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Abstract

This thesis seeks to further develop two-dimensional category theory, with a focus on Yoneda
structures, (lax-idempotent) pseudomonads, pseudo-distributive laws, and familial repre-
sentability, in order to gain new insights and tools in the study of polynomial functors.

The first contribution of this thesis concerns Yoneda structures, which give a formalization
of the presheaf construction. Our main result shows that any fully faithful lax-idempotent
pseudomonad almost gives rise to a Yoneda structure, with all of the axioms holding except
for one condition.

The second contribution of this thesis concerns pseudo-distributive laws of a pseu-
domonad and a lax-idempotent pseudomonad. We show that such distributive laws have
a simple algebraic description which only requires three out the usual eight coherence con-
ditions, and another simple description in terms of the data of the near-Yoneda structure
recovered from the lax-idempotent pseudomonad.

Our third contribution is to introduce a class of bicategories, which we term generic
bicategories. These are the bicategories for which horizontal composition admits generic
factorisations, and have the interesting property that oplax functors out of them have a reduced
description, similar to the axioms of a comonad.

The fourth contribution of this thesis is to establish the universal properties of the bi-
category of polynomials, with general and cartesian 2-cells, using the properties of generic
bicategories to avoid the majority of the coherence conditions. In addition, we give a new
proof of the universal properties of the bicategory of spans and establish the universal prop-
erties of the bicategory of spans with invertible 2-cells.

The fifth contribution of this thesis is to give an appropriate notion of familial repre-
sentability for pseudofunctors L: o — 2 of bicategories, and to describe an equivalence
with an analogue of generic factorisations. This improves on work of Weber, who did not

provide such an equivalence, and required .7 to have a terminal object.
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Introduction

1.1 Overview

One of the fundamental constructions in category theory is the so called span construction,
which takes a category £ with pullbacks to the bicategory Span (£) with objects those of &,

morphisms / - J given by diagrams of the form

E X
N
I 7 J
called spans, and composition given by forming the pullback. As is commonplace in category
theory, to gain an understanding of a construction, we should establish its universal property.

In the case of spans, this was done by Hermida [21, Theorem A.2] who showed that composing

with the canonical embedding £ < Span (£) describes an equivalence

pseudofunctors Span (£) — ¢

(1.1.1)
Beck pseudofunctors £ — ¢

where a pseudofunctor Fy: £ — € is Beck if for every morphism f in £ the 1-cell Fs f has
a right adjoint F f in % (such an Fy is also known as a sinister pseudofunctor), and if the

induced pair of pseudofunctors
Fs: & —> €, Fr: EP -5 €

satisfy a Beck-Chevalley condition. A second universal property of the span construction (of

which the above is a restriction) was established by Dawson, Paré, and Pronk [9, Theorem
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2.15], who showed that composing with the canonical embedding describes an equivalence

gregarious functors Span (£) — ¢

(1.1.2)
sinister pseudofunctors & — ¢
where gregarious functors are the adjunction-preserving normal’| oplax functors.
In recent years, interest has appeared in another construction: the so called polynomial
construction which takes a locally cartesian closed category £ to the bicategory Poly (£) with

objects those of £, and morphisms I - J given by diagrams of the form

I J

called polynomials. This construction has appeared in areas ranging from type theory [43]
to computer science under the name of containers [1]].

This thesis began with the goal of establishing the universal properties of the bicategory of
polynomials by giving appropriate analogues of the results in the case of spans, and we indeed
achieve this goal in our fourth paper (see Section [I.5). However, this is more complicated
than one might initially expect. Indeed, as a consequence of the complexity of polynomial
composition, a direct proof of these universal properties would involve very large coherence
problems, and would be impractical to verify directly.

Instead of proving these properties directly, we observe that in the case of spans, for a
“locally defined functor” L: Span (£) — %, meaning a family of functors defined on hom-
categories (assuming % has the same objects as Span (£) and that £ is small for simplicity), to
give an oplax structure on L describing how composition of spans is respected, is equivalent

to giving a lax structure on the nerve Ry : ¥ — Span (£) as below

¢ . Span (&)

N

Span (£)

where Span (€) is the local cocompletion of the bicategory Span (£). We will refer to this
analogue of Kelly’s doctrinal adjunction [27] on diagrams as above (which appear in Yoneda
structures [47]]) as doctrinal Yoneda structures.

The reader will notice that whilst composition in Span (£) is given by pullback, compo-
sition in Span (£) can be described without pullbacks, instead having a simple description
given by taking appropriate sums of presheaves. Indeed, as composition in Span () is
simpler, we conclude that the problem of exhibiting a lax structure on R, : € — Span (£) is

simpler than the equivalent problem of exhibiting an oplax structure on L: Span (£) — .

IHere “normal” means the unit constraints are invertible.
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In this way, one can exhibit an oplax structure on L: Span(£) — % without ever directly
using composition of spans.

Fortunately, this approach also works after replacing Span (£) by the bicategory of
polynomials Poly,. (£) (the “c” here meaning we are restricting to cartesian 2-cells), and
thus one can show that a functor L: Poly.(£) — ¥ is oplax without ever directly using
composition of polynomials, and therefore avoiding the majority of the coherence conditions

which would arise from polynomial composition.

Given the above idea for proving the universal properties of Span (£) and Poly,. (£), it
is a natural question to ask what is the special property of these bicategories which makes
this method work. It turns out the important point is that both are examples of bicategories
o/ for which horizontal composition admits generic factorisations (a condition equivalent to
familial representability). Thus, before proving the universal properties of polynomials it is
worth studying the properties of such bicategories, which we dub generic bicategories, and

extracting what “doctrinal Yoneda structures” tell us about them. This is done in our third
paper (see Section[I.4).

Moreover, it is worth turning “doctrinal Yoneda structures” into a properly-stated theorem
in its natural context. But this again is not entirely straightforward. In general an algebraic
structure on a category A (such as a monoidal structure on a category) should only be expected
to lift to the free small cocompletion of A (via Day convolution [11]), but not necessarily to
the category of presheaves of .A. Thus, one should expect this “natural context” to be the
setting where a fully faithful lax-idempotent pseudomonad P lifts to the algebras of another
pseudomonad 7" (equivalent to giving a pseudo-distributive law A: TP — PT). This situation

is studied in detail in our second paper (see Section|[I.3).

This in turn motivates the idea that doctrinal Yoneda structures should apply to fully
faithful lax-idempotent pseudomonad, which only makes sense provided these pseudomonads
give rise to something close to a Yoneda structure. It turns out that this is indeed the case, as

shown in our first paper (see Section [L.3)).

In our fifth and final paper (see Section [[.6) we are interested in the special properties
of the canonical embeddings £ — Span (£) and £ — Poly (£); embeddings which are of
course central to the universal properties of spans and polynomials. In this paper, we give
a description of famility for pseudofunctors (building on work of Weber [53]]), and give a
description of famility in terms of a 2-dimensional analogue of generic factorisations. We
then go on to show that £ — Span(€) and £ — Poly (£) are examples of these familial
pseudofunctors, a fact which in future work will be used to explain why pseudomonads on
Fib (£) such as those for fibrations with sums X¢ or fibrations with products I1¢ have a nicer

form than one would generally expect for a pseudomonad on Fib (£).

We now give a more detailed overview of the material of our five papers.
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1.2 Yoneda structures and KZ doctrines

Suppose L: A — Bis a functor in CAT where A and I3 are locally small. We may then form
a diagram
B e [A%P Set]
|
A
by taking Ry, to be the nerve B(—,L-): B — [A°P,Set], and taking ¢; as the canonical
map A(-,—) — B(L-,L-) given by applying L. Such a diagram satisfies two universal
properties: namely L is the absolute left lifting of Y through R;, and R; is the left extension

of Y along L. More generally, diagrams of the form
Bt PA

q

(28 YA

A

L

in a 2-category ¢ satisfying both of these universal properties (and a couple of additional
axioms) form the basis of what is referred to as a “Yoneda structure” [47]] on %, allowing for
a formal version of the Yoneda lemma as well as an appropriate notion of internal presheaves.

In this way Yoneda structures provide a formalization of the presheaf construction.

It is the purpose of this first paper to address the following fundamental question:

Why does the cocompletion construction look like the presheaf construction?

To answer this question, we compare the formalization of the presheaf construction
(Yoneda structures) with the formalization of cocompletion operations (lax-idempotent pseu-
domonads). We show that for any fully faithful lax-idempotent pseudomonad (also called
a fully faithful KZ doctrine), one almost gets a Yoneda structure, with every axiom of a
Yoneda structure holding except for a right ideal property being replaced by closure under

composition.

These KZ-induced “near-Yoneda structures” have the advantage of being quite common
(because lax-idempotent pseudomonads are), as well as lifting nicely to 2-categories of
algebras. However, they have the disadvantage that in the absence of a right ideal property

one cannot easily define a notion of size against such a structure.

We leave as an open question if there is a formal way to recover a right ideal Yoneda
structure from a fully faithful KZ doctrine, which would give a correspondence between
“cocompletion Yoneda structures” and KZ doctrines. Similar questions are the subject of
current research by Di Liberti and Loregian [[13], who make use of the more general “relative
KZ doctrines ™ [[16]].
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1.3 Distributive laws via admissibility

In our second paper, we are concerned with the problem of lifting a KZ doctrine P to the
2-category of algebras for a pseudomonad 7'; which is equivalent to extending P to the
Kleisli bicategory of T [8]], or giving a pseudo-distributive law A: TP — PT [39]. This is a
natural question, which captures for instance the problem of lifting a monoidal structure on
a category to the cocompletion of that category (via the Day convolution [11]), or extending
a pseudomonad 7 on locally small categories to the bicategory of profunctorg? on locally
small categories.

The first goal of this paper is to show that such pseudo-distributive laws A: TP — PT
have an especially simple form (requiring only three out of the usual eight coherence axioms).
Note that it is already known such a pseudo-distributive law has a simple form when 7 is
(co)KZ [39], however this does not capture some of the main cases of interest (such as when
T is the pseudomonad for monoidal categories).

The second goal of this paper is to give a description of these pseudo-distributive laws in
terms of the data of the near-Yoneda structure arising from the (fully faithful) KZ monad P.
It turns out that central to this condition is that the P-admissible maps (morphisms L such
that PL has a right adjoint) are preserved upon application of 7.

The reason for giving this description of pseudo-distributive laws in terms of the admis-
sible maps is that it is required to properly state “Doctrinal Yoneda structures”. Indeed, we
show that whenever we have a pseudo-distributive law A: TP — PT over a fully faithful KZ
pseudomonad P, we get a bijection between oplax 7-morphism structures on L: A — B and

lax T-morphism structures on Ry : B — PA in

B2 pA

<
$PL YA
N

A.

The bijection between oplax structures on left adjoints and lax structures on right adjoints

due to Kelly [27] is a special case of this, given by taking P to be the identity.

1.4 Generic bicategories

In our third paper, we study the class of bicategories <7 with the property that each compo-
sition functor

oxyz: JZ%Y’Z X ,Qfxy - ﬂx’z

2By “profunctor” we mean a functor A — PB where A and B are locally small categories and PB is the
free small cocompletion of 5.
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admits generic factorisations, meaning that
JZ%X’Z (C,—; —) : ﬂyz X %X’y — Set

is a coproduct of representables for every 1-cell c: X — Z in /. We call bicategories with
this property generic. These are the bicategories .7 for which the local cocompletion of .o
has an especially nice form, with composition given by a simple coproduct formula, and thus

the bicategories for which “Doctrinal Yoneda structures”

¢ L5

N

o

gives us a non-trivial reduction of the data of an oplax functor L: o/ — % as above. This
allows us to give a significantly simpler (but equivalent) description of the data of an oplax
functor L: o/ — % which is valid whenever .o/ is generic. Interestingly, this description
turns out to be analogous to the data of comonad, and may be viewed as a generalization of
the correspondence between comonads in a 2-category 4 and oplax functors L: 1 — % due
to Bénabou [3]].

The main advantage of this description of oplax functors L: .« — % out of a generic .o/
is that it does not directly involve composition in .<7. Unsurprisingly, this is especially useful
when o7 is the bicategory of polynomials with cartesian 2-cells, as we are able to give a
description of oplax functors L: Poly. (£) — % which does not directly involve composition

of polynomials.

1.5 Universal properties of bicategories of polynomials

In our fourth paper, we will apply the tools developed in the first three in order to prove
the universal properties of polynomials; that is, we give a simple characterization of the
data required to construct pseudofunctors (also gregarious functors) Poly,. (£) — % and

Poly (£) — €, giving analogues of (I.1.1)) and (1.1.2)) for polynomials.

Before doing this however, and in order to demonstrate our method, we start by giving

a new proof of the universal properties of the bicategory of spans, exploiting the fact that
Span (€) is a generic bicategory. Note that this new proof addresses the curious observation
made in [9] that the bicategory of spans has a universal characterization which does not
involve pullbacks (namely (1.1.2)).

We then move on to establish the universal properties of the bicategory of spans with
invertible 2-cells Span, , (£). Note that Span, , (£) is not a generic bicategory, and so the

universal property does not have a such a simple proof. Also, its universal property is not as
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simple to state as the morphisms are no longer generated by simple adjunctions. However,
we must give it here as it is required to understand the universal properties of Poly, (£).

This gives the required background needed to establish the universal properties of the
bicategory of polynomials with and without cartesian 2-cells, which we then address.

In the case of polynomials with general 2-cells, the universal property of Poly (£) is simple
to state (as the morphisms are generated by components of adjoint triples Xy 4 Ay 4 I1) but
difficult to prove because Poly (£) is not a generic bicategory.

Conversely, in the case with cartesian 2-cells, the universal property of Poly, (£) is
difficult to state (due to a lack of adjunctions), but more straightforward to prove as Poly,. (£)
is a generic bicategory.

Fortunately, as composition in Poly (£) and Poly,. (£) is the same, we can use the universal
property of Poly,. (£) to help prove that of Poly (£), only needing to check an extra coherence
condition with respect to the extra 2-cells of Poly (£) which are not present in the cartesian
setting.

As we will see, the universal properties of bicategories of polynomials can be understood
in terms of what they are built out of. In particular, pseudofunctors Poly (£) — % correspond
to pairs of pseudofunctors Span (£) — % and Span (£)° — % which coincide on spans
of the form (s,id) and satisfy a distributivity condition; and pseudofunctors Poly, (£) — &
correspond to pairs of pseudofunctors Span (£) — % and Span,, (£) — %€ also coinciding

on such spans and satisfying a distributivity condition.

1.6 An elementary view of familial pseudofunctors

Given that the universal properties of spans and polynomials are defined by composing with
the canonical embeddings £ — Span(€) and £ — Poly (£), it is natural to ask if these
embeddings have any special properties. This is indeed the case. An obvious (but important)
property is that these pseudofunctors are bijective on objects (which turns out to mean that
they directly correspond to bi-cocontinuous pseudomonads on fibrations over £). A second
important property (which is to be the subject of our fifth paper) is that these pseudofunctors
are in fact examples of familial pseudofunctors.

Familial pseudofunctors between bicategories are the appropriate two-dimensional ana-
logue of familial functors between categories, and are those pseudofunctors which satisfy the
important properties exhibited by the families pseudomonad Fam on CAT.

The study of these familial pseudofunctors was originally due to Weber [53], who was
motivated by parametric right adjoints and their appropriate 2-dimensional analogues. How-
ever, as needed for parametric right adjoints, Weber assumes the existence of a terminal
object. Also, an equivalence between famility for pseudofunctors and appropriate generic

factorisations is not provided.
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In this fifth paper, it is our goal to address these concerns. We give a simple description
of famility for pseudofunctors L: o/ — 28 which does not make any assumptions on </
or A, and give a definition of generic factorisations for pseudofunctors L which makes no
assumptions on .27, 4 or L, thus allowing for a theorem describing an equivalence between
famility and our appropriate generic factorisations.

Instead of parametric right adjoints, we are motivated by the work of Diers’ [[15], who

considered famility in terms of multiadjoints and spectrums.



Yoneda structures and KZ doctrines

Abstract

In this paper we strengthen the relationship between Yoneda structures and KZ doctrines by
showing that for any locally fully faithful KZ doctrine, with the notion of admissibility as
defined by Bunge and Funk, all of the Yoneda structure axioms apart from the right ideal

property are automatic.

Contribution by the author

As the sole author, this paper is entirely my own work. This paper is published in the Journal
of Pure and Applied Algebra [S1]. Any differences from the journal version are limited to

formatting and citation numbering changes.

2.1 Introduction

The majority of this paper concerns Kock-Zoberlein doctrines, which were introduced by
Kock [31]] and Zoberlein [S7]. These KZ doctrines capture the free cocompletion under a
suitable class of colimits @, with a canonical example being the free small cocompletion KZ
doctrine on locally small categories. On the other hand, Yoneda structures as introduced by
Street and Walters [47] capture the presheaf construction, with the canonical example being
the Yoneda structure on (not necessarily locally small) categories, whose basic data is the
Yoneda embedding A — [.A°P, Set] for each locally small category .A. When A is small this
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coincides with the usual free small cocompletion, but not in general. In this paper we prove a
theorem tightening the relationship between these two notions, not just in the context of this
example, but in general.

A key feature of a Yoneda structure (which is not present in the definition of a KZ
doctrine) is a class of 1-cells called admissible I-cells. In the setting of the usual Yoneda
structure on CAT, a 1-cell (that is a functor) L: A — B is called admissible when the
corresponding functor B (L—,—) : B — [A°P,SET] factors through the inclusion of [ A°P, Set]
into [.A°P, SET].

In order to compare Yoneda structures with KZ doctrines, we will also need a notion
of admissibility in the setting of a KZ doctrine. Fortunately, such a notion of admissi-
bility has already been introduced by Bunge and Funk [6]. In the case of the free small
cocompletion KZ doctrine P on locally small categories, these admissible 1-cells, which we
refer to as P-admissible, are those functors L: A — B3 for which the corresponding functor
B(L-,-): B — [A°,Set] factors through the inclusion of P.A into [.A°P, Set].

The main result of this paper; Theorem[2.4.1] shows that given a locally fully faithful KZ
doctrine P on a 2-category %, on defining the admissible maps to be those of Bunge and
Funk, one defines all the data and axioms for a Yoneda structure except for the “right ideal
property” which asks that the class of admissible 1-cells I satisfies the property that for each
L e I'wehave L - F € Iforall F such that the composite L - F is defined.

2.2 Background

In this section we will recall the notion of a KZ doctrine P as well as the notions of left
extensions and left liftings, as these will be needed to describe Yoneda structures, and to

discuss their relationship with KZ doctrines.

Definition 2.2.1. Suppose we are given a 2-cell : I — R - L as in the left diagram

M
g\
B—R . B K "¢
n n
o [1 £ [1
L L

in a 2-category 4. We say that R is exhibited as a left extension of I along L by the 2-cell
n when pasting 2-cells o : R — M with the 2-cell n : I — R - L as in the right diagram
defines a bijection between 2-cells R — M and 2-cells I — M - L. Moreover, we say such

a left extension is respected by a 1-cell E: C — D when the whiskering of by E given by



2.2 Background 11

the following pasting diagram

exhibits E - R as a left extension of E - [ along L.

Dually, we have the notion of a left lifting. We say a 2-cell n: I — R - L exhibits L as a
left lifting of I through R when pasting 2-cells 6: L — K with the 2-cell: I — R- L defines
a bijection between 2-cells L — K and 2-cells I — R - K. We call such a lifting absolute if

for any 1-cell F: X — A the whiskering of by F' given by the following pasting diagram

exhibits L - F as a left lifting of I - F through R.

There are quite a few different characterizations of KZ doctrines, for example those due to
Kelly-Lack or Kock [29,131]]. For the purposes of relating KZ doctrines to Yoneda structures,
it will be easiest to work with the following characterization given by Marmolejo and Wood

[42] in terms of left Kan extensions.

Definition 2.2.2. [42, Definition 3.1] A KZ doctrine (P,y) on a 2-category % consists of
(i) An assignation on objects P: ob% — ob%’;
(ii) For every object A € €,a l-cell y4: A — PA,;

(iii) For every pair of objects .A and B and 1-cell F: A — PB, a left extension

PB (2.2.1)

of F along y 4 exhibited by an isomorphism cy as above.

Moreover, we require that:
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(a) For every object A € ¢, the left extension of y 4 as in is given by

pA_PA p g

Note that this means cy , is equal to the identity 2-cell on y 4.
(b) For any 1-cell G: B — PC, the corresponding left extension G: PB — PC respects
the left extension F in[2.2.1]

Remark 2.2.3. This definition is equivalent (in the sense that each gives rise to the other) to
the well known algebraic definition, which we refer to as a KZ pseudomonad [42, 38]. A
KZ pseudomonad (P, y, ) on a 2-category % is taken to be a pseudomonad (P, y,u) on ¢
equipped with a modification 8: Py — yP satisfying two coherence axioms [31]].

Just as KZ doctrines may be defined algebraically or in terms of left extensions, one may
also define pseudo algebras for these KZ doctrines algebraically or in terms of left extensions.

The following definitions in terms of left extensions are equivalent to the usual notions of
pseudo P-algebra and P-homomorphism, in the sense that we have an equivalence between
the two resulting 2-categories of pseudo P-algebras arising from the two different definitions
[42, Theorems 5.1,5.2].

Definition 2.2.4 ([42]]). Given a KZ doctrine (P,y) on a 2-category %, we say an object
X € € is P-cocomplete if for every G: B —» X

PB X pA—L . pp_G . x

cG °F
& =
yB YA

G F

there exists a left extension G as on the left exhibited by an isomorphism ¢, and moreover
this left extension respects the left extensions F as in the diagram on the right. We say a
I-cell E: X — ) between P-cocomplete objects X and ) is a P-homomorphism when it

respects all left extensions along yp into X for every object B.

Remark 2.2.5. It is clear that P.A is P-cocomplete for every A € €.

The relationship between P-cocompleteness and admitting a pseudo P-algebra structure
is as below.
Proposition 2.2.6. Given a KZ doctrine (P,y) on a 2-category € and an object X € €, the

following are equivalent:
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(1) X is P-cocomplete;
(2) yy: X — PX has a left adjoint with invertible counit;

(3) X is the underlying object of a pseudo P-algebra.

Proof. For (1) <= (2) see the proof of [42, Theorem 5.1], and for (2) < (3) see
[29]. O

We now recall the notion of Yoneda structure as introduced by Street and Walters [47].

Definition 2.2.7. A Yoneda structure ?) on a 2-category % consists of:

(1) A class of 1-cells I with the property that for any L € I we have L - F € I for all F
such that the composite L - F is defined; we call this the class of admissible 1-cells. We say
an object A € % is admissible when id 4 is an admissible 1-cell.

(2) For each admissible object A € €, an admissible map y 4: A — PA.

(3) For each L: A — B such that L and A are both admissible, a 1-cell Ry, and 2-cell ¢,
as in the diagram

B—2. pA

Such that:
(a) The diagram above exhibits L as a absolute left lifting and R} as a left extension via

PL.
(b) For each admissible .4, the diagram

pAPA, p g

exhibits idp 4 as a left extension.

(c) For admissible A, 5 and L, K as below, the diagram

R, .
PAEL pp ¢
)’A[ #yp.L ]y;K

= K
A——rB

exhibits Ry .., - Rk as a left extension.
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Remark 2.2.8. We note that when the admissible maps form a right ideal, the admissibility of
L in condition (c) is redundant. However, in the following sections we will consider a setting
in which the admissible maps are closed under composition, but do not necessarily form a

right ideal.

Remark 2.2.9. There is an additional axiom (d) discussed in “Yoneda structures” [47]] which
when satisfied defines a so called good Yoneda structure [S4]]. This axiom asks for every

admissible L and every diagram

B—M.pA

that if ¢ exhibits L as an absolute left lifting, then ¢ exhibits M as a left extension. This
condition implies axioms (b) and (c) in the presence of (a) [47, Prop. 11].

However, this condition is often too strong. For example one may consider the free Cat-
cocompletion, and take N to be the monoid of natural numbers seen as a one object category,

yielding the absolute left lifting diagram

ick N
ILCat

—
ick 1
1
It is then trivial, as we would be extending along an identity, that the left extension property

is not satisfied.

2.3 Admissible Maps in KZ Doctrines

Yoneda structures as defined above require us to give a suitable class of admissible maps, and
so in order to compare Yoneda structures with KZ doctrines we will need a suitable notion of
admissible map in the setting of a KZ doctrine. Bunge and Funk defined amap L: A — B
in the setting of a KZ pseudomonad P to be P-admissible when PL has a right adjoint, and
showed this notion of admissibility may also be described in terms of left extensions [6]. Our

definition in terms of left extensions and KZ doctrines is as follows.

Definition 2.3.1. Given a KZ doctrine (P, y) on a 2-category ¢, we say a l-cell L: A — B
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is P-admissible when

B—2. pA B—2.pA X
a oo o
L YA L YA o
A A

there exists a left extension (R, ¢ ) of y 4 along L as in the left diagram, and moreover the

left extension is respected by any H as in the right diagram where X’ is P-cocomplete.

Remark2.3.2. Note that such a H is a P-homomorphism, and conversely that a P-homomorphism
H: PA — X is a left extension of H := H - y4 along y 4 as above. Thus this is saying the

left extension Ry is respected by P-homomorphisms.

Lemma 2.3.3. Suppose we are given a KZ doctrine (P,y) and a P-admissible 1-cell L: A —

B where B is P-cocomplete, then the 1-cell Ry in

B PA
eL
& a
L ]
A
has a left adjoint L: PA — B.
Proof. Taking L to be the left extension
PA—L B
L
YA 7

we then have L 4 R; since we may definen : idp4 — R Lande: L-R;, — idg respectively

as (since L is P-admissible) the unique solutions to

B idB
L R
/ fin \L idp
A——P P.A Ll P.A L B——B
1dP.A |d ‘L tpL ‘PL X = id ’
=
L
yA L
A
Verifying the triangle identities is then a simple exercise. 0

The following is an easy consequence of this Lemma.
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Lemma 2.3.4. Suppose we are given a KZ doctrine (P,y) on a 2-category ¢ and a P-
admissible 1-cell L: A — B. Then the 1-cell res; defined here as the left extension in the
top triangle

resy,

PA PB

CRL
fr——
YA yB
e Rp
f—

A B

has a left adjoint lany, and when Ry, is P-admissible, a right adjoint rany.

Proof. First note that it is an easy consequence of the left extension pasting lemma (the dual
of [47, Prop. 1]) that yz - L is P-admissible, which is to say the left extension res; above is
respected by any P-homomorphism H: PA — X. This is since such a H will respect the
left extension Ry, of y 4 along L as well as the left extension res; of Ry along ys. Hence by
Lemma resy, has a left adjoint lan; given as the left extension as on the left (which is
how PL is defined given the data of Definition[2.2.2)),

lang,

PA——PB PA——PB
¥Ry,

YA[ VL [YB A NL ]yg
L

A B B

and if Ry is P-admissible then we may define ran; := Rg, (which is the left extension as on
the right) and since P.A is P-cocomplete ran; has a left adjoint given by res; = R; again by

Lemma [

Remark 2.3.5. We have shown that when both L and Ry, are P-admissible we have the adjoint
triple PL 4 R 4 Rg,. Of particular interest is the case where L = y4 for some A € €.
Clearly in this case both L and Ry, are P-admissible and so we may define u 4 := R_yA =idpy

and observe RRyA = Ridqp, = ypa to recover the well known sequence of adjunctions
Py uq-ypa asin[38].

The following result is mostly due to Bunge and Funk [6l], though we state it in our
notation and from the viewpoint of KZ doctrines in terms of left extensions. Also, we will
prove the following proposition in full detail in order to clarify some parts of the argument
given by Bunge and Funk [6]]. For example, in order to check that certain left extensions are
respected we will need to know their exhibiting 2-cells. These exhibiting 2-cells will also be

needed later to prove our main result.
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Proposition 2.3.6. Given a KZ doctrine (P,y) on a 2-category € and a 1-cell L: A — B,
the following are equivalent:

(1) L is P-admissible;

(2) every P-cocomplete object X € ¢ admits, and P-homomorphism respects, left
extensions along L. This says that for any given 1-cell K : A — X, where X is P-cocomplete,

there exists a 1-cell J and 2-cell § as on the left

exhibiting J as a left extension, and moreover this left extension is respected by any P-
homomorphism E: X — ) for P-cocomplete ) as in the right diagram.

(3) PL := lany, given as the left extension

PA-LL. PB
)’A[ ”{gL [YB
A B

-1

has a right adjoint. We denote the inverse of the above 2-cell as yy, := ¢

, forevery 1-cell

L.

Proof. The following implications prove the logical equivalence.
(2) = (1) : Thisis trivial as P.A is P-cocomplete.

(1) = (2): Givena K: A — X as in (2). We take the pasting

R pa_ K _x

PL °K
L T K

A

B

as our left extension using that L is P-admissible. This is respected by any P-homomorphism
E: X — )Y where Y is P-cocomplete as a consequence of the second part of the definition
of P-admissibility.

(1) = (3): This was shown in Lemma[2.3.4

(3) = (1): This implication is where the majority of the work lies in proving this

proposition. We suppose that we are given an adjunction lan;, 4 res; with unit 7 where lany
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is defined as in (3). We split the proof into two parts.

ParT 1: The given right adjoint, resy, is a left extension of resy - yp along yp as in the

diagram

exhibited by the identity 2-cell[T|

To see this, we consider the isomorphism in the square on the left

PA-LE. P pra-L. p2p PrALS prp
YAT 2L [)’B PyAT o TPyB ﬂAJ = J#B
A 2 B P.A T PB P.A T PB

and then apply P to get the isomorphism of left adjoints in the middle square (suppressing
pseudofunctoriality constraintg?), which corresponds to an isomorphism of right adjoints in
the right square (which we leave unnamed). Now by [42, Theorem 4.2] (and since u 4 - Presp

respects the left extension Pyg) we have the left extension u 4 - Presy - Pyg of resy, - yg along

/%_\ PB res

= = L

yB 2 {CSL7 2 %

PB pP°B P-A PA

YB] UYyB ])’PB UyresL ]YP%

B PB PA

VB resy,

yB as below

and so pasting with the isomorphism p 4 - Pres; - Py = res; constructed as above tells us

resy, is also an extension of resy, - yg along yg. It follows that res;, respects the left extension

PB—5. pp

and this gives the result.

IThis may be seen as an analogue of [6, Prop. 1.3]. However, we emphasize here that considering right
adjoints tells us resy, is a P-homomorphism since the adjunctions may be used to construct an isomorphism
between resy and a known P-homomorphism.

2These pseudofunctoriality constraints are those arising from the uniqueness of left extensions up to coherent
isomorphism.
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ParT 2: The following pasting exhibits

B—5.pg—" . pa_H _x
n
yg, lanp ;4 idpa o
— —
L yAT H

A

the composite H - resy, - yg as a left extension of H along L.
Suppose we are given a 1-cell K: B — X’. We then see that our left extension is exhibited

by the sequence of natural bijections

- L

H — E K- yg =K
H - Kys L lang - yq = yp- L
g : g i:ﬁi RE cy exhibits H as a left extension
— — mates correspondence
H-res, = 5 left extension res in Part 1 preserved by H
-resg, -y — K-yp —

K-yg=K

| =
=

-TesSy - yp —

It is easily seen this left extension is exhibited by the above 2-cell since when taking
K = H -res; - yg we may take K = H -res; as a consequence of Part 1 (with the left extension
K exhibited by the identity 2-cell). Tracing through the bijection to find the exhibiting 2-cell

is then trivial. [

Remark 2.3.7. Considering Part 2 in the above proposition with H = y 4 and H and ¢y being
an identity 1-cell and 2-cell respectively, we see that for any P-admissible 1-cell L: A — B

and corresponding adjunction PL 4 res; with unit 7, we may define our 1-cell R; and 2-cell

@1, as in Definition by

B—"pA B8 PBre—SiPTA
oL L 7 lidpa

L = |oa = <=l&:IIL\:P.A

L (R

A A

We will make regular use of this definition in the next section.

Remark 2.3.8. It is clear from the above proposition that P-admissible 1-cells are closed
under composition as noted by Bunge and Funk [6]. We may also note, as in [6]], that every
left adjoint is P-admissible, as taking PL := lan;, defines a pseudofunctor [42, Theorem 4.1]

and so preserves the adjunction.
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2.4 Relating KZ doctrines and Yoneda Structures

We are now ready to prove our main result. In the following statement we call a KZ doctrine
locally fully faithful if the unit components are fully faithful; indeed Bunge and Funk [6]
noted that a KZ pseudomonad is locally fully faithful precisely when its unit components are
fully faithful. Here the admissible maps of Bunge and Funk refer to those maps L for which
PL :=lany, has aright adjoint (which we denote by resy ).

Theorem 2.4.1. Suppose we are given a locally fully faithful KZ doctrine (P,y) on a 2-
category €. Then on defining the class of admissible maps L to be those of Bunge and Funk,
with chosen left extensions (Ry,¢r) those of Remark we obtain all of the definition
and axioms of a Yoneda structure with the exception of the right ideal property (though the

admissible maps remain closed under composition).

Proof. We need only check that:
(1) ¢r exhibits L as an absolute left lifting. Thus, we must exhibit a natural bijection
between 2-cells L - W — H and 2-cells yq - W — Ry - H for 1-cells W: D — A and

H: D — B as in the diagram

Such a natural bijection is given by the correspondence
L-W—> H
yg-L-W — yg-H
lang -yq-W — yp-H
ya-W — resp-yg-H
YA - W — RL -H
and the 2-cell exhibiting this absolute left lifting is easily seen to be the 2-cell as given in

Remark by following the above bijection.

yp fully faithful
lan, - ya = yp-L
lan; 4 resy,

Ry :=resy - yp

(2) resy, - Rk is a left extension. Considering the diagram

P.A resy, PB Rk

CRL PK
— —
YA YB
¢r. R K
=

A—7F—58

C
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we first note that resy - Ry is a left extension of Ry along K since K is P-admissible. We then
apply the pasting lemma for left extensions to see the outside diagram also exhibits res;, - Rx

as a left extension. O

Remark 2.4.2. We observe that to ask that res; - Rx be a left extension in the diagram above
for every P-admissible L and K, is to ask by the pasting lemma that the pasting of g
and cg, exhibit res;, - Rk as a left extension. As cg, is invertible, this is to say that resy
respects every left extension arising from admissibility. This is equivalent to asking res; be

a P-homomorphism.

Remark 2.4.3. We note here that we do not necessarily have the right ideal property. Indeed
given a KZ doctrine on a 2-category every identity arrow is admissible, and so the right ideal
property would require all arrows into all objects being admissible (that is all arrows being
admissible). This fails for example with the identity KZ doctrine on any 2-category % which

contains an arrow L with no right adjoint.

Remark 2.4.4. Given an object A € ¢ with a P-admissible generalized element a: S — A
we have a version of the Yoneda lemma in the sense that we have bijections

yar-a = K
lan, - ys — K
ys — res, - K

lan, - ys = ya-a
lan, 4 res,

for generalized elements K: S — P.A. In the case where P is the usual free small cocom-
pletion KZ doctrine on locally small categories and S = 1 is the terminal category, maps
ys — res, - K are elements of res, - K (which may be viewed as K evaluated at a).

The purpose of the following is to give an example in which absolute left liftings (also
known as relative adjunctions or partial adjunctions) are preserved® Also, the following

proposition does not require locally fully faithfulness, whereas Theorem does.

Proposition 2.4.5. Suppose we are given a KZ doctrine (P,y) on a 2-category €. Then for
every P-admissible 1-cell L: A — B as on the left,

B—2.pA pB—LR. p2y
L L
L YA PL Pya
PA

the 2-cell Py as on the right (in which we have suppressed the pseudofunctoriality con-

straints) exhibits PL as an absolute left lifting of Py 4 through PR;.

3In this case respected by the KZ pseudomonad resulting from the KZ doctrine as in [42].
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Proof. Without loss of generality, we define ¢; as in Remark We then have the

sequence of natural bijections

PL - H

W — .
Pys-PL-W — Pyg - H 5 ;’? If”lglyllefhyfjl
P’L-Pyy-W — Pyg-H

PL 4resy,
Py,-W — Presy - Pyg-H R, = res, -
Pyi-W — PR,-H L= 1L B

for 1-cells W into P.A. Following the bijection we see that the absolute left lifting is exhibited

by Py;, suppressing the pseudofunctoriality constraints. [

Some observations made in “Yoneda structures” [47] may be seen more directly in this
setting of a KZ doctrine. For example Street and Walters defined an admissible morphism L
(in the setting of a Yoneda structure) to be fully faithful when the 2-cell ¢ is invertible (which
agrees with a representable notion of fully faithfulness, that is fully faithfulness defined via
the absolute left lifting property, when axiom (d) is satisfied). Here we see this in the context
of a (locally fully faithful) KZ doctrine.

Proposition 2.4.6. Suppose we are given a KZ doctrine (P,y) on a 2-category €, and a
P-admissible 1-cell L: A — B

with a left extension Ry, as in the above diagram. Then the exhibiting 2-cell ¢y is invertible

if and only if PL := lany, is fully faithful.

Proof. We use the well known fact that the left adjoint of an adjunction is fully faithful
precisely when the unit is invertible. Now, given that ¢, is invertible we may define our

2-cell n* as the unique solution to

idp 4
PATA_ pg PA@PA
-1
RL\ “’_A Mery
B ya = R yg| MogL |ya
\ L
LA B A

That 7 is the inverse of n* follows from an easy calculation using Remark Conversely,
if the unit 7 is invertible then so is ¢, by Remark [2.3.7] O
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Remark 2.4.77. 1f we define a map L to be P-fully faithful when PL is fully faithful, then
as a consequence of Proposition [2.3.6] (Part 2) and Proposition [2.4.6] we see that for any
P-admissible map L, this L is P-fully faithful if and only if every left extension along L into
a P-cocomplete object is exhibited by an invertible 2-cell.

In the following remark we compare PL being fully faithful with L being fully faithful,

and point out sufficient conditions for these notions to agree.
Remark 2.4.8. Note that if PL is fully faithful then L is fully faithful assuming P is locally
fully faithful, as y is pseudonatural. Conversely if L is fully faithful, then (supposing our
corresponding left extension R; is pointwise) the exhibiting 2-cell is invertible [54, Prop.
2.22], equivalent to PL being fully faithful by the above. This converse may also be seen
when the KZ doctrine is locally fully faithful and good (meaning axiom (d) is satisfied for
P-admissible maps) as we can use the argument of [47, Prop. 9]. However, as we now see,
this converse need not hold in general.

An example in which L is fully faithful but PL is not is given as follows. Take .4 to be
the 2-category containing the two objects 0,1 and two non-trivial 1-cells x,y: 0 — 1, and
take B to be the same but with an additional 2-cell @: x — y. Define L as the inclusion of
A into B. Then for the free Cat-cocompletion of A given by y 4: A — [A°, Cat] we note
that y4 and Ry - L are not isomorphic, and so the 2-cell ¢, is not invertible meaning PL is

not fully faithful (despite L being fully faithful).

2.5 Future Work

We have seen that the notions of pseudo algebras and admissibility for a given KZ doctrine,
and KZ doctrines themselves, may be expressed in terms of left extensions. In a soon
forthcoming paper we show that pseudodistributive laws over a KZ doctrine may be simply
expressed entirely in terms of left extensions and admissibility, allowing us to generalize

some results of Marmolejo and Wood [42].
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Distributive laws via admissibility

Abstract

This paper concerns the problem of lifting a KZ doctrine P to the 2-category of pseudo
T-algebras for some pseudomonad 7. Here we show that this problem is equivalent to giving
a pseudo-distributive law (meaning that the lifted pseudomonad is automatically KZ), and
that such distributive laws may be simply described algebraically and are essentially unique
(as known to be the case in the (co)KZ over KZ setting).

Moreover, we give a simple description of these distributive laws using Bunge and Funk’s
notion of admissible morphisms for a KZ doctrine (the principal goal of this paper). We then
go on to show that the 2-category of KZ doctrines on a 2-category is biequivalent to a poset.

We will also discuss here the problem of lifting a locally fully faithful KZ doctrine, which
we noted earlier enjoys most of the axioms of a Yoneda structure, and show that a bijection
between oplax and lax structures is exhibited on the lifted “Yoneda structure” similar to
Kelly’s doctrinal adjunction. We also briefly discuss how this bijection may be viewed as
a coherence result for oplax functors out of the bicategories of spans and polynomials, but

leave the details for a future paper.

Contribution by the author

As the sole author, this paper is entirely my own work. This paper was submitted for
publication on June 27th 2017 and was provisionally accepted pending revisions on Jan 31st
2018.
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3.1 Introduction

It is well known that to give a lifting of a monad to the algebras of another monad is to give a
distributive law [2]. More generally, to give a lifting of a pseudomonad to the pseudoalgebras
of another pseudomonad is to give a pseudo-distributive law [39} |8]. However, in this paper
we are interested in the problem of lifting a Kock-Zoberlein pseudomonad P (also known
as a lax idempotent pseudomonad), as introduced by Kock [31] and Zdberlein [57], to the
pseudoalgebras of some pseudomonad 7. These KZ pseudomonads are a particular type of
pseudomonad for which algebra structures are adjoint to units; an important example being
the free cocompletion under a class of colimits .

But what does it mean to give a lifting of a KZ doctrine to the setting of pseudoalgebras
such that the lifted pseudomonad is also KZ? One objective of this paper is to show that
this problem is equivalent to giving a pseudo-distributive law (meaning a lifting of this
pseudomonad automatically inherits the KZ structure), and consequently that such pseudo-
distributive laws have a couple of simple descriptions. One simple description being purely
algebraic (a generalization and simplification of a description given in [39, Section 11]),
and another being a novel description purely in terms of left Kan extensions and Bunge and
Funk’s admissible maps of a KZ doctrine [6]. In fact, Bunge and Funk’s admissible maps
are a central tool in the proof of these results. We also see that these distributive laws are
essentially unique, a generalization capturing [42, Theorem 7.4] and strengthening parts of
(40, Prop. 4.1].

These two descriptions of a pseudo-distributive law correspond to two different descrip-
tions of a KZ pseudomonad. The first, which from now on we call a KZ pseudomonad, is
a well known algebraic description similar to Kock’s [31]; the second, which we call a KZ
doctrine, is to be the description in terms of left Kan extensions due to Marmolejo and Wood
[42, Definition 3.1].

Bunge and Funk showed that admissibility in the setting of a KZ pseudomonad also has
both an algebraic definition and a definition in terms of left Kan extensions. Indeed, Bunge
and Funk defined a morphism f to be admissible in the context of a KZ doctrine P when P f
has a right adjoint [[6, Definition 1.1], and showed that this notion of admissibility also has a
description in terms of left Kan extensions [[6, Prop. 1.5]. We refer to this as P-admissibility.

The central idea here is that instead of thinking about the problem of lifting a KZ doctrine
algebraically, we think about the problem in terms of algebraic left Kan extensions. Moreover,
this notion of admissibility is crucial here as it allows us to show that certain left extensions
exist and are preserved.

A well known and motivating example the reader may keep in mind is the KZ doctrine
for the free small cocompletion on locally small categories, with its lifting to the setting of
monoidal categories described by Im and Kelly [22] via the Day convolution [11].

In Section [3.2] we give the necessary background for this paper, and recall the basic
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definitions of pseudomonads, pseudo algebras and morphisms between pseudo algebras. In
particular, we recall the notion of a KZ pseudomonad and KZ doctrine and some results
concerning them. In addition, we recall some results concerning algebraic left extensions.

These notions will be used regularly throughout the paper.

In Section [3.3] which is the bulk of this paper, we use Bunge and Funk’s notion of admis-
sibility to generalize some results of Marmolejo and Wood concerning pseudo-distributive
laws of (co)KZ doctrines over KZ doctrines, such as the simple form of such distributive laws
[39, Section 11] or essential uniqueness of them [42, Theorem 7.4]. Our first improvement
here is to show that an axiom concerning the (co)KZ doctrine may be dropped, allowing
us to generalize these results to pseudo-distributive laws of any pseudomonad over a KZ
doctrine. For example, this level of generality allows us to capture the case studied by Im and
Kelly [22]; showing that the lifting of the small cocompletion from categories to monoidal

categories is essentially unique.

In addition, we use this simplification to give a simple algebraic description of a pseudo-
distributive law of a pseudomonad over a KZ pseudomonad, consisting only of a pseudonatural
transformation and three invertible modifications subject to three coherence axioms, and prove
this definition is equivalent to the usual notion of pseudo-distributive law. However, the main
new result of this section is a simple description of pseudo-distributive laws over a KZ

doctrine purely in terms of left Kan extensions and admissibility.

Furthermore, through these calculations we find that in the presence of a such a dis-
tributive law, the lifting of a KZ doctrine P to pseudo-T-algebras (for a pseudomonad 7')
is automatically a KZ doctrine. The proof of these results is highly technical, relying on T

preserving P-admissible maps; however, the main result of this section is simply stated in

Theorem[3.3.8]
In Section we study some properties of the lifted KZ doctrine P, such as classifying

the ﬁ-cocomplete T-algebras as those for which the underlying object is P-cocomplete and
the algebra map separately cocontinuous, thus justifying the usual definition of algebraic
cocompleteness. We also compare our results to that of Im-Kelly [22]], but seen from the KZ

doctrine viewpoint.

After checking that the 2-category of KZ doctrines on a 2-category is biequivalent to a
poset, we go on to give some examples in which we apply our results. Our first example
concerns the case of the small cocompletion and monoidal categories, and our second example

concerns multi-adjoints as studied by Diers [[14].

