the compressive
measurements. In the Nyquist-Shannon framework, signal recovery is achieved
through sinc interpolation - a linear process that requires little computation and
has a simple interpretation. In CS, however, signal recovery is typically achieved

using highly nonlinear methods.

2.3.1 Signal Reconstruction

The mathematical framework of CS deals with the recovery of a sparse vector zy«1,
from an observation vector yysx1 with M < N. The measurement paradigm consists
of the linear projection of the signal vector via a known projection matrix ®p;«n. As
M < N, the recovery of a sparse vector x from the measurement vector y becomes
an undetermined problem with an infinite number of solutions. Therefore, in order to
make the solution unique, extra constraints are added to the solution. Sparsity and
incoherence are such conditions that are added in CS theory to ensure the mapping of
the solution from x to y is one-to-one. Mathematically a vector z is k-sparse when it

has a maximum of k non-zero coefficients i.e, such that

Y ={x: ||zl < k}. (2.11)

where ¥ denotes the set of all k-sparse vectors and || e ||y represents the [p-norm. In

the CS framework, an accurate estimation of a sparse vector = can be obtained in the
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following reconstruction problem:
min ||z, st [ly— ®af|, <, (2.12)

where |[|-[|,, is the ,-norm and ¢ bounds the amount of noise in the observation data. ®
is the M x N dictionary matrix that represents a dimensionality reduction, i.e, it maps
a vector in RY into RM, where M is typically much smaller than N. The dictionary
matrix @ is the most crucial element in the CS process as the projection from a high
dimension to a lower dimension is completely dependent on the characteristics of ®.
The biggest theoretical question is to find out a way to efficiently design ® to ensure
that it preserves the information in vector x without distortion. In [64], Candes and
Tao introduced a key notion that has proved to be very useful to study the general

robustness of CS; the so-called Restricted Isometry Property (RIP).

Definition 2.3.1 For each integer k = 1,2.. define the isometry constant 0 of a

matrizc ® as the smallest number such that

(1= d)llzllz < 1213 < (1 + ok)ll=]l3 (2.13)
holds for all k-sparse vector x

A matrix ® obeys the RIP of order £ if 4, is not to close to one. When this property
holds, ® approximately preserves the Euclidean length of k-sparse vectors, which in
turns implies that k-sparse vectors cannot be in the null space of ®. In case the vector
x is in the null space of ®, there may be infinite solutions and it would be impossible
to distinguish a unique solution solely based on the measurement vector y. In other
words, the definition of RIP describes that all subsets of £ columns taken from & are
in fact nearly orthogonal. The isometry condition on a measurement matrix ® has
fundamental implications concerning robustness to noise. The uniqueness of a solution
is also determined by another crucial characteristic of ® commonly known as the the
spark. The spark of a matrix is the smallest number of columns in matrix ¢ that are

linearly independent. So the larger the spark, the bigger the signal space, allowing
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CS to guarantee exact recovery. According to the theory of CS, when & satisfies the
RIP condition in (2.13) and spark(®) > 2K , there is a high probability of successfully
recovering a sparse signal from a noisy measurement [89, 90]. Although spark and
RIP provide guarantees for the recovery of a K-sparse vector, verifying that a matrix
® satisfies any of the above properties has a combinatorial computation complexity,
since (]I\(f) submatrices must be considered. Therefore it is preferable to use a property
of a matrix which is easily computable and provides guarantees of recovery. Mutual
coherence is one such property that has been repeatedly mentioned in CS theory and
has a direct relation to the spark and the RIP property of a dictionary matrix [91, 92].
The mutual coherence of a matrix ®, p(P), is the maximum normalized inner product

between any two columns ¢; and ¢; of ®:

w(®) = max RGOS (2.14)

ai<i<n ||ggl2]| ol

It has been shown in [93] that the mutual coherence of a matrix ® is always bounded
in the range u(®) € [4 /%, ], where the lower bound is known as the Welch
Bound [94, 95]. Note that when N > M the lower bound is approximately equal to
ﬁ' Theorem (1.6) of [89] establishes the following relationship between p(®) and
spark(®):

spark(®) > 1+ ——. (2.15)

By combining (2.15) and the requirement spark(®) > 2K, a condition can be intro-

duced for ® that guarantees uniqueness.

Theorem 2.3.1 (Theorem 1.7 of [89]) For each measurement vector y € R™ there

ezists at most one signal x € Y, such that y = ®x if

). (2.16)
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The Welch bound along with (2.15) provides an upper bound on the level of sparsity
K that guarantees uniqueness using coherence. This is another application of the

Gershgorin circle theorem [96] that connects the mutual coherence to the RIP property.

2.3.2 Singular values of non-square matrix

The Compressive Sensing framework determines the solution of a rectangular matrix
Dprxn, where M < N. Unlike a square matrix, rectangular matrices do not have
eigenvalues and do not appear to possess any quantities of comparable significance.
However, the use of a symmetric, positive semi-definite square Gram matrix @) = ®*®
can be considered and can be formed even if ® is not square. Since @) is a square
matrix, the eigenvalues of () can be related back to quantify the property of the matrix

.

Definition 2.3.2 The singular values pi, ..., pm (arranged in ascending order) of a
m X n matriz ® are the positive square roots, p; = \/o; > 0, of the non-zero eigenvalues

of the associated Gram matriz Q = ®*P.

Since () is necessarily positive semi-definite, the eigenvalues of () are always non-
negative: p; > 0. This justifies the positive singular values of (), which is independent
of the entries of ® being positive, negative or complex. The paper [93], also states the
number of singular values of a matrix is always equals to the rank of the matrix. The
singular values of a matrix play a vital role in providing a geometric interpretation
of the action of the matrix. The magnitudes of the singular values can be used to

distinguish between a well-conditioned matrix and an ll-conditioned matrix.

Definition 2.3.3 The condition number of a non-square of an m X n matrix ® is the

ratio between its largest and smallest singular values: YT (P) = /%

A matrix ® with a very large condition number is said to be ill-conditioned. In partic-

ular, it refers to the rate at which the solution x will change with respect to a change
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in observation y. In the case of an ill-conditioned matrix a small change in y can cause

a significance variation to the solution vector x.

2.4 DOA Estimation via CS

The research in the area DOA estimation techniques were mainly dominated by Mul-
tiple Signal Classification (MUSIC) [97], and Estimation of Signal Parameters via Ro-
tational Invariance Techniques (ESPRIT) [98] and Capon [99]. MUSIC is equivalent
to a large sample realization of the maximum likelihood (ML) method when the sig-
nals are uncorrelated [100], and has a super-resolution compared to beamforming [101]
under certain conditions. On the other hand, its disadvantages are obvious. The per-
formance of MUSIC deteriorates significantly in the scenarios with small number of
snapshots or correlated signals [100]. Sub-spaced based algorithms such as ESPRIT
rely on Eigen-value Decomposition (EVD) of the covariance matrix which comes at the
expense of high computation complexity. Learning-by-example (LBE) approach based
on a support vector machine has been proposed in to estimate DOA of a transmitting
source [102-104]. In LBE techniques DOA estimation problem has been recast to a
probabilistic framework in order to identify a smaller angular region where the presence
of an incoming signal is most probable. LBE approaches enjoys the advantages over
the sub-spaced based scenarios where a prior knowledge of the number of signals may
not be available. While LBE technique is efficient in providing a rough estimate of
DOA, it may not as suitable in an application where super-resolution estimation is a
requirement. Despite the positive and attractive features of LBE, they also require the
evaluation of co-variance matrix similar to MUSIC and ESPRIT which increase the
computational complexity of the algorithm.

To overcome such limitations, sparse signal representation (SSR), an emerging area
in signal processing, has been proposed. Extensive research has been taken in this spe-
cific area [105-108], where the traditional DOA estimation problem is transformed into
an SSR platform by inducing the sparsity condition. Compared to existing parameter

estimation algorithms, sparsity-based DOA estimation techniques may provide some
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advantages, such as being insensitive to source correlation, allowing arbitrary array
geometries, working with a single snapshot, and providing certain guarantees for ob-
taining a global optimum in polynomial time. CS-based techniques rely on discretizing
the continuous angular region into a set of finite number of grid points N. However,
in many practical applications, such as radar and sonar, the incident DOA may not
belong to a subset of the finite number of grid points and can be continuous in angular
space. In general, the actual angle of arrival will not be precisely at one of the N grid
points. This introduces a mismatch between the observation and the dictionary ma-
trix, forcing the estimate to be incorrect. The degradation of estimation performance
in the presence of sensing matrix mismatching is highlighted in algorithms described
in [109, 110]. The authors in [111] also investigate the CS-based DOA estimation in
the presence of sensing model mismatching errors, proving that the performance of CS-
based DOA estimation algorithm degrades dramatically in that case. The results are
further re-iterated in [112] where a joint least-absolute shrinkage and selection operator

(LASSO) algorithm is used to achieve DOA estimation in the presence of mismatching.

Such drawback of CS-based DOA techniques prompted researchers to focus on the
off-grid scenario, where an incoming DOA is between two quantized grid points. One
of the early approaches to solving this problem was to finely quantize the angular
domain. A dense angular grid leads to a high coherence dictionary matrix violates
the Restricted Isometry Property (RIP) condition for the sparse signal recovery [65].
Moreover, a finer quantization implies to a large N which exponentially increases the
computational complexity of the algorithm. To reduce the computational complexity
an adaptive grid-refinement process is proposed in [113, 114]. The process involves a
two-stage strategy where a coarse estimate (closest matched grid point) is obtained
using a finite set of angular grid points, which is then followed up with a refinement
of specific target area around the corresponding estimate. The technique significantly
reduces the computation, however closely placed grid points increase the similarity
between the columns of the dictionary matrix. A large similarity introduces ambiguities

in the estimation process and degrades the performance of the estimator [115, 116].

Sparse Bayesian learning (SBL) is another reputed technique which has been adopted
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for sparse signal recovery in CS. In such cases, the original deterministic problem is
reformulated in its probabilistic counterpart then efficiently solved with the Relevance
Vector Machine(RVM) [117]. The work in [118-122] also introduced Bayesian frame-
work in the DOA estimation problem offering some sophisticated alternatives. The
work in [123] employed a block sparse Bayesian algorithm based on SBL and per-
forms superiorly compared to Bayesian algorithm based on singular value decomposi-
tion (SVD) for DOA estimation based on the off-grid model[124]. The algorithm in
[124] claims to reduce the computational workload of the signal recovery process and
the sensitivity to noise by using the SVD technique. Although the embedded statis-
tical learning theory can be computationally challenging for hardware implementation
and will greatly increase the latency in the estimation process. The author in [125]
investigates the off-grid model for DOA estimation and proposed a sparse total least
squares (STLS) method based on the Gaussian assumption of off-grid distance, which,
however, is not satisfied in the off-grid DOA estimation problem. Although afore-
mentioned techniques are mathematically attractive, the embedded statistical model
of Bayesian algorithm can give rise to challenges in hardware implementation while

greatly increasing the latency in DOA estimation process.

Off-grid DOA estimation techniques using co-prime arrays are proposed by authors
in [112, 126], however, the performance analysis against the theoretical bound was not
included in the simulation. The work presented in [127, 128] adapts the nearest grid
search to obtain a coarse estimate and proposes an expected likelihood (EL) based
approach to reduce the bias due to grid quantization. However, the EL process can be
computationally challenging does not complete elimination of grid bias. The work in
[129] proposes taking centroids of the maximum coefficients of the nearest angular grids
to estimate the off-grid DOA. However, when the coefficients do not appear accurately

on the neighboring grids, the error can be significantly large.

Compared to the prior literature, our novel algorithm provides a signal-processing
solution for high-resolution DOA estimation. The technique offers an innovative solu-
tion to the legacy problem of grid quantization in CS processing and can be adopted

for any estimation algorithm based on CS. The algorithm completely eliminates the
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grid induced quantization error and achieves the Cramér-Rao lower bound (CRLB) of
DOA estimation. The core of the invention is an iterative interpolation technique that
results in an error discriminant which is robust and offers superior accuracy to the prior
techniques. From a computational complexity point of view, our iterative algorithm is
strongly convergent and obtains the final estimate using only a single snapshot of the

incoming signal.
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Highly Accurate Off-Grid Direction of
Arrival Estimation using an Uniform

Circular Array.

3.1 Abstract

Precise estimation of the Direction of Arrival (DOA) of an incoming signal is of critical
importance in determining the location of a transmitting source. Especially in military
and upcoming 5G cellular communication, precise localization of a transmitter can lead
to effective interference mitigation and jammer identification techniques. Compressive
Sensing techniques have been applied in several DOA estimation approaches mainly due

to the advantage of estimating the DOA using a measurement collected at a single time
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instant (i.e. snapshot). However, to integrate the CS framework on a DOA estimation
problem, the incoming DOA is assumed to be sparse in an apriori known basis. The ba-
sis is usually constructed by sampling the angular domain of coverage into finite number
of angular grid points and the incoming DOA is assumed to be exactly aligned on the
quantized grid points. In reality, no physical field is sparse in any apriori known basis.
No matter how finely, the angular domain is sampled, the source DOA may never lie
on the centre of the grid cell and hence introducing a basis mismatch. The mismatch
between the original observation and dictionary matriz constructed using finite grid
points introduces an error induced due to grid quantization. The additional error re-
stricts the estimation error to be on the theoretical Cramér-Rao lower bound (CRLB).
In this paper we analyze the off-grid DOA estimation cases and proposes a fundamen-
tally new, iterative algorithm that eliminates the quantization error in CS framework
and enables the estimation error to converge to the CRLB using just two iterative op-
erations. The performance of the algorithm is validated by comparing with well known
Root-MUSIC and Beam-forming DOA estimation techniques. Results from the simula-
tion suggests that using single snapshot of the incoming signal, the proposed algorithm
outperforms the traditional DOA estimation techniques. Moreover an analytic approach
18 conducted to evaluate the impact of antenna parameters of a Uniform Circular Ar-
ray (UCA) on the construction of the dictionary matriz. It will be shown that with
optimal antenna parameters, the structure of the dictionary matriz can be significantly
improved hence increasing the estimation accuracy. A relationship between the number
of antenna elements and the number angular grid points has been established in this
paper. The relationship shows a systematic trade-off between computational complexity

and estimation accuracy.

3.2 Introduction

The first attempt of Direction Finding (DF) or Direction of Arrival (DOA) estimation
dates back to 1907 and was soon followed by the introduction of phased array anten-

nas in 1919 [130]. Major advances have been made over the decades to improve the
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resolution of DF, however, the underlying concept did not change much. DOA esti-
mation has been an interesting area of research and is widely popular due to several
military applications such as radio communication, radio navigation, sonar and radar
technologies [131-138]. Especially in military environments, accurate DOA estimation
is crucial in the development of Identification, friend or for (IFF) systems. The IFF
systems enable military personnel to identify the bearing and location of unauthorized
aircraft, vehicles or transmitting sources that may aim to destabilize military commu-
nication systems [139]. In radio jamming environments, the determination of the DOA
is critical in producing a null in the receive antenna pattern in the correct direction to

null-out the jammer power [140].

In commercial cellular 4G and 5G networks, a precise transmitter position en-
ables optimal channel and power allocation to maximize frequency reuse in a cellular
communication system. Accurate positioning information allows base stations to spa-
tially differentiate between several users in a network using beam-forming techniques.
Smart antennas or adaptive antennas are widely used for generating several indepen-
dent beams, enabling a variety of users to be spatially multiplexed simultaneously into
the same channel. This results in an uninterrupted communication between users (pri-
mary /secondary), hence increasing the throughput of the overall network in a specific
geographical region [141-143]. Smart antennas provide several advantages over tradi-
tional antennas including increased coverage, improved robustness to multi-path and

resistance towards unwanted interference [144].

Apart from beamforming, smart antennas have the ability to determine an incoming
signal’s DOA from data sampled by the antenna elements. Some of the most celebrated
subspace-based methods such as Multiple Signal Classification (MUSIC) [97] and Esti-
mation of Signal Parameters via Rotational Invariance Techniques (ESPRIT) [98] and
Capon [99] require a large number of signal snapshots for eigenvalue decomposition
(EVD) of the covariance matrix. However in many practical applications, due to pro-
cessing and physical constraints, the number of snapshots of the signal may be limited
to just one. In single-snapshot cases, the EVD-based technique fails due to rank defi-

ciency. To overcome such limitations, sparse signal representation (SSR), an emerging
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area in signal processing, has been proposed. Compressive Sensing (CS) has gained
popularity in signal processing, due to the effectiveness of CS in recovering a sparse
signal with minimal measurements [64]. The technique enables signal reconstruction
by using a sample rate much lower than the normal Nyquist, given that the sample
signal is sparse in some given basis. Several CS integrate techniques are proposed in
[108, 145-147], where the traditional DOA estimate problem is transformed into SSR

platform by inducing the sparsity condition.

Unlike MUSIC and ESPRIT, CS-based methods do not require EVD of the obser-
vation and can offer superior estimates using a single snapshot of the incoming signal.
In CS-based problem formulation, the angular domain of coverage is quantized into
angular grid points of N possible DOAs. The array response vector (ARV) associated
with each of the NV possible DOAs is used to generate a known dictionary matrix. The
number of grid points, IV, in the quantization is greater than the number of antenna
elements, M. Therefore the problem of determining the angle of arrival is represented
as an underdetermined set of equations which maps the signal originating at each grid
point to the set of complex envelope voltage outputs of the antenna elements. However
in many practical applications such as radar and sonar, the incident DOA may not
belong to a subset of the finite grid points and can be continuous in angle space. In
general, the actual angle of arrival will not be precisely at one of the N grid points.
This introduces a mismatch between the observation and the dictionary matrix, forcing
the estimate to be incorrect.

This drawback of CS-based DOA techniques prompted researchers to focus on the
off-grid scenario, where an incoming DOA is between two quantized grid points. One
of the early approaches to solving this problem was to finely quantize the angular do-
main. A dense angular grid leads to a range of problems, including a high correlation
between two adjacent steering vectors, and violation of Restricted Isometry Property
(RIP) of the dictionary matrix [65]. Moreover a finer quantization implies a large N
which exponentially increases the computational complexity of the algorithm. To re-
duce the computational complexity an adaptive grid-refinement process in proposed in

[102, 113, 114]. The process involves obtaining a coarse estimate (closest matched grid
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point) and then refining a specific target area around the corresponding estimate. The
technique significantly reduces the computation, however closely placed grid points
increases similarity between the columns of the dictionary matrix. A large similarity
introduces ambiguities in the estimation process and degrades the performance of the
estimator. The work in [118-120] introduces a Bayesian framework in the DOA esti-
mation problem offering some sophisticated alternatives, however the techniques can
be computationally challenging for practical implementation. In [112, 126] the author
outlines an algorithm to detect an off-grid DOA using co-prime arrays but the perfor-
mance analysis against the theoretical bound was not included.

This work proposes an innovative and fundamentally new approach that provides
a signal processing solution to eliminate the grid induced quantization error in CS-
based DOA estimation techniques. The process enables the algorithm to achieve the
Cramér-Rao lower bound on estimation error and no algorithm can perform better
than the bound. The innovative operation involves the determination of the DOA of
a radio signal using the signal complex voltages obtained at the outputs of antenna
elements configured in a Uniform Circular Array (UCA). The symmetric geometry of
UCA greatly reduces the effect of mutual coupling and offers a wider azimuth angular
coverage than the Uniform Linear Array (ULA) [148]. The problem of determining the
angle of arrival is represented as an underdetermined set of equations which can be
solved using CS to recover a sparse vector. The index corresponding to the dominant
coefficient of the sparse vector is chosen to be the coarse estimate of the incoming
DOA. The work in [127, 128] adapts a similar technique to obtain a coarse estimate
and proposes an expected likelihood (EL) based approach to reduce the bias due to grid
quantization. However, the EL process can be computationally challenging. The work
in [129] proposes taking centroids of the maximum coefficients of the nearest angular
grids to estimate the off-grid DOA. However, when the coefficients does not appear

accurately on the neighboring grids, the error can be significantly large.

The crucial contribution of this paper is an iterative interpolation technique that
results in an error discriminant which is robust and offers superior accuracy compared

to the prior techniques. The error discriminant is obtained by rotating the angular grids
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in both clockwise and anticlockwise directions by a factor of % the grid quantization
interval. The two sets of rotated grid points are used to create two modified dictionary
matrices that are feed into the CS algorithms to obtain two new sparse vectors. This
unique processing results in two scaler magnitude which are the input parameters of the
error discriminant function. The iterative process continues until the error discriminant
is less than some user-defined threshold. At each stage of the iteration, the coarse
estimate is updated with the error discriminant until the stopping criterion is satisfied.
Simulation results suggest that the proposed iterative algorithm is strongly convergent
and the final estimate achieves the theoretical Cramér-Rao lower bound (CRLB) [B.1]
of DOA estimation using just two iterations. In addition to the innovation of the
unique algorithm, the paper also proposes an analysis on the antenna array geometry
of the UCA that enhances the performance of CS-based DOA estimation techniques.
The analysis focuses on the influences of the number of antenna elements and radius
of the UCA on the structure of the dictionary matrix. The results from the analysis
suggest that at an optimal antenna geometry, the similarity between of the columns
of the dictionary is significantly reduced resulting in a superior DOA estimation. The
paper also establishes a relationship between the number of antenna elements (M) and

the number of quantized grid points (V) that is required to achieve the CRLB.

The paper is organized in the following manner. Section 3.3 discusses the back-
ground on CS and parameters to evaluate the structure of the dictionary matrix. Sec-
tions 3.4-3.5 provide the system model. This leads to the development of the proposed
iterative algorithm and architecture is presented in Section 3.6. Analysis and simula-

tion results are presented in 3.7. Section 3.8 provides the conclusions.

3.3 Background

This section provides a overview on compressive sensing and the associated parameter

that are used to analyse the effectiveness of the measurement matrix.
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3.3.1 Compressive sensing

Compressive sensing is a mathematical framework that deals with the recovery of a
sparse vector zyx1, from an observation vector yy;w; with M < N. The measurement
paradigm consists of linear projection of the signal vector via a known projection matrix
Dyvn. As M < N, the recovery of a sparse vector x from the measurement vector
y becomes a undetermined problem with an infinite number of solutions. Therefore,
in order to make the solutions unique, extra constraints are added to the solution.
Sparsity is such a constraint added in CS theory that ensures that the mapping of the
solution from x to y is one-to-one. In the CS framework, an accurate estimation of a

sparse signal z can be obtained in the following reconstruction problem:
min ||z, st [ly— Pafl, < ¢ (3.1)

where |[|-]] , 1s the [,—norm and ¢ bounds the amount of noise in the observation data.
A vector x is said to be K-sparse, if ||z]o = K. In [64], Candés and Tao introduced
the following isometry condition on a measurement matrix ® which has fundamental
implications concerning robustness to noise. The paper states that a matrix ¢ satisfies

Restricted Isometry Property (RIP) of order k, if there exists a 5 € (0,1) such that
(1= d)lllz < @23 < (1+ o) ll3 (3.2)

holds for all k-sparse vectors z. In cases when & satisfies the above condition in
(3.2) and the spark(®) > 2K | there is a high probability of successfully recovering a
sparse signal from a noisy measurement [89, 90]. The spark of a matrix suggest the
smallest number of columns in matrix ® that are linearly independent. So the larger the
spark, the bigger the signal space, allowing CS to guarantee exact recovery. Although
spark and RIP provides guarantees for the recovery of a K-sparse vector, verifying
that a matrix ® satisfies any of the above properties has a combinatorial computation
complexity, since (%) submatrices must be considered. Therefore it is preferable to

use a property of a matrix which is easily computable and provides guarantees of
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recovery. Mutual coherence is one such property that has been repeatedly mentioned
in CS theory and has a direct relation to the spark and the RIP property of a dictionary
matrix [91, 92]. The mutual coherence of a matrix ®, p(®), is the maximum normalized

inner product between any two columns ¢; and ¢; of ®:

w(®) = max RGOS (3.3)

a<i<i<n ||ggl2)| ol

It has been shown in [93], that the mutual coherence of a matrix ® is always bounded
in the range pu(®) € [\/% , 1], where the lower bound is known as the Welch Bound
[94, 95]. Note that when N > M the lower bound is approximately equal to \/LM The
theorem (1.6) of [89] establishes the following relationship between p(®) and spark(®):

spark(®) > 1+ ——. (3.4)

By combining (3.4) and the requirement spark(®) > 2K, we can introduce a condition

of ® that guarantees uniqueness.

Theorem 3.3.1 (Theorem 1.7 of [89]) For each measurement vector y € R™ there

ezists at most one signal x € Y, such that y = @z, if

1 1
K<yt ) (3.5)

The Welch bound along with (3.4) provides an upper bound on the level of sparsity
K that guarantees uniqueness using coherence. This is another application of the

Gershgorin circle theorem [96] that connects the coherence to the RIP property.
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3.3.2 Singular values of non-square matrix

The Compressive sensing framework determines the solution of a rectangular matrix
Drrxn, where M < N. Unlike a square matrix, the rectangular matrices do not have
eigenvalues and do not appear to possess any quantities of comparable significance.
However, the use of a symmetric, positive semi-definite square Gram matrix @) = ¢*®
can be considered and can be formed even if ® is not square. Since () is a square
matrix, the eigenvalues of () can be related back to quantify the property of the matrix

o.

Definition 3.3.1 The singular values py, ..., pm (arranged in ascending order) of a
m x n matriz ® are the positive square roots, p; = \/A; > 0, of the non-zero eigenvalues

of the associated Gram matriz Q = ®*P.

Since () is necessarily positive semi-definite, the eigenvalues of () are always non-
negative: \; > 0. This justifies the positive singular values of (), which is independent
of the entries of ® being positive, negative or complex. The book in [93] states that the
number of singular values of a matrix is always equals to the rank of the matrix. The
singular values of a matrix play a vital role in providing a geometric interpretation
of the action of the matrix. The magnitudes of the singular values can be used to

distinguish between a well-conditioned matrix and an ll-conditioned matrix.

Definition 3.3.2 The condition number of a non-square of a m x n matriz ® is the

ratio between its largest and smallest singular values: T () = /%

A matrix ® with a very large condition number is said to be ill-conditioned. In partic-
ular, it refers to the rate at which the solution x will change with respect to a change
in observation y. In the case of an ill-conditioned matrix, a small change in y can cause

a significance variation to the solution vector x.
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3.4 Problem Formulation

Let us consider a planar array of M isotropic elements equally distributed along a

circular ring of a UCA with radius r and angular separation of 27 /M radians. The

U

17), is the length of the straight line between two

inter-element spacing d = 2r sin(
adjacent antenna elements. The angular positions of the antenna elements of the UCA
are represented by ~y, where ~,, = 2m(m — 1)/M. An electromagnetic plane wave
impinges on the phased antenna array from some unknown DOA with azimuth and
elevation angles 6 and 1 respectively. The azimuth angle 6 is calculated relative to the
x plane and the elevation angle v is calculated relative to the x — y plane as shown
in Fig. 3.1. The incident signal is considered to be narrow-band and impinges on the

antenna elements with equal strength. Under the following assumption, the complex

voltage output of the m!" antenna array can be written as

Uy = 577 (0,7) (3.6)

where

Tm(e’ w) _ e—jbrcos(@—'ym)cos(l/))' (37)

and

s represents the magnitude of the impinging wave,
b is the angular wavenumber (27/)\) ,
Ym is the angular position of the m™ element,

A is the free-space wavelength of the wave.

The angular position of the m' antenna element is calculated relative to the first
element on the UCA ring. The model assumes that the elevation angle, ¢y = 0 and
that all the antenna elements are on the z —y plane. As 1) is constant, for simplicity 7,,
is considered to be a function of the incoming azimuth angle, 6. 7,,(0) represents the

phase shift due to the increased travel distance of the incoming signal from an angle ¢
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Fig. 3.1: A typical UCA with M elements, where 6 and ¢ represent the azimuth and
elevation angles of a received signal.

in reference to the first element of the antenna array while it is being received by the

m'" element of the UCA.

