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Abstract

This thesis seeks to further develop two-dimensional category theory, with a focus on Yoneda
structures, (lax-idempotent) pseudomonads, pseudo-distributive laws, and familial repre-
sentability, in order to gain new insights and tools in the study of polynomial functors.

The first contribution of this thesis concerns Yoneda structures, which give a formalization
of the presheaf construction. Our main result shows that any fully faithful lax-idempotent
pseudomonad almost gives rise to a Yoneda structure, with all of the axioms holding except
for one condition.

The second contribution of this thesis concerns pseudo-distributive laws of a pseu-
domonad and a lax-idempotent pseudomonad. We show that such distributive laws have
a simple algebraic description which only requires three out the usual eight coherence con-
ditions, and another simple description in terms of the data of the near-Yoneda structure
recovered from the lax-idempotent pseudomonad.

Our third contribution is to introduce a class of bicategories, which we term generic
bicategories. These are the bicategories for which horizontal composition admits generic
factorisations, and have the interesting property that oplax functors out of them have a reduced
description, similar to the axioms of a comonad.

The fourth contribution of this thesis is to establish the universal properties of the bi-
category of polynomials, with general and cartesian 2-cells, using the properties of generic
bicategories to avoid the majority of the coherence conditions. In addition, we give a new
proof of the universal properties of the bicategory of spans and establish the universal prop-
erties of the bicategory of spans with invertible 2-cells.

The fifth contribution of this thesis is to give an appropriate notion of familial repre-
sentability for pseudofunctors L : A → B of bicategories, and to describe an equivalence
with an analogue of generic factorisations. This improves on work of Weber, who did not
provide such an equivalence, and required A to have a terminal object.
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1
Introduction

1.1 Overview

One of the fundamental constructions in category theory is the so called span construction,
which takes a category E with pullbacks to the bicategory Span (E) with objects those of E ,
morphisms I 9 J given by diagrams of the form

E
t
$$

s
zzI J

called spans, and composition given by forming the pullback. As is commonplace in category
theory, to gain an understanding of a construction, we should establish its universal property.
In the case of spans, this was done byHermida [21, TheoremA.2]who showed that composing
with the canonical embedding E ↪→ Span (E) describes an equivalence

pseudofunctors Span (E) → C

Beck pseudofunctors E → C
(1.1.1)

where a pseudofunctor FΣ : E → C is Beck if for every morphism f in E the 1-cell FΣ f has
a right adjoint F∆ f in C (such an FΣ is also known as a sinister pseudofunctor), and if the
induced pair of pseudofunctors

FΣ : E → C , F∆ : Eop → C

satisfy a Beck-Chevalley condition. A second universal property of the span construction (of
which the above is a restriction) was established by Dawson, Paré, and Pronk [9, Theorem



2 Introduction

2.15], who showed that composing with the canonical embedding describes an equivalence

gregarious functors Span (E) → C

sinister pseudofunctors E → C
(1.1.2)

where gregarious functors are the adjunction-preserving normal1 oplax functors.
In recent years, interest has appeared in another construction: the so called polynomial

construction which takes a locally cartesian closed category E to the bicategory Poly (E)with
objects those of E , and morphisms I 9 J given by diagrams of the form

E
s
zz

p // B
t
$$

I J

called polynomials. This construction has appeared in areas ranging from type theory [43]
to computer science under the name of containers [1].

This thesis began with the goal of establishing the universal properties of the bicategory of
polynomials by giving appropriate analogues of the results in the case of spans, and we indeed
achieve this goal in our fourth paper (see Section 1.5). However, this is more complicated
than one might initially expect. Indeed, as a consequence of the complexity of polynomial
composition, a direct proof of these universal properties would involve very large coherence
problems, and would be impractical to verify directly.

Instead of proving these properties directly, we observe that in the case of spans, for a
“locally defined functor” L : Span (E) → C , meaning a family of functors defined on hom-
categories (assumingC has the same objects as Span (E) and that E is small for simplicity), to
give an oplax structure on L describing how composition of spans is respected, is equivalent
to giving a lax structure on the nerve RL : C → ˆSpan (E) as below

C
RL // ˆSpan (E)

Span (E)
L

cc

Y

OO

where ˆSpan (E) is the local cocompletion of the bicategory Span (E). We will refer to this
analogue of Kelly’s doctrinal adjunction [27] on diagrams as above (which appear in Yoneda
structures [47]) as doctrinal Yoneda structures.

The reader will notice that whilst composition in Span (E) is given by pullback, compo-
sition in ˆSpan (E) can be described without pullbacks, instead having a simple description
given by taking appropriate sums of presheaves. Indeed, as composition in ˆSpan (E) is
simpler, we conclude that the problem of exhibiting a lax structure on RL : C → ˆSpan (E) is
simpler than the equivalent problem of exhibiting an oplax structure on L : Span (E) → C .

1Here “normal” means the unit constraints are invertible.
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In this way, one can exhibit an oplax structure on L : Span (E) → C without ever directly
using composition of spans.

Fortunately, this approach also works after replacing Span (E) by the bicategory of
polynomials Polyc (E) (the “c” here meaning we are restricting to cartesian 2-cells), and
thus one can show that a functor L : Polyc (E) → C is oplax without ever directly using
composition of polynomials, and therefore avoiding the majority of the coherence conditions
which would arise from polynomial composition.