In Section [3.5] we consider the problem of lifting a locally fully faithful KZ doctrine.
These locally fully faithful KZ doctrines are of interest as they almost give rise to Yoneda
structures (see Chapter [2). In particular, it is the goal of this section to describe a bijection

between oplax and lax structures on the lifted “Yoneda structure” when we have such a
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distributive law; that is a bijection between cells « exhibiting L as an oplax 7-morphism

B—L . pA (B, B > B) UEUN (PA, TPAS PA)
2L oL
h YA (L) = ](yA,er)
A (A, TAS A)

and cells B exhibiting Ry as a lax T-morphism for diagrams as on the right above, underlain
by a “Yoneda structure” diagram such as that on the left above. As an instance of this result
we recover Kelly’s bijection between oplax structures on left adjoints and lax structures on
right adjoints [27]. An interesting application of this bijection is as a coherence result for
the bicategories of spans and polynomials (and in particular the oplax functors out of these
bicategories). We briefly discuss the applications here, but leave this to be explored in more

detail in a forthcoming paper.

3.2 Background

Itis the purpose of this section to give the background knowledge necessary for this paper. We
start off by recalling the basic definitions of pseudomonads, pseudo algebras, and morphisms
between pseudo algebras, as these notions will be used regularly throughout the paper. We
then recall the notion of a left extension in a 2-category, and consider when these left
extensions lift to the setting of pseudo-algebras and morphisms between them (in a sense
which will be applicable in later sections). Finally, we go on to recall the notion of a KZ
pseudomonad, a special type of pseudomonad for which the algebra structure maps are adjoint

to units, and give their basic properties and some examples.

3.2.1 Pseudomonads and their Algebras

In order to define pseudomonads, we first need the notions of pseudonatural transformations
and modifications. The notion of pseudonatural transformation is the (weak) 2-categorical
version of natural transformation. There are weaker notions also of lax and oplax natural
transformations, however those will not be used here. Modifications, defined below, take the

place of morphisms between pseudonatural transformations.

Definition 3.2.1. A pseudonatural transformation between pseudofunctorst: F — G: &/ —

% where o7 and A are bicategories provides for each 1-cell f: A — Bin <7, 1-cells t4 and



3.2 Background 29

t5 and an invertible 2-cell 7 in % as below

FA-L . FB

satisfying coherence conditions outlined in [28, Definition 2.2]. Given two pseudonatural
transformations t,s: F — G: &/ — 9 as above, a modification a: s — t consists of, for
every object A € o7, a 2-cell aq: t4 — s4 such that for each 1-cell f: A — Bin o/ we
have the equality ag - Ff oty =570 Gf - ay.

The following defines the (weak) 2-categorical version of monad to be used throughout
this paper. For brevity, we will suppress pseudofunctoriality constraints in this definition and

those following.

Definition 3.2.2. A pseudomonad on a 2-category ¢ consists of a pseudofunctor equipped

with pseudonatural transformations as below
T:%6 — %, u:ly » T, m:T> > T

along with three invertible modifications

y LI T 73 - Im T2
SR
id id mh| |
T T°——~T
subject to the two coherence axioms
74 _Tm_ 13 T4 _Tm_ 13
mTzl \}m& g\w« mTzl ';;ml ‘mT m
i 73 _Im 1 - 73 - 2 2 T2
\\ 1 PN
T2——T T2——T
and
T3

Tm m
T2%T3<uy>T = T id T2
mT
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Remark 3.2.3. One should note here that there are three useful consequences of these pseu-
domonad axioms [38, Proposition 8.1] originally due to Kelly [25]. Of these, we will only

need the consequence that

T (3.2.1)

T2
y““& / X
LT i T = g ! 22T
u u

DN N

lg

Given a pseudomonad (7, u,m) on a 2-category 6 one may consider its strict 7-algebras
and strict 7-morphisms, or the weaker counterparts where conditions only hold up coherent
2-cells. These weaker notions are what will be used throughout this paper, though usually
with the coherent 2-cells in question being invertible. For convenience, we will leave the
modifications @, § and vy in the above definition as unnamed isomorphisms throughout the

rest of the paper.

Definition 3.2.4. Given a pseudomonad (7', u, m) on a 2-category ¢, a lax T-algebra consists

of an object A € €, a l-cell x: TA — A and 2-cells

AT A A id A

TN
TA

such that both

id
m
A TA—E g

X Juz!

Tx lu X

TA T2 A TA

m

MT\A_/A
id

paste to the identity 2-cell at x, known as the left and right unit axioms respectively. Moreover,
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the associativity axiom asks that we have the equality

T2A-TX . TA T2A-TX . TA
T34 ! TA—S oA = 734104 124 Iu
2 2

If the above 2-cells v and u are isomorphisms, we call this a pseudo T-algebra. 1f v and u

are identity 2-cells, we call this a strict T-algebra.

These T-algebras may be regarded as the objects of a category, with morphisms of

(pseudo) T-algebras defined as follows.

Definition 3.2.5. Given a pseudomonad (7',u,m) on a 2-category %, an oplax T-morphism

of pseudo T-algebras
(La): (A,TA EA A) = (B, T8 3)
consists of a 1-cell L: A — B and a 2-cell

TB—2-B

ol e |

such that (leaving the pseudo 7-algebra coherence cells as unnamed isomorphisms)

id

B—E.1B21-B

LT flur 7le o TL
TA

A A

up X

id
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is the identity 2-cell on L, and for which

TB

8- 2.8 28 31518 2 -8B

TzLT T 7{L N L = TZLT fime TTL Tl {L

MPA——TA——A MPAS—>TA——A
TA

If the 2-cell @ goes in the opposite direction, this is the definition of a lax T-morphism,
and if « is invertible this is then the definition of a pseudo T-morphism.

The usual definition of 7-transformation between oplax or lax T-morphisms is not gen-
eral enough for our purposes as we will be considering situations in which we have both
oplax and lax T-morphisms, and so we define 7T-transformations as based on the double

category viewpoint [19]. Such transformations are sometimes referred to as generalized

T-transformations.

Definition 3.2.6. Suppose we are given a square of morphisms of pseudo 7T-algebras

R,
B,y) -2 (¢c,2)

(va)] & [(Lf)

(D’ W) W (A’ X)

where the vertical maps are oplax T-morphisms and the horizontal maps are lax 7-morphisms.
A T-transformation { as in the above square is a 2-cell  : I - M — R - N for which we have

the equality of the two sides of the cube

TB—2-1B TB—-B
e N NN
TD—-2-D ¢ C = TD 17¢ TC —==¢C
NN N

We will call the 2-category of pseudo T-algebras, pseudo 7-morphisms, and 7-transformations
ps-T-alg (we may consider squares where both horizontal maps are identities or both vertical
maps are identities to recover the usual notions of transformation between lax/oplax/pseudo

T-morphisms).
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Remark 3.2.77. Note that in this language it makes sense to talk about the unit and counit of
an adjunction where the left adjoint is oplax and the right adjoint lax. Indeed the oplax-lax
bijective correspondence in Kelly’s doctrinal adjunction [27] is unique such the counit £ (and
unit 77) of the adjunction is a T-transformatior[] Note also that in this setting of a doctrinal
adjunction L 4 R (with an oplax structure @ on L corresponding a lax structure § on R via
the mates correspondence) it makes sense to view the unit and counit as 7-transformations

as we have squares

id,id R,
B,y) (B, y) B,y) 22 (A, x)
(id,id) [ <8: [ (L) (L) T é [ (id,id)
(B.y) —m (A x) (Ax) o (A)

As a convention, will will usually omit these identity 7-morphisms. The reader may just
remember that it makes sense to consider T-transformations from a lax followed by an oplax
T-morphism, into an oplax followed by a lax 7-morphism, and that any such transformation
may be uniquely expressed as a square in the form of the above definition by inserting the
appropriate identity 7-morphisms; which is what we have done in the case of the unit and

counit above.

Example 3.2.8. Let Cat be the category of locally small categories. One may define the
category of Cat-enriched graphs, denoted CatGrph, with objects given as families of hom-

categories

(€ (X,Y): X,Y € ob%)

and morphisms consisting of locally defined functors
(Fxy : €(X,Y) > 9 (FX,FY): X,Y €6)

which have not been endowed with the structure of a bicategory or a lax/oplax functor
respectively [33|]. This gives rise to, via a suitable 2-monad T on CatGrph, the 2-category of
bicategories, oplax functors and icons [34l]. We may of course replace oplax here with “lax”
or “pseudo”. Note that inside this 2-category lives the one object bicategories (isomorphic
to monoidal categories), giving the 2-category of monoidal categories, lax/oplax/strong

monoidal functors and monoidal transformations (which may also be constructed directly

IThis is shown in more generality in Propositionm
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via a suitable 2-monad [34)]).

3.2.2 Left Extensions and Algebraic Left Extensions

In this section we will consider how pseudomonads interact with left extensions. In particular,
we start off by recalling the notion of a left extension in a 2-category, and go on to give
conditions under which such a left extension lifts to a suitable notion of left extension in the
setting of pseudo T-algebras, T-morphisms and 7-transformations. The results of this section

are mostly due to Koudenburg, shown in a more general double category setting [32].

Definition 3.2.9. Suppose we are given a 2-cell : I — R - L as in the left diagram

M
R o)
B——C B—r—C
-~ =~
L ! L !
A A

in a 2-category 4. We say that R is exhibited as a left extension of I along L by the 2-cell
n when pasting 2-cells o : R — M with the 2-cell n : I — R - L as in the right diagram
defines a bijection between 2-cells R — M and 2-cells I — M - L. Moreover, we say such
a left extension (R, n) is respected (also called preserved) by a 1-cell E: C — D when the

whiskering of n7 by E, as given by the pasting diagram below

exhibits E - R as a left extension of E - [ along L.

We now give a suitable description of when a lax 7-morphism may be regarded as a left

extension in the setting of pseudo T-algebras.

Definition 3.2.10. Suppose we are given an oplax 7-morphism (L, @) and lax T-morphisms
(R, B8) and (I, 0) between pseudo T-algebras equipped with a T-transformationn: I — R - L

as in the diagram
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We call such a diagram a T-left extension if for any given pseudo T-algebra (D,w), lax

T-morphism (M, ) and oplax T-morphism (N, ¢) as below

(D, ™ % D)
Mo A
(B 8 > B) " (c TC 5 c)
’ (RB) ’
n
o = ](lﬁ)
(A, TAS A)

pasting T-transformations of the form £ above with the T-transformation 7 defines the bijection

of T-transformations:

(M,e) (M,e)

(D’ W) - (C’ Z) (D’ W) - (C’ Z)
~N.g)}
(N.g) L (idid) ~ B,y) £ (id.id)
(La)}
(B’)’)(R—ﬁ)>(C, 4] (A, X)W(C, 2)

Remark 3.2.11. Note that if £ and 7 are both T-transformations then so is the composite
ZL - n; this is a simple calculation which we omit.

In order to lift left extensions to T-left extensions as above we will require the following

algebraic cocompleteness property.

Definition 3.2.12. Given a pseudomonad (7, u, m) on a 2-category %, we say a left extension

(H, ) in € as on the left below is T-preserved by a 1-cell z: TC — D when

B . TB . 1C 2D
< PAA U
G F TG e zTF
X TX

the pasting diagram on the right exhibits (z - TH, z - T¢) as a left extension.

Remark 3.2.13. Given a pseudo T-algebra (C, TC 5 C) if we ask that the underlying object
C is cocomplete in the sense that all left extensions (along a chosen class of maps) into C
exist, and moreover that the algebra structure map z T-preserves these left extensions, then
this is (essentially) the notion of algebraic cocompleteness as given by Weber [56) Definition
2.3.1] (except that we are not using pointwise left extensions here). In the setting monoidal

categories, this condition of z (when z is an algebra structure map) 7-preserving the left
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extensions is the analogue of asking the tensor product be separately cocontinuous; see [56),

Prop. 2.3.2].

We now recall a result for algebraic left extensions mostly due to Koudenburg [32] (though
we avoid working in a double categorical setting). We will include some details of the proof

as we will need them later.

Proposition 3.2.14. Suppose we are given a diagram

which exhibits R as a left extension in a 2-category € equipped with a pseudomonad (T, u, m).

Suppose further that
(ATAS 4), (BTBSB), (cTcSC)

are pseudo T-algebras. Suppose even further that the left extension (R,n) is T-preserved by
z, and the resulting left extension (z - TR,z - Tn) is itself T-preserved by z. Then given a
lax T-morphism structure o on I and an oplax T-morphism structure a on L, there exists a
unique lax T-morphism structure 8 on R for which n is a T-transformation. Moreover, this

left extension is then lifted to the T-left extension

Proof. Given our structure cells o and @ as below

TA——= A TA—— A
Tll o LI TLl lJa LL

our lax constraint cell for R is given as the unique S such that 7 is a 7-transformation, that is

the unique 2-cell such that
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TB—2-B TB—2~B
la
TA——> A 1t |r = TA 11y MM |R
\ﬂg\ \ r
TI 1 TI

as z-Tn exhibits z- TR as a left extension. From here, the proof of the coherence axioms for 3
being a lax 7-morphism structure on R is the same as in [56, Theorem 2.4.4]? Checking that
the lax T-morphism (R, §8) is then a T-left extension is a straightforward exercise, of which

we omit the details. O]

3.2.3 KZ Pseudomonads and KZ Doctrines

A KZ pseudomonad is a special type of pseudomonad for which the algebra structure maps are
adjoint to units; with typical examples including the cocompletion of a category under some
class of colimits ®@. For this paper, we will use two different (but equivalent) characterizations
of KZ pseudomonads. The first characterization we will use is a well known algebraic
description of a KZ pseudomonad, described via conditions on a “KZ structure cell” (similar
to [31]]), the second characterization is in terms of left extensions, and will be referred to as
a KZ doctrine.

Remark 3.2.15. Note that there are other (still equivalent) characterizations which may be
referred to as KZ pseudomonads or KZ doctrines. For example the characterization through

adjoint strings [38]], or the characterization as lax idempotent pseudomonads [29]].

Definition 3.2.16. A KZ pseudomonad (P, y, (1) on a 2-category % consists of a pseudomonad
(P, y,u) on € along with a modification §: Py — yP for which

ly ——=P 16 P = lg Tyy P
SN

P (3.2.2)
Py
P

2The assumptions of [56, Theorem 2.4.4] concerning comma objects are not required for the proof of the
coherence axioms.
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and
idp
/\ (3.2.3)
YP  fa
= .
P10 _PP——P = idg,
Py 18
idp

Remark 3.2.17. It is shown in [38, Prop. 3.1, Lemma 3.2] that given the adjoint string char-
acterization we recover the definition given above, and conversely given the above definition
it is not hard to recover the adjoint string definition, especially since it suffices to give only
one adjunction [38, Theorem 11.1].

The above is an algebraic description of a KZ pseudomonad; however there is another
description in terms of left Kan extensions given by Marmolejo and Wood [42] which we

refer to as a KZ doctrine.

Definition 3.2.18. [42] Definition 3.1] A KZ doctrine (P,y) on a 2-category € consists of
(i) An assignation on objects P: ob% — ob%;
(ii) For every object A € €, a 1-cell y4: A — PA,

(iii) For every pair of objects .A and 3 and 1-cell F: A — PB, a left extension

PA PB (3.2.4)
ey
A

of F along y 4 exhibited by an isomorphism cy as above.
Moreover, we require that:

(a) For every object A € ¢, the left extension of y 4 as in[3.2.4]is given by

id
PA—"A-pA

Note that this means cy , is equal to the identity 2-cell on y 4.
(b) For any 1-cell G: B — PC, the corresponding left extension G: PB — PC preserves
the left extension F in[3.2.4]

Remark 3.2.19. These two descriptions are equivalent in the sense that each gives rise to the
other [42] 38]. In Section [3.4) we will express this relationship as a biequivalence between

the 2-category of KZ pseudomonads and the preorder of KZ doctrines.
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The following definitions in terms of left extensions are equivalent to the preceding
notions of pseudo P-algebra and P-homomorphism, in the sense that we have an equivalence
between the two resulting 2-categories of pseudo P-algebras arising from the two different
definitions [42, Theorems 5.1,5.2].

Definition 3.2.20 ([42]). Given a KZ doctrine (P,y) on a 2-category %, we say an object
X € € is P-cocomplete if forevery G: B — X

PB—C% . x pA—f . pp—G . x
CG L‘F
sl = va|l =
G F

there exists a left extension G as on the left exhibited by an isomorphism ¢, and moreover
this left extension respects the left extensions F as in the diagram on the right. We say a
I-cell E: X — ) between P-cocomplete objects X and Y is a P-homomorphism (also called

P-cocontinuous) when it preserves all left extensions along yz into X for every object B.

Remark 3.2.21. 1t is clear that P.A is P-cocomplete for every A € €.

We now recall the notion of P-admissibility in the setting of a KZ doctrine P. This
notion of admissibility is useful for showing that certain left extensions exist, and moreover

are preserved. Note that this notion will be used regularly throughout the paper.

Definition 3.2.22. Given a KZ doctrine (P, y) on a 2-category ¢, we say a 1-cell L: A — B

is P-admissible if any of the following equivalent conditions are met:
1. In the left diagram below

Ry RL

B PA B PA X

PL YL °H
= = —
])’A L [)’A

L H

there exists a left extension (Ry, ¢ ) of y 4 along L, and moreover the left extension is

preserved by any H as in the right diagram where X is P-cocomplete;

2. Every P-cocomplete object X € % admits, and P-homomorphism preserves, left
extensions along L. This says that for any given 1-cell K : A — X, where X is

P-cocomplete, there exists a 1-cell J and 2-cell ¢ as in the left diagram below

B—L - x B—L - x
< L
L K L TK

A A
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exhibiting J as a left extension, and moreover this left extension is preserved by any

P-homomorphism E: X — ) for P-cocomplete ) as in the right diagram;

3. PL :=lang given as the left extension

PA-LL. pPB
}’A[ C{B:'L Tys
A—7—8

has a right adjoint.

Remark 3.2.23. For a proof that the descriptions (1), (2) and (3) above are equivalent, we
refer the reader to [6] or Chapter

It is well known that pointwise left extensions along fully faithful maps are exhibited by

invertible 2-cells; in the following definition we give an analogue of this fact for KZ doctrines.

Definition 3.2.24. Given a KZ doctrine (P, y) on a 2-category ¢, we say a 1-cell L: A — B
is P-fully faithful if PL is fully faithful.

Remark 3.2.25. The importance of the P-fully faithful maps stems from the fact that for a
P-admissible map L: A — B, this L is P-fully faithful if and only if every left extension
along L into a P-cocomplete object is exhibited by an isomorphism (see Remark [2.4.7).
Clearly each y 4 is both P-admissible and P-fully faithful.

For any given KZ doctrine P on a 2-category ¢ a natural question to ask is: what are the
P-cocomplete objects; P-homomorphisms; P-admissible maps and P-fully faithful maps?

Let us consider a couple of examples.

Example 3.2.26. A well known example of a KZ doctrine is the free small cocompletion
operation on locally small categories, which sends a locally small category A to its category
of small presheaves. In particular, when A is small the free small cocompletion is PA =
[LA°P,Set|. In this example, the P-cocomplete objects are those locally small categories which
are small cocomplete and the P-homomorphisms are those functors between such categories
preserving small colimits. The P-admissible maps are those functors L: A — B for which
B(L-,-): B — [A°,Set] factors through PA. Of these P-admissible maps, the P-fully
faithful maps are precisely the fully faithful functors.

Another example is the free large cocompletion KZ doctrine on locally small categories.

The reader should keep in mind a theorem of Freyd showing that any locally small category
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which admits all large colimits is a preorder. Consequently, a locally small category is
large cocomplete precisely when it is a preorder with all large joins. This KZ doctrine has
some unusual properties. For example it is a cocompletion KZ doctrine (in the simple sense
that its algebras are described as categories admitting a certain class of colimits) with unit
components not always fully faithful. Moreover, every functor is admissible against the large

cocompletion. We define this KZ doctrine P: Cat — Cat by the assignment
P: obCat — obCat: A [AP,2]
with unit maps for each A € Cat given by
ya: A—>[AP 2] X > A(-X)
with each A (—, X) is defined as

L, 3sL xinA
A(=X): A -5 2: S+
0, otherwise.

For any functor F: A — D where D is a preordered category with all large joins (such as

PJB for any B) we may define a left extension F: [A°,2] — D as in the left diagram

(A, 2] LoD
& _
YA " F(H)= sup FX
XeA: HX=1
A

by the assignment on the right. Hence for this KZ doctrine, the P-cocomplete objects are the
large cocomplete categories, and the P-homomorphisms are the order and join preserving
maps between such categories. Every map is P-admissible, and it is easily checked that a
map L: A — B is P-fully faithful precisely when there exists a map X — Y in A if and only
if there exists amap LX — LY in B.

Remark 3.2.27. For a set X seen as a discrete category, the large cocompletion of X is

(X, 2); and dually, the large completion is (Z X, C), where ZX is the powerset of X.

3.3 Pseudo-Distributive Laws over KZ Doctrines

It was shown by Marmolejo that pseudo-distributive laws of a (co)KZ doctrine over a KZ
doctrine have a particularly simple form [39, Definition 11.4]. Here we show that one can
give a description which is both simpler (in that less coherence axioms are required) and more

general (in that the assumption of the former pseudomonad being (co)KZ may be dropped).
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Hence the problem of lifting a cocompletion operation to the 2-category of pseudo algebras
may be more easily understood.

Part of the motivation of our method comes from the observation that if a KZ doctrine
lifts to a pseudomonad on the 2-category of pseudo algebras, then this pseudomonad is a KZ
doctrine automatically’] Indeed, this fact means we may consider the problem of lifting a
KZ pseudomonad in terms of algebraic left extensions.

In the proof we will make regular use of the admissibility perspective; in fact, the
preservation of admissible maps is crucial here, and it is the main goal of this paper to
describe such pseudo-distributive laws in terms of this admissibility property.

The proof of these results is quite technical, though the results are summarized in Theorem

B3B38

3.3.1 Notions of Pseudo-Distributive Laws

Beck [2] defined a distributive law of a monad (7', u,m) over another monad (P, y, u) on a

category C to be a natural transformation A: TP — PT rendering commutative the four

diagrams
TP A PT TP A PT
uP [Pu Ty [yT
P T
TP — ™ _rpr—* __prT Tpp—* _prp_ Tt _ ppr
TP - PT TP - PT

A well known example on Set is the canonical distributive law of the monad for monoids
over the monad for abelian groups (whose composite is the monad for rings).

More generally, one may talk about a pseudo-distributive law of a pseudomonad over
another pseudomonad on a 2-category [39,126.,148,8]]. In this generalization the four conditions
above are replaced by four pieces of data (four invertible modifications) which are then

required to satisfy multiple coherence axioms, which we will omit here.

Definition 3.3.1. A pseudo-distributive law of a pseudomonad (7, u, m) over a pseudomonad
(P,y, u) on a 2-category € consists of a pseudonatural transformation A: TP — PT, along
with four invertible modifications w1, w,, w3 and w4 in place of the four equalities above.

These four modifications are subject to eight coherence axioms; see [41, [39]].

3A fact perhaps most easily seen from the adjoint string definition [38]], in view of doctrinal adjunction [27].
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As a convention, we choose the direction of these four modifications to be from right to

left in the above four diagrams.

In this section, as in the background, we differentiate between “KZ doctrine” defined in

terms of left extensions, and “KZ pseudomonad” defined algebraically.

We now define a pseudo-distributive law over such a KZ pseudomonad, though showing

this data and these coherence conditions suffice will take some work.

Definition 3.3.2. Suppose we are given a 2-category ¢ equipped with a pseudomonad
(T,u,m) and a KZ pseudomonad (P, y, u). Then a pseudo-distributive law over a KZ pseu-
domonad A: TP — PT consists of a pseudonatural transformation A: TP — PT along with

three invertible modifications?

TP —* -~ PT TP —% - pT TP o T7PT . PTT
w] w)
P = [Pu Ty = ]yT mP‘ :’:3 Pm
TP . PT
subject to the three coherence axioms:
TP —2 - pT
TP —* . pr coh 1 P/ rp fI:l yPT [ & | pyT
sz
ryp( e\ rey & ey N7 TP prP PPT PT
= =1 bu, P P uT
—
TPPTPTP 77 PPT T PT
P TP 2
u
uP 2 / flor ™\
P TP PT P PT
Pu
@y
y uy T<’: 0022 y y_l T
P Y T = u Yy
l——T l—T

4Note the direction of the modifications are different in [39]. We use here the direction in which they will
naturally arise from left extension and admissiblilty properties. Our direction agrees with that of [49] Section
4].



44 Distributive laws via admissibility

TTP
T(L)Z sz
2 my y_l
Ty Ty 2 TyT dm VT

Remark 3.3.3. (1) We will see later that w; and w3 are uniquely determined by w,, due to the

last two axioms and left extension properties. (2) Actually, even the naturality cells of 4 may
be determined given w; and the first coherence axiom. (3) With the 2-cells w; and w3 and
the last two coherence axioms omitted, we still have sufficient data to lift P to lax 7-algebras.

(4) These last two axioms may be seen as invertibility conditions on w; and w3, analogous

A

to those in [39, Definition 11.4]. (5) During the proof, we will see that each component wy

necessarily exhibits each component A 4 as a left extension. As w; uniquely determines the
rest of the data, this will show that such pseudo-distributive laws are essentially unique. (6)
In fact, the first coherence axiom above is equivalent to preservation of admissible maps, in
the presence of such a pseudonatural transformation A and invertible modification w;.

We will need a notion of separately cocontinuous in the context of KZ doctrines, and so
we define the following.
Definition 3.3.4. Suppose we are given a 2-category % equipped with a pseudomonad
(T,u,m) and a KZ doctrine (P,y). We define a 1-cell z: TX — C where X and C are

P-cocomplete objects to be:

1. Tp-cocontinuous when every left extension along a unit component y 4: A — P.A into

X is T-preserved by z;

2. Tp-adm-cocontinuous when every left extension along a P-admissiblemap L: A — B

into X is T-preserved by z;

Remark 3.3.5. We will see later in Proposition [3.3.20] that these two notions are equivalent
in the presence of a pseudo-distributive law of T over P.

We are now ready to give the definition of a pseudo-distributive law over a KZ doctrine
in terms of admissibility and left extensions.
Definition 3.3.6. Suppose we are given a 2-category % equipped with a pseudomonad
(T,u,m) and a KZ doctrine (P,y). Then a pseudo-distributive law over a KZ doctrine

A: TP — PT consists of the following assertions:
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1. T preserves P-admissible maps;
and for every A € €,

2. the exhibiting 2-cell w;‘ of the left extension A 4P|in

TPA—A . PT A

wg!
—
Tya [yT.A
TA
is invertible}
3. the 1-cell A4 above is Tp-cocontinuouq’}
4. the respective diagrams
UpA A4 ) mp A A4
PA——TPA———PTA T°"PA———TPA———PTA
o fo
2 2
u = "y A —
yA’ & T)|)A YrA TZYA[ — T)[A %
2
A i TA T°A A TA

exhibit both A 4 - up 4 and A 4 - mp 4 as left extensions.

Remark 3.3.77. Note that a pseudo-distributive law as defined above is unique, as it contains
only assertions, and these assertions are invariant under the choice of left left extension

(unique up to coherent isomorphism).

3.3.2 The Main Theorem

We are now ready to state the main result of this section (and this paper), justifying our

definitions above.

Theorem 3.3.8. Suppose we are given a 2-category ¢ equipped with a pseudomonad (T, u, m)
and a KZ pseudomonad (P, y, u). Then the following are equivalent:

(a) P lifts to a KZ doctrine P on ps-T-alg;

(b) P lifts to a KZ pseudomonad Pon ps-T-alg;

(c) P lifts to a pseudomonad Pon ps-T-alg;

(d) There exists a pseudo-distributive law over a KZ doctrine 1: TP — PT;

5The left extension is unique up to coherent isomorphism, and exists since 7'y 4 is P-admissible.
SEquivalently one could ask that each T'y 4 is P-fully faithful (see Proposition [2.4.6).
7Equivalently one could ask that each A 4 is Tp-adm-cocontinuous.
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(e) There exists a pseudo-distributive law over a KZ pseudomonad A: TP — PT;

(f) There exists a pseudo-distributive law A: TP — PT.

The proof of this theorem is lengthy, and so we will leave the more difficult aspects of
the proof for subsequent subsections. Before moving on to these subsections, we give the

remainder of the proof.

Proof of Theorem In order to prove this theorem, we will complete the cycle of impli-

cations

W=

where the more difficult implications left to later sections are dotted above.

(a) = (b) : A KZ doctrine gives rise to a pseudomonad whose structure forms a fully
faithful adjoint string by [42, Theorem 4.1], and this in turn gives rise to a KZ pseudomonad
by [38, Prop. 3.1, Lemma 3.2].

(b) = (c) : This implication is trivial.

(c) = (f): For the correspondence between pseudo-distributive laws and liftings to
pseudo T-algebras see [8, Theorem 5.4].

(f) = (e): Given a pseudo-distributive law A: TP — PT where P is a KZ pseu-
domonad, to check that we then have a pseudo-distributive law over a KZ pseudomonad in
the sense of Definition [3.3.2]we need only check the first axiom. But this axiom follows from
coherences 7 and 8 as given in [39, Section 4] along with the KZ pseudomonad coherence
axiom[3.2.3

(e) = (d) : This is shown later in Theorem 3.3.17

(d) = (a) : This is shown later in Theorem [3.3.21 [

3.3.3 Distributive Laws over KZ Monads to those over KZ Doctrines

We will devote this entire subsection to showing that a pseudo-distributive law over a KZ
pseudomonad, as in Definition [3.3.2] gives rise to a pseudo-distributive law over a KZ
doctrine, as in Definition This is (¢) = (d) of Theorem As this is the most
difficult implication to show, we will break the proof up into a number of propositions and
lemmata, starting with the following proposition.

Note for reader. During this subsection and the next, the reader will keep the three

equivalent characterizations of P-admissible maps (given in Definition [3.2.22) in mind.
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Indeed, all three characterizations are to be used repeatedly throughout these two subsections.

Remark 3.3.9. Most of our diagrams are constructed from the following 2-cells, where P is

a KZ doctrine and T a pseudomonad on a bicategory %:

1. As noted in Definition [3.2.22] for any P-admissible 1-cell L: A — B we have a left
extension (Ry, ¢y ) of y4 along L. In particular if L = Ty 4 is P-admissible, we will
denote this left extension by (14, w ) Moreover, by Remark if we are given a

chosen right adjoint res; to PL, then the canonical way to define (Ry, ¢1) is by

B—".pA B PB”—%PTA
YL idp g
= YA = a:IL\
L
L TYA
A A

2. As noted in Definition [3.2.18] for any 1-cell F: A — PB we have a left extension
(f, cF) of F along y 4 with ¢ invertible. If ' = Ry for a P-admissible L, we will
denote this left extension by (res L,cRL), and note that res; defined this way is right

adjoint to PL (see Lemma[2.3.4).

Proposition 3.3.10. Suppose we are given a 2-category € equipped with a pseudomonad
(T,u,m) and a KZ doctrine (P,y). Further suppose that for each object A € €, Ty, is

P-admissible, and the left extensior]8 which we denote A 4 in

TPA PTA

wg!
= |yra

TA

Tya

is exhibited by an isomorphism denoted a)f. Then for every P-admissible 1-cell L: A — B

such that TL: TA — TB is also P-admissible, the respective pastings

Tresy, resrr

~TPA~"_TPB PTA PTB <2 TP 3.3.1)
TcR CR w,
=2> }R L[Tyg ;A\ RTTL;\T\:2> Tys
GpL $YTL

—

TB TA

PTA

g

exhibit A4 - Tresy and resyy, - Ag as left extensions of yra along Typ - TL, yielding an

8This left extension exists since Ty 4 is P-admissible.
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isomorphism of left extensions:

TPB—"8_. pTB
TresLl fre lreSTL
TPA I PT A

A
Moreover, if the left diagram below exhibits Ry, as a left extension
B—iPA

TB—R TpA—2A . pTA
& A2 s
T —
L YA TL )le YrA
A TA

then the right diagram exhibits 14 - TRy, as a left extension.

Proof. Firstly, we consider the diagram

Tresy,

PTA TPB

54 \‘ TLRL’
=

TB

g

and note that A 4 - Tresy, is a left extension since for any 1-cell H: TPB — PT.A we have the

natural bijections

/1A : Tre/lsj Z - TlanL mates correspondence

H
- ince A 4 is a left extensi
since 1S a leIt extension
yrA — H-Tlan, -Ty4 A
H

via — H Tys-TL PL-ya=ys-L

and one may check this is the correct exhibiting 2-cell using Remark We may also
consider the diagram

réesryr,

PTA PTB <8 -TPB
CRTL u)
:>
‘pTL K T B

and note that since Ty is P-admissible the left extension Az is preserved by resry. Noting

cry, is invertible, we then apply the pasting lemma for left extensions (the dual of [47, Prop.
1]) to see the outside diagram exhibits resry - Ag as a left extension. By uniqueness of left

extensions, we derive our desired isomorphism yy: A4 - Tresy = resyy - Az. Now, to show
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that

TPA A“ PTA 3.3.2)

exhibits 14 - TRy as a left extension, it suffices to show that we have an isomorphism
A4 - TRy = Ryp and that pasting the left extension (Ryy, 7y ) with this isomorphism yields

the above. This is the case since all regions in the following diagram commute up to

isomorphism
TR.
T 1
TB—-TPB~2~ PTB=1 PT A
EwB
1B =CRrL
RrL

and it is easy to check ¢r;, pasted with this isomorphism yields the pasting[3.3.2]if one uses
the definition of y; . O

Remark 3.3.11. Note that the above proposition tells us something about the components of
A being separately cocontinuous, without any assumptions on pseudonaturality of A. This
may seem unusual in view of the following lemma, in which we show pseudonaturality of A

is precisely equivalent to the Tp-cocontinuity of its components.

Lemma 3.3.12. Suppose we are given a 2-category ¢ equipped with a pseudomonad (T, u, m)
and a KZ doctrine (P,y). Further suppose that for each object A € €, Ty 4 is P-admissible

and the left extension which we call A 4 as on the left below

TPA—4 - PTA TPB—%. PTB
= ]ym TPL[ L ]PTL
Tya

is exhibited by an isomorphism w;‘. Then for all L: A — B the naturality squares for A as
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on the right above commute up to a coherent isomorphism Ay, with coherent meaning

TPB_ |
TPL o B
TPA PTA-TL. pTB TPA-LLL TPR PTB
A B
w2 B _ w2
Ty 4 _ yT|A L B = Tya s Ty|5 s
TA——TB TA——=TB

(the condition for w; to be a modification), if and only if each A 4 is Tp-cocontinuous.

Proof. The following implications prove the logical equivalence.
(=) : Suppose that for each L: A — B the naturality square of 1 commutes up to a

coherent isomorphism Az. Then noting that idps = Ry, we see that for any left extension as

yB>»

on the left (which is isomorphic to (f, cF) by uniqueness)

resyB

PA—LE. p2R PB TPA-LPE. TPZB TPB—2 . PTB
yol T T;B el 'dP B
YA il yTB idps Tya & yf Tidps
A PB TA TPB

it suffices to check that the right diagram above exhibits A5 - Tres,,, - TPF as a left extension.

To see this we note that the pasting

PTA PTPB

PTF
2 o resty
o e, N
Tresys P

TPA-LPE PZB TPB—2 . PTB

id
- Ty_l - € PB
YA & yr

TA TPB

idrpp

is equal to the pasting (using A5 = Rry,)

TyB

TPA—2A . prA_PTE prpg 205,

A cy
2 )’YTA TR YTTB =
Tya | = r 3

TA TPB

PTB

This is shown by first using the coherence condition on 17!, and then using the definition
of vy, from Proposition [3.3.10} Note also this last diagram exhibits reszy, - PTF - 14 as

a left extension since Ty 4 is P-admissible (using preservation of the left extension 1 4 by
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P-homomorphisms).
(&): Forany L: A — B, we know PTL - A4 is a left extension of yrp-TL along Ty 4
since T'y 4 is P-admissible. Also Ap - TPL is such a left extension as Ag is Tp-cocontinuous,

giving us an isomorphism of left extensions Az coherent as in the statement of this lemma. [

Remark 3.3.13. A Beck condition is satisfied here. Indeed, the 2-cell y; as in Proposition
[3.3.10is the mate of A;, as in the above lemma. This may be seen by pasting the left diagram
of [3.3.1] with the mate of A and then recovering the right diagram making use of Remark

and the coherence condition on A;).

In the following lemma we see that for a pseudo-distributive law over a KZ pseudomonad

as in Definition , the modification components wé“ necessarily exhibit each 1 4 as a left

A
-

extension, and from this we deduce the existence of invertible components w
Lemma 3.3.14. Suppose we are given a 2-category ¢ equipped with a pseudomonad (T, u, m)
and a KZ pseudomonad (P, y, u). Suppose further that we are given a pseudo-distributive
law over a KZ pseudomonad A: TP — PT. Then for each A € €, Ty, is P-admissible,

exhibited by an adjunction
PTysH pra- Py

Moreover, the diagrams as on the left exhibit each A4 as a left extension,

TPA—4A - PTA TPPA-A. prp AL ppT A
é ])’T.A Tua “’14 HT A
Ty_A —
TA TPA PTA
A

and there exists canonical isomorphisms as on the right for each A.

Proof. We now prove the three assertions of the above lemma.
EacH Ty 4 1s P-apmissiBLE. Firstly, we note that the below diagram exhibits ur 4 - PAy

as a left extension

PTPA-L2A p2r A FTA L pT A (3.3.3)
)’TP.AT y/j:,lct YPT'A B Apra
TPA PTA
7

Indeed, the construction of a KZ doctrine from a pseudomonad whose structure forms a fully
faithful adjoint string is outlined in [42], and the above is an instance of this construction.

Noting A4 = ur4 - PAy, we define our unit 7 as the unique solution to the left extension
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problem
PTPA — PTAA prpAL2A. prr g M4 pr g
PTy 5
/ fn \ » » =
PTA 3 PTA = »yra M7y 4 YT(.A My, )’P(.A d
YT A Mid TA TPA PTA
Tya A4
o N ep 2T

TA YT A

Note that the unit 7 must then be given by
idpr A

Pyra =

m

PTA LA prp A LA, prr g FTA_pT A

asy: 1 — Pisapseudonatural transformation. We define our counit £ as the unique solution

to the left extension problem

YrrA
id
/”’HLPA\* Typa ﬂ(“’fA)il
— /Tyra.
PTPAA L pTA DA prpA =  TPA 110 TPAA—LPA-PTPA

R

V
TPA 4 14 prA— 1A

where the unnamed isomorphism above is[3.3.3] One could also define & directly in terms of

6, but that would result in a more complicated proof. Of the triangle identities:

n-d4

PTy PTys-44-PTya s Ax-PTys A4
M ePTy ida lng
PTy. A4

the left identity, which is equivalent to asking for equality when whiskered by y7 4, can be
proven using that w, is a modification. The right triangle identity, which is equivalent to

asking for equality when whiskered by yrp4, amounts to asking that the pasting
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PTA

yrrA

) ﬂylA
M(ws)”

Typa
—

TPA 104 TPAA—2A pTp AL prr A 1A PT A

~— 7 A
w My 4 y MPw;
M prg

idpr A

is the identity. This is where the first axiom for a pseudo-distributive law over a KZ pseu-

domonad is used, in addition to the second coherence axiom [3.2.3] of a KZ pseudomonad.

54 EXHIBITS A4 AS A LEFT EXTENSION. As Ty, is P-admissible, we know by

Remark that the pasting

EAcH w

resTy 4

TPAEA pTPA—A PTA
PTya} A
y&‘\ PT A YT A

T

TA

Tyq

exhibits resty , - yrp.A as a left extension, where resry , = A4 = pra - PAy, and 7 is the unit
of PTy 4 A resry , as just defined. From a substitution of the definition of n (and pasting with

a couple of isomorphisms) we see that the pasting

exhibits A 4 as a left extension. Note that this pasting is equal to w; as a consequence of w;

being a modification as well as the coherence condition [3.2.1] satisfied by P.
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THERE EXISTS CANONICAL ISOMORPHISMS a)f. We have the left extension

TP2A 222, prp AL ppT A FTAL PT A

2 -1 =
= )’TT A Yy YPT A _
Typa r = ( idpr A

TPA PTA

A

since Typ 4 is P-admissible, and also the left extension

TP2AHA . Tp A4 pT A

MTciq
Tid

TPA

Typa

since A 4 is Tp-cocontinuous by Lemma [3.3.12] giving us our isomorphism of left extensions

a)f. Note that this means w4 satisfies coherence axiom 7 of [39]]. L]

In the following proposition we show that the admissible maps are preserved. Note that

A
4

the admissibility of y 4 being preserved (also shown above).

the proof relies on the existence of isomorphisms w;* as above, which in turn relies on the

Proposition 3.3.15. Suppose we are given a 2-category € equipped with a pseudomonad
(T,u,m) and a KZ pseudomonad (P,y,u). Suppose further that we are given a pseudo-
distributive law over a KZ pseudomonad A: TP — PT. Then T preserves P-admissible

maps.

Proof. Suppose we are given a 1-cell L: A — B which is P-admissible, meaning that we
have an adjunction PL 4 res; with unit and counit denoted 7 and € respectively. We show that

TL:TA — TB must then be P-admissible, with the admissibility exhibited by an adjunction
PTL A ura - PAy - PTres, - PTyg

Firstly, we note that this right adjoint is exhibited as the left extension

pTB L% prp L prp A LA, par A FTA L pT A (3.3.4)
B Tyg  vrps Ty, VrpA iy yPT 4 .
— ( [—= r — ’(‘ ldPT.A
TB TPB TPA——~ PTA

YB Tresy, Aa
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and denote it Ry, for convenience. We then define our unit n as the unique 2-cell rendering

N

TA)’_TA) PTA idpra PTA

equal to

PTALIL. prg 15 prpg 1L prpg A, prp g FTA | pry

L ovis Ty YrpB e yrpA 57 YPTA -
TA — éB r 4=L r 4=A ( ideA
TA I TB TPB TPA PTA
\ Ty
y
and note that the unit » is then given by
PTALTL. pr L8 prpg FI% prpg LA prr g A _pr A (335)

gery, PTPLY  qpry
Ya— _PT P.A PTid

ﬂP

Pf’TA

idpr 4

asy: 1 — Pisapseudonatural transformation. We define our counit e as the unique solution

to the left extension problem

idprB YTB
m m
TB5 prR_ R praA Tl prg = 1B TPB_5 . pTB
Ap-Tresp Ty J /T ﬂTs [PTL
TPB TP.A PT A

Tresy, A

where the unlabeled isomorphism is[3.3.4] Of the triangle identities:

prL—FTL" _ pTL.R, - PTL R, —R _R,.PTL-R,
M leAPTL k ‘Rw
PTL R,

the left identity (or equivalently the left triangle identity whiskered by yr 4) easily follows
from the whiskered definitions of n and e as well as the corresponding triangle identity for

PL 4 resy, and w; being a modification. The right triangle identity (or that whiskered by
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yrp) is more complicated. This identity amounts to checking that

yrn
m Ty PTresy,
B TPB PTB—— PTPB PTPA —=-

\ o r i y { 191 PﬁfL@m/

Pay

PTA A, pT A

TPB TPA PTA—=
Trest A

(3.3.6)
is just the isomorphism [3.3.4] The first step here is to make our diagrams more like the first
axiom of a pseudo-distributive law over a KZ doctrine. Upon using that w; is a modification
and the coherence axiom [3.2.3] the problem reduces to showing that[3.3.6| with the unnamed

isomorphism and cell wf removed is equal to

PTB—28 . prpg— Tt PTPA-—- PTALTA pTA (33.7)

A5 _ Aps B ApA
/T ﬂ/lyB / ﬂ/lresL /
TPB s TP>B Ihrest TP2A «3yr yera | 674 ) Pyr 4
(: —
N Ty;) T Vres (
T} B T% resy, T\

TB TPB PA_TPA

Tyg Tresy, PTA

We then simplify using the first axiom of a pseudo-distributive law over a KZ doctrine,

canceling Pw;‘, and pasting Ay, Ay, and Ay, to the other side of the desired equation. By

pseudonaturality of A, the problem may then be reduced to showing that

T8 5. 7pR 1P" TP2B Thes pp2 g 2PA, prp A LM, p2p g FTA, pT A
/ JA’L TP TPZLﬂTPn
/T e TPy pid
2
TPB—— TP.A TP A
is equal to
TPB 8 T2 ISy ppa g A prp g A pap g KA prog
i
Tyzs[ NTy5 TYr ﬂTyreSLTYPA 10A) TPy 4
TB TPB TPA

Since we have the isomorphism wf as in Lemma [3.3.14] and as 768 - Tyg is invertible

(meaning we can paste with 765 and maintain the logical equivalence), we may reduce the
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problem to showing that

TyPB T Presy, Tua AA
TB———TPB_q1¢8_TP*B——=TP*A——+TPA—"+PTA
/ l Tﬁ T
/ Te LonrPy TPidp 4
2
TPB Trons TPA TPy TP-A
is equal to
Tyng 2 T Presy, 2 Tua A
TPB 16 TP?B——5TP2A TPA PTA
|
Tyg Typs Typa (104 TPyA
M7y r 1T Vet
TB TPB TPA
Ty Tresr,

From here, use that 6 is a modification, the axioms [3.2.2]and [3.2.3] and pseudonaturality of

y to deduce the triangle identity from that of the adjunction PL A resy . [

Remark 3.3.16. Note that here, as well as in the preceding lemma, we only used that w; is an
invertible modification and the first axiom for a pseudo-distributive law over a KZ doctrine,
along with pseudo naturality of A.

We are now ready to prove the main result of this subsection.
Theorem 3.3.17. In the statement of Theorem[3.3.8|(e) implies (d).

Proof. We first note by Proposition that 7' preserves P-admissible maps. Also, we
know by Lemma 3.3.14]that each A 4 is a left extension exhibited by the distributive law data
as in
TPA PTA
TA

with w{l invertible by assumption. That each A4 is Tp-cocontinuous is a consequence of

Lemma|3.3.12|and w, being a modification. Finally, that the diagrams

Tya

PA—PA TPA—A . pTA T2PA A TP A—A . PT A
wt WA
YA’ A Ty|A = YrA TzYAT 4 Ty|“4 b YT A
A TA T2 A TA

exhibit both A 4-up 4 and A 4-mp 4 as left extensions is due to the last two axioms for a pseudo-

distributive law over a KZ pseudomonad (as pasting a left extension with an isomorphism
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w1 or w3 will preserve the left extension property). Indeed, it is clear the left diagram below

exhibits Pu 4 as a left extension.