3.5 DOA estimation using Compressive Sensing

This section combines the received open-circuit voltage information at each antenna
element to formulate a sparse-matrix problem, which may be solved using CS tech-
niques to identify the DOA of an unknown target. To incorporate the architecture of
CS into the system model, the entire 27 radian angular domain is uniformly discretized
into N possible DOAs, © = {f,,1 < n < N}, as shown in Fig. 3.1. Considering the
practical implementation of the model, the incoming DOA # can be anywhere in the
range of [—m, 7). In Section 3.3, we established the relationship between the output of
each antenna element and the DOA of the target. In matrix form the output of the

antenna array can be rewritten as
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where
7'1(91) 7'1(62) TI(QN)
0 0 0
$(0) = 72<. 1 72(_ 2) | TQ(.N) (3.9)
(0 () -+ Ta(Oy)

and V = {v,,,1 < m < M} € CM*! is a column vector representing the complex
output at each antenna element of the UCA. The dictionary matrix is represented
as ®(0©) € CM*N_ where each column corresponds to the M-element array response
vector, for an incoming plane wave arriving from the direction 0,. The phase shift

~

Tm(0,,) is calculated using (3.7). The vector S is an N x 1 vector of coefficients, where
sin¢ represents the magnitude of the complex envelope of the wave arriving from O,
The complex voltage outputs of the antenna elements in (3.8) are corrupted with the
additive noise vector 7 € CM*!. The entries of ) are statistically independent and
Gaussian distributed with zero mean and variance o2. The effect of noise on the

output observations can be expressed as
V,=®(0O)S +n. (3.10)

The system defined in (3.10) is an under-determined set of equations, where M < N,
and can be formulated as a CS problem to recover an estimate S of the original sparse

vector S via convex optimization as shown in (3.1). Therefore
S=min ||S|p st ||[Va—®(O)S|, <e (3.11)
SecN

where |[|-||, is the lp-norm and e is the regularization parameter that is being determined
by the noise or quantization level. Since our model assumes a single transmitting
source among the N possible DOAs, the recovered sparse vector will have only one

nonzero element. The index n of the non-zero element refers to the angular grid (6,,)

corresponding to the source DOA.
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3.6 Iterative Compressive Sensing for DOA Esti-

mation

To solve for the problem defined in (3.10), the CS algorithm searches for the n'* column,
¢n, of the dictionary matrix, ® such that [(Vy,¢,)| has the maximum correlation.
The inner-product operation in vector space is represented as |(e, ®)|. The n'* element
of the recovered vector S in (3.10), corresponds to the column ¢, of ®, which is
chosen to be the incoming DOA. The scalar amplitude of the n'* element of S refers
to the correlation coefficient between V,, and ¢,. The DOA of the incoming signal
can be anywhere in the range [—m, 7). For a random DOA, the probability of exact
grid alignment is almost zero. However, it can sometimes be on the angular grid.
In general, the DOA will have some angular separation from a discrete grid point, i.e.
0 = 0, +A0, where (—w/2) < A0 < (w/2) and w = 21/N is the quantized grid interval.
Conventional CS processing as described in (3.11) in Section 3.5 fails to detect the
incoming DOA accurately. As the incoming DOA is between two discrete grid points,
a dictionary mismatch is introduced between the processed observation vector, V,,, and
the measurement matrix, ®. This forces the optimized solution vector, g, to converge
to an incorrect DOA. Instead of searching for the column with maximum correlation,
CS searches for several columns with relatively high correlation coefficients. In a greedy
algorithm such as CoSaMP, the number of columns to search can be pre-defined by

specifying the sparsity of the recovered vector.

One such instance is illustrated in Fig. 3.2, where the CS algorithm is modified to
extract two discrete grid points per source. For an incoming off-grid DOA (shown in
blue), the recovered vector S generates two peaks (shown in red) on the neighboring
discrete grid points 6, and 6,. Since the incoming DOA 6 is closer to 6,, the grid
point corresponding to 0, has a higher amplitude than for 0,. This indicates that
the amplitudes of the grid points are dependent on the relative angular separation of
the original DOA from the respective neighboring grid points. The proposed Iterative
Compressive Sensing based DOA estimation (ICSDOA) algorithm aims to exploit the
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Fig. 3.2: Blue peak indicates original off-grid DOA, whereas red peaks are amplitudes
on the neighboring grid points closest to the original source DOA.

amplitude on the closest grid to estimate the DOA of a source.

The estimation algorithm comprises a two-stage strategy where, at the first stage,
an index corresponding to the maximum complex envelope of the recovered vector is

chosen as a coarse estimate 50, which may be obtained from
Nmae = arg max{|S[n]|} (3.12)

such that
S = SH€1(1CI]1V IISllo s.t. ||[Vn — ®(O)S|l2 < €

and

é(] = @(nmax).

where § is the recovered sparse vector after CS processing on (3.11) and O represents
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Algorithm 1: ICSDOA
Input: V,, ®(0y), 0o, Momaz, 2
Output: Estimate of Original DOA 6,

1 Initialize t = 1

2 Define new measurement matrix ®(0;_1 + §1)2x
s Compute CS to recover vector S;

4 Calculate oy = |§t[nmw]] and 3, = |§t[nmw — 1]
5 Define A®, = (2=01)e

ot +Pe
6 Check

(I) If (JAB| > Q).
Update ©; = (041 + ABOT)ar,
Update 0, = ©y(Nmas)
Updatet=t+1
Repeat Steps 2 to 6

(II) Else
Qest = ét

the set of NV discrete azimuth angular grid points.

At a moderate Signal-to-Noise Ratio (SNR), there is a high probability that the
coarse estimate 50 obtained from the first stage is the quantized grid point closest to

the original incoming DOA. That is, the incoming DOA 6 may be on either side of the

21

~ is the angular grid separation.

coarse estimate 50, ie. € [éo -3, §0+ %), where w =
The first stage is followed by an iterative algorithm in the second stage, which updates
éo at each iteration. In the second stage, the CS operation is carried out once to obtain
an optimized sparse vector S, where t is the number of iterations. The new sparse

vectors is recovered by applying the CS operation to the modified measurement matrix

®(O + $1U)2, where @ is the IV x 1 vector with all elements equal to 1 and, for a vector
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W, (W), is defined as
(W)ar = modulo(W + 7w, 2ru) — mu (3.13)

where (3.13) describes the 27 modulo operation on each of the elements in W. The
process bounds the elements in vector W in the range [—m, 7). The two dominant
coefficients corresponding to the n,,.,, and n,,,, — 1 index of the recovered vector St
are respectively stored as oy and ;. This action is similar to rotating the angular grid
points © by %, in both clockwise and anticlockwise directions. However, by exploiting
the coefficient of the 1,4, and n,,q: — 1 index of St, both a; and S; are obtained using
a single rotation of the grid points. The process significantly reduces the computation
complexity of the algorithm. When «; > f;, it indicates that the original DOA is
greater than the coarse estimate (0 > 6y) whereas when a; < 3, the original DOA is
smaller than the coarse estimate (6 < éo). The process identifies the direction of the
original DOA with respect to the coarse estimate. The scalars a; and (; are used to
obtain a phase error discriminant A©,, which is then used to produce a new set of
grid points and hence an update of the coarse estimate. The iterative algorithm can
be described as follows

Fort=1,2,..., and A©y =0 and Oy = 0O

define
Qr = |St[nmax]| (314)
Bt = |St[kmax” (315)
where
L Nmaz — 17 fOI‘ 2 S Nmaz S N
N, for nypes =1
and

~ w
S; = min ||S 1. [|[Va = ®(O_1 + ZU)2xS]|2 <
¢ Sftfé}CnNH tlo st |l (©-1 + 2“)2 tll2 <€



3.6 ITERATIVE COMPRESSIVE SENSING FOR DOA ESTIMATION 65

ap — B\ w
AO,; = — 3.16
' (Oét + 515) 2 ( )
C"‘)t - (915—1 —|— A@tﬂ>27r (317)
ét = @t(nmaz) (318)

At each iteration, AO; from (3.16) is used to update 6, in (3.17) to produce a new set of
quantized grid points. A new measurement matrix is constructed at each iteration using
the updated ©,, and the iteration continues. The stopping criterion of the algorithm is
determined by a user-defined threshold €2, such that |A©,| < Q. A complete sequential
breakdown of the algorithm is given in Algorithm 1.

3.6.1 Convergence of ICSDOA

Suppose that p(f) is an angular discriminant function such that

0o = p(0)

where 6 is the actual angle of arrival in the noiseless case and fo is the coarse estimate.

Therefore
ep =0 — P(H)
01 = 0y + pleo) = 0o + pl0 — p(0)]
e = 0 — él =0 — éo —p[@—p(e)] = €p _p(BO)

v

52 = 51 +pler) = 51 + pl0 — 0]
€2 29—52 29—51 —p[9—§1] = €1 —P(el)
ékfl = ék72 + pleg—2) = 51%2 + pl — ékd]

ep—1 =0 — ékq =0 ékd - p[9 - ékﬂ] = €k—2 — p(ekq)
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Fig. 3.3: The error discriminant as a function of the difference between the incoming
DOA @ and the updated estimate at each iteration 6;_;. The figure illustrates the
result for no noise case.

In general, for k =1,2,....
ék = ékfl + pl0 — ékfl]

er=0—0,=0—0k_y—pl0 — 1]

It follows by induction that,

€k = €k—1 — p(ek—1)

Theorem 3.6.1 Let p(e) be a continuous function, with p(e) = 0 fore = 0. Fore > 0,
0 <ple) <eand fore <0, e <ple) <O0. Let ey, (for k=1,2,3...) be a real sequence
such that ey, = ex—1 — p(ex—1), then

lim € — 0
k—o00
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Fig. 3.4: The error discriminant as a function of the difference between the incoming
DOA 6 and the updated estimate at each iteration 8, _;.The figure illustrates the result
for SNR = 15 dB .

and the convergence is monotonic.

Proof :
Case : 1
€y > 0
€1 = ¢ — p(eo)
Therefore,

0<e <eg
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In general,

€k = €k—1 — p(ekfl)

Therefore,
0<e, <ep_q
and
lim e, = 0.
k—o0
Case : 2
eg <0
er = eo — p(eg)
Therefore,
eg <ep <0
In general,
€ = €k—1 — p(ek—l)
Therefore,

ep_1 <ep <0
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and

lim e, = 0.

k—o00
Theorem 3.6.2 Let p(e) be a continuous function, with p(0) = 0. Fore > 0, e <
ple) < 2e and for e <0, 2e < p(e) < e. Let e, (for k =1,2,3...) be a real sequence

such that ey, = ex—1 — p(ex—1), then

lim e, = 0.
k—o0
Proof :
Case : 1
€y > 0
€1 = €y — p(eo)
Therefore,

—ep < e <0

€y = €1 — p(el)

0<ey < —ey

In general, if k is even,
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—er < €py1 < 0

if k is odd,
0< Crtr1 < —€
Therefore
lim |ex| = 0.
k—o00
and
lim e, = 0.
k—o00
Case : 2
ep <0
e1 = ep — pleo)
Therefore,

0<e < —e

€2 = €1 _p<el)
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—e1 < ey <0

In general, if k is even,

0< Crt+1 < —€

if £ is odd,
—ep <epp1 <0
Therefore
g e =0
and

lim e, = 0.
k—o00

3.7 Simulation and Analysis

In this section, detailed analysis and extensive simulations are carried out to validate
and verify the effectiveness of the proposed algorithm in estimation the DOA of a
transmitter. Additionally, the impact of various operating parameters such as number
of antenna elements, number of angular grid points on the performance of the algorithm

is also presented in this section.
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3.7.1 SNR and Performance Parameter

The Signal to Noise (SNR) at the antenna elements has a significant impact on the
DOA estimation accuracy of a transmitting source. In order to determine the robust-
ness of the proposed ICSDOA algorithm, the following noise sensitivity test has been
considered. The SNR is calculated at the receiver as the ratio of the sum of the received
power at m antenna elements to o2, where o2 is the variance of the complex Gaussian

noise. The measured data are characterized by SNR in dB, defined as

M 2
SNRyp = 10logy, [M (3.19)

Mo?

where v,,, m = 1,...M, is the noiseless complex voltage observation at each antenna
element. To validate that the algorithm has the same performance for any given angle
of arrival, U different incoming DOAs are selected from a uniform distribution in the
range [—m,m). For statistical consistency, I Monte Carlo trials are carried out. The
results in this section aim to validate the effect of noise sensitivity of the proposed
algorithm in determining the actual incoming DOA of a signal. Compressive Sampling
Matching Pursuit (CoSaMP) has been used as the platform for the CS operation. The
Performance parameter of the algorithm is characterized as the Mean Square Error

(MSE), where MSE is defined as

2

U I
MSE = Zu:l Zi:l ‘eorg,vm - eest,u,i

5 (3.20)

where 0,4, is the original DOA of the source and 0.5, is the DOA of the source
estimated for the u scenario and the i Monte Carlo trial. The MSE of the proposed

algorithm will be compared with the Cramér-Rao lower bound, given in [149] as

0.2

LB >
CRLB 2 Mb2r2’

(3.21)

where M, b and r are defined in Section 3.4. The expression of CRLB in (3.21) shows

that the error variance is independent of the incoming DOA and is only dependent on
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M and r of the UCA. CRLB will be used as a benchmark in the following simulation
to validate the effectiveness of the model in recovering an accurate estimate of the
original sparse vector. An estimator achieving the CRLB is considered to be efficient
and it is not possible for any estimator to perform better than the theoretical CRLB.
A detailed derivation of the CRLB is presented in Appendix B.1.

3.7.2 Sparse Vector Coefficients

The process of obtaining the coarse estimate involves finding the index of the sparse
vector corresponding to the maximum magnitude as shown in (3.12). The sparse vec-
tor, S, is an output of the CS processing on the measurement matrix ® and the noisy
observations V. Greedy CS algorithms such as CoSaMP [67] use the approximate
sparsity level, [ and € as an input in estimating S. The greedy algorithms have the
ability to output an optimized solution vector while satisfying the sparsity requirement
of a user. On the other hand, the L1-optimization algorithm such as Basis-Pursuit [65]
does not take the sparsity level, [ as an input. This causes the solution vector S recov-
ered using L1-optimization techniques to have a large number of non-zero elements. In
the proposed ICSDOA algorithm, the non-zero element of S refers to an estimate of the
possible incoming DOA. A solution vector with a large number of non-zero elements
will introduce ambiguity in the estimation process, hence degrading the accuracy of the
estimation. In this simulation, the approximate sparsity [ of the solution vector S will
be varied to observe the impact on the MSE performance of the ICSDOA algorithm.
In Section 3.6, the second stage of the algorithm generates the error discriminant,
A©O which is then used to update the coarse estimate. The error discriminant function
uses the inputs a and § which are the respective magnitudes of the complex envelopes
corresponding to the index representing the coarse estimate. The magnitudes are
obtained by rotating the angular grid points © in both the clockwise and anticlockwise
direction by a grid interval of w/2. The results in Fig. 3.5 and Table. 3.1 illustrates
the impact of [ on the generation of a and S and the output of A©. The simulation
uses CoSaMP CS algorithm to recover the sparse vector. The approximate sparsity of

S will be varied in the range [ € [1,3]. The UCA geometry is constructed with M =9
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antenna elements uniformly placed around a ring and an inter-element spacing of \/2.
The signal to noise ratio is kept constant at 20 dB. A signal is assumed to be impinging

on the UCA from a 8 = 26.67°.
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Fig. 3.5: Output of o and [ with respect to varying sparsity of the recovered vector.

The plots in Fig. 3.5 shows the effect of [ on the output of o and 3. The z-axis is
the quantized grid points representing the incoming DOA in degrees and the vertical
axis is the corresponding magnitudes of o and . The coarse estimate, 0y = 26° is
the quantized grid point closest to the incoming DOA, § = 26.67°. For [ = 1 and 2,
« > 3, which indicates that 6 > éo and is true for the test case. However in case
[l =3, a < [ and as a result, the estimate is deviating away from the original DOA.
For the 3 different cases of [, the error discriminant A® is calculated using (3.16). The
value of the error discriminant has been calculated using the first iterative operation
of the ICSDOA algorithm. The result presented in the tables are in degrees. The

results in Table. 3.1, show the error discriminant calculated using the sparsity level
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Sparsity || Initial Estimate | Error Discriminant || Final Estimate.
l1=1 26 1 27
1=2 26 0.423 26.423
1=3 28 —0.381 27.62

TABLE 3.1: Error discriminant calculated in degrees for varying sparsity level of the
CoSaMP algorithm

[ = 2 enables the ICSDOA to achieve an estimate with minimum error. The 2nd
best performance case is when the sparsity level is [ = 1. It can also be referred as
nearest quantized grid estimation. The worst performance among the three different
sparsity is [ = 3. In case of [ = 3, the off-grid incoming DOA is approximated using 3
dominant coefficients causing ambiguity in the estimation process. The result reiterates
the fact that, to estimate any incoming DOA in between grid points, the sparsity of

the recovered vector S should be set to 2.

To further validate the results presented in Fig. 3.5 and Table. 3.1, an MSE
performance test was carried out by varying the SNR from -10 dB to 25 dB. A number
of incoming DOAs are considered, selected from a uniform distribution. The MSE of
the proposed algorithm is then compared with the theoretical CRLB for estimation
accuracy. For this simulation, the number of Monte Carlo runs is set to be 1000.
The results in Fig. 3.6 reiterate the prior analysis on the sparsity level of CoSaMP
algorithm. The red plot representing [ = 2 is the best performing among them and
achieves the theoretical CRLB for SNR(dB) > 7. Although all three plots approach
the bound for SNR = 6 dB, the plots for [ = 1 and [ = 3 deviate away from the bound
for higher SNR. It can be concluded from the analysis that, the error discriminant
function converges to the original estimate rapidly, especially when the approximate

sparsity level for the recovery vector S is set to be twice the number of sources detected.
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Fig. 3.6: MSE performance of the proposed algorithm with respect to varying sparsity
level of the CoSaMP algorithm.

3.7.3 Number of Antenna Elements

The construction of the measurement matrix has a significant influence on the MSE
performance of the proposed algorithm. As discussed in Section 3.3.1, for a measure-
ment matrix to guarantee a unique solution via CS, both p and T should have the
smallest value in order to satisfy the RIP property. This section analyses the influence
of the number of antenna elements M and the radius of the UCA r in the construction

of a measurement matrix.

In the first simulation, the mutual coherence of ® is calculated by varying M and
r in the ranges [6,21] and [\, 10A] respectively. A contour plot is presented in Fig. 3.7
to show the impact of varying M and r on the mutual coherence of the measurement
matrix ®. The angular region in the range [—m, ) is quantized into N = 180 grid points

with w = 27/N. A red dotted line is drawn through the contour plot to distinguish the
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Fig. 3.7: A contour plot showing the mutual coherence of ® for varying M and r.

effect of an even number of antenna elements as a function of radius. It is evident from
the plot that, for » < 2\, the mutual coherence of ® is on the higher side for all M.
However, for r > 2\, u(®) has a sharper drop for odd M than even M. According to
prior research on ULA [127], an increase in M causes the rank of ® to increase, which
influences ® to achieve a lower mutual coherence. However, an interesting observation
is presented for the case of a UCA. The complex output of an antenna element can be

expressed as in (3.7) such that
UV = Sinch(e,’L/J) _ since—jbrcos(é?—'ym)cos('z/))‘ (322)

Considering s = 1 and h = brcos(v)), using trigonometric identities (3.22) can be
written as

U = cos(hcos(0 — i) — gsin(hcos(f — ). (3.23)
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In (3.23), cos(d — 7y,) can be rewritten as
cos(0 — vm) = cos(#)cos(Vm) + sin(f)sin(v,,). (3.24)

Due to circular symmetry in the UCA, for an even number of antenna elements M,

v1 =0 and Yuy, =T as a result for any incoming DOA ¢
cos(0 — ) = —cos(0 — V%H) (3.25)

then
vl = v (3.26)

The centro-symmetric property of the UCA with even M causes the steering vector to
have indistinguishable observations and reduces the dimensionality of ®. This forces
® to have a higher mutual coherence, especially when constructed with even M. The
centro-symmetric nature of the UCA has been adopted in several DOA estimation
techniques to reduce computation [150][151], however, in CS-based methods, the sim-
ilarity in observations has an adverse effect on the DOA estimation. To illustrate the
impact of odd and even number of antenna elements, the minimum p(®) for M = 11 is
compared with M = 12. It can be seen that with 11 antenna elements p(®) is reduced
by a factor of 10. In other words, it suggests that when an odd number of elements
are used to construct ® with r > 2\, the mutual coherence between the steering vec-
tors for two distinct DOAs can be significantly minimized. This also indicates that a
UCA constructed with an odd number of elements reduces the ambiguity among two
incoming DOAs. Additionally, the contour plot also suggests that a UCA constructed

using odd M with r > 2\, yields lower mutual coherence for ®.

3.7.4 Radius of UCA

Conventional theory on antenna design [82] suggests having an inter-element separation

d e [%, A] between the antenna elements to avoid ambiguity between the steering vectors
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Fig. 3.8: Variation of p(®) and Y(®) with respect to changes in r for M = 11

of distinct DOAs. For d < %, the effect of mutual coupling becomes dominant, whereas
for d > X grating lobes are introduced, which splits the main beam into several side
beams reducing the efficiency of beam-forming. The inter-element spacing d = % has
been used as an optimum separation to perform a trade-off between mutual coupling
and grating lobes. However, the expression of CRLB in (3.21) suggests that the variance
of an unbiased estimator is inversely proportional to the square of the radius. This
means an increase in radius will cause the CRLB to decrease significantly. The contour
plot of p(®) in Fig. 3.7 and the expression of CRLB in (3.21) influenced further
research to look for an optimum radius of UCA that enhances the MSE performance

of the proposed algorithm.

Let /2 be the radius of a UCA with M elements such that the inter-element

A2

spacing d, between the elements is restricted to A\/2. The expression of r*/* is derived
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r(A)

Fig. 3.9: Variation of p(®) and Y (®) with respect to changes in r for M = 13
from the definition of d = A\/2 in Section 3.3 as

A
Mo 3.27
" 4sin({7) (3:27)
For each M € [6,21] , r*? is calculated using (3.27) and is found to be in the range
[A/2,2)). From the contour plot in Fig. 3.7 it is evident that pu(®) associated with
rM2 € [\/2,2)) is relatively high compared to u(®) for » > 2X. To gain a deeper
understanding into the array geometry further analysis is carried out to observe the

influence of r on the structure of ®.

From this point onwards the analysis will be restricted to an odd number of antenna
elements. Two UCA cases have been considered where the geometry consists of M =
11 and 13 antenna elements respectively. For each case r is varied between 0.5\ and
10\ with an increment of 0.5\. The physical size of the antenna array is a practical

constraint in terms of implementation, the array analysis has been restricted to r < 10\.



3.7 SIMULATION AND ANALYSIS 81

The graphs in Fig. 3.8 and 3.9 show the variation in YT (®) and p(®) with respect to a
varying radius of UCA. The red arrow in the graphs in Fig. 3.8 and 3.9 indicate /2,
where the inter-element spacing is restricted to A/2. On the other hand, a black arrow
has been drawn to indicate the radius point on the graph such that both the T(®) and
the pu(®) are simultaneously minimized. In cases of M = 11 and 13, the radius appears
to be at 5A and 6A. When the plot for M = 11 is considered, it can be seen that,
at the radius point (indicated by black arrow), both T(®) and u(®) are reduced by a
factor of 12 and 20 respectively compared to 7*/2. The sharp drop of T(®) and pu(®)
greatly improves the matrix structure, enabling CS algorithms to take full advantage
of the independent columns in generating an accurate and unique solution. From the
analysis, it can be concluded that both T(®) and p(®) should be used in conjunction to
determine the appropriate radius for CS processing. The optimum radius, represented
as rPTis the point where Y(®) as well as u(®) are simultaneously minimized. The
optimum radius is chosen such that the RIP property of the dictionary matrix & is
preserved. This allows ® to ensure maximum incoherence between the columns and

efficient utilization of the vector space.

OPT

To validate the effectiveness of the optimum radius, r , an MSE performance

comparison has been carried out against the theoretical CRLB. To provide accurate
statistical validation of the simulation results, 10 different DOAs are randomly selected
from a uniform distribution in the range [—m, 7). For each DOA, 1000 Monte Carlo
trials are carried out. Two graphs are presented in Fig. 3.10 and 3.11, that illustrate the

effect of external noise on the performance of two UCA geometries when constructed

A/2 OPT

with a radius r/“ and r respectively. Fig. 3.10 shows the MSE performance of a

UCA with 11 antenna elements and Fig. 3.11 shows the performance of a UCA with 13

elements. In both cases, it can be observed that the UCAs constructed with radius 7

approach their respective CRLB for SNR > 7 dB. The results also strongly support the
prior analysis on selecting an optimum radius, r°"7 > r*?2 such that the structure of

PT

® can be enhanced. The reduction in u(®) for r97T enabled the measurement matrix

to achieve the theoretical CRLB, hence increasing the DOA estimation accuracy by 15
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dB. However, a UCA constructed with r*/2 also achieved the CRLB for SNR > 5 dB
and stays on the bound for higher SNR. In the SNR region between 0 dB and 7 dB,
UCA with /2 provides a better MSE performance than with r®7. The results show
a systematic trade-off between the size of the antenna and the estimation performance
of the UCA. When 7°FT is used as the radius of a UCA with M = 13 elements, the
area of the UCA is increased by a factor of 25, whereas the estimation accuracy is

improved by 16 dB.

3.7.5 Angular Grid Quantization

One of the integral parameters used in the construction of the measurement matrix ®
is the quantized angular grid points, ©. The set of angular grid points is dependent
on the quantization interval, w = 27w /N, that is on N. This section analyses the

robustness of the proposed algorithm against a varying number of grid points, N. For
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Fig. 3.11: MSE performance of UCA with M = 13 and radius /2 and 97

the analysis in this section the radius of the UCA will be such that the inter-element
spacing between the antenna elements is A\/2. For this simulation, two different UCA
geometries are considered with varying M € (9, 13]. A signal is impinging on the UCAs
from an incoming DOA of # = 0.99 radians. To provide a statistical validation, 1000
Monte Carlo runs are carried out. An Error Ratio (ER) is introduced as a performance

parameter for this simulation such that

CRLB (3.28)

MSE
Error Ratio (dB) = 10log,, ( ) .
The Error Ratio is the ratio of the MSE of the estimate against the respective theoret-
ical CRLB error of the UCA geometries. It provides an indication of the performance
difference between the estimation error and the CRLB error on a dB scale. In Fig.
3.12, the plots for two UCA geometries are presented and they show the change in ER

with respect to a varying number of grid points. Both the UCA geometries perform in
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Fig. 3.12: Error Ratio of the two antenna geometries as a function of the number of
angular grid points.

a similar fashion, where the ER decreases monotonically for increasing N. This means
that, with finer quantization of the 27 angular domain, ER is close to zero and the
MSE is on the CRLB. However, with coarser quantization of the 27 angular region
(i,e. N < 90), UCA-9 has a lower ER than UCA-13. At N = 90, the ER for UCA-13
is twice that of UCA-9. The result from the analysis suggests that UCAs with smaller
M are more robust to the variation in quantization level than UCA with larger M.
The expression of CRLB in (3.21) suggests that the error variance decreases with
an increase in M. However, the results in Fig. 3.12 indicate that, at coarser quantiza-
tion of the angular region, MSE increases with M. To further investigate the effect of
N, the phase response of the UCA geometries are calculated for any incoming DOA,
with @ in the range [—m, 7). The phase response for a UCA with M antenna elements

corresponding to an incoming DOA, 0, is f(#) given as
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Fig. 3.13: Phase response of UCA-9 for varying number of angular grid points.

f(0) = arg(AF), (3.29)
where
M
AF =)~ emitreost0m) (3.30)
m=1

The expression of 7, is given in Section 3.4 that indicates the position of the m!"
antenna element relative to the 1% element of the UCA. Fig. 3.13 and 3.14 shows two
graphs for each of the respective UCA geometries. The graphs have several sub-graphs
showing the influence of varying quantization level (i.e, N) on f(f). The number
of peaks that appears for each of the antenna geometries is M — 2 and is directly
dependent on M [82]. So, for a UCA with larger M, the f(0) changes more frequently
than with a smaller M. In such cases, when the angular region is coarsely quantized,
the consistency of f(0) is effected. Especially in the case of UCA-13, the change in
shape of f(f) remains consistent up until N = 90 and changes sharply for N = 45.
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Fig. 3.14: Phase response of UCA-13 for varying number of angular grid points.