Given the above idea for proving the universal properties of Span (E) and Polyc (E), it
is a natural question to ask what is the special property of these bicategories which makes
this method work. It turns out the important point is that both are examples of bicategories
A for which horizontal composition admits generic factorisations (a condition equivalent to
familial representability). Thus, before proving the universal properties of polynomials it is
worth studying the properties of such bicategories, which we dub generic bicategories, and
extracting what “doctrinal Yoneda structures” tell us about them. This is done in our third
paper (see Section 1.4).

Moreover, it is worth turning “doctrinal Yoneda structures” into a properly-stated theorem
in its natural context. But this again is not entirely straightforward. In general an algebraic
structure on a categoryA (such as amonoidal structure on a category) should only be expected
to lift to the free small cocompletion of A (via Day convolution [11]), but not necessarily to
the category of presheaves of A. Thus, one should expect this “natural context” to be the
setting where a fully faithful lax-idempotent pseudomonad P lifts to the algebras of another
pseudomonadT (equivalent to giving a pseudo-distributive law λ : TP→ PT). This situation
is studied in detail in our second paper (see Section 1.3).

This in turn motivates the idea that doctrinal Yoneda structures should apply to fully
faithful lax-idempotent pseudomonad, which onlymakes sense provided these pseudomonads
give rise to something close to a Yoneda structure. It turns out that this is indeed the case, as
shown in our first paper (see Section 1.3).

In our fifth and final paper (see Section 1.6) we are interested in the special properties
of the canonical embeddings E → Span (E) and E → Poly (E); embeddings which are of
course central to the universal properties of spans and polynomials. In this paper, we give
a description of famility for pseudofunctors (building on work of Weber [53]), and give a
description of famility in terms of a 2-dimensional analogue of generic factorisations. We
then go on to show that E → Span (E) and E → Poly (E) are examples of these familial
pseudofunctors, a fact which in future work will be used to explain why pseudomonads on
Fib (E) such as those for fibrations with sums ΣE or fibrations with products ΠE have a nicer
form than one would generally expect for a pseudomonad on Fib (E).

We now give a more detailed overview of the material of our five papers.
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1.2 Yoneda structures and KZ doctrines

Suppose L : A→ B is a functor in CAT whereA and B are locally small. We may then form
a diagram

B RL // [Aop,Set]
ϕL
ks

A
L

dd

Y

OO

by taking RL to be the nerve B (−, L−) : B → [Aop,Set], and taking ϕL as the canonical
map A (−,−) → B (L−, L−) given by applying L. Such a diagram satisfies two universal
properties: namely L is the absolute left lifting of Y through RL , and RL is the left extension
of Y along L. More generally, diagrams of the form

B RL // PA
ϕL
ks

A
L

aa

yA

OO

in a 2-category C satisfying both of these universal properties (and a couple of additional
axioms) form the basis of what is referred to as a “Yoneda structure” [47] on C , allowing for
a formal version of the Yoneda lemma as well as an appropriate notion of internal presheaves.
In this way Yoneda structures provide a formalization of the presheaf construction.

It is the purpose of this first paper to address the following fundamental question:

Why does the cocompletion construction look like the presheaf construction?

To answer this question, we compare the formalization of the presheaf construction
(Yoneda structures) with the formalization of cocompletion operations (lax-idempotent pseu-
domonads). We show that for any fully faithful lax-idempotent pseudomonad (also called
a fully faithful KZ doctrine), one almost gets a Yoneda structure, with every axiom of a
Yoneda structure holding except for a right ideal property being replaced by closure under
composition.

These KZ-induced “near-Yoneda structures” have the advantage of being quite common
(because lax-idempotent pseudomonads are), as well as lifting nicely to 2-categories of
algebras. However, they have the disadvantage that in the absence of a right ideal property
one cannot easily define a notion of size against such a structure.

We leave as an open question if there is a formal way to recover a right ideal Yoneda
structure from a fully faithful KZ doctrine, which would give a correspondence between
“cocompletion Yoneda structures” and KZ doctrines. Similar questions are the subject of
current research by Di Liberti and Loregian [13], who make use of the more general “relative
KZ doctrines ” [16].
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1.3 Distributive laws via admissibility

In our second paper, we are concerned with the problem of lifting a KZ doctrine P to the
2-category of algebras for a pseudomonad T ; which is equivalent to extending P to the
Kleisli bicategory of T [8], or giving a pseudo-distributive law λ : TP → PT [39]. This is a
natural question, which captures for instance the problem of lifting a monoidal structure on
a category to the cocompletion of that category (via the Day convolution [11]), or extending
a pseudomonad T on locally small categories to the bicategory of profunctors2 on locally
small categories.

The first goal of this paper is to show that such pseudo-distributive laws λ : TP → PT

have an especially simple form (requiring only three out of the usual eight coherence axioms).
Note that it is already known such a pseudo-distributive law has a simple form when T is
(co)KZ [39], however this does not capture some of the main cases of interest (such as when
T is the pseudomonad for monoidal categories).