Pu 4 TAy Pmy

PA—=-PTA T°PA—2>TPTA—L2~ PT?2A—2-PTAA
Tw TA
I N / s 5
= sz_A r Y124
2
A——TA T2 A

To see that the composite Pm 4 - A7 4 - T A4 on the right is a left extension, note that Propo-
sition [3.3.10| shows A7 4 - TA 4 is a left extension above, and since T2y 4 is P-admissible by

Proposition [3.3.15] the left extension property is respected upon whiskering by Pm 4. 0

3.3.4 Lifting a KZ Doctrine to Algebras via a Distributive Law

In this subsection we show that given a pseudo-distributive law of a pseudomonad T over a
KZ doctrine P, we may lift P to a KZ doctrine P on the 2-category of pseudo T-algebras.
This is (d) = (a) of Theorem [3.3.8] However, before we show this implication we will first

need to verify the following proposition.

Proposition 3.3.18. Suppose we are given statement (d) of Theorem It then follows

that:
1. T preserves P-admissible maps;
and for every pseudo T-algebra (.A, TAS A),

2. there exists a 1-cell z,. given as the left extension via an isomorphism &,

TPA—=>PA
Ty.AT ﬂfx ]y.A
TA T) .A

which we call the Day convolution at x;

3. each z, is Tp-cocontinuous,

4. the respective diagrams

PA—LA TPA—= ~PA T2PA-22A- TPA PA
YA Moy 4 Ty|A Nx YA T?y A[ Ty, Tya & YA

A TA A T2 A TA A

up X my X
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exhibit zy - up 4 and z, - mp 4 as left extensions.

Proof. (1) This property is straight from the definition. We include this property here so that
this proposition may be taken as one the equivalent conditions of Theorem [3.3.8] We will
remark about this later in this subsection. Now, let a pseudo T-algebra (A, TAS A) be

given. (2) The left extension (z,,&,) is given by the diagram

TPA—2A . prA—PX . pg

wEA T
¥ YrA y;l Ty-A
Ty | =

TA A

X

where the left extension A 4 is preserved by Px as T'y 4 is P-admissible. (3) Suppose we are

given a left extension as on the left below.

PD—L - pA TPD—EoTpA—= . pY
cF Tcp
yD[ = e Ty'DT = TF
D TD

As this left extension is T-preserved by A4, which in turn is preserved by Px as Typ is
P-admissible, the diagram on the right exhibits z, - TF = Px - A4 - TF as a left extension.

(4) Again noting each T'y 4 is P-admissible, we see the left extensions

PA—PA TPA—A . pTA T2pATPA TpA—2A . pT A
w WA
A wt Tyy = T2 st Ty =
= | YA YA — | YT A
2
A—TA T°A——TA

are preserved upon composing with Px. Trivially, these left extensions are then preserved

upon pasting with the isomorphism y,. [

The following remark is not needed for the proof of Theorem [3.3.8] it merely explains
why the consequences in the above proposition are equivalent to the conditions (a) through
to (f) of this theorem.

Remark 3.3.19. Note that from this proposition one may recover statement (d) of Theorem

[3.3.8] This is since given the data of this proposition, one may recover a choice of each A4



60 Distributive laws via admissibility

and its exhibiting invertible 2-cell “’54 as a left extension, by taking the pasting

TPATA TP A AL PT A
Tya| TV T)T‘A Ném 4 yra
TA T2 A TA

Tu,

The condition of each A4 being Tp-cocontinuous is inherited from the corresponding
condition on each z,, ,. Condition (4) of this proposition yields the corresponding conditions
on the maps 1 4. We omit this last calculation, as it is not required for the proof of the
main theorem. We just note that this last calculation relies on the pseudo-algebra structure
of the maps z,: TP.A — PA constructed later on in this subsection. The construction of the
algebra structure may be done with all of the axioms for a pseudo-distributive law over a KZ
doctrine without the last (which we have recovered from the proposition), in addition to the
last condition of the proposition.

The following proposition will be useful in the proof that (d) implies (a).

Proposition 3.3.20. Suppose we are given a 2-category € equipped with a pseudomonad
(T,u,m) and a KZ doctrine (P,y). Further suppose that we are given a pseudo-distributive
law over a KZ doctrine A: TP — PT. Then for any two P-cocomplete objects C and D, a

I-cellu: TC — D is Tp-cocontinuous if and only if it is Tp-adm-cocontinuous.

Proof. Supposing thatu is Tp-cocontinuous we check that u is necessarily 7p-adm-cocontinuous.
To see this, we first note that we have an induced isomorphism of left extensions as a conse-

quence of having the two left extensions

T(yc).

TPC — ¢ _pre—te.pp - _p TPC TC—~D
) Tciq
2 -1 P = ~
Tyc] e &%f:p Tyc[ %z
TCT>,D idD TC "

We must check that the left extension (where L is P-admissible)

(ve)s
€id
\ rl yHl e

is T-preserved by u. Indeed, on applying T and whiskering by u, and then pasting with this

isomorphism of left extensions and a naturality isomorphism of A (which we have by Lemma
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3.3.12)), we obtain

PTA- L2 prc -
T(ye),
T8 TR. TPA TPH TPC (ve). TC —" D
Tc1
S T)TA Dy Tic <=dC
TL | = |
TH

TA

Then noting that pasting with invertible 2-cells preserves left extensions and that

TP.A PTH Pu

PTC PD D)«
Ter
k Tya /

is a left extension as a consequence of 7 L being P-admissible (thus the left extension A 4- TRy,
in Proposition [3.3.10| being preserved), we have the result

D

]

We now have everything required to complete the proof of the main theorem
Theorem 3.3.21. In the statement of Theorem 8 (d) implies (a).

Proof. Firstly, we observe that each z, is Tp-adm-cocontinuous as a consequence of Propo-
sition[3.3.20l It follows that we have the left extensions

T2p AT TpAg &

PA T3pA L5

2P A2 TPA PA
}
T2y 4 Té Tya  f&, YA T3y A] 7%, T2f’A [LEESY TyTA Méx YA
2 3 2
- A = TA— A T° A — - A = TA— A

upon noting that each T2y 4 and T3y 4 is P-admissible

Secondly, we check that each (P.A,z,) is a pseudo T-algebra. We define our algebra

structure maps as the unique solutions to the following left extension problems (and note they
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are invertible as they are isomorphisms of left extensions by Proposition|3.3.18)

TPA TPA-—=~PA

upA ﬂUXXx\\ %AT Néx TyA

PA Mpa PA = PA ﬂ”yA T.AT>.A
é
A TYA YAT % =
A A id 4
TPA TPA-=~PA
my’ ﬂaxx ’"%AT Néx Tm
T2PA=  TPA-2 o PA = T2PA iy, TA— A
szAT Téx TYTA Néx ]yA Ty / /
MFPA——TA——A T?A
X

Note that these are the axioms for &, to exhibit y 4 as a pseudo 7-morphism. To check that

the algebra structure coherence axioms are satisfied, we note that the equalities

idrp A

TPA— 4 o TPA— PA TPA—=<PA
Tya ) Tya Méx |y,4 = Tya Méx YA
TA . A TA—— A

TPA PA—— PA TPA—=~PA
Zx idp g B
Tya e x |yA = Tya Méx YA
TA . A TA—— A

and the equality between
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mp A

TZPAMTPA
mrpa Wﬂm & ﬂéxx
T3pA-Lp2p g 1o rp A pg
T3y 4 7%, Tzf’A MTée Tya ’)’A
PA——TA—F—TA——A
and
TPA
mpA 16x
2pA-"2rpA N\
%mz; Wﬂ@&
T3pA-Lo p2p AT TpA_= Tpy
T3y A[ T2, TﬁfA NTéx TYTA Méx YA
T3 A T’ A TA A

T2 x Tx x
easily follow from the respective conditions on (A, x) being a pseudo T-algebra and the

definitions of 6, and o,.

We now use the above to define our KZ doctrine
P: ps-T-alg — ps-T-alg

We use the assignment on objects (A, x) — (PA,z,). We take our units as the pseudo
T-morphisms (y4,&y) : (A,x) — (PA,zy). Now suppose that we are given a pseudo 7-
morphism (F, ¢) : (A,x) — (PB,z), where (PB,z,) = P (B3,r), as in the diagram

(PA, zy) (79) (PB,z)
(yAvgx)’ (F,¢)
(A, x)

Since z, is Tp-cocontinuous, we may apply Proposition [3.2.14] to find a lax T-morphism
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(f, 5) as above. Indeed the lax structure map ¢ is given as the unique solution to

TPA-~PA

vy

TA——— A" ter |F

F
- ¢
But we notice that
TPA—L TPB—“ - PR
TCF
—
T)’A] TF
TA

TPA-—2~PA

Tya

TATer TF e F

TF
TPA—> o pA—F PB
92
Ty Néx [yy
TA——— A N
=¢
TF TPB

are both left extensions since z, is Tp-cocontinuous and T'y 4 is P-admissible respectively. It
follows that the lax T-morphism structure map ¢ is an isomorphism of left extensions, making
(f, 5) a pseudo T-morphism. Of course, if we only assume (F, ¢) to be a lax T-morphism

then we can only expect F to admit a lax T-morphism structure.

We now check that such left extensions are preserved by other left extensions of this form.

Suppose we are given two left extensions of pseudo T-algebras and pseudo 7-morphisms

F.¢ Go
(PA )L (pB.,) (PB.2) -7 (pe. )
cF <G
(y.A’fx)] (F.0) (YBafr)[ G.o)
(A, x) (B,r)
To see that 3 3
(73) @)

(PA, Zx) - (PB, Zr) - (PC’ Zh)

——
ago| @2r (PBz) (@)

(A x) (F.¢)

is a left extension we need only observe that the T-morphism structure on GF resulting from
an application of Proposition 3.2.14] (on the outside diagram) is given by composing ¢ and &

as above. This is shown by pasting the defining diagram for ¢ with & which gives
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TPA PA TPA-25PA (3.3.8)
TA——A ﬂcF F TANTer TF| ¢ |F
1%
TF TF
TG o G TG o G
TPC—— PC TPC—— PC
Zh Zh

which is the defining diagram for the induced lax structure on G - F from an application of

Proposition [3.2.14]
It is an easy consequence of Proposition |3.2.14| that each (y 4, &) is dense. Indeed since

Zx T-preserves the left extension

pA-PA_p A
e
A

(as well the resulting left extension) the density property may be lifted to pseudo-T-algebras

applying Proposition [3.2.14 0

3.4 Consequences and Examples

In this section we point out some consequences of Theorem [3.3.8] proven in the previous
section, and in particular some properties of the lifted KZ doctrine P on ps-T-alg. Before

considering the properties of P, we mention two easy corollaries.
Corollary 3.4.1. Pseudo-distributive laws over KZ pseudomonads are essentially unique.

Proof. As shown in Lemma the modification components w{‘ exhibit A 4 as a left ex-
tension. The last two coherence axioms of a pseudo-distributive law over a KZ pseudomonad
then define the components wy A and w as unique solutions to a left extension problem. Note
that w7 % is also defined as the unique solution to a left extension problem (see the proof of
[3.3.14). The essential uniqueness of left extensions then tells us these pseudo-distributive

laws are essentially unique. [

Corollary 3.4.2. When the conditions of Theorem are met, the lifted pseudomonad
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arising from the pseudo-distributive law is automatically KZ.

Proof. As a consequence of the essential uniqueness of pseudo-distributive laws over KZ
pseudomonads, any lifted pseudomonad must be equivalent to the KZ pseudomonad whose

existence is guaranteed by Theorem [3.3.8] O

3.4.1 The Lifted KZ Doctrines

We first check that in addition to having a lifting to ps-7T-alg, we have a lifting to the 2-category
of pseudo-T-algebras, lax (or oplax) 7-morphisms, and 7-transformations.
Proposition 3.4.3. Suppose any of the equivalent conditions of Theorem are satisfied.
Then

(a) P lifts to a KZ doctrine ﬁoplax on ps-T-alg

(b) P lifts to a KZ doctrine Piox on ps-T-alg,,;

Proof. (a) : P lifts to a KZ doctrine ﬁoplax on ps-T-alg,y,, since given any oplax structure

cell ponamap F: A — PB as below

Az LD (P2,
(yA’fx)] (F#;)
(A x)

we get an oplax structure cell ¢ given as unique the solution to

TPB———~PB TPB——~PB
F| 1% |F " r
TPA——=PA = TPA "% 17 N I 2 PA
Tya Méx yA TyA A
TA——— A TA—— A

with the coherence conditions for ¢ being an oplax 7T-morphism structure following from
Proposition (3.3.18| (Part 4). Note that the induced oplax structure when composed by an
oplax T-morphism (E, ?) as below

Fo fekd
(P20~ (B o) " (P, 20)
cp
f—
()’.A,fx)[ (F,(,O)

(A x)
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is still (6, ?) . (f, E). To see that (ﬁ, @) is a left extension in the sense of transformations,
suppose we are given a transformation o: (F,¢) — (H,¥) - (y.4,&x), then the induced cell

o: FF — H is a transformation since

TPB———~ PB TPB——~ PB
TH(<=" TF N9 F TH< My H<; F
TPA—=PA = TPA——~PA
Tya Méx YA Tya Méx YA
TA——— A TA—— A

as a consequence of o~ being a transformation. By Proposition [3.2.14] the density property is
still valid in the setting of oplax 7-morphisms; this being why we proved the general case of
Proposition [3.2.14]in terms of composites of lax and oplax morphisms.

(b) : The proof that P lifts to a KZ doctrine Pl on ps-T-alg,,, is essentially given in
Theorem [3.3.211 O]

We now check that the KZ structure cell §: Py — yP remains the same upon lifting to

algebras.

Proposition 3.4.4. Suppose any of the equivalent conditions of Theorem are satisfied.
Then the KZ structure cell : Py — yP for P is also the KZ structure cell for P.

Proof. Recall that the components of 8 are recovered as the induced cells out of the left

extensions Py 4 as in the diagram below
P
PA—- P24

YA[ M5l

YPA

such that the composite with this diagram is an identity. Now apply Proposition [3.2.14] to
this naturality square noting that each y 4 extends to a pseudo 7-morphism (y 4,&,) in order

to recover the components of the KZ structure cell for P. [

If we are to study the lifted KZ doctrine P, we should consider the ﬁ—cocomplete objects
and the P-admissible maps. We start with the former.

Algebraic cocompleteness is usually defined by asking that the underlying object be
cocomplete, and that the algebra structure map be separately cocontinuous. The following

proposition justifies this definition.
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Proposition 3.4.5. Suppose any of the equivalent conditions of Theorem are satisfied.
Then a pseudo T-algebra (A, x) is

(a) P-cocomplete iff A is P-cocomplete and x: TA — A is Tp-cocontinuous;
(b) Eax—cocomplete iff Ais P-cocomplete and x: TA — A is Tp-cocontinuous;
(c) ﬁoplax—cocomplete iff Ais P-cocomplete.

Moreover, the pseudo/lax/oplax T-morphisms (F,¢) which are PP/ ﬁoplax-cocontinuous

are all classified by those maps for which the underlying F is P-cocontinuous.

Proof. We start off by proving part (a).

(=) : Suppose that (A, x) is a ﬁ—cocomplete pseudo T-algebra. Then, by doctrinal
adjunction [27], the pseudo T-morphism (y 4,&) has a reflection left adjoint ((y.4), , (£51),)

for which (&7 1)* is defined by the mates correspondence and is invertible. That is, we have

isomorphisms
TPA PA TPA PA
TyA[ ueg;! TyA T(y.a). l U(&t), \(YA)*
TA A TA A

Now (y4). 4 y4 via a reflection adjoint so A is P-cocomplete. We thus check that x: T.A —

A is Tp-cocontinuous. Suppose we are given a left extension as on the left

pD—E .4 TPD—EL T A=
yD’ fer Typ[ TV
F TF
D D

We check that the right diagram is a left extension. We first note this is equivalent to showing

that x T-preserves left extensions as on the left below

(yA) TPF T(y.a).

TPD TPA TA—— A
ﬂcld T MTci
yD[ ﬂCyAF )r‘ A Typ[ ﬂTCy_A»F T}iA%
TD TA

and so it suffices to check the right diagram is a left extension. This is seen upon pasting
with the isomorphism (f;l)* as z, is Tp-cocontinuous and (y4), is a left adjoint (and hence

preserves all left extensions).
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(=) : Suppose that A is P-cocomplete and x is Tp-cocontinuous. Then (A, x) is P-
cocomplete as (A, x) admits left extensions along (y 4, £;) by Proposition[3.2.14] and showing
that such left extensions admit a pseudo 7-morphism structure and are preserved is a similar
calculation to that in the proof of Theorem[3.3.21

(b) : The proof of the classification of Eax—cocomplete pseudo P-algebras is almost the
same (as the reflection left adjoint must again be pseudo by doctrinal adjunction [27]), and
so we omit the details.

(c): The ﬁoplax—cocomplete pseudo P-algebras are those with an underlying P-cocomplete
object, as a consequence of doctrinal adjunction [27]].

That the T-morphisms (F,$) which are ﬁ/ﬁlax/ﬁoplax-cocontinuous are all classified
by those morphisms for which the underlying F is P-cocontinuous is a straightforward
calculation. Indeed, given a pseudo T-morphism (F,¢) for which F' is P-cocontinuous,
checking that (F, ¢) is then P-cocontinuous requires only checking a coherence condition
(similar to . Conversely, given that (F,¢) is ﬁ—cocontinuous, that is, a pseudo P-
morphism on ps-T-alg, we know the underlying F' must be a pseudo P-morphism on € (by
forgetting that certain morphisms and 2-cells are 7T-algebraic), so that F is P-cocontinuous.

The Eax and Foplax case may be similarly seen. O

Proposition 3.4.6. Suppose any of the equivalent conditions of Theorem are satisfied.
Assume (L,a) : (A,x) — (B,y) is a pseudo T-morphism and L: A — B is P-admissible.
Then (L, ) is P-admissible if and only if for every P-cocomplete pseudo T-algebra (C,z) and

pseudo T-morphism (I,€) as in the diagram

(RB)
(B,y) ——(C,2)
)
= [(Lf)

(A, x)

(L)

the induced lax structure cell B on the underlying left extension R as in Proposition is
invertible. Moreover, for pseudo, lax and oplax (L, @) respectively,

1. (L,a) is P-admissible iff P (L, ) has a pseudo right adjoint;

2. (L, ) is Piax-admissible iff P(L,a)is pseudo;

3. (L,a)is ﬁoplax—admissible iff P (L, @) has a pseudo right adjoint.

Proof. The first part of this proposition follows an equivalent characterization of P-admissibility

as given by Bunge and Funk (discussed in [6] and Chapter [2)), along with Proposition [3.2.14]
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The last three properties are a direct consequence of doctrinal adjunction [27]]. 0

Remark 3.4.7. Note that the conditions of P/ ﬁoplax—admissibility are analogous to asking a
Guitart exactness condition is satisfied [20] (in the presence of some additional structure, and
in the context of pointwise left extensions). However, we omit discussion of this as it would

take us beyond the scope of this paper.

Remark 3.4.8. Note that if P (and thus P) is locally fully faithful, and (L,«) is a lax T-
morphism, then P (L, @) being pseudo implies (L, @) is. Indeed, the lax structure cell @ when
whiskered by y 4 is invertible (a direct consequence of how the structure cell of P (L,a) is
defined in Proposition [3.2.14). As y 4 is fully faithful, this means « is invertible. Hence, in

this case, Statement 2 of the above proposition is equivalent to saying (L, @) is pseudo.

Given a KZ doctrine P on a 2-category 4 we have an equivalence given by composi-
tion with the unit y 4, namely Gcos (PA,B) =~ % (A, B), with G (P.A, B) containing left
extensions of maps .4 — B along the unit y 4. This is clearly essentially surjective as for an
F: A — Bwe may take F: PA — B, and fully faithful as y 4 is dense. We can thus recover

Im and Kelly’s following result.

Corollary 3.4.9 (Im-Kelly [22]). Suppose we are given a 2-category € equipped with a
pseudomonad (T,u,m) and a KZ doctrine (P,y). Suppose any of the equivalent conditions of
Theorem are met. Then for every pair of pseudo T-algebras (A, x) and (B,r) where B

is P-cocomplete, composition with the unit (y 4,&,) defines the equivalence
Oplax [(A, x),(B,r)] = Oplax . [(PA. zx),(B,r)]

where a morphism of pseudo T-algebras is cocontinuous when the underlying morphism
is. Suppose further that r is Tp-cocontinuous. Then composition with the unit (y 4,&y) also

defines the equivalences
LaX [(A’ X) s (B’ r)] = LaXCCtS [(PA Zx) ’ (Ba r)]
Pseudo [(Aa x) H (B’ r)] = PseudOCCtS [(PA, Zx) s (B’ 7")]
Moreover, the above three equivalences restrict to P-admissible underlying morphisms.
Proof. We need only check the restriction. Note that if L: P.A — B is P-admissible then so

is the composite L - y4 = L due to closure under composition. If L is P-admissible, then L

has a right adjoint by Lemma , and so PL also does. [
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3.4.2 The Preorder of KZ Doctrines on a 2-Category

In the following discussion of morphisms between KZ pseudomonads and doctrines we will
omit most of the details, as this would take us beyond the scope of this paper. Moreover, the
calculations are quite similar to those in Section

It is the goal of this subsection to show that the 2-category of KZ pseudomonads on a
2-category % is biequivalent to a preorder. This is a property one might expect given the
“property like structure” viewpoint [29]; and the tools of admissible maps give us a method

of proving this result.

Definition 3.4.10. Given KZ pseudomonads (P, y,u) and (P’,y’, ') on a 2-category %, a
morphism of KZ pseudomonads P —> P’ (corresponding to a lifting of the identity on %)

consists of a pseudonatural transformation a: P — P’ and an invertible modification

P—2-p

le
such that
P—2 >p
4 ’ yP n-1 ’
'p » 'pr| o P’y
p— . p ] ety <<=> :
el ey o ey N i PP—  p'p PP’ P
= = P'yy aP P'a W
—
PP PPP——PP ——FP
aP Pa M

The reader will notice the following is similar to Lemma[3.3.14] meaning we are justified

in omitting most of the details.

Lemma 3.4.11. Given a morphism of KZ pseudomonads as above, the 2-cell yr, exhibits a

as a left extension of y' along y.

Proof. We first observe that P’y 4 i’ - P’a (note that this right adjoint is @, similar to A in
Lemma [3.3.14)) with unit 5 given by

ppEapp
P/y /J/
/ﬂp’%
P’ = P’

\P'y'__/f

idp
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We define the counit & as the unique 2-cell for which

y'P
id -1
/ e , p NsP)
p 2 pp P pp ¥ p PVpp - pTp pp—P. pp
1065)" Y27 \Q”) to S
a Pl idp/ a Pl P'y

We will omit the triangle identities (as this is almost the same calculation as earlier). The result

then follows from Remark and naturality and pseudomonad coherence axioms. 0

Remark 3.4.12. Given a morphism of KZ pseudomonads, we automatically have an invertible

modification
PP—"~P'P’
7
P P’

[0

so that multiplication is respected. Indeed « - u may be seen as a left extension of y’ along
Py - y exhibited by the bijections

a-u —> H
a — H-Py
y —- H-Py-y

mates COI‘I‘GSpOIldGIlCG

since « is a left extension

and i’ - @ * @ may be seen as left extension of y” along yP - y by recalling that R; = resy - yg
for admissible L: A — B (using Remark and taking L to be an arbitrary component
of yP - y with respect to P’-admissibility. In particular, noting that P’y 4 y’ - P’ and
P’yP 4 u' - P’aP gives us the necessary data for constructing R;. Finally, noting that

yP -y = Py -y gives the result.

Definition 3.4.13. Given KZ doctrines (P, y) and (P’,y’) on a 2-category € a morphism of

KZ doctrines P —> P’ consists of the assertions that:
1. every P-admissible map is also P’-admissible;
2. for each A € ¥, the resulting 2-cell exhibiting the left extension a 4

PA—2A. pr g
vyt
— y.;l

A

YA

is invertible;
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3. foreach A, B € €, left extensions along y 4 into P13 are preserved by ap [

Lemma 3.4.14. Suppose we are given two KZ doctrines (P,y) and (P’,y") on a 2-category €,
with corresponding KZ pseudomonads (P, y, u) and (P’,y’, i’). Then morphisms P = P’ of
KZ doctrines are in bijection with morphisms P = P’ of KZ pseudomonads (identified via

uniqueness of left extensions up to coherent isomorphism).

Proof. Given that every P-admissible map is also P’-admissible, we know that P’y has a
right adjoint (and that we have a left extension a as above, assumed invertible). In particular,
this right adjoint may be constructed as in Proposition [3.2.22] and thus we have an adjunction
P’y 4y - P’ with unit and counit as above. The triangle identities then force the coherence
condition. Pseudonaturality of « is equivalent to the preservation condition.

Conversely, given a morphism of KZ pseudomonads (which always gives rise to a usual
morphism of pseudomonads) we know that every P’-cocomplete object is also P-cocomplete
(as the cocomplete objects may be characterized as algebras), and similarly for homomor-
phisms. Hence given a P-admissible map L: A — B and map K: A — X for a P’-
cocomplete (and thus also P-cocomplete) object X, there exists a left extension J: B — X
which is preserved by any P’-homomorphism (as such is necessarily a P-homomorphism

also). Consequently, L must be P’-admissible. [

Combining this with the results of [42], yields the following proposition.

Proposition 3.4.15. Given a 2-category €, the assignation of [42] Theorems 4.1,4.2] under-
lies a biequivalence

KZdoc (%) ~ KZps (%)

where KZps (%) is the 2-category of KZ pseudomonads, morphisms of KZ pseudomonads
and isomorphisms of left extensions, and KZdoc (%) is the preorder of KZ doctrines and

morphisms of KZ doctrines.

3.4.3 Examples

Consider the 2-monad 7 on locally small categories for strict monoidal categories, and
take P to be the free small cocompletion KZ doctrine on locally small categories. Note

that the pseudo-T-algebras are unbiased monoidal categories (equivalent to (strict) monoidal

9Consequently, components of @ are P-homomorphisms.
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categories [37]) and so we may write ps-T-alg ~ MonCat, with the latter being the 2-category

of monoidal categories, strong monoidal functors and monoidal transformations.

Given a monoidal category (A, ®) we may define a monoidal structure on P.4 by Day’s

convolution formula
a,be A
F®DayG::/ A(—,a® b)x Fax Gb

for small presheaves F' and G on A. Note that F ®pay G is then small, see [12, Section 7].
This can be shown to give a monoidal structure by the arguments of Day [11]], equivalent to
the structure of a pseudo-T-algebra. As the convolution algebra structure map is separately

cocontinuous (and hence Tp-cocontinuous [S6, Prop. 2.3.2]) we have enough of Proposition
[3.3.18to show condition (a) of Theorem 3.3.8]is met.

We thus know that T preserves P-admissible maps. This says that if we suppose that
L: A — Bis P-admissible, meaning that each B (L—, b) is a small colimit of representables,

then each

TB(TL-,b) =TB[(L-,---L-),(by, - ,by)] = ﬂ B (L-,b;)
j=1

is also a small colimit of representables.

For simplicity, we will consider the preservation of the admissibility of L = y 4 (which is
equivalent to preservation for all L). The existence of a pseudo-distributive law of T over P

then yields the following example.

Proposition 3.4.16. Let X,Y : A°? — Set be two small presheaves on A. Then
XxY: (Ax .A)Op — Set, (ap,ap) — X (a1) XY (az)

is a small presheaf on A X A.

Proof. Note that Ty 4 is P-admissible, and hence
TPA(Tys—X): (TA)® — Set

is a small presheaf on T A for each X = (Xj,---,X,) in TPA. In particular, if we take
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X = (X,Y) then
TPA[(ya—ya—),(X,Y)], ae(AxA®
TPA(ya—X) = 1
0, otherwise
X(-)xY(-), ae(AxA?P
0, otherwise
is a small presheaf on ),y A" and so X (=) X Y (—) is a small presheaf on .4 x A. o

Our results also apply to the less general setting of distributing (co)KZ doctrines over KZ

doctrines. The following is such an example.
Example 3.4.17. Consider the KZ doctrine for the free coproduct completion
Famy : Cat — Cat.

Hereamap L: A — B is Famy-admissible when Fams L is a left adjoint; that is, when L is a
left multiadjoint. As noted by Diers [14)], this is to say that for any Z € B there exists a family
of morphisms (h;: LX; — Z),c7 which is universal in the sense that given any k: LX — Z
there exists a unique pair (i, f) withi € Z and f: X — X; such that h; - Lf = k.

It is well known the free product completion Famyy distributes over this doctrine [42]
Section 8]. Thus, as a consequence of Theorem we see that if a functor L is a left

multiadjoint, then the functor Famry L is a left multiadjoint also.

The following is a simple consequence of the essential uniqueness of distributive laws
over KZ doctrines, shown in Corollary [3.4.1]

Example 3.4.18. Let Prof be the bicategory of profunctors on small categories, and let
PROF be the Kleisli bicategory of the free small cocompletion KZ doctrine P on locally
small categories. Clearly Prof lies inside PROF. By Corollary the extension of a

pseudomonad T on locally small categories to the bicategory PROF is essentially unique.

3.5 Liftings of Locally Fully Faithful KZ Monads

In this section, we consider the case in which the KZ doctrine P being lifted is locally fully
faithful. The reader will recall that a KZ doctrine P is locally fully faithful precisely when
each unit map y 4 is fully faithful [6].
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The main goal of this section is to deduce an analogue of “Doctrinal Adjunction” on the
“Yoneda structure” induced by the locally fully faithful KZ doctrine P. We start however
with the following basic properties concerning fully faithful and P-fully faithful maps.

Proposition 3.5.1. Suppose any of the equivalent conditions of Theorem are satisfied.
Then
(a) if y 4 is fully faithful for every A € €, then every Ty 4 is fully faithful;

(b) T preserves maps which are both P-admissible and P-fully faithful.

Proof. Firstly, note that if each y 4 is fully faithful (so that yr 4 is fully faithful) then so is
Ty 4, since we have an isomorphism
TP—A . pr
<a):2 [
YT A

TA

Tya

Secondly, note that if L is a P-admissible P-fully faithful map, meaning the unit 1 of the

admissibility adjunction is invertible, then so is the unit n exhibiting the admissibility of 7L

by Figure[3.3.5] O

3.5.1 Doctrinal Partial Adjunctions

In this subsection we study how pseudomonads interact with absolute left liftings (also called
partial adjunctions or relative adjunctions), which we now define. In particular, we show that
we get an induced oplax structure on a partial left adjoint under suitable conditions, which
gives a lifting of the partial adjunction to the setting of pseudo algebras in a suitable sense.
This is in the same spirit as subsection [3.2.2] on algebraic left extensions, but not com-
pletely analogous (and therefore not a dual). In particular, here we do not require any algebraic

cocompleteness conditions.

Definition 3.5.2. Suppose we are given a diagram of the form
B—R .

N

A

(3.5.1)

in a 2-category ¢ equipped with a 2-cell n: I — R - L. We call such a diagram a partial

adjunction and say that L is a partial left adjoint to R if given any 1-cells M and N as below,
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for any 2-cell : I - M — R - N there exists a unique £ : L - M — N such that £ is equal to
the pasting

That is, pasting 2-cells of the form ¢ above with 7 defines a bijection of 2-cells.

Remark 3.5.3. It is an easy and well known exercise to check that we have an adjunction

L 4+ R: B — A with unit 7 in a 2-category % if and only if
n
I = [idA
A
exhibits L as a partial left adjoint.
We now define a notion of partial adjunction in the context of pseudo T-algebras and

T-morphisms.

Definition 3.5.4. Suppose we are given oplax T-morphisms (/,¢) and (L,«) and a lax T-
morphism (R, 8) equipped with a T-transformation 7 (as in Remark with appropriate

identities) as in the diagram

= [(lf)
(A, TAS A)

We call such a diagram a T-partial adjunction if for any given pseudo T-algebra (D, w), lax

T-morphism (M, €), and oplax T-morphism (N, ¢) as below

(RB)

(B, B B) (c, ¢ 5 c)
(N,@[ W \;L’ai [(1:«)
(D, ™D % D) i (A,TA EA A)

pasting T-transformations of the form £ above with the T-transformation 7 defines the bijection
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of T-transformations:

R,
(B.y) (B.y) B.y) L2 (c.z2)
(N,w)[ L [(L,w) ~ (N,@] K [(Lf)
(D,w) e (A x) (D,w) e (A, x)

This operation of pasting the T-transformation ¢ with 7 is given by pasting the underlying
2-cells. The verification that such a pasting of T-transformations yields a T-transformation

is a simple exercise.

Remark 3.5.5. We may be more general here by replacing (M, €) and (N, ¢) by a lax followed
by an oplax, and an oplax followed by a lax 7T-morphism respectively. However, this level of

generality will not be necessary for this paper.

We now give the doctrinal properties enjoyed by partial adjunctions.

Proposition 3.5.6. Suppose we are given a partial adjunction

R

B——C

;[1
L
A

in a 2-category € equipped with a pseudomonad (T,u,m). Suppose further that
(ATAS 4), (BTBSB), (cTc S

are pseudo T-algebras. Then given an oplax T-morphism structure & on I and a lax
T-morphism structure 8 on R, there exists a unique oplax T-morphism structure a on L
such that n is a T-transformation. Moreover, this partial adjunction is then lifted to the

T-partial adjunction




3.5 Liftings of Locally Fully Faithful KZ Monads 79

Proof. Given our 2-cells

TA——A TB——=n8
Tll € ll TRJ 18 \R

exhibiting / as an oplax T-morphism and R as a lax T-morphism, we can take our oplax

constraint cell of L (which we call @) as the unique solution to

B =B TB——~B
V\ \rk\ﬂﬁx
TL Mo Lt C = | 1tq TC—==C
/ //ﬂs‘/
T.AT>.A T.AT>.A

which exists since L is a partial left adjoint. That is, « is the unique oplax structure on L for
which : I — R - L is a T-transformation. The verification that « then satisfies the unitary

and multiplicative coherence axioms is a simple exercise which we omit. [

The following example is an easy application of this result which does not involve Yoneda

structures.

Proposition 3.5.7. Suppose <7, and € are bicategories. Consider a diagram
d-LepSw
\/
H

where G is a lax and locally fully faithful functor, H is an oplax functor, and F is a locally
defined functor
(Fxy : o (X,Y) > B(FX,FY): X,Y € o)

where G - F = H locally. It then follows that F extends to an oplax functor.

Proof. To see this, recall that the fully faithfulness of each Gy (for objects M, N € %) may
be characterized by saying that each
G
B(M,N) -2 ¢ (HM,HN)
id
= [GM,N

% (M,N)

iz, N)
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is an absolute lifting [54, Example 2.18]. As this absolute left lifting is preserved upon
whiskering by
Fxy : o (X,Y) > B(FX,FY)

we have the family of partial adjunctions

FX,FY

B (FX,FY) 225 o (HX, HY)
]
Hxy

o (X,Y)

Fxy

Endowing with the bicategory structure of .o, and full sub-bicategory structures of % and ¢
restricted to objects in the images of F and H respectively, we see by Proposition [3.5.6] that

F extends to an oplax functor F': o/ — A. [l

Remark 3.5.8. Clearly, this may be stated more generally in the setting of a pseudo 7T-algebras.

Also, it suffices to only have an isomorphism GF = H on the underlying 2-category.

Remark 3.5.9. In Kelly’s setting of a doctrinal adjunction [27]], if both the left and right adjoint
are lax, exhibited by a counit and unit which are T-transformations of lax 7-morphisms, then
the induced oplax structure on the left adjoint is inverse to the given lax structure. In
this partial adjunction case, the best we can say is that if (/,¢) is pseudo, (L,a*) lax, and
n: (I,§) = (R,B) - (L,a") a T-transformation of lax 7-morphisms, then the induced oplax
structure on L given as «a satisfies @™ -« = id;.,. This means the identity 2-cell is a generalized

T-transformation from (L, a) to (L, "), but not necessarily the other way around.

3.5.2 Doctrinal “Yoneda Structures”

Kelly [27] showed that given an adjunction L 4 R which lifts to pseudo algebras, oplax
structures on the left adjoint are in bijection with lax structures on the right adjoint. The goal
of this section is to give a similar result for “Yoneda structure diagrams”, that is diagrams of
the form

B—2-pA

for which L is an absolute left lifting, and R is a left extension exhibited by the same 2-cell ¢
(as appear in Yoneda structures [47], or in the setting of a locally fully faithful KZ doctrine).

We state the following as one of the main results of this paper, due to its applications as
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a coherence result for oplax functors out of certain bicategories, such as the bicategories of

spans or polynomials. This application will be briefly discussed at the end of this section.

Theorem 3.5.10 (Doctrinal Yoneda Structures). Suppose we are given a 2-category €
equipped with a pseudomonad (T, u, m) and a locally fully faithful KZ doctrine (P, y). Suppose

that T pseudo-distributes over P. Suppose we are given pseudo T-algebra structures
(ATAS 4), (B.78 - B)

Then for any P-admissible map L: A — B we have a Yoneda structure diagram as on the

left, underlying a “doctrinal Yoneda structure” diagram as on the right

Rp (RL7B)

B PA (B,y) —— (PA,zy)
> = ’m D = [(Mf)
A (A, x)

in that 2-cells a as on the left below exhibiting L as an oplax T-morphism

TB——~1B TB——-1B
TL[ N TL TRL‘ 18 ‘RL

are in bijection with 2-cells [ as on the right exhibiting Ry, as a lax T-morphism.

Proof. We need only check that the propositions concerning partial adjunctions and left
extensiong!C are inverse to each other. But this is just a consequence of the fact that we can

go between the defining equalities for these propositions

TB—-1B TB # B
RL RL
R 8
\ \ \Z\
TL| e e PA = TL| 1Ter /Z"PA ——=PA
A /Ty.A ﬂ‘fx /AAV
T.A T>' .A T.A T> .A

10Note that Proposition|3.2.14|applies since each z, is Tp-cocontinuous by Proposition|3.3.18
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and
TB———~B TB—— =B
TL fa TL
L
TA——— A" fer |R = TA 1TeL TR 1B Ry,
1 YA
Tya M \ Tya
TP.A 7 P.A TP.A 7 P.A
by pasting with &, and &, [

Remark 3.5.11. In the “doctrinal Yoneda structure” of the above, ¢ is a T-transformation
exhibiting (R, 8) as a T-left extension and (L, @) as a T-partial left adjoint, provided a and

B correspond via this bijection.

We observe that the bijection between oplax structures on left adjoints and lax structures

on right adjoints as in “Doctrinal adjunction” [27] is a special case of this theorem.

Corollary 3.5.12 (Kelly). Suppose we are given a 2-category € equipped with a pseu-

domonad (T,u,m), pseudo T-algebra structures
(A, TA-S A) : (B, 8 - B)

and an adjunction L A R: B — Ain €. Then oplax structures on L are in bijection with lax

structures on R.

Proof. Let P be the identity pseudomonad on %', which is clearly a locally fully faithful KZ
doctrine. Trivially, any pseudomonad T pseudo-distributes over the identity. Now observe
that for the identity pseudomonad, the admissible maps are the left adjoints and the ‘““Yoneda
structure diagrams” are the units of adjunctions 7: id4 — R- L. Applying the above theorem

then gives the result. [

3.5.3 Applications and Future Work

The motivating application of this result is not to give an analogous result to doctrinal
adjunction, but instead the observation that it may be seen as a coherence result. In particular,
consider the following special case of this theorem concerning the bicategory of spans in a
category £ with pullbacks, denoted Span (£).

For the following corollary, we recall that locally defined functors are the morphisms
of CatGrph, and CatGrph gives rise to bicategories and oplax/lax functors via a suitable
2-monad [34].
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Corollary 3.5.13. Suppose we are given a small'Y|category with pullbacks £ and a bicategory

€ with the same objects, as well as locally defined functors
Lxy : Span (£) (X.,Y) — € (X,Y)
with corresponding left extensions (RL)xy as components in the diagram

&~ . Span ()
PL

& ’Y
Span (&)

where Span (€) is the local cocompletio of Span (£). Then oplax structures on L are in

bijection with lax structures on Ry.

To see why this is useful, recall that composition of spans is given by taking the terminal

diagram of the form

£ \
| [ \
NG N
! I \
Y v ¥
[ ]
and so when evaluating the composite of two spans we may recover the two morphisms of
spans in the above diagram; that is, there is a relationship between the way 2-cells are defined
and how composition of 1-cells is defined.
This relationship between composition and 2-cells is captured in Day’s convolution for-

mula [11], and causes the coend defining the Day convolution to collapse to a more workable

sum. In particular, composition in S[fan (&) is given by the convolution formula

GF (s;t) = Z F(s;h) G (ht)

Ty

where s;¢ is an arbitrary span from X to Z through Y, and F and G are presheaves on
Span (£) (X,Y) and Span (&) (Y, Z) respectively. As a result, it is easier to show that a
locally defined functor L: Span (£) — % is oplax by instead showing that the corresponding
Ry : € — Span (&) is lax. Indeed, the reader should notice here that the problem of showing
L is oplax involves pullbacks, whereas the equivalent problem of showing R is lax does not

(once this convolution formula has been established).

Note that one may work in a larger universe to work around this condition.
12The monoidal cocompletion as given by the Day convolution structure may be generalized to the setting of
bicategories; we call this the local cocompletion.
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A more involved application along the same lines deals not with the bicategory of spans,
but instead Poly, (£), the bicategory of polynomials with cartesian 2-cells as studied by
Gambino, Kock and Weber [55,117]. We see that due to the complicated nature of composition
in Poly,. (£), showing that a locally defined functor L : Poly (£) — % is oplax becomes a large
calculation (especially for the associativity coherence conditions); however if we instead show
that R, : € — Poly, (£) is lax our work will be reduced significantly; in fact by this method
we can completely avoid coherences involving composition of distributivity pullbacks.

In a soon forthcoming paper we will exploit this fact in more detail to give a complete
proof of the universal properties of polynomials which avoids the majority of the coherence

conditions.



Generic bicategories

Abstract

It is a well known result of Bénabou that monads in a bicategory % are in bijection with lax
functors L: 1 — % where 1 is the terminal bicategory. Dually, comonads in % correspond

to oplax functors L: 1 — %.

Here we provide a generalization of this dual, exhibiting this correspondence as a special
case of a more general result. This is done by replacing the terminal bicategory by any
generic bicategory, that is a bicategory for which the composition functor admits generic
factorisations. We show that for generic bicategories .7, the data of an oplax functor &/ — ¢
has a reduced description which is similar to the data of a comonad; the main advantage of
this description being that it does not directly involve composition in .#. This in turn allows
for a greater understanding of the universal properties of some well known constructions in
category theory, particularly those of spans and polynomial functors. Moreover, we will show

how this generalization naturally arises from the algebraic properties of Yoneda structures.

Contribution by the author

As the sole author, this paper is entirely my own work. This paper was submitted for

publication on May 3rd 2018 and is currently under review.
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4.1 Introduction

A beautiful theorem of Bénabou [3] states that lax functors from the terminal bicategory 1
into a bicategory % correspond to monads in 4. Dually, oplax functors 1 — % correspond
to comonads in €.

The purpose of this paper is to provide a generalization of this dual to Bénabou’s result,
thus providing further insight into questions such as “When is an oplax functor L: &/ — ¥
analogous to a comonad in €’?”.

This is done by replacing the terminal bicategory with bicategories .o/ satisfying the

following special property: every functor
x 7 (c,—o—): @z X dxy — Set, XY, Zce o

is a coproduct of representables. A more informative and equivalent characterization is as

follows: every composition functor
o: JZ{Y,ZXJZ{X!Y —),Qfxz, X,Y,Z e

admits generic factorisations. We will call bicategories .7 satisfying this property generic.

This property means that each 2-cell into a binary composite ¢ — ba in the bicategory o7
factors through a generic (also known as “diagonally universal” in the work of Diers [[14,15])
2-cello: c - rl.

A simple example of this is given by taking .o to be a cartesian monoidal category (£, X, 1)
seen as a one-object bicategory. Here the generics are the diagonal maps 67: T — T X T for
each T € £, and clearly any y: T — A X B factors as the generic oy followed by w4y X mpy
where 4 and mp are the product projections.

Another example is given by taking .7 to be the bicategory of spans Span (£) in a category

& with pullbacks; here our generic maps are morphisms ¢ induced into pullbacks as in

such that 716 and 7,0 are identities. This can also be done for the bicategory of polynomials
Poly,. (£) with cartesian 2-cells, but becomes more complicated.

Such bicategories also contain “nullary generics” or augmentations; these are the 2-cells
into identity 1-cells, and turn out to be unique in such bicategories.

The main result of this paper is that for generic bicategories <7, the functors &/ — €

which respect these generic maps are precisely the oplax functors. Here “respecting generics”
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means that each generic § and augmentation € in 2/ has a corresponding comultiplication
map ®s and counit map A, in € satisfying coherence conditions much like those for a

comonad.

When the domain bicategory .o is generic, this description has an important advantage
over the usual definition of an oplax functor: it does not involve composition in the domain
bicategory. This reduction being possible since the information concerning composition
in o/ is encoded into these generic maps. Of course, this property is particularly useful if

composition in o7 is complicated; the bicategory of polynomials being an archetypal example.

In Section we develop the theory of such bicategories <7 and their generic maps, and
prove the main result of this paper, Theorem 4.2.19] in which we prove the equivalence of

oplax functors and functors which respect these generics.

In Section we use this result to give a description of oplax functors out of the
bicategory of spans which does not involve composition of spans (pullbacks), and then give
a description of oplax functors out of the bicategory of polynomials which does not involve

composition of polynomials.