This can be associated to the under-sampling of the 27 angular region. At N = 45,
there are not sufficient samples to reconstruct the entire region of angular coverage. As
a result, the CS processing on the measurement matrix ® fails to resolve the incoming
DOA accurately. It can concluded from the results that there is systematic trade-off
between the number of antenna elements and the required number of grid quantization
points. For a UCA geometry with large M a finer quantization of the angular region

is required in order to achieve its respective CRLB.

3.7.6 Transform Operation

The transform operation or sparsifying basis helps to de-correlate the columns of the

measurement matrix, allowing CS to maximize the utilization of the column space. A
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popular family of transform matrices are the Karhunen-Loeve Transform (KLT), Dis-
crete Cosine Transform (DCT), Discrete Fourier Transform (DFT), Orthogonal trans-
form [129, 152—154]. Although KLT is used as a benchmark to judge the performance,
the dependency of KLT on measurement makes it computationally more expensive.
DFT, on the other hand, is based on a fixed support set but the complex entries of a
DFT matrix can significantly alter the information of a complex measurement matrix.
The entries of a DCT matrix are real and provide excellent de-correlation and energy
compaction properties. A data-processing technique has been adopted in [129] to de-
correlate the rows, which are the observations of the complex open-circuit voltages

from N angular grid points. Let X be the processing operator
X=Y®" (3.31)

where Y = (H*®) and the M x M transform matrix is represented as H, where H* is
the conjugate transpose of H . In (3.31) ®* is the Moore-Penrose pseudoinverse of a

matrix ®. Applying the operator X on both sides of (3.31) yields

Y&V, =Y® ' dS+Y®'n

V =B(©)S+E. (3.32)

After the data processing, V = Y®1V,, is the noisy processed observation vector and
B = Y®'™® is the processed measurement matrix. The noise vector E is the new
processed measurement noise. The modified system in (3.32) can also be cast into
CS framework similar to (3.11) to recover the sparse S vector. The iterative process
described in Section 3.6 can be used to estimate the DOA of an incoming signal.
This section details the impact of various transform matrices in estimating the
incoming DOA. The simulation is carried out with a UCA geometry using M = 9
antenna elements with an inter-element spacing of d = A/2. The angular domain in

the range [—m, 7) is quantized into N = 180 grid points with grid interval w = 27/180.
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Fig. 3.15: The impact of various transform operations on the MSE performance of the
proposed algorithm.

To illustrate the robustness of the algorithm, 100 DOAs are taken randomly from a
uniform distribution in the range [—m, 7). For each scenario, 1000 Monte Carlo trials
are carried out to provide a statistical validation. The MSE performance of each
transform is compared to the theoretical CRLB. The legend NO-TRANS represents
the case where the sparse vector is recovered using (3.11) without the influence of
any transform operation. The ORTH legend indicates the traditional Gram-Schmidt
Transform. It is clear from the graph that, the plots for KLT, DCT and NO-TRANS
are performing extremely close to the CRLB with DCT slightly better than both KLT
and NO-TRANS. Although ORTH performs better than DFT, it fails to reach the mark
of higher performing transforms. This gives a clear indication that the inclusion of the
transform operation does not offer any significant advantages in improving the DOA
estimate. To reduce the computational complexity of the algorithm, the transform

operations can be avoided for further simulations.
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Fig. 3.16: Plots showing the fast convergence of the proposed algorithm. The MSE
result for each iteration is compared to the theoretical bound.

3.7.7 Fast Convergence of Proposed algorithm

This section graphically illustrates the fast convergence of the proposed algorithm. For
this simulation, a UCA geometry is considered as a receiving node with M = 9 antenna
elements with radius r = r*/? (i.e, inter-element spacing d = A/2). The simulations are
carried out with U = 100 different DOAs randomly selected from a uniform random
distribution in the range [—m, 7). For each DOA, I = 1000 Monte Carlo runs are
carried out to provide a statistical validation. The spatial angular domain in the range
[—m, m) is quantized into N = 180 angular grid points with a quantization interval of
w = 27 /180. The SNR is varied between -10 dB and 25 dB with an interval of 1 dB.
The first set of simulations aims to demonstrate the ability of the proposed algorithm
to approach the theoretical CRLB using just a few iterations. In Fig. 3.16 the y-axis
and the x-axis represent the MSE and SNR in dB respectively. Four different plots
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are presented in Fig. 3.16, where the purple plot refers to the coarse estimate that
was obtained using (3.12). The coarse estimate indicates the quantized grid point that
is closest to the original incoming DOA. The green plot represents the MSE of the
estimate obtained using the 1st iteration of the ICSDOA algorithm and the red plot
indicates the MSE of the estimate using the 2nd iteration. As the plots for both the
iterations are extremely similar, a magnified version of the plots is presented inside
Fig. 3.16 to provide a better visualization. For low SNR cases (i.e. SNR < 5 dB),
the MSE of all the three plots are relatively much higher than the CRLB. This is can
be associated with an inaccurate coarse estimate due to noise causing inaccurate peak
values in the CS processing. At low SNR, the CS algorithm fails to obtain an accurate
match to the closest grid points and as a result, further iterations of the algorithm
do not converge to an accurate estimate. A steep drop in the estimation error for all
three plots can be observed for SNR > 6 dB. The Coarse-Estimate plot deviates from
the CRLB at high SNR, due to errors induced due to grid quantization. However,
the plots for the 1st and 2nd iterations approach the CRLB and performs close to
the bound. The difference in MSE performance between the iterative operations are
extremely small. This indicates the fast convergence of the proposed algorithm towards

the bound using just two iterations.

3.7.8 DOA Estimation Performance Comparison

An MSE performance comparison of the proposed ICSDOA algorithm against the
Beam-Forming and Root-MUSIC DOA estimation techniques are presented in the fol-
lowing simulations. Root-MUSIC is a modified version of the traditional MUSIC DOA
estimation technique and offers superior MSE performance with a relatively large num-
ber of snapshots. The Beam-Forming technique, on the other hand, relies on a scanning
procedure to estimate a DOA with maximum signal strength and is dependent on the
grid quantization of the angular domain. In order to maintain consistency among all
three techniques, the simulation will be carried out using a single time instant (i.e.

snapshot = 1). Two sets of simulations are considered, where the UCA geometries are
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Fig. 3.17: MSE performance comparison of the proposed algorithm against benchmark
DOA techniques such as Root-MUSIC and Beam-Forming. The radius of the UCA
geometry is r = /2

OPT yespectively. The remaining sim-

constructed around a ring with radius /2 and r
ulation parameters such as M, N, U, I and the SNR are similar to the prior simulation
in Subsection 3.7.7. The performance of the DOA estimation techniques is compared
to the theoretical CRLB, and the results are shown in Figs 3.17 and 3.18.

The plots are shown in Fig. 3.17 illustrate the MSE performance of different DOA
estimation techniques when the radius of the UCA geometry is r» = r*/2. For SNR < 5
dB, the estimation errors for all the techniques are extremely high with ICSDOA per-
forming better than others. However, for SNR > 6 dB, the MSE for both the Beam-
Forming and the proposed ICSDOA techniques approach the theoretical bound, while
Root-MUSIC is performing the worst among all three. The plot for Beam-Forming
remains extremely close to the bound in the SNR range [5 dB, 10 dB), before deviat-

ing away from the CRLB for SNR > 15 dB. The Beam-Forming method is dependent
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on the grid interval, i.e. w = 7/180. Therefore the MSE of Beam-Forming is lower
bounded by an error induced due to grid quantization, and the error increases with an
increase in the grid interval w. However, with finer grid quantization Beam-Forming
has the capability to perform on the bound. But finer grid quantization forces N to be
large, hence significantly increasing the computational complexity. The plot for Beam-
Forming can be related back to the plot for a coarse estimate in Fig. 3.16, which is
also lower bounded by the error induced due to grid quantization. On the other hand,
the performance of the EVD-based technique Root-MUSIC is independent of the grid
quantization but relies heavily on the number of snapshots of the incoming signal. The
high MSE of Root-MUSIC is associated to the fewer signal snapshots used in this sim-
ulation. The simulation result clearly illustrates that iterative operation of ICSDOA
completely eliminates the error induced due to grid quantization, whereas the CS pro-
cessing enables the proposed algorithm to perform with fewer signal snapshot, hence
making the algorithm robust and computationally more feasible than Beam-Forming
and Root-MUSIC.

Fig. 3.18 shows the comparison in DOA estimation when a modified UCA geom-
etry is introduced. The UCA is constructed with M = 9 elements placed at a radius
r = rOPT  In Subsection 3.7.4, %P7 refers to an optimum radius, that enhances the
RIP property of the measurement matrix ®. It has been shown that at 77 both the
mutual coherence and condition number of ® is simultaneously reduced. This allows ®
to take advantage of the minimum coherence between the column vectors and an effi-
cient utilization of the vector space. The MSE performance for the modified geometry
is slightly different from the results in Fig. 3.17. For the optimum radius case, the
MSE of the ICSDOA algorithm approaches the bound at SNR = 15 dB and remains on
the bound for higher SNR. In a similar fashion, the plot for Beam-Forming also shows
a dip around SNR = 15 dB but fails to match the performance of ICSDOA due to
grid quantization error. The CRLB for UCA with » = 7977 is 16 dB lower than with
r = 2 from the previous simulation. This once again verifies the analysis presented
in Subsection 3.7.4, and ensures that for higher SNR, the estimation accuracy can be

improved by 16 dB, when the UCA is constructed with » = r®"T. This also shows the
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Fig. 3.18: MSE performance comparison of the proposed algorithm against benchmark

DOA techniques such as Root-MUSIC and Beam-Forming. The radius of the UCA

geometry is r = T

power of the ICSDOA in achieving a lower bound by outperforming the Root-MUSIC

and Beam-Forming technique.

3.7.9 Computational Complexity

This section discusses the complexity of our proposed algorithm in converging to an
estimate. The graph in Fig. 3.16 clearly indicates that the ICSDOA algorithm achieves
the CRLB in just 2 iterations. Algorithm-1 indicates that the proposed iterative al-
gorithm uses one CS operations in each iteration to compute the output of an error
discriminant. The CoSaMP CS algorithm has been used to retrieve the sparse vector
from the under-determined system of equations. According to [67], the computational

complexity of the CoSaMP algorithm is given as O(M N). The proposed algorithm
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consists of three major stages, coarse estimate, error-discriminant output, and update.
The first stage uses only 1 CS operation to retrieve the initial sparse vector and is
followed up with the search for the index representing the dominant complex enve-
lope. In total the complexity of the first stage in terms of big O notation can be

expressed as O(MN) + O(N) = O(MN). The second stage relies on the rotation of

1

5 the quantization interval. This process introduces

the N angular grid points by a
a total of M N multiplications resulting a complexity of O(MN). This step is fol-
lowed by a CS processing on the rotated grid points which introduces another O(M N)
operation. Unlike the first stage, the algorithm does not require a maximum search
operation to find the complex envelope. Instead, the algorithm can easily access the
vector using the index obtained from the first stage to extract the scalers a and f.
The error discriminant calculation in this stage is a simple scalar arithmetic operations
with a combined time complexity of O(1). Therefore, in the second stage for each iter-
ation in estimating the error discriminant, the respective complexity can be written as
O(MN)+O(MN)+O(1) = O(2MN). The third stage is the update phase, where the
output of the error discriminant is used to update the N quantized grid points ©. The

operation is a basic addition with a time complexity of O(N). The total breakdown in

terms of time complexity is given in Table 3.2

Processing Operation Complexity

Coarse Estimate | 1 x C'S + max search | O(MN)
Error Discriminant || 2 x C'S + AO output | O(2MN)
Update N Additions O(N)

TABLE 3.2: Computational-complexity of proposed algorithm

Eigenvalue decomposition (EVD) based or subspace based DOA estimation meth-
ods such as MUSIC, Root-MUSIC and ESPRIT, have a computation complexity of
O(M?N + M?) and O(M?3+ M?). MUSIC and Root-MUSIC are computationally more
complex due to their spectral search and subspace estimation using the EVD of the

covariance matrix. From Table. 3.2, it can be concluded that the total time complexity
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of the algorithm is O(M N 4 2cM N + N), where ¢ is the number of iterative operation
required to converge to the estimate. The complexity of our algorithm is highly de-
pendent on the number of error discriminant estimates. According to the convergence
test, the error discriminant approaches the stopping criterion with just two iterations.
In comparison to the EVD based methods, our proposed technique offers lower com-
plexity (O(5M N)) than MUSIC and Root-MUSIC, however, it has higher complexity
than ESPRIT.

3.8 Conclusion

This paper proposes a novel approach in estimating the DOA of a transmitting source.
A new signal processing paradigm has been proposed in this work that completely elim-
inates quantization error in grid based estimation techniques and allows the error to be
on the theoretical CRLB. A two-stage based estimation process has been introduced
in the paper, where a coarse estimate is initially calculated to obtain the nearest quan-
tized grid points. Later an iterative loop is initiated that exploits the two dominant
complex envelopes of the recovered sparse vector to generate an error discriminant.
Simulation results have been presented to validate that two coefficient case is the most
effective in minimizing the estimation error The iterative loop halts when the error
discriminant is lower than some user-defined threshold. Since convergence is achieved
in two iterations the algorithm may be halted after the second iteration. To verify
the robustness of the proposed ICSDOA algorithm, extensive statistical analysis has
been carried out with noise inherent to the UCA processing. The end results validated
the claim that the ICSDOA approaches the CRLB using just 2 iterative operations.
Comparison results indicate that ICSDOA algorithm significantly out-performs other
well-known techniques such as Root-MUSIC, ESPRIT, and Beam-Forming in scenarios
where single snapshot cases are considered.The computation complexity of the algo-
rithm is calculated to be O(5M N) which is lower than EVD based DOA estimation
algorithm such as MUSIC and Root-MUSIC and slightly higher than ESPRIT. How-
ever, ESPRIT requires large number of signal snapshots that inherently pushes the



HiGHLY ACCURATE OFF-GRID DIRECTION OF ARRIVAL ESTIMATION USING AN
96 UNIFORM CIRCULAR ARRAY.

computational complexity higher than ICSDOA. Moreover, the paper also analyses
the impact of array geometry parameters such as the number of antenna elements and
radius of the UCA on the construction of the dictionary matrix. Result illustrates that
with an odd number of antenna elements and an optimum array radius, the mutual
coherence between the columns of the dictionary matrix can be significantly reduced.
The optimum array radius is deduced by obtaining a radius such that the condition
number, as well as the mutual coherence of the dictionary matrix, is simultaneously
minimized. The simulation result shows that using the optimal radius, the MSE can
be reduced by 16 dB than that of traditional A/2 element spacing. However, in case
of larger radius, the array size also increases so there is a systematic trade-off between
the size of UCA and precision of DOA estimation. A detailed analysis on the influence
of the number of antenna elements and the grid quantization on the MSE performance
of the algorithm is also presented in this paper. It can be concluded that UCA with
a large number of antenna elements require finer quantization of the angular grids
to achieve the theoretical bound. Although larger number of antenna elements yield
better estimation accuracy of DOA, it also increases the processing time of the algo-
rithm. There is a systematic trade-off of performance as a function of computational
complexity. The algorithm can be easily extendable to multiple scenario cases while
considering that the number of sources detected is directly proportional to the number
of antenna elements. In case of multiple scenarios, an angular separation of two grid
quantization level is required between the sources for effective estimation of incoming
DOAs.

As part of future work, it is also of great interest to extend the algorithm using
multiple receiving UCA antennas to deduce the location of the transmitting source in
a network using triangulation. We are also currently working on prototyping the algo-
rithm into a working product to validate the performance of the algorithm in a realistic
environment. Incorporating large number sources and analyzing the performance in

various multi-path environments is another important topic for future work.



A Novel Signal Processing Technique to
Estimate the Off-Grid Direction of Arrival

using a Uniform Linear Array

4.1 Abstract

This paper proposes a new Direction of Arrival (DOA) estimation technique using a
Uniform Linear Array (ULA) antenna as the receiving node. In upcoming 5G cellular
communication systems, a precise DOA estimation is integral for the purpose of spa-
tial multiplexing. In a wireless network, spatial multiplexing refers to a technique of
assigning independent communication channels to individual users, thereby efficiently

reusing the spectrum resources. Spatial multiplexing can provide a viable solution to
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the problem of spectrum scarcity. Traditional DOA estimation techniques require eigen-
value decomposition of the covariance matriz at different time instants (i.e. snapshots),
which causes an unavoidable increase in the computational complexity of the algorithm.
The proposed technique is based on the emerging theory of Compressive Sensing (CS),
whereby an estimate can be achieved with a single measurement collected using a sin-
gle snapshot. In CS-based DOA estimation techniques, the potential angular domain
of coverage is uniformly sampled into a finite number of angular grid points and the
immcoming DOA is assumed to be exactly on the grid points. However, in reality, the
probability of having a source DOA on a grid point is extremely low. This introduces a
mismatch between the output of the ULA antenna elements and the dictionary matrix
constructed with a finite number of grid points. The mismatch causes ambiguity in the
estimation process, hence degrading the performance of the algorithm. This paper pro-
poses a novel iterative signal processing technique, that completely eliminates the error
mduced due to grid quantization. This enables the estimation error to be on the theo-
retical Cramér-Rao lower bound (CRLB) of DOA estimation. Simulation results show
that the proposed technique outperforms renowned DOA estimation techniques such as
ESPRIT, Root-MUSIC and Beam-Forming in reducing the error to a minimum. The
paper also establishes a relationship between the number of antenna elements and the
number of angular grid points in order to enhance the performance of the proposed

algorithm.

4.2 Introduction

The evolution of the Internet of Things is expected to interconnect more than 50 bil-
lion smart devices by 2020 [155]. The exponential growth of wearable devices along
with smart vehicles will push the capacity of wireless communication to the limit.
According to CiSCO’s visual-networking index, global wearable devices will hit the
600 million mark by 2020 from just 97 million in 2015. In order to accommodate
the large capacity demand of the wireless devices, an overhaul is required of the

existing communication systems. In a conventional wireless system, a base station
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serves users by allocating channels by means of a variety of multiple access schemes
such as Frequency-Division Multiple Access (FDMA), Time-Division Multiple Access
(TDMA), Code-Division Multiple Access (CDMA) and Orthogonal Frequency-Division
Multiple Access (OFDMA). However as the spectral resource (frequency bandwidth)
is limited, mainly due to spectrum scarcity and government regulations, alternatives
are proposed to efficiently utilize the allocated spectrum. Spatial sectorization is an
emerging field of research whereby the spatial domain is separated into different angu-
lar intervals representing an individual cells [156-161]. This allows base-station incor-
porated with Multiple Input Multiple Output (MIMO) antennas to shine directional
beams to the cells (provided the cells do not overlap). The technique allows multiple
sets of cellular users to be spatially multiplexed simultaneously using the same channel.
The Spectral efficiency and capacity of the network can be significantly enhanced by
this method, offering a suitable solution to the problem of spectrum scarcity. In order
to successfully adopt the technique, accurate estimation of the Direction of Arrival

(DOA) information of incoming signals from the cell is of paramount importance.

Traditional subspace-based methods such as Multiple Signal Classification (MU-
SIC) [97] and Estimation of Signal Parameters via Rotational Invariance Techniques
(ESPRIT) [98] require the array sensor to have a linear geometry. Additionally, afore-
mentioned techniques require the computationally expensive eigenvalue decomposition
(EVD) of the data covariance matrix for DOA estimation. The performance of the es-
timator is dependent on a large snapshot realization of the maximum likelihood (ML)
in the case of uncorrelated sources. However, with a limited number of signal snap-
shots, the performance degrades significantly, mainly due to the rank deficiency of
the covariance data matrix. Compressive Sensing (CS) has gained popularity in signal
processing due to its effectiveness in recovering a sparse signal with minimum measure-
ments [64, 93, 162]. The computationally inexpensive technique motivated researchers
to explore DOA estimation as a sparse recovery problem. CS-based DOA estimation
methods do not require the EVD of the covariance matrix and can offer superior results
using a single snapshot of the incoming signal. This enables CS to be computationally

more attractive for a variety of applications.
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In CS-based problem formulation, the angular region of coverage is sampled into a
grid of N possible DOAs. The number of grid points, /V, in the quantization is greater
than the number of antenna elements, M. Therefore, the problem of determining the
angle of arrival is represented as an underdetermined set of equations which maps the
signal originating at each grid point to the set of complex envelope voltage outputs
of the antenna elements. Several CS-based techniques are proposed in the literature
[106, 118, 146, 147, 163], where the sources are placed strictly on a subset of the quan-
tized grid points. However, in a realistic scenario, the simplistic assumption of having
a source DOA on the quantized grid may not be true, as the source DOA can be
anywhere in the region of [—7/2,7/2). In [112] the author outlines an algorithm to
detect an off-grid DOA using co-prime arrays, but a performance analysis against the
theoretical bound was not included. The work in [108] offers some insight. However,
noise sensitivity analysis suggests that the algorithm deviates from the bound at large a
Signal-to-Noise Ratio (SNR). The work in [119, 120] introduces a Bayesian framework
in the DOA estimation problem offering some sophisticated alternatives, however, the
techniques can be computationally challenging for practical implementation.

In this paper, an innovative and fundamentally new approach has been proposed
which provides a signal processing solution that eliminates the grid-induced quanti-
zation error in CS-based DOA estimation techniques. This allows the algorithm to
achieve the Cramér-Rao lower bound (CRLB) on estimation error, and no algorithm
can perform better than the bound. The new algorithm involves the determination of
the DOA of a radio signal using the signal complex voltages obtained at the outputs
of antenna elements configured in a Uniform Linear Array (ULA). As the number of
quantized angular grid points is much greater than the number of antenna elements
(N > M), the problem of determining the angle of arrival is represented as an underde-
termined set of equations which can be solved using CS to recover a sparse vector. The
index corresponding to the absolute maximum amplitude of the sparse vector is chosen
to be the coarse estimate. Prior work in [102, 113, 114, 164] adopts a similar approach
in obtaining a coarse estimate. However, they rely on adaptive grid refinement around

the target area to determine the off-grid DOA. The process reduces the computational
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complexity, but a denser grid introduces ambiguity in the detection process by affecting
the Restricted Isometry Property (RIP) property of the dictionary matrix[65].

The fundamental contribution of this paper is an iterative processing loop, where
the N quantized angular grid points are rotated in both clockwise and anticlockwise
directions by half the grid quantization interval. The unique processing results in an
error discriminant which is then used to update the coarse estimate at each iteration.
The iterative process stops when the error discriminant is close to zero or less than some
user-defined threshold. The architecture of the iterative process is described in details
in Section 4.5. Simulation result indicates that the algorithm is strongly convergent and
achieves the CRLB using just two iterative operations. In addition to the algorithm, the
paper also establishes a relationship between the number of antenna elements (M) and
the number of quantized angular grid points (/V) in order to enhance the performance of
CS-based DOA estimation techniques. The analysis suggests that, for a large number
of antenna elements,; a finer grid quantization is required in order for a ULA geometry
to achieve its respective CRLB. A comparative performance is presented to illustrate
that the proposed algorithm outperforms traditional Root-Music, ESPRIT and Beam-
Forming DOA estimation algorithms using a single snapshot of the incoming signal.

The outline of the paper is as follows. The system model is presented in Sections 4.3-
4.4. Section 4.5 discusses the structure of the algorithm in details. A brief background
on the structure of the dictionary matrix in CS is provided in Section 4.6. Analysis
and simulations are presented in Section 4.7. And finally the conclusion and future

work are presented in Section 4.8.

4.3 Problem Formulation

This work assumes a set of M isotropic antenna elements placed in a straight line with
an inter-element spacing of d = A\/2, where A is the signal wavelength. A traveling
plane wavefront impinges on the antenna elements from some unknown direction . The
incoming wave satisfies the narrowband assumption that the phase difference between

the upper and lower band edges of the propagation across the entire array is small. At
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Antenna Element

Fig. 4.1: A typical ULA with M elements, where 6 is the azimuth angle of arrival of
the received signal

the ¥ instance the output at the antenna elements is given as
X(t) = a(@)p(t) + n(t) (4.1)

where X(t) is an M x 1 array output vector corrupted with noise. The M x 1 noise vector
is represented as n(t) where the entries are statistically independent and Gaussian
distributed with zero mean and variance o2, and p(t) is the complex envelope of the
source at the receiving array. In (4.1), a(6) is an M x 1 array response vector (ARV)

for an incoming plane wave from the direction 6 and is generally given as

a(f) = [1 e-dksin(®)d ... —jksin@)(M-1)d| T (4.2)

The ARV in (4.2) represents the relative phases of the received signals at the antenna
elements where k = 27 /X is the wavenumber or phase propagation factor. The aim
of the work is to find the incident azimuth angle 6 using the relative phase difference
between the antenna elements. Figure 4.1 shows the system model. The phase angle

at each element is obtained relative to the phase of a local oscillator signal.
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4.4 DOA estimation using Compressive Sensing

This section describes the formulation of a sparse problem that can be solved using
compressive sensing techniques to recover the unknown azimuth angle 6 of the source.
In ULA geometry the spatial coverage is restricted to [—m/2,7/2). To cast the DOA
estimation problem using a ULA as a compressive sensing problem, the estimation of
0 must be integrated into a problem of sparse recovery in an over-complete dictionary.
Due to the assumption of the model having a single source, the phase contribution
on the antenna elements is a sparse representation in a selectively chosen dictionary
or basis. To create the dictionary or measurement matrix, the angular domain of
[—7/2,7/2) is quantized into spatial angular grid points with /N possible DOAs, © =
{0,,1 <n < N}. The angular grid separation is represented as w. The ARV in (4.2)
for an incoming plane wave from each of these N unique spatial grids can be combined

to create a dictionary matrix described as
®(0) = |a(f) aldy) - a(by)]. (4.3)

where a(f,) is the ARV associated with the DOA 6,. Using the definition of the

dictionary matrix in (4.3), the array output in (4.1) can be rewritten as:

= a@) a@) - a@w)| [ss| |
X(t) = (0)S() + n(t) (4.4)

where S(t) is an N x 1 vector of coefficients representing the complex envelope of
the arriving signal from each of the N quantized direction of arrival. As the problem
formulation has a single source among the N possible DOAs, S(t) is assumed to be

sparse in the angular domain [—7/2,7/2). In a typical scenario, when the source
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transmits strictly from one of the N discrete grid points defined in (4.3), the DOA
estimation problem in (4.4) can be cast into the framework of CS. The structure of CS
deals with the recovery of a sparse signal from measurements contaminated by noise,
which makes the CS framework suitable for DOA estimation. From this point onwards,
the explicit dependency on time is ignored. Compressive-sensing based sparse recovery
requires the columns of the measurement matrix ® to be orthonormal. This condition
allows accurate projection of the spatial spectrum on the space of bearing angles ©.
To orthonormalize the columns of the matrix ® a data-processing technique has been

adopted as shown in [129]. Let Q be the processing operator
Q=Ro®" (4.5)

where R = (H*®) and H* returns the conjugate transpose of H where, H is the M x M
transform matrix. In (4.5) ®7 is the Moore-Penrose pseudoinverse of ®. Applying the

operator Q on both sides of (4.4) yields

R®P™X =R®"®S+ RPn

V =Z(6)S +E. (4.6)

V = R®*(X) is the noisy processed observation vector and Z = R®*® is the normal-
ized measurement matrix, while E = R®*"n is the processed measurement noise. The
modified problem formulation in (4.6) can also be formulated into a CS problem similar

0 (4.4). Recovery of S can be performed by solving the following convex optimization

problem:

S=min||S|ly st |[[V—-Z(©O)S|.<e (4.7)
SechN

where ||-||, and |||, are the lp-norm and ly-norm respectively. The regularization pa-
rameter is € that is determined by the noise or quantization level. Careful selection

of € is crucial in the sparse recovery of the signal. The output of the problem defined
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in (4.7) is a reconstructed sparse vector S that approximates the actual spatial vector
S. Due to the sparse condition when the direction of arrival is a quantization point,
the recovered vector S will contain a single non-zero element. The n'* index of the

~

non-zero element refers to the angular grid (6,,) on which the source is located.