The second goal of this paper is to give a description of these pseudo-distributive laws in
terms of the data of the near-Yoneda structure arising from the (fully faithful) KZ monad P.
It turns out that central to this condition is that the P-admissible maps (morphisms L such
that PL has a right adjoint) are preserved upon application of T .

The reason for giving this description of pseudo-distributive laws in terms of the admis-
sible maps is that it is required to properly state “Doctrinal Yoneda structures”. Indeed, we
show that whenever we have a pseudo-distributive law λ : TP→ PT over a fully faithful KZ
pseudomonad P, we get a bijection between oplax T-morphism structures on L : A→ B and
lax T-morphism structures on RL : B → PA in

B RL // PA
ϕL
ks

A.
L

aa

yA

OO

The bijection between oplax structures on left adjoints and lax structures on right adjoints
due to Kelly [27] is a special case of this, given by taking P to be the identity.

1.4 Generic bicategories

In our third paper, we study the class of bicategories A with the property that each compo-
sition functor

◦X,Y,Z : AY,Z ×AX,Y → AX,Z

2By “profunctor” we mean a functor A → PB where A and B are locally small categories and PB is the
free small cocompletion of B.
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admits generic factorisations, meaning that

AX,Z (c,−;−) : AY,Z ×AX,Y → Set

is a coproduct of representables for every 1-cell c : X → Z in A . We call bicategories with
this property generic. These are the bicategories A for which the local cocompletion of A

has an especially nice form, with composition given by a simple coproduct formula, and thus
the bicategories for which “Doctrinal Yoneda structures”

C
RL // ˆA

ϕL
ks

A
L

``

Y

OO

gives us a non-trivial reduction of the data of an oplax functor L : A → C as above. This
allows us to give a significantly simpler (but equivalent) description of the data of an oplax
functor L : A → C which is valid whenever A is generic. Interestingly, this description
turns out to be analogous to the data of comonad, and may be viewed as a generalization of
the correspondence between comonads in a 2-category C and oplax functors L : 1→ C due
to Bénabou [3].

The main advantage of this description of oplax functors L : A → C out of a generic A

is that it does not directly involve composition in A . Unsurprisingly, this is especially useful
when A is the bicategory of polynomials with cartesian 2-cells, as we are able to give a
description of oplax functors L : Polyc (E) → C which does not directly involve composition
of polynomials.

1.5 Universal properties of bicategories of polynomials

In our fourth paper, we will apply the tools developed in the first three in order to prove
the universal properties of polynomials; that is, we give a simple characterization of the
data required to construct pseudofunctors (also gregarious functors) Polyc (E) → C and
Poly (E) → C , giving analogues of (1.1.1) and (1.1.2) for polynomials.

Before doing this however, and in order to demonstrate our method, we start by giving
a new proof of the universal properties of the bicategory of spans, exploiting the fact that
Span (E) is a generic bicategory. Note that this new proof addresses the curious observation
made in [9] that the bicategory of spans has a universal characterization which does not
involve pullbacks (namely (1.1.2)).

We then move on to establish the universal properties of the bicategory of spans with
invertible 2-cells Spaniso (E). Note that Spaniso (E) is not a generic bicategory, and so the
universal property does not have a such a simple proof. Also, its universal property is not as
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simple to state as the morphisms are no longer generated by simple adjunctions. However,
we must give it here as it is required to understand the universal properties of Polyc (E).

This gives the required background needed to establish the universal properties of the
bicategory of polynomials with and without cartesian 2-cells, which we then address.

In the case of polynomials with general 2-cells, the universal property ofPoly (E) is simple
to state (as the morphisms are generated by components of adjoint triples Σ f a ∆ f a Π f ) but
difficult to prove because Poly (E) is not a generic bicategory.

Conversely, in the case with cartesian 2-cells, the universal property of Polyc (E) is
difficult to state (due to a lack of adjunctions), but more straightforward to prove as Polyc (E)
is a generic bicategory.

Fortunately, as composition in Poly (E) and Polyc (E) is the same, we can use the universal
property of Polyc (E) to help prove that of Poly (E), only needing to check an extra coherence
condition with respect to the extra 2-cells of Poly (E) which are not present in the cartesian
setting.

As we will see, the universal properties of bicategories of polynomials can be understood
in terms of what they are built out of. In particular, pseudofunctors Poly (E) → C correspond
to pairs of pseudofunctors Span (E) → C and Span (E)co → C which coincide on spans
of the form (s, id) and satisfy a distributivity condition; and pseudofunctors Polyc (E) → C

correspond to pairs of pseudofunctors Span (E) → C and Spaniso (E) → C also coinciding
on such spans and satisfying a distributivity condition.

1.6 An elementary view of familial pseudofunctors

Given that the universal properties of spans and polynomials are defined by composing with
the canonical embeddings E → Span (E) and E → Poly (E), it is natural to ask if these
embeddings have any special properties. This is indeed the case. An obvious (but important)
property is that these pseudofunctors are bijective on objects (which turns out to mean that
they directly correspond to bi-cocontinuous pseudomonads on fibrations over E). A second
important property (which is to be the subject of our fifth paper) is that these pseudofunctors
are in fact examples of familial pseudofunctors.