These descriptions allow for a simpler proof of the universal properties of spans [9], and a
much simpler proof of the universal properties of polynomials. Moreover, these descriptions
may be used to explain some curious aspects of these universal properties. For example
Dawson, Paré and Pronk made the observation that the span construction has a universal
property which does not involve pullbacks [9], a fact which is explained by the results of this
paper. Indeed, the primary reason for this paper is to set the stage for future work in which
we will use these descriptions to give an eflicient proof of the universal properties of the span

construction and polynomial functor construction.

In Section [4.4] we discuss how this description of oplax functors naturally arises from
the algebraic properties of Yoneda structures, making use of the simpler Day convolution

structure on generic bicategories.

4.2 Properties of generic bicategories

In this section we start off by recalling the basic theory of generic morphisms and functors
which admit them. We then define generic bicategories and consider the properties of generic
morphisms in these generic bicategories. After discussing the coherence properties of these
generic morphisms, we go on to give the main result of this paper; showing that the functors

which respect these generic morphisms are precisely the oplax functors.
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4.2.1 Generic morphisms and factorisations

Generic morphisms (and weaker analogues of them) have historically arisen in the charac-
terization the analytic endofunctors of Set [24]], as well as the study of qualitative domains
[18, 135]. Characterizations of endofunctors which admit them have been studied by Weber
[52]], and this is known to be related to familial representability as studied by Diers [14]].

In this paper we do not consider arbitrary endofunctors which admit generics, but instead

composition functors which admit generics, giving us a richer structure to consider.

Definition 4.2.1. Given a functor7: A — B between categories .4 and B, we say a morphism
6: B— TAin B (where A € A and B € B) is T-generic if for any commutative square of
the form below

B—'-TC

0 l ,~~T f ng

there exists a unique morphism fin Asuchthat Tf -6 = f.

Remark 4.2.2. These are precisely the diagonally universal morphisms of Diers [15], who

noted that it must follow g - f = & since both fillers below

4 4
5l T(g~f) lTlD 5l TH LT]D
TA—->TD TA—->TD
Th Th

render commutative the top triangles.

Definition 4.2.3. We say a functor 7': .4 — BB between categories A and B admits generic
factorisations if for any morphism f: B — TC in B there exists a T-generic morphism

0: B — TA in B and morphism 7: A — C in A rendering commutative

TA 7
27N

B TC
f

We are now ready to define generic bicategories, the structures to be considered in this

paper. It will be helpful to write composition in diagrammatic order, denoted by the symbol

1T
. .

Definition 4.2.4. We say a bicategory .7 is generic if for every triple of objects X,Y,Z € &/
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the composition functor

xy X oy 7 —— xz

admits generic factorisations. Moreover, we simply call generic those 2-cells 6: ¢ — [;r

which are ;-generic.

Remark 4.2.5. Unpacking the above definition into a more useful form, we see that a 2-cell

0: ¢ — l;ris generic if and only if every commuting diagram of the form

c—1>fig
4
) }11;72 L(Iﬁmﬁz

lir —=m:n
060,

(where 61,67, ¢1,¢> and y are arbitrary 2-cells) admits a filler y;;y, as displayed, such that
the top triangle commutes and the bottom triangle commutes component-wise. Moreover,

the pair (y1,y2) must be unique such that the top triangle commutes, justifying the notation.

Remark 4.2.6. As we will see in Section4.3] there are a number of well known bicategories

and monoidal categories which are generic, such as:
* any cartesian monoidal category;
* finite sets and bijections with the disjoint union monoidal structure;
* the bicategory of spans;

* the bicategory of polynomials with cartesian 2-cells.

Generic bicategories may be alternatively defined in terms of familial representability, a
property which is often easier to verify. This is a consequence of the following known rela-
tionship| between functors which admit generics and the familial representability conditions
of Diers [14].

Proposition 4.2.7 (Diers). Given a functor T: A — B between categories A and B the

Jfollowing are equivalent:

1. the functor T admits generic factorisations;

I'We include the proof of this relationship due to the difficulty of finding a reference.
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2. for every B € B there exists a set Mg and function P_y: Mp — Aoy yielding isomor-
phisms

B(B,TA) = Z A(Ps, A)

o0eNMip

natural in A € A.

Proof. Suppose that T admits generic factorisations. Call two generic morphisms ¢ and ¢’

equivalent if there exists an isomorphism « rendering commutative a diagram as below:

™ —L¢ M

N
B

Now take 9tp to be the set of equivalence classes of generic morphisms out of B, with each
class labeled by a chosen representative. It follows that for any f: B — T A we can find a

representative generic morphism 6y and unique morphism f rendering commutative

f

B TA

s _
f M Tf

We note also that the representative generic ¢ is itself unique (such a generic necessarily lies

in the same equivalence class). Therefore the assignment f +— ((5 f,?) is bijective, where

each P, is taken as the M above. Trivially, given a map x: A — A’ the diagram

B— T AT _7u
XTE/T[JC%

commutes, and by genericity x f is the unique such map making the outside commute; thus

showing naturality.
Conversely, suppose we are given such a family of isomorphisms?
BBTA) = Y A(PpA)
meMp

natural in A € A, where B € B is given. We first note that by naturality, the inverse

assignment is necessarily defined by

meMg . P,—">A — B2TP, 1%TA

2Here 9ip is an arbitrary set, so we do not use the suggestive notation ¢ for its elements.
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where 6,, is the morphism corresponding to the identity at P,,. Also, this ¢,, is generic since

given any commuting diagram as on the outside below

B—L .74

5,,,1 If LTh

the morphism 74 - f must correspond to the pair (9,,,g) under the bijection. By naturality,
f must factor through this same 6,,, and so the pair (6m,?) corresponding to f is unique
such that the top triangle commutes. That g = & - f is also a consequence of naturality. It is

implicit in the above argument that 7' then admits generic factorisations. [
Taking T to be the composition functor, we have the following.

Corollary 4.2.8. A bicategory < is generic if and only if for any triple of objects X,Y,Z € of

and 1-cell c: X — Z the functor
JZ%X,Z (C,—; —) : ,,Qfx,y X «Q{Y,Z — Set

is a coproduct of representables, meaning that for any (X,Y,Z,c) there exists a set ‘Jﬁf Yz

equipped with projections
I (=)
() gp = Mt — (7)o
such that foralla: X — Y and b: Y — Z we have isomorphisms

Ax 7 (c,a;b) = Z 2xy (I, a) X 2y 7 (rim, b)

memE 7

natural in a and b.

We have defined generics as universal maps into a composite of two 1-cells; what one
might call “2-generics”. We might ask if there is a corresponding notion for “O-generics”
into composites of zero 1-cells, that is, identity 1-cells. However, as for each n: X — X the
functor

dxx(n1x):1— Set

is trivially a coproduct of representables, there is no condition to impose on these 2-cells,
and so any 2-cell €: n — 1x may be regarded as a “O-generic”. Regardless, these 2-cells still

have an interesting property; they are unique.
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Proposition 4.2.9. Suppose <f is a generic bicategory. Then for each X € <f, the identity

1-cell 1x is sub-terminal in </ x.

Proof. Given a morphism n: X — X and two 2-cells s,7: n — 1x we have two commuting

squares
1 61
n——=1I;n n——=1I;n
02 9,¢ Lh;s 02 9,475 Lh;t
nyr—=1lx;1x nyr—1lx;1x
s;:k t;k

where 01 and h: [ — 1x are given by factorizing the unitor n — 1x; n through a generic, and
02 and k: r — 1y are given by factorizing the other unitor n — n; 1x. Now both of these
squares admit a unique filler, and moreover both these fillers must be equal as uniqueness is
forced by the top left triangles; we denote this filler 8; ¢. Equating the left components of the
bottom right triangles we then find s = h6 = t. [

It will be useful to give such 2-cells a name as they still play an important role, despite

the lack of a non-trivial universal property.

Definition 4.2.10. We call any 2-cell of the form £: n — 1y in a bicategory </ an augmen-

tation.

4.2.2 Coherence of generics

The following two lemmata show that there exists “nice” choices of generics. This will later

be useful in regard to stating and checking coherence conditions.

Lemma 4.2.11. Suppose </ is a generic bicategory. Then for any factorization of a left

unitor at a I-cell c: X — Y through a generic 6 as below

4.2.1)

) Lr 0;¢
N

¢ unitor x> €

the induced 2-cell ¢ is invertible.
Proof. Define ¢*: ¢ — r to be the composite

5 O;r unitor
c——lLir——1x;r——r

and note that when this is post-composed by ¢ we recover the identity 2-cell at ¢, by

commutativity of the diagram[4.2.1]and naturality of unitors. We also note that by naturality



4.2 Properties of generic bicategories 93

of unitors the diagram

unitor 1y:
c—lyx;¢C

5 0:¢ l Lx;¢*

l; r 0_,r> lx; r
commutes and thus admits a filler such that both triangles commute. Moreover, we note
that as uniqueness is forced by the top triangle this filler must be 6; ¢. Equating the second

components of the bottom right triangle we have established ¢ followed by ¢* as being the
identity. 0

Remark 4.2.12. As ¢ is invertible above, composing the generic 6 with ¢ still yields a
generic. This shows that there exists “nice” generics ¢ — [; ¢ and augmentations [ — 1y

which compose to the unitor. Moreover, it is clear this may be similarly done for right unitors.

Lemma 4.2.13. Suppose </ is a generic bicategory. Let W, X,Y,Z be objects in <, let T be

the functor given by composition
(A x X Sxy) X Hyz — Sy X Syz — Sz
and consider 1-cells
d: W — Z, [:W—> X, m: X —Y, r:Y —~Z7.
Then a 2-cell d — (I;m);r in o is T-generic if and only if it has the form

41 6251

d hr (Lym)sr

for a pair of generics 61 and 6,.

Proof. Suppose we are given generics 01 and 9, composable as in the diagram on the left

below
d—"L~(a;b);c h—" b
o1 l 7 A
e Y15Y2
hyr (B1:82):83 ) q 0 Bi:B2
023 J,
(l;M);F(m3(f;g);h Lim——sfi8

where a1, a», a3, B1, 52, 3 and y are arbitrary 2-cells such that the outside diagram commutes.
Then there exists a filler y1; v, splitting the diagram into two commuting regions, by genericity

of 9. Moreover, there exists a filler {;; {; for the commuting diagram on the right above as
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07 is generic. We thus have a diagonal filler ({1; {») ; y» for the diagram on the left above. For
uniqueness, suppose we are given another filler (£ * {2’) ; ¥, and note that since d; is generic,
we have [({1’; &) o 62| ;Y5 = ¥1;y2 component wise. Hence ¥}, = y; and (£];{3) 0 62 = 1.

Since 05 is generic it follows that ] = £ and £} = 5.

Conversely, suppose we are given a 2-cell 6: d — (I; m) ; r which is T-generic. Now, we

know that the T-generic ¢ can be factored through a generic 61 giving the triangle on the left

below
d 01 h/; ! 531’ (l’; m/) : 7
0 ; S
l x—j'g(w 2B
(Lym)sr

and the 2-cell a can be factored through a generic 6, yielding the right triangle above. In
particular, the components of (y1;y»2); 8 are invertible as this is an induced isomorphism of
T-generic morphisms [S2, Lemma 5.7]. Hence upon taking 67 to be 6; pasted with 3, and 6,

to be 6, pasted with y1; ¥, we see that J is a pasting of generics 6’{ and 5;. L]

Remark 4.2.14. The above lemma is an instance of a more general fact: if 6;: C — SB is

S-generic and 6,: B — T A is T-generic, then

c 2L 5B sTA

is ST-generic. Moreover, if both S and T admit generic factorisations then all S7-generics

have this form.

Remark 4.2.15. Clearly, we can state and prove an analogue of the above lemma if we replace

T by the functor S given as the composite
Ay x X (xy X Sy z) = dwy X Sy z — Gz

It is also clear that given a composite of generics

dLh;rﬂ(l;m);r

which is T-generic, that the composite

) 92
d—>hyr ZL(lm)  r 2250 (msr)
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is S-generic, and hence by the analogue of the above lemma we may write this composite as

A2 1k L2 1 (myr)

for some pair of generics 63 and 4.

It is sometimes advantageous to not consider all generics, but instead a smaller class of
generics which is still large enough to generate the entire class of generics when completed
under isomorphisms. Such a smaller class should satisfy the coherence properties outlined

in the following definition.

Definition 4.2.16. Let .o/ be a generic bicategory. Let A, and Ag be given collections of
generics and augmentations in o respectively. Denote by Q, the set of domains of the

generics in Ap. We say the pair (A, Ag) is coherent if:

1. (completeness of generics) for every generic 6': ¢’ — [I’;r’ in o7 there exists a generic

6: ¢ — [;rin A, and isomorphisms {1, {> and { rendering commutative

0
c——=1I;r

{L l{l;éfz

C/ l/’ r/

6/

2. (completeness of augmentations) for every augmentation &’: n” — 1y in <7 there exists

an augmentation £: n — ly in Ay and isomorphism & : n — n’ rendering commutative

3. (associator coherence) for all generics 01,02 € A, composable as below, there exists

generics 03,04 € A rendering commutative

c=————¢
53 |61
L; k h,r

1;6411 ¢52;r

[;(m;r) o (Iym);r

4. (left unitor coherence) for all c: X — Y in Q, there exists a 6 € A, and € € Ay
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composable as below and rendering commutative

k) nc g;c
N

IX;C

c -
unitor

5. (right unitor coherence) for all c: X — Y in ), there exists a 6 € Ay and € € Ay

composable as below and rendering commutative

P c,n e
VAN
¢ unitor ¢ IY

Remark 4.2.17. If o/ is generic, we may always take (A, Ag) to be the class of all generic

2-cells and augmentations. This is a consequence of the previous two lemmata.

Remark 4.2.18. Informally, the conditions (3) to (5) guarantee that each 1-cell ¢ € € admits
the structure of an “.<7-comonoid”; a simple example of this being that objects in cartesian

monoidal categories admit the structure of a comonoid.

4.2.3 Functors which respect generics

It is well known that to give an oplax functor L: 1 — % is to give a comonad in % .
The following theorem generalizes this fact, replacing the terminal category by any generic
bicategory <7

At the same time, the following theorem may be seen as a coherence result; it provides a
reduction in the data of an oplax functor out of such an .7, showing that the coherence data
of such an oplax functor is completely determined by the data at the diagonals.

The most important property of this result however is that it provides a description of
oplax functors L: &/ — % out of generic bicategories .27 which does not involve composition
in the domain bicategory; by this we mean expressions of the form L (a; b) or L (1x) do not
appear in our description below.

For completeness, we also give a reduced description of oplax natural transformations

and icons [34] between such oplax functors.

Theorem 4.2.19. Let o/ and € be bicategories, and suppose <f is generic. Suppose we are
given a coherent class (A, Ao) of generics and augmentations of </. Then given a locally
defined functor

Lxy: 9xy — 6Lx.Ly, X, Y e of
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the following data are in bijection:
1. for every pair of composable 1-cells a and b, a constraint 2-cell
¢ap: L(a;b) > L(a); L (b)
and for every identity 1-cell 1x, a constraint 2-cell
Ax: L(1x) — 1px
exhibiting L as an oplax functor;
2. for every generic 6: ¢ — l;r in Ay, a comultiplication 2-cell
®s: L(c) > L(I);L(r)
and for every augmentation €: n — lyx in Ao, a counit 2-cell
Ag: L(n) - 11x
satisfying the following coherence axioms:

(a) (naturality of comultiplication) for any 2-cell {: ¢ — ¢’ and commuting diagram

as on the left below with 61,0, € A»

o1 (Dél
c——1I;r Lc———LIl;Lr
fl j(l;é“z L§l lLil;Lé“z
c—=10r Ld ——=LIU'; Ly’
62 (D(sz

the diagram on the right above commutes,

(b) (naturality of counits) for any 2-cell £: n — n’ and pair of augmentations
e:n — lxand &':n" — lx in Ay giving a commuting diagram as on the

left below

3

n———n
N/
Ix

L
Ln—= 1o

A

£ &
I1x

’

the diagram on the right above commutes;

(c) (associativity of comultiplication) for every 61,02,03,04 € Ay yielding an equality
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as on the left below

c=———c Lc Lc
53¢ \1/61 ‘D63¢ Vbél
L k h,r Ll; Lk Lh;Lr
16 | o2 Li:0s, | | @syiLr
I;(myr) —=(l;m);r Ll;(Lm; Lr) —= (LL; Lm) 5 Lr

assoc

the diagram on the right above commutes;

(d) (left counit axiom) for any I-cell c: X — Y, generic 6 € A, and augmentation

g € Ag yielding an equality as on the left below

Ln; Lc
/ \ qy AgiLe
cC —> D ————
unitor Ixse Lc unitor lox; Le

the diagram on the right above commutes;

(e) (right counit axiom) for any 1-cell c: X — Y, generic 6 € Ay and augmentation

e € Ay yielding an equality as on the left below

s cn e Lc Ln LeA
¢ c; ly Lc———Lc; 11y

unitor unitor

the diagram on the right above commutes.

Suppose now we are given a locally defined functor L equipped with a collection (¢, A) as
in (1), or equivalently equipped with a collection (®,A) as in (2). Denote this data by the
S-tuple (L, ¢, ®, A, N) whilst noting the collections (¢, A) and (®, A) uniquely determine each
other. Let (K,y,Y,y,T") be another such 5-tuple. Then the following data are in bijection:

1. an oplax natural transformation ¢: L — K of oplax functors;

2. forevery object X € o7, a l-cell 9x: LX — KX in €, and for every I-cell f: X — Y

in <, a2-cell
Lx 1y
ﬂxl Uﬂf l’ﬂy

KX—>KY
Kf

natural in 1-cells f: X — Y and satisfying the following conditions:
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(a) for every generic 6: ¢ — [l;r in Ay,

LX Le LZ LX

T “0\g$“ﬂjy/
KX Ke KZ = KX LY KZ
\ U¥s / Uy 9' 19,
Kl KY Kr Kl K{Y Kr

(b) for every augmentation €: n — ly in Ay,

Ln

LX LX LX LX
Y P P AN
Kx —% . kx = KX  lx KX
Ure Jid
lxx Ikx

When L and K agree on objects, this restricts to the bijection of the following data:

1. An icon between oplax functors

L = K: o - €

2. A collection of natural transformations
Uxy: Lxy = Kxy: @/xy — Cxy. XYed

rendering commutative the diagrams

L(e)—2——L();LG)  L(n) K (n)

e N A

K (c) K();K(r) Ix

Uy

Ys

Proof. We divide the proof into parts, verifying each bijection separately.

Buection WitH OpLax Funcrors. We first show how to pass between the data of (1)

and (2), and then verify this defines a bijection.

(1) = (2): Suppose we are given the data (L, ¢, 1) of (1). We define ®s for each

generic 0: ¢ — [;r by the composite

L(c)E~L(l;r) 2L ();L(r)

4.2.2)



100 Generic bicategories

and define A for each augmentation £: n — 1y by the composite
Le Ax
L(n)ﬁL(lx)ﬁ le (423)

For naturality of comultiplication, we see that given a diagram as on the left below

cLl;r LC&-L(Z;I‘)LLZ;LF

(l jgﬁ 2] L(l L((i;éz) LLQ ;L
’ ’. 7 /7 4 /. 7
cTz>l,r Lc T L(l,r)—>¢l,’r, Ll';Lr

the right commutes by naturality of ¢ and local functoriality of L. For naturality of counits

note that given a commuting diagram as on the left below

n Ln .
E E
\ \ "
¢ Ix L¢ Llxy—1.x
, e
n Ln

the right trivially commutes. For associativity of comultiplication, note that given a com-

muting diagram

(=
53 {6
L; k h,r

l;64¢ iéz;r

l;(m;r) o (Iym);r

we have the commutativity of the diagram

Lc Lc

Los | } s,

L(l;k) ' _ L (h;r)

2xy) %i) L‘@/) |enr

Ll; Lk L(l;(m;r))mL((l;m);r) Lh;Lr
LiLey| o~ \poriLr
Ll; L (m;r) L(l;m);Lr
Lligm,r | | ermsLr
Ll;(Lm; Lr) e (Ll;Lm); Lr

by naturality of ¢, associativity of ¢ and local functoriality of L. For the left counit axiom,
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suppose we are given a commuting diagram as on the left below

Le=2oL(l:e) 2 L Le 225 L1y Le™5 1y Le

—x;c $L(lx,c) L(c) unitor

unitor L( unitor)

and note the composite on the right above is the unitor by local functoriality of L, naturality
of ¢, and the unit axiom on A. The right counit axiom is similar.

(2) = (1) : Suppose we are given the data (L, D, A) for a coherent class (A, Ag). Now
for any generic ¢’: ¢’ — I’;r” in o/ we have a commuting diagram as on the left below with

(1, (, ¢ invertible and 6 € Aj

c—6>l;r LC&-LZ;LI"
(L l{l;fz L(L ijl;L§2
C T‘l Lc ?{S’“Ll ,LI"

and so we may define ®s as the unique morphism making the diagram on the right above
commute; this being well defined as a consequence of naturality of comultiplication.
Similarly, for any augmentation &’: n” — 1y in .o/ there exists an augmentation £: n —

1x in Ay and isomorphism &: n — n’ rendering commutative the left diagram below

‘f Y Lé: /

n——n Ln———L
NS \ /
15
and so we may define A as the unique morphism making the right diagram above commute;

similarly well defined by naturality of counits.

We have now extended the definition of ® and A to all generic morphisms and aug-
mentations. Moreover, the naturality properties now hold with respect to all generics ¢ and
augmentations &. Indeed, given any generics ¢ and ¢ in </ and a diagram as on the left

below (not assuming £, { or {; are invertible)

c—6>l;r c—6>l;r
o) {01:6,
c—5—1I;7
{ e - s e
' —5—=1U;r
Y Y1572
clél/. r./ c/él/. r./
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we can factor as on the right, where 6 and & are in A, and 6,01,0,,v,y: and y; are invertible.
Applying the naturality condition to the three squares on the right then gives the naturality
condition for the left diagram. A similar calculation may be done concerning augmentations.

To show that one may recover an oplax functor L: o/ — % we note we may define a
general oplax constraint cell ¢, : L (a; b) — La; Lb by taking a diagram as on the left below

with ¢ generic and then defining the right diagram to commute.

4.2.4)

. o Ll;LrL .
/ \ N

a; Tab L(Cl;b)TLa;Lb

Note that this is well defined since given two diagrams as on the left above, we have a

commuting diagram as on the left below

ab—2 iy La:Lb—2~ LI Lr (4.2.5)
7 7

6’j 71 Y2 lsl;sz (Dyl }/1;1472 lle;Lsz

U:r Wa;b Ll Lr La Lb

composing to the identity, and this implies the right diagram commutes by naturality of
comultiplication (with ¢ taken to be the identity). Trivially, we take each unit Ax: L (1x) —
1 x to be the component of A atid, .

To see that the family ¢ satisfies naturality of the constraints suppose that we are given a

diagram as on the left below with the horizontal paths composing to identities

F) le ;Lsy

a; b Lir 2 aib L(a;b) =2 L Lr B2 1 Lb

“;ﬁj 2 lmﬁ L(a;ﬁ)l jLYI :Ly> lLa;L,B
v

a’,b’Tl’r " —a’; b L(d; b’)—>Ll’ Lr e La Ly

1’ 1

and note that the right diagram commutes by naturality of comultiplication.
Before checking associativity we first note that given any generics 61, 65,065 and d; in &/
such that (1) commutes below,

-1

c————————(—¢——"—"——>c¢
5 5) 5 ia' 2 {61
ik —ap—=1"; kK ey nir Luo—=hyr
154 © 1) oz idz,r
l(mr)l( : {)(m 37" s (Usm') 57/ ———=(L;m) ;7
#;'¢

(
. @ A
$13(62:82) I; (m; r) —35%
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we can construct regions (2) and (3) as on the right above, where ¢, and 6, lie in A,. By
naturality of the associator (4) commutes. Then since our given class of generics is coherent,
we can find a 3 and ¢4 in A; such that the outside diagram commutes above. By genericity of
03 we then have induced 2-cells @ and g such that (5) and (6) commute (invertible as 53 is also
generic). Now, by associativity of comultiplication the commutativity of the outside diagram
is respected by the transformation 6 — ®s, and this is equivalent to the commutativity of (1)

being respected as the pasting with (2),(3),(4),(5) and (6) may be undone.

Now, to see that the family ¢ satisfies associativity of the constraints consider the outside

diagram of

(a; b); c—>h r%(a b); c—>(f g); c(llmc( b)) c

1
R k M (&1562)582

Lk G (Lm)r

I ;64 as {OC ( 4_)

assoc 3 l; (m; 7') assoc

Y1Y2 71;(a;ﬁ)é \%jﬁ

©  L(mr) @ fi(g:c)

y @ \%“2) W)

a; (b; c)—>a (u; v)—>a (b c)

a; (b; c) l;

06 P1:p2

where the appropriate horizontal composites are identity 2-cells. We first factor d5s; through
a generic 0, to recover 2-cells &1 and & and the commuting region (1). Similarly, we create
the region (2). Now take 03 and d,4 to be generics such that region (3) commutes, which exist
by Lemma[4.2.13] We then note that region (4) commutes by naturality of the associator in
</ . Finally, note that we have an induced (y;; y») by genericity of d3, and thus 87y, yields an

induced (a; B) through the generic d4.

We have now constructed the above diagram and shown each region commutes; all that
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remains is to notice in the corresponding diagram below

L((@:h):¢)— L Lr 252 L (a: b) s Le —25 (L f: Lg) : L€ La: Lb); Le

1
k % M %;L&Y);Ln

Ll;Lk 3 (Ll;Lm);Lr

m as{oc @)

L(assoc) (5) LI;(Lm; Lr) assoc

L& (L& L
Lyi;Ly> L71;(ch;LB)l W )

©  LLL(m;7) ) Lf;(Lg;Lc)

W o WL&) WL&

L (a;(b;c)) _><D56 Ll; Lk i La; L (b;c) —>La;<D58 La; (Lu; L\i)a—>;(qu;Lq§a; (Lb; Lc)

naturality of comultiplication implies (1), (2), (5) and (6) commute; associativity of comulti-
plication implies (3) commutes; naturality of the associators in % implies (4) commutes, and

(7) commutes as L is locally a functor.

Before checking the unit axioms on A we note that given a generic 8" and augmentation

&’ composable as in the middle diagram below

c c lx; ¢ ——1x;c
e unitor Xs X3! X>

we have an isomorphism {: ¢ — ¢’ by axiom (1) of a coherent class. By axiom (5) we
then have a ¢ and ¢ in the coherent class such that the outside diagram commutes. It follows
from genericity of ¢ that we have an induced isomorphism u; u, such that the above diagram
commutes. As the commutativity of the outside diagram is respected by assumption, and the
commutativity of the left and right regions is respected by naturality of comultiplication and
augmentations respectively (and the pasting with these regions can be undone), it follows that

the commutativity of the middle diagram is respected.

Now, to see the left unit axiom on A is satisfied note that given any commuting diagram
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as on the left below
L(unitor) Le unitor 1X; Le

lx;C unitor c unitor 1X;C L(lx;c)
5L 6/j 8;/ Tid (I)Jl <I)5/j Ag;Lc/f TAlX;Lc
e ~
Lyr ) ;¢ o lx;c Ll;Lr Toiie Ll'; Lc ol Llyx;Lc

we get a commuting diagram as on the right above by naturality of comultiplication, the left

counit axiom, and naturality of counits (the bottom composite in this diagram is a ¢ followed

by a A). The right unit axiom is similar.

Finally, note that the composite assignment

(D)= 2) = 1)

is the identity, since with ® defined as in (4.2.2), the oplax constraint cells as recovered by

(4.2.4), given by the family of constraints

L (a;b) Lo (I;r) e Ll; LrMLa; Lb

are clearly equal to ¢, by naturality. Moreover, the composite assignment

2) =1 =(Q2)

is the identity, since with ¢ defined as by (4.2.4)), the comultiplication cells @ at an arbitrary

generic 6 € A, are given by the composite in the top line on the left below

i (4.2.6)

Le—t0. 1 (77) L N e i
é 51582

o> W ~L/5~1;LT§; ~~/ \~~

Ll;Lr l;r—>1,d L;r

where 6 € A is a generic and the right diagram commutes. Then we note that

(’S' ~

5 T~ 5 T~ -
c——=1;r c——1; c——1U;r
5 61362 5 i:d;i'd lid;id 5 i}i;i‘d le(ﬁ;sﬁ;
_ v L. L.
L;r——1I;r L,r—1;17 Lr—1;7
’ ) ’ T idiid > qdiid

we have an induced 6,; 6> rendering commutative the left diagram above by genericity of

S, the middle diagram shows that the induced diagonal is necessarily a pair of identities
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(by component-wise commutativity of the bottom triangle), and whiskering the left diagram
with s1; s, gives the right diagram, where as we have noted the induced diagonal making the
diagram commute is a pair of identities. Consequently, s 151 and szgz are identities. We then
note that in diagram {.2.6 the region (1) commutes by naturality of comultiplication, and

applying local functoriality of L we then see the given composite is @z as required.

The bijection of the nullary data may be similarly proven using the respective naturality

properties, and so we omit the details.

BuectioNn WiTH OpLAX NATURAL TRANSFORMATIONS. As the the data of (1) and (2) is

the same, we need only check that the coherence conditions correspond.

(1) = (2) : Suppose we are given an oplax natural transformation ©: L — K in the

usual sense. Then by the definition of ® at a 6 € A, we have

LX LZ LX L(l;r) LZ

l\ o) /j iz Ix l&u‘ﬁl,r /
KX L KZ = KX Y KZ

L
I I
Oy U9 U9 oy U0,
N 9
KY Kl KY Kr

which by compatibility with composition is

h<

L(c) L(l;r)
ULo U9

LX L(L;r) LZ LX LZ
K(c)

ﬂxl U9 jﬁz fl‘xl IKs jﬁz

Il

=~
<
/L\
~
N

KX —k(:ry——KZ

\ Uﬂl/l r / \ U'»[/I,r /
Kl KY Kr

and by definition of ¥ this gives the required coherence condition. We omit the nullary

version.

(2) = (1) : Suppose we are given the data of (2) subject to the coherence conditions of
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(2). Then by the definition of the constraint data ¢ we have

L(f:8) L(f:8)
m s
Lf Lg Ll Lr
LX LY LZ = LX s LY @ LZ
ﬁxl Uﬁf 'l?lllY uﬁg lﬁz ﬁxl Ullé? 'l?:lY U%i lﬁz

and so applying naturality of ¥, this is equal to the left below

L(f:8) L(f:8)

m m
LX oy L 17

= LX K(fsg) LZ

ﬁxl o, p U9, lﬂz ﬂxlmlﬂz
K

Kl Kr [ Kr
KX TKsi KY ][Ksz K7 KX TKsi KY 1[Ks2 KZ
Kf Kg Kf Kg

which by the assumed coherence axiom is the right above. Applying the definition of ¢, we
recover the compatibility of an oplax natural transformation with composition. Again, we
will omit the analogous nullary condition.

Buection WiTH Icons. This trivially follows taking each ¢y to be an identity 1-cell in

the above bijection. O

Remark 4.2.20. The reader will have noticed from the proof of Theorem {.2.19]that giving
binary oplax constraint cells

wir: L(l;r) — LI Lr

for generics 6: ¢ — [;r in A completely determines arbitrary oplax constraint cells
@ap: L(a;b) — La; Lb.

This is since these ¢, suffice to construct each ®s. Hence this theorem provides a reduction

in the data of an oplax functor when the domain bicategory <7 is generic.

Remark 4.2.21. Given a family of hom-categories .7xy, sets SUE?’Y’Z , and natural isomor-
phisms

xz(c,a;b) = Z xy (bn,a) X 2y 7 (rm, b)

memX-¥-Z

forall X,Y, Z and c, the formal composite a; b is essentially uniquely determined (by essential

uniqueness of representing objects).
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Given a complete class of generics A, equipped with their universal properties, one
may recover the above by taking iIRf’Y’Z to be the set of equivalence classes of generics
0: ¢ — [;r. It follows that composition in the bicategory is essentially uniquely determined
by the generics.

We now give another perspective on the above remark, seeing that composition in a
generic bicategory is essentially uniquely determined by the generics in that it must obey a
universal property similar to that of a product.

Remark 4.2.22. In the setting of a generic bicategory <7, one can view composition as a sort
of generalized product. Indeed, as each composition functor oxy z: @ z X xy — xz

admits generic factorisations, one may form the spectrum [[15] of oxy 7 given by the presheaf

Myy Ay, — Set. This gives a factorisation
°X,Y.Z
Ayz X Ay = X7
el M,

XYZzZ

where the first arrow has a left adjoint (which we may denote by (), X (—),;) and the second

is a discrete fibration [14} [15]]. It follows that for all a € @Zxy and b € 2% 7z there exists a

triple
(a;b € olxz, me S)Jt;l;/z) , T m — a, mim, — b
which is universal in that given another triple
’ . 4 . /
(c € dxz, m € ‘.IR%’Y,Z) , Yi:m; — a, Ya:m, — b
. . . , . . -
there exists a unique a: (c,m’) — (a; b,m) in el My y 7 such that
’ 71 ’ V2
m ——————=a ", —————> b
a % @ %
BN A
mj ny

commute.

4.3 Consequences and examples

In this section we discuss some of the main examples of Theorem#.2.19] Viewing monoidal
categories as one-object bicategories, we first consider the case where <7 is a cartesian

monoidal category, giving a simple and informative example of this situation. We then go on
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to consider more complicated examples, namely where o7 is the bicategory of spans or the
bicategory of polynomials with cartesian 2-cells.

For completeness, we also discuss the case where o7 is the category of finite sets and
bijections with the disjoint union monoidal structure, but will omit some details as this is a

rather trivial example.

4.3.1 Cartesian monoidal categories

Given a category £ with finite products, one may construct the cartesian monoidal category
(€, %,1) where the tensor product is the cartesian product and the unit is the terminal object.

Clearly this monoidal category is generic, as
ET,—x-):EXE — Set

is representable (no coproducts are necessary). Now, seen as a one object bicategory, the

generics are the diagonal morphisms 67 in £ of the form

T
id 5} id
v
T~——TxT——=T

and so we takef| A, to be the class of diagonals 67: T — T x T for each T € £. Trivially, we
take the augmentations as the unique maps into the terminal object from each object T € £.
Applying Theorem [4.2.19|in this case then makes it clear why we may say the data of this

theorem is analogous to the data of a comonad; indeed, we have the following.

Corollary 4.3.1. Let £ be a category with finite products and let (C,®,1) be a monoidal
category. Denote by (€,%,1) the category E equipped with the cartesian monoidal structure.

Then to give an oplax monoidal functor
L: (£,%,1)— (C,®,])
is to give a functor L: £ — C with comultiplication and counit maps

®7: L(T) > L(T)® L(T), Ar: L(T)—> 1

3Note that even in this simple case there can be different ways to define A,. For example, if we have an
isomorphism 7' = § in £ (where T # §), we could take A; to include 67 but not 6s. However, one should
normally use the canonical choice of A, in order to make the coherence conditions easier to verify.
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forevery T € &, such that for every T € £ the diagrams

@}L{T ® L%;AT (D}L{T ® L%;LT
LT , LT®1 LT . I® LT
unitor unitor
commute, the diagrams
LT LT
or | {or
LT ® LT LTQ® LT
LTedr JoreLT

LT®(LT® LT)—— (LT ® LT)® LT

assoc

commute, and all morphisms f: T — T’ in £ render commutative

Lf Or

L — IT—* _ITeLT
Lf LfQLf
N l |
1y LT LT’ & LT’

T

The unitary and associativity conditions above ask that L sends each T’ € £ to a comonoid
(LT,®7, A7) in (C,®,1), and the last two conditions ask that morphisms in £ are sent to

morphisms of comonoids. Hence this may be simply stated as follows.

Corollary 4.3.2. Let Comon (C, ®, I) be the category of comonoids in the monoidal category
(C,®,1). Then oplax monoidal functors (€,%,1) — (C,®,1) are in bijection with functors

& — Comon (C,®,1).

4.3.2 Bicategories of spans

Given a category £ with pullbacks, one may form the bicategory of spans in £ denoted

Span (£) with objects those of £, 1-cells given by spans
T t
VAN
X VA

denoted (s, 1), 2-cells given by morphisms f rendering commutative diagrams as on the left

below
K b n M b/
YN N\
X ! Y R P S
NV Y N N
R X Y Z

and composition of 1-cells given by forming the pullback as on the right above [3]].
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The reader will then notice that by the universal property of pullback, giving a morphism

of spans (s,7) — (u,v); (p,q) as on the left below

NN
X Y
is to give a morphism h: T — Y as well as pair of morphisms of spans as on the right above

such that each region in the diagram commutes. Therefore

Span (£)x 7 ((s,1), (u,v); (p; q))

is isomorphic to

Z Span (g)X,Y ((S’ h) ’ (Lt, V)) X Span (g)Y,Z ((h’ t) ’ (pa q)) (43 1)

h: H=>Y
and so the bicategory of spans is generic. Our class of generics A, consists of, for each
diagram
T
N
X Y Z

in &, the morphisms of spans 654, (s,¢) = (s,h); (h,t) corresponding to

under this bijection. Our augmentations are the morphisms of spans as below for each

morphism /4 in £

N
M

and will be denoted by &;,. Thus, applying Theorem 4.2.19] we have the following.

Corollary 4.3.3. Let £ be a category with pullbacks and denote by Span (£) the bicategory
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of spans in £. Let € be a bicategory. Then to give an oplax functor
L:Span(£) - ¢
is to give a locally defined functor
Lyy: Span(€)yy — €1x.Ly X,Ye€&
with comultiplication and counit maps
Dgpe: L(s,t) = L(s,h); L(h,t), Ap: L(hh) - 11x

for every respective diagram in £

T T
N I
X v z X

such that:

1. for any triple of morphisms of spans as below

R R R
SN N N
X I VA X i Y Y I VA
NLONLA N
T T T
we have the commuting diagram
L (t,v) —5 1 (k) L (K v)

Lf l lLf sLf

L(S,I)TL(S,h);L(hJ)

2. for any morphism of spans as on the left below

% L(p,p) —L—~L(q.9)

X~ N—X lLx

the diagram on the right above commutes;
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3. for all diagrams of the form

TN,

in £, we have the commuting diagram

L (s,t) L (s,1)
L(s,h);L(h,t) L(s,k);L(k,t)
L(S;h);q)h,k,tl l/q)s,h,k;L(kﬂ‘)

L(s,h); (L (h,k); L (k1)) (L (s,h); L(h,k)); L (k1)

assoc
4. for all spans (s,t) we have the commuting diagrams

L(s,s);L(s,1) L(s,1);L(t1)

L (s,t) 1rx; L (s,t) L (s,1) L(s,t);1y

unitor unitor

Remark 4.3.4. Note that this description of an oplax functor out of the bicategory of spans
does not involve pullbacks, thus allowing for a simpler for a simpler proof of the universal

properties of the span construction [9]].

4.3.3 Bicategories of polynomials

Given a locally cartesian closed category £, one may form the bicategory of polynomials in
& with cartesian 2-cells [55] [17]. This bicategory we denote by Poly, (£) and has objects

those of £, 1-cells given by diagrams

in & called polynomials and denoted by (s, p, ), and 2-cells given by commuting diagrams as

below
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where the middle square is a pullback. Composition of 1-cells is more complicated and so
will be omitted; especially as it is not necessary to describe oplax functors out of Poly,. (£)
once we know the generics.

The reader need only know the following corollary of [55, Prop. 3.1.6], a description of

polynomial composition due to Weber.
Corollary 4.3.5. Consider two polynomials in £ as below:

K1 , Ry
VAN TN
X Y Y VA
Then to give a cartesian 2-cell (s, p,t) — (a,i,b); (u, j,v) is to give a factorization p = p1; p

through an object T, a morphism h: T — Y, and a pair of cartesian morphisms (s, p1, h) —

(a’i’ b) and (haPZa t) - (I/l,j,V)

such that the above diagram commutes. Here we identify a septuple (p1, h,p2, w, x,y,2) as
above with another septuple (p’l,h’, phw',x’,y, Z’) if w =w, z = 7 and there exists an

invertible «: T — T’ rendering commutative the diagrams?

AN A T (432)
E/%\B 1/+\R al\Y
Pi\ T/ /pé x/\ T/ /y, T,%

It follows that
POch (E)X,Z ((S, p; t) ’ (a’ i’ b) 5 (uaj’ V))

is isomorphic to

> Poly (O)xy (5.p1.h).(ai.b) X Poly, () (h.pt).(u.jv)  (43.3)
p=p1;p2, h: T=Y

(13 2
~

where the equivalence relation indicates the sum is taken over representatives of equiv-

alence classes of triples (p1, i, p2) (Where two such triples are seen as equivalent if there is

4It is clear that if the middle diagram commutes then the rightmost diagram also does. Also, such an
isomorphism « making the left diagram commute must be unique.
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an isomorphism « rendering commutative the left and right diagrams as in Figure 4.3.2).
We have thus exhibited the bicategory of polynomials with cartesian 2-cells as a generic
bicategory.

Here our class of generics A, consists of, for each diagram

in £ where p = py; p», the cartesian morphisms of polynomials

6-9,P1,h,p2,l5 (S,p’ t) - (sap],h) 5 (h’pZ’ t)

corresponding to

N

X

/
N

— X
id

X

e

and denote these by &;,. There are more general morphisms into identity polynomials where

the middle map is invertible; but using those would lead to unnecessary complexity.

Remark 4.3.6. Note that our class of generics A, does not involve representatives of equiva-

lence classes, unlike the summation formula given.

Now, applying Theorem #.2.19| we have the following.

Corollary 4.3.7. Let £ be a locally cartesian closed category and denote by Poly, (£) the
bicategory of polynomials in £ with cartesian 2-cells. Let € be a bicategory. Then to give

an oplax functor

L:Poly.(£) > %

is to give a locally defined functor

Lxy: Poly,. (E)xy — CLxLy X, Ye&
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with comultiplication and counit maps

(Ds,pl,h,pz,t: L(S,pat) - L(sapl,h);L(h7p2’t)’ Ah: L(h’ 1, h) i 1LX

for every respective diagram in £

EX T2 pB T4 T
BN N
X Y Z X X

where we assert p = py; p2 on the left, such that:

1. for any morphisms of polynomials as below

ST T AT
l£—>B l£—>T/ \T—>B/

we have the commuting diagram

QM/, LK, LV
L (u’ q, V) %— L (I/l, qi, k) 5 L (k’ q2, V)
L(f,g)l LL(f,C);L(c,g)
L (S7p9 t) T L (Sapla h) 5 L (h9p27t)

s,p1,h.pp.t

2. for any morphism of polynomials as on the left below

L(f.f)

/Ri—d>R\ L(s,1,9)—" ~ 1.(1,1,1)
S N
X s ey X Al A,
N A
TTT ILX

the diagram on the right above commutes;

3. for all diagrams of the form
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in £, we have the commuting diagram

L (s,a;b;c,t) L (s,a;b;c,t)
L (s,a,h); L (h,b;c,t) L (s,a;b,k); L (k,c,t)
L(sva’h)QCDh,b,k,c,tl L(Ds,a,h,b,k;ll(kvc’l)

L(s,a,h);(L(h,bk);L(k,c,t)) (L (s,a,h);L(hb,k));L(k,c,t)

assoc

4. for all polynomials (s, p,t) the diagrams

L(s,1,5);L(s,p,t)

(Ds,l,s%’ As;L(s.pt)

L(S’p’t) 1LX;L(S’p7Z)

unitor

L(s,p,t);L(t,1,1)

(DV L(s.p.t);A;

L(s,p,t) L(s,p,t); 1y

unitor

commute.

Remark 4.3.8. As the above description of oplax functors out of the bicategory of polynomials
does not rely on polynomial composition, it may be used for an efficient proof of the universal
properties of polynomials. Indeed, this allows us to avoid the large coherence diagrams which

would arise in a direct proof. We will discuss this in detail in our next paper.

4.3.4 Finite sets and bijections

We give this example for completeness, but will omit some details as Theoremd.2.19becomes
rather trivial in this case (due to all generic morphisms being invertible). Here we take .o/
to be the category of finite sets and bijections with the disjoint union monoidal structure,

denoted (P, L1, 0). This monoidal category is generic since we have isomorphisms

P(C,AL B) = Z P(L,A) x P(R, B)
C=LUR
natural in finite sets A and B, where the sum is taken over decompositions of C into the
disjoint union of two sets. Here we choose our class of generics A, to contain the chosen

bijection, where [n] = {1,--- ,n},

(Ln), n<m
Onmmy & [m1 +n2] = [n1] U [n2], n—
(2,n), n>n
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for each pair of non-negative integers n; and np. Trivially, the only augmentation is the
identity map on the empty set. Taking (C,®, ) to be a monoidal category, it follows from
Theorem [4.2.19| that oplax monoidal functors L: (P,L1,0) — (C,®,I) may be specified by

giving comultiplication and counit maps
@y p,: Lng +m] = Ln] @ [n2], A:L0)—1

Of course, this may more easily be seen by simply taking the skeleton.

4.4 Convolution structures and Yoneda structures

By results of Day [11], given a bicategory .# with small hom-categories one may construct
the local cocompletion of .o/, a new bicategory &/ with objects those of .o/, hom-categories
given by

»é{X,Y = [W;&,Set] , X,Y e JZfob

and a composite of two presheaves
F: d> — Set, G: o, — Set
given by Day’s convolution formula
a,b
GF': Jz%)?pz — Set, GF (c) = / x 7 (c,a;b) X Fa X Gb.

With this definition of .7, the family of Yoneda embeddings
Vaty: D xy = A xy, XY € oy

underlies a pseudofunctor y. : &/ — /. This is of interest since in the case of generic
bicategories <7, this convolution structure has an especially simple form. Moreover, just as
one can gain insight into a category by studying its category of presheaves, one can deduce
many of the properties of generic bicategories .7 as a consequence of this simple convolution

structure on .« .