4.5 Iterative approach of DOA Estimation

In CS-based DOA estimation techniques, the spatial angular domain is quantized into
angular grid points. The quantization process introduces a grid bias or quantization
error. In a practical scenario, the true DOA may be never exactly aligned with the
discrete azimuth bearing space used to construct the dictionary matrix. The grid bias
forces a mismatch between the processed antenna array output V and the processed
dictionary matrix Z. In a typical scenario, the source DOA 6 may be between two
discrete grid points, i.e. 6 = 6, + Af, where (—%) < A0 < (%), and 0, is the n'" angu-
lar grid point. In such cases, the conventional CS processing described in Section 4.4
fails to detect the exact DOA. Instead, the mismatch influences the recovered sparse
vector, S in (4.7) to have several non-zero elements which in the ideal case should be
just one (as we have just one source). The non-zero elements appear on the discrete
grid points closest to the original DOA. During the CS processing of the sparse vec-
tor recovery, the optimization algorithm verifies the largest correlation between the
observation vector and the columns of the dictionary matrix. The angular grid corre-
sponding to the columns of the dictionary matrix with the highest correlation yields
the DOA of an incoming signal. However, in an off-grid scenario, the incoming DOA is
between two quantized grid points. To resolve the issue, CS compares the correlation
of the observation with the columns of the measurement matrix and generates several
peaks at the neighboring angular grid points. The absolute amplitudes of the peaks
represent the correlation coefficient of the observation to the relative grid points. One
such instance is clearly illustrated in Fig. 4.2. The blue line represents the original
DOA and the peak is the magnitude complex envelope of the incoming signal. A CS

processing on the observation produces two red peaks at the adjacent grid points. Note
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Fig. 4.2: Blue peak indicates original off-grid DOA, whereas red peaks are amplitudes
on the neighboring grid points closest to the original source DOA.

that the reconstructed peaks are smaller than the original blue peak. This suggests
that CS distributes the weight of the original peak depending on the relative angular
separation of the incoming signal from the respective neighboring grid points. This
means the further away the DOA is from a grid point, the lower is the amplitude on

the grid.

The proposed Iterative Compressive-Sensing based Direction of Arrival (ICSDOA)
algorithm exploits the magnitude of the complex envelope on the neighboring grid
points to estimate the DOA. The estimation process mainly comprises of three stages,
where at the first stage a CS processing is used to obtain a coarse estimate of the original
DOA, by solving the optimization problem defined in (4.7). As mentioned earlier,
the recovered solution vector will have several non-zero elements, where the n” index
corresponding to the non-zero magnitude of the complex envelopes indicate the angular

grid point. Among them, the angular grid point with the largest magnitude is chosen to
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be the coarse estimate. This also suggests that the coarse estimate corresponds to the
columns of the dictionary matrix Z that has the largest correlation with the observation

vector V. The first stage of the estimation process may be obtained according to the

following;
Nmaz = arg max{|S[n]|} (4.8)
such that
S = Snel(lcrzlV IS|lo s.t. ||V —Z(©)S|ls < €
and

éo = @<nmax) .

where g[n] is the n'® element of the recovered sparse vector S, obtained after a CS
processing on (4.7). The coarse estimate, 50, corresponds to the index representing the
largest non-zero element of S. In [127] and [145], a similar approach has been adopted

to obtain a rough estimate of the off-grid DOA.

In the second stage, the algorithm feeds the coarse estimate into a low-computation
signal-processing technique to obtain an error discriminant. Assuming that the Signal-
to-Noise Ratio (SNR) is moderate and that € in (4.7) is carefully selected, there is a
high probability that the coarse estimate obtained from (4.8) is the discrete grid point
closest to the original DOA, 0, i.e, 6 € [éo -5, 0o+ ), where w = £ is the angular grid
separation. This suggests that the original DOA may be on either side of the coarse
estimate f with a separation of |%|. Next, an angular rotation of ¢ a is introduced
on the N angular grid points ©. The angular rotation of the grid points yields a new
dictionary, Z(© + £)2, where 7 is the N x 1 vector with all elements equal to 1 and,

for a vector W, (W)a, is defined as
(W)or = modulo(W + 7w, 27u) — 7u (4.9)

where, (4.9) describes the 2 modulo operation on each of the elements in W. The

process bounds the elements in vector W in the range [—m, 7). A CS operations is
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Algorithm 2: ICSDOA
Il’lpllt: Vna 2(60)7 é(]a Nmazs Q
Output: Estimate of Original DOA 6,4

1 Initialize ¢ =1
2 Define new measurement matrix Z(0;_; + $u)2,
3 Compute CS to recover vector S,

4 Calculate o, = |Sc[nmw]| and f3, = |Sc[nmaaC — 1]
5 Define AO, = (20t)2

OCC“FﬁC 2
6 Check

() If (JAB.| > Q).
Update O, = (0.1 + AO U)o,
Update 0. = O,(Nmas)
Update c=c+1
Repeat Steps 2 to 6

(II) Else
Qest — éc

carried out similarly to (4.7), on the rotated dictionary matrix and the output is a new
sparse vector S, where ¢ represents the number of iterative operations. The magnitudes
of the complex envelopes corresponding to the n,,,, and n,,.,, — 1 index of the vector
S. are respectively stored as a, and S.. If a > [ the algorithm indicates that the
original DOA is greater than the coarse estimate (6 > 50) whereas if o < 3 the original
DOA is smaller than the coarse estimate (6 < éo). The magnitude of the complex

envelopes a and 3 are used to obtain an error discriminant A©.. The second stage of

the estimation process can be described as follows, For ¢ = 1,2, ..., and A®y; = 0 and

@0:@

define
e = |Sc[Mimas]| (4.10)



4.5 ITERATIVE APPROACH OF DOA ESTIMATION 109

where

and

50 = |gc[kmaz]| (411)

Nmaz — 17 for 2 S Nmaz S N

k:max

N, for e, = 1

N w
Sc = min ||Sc||0 s.t ||V — Z(@c—l + EE)QWSCHQ < €

S.eCN

Qe — Bc w
AO, = — 4.12
O (ac + ﬁc) 2 (4.12)
@c = (@cfl -+ A@cﬂ)gﬂ- (413)

A user-defined threshold is used as a stopping criterion such that |[A©.| < w. At

the end of each iteration, the output of the error discriminant is validated against w,

and if the stopping criterion is not satisfied the processes (4.10) to (4.13) are repeated.

At each iteration, the N angular grid points represented by O, are updated by adding

the error discriminant A©,.. This has the effect of an angular rotation of the entire

grid. Once the criterion is met, the iterative process stops and the DOA estimate is

obtained as

eest = @c(nmax)a (414)

where 1,4, is found in (4.8). A pseudo-code detailing the steps of the iterative algo-

rithm is presented as 2.

4.5.1 Convergence of ICSDOA

Suppose that p(f) is an angular discriminant function such that
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where 6 is the actual angle of arrival in the noiseless case and 0, is the coarse estimate.

Therefore

0y = 0, + pler) = 0, + plf — 6]
62:9—52:9—é1—p[9—§1] =e; —pley)
Or—1 = Ok + plex—2) = Oh_z + p[0 — Oh_s)]
er1=0— 01 =0—0hs—pl0 — 2] = ex> — plex—2)

In general, for £k =1,2,....

Or = O+ + pld — ékfl]
€k = 9—§k :e_ékfl —p[e—ékq]

It follows by induction that,

€k = €k—1 — p(ekfl)

Theorem 4.5.1 Let p(e) be a continuous function, with p(e) =0 fore =0. Fore > 0,
0 <ple) <eand fore <0, e <ple) <O0. Let ey, (for k=1,2,3...) be a real sequence

such that ey, = ex_1 — p(ex—1), then

lim € = 0
k—o0

and the convergence is monotonic.

Proof :
Case : 1
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Fig. 4.3: The error discriminant as a function of the difference between the incoming
DOA 6 and the updated estimate at each iteration 6, ;. The figure illustrates the
result for no noise case.

€0>0

e1 = eg — p(eo)
Therefore,
0<e <eg

In general,

€k = €k—1 _p<€k—1)
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Fig. 4.4: The error discriminant as a function of the difference between the incoming
DOA 6 and the updated estimate at each iteration 6, _;.The figure illustrates the result
for SNR = 15 dB .

Therefore,
0<ep <ep_1
and
fim e =0
Case : 2

eg <0
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€1 = € —P(eo)

Therefore,
ep<e <0
In general,
er = er—1 — pler-1)
Therefore,
1 < e, <0
and

lim e, = 0.
k—o0

Theorem 4.5.2 Let p(e) be a continuous function, with p(0) = 0. For e > 0, e <
p(e) < 2e and for e < 0, 2e < p(e) < e. Let ey, (for k=1,2,3...) be a real sequence

such that ey = ex_1 — p(ex_1), then

lim e, = 0.
k—o0

Proof :
Case : 1

eg >0
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€1 = €y — P(eo)

Therefore,

—ep < e <0

€y = €1 — p<€1)

0<e < —6

In general, if k is even,

—er < €py1 < 0

if k is odd,
0<epy1 < —ep
Therefore
A led =0
and
Jim e =0
Case : 2

eg <0
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€1 = € —P(eo)

Therefore,

0<e; < —eg

€a = €1 _p(el)

—e1<ey <0

In general, if k is even,

0< Crtr1 < —€

if £ is odd,
—ep <epp1 <0
Therefore
A led =0
and

lim e;, = 0.
k—o0

4.6 Background

Compressive sensing is a mathematical framework that deals with the recovery of a

sparse vector xyy1 from an observation vector yy;«1 with M < N. The measurement
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paradigm consists of the linear projection of the signal vector via a known projection
matrix Wy, n. As M < N, the recovery of the sparse vector x from the measurement
vector y becomes an under-determined problem with an infinite number of solutions.
In the CS framework, an accurate estimation of a sparse signal x can be obtained in

the following reconstruction problem, described in [89] as
min ||z, st [ly—Wall, < (4.15)

where [|-[|, is the [,-norm and ¢ bounds the amount of noise in the observation data.
A vector z is said to be K-sparse if ||z][o = K. Accurate recovery of x requires the
measurement matrix ¥ to satisfy some strict conditions such as the Restricted Isometry
Property (RIP) and Spark(¥) > 2K [89]. The Spark of a matrix is the smallest
number of columns in matrix W that are linearly independent and the RIP indicates
that a subset of the columns chosen from ¥ are nearly orthogonal. Although Spark and
RIP provide guarantees for the recovery of a K-sparse vector, verifying that a matrix
U satisfies any of the above properties has a combinatorial computation complexity,
since each time one must consider ([]\;) submatrices. Therefore it is preferable to use a
property of a matrix which is easily computable and guarantees recovery. The mutual
coherence of a matrix W, p(W), is the largest absolute inner product between two

columns v; and v; of V:

[ (i, ¥5)]

\I] — X 1
#(w) 1<i<i<n || ¢ |2l |2

(4.16)

The Mutual Coherence of a matrix W is always bounded in the range u(¥) € |4/ %, 1],
where the lower bound is known as the Welch Bound [89]. Note that a small p(¥) in-
dicates that the columns of ¥ are highly independent. If the original signal z in (4.15)

satisfies the following requirements

1
=K<-(14+4—— 4.1
Iollo = K < 501+ ). (417)
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then, CS algorithms such as Basis Pursuit or other greedy algorithms such as CoSaMP
[67] can be used to guarantee the recovery of = from an under-determined set of equa-

tions.

4.7 Simulation Results

This section analyzes the effectiveness in estimating the source DOA and the compu-
tational complexity of the proposed algorithm and is divided into several subsections
aiming to give a detailed insight into some of the key performance parameters of the
algorithm. Subsection 4.7.1 details the noise model and an expression for the Cramér-
Rao lower bound (CRLB) for DOA estimation using a ULA. The impact of different
transform operations in enhancing the performance of the CS operation is discussed in
subsection 4.7.3. In subsection 4.7.4, the impacts of the number of antenna elements
M and number of quantized grid points N are analyzed. Subsection 4.7.5 evaluates
the estimation performance of the algorithm and compares to existing techniques such
as Root-MUSIC, ESPIRIT and Beam-Forming. The computational complexity of the
algorithms is analyzed in subsection 4.7.6 and a comparison is presented against some

of the existing algorithms mentioned above.

4.7.1 SNR and CRLB

In order to determine the robustness of our system model, the following noise-sensitivity
test has been considered. The Signal-to-Noise-Ratio (SNR) is calculated at the receiver
as the ratio of the sum of the power received from the M antenna elements to o2, where
o2 is the variance of the complex Gaussian noise at each element. The measured data

are characterized by SNR in dB, defined as

> et |l
SNR = 101log;, [Ml—az (4.18)
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where x,,, m = 1, ...M, is the noiseless complex output at the m!” antenna element. To
validate the robustness of the proposed ICSDOA algorithm, U different DOAs are se-
lected from a uniform distribution in the range [—m /2, 7/2). For statistical consistency,
I Monte Carlo trials are carried out. The results in this section aim to validate the
effect of noise sensitivity of the proposed algorithm in determining the actual incoming
DOA of a signal. Compressive Sampling Matching Pursuit (CoSaMP) has been used
as the platform for the CS operation. The Performance parameter of the algorithm is

characterized as the Mean Square Error (MSE), where MSE is defined as,

2

U I
MSE = Zu:l Zz’:l ‘eorg,U,z’ — eest,u,i

o (4.19)

where 0,4, is the original DOA of the source and 8.5, is the DOA of the source
estimated for the u!* scenario and the i Monte Carlo trial. The MSE of the proposed

algorithm will be compared with the Cramér-Rao lower bound, given in [149] as,

> o
u=1 M(M?-1)r2cos?(Oorg,u)

CRLB >
- U

(4.20)

An estimator achieving the CRLB is considered to be efficient and it is not possible

for any estimator to perform better than the theoretical CRLB.

4.7.2 Sparse Vector Coefficients

Compressive Sensing involves recovering an approximate sparse vector S that satisfies
the condition in (4.7). Greedy CS algorithm such as Compressive Sampling Matching
Pursuit (CoSaMP) is a new technique proposed by Needell and Tropp in [67]. The
algorithm is based on the prior technique Orthogonal Matching Pursuit, OMP [66],
and provides strong guarantees that OMP cannot. One of the key features of the
CoSaMP algorithm is the ability to recover an optimized solution vector with sparsity
level, [. Unlike CoSaMP, other CS techniques such as Basis Pursuit outputs the sparse
vector depending on the relaxation parameter € in (4.7). This causes the solution vector

S recovered using Basis Pursuit to have a large number of non-zero elements. In the
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proposed ICSDOA algorithm, the non-zero elements of S refer to an estimate of the
possible incoming DOA. A solution vector with a large number of non-zero elements
introduces ambiguity in the estimation process, hence degrading the accuracy of the

estimate.

In Section 4.5, an error discriminant function, A© is used to converge towards the
original incoming DOA. The error discriminant function uses the inputs o and $ which
are obtained using (4.10) and (4.11). The complex envelopes are obtained by rotating
the angular grid points © in both the clockwise and anticlockwise directions by a grid
interval of w/2. This simulation illustrates the impact of the sparsity level [ on the
outputs of a and S and the output of AG. For this simulation, the CS processing
in (4.10) and (4.11) is carried out by varying the sparsity level, [ in the range [1,3].
In other words, the simulation forces the CoSaMP algorithm to recover a solution
vector with known sparsity, [. The ULA geometry is constructed with M = 9 antenna
elements uniformly placed in a straight line and an inter-element spacing of A/2. The
signal to noise ratio is kept constant at 15 dB. A signal is assumed to be impinging on

the ULA with a DOA 6 = 26.34°.

The plots in Fig. 4.5 show the effect of [ on the outputs o and 5. The x-axis has the
quantized grid points representing the incoming DOA in degrees and the vertical axis
is the corresponding complex envelope of o and 3. For both [ = 1 and 2, the algorithm
is able to accurately deduce the coarse estimate 0o = 26°, which is closest angular grid
point to the incoming DOA, 6 = 26.34°. Moreover with [ = 1 and 2, a > ( indicating
that @ > 6, and is also true in this case. However, with [ = 1 g = 0, pushing the
error-discriminant to the maximum value of w/2. The [ = 3 subplot has a completely
different trend, due to several non-zero complex envelopes, it selects 50 = 27° to be the
coarse estimate. Although the oscillatory nature of the ICSDOA algorithm forces the
estimate towards the original DOA, it goes beyond the boundary of convergence. As
a result, the estimate obtained with [ = 3 deviates from . For the 3 different cases
of [, the error discriminant, A®© is calculated using (4.12). The table below shows the

estimate of the incoming DOA and are presented in degrees. The results in Table. 4.1,
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Fig. 4.5: Output of a and [ with respect to varying sparsity of the recovered vector.

Sparsity || Coarse Estimate | Error Discriminant | Final Estimate.
=1 26 0.5 26.5
Il =2 26 0.3826 26.3826
l=3 27 —0.2354 26.76

TABLE 4.1: Error discriminant calculation against changing sparsity level of the CoSaMP
algorithm

show the error discriminant generated using | = 2 enables the ICSDOA to achieve an
estimate with minimum error. It is followed by [ = 1 and [ = 3 is the worst among the
three. It also indicates that, for an incoming DOA in between the angular grids, the

approximate sparsity of the recovered vector, § should be set to 2.

To further validate the results presented in Fig. 4.5 and Table.4.1, an MSE perfor-
mance test was carried out by varying the SNR from -10 dB to 25 dB. A number of

incoming DOAs are considered, selected from a uniform distribution. The MSE of the
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proposed algorithm is then compared with the theoretical CRLB for estimation accu-
racy. For this simulation, the number of Monte Carlo runs is set to be 1000. The plots
in Fig. 4.6 reiterates the prior analysis on the sparsity level of the CoSaMP algorithm.
The red plot representing [ = 2 is the best-performing among them and achieves the
theoretical CRLB for SNR(dB) > 7. Although all three plots approach the bound for
SNR = 6 dB, the plots for [ = 1 and [ = 3 deviate away from the bound for higher SNR.
It can be concluded from the analysis that the error discriminant function converges
to the original estimate rapidly, especially when the approximate sparsity level for the

recovery vector S is set to be twice the number of sources detected.
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Fig. 4.6: MSE performance of the proposed algorithm with respect to varying sparsity
level of the CoSaMP algorithm.
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Fig. 4.7: Coherence of measurement matrix Z against the number of antenna elements
M, for N = 90 grid points

4.7.3 Transform operation

In CS processing, the construction of a measurement matrix plays an integral role in
accurately recovering the sparse solution. A transform operation or sparsifying basis
helps to de-correlate the columns of the measurement matrix, allowing CS to maximize
the utilization of the column space. Moreover, the process enables CS to project the
observation directly on to the measurement matrix without any loss of efficiency [165—
167]. A popular family of sensing matrices is a random projection, where the entries
are random variables from a sub-Gaussian distribution such as Gaussian or Bernoulli.
This family of projection matrices is well known to be universally incoherent for all
other sparsifying bases. However, it can be computationally quite expensive to use a

random matrix for a practical application as they require a large buffering memory due
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to their completely unstructured nature. This makes the sampling and recovery pro-
cess computationally unrealistic in most cases. The Karhunen-Loeve Transform (KLT)
[152] is a classical procedure that reveals the correlation structure of the signal. KLT
is optimal such that it de-correlates the signal into a representation comprising only
statistically non-redundant coefficients. In most cases, KLT is used as a benchmark
to judge the performance of other transforms. Unfortunately, KLT is data dependent
and requires huge computational power to extract a transform matrix. A KLT basis is
computed numerically from a sample covariance matrix. In a practical scenario, with
a large measurement matrix, the computational complexity increases exponentially. In
contrast to KLT, Discrete Fourier Transform (DFT) is based on a fixed support set and
is independent of the measurement matrix [154]. The DFT has a lower computational
complexity and exhibits good de-correlation and compaction characteristics. But, as
the entries of a DFT matrix are complex, it can significantly alter the original mag-
nitude and phase information. The Discrete Cosine Transform (DCT) also provides

excellent de-correlation and energy compaction properties [153].

In this section, the impacts of different transform matrices are analyzed in terms of
reducing the mutual coherence of the modified measurement matrix Z. In Section 4.4,
it has been mentioned that R = (H*®), where H is the M x M transform matrix. In
Fig. 4.7, to illustrate the influence of H, several transform matrices are considered. The
comparison was carried out by constructing H, using KLT, DCT, DFT and a random
matrix, where the entries are Gaussian random variables. An orthonormal transform
processing technique similar to that in [129] has been considered in the comparison
and has a plot legend of ORTH. The NO-TRANS legend in Fig. 4.7 refers to a CS
operation without a transform matrix. The plots in Fig. 4.7 indicate the ability of each
transform matrix to minimize the coherence among the columns of Z. From the graph,
it can be seen that the most effective transform in terms of reducing the coherence of
Z, is the orthonormal transform. All three transforms including KLT, DCT, DFT have
no significant impact on the coherence of Z, and perform similarly to the NO-TRANS
case. Therefore, they are all represented using a single graph (blue). On the other
hand, the RAND plot fluctuates for each M and is inconsistent compared to all other
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Fig. 4.8: Influence of Transform matrix on Mean Square Error (MSE) of the algorithm

transforms.

The aforementioned transform matrices are used to construct several new dictionary
matrices, and each of them is feed into the ICSDOA algorithm to evaluate the impact of
the individual transform operation. In this simulation Compressive Sampling Matching
Pursuit (CoSaMP) has been used as a CS platform to retrieve the sparse solution

vector. For this simulation the angular domain in the range [—m/2,7/2) is quantized

into N = 90 angular grid points with w = QW” The simulation was carried out using
a ULA geometry with M = 9 and a constant inter-element spacing of \/2. The

simulation assumes having a single transmitting source.

The plots in Fig. 4.8 have a different trend than those in Fig. 4.7. The results show
that KLT and DCT are the best performing transforms, approaching the CRLB for
SNR > 7 dB. In Fig. 4.7, the ORTH transform had the best de-correlating capabilities,

however, it failed to accurately project the observation vector V on to the columns
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of Z, hence converging to an incorrect estimate. The transform matrix has energy
compaction properties, where correlated observations are combined to improve the
sparsity of Z. However, while enhancing the sparsity, the transform matrix can also
alter the information in Z, creating a mismatch between the observation vector V
and measurement matrix Z. The mismatch forces the CS algorithm to converge at
an incorrect solution, increasing the MSE of DOA estimation. DFT and RAND have
complex entries in the measurement matrix which influence the original information of
Z. This results in an inaccurate DOA estimate as shown in Fig. 4.8. From the results
presented and Fig. 4.8, it can be concluded that KTL and DCT, unlike DFT and
RAND, preserve the information without altering the complex data of the measurement
matrix. ORTH transform achieved to reduce the mutual coherence by compacting the
dimensionality of the matrix, but according to the MSE performance in Fig. 4.8, that
does not correspond to the best basis of the estimation process. The results indicate,
achieving the minimum mutual coherence does not necessarily provide the guarantee of
a successful estimation. The problem involves the concept of pattern recognition, where
it is crucial for the transformed basis to correlate to the observation rather than having
highly independent columns. From the analysis, it is evident that transform operations
do not offer any significant advantages over the no transform case. Hence, in order to
reduce the computational complexity of the algorithm, the transform operation can be

ignored in the further analysis.

4.7.4 Antenna Elements and Grid quantization

The theory of CS suggests that the number of observations required for accurate re-

covery of the sparse vector is lower bounded by the following inequality

M > KIn(N/K), (4.21)

where K represents the sparsity of the solution vector. In [64], it has been stated that
most K-sparse vectors can be retrieved by ensuring the condition, M > 4K. This

indicates that any CS-based DOA algorithm requires at least M = 4 antenna elements
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Fig. 4.9: Impact of M and N on the ratio of MSE over CRLB of the proposed algorithm

per transmitting source to deduce the incoming angle of arrival. Another equally im-
portant consideration for CS processing is the construction of the measurement matrix
[168—170]. The system model adopted for this paper relies on the construction of a de-
terministic measurement matrix ®, where each column represents the ARVs associated
with the quantized angular grids ©. The ARV in (4.2) represents the phase shift due
to the increased travel distance of the incoming signal in reference to the first element
of the antenna array. The analysis presented in this section highlights the influence of
the M antenna elements and N angular grid points on the MSE of the estimated DOA
using the proposed ICSDOA algorithm. It also establishes a relationship between M
and N and proposes an optimal ratio that enhances the effectiveness of the proposed

algorithm.

The first set of simulations is carried out using 4 different ULA geometries with

varying M € [7,9,11,13]. The inter-element spacing between the antenna elements
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is A\/2. The angular domain between —m/2 and 7/2 is quantized into N angular grid
points, where N is varied in the range [12,23,45,90,180,360,720]. The inter-grid
spacing is given as w, where w = w/N. To provide consistency in the simulation
outcomes, 10 DOAs are randomly selected from a uniform distribution in the range
[—77 /18,77 /18). For each DOA 1000 Monte Carlo trials are carried out while the
SNR is kept constant at 15 dB. To evaluate the influence of different N on each of
the 4 antenna geometries a new performance parameter, Error Ratio (ER) has been

introduced such that

(4.22)

MSE
Error Ratio (dB) = 10log;, ( ) .

CRLB
In (4.22), the ER provides a ratio of the MSE of an estimate using the proposed algo-
rithm against the respective CRLB of the ULA geometries. Moreover, the parameter
provides an indication of the deviation of the MSE from the theoretical bound. A
higher ER suggests that the estimate is inaccurate and is deviating from the respective
error bound. According to (4.20), the CRLB of a ULA is dependent on the number of
antenna elements (M) of each ULA geometry. The graph in Fig. 4.9 illustrates that
the ER for all the ULA geometries gradually decreases with an increase in N and ap-
proach zero for larger N. When looked at closely, it can be seen that ULA-13 requires
N > 360 in order to have an ER close to zero. On the other hand, the plot for ULA-7
approaches the zero mark for N > 90. Although both ULA-9 and ULA-11 perform
close to each other, the ER for ULA-11 is slightly higher than ULA-9. At N = 90,
the ER for ULA-13 is almost 15 times as large as of ULA-7. Such behavior indicates
that ULAs with large M require a finer quantization of the angular domain (i.e. large
N) to obtain a precise estimate of the incoming angle of arrival. This suggests that
the proposed ICSDOA algorithm integrated with ULA-7 and ULA-9 has an advantage
over ULA-11 and ULA-13 in achieving its respective CRLB using a smaller N. The

difference in behavior among the ULA geometries can be explained using the theory
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of the antenna array by Balanis in [171].

According to the theory, the accuracy of a DOA estimate is directly dependent on
the number of antenna elements, given that the angular domain is finely quantized.
However, limited research was carried out to study the impact of varying N on different
ULA geometries as a DOA estimation problem. To further investigate the effect of
N, the phase responses of the ULA geometries are calculated for an incoming DOA
in the range [—m/2,7/2). The phase response of a ULA with M antenna elements

corresponding to an incoming angle 6 is f(6) given as
f(0) = arg(AF), (4.23)

where

AF =1+ e—jksin(e)d 4o+ e—jksin(ﬁ)(M—l)d‘ (424)

The graphs in Figs. 4.10, 4.11, 4.12 and 4.13 show the phase responses for each of the
4 ULA geometries. Each graph has several sub-graphs indicating the effect of varying
N on f(6). The number of sidelobes that appears for each antenna geometry is M — 2
and is directly dependent on the number of antenna elements M [171]. Let us consider
the subgraph with N = 720 (finer quantization of angular domain) for all the ULA
geometries in Figs. 4.10 to 4.13. The frequency of the pulses in a subgraph increases
with an increase in M, which is due to the increased sidelobes. So, for larger M, the
phase response of a ULA is more sensitive for varying 6 than a ULA with smaller M.
Therefore, the sensitivity restricts a ULA with larger M from performing effectively
when the angular domain is coarsely quantized (i.e. smaller N). In Fig. 4.10, the sub-
graphs for ULA-7 remain consistent until N = 90 and change abruptly for N < 45.
This means that at N = 45 the angular domain is under-sampled, and does not have
enough information to reconstruct the original shape of f(#). For ULA-13 the change
in shape appears at N = 180 and gets worse as N decreases. From the simulation
results, it can be concluded that ULA-7 approaches zero ER using half the value of
N compared to ULA-13. This allows ULA-7 to achieve its respective CRLB using a

smaller number of angular grid points. The analysis establishes a relationship between
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M and N that enables ICSDOA algorithm to achieve the CRLBs of respective antenna

geometries.