Familial pseudofunctors between bicategories are the appropriate two-dimensional ana-
logue of familial functors between categories, and are those pseudofunctors which satisfy the
important properties exhibited by the families pseudomonad Fam on CAT.

The study of these familial pseudofunctors was originally due to Weber [53], who was
motivated by parametric right adjoints and their appropriate 2-dimensional analogues. How-
ever, as needed for parametric right adjoints, Weber assumes the existence of a terminal
object. Also, an equivalence between famility for pseudofunctors and appropriate generic
factorisations is not provided.
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In this fifth paper, it is our goal to address these concerns. We give a simple description
of famility for pseudofunctors L : A → B which does not make any assumptions on A

or B, and give a definition of generic factorisations for pseudofunctors L which makes no
assumptions on A , B or L, thus allowing for a theorem describing an equivalence between
famility and our appropriate generic factorisations.

Instead of parametric right adjoints, we are motivated by the work of Diers’ [15], who
considered famility in terms of multiadjoints and spectrums.



2
Yoneda structures and KZ doctrines

Abstract

In this paper we strengthen the relationship between Yoneda structures and KZ doctrines by
showing that for any locally fully faithful KZ doctrine, with the notion of admissibility as
defined by Bunge and Funk, all of the Yoneda structure axioms apart from the right ideal
property are automatic.

Contribution by the author

As the sole author, this paper is entirely my own work. This paper is published in the Journal
of Pure and Applied Algebra [51]. Any differences from the journal version are limited to
formatting and citation numbering changes.

2.1 Introduction

The majority of this paper concerns Kock-Zöberlein doctrines, which were introduced by
Kock [31] and Zöberlein [57]. These KZ doctrines capture the free cocompletion under a
suitable class of colimits Φ, with a canonical example being the free small cocompletion KZ
doctrine on locally small categories. On the other hand, Yoneda structures as introduced by
Street and Walters [47] capture the presheaf construction, with the canonical example being
the Yoneda structure on (not necessarily locally small) categories, whose basic data is the
Yoneda embedding A→ [Aop,Set] for each locally small category A. When A is small this
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coincides with the usual free small cocompletion, but not in general. In this paper we prove a
theorem tightening the relationship between these two notions, not just in the context of this
example, but in general.

A key feature of a Yoneda structure (which is not present in the definition of a KZ
doctrine) is a class of 1-cells called admissible 1-cells. In the setting of the usual Yoneda
structure on CAT, a 1-cell (that is a functor) L : A → B is called admissible when the
corresponding functorB (L−,−) : B → [Aop,SET] factors through the inclusion of [Aop,Set]
into [Aop,SET].

In order to compare Yoneda structures with KZ doctrines, we will also need a notion
of admissibility in the setting of a KZ doctrine. Fortunately, such a notion of admissi-
bility has already been introduced by Bunge and Funk [6]. In the case of the free small
cocompletion KZ doctrine P on locally small categories, these admissible 1-cells, which we
refer to as P-admissible, are those functors L : A→ B for which the corresponding functor
B (L−,−) : B → [Aop,Set] factors through the inclusion of PA into [Aop,Set].

The main result of this paper; Theorem 2.4.1, shows that given a locally fully faithful KZ
doctrine P on a 2-category C , on defining the admissible maps to be those of Bunge and
Funk, one defines all the data and axioms for a Yoneda structure except for the “right ideal
property” which asks that the class of admissible 1-cells I satisfies the property that for each
L ∈ I we have L · F ∈ I for all F such that the composite L · F is defined.

2.2 Background

In this section we will recall the notion of a KZ doctrine P as well as the notions of left
extensions and left liftings, as these will be needed to describe Yoneda structures, and to
discuss their relationship with KZ doctrines.

Definition 2.2.1. Suppose we are given a 2-cell η : I → R · L as in the left diagram

B R // C
η
⇐=

B R //
⇑σ

M
��
C

η
⇐=

A

I

OO

L

``

A

I

OO

L

``

in a 2-category C . We say that R is exhibited as a left extension of I along L by the 2-cell

η when pasting 2-cells σ : R → M with the 2-cell η : I → R · L as in the right diagram

defines a bijection between 2-cells R → M and 2-cells I → M · L. Moreover, we say such

a left extension is respected by a 1-cell E : C → D when the whiskering of η by E given by
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the following pasting diagram

B R // C
η
⇐=

E //
id
⇐=

D

A

I

OO

L

``

E ·I

==

exhibits E · R as a left extension of E · I along L.

Dually, we have the notion of a left lifting. We say a 2-cell η : I → R · L exhibits L as a

left lifting of I through R when pasting 2-cells δ : L → K with the 2-cell η : I → R · L defines

a bijection between 2-cells L → K and 2-cells I → R · K . We call such a lifting absolute if

for any 1-cell F : X → A the whiskering of η by F given by the following pasting diagram

B R // C
η
⇐=

id
⇐= A

I

OO

L

``

X

F

OO
L·F

QQ

exhibits L · F as a left lifting of I · F through R.

There are quite a few different characterizations of KZ doctrines, for example those due to
Kelly-Lack or Kock [29, 31]. For the purposes of relating KZ doctrines to Yoneda structures,
it will be easiest to work with the following characterization given by Marmolejo and Wood
[42] in terms of left Kan extensions.