Proposition 4.4.1. Suppose <f is a generic bicategory. Then for any pair of presheaves
F: ,52%)?";—>Set, G: WQE—)Set

there exists isomorphisms as below

a,b
/ x 7 (c,a;b) X Fax Gb = Z Fl, x Gry,

meMXY-z
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thus reducing the Day convolution structure to a simpler formula.
Proof. We have

a,b
LHS = / x 7 (c,a;b) X Fa x Gb

a,b
~ Z Axy (b, a) X v 7 (rm, b)| X Fa x Gb
memX-¥-Z
a,b
~ Z xy by a) X Fa X oy 7 (rm, b) X Gb
memX-Y-Z

IR

a,b
Z / xy (lnsa) X Fa X a7 (rm, b) X Gb

X,Y,Z
meMt;

> (/ Ay (s @) X Fa) x (/b oty 7 (s b) X Gb

memX-¥-Z

IR

I
M
3
S
X
Q
S

as required. 0

Remark 4.4.2. Unfortunately, the above formula has some disadvantages. Indeed, as Mz
is isomorphic to the set of equivalence classes of generics out of ¢, it follows that explicitly

tg(’Y’Z

describing ) will involve a choice of representatives for each equivalence class. This is

problematic since choices of representatives do not nicely behave with respect to composition.

As a consequence of this proposition and the formulas (@.3.1)) and (4.3.3)) given in the

previous section, we have the following.
Corollary 4.4.3. The Day convolution of two presheaves of spans

F: Span (€)Y, — Set, G: Span (£)y, — Set
is given by

GF: Span (&)Y, — Set, GF (s,1) = Z F (s,h) x G (h,1)
h: T-Y

and the Day convolution of two presheaves of polynomials

) op . op
F: Poly, (€)Y, — Set,  G: Poly, (€);7, — Set
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is given by the formula

GF: Poly, (€)y, — Set, GF (s,p,1) = Z F (s,p1,h) X G (h, p,1)
p=pi;p2, h: T—>Y

The purpose of the following is to describe how Theorem[.2.19/may be seen as an instance
of a more general result, and to see how this theorem follows from the simple convolution
structure on <7. Indeed, as a special case of Theorem [3.5.10|we have the following corollary.

Corollary 4.4.4 (Doctrinal Yoneda Structures). Let .o/ and € be two bicategories with small
hom-categories and the same objects. Let 7 be the free small local cocompletion of <7 .
Then for any locally defined identity on objects functor L: o/ — €, with the corresponding
locally defined identity on objects functor R = € (L—,—) as below

¢ R _ 7

the structure of an oplax functor on L is in bijection with the structure of a lax functor on R.

Supposing that <7 is generic, and hence that composition on </ has the reduced form
given by Proposition[d.4.1] one sees from this corollary that for a given locally defined functor
L:o — giving L an oplax structure (L, ¢, 1) : &/ — € with constraint cells

@ap: L(a;b) — La; Lb, Ay: Lly — 1y
is to give R a lax structure (R, p,w) : € — &/ with constraints
Gab: Ra;Rb — R(a;b), wyx: 1y = Rly.

By the definition of R and composition in a, these binary constraints ¢ are functions for
eachc: X - Z

Z Cxy (Lly,a) X €y z (Lry,b) — €xz (Lc,a; b)

meMX¥-Z

natural in a,b and c. By naturality, to give such a function is to give an assignment on the

identity pair (we may call the result @)
(id: LI, — Ll,,id: Lry,, — Lry) — Qe Lc — Liy; Ly,

Thus the binary constraints ¢ are determined by giving appropriate ®. A similar calculation

5Note that here one can use bijective on objects - bijective on 1-cells factorisations to avoid the assumption
that L is the identity on objects.
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may be done to see the unit constraints w are determined by augmentations A. In this way,
one constructs a bijection between the data of an oplax structure on L (containing cells ¢ and

A) and a lax structure on R (containing cells @ and A).

Remark 4.4.5. It is this observation which was the original motivation for Theorem {.2.19
However, this approach does not give an efficient proof of this theorem for a number of

technical reasons. In particular, we wish to avoid considering equivalence classes of generic

if Y.z

morphisms (such as the elements of the set ) ) to avoid technicalities involving choices

of representatives.
Though this approach is more technical (and thus not the method used in the proof), it

is conceptually nicer as it exhibits Theorem 4.2.19|as a natural result concerning the Yoneda

structures of Street and Walters [47/]] and their algebraic properties.
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Universal properties of bicategories of
polynomials

Abstract

We establish the universal properties of the bicategory of polynomials, considering both
cartesian and general morphisms between these polynomials. A direct proof of these universal
properties would be impractical due to the complicated coherence conditions arising from
polynomial composition; however, in this paper we avoid most of these coherence conditions

using the properties of generic bicategories.

In addition, we give a new proof of the universal properties of the bicategory of spans,
and also establish the universal properties of the bicategory of spans with invertible 2-cells;

showing how these properties may be used to describe the universal properties of polynomials.

Contribution by the author

As the sole author, this paper is entirely my own work. This paper was accepted on November
4th 2018 in the Journal of Pure and Applied Algebra, and is currently in press. Any differences

from the journal version are limited to formatting and citation numbering changes.
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5.1 Introduction

In this paper we are interested in two constructions on suitable categories £: the bicategory of
spans Span (£) as introduced by Bénabou [3]], and the bicategory of polynomials Poly (£) as
introduced by Gambino and Kock [17], and further studied by Weber [55] (all to be reviewed
in Section [5.2). Here we wish to study the universal properties of these constructions; that
is, for an arbitrary bicategory 4 we wish to know what it means to give a pseudofunctor
Span(£) —» € orPoly (£) — .

In the case of spans, these results have already been established. In particular, given any
category £ with pullbacks, one can form a bicategory denoted Span (£) whose objects are

those of € and 1-cells are diagrams in £ of the form below

[ J
RN
[ ] [ ]
called spans. The universal property of this construction admits a simple description since

for every morphism f in £ we have adjunctions
[ ] f f ([ ]
id id
/ \ 1 / \
[ ] [ J [ ] [ ]

in Span (£), and these adjunctions generate all of Span (£).

Indeed, it was proven by Hermida [21, Theorem A.2] that composing with the canonical

embedding £ < Span (£) describes an equivalence

pseudofunctors Span (£) — ¢

Beck pseudofunctors & — ¢

where a pseudofunctor Fy: £ — % is Beck if for every morphism f in £ the 1-cell Fx f has
a right adjoint F f in % (such an Fy is also known as a sinister pseudofunctor), and if the

induced pair of pseudofunctors
F: & —> €, Fr: EP -5 €

satisfy a Beck-Chevalley condition. A natural question to then ask is what these sinister
pseudofunctors correspond to when the Beck—Chevalley condition is dropped. This question
was solved by Dawson, Paré, and Pronk [9, Theorem 2.15] who showed that composing with

the canonical embedding describes an equivalence

gregarious functors Span (£) — ¢

sinister pseudofunctors £ — €
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where gregarious functors are the adjunction preserving normal’oplax functors.

An important special case of this is when 4 = Cat, where one may consider sinister
pseudofunctors £ — Cat, or equivalently cosinister?] pseudofunctors £ — Cat. In this

case we recover the equivalence

gregarious functors Span (£) — Cat

bifibrations over £

Note also that on Cat/& there is a KZ pseudomonad I's for opfibrations and a coKZ pseu-
domonad 7T¢ for fibrations. This yields (via a pseudo-distributive law) the pseudomonad
I'sT¢ for bifibrations satisfying the Beck—Chevalley condition [50]] (also known as fibrations

with sums). The above equivalence then restricts to

pseudofunctors Span (£) — Cat

fibrations with sums over €

An archetypal example of this is the codomain fibration over £ corresponding to the canonical

pseudofunctor Span (£) — Cat defined by

T
N e gx g gy
X Y

where for every morphism f in &, the functor Xy denotes composition with f, and the functor
Ay denotes pulling back along f.

When considering polynomials it is convenient to assume some extra structure on £. In
particular, we will take £ to be a category with finite limits, such that for each morphism f
in & the “pullback along f” functor A ¢ has a right adjoint I1;. For such a category £ (known
as a locally cartesian closed category) one can form a bicategory denoted Poly (£) whose

objects are those of £ and 1-cells are diagrams in £ of the form below

.y.ﬁ.\io

called polynomialg?] One can also form a bicategory Poly, (£) with the same objects and
1-cells by being more restrictive on the 2-cells (that is, only taking “cartesian” morphisms of
polynomials).

The purpose of this paper is to describe the universal properties of these two bicategories

'Here “normal” means the unit constraints are invertible.

2Here “cosinister” means arrows are sent to right adjoint 1-cells instead of left adjoint 1-cells. This is the
F) of such a pair Fx-Fj.

3The bicategory of polynomials can be defined on any category £ with pullbacks [55]); however, we will
assume local cartesian closure for simplicity.
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of polynomials.

Similar to the case of spans, the universal property of Poly (£) admits a simple description

since for every morphism f in £ we have adjunctions

.;d-. .L. .—f>0
i;y y; 1 7 \i 1 y \\i (5.1.1)

in Poly (£), and these adjunctions generate all of Poly (£) (to be shown in Proposition|5.2.25)).
Using this fact, we show that in the case of polynomials with general 2-cells, composition

with the embedding £ — Poly (£) describes the equivalence

pseudofunctors Poly (£) — ¢ (5.1.2)

DistBeck pseudofunctors £ — ¥

where a pseudofunctor Fx : £ — % is DistBeck if for every morphism f in £ the 1-cell F f has
two successive right adjoints F f and Fij f (such an Fy is called a 2-sinister pseudofunctor),

and if the induced triple of pseudofunctors
Fs: & —> €, Fpr: EP = €, F: € - €

satisfies the earlier Beck-Chevalley condition on the pair Fx and F)j, in addition to a “dis-
tributivity condition” on the pair Fy and Fyj. Forgetting the distributivity condition yields
the notion of a 2-Beck pseudofunctor, so that (5.1.2) may be seen as a restriction of an

equivalence
gregarious functors Poly (£) — &

2-Beck pseudofunctors & — €

Similar to earlier, an important special case of this is when 4 = Cat, where one recovers

the equivalence
gregarious functors Poly (£) — Cat

fibrations with sums and products over £

Note also that on Fib (£) there is a KZ pseudomonad X¢ for fibrations with sums, and a
coKZ pseudomonad Il¢ for fibrations with products. This yields (via a pseudo-distributive
law) a pseudomonad X¢I1¢ for fibrations with sums and products which satisfy a distributivity

condition [50]. Here we recover the equivalence

pseudofunctors Poly (£) — Cat

distributive fibrations with sums and products over £

The codomain fibration is again an archetypal example of this, with the corresponding
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canonical pseudofunctor Poly (£) — Cat being defined by

E-Z-B .
o/ N P E[-E/E—E/BE))
I J

which is how one assigns a polynomial to a polynomial functor.

Another example of this situation is given by taking £ to be a regular locally cartesian
closed category. In this case we have the 2-Beck pseudofunctor Sub: £ — Cat which sends
a morphism f: X — Y in &€ to the existential quantifier 37: Sub(X) — Sub (¥) mapping
subobjects of X to those of ¥, which has the two successive right adjoints A “pullback along
f7 and VY “universal quantification at f”, thus giving a gregarious functor Poly (£) — Cat

defined by the assignment

E-2.B
o/ N, 7 Sub(1) -2 Sub(E) % Sub (B) = Sub (/)
1 J

The distributivity condition here then amounts to asking that £ satisfies the internal axiom of
choice.

With only cartesian morphisms we do not have the adjunctions on the right in (5.1.1)
since the units and counits of such adjunctions are not cartesian in general, thus making the
universal property of Poly, (£) more complicated to state. The universal property of this

construction is described as an equivalence

pseudofunctors Poly,. (£) — €
DistBeck triple £ — €

where a DistBeck triple £ — % is a triple of pseudofunctors
Fs: & — €, Fpn: EP = €, Fg:E—> €

such Fs f 4 Faf for all morphisms f in £, with a Beck—Chevalley condition satisfied for the
pair Fx and Fj, for which F, and Fg are related via invertible Beck—Chevalley coherence
data (as we do not have adjunctions Fj f 4 Fg f this data does not come for free and must be
given instead, subject to suitable coherence axioms), such that the pair Fy and Fy satisfy a
distributivity condition as beforg] There are also weakened versions of the universal property
of Poly,. (£) which arise from dropping these conditions.

An example of this is given by taking £ to be the category of finite sets FinSet and %
to be the 2-category of small categories Cat. Taking (A, ®,I) to be a symmetric monoidal

category such that A has finite coproducts, we can assign to any finite set n the category A"

4The distributivity data need not be given as it may be constructed using the Fa-Fg Beck coherence data
and the adjunctions Fx f 4 Fpf.
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and to any morphism f: m — n the functors

lang: A" — A", (a;:i€m)— (erf—l(j) ac: j € n)
(=)o f: A" > A", (aj:jen)H(af(i):iem)
Qp: A" > A", (a;:iem)— (®xef—1(j) ap: j € n)

This gives the data of a Beck triple (that is a DistBeck triple without requiring the distributivity
condition). The distributivity condition here holds precisely when the functor X®(-) : A —
A preserves finite coproducts for all X € A.

The reader should note that proving the universal properties concerning the polyno-
mial construction is much more complex than that of the span construction. This is since
composition of polynomials is significantly more complicated; this is especially evident in
calculations involving associativity of polynomial composition being respected by an oplax
or pseudofunctor, or calculations involving horizontal composition of general polynomial

morphisms.

Fortunately, we are able to avoid these calculations to some extent. This is done by
exploiting the fact that both Span (£) and Poly,. (£) are “generic bicategories” (as detailed in
Chapter ), that is a bicategory <7 with the property that each composition functor

oxyz: yzXdxy = Ixz

admits generic factorisations. The main result of Chapter 4] shows that oplax functors out of
such bicategories admit a much simpler description; thus allowing for a simple description of
oplax functors out Span (£) and Poly,. (£). A problem here is that the bicategory Poly (£) does
not enjoy this property. However, as Poly, (£) embeds into Poly (£) and both bicategories
have the same composition the universal property of the former will assist in proving the
latter.

In Section we give the necessary background for this paper. We recall the definitions
and basic properties of the bicategories of spans and polynomials, the notions of lax, oplax
and gregarious functors, the basic properties of the mates correspondence, and the basic
properties of generic bicategories.

In Section [5.3] we give a proof of the universal properties of spans using the properties
of generic bicategories. This is to give a complete and detailed proof of these properties
demonstrating our method, before applying it the more complicated setting of polynomials
later on.

In Section[5.4]we give a proof of the universal properties of spans with invertible 2-cells.
This is necessary since the universal properties of polynomials with cartesian 2-cells will be
described in terms of this property.

In Section [5.5| we give a proof of the universal properties of polynomials with cartesian
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2-cells. It is in this section that our method is of the most use; indeed in our proof we
completely avoid coherences involving composition of distributivity pullbacks (the worst
coherence conditions which would arise in a direct proof).

In Section [5.6] we give a proof of the universal properties of polynomials with general
2-cells, by using the corresponding properties for polynomials with cartesian 2-cells and
checking some additional coherence conditions concerning naturality with respect to these

more general 2-cells.

5.2 Background

In this section we give the necessary background knowledge for this paper.

5.2.1 The bicategory of spans

Before studying the bicategory of polynomials we will study the simpler and more well known

construction of the bicategory of spans, as introduced by Bénabou [3]].

Definition 5.2.1. Suppose we are given a category £ with chosen pullbacks. We may then
form bicategory of spans in £, denoted Span (£), with objects those of £, 1-cells A - B

given diagrams in £ of the form
P X q
AN
A B
called spans, composition of 1-cells given by taking the chosen pullback
V8 * T
N
p X q Y
r S
ARV
A B C
and 2-cells v given by those morphisms between the vertices of two spans which yield

commuting diagrams of the form

The identity 1-cells are given by identity spans X X x XX and composition extends to

2-cells by the universal property of pullbacks. The essential uniqueness of the limit of a



130 Universal properties of bicategories of polynomials

diagram
p X g Y Z
r N u 14
/N N YN
A B C D
yields the associators, making Span (£) into a bicategory.

We denote by Span,, (£) the bicategory as defined above, but only taking the invertible
2-cells.

5.2.2 The bicategory of polynomials

In the earlier defined bicategory of spans the morphisms may be viewed as multivariate
linear maps (matrices). In this subsection we recall the bicategory of polynomials, whose
morphisms may be viewed as multivariate polynomials, and whose study has applications
in areas including theoretical computer science (under the name of containers and indexed
containers [1/]) and the theory of W-types [43| 44].

Before we can define this bicategory we must recall the notion of distributivity pullback

as given by Weber [53]].

Definition 5.2.2. Given two composable morphismsu: X — Aand f: A — Bina category

& with pullbacks, we say that:

1. a pullback around (f,u) is a diagram

such that the outer rectangle is a pullback, and a morphism of pullbacks around (f,u) is

a pair of morphisms s: 7 — 7" and ¢: Y — Y’ such that p’s = p, ¢'s = tg and r = r't;

2. a distributivity pullback around (f,u) is a terminal object in the category of pullbacks
around ( f,u).

We also recall the notion of an exponentiable morphism, a condition which ensures the

existence of such distributivity pullbacks.

Definition 5.2.3. We say a morphism f: A — B in a category £ with pullbacks is exponen-
tiable if the “pullback along f” functor Ay: £/B — £ /A has a right adjoint. We will denote

this right adjoint by IT when it exists.
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Remark 5.2.4. Note that such an f is exponentiable if and only if for every u there exists a

distributivity pullback around ( f,u) [55].

The following diagrams are to be the morphisms in the bicategory of polynomials.

Definition 5.2.5. A polynomial P: I -+ J in a category £ with pullbacks is a diagram of the

form

where p is exponentiable.

We will also need the following universal property of polynomial composition.

Proposition 5.2.6. /55 Prop. 3.1.6] Suppose we are given two polynomials P: I -+ J and

Q: J -+ K. Consider a category with objects given by commuting diagrams of the form

Al — Ay — A3

VARV NN
E—B

—_—

v N N
J K

1

for which the left and right squares are pullbacks (but not necessarily the middle), and

morphisms given by triples (A; — B;: i = 1,2,3) rendering commutative the diagram

Al — Ay — Az

/¢ AN ¢\
Bl—/>BQ—‘>B3
y/ NN

E— M —N

v/ \ 7 N
I K

Then in this category, the outside composite in the diagram formed below (which is a

polynomial I - K ), where dpb indicates distributivity pullback

E—>BbM]L
v \i/ N

1 K

(5.2.1)

is a terminal object.
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Definition 5.2.7. Suppose we are given a locally cartesian closed category £ with chosen
pullbacks and distributivity pullbacks. We may then form the bicategory of polynomials with
cartesian 2-cells in £, denoted Poly,. (£), with objects those of £, 1-cells A - B given by
polynomials, composition of 1-cells given by forming the diagram just above, and

cartesian 2-cells given by pairs of morphisms (o, v) rendering commutative the diagram

N

such that the middle square is a pullback. The identity 1-cells are given by identity poly-
nomials X < x X x X x. Composition of 2-cells and the associators may be recovered

from Proposition [5.2.6] above.

Definition 5.2.8. Suppose we are given a locally cartesian closed category £ with chosen
pullbacks and distributivity pullbacks. We may then form the bicategory of polynomials with
general 2-cells, denoted Poly (£), with objects and 1-cells as in Poly, (£), and 2-cells given

by diagrams as below on the left below

/T N /T N
AV 7N 7

q M—=N

Q

regarded equivalent to the diagram on the right provided both indicated regions are pullbacks.

For the other operations of this bicategory such as the composition operation on 2-cells
we refer the reader to the equivalence Poly (£) ~ PolyFun (£) [17] where PolyFun (&) is the
bicategory of polynomial functors, described later in Example [5.2.12]

Remark 5.2.9. Note that it suffices to give local equivalences PolyFun (£)yy =~ Poly (£)yy
since from this it follows that the bicategorical structure on PolyFun (£) endows the family of
hom-categories Poly (£)y with the structure of a bicategory via doctrinal adjunction [27].

This describes the bicategory structure on Poly (£).
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5.2.3 Morphisms of bicategories

There are a few types of morphisms between bicategories we are interested in for this paper.
These include oplax functors, lax functors, pseudofunctors, gregarious functors and sinister

pseudofunctors. After the following trivial definition we will recall these notions.

Definition 5.2.10. Given two bicategories .« and A , a locally defined functor F: of — 5B

consists of:
« for each object X € &/ an object FX € %,
* for each pair of objects X,Y € o7, a functor Fxy: @xy — Brxry;

subject to no additional conditions.

It is one of the main points of this paper that many of the coherence conditions arising
from the associativity diagram (5.2.2) for oplax functors out of the bicategories Span (£) and
Poly, (£) may be avoided (for suitable categories £).

Definition 5.2.11. Given two bicategories .« and %, a lax functor F: o/ — 2 is a locally
defined functor F: &/ — 2 equipped with

* for each object X € &7, a2-cell Ax: lpx — Fly;

» for each triple of objects X,Y, Z € </ and pair of morphisms f: X — Yandg: Y — Z,
a2-cell por: Fg-Ff — Fgf naturalin g and f,

such that the constraints render commutative the associativity diagram

Fh(Fg-Ff)225L ph . F (g f) 2 F (h(gf) (52.2)
AFh,Fg,Ff F(dh,g,f)
(Fh-Fg)- FfmF(hg) Ff 45— F((hg) f)

for composable morphisms 4,g and f. In addition, the nullary constraint cells must render

commutative the diagrams

Ff-lpx L% FroF(ly) ley - Ff 2L P (1y) - Ff
"Ff\ J‘Pf,lx lFf\ ]‘/’ly,f
Ff ) F(f-1x) Ff ) F(ly-f)
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for all morphisms f: X — Y. If the direction of the constraints ¢ and A is reversed, this is
the definition of an oplax functor. If the nullary constraints A are invertible (in either the lax
or oplax case) we then say our functor is normal. If both types of constraint cells ¢ and A are

required invertible, then this is the definition of a pseudofunctor.

Example 5.2.12. It is well known that given a category £ with pullbacks there is a pseudo-
functor Span (£) — Cat which assigns an object X € & to the slice category £/X and on

spans is defined the assignment

B
N Y] Ry Ry
I J

where X, is the “composition with t” functor, and Ay is the “pullback along s” functor (the

right adjoint of Z;).

If € is locally cartesian closed, meaning that for each morphism p the functor A, has a
further right adjoint denoted 11, then there is also such a canonical functor out of Poly (£)
[I7] and Poly . (E) [155], which assigns an object X € & to the slice category £/X and on

polynomials is defined the assignment

E-ZB .
Vi N, T -y) ) S ) Yy
I J

A functor isomorphic to one as on the right above is known as a polynomial functor.
The objects of £, polynomial functors, and strong natural transformations form a 2-category

PolyFun (€) [17].

Remark 5.2.13. In the subsequent sections we are interested in pseudofunctors mapping into
a general bicategory %, not just Cat, however we will still use the above example to motivate
our notation.

The following is a special type of oplax functor which turns up when studying the universal

properties of the span construction [9, [10]. This notion will also be useful for studying the

universal properties of the polynomial construction.

Definition 5.2.14. [9] Definition 2.4] We say a normal oplax functor of bicategories F': .o/ —
A is gregarious (also known as jointed) if for any pair of 1-cells f: A— Bandg: B — C
in 7 for which g has a right adjoint, the constraint cell ¢, r: F (gf) — Fg- F f is invertible.
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There is also an alternative characterization of gregarious functors worth mentioning,

which establishes gregarious functors as a natural concept.

Proposition 5.2.15. /9, Propositions 2.8 and 2.9] A normal oplax functor of bicategories
F: of — RBisgregariousifand only if it preserves adjunctions; that is, if for every adjunction
(f4u: A - An,e)in o there exists 2-cells : lpg — Fu-Ffande: Ff-Fu — lpa

which exhibit F f as left adjoint to Fu and render commutative the squares

F &
F(14) —=F (uf) F (fu)—""=F (1)
ﬂAl L‘Pu,f ‘Pf,ul l/lA/
1FA7FM~Ff Ff-Fu?-IFA/

We also need a notion of morphism between lax, oplax, gregarious or pseudofunctors. It

will be convenient here to use Lack’s icons [34], defined as follows.

Definition 5.2.16. Given two lax functors F,G: &/ — 28 which agree on objects, an icon
a: F = G consists of a family of natural transformations
Fxy

_—
JZ%X,Y lexy %FX,FYa X,Y € o
v

Gxy

with components rendering commutative the diagrams

o
Fg Ff—"~F(gf) 1rx

&g*afl ‘agf /IX\ y
Gg-GfWG(gf) FlXTX>'G1X

for composable morphisms f and g in .o/. Similarly, one may define icons between oplax

functors.

An important point about icons is that there is a 2-category of bicategories, oplax (lax)

functors, and icons. For convenience, we make the following definition.

Definition 5.2.17. We denote by Icon (resp. Greg) the 2-category of bicategories, pseudo-

functors (resp. gregarious functors) and icons.

Finally, we recall the notion of a sinister pseudofunctor, as well as the notion of a sinister
pseudofunctor which satisfies a certain Beck condition. These notions are to be used regularly

through the paper.
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Definition 5.2.18. Let £ be a category seen as a locally discrete 2-category, and let ¢ be
a bicategory. We say a pseudofunctor F': £ — % of bicategories is sinister if for every

morphism f in £ the 1-cell F f has a right adjoint in €.

Supposing further that £ has pullbacks, for any pullback square in £ as on the left below,
we may apply F' and compose with pseudofunctoriality constraints giving an invertible 2-cell

as in the middle square below, and then take mates to get a 2-cell as on the right below

f! Ff’ Fef’
e —— 0 oe—— 0 o ——>0
g’l Lg Fg’l = LFg FAg’T Ub’f";,g' TFAg
o—>o o——>o o——>o
f Ff Fof
We say the sinister pseudofunctor F': £ — % satisfies the Beck condition if every such b}p’ég /

as on the right above is invertible.

We will denote by Sin (£, ¢’) the category of sinister pseudofunctors £ — % and invert-
ible icons, and Beck (£, %) the subcategory of sinister pseudofunctors satisfying the Beck

condition.

Remark 5.2.19. Note that b;’g’g " as above may be defined for any commuting square, not just

a pullback. We call such a bﬁlg " the Beck 2-cell corresponding to the commuting square, but

should not expect it to be invertible if the square is not a pullback (even if the Beck condition

holds).

5.2.4 Mates under adjunctions

We now recall the basic properties of mates [30]. Given two pairs of adjoint morphisms
nm.ei: fidur: B = A, m&: hHdur: By —> Ay

in a bicategory o7, we say that two 2-cells

A]LA2 A1$A2
fll la sz MIT us ]uz
Bl—h>Bz Bl_h>B2
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are mates under the adjunctions f; 4 u; and f> 4 u» if B is given by the pasting

44,
/ } ,’l UJIZ
or equivalently, « is given by the pasting
i 8
\ J U J Usz
B,

id
It follows from the triangle identities that taking mates in this fashion defines a bijection
between 2-cells f,bg — hfi and 2-cells gu; — uph.

Moreover, it is well known that this correspondence is functorial. Given another adjunc-

tion n73,&3: f3 41 uz: B3 — Az and 2-cells as below

Ay =2 Ay s Ay Ay =2 Ay I Ay
flL oy Jiz lar lfs MIT B ”{2 Usr ]”2
B]T‘BZT‘B} B]T‘BZT‘B}

where a; and «a, respectively correspond to §; and S, under the mates correspondence, it
follows that the pasting of a; and «, corresponds to the pasting of §; and B, under the
mates correspondence. Moreover, the analogous property holds for pasting vertically. These

vertical and horizontal pasting properties’| are often referred to as functoriality of mates.

Remark 5.2.20. Given an adjunction ,&: f 4 u: B — A the left square below

A—Lo A A—Lo A
fL Jid lid uT le Tid

corresponds to the right above via the mates correspondence, allowing one to see the counit
of an adjunction as an instance of the mates correspondence. A similar calculation may
be done for the units. This will allow us to see calculations involving units and counits as
functoriality of mates calculations.

One consequence of the mates correspondence which will be of interest to us is the

following lemma; a special case of [9, Lemma 2.13], showing that the component of an icon

SThere are also nullary pasting properties which we will omit.
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between gregarious functors at a left adjoint 1-cell is invertible.

Lemma 5.2.21. Suppose F,G: o/ — 9 are gregarious functors between bicategories which
agree on objects. Suppose that «: F = G is an icon. Suppose that a given I-cell f: X =Y
has a right adjoint u in </ with unit & and counit 1. Then the 2-cell ay: Ff — G f has an

inverse given by the mate of «,,: Fu — Gu.

Proof. As f 4 u we have F f 4 Fu via counit

-1
Ay

P Fe
Ff-Fu—>F(fu) Fly lFY
and unit
A »
Iy = Fly 2 F(uf) 25 Fu - Ff

and similarly Gf 4 Gu. That the mate of a,, constructed as the pasting

FX X px X pyx M py v py v py 1o py gy

lij ﬂ/l)_(l F}/X ﬂFU Fl/uf ﬂﬁpu,f Fil/l ﬂa'u (J\LM ﬂ‘ﬁf,u Gl{’l ﬂG8 G\EY ﬂwY llpy
FX FX FX FX FX FY FY FY

lrx 1rx 1rx lrx Gf lry lry

is the inverse of @ is a simple calculation which we will omit (as the details are in [9, Lemma

2.13)). U

Remark 5.2.22. Under the conditions of the above lemma we have corresponding functors
F°,G: o/°° — 9B°° which are adjunction preserving (gregarious), and anicon a®®: G*° =

F*®°. Thus noting u 4 f in &7°° we see that in A, a5°: Gf — F f has an inverse given as

Cco

the mate of « 7

. It follows that a,, has an inverse given as the mate of @y in 4.

5.2.5 Adjunctions of spans and polynomials

Later on we will need to discuss gregarious functors out of bicategories of spans and bicate-
gories of polynomials, and so an understanding of the adjunctions in these bicategories will
be essential.

We first recall the classification of adjunctions in the bicategory of spans. A proof of this
classification is given in [/, Proposition 2], but this proof does not readily generalize to the
setting of polynomials. We therefore give a simpler proof using the properties of the mates

COrIT espondence .
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Proposition 5.2.23. Up to isomorphism, all adjunctions in Span (£) are of the form

/s XN; 4 f/ X\\lj (5.2.3)
X Y Y X
with unit and counit

1 X 1 f * f

SN
X ) X Y/ j\Y
N A N
X xy X Y

where (X Xy X,n1,m2) is the pullback of f with itself.

Proof. Itis simple to check the above defines an adjunction. We now check that all adjunctions

have this form, up to isomorphism. To do this, suppose we are given an adjunction of spans
[ ] [ ]
N t u 1%
/ \ 1 / \
[ ] ([ ] [ ] [ ]
and denote the unit of this adjunction (actually a representation of the unit using the universal

property of pullback) by
(5.2.4)

N
A

[ ]
noting that v/ is the identity. We then factor this unit as
id:
L (5,0)5 (0, 1) =2 (5,1); a)
where the first morphism is represented by

N

id

and B: (h,1) — (u,v) is pictured on the right in (5.2.4). Under the mates correspondence

this yields two morphisms

(u,v) (h,1) b

(u, v)
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which must compose to the identity. As the first morphism of spans is necessarily v we have
also established Sv as the identity, and hence v as an isomorphism. This allows us to construct
an isomorphism of right adjoints (u,v) — (f,1) for an f as in (5.2.3), corresponding to an

isomorphism of left adjoints (1, f) — (s,7) and hence showing s is invertible also. [

Remark 5.2.24. If we restrict ourselves to the bicategory Span,, (£) then we only have

adjunctions as above when f is invertible (necessary to construct the counit).

In the case of polynomials there are more adjunctions to consider.

Proposition 5.2.25. Up to isomorphism, every adjunction in Poly (£) is a composite of

adjunctions of the form

XX x
X/ \Y Y/ \\

with unit and counit

X X , XX x ,
/X I AN
X X X Y X=X Y
\6 lo Nl
XxYXX—X;XXxYX Y =Y
and
, XX x 1 ] x Loy 1
N 2N
Y X X Y
with unit and counit
1 y Xy | Xxy X 2 x 1
Vs
YI/fX / i‘l\yy X/ 6)T( x )H(\XX
Ny I N
X7>Y X1—X>X

Proof. 1t is simple to check that the above define adjunctions of polynomials, indeed this is

almost the same calculation as in the case of spans. We now check that all adjunctions have
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this form, up to isomorphism. To do this, suppose we are given an adjunction of polynomials

.y.iﬂx. . .y._‘k.xo

and denote the unit of this adjunction by[°|

noting that vf3; is the identity. We then factor this unit as, where (81, 32) : (h,q’,1) — (u,q,v)

is the cartesian morphism of polynomials pictured on the right above,

id;(81,62)

1—>(5’P’t);(h,q/’ 1) (S’p’t);(u’Q’v)

which under the mates correspondence yields two morphisms

, 1 (BL.B2)
(u,q,v) — (h,q',1) =% (u,q, v)

which must compose to the identity; that is, a diagram below

o —(> e

N

R
O-éh—.—q>o—1—/>0
\“\él sz/v

e —({> e

composing to the identity, showing S,v is the identity, and hence that v is invertible. This
allows us to construct an isomorphism of right adjoints (u,¢q,v) — (f,g,1) for some f and g,
corresponding to an isomorphism of left adjoints (g, 1, f) — (s, p,) and hence showing p is

invertible also. L]

Remark 5.2.26. If we restrict ourselves to the bicategory Poly, (£) then to have the second
adjunction of Proposition we require f to be invertible.

6Here the cartesian part of the morphism of polynomials is represented using Proposition
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5.2.6 Basic properties of generic bicategories

The bicategories of spans Span (£) and bicategories of polynomials with cartesian 2-cells
Poly,. (£) defined above both satisfy a special property: they are examples of a bicategory ./
which contains a special class of 2-cells (which one may informally think of as the “diagonal”
2-cell{’) such that any 2-cell into a composite of 1-cells @: ¢ — a; b factors uniquely as
some diagonal 2-cell 6: ¢ — [;r pasted with 2-cells@1: /| = aand ap: r — b.

For the reader familiar with generic morphisms [14, (15, 52], this property can be stated

concisely by asking that each composition functor
oxyz: GyzXdxy > dxz

admits generic factorisations. A bicategory .« with this property is called generic.

As shown in Chapter 4] one of the main properties of generic bicategories <7 is that oplax
functors out of them admit an alternative description, similar to the description of a comonad.
In particular, for a locally defined functor L: &/ — % one may define a bijection between

coherent binary and nullary oplax constraint cells
@ap: L(a;b) — La; Lb, Ax: Lly — 1x
and “coherent” comultiplication and counit maps
Os: Lc — Ll Lr, Ag: Ln — 1y

indexed over diagonal maps ¢6: ¢ — [;r and augmentations (2-cells into identity 1-cells)
g: n — ly. Indeed, given the data (¢, 1) the comultiplication maps ®s and counit maps A,

are given by the composites

Le—S L(tir) 22 Ll Lr Ln—too L1y 21y
and conversely given the data (®,A) the oplax constraints ¢,; and Ax are recovered by
factoring the identity 2-cell through a diagonal as on the left below and defining the right

diagram to commute.

5 L r o Ll;LrL .
51582 5 s1;Lso
a;bTa;b L(a;b)TLa;Lb

Trivially, we recover each unit Ay : L (1x) — lx as the component of A at id;, .

For the full statement concerning the bicategories of spans and cartesian polynomials,
see Proposition [5.3.4]and Proposition respectively.

7Formally, these diagonals are defined as the generic morphisms against the composition functor. See
Chapter[d] for details.
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5.3 Universal properties of spans

In this section, we give a complete proof of the universal properties of spans [9] using the
properties of generic bicategories. This is to demonstrate our method in the simpler case of

spans before applying it to polynomials in Section [5.5]

5.3.1 Stating the universal property

Before stating the universal property we recall that we have two canonical embeddings into

the bicategory of spans given by the pseudofunctors denoted
(-)g : £ —> Span (&), (=)p : EP — Span (&).

These are defined on objects by sending an object of £ to itself, and are defined on each

morphism in £ by the assignments

(—)ZZ XLY > X-<1LX—f>Y
(D) : x L. - y<l_x X x

Remark 5.3.1. Note that the embedding (—)y is an example of a pseudofunctor which is both

sinister and satisfies the Beck condition.

The universal property of spans is then the following result, as given by Hermida [21]]
and Dawson, Paré, and Pronk [9, Theorem 2.15].

Theorem 5.3.2 (Universal Properties of Spans). Given a category € with chosen pullbacks,
composition with the canonical embedding (-)s : € — Span (£) defines the equivalence of
categories

Greg (Span (£),%) ~ Sin (£,%)

which restricts to the equivalence
Icon (Span (£),%) ~ Beck (£,%)

for any bicategory €.

5.3.2 Proving the universal property

Before proving Theorem [5.3.2] we will need to show that given a sinister pseudofunctor
& — ¢ one may reconstruct an oplax functor Span(£) — %. The following lemma and

subsequent propositions describe this construction.
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Lemma 5.3.3. Let £ be a category with pullbacks seen as a locally discrete 2-category, and
let € be a bicategory. Suppose F: £ — € is a given sinister pseudofunctor, and for each
morphism f € £ define Fx f := F f and take Fa f to be a chosen right adjoint of F f (choosing

F to strictly preserve identities). We may then define local functors
LX,Y . Span (S)X,Y - CgLX’Ly, X,Y ef
by the assignment T — FT on objects, and

T FT
s ‘ t Fas T Fst
X/f\Y — FX{FAbeY

N4 A

S

on morphisms, where « is the mate of the isomorphism on the left below

FT ' FT FT =4 Fy
Fzsl = szu'sz FEfL = LlFY
FX—~FX FS——~FY
1rx Fsv

under the adjunctions Fss 4 Fas and Fsu - Fsf 4 Fof - Fau, and vy is the mate of the

isomorphism on the right above under the adjunctions Fx f 4 Faf and 1py 4 1py.

Proof. Functoriality is clear from functoriality of mates and the associativity condition and

unitary conditions on F'. U

To show that these local functors can be endowed with the structure of an oplax functor it
will be useful to recall the following reduced description of such an oplax structure, obtained

via the theory of Chapter [4]

Proposition 5.3.4. Let £ be a category with pullbacks and denote by Span (£) the bicategory

of spans in €. Let € be a bicategory. Then to give an oplax functor
L:Span(£) - ¢
is to give a locally defined functor

Lxy: Span(€)yy — €rx.Ly, X, Ye€&
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with comultiplication and counit maps
DQypst L(s,t) > L(s,h); L(h,1), Ap: L(hh) — 1px

for every respective diagram in £

D

Xyz\z X

such that:

1. for any triple of morphisms of spans as below

ij[\iz XyINiY ij‘e\iz
NLONIA NS

T T T

we have the commuting diagram

(I)u v
L(u,v) —""—~ L (u,k); L (k,v)
Lfl LLf;Lf

L(S,t)T‘L(S,h),L(h,I)

2. for any morphism of spans as on the left below

Lf
%’ L (p,p) L(q.,q)
)4 . )4
X< N—X Lix

the diagram on the right above commutes,

3. for all diagrams of the form

TN,
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in £, we have the commuting diagram

L (s,1) L (s,1)
L(s,h);L(ht) L (s,k); L (k,t)
L(S;h);(bh,k,tl lﬁh,h,k;L(k;t)

L(s,h);(L(h,k); L (k1)) (L(s,h); L (h,k)); L (k1)

assoc
4. for all spans (s,t) we have the commuting diagrams

L(s,s);L(s,1) L(s,t); L(t,1)

d)g/,—r %it) ng,/,—r L(s,t);A;

L(S,l‘) le;L(S,t) L(S,l) L(S,l);lLy

unitor unitor

We now prove that the locally defined functor L above may be endowed with an oplax

structure.

Proposition 5.3.5. Let £ be a category with pullbacks seen as a locally discrete 2-category,
and let € be a bicategory. Suppose F: £ — € is a given sinister pseudofunctor. Then the

locally defined functor
LX,Y : Span (S)X,Y — Cng’Ly, X,Y € I

as in Lemma canonically admits the structure of an oplax functor.

Proof. By Proposition[5.3.4] to equip the locally defined functor L with an oplax structure is to
give comultiplication maps @, : L (s,t) — L (s,h); L (h,t)and counit maps Ay,: L (h,h) —

1. x for diagrams of the respective forms

T T
VAN N
X Y zZ X X
satisfying naturality, associativity, and unitary conditions. To do this, we take each @, and

A}, to be the respective pastings

lrr FT (5.3.1)
m VUSMW
Fx 2 pr B py B e B pz FX— ™ _Fx
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Associativity of comultiplication is trivial; indeed, given a diagram of the form

T
N t
% N
w X Y zZ
the pasting

idFT idFT

m m
Fps FT Fsh FX Fah FT Fsk FY Fak FT Fst

evaluates to the same 2-cell regardless if we paste the bottom path with first 775, and then ngy,

FwW FZ

or vice versa. The unitary axioms are also trivial, an immediate consequence of the triangle

identities for an adjunction.

For the naturality condition, suppose we are given a triple of morphisms of spans

XyTXZ XyTNiY
N N

and note that we have the commuting diagram

YV \iZ
h /

R
]lc
T

L(u,v) —2 (k) L (k)

Lf l LLf siLf
L(s.t)—g—=L(s.n): L(h.1)
s,h,t
since the top composite is
FR lrr—— FR

FAM/ [ \Tzk Unrk FA/ T \“;v
/ NS N
FX F]f v FY FT” v FZ

\:AS F):/ X‘Ah
N | AN

FT FT

Fst

and the bottom composite is
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FR lrpr— FR
FAM/ \Tzv
s N
FX | FAf = FAf y FZ
\:AS\ Fxt

FT lpr—— FT

\"):h U’]Fh FA/
NS
FY

where the unlabeled 2-cells are as in Lemma [5.3.3] That these pastings agree is a standard

functoriality of mates calculation. We omit the naturality of counits calculation, as it is a

simpler functoriality of mates calculation. 0

Remark 5.3.6. It is trivial that each Ay given by A at 1y is invertible above.

We now check that the structure given above has its oplax constraints given by Beck
2-cells.

Lemma 5.3.7. Let the oplax functor L: Span(£) — € be constructed as in Proposition
B.3.5] Then the binary oplax constraint cell on L, at a composite of spans constructed as

below

(5.3.2)

/\
/\/\

is given by the Beck 2-cell for the pullback appropriately whiskered by Fpaa and Fxd.

Proof. Given composable spans (a, b) and (¢, d) the composite is given by the diagram (5.3.2)).

We then have an induced diagonal
Sac' hap - (ac’,db’) — (ac’, h); (h,db")
and morphisms ¢’: (ac’,h) — (a,b) and b": (h,db’) — (c,d) for which

a( ’,h,db’,

(a,b);(c,d)—=(ac’,h); (h, db’)—>(a b);(c,d)

is the identity on (a, ) ; (¢,d). Hence the oplax constraint cell corresponding to the comulti-

plication maps @, namely

‘p(a,b),(c,d) : L ((a9 b) 7 (Ca d)) - L (a$ b) 9 L (C’ d)
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is given by the pasting

FM lrym— FM (5.3.3)

/anc/’i T \th\llnph/FA{ [ >;d1§

FX FT’ v FY | FT?’ \ FZ

FZ AC de

e
FT FS

A

where h = bc’ = cb’. It is an easy consequence of functoriality of mates that this pasting is

the usual Beck 2-cell for the pullback with the appropriate whiskerings. [

Finally, we will need the following lemma, a consequence of Lemma [5.2.21] in order to

complete the proof.

Lemma 5.3.8. Suppose L,K: Span (£) — € are given gregarious functors. Then any icon

a: L = K is necessarily invertible.

Proof. We take identities to be pullback stable for simplicity, so that we have (s,7) =
(s,1);(1,7). Let us consider the component of such an icon « at a general span s,¢. Since «
is an icon, the diagram
L(s,t)——L(s,1);L(1,) (5.3.4)
a(s,t)L l%,l);a(l,z)
K(s,t)—w>K(s, 1); K (1,¢)
commutes. By Lemma we know a1, is invertible, and by its dual we know ay )
is invertible. As F and G are gregarious ¢ and ¢ are invertible above. Hence ay,) is

invertible. O

We now know enough for a complete proof of the universal properties of the span

construction as given by Dawson, Paré, Pronk and Hermida.

Proof of Theorem We consider the assignment of Theorem i.e. composition

with the embedding ()5 : £ — Span (€) written as the assignment

F Fx
T
Son(®__ Lo ¢ = £ Um 6
G Gy

We start by proving the first universal property.
WELL perivep. This is clear by Corollary [5.3.8]
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FuLLy FartHFuL. That the assignment @ +— a3 is bijective follows from the condition

(agj}) = ay, forced by Lemma

check that any collection

5.2.21

| and the commutativity of (5.3.4). One need only

ass: F(s,t) = G(s,1)

satisfying these two properties necessarily defines an icon. Indeed, that such an « is locally

natural is a simple consequence of functoriality of mates and a5 being an icon. To see that

such an « then defines an icon, note that each @, may be decomposed as the commuting

diagram

F (s,1)

q)s,h,r

F (s,h); F (h,t)

ch,l,zL

-1 .p-1
](Ds,l,h’q)h,l,z

F(s,1);F(1,1)

F(5,1);01,4,1:F (L)

F(s,1);F(1,h);F(h,1);F(1,1)

and so the commutativity of the diagramf®|

F(s5.8) ——2 F (s,h): F (1)

as,tt

G (s,1)

amounts to asking that the pastings

\Ps,h,t

las‘,h;a’h,t

G (s,h);G (h,t)

id

o | e | e | e | @
~— > ~—— >~ ~— > ~— >
Gas Gsh Gah Gst
and
id

Fas UTIGh Fst
T T
o | —s0o——=e0_ | o
e Gsh Gah ~—
GAS G):[

agree; which is easily seen by expanding a,,, in terms of a5 : and using the triangle identities.