4.7.5 DOA Estimation Performance Comparison

This section graphically illustrates the fast convergence of the proposed ICSDOA al-
gorithm and compares its performance with several well known DOA estimation tech-
niques. In addition, the performances of the DOA techniques are compared to the
CRLB. For both sets of simulations, a ULA geometry is considered as a receiving node
with M = 9 antenna elements with an inter-element spacing d = A/2. The simulations
considered U = 100 different DOAs, where incoming DOAs are chosen randomly from
a uniform distribution in the range [—77/18, 77 /18). The number of Monte Carlo trials
for each scenario is I = 100. The spatial angular domain in the range [—m/2,7/2) is
quantized into N = 180 angular grid points with a quantization interval of w = 7/180.
The SNR is varied between -10 dB and 25 dB with an interval of 1 dB.

The first simulation demonstrates the convergence of the proposed ICSDOA in
approaching the theoretical CRLB. In Fig. 4.14 the y-axis and the z-axis represent
the MSE and SNR in dB respectively. The graph shows 4 plots, where the yellow plot
represents the coarse estimate which is obtained using (4.8) in Section 4.5. The coarse
estimate refers to the neighboring quantized grid point with maximum amplitude. For
low SNR cases the MSEs for all three plots are extremely high. This is because, at
low SNR, the CS algorithm fails to converge to a quantized grid point closer to the
incoming DOA. As the coarse estimates at low SNR are incorrect, the following iterative
operations of ICSDOA are ignored to reduce complexity. However, for SNR > 6
dB, the estimation error drops sharply and approaches the CRLB. The plot for the
coarse estimate flattens out at high SNR due to the error induced by grid quantization.
The blue and red plots indicate the estimate obtained after the 1st and 2nd iterative
operations of the ICSDOA algorithm. From the graph it is clear that using the first
iteration the ICSDOA approaches the CRLB for SNR > 6 dB and remains close to
the bound for higher SNR. As ICSDOA shows superior performance in reducing the
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Fig. 4.14: Convergence of algorithm from the coarse estimate to the final estimate in
two iterations.

estimation using the 1st recursion, the improvement in the 2nd iterative operation is
extremely small. For a better visualization of the difference in performance between
two iterative operations, a magnified version of the graph is shown in Fig. 4.14. This
gives a clear indication of the rapid convergence with ICSDOA to the CRLB, using
just two operations.

In the second set of simulations, shown in Fig. 4.15, the DOA estimation per-
formance of ICSDOA is compared to benchmark DOA estimation techniques such as
Beam-Forming, Root-MUSIC and ESPIRIT. As the Root-MUSIC algorithm is a mod-
ified version of the well-known MUSIC algorithm, the MUSIC algorithm is excluded
from the comparison. All the simulations are carried out using a single time instant
(i.e. snapshot = 1). For SNR < 5 dB, the MSE for all the estimation techniques are
extremely high. Beam-Forming and ICSDOA perform better than Root-MUSIC and
ESPIRIT, with Beam-Forming having a slightly lower MSE than ICSDOA. The plot
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Fig. 4.15: MSE performance comparison of the ICSDOA algorithm against Beam-
Forming, Root-MUSIC and ESPRIT.

for Beam-Forming approaches the CRLB for 6 dB <SNR< 10 dB, but deviates away
from the CRLB at higher SNR. The Beam-Forming method is dependent on the grid
interval, i.e. w = 7/180. Therefore the MSE of Beam-Forming is lower bounded by
an error induced due to grid quantization, and the error increases with an increase in
the grid interval w. The plot for Beam-Forming can be related back to the plot for
the coarse estimate in Fig. 4.14, which also has a lower bound on MSE performance.
On the other hand, Root-MUSIC and ESPIRIT have a higher estimation error at low
SNR, but overtake the Beam-Forming plot for SNR > 18 dB. This shows that both
EVD-based methods perform independently to the grid quantization, but fail to ap-
proach the bound due to a smaller number of signal snapshots. However, the proposed
ICSDOA algorithm outperforms the above techniques by performing extremely close
to the CRLB for SNR > 5 dB and remains on the bound for higher SNR. The iterative
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operation of ICSDOA completely eliminates the error resulting from grid quantiza-
tion, whereas the CS operation allows ICSDOA to achieve superior performance with

a single snapshot.

4.7.6 Computational Complexity

This section discusses the complexity of our proposed algorithm in converging to an
estimate. The graph in Fig. 4.14 clearly indicates that the ICSDOA algorithm achieves
the CRLB in just 2 iterations. Algorithm-2 indicates that the proposed iterative al-
gorithm uses one CS operations in each iteration to compute the output of an error
discriminant. The CoSaMP CS algorithm has been used to retrieve the sparse vector
from the under-determined system of equations. According to [67], the computational
complexity of the CoSaMP algorithm is given as O(M N). The proposed algorithm
consists of three major stages, coarse estimate, error-discriminant output, and update.
The first stage uses only 1 CS operation to retrieve the initial sparse vector and is
followed up with the search for the index representing the dominant complex enve-
lope. In total the complexity of the the first stage in terms of big O notation can
be expressed as O(MN) + O(N) = O(MN). The second stage relies on the rotation
of the N angular grid points by a % the quantization interval. This process intro-
duces a total of M N multiplications resulting a complexity of O(MN). This step
is followed by a CS processing on the rotated grid points which introduces another
O(MN) operation. Unlike the first stage, the algorithm does not require a maximum
search operation to find the complex envelope. Instead, the algorithm can easily access
the vector using the index obtained from the first stage to extract the scalers v and
B. The error discriminant calculation is a simple scalar arithmetic operations with
a combined time complexity of O(1). Therefore, in the second stage for each itera-
tion in estimating the error discriminant, the respective complexity can be written as
O(MN)+ O(MN)+ O(1) = O(2MN). The third stage is the update phase, where
the output of the error discriminant is used to update the N quantized grid points ©.
The operation is a basic mathematical addition with a time complexity of O(N). The

total breakdown in terms of time complexity is given in Table 3.2
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Processing Operation Complexity

Coarse Estimate | 1 x C'S + max search | O(MN)
Error Discriminant || 2 x C'S + A© output | O(2MN)
Update N Additions O(N)

TABLE 4.2: Computational-complexity of proposed algorithm

Eigenvalue decomposition (EVD) based or subspace based DOA estimation meth-
ods such as MUSIC, Root-MUSIC and ESPRIT, have a computation complexity of
O(M?N + M?) and O(M?+ M?). MUSIC and Root-MUSIC are computationally more
complex due to their spectral search and subspace estimation using the EVD of the
covariance matrix. From Table. 4.2, it can be concluded that the total computational
complexity of the algorithm is O(M N + 2c¢M N + N), where ¢ is the number of itera-
tive operation required to converge to the estimate. The complexity of our algorithm
is highly dependent on the number of error discriminant estimates. According to the
convergence test, the error discriminant approaches the stopping criterion with just two
iterations. In comparison to the EVD based methods, our proposed technique offers
lower complexity (O(5M N)) than MUSIC and Root-MUSIC, however, it has higher
complexity than ESPRIT.

4.8 Conclusion and Future work

This paper outlines a novel iterative algorithm to detect the DOA of a transmitting
source using a ULA antenna as a receiving node. A new signal processing technique has
been introduced that utilizes CS operations to develop an error discriminant function.
The function enables rapid convergence of a DOA estimate to the theoretical CRLB by
eliminating the error induced due to grid quantization. The robustness of the proposed
algorithm was verified by conducting extensive statistical analysis with noise inherent

in the ULA processing. The results suggest that the algorithm converges to the CRLB
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of the DOA estimate with just 2 iterations. At moderate SNR the algorithm outper-
forms well-known techniques such as Root-MUSIC, ESPIRIT and Beam-Forming by
reducing the MSE of performance significantly. The computation complexity of the
algorithm is calculated to be O(5M N) which is lower than EVD-based DOA estima-
tion algorithm such as MUSIC and Root-MUSIC and slightly higher than ESPRIT.
However, ESPRIT requires large snapshots of the incoming signal to determine the
DOA. A detailed analysis on the influence of the number of antenna elements and the
grid quantization on the MSE performance of the algorithm is also presented in this
paper. It can be concluded that ULAs with a large number of antenna elements require
finer quantization of the angular grids to achieve its respective theoretical bound. In
other words, ULA with a large M would need a large N, as a result drastically in-
creasing the computational complexity of the algorithm. However, it is worth noting
that DOA estimation accuracy of a ULA is directly dependent on M. Hence, there is
a systematic trade-off of performance as a function of the computational complexity of
the algorithm.

As part of future work, it is of great interest to extend the algorithm using multiple
receiving ULA antennas to deduce the location of the transmitting source in a network.
One major assumption made in the current research model is that there is only one
source. Incorporating a large number sources and analyzing the performance in various

multi-path environments is another important topic for future work.



Performance comparison of a Uniform
Circular Array and Uniform Linear Array
using an Iterative Compressive Sensing

Framework

5.1 Abstract

This paper provides a comparison study for the problem of direction-of-arrival (DOA)
estimation using the uniform circular array (UCA) and uniform linear array (ULA)
antenna geometries. The paper focuses on integrating the two antenna geometries with

a compressive-sensing based DOA estimation algorithm in order to determine the DOA
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of an incoming signal. CS-based approaches offer a competitive advantage over the
traditional sub-space based DOA estimation techniques due to their ability to obtain an
estimate with minimum measurements (i,e. one snapshot), while completely avoiding
the computationally expensive eigenvalue decomposition (EVD). The performance of
the antenna geometries is validated by comparing to the theoretical Cramér-Rao lower
bound (CRLB) of the respective antenna geometries. Simulation results suggest that
ULA achieves a more precise estimate than UCA, especially when the DOAs are in the
broad-side region. The paper also provides a detailed analysis on the structure of the
measurement matrices that are constructed using the array response vector (ARV) for
each of the two antenna geometries. The analysis indicates that careful exploitation of
antenna array parameters of a UCA can greatly enhance the DOA estimate, eventually

leading a lower MSE than that of ULA.

5.2 Introduction

Smart antennas have been widely used in the area of wireless and cellular communi-
cation to overcome the problem of limited channel bandwidth, therefore satisfying the
ever-growing demand of large mobile networks. Currently, there is a great interest in
integrating smart antennas to the existing cellular infrastructure to maximize the spec-
tral efficiency of the networks. Beam-forming is a technology that allows a base station
to simultaneously direct radiation beams towards intended users, and ideally put a null
towards un-registered users [142]. The approach offers intelligent alternatives to the
interference mitigation problem, while allowing maximum utilization of the spectral
resources. However, to place a directional beam towards a user, accurate direction-
of-arrival (DOA) information is of paramount importance. The DOA information is
also pivotal in several applications such as localization-based services (LBS), jammer
identification and adaptive beam-forming [144, 172, 173].

Subspace-based methods, Multiple Signal Classification (MUSIC) [97] and Estima-
tion of Signal Parameters via Rotational Invariance Techniques (ESPRIT) [98] requires

eigenvalue decomposition (EVD) of the covariance matrix for DOA estimation. The
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EVD process is computationally demanding and relies on a large number of snapshots
of the incoming signal for estimation accuracy. Compressive Sensing (CS) is a signal
processing technique that is extremely effective in recovering a signal using minimum
measurements, given that the incoming signal is sufficiently sparse in some given basis.
As the incoming signal is sparse in a given angular dimension, the problem can be cast
into a CS problem of sparse vector recovery. In comparison to the aforementioned DOA
estimation methods, CS-based DOA estimation techniques offers several advantages:
1) it avoids the computation of an EVD matrix, which demands a complex hardware
implementation at the receiver that is not feasible for hand-held devices and 2) it offers
a high precision estimate of a DOA using only a single snapshot of the observation.
The computationally inexpensive technique has attracted attention and motivated re-
searchers to explore DOA estimation as a sparse recovery problem [108, 146, 147, 174].
Until now, most research in the field of antenna arrays focused on the uniform linear
array (ULA) as the form of the antenna geometry. Limited attention has been paid to
the uniform circular array (UCA) as an antenna topology for DOA estimation. Unlike,
linear arrays, UCAs can provide a wider angular scan coverage in both horizontal and
vertical planes. The symmetric geometry of a UCA greatly reduces the distortions in
the array pattern due to mutual coupling and the synthesized directional beam pat-
terns can be electronically rotated without a significant change in the beam shape.
Moreover, due to the fact that UCAs do not have edge elements, the limitations of

end-fire regions can be ignored [175-178].

In a typical CS-based technique, the angular region of coverage is quantized into
N possible DOAs, where each DOA represents a grid point on a spatial domain. The
number of antenna elements M in a UCA and a ULA is usually smaller than the number
of angular grid points N. The complex signals originating from each of the angular grid
points are used to create a dictionary matrix that is rectangular in nature. One of the
major drawbacks of the CS-based algorithm is the error induced in the estimation due to
grid quantization. To eliminate the problem a novel iterative CS-based DOA estimation
algorithm (ICSDOA) is proposed in [179] and will be used as a platform to carry out
the CS operation. The algorithm has superior performance to traditional EVD-based
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approaches and achieves the Cramér-Rao lower bound (CRLB) on estimation error.
Simulation results suggest that the proposed algorithm is extremely convergent and is

able to provide an accurate DOA estimate using a single snapshot of the signal.

In this paper, we provide a mean-square-error (MSE) performance comparison be-
tween the two antenna geometries, UCA and ULA, when incorporated with the ICS-
DOA estimation algorithm. The Simulation results suggest that, for a given set of
DOAs in the broad-side region, a ULA outperforms UCA in reducing the MSE to a
minimum. This is mainly due to the fact that a ULA has a lower CRLB than a UCA.
The effectiveness of a CS-based DOA estimation algorithm is heavily dependent on
the structure of the dictionary matrix. The paper also provides an in-depth analysis
on the influence of different antenna parameters on the structure of the dictionary
matrices constructed using UCA and ULA. As the dictionary matrices are rectangular
in nature, matrix properties such as mutual coherence and condition number are used
as a performance parameter to validate the structure of the matrices. The antenna
parameters considered for the analysis include the number of antenna elements M, the
number of angular grid points N and the inter-element spacing between the antenna
elements. The analysis suggests that careful exploitation of the antenna parameters of
a UCA can significantly improve the structure of the dictionary matrix, leading to a
lower MSE estimate of a DOA than that of a ULA. Moreover, the impact of M and N
on the MSE of each antenna geometry is separately analyzed. Simulation results show
that, a ULA with large M requires finer quantization of angular grid points to achieve

a minimum error estimate of the incoming DOA.

The outline of the paper is as follows. A background on the CS technique is pre-
sented in Section 5.3. Sections 5.4-5.5 provide the system model and the integration of
CS framework as a DOA estimation problem. Section 5.6 details the analysis on the
dictionary matrices. This is followed by simulation results in Section 5.7 and finally,

conclusions are presented in Section 5.8.



5.3 BACKGROUND 141

5.3 Background

This section provides a brief background information to describe the concept of CS. It
also discusses several properties that can used to measure the fitness of a rectangular

matrix.

5.3.1 Compressive Sensing

Compressive sensing is a mathematical framework that deals with the recovery of a
sparse vector, zn«1, from an observation vector, yy;«1, with M < N. The measurement
paradigm consists of a linear projection of the signal vector via a known projection
matrix Wy, n. As M < N, the recovery of the sparse vector x from the measurement
vector y becomes an undetermined problem with a large number of solutions. In the
CS framework, an accurate estimation of a sparse signal, x, can be obtained in the

reconstruction problem described in [89] as
minflaly st y— W, < ¢, (5.1

where [|-[|, is the [,-norm and ¢ bounds the amount of noise in the observation data.
The min ||z]|, is desired by min ||z||; which is approximately similar in the case of sparse
vector. A vector x is said to be K-sparse if ||x]lo = K. Accurate recovery of = requires
the measurement matrix W to satisfy some strict conditions such as the Restricted
Isometry Property (RIP) and Spark(¥) > 2K [89]. The Spark of a matrix is the
smallest number of columns in matrix ¥ that are linearly independent, and the RIP
indicates that a subset of the columns chosen from W are nearly orthogonal. Although
Spark and RIP guarantees the recovery of a K-sparse vector, verifying that a matrix
U satisfies any of the above properties has a combinatorial computation complexity,
since each time one must consider (%) submatrices. Therefore it is preferable to use
a property of a matrix which is easily computable yet still guarantees recovery. The

mutual coherence of a matrix W, u(¥), is the largest absolute inner product between
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Fig. 5.1: A typical UCA with M elements, where 6 and ¢ represent the azimuth an
elevation angles of a received signal. The 27 azimuth domain is quantized into N
possible angular grid points.

two columns 1; and 1; of W:

| (i, ¥5)]

agi<i<n |[ii]|2 |12

p(¥) (5.2)

The Mutual Coherence of a matrix ¥ is always bounded in the range (V) € [,/ %, 1],
where the lower bound is known as the Welch Bound [89]. Note that a small p(¥) in-
dicates that the columns of ¥ are highly independent. If the original signal z in (1)
satisfies the requirement

1
=K<-(14+4——— 5.3
lollo = & < 501+ ), (53)

then CS algorithms such as Basis Pursuit or other greedy algorithms such as COSAMP
[67] can be used to guarantee the recovery of z from an under-determined set of equa-

tions.

5.3.2 Singular Values

A rectangular matrix such as ¥,y does not possess any quantifiable parameters such
as eigenvalues to determine the structure of the matrix. However, ) = V*W¥, where U*

is the conjugate transpose of W, is a square matrix and the eigenvalues of () can be
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Antenna Element

Fig. 5.2: A typical ULA with M elements, where, 6 is the azimuth angle of arrival of
the received signal

related back to quantify the property of W. The singular values py, ..., p,, (arranged in
ascending order) of an m x n matrix U are the positive square roots of the non-zero
eigenvalues of the associated Gram matrix () = U*W. Singular values of ¥ can be used
to introduce another quantifiable parameter known as the condition number, expressed
in [93] as

T (¥) = Lmez (5.4)

Pmin

where ppin and pp.q. are the smallest and largest singular values associated with the
matrix W. The condition number plays a vital role in providing a geometric interpre-
tation of the action of the matrix. A matrix with a low condition number suggests a

strong convergence to an accurate and unique solution to the problem defined in (1).

5.4 Problem Formulation

This section provides the system model for both antenna geometries.
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5.4.1 Uniform Circular Array

Let us consider a planar array of M isotropic elements equally distributed around a
circular ring of a UCA with radius r, and angular separation of 2w /M radians. The
inter-element spacing dyca = 2rsin(n/M) is the length of the straight line between
two adjacent antenna elements. The angular positions of the antenna elements in the
UCA are represented by {v,,}, where v, = 2nr(m — 1)/M. An electromagnetic plane
wave impinges on the antenna elements from some unknown DOA 6#. The incident
signal is considered to be narrow-band. Under the following assumption, the complex

voltage output of the antenna array can be written as

Vuca = Auca(P)Puca +nuca, (5.5)

where Vyca is the M x 1 vector output associated with the impinging wave. The M x 1
noise vector is Nuca and the entries are assumed to be statistically independent and

Gaussian distributed with zero mean and variance o?

. The Complex envelope of the
incoming signal is represented as Pyca. In (5.5), the array response vector associated

with an incoming signal from an unknown azimuth angle 6 is given as

AUCA(9> = [e*jkTCOS(e) ... efjchos(O—»yM)] T (56)

The array response vector of a UCA (ARVyca) in (5.6) is the phase shift due to the
increased travel distance of the incoming signal from an angle # in reference to the first
element when it is received by the mth element of the UCA. The angular wavenumber
is k, where k = 2w /\. The model assumes that the elevation angle ¢» = 0 and that all
the antenna elements are on the same plane. Fig. 5.1 shows the geometry of a UCA

and the relative positioning of the antenna elements.

5.4.2 Uniform Linear Array

This work assumes a set of M isotropic antenna elements placed in a straight line with

an inter-element spacing of d = A\/2, where \ is the signal wavelength. A travelling
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plane wavefront impinges on the antenna elements from some unknown direction 6. The
incoming wave satisfies the narrowband assumption that the phase difference between
the upper and lower band edges of the propagation across the entire array is small.

The complex output at the antenna array is given as

Vura = Avura(0)Pura +nura, (5.7)

where Vyra is an M x 1 array output vector corrupted with noise. The M x 1
noise vector is represented as mypa where the entries are statistically independent
and Gaussian distributed with zero mean and variance o2, and Py is the complex
envelope of the source at the receiving array. In (5.7), Ayra(f) is the M x 1 array
response vector (ARV) for an incoming plane wave from the direction 6 and is generally
given as

AULA(Q) =11 e—jk’sin(e)dULA .. e—jksin(Q)(M—l)dULA] .T (58)

The ARVypa in (5.8) represents the relative phases of the received signals at the an-
tenna elements where k = 27 /X is the wavenumber or phase propagation factor. The
aim of this work is to find the incident azimuth angle 6 using the relative phase differ-

ence between the antenna elements. Fig. 5.2 shows the system model.

5.5 DOA estimation using Compressive Sensing

This section describes the formulation of a sparse problem that can be solved using
compressive sensing techniques to recover the unknown azimuth angle 6 of the source.
The spatial coverage of a ULA antenna is in the range [—7/2,7/2), whereas for a UCA
the range is [—m, m). The circular ring pattern of a UCA offers a wider angular coverage
than that of a ULA. To incorporate the architecture of CS into the system model of
the UCA and the ULA, the respective angular domain of coverage is quantized into
N possible DOAs, where the phase contribution from each of the DOAs are used to
create an overcomplete dictionary matrix. For a UCA, the IV discrete angular points

are represented as Opcoa = {én, 1 <n < N}. For a ULA, the sampled angular grid
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points are represented as Oy = {9~n, 1 <n < N}. The angular grid separations for
both UCA and ULA are given as wyca = 27/N and wypa = 7/N respectively, where
wyca > wyra. The ARVs in (5.6) and (5.8) associated with the N unique spatial grids,

Ouca and Opra can be combined to create two dictionary matrices described as

(I)UCA(@UCA) = [AUCA(él) ce AUCA<éN)] ) (59)

‘I)ULA(G)ULA) = [AULA(él) cee AULA(éN)] 5 (510)

In Section 5.4, we established the relationship between the output of the antenna
geometries and the DOA of the incoming signal. Using the definition of the dictionary
matrices in (5.9) and (5.10), the complex voltage output of the antenna arrays in (5.5)

and (5.7) can be rewritten as

Vuca = Puca(Ouvca)Suca + Nuca (5.11)

Vura = Pura(Oura)Sura + Nura (5.12)

where Syca and Sypa are N X 1 vectors of coefficients representing the complex
envelope of the incoming signal. The structure of CS deals with the recovery of a sparse
signal from measurements corrupted by noise, which makes a CS framework suitable
for the DOA estimation problem. The systems of equation in (5.11) and (5.12) can
be transformed into a CS problem similar to (5.1) in order to recover the two sparse
vectors Syca and Sypa. The sparse vector recovery is a convex optimization problem

described as

S — min |[|S 5.13
UCA SUCAE@VH ucallo (5.13)

subject to

|Vuca — PucaSucallz < €vca
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and

Sura = mi S 5.14
ULA SUEZIQ(CNH ULA||0 ( )

subject to

|[Vura — PuraSurallz < €vra

where |[|-||, is the lp-norm and eyca and eypa are the regularization parameter that
is being determined by the noise or quantization level. Careful selection of the reg-
ularization parameter is crucial in sparse recovery of the signal. The outputs of the
optimization problem defined in (5.13) and (5.14) are the reconstructed sparse vectors
SUCA and SULA that approximates the actual spatial vector Syca and Syra. Due to
the sparse condition, the recovered sparse vectors will contain a single dominating non-
zero coefficient. The n'* index of the vector associated with the non-zero coefficient

indicates the discrete angular grid point on which the source is located.

5.6 Analysis of the Dictionary Matrices

This section analyzed the impact of various antenna parameters such as number of
antenna elements and inter-element spacing on the structure of the measurement ma-

trices.

5.6.1 Impact of Antenna Elements

This section focuses on the impact of the number of antenna elements on the structure
of the dictionary matrices, Pyca and Pypa. As mentioned in Section 5.3, to enable
a CS algorithms to successfully recovery of the sparse vector, it is crucial for the
dictionary matrix to satisfy the strict RIP condition. Since verifying the RIP condition
can be computationally expensive, properties such as mutual coherence and condition
number will be used as a performance parameter for the dictionary matrices. For both
UCA and ULA antenna geometries M is varied in the range [6,30] while the inter-

element spacing between the antenna elements is dyca = dypa = A\/2, where A is the
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Fig. 5.3: Mutual coherence of ®yc4 and $yp4 as a function of the number of antenna
elements M.

wavelength of the incoming signal. The mutual coherence of the dictionary matrices is
calculated using (5.2). Fig. 5.3 shows the variation of the mutual coherence of the two
dictionary matrices with respect to increasing M. From the graph, it is evident that
the mutual coherence of the UCA geometry decreases as M increases. This indicates
that the columns of @y ¢4 are highly independent when M is a maximum. On the other
hand, in case of ULA, there is no significant impact of M on the mutual coherence of
®yp4. Although there is a slight reduction in u(®yp4), when compared to u(®Pyca),
the change is insignificant. The analysis suggests that the columns of ®y ¢4 are highly
independent, enabling CS-based DOA estimation algorithms to precisely detect the
incoming DOA.

The next set of analysis focuses on a condition number analysis of the dictionary

matrices. The condition numbers (Y(®Pyca), Y (Pyra)) for the antenna geometries are
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Fig. 5.4: Mutual coherence of ®yc4 and $yr4 as a function of the number of antenna
elements of the antenna geometries.

calculated using (5.4) in Section 5.3. The plots in Fig. 5.4 have a different trend than
that of Fig. 5.3. For smaller M (i,e. M < 10) Y(Pyca) > L(Pyra), suggesting that
&y is ill-conditioned compared to ®yp4. However, when M > 12 T(Pyca) drops
while T(®yra) remains unchanged. This shows that M has a higher influence on the

mutual coherence of @y -4 than on that of ®yp4

5.6.2 Impact of Inter-Element Spacing

Another crucial parameter influencing the construction of the measurement matrix
is the inter-element spacing between the antenna elements. Conventional theory on

antenna design suggests having an inter-element separation, dyca = dyra € [3, ],
between the antenna elements to avoid ambiguity between the ARVs of distinct DOAs

[82]. This section discusses the impact of dyca and dy4 on the mutual coherence of the
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Fig. 5.5: Impact of the number of antenna elements M and the inter-element spacing
dyca on pu(Pyca) -

dictionary matrices, ®ycq and Py respectively. A contour plot is presented, where
the mutual coherence of ®;c4 and P4 are calculated as a function of the number
of antenna elements M and the inter-element spacing dyca and dypa respectively.
For this simulation, the inter-element spacing dyca = dyra is a varied in the range
[A/2,10A], whereas M is in the range [6, 20]. The ARV for UCA represented as Ayra
in (5.6) relies on the radius, r of the UCA instead of the inter-element spacing dyca.
The expression for dyc4 in Section 5.4 can be rearranged to find an expression for the

radius as

- duca
2sin(w /M)

Fig. 5.5 and 5.6 shows the variation of u(®yca) as a function of the number of
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antenna elements M and the inter-element spacing dyca. First, we will discuss the
UCA antenna geometry. In Fig. 5.5, for all M and dyca < 2X, u(®Pyea) takes on high
values in the region between 0.9 and 1.0. However, for dyca > 2\, more blue patches
can be observed, indicating a reduction in the coherence. It can be seen that the blue
patches are more consistent with variation in dyca especially when M is odd. For
an increase in odd M (7,9,11...), the reduction in mutual coherence is much sharper
than for even M (8,10,12...), especially when dyca > 2X. On a closer observation it
can be seen that, with careful consideration of dyca, u(®yca) for M = 11 can be
reduced by a factor of 10 when compared with M = 12. A red dotted line has been
drawn on the contour to differentiate the impact of even numbered M from the odd
counterparts. This phenomenon is due to the centro-symmetric property of the UCA,
which causes the columns of ;¢4 to be indistinguishable, especially when M is even.
A detailed analysis on this topic is provided in in Chapter 3. Moreover, the contour
indicates that dyca = A/2 might not be the most suitable inter-element spacing as
mentioned in prior research on UCA geometry. The plot shows that, for odd M, a
proper selection of inter-element spacing (dyca > A/2) can significantly reduce the
mutual coherence of the dictionary matrix. A low mutual coherence enables the CS
algorithm to efficiently utilize the columns of a dictionary matrix in order to recover
a sparse vector. Especially, in CS-based estimation algorithms, the sparse vector can
be recovered with high precision, simply by reducing the mutual coherence of ®yca.
From the analysis, it can be concluded that the contour plot for ®yc4 provides useful
information that can be exploited to construct a dictionary matrix that enhances the
performance of CS operations. On the other hand p(®yp4) responds in a different
way to the variation of M and dyp4 as shown in Fig. 5.6. The blue areas on the
contour in Fig. 5.6 are almost close to 1, indicating maximum coherence among the
columns of ;4. The contour also shows that the inter-element spacing dy ;4 between
the antenna elements has limited impact on p(®yr4). Similarly, there is no evidence
to indicate any influence of M on u(®yr4). The contour plots in Fig. 5.5 and Fig.
5.6 provide a comparison between the two antenna geometries. The result indicates

that ®yc4 is more robust and have the advantage of regions of low mutual coherence,
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dypa on pu(Pyra) -

offering maximum utilization of the column space.