Definition 2.2.2. [42, Definition 3.1] A KZ doctrine (P, y) on a 2-category C consists of

(i) An assignation on objects P : obC → obC ;

(ii) For every object A ∈ C , a 1-cell yA : A→ PA;

(iii) For every pair of objects A and B and 1-cell F : A→ PB, a left extension

PA F //
cF
⇐=

PB

A
F

<<

yA

OO (2.2.1)

of F along yA exhibited by an isomorphism cF as above.

Moreover, we require that:
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(a) For every object A ∈ C , the left extension of yA as in 2.2.1 is given by

PA idPA // PA
id
⇐=

A

yA

OO

yA

cc

Note that this means cyA is equal to the identity 2-cell on yA.

(b) For any 1-cell G : B → PC, the corresponding left extension G : PB → PC respects

the left extension F in 2.2.1.

Remark 2.2.3. This definition is equivalent (in the sense that each gives rise to the other) to

the well known algebraic definition, which we refer to as a KZ pseudomonad [42, 38]. A

KZ pseudomonad (P, y, µ) on a 2-category C is taken to be a pseudomonad (P, y, µ) on C

equipped with a modification θ : Py → yP satisfying two coherence axioms [31].

Just as KZ doctrines may be defined algebraically or in terms of left extensions, one may
also define pseudo algebras for these KZ doctrines algebraically or in terms of left extensions.

The following definitions in terms of left extensions are equivalent to the usual notions of
pseudo P-algebra and P-homomorphism, in the sense that we have an equivalence between
the two resulting 2-categories of pseudo P-algebras arising from the two different definitions
[42, Theorems 5.1,5.2].

Definition 2.2.4 ([42]). Given a KZ doctrine (P, y) on a 2-category C , we say an object

X ∈ C is P-cocomplete if for every G : B → X

PB G //
cG
⇐=

X PA F //
cF
⇐=

PB G // X

B
G

<<

yB

OO

A
F

<<

yA

OO

there exists a left extension G as on the left exhibited by an isomorphism cG, and moreover

this left extension respects the left extensions F as in the diagram on the right. We say a

1-cell E : X → Y between P-cocomplete objects X and Y is a P-homomorphism when it

respects all left extensions along yB into X for every object B.

Remark 2.2.5. It is clear that PA is P-cocomplete for every A ∈ C .

The relationship between P-cocompleteness and admitting a pseudo P-algebra structure
is as below.

Proposition 2.2.6. Given a KZ doctrine (P, y) on a 2-category C and an object X ∈ C , the

following are equivalent:
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(1) X is P-cocomplete;

(2) yX : X → PX has a left adjoint with invertible counit;

(3) X is the underlying object of a pseudo P-algebra.

Proof. For (1) ⇐⇒ (2) see the proof of [42, Theorem 5.1], and for (2) ⇐⇒ (3) see

[29].

We now recall the notion of Yoneda structure as introduced by Street and Walters [47].

Definition 2.2.7. A Yoneda structure Y on a 2-category C consists of:

(1) A class of 1-cells I with the property that for any L ∈ I we have L · F ∈ I for all F

such that the composite L · F is defined; we call this the class of admissible 1-cells. We say

an object A ∈ C is admissible when idA is an admissible 1-cell.

(2) For each admissible object A ∈ C , an admissible map yA : A→ PA.

(3) For each L : A→ B such that L andA are both admissible, a 1-cell RL and 2-cell ϕL

as in the diagram

B RL // PA
ϕL
⇐=

A

yA

OO

L

aa

Such that:

(a) The diagram above exhibits L as a absolute left lifting and RL as a left extension via

ϕL .

(b) For each admissible A, the diagram

PA idPA // PA
id
⇐=

A

yA

OO

yA

cc

exhibits idPA as a left extension.

(c) For admissible A,B and L,K as below, the diagram

PA PB
ϕyB ·L
=⇒

RyB ·Loo
ϕK
=⇒

CRKoo

A

yA

OO

L
// B

yB

OO

K

==

exhibits RyB ·L · RK as a left extension.
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Remark 2.2.8. We note that when the admissible maps form a right ideal, the admissibility of

L in condition (c) is redundant. However, in the following sections we will consider a setting

in which the admissible maps are closed under composition, but do not necessarily form a

right ideal.

Remark 2.2.9. There is an additional axiom (d) discussed in “Yoneda structures” [47] which

when satisfied defines a so called good Yoneda structure [54]. This axiom asks for every

admissible L and every diagram

B M // PA
φ
⇐=

A

yA

OO

L

aa

that if φ exhibits L as an absolute left lifting, then φ exhibits M as a left extension. This

condition implies axioms (b) and (c) in the presence of (a) [47, Prop. 11].

However, this condition is often too strong. For example one may consider the free Cat-

cocompletion, and take N to be the monoid of natural numbers seen as a one object category,

yielding the absolute left lifting diagram

1 pick N // Cat
!
⇐=

1

pick 1

OO

id1

aa

It is then trivial, as we would be extending along an identity, that the left extension property

is not satisfied.