The nullary icon condition is trivial. This shows that ¢ indeed admits the structure of an

icon.

ESSENTIALLY SURJECTIVE. Given any sinister pseudofunctor F': £ — % we take the

gregarious functor L: Span (£) — % from Proposition and note that Ly = F.

8This diagram is equivalent to the binary coherence condition on such an icon.



5.4 Universal properties of spans with invertible 2-cells 151

We now verify the second universal property.

RestrIcTIONS. The second property is a restriction of the first. Indeed, given a pseudo-
functor L: Span (£) — % the corresponding pseudofunctor Ly : £ — ¥ satisfies the Beck
condition, since the embedding (—)s : £ — Span (€) satisfies the Beck condition. Moreover,
given a sinister pseudofunctor F': £ — % which satisfies the Beck condition, the correspond-

ing map Span (£) — % is pseudo since the oplax constraint cells of this functor are Beck

2-cells by Lemma[5.3.7] O

5.4 Universal properties of spans with invertible 2-cells

In this section we derive the universal property of the bicategory of spans with invertible
2-cells, denoted Span,,, (£). Indeed, an understanding of this universal property will be
required for stating the universal property of polynomials with cartesian 2-cells Poly, (£)

described in the next section.

5.4.1 Stating the universal property

The embeddings (—)s and (—), into Span,, (£) are defined the same as in the case of spans
with the usual 2-cells. The difference here is that we no longer have adjunctions fs 4 fa in
general, a fact which we will emphasize by replacing the symbol X with ®. Consequently the

universal property is more complicated to state, and so we will need some definitions.

Definition 5.4.1. Given a category £ with chosen pullbacks, we may define the category of
lax Beck pairs on £, denoted LaxBeckPair (£, %’). This category has objects given by pairs
of pseudofunctors

Fg:E >, Fr: EP - €

which agree on objects, equipped with, for each pullback square

f Fof’
e —— 0 o —
’ ’ f/’g,
8 j lg Fag T Ubf’g TFAg
eo— >0 o— e
S Fsf

in £ as on the left, a 2-cell as on the right (which we call a Beck 2-cell). The collection of
these Beck 2-cells comprise the “Beck data” denoted 7' (or just b), and are required to satisfy

the following coherence conditions:
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1. (horizontal double pullback condition) for any double pullback

o % . d . (5.4.1)
| l
g’I g’ g
\ |
[} [ ] [ ]
f f
we have
F ®(f 1,f2’ )
m Fo(K55)
[ ] [ ] [ ] o —————> 0
’” r” '1\ /’ ’ ’ '/’ 4
FA&’HT Ub_gﬁ Fﬁg' Ubg’: TFAg = FAg”] Ubﬁg’gg TFAg
[} [ J [ ] o —— >0
w Fs(fi o)
Fo(1i 1)
2. (vertical double pullback condition) for any double pullback
|y y P
S A (5.4.2)
g 22
o—f'—e@
8 81
o ——>0
f
we have
F®f// F®f//
[ J o —> 0
Fagy U2 Fye
Fa(gigy)| = I Fof— I = |Fa(s182) = Fa(g)s}) ub;;’l‘igé Fa(g182)
Fag Py
e —————> 0 o ———>0
Fof Fof

3. (horizontal nullary pullback condition) for any nullary pullback as on the left below,
the right pasting below is the identity

:

f Fo(f)
° °

L4 _—
lid id éﬂ?id) LA FA%CB id
[ ]

o ———> 0

f Fe(f)
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4. (vertical nullary pullback condition) for any nullary pullback as on the left below, the

right pasting below is the identity

id

° L- ° o —Fg(idy—eo
gl lg Fag o8 Fag
° —d> ° o —Fg(id— o
1
id

We refer to these conditions as the Beck—Chevalley coherence conditions. A morphism in
this category (Fg, Fa,l' b) — (Gg,Ga,C ) is a pair of icons @: Fg = Gg and B: FAo = Gy

such that for each pullback square as on the left below

prfor

°o——e Fof’ - Fag' Gof" - Gag’ (5.4.3)
g" ‘g beéff’[ [beéff'
°o— Fpg - Fof ey Gag - Gof

the right diagram commutes. The category BeckPair (€, ¥) is the subcategory of LaxBeckPair (£, %)

containing objects (Fg, Fa," b) such that every Beck 2-cell in b is invertible.

Before we can state the universal property, we will need to describe how lax Beck pairs

arise from suitable functors out of Span, , (£).

Definition 5.4.2. Let £ be a category with pullbacks (chosen such that identities pullback to

identities) and let 4" be a bicategory. Then the category
Greg@,A (Spaniso (8) > cg)

has objects given by those gregarious functors of bicategories Span, , (£) — ¢ which restrict
to pseudofunctors when composed with the canonical embeddings (—)g : £ — Spany, (£)

and (-), : £ — Span,, (£). Moreover, we require that each oplax constraint

F - F o F

OS/.\Z. .S/.\id.

) °

“ N ) (5.4.4)
[ J [ J
be invertible. The morphisms of this category are icons.

Proposition 5.4.3. Let £ be a category with pullbacks (chosen such that identities pullback
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to identities) and let € be a bicategory. We then have a functor
(—)ena : Gregg s (Spany, (£),%) — LaxBeckPair (£,%)

defined by the assignment taking such a gregarious functor F: Span,, (£) — € to the pair

of pseudofunctors

Fg: & >, Fr: EP - €

equipped with Beck data ©'b given by, for each pullback square as on the left below (with the

chosen pullback on the right below)

J !
o—— 0 e —— 0
o——— 0 e——0

f f

the composite of:

1. the inverse of an oplax constraint cell

F 3 F — F

s

)

.g// . \\ld.

2. the application of F to the induced isomorphism of pullbacks

F — F

.g/.\]?.)

N,

3. the oplax constraint cell

F o F

.g/.\id.)

.é/.\j(‘v.

—>F(.ii/.\f.

Proof. We must check the Beck 2-cells defined as above satisfy the required coherence
conditions. The nullary conditions on the Beck 2-cells are trivially equivalent to the nullary
conditions on the constraints of F. To see the “horizontal double pullback condition”
holds, we note that since F: Span,,, (£) — % is normal oplax, we have a resulting natural

transformation

N (F): N (Spang, (£)) — N (¢)

where the functor N: Bicat — [A°P, Set] is given by the geometric nerve [46]. In particular
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(as in [S]), on 2-simplices the assignment

a b Fa Fb
/ﬂc\\ = /'ﬂ‘ﬁ\\
° ° ° °

c Fc

(where Fa is Fa composed with the appropriate oplax constraint cell) satisfies the condition

that

AR

AR

Now consider the three spans

implies that

ﬂ|

|

.id/ . \fz. .id/ . \1. [ ] g/ . \ld.

which we denote by shorthand as (1, f5), (1, f1) and (g, 1) respectively (where fi, f> and g are
as in (5.4.1)). Applying the above implication to the equality below, where each of the four

regions contains a canonical isomorphism or equality of spans

(LA1) (1Lf1)
°

—_—

[ ]
(l,fz)‘ (Lf1K
[ ]

/

°
(8”11 15) (8”11 55)

[ ]
(&) = (1,f2)|\g’,f{\|(g,l)
[ ]

@<—————0

|

then gives the horizontal double pullback condition (after composing with the appropriate
pseudofunctoriality constraints of Fy and constraints of the form (5.4.4)). The proof of the
vertical condition is similar. Finally, it is clear the canonical assignation on morphisms is well
defined, and the assignment given by composing with the canonical embeddings is trivially

functorial. L]

We can now state the universal property of Span, , (£).
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Theorem 5.4.4. Given a category £ with chosen pullbacks (chosen such that identities
pullback to identities), the functor (—)ga of Proposition defines the equivalence of
categories

Gregg , (Spany, (£),%) ~ LaxBeckPair (€,%)

which restricts to the equivalence
Icon (Span (£),%) ~ BeckPair (€,%)

for any bicategory €.

5.4.2 Proving the universal property

We prove Theorem [5.4.4] directly, as the properties of generic bicategories cannot be used
here. Also, for simplicity we assume without loss of generality that ¢ is a 2-category and that
the gregarious functors in question strictly preserve identities. This is justified since every
bicategory is equivalent to a 2-category and every normal oplax functor is isomorphic to one

which preserves identity 1-cells strictly.

Proof of Theorem We start by proving the first universal property. We must prove that

the functor

(—)ena : Gregg s (Spany, (£),%) — LaxBeckPair (£,%)

defines an equivalence of categories.
EssenTiaLLY SURJECTIVE. Given such a pair Fx and F) with Beck data b we may define

local functors

Lyy : Spany, (€)xy — Cxy» X,Ye€&

by the assignment (suppressing pseudofunctoriality of Fy and Fj)

E FE
FAf Fof
SN e o

- FX—SFM WY  FM-2-FY

N A S A

M

which is functorial by the Beck coherence conditions. An oplax constraint cell

()l

;L(;’/'\q.)
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is given by (suppressing pseudofunctoriality of Fg and Fj)

FAP/4 \®v
FAu F@Q
o —

Fz\ /AP

That these constraints satisfy the identity conditions trivially follows from the unit con-
dition on the Beck 2-cells. For the associativity condition, suppose we are given diagrams of
chosen pullbacks as below, with p the induced isomorphism of generalized pullbacks, that is

the associator for the triple (@, b),(c,d), (e, f)),

/h
/Y/\/\ /\/

Then we must check that

A‘Y/

\f.

L (agi, fj) —2 L(ag,dh); L (e, f) —>= (L (a,b) ; L (c,d)); L (e, f)

g

L(am,ffn)—¢>L(a,b);L(ck,ff)—<p>L(a,b);(L (c,d);L(e, f))

commutes. The top path is a pasting of Beck 2-cells correspondingP to the left diagram in
(5.4.5) below, and the bottom path is the pasting of Beck 2-cells corresponding to the right

diagram in (5.4.5) below (suppressing pseudofunctoriality constraints of Fx and Fj) which

9By “corresponding” we mean that one assigns each pullback square in (5.4.3) to the Beck data for that
square, as in Deﬁnition
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are equal by the Beck coherence conditions.

2 NNy
NN T NINUANN
NN NN N A
NN N

(5.4.5)

For checking the oplax constraint cells are natural, consider a pair of morphisms of spans

VAR RN

° f ° ° °

NI NP

We must check the commutativity of

L(sm',nt") —~L (s,2); L (m,n)
L(f ;g)L LLf Lg
L(up',qv')—=L(u,v); L(p,q)

The top path of this diagram corresponds to a pasting of Beck 2-cells for the left diagram
below, and the bottom path corresponds to the pasting of Beck 2-cells for the right diagram
below. Hence the commutativity of this diagram amounts to applying the Beck coherence

conditions to the diagrams of pullbacks (which compose to the same pullback)

t 8
° ° °
h v’
8 1 eo—0 —o
1
” «lae hl ll ll
’
)4 P = .—>1 .év [ ]
f v 1 l l l
® ] ® ® p p p
f IL 1 1 o —>e—>e
° ° ° °
1 v 1

where £ is the morphism of spans arising from horizontally composing the morphisms of
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spans f and g.

Inherited from Proposition is the fact that all adjunctions in Span,, (£) are of the
form (1, f) 4 (f,1) up to isomorphism, where f must be invertible. To see F' is gregarious,
meaning that this gives an adjunction Fy f 4 Faf in €, note that we may construct the unit

and counit as the Beck 2-cells arising from the pullback squares

N

FuLLy FartHFUL. Suppose we are given two gregarious functors F,G: Span,y, (£) — €

along with their restrictions Fg, Gg and Fj, G and families of Beck 2-cells b and ©b.

We first check the assignment of icons is surjective. Suppose we are givenicons a: Fg —
Gg and : Fo — G such that (5.4.3) holds. Then we may define an icon y: F — G on
each span (s,7) by

F(s,1) ot G (s,1) (5.4.6)

‘| |

Fgt - Fps Ggt - Gps

ar#fBs

where ¢ and ¢ are the appropriate oplax constraint cells (necessarily invertible above). Now
(5.4.3) forces 7y to be locally natural, as it suffices to check naturality on generating 2-cells,

that is diagrams such as

AN
v I\
° f e
N

with f invertible (this only needs trivial pullbacks corresponding to b{’ ’1f). For checking vy is

an icon, the identity condition on 7y is from that of @ and 5. The composition condition is
precisely (5.4.3).

We now check that the assignment of icons is injective. Suppose two given icons o,
both restrict to icons @ and . Then since the icons o~ and ¢ respect the composite of the

spans
NN

both o~ and § must satisfy (5.4.6) (in place of y) and so are equal.
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ResTrICTIONS. Itis clear from the above that the oplax constraints are invertible precisely

when the Beck data is invertible. ]

5.5 Universal properties of polynomials with cartesian 2-
cells

In this section we prove the universal property of the bicategory of polynomials with cartesian
2-cells, denoted Poly, (£). We will keep the proof as analogous to the case of spans as

possible, though it still becomes somewhat more complicated.

5.5.1 Stating the universal property

This universal property of Poly, (£) turns out to be an amalgamation of that of Span (£)
and Span, , (£); in particular to give a pseudofunctor Poly, (£) — % is to give a pair of
pseudofunctors

Span (£) — ¥, Span,, (£) = €

which “A-agree” , that is coincide on objects and on spans of the form

vyl x- X x

with an additional condition asking that certain “distributivity morphisms” be invertible. For
the purposes of the proof we will give a slightly different but equivalent description, for which

we will need the following definitions.

Definition 5.5.1. Given a category £ with chosen pullbacks, we may define the category of
lax Beck triples from £ to a bicategory %, denoted LaxBeckTriple (£, %’). An object consists

of a triple of pseudofunctors which agree on objects
Fs: & — €, Fpr: EP — €, Fg:E— €

such that Fs f 4 Faf for all morphisms f in £, along with “Beck data” denoted by 7b and

consisting of for each pullback square

f’ Fof’

(5.5.1)

8

[ ] [ ]
FAg’T by 8 TFAg
[ ] [ ]

—_—

f Fsf
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in £ as on the left, a 2-cell as on the right subject to the binary and nullary Beck coherence
conditions as in Definition [5.4.11
A morphism (Fs, Fp, Fg,'b) — (Gx, Ga, Gg, D) in this category consists of an invertible
icon B: FA = Gy and icon y: Fg = Gg such that for each pullback square in £ as above,
the diagram
’ *ﬁ >/
Fof - Fag' ™= Gof' - Gag’ (552)
be’.g’l lef’,g’
f.8

f.g
Fag - F®fT*’)’f) Gprg - Gef

commutes.

There are a number of conditions which may be imposed on a lax Beck triple; these are

defined as follows.

Definition 5.5.2. We say a lax Beck triple (Fx, Fa, Fg, ' b) from £ to a bicategory ¢ is a Beck
triple if both:

7 ’
78" s invertible;

1. the A® condition holds; meaning each component of the Beck data b e

2. the XA condition holds; meaning each component of the Fx-Fa Beck data is invertible[™%;

Furthermore, we say such a Beck triple is a distributive Beck triple if in addition:

3. the 2® condition (distributivity condition) holds; meaning that for any distributivity

pullback in £ as on the left below

q Feq
o ——>0 e ———> 0
Fap T Fsr
P ~ Fap
. r oo it Byr Lore e (5.5.3)
u UT’FM FTM
Fsu T id
o —>0 e ——> 0
f Fof

the corresponding “distributivity morphism” (defined as the pasting on the right above)

is invertible.

10This is equivalent to asking the gregarious functor Span (£) — % resulting from Fs be a pseudofunctor.
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In particular, we define a Beck triple to be a lax Beck triple such that both conditions
(1) and (2) hold, and a DistBeck triple to be a Beck triple also satisfying (3). We de-
note the corresponding subcategories of LaxBeckTriple (£,%) as BeckTriple (£,%) and
DistBeckTriple (£, %) respectively.

There are a number of canonical embeddings into Poly,. (£) to mention; the most obvious

being the embeddings
(m)s:E > Poly . (£), (=)p:EP > Poly,.(£), (-)g:E& — Poly. (&)

which are defined on objects by sending an object of £ to itself, and are defined on each

morphism in £ by the assignments

(D : x—Loy o @ oxx X x .y
(<) : x—L.y o @yl x by xx
(e : x—L.y o oy x Loy by

We also have the inclusion (—)s, : Span (£) — Poly,. (€) of spans into polynomials given by

the assignment

NG TN
R

The less obvious embedding (—),e : Span, (£) — Poly, (€) is the canonical embedding of

spans with invertible 2-cells into polynomials, given by the assignment

where one must note the appropriate square is a pullback since f is invertible.
We will need to consider gregarious functors which restrict to pseudofunctors on the

embeddings we have just defined, and so we make the following definition.

Definition 5.5.3. Let £ be a locally cartesian closed category, let 4 be a bicategory and

form the category Greg (Poly, (£),%¢). We define Gregg, (Poly. (£),%) as the subcategory



5.5 Universal properties of polynomials with cartesian 2-cells 163

of gregarious functors F': Poly,.(£) — % such that the restriction Fg: & — % is pseudo.
Define Gregsp zg (Poly.. (£),%) as the subcategory of gregarious functors for which both

restrictions Fxa: Span(€) — € and Fag: Span,, (£) — € are pseudo.

Remark 5.5.4. Note that a gregarious functor F': Poly, (£) — ¢ automatically restricts to
pseudofunctors Fy and Fa. This is why we have omitted these conditions. Also note that

oplax constraints of the form

t id t
e —eo o — e

VN S BN 4 I

are automatically invertible by gregariousness.

Definition 5.5.5. Given a category £ with pullbacks, we define

Greg (Span (£),%) xa Gregg , (Span, (£),%)
to be the full subcategory of

Greg (Span (£),%) x Gregg , (Spany, (£),%)

consisting of pairs H: Span(£) — % and K : Span,,, (£) — ¢ which coincide on objects

and on spans of the form

vyl x X x

Noting that this forces Hs f 4 Haf = Kaf for all morphisms f in £, we denote by E the

assignment of such a H and K to the lax Beck triple
Hs: & — €, Kr: EP = €, Kg:E— €

with Kx-Kg Beck data Xb given by Proposition m

We now have enough to state the universal property of polynomials.

Theorem 5.5.6 (Universal Properties of Polynomials: Cartesian Setting). Given a locally

cartesian closed category € with chosen pullbacks and distributivity pullbacks, denote by T
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the composite operation

Gregg, (Poly, (£),%)

v
Greg (Span (£),%) xa Gregg , (Span, (£),%)

\
LaxBeckTriple (£,%)

where the first operation is composition with the embeddings (—)sx and (—) g, and the second

operation is E from Definition Then T defines the equivalence of categories
Gregg, (Poly, (£),¢) ~ LaxBeckTriple (£,%)
which restricts to the equivalence
Gregs sz (Poly, (£),%) ~ BeckTriple (€,%)
and further restricts to the equivalence
Icon (Poly. (£),%) ~ DistBeckTriple (€, %)
for any bicategory € .

Remark 5.5.77. There are five other equivalences of categories since each of the three inde-
pendent conditions XA, A® and X® of Definition [5.5.2)may or may not be enforced (giving a
total of eight conditions). However, as the three above appear to be the most useful, we will

not mention the others.

5.5.2 Proving the universal property

Before proving Theorem we will need to show that given a lax Beck triple £ — &
one may reconstruct an oplax functor Poly,. (£) — %. The following lemma and subsequent
propositions describe this construction. Also note that we are keeping the proof as similar as

possible to the case of spans, starting with the below lemma which is the analogue of Lemma

533

Lemma 5.5.8. Let £ be a locally cartesian closed category seen as a locally discrete 2-
category, and let € be a bicategory. Suppose we are given a lax Beck triple consisting of
pseudofunctors

Fs: & — €, Fpr: E - €, Fe:E—>F
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and Beck 2-cells b. We may then define local functors
Lx’y . POlyc (E)X,Y — %LX,LY’ X,Y € &

by the assignment T — FT on objects, and

E-'-B ; el B .
s t AS T )
X /f pb g\Y = X {F fUb Faglly Y
:l\ / FAM\T Fsv
M—N M—N

on morphisms, where « is the mate of the isomorphism on the left below

FE 2t FE FB-2L Fy
Fle = szu'sz Fzgt = llFY
FX——=FX FN ——>FY
Irx Fsv

under the adjunctions Fss 4 Fas and Fsu - Fx f 4 Faf - Fau, vy is the mate of the isomorphism
on the right above under the adjunctions Fsg 4 Fag and 1ry 4 1fy, and bg,’g (simply denoted

b for convenience) is the component of the Beck data at the given pullback.

Proof. The local functor Lyy sends the components of the composite

to the top and bottom halves of the pasting diagram below:

Fep _°P_FB

/ Fyfo o Tgﬁ
In

FX —Fpu= FM ~Feq= FN —Fsv=FY

Jaz A b Uy
o FTh I FTk/E:

®

To see this is functorial, we insert an unlabeled constraint of Fx and its inverse on both the
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left and right side of the above diagram, giving the pasting below

FE- Y. pp W pp fer pp W _pp i _pp
Frs A A A ¢w
Fof Fnf b F F
i | A N O
FX—FAu>F,{W =~ Fpahf = F,{W—FWPFN =~ Fakg = FN —FvFY
Jan A A V
Fah Fah b Fnk Frk
Fam | i ! i ‘ | Fzn
FT — > FT — = FT ——~ FS ——~ FS —~ FS

and then apply the vertical double pullback condition on Beck data and use functoriality of
mates. This shows that the above diagram is Lxy applied to the composite. That the identity
maps are preserved is similar to the case of spans, but using the vertical nullary pullback

condition on Beck 2-cells b. O]

As in the case of spans, it will be helpful to recall from Chapter 4] the reduced description

of an oplax structure on local functors out of the bicategory of polynomials.

Proposition 5.5.9. Let £ be a locally cartesian closed category and denote by Poly,. () the
bicategory of polynomials in £ with cartesian 2-cells. Let € be a bicategory. Then to give

an oplax functor

L:Poly.(£) > %

is to give a locally defined functor
Lyy: Poly.(E)xy — Crx.rys X, Yeé&
with comultiplication and counit maps
D hpos: L(s,p,t) = L(s,p1,h); L(h,p,t), Ap: L(h1,h) — 11x

for every respective diagram in £

J

X
where we assert p = py; pa on the left, such that:

N R

Eﬂ>Tﬂ>B ——
Y Z X X
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1. for any morphisms of polynomials as below

SRV

we have the commuting diagram

|s

oy <~—00—m—~
\ ,/<
N

q q1
—_— —_—

{E
AN

N<——0U

o <—x— =

D — D
)4 P1

]

usq1,k,q2,v

L (u, q,V) L (u,q1,k); L (k,q,v)
L(f,g)t jL(f,C);L(c,g)
L (s,p,t) W L(s,p1,h); L(h,pa,t)

2. for any morphism of polynomials as on the left below

R4 R Ls.1,s)—LD 1410
N
X sl |y Z \ /
NyA
the diagram on the right above commutes;
3. for all diagrams of the form
04 G-L-H- K
N t
o kN
w X Y Z
in £, we have the commuting diagram
L (s,a;b;c,t) L (s,a;b;c,t)
(Ds,u,h,b;c,tl L(Ds,u;b,k,c,t
L(s,a,h); L(h,b;c,t) L(s,a;b,k); L(k,c,1)
L(S»a,h);fbh,b,k,c,tl LQs,a,h,b,k;L(k»CJ)

L(s,a,h);(L(h,b,k);L(k,c,t)) (L (s,a,h);L(hb,k));L(k,c,t)

assoc



168 Universal properties of bicategories of polynomials

4. for all polynomials (s, p,t) the diagrams

L(s,1,8);L(s,p,t)

L(s,p,t) lrx; L(s,p,t)

unitor

L(s,p,t); L(t,1,1)

(Dy L(s,p,t):A\;

L(s,p,t) L(s,p,t); 11y

unitor

commute.

We now prove that the locally defined functor L above may be endowed with an oplax

structure.

Lemma 5.5.10. Let £ be a locally cartesian closed category seen as a locally discrete

2-category, and let € be a bicategory. Suppose we are given a lax Beck triple
Fs: & — €, Fp: EP > €, Fe:E—>F
with Beck 2-cells b. Then the locally defined functor
Lxy: Poly.()xy — Crx.Lys X,Yeé&
as in Lemma canonically admits the structure of an oplax functor.

Proof. By Proposition[5.5.9] to equip the locally defined functor L with an oplax structure is
to give comultiplication maps @ ,, . p,:: L (s,p,t) — L(s,p1,h); L (h,p2,t)and counit maps

Ap: L(h,1,h) — 1px for all diagrams of the respective forms, where p = pop1,

i T T
N TN N
X Y Z X X

satisfying naturality, associativity, and unitary conditions. To do this, we take each @y, 1, »,

to be the pasting
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and each Ay to be the pasting

Felr
—0
FT = FT
Fah Sler” Fsh
Uern
FX 1rx FX

Associativity of comultiplication is almost trivial; indeed, given a diagram of the form

04 G- H- Kk
o e N
W X Y z

both paths in the associativity of comultiplication condition compose to

Fgcba

lrG lra
Uth\ Uan\
Fsh Fah Fgb Fsk Fpk

FG FX FG FH FY FH

FW Fas FO ®d Fg Fxt

FK Fz

by associativity of the constraints of Fg. The unitary axioms are also almost trivial, a

consequence of the triangle identities for an adjunction and the unitary axioms on Fg.

For the naturality condition, suppose we are given a triple of cartesian morphisms of

polynomials
R . 1 R s S-Log
V| A N
N N } |
and consider the diagram
(Du,ql,k,qz,v
L(u,q,v) L (u,q1,k); L(k,q,v)
L(f,g)t jL(f,C);L(c,g)
L (s’p’ t) T- L (Sapl’ h) 5 L (h,PZ, t)

s,p1,h.pp.t
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Now the top composite is

Feq

FR -Feqr FS lrpr— F'S —Feq» F 1

AT Dl | e

FX FT” (o FT U FY | Fac b Fag | FZ

\’TAS Fz/ \"Ah
AN / AN

FE -Fepr- FT FT -Fep» FT

Fxt

where the unlabeled 2-cells are as in Lemma [5.5.8] and one may rewrite the pasting of the
three middle triangles above as an “identity square” and pasting with 7rj,. It follows that this

is equal to the bottom composite given by the pasting

FR Faq FI

FAM/ \sz
/

FX U Ry mn Fe | FZ
AS Fst
G
FE Fep FB
F®[Z\1 = 5@[12
FT —1pr— FT
}FE&UTIFthZ
FY

using the horizontal binary axiom on elements of b; thus showing naturality of comultipli-
cation. Naturality of counits is similar to the case of spans (except that one must use the

horizontal nullary axiom on elements of b) and so will be omitted. [

It will be useful to have a description of the oplax constraint cells ¢ corresponding to our

comultiplication maps ®. This is described by the following lemma.

Lemma 5.5.11. Let the oplax functor L: Poly,. () — € be constructed as in Proposition

Then the binary oplax constraint cell on L at a composite of polynomials constructed

as below

H2m 2ok (5.5.4)

LN,
Xy &Y% YZ
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is given by the pasting

v (5.5.5)

FH -Fepr- FM lpy— FM -Fep» FK
%a( ] x‘zh\UUFh/FA/ T T »zdz\

FX | FTV b FT v FY | FT o IT v FZ

Fs AC

e
FA-Fgm= FB FC —Fgn=FD

Al Fsd

where p = pop1 and h = bx = cy.

Proof. Given composable polynomials (a,m, b) and (c,n,d) the composite is given by the

terminal diagram as in (5.5.4) . We then have an induced diagonal
5&6/,/’1,db/ : (aw, pa dZ) i (aW, p17 h) ; (h5 p2, dZ)
and morphisms (w, x) : (aw,p1,h) — (a,m,b) and (y,z) : (h, p2,dz) — (c,n,d) for which
ac’ h,db’ SW,X);(y,z

s
(a,m,b); (c,n,d) —= (aw, p1, h); (h, p2,dz) —= za, m,b); (c,n,d)

is the identity on (a,m, b) ; (¢, n,d). It follows that the binary oplax constraint cell correspond-

ing to the comultiplication maps @, namely
Sp(a,m,b),(c,n,d) : L ((a’ m, b) 7 (C’ na d)) - L (a, ma b) 9 L (C9 }’l, d)

is given by (5.5.9). O

We now know enough for a complete proof of the universal properties of the polynomials

with cartesian 2-cells.

Proof of Theorem We consider the assignment
T: Gregg (Poly, (£),%) — LaxBeckTriple (£,%)

of Theorem i.e. given a gregarious functor F: Poly,.(£) — % which restricts to a

pseudofunctor when composed with (—)g, we extract, via Theorem the pseudofunctors

Fsz, Fp and Fg equipped with the Beck data b. This data defines a lax Beck triple £ — %
WELL periNep. Given an icon a: F = G: Poly,(£) — € we know ap: FAo = Gp

is invertible, as it is a restriction of an icon asa: Fsp = Gsa: Span(£) — ¥ which is
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necessarily invertible by Lemma[5.3.8]
We start by proving the first universal property.

FuLLy rartHFUL. That the assignment @ +— (a@a, @) is bijective follows from the fact the

assignment azp — @, is bijective, and the necessary commutativity of

F(s,p,t) ——F (s,1,1); F (1,p, 1) ; F (1,1,1) (5.5.6)
a’(s,p,t)l ja’(s,l,l)§Q(1,p,1)§a/(1,1,r)

G(s,p,t)TG(s, 1,1);G(1,p,1);G(1,1,1)

where ¢ and ¥ must be invertible constraints since F' and G are gregarious.

Again, that (agfl) = ap, is forced by Lemma|5.2.21|and one need only check that any

collection

s pr: F (s,p,t) = G(s,p,1)

satisfying this property and (5.5.6)) necessarily defines an icon.

We omit the calculation showing « is locally natural. Indeed, this calculation is almost
the same as in the proof of Theorem|[5.3.2] except we must interchange a Beck 2-cell with the

components ap and ag using the condition (5.5.2).

To see that such an « then defines an icon, note that each @, 5, ,,; may be decomposed

as the commuting diagram

(I)S,Pl shupot

F(S,p,t) F(S’Pl,h);F(h»PZ,t)

-1 -
DQs.py.1py.t P 1 Pyt

SL,n,1,

and so the commutativity of the diagram

s,p1h.post

)
F(s,p,1) F (s,p1,h); F (h,pa,t)
as,p,tt l"s,m @, py .t

G (s,p,t) G (s,p1,h); G (h, p2,1)

LI’s,pl,h,pz,t
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amounts to checking that the pastings

Gas Gepi Gsh Gah Gep2 Gst

and
Fegp
ke
QP
Uy
id
Fps U’]Gh Fst
T T\
[ ] [ [ J [ J [ ] [ ] [ J
7 Gepi Gsh Gah Gepr =7
GAS GZt

agree. This is almost the same calculation as in spans except here we must use that ag is an

icon.

ESSENTIALLY SURJECTIVE. Suppose we are given a lax Beck triple (Fy, Fy, Fg,0). Then by
Proposition [5.5.10, we get a normal oplax functor F': Poly,. (£) — ¢ (which is gregarious
as a consequence Proposition [5.2.25] and clearly restricts to a pseudofunctor on ®), and this

constructed F clearly restricts to the same lax Beck triple when 7" is applied.
We now prove the remaining two universal properties, seen as restrictions of the first.

REsTrICTIONS. Itis clear that for any Gregg functor F': Poly,. (£) — ¢ we may write F' =
F where F is given by sending F to its lax Beck triple and recovering amap F : Poly. (&) = €

under the above equivalence.

Also it is clear that F' (or equivalently F) restricts to pseudofunctors on XA and A®
precisely when this lax Beck triple is a Beck triple. This is seen by using the general
expression for an oplax constraint cell (5.5.3) on composites of polynomials (s, 1,) ; (u, 1,v)

and (s,2,1); (u,v,1).

Now as each oplax constraint cell may be constructed from “Beck composites” as above
and “distributivity composites” of the form (1, 1,u) ; (1, f, 1) (by the proof of [17, Prop. 1.12]),
it follows that asking F be pseudo corresponds to asking that, in addition, the oplax constraint
cells for composites (1, 1,u); (1, f, 1) be invertible. But this is precisely the £® distributivity

condition. n
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5.6 Universal properties of polynomials with general 2-cells

In this section we prove the universal property of the bicategory of polynomials with general
2-cells, denoted Poly (£). As this bicategory is not generic, the methods of the previous
section do not directly apply. However, as composition in Poly,. (£) and Poly (£) is the same

we can still apply some results of the previous section to help prove this universal property.

5.6.1 Stating the universal property

The universal property of Poly (£) ends up being simpler to state than that of Poly,. (£) due to
the existence of more adjunctions. To state this property we will first require a strengthening
of the notions of “sinister” and “Beck” pseudofunctors as described in Definition[5.2.18] For
the following definition, recall that the categories of such pseudofunctors and invertible icons
are denoted Sin (£, %) and Beck (£, €) respectively.

Definition 5.6.1. Let £ be a category with pullbacks, and let ¢ be a bicategory. We denote by
2Sin (£, €’) the subcategory of Sin (£, %) consisting of pseudofunctors F': £ — % for which
F f has two successive right adjoints for every morphism f € £. We denote by 2Beck (£, %)
the subcategory of 2Sin (£, %) consisting of those pseudofunctors which in addition satisfy

the Beck condition.

Remark 5.6.2. The above Beck condition is on the pair Fx-Fj, but one could also ask a Beck
condition on the pair Fa-Fr;. The reason for not using the latter is that the Beck 2-cells
(arising from adjunctions Fp f 4 F11 f) are not in the direction required for constructing a lax
Beck triple, and are invertible if and only if the former Beck 2-cells are invertible.

The following lemma will be needed to describe a distributivity condition which may be

imposed on such pseudofunctors.

Lemma 5.6.3. Let £ be a locally cartesian closed category seen as a locally discrete 2-
category, and let € be a bicategory. Suppose F: & — € is a given 2-Beck pseudofunctor,
and for each morphism f € & define Fx f := F f, take Faf to be a chosen right adjoint of
F f (choosing Fy to strictly preserve identities), and take Fri f to be a chosen right adjoint
of Faf (again choosing Fyy to strictly preserve identities). We may then define a Beck triple

with underlying pseudofunctors

Fs: & — €, Fpr: E? - €, F:€E—- %
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and for each pullback as on the left below, the mate of the middle isomorphism below whose

existence is asserted by the Beck condition

o o A, LLE A (5.6.1)
g'l jg Fzg'l = szg FAg'T e ]FAg
e— o oo °o——o
f Eof Fnf

defining the Beck data as on the right above.

Proof. One needs to check that the defined Beck data satisfies the necessary coherence
conditions, but this trivially follows from functoriality of mates. Also, every component
of the Beck data bf:g’gl defined as in the above lemma must be invertible. This is since an
isomorphism of left adjoints must correspond to an isomorphism of right adjoints under the

mates correspondence. [

It will be useful to give the Beck triples arising this way a name, and so we make the

following definition.

Definition 5.6.4. We call a Beck triple £ — % cartesian if for every morphism f € £ there
exists adjunctions Fx f 4 Faf 4 Fr1f and the AIl Beck data corresponds to the A data via

the mates correspondence as in (5.6.1).

We may also ask that a cartesian Beck triple (or the corresponding 2-Beck functor)

satisfies a distributivity condition.

Definition 5.6.5. Given the assumptions and data of Lemma[5.6.3] we say a 2-Beck pseudo-
functor F: £ — € satisfies the distributivity condition if the cartesian Beck triple recovered
from Lemma [5.6.3] satisfies the distributivity condition of Definition [5.5.2] (meaning this

cartesian Beck triple is a DistBeck triple).

Similar to the case of Poly,. (£), we again have embeddings
(-)g :E > Poly(E), (—)p:E® > Poly(&), (—)y:& — Poly(€)

The main difference here is that with these embeddings we have triples of adjunctions
fs 4 fa 4 fi for every morphism f € £.

Trivially we have the inclusion (—)s, : Span () — Poly (€) of spans into polynomials
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given by the assignment

The less obvious embedding (=), : Span (£)°° — Poly (€) is the canonical embedding of
spans with reversed 2-cells into polynomials, given by the assignment

JIN /i

t
—

NSRS
AT N

We now have enough to state the universal property of polynomials.

I
e

Theorem 5.6.6 (Universal Properties of Polynomials: General Setting). Given a locally
cartesian closed category € with chosen pullbacks and distributivity pullbacks, composition

with the canonical embedding (-)s : £ — Poly (€) defines the equivalence of categories
Greg (Poly (£),%) ~ 2Beck (£,%)
which restricts to the equivalence
Icon (Poly (£),%) ~ DistBeck (£,%)

for any bicategory €.

Remark 5.6.77. One might ask if there is a universal property without the Beck condition being
required. The problem is that if the restrictions to Span (£) and Span (£)° are only required
gregarious, but not pseudo, we do not have a canonical way to construct the necessary AIl

Beck data b, and so such a universal property would be unnatural.

5.6.2 Proving the universal property

Before proving Theorem [5.6.6) we will need to show how to reconstruct a gregarious functor
Poly (£) — % from a 2-Beck pseudofunctor &€ — % . The following proposition describes
this construction.
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Proposition 5.6.8. Let £ be a locally cartesian closed category seen as a locally discrete
2-category, and let € be a bicategory. Suppose F: £ — € is a given 2-Beck pseudofunctor,
and for each morphism f € & define Fyf := F f, take Faf to be a chosen right adjoint of
F f (choosing Fy to strictly preserve identities), and take F11 f to be a chosen right adjoint of

FAf (again choosing Frj to strictly preserve identities). We may then:
1. define a lax Beck triple as in Lemmal5.6.3}

2. define a gregarious functor L: Poly,.(£) — € satisfying the LA and ATl Beck condi-

tions;
3. define local functors

L: Poly (g)X,Y - %LX,LY’ X,Y € &

assigning each general morphism of polynomials
E
1IN
S Y
\f l g/

M q

lm

¢

—pe-

=

to the pasting

ar H\

FX lea FS—FHP6->FB Uy

\FAf b %

where of the diagrams
FS -5, Fs FEX". Fpp FB£>FY
Fzsilee = quinf F%\.e = I%B Fig = ll!*y
FX——FX FS -Fupe- FB FN ——FY
lrx Fsv

(a) « is constructed as the mate of the left diagram under the adjunctions Fss - Fxe A

Fpe - Fas and Fsu - sz a! FAf - Fau;
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(b) m is constructed as the mate of the middle diagram under the adjunctions Fpe A

Fre and 11:3 4 lFB;
(c) b is the component of the Beck data at the given pullback;

(d) vy is the mate of the isomorphism on the right above under the adjunctions Fxg A

FAg and 1py 4 lpy.
4. define a gregarious functor L: Poly (£) — €.

Proof. We prove the different parts of the statement separately.

Part 1. See Lemmal[5.6.31

Part 2. It then follows from Theorem [5.5.6] that this cartesian Beck triple gives rise to
a gregarious functor L : Poly. (£) — €. The ZA invertibility condition translates to an AIT
invertibility condition via the mates correspondence; an isomorphism of left adjoints must
correspond to an isomorphism of right adjoints. Therefore each component of the Beck data
b is invertible.

Part 3. The goal here is to show that we have local functors
L: POly((c:)X,Y — CKLX’Ly, X,Y € E
We first note, for well definedness, that given two general morphisms of polynomials as below

E-L.B E-L.B

S D S R

X S1 —rer> B Y ~ X Sy —rer> B Y

N kA N RS

equivalent in that there exists an isomorphism v: S| — S, such that v = f] and exv = e,
it follows from a straightforward functoriality of mates calculation that Lxy assigns both
morphisms of polynomials to equal pastings.

As local functoriality with respect to cartesian morphisms was shown in Lemma [5.5.§]
local functoriality with respect to “triangle morphisms” is a straightforward functoriality of
mates calculation, and the case of a triangle morphism followed by a cartesian morphism is
almost by definition, it suffices to consider the case of a cartesian morphism followed by a

triangle morphism (the only non trivial case to consider).
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Suppose we are given a composite of polynomial morphisms as on the left below

evaluated as the diagram on the right above. We must check that

ro - TE LAy FE 1 pp (5.6.2)
/ R 7|
FX —Fu- FM “Fg-FN =  FX lo FP-Fupe- FB
$ Jm H \FATf' b TFAg
FJ——FN faa ™ pFy__ _FN
Far

To see this, we paste both sides with the inverse of the b appearing on the right above, and

check that have an equality. Starting with the observation that the left side pasted with this

inverse is the left diagram below, we see

fnp ~ FB FE fp FB
_Fag Fys T
FN Fup = RS - Fup
bow T
Fuq FE = FX—Fu=FM U—» FM ——~FE
/FAf/ | 7 A
FM Fre’ Fpre Frre Ub_ Fre’
o i /ﬂ
: FP FJ : FP
Fof Fof

upon realizing m as a whiskering of a unit and canceling the b. Transferring the unit along

the mates correspondence gives the left diagram below

FE-"_Fpp FE-"_Fp
Fas 1\ 1\ Frp Fps 1\ 1\
= FTf = an = = F, f = an
FX —Fau> FM —Fpf> FE —i¢— FE = FX —Fau— FM —Fyf=~ FE |m | Fype
= € = r
» ﬁv / \
FAf' FAf/

which is seen as the right diagram after writing the whiskering of the unit back in terms of m.
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This is clearly the right side of with the pasting of the 2-cell b having been undone.

Part 4. The goal here is to show that this now defines a gregarious functor

L:Poly (&) - €

Now, as we already have a gregarious functor L: Poly, (£) — %, given by the restriction
of L to the cartesian setting, and composition of 1-cells Poly,. (£) and Poly (£) is defined the
same way, it suffices to check that the oplax constraint data ¢, A of L defines oplax constraint
data on L. Indeed, ¢ and A are already known to satisfy the nullary and associativity axioms
and so we need only check naturality of the constraint data with respect to our larger class of

2-cells.

Taking 6: P — P” and ¢: Q — Q" to be general morphisms of polynomials, canonically
decomposed into triangle parts 6;, ¢, and cartesian parts 6., ¢., we note that to see that the

left diagram commutes below

L(P;Q)—"2~ LP; LQ L(P;Q)—"2~LP; LQ
L(ef;@)l lLet;L@
L(0:9) Lo:L L(P;Q') 5o LP'; LQ/
L(ec;ml lLec;Lm
L (P//; Q/)(pp,/’Q“ LP’/; LQ// L (P//; Q/)¢P//’Q” LP/’; LQ//

it suffices to check that the top square in the right diagram commutes. This is since the
bottom square on the right commutes by naturality of the constraint data ¢ with respect to L.

To prove the commutativity of this square, it will be helpful to decompose further into

L(P;Q)— % —LP;LQ
L(@:Q)l lLH,;LQ
L(P';Q)—¢r.0—= LP';LQ
L(P/;@)l lLP’;L@
L(P; Q) —r5— LP LY

and so we need only prove naturality for whiskerings of triangle morphisms.

We first check the naturality condition for right whiskerings of triangle morphisms. The

whiskering of such an x is constructed as the induced map x’ into the pullback as in the
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diagram below

. Py
Y
X
r o—)p)—>0e—— >0
¢ el
o P1 pb y ° dpb
51 E pb M LN

si/ \/ N
I J K

The naturality condition then amounts to checking that

Fup| Fup|
Fasit’ I ® Fpst’ T M
Fﬁf’ b ]FAu’e FA\&x’ Jm
® —Frsp- @ -F pp- @ = o |a e-fpie
F%x Um %l’ b TFAu'e
Fasy o . Fasy e
Frp> Fripz

which is similar to the calculation in (5.6.2)).

We now check left whiskerings of triangle morphisms, which is significantly more com-
plicated than the above situation. To simplify this calculation, we consider only simpler
triangle morphisms of the form x: (uy,1,1) — (up,x,1). It will turn out that it suffices to

consider only these simpler triangle morphisms.

To construct the left whiskering of the triangle morphism x by a polynomial we first

construct the two relevant composites of polynomials as below

@ <5\ —
-
—~<————

Il

o< — e
-~




182 Universal properties of bicategories of polynomials

it follows that we have an induced cartesian morphism of polynomials

where h and j are the pullback of p with /. We then give the factorization of pullbacks

o — —Z

— @
é l)ll
\y]
— @ —U

SR

}
.

and see the morphism of polynomials resulting from this whiskering is given by

p

o ———>0

e

The naturality condition then follows from seeing that, where z = ulti = tu’l,

Frip|

o -Fipi e i——> @ —Fjjid- @
7
5AS€I T ] ¥2QUF7AZ T ] xzt

° U FAfi b FA“; U ) U FAI‘ b FAt

o
\’AS Fyt AU led

N / N /

o —[frip-e P U —Fn1d> o 1d

®x Um

.—>.
an
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is equal to the pasting, using an analogue of (5.6.2)),

Frip|

® -[p>- ¢ ——id——> @ —Fjid- @
7 \: y N
Fast) 2UnFz Faz Fpy m Fst]
! ] T NN N
o || Fall IbFauy | e | e-Fuy-e | e
A, NS
AS ‘ /le >AMQFA1‘2 b FAll%:):ld

N

o —Frip—- o oe——> 6o
Frix

which is equal to, where d = ustje = tu)e, noting dm = zy and u}, = u)y,

Fiip|

id— @ —[jid- @

| I
Fpa b1 Fay = Fpy |m
7 {

o -fipp> e

’

Ztl

Fast]

e —fri=e id— o —Fl1y> @

/ ) F%f Uo Fgm = F%m b F%g ] \

° -FAsl”? ° —an’? ® ——id—— @ —Fjlk>-® —Fzr2’> °

A

FAfé UbFAuée U ) U Fatie b Far,

s 2 ZFZ
NIER Y

) _an>- [ ® —Frx- e

finally resulting in

Frip|
/ m \
.