5.7 Simulation Results

This section aims to provide an insight into the key performance parameters of the
two antenna array geometries when integrated with a CS-based DOA estimation al-
gorithm. Tterative compressive sensing direction of arrival (ICSDOA) estimation algo-
rithm is a novel approach proposed to precisely deduce the incoming angle of arrival of a
transmitting source. The algorithm provides a fundamental breakthrough in CS-based
estimation techniques by completely eliminating the error due to grid quantization.
The algorithm is highly convergent and can be cast into any CS-based estimation al-

gorithms. A detailed description of the proposed ICSDOA algorithm is presented in
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Chapter 3 and Chapter 4. The simulation consists of one source, where the signal
impinges from any angle in the range [—m/2,7/2) radians. For the purpose of a fair
comparison between the two antenna array geometries, UCA and ULA, the possible
angular range of coverage is restricted to [—m /2, 7/2) radians. The signal is assumed to
arrive at the antenna elements with equal magnitude in order to perform an unbiased

analysis of the accuracy of the method with respect to the angle of arrival.

5.7.1 SNR and CRLB

In order to determine the robustness of our system model, the following noise sensitivity
test has been considered. The Signal-to-Noise Ratio (SNR) is calculated at the receiver
as the ratio of the sum of the powers received from the M antenna elements to o2, where
o2 is the variance of the complex Gaussian noise. The measured data are characterized

by the SNR in dB, defined as

> m=1 e
SNR = 101 =m=.____ 5.15
0810 [ Vo2 ( )

where v,,, m = 1,...M, is the noiseless complex output at the m! antenna element of
the respective antenna geometry. To validate the performance of the antenna geome-
tries in accurately estimating an angle of arrival, U different DOAs are chosen from a
uniform distribution. For statistical consistency, I Monte Carlo trials are carried out.
Compressive Sampling Matching Pursuit (CoSaMP) has been used as the platform for
carrying out the CS operation in the proposed ICSDOA algorithm. The Performance
parameter of the algorithm is characterized as the Mean Square Error (MSE), where

MSE for the antenna geometry is defined as

U I
; 007" u,r 968 u,l 2
MSE _ Zu:l Zz:l | Ujgv ’ Ly, | (516)

where 0,4, is the original DOA of the source and 8.5, is the DOA of the source
estimated for the u® scenario and the i Monte Carlo trial. The MSE of the proposed
algorithm will be compared with the Cramér-Rao lower bound of the UCA and ULA,
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given in [149] as
52

LB >
CRLBuyca > el

(5.17)

> £
u=1 M(M?—-1)r2cos?(0org,u)

CRLBuypa > 0

(5.18)

where M, k and r are defined in Section 5.4. An estimator achieving the CRLB is
considered to be efficient and it is not possible for any estimator to perform better

than the theoretical CRLB.

5.7.2 Effect of Grid Quantization

Firstly, we will discuss the impact of the number of angular grid points /N on the MSE
performance of each of the antenna geometries (UCA and ULA). The computational
complexity of the proposed ICSDOA algorithm in terms of big-O notation, is given as
O(5M N)[179]. This means that for a constant M, the complexity is directly dependent
on N. In order to carry out this simulation, U = 10 DOAs are randomly selected from
a uniform distribution, given that the DOA falls in the angular coverage of both UCA
and ULA. For statistical validation, I = 2000 monte carlo runs are carried out. Four
cases are considered where each of the antenna geometries is constructed with M =
9 and 13 antenna elements respectively. For simplicity, the four antenna structures
are represented as UCA-9, UCA-13, ULA-9 and ULA-13. The inter-element spacing
between the elements dyca = dypa = A/2, where X is the wavelength of the received
signal. The number of angular grid points is varied in the range [45, 90, 180, 360], where
N = 45 is a coarse quantization and N = 360 represents finer quantization. The SNR
for the simulation is kept constant at 15 dB. According to (5.17) and (5.18), the CRLB
of ULA and UCA is dependent on the number of antenna elements (). To evaluate
the influence of NV on each of the four different antenna structures a new performance

parameter, Error Ratio (ER), has been introduced such that

(5.19)

MSE
Error Ratio (dB) = 10log,, (CR%) 7
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Fig. 5.7: (a) Error Ratio of UCA antenna geometries as a function of N. (b)Error
Ratio of UCA antenna geometries as a function of N.

where CRLB represents the theoretical lower bound for the particular antenna geome-
try. In (5.19), the ER provides a ratio of the MSE of an estimate against the respective
CRLB of the antenna structure. Moreover, the parameter provides an indication of
the deviation of the MSE from the theoretical bound. A higher ER suggests that the
estimate is inaccurate and is moving away from the respective error bound. Fig. 5.7
consists of two subplots with UCA results at the top and ULA at the bottom. For
UCA, the ER for both UCA-9 and UCA-13 decreases monotonically with an increase
of M. This means that, with finer quantization of the spatial domain, the ER is ex-
tremely close to zero, suggesting that the MSE of the estimate is on the CRLB of the
respective antenna structure. However with coarser quantization of the angular grid

(i,e. N <90), the ER jumps up, with UCA-13 having a higher ER than UCA-9. The



PERFORMANCE COMPARISON OF A UNIFORM CIRCULAR ARRAY AND UNIFORM
156 LINEAR ARRAY USING AN ITERATIVE COMPRESSIVE SENSING FRAMEWORK

nature of the plots can be associated with under-sampling of the angular grid which
makes UCA-9 more insensitive to a variation in the quantization level than UCA-13.
The details of the analysis are presented in Chapter 3 and 4. The subplot for ULA in
the bottom of Fig. 5.7 have a similar trend to the previous plot. However, the differ-
ence in ER values between ULA-9 and ULA-13 is much higher than with its the UCA
counterpart. When examined closely, the plot for ULA-13 approaches zero ER with
N = 360 whereas UCA-13 achieves a similar mark with a coarser grid quantization of
N = 180. This can be attributed to low mutual coherence of (®yca) as discussed in
Section 5.5. A lower mutual coherence enables CS to take full advantage of the column
space of the dictionary matrix. This helps CS to accurately resolve the coefficients of
the sparse vector even with smaller N, hence reducing the computation complexity of
the estimation process. The analysis gives a clear indication of the advantages of the
UCA antenna geometry over ULA geometry in estimating an incoming DOA, especially
with large M and smaller N. Moreover, the result also portrays the highly sensitive
nature of the ULA antenna constructed with large M, as it requires finer quantization

of the angular domain (large V) in order to approach its respective CRLB.

5.7.3 Comparison of DOA estimation

The next set of simulations aim to provide insight into the MSE performance of each of
the two antenna array geometries under the influence of varying SNR. The MSEs of the
estimation are compared to the theoretical CRLBs of the respective antenna geometries.
The novel ICSDOA algorithm is used to estimate the DOA of the incoming signal.
Similarly to the previous simulation in Section 5.7.2, U = 10 DOAs are randomly
chosen, with an assumption that the DOAs are the in the range [—7/2,7/2). The
number of Monte Carlo runs for each DOAs is set to T' = 5000. T'wo antenna geometries
are considered, where both UCA and ULA are constructed with M = 9 antenna
elements with an inter-element separation of dyca = dypa = A/2. The number of
angular grid points for UCA and ULA is set to be Nyca = Nypa = 180, with grid

interval wyca = 2m/Nyca and wypa = 7/Nypa respectively. The graph in Fig. 5.8
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Fig. 5.8: MSE performance comparison of the two antenna geometries with integrated
with the ICSDOA estimation algorithm.

shows four plots where the red and blue plots represent the MSE performance of UCA
and ULA respectively. On the other hand, the CRLB for both UCA and ULA are
shown with the purple and black plot respectively. From the graph, it is clear that the
CRLB of ULA is lower than that of UCA. The results clearly match the expressions
of CRLBs in (5.17) and (5.18). In (5.18) it can be seen that the CRLBypa of the
error is inversely proportional to (M (M? — 1)), given that the remaining parameters
are constant. On the other hand the CRLBycy is inversely proportional to M. This
provides an advantage to the ULA geometry in lowering the MSE of the estimation by
a factor of M?. The MSE plots for both the antenna geometries behave in a similar
fashion, dipping off at approximately SNR = 6 dB and continuing to be on the CRLBs
for higher SNR. For SNR < 5 dB, the MSEs are relatively higher than the CRLBs
with ULA having a lower MSE than UCA. The high MSE at low SNR regions can be

associated with the inaccurate coarse estimate of the ICSDOA algorithm, where the
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Fig. 5.9: MSE performance comparison between UCA constructed with r°?*, UCA
constructed with 7*/2 and ULA constructed with inter-element spacing of \/2

underlying CS operation fails to detect the angular grid on which the source is located.
The result illustrates an in-depth analysis of the MSE performance comparison of
two different phased antenna array geometries when integrated with a CS-based DOA

estimation algorithm.

The analysis from Section 5.6.2 proves careful exploitation of the radius of a UCA
geometry can yield a modified measurement matrix with a minimum mutual coherence
among the columns. Especially, in the CS-based estimation algorithm, minimum mu-
tual coherence is crucial in effectively utilizing the column space of the matrix resulting
in an estimate with a low MSE. To verify the theory presented in Section 5.6.2, a new
plot has been added to the results in Fig. 5.8. The new plot in Fig. 5.9 refers to a new
UCA constructed with M = 9 antenna elements and inter-element spacing dyca =~ 4\
(r = 5.5)1). The antenna parameter dyc 4 is selectively chosen by analyzing the contour

plots in Fig. 5.5 with M = 9. The number of grid points Nyca = 180 is kept constant
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similar to the previous simulation. The plot for UCA-Opt-Radius drops off at higher
SNR = 15 dB compared to SNR = 6 dB for the other two plots. However, for SNR >
15 dB, the MSE of UCA-Opt-Radius stays on its respective CRLB. The error bound
for the modified UCA is 16 dB and 10 dB lower than CRLB-UCA and CRLB-ULA
respectively. This result confirms the influence of dyca > A/2, in reducing the mutual
coherence and hence improving the accuracy of the DOA estimate. However, in the
SNR region, [—10dB, 15dB] a traditional antenna geometry with dyca = dyra = \/2
shows superior MSE performance to the modified UCA. Moreover, due to the large
radius size, the area of UCA-Opt-Radius increases by a factor of 25 in comparison to
a traditional UCA. It can be concluded that with a careful exploitation of the inter-
element spacing of a UCA geometry, we can achieve an MSE performance much lower

than ULA at the expense of high SNR and a large antenna area.

5.8 Conclusion

In this paper, we investigate the performance of two antenna geometries, namely UCA
and ULA in accurately estimating the DOA of an incoming signal that achieves the
theoretical CRLB. The estimation algorithm is based on a CS approach that offers
superior results with a single snapshot of the incoming signal. Simulation results show
that, ULA offers a better DOA estimate than UCA, given that the incoming DOA is in
the broad-side region of the antenna geometry. However, an in-depth analysis on the
influence of the antenna parameters on the structure of the dictionary matrices is also
presented. The investigation illustrates that a UCA with an odd number of antenna
elements and an optimum antenna radius significantly reduces the mutual coherence of
the dictionary matrix. The improved structure of the dictionary matrix enables a UCA
to emhance the DOA estimation accuracy by 16 dB than that of a ULA. Moreover,
the impacts of the angular grid resolution on the DOA estimate for the two antenna
geometries are separately studied. The result suggests that a ULA with a large number
of antenna elements M is sensitive to a lower grid resolution and requires a finer grid

quantization to achieve its respective CRLB.
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Multiresolution Compressive Sensing
Algorithm to Detect Off-Grid Direction of

Arrival.

6.1 Abstract

The Direction of Arrival (DOA) techniques has been widely used in a variety of applica-
tions such as radar, sonar and image processing. Especially in military communication,
precise estimation of the DOA, incorporated with smart beam-forming techniques, can
provide useful solutions for interference mitigation and jammer identification. Tradi-

tional DOA estimation techniques require a large number of snapshots of the incoming
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signal to accurately deduce the DOA of an impinging wave, which can significantly in-
crease the computational complexity of the algorithm. We propose a novel Compressive
Sensing (CS) based DOA detection algorithm, which is independent of the transmitter
being located at a quantized grid point and uses fewer snapshots than the Beam-Scan
algorithm to detect the DOA. We evaluated the Mean Square Error (MSE) in estimat-
ing the off-grid DOA. Simulation results suggest that the proposed algorithm achieves a
reduction in MSE by a factor of ten when compared to the high-resolution Beam-Scan

technique.

6.2 Introduction

Over the years, the field of Direction of Arrival (DOA) estimation has witnessed a
great surge in research outcomes, mostly due to the immense popularity of smart
beam-steering techniques. Smart beam-steering enhances the sensitivity to a particular
signal while suppressing other unwanted signals. Apart from beam-forming, precise
DOA estimation plays a pivotal role in a wide range of applications such as wireless
communications, radar, and medical imaging. Especially in wireless, precise estimation
of the DOA of a signal is of paramount importance in an effort to reduce the effect of

interference from undesirable transmissions.

DOA estimation techniques integrated into a Cognitive Radio Network (CRN) can
provide cutting-edge solutions to the existing issue of spectrum scarcity, especially in
the case of the highly dense 5G mobile networks. In CRN a 360° angular domain
may be evenly sectorized into N spatial slots. The dedicated spatial slots allow pri-
mary /licensed and secondary/unlicensed users to be spatially multiplexed simultane-
ously into the same channel. This results in an uninterrupted communication between
users (primary/secondary), hence increasing the throughput of the overall network in
a specific geographical region.

Compressive Sensing (CS) has gained in popularity in signal processing due to the

effectiveness of CS in recovering a sparse signal with minimum measurements [64].
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The computationally inexpensive technique motivated researchers to explore DOA es-
timation as a sparse recovery problem [174][107]. In comparison to traditional DOA
estimation techniques such as Root Multiple Signal Classification (Root-MUSIC) [97]
and Beam-scan [180], CS-based DOA estimation techniques are more attractive due
to their ability to resolve closely placed sources with few snapshots, and providing

guarantees for obtaining an optimum global solution via convex relaxation [64].

Many CS based DOA [106][163] estimation problems are modeled under the as-
sumption that the continuous angular domain is discretized with N sampling grids
and the users are located strictly on a subset of the grids. The assumption provides
a simple model, however, it fails to address the underlying practical problem, where a
user may be located anywhere off the quantized grid. A weighted average technique
was proposed in [129] which exploits the amplitude of the neighboring grids to deduce
the original off-grid DOA. Unfortunately, in cases when the peaks do not appear on the
neighboring grids, the error for estimating off-grid DOA becomes large. Finer resolu-
tion of grids using larger N can be a possible solution to the problem, but as the system
of equations is under-defined, a large N will introduce significant rank deficiency and

hence degrade the performance of CS [162].

In this paper, we propose a novel Multi-Resolution DOA (MRDOA) detection algo-
rithm, based on CS, to estimate the DOA of a signal arriving from an off-grid source.
The first stage of the algorithm focuses on obtaining a sparse solution using convex
optimization, where the index of a non-zero coefficient indicates the neighboring grid
closest to the original off-grid DOA. The closest grid with the maximum peak is re-
trieved, then in the next stage, a finer search is carried out on the adjacent grid points.
The sequential search will continue until the angular grid separation is less than some
user-defined threshold. The estimation problem is formulated with a Uniform Circu-
lar Array (UCA) antenna, as a receiving node, on which electromagnetic plane waves
arrive from unknown directions. The fact that UCA has a symmetrical geometry and
no edge elements greatly reduces the impact of mutual coupling [148]. Both Mean
Square Error (MSE) and computational complexity are considered to evaluate the per-

formance of MRDOA. Simulation results suggest that MRDOA appears to achieve a
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superior estimation of off-grid DOA in comparison to high-resolution Beam-scan tech-
nique. MRDOA also offers lower computational complexity compared to conventional
CS techniques using denser grid. Section 6.3 discusses the background of compressive
sensing. Sections 6.4-6.5 describe the system model. The algorithm and the integra-
tion of transform matrix are presented in Section 6.6 and 6.7. Section 6.8 presents
the simulation results which validate the effectiveness of our proposed method. The

conclusion is given in Section 6.9.

6.3 Compressive Sensing

The Compressive Sensing technique is an approach to obtain a solution of an under-
determined set of equations, for which the solution vector is known to be sparse. A
typical example would be the time-frequency pair. A signal which is a linear com-
bination of several frequency components can be easily retrieved by exploiting the
sparsity in the frequency domain. The complex Fourier Transform basis functions can
be used to represent the time domain signal with a few non-zero coefficients. In such
a case the CS algorithm can be used to obtain a sparsest solution vector to a set of
under-determined equations. The sparse vector zyy; is the solution with the minimum
number of non-zero elements. If v,/ is the raw observation vector, there exists the

following relationship,

y = du, (6.1)

where @),y is a measurement or dictionary matrix. The theory in [64] and [162]
states that, a matrix ® satisfies Restricted Isometry Property (RIP) condition, when
all subsets of S columns chosen from & are nearly orthogonal. Once this is true,
there is a high probability of completely recovering the sparse vector with at least
M = C x K x log,(N/K) measurements (where K is the number of PUs and C' is

a positive constant) using the /;-minimization algorithm [64]. This can be can be
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expressed as,
min || 7|, = min »  |a|
i

subject to

T

In case of external noise the algorithm is modified to a Second-Order Cone Program

for an optimized solution for a defined threshold (. This can be stated as,
min || Z||, = minz | ;]
i

subject to

Iy = ]|, < ¢, (6.2)

where [|-]|, is the [,-norm and ¢ is the relaxation constraint for measurement errors. The
sparsest solution for Z is the solution with minimum |[|Z||o. However, the CS algorithm
is effective because the same solution vector usually has the minimum [y-norm and

minimum /;-norm [64].

6.4 Problem Formulation

Let us consider a planar array of M isotropic elements equally distributed around a
circular ring UCA with radius r and angular separation of 360°/M. The inter-element
spacing d = 2r sin(%), is the length of the straight line between two adjacent antenna
elements. The angular positions of the antenna elements in UCA are represented by
v, where v, = 2w(m — 1)/M. A set of P electromagnetic plane waves impinges on the
antenna elements from some unknown DOAs. The incident signals are considered to
be narrow-band and characterized by the same frequency content. The narrow-band
assumption states that all frequencies in the observed band B cause the same phase

shift when the Centre Frequency (CF) f.> B. This simplifies the construction of the

steering vector given below in 6.4. At the sensor location, the electromagnetic field
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induces a complex voltage v,,, which can be assumed to be a linear combination of the
plane waves arriving at the mth antenna element. The open-circuit voltage at the mth

antenna element from P transmitters can be expressed as [171],

P
Upp = Z Iineemm (%) (6.3)
i=1
where,
Tn(05) = Br cos(0; — Ym) (6.4)
and,

I is the electric field associated with the ith impinging wave,
B is the angular wavenumber (27 /) |

r is the radius of the UCA,

0; is the angle of arrival of the ith incident wave,

Ym is the angular position of the mth element,

A is the free space wavelength of the wave.

Tm is the phase shift of the incoming signal referred to the first element, while it is
being received by the mth element of the UCA. A typical UCA geometry is shown in
Fig. 6.1.

6.5 DOA estimation using Compressive Sensing

This section combines the received open-circuit voltage information at each antenna
element to formulate a sparse matrix problem, which may be solved using CS techniques
to identify the DOAs of target PUs in a CRN. To incorporate the architecture of CS into
the system model, angular space is discretized into N possible DOAs, 0= {«9;1, 1<
n < N}, where N denotes the number of grid points. Suppose we have P target DOAs,
0 =10, 1<p< P}, where P < N. Considering the practical implementation of the
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Fig. 6.1: A typical UCA with M elements, where ¢ and ¢ represent azimuth an
elevation angles of a received signal.

model, P target sources are stationed randomly in a continuous angular domain. Unlike
in other papers [174][107], PUs are not restricted to be positioned on grid points only,
rather they can be positioned anywhere in a 360° angular region. Earlier, in Section 6.4,
we established the relationship between the open-circuit voltage observation at each

antenna element and the DOA from a target. In matrix form, (6.3) can be rewritten

as
V = D(6)I (6.5)
where,
e—im(01)  o—imi(62) ... g—imi(On)
. e—im2(01)  o—im(b2) ... o—im2(0N)
D@O)=| S . (6.6)
e—im(01)  o—ita(02) ... o—itm(On)

and, V = {v,,, 1 <m < M} € CM*! is a one dimensional column vector representing

the complex voltage measurements at each antenna element of the UCA. D(@) € CM*N
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~ A~

is the dictionary matrix, where 7,,(6,,) is calculated using (6.4). The entries of D(0)
represent the phase shift introduced on the mth antenna element, for a wave arriving
from the nth DOA. I = {I" 1 <n < N} € CV*!is the column vector, that is to be
recovered using the CS technique. In a realistic scenario, the voltage observations in

CM>1 The entries of P, are statistically

(6.5) are corrupted with a noise vector P, €
independent and are extracted from a complex Gaussian distribution with zero mean

and variance 2. The effect of noise on the voltage observations can be expressed as
V, = D(O)I + P,. (6.7)

Since the model assumes having only one PU (N > P) on a large angular grid of
size N, we may consider Iy, as a sparse vector which satisfies the requirement for an
accurate recovery using the CS algorithm. Due to the sparse nature of the solution, the
vector will have only one nonzero element, representing the complex voltage induced by
the impinging wave, while the index corresponding to the non-zero element indicates
the angular grid on which the transmitting PU is located. Equation (6.7) can be
formulated as a Second-order Cone Program discussed earlier in Section 6.3, to obtain

an optimized solution for a user-defined threshold using (6.2).

6.6 Multi-resolution approach of DOA Estimation

The optimized sparse vector obtained in (6.7) enable us to detect the DOA of a PU lo-
cated on the grid. However, it fails to detect a PU positioned in-between the quantized
grid points. In such cases, due to dictionary mismatch, the optimized solution vector
tends to generate peaks at neighboring grids, closer to the original off-grid DOA. This
suggests that the solution in (6.7), converges to the closest neighboring grid points as
shown in Fig. 6.2. The Weighted-centroid technique in [129] uses the peaks of two
adjacent neighboring grids to estimate the original off-grid DOA. However, in cases
when the two peaks (red) do not appear strictly on either side of the original peak

(blue), the error in estimating off-grid DOA becomes significantly large. Our novel
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Multi-Resolution based DOA algorithm (MRDOA) aims to exploit the peak with max-
imum amplitude to determine the DOA from an off-grid transmitter. In the first stage,
MRDOA relies on open-circuit voltage information and the measurement matrix to
obtain a sparse solution. The index corresponding to the maximum amplitude of the

recovered sparse vector is considered to be the K,,,., which can be expressed as
Kuax = maz " I[n] : V,, = D(@)I + P,, (6.8)

where, I[n] is the n'" element of the recovered sparse vector obtained using CS. Given
that the SNR is sufficiently high and the measurement matrix satisfies RIP condition,
the first stage converges to the closest grid point. In such cases there is a high prob-
ability that the off-grid DOA is located anywhere in the angular grids between [a, 0],
where a = K, + 1 and b = ke — 1 . Let us assume that the two neighbouring
grid points obtained from stage 1 are a and b. The new angular domain bounded by
a and b is further sampled by fN, where f is the Resolution Constant (RC), such
that ‘}—;V? > ¢, where ¢ is a user-defined threshold. Due to the introduction of RC,
the new angular domain (bounded by a and b) is discretized into L possible DOAs,
6 = {él, 1 <1 < L}, where L < N. Using the new set of DOAs 6, a refined

measurement matrix is constructed similar to (7), which can expressed as

e—ini(l)  —im(2) ... o=im(dr)
3 e—ir(1)  o—im(2) .. o—im(dr)

D™ (6) = _ ' ‘ (6.9)
e—imm(01)  o—itm(02) ... p—iTm(6L)

where, D'/ € CM*L represents the phase shift of the waves impinging on the mth
antenna element from the /th DOA. Combining (10) and voltage observations from

(8), we can establish the following equation

V =Dl (@)1 (6.10)
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Fig. 6.2: First-stage DOA detection using MDROA. Blue peak indicates original off-
grid DOA, whereas red peaks are the closest neighbouring grid points obtained using
CS.

where, I/ = {Ii" 1 < | < L} € CE*! is the modified sparse vector which can be
recovered using (3). As "¢/ is sparse in the angular domain, the non-zero entries of

the solution vector will indicate the accurate estimation of off-grid DOA.

6.7 Introduction of Transform Matrix

Based on the problem formulation in Section 6.5, when the 360° angular domain is
sampled using large N, small grid separation may introduce a significant coherence be-
tween the columns of the measurement matrix, and this may violate the RIP condition
[93]. To de-correlate, the columns of the measurement matrix a transform operation
may be employed. The transform operation compacts the energy of a sequence into a
very few component. The high compaction ability of transform function sparsifies the
measurement matrix as well as the observation vector. The process of sparsifying the

signal space results in a superior recovery with CS, allowing unique mapping between
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the observation and the measurements. In this paper, we adopt a data-processing
technique to increase the coherence between the rows, which are the observations of
the complex open-circuit voltages from N angular grid points. Although similar work
has been presented in [129], in this paper we extend the work to incorporate different

transform matrices. Let X be a processing operator

X=YD?' (6.11)

where Y = (H*D), and H is the M x M transform matrix and H* is the conjugate
transpose of H. D7is the Moore-Penrose pseudoinverse of the measurement matrix D.

Applying the operator X on both sides of (6.7) yields,

YD*(V,)=YD'DI+YD'P,

V =Bl +uw. (6.12)

Let V = Y D*(V,) be the noisy processed observation vector, and B = Y D™D be
the processed measurement matrix, while w = YD P, is the processed measurement
noise. The entries of the row vectors are decorrelated by Y while the influence of D™D
is negligible. Hence we can claim that matrix B satisfies the RIP condition. After
applying the processing operator, CS may be used to recover the sparse vector from

processed observations V, via a l;-minimization program [162].

6.8 Simulation Results

The simulation in the following section is carried out on N = 180 angular grid points,

360 _ 9o

with angular grid separation w = =

The scanning angle ranges between
[—180°,180°). The UCA consists of M = 9 isotropic antenna elements distributed
evenly on a circular ring with » = 6A. The inter-element distance d between the

antenna elements is approximately 4\. For this simulation, f. and r is considered to
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be 750 MHz and 2.4 m respectively. The simulation scenario has one PU, randomly
positioned among the 180 grid points. Signal power of the pth source E[|1["|?] is
uniformly distributed over the range [1, 3]. It has been assumed that the signal is
arriving on the antenna with equal strength in order to perform an unbiased analysis of
the accuracy of the method with respect to the angles of arrival. Section 6.8.1 assumes
the transmitter to be located on the grid and off-grid DOA analysis is presented in
Section 6.8.2. The simulations are carried out on a Intel(R) Core(TM) i7-4770 CPU
with a clock rate of 3.40 GHz and on a 64-bit operating system. We relied on the

MATLAB simulation platform to evaluate the performance of our algorithm.