2.3 Admissible Maps in KZ Doctrines

Yoneda structures as defined above require us to give a suitable class of admissible maps, and
so in order to compare Yoneda structures with KZ doctrines we will need a suitable notion of
admissible map in the setting of a KZ doctrine. Bunge and Funk defined a map L : A → B
in the setting of a KZ pseudomonad P to be P-admissible when PL has a right adjoint, and
showed this notion of admissibility may also be described in terms of left extensions [6]. Our
definition in terms of left extensions and KZ doctrines is as follows.

Definition 2.3.1. Given a KZ doctrine (P, y) on a 2-category C , we say a 1-cell L : A→ B
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is P-admissible when

B RL // PA
ϕL
⇐=

B RL // PA
ϕL
⇐=

H //
cH
⇐=

X

A

yA

OO

L

aa

A

yA

OO

L

aa

H

<<

there exists a left extension (RL, ϕL) of yA along L as in the left diagram, and moreover the

left extension is respected by any H as in the right diagram where X is P-cocomplete.

Remark 2.3.2. Note that such aH is aP-homomorphism, and conversely that aP-homomorphism

H : PA → X is a left extension of H := H · yA along yA as above. Thus this is saying the

left extension RL is respected by P-homomorphisms.

Lemma 2.3.3. Suppose we are given a KZ doctrine (P, y) and a P-admissible 1-cell L : A→

B where B is P-cocomplete, then the 1-cell RL in

B RL // PA
ϕL
⇐=

A

yA

OO

L

aa

has a left adjoint L : PA→ B.

Proof. Taking L to be the left extension

PA
cL
⇐=

L // B

A
L

==

yA

OO

we then have L a RL since wemay define n : idPA → RL ·L and e : L ·RL → idB respectively

as (since L is P-admissible) the unique solutions to

B
RL

!!
PA

L ==

idPA
//

⇑n
PA PA L // B RL// PA B RL//

idB

��
PA L //
⇑e

B
=

B idB // B
id
⇒

= ϕL
⇐

cL
⇐

cL
⇐

ϕL
⇐

id
⇐

A
yA

dd

yA

OO

A
L

ZZ

yA

OO

yA

WW

A
yA

ZZ

L

OO

L

WW

A

L

OO

L

``

Verifying the triangle identities is then a simple exercise.

The following is an easy consequence of this Lemma.
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Lemma 2.3.4. Suppose we are given a KZ doctrine (P, y) on a 2-category C and a P-

admissible 1-cell L : A → B. Then the 1-cell resL defined here as the left extension in the

top triangle

PA PBresLoo
cRL
=⇒

A

yA

OO

L
//

ϕL
=⇒

B

yB

OO

RL

bb

has a left adjoint lanL , and when RL is P-admissible, a right adjoint ranL .

Proof. First note that it is an easy consequence of the left extension pasting lemma (the dual

of [47, Prop. 1]) that yB · L is P-admissible, which is to say the left extension resL above is

respected by any P-homomorphism H : PA → X . This is since such a H will respect the

left extension RL of yA along L as well as the left extension resL of RL along yB. Hence by

Lemma 2.3.3 resL has a left adjoint lanL given as the left extension as on the left (which is

how PL is defined given the data of Definition 2.2.2),

PA lanL //

cyB ·L
⇐=

PB PA ranL // PB
ϕRL
=⇒

A
L

//

yA

OO

B

yB

OO

B

yB

OO

RL

bb

and if RL is P-admissible then we may define ranL := RRL (which is the left extension as on

the right) and since PA is P-cocomplete ranL has a left adjoint given by resL = RL again by

Lemma 2.3.3.

Remark 2.3.5. We have shown that when both L and RL are P-admissible we have the adjoint

triple PL a RL a RRL . Of particular interest is the case where L = yA for some A ∈ C .

Clearly in this case both L and RL are P-admissible and so we may define µA := RyA = idPA

and observe RRyA
= RidPA = yPA to recover the well known sequence of adjunctions

PyA a µA a yPA as in [38].

The following result is mostly due to Bunge and Funk [6], though we state it in our
notation and from the viewpoint of KZ doctrines in terms of left extensions. Also, we will
prove the following proposition in full detail in order to clarify some parts of the argument
given by Bunge and Funk [6]. For example, in order to check that certain left extensions are
respected we will need to know their exhibiting 2-cells. These exhibiting 2-cells will also be
needed later to prove our main result.
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Proposition 2.3.6. Given a KZ doctrine (P, y) on a 2-category C and a 1-cell L : A → B,

the following are equivalent:

(1) L is P-admissible;

(2) every P-cocomplete object X ∈ C admits, and P-homomorphism respects, left

extensions along L. This says that for any given 1-cell K : A→ X , whereX is P-cocomplete,

there exists a 1-cell J and 2-cell δ as on the left

B J // X
δ
⇐=

B J // X
δ
⇐=

E // Y

A

K

OO

L

``

A

K

OO

L

``

exhibiting J as a left extension, and moreover this left extension is respected by any P-

homomorphism E : X → Y for P-cocomplete Y as in the right diagram.