Fnyh

Fp st”

[ F?f/ et

® -Frsts- @ -FIpy- @ ————id——> @ —Frjl>= @ —[sr> @

VDT

w\FA% b FAuée U o | FAtze b FMZ/FZ

Now, we wish to prove the naturality condition for any left whiskering of a general triangle

Fst AU2
N

o —frip~ o o —[fix-e

morphism, written P; 6,. This can be written as P; (6,; R) for a simpler triangle morphism x

as above, and so we are trying to show region (1) commutes below (suppressing associators
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in %)

L(P;((u1,1,1); R) =X~ LP; L ((11,1,1); R) —~ LP; L (u;,1,1); LR
L(P;(GX;R))L (1) LP;L\ﬁex;R) 2 LLP;LHX;LR

L (P;((u2,x,1); R)) —= LP; L ((u2,x,1); R) ——= LP; L (u2, x,1); LR

We now note that for the commutativity of (1) it suffices to prove the outside diagram above
commutes, as both constraints ¢ are invertible in region (2) by gregariousness, and region
(2) is known to commute as naturality for right whiskerings has been shown.

As associativity of the constraints has been verified, this is the same as showing that the

outside of

L((P;(u1,1,1)); R) =X~ L (P; (u1,1,1)); LR —~ LP; L (u1,1,1); LR

L((P;@x);R)L L(P;@lx);LR LLP;L@X;LR

L ((P;(uz,x,1)); R) —L (P; (up,x,1)); LR ——LP;L (up,x,1); LR
commutes. But the left square commutes as naturality with respect to right whiskerings is

known for both triangle and cartesian morphisms, and the right square above commutes by

naturality of left whiskerings of 8,. This gives the result. [

We now have enough to complete the proof of Theorem[5.6.6]

Proof of Theorem[5.6.6] We consider the assignment of Theorem [5.6.6] i.e. composition

with the embedding (—)s : £ — Poly () written as the assignment

F Fx
/—\
Py ba ¢ o £ e %
G Gz

We start by proving the first universal property.

WELL pEFINED. That each icon is invertible is seen by restricting to spans and applying
Corollary[5.3.8]

FuLLy rarraruL. That the assignment @ +— as is injective follows from the necessary

commutativity of

F(s,p,t) ——=F (5,1,1); F(1,p,1); F(1,1,1)
a(s,p,t)l l&(s,1,1);0(1,,),1);0(1,1,:)

G(s,p,t)TG(s,l,1);G(1,p,1);G(l,l,t)
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S
where ¢ and ¢ are invertible by gregariousness, and the identities @a, = (ag}}) and ay, =

(a;l) forced by Lemma [5.2.21] For surjectivity, one need only check any collection

consisting of 2-cells

Usps: F (s,p,t) = G (s,p,1)

satisfying these properties defines an icon. As composition is the same in Poly, (£), the
compatibility of the collection @ with the oplax constraint cells is the same calculation as in
Section[5.5] Thus one need only check local naturality of a. As local naturality with respect
to the cartesian morphisms is already known, one need only consider triangle morphisms.
But local naturality with respect to triangle morphism is almost the same calculation as in the
case of spans; this is expected as the triangle morphisms arise from the canonical embedding
(—)ar : Span®® (€) — Poly (£).

EssENTIALLY SURJECTIVE. Given any 2-Beck pseudofunctor F: &€ — ¥ we take the
gregarious functor L: Poly (£) — ¢ from Proposition [5.6.8|and note that Ly = F.

We now deduce the second universal property.

REesTrICTIONS. The second property is a restriction of the first. Indeed, given a pseud-
ofunctor L: Poly (£) — % the corresponding pseudofunctor Ly: £ — % satisfies the dis-
tributivity condition since Ly is also the restriction of the pseudofunctor L: Poly, (£) — €.
Moreover, given a 2-Beck pseudofunctor F': £ — % which satisfies the distributivity con-
dition, the corresponding map Poly (£) — % is pseudo since the map Poly,. (£) — € (with

the same constraint data) arising from the cartesian Beck triple is pseudo. [
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An elementary view of familial
pseudofunctors

Abstract

A classical result due to Diers shows that a presheaf F: A — Set on a category A is a
coproduct of representables precisely when each connected component of F’s category of
elements has an initial object. Most often, this condition is imposed on a presheaf of the form
B (X,T-) for a functor T: A — B, in which case this property says that 7" admits generic

factorisations at X, or equivalently that 7" has a left multiadjoint at X.

Here we generalize these results to the two dimensional setting, replacing .A with an
arbitrary bicategory .7, and Set with Cat. In this two dimensional setting, simply asking
that a pseudofunctor F': o/ — Cat be a coproduct of representables is often too strong of a
condition. Instead, we will only ask that F' be a lax conical colimit of representables. This
is turn allows for the weaker notion of lax generic factorisations (and lax multiadjoints) for

pseudofunctors of bicategories T: &7 — A.

We also compare our lax multiadjoints to Weber’s familial 2-functors, finding our de-
scription is more general (not requiring a terminal object in .27'), though essentially equivalent
when a terminal object does exist. Moreover, our description of lax generics allows for an

equivalence between lax generic factorisations and famility.

Finally, we characterize our lax multiadjoints as right lax F-adjoints followed by locally
discrete fibrations of bicategories, which in turn yields a more natural definition of parametric

right adjoint pseudofunctors.
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Contribution by the author

As the sole author, this paper is entirely my own work. This paper was submited to the arXiv
preprint server on December 23rd 2018 and will be submitted for publication in the very near

future.

6.1 Introduction

Given a category A and presheaf F': A — Set, it is often a natural question to ask whether

this presheaf is a coproduct of representable presheaves; meaning

Fz= > A(Py-)
meM
for some set 9t and function P_y: M — A. Such presheaves have a straightforward char-
acterization: a presheaf F' is a coproduct of representables precisely when each connected
component of el F has an initial object. Said more explicitly, this means that for any (D, w)
in el F there exists an (A, x) and morphism k: (A,x) — (D,w) where (A, x) satisfies the

following property: for any diagram in el F as below

(C.2)

|

(4.5)—— (B.)

there exists a h: (A,x) — (C,z) such that the diagram commutes, and moreover # is the
unique morphism (A, x) — (C,z).

Of particular interest is the case where F is of the form 5 (X,7T—) for a functor7: A — B
between categories A and B. Here, asking that each connected component of el B (X,T-)
has an initial object amounts to asking that for any w: X — T'D there existsan x: X — TA
and k: A — Dsuchthatw = Tk - x, and x is “generic” meaning that it satisfies the following

property: given any commuting square as on the left below

X—-TB X—-TB
xj ng xl /'h/ LTg

there exists a unique 7: A — B such that Th - x = z (note that g - h = f can be shown as
a consequence). In this case we say T admits generic factorisations, and call x: X — TA a
generic morphism.

The reader will notice that the above condition on 7 makes no mention of terminal objects,
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and indeed there are natural examples of generic factorisations without terminal objects, such

as composition of spans in a category £ with pullbacks
Span (£)(Y,Z) x Span (£) (X,Y) — Span (&) (X, Z).

Thus higher analogues of generic factorisations should also not require the existence of

terminal objects.

It is the purpose of this paper to generalize these notions of famility to the two dimensional
setting, replacing the category .4 with a bicategory <7, and replacing Set with Cat. However,
this is not a straightforward generalization, as asking that a pseudofunctor F: o — Cat
be a coproduct of representables is often too strong of a condition. To see why, consider
the case where a pseudofunctor 7: &/ — £ is such that each £ (X,T-) is a coproduct of

representables, meaning we have an equivalence
BX,T=)= > o (Py,-)
meM

for some set 9. With such an equivalence, we would then have for each 2-cell @ as on the
left below

f f
/\ /_\
X la TA — m, P, la A
\/ \_/
8 g

assigned to an @: f = g as on the right above, that f = 7f -6 and g = Tg - 6 for the same
generic 0: X — TP, corresponding to the identity at P,,. This is an unreasonably strong
condition: we should not expect two 1-cells to factor through the same generic ¢ just because
there is a comparison map between them. In general, this should only be expected when the

comparison map is invertible.

To address this problem, we weaken the condition on % (X,T—), now only asking that
it be a lax conical colimit of representables. In this paper we will give a characterization
of when a pseudofunctor F: &/ — Cat is a lax conical colimit of representables (also
giving appropriate notions of generic object and morphism in this setting), and then go on
to specialize this characterization to the case where F is of the form % (X,T—-). We will
see that in this setting, the generics are morphisms x: X — T'A for which we have universal

factorisations of any 2-cell a as on the left below

X—-TB X——~TB
Y
xl Z1Nes LTg = xl ﬂ/‘f%g:/LTg

into a diagram as on the right above. The factorization being universal means it must satisfy
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a number of axioms detailed later in Definition
To see why admitting lax-generic factorisations is a natural condition on a pseudofunctor

T: of — A, consider the problem of calculating a left extension as below

[ OP, Cat] s [%°P, Cat]
Yot Yo
o = B

for a given pseudofunctor 7' (where &/ and % are small). In general this left extension
should not be expected to have a nice form. However, if T is a pseudofunctor which admits
lax-generic factorisations, so that each 28 (X,T—) is a lax conical colimit of representables,
then this left extension will have a simple description. An important example of this situation

is given by taking T as the canonical inclusion of a small category £ into its bicategory of

spans Span (&)
[£%, Cat] ... [Span (£)°, Cat]
ye YSpan(&)
& = Span (&)

and forming the left extension lany as above, with right adjoint resy given by restricting
along 7. Now, recognizing [Span (&), Cat] as the 2-category of fibrations with sums (by
the universal property of spans) [9], and noting that the extension-restriction adjunction is
pseudomonadic (a consequence of 7" being bijective on objects) [36]], the reader will recognize
this left extension as the free functor for the pseudomonad Z¢ for fibrations over £ with sums.
In this way one can derive the pseudomonad for fibrations with sums, and understand why
this pseudomonad has a simple description. Note the same can be done for fibrations with

products, replacing Span () with Span (€)°.

6.2 Background

In this section we will recall the necessary background for this paper. We first recall the
basic theory of generic factorisations in the one-dimensional case, and then go on to recall
the basics of lax conical colimits and the Grothendieck construction, which will replace the

category of elements in the two dimensional setting.

6.2.1 Generic factorisations in one dimension.

In the simple one dimensional case, the study of familial representability and generic factori-

sations stems from the following.
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Problem 6.2.1. When is a presheaf F': A — Set a coproduct of representables, meaning it

is equivalent to the colimit of

pPr
Mmop — L gop AL | A Set]

for some 9t € Set and functor P_y: M — A? In particular, when is a functor 7: A — B
such that
B(X,T-): A— Set

is a coproduct of representables for all X € B?

The classical answer to these questions is given by Diers [14,15] (also see [52]] for a more

recent account), which we will recall after a couple of definitions.

Definition 6.2.2. Given a presheaf F': A — Set, define the category of elements of F as the
category with objects given by pairs (A € A,x € FA) and morphisms (A, x) - (B, y) given
by maps f: A — B such that F f (x) = y. We denote this category el F.

Definition 6.2.3. Given a presheaf F': A — Set, we say an object (A, x) € el F is generic if
for any given objects (B, y), (C, z) and morphisms f and g as below

(C,z2)

(40— (B.y)

there exists a morphism 4: (A,x) — (C,z) such that the diagram commutes. Moreover, we

ask that 4 is the only morphism (A, x) — (C, z).
Remark 6.2.4. The above may be simply stated by asking (A, x) is initial within its connected
component.

Remark 6.2.5. The reader will note that this is stronger than asking for the existence of a
unique lifting 4. In fact, asking that 4 be the unique morphism (and not just the unique

lifting), is a condition which will turn out to often be too strong in dimension two.

The answer to the first part of Problem[6.2.1]is then the following.
Proposition 6.2.6 (Diers). Given a presheaf F: A — Set, the following are equivalent:

1. F: A — Set is a coproduct of representables;
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2. each connected component of el F has an initial object;

3. for any (B,y) € el F there exists a generic object (A, x) and morphism f: (A, x) —
(B, y).

Remark 6.2.77. Of course (3) above is simply expanding (2) into more detail. This detailed
version will be more analogous to the characterizations we give in the higher dimensional
case.

We now consider the second part of Problem concerning functors 7: A — B, first

recalling the notion of “generic morphism” (also known as “diagonally universal morphism”

in the work of Diers).

Definition 6.2.8. Given a functor 7: A — B we say that a morphism x: X — T A for some

X € Band A € A is generic if for any commuting square as on the left below

X—-TB X—->TB
xj ng xl /'h/ LTg

there exists a unique #: A — BsuchthatTh-x = z. That f = g - h follows as a consequence

of this property.
The following characterization generalizes 7 having a left adjoint.

Definition 6.2.9. We say a functor T: A — B has a left multiadjoint if for every X € B the
presheaf B (X,T-) : A — Set is a coproduct of representables.

Applying Proposition to presheaves of the form B (X,7-) for a given functor
T: A — B, we recover the following.

Proposition 6.2.10 (Diers). Given a functor T: A — B the following are equivalent:
1. the functor T has a left multiadjoint;

2. for every morphism f: X — TW there exists a generic morphism 6: X — TA and

morphism f: A — W such that f =Tf - 6.

Remark 6.2.11. Condition (2) is usually stated by saying “T" admits generic factorisations”.
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6.2.2 Lax conical colimits and the Grothendieck construction

Here we give the required background on lax conical colimits and the Grothendieck con-

struction.

Definition 6.2.12 (lax conical colimits). Given a category .A, a bicategory %", and pseudo-
functor F: A — #, the lax colimit of F consists of an object T € %, along with for every

Ae Aamap pys: FA — T and for every morphism f: A — Bin A a 2-cell

T
PA ¥B
/ g\
FB
f

FA -

compatible with the binary and nullary constraints of F. This data, which may be seen as a
lax natural transformation ¢: A1 = # (F-,T) : A°° — ¢, is required to be universal in

that
H(T,S) — [AP,Cat] (A1, % (F-,S))

av— X (F-a) ¢
defines an equivalence (where [.A°P, Cat] is the 2-category of pseudofunctors, lax natural

transformations, and modifications).

Remark 6.2.13. It is worth noting that the above definition can be used when F': A — 7 is
only required to be a lax functor. Also, one may note that lax conical colimits can be seen as
an instance of weighted bi-colimits (though we will not use this).

When .# = Cat, such a lax colimit can easily be evaluated by the so called Grothendieck
construction. We describe this construction below (though we will be more general by

replacing the category A with a bicategory 7).

Definition 6.2.14 (Grothendieck construction). Given a bicategory </ and pseudofunctor

F: of — Cat, the category of elements of F, denoted by el F or by

Aed
/ FA
lax

is the bicategory with:
Objects An object is a pair of the form (A € &7, x € FA);

Morphisms A morphism (A, x) - (B, y) is a morphism f: A — B in &/ and a morphism
a: Ff(x) > yin FB;
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2-cells A 2-cell (f,a) = (g,8): (A, x) » (B,y)isa2-cell v: f = g in .« such that

Ff(x) 2% pg (x) Loy

is equal to a.

The bicategory flfxeg{ F A with its canonical projection to 7 is called the Grothendieck

construction of F, especially in the case where &7 is a 1-category.

Remark 6.2.15. When &7 is a category, the notation flfxe"w F A is justified as the category of
elements can be written as a lax colimit as in Definition In the case where <7 is a
bicategory, el F'is an appropriate tri-colimit of F’, and the notation is still justified (though in

a more technical sense that we will not burden this paper with; see [4]).

Taking [.o7, Cat] as the 2-category of pseudofunctors o/ — Cat, pseudonatural transfor-
mations, and modifications, we are now ready to state the main goal of this paper, which is

to answer the following:

Problem 6.2.16. When is a pseudofunctor F': o/ — Cat a lax conical colimit of representa-

bles, meaning it is equivalent to the lax colimit of

PP
Mop — 2o g7op 7. | o7, Cat]

for some 9t € Cat and pseudofunctor P_y: I — 7?7 In particular, when is a pseudofunctor
T: o/ — 2% such that
B (X,T-): of — Cat

is a lax conical colimit of representables for all X € % (such that the construction of these

lax colimits is natural in X in an appropriate sense)]?

Note that given an F arising as in the first part of this problem, we may write

meM
F = %(Pm’_)

lax
as the analogue of the usual notation F' = )}, .gn A (P, —) in one dimension. Moreover, it

is easy to see fgfﬂn o (Py,—) is evaluated as the pseudofunctor &/ — Cat sending each

T € o/ to the category with objects given by pairs (m € I, f: P, — T) and morphisms

L An extra condition ensuring naturality in X is not required in the simpler dimension one case.
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given by morphisms A in 9t and 2-cells « in <7 as below

(meM,f: P,—T) m Py,
f
(La) : Pl Pyl Yo T.
A
(neM,g: P,—>T) n P,

In the next section we will characterize when F: o/ — Cat is a lax conical colimit of
representables in terms of properties satisfied by el F, using the fact that for such an F we

know el F has the form

Aes/ meMN meM Aed
ele/ ,;a%(Pm,A):/ o (P, A).
1

ax lax lax lax

Finally, we recall the notion of a fibration, which characterizes functors p: F — & (with
& a l-category) which arise from a pseudofunctor F: £°° — Cat via the Grothendieck
construction (here we mean the dual version of Definition [6.2.14] using oplax colimits in

place of lax colimits).

Definition 6.2.17. A fibration is a functor p: F — & such that for any morphism f: X — pB
in £ there exists a morphism ¢: f*B — B in F such that p(¢) = f and forany : A — B

and r: pA — X rendering commutative the right diagram below

BL-B x—'-pB
A
A pPA

there exists a unique 7: A — f*B such that p(¥) = r and the left diagram commutes.
Moreover, we say a morphism ¢: f*B — B in F is cartesian if the above property is

satisfied when f = p (o).

Remark 6.2.18. Dually, we have an equivalence between pseudofunctors F: £& — Cat and
opfibrations over £, with the equivalence given by Definition[6.2.14] It is worth noting that for
such a pseudofunctor F': £ — Cat, the morphisms of the form (f,a) : (A,x) — (B, y) with
a invertible are the opcartesian arrows of el F' with respect to the corresponding opfibration

el F — E&.
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6.3 Lax generics in bicategories of elements

Before we can describe lax-generic objects and morphisms in bicategories of elements, we
will have to introduce the language needed to describe them. In particular, we define “mixed
left liftings” which are similar to left liftings, except that the induced arrow’s direction is
reversed. Note that basic properties for left liftings, such as the pasting lemma, or the lifting

through an identity being itself, do not hold in general for mixed left liftings.

Definition 6.3.1 (mixed left lifting property). Let & be a bicategory. We say a diagram as

on the left below

e c
Vol el
A"—f> B A—B

exhibits (, v) as the mixed left lifting of f through g if for any diagram as on the right above,

there exists a unique 2-cell 4: k = h such that

h C C
(Sl - Al

A — B A — B .
Moreover, we say such a lifting (4, v) is strong if h is sub-terminal in % (A, C).

Remark 6.3.2. It is clear that strong mixed liftings are unique up to unique isomorphism.

Indeed, it is this stronger notion that will be used though this section.

The following lemma shows that an arrow /& which arises as a strong mixed lifting has the

property that the strong mixed lifting of / through the identity is itself.
Lemma 6.3.3. Suppose the left diagram below
C C
h h
A: J Al |-

exhibits (h,v) as the strong mixed lifting of f through g. Then the right diagram above
exhibits (h,id) as the strong mixed lifting of h through 1.

Proof. Given any k: A — C and {: h = k we have by universality of (4,v) an induced
A: k = h such that
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h

A //:C ¢

h 8 = 8
//ﬂv /L
A—>B A—>B

that is, since 4 is subterminal, a unique induced A: k = h such that A is the identity. This
proves the result. O

We now have the required theory to define notions of lax-generic object and lax-generic

morphism in bicategories of elements.

Definition 6.3.4 (lax-generic objects). Let </ be a bicategory and F: &/ — Cat be a

pseudofunctor. We say that an object (A, x) in el F is lax-generic if:

1. for any (B,y), (C,z), (f,a) and (g, 8) as below with 8 invertible

(C.2)

(4.5) = (B.)

there exists a strong mixed left lifting (h,y) : (A,x) — (C,z) exhibited by a 2-cell
v: f = gh;

2. if a is invertible above, then both y and v are also invertible.

Remark 6.3.5. If we replace the isomorphism S with an identity above the definition remains

equivalent.

Definition 6.3.6 (generic morphisms). Let o/ be a bicategory and F: o/ — Cat be a
pseudofunctor, and suppose that (A, x) is a lax-generic object in el F. We say that a morphism

(£,¢) : (A,x) — (D,w) out of (A, x) in el F is generic if the diagram below

(D,w)
L, 'f
( ¢) tid l(lD,icD

(A, x) (D,w)

(¢.0)

exhibits (¢, ¢) as the strong mixed left lifting of (¢, ¢) through (1p,id).

Remark 6.3.7. 1t is an easy consequence of the universal property that every 2-cell out of

(¢, ¢) is a section (in a unique way); and consequently that any 2-cell between generic 1-cells
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is invertible. Moreover, as (¢, ¢) is sub-terminal within its hom-category it follows that any
isomorphism between generic 1-cells is unique. It follows that if (A, x) and (B, y) are generic
objects, then the category of generic morphisms (A, x) — (B,y) is equivalent to a discrete

category (a set).

Remark 6.3.8. It is worth noting that for any generic object (A, x) and strong mixed lifting as
below

(C.2)

hy) 7

— - (B
Gar (B:Y)

with 8 invertible, the induced morphism (%, y) is a generic morphism as a consequence of

Lemma

(A,x)

The following proposition is a step towards characterizing when an F': &/ — Cat is a lax

conical colimit of representables.

Proposition 6.3.9. Let o/ be a bicategory and F: o/ — Cat be a pseudofunctor. Suppose
that generic morphisms between generic objects compose to generic morphisms. Define %F
as the locally full sub-bicategory of el F consisting of lax-generic objects and 1-cells. Define
Wt as the category consisting of lax-generic objects inel F and representatives of isomorphism
classes of generic I-cells between them. Observe szgF ~ M. Take P_y: M — o as
the assignment taking a generic object (A, x) to A and a representative generic morphism
between generic objects (s,¢) : (A,x) — (B,y)tos: A— B. Then P_y: Wt — < defines a
pseudofunctor, and for every T € o there exists fully faithful functors

meM
ATZ ﬂ(Pm,T)—>FT

lax

pseudo-natural in T € <.

Proof. Firstly note that P_y: 9 — &/ defines a pseudofunctor since it may be written
as the composite M — ,gang — el F — «/. We may then define A7 on objects by the

assignment (A, x, f) — Ff(x), and on morphisms by the assignment (suppressing the
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pseudofunctoriality constraints of F)

(Ax,f: A>T) A Fh(x) A Ff(x) (6.3.1)
\’l j(mx
(hey.v) h Y Rl W T - FgFh(x)
/ ng(V)
(B,y,g: B—T) B y B Fg(y) .

Observe that we have the following conditions satisfied.

FuncrtoriaLiTy. Given another

(B,y,g: B—T) B Fk(y) B Fg(y)
\g\& l(Fy)y
*o2m) k ¢ k| u T - FqFk(y)
/ LFq({)

(C,z.q: A—>T) C z C Fq(2)

the commutativity of

(Fv), Fg(y) (Fy Fq({)
Ff(x)—2 FgFh(x) —> Fg (y) —— FqFk (y) —=> Fq ()
(W %k(;)

FqFkFh(x)

by naturality of F u exhibits binary functoriality. It is trivial that identities are preserved.

FuLLNEss. Given any (A,x, f: A > T)and (B,y,g: B — T)witha¢: Ff(x) — Fg(y),

we may construct the universal diagram

(B,y)
(h,7)7

e l(g,id)
(A,x) 2= (B, Fg (¥)
using lax-genericity of (A,x). Now (h,7y) is generic by Lemma and without loss of
generality we can assume it is a representative generic. Then (A,7, v) is assigned to ¢.

FartHruLNESs. Given another triple (&, ¥, w) which also maps to ¢, we have the diagram

(B,y)
(k) .7

N l(g,id)

(A0) < (B.Fg ()
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But as (k, ) and (h,y) are both generics, the induced (k,y) = (h,7y) arising from universality
of (h,y) must be invertible. Also, as they are both representative, they must be equal. As the
identity must then be the induced morphism we conclude k = h, ¢ = y and w = v.

Pseubpo-NATURALITY. Clearly given any 1-cell @: T — S in o/ the squares

(A, x, f: A—>T)i_)>(A,x,a/f: A—S)

| |

Ff(X)TF(OZf)(X)

commute up to pseudo-functoriality constraints of F, and the above squares satisfy the
required naturality, nullary and binary coherence conditions as a consequence of the corre-

sponding pseudo-functoriality coherence conditions. [

Remark 6.3.10. Given any (h,7,v) as in (6.3.1) we also have

(Ax,f: A—>T) A X A Ff(x)
X l(Fv)x
(id,id,v) id id d| v T — Fgh(x)
/ ngh(id)
gh
(A,x,gh: A—>T) A X B Fgh(x)

Remark 6.3.11. Each Ar is well defined, but not necessarily fully faithful, taking 9t as the
category given by el F with no 2-cells (after replacing the bicategory el F with an equivalent
2-category).

We can now characterize precisely when a pseudofunctor F': o/ — Cat is a lax conical

colimit of representables.

Theorem 6.3.12. Let <7 be a bicategory and F: </ — Cat be a pseudofunctor. Then the

following are equivalent:

1. the pseudofunctor F: of — Cat is a lax conical colimit of representables;

2. the following conditions hold:

(a) foreveryobject (B,y)inel F there exists a lax-generic object (A, x) and morphism

(f,a): (A,x) - (B,y) with a invertible;

(b) generic morphisms between lax-generic objects compose to generic morphisms.
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Proof. The direction (2) = (1) is clear from Proposition as condition (a) means that for
any B € o/ and y € F B we have a lax generic (A, x) and morphism (f,a) : (A,x) - (B,y)

in el I with « invertible, so that
Ap(Ax,f:A> B =Ff(x) >y

which witnesses the essential surjectivity of Ap at y € FB.

For (1) = (2), suppose we are given a category 9t and pseudofunctor P_y: M — o

(assuming without loss of generality that P(_) strictly preserves identities) such that F' ~

meM
lax

< (Py,—), and consequently
meM
ele/ el & (Py,—).
lax

This exhibits el F as the bicategory with:
Objects An object is a triple of the form (m € M, A € o7, x: P, — A);

Morphisms The morphisms (m, A, x) -+ (n, B, y) are triples comprising a morphism u: m —

n in M, a morphism f: A — Bin </ and a 2-cell

P,——= A
w w0
Pn_y>B

in &7

2-cell A2-celld: (u, f,0) = (u,g,¢): (m A, x)» (n,B,y)isa2-cellA: f = gin </ such

that
P,——= A P,——A
P.| Ve jf = Pul ”¢8(3=>f
P,——~B P,——~B.

EXISTENCE OF EXPECTED LAX-GENERICS. We first show that each

(meM, P, € <,id: P, > Py)
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in el F is lax-generic. Consider a diagram

(n,C.2)
'(ﬁ"h.’z )1}: L(id,g,id)
(m, Py,,id) s (n,B,y)
where (u, f,«) and (id, g,1d) are respectively
p,—<~P, pP,—=cC
Puj Yo lf Pidj Jid lg
P, — B P, — B
then we recover a canonical (u, h,y) as
p,—4-p, (6.3.2)
Pul Jid lzPu

with the 2-cell v: f = gh = gzP, = yP, given as a. Now, for universality, suppose we have
a (u, k, @) given as
P,—4-p,
Pul V¢ jk
Py —— C

with a 2-cell Y : f = gk such that

p,—.p. pP,—4-p, (6.3.3)
n| v |
P o |f - P,——~C vl
Piq {id Lg

Then we can take our induced map A: k = has ¢: kK = z- P,. Itis trivial that

p,—4.p p,—4.p (6.3.4)
PML ¢ jk = Pul {Jid z-%u ? k
P,——C P,——C

so that A is a 2-cell (u,k,¢) = (u,h,y). Also, from (6.3.4) it is clear that 1 = ¢ is the

only 2-cell (u,k,¢) = (u,h,y), meaning (u, h,y) is sub-terminal within its hom-category.
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Moreover, (6.3.3)) shows i pasted with 4 = ¢ is @ = v.

CLASSIFICATION OF LAX-GENERICS. We now show that an object
(meMAe o, x: P, > A)

in el F is lax-generic if and only if x is an equivalence. It is clear the above argument
generalizes if one replaces (m, P,,,id) with (m, A, x) where x is an equivalence. Conversely,

if (m, A, x) is a generic object then we may construct the universal diagram

(m, Pm, ld)
e Joe

(m, A, x) (m, A, x)

_—
(1,1,id)

noting that v and 7y are both invertible. In fact, this gives an adjoint equivalence. That v is a

2-cell says
P,— A P,—— A
J 4]
id {id |id = P, —a P, < ]id
idj 2, xj
Ppn——A Pp——A

which gives one triangle identity. For the other identity, note that 2-cells £: (1, x*xx*,yy) =

(1, x*,7v), meaning 2-cells & such that

Py——A Pyn——A (6.3.5)
idl ”yy lx*xx* = idL ”y X*L éx*xx*

are unique, as (1, x*,7y) is sub-terminal within its hom-category. But we may take & to be

vx*o (Lx"xx",yy) = (1,x%,y)
or

x v (L x*xx®, yy) = (1,x%,y)
which both satisfy (6.3.5). Thus yx* = x*v~! and so yx* - x*v = id giving the other triangle
identity.

EXISTENCE OF LAX-GENERIC FACTORISATIONS . Suppose we are given a (n,B,y: P, — B)
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in el F. We have the map (n, P,,id: P, — P,) - (n,B,y: P, — B) given as

Pn;d'Pn

Py

<=

id |y
P, — B
which is of the required form since the 2-cell involved is invertible.

GENERIC MORPHISMS FORM A CATEGORY. Before showing that generic morphisms form a
category, we will need a characterization of them. Now, specializing the earlier argument of
“existence of expected lax-generics” to the case when g is the identity (though generalizing
the identity on Py, to an equivalence x: P,, — A) we see that if (m, A, x) is generic (i.e. x is

an equivalence)

(n,C,2)
T
(u’@')'""ﬁv l(id,id,id)

(m’ > ‘x) (u,f,a) (n’ ’ y)

the lifting (u, h,y) above, constructed as in (6.3.2), has vy invertible. It is also clear that if

(u, f, @) is such that « is invertible, then the lifting (i, &, y) through (id, id, id) constructed as

in (6.3.2)) is given by (i, f, @).

This shows that the generic morphisms between generic objects are diagrams of the form

P,—— A
P, {a lf
P, — B

with @ invertible, and it is clear that these are closed under composition and that identities

are such diagrams. [

Remark 6.3.13. When F: &/ — Cat is a lax conical colimit of representables, and from a

generic object (A, x) we construct the universal diagram

(C.2)

hy) 7

(A, x) T (B,y)

the 2-cell v is the unique 2-cell (f,a) = (g,B) - (h,7y). This is since for such an F, generic

morphisms compose and any map (g,8) with B invertible is generic. Sub-terminality of
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(g,B) - (h,y) then gives uniqueness.

Remark 6.3.14. When F: o/ — Cat is a lax conical colimit of representables, written

F =~ flmewt </, then M is equivalent to the category of stric lax-generic objects (A, x) and

ax

representative generic morphisms in el . This is a consequence of the characterization of
lax-generic objects and morphisms given in the above proof of Theorem [6.3.12] Moreover,
as Theorem constructs It as the the category of lax-generic objects and morphisms,

we conclude this non-strict choice of Mt is also equivalent.

It is a natural question to ask if Theorem [6.3.12] has a variant which does not require
generic morphisms to compose; and it turns out that this is the case. Given a pseudofunctor
F: o/ — Catone can again define 9t as the category containing generic objects (A, x) € el F
and representative generic morphisms between them, but now defining the composite of two

generic morphisms

(hy) (k.£)

(A, x)

(B,y)

to be the mixed lifting through the identity as below.

(C.2)

(C,2)
2
() 2 l(l’id)
(A, x) T (B,y) D (C,2)

Now, it is not hard to verify that this situation of generics not directly composing corre-

sponds to the following weaker notion of famility.

Definition 6.3.15. A pseudofunctor F: o/ — Cat is a weak lax conical colimit of repre-

sentables if there exists a category Mt and norma lax functor P_y: M — &7 such that
n

F = [" of (P, —).

Meaning that we find the following variant of Theorem|[6.3.12]

Theorem 6.3.16. Let <7/ be a bicategory and F: </ — Cat be a pseudofunctor. Then the

following are equivalent:
1. the pseudofunctor F: o — Cat is a weak lax conical colimit of representables;

2. for every object (B,y) in el F there exists a lax-generic object (A, x) and morphism

(f,a): (A, x) - (B,y) with « invertible.

2Strict here means if both o and S are identities, then both v and y are identities.
3By normal we mean the unit constraints are required to be invertible.
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Remark 6.3.17. Note that in practice, we will usually want the reindexing P_y: I — &7 to
be a pseudofunctor. Indeed, P is to be a pseudofunctor in all of the examples of Section
6.7

The following simple lemmata concern uniqueness of generic factorisations, with a
generic factorisation in this abstract setting being an opcartesian map (f,«) out of a lax-
generic object (A, x).
Lemma 6.3.18. A morphism (h,y) : (A,x) — (B,y) is an equivalence if and only if h: A —

B is an equivalence and vy is invertible.

Proof. Given that (h,7y) has a pseudo-inverse (k,i) : (B,y) — (A,x) it is clear that & has

pseudo-inverse k and that y: Fh(x) — y has pseudo-inverse
y === FiFk (v) 2 Fh (x)

Conversely, givena (h,y) : (A,x) — (B, y) such that /& has pseudo-inverse k (we may upgrade
this equivalence to an adjoint equivalence) and vy is invertible, we have a pseudo-inverse

(k,y): (B,y) = (A,x) where ¢ : Fk(y) — x is given by

Fk ()2 Dk (x) —- x

It is then straightforward to verify (4,7) is pseudo-inverse to (k, ). O

Whilst generic factorisations are not unique in the sense one may initially expect; they

are unique in another sense.

Proposition 6.3.19. Given two generic factorisations (opcartesian maps out of a generic ob-
ject)(f,a): (A,x) = (C,z)and(g,B) : (B,y) — (C, z) there exists equivalence (h,y) : (A, x) —

(B, y), unique up to unique isomorphism, such that

(hyy)

(A,x) 22 (B, y) 22 (.7)

is isomorphic to (f,a).

Proof. We may form the mixed lifting diagram

(B,y)
(hy)

e l(g,ﬁ)



6.4 An alternative characterization 207

where (h,7) is necessarily generic and v and y invertible. Lifting in the other direction yields

the pseudo-inverse (k, ). O

Lemma 6.3.20. Every opcartesian map between two generic objects (h,y) : (A, x) - (C,z)

is an equivalence.

Proof. Given such a (h,y) we may form a (k,¥) as on the left below

(A, x) (C,2)
% l(h,w (% L(km
(C,z)—=(C,2) (A, x)—= (A, x)

(1id) (1,id)

and one can then form a (4’,y’) as on the right above. As v and u have inverses

(1',y") = (h,y) (k) (h',y") = (h,y)

so (h,7y) has pseudo-inverse (k,y). O

6.4 An alternative characterization

In Section we gave a characterization of when a pseudofunctor F: &/ — Cat is a lax
conical colimit of representables in terms of lax-generic objects and morphisms. However, it
is natural to ask if we can also give a characterization in terms of what we will call “pseudo-
generic” factorisations. Here we address this problem in the case where <7 is a 1-category
&, giving a simple description of when a pseudofunctor F': £ — Cat is a lax conical colimit
of representables.

These pseudo-generics are to be defined in terms of a pseudo-lifting property which we

now recall.

Definition 6.4.1 (pseudo-lifting property). Let % be a bicategory. We say a diagram as on

the left below

) C C
ho k
R lg A; lg

with v invertible exhibits (&, v) as the pseudo lifting of f through g if for any diagram as on

the right above with ¢ invertible, there exists a unique invertible 2-cell 1: k = h such that
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hw/c C
(e - )

fl——?€>lg fi-—?€>lg

Moreover, we say such a lifting (4, v) is strong if h is sub-terminal in % (A, C).

Remark 6.4.2. Note that when o7 is a 1-category &£, the category of elements el F' is a
I-category, and so the mixed and pseudo lifting properties both become the usual one-

dimensional lifting properties.

Definition 6.4.3 (pseudo-generic objects). Let <7 be a bicategory and F: &/ — Cat be a

pseudofunctor. We say that an object (A, x) in el F is pseudo-generic if:

1. for any (B,y), (C,z), (f,a) and (g, 8) as below with both a and B invertible

(C.2)

(A, x) TG (B,y)

there exists a strong pseudo lifting (h,y) : (A,x) — (C,z) exhibited by an invertible
2-cellv: f = gh;

2. every pseudo-lifting (h,y) as above has y invertible[]

We can now give a simple characterization of when a pseudofunctor F: £ — Cat is a
lax conical colimit of representables.
Remark 6.4.4. For proving the below theorem, simplified descriptions of pseudo-genericity
would suffice as it concerns 1-categories £ (for example every morphism becomes sub-
terminal within its hom-category in this case). However, we will leave the descriptions in full
generality above in case it is possible to generalize the below theorem to the bicategorical

case.

Theorem 6.4.5. Let £ be a category and F : £ — Cat be a pseudofunctor. Then the following

are equivalent:

1. the pseudofunctor F: £ — Cat is a lax conical colimit of representables;

40One could omit this condition and still prove Theorem [6.4.5] however, we give it here as it forces the
lax-generic objects and pseudo-generic objects to coincide when F: £ — Cat is a lax conical colimit of
representables.
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2. for every object (B,y) in el F there exists a lax-generic object (A, x) and morphism

(f,a): (A x) - (B,y) with « invertible;
3. the following conditions hold:

(a) for every object (B,y) in el F there exists a pseudo-generic object (A, x) and

morphism (f,a) : (A, x) - (B,y) with a invertible;

(b) for every morphism f: X — Y in & the functor F f: FX — FY is a fibration.

Moreover, if any of the above equivalent conditions hold we then have
meM
F = / g (P ms _)
lax

where P_y: I — & is the canonical projection of the category IR with:
Objects An object is a pseudo-generic (A, x) inel F;

Morphisms A morphism (A,x) - (B,y) is a morphism f: A — B in £ equipped with a
morphism a: F f (x) — y in FB.

Proof. Firstly note (1) & (2) by Theorem [6.3.12, For (1,2) = (3), suppose that F is a
lax conical colimit of representables, i.e. that there exists a category i and pseudofunctor
Py: M — &£ and equivalences

meMN
FT ~ / E(P,T)
1

ax
pseudonatural in 7 € £. Then as every lax-generic object (A, x) is also pseudo-generic, we
have the pseudo-generic factorisations of condition (a). Now consider a morphism f: X — Y
in £ and the functor F f: FX — FY. We know that Ff: FX — FY is equivalent to (via an
appropriate pseudo-naturality square) the functor
meM meM
fo(-): EPp,X) — E(Pp,Y)

lax lax

and this functor is a fibration since for any A: (m,u) = f o (n,v) as on the right below

m Pm v-Py " P u
/1 Pﬂ \X — Pl PAI \Y
n P, n P,



210 An elementary view of familial pseudofunctors

we recover the fo(—)-cartesian lift on the left above. To see this lift is cartesian, and in fact that

me‘.mg(

every morphism in fl P, X) is f o(—)-cartesian, note that given any A: (m,u) = (n,v)

as on the left below and &: (r, fw) = (m, fu) as on the top right below

r P, r P, (6.4.1)
£ P X I Y”
\
! P, X — m p, -y
| l/ oo /
n P, n Py

r Pm& P,%
¢ Py X g P¢l Y

A A
n P, n Py

the induced unique lift &: (r,w) = (m,u) given on the left in (6.4.1) is well defined since
u-Pe=v-Py-Pe=v-Py=w
(3) = (1) : Define M as above, i.e. the full sub-category of el F on the pseudo-generic

objects. Now, flmem & (P, T) is the category consisting of:
Objects An object is a pair of the form (A€ £,x € FA,f: A > T)

Morphisms A morphism (A, x,f: A—T) - (B,y,g: B— T) is a morphism a: A — B

in £ rendering commutative

equipped with a morphism ¢: Fa (x) — yin FB.

It suffices to check that the functor fl';iewié’ (Py,Y) — FT defined by the assignation
(A, x, f) — F f (x) on objects, and by

(A, x, f) A Fa(x) Ff(x)

%(a,f) : Ia |£:‘ = ng(§)

(B,y,g8) B y Fg(y)
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on morphisms (suppressing pseudo-functoriality constraints) is an equivalence. Functoriality

is clear, and so it suffices to check the following.

EsseNTIALLY SURIJECTIVE. For any t € FT we have (T,t) € el F, and thus by (a) a
pseudo-generic (A, x) and morphism (k, @) : (A, x) - (Y,t) with ¢ invertible. Now note that
(A, x,k) — Fk(x) = t as required.

FuLL. Suppose we are given a morphism : Ff (x) — Fg(y)in FT. We may then take

the Fg-cartesian lift £ : £*y — y and construct the universal diagram

gB, ry)
(’”>ﬂy l(g,m)
(A’ X) W (T’ Ff (X))

with y invertible. Note that v is necessarily an identity and so Fg () is the identity (suppress-

ing pseudo-functoriality constraints). It then suffices to observe that we have the assignation

A Fh(x) Ff(x)

hi 'y - ¢
2

B y Fg(y)

FarraruL. Now, given another

A FkA(x) Ff(x)
B y Fg(y)

mapping to £, we have Fg (¢) = ¢ and thus a factorization of ¢ through the cartesian lift

Fk(x)—2~¢*y £ y
\_/

¢

with Fg (1) the identity. Thus we have a diagram

(B.{"y)

(A.2) g (T-F S (1)
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and so (k, 1) = (h,y) by uniqueness. Hence (k, ¢) is equal to (h, Z)/) from earlier. ]

6.5 Lax generic factorisations and lax multiadjoints

Here we specialize the results of the previous section to the case when F': &/ — Cat is of
the form % (X,T-) for a pseudofunctor 7: .o/ — 8. The following is a generalization of
“left multiadjoint” in Definition to the case of a pseudofunctor 7': & — A.

Definition 6.5.1. Let .o/ and 2 be bicategories and let T: &/ — 2 be a pseudofunctor. We
say that T has a left lax multiadjoint if there exists a pseudofunctor M_y: Z°P — Cat and a

Xez Nty — & such that

ax

pseudofunctor P: [,
meMx

B (X,T-) ~ /

lax

o (P,,’f,—)

forall X € &, where each P()i ) My — of is obtained from P by including Ny — flfxeg My.
Remark 6.5.2. One might wonder why we did not simply define 7" to have a left lax multiadjoint

when every

B(X,T-): o — Cat

is a lax conical colimit of representables. The reason is that this condition would only be
sufficient to force P (which may be constructed from this condition) to be a normal lax functor.

Before applying Theorem |6.3.12]to bi-presheaves of the form % (X, T—), we will need the
appropriate notions of genericity with respect to a pseudofunctor 7': .o/ — 2. The following

definitions are recovered by specializing the definitions of genericity in the last section to the
case when F: o/ — Cat is of the form % (X,T-) for a pseudofunctor 7: & — A.

Definition 6.5.3. Let .« and % be bicategories and let T: &/ — % be a pseudofunctor.

Then a 1-cell 6: X — TA is lax-generic if for any diagram and 2-cell a as on the left below

X—>-~TB X—>-TB
| el o S

there exists a diagram and 2-cells v and y as on the right above (suppressing the constraint

Tg - Th = Tgh) which is equal to «, such that:
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1. the top triangle is “sub-terminal” meaning that given any 2-cells w,7: k = h as below

X—=-TB X—-TB
. 7 lM/
\ ol o]

TA Tk TA Tk

we have w = 1;

2. given any other diagram
X—-TB
L o~ l
e

equal to a, there exists a (necessarily unique) 2-cell ¢ : k = h such that

X—=-TB X—-TB

57 . 1%
TA TAZE T
h B /B
@ l - e Jg

A—>C A——C;

and

3. if a is invertible, then both y and v are invertible.

We call a factorization

X—-=TB X——~TB
| vl - ol

the universal factorization of « if both (1) and (2) are satisfied above.

Earlier in Definition we defined a 1-cell to be generic when it satisfied a certain
strong mixed lifting property. Translating this definition into the context of a pseudofunctor
T: o/ — 2 results in the below definition.

Definition 6.5.4. Let <7 and % be bicategories and let T: o/ — 2 be a pseudofunctor. Let
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0: X — TAbe a generic 1-cell. Then a pair (A,y) of the form

5 TA
X /ﬂ; Th
N

TB

is generic if:

1. the diagram is “sub-terminal” meaning that given any 2-cells w,7: k = h as below

5 TA 5 TA
X{{hﬁ}m = X ﬂy th%m

we have w = 1;

2. given any other diagram

X Q Tk
Z
TB
and A: h = k such that
TA TA

there exists a (necessarily unique) A*: k = h such that

5 TA 5 TA

X/ﬂqj Tk = X/ﬂ; 7JhT<=> Tk
Z N
TB TB

and 1" A = idy,.

From this definition, the following is clear.
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Corollary 6.5.5. For any universal factorization

X—>-TB X——~TB
| vl - Sk

it follows that (h,7y) is a generic 2-cell.

Before proving the main theorem of this section, it is worth defining the spectrum of a
pseudofunctor. This is to be the two dimensional analogue of Diers’ definition of spectrum
of a functor [15, Definition 3].