6.8.1 Sensitivity Analysis of on-grid transmitter

This section considers having the transmitter on the angular grid points. In order to
determine the robustness of our system model, the following noise sensitivity test has
been considered. The Signal-to-Noise-Ratio (SNR) is calculated at the receiver as the
ratio of the sum of the power received from m antenna elements to o where, o2 is

the variance of the complex Gaussian noise. The measured data are characterized by

SNRgp = [—10,—5,0,5, 10, 15, 20, 25, 30], defined as

M
SNRyg = 10log,, [—ij\jﬁmpl (6.13)
where, v,,, m = 1,...M, is the noiseless complex voltage observation at each antenna
element. Since the actual DOA and source power are selected randomly, T = 500
different scenarios have been considered, to give a consistent statistical validation. The
results in this section aim to validate the effect of noise sensitivity on the performance
parameters of two [;-constrained optimization algorithms: Orthogonal Matching Pur-
suit (OMP) and Compressive Sampling Matching Pursuit (COSAMP) [66][67]. Perfor-

mance parameters may be characterized as Mean Detection Ratio (MDR) and Mean
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Square Sparse Error (MSSE) which can be expressed as,

T PUtDET
MDR = % (6.14)
T 2
MSSE = Zt:l ||ItORjC_‘rV B ItESTHQ (615)

where PU} o is the number of correct detections and PU%L 4, is the total number of
sources available at tth scenario. In order to be a correct detection, the amplitude of
the peak at a DOA grid must be greater than some predefined threshold, in this case 1.
Since we have just one PU, the detection can be a binary variable. MSSE is calculated
as the square of the ls-norm difference between the original sparse vector Iprg and
the estimated sparse vector Igsr. The MSSE of any unbiased estimator Igsr of Ipra

satisfies the Cramér-Rao bound, given in [181] as
CRB £ E[|lorc — Istly) > o*Tr((¢g¢a) ™), lallo = P.

Where, a is the index representing the PU position on the angular grid points. ¢,
is the modified matrix constructed from the support set a of the original dictionary
matrix ¢. CRB will be used as a benchmark in the following simulation to validate
the effectiveness of the model in recovering an accurate estimate of the original sparse
vector. Fig. 6.3 and Fig. 6.4 show the impact of noise sensitivity on the performance of
CS algorithms, in accurately recovering the sparse vector with minimum reconstruction
error. Fig. 6.3 shows that CS algorithms integrated with the transform operation have a
higher MDR. COSAMP and OMP with DCT outperformed conventional CS algorithms
by achieving 30% more MDR. OMP with no transform has the worst performance
among all, mainly due to the fact that OMP does not take the number of PU as an
input while estimating the sparse vector. Fig. 6.4 illustrates the influence of the SNR
on the MSSE of estimating the sparse vector. CS algorithms without any transform

generated a higher MSSE compared to CS with DCT. COSAMP with DCT generated
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Fig. 6.3: MDR of two CS algorithms, OMP and COSAMP, in estimating on-grid DOA,
with varying noise sensitivity.

the least error and performed very close to the CRB of sparse estimation. The result
suggests that the transform operation enhances the overall performance of the CS
algorithm. Moreover, for SNRqg > 10, CS algorithms with DCT achieve accurate

detection of the transmitter on quantized grids, for 90% of the trials.

6.8.2 Sensitivity Analysis of off-grid transmitter

In this section Multi-Resolution analysis has been carried out to estimate off-grid DOA
using COSAMP algorithm with DCT as the transform matrix. The results in Fig.
6.3 suggests that for SNRqg < 10, COSAMP fails to recover an unique solution that
achieves the CRB. Such phenomenon shows the inefficiency of CS algorithms to recover
accurate solution at low SNR. Therefore in case of SNRgqg < 10, the nearest grid
search method will be used to estimate the DOA. To validate the effectiveness of
our proposed MRDOA algorithm, MSE of DOA estimation will be compared with
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Fig. 6.4: Influence of SNR on the MSSE CS algorithms.

conventional Root-MUSIC, nearest-grid search method, Weighted-Centroid and high-

resolution Beam-Scan search. The MSE is defined as

23:1 |0_0rg - H_est|2
T

MSE =

where éorg is the original DOA of the source and 0, is the DOA of the source estimated
using various algorithms. The simulation in Fig. 6.5 assumes Ny = 1 snapshot of the
simulated signal. For cases with low SNR (SNRgp < 5), both the Root-MUSIC and the
Weighted-Centroid techniques have the lowest MSE. For higher SNR (SNRqg > 15),
however, we can clearly observe that MRDOA outperforms all the algorithms. The
second stage of finer search in MRDOA, offers an added advantage over the conventional
algorithms such as Beam-Scan, allowing MRDOA to obtain a better estimate of the
original off-grid DOA.

Although MSE act as a good indicator DOA estimation, in some cases, the pres-
ence of outliers can push the MSE to the higher side. To further validate the claim
that, MRDOA offers a better estimate, in Fig. 6.6 we analyzed the proportion of times
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Fig. 6.5: MSE comparison plot for off-grid DOA estimation error of different algo-
rithms.

each algorithm estimated off-grid DOA with absolute error < 0.2°. From the plots,
it is clear that MRDOA has the largest proportion of accurate estimation followed
by the Weighted-Centroid technique. Traditional Beam-Scan and Root-MUSIC algo-
rithm failed to reach the mark, due to insufficient snapshots of the simulated signal.
The results also demonstrate the ability of MRDOA to estimate off-grid DOA with
minimum samples of the simulated signal, hence greatly reducing the computational
complexity compared to conventional estimation algorithm. In Conventional CS, to
obtain a DOA estimate with higher resolution, the angular domain of 360° is required
to be discritized with large N. COSAMP algorithm has a complexity of O(M N), and
with an increase in N, the computational efficiency decreases. Fig. 6.7 indicates the
influence of MRDOA in reducing the computational time compared to conventional CS
based DOA algorithms. In comparison to traditional COSAMP techniques, MRDOA
with COSAMP achieves a finer DOA estimate while reducing the computation time
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Fig. 6.6: Analysis to validate the proportion of accurate DOA estimate with |Error| <
0.2°.

by a factor of nine.

6.9 Conclusion

The paper discusses the formulation of a novel Multi-Resolution based CS algorithm
to effectively estimate the DOA of a signal transmitted from an off-grid source. The
algorithm exploits the neighboring grid point information to construct a refined search
area from which the original off-grid DOA is estimated. Our novel MRDOA algorithm
showed promising results by achieving significant improvements in estimating off-grid
DOA with minimum MSE. Simulation results suggest that at a relatively high SNR, our
proposed approach has reduced the MSE of off-grid DOA estimation approximately by
a factor of 10, compared to traditional Beam-Scan and Weighted-Centroid techniques.
The novel MRDOA outperformed other DOA estimation techniques considered while
achieving an error of less than two tenths of a degree for 90% of the trials. Moreover,

the results also indicate that MRDOA achieved a reduction in computation time by a
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factor of 9 when compared to traditional CS algorithms using finer resolution. Future
work will incorporate range measurement techniques to geographically locate multiple

off-grid transmitters.



Effective Sensor Positioning to Localize
Target Transmitters in a Cognitive Radio

Network.

7.1 Abstract

Precise positioning of transmitting nodes enhances the performance of Cognitive Radio
(CR) by enabling more efficient dynamic allocation of channels and transmit powers for
unlicensed users. Most localization techniques rely on the random positioning of sensor
nodes where a few sensor nodes may have a small separation between adjacent nodes.
Closely spaced nodes introduce correlated observations affecting the performance of the

Compressive Sensing (CS) algorithm. This paper introduces a novel minimum-distance
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separation aided compressive sensing algorithm (MDACS). The algorithm selectively
eliminates Secondary User (SU) power observations from the set of SU receiving ter-
minals such that pairs of the remaining SUs are separated by a minimum geographic
distance. We have evaluated the detection of multiple sparse target locations and error
in la-norm of the recovery vector. The proposed method offers an improvement in the

detection ratio of 20% while reducing the error in the lo-norm by 57%.

7.2 Introduction

The spectrum scarcity along with inefficient spectrum usage has motivated the devel-
opment of Cognitive Radio (CR). The increasing demand for high data rates due to
large numbers of portable hand-held devices initiated significant research in the field of
interference mitigation and effective spectral utilization. CR provides a promising solu-
tion to the existing problem by efficiently using the underutilized spectrum to facilitate
services by Dynamic Spectrum Sharing (DSS) for both licensed and unlicensed users.
CR technology is based on the concept of learning the state of channel use of Primary
Users (PUs), and subsequent efficient allocation of channels and transmit parameters
to Secondary Users (SUs). This allocation takes into account maximum acceptable
interference levels to PUs and the throughput and performance requirements of SUs.
In a Cognitive Radio Network, both PUs and SUs share the same channels. Since
SUs have lower priority, the channel use is constrained by a maximum acceptable level
of interference to PUs. Many efforts have been made in previous literature [182][183] to
tackle the issue of interference mitigation but only a few research papers have been pub-
lished on channel collision avoidance based on the utilization of a Radio Environment
Map (REM). To generate a REM, the locations of the transmitters and their transmit
power levels need to be accurately estimated. From this estimation, the received power
level throughout a two-dimensional area may be estimated. For the REM, the received
power levels interpolated over a two-dimensional geographic area are obtained through

the use of analytic equations for signal propagation.
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In CR, the REM is extremely useful in secondary user channel and transmit pa-
rameter selection. This selection must be made with the dual requirements of SU
communication effectiveness and bounded interference to PUs. The bounded interfer-
ence to PUs can only be maintained if the PU locations and received power levels from
other PUs are known by SUs. Therefore an accurate REM is crucial for effective CR
operation.

In [75], a cooperative algorithm is formulated that takes the received signal strength
at each SU to create a weighting function and uses it to compute the location of mul-
tiple PUs. Although this algorithm has relatively low computational complexity, it
requires a high density of SUs, and the performance degrades with channel fading.
The work in [184] and[185] is based on the concept of using sectorized antennas to
detect the Direction of Arrival (DOA) of a signal. The phase information of a received
signal is exploited to estimate the position of PUs. However, this technique might not
be feasible for a practical CRN implementation due to antenna requirements which
may be impractical for portable devices.

In this paper we adopt a Compressive Sensing (CS) technique to retrieve the lo-
cations of multiple transmitting PUs in a CRN. The approach relies on a location
fingerprinting approach, where a certain geographic area is discretized into equally
spaced grid points. The PUs are assumed to be positioned at a subset of the grid
points. The SUs are also assumed to be positioned at some known locations in the
area of interest. Each SU measures the Received Signal Strength (RSS) from target
PUs. From this set of measurements, there is an attempt to recover the PU locations
and the transmit power levels. It is usually the case that the number of PUs is much
smaller than the number of grid points. Consequently, the set of equations for the
power levels transmitted by PUs is under-determined and there are many possible so-
lutions. When the number of PUs is much smaller than the number of grid points,
the sparsest solution for the set of equations yields accurate power levels at the correct
grid points. Compressive sensing can be used to obtain the data required for the for-
mulation of the REM. Similar techniques were used in [129], [186], [187] and [188].

In a physical system, some of the SUs will be closely geographically located. Having
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closely placed SUs introduces correlated observations which may increase the observa-
tion coherence. The performance of CS algorithms relies heavily on the coherence of
measurement matrix constructed using the observations from SUs. The high coher-
ence among the power measurements makes it difficult for matrix inversion, which may
cause inaccurate recovery of the sparse vector. To improve the performance of the CS
algorithm, we propose a novel minimum distance aided CS (MDACS) algorithm. The
approach aims to improve the performance of CS algorithms by selectively removing
measurements of closely spaced SUs from the set, such as to increase the minimum
distance separation between adjacent SUs. The algorithm prioritizes the RSS of an SU
before completely eliminating it from the set. The process generates a refined set of
SUs with a certain distance separation and a high RSS. Our method achieved superior
detection of multiple PUs with significantly fewer SU measurements than with random
deployment of SUs.

In this paper, the locations of SUs are specified by two-dimensional vectors. Both
uniform distribution and Gaussian distribution were considered for the random as-
signment of SU positions. Irrespective of distribution used, our novel approach of
pre-selecting SU power measurements appears to achieve reliable detection ratios with
fewer receiving nodes. Section 7.3 discusses the background of compressive sensing.
Sections 7.4-7.6 describe the system model. Section 7.7 - 7.10 presents the simulation
results which validate the effectiveness of our proposed method. The conclusion is

given in Section 7.11.

7.3 Compressive Sensing

The CS technique is an approach for the solution of an underdetermined set of equa-
tions for which the solution vector is known to be sparse. Some data vectors are sparse
while others can be made more sparse by an appropriate basis transformation. A typi-
cal example would be the time-frequency pair. A signal, which is a linear combination

of several frequency components, can be easily retrieved by exploiting sparsity in the
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frequency domain. The complex Fourier Transform basis functions can be used to rep-
resent the time domain signal with a few non-zero coefficients. In such case, the CS
algorithm can be used to obtain the sparsest solution vector to a set of underdeter-
mined equations. The sparse vector xy«i is the solution with the minimum number
of non-zero elements. If 4,/ is the raw observation vector obtained by the SU power

measurements, there exists the relationship

y = ¢z, (7.1)

where ¢« n is @ measurement matrix, representing the power propagation losses from
each grid point to each SU. In [186] it states that, if a matrix ¢ satisfies the Restricted
Isometry Property (RIP) condition, then all subsets of S columns chosen from ¢ are
nearly orthogonal. Once this is true, there is a high probability of completely recovering
the sparse vector with at least M = CK x log(N/K) measurements (where K is the
number of PUs and C' is a positive constant) using the /; -minimization algorithm [10].

This can be can be expressed as

min ||z||; = min Z | ;]

1

subject to

y = ox. (7.2)

This formulation is valid for a noiseless scenario, but when external noise is considered
the algorithm is modified to a Second-Order Cone Program for an optimized solution

for a defined threshold [64]. This can be stated as
min ||z||, = mmz |4

subject to

ly — ¢zl <, (7.3)
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where [|-[|, is the [,—norm and ¢ is the relaxation constraint for measurement errors.
The sparsest solution for x is the solution with minimum ||z||o. However, the CS
algorithm is effective because the same solution vector usually has a minimum [y norm

and a minimum /; norm [64].

7.4 System Model

Let us consider a square area discretized into an equally spaced P x P grid, where K
PUs are randomly positioned at unique grid points. For simplicity of illustration, we
assume that each PU is assigned a single dedicated sub-channel to carry out duplex
communication with the base station. Now, to observe the radio environment and
detect the free spectrum, M SUs are deployed randomly in the area of interest. Unlike
[129] and [187] the SUs are not placed on the grid points. We adopted a more realistic
approach of allowing the SUs to be placed at some known locations in the area. They
have the added flexibility of being positioned at non-discretized points on the map.
The SUs are controlled and managed by a central node called the Fusion Centre (FC).
There exists a common control channel between the central node and the SUs for
effective communication of RSS observations and channel allocation information. The
FC processes the signal-level measurements and manages SU channel allocation. The
most crucial assumption in the model is that the spatial coordinates of both the grid
points and the SUs are known a priori by the FC, which receives sensing information
from each individual SU. The received power at an SU is a function of the distance
between the PU and SU as well as shadowing loss. The wireless channels are corrupted
by noise and are also considered to be affected by log-normal shadowing. The simplified

path-loss model as a function of distance may be described as

d
Pathlossqp(d) = K1 + 10n logm(d—) + a, (7.4)
0
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Fig. 7.1: System model demonstrating the positioning of PU, SU and FC

where

d is transmission distance in meters,

dy is the reference distance of the antenna far field,
K is a dimensionless constant in dB,

7 is the propagation loss exponent,

« is the shadowing loss in dB.

K is a unit-less constant that relies on the antenna characteristics and the average
channel attenuation and K;dB = 10log,q(K7) [74]. « accounts for the random at-
tenuation of signal strength due to shadowing, where «, dB scale, is assumed to be a
Gaussian random variable with zero mean and standard deviation o4 = 5.5 dB [75].

This model was used in [75] for both multipath and shadowing characterization.

7.5 Localization using compressive sensing

This section combines the location-dependent RSS information at each SU to formulate

a sparse-matrix problem, which can then be solved using the CS method to obtain the
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exact location of the PUs in a CRN. Our grid layout consists of N grid points, with
grid resolution w in both x-axis and y-axis. The N grid points are located at {V,,,1 <
n < N}, where V, is a two-dimensional position vector. The M SUs are located
at {Un,1 < m < M}, where U, is also a two-dimensional position vector. Earlier in
Section 7.4 we mentioned that the K PUs are positioned only at K discrete grids where
K < N. The FC is assumed to have prior knowledge of V,, and U,,. Using the distance
information and signal propagation model described in (7.4) a measurement matrix ¢

is constructed. The entries of the matrix are the channel gains and are expressed using

(I)mn — 1O—PathlossdB (d,,m)/lo’ (76)

where d,,, is the distance between the m!" SU and the n'* grid point and ®,,, is the
pathloss between the m!"* SU and the n* grid point. Let Y be a M x 1 column vector
where the m!" element, Y,,, represents the summation of the received power from the

K PUs on them! SU.

K
Yoo = Y Qu, (7.7)
k=1
where
Qm k,dB
mek = 10" 10
and

Qmk.ap = Piiy — Pathlossqp(d)

where @y, is the power received at SU m which
was transmitted by PU k,

P, is the power transmitted by user k,
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and dy, 1 is the distance between SU m and PU k.

Equations (7.6) and (7.7) may be combined to formulate a CS problem similar to (7.3).
It is assumed that the FC has complete knowledge of . Therefore

Y =®X (7.8)

with Xy« being an N x 1 column vector that is to be recovered using CS approach
described in Section 7.3. In a realistic scenario, the observations are corrupted with
noise-power vector P,. The elements of P, are statistically independent with variance
o2, and are chi-square distributed with 1 degree of freedom. We can include the effect
of additive noise by writing

Y, = ®X + P,. (7.9)

Since the model assumes having only a few PUs on a large grid size N, the vector
Xpnx1 satisfies the sparsity requirement for accurate recovery using a CS algorithm.
Due to the sparse condition, the recovered vector will have only a few nonzero ele-
ments representing the transmit powers while the indices corresponding to non-zero
elements indicate the grid points on which transmitting PUs are located. Hence using
a single-compressed sensing problem we can jointly estimate both the locations and the
transmit powers of multiple PUs by solving (7.3) as described in Section 7.3. From the
estimation, F'S can approximate the received power level throughout a two-dimensional

area, using the pathloss model in (7.4).

7.6 Data Processing

Based on the problem formulation in Section 7.5, Y,/«1 is a power observation vector
with each row representing a sum of the RSS received from K PUs on the m** SU, and
D/ v is the measurement matrix with the channel gain from each grid point. The small
grid separation ensures a large coherence between the columns of the measurement
matrix, and this may violate the RIP condition [93]. A matrix transformation may be

employed to increase the incoherence between the columns. We adopt a data-processing
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technique described in [129] and [187] to decorrelate the rows which are the observation

of the signal strengths from the grid points on each SU. Let T be a processing operator

T = SR* (7.10)

where S = orth(®7)T. The built-in function of MATLAB, orth(B), returns an or-
thonormal basis of the range of B, and BTreturns the transpose of B. R'is the

Moore-Penrose pseudoinverse of a matrix R, where R = ®. Applying the operator T’

on both sides of (7.9) yields

SR*(Y,) = SR*®X + SRTP, = SOT®X + SRYP, = Az + w

Y = AX +w. (7.11)

Let Y be SR*(Y},), the noisy processed observation vector. A = S®+® be the pro-
cessed measurement matrix then w = SR P, is the processed measurement noise. The
row vectors are orthogonalized by S while the columns are decorrelated by the influence
of ®*®. Hence we can claim that matrix A satisfies the RIP condition. Note that [129]
and [187] considered ®*® = Iy as a diagonal identity matrix. Although ®*® acts
like an identity on a portion of the space in the sense that it is symmetric, it is not an
identity matrix. After applying the processing operator, CS may be used to recover the

sparse vector from processed observation Y, via the [;-minimization program [129].

7.7 Simulation And Results

The localization accuracy of the CS algorithm can be affected by certain external
factors such as the Signal to Noise Ratio (SNR), shadowing, the density of SUs and
the distribution of SUs. This section analyzes the dependency of these factors on the

performance parameters of three [; constrained optimization algorithms (L1-Magic,

OMP and CoSAMP) to produce an accurate result. L1 Magic, CoSaMP, and OMP are
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three numerical algorithms for constrained [y vector optimization [65], [66] and [67].

The performance parameters may be categorized as

P
DetectionRatio = [

1
Normalized Error Per Grid Point = N | Xorg — Xest|lo

where PUp,; is the number of detected PUs. PUgpy is the number of the PUs in
the network. X, is the original sparse vector and X, the recovered vector using CS
algorithms. The average absolute error between the vectors X,,, and X, is obtained
by simulation. This is used to evaluate the accuracy of the algorithms to reconstruct a
sparse vector with a minimum number of non-zero coefficients. Furthermore, to study
the impact of each factor, the simulation is analyzed independently to demonstrate the

robustness and reliability of the algorithms.

7.7.1 Simulation Setup

The simulation is carried out on a 43 x 43 (i.e. N = 1849) square grid with a grid
separation of 80 m. Among the 1849 grid points, 10 PUs are uniformly distributed
on the grid points. The transmit power is random and uniformly distributed over the
range of 1 to 5 watts. The scenario consists of 160 SUs with a two-dimensional, zero
mean, Gaussian spatial distribution with standard deviation o,4. The shadowing factor

is log-normal distributed.

Simulation (I) - Impact of SNR

The Signal-to-noise ratio is a crucial factor affecting the performance of each algorithm.

SNR is calculated at the receiver as the ratio of the average received power at an SU
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Fig. 7.2: (a) Detection ratio against SNR at the top (b) Error per grid against the
SNR at the bottom.

to 02, where o2 is the variance of the additive, zero mean, Gaussian noise. Then

M

SNR(dB) = 10 1og10(% >

=1

).

| %

Y; is the received RSS from all the transmitting PUs at the i** SU. As the received
signal power is position dependent, the SNR will vary with respect to the positioning of
the SUs. This prompted us to take the average SNR over M elements of the observation
vector. Fig. 7.2(a) and Fig. 7.2(b) show the plots for the detection ratio of the PUs and
the normalized error per grid versus average received SNR in dB. As shown in 7.2(a)
when SNR < 12dB, L1-Magic performs better than CoSaMP, however when SNR >
15dB, CoSaMP outperforms L1-Magic and OMP. At a higher SNR = 25dB, both
CoSAMP and L1-Magic achieve a detection ratio of 1 while OMP is at 0.6. Fig.7.2(b)
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Fig. 7.3: (a) Sampling ratio vs detection ratio (b) sampling ratio vs normalized error
per grid

shows that, with a gradual increase in SNR, CoSaMP generates fewer normalized errors
per grid than L1-Magic and OMP. Even at a moderate SNR of 15 dB, CoSaMP produces
50% and 54% fewer errors than L1-Magic and OMP respectively.

Similation (II) - Sampling Ratio

Sampling ratio % is another major factor that has a significant impact on the perfor-
mance of these algorithms. In this simulation, we start with 200 SUs to detect the
position of 10 PUs, where at each iteration 20 SUs are randomly removed to observe
the effect of a reduced number of SUs. The SNR is kept constant at 25 dB. The plots
in Fig. 7.3 follow a similar trend as in Fig.7.2. At the very low sampling ratio of
0.05, almost all three algorithms fail to recover an accurate sparse solution, as solving
an under-determined system with such a small number of measurements is not feasi-

ble regardless of any methods used. However, with an increase in the sampling ratio,
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CoSaMP achieves a detection ratio of 1 using 10% fewer SUs than L1-Magic as shown
in 7.3(a) . OMP seems to require a higher number of SUs to meet the accuracy of
CoSaMP and L1-Magic. Similar conclusions can be drawn from Fig. 7.3(b), where
the graph of normalized error per grid for CoSaMP as a function of sampling ratio
decreases much rapidly than the other two algorithms. Results from simulation (I) and
(II) indicate that CoSaMP is more robust and can perform with superior results to the
other two algorithms. The next set of simulations will be carried out using CoSaMP

and L1-Magic only.

7.8 Impact of SU Distribution

In the previous section, the simulations were carried out using SU positions generated
from a two-dimensional, zero mean, Gaussian spatial distribution only. This section
analyzes the influence of the spread of a particular spatial distribution, used to obtain
the location of SUs in a CRN. The two-dimensional SU positions are two-dimensional
random vectors with statistically independent elements. Two cases were considered. In
the first case each element is uniformly distributed over [—X 42054, Xmaz0sa)- In the
second case, each element is zero mean Gaussian distributed with standard deviation
{Xonaz0sa}- For each of the cases, simulations were carried out with 100 different
scenarios. The PU positions are kept constant and the shadowing factor is log-normal
distributed. The first set of simulations shows the detection ratio of the optimization
algorithms, where uniform distribution and Gaussian distribution were considered for
the random assignment of SU positions. The second set aims to provide a deeper
insight into the effect of the spread of a particular spatial distribution on the coherence
of the measurement matrix ¢ and the average received SNR at each SU.

While keeping the SNR constant and the number of SUs and PUs constant, o, is varied
in the range [1.5, 6.5]. Fig. 7.4 shows the results for the first set of simulations. The
figure illustrates the ability to detect the presence of PUs, for a set of SUs drawn from

(a) Gaussian normal distribution and (b) uniform distribution respectively. The results
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Fig. 7.4: (a) Detection ratio for SUs generated using normal distribution (b) detection
ratio for SUs uniform distribution

are averaged out over 100 scenarios. In Fig. 7.4(a) the SU positions are extracted from a
zero-mean Gaussian normal distribution. As o,y is varied, the detection ratio increases
from 0.7 to 1 and maintains the maximum, until o,y = 4 for L1-Magic and 0,4 = 5 for
CoSAMP. When 0,4 > 5, the detection ratio has a downward slope irrespective of the

algorithms used, and at o,y = 6.5 it reaches a minimum point.

Further analysis is carried out to learn about the impact of the distribution of
spread on the structure of the measurement matrix. Fig. 7.5 (a) shows the effect
in mutual coherence of the measurement matrix when constructed using both normal
and uniform distribution. On the other hand in Fig. 7.5(b), the average received
SNR at SUs are observed simultaneously. It can be seen that with an increase in
the spread of the distributions, the mutual coherence of the measurement matrices
is decreasing monotonically. Especially, the measurement matrix constructed using
normal distribution has a sharper drop than that of the uniform distribution. Similarly,

at the same, the average SNR of the SUs are also decreasing, as the SUs are more spread
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Fig. 7.5: (a) Impact on mutual coherence due to spread of distribution (b) Average
SNR of the SUs as a function of the spread of the distribution.

across the network. The set of SUs extracted from a Gaussian normal distribution
have a significant proportion of the SUs positioned around the origin. With the spread
of the distributions gradually increasing, the SUs are pushed further away from the
center. The sharp tail of Gaussian distribution, extending towards infinity, often forces
some of the SUs to be positioned at a distance, where the channel noise is large with
respect to received signal strength. This may cause significant errors in the construction
of the measurement matrix, resulting in an incorrect recovery of the sparse vector.
However, due to large distance separation from the transmitting node, the observations
at receiving nodes becomes independent of each other. The independent observations
are the reason behind the reduction in mutual coherence between the columns of the
measurement matrices. This provides an explanation to the fact that, even with a
smaller mutual coherence at high o4, the SUs generated using normal distribution
fails to accurately detect the PUs in the network. When looked back at Fig. 7.4,

in case of normal distribution, the CS algorithms achieved detection ratio of 1 at oy
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= 2. On the other hand, uniform distribution requires o,y = 2.5, for at least one
of the algorithms to hit a detection ratio of 1. This is solely due to higher coherence
between the columns of measurement matrix as shown in Fig. 7.5(a). In spite of having
relatively higher received SNR compared to a normal distribution, a large coherence
resulted in a poor detection ratio < 0.5. However uniform distribution achieved to
maintain the maximum detection ratio for a larger range of o4y [3, 5.5] compared to [2,
3] for normal distribution. This is due to higher received SNR as shown in Fig. 7.5(b).
The working simulations clearly establishes a relationship between the geometry of the
SU positions generated using two different distributions and the effectiveness of the CS
algorithms. The plots also indicates that, with large 0,4 of the two distributions, CS
fails to perform efficiently in spite of having a lower coherence between the columns of

o.