(3) PL := lanL given as the left extension

PA PL //

cyB ·L
⇐=

PB

A
L

//

yA

OO

B

yB

OO

has a right adjoint. We denote the inverse of the above 2-cell as yL := c−1
yB ·L for every 1-cell

L.

Proof. The following implications prove the logical equivalence.

(2) =⇒ (1) : This is trivial as PA is P-cocomplete.

(1) =⇒ (2) : Given a K : A→ X as in (2). We take the pasting

B RL // PA
ϕL
⇐=

K //
cK
⇐=

X

A

yA

OO

L

aa

K

<<

as our left extension using that L is P-admissible. This is respected by any P-homomorphism

E : X → Y where Y is P-cocomplete as a consequence of the second part of the definition

of P-admissibility.

(1) =⇒ (3) : This was shown in Lemma 2.3.4.

(3) =⇒ (1) : This implication is where the majority of the work lies in proving this

proposition. We suppose that we are given an adjunction lanL a resL with unit η where lanL
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is defined as in (3). We split the proof into two parts.

Part 1: The given right adjoint, resL , is a left extension of resL · yB along yB as in the

diagram

PB resL //
id
⇐=

PA

PB
resL

77

B

yB

OO

yB

77

exhibited by the identity 2-cell.1

To see this, we consider the isomorphism in the square on the left

PA PL //

yL
=⇒

PB P2A P2L //

PyL
=⇒

P2B P2A

�µA
��

P2BPresLoo

µB
��

A
L

//

yA

OO

B

yB

OO

PA
PL

//

PyA

OO

PB

PyB

OO

PA PBresL
oo

and then apply P to get the isomorphism of left adjoints in the middle square (suppressing

pseudofunctoriality constraints2), which corresponds to an isomorphism of right adjoints in

the right square (which we leave unnamed). Now by [42, Theorem 4.2] (and since µA · PresL

respects the left extension PyB) we have the left extension µA · PresL · PyB of resL · yB along

yB as below

�
PB

resL
((

�

PB PyB //

idPB //

P2B PresL //

µB 44

P2A µA //

�

PA

⇓yyB ⇓yresL

B yB
//

yB

OO

PB resL
//

yPB

OO

PA
idPA

;;

yPA

OO

and so pasting with the isomorphism µA · PresL · PyB � resL constructed as above tells us

resL is also an extension of resL · yB along yB. It follows that resL respects the left extension

PB idPB //
id
⇐=

PB

B

yB

OO

yB

<<

and this gives the result.

1This may be seen as an analogue of [6, Prop. 1.3]. However, we emphasize here that considering right
adjoints tells us resL is a P-homomorphism since the adjunctions may be used to construct an isomorphism
between resL and a known P-homomorphism.

2These pseudofunctoriality constraints are those arising from the uniqueness of left extensions up to coherent
isomorphism.



2.3 Admissible Maps in KZ Doctrines 19

Part 2: The following pasting exhibits

B yB // PB resL // PA H // X

yL
⇐= PAlanL

cc
η
⇐= idPA

;;

cH
⇐=

A
L

[[

yA
OO

H

CC

the composite H · resL · yB as a left extension of H along L.

Suppose we are given a 1-cell K : B → X . We then see that our left extension is exhibited

by the sequence of natural bijections

H → K · L K · yB � K
H → K · yB · L lanL · yA � yB · L
H → K · lanL · yA

cH exhibits H as a left extension
H → K · lanL mates correspondence

H · resL → K
left extension resL in Part 1 preserved by H

H · resL · yB → K · yB K · yB � K
H · resL · yB → K

It is easily seen this left extension is exhibited by the above 2-cell since when taking

K = H · resL · yB we may take K = H · resL as a consequence of Part 1 (with the left extension

K exhibited by the identity 2-cell). Tracing through the bijection to find the exhibiting 2-cell

is then trivial.

Remark 2.3.7. Considering Part 2 in the above proposition with H = yA and H and cH being

an identity 1-cell and 2-cell respectively, we see that for any P-admissible 1-cell L : A→ B

and corresponding adjunction PL a resL with unit η, we may define our 1-cell RL and 2-cell

ϕL as in Definition 2.3.1 by

B RL // PA
ϕL
⇐=

B yB // PB resL// PA

:=
yL
⇐=

PAlanL

YY
η
⇐= idPA
OO

A

yA

OO

L

__

A
L

[[

yA
OO

We will make regular use of this definition in the next section.

Remark 2.3.8. It is clear from the above proposition that P-admissible 1-cells are closed

under composition as noted by Bunge and Funk [6]. We may also note, as in [6], that every

left adjoint is P-admissible, as taking PL := lanL defines a pseudofunctor [42, Theorem 4.1]

and so preserves the adjunction.
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2.4 Relating KZ doctrines and Yoneda Structures

We are now ready to prove our main result. In the following statement we call a KZ doctrine
locally fully faithful if the unit components are fully faithful; indeed Bunge and Funk [6]
noted that a KZ pseudomonad is locally fully faithful precisely when its unit components are
fully faithful. Here the admissible maps of Bunge and Funk refer to those maps L for which
PL := lanL has a right adjoint (which we denote by resL).