Definition 6.5.6. Let </ and % be bicategories and let T: &/ — % be a pseudofunctor
such that # (X,T-) is a lax conical colimit of representables for every X € 4. For each
X € A, define My as the category with objects given by lax-generic morphisms out of X
and morphisms given by representative generic cells between them. We define the spectrum
of T to be the pseudofunctor

Spec;: 4 — Cat

assigning an object X € %A to My and a morphism f:Y — X in & to the functor
Mp: My — My which takes a generic morphism 6: X — TA to ¢': Y — TP where
0-f = Tu-¢" is achosen generic factorization of §- f, and takes a generic 2-celly: Th-6 = o

as on the left below to the generic 2-cell : Th - &’ = o’ as on the right below

Tu

. TP—TA . TP—TA
Yi)_(/ﬂ; Th = Y/ﬂ; Th #, |Th
TQ ——~TB TQ ——~TB

constructed as the universal factorization of the left pasting above.

Remark 6.5.7. When 7 has a terminal object the spectrum has an especially simple form,
namely as the functor Z (-, T1) : %°°P — Cat.
Later on we will need to use the following reduced form of the Grothendieck construction

of the spectrum.

Lemma 6.5.8. Let o/ and P be bicategories andletT : of — A be a pseudofunctor such that

B (X,T-) is a lax conical colimit of representables for every X € 9. Then the bicategory
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of elements of the spectrum Specy: AP — Cat is the bicategory

XeR
el gﬁ(_) = / gﬁx
oplax

consisting of:
Objects An object is a pair of the form (X € %B,6: X — TA) where § is a generic out of X;

Morphisms A morphism (X € $8,6: X > TA) » (Y € B,0:Y — TB) is a morphism
f: X =Y in B and a representative generic cell (h,y) as below
X —2-TA
|

Y —~TB

2-cells A 2-cell (f,h,y) = (g,k,¢): (X,8) » (Y,0)isa2-cellv: f = g in P such that

X2.TA X—2-TA
7 Z,
8 § f vy |Th = 8 Tk % Th
Y —TB Y —TB

for some (necessarily unique) v: h = k.

Moreover, the cartesian morphisms are precisely those (f, h,y) such that 7y is invertible.

Xe

Proof. We know | J@ED?(_) is the bicategory with objects pairs (X € A, m € Nix), mor-

plax
phisms (X € Z,m € Myx) +» (Y € B,n € My) given by a 1-cell f: X — Y and morphism

a: m— Ff(n)in My, and 2-cells v: (f,a) = (g,B) those 2-cells v: f = g such that

- Ff ) Fg o)
B
commutes. The objects are clearly as desired. By this formula, amorphism (X € %4,6: X — TA) -+»
(Y e PB,0:Y—TB)consistsof an f: X — Y and an a: 6 — Ny (o) in Mx. Hence a

morphism is a pair f,(s,&) as below
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where (s, £) is arepresentative generic cell. Using that generic cells (s, £) remain generic when
composed with opcartesian cells (7, E) (because opcartesian cells are themselves generic),

the above diagram is itself a generic cell, isomorphic to a unique representative generic cell

X—2-TA

| |

Y ——~TB

Conversely, one may form the representative generic factorization of y

to recover (s,&) (note that £ is invertible as genericity of (s,&) is preserved by (?, id) and y
is generic). That this is a bijection is a consequence of uniqueness of representative generic

factorisations.

It is now worth noting that the opcartesian morphisms, corresponding to the case where
(s,&) is an equivalence, are those squares where vy is invertible. This is a consequence of
Remark|[6.5.12] as the case when  is invertible represents a generic factorization, and to give

a choice of generic factorization (A, 7y) is to give an equivalence (s, ).

By this formula, a 2-cell v: (f,s,&) = (g,u,6) consists of a 2-cell v: f = g such that

Sy M) o
5 2 5 e (6.5.1)

()
commutes, where (9t,),. is given by the representative generic factorization (m, ¢) below
of_>TT ~T7F 7 _>TT ~Tf
/T N 7N
X v Y——TB = X e Tr yra TB
TS

~7 _
P Srs
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Hence given such a v we have

X—2% .TA X J TA
o NP
0y 9/:4 Th = 0% %/TT\ z, (|7
” p—
Tt ; m yT/le N
TS — TB TS — TB
Tg Tg

for some (necessarily unique) 7: & = g - u. Moreover, given a diagram as above we can take

the representative generic factorization to recover (6.5.1). O

We can now apply Theorem |6.3.12| to the case where F': o/ — Cat is of the form
A (X,T-) for a pseudofunctor T: o — 2 to help prove the following theorem.

Theorem 6.5.9. Let o7 and A be bicategories and let T : </ — A be a pseudofunctor. Then

the following are equivalent:
1. the pseudofunctor T : of — 9B has a left lax multiadjoint;
2. the following conditions hold:

(a) for every object X € <7 and I-cell y: X — TC in P, there exists a lax-generic
morphism 6: X — TA and 1-cell f: A — C suchthatTf -6 = y.

(b) for any triple of lax-generic morphisms 6, o and w, and pair of generic cells (h,0)

and (k, ¢) as below

7 (6.5.2)

Th Tk
the above pasting (kh, ¢ f - 0) is a generic cel[3
Proof. (1) = (2) : Supposing that T has a left lax multiadjoint, it follows that each £ (X, T-)
is a lax conical colimit of representables. By Theorem[6.3.12] we have (2)(a), as well as 2(b)
when f and g are both the identity at X. To get the full version of (2)(b) we use that
XeA
P: / ﬂﬁx —
lax

is a pseudofunctor, where we have assumed without loss of generality that each iy is the

category of generic morphisms out of X and representative cells, using Remark [6.3.14]

5Suppressing pseudofunctoriality constraints of 7.
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Indeed, flff'% My is the bicategory with objects pairs (X,5: X — TA) and morphisms
(X,0: X > TA) » (Y,o: Y — TB) given by triples (f, h,6) as below

x— .y

o|

TA——~TB
Th

such that (&, 6) is a generic cell. As the lax functoriality constraints of P are given by factoring
diagrams such as (6.5.2) though a generic, the invertibility of these lax constraints of P forces
(2)(b).

(2) = (1) : Applying Theorem to the conditions 2(a) and 2(b) (only needing the
case when f and g are identities at X), it follows that we may write
meMy

B(X,T-) ~ /

o (P}.-)
lax
where iy is the category of generic morphisms out of X and representative generic cells
between them. From this, we recover the spectrum Spec;: #°P — Cat taking each X to
iy. Also, we again we have the canonical normal lax functor
XeR
P: / Ny —
lax

defined as in the reverse implication. The full version of (2)(b) forces this to be a pseudofunctor

as required. [

Remark 6.5.10. The reader will notice that condition (2)(b) where f and g are identities at X

X .
(=)
of 2(b) is what is required to ensure

Xe%#
P: / My —
1

ax

is what is required to ensure that P/ : Wiy — o7 is a pseudofunctor, whilst the full version

is a pseudofunctor.

Under the conditions of this theorem, we also have a notion of generic factorisations on

2-cells, in a sense we now describe.

Remark 6.5.11. Suppose T has a left lax multiadjoint, 6 and o are generic objects, and
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consider a2-cell «: Tf - 6 = Tg - 0. Then « has a T-generic factorization

TA

S SN

= X Uy 1h v TC

N £ S AL

TB

Also note that any map k : X — T'C can be factored as Tk -£ for some generic & and morphism
k, and so when T is surjective on objects we have a T-generic factorization of every 1-cell

and 2-cell in the bicategory .

Rephrasing the statements in Section [6.3|concerning uniqueness of generic factorisations
in the context of a pseudofunctor 7': o/ — £ yields the following.
Remark 6.5.12. Specializing Proposition|6.3.19|to the case where F': &/ — Catis # (X,T-)
for a pseudofunctor 7: o/ — % and X € 4, says given a 1-cell f: X — TA in & and two

representative generic factorisations

X / TA X / TA
S e~ S~
TP~ T/ TQ ¢

as above, there exists a unique invertible representative generic cell (h,y) : 6 — o such that

the representative of

X 2 TA
/yﬂk 7
TP TO

is equal to (?, a).

6.6 Comparing to Weber’s familial 2-functors

The purpose of this section is to compare our definition of a familial 2-functor T: &/ — %
between 2-categories (assuming .27 has a terminal object) with Weber’s definition. It turns out
that these two definitions are essentially equivalent. Note also that Weber’s definition assumes
some “‘strictness conditions” (such as identity 2-cells factoring into identity 2-cells) which
are natural conditions on 2-functors, but arguably less natural in the case of pseudofunctors.

We first recall the notion of generic morphism corresponding to what Weber refers to as

the “naive” 2-categorical analogue of parametric right adjoints [S3]].

Definition 6.6.1. Suppose o7 and 4 are 2-categories. Given a 2-functor T': .o/ — % we say
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amorphism x: X — TA is naive-generic if:

1. for any commuting square as on the left below

X—-TB X—-TB
xj ng xl] /'h/ jTg

there exists a unique h: A — BsuchthatTh-x =zand f = gh;

2. for two commuting diagrams

XL;TB XL;TB
| i | | |

the 2-cells : z; = z, such that T'g -6 = id bijectively correspond to 2-cells 6: h; = hy
suchthatT(@) -x=6and g -6 =id.

Definition 6.6.2. Suppose .7 and & are 2-categories, and that .27 has a terminal object. We
say a 2-functor T': &/ — 2 is a naive parametric right adjoint if every f: X — TA factors

as T f - x for a naive-generic morphism x.

Weber’s definition of famility requires certain maps in a 2-category to be fibrations. Thus
we will need to recall the definition of fibration in a 2-category %. Note that when % is

finitely complete there are other equivalent characterizations of fibrations [435]].
Definition 6.6.3. We say a morphism p: E — B in a 2-category 4 is a fibration if:
1. for every X € £, the functor & (X,p) : B(X,E) —» (X, B) is a fibration;

2. for every f: X — Y in &, the functor B (f,E): B(Y,E) —» % (X,E) preserves

cartesian morphisms.

If we have a choice of cartesian lifts which strictly respects composition and identities we say

the fibration splits.

We now have the required background to define famility in the sense of Weber.

Definition 6.6.4. Suppose .7 and & are 2-categories and that .2/ has a terminal object. We
say a 2-functor T: &/ — A is Weber-familial if
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1. T is a naive parametric right adjoint;

2. forevery A € o7, and unique 14: A — 1 in o7, the morphism Tt4: TA — T1 is a split
fibration in 4.

The following is Weber’s analogue of lax-generic morphisms.

Definition 6.6.5. Suppose ./ and # are 2-categories. Given a 2-functor T: & — £ for
which each Tt4: TA — T1 is a split fibration, we say a morphism x: X — T A is Weber-lax-

generic if for any 2-cell « as on the left below,

X—-TB X—-TB
| vl gk

there exists a unique factorization (A, 7y, v) as above such that (h,7y) is chosen Ttg: TB — T'1

cartesian/[®|

The following lemma shows that for Weber-familial 2-functors 7', the lax-generics of both
our sense and Weber’s coincide, and our generic 2-cells can equivalently be characterized as

certain cartesian morphisms.

Lemma 6.6.6. Suppose o/ and P are 2-categories and that </ has a terminal object. Let
T: of — B be a Weber-familial 2-functor. Define M as the category with objects given
by chosen naive-generics 6: X — TA (meaning to be identified with another naive-generic
0 : X — TB if there exists a pair (h,7y) as below with h invertible and y an identity), and
morphisms given by pairs (h,7y)

TA

S

X< Th
" TB

where 7y is chosen Ttg: TB — T1 cartesian. Then:

1. for every X € 9 we have isomorphisms

meMN
B (X, T-) = A (P, =) ;

lax

6This definition of lax-generics has the downside that it assumes some famility conditions, thus not allowing
for a theorem describing an equivalence between famility and lax-generic factorisations.
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2. amap §: X — TA in B is naive-generic if and only if it is stric{’|lax-generic;

3. a2-cell in 4 as below

TB

is generic if and only if it is Ttg: TB — T1 cartesian.

Proof. (1) : It suffices to check that the functors
meM
oI (P, W) — B (X, TW)

lax

are isomorphisms. That this assignment is bijective on objects is a consequence of the well

known one-dimensional case (see Proposition #.2.7)). That the assignment on morphisms
TP, Py TPy
o N 57N
X le |Th B W — X e THh UTB TW
S / A j 4
TP, Py TP,

is bijective follows from the fact each naive-generic is Weber-lax generic [53, Temma 5.8].
Naturality is also an easy consequence of this fact.
(2) : If ¢ is naive-generic, and thus isomorphic to a representative naive-generic, then &

is lax-generic by (1). If ¢ is strict lax-generic, then from a 6: z; = 2z, we have a universal

factorization
X—=TA X ﬂ—% TA
id
xl ﬂ*g jT/’lz = xl gnghz
TA——TB TA——TB
Th Th

where we have used that T'g - 6 is an identity to see the top right triangle above can be taken
as an identity. In this way, we recover the bijection required of a naive-generic.
(3) : Consider a 2-cell
TA

S

X K/y Th
N
TB

"By strict we mean identity 2-cells universally factor into identity 2-cells.
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If this 2-cell is generic, then we have a factorization

X—2-TA X—-TA (6.6.1)
o~
5 iy |T1id = 5 /”kﬂ“ Tid
TA——~=TB TA——=TB
Th Th

where ¢ is chosen cartesian. By genericity of v, we have an A*: k = h such that

yTA TA (6.6.2)

5
X K/¢ Tk = X/z?;JhF:}Tk
XTB N

TB
and A*A = idy,. Substituting (6.6.1)) into (6.6.2) and using that § is Weber-lax-generic gives

AA* = idg. Conversely, if this 2-cell is cartesian we then have a factorization

X—=TA X——=TA
¢ 7
s v |Tid = s /TkﬂT 1 Tid

where (k, ¢) is a generic 2-cell (which must also be cartesian by the above argument). Since
¢ and 7y are cartesian, and thus isomorphic to chosen cartesian morphisms, it follows that A

is invertible (by uniqueness of chosen cartesian factorisations). [

Finally, we give the main result of this section, showing that for 2-functors 7': &/ — %

our lax-multiadjoint condition is essentially equivalent to Weber’s familiarity condition.

Theorem 6.6.7. Suppose </ and A are 2-categories and that </ has a terminal object. Then

for a 2-functor T : of — P the following are equivalent:
1. T is Weber-familial;
2. T has a stric{8 left lax multiadjoint.

Proof. (1) = (2) : Supposing T: o/ — % is Weber-familial, we have that each # (X,T—-) is
a lax conical colimit of representables by Lemma|[6.6.6|part (1). Also, as the generic 2-cells
may be identified with the cartesian 2-cells, we know since the fibration Ttp: TB — T1

respects precomposition we have the following property: for any generic 2-cell out of an

8By strict we mean isomorphic to a lax conical colimit of representables in place of equivalent, and that the

reindexings P()f ) are 2-functors instead of pseudofunctors.
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X € £ as on the left below

. TA . TA (6.6.3)
X/ﬂ; h Y—k>X/z/; h
NS NS
TB TB

and map k: Y — X in 4, the right diagram is a generic 2-cell. It is this property (along with

closure of generic cells under composition) which gives (2)(b) of Theorem[6.5.9]

(2) = (1): Suppose T: of — A is a strict left lax multiadjoint. Then T is a naive
parametric right adjoint since 7" has strict lax generic factorisations, and lax-generic implies

naive generic (shown in the proof of Lemma[6.6.6)).

It remains to check that each Tt4: TA — T'1 is a split fibration. To see this, note that for
each X € A the functor (X, TA) — % (X,T1) may be written as the functor
meM meM

of (Py, A) — of (P, 1) = M

lax lax

defined by the assignment

m P, m
X
2 Pl g A = I
g
m’ P, m’ .

It is straightforward to verify that for each (m’,g: P,, — A) and 1: m — m’ we recover a

cartesian lift

m P, m
XP&
A Pyl ld A — 1
A
m’ P, m’

and it is clear the canonical choice of cartesian lifts given above splits. The cartesian mor-
phisms are diagrams as above (with the identity 2-cell possibly replaced by an isomorphism),
and these correspond to generic cells in A (X,TA). That for each k: Y — X the func-
tor B (k,TA): B(Y, TA) —» FB(X,TA) preserves cartesian morphisms then follows from
condition (2)(b) of Theorem[6.5.9] O
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6.7 Examples of familial pseudofunctors

We will first consider some simple examples of lax multiadjoints which concern pseudo-
functors T: o/ — 98 where 7 is a 1-category. Our first and simplest examples of such
pseudofunctors 7: &/ — 2 concern the universal embeddings into bicategories of spans
and polynomials.

The reader will also recall that in this setting where .o is a 1-category, el F = el & (X,T-)
is a 1-category for each X € 4, and so the mixed lifting properties become the usual lifting
properties. Indeed, it is clear that in such cases every pair (h,y) out of a generic 1-cell is a

generic 2-cell.

Example 6.7.1. The canonical pseudofunctor T: £ — Span (£) has a left lax multiadjoint.

To see this, first observe that a span X - T A is generic if it is isomorphic to the form

K TA id
X / \ TA

This is since for a general span (s,t) genericity would imply we can factor the diagram on the

left below
(s,1) (s,1)

X——=TM X——TM
(s,t)L {hid sz = (s,t)L ﬁm{; sz

as on the right above, where v is necessarily an identity and y invertible. Hence tu = id and
ut is invertible, showing that t is invertible. Conversely, to see such a (s, 1) is generic, note

that any diagram as on the left below

(u,v) (u,v)

X——TM X——TM
Y
(s,l)j M LTq = (s,l)j ﬁTv?r/TidLTq
TA——TB TA——TB
Tp Tp

universally factors as on the right above, where a and 7y are the respective morphisms of

spans

As all cells between generic morphisms are generic, it follows that the category Nix of

generics out of X is the slice £/X, and so for any X € & we may take Py as the functor
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dom: £/X — &, giving
me€ [ X
Span (€) (7= [ E(Pn)

lax
Dual to the above, we see that T: £ — Span(E)*° admits oplax-generic factorisations;
indeed we may write

mel /X

Span () (X,T-) = / E(Pm,—)

oplax

Moreover, the pseudofunctor T : £ — Span,y, () admits both lax and oplax generic factori-
sations, as we may write
me(€/X)iso me(€/X)iso
Span, (X7 = [ @z [ @)
lax oplax

where (€[ X);, contains the objects of £ /X and only those morphisms which are invertible.

The reader will also note that we do not have
Spaniso (8) (X’ T_) = Z & (Pm’ _)
ob /X
As for each T € &, the right above is a discrete category, but isomorphisms of spans are not
unique (and so the canonical assignment is not fully faithful).

The case of spans is also interesting as it gives a simple example in which generic
factorisations are not unique in the sense that one might initially expect. That is to say, given

two generic factorisations

f TA X f

S e

X TA

(meaning isomorphisms « and 8 as above), there is not necessarily a coherent comparison
2-cell f = 3.

Example 6.7.2. Consider a span

2
/N
1 2
where o is the swap map. Here we have the two distinct generic factorisations

(1.o) o) 1 (1.o)

11— -
DA LT

' T2

T2
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In the following examples we will omit the verification that the generic morphisms are

classified correctly.

Example 6.7.3. Letting £ be a locally cartesian closed category with chosen pullbacks, the
canonical pseudofunctor T: £ — Poly () has a left lax multiadjoint. Indeed, a polynomial

X —» TA is generic precisely when it is isomorphic to the form

/TM L .oTA .

X TA

and one may verify that any cell (general 2-cell of polynomials)

TA

(s,pwi/d)f

X r |1t
(”JLV) TB

is generic. Consequently, we may take Py as the functorpr: Ilg (£/X) — &€ wherellg (£/X)

is the category with objects given by spans

x-Lrt.y
out of X, and morphisms of spans from (f,g) - (f’,g’) given by a pair a: W — T and

B: U — U’ rendering commutative the diagram

X w B

N

T ¢
such that W is the fixed chosen pullback of 8 and g’. As a consequence we have
mellg(E/X)

Poly (£) (X, T-) = / E(Pm,—)

lax

for all X € Poly (€).

Remark 6.7.4. By the above, the usual inclusion Span (£) — Poly (£) can be seen as coming
from the unit components ug/x: £/X — Ilg (£/X) of the pseudomonad Ilg for fibrations
with products. Indeed, the family of functors Span(€)(X,Y) — Poly (£)(X,Y) may be
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written as the resulting functors

EPp,Y)— E(Pp,Y)

ax lax

me€|X mellg(£/X)
]

We now give a more complicated example, where .7 is not a 1-category. In this situation
the mixed lifting properties are necessary (unlike the earlier examples where usual liftings
would suffice), and so it is no longer the case that every (/,7y) out of a generic morphism is a
generic 2-cell.

Example 6.7.5. The canonical pseudofunctor T: Span (£)°° — Poly (£) is such that T°P
has a left lax multiadjoint. Here a polynomial TA - X is opgeneric (meaning the opposite

polynomial is generic) if it is isomorphic to the form

;M/TAi—%TA\ﬂ

TA X

and a pair ((s,t),y) out of a opgeneric as below

(LLf) <

TA yy T(s,t)=(s,1,1)
(V,M,g) TB

is generic wheny: (s,t, f) = (v,u, g) is a cartesian morphism of polynomials. We note also
that cartesian morphisms of polynomials are closed under vertical composition as well as

precomposition by another polynomial.
Given a general morphism of polynomials ¢ (s,t, f) = (v,u,g) as given by the diagram

M

u’ f
/ h\X
T

—

e

N
A~ P
NG
J

the op-generic factorization of ¢ is given by

(s.) T(st)_»M __(1,1f)
TA ¢ X = TA YrvThD) VX

(vu,g) T(vu) ™ N~ (L1g)
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where v is the reversed morphism of spans on the left below

1 M—M
s t h f
TA/ e\M / h\X
7 D

and vy is the cartesian morphism of polynomials on the right above. It follows that for any

X € € we may take P as the functor
£/x LM g L. Span ()P

where v assigns each morphism h: A — B to (h,1,) € Span (£)°°°?, and get
me€[X
Poly (7 (X.7-)= | Span(©F° (P,

lax

We now give a natural example which does not come from a pseudofunctor of bicategories

T: o/ — 2. Indeed, the following may be seen as the main motivating example for this

paper.

Example 6.7.6. Consider the pseudofunctor Fam: CAT — CAT sending a category C to
the category Fam (C) with objects given by families of objects of C denoted (A; € C: i € I),
and morphisms (A; € C:i € l) -» (Bj €eC:je J) given by a reindexing ¢: I — J along
with comparison maps A; — By for eachi € 1.

Now, the generic objects of el Fam are those elements of the form (I,(i : i € 1)) for a set
I. And it is clear that for any general element (C,(B;: j € J)) of el Fam that we have the

“generic factorization” (that is an opcartesian map from a generic)

(J.(j:je J))M%C’ (Bj:jeJ))

Also, a general morphism out of a generic object

L (Hio(e) :
(I,G:iel) ————(C,(Bj: jeJ))
consists of a functor H_y: I — C, a function ¢: I — J, and morphisms v;: H; — By
indexed over i € 1. Such a morphism is generic precisely when every vy; is invertible.
It is then clear that the category of generic objects and generic morphisms between them

(note H(_ is uniquely determined by ¢ in this case) is isomorphic to Set. It follows that the
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Fam construction is given by
XeSet
Fam (C) = / cX,  CeCAT
1

ax
It is worth noting that restricting to the category of finite sets Setg,, yields the finite
families construction Famy, and restricting further the category of finite sets and bijections
P yields the free symmetric (strict) monoidal category construction.

The above shows that Fam is familial in the sense that it is a lax conical colimit of

representables, however Fam is also familial in another sense: it has a left lax multiadjoint.

Example 6.7.7. The pseudofunctor Fam: CAT — CAT has a left lax multiadjoint. Here

the generic morphisms are those functors of the form
Op:C > Fam(el F): X — ((X,x)€el F: x € FX)

for a presheaf F: C — Set (Weber refers to these as “functors endowing C with elements”

[53, Definition 5.10]). A cell out of such a generic morphism

6Fam(e1 F)
c/;
X

Fam (5)

Fam(H)

is generic when the comparison maps (not necessarily the reindexing maps) comprising each
vx for X € C are required invertible. It follows that this lax multiadjoint is exhibited by the
formula

F: C—Set
CAT (C,Fam (-)) = / CAT (el F,-)

lax

for each C € CAT.

6.8 The spectrum factorization of a lax multiadjoint

In the simpler dimension one case, Diers [[14]] showed that familial functors have the following

simple characterization:

Theorem 6.8.1 (Diers). Let T: A — B be a functor of categories. Then the following are

equivalent:

1. the functor T has a left multiadjoint;
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2. there exists a factorization

A T B

o
M

such that:

(a) V is a discrete fibration,

(b) G has a left adjoint.

When A has a terminal object, it is not hard to see that M =~ B/T1. This gives the

following simple consequence:

Corollary 6.8.2. Let T: A — B be a functor of categories, and assume A has a terminal
object. Then T has a left multiadjoint (is a parametric right adjoint) if and only if the

canonical projection

T: A/1 - B/T1
has a left adjoint.

It is the purpose of this section to find an analogue of these results in the dimension two
case. However, as we will see, this is much more complicated than simply asking for a left
bi-adjoint. Instead we will require certain types of “lax” adjunctions (or adjunctions up to

adjunction).

6.8.1 Lax F-adjunctions

In the setting of an adjunction of functors F 4 G: A — M we have natural hom-set
isomorphisms A (F,,, A) = M (m,GA). More generally, one can talk about bi-adjunctions of
pseudofunctors F' 4 G: &/ — .# where we only ask for natural hom-category equivalences
o (Fp, A) =~ # (m, GA). However, even this notion is often too strong.

Central to the theory of lax multiadjoints is the theory of lax adjunctions (hence the

name), where one only asks that we have adjoint pairs
Lina: A (Fp,A) = A (m,GA), Rua: A (m,GA) — o (Fp, A)

pseudonatural (or even lax natural) in A € o and m € ..

The following type of lax adjunctions, called lax F-adjunctions, appear when studying
familial pseudofunctors. These are the lax adjunctions which naturally restrict to biadjunc-
tions on a class of “tight” maps. Before defining lax F-adjunctions, we must first define

F-bicategories and see how they assemble into a tricategory F-Bicat.
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Definition 6.8.3. The following notions below:

» an F-bicategory is a bicategory ./ equipped with an identity on objects, injective on
1-cells, locally fully faithful functor oy — 7. The 1-cells of o7t are called the tight

1-cells of .o/ and are required to be closed under invertible 2-cells;

» an F-pseudofunctor (o7, afp) -+ (B, Pr) is a pseudofunctor F: o/ — % which

restricts to a pseudofunctor Fr: oy — Ar;

e a lax F-natural transformation a: F = G: (o, 91) — (%, Pr) is a lax natural

transformation « : F = G such that both:

1. forall X € o7, ax: FX — GX is tight;

2. forall f: X — Y tight,ay: Gf - ax = ay - F f is invertible.

define the tricategory F-Bicat of F-bicategories, F-pseudofunctors, lax F-natural transfor-
mations, and modifications.

The above allows for a particularly simple definition of lax F-adjunctions.

Definition 6.8.4 (Lax F-adjunction). A lax F-adjunction of F-pseudofunctors
- F .
(o, ) L (%, %r)
G

is a biadjunction in the tricategory F-Bicat.

Remark 6.8.5. It is worth noting that the above immediately tells us that lax F-adjunctions

enjoy nice properties such as uniqueness of adjoints.

Whilst the above definition is conceptually informative, for our purposes it will be more
useful to define these adjunctions in terms of universal arrows. This is due to the connection

between the universal arrow definition and notions of genericity.

Remark 6.8.6. From now on we will regard the right adjoint G as a F-pseudofunctor

G: (o, o) — (M, #r) to more closely match the notation we will use use later on.
Definition 6.8.7 (Lax F-adjunction via universal arrows). Given an F-pseudofunctorG: (<7, o) —

(A, M), we say a 1-cell n,,: m — GF,, is universal if for any 1-cell f: m — GA there

exists a f: F,, — A and 2-cell

m ! GA

N

GF,
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such that the pair (f, 0% f) is universal; meaning that for any g: F,, — A and 2-cell g as below

f

m f GA m —GA
18 _ oS
% 4 ) % ﬁ
GF, GF,

there exists a unique B~ : g = f such that the above equality holds. If in addition
(i) the 1-cell n,, is tight;

(ii) for every tight 1-cell f: m — GA in .#, the 2-cell y is invertible and f:F,—> Ais
tight;

(iii) the diagram

m Thm GF,

DN

GF,

exhibits (1f,,,id) as a universal pair;

(iv) for any universal pair (7, Y f), the G-whiskering by a tightg: A — B

m f GA-S5-GB
\ () / -
NMm G7 -
GFm Gg?

exhibits (g?, Gg- yf) as a universal pair;
we then say that 7,, is F-universal®| Finally, we say G has a left lax F-adjoint if:

1. for every object m in ., there exists a F-universal 1-cell n,,,: m — GA;

2. for all 1-cells u and v as below, 77, v - 77,4 equipped with the 2-cell

m GFm

] %m G(Tilnll)

n GF, = |Gmva.p
1

j ”777/(" G(]I,kv)

k GF;,

is universal.

9The reader will of course notice that such a 1, is unique up to equivalence.
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Remark 6.8.8. Note that it comes for free that for all A € o7, the universal pair

GA loa GA
AY 1V
NGA GE
GFga

has the 2-cell component y;, invertible (as identity 1-cells are necessarily tight). This is
one of the triangle identities. The other triangle identity which asks for the composite of F;,

and &f,, constructed as below

MTm

m GF,
nmj 4 Gh,
NG O
GF,, = GFGF,

4, Girm
Y1GF,
1GFy GF,,

to be isomorphic to the identity, is equivalent to (iii) in the presence of (iv). Pseudofunctori-
ality of F is clear from (2) and (iii).

The reader will also recognize that L, 4 and R,, 4 are fully pseudonatural in A € ./ and
m € . respectively; and also fully pseudonatural in m € .#7 and A € </ respectively.
Indeed, Lya: o (Fp,A) — # (m,GA) is defined by applying G and composing with 1,,,
and Ry a: A (m,GA) — o/ (F,,, A) is defined by applying F and composing with £4. Also,
it is not hard to see that  and € become lax F-natural transformations given the universal
arrow viewpoint. Finally, it is worth noting that each v is invertible if and only if the unit n

is fully pseudonatural.

The following property of lax F-adjunctions, that the operations (13 respect isomorphisms,

will be useful later in this section.

Lemma 6.8.9. Given a pseudofunctor G: &/ — # with a left lax F-adjoint (F,n,7y), the

operation 8 +— E respects isomorphisms on tight maps.

Proof. Suppose we have an equality as below where g: F,,, — A is tight

m f GA m f GA

\ Y \ TWfG7/4
NMm Gg NMm Gbk g
Gg

GFy GFy




236 An elementary view of familial pseudofunctors

and suppose further that 8 has an inverse, so that we may also form the unique equality

m—" GFE, 2% GA M GF, 25~ GA

m
\ 7’7 - \ ms
1345 m Gak ~
G7

GF,

where we have used axioms (iii) and (iv) to realize the identity 2-cell as universal. It is then

straightforward to verify a is inverse to b. ]

Remark 6.8.10. It is not hard to see that in the presence of axiom (iv), the above lemma is
equivalent to (iii).

The following theorem, due to Johnstone [23], establishes semi-lax F-adjunctions as a
fundamental concept. These are the lax F-adjunctions such that ¢ is fully pseudonatural, or

equivalently, those for which axiom (iv) holds for all g: A — B (not just on the tight maps).

Theorem 6.8.11 (Johnstone). A I-cell f: X — Y in a bicategory £ with pullbacks is a

fibration if and only if the functor on the lax slice
Xy
H | X——H )Y
has a right semi-lax F-adjoint.

Remark 6.8.12. Johnstone’s choice of “oplax” and “lax” slice is the opposite of ours, and so

the above is stated on the oplax slice in [23]].

Example 6.8.13. Let us see the above as an example of a lax F-adjunction via universal
arrow Here G: of — M isAp: X Y — A || X; which given a (w,0) : a - b forms

the triangular prism (with commuting faces)

T

N xy X N
N .
N N xy X — N’
m 0 a 9‘
Uy
b
X Y
f

and € is invertible (as it is a pseudonaturality square of the counit), resulting in (W Xy 1, 9).

10Alternatively, this example may be understood (perhaps more naturally) in terms of the dual notion of
co-universal arrows. However, the universal arrow definition will be used for consistency.
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Moreover, for a given p: M — X (thought of as an m € ), a: N — Y (thought of as an
A€ ) and

A

M N xy X
X%%
X

(thought of as an f: m — GA) we have the unit n,, given by

—

W) Nxy X

NEA

and the induced f: F,, — A is given by composing with the bipullback as below

M

W) Ny x-TeN

\/

6.8.2 Factoring through the spectrum

We now have the necessary background on lax adjunctions, and can move towards under-
standing how a lax multiadjoint factors through the spectrum. This will only require the

following simple lemma.

Lemma 6.8.14. Suppose V: .# — A is a locally discrete fibration of bicategories. Then

given any 2-cell «: f = g: X — Vm as on the right below

* X
& Vo m = id o Vm
g'm X

with cartesian lifts f. and g. of f and g, there exists a unique pair (&, @) as on the left above

which is assigned to a by V. Moreover, if a is invertible then both & and @ are.

Proof. Suppose without loss of generality that V is the projection flaBXE’% FB — % for a
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pseudofunctor F': A°? — Cat. Then we may construct a diagram as on the left below
X X
Xa) __go /
(1,2) Ja (Y, m) — id Jher V(Y,m)

<

x.n)~ @Y X

where A is the unique map such that
>~ F >~
a—=Ff(m % Fgm) =  a—t=b—"Fg(m)

holds. It is clear this is the only choice of such a diagram, and that if « is invertible then so

is A. O]

Remark 6.8.15. There should be an analogue of the above without assuming V' to be locally
discrete, so that V is the projection flaneﬂ FB — 2 for a trifunctor F: #°° — Bicat.
However, this is beyond the scope of this paper.

We can now prove the main result of this section, which provides a conceptually nice
description of lax multiadjoints. This characterization is interesting if one keeps in mind the
characterization of fibrations via semi-lax F-adjoints, but is perhaps not entirely unexpected
as the connection between the theory of familial 2-functors and the theory of fibrations was
already noted by Weber [33]].

The reader will also note that if G: &/ — . is such that every 1-cell in .o/ is tight, then

a left lax F-adjoint is equivalently a left semi-lax F-adjoint (as axiom (iv) then holds for all

2)-

Theorem 6.8.16 (Spectrum factorization). Let T: o/ — A be a pseudofunctor of bicate-

gories. Then the following are equivalent:

1. the pseudofunctor T has a left lax multiadjoint;

2. there exists a factorization
o d 7

o~ A
M

such that:

(a) V is a locally discrete fibration of bicategories;

(b) G has a left lax F-adjoint (where all 1-cells in <f are tight and the V-cartesian
1-cells of # are tight).



6.8 The spectrum factorization of a lax multiadjoint 239

Proof. (2) = (1) : We first note that for any f: X — TA in A, we have a cartesian lift

fe:m — GAin .. We thus have an assignment

X ! TA

m e GA
e s Mse
T G, Om Tf.
GFy,

TF,

and as vy is invertible on cartesian maps, this is a factorization of f. We thus need only check

that each ¢,, is lax-generic, and that generic 2-cells compose.

Consider now a 2-cell « as on the right below

@ Je f

n——m—->GA X TA
Nn fa Gk = On M Tk
GF, o GC TF, - TC

and its unique preimage as on the left above given by Lemma |6.8.14] This « in turn has a

factorization as on the left below

& Je X S

n—-—sm—GA TA
ANV fed WVrsea
n . Gk i Mn - Tk
Gfed pGe Tfeapre
GF, GC TF, TC

Th

since universality of (f.@,y fc&) is preserved by Gk, thus giving a factorization of « as on the
right above. Note that if @, and hence & and @ are invertible, then y 4 is invertible (as it is

on all cartesian 1-cells), and ¢ is invertible by Lemma(6.8.9]
Given another factorization as on the right below, we can lift o by Lemma|[6.8.14]

o Je f

n——sm—GA X TA
o fro
Mn _ Gk (g n = Tk
GF, o GC TF, - 7C

giving the left above. Noting that 6 = & and that the left pasting above is @ by uniqueness,
we can then factor o through 7y 4 recovering a comparison map ¢ : g = fc_& satisfying
the required conditions. The sub-terminality of each Vy 4 stems from the uniqueness of

factorisations through y 4.
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Finally, to see that generic cells compose, observe that a cell as on the right below

Tn

n GFn 5 TFn
¥ vy Gh - X < Th
m GC e

Zc

is generic precisely when its lift as on the left above, given by Lemma 6.8.14] exhibits (4,7)
as a universal pair. Also observe that every generic is of the form ¢,,, since given any generic

0 and cartesian lift 5, we have an isomorphism

m i GA X g TA
ﬂ‘y&c — ﬂ*v')’éc
Mm GE Om Ta
GF,, TF,

and we know that (6_6, Vy(gc) is an equivalence by Lemma|6.3.20} It follows that two generic

cells as on the right below

n GF, X TF,
7
° Iy Gh f Iy Th
se| 5
m o GF,, — Y TF,,
8|
° g Gk 8 |7 Tk
8c l/
w o GF, Z i TF,

compose to a generic, as the composite on the left above is universal.

(1) = (2) : Supposing that T: o — £ has a left lax multiadjoint, we may construct the
spectrum Ni_): A°? — Cat as in Lemma and factor T as

Xe%#

G pr
o —— M) —

oplax

where G assigns each A € o/ to TA € % with the generic morphism 6,: TA — TA

comprising the generic factorisation

Tea

TAATA A T4

of the identity. A 1-cell h: A — B in 7 is assigned to Th with the pair (E, E) comprising
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the left side

T€A

TA—>TA TA

o R T

TB——TB——TB
53 TeB

of the generic factorization above. A given 2-cell 4: h = k is sentto TA: Th = Tk, which

satisfies
TALATA TAA-TA
Tk <ﬁ> Th = ITZ = Tk| = Tk (;% Th

TB——TBHB TB——TBHB
53 5B

for some (necessarily unique) A: h = k. To see this, note that the left diagram has a generic

factorisation
TALATA TALATA
Tk <T¢/l> Th = Th = Tk ”f Tm (%> Th
TB——=TB TB——=TB
63 63

and thus the left diagram below has the generic factorisation

TA-A TA LA T4 TAA TA LA T4
=Th T= = 7 T=
Tk <T/l> Th \l Th Tk| t?ng (T¢2> Th Th
TBTB>TBT_63>TB TB5—B>TBT_33>TB

But this is also the generic factorization of the diagram

TAA T A

el

Tep

Tk

TB—>

which has already been factored. By uniqueness of representative generic factorisations we

have (m,¢) = (%, E) as required.

Xe%

Now, we have the pseudofunctor P: f plax

My — &, and will sketch why P is a left
lax F-adjoint to G. To do this, we take our universal 1-cell nxs): (X,0) — GF (X,) at an



242 An elementary view of familial pseudofunctors

object (X,6: X — LA) to be the pair (u4,7y) as below.

X—2 - TA
) ¥, Tug Tla
4 Y
" Tv
TA——TA——TA

X—~TA X—2 .7TA
J » % 2, iT”A
f v, Th = T(EMA) = e, TA—— TA
L e T(ech) = lr(ech)
TC ———TC “ TC TC

where £ is the unique map induced from the fact that the RHS whiskered by Tec is Tec - .

This defines the universal 2-cell

X6 —I e
e
nm Gech
GA

where we have a bijection 5 +— ,E as below

(X,5)—L"__Ge (X, 5) W(f—j)> GC
W8 ~ “Gech
(X,8) Gt - N(X,s) G_R
GA GA B Ge
or equivalently, a bijection
x—! ~7c x—! ~rc
W\Tec-a
) N8 Tid = ) Tech Tid
B
TA - TC TA = TC

as genericity of (h,«a) is respected by composition with Tec. The verification that this
bijection satisfies the required axioms is left for the reader. [
Finally, the following provides what is perhaps a more natural definition of parametric

right adjoint pseudofunctors, obtained by applying the above theorem in the setting where .o

has a terminal object.
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Corollary 6.8.17 (Parametric right adjoints). Suppose <7 is a bicategory with a terminal
object. Then a pseudofunctor T: &/ — B has a left lax multiadjoint if and only if the

canonical projection on the oplax slice
Tv:o 1> AB)TI1
has a left lax F-adjoint.

Remark 6.8.18. There are of course four variants of the above, concerning the case when

T /TP /T ° /T is familial.
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Conclusion and future directions

To conclude, we reflect on some of the highlights of this thesis. We have:
* shown that fully faithful KZ pseudomonads P give rise to near-Yoneda structures;

* given two simple descriptions of pseudo-distributive laws over KZ pseudomonads
(one algebraic and one in terms of the near-Yoneda structure arising from the KZ

pseudomonad);

* given a generalization of the oplax-lax correspondence in Kelly’s doctrinal adjunction

[27] to the setting of these KZ-induced near-Yoneda structures;

* introduced a class of bicategories which allows for a generalization of Bénabou’s
correspondence of (co)monads and (op)lax functors out of the terminal category, also
giving a greater understanding of the bicategories of spans and polynomials and maps

out of them;

* established the universal properties of the bicategory of polynomials with cartesian
and general 2-cells, both for pseudofunctors and the weaker gregarious functors, whilst
avoiding the worst of the coherence conditions coming from polynomial composition

that would be needed in a direct proof;

* defined a notion of famility for pseudofunctors which assumes no completeness con-
ditions, defined an appropriate analogue of generic factorisations for pseudofunctors,
and proved that famility is equivalent to having these generic factorisations (along with

a condition on generics ensuring they compose).
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However, there remains some unanswered questions to be addressed, which would tie together
our work on pseudo-distributive laws, familial pseudofunctors, and the bicategories of spans

and polynomials. This is to be the subject of future work.

7.1 Future work

In our fourth paper we showed that pseudofunctors Poly (£) — % correspond to pairs of
pseudofunctors Span (£) — % and Span (£)°° — % which coincide on spans of the form
(s,id) and satisfy a distributivity condition (and also gave a version for cartesian morphisms

of polynomials). This however raises the following natural questions:

1. How is the bicategory of polynomials Poly (£) constructed from the bicategory of spans
Span (£) and bicategory of spans with reversed 2-cells Span (£)°°?

2. How is the bicategory of polynomials Poly, (£) constructed from the bicategory of
spans Span (£) and bicategory of spans with invertible 2-cells Span, (£)?

For one possible answer, see von Glehn’s work on polynomial functors and fibrations with
sums and products [S0]. We will give a more direct (though closely related) answer, making

use of:
Theorem 7.1.1. Given a bicategory </, we have a correspondence

Bicategories % equipped with a bijective on objects pseudofunctor L: &/ — X

Bicocontinuous pseudomonads on [.e7°P, Cat]

Remark 7.1.2. Note that there is a question of what the morphisms between such data should

be to define an equivalence. This is technical and so will be addressed in the future.
Definition 7.1.3. Under the correspondence of Theorem [7.1.1] we call & the representing
bicategory Rep (T) of the pseudomonad on 7" on [.e7°P, Cat].

Taking o7 to be a 1-category &, so that T is now a pseudomonad on [£°P, Cat] ~ Fib (&),

the correspondence of Theorem [/.1.1|returns the following table

Cocontinuous pseudomonad Representing bicategory
T =3¢ Rep (T') = Span (£)°
T =1lg Rep (T) = Span (£)°°P
T =®¢ Rep (T) = Span, (£)*
T =3Xclle Rep (T) = Poly ()P

T =Xe®¢ Rep (T) = Poly, (€)?
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where X¢ is the pseudomonad for fibrations with sums, Il¢ is the pseudomonad for fibrations
with products, ®¢ is a pseudomonad which we introduce (to be thought of as “fibrations with
tensors”), and the composites ¢ I1¢ and ¢ ®¢ are constructed via suitable pseudo-distributive

laws.

The reader will also notice that since it makes sense to talk about pseudo-distributive
laws between pseudomonads 7 and S on Fib (£), by Theorem we must also have a
corresponding notion of pseudo-distributive laws between bijective on objects pseudofunctors
L:& — o/ and H: £ — 2 out of the same bicategory 7. Indeed, we find that such a
pseudo-distributive law of bijective on objects pseudofunctors consists of a coherent family
of functors

Ie€ Je&
Axy: o (LX,LI)x % (HI,HY) — B(HX,HJ)x o (LJ,LY)

for all X and Y in &, and that such a pseudo-distributive law allows one to construct a new

bicategory ¢ with hom-categories given by

Je&
€ (X,Y) = B(HX,HJ)x o (LJ,LY)

and composition resulting from the pseudo-distributive law. This gives rise to a pseudofunctor
L+H:E—%.

The bicategory of polynomials is an example of this. Indeed, we have a pseudo-distributive
law of the pseudofunctors £ — Span (£)°P and £ — Span (£)°P (corresponding to that
of fibrations with sums over fibrations with products) giving rise to the pseudofunctor £ —

Poly (£)°P. Consequently, we have the formulas for hom-categories of polynomials

AefP
Poly (£) (X,Y) = / Span® (£) (X, A) x Span (£) (A,Y)

and

Ae&°P
Poly, () (X.Y) ~ / Span,g, (€) (X, A) x Span (€) (A.)

in terms of hom-categories of spans. Also, these formulas are straightforward to evaluate

since £ — Span (£)°P has a lax left multiadjoint; so that for example
Ae&eP
Poly, ()(X.1)= [ Span, (€) (X.4) x Span (€) (4.7)

Aef°P me€ Y
> / Span,, (£) (X, A) X / E(Pu,A)
1

ax

mellY pAeEP
> / / Span;, (£) (X, A) X E (Pp, A)
1

ax

me& Y
= /1 Span,, (€) (X, Py)

ax
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where we have used that lax conical colimits (which may be seen as an instance of weighted

bi-colimits) commute with bi-colimits.
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