7.9 Minimum distance aided CS algorithm (MDACS)

The following section introduces the Minimum distance aided CS algorithm (MDACS).
The proposed modification incorporates the received SNR at each individual SU to
deduce the perfect set of measurement nodes. The output of the algorithm is a set of
selected SUs, which helps to enhance the performance of the CS algorithms. Prior to
the improvements, the existing min-dist algorithm [189] relied on selecting a random
pair of SUs with a specific distance separation between adjacent SUs. The value of
separation can be pre-defined by the user. Once the pair is selected, the algorithm
randomly removes an SU from the chosen pair. The method iterates through a loop
and repeats the procedure until a refined set is generated such that all SUs are separated
from the adjacent SUs by the specified value. With an incremental increase in distance
separation, the algorithm sequentially eliminates SUs from a given set, until the [,-
norm error of the recovered sparse vector is greater than some predefined value. As the
previous algorithm depends on random removal of SU nodes, there may be situations
where SUs with higher RSS may be accidentally eliminated. As a result, corrupted

measurement data may get included in the observation vector. Such scenarios may
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Fig. 7.6: (a) Detection ratio of MDACS ;(b) detection ratio of existing algorithm.

restrict CS algorithms from successfully retrieving the sparse vector. Considering the
issues with the existing algorithm, our modification uses the RSS at each SU to produce
a refined group of SUs with certain geometry. In other words, the algorithm selectively
eliminates SUs with low received SNR and the outcome is a new set of SUs such
that there average received SNR is greater than some user-defined value. Algorithm
1, provides an high-level description of the modified technique. The new set of SUs
have the required minimum distance separation between each adjacent nodes as well
as high RSS. The separation allows the observation to be independent reducing the
coherence in the measurement matrix and high RSS reduces the chance of observations
being corrupted by channel noise. Fig. 7.6 (a) and (b) evaluates the detection ratio
of MDACS in comparison to the existing min-dist algorithm in [189]. In Fig. 6(a) the

results for detection ratio shows a consistent pattern compared to the unusual pattern
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Fig. 7.7: (a) No of SU vs minimum distance separation; (b) Average received SNR vs
minimum distance separation.

in Fig. 7.6(b). The inconsistency in case of the min-dist algorithm in Fig. 7.6(b),
is due to random removal of SUs with higher RSS values. To further validate the
impact of MDACS algorithm on the average SNR of the refined set, simulation results
are presented in Fig. 7.7. The result shows that the reduction of the number of SUs
for both the MDACS and min-dist algorithms are almost identical. However, in case
of MDACS, the refined set of SUs have higher average received SNR than with the
existing min-dist. The result presented in this section indicates that even with the
selective elimination of SUs at each iteration, MDACS is able to maintain a set of SUs
with relatively high average SNR. The gradual elimination of SUs helps to reduce the
computational complexity while a high average SNR ensures accurate recovery of the

sparse vector using CS algorithms.
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Algorithm 1: Minimum distance aided CS algorithm

Input: {su_pos, mindist, snr_dB, error}
Output: Refined set of SU, Xy«
Method:

d — mindist ;

snr — snr_dB ;

Q —0;

min_dist — min{pdist(SU_POS)} ;

while (min_dist < d) do

(i) Find SU pair with separation less than d;
(ii) Extract the SU with higher SNR;

(iii) Create new set with extracted SUs;

(iv) Feed the refined set into CS algorithm;
(v) Q = (l-norm of recovery vector) - Q;

if (Q > error),
break;
end

end while

Return SU_POS, Xrx1

7.9.1 Simulations

To verify the robustness of our proposed MDACS algorithm, the simulations were car-
ried out for two different sets of distributions of the location of the secondary users,
first for a Gaussian random distribution and second for uniform random distribution.
In the previous section, the simulations were conducted with a set of SUs whose lo-
cations were generated from a two-dimensional Gaussian distribution. In Fig. 7.8 the
effectiveness of our proposed MDACS algorithm is verified in order to successfully de-
tect the presence of PUs using the L1-Magic and the CoSaMP algorithms. For each
distribution, the spread of the distribution oy is kept constant at 2.5. Fig. 7.8(a),
shows the detection ratio plots for each of the MDACS algorithms with respect to the
different sets of distributions used for SU positioning. The legend L1-Nor represents
L1-Magic with SUs extracted from a Gaussian distribution; CoSaMP-Nor represents
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Fig. 7.8: (a) Detection ratio of minimum distance aided CS algorithms associated with
two different sets of SUs. (b) Reduction in the number of SU with respect to increasing
minimum distance separation.

the results for CoSaMP with SUs extracted from Gaussian distribution. On the other
hand, the legend L1-Uni represents L1-Magic CS with SUs whose locations are gener-
ated from a two-dimensional uniform distribution; CoSaMP-Uni represents the results
for CoSaMP with SUs extracted from a uniform distribution. In the x-axis, we grad-
ually increase the minimum distance separation between the SUs until the detection
ratio drops below a certain threshold. Fig. 7.8(a) shows that L1-Uni and CoSaMP-Uni
have a detection ratio < 0.8, when minimum distance separation is greater than 300m
and 400m respectively. A similar trend can be observed in case of normal distribution,
where the detection ratio drops below 0.8 at a distance separation of 500 m and 700 m.
From the results, it can be seen that the CS algorithms can maintain a higher detec-
tion ratio for a larger distance separation for normal distribution rather than uniform.
Moreover in Fig. 7.8(b) it can be seen that, with systematic elimination of SUs from

a random set, the proposed MDACS algorithm reduce the number of measurements
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Fig. 7.9: (a) Impact of minimum distance separation on the coherence of the measure-
ment matrix; (b) Average SNR of the refined set of SUs as a function of the minimum
distance septation.

by 28% for a normal distribution and 21% for an uniform distribution. In both cases,

CoSaMP outperformed L1-Magic in terms of achieving a higher detection ratio.

7.9.2 Effect on Characteristics of Measurement Matrix

The systematic removal of measurement nodes impacts the overall structure of the
measurement matrix. Fig. 7.9 gives a deeper insight into the characteristics of each
distribution by evaluating parameters, such as the coherence of measurement matrix
and the average received SNR at SUs (observation vector). In the previous simula-
tion, with an incremental increase in distance separation the number of SUs decreases.
The reduction is due to the elimination of SUs by the MDACS algorithm. This has
a direct impact on the coherence of the measurement matrix as shown in Fig. 7.9(a).

The measurement matrix is a rectangular matrix, where the rows are the observations
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from each SU. A reduction in the number of receiving nodes causes a rank deficiency,
pushing the coherence of the measurement to a higher value. This makes the matrix
inversion process difficult. For the uniform set, the matrix coherence reaches a maxi-
mum value of 0.9635 compared to 0.9510 for the normal set. According to the theory
of CS, a successful recovery of a sparse vector is not feasible with the matrix having
high coherence between the columns. From the working simulations and results, we
can clearly conclude that the SU positions that are Gaussian distributed offer better

recovery using the MDACS algorithm than for a uniform distribution.

7.9.3 Error in Recovery vector

On each iteration of the MDACS algorithm, it removes excess SUs until, the detection
ratio or the l,-norm of the recovered sparse vector drops below a certain threshold.
The stopping criterion can be a user-defined threshold depending on the application.
In scenarios where localization of nodes has a higher priority, the error threshold can
be raised to a higher value. In Fig. 7.10, the y-axis represents the difference of the
lo—norm of the recovered vector and the original vector. A high l—norm error suggests
that, REM created with the respective recovered sparse vector will have significant
errors. Irrespective of the CS algorithms used, the sparse vector should have the same
lo — norm, as the positioning of PUs and their transmit power level is constant for
all. As can be seen in the figure, all the four plots have approximately similar starting
points with slight variations, mainly due to minor errors in accurately determining the
transmit powers. Although the plots for a uniform distribution have comparatively
small errors at the start, with incremental distance separation, there is an exponential
increase in the difference in l;-norm. The plot of L1-Uni generates the maximum error
with increasing distance separation followed by CoSaMP-Uni, L1-Nor and CoSaMP-
Nor. The results indicate that the sparse vector recovered using CoSaMP algorithm
associated with SUs extracted from a normal distribution have the least Iy — norm
error. This makes CoSaMP-Nor a suitable option for an accurate generation of a

Radio Environment Map.
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Fig. 7.10: Difference in lo-norm of the recovery vector to the original vector.
7.10 Proposed Algorithm Comparison

The working solutions and results from the previous section, conclude that CoSAMP
incorporated with MDACS algorithm with SU positions extracted from a Gaussian
random distribution generates maximum detection ratio with the minimum error. The
previous results (Fig.7.8) also show that, for our best case scenario, the CoSAMP-
(MDACS) algorithm achieved a detection ratio of 1, with only 115 SUs. To validate the
effectiveness of the proposed MDACS algorithm, we compared the performance with
the original CoOSAMP and L1-Magic CS algorithms (without the selective elimination
feature for MDACS). In both cases, 115 SU positions were extracted from a Gaussian
random distribution with o,y = 2.5. Fig. 7.11 illustrates the impact of our proposed
method in enhancing the performance of the CS algorithms. Fig. 7.11(a) shows that our
method allows 20% and 10% more detection for CoOSAMP and L1-Magic respectively,
especially when integrated with the MDACS algorithm. Even when evaluating the

difference in ly-norm error, Fig. 7.11(b) shows that the proposed technique reduce the
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Fig. 7.11: Detection ratio and Error comparison of proposed algorithm compared to
original CS algorithm .

error by 57% and 17% for CoOSAMP and L1-Magic respectively. Moreover, Fig. 7.12(b),
shows that the set of SU generated from the refinement technique has 3% less coherence
than the randomly deployed set of SUs. Limited coherence between the columns allows
better structure in the construction of a measurement matrix and enables the refined
set of SUs to operate at a lower received SNR of 24.95 dB compared to 26.73 dB as
shown in Fig. 7.12(a).

7.11 Conclusion

This paper discusses the formulation of a novel algorithm to jointly deduce the location
and transmit power of PUs in a cognitive radio network. The algorithm exploits the
geographic location of the SUs to extract useful information about the positioning

of PUs in a network. The proposed method introduces a refinement technique to



EFFECTIVE SENSOR POSITIONING TO LOCALIZE TARGET TRANSMITTERS IN A
204 COGNITIVE RADIO NETWORK.

27 x (@) x

x 26+ 1

)
<L 23F 1

22

Random Modified

b
0.95 w ®) x

Coherence
o
(o)
D
a1
T
1

0.94
Random Modified

Fig. 7.12: Impact of proposed algorithm on coherence and received SNR at SUs.

selectively eliminate closely spaced SUs in order to reduce the number of correlated
observations. The novel method allows adjacent SUs to have a minimum distance
separation, such that the observations at each SUs are nearly independent. Simulation
results show that our novel MDACS algorithm achieved significant improvements in the
overall performance of CS algorithms. Simulation results indicate that our proposed
approach has a 20% higher detection ratio, while reducing the ly-norm error by 57%.
Moreover, the results also show that our approach generates a set of selective SUs with
lower coherence than with random positioning. This enables CS algorithms to offer
perfect recovery at a comparatively lower received SNR. To verify the robustness of
the algorithm, we tested our method for two spatial probability distributions for SU
positions. In both cases, our algorithm achieved a maximum detection ratio with fewer
secondary users as receive power sensing. Future work will incorporate the construction

of an efficient Radio Environment Map, to detect free spectrum in a geographic area.



Conclusion and Future work

8.1 Conclusion

The dissertation presented detailed research on positioning techniques used to estimate
the exact geographical location of a transmitting source. The techniques are developed
based on the framework of Compressive Sensing (CS) an emerging method for signal
acquisition. CS framework relies on discretizing continuous parameters such as geo-
graphical area and angular range to finite grid points in order to construct a finite
dictionary matrix. In reality, when the sensing parameter is not exactly aligned to the
finite grid points, the performance of CS degrades significantly. In this dissertation,
we emphasized primarily upon innovating algorithms that can overcome the limita-

tions of CS while accurately estimating the location information of a source. Several
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novel positioning algorithms are proposed in this dissertation that utilize the proper-
ties of a signal such as direction of propagation and signal strength to determine the
location of a transmitting source. The dissertation consists of two novel Direction of
Arrival (DOA) estimation algorithms and one Received Signal Strength (RSS) based
localization algorithms. Apart from the invention of the estimation algorithms, the
dissertation unveils some open-ended issues that can have significant influence in the

development of any CS based DOA estimation algorithms.

MUSIC Root-MUSIC ESPRIT ICSDOA.

SNR High High High Moderate
Snapshots(P) High High Moderate One

Antenna Elements (IN) High High Moderate Moderate

Complexity O(PM?N + N?) | O(PM?N + N?) | O(PMZ + M%) | O(GMN)

TABLE 8.1: Complexity comparison of DOA estimation algorithms.

The first novel algorithm ICSDOA proposed in chapter 3, 4 and 5 highlights a key
innovation of a new signal processing paradigm that completely eliminates the quan-
tization error in grid-based CS framework and allows the Mean Square Error (MSE)
to be on the theoretical Cramér-Rao lower bound (CRLB) and no algorithm can per-
form better than the bound. The performance of the algorithm is demonstrated by
applying it on two well-known antenna geometries, the Uniform Circular Array (UCA)
and Uniform Linear Array (ULA). In both cases, the algorithm achieved the CRLB
with moderate Signal-to-Noise Ratio (SNR). The underlying concept of the algorithm
is based on a two-stage estimation process, where a coarse estimate is initially calcu-
lated to obtain the nearest quantized grid points. Later an iterative loop is initiated
that exploits the two dominant complex envelopes of the reconstructed sparse signal
to generate an error discriminant. Simulation results suggest that for both UCA and
ULA, the algorithm converges to an accurate estimate using just two iterations. The
iterative loop is designed to halt when the error discriminant converges to zero or some
user defined threshold. The computational complexity of the algorithm is calculated to

be O(5MN), where M and N represents the number of antenna elements in the antenna
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geometry and M is the number of quantized angular grid points. Compared to the
celebrated DOA techniques such as MUSIC, Root-MUSIC and ESPRIT, the compu-
tational complexity of ICSDOA is significantly lower. Table 8.1 presents a complexity
comparison of the algorithms including ICSDOA.

The robustness of the proposed ICSDOA algorithm is validated by carrying out
extensive statistical analysis with noise inherent to the UCA and ULA processing. Ini-
tial investigation suggest that ULA offers a better DOA estimate than UCA, given
that the incoming DOA is in the broad-side region of the antenna geometry. This is
supported by the CRLB derivation of DOA estimate using UCA and ULA. However,
UCA has a broader range of azimuth angular coverage compared to ULA. Simulation
results indicate that both UCA and ULA integrated with ICSDOA out-performs well
Known Root-MUSIC, Beamforming and ESPRIT DOA estimation algorithms when
single snapshot of the signal is considered. EVD-based techniques such as Root-MUSIC
and ESPRIT relies on larger number of snapshots to obtain a an accurate estimate,
whereas the performance of Beamforming is dependent on finer quantization of angular
grid. Both large number of snapshots and finer grid quantization greatly increases the
computational complexity of the algorithm, hence making them less attractive for prac-
tical application. On the other hand ICSDOA uses the advantages of both worlds to
obtain a computationally effective accurate estimate. The CS framework of ICSDOA
enables the algorithm to perform using a single snapshot whereas the iterative process
(error discriminant calculation) allows the estimate to converge to the CRLB using a
coarser grid quantization. The MSE comparison simulation result shows that UCA
and ULA with ICSDOA offer 10 dB and 5 dB better estimate than the well-known
techniques. It is worth noting that this performance is achieved using just a single
snapshot of the incoming signal. To the best of our knowledge, no other computa-
tionally efficient algorithms have achieved such results using two completely different
antenna geometries. The results also re-iterates the fact that the ICSDOA technique
can be adapted for a wide range of antenna geometries, validating the robustness and

compatibility of the algorithm.

In addition to the invention of the algorithm, the thesis provides an in-depth analysis
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on the structure of the dictionary matrices for UCA and ULA antenna geometry and
its impact on the estimation process. Due to the difference in antenna geometries, the
structure of the dictionary matrices is vastly different. The entries of the dictionary
matrix are a function of the number of antenna elements (M), the number of finite
angular grid points (N) and the inter-element spacing of the antenna elements. It has
been illustrated through simulation results and theoretical analysis that there exists a
direct relationship between M and N that influences any CS based DOA estimation
methods. The analysis concludes that both UCA and ULA constructed with larger M
requires finer quantization of angular grid (i.e, large N) in order to achieve the CRLB
of estimation error. However, it was found that ULA is more sensitive to a coarser
grid quantization compared to UCA. Although a large M yields a better estimation
accuracy of the DOA, at the same time it increases the computational complexity of the
algorithm. Thus, there is a systematic trade-off of performance against computational
complexity. It has been an open-ended issue in the framework of CS-based DOA
techniques and according to our best knowledge, such analysis has not been addressed

in any other prior literature.

Moreover, the dissertation also analyzes the impact of array geometry parameters
such as the number of antenna elements and the radius of the UCA on the structure
of the dictionary matrix. As the dictionary matrix is rectangular is shape, the mutual
coherence property is used as an indicator of the fitness of the matrix. It was found that
an increase in M improves the fitness of the matrix (low mutual coherence) especially
in the case of UCA. However, on closer analysis, it was discovered that an increase
in an odd number of M yields a lower mutual coherence compared to even M. This
is due to the centro-symmetric property of the UCA, that causes UCA with even
M to have indistinguishable observations hence reducing the dimensionality of the
dictionary matrix. In the case of ULA, the increase M does not have any significant
impact apart from a slight reduction in mutual coherence. On a separate analysis,
the impact of inter-element spacing on the mutual coherence of the dictionary matrix
of UCA and ULA are studied in detail. The study states that for UCA, there exists

an optimum inter-element spacing greater than A/2 that causes the mutual coherence
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between the columns of the dictionary matrix to be significantly reduced. The analysis
was supported by simulation results that show using the optimal radius, the MSE can
be 16 dB lower than that with the traditional A\/2 element spacing. However, for a
larger inter-element spacing, the array size also increases, hence there is a systematic
trade-off between the size of UCA and the precision of the DOA estimation. In the

case of ULA, the study found \/2 to be the optimum inter-element spacing.

The dissertation also discusses a novel multi-resolution DOA (MRDOA) detection
algorithm, based on CS technique, to estimate the DOA of a signal arriving from an
off-grid source. Similar to the ICSDOA, MRDOA is based on a two-stage strategy,
whereby in the first state an initial estimate is obtained using a single CS operation.
Then in the next stage, a finer sequential search is carried out around the initial
estimate. Compared to traditional CS based algorithm using finer grid quantization,
MRDOA achieved a significant reduction in computation complexity. The complexity
is calculated to be O(2MN) which is less than the complexity of ICSDOA (O(5MN)).
Simulation results suggest that at a relatively high SNR, our MRDOA has reduced
the MSE of off-grid DOA estimation approximately by a factor of 10, compared to
traditional Beam-Scan and Weighted-Centroid techniques. However, unlike ICSDOA,
MRDOA was unable to achieve the CRLB of estimation error. This is primarily because
of the error induced due to grid quantization. Although in terms of computational
complexity, MRDOA offers a feasible alternative, but in scenarios when estimation
accuracy is a priority, ICSDOA is the best solution as it guarantees convergence to the

correct estimate.

In addition to the two DOA techniques, the thesis discusses the formulation of a
novel algorithm to jointly deduce the location and transmit power of a transmitting
node in a cognitive radio network. The algorithm is also based on the framework of
CS where RSS information at randomly positioned sensor nodes is used to estimate
the location of a transmitting node. The proposed method introduces a refinement
technique to selectively eliminate closely spaced sensor nodes so that the number of
correlated observations are significantly reduced. Two spatial probability distributions

namely Gaussian and Uniform distributions are used to randomly generate the location
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of the sensor node. For each case, the impact of the two distributions on the mutual
coherence of the dictionary matrix is analyzed in detail. The research suggests that
Gaussian distribution of sensor nodes offers a better reduction of mutual coherence of
the dictionary matrix than that uniform distribution. It was found that RSS observa-
tions among the sensor nodes are more independent in the case of Gaussian distribution
compared to the uniform distribution. Simulation results indicate that our proposed
refinement method coupled with the Gaussian distribution of sensor nodes achieved a
20% higher detection ratio while reducing the ly-norm error by 57%, when compared
to other techniques where nodes are randomly distributed without the refinement.
Overall, the thesis provided an in-depth analysis of the impact of measurement
matrix on several estimation processes using CS framework. The fitness of the mea-
surement matrix is an integral part of CS processing and requires finer tuning in order
to achieve the expected result. The luxury of selecting a structured dictionary ma-
trix is extremely limited in practical scenarios. And there are no such global formulas
that would provide the perfect measurement matrix for all scenarios. The physical
properties of the sensing process (e.g., the laws of wave propagation), as well as the
constraints associated with the respective grid points, will always dictate the struc-
ture of the measurement matrix. Hence, each scenario requires specific manipulation
of physical parameters in order for the underlying CS algorithms to achieve the best
result. In addition to the three separate estimation algorithms, the thesis paved the
path for new research towards manipulation of physical parameters in order to enhance

the fitness of the measurement matrix.

8.2 Future Work

In future the following aspects can be considered for further research and developments:

e As part of future work, it is also of great interest to extend the algorithm us-
ing multiple receiving UCA and ULA antennas to deduce the location of the
transmitting source in a network. We are also currently working on developing

a working prototype to validate the performance of the algorithm in a realistic
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environment.

e Incorporating ICSDOA into a wide range of antenna geometries to verify the
performance. Our key interest is towards the X-array that has the precision of

the ULA geometry and the 27 azimuth coverage of the UCA.

e Possible extension of the ICSDOA algorithm is to detect transmitting sources
in 3D can be a future research topic. We have already initiated our research to

cater for such scenarios and are in the simulation phase.

e Currently, using ICSDOA and two phased array antennas at two different lo-
cation, we can position the source with extreme accuracy. The next phase of
the work can focus on tracking the source using smart filtering techniques. As
ICSDOA uses a single snapshot of the incoming signal, it can be a computa-
tionally efficient alternative to detect moving objects in an indoor and outdoor

environment.

e In the analysis of antenna geometry (especially in the case of UCA), the relation-
ship between grid quantization and inter-element spacing will be an interesting
area of study. Our primary investigation suggested that the optimal radius varies
with grid quantization. A detailed analysis may reveal some interesting answer

leading to future research.

e The underlying concept of ICSDOA can be expanded to cater for various esti-
mation processes using TOA, TDOA or RSS information of a received signal. A
comparison study of three different estimation processes can provide worldview

comparison among the different techniques.

e Currently the RSS based localization algorithm relies on having the transmitting
source on the exact grid points. Using the concept of ICSDOA, the algorithm
can be expanded to cater for off-grid scenarios. This will enable localization of
transmitting sources anywhere on a specific geographic area. This can help future
research towards identifying exclusion zones using the construction of an efficient

REM.
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Appendix A

A.1 List of Acronyms

1G First Generation

2G Second Generation

3G Third Generation

4G Third Generation

5G Third Generation

ABS Australian Bureau of Statistics

ACMA Australian Communication and Media Authority
AN Anchor Node
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AOA Angle of Arrival

AP Access Point

ARV Array Response Vector
CDMA Beam-forming

CDMA200 Base Station

COSAMP Base Station

CR Base Station

CRLB Base Station

CRN Base Station

D2D Base Station

BS Base Station

DCT Discrete Cosine Transform

DF Direction Finding

DFT Discrete Fourier Transform

DOA Direction of Arrival

DoD Department of Defence

DSA Dynamic spectrum access

DSS Dynamic Spectrum Sharing

EB Exabyte

EDGE Enhanced Data Rate for GSM Evolution
EL Expected Likelihood

ER Error Ratio

ESPRIT Estimation of Signal Parameters via Rotational Invariance Techniques

EVD Eigenvalue Decomposition
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FC Fusion Centre

FDMA Frequency Division Multiple Access

GB Gigabyte

GHz Giga Hertz

GPS Global Position System

GPS Global Positioning System

GSM Global System for Mobile Communication
HetNet Heterogenous Networks

HSPDA High Speed Packet Access

ICSDOA [terative Compressive Sensing based DOA estimation
IFF Identification, Friend or Foe

KB Kilobyte

Kbps Kilo bits per second

KLT Karhunen-Loeve Transform

LASSO Least-Absolute Shrinkage And Selection Operator
LBE Learning-by-example

LOB Lines of Bearing

LOS Line of Sight

LTE Long Term Evolution

M2M Machine to Machine

MB Megabyte

Mbps Mega bits per second

MDACS Minimum-Distance Separation Aided Compressive Sensing Algorithm

MDR Mean Detection Ratio
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MIMO Multiple In Multiple Out
ML Maximum Likelihood
MRDOA Multi-Resolution DOA
MSE Mean Square Error
MSSE Mean Square Sparse Error
MUSIC Multiple Signal Classification
NAVSTAR Navigation System with Timing and Ranging
OFDMA Orthogonal Frequency Division Multiple Access
OMP Orthogonal Matching Pursuit
P2P Point-to-Point
PPS Precise Positioning Service
PU Primary User
QOS Quality of Service
REM Radio Environment Map
RFID Radio Frequency Identification
RIP Restricted Isometry Property
Root-MUSIC Root Multiple Signal Classification
RSS Received Signal Strength
RSSI Received Signal Strength Indicator
RVM Relevance Vector Machine
SBL Sparse Bayesian learning
SDR Software Defined Radio
SM Spatial Multiplexing
SNR Signal-to-Noise Ratio
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SPS

SSR

STLS

SU

SVD

TDMA

TDOA

TOA

UCA

ULA

UTMS

WCN

WCS

WLAN

7B

Standard Positioning Service
Sparse Signal Representation
Sparse Total Least Squares
Secondary Users

Singular Value Decomposition
Time Division Multiple Access
Time Difference of Arrival

Time of Arrival

Unifirm Circular Array

Uniform Linear Array

The Universal Mobile Telecommunication System
Wireless Communication Network
Wireless Communication System
Wireless Local Area Network

Zetabyte
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Appendix

B.1 CRLB for UCA

The Cramér-Rao Lower bound determines the lower bound of the variance of an un-
biased estimator. An estimator achieving the CRLB is considered to be efficient and
it is not possible for any estimator to perform better than the theoretical CRLB. In
this work, CRLB will be used verify the MSE of our DOA estimation algorithm com-
pared to the theoretical bound. The single path cases with omni-directional antennas
are only considered in this simulation; further information for a multi-path scenarios
can be obtained from [149]. In this derivation of CRLB, we are not interested in the

channel gain and phase of the incoming signal. Thus the output of the antenna array
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for any incident angle ¢, at any time sample can be written as,

V = ael®(y) + 1 (B.1)

where, ae’’ is considered to be 1; ® (1)) = [r1 (), 72(20), - -+ , T (V)T and n = [11, 72, - -+, M)
is a noise vector with entries extracted from a zero-mean Gaussian random vector with

variance o2. The probability density f = f(V]¢) of the vector V is computed by

o2

fﬁﬂw)zcemp{—

The log-likelihood function is,

<v—¢WWtwv—¢w»} B3

o2

Mﬂww—m@—{

After some mathematical manipulation and differentiating the log-likelihood function

produces,
aln(f(VIy) 1 [ /oe\" o [0 od\ "
R ——;{(@) vevr(5) - (50) e
o (B.4)
H
0 () }
and,
O In(f(V|y 1 [ /02\" FoR
%Z?{(a—w) vevr(52)
o2\ " oo\ (00 0% B9
H
() 20-2(5) (3)-° W(a—w)}
From the theory of CRLB [190], we know that,
1
var(¢) > (B.6)

2In(f(V[y) ]
—E | P
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From [191], we obtained a simplified form as,

2

o®

5 [32 1n(f(V|¢)] _ =2 -

o2 o?

where,

00
E 2

By combining (24),(25) and (26), we compute the CRLB for angle estimation as,

—1 o?

(z2) (M) M

var(i) >

2 M .
271 M 3%r?
= 202 gin? _ — =
;:1 B resin (77/1 ) .

(B.8)

(B.9)
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