Theorem 2.4.1. Suppose we are given a locally fully faithful KZ doctrine (P, y) on a 2-

category C . Then on defining the class of admissible maps L to be those of Bunge and Funk,

with chosen left extensions (RL, ϕL) those of Remark 2.3.7, we obtain all of the definition

and axioms of a Yoneda structure with the exception of the right ideal property (though the

admissible maps remain closed under composition).

Proof. We need only check that:

(1) ϕL exhibits L as an absolute left lifting. Thus, we must exhibit a natural bijection

between 2-cells L · W → H and 2-cells yA · W → RL · H for 1-cells W : D → A and

H : D→ B as in the diagram

D W //

H ,,

A yA //

L
��

PA
⇓α ⇓ϕL

B
yB
��

RL

<<

⇓cRL

PB

resL

LL

Such a natural bijection is given by the correspondence

L ·W → H yB fully faithful
yB · L ·W → yB · H lanL · yA � yB · LlanL · yA ·W → yB · H lanL a resLyA ·W → resL · yB · H RL := resL · yByA ·W → RL · H

and the 2-cell exhibiting this absolute left lifting is easily seen to be the 2-cell as given in

Remark 2.3.7 by following the above bijection.

(2) resL · RK is a left extension. Considering the diagram

PA PBresLoo
ϕK
=⇒

CRKoo
cRL
=⇒

ϕL
=⇒

A

yA

OO

L
// B

K

==

yB

OO

RL

bb
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we first note that resL · RK is a left extension of RL along K since K is P-admissible. We then

apply the pasting lemma for left extensions to see the outside diagram also exhibits resL · RK

as a left extension.

Remark 2.4.2. We observe that to ask that resL · RK be a left extension in the diagram above

for every P-admissible L and K , is to ask by the pasting lemma that the pasting of ϕK

and cRL exhibit resL · RK as a left extension. As cRL is invertible, this is to say that resL

respects every left extension arising from admissibility. This is equivalent to asking resL be

a P-homomorphism.

Remark 2.4.3. We note here that we do not necessarily have the right ideal property. Indeed

given a KZ doctrine on a 2-category every identity arrow is admissible, and so the right ideal

property would require all arrows into all objects being admissible (that is all arrows being

admissible). This fails for example with the identity KZ doctrine on any 2-category C which

contains an arrow L with no right adjoint.

Remark 2.4.4. Given an object A ∈ C with a P-admissible generalized element a : S → A

we have a version of the Yoneda lemma in the sense that we have bijections

yA · a → K lana · yS � yA · alana · yS → K lana a resayS → resa · K

for generalized elements K : S → PA. In the case where P is the usual free small cocom-

pletion KZ doctrine on locally small categories and S = 1 is the terminal category, maps

yS → resa · K are elements of resa · K (which may be viewed as K evaluated at a).

The purpose of the following is to give an example in which absolute left liftings (also
known as relative adjunctions or partial adjunctions) are preserved3. Also, the following
proposition does not require locally fully faithfulness, whereas Theorem 2.4.1 does.

Proposition 2.4.5. Suppose we are given a KZ doctrine (P, y) on a 2-category C . Then for

every P-admissible 1-cell L : A→ B as on the left,

B RL // PA
ϕL
⇐=

PB PRL // P2A
PϕL
⇐=

A

yA

OO

L

aa

PA

PyA

OO

PL

cc

the 2-cell PϕL as on the right (in which we have suppressed the pseudofunctoriality con-

straints) exhibits PL as an absolute left lifting of PyA through PRL .
3In this case respected by the KZ pseudomonad resulting from the KZ doctrine as in [42].
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Proof. Without loss of generality, we define ϕL as in Remark 2.3.7. We then have the

sequence of natural bijections

PL ·W → H PyB fully faithful
PyB · PL ·W → PyB · H yB · L � PL · yA

P2L · PyA ·W → PyB · H PL a resLPyA ·W → PresL · PyB · H RL := resL · yBPyA ·W → PRL · H

for 1-cellsW into PA. Following the bijection we see that the absolute left lifting is exhibited

by PϕL , suppressing the pseudofunctoriality constraints.

Some observations made in “Yoneda structures” [47] may be seen more directly in this
setting of a KZ doctrine. For example Street and Walters defined an admissible morphism L

(in the setting of a Yoneda structure) to be fully faithful when the 2-cell ϕL is invertible (which
agrees with a representable notion of fully faithfulness, that is fully faithfulness defined via
the absolute left lifting property, when axiom (d) is satisfied). Here we see this in the context
of a (locally fully faithful) KZ doctrine.

Proposition 2.4.6. Suppose we are given a KZ doctrine (P, y) on a 2-category C , and a

P-admissible 1-cell L : A→ B

B RL // PA
ϕL
⇐=

A

yA

OO

L

aa

with a left extension RL as in the above diagram. Then the exhibiting 2-cell ϕL is invertible

if and only if PL := lanL is fully faithful.

Proof. We use the well known fact that the left adjoint of an adjunction is fully faithful

precisely when the unit is invertible. Now, given that ϕL is invertible we may define our

2-cell η∗ as the unique solution to

⇑η∗

PA PA
ϕ−1
L
=⇒

idPAoo PA PB

⇑cyB ·L

resLoo PAPLoo

idPA

zz

BRL

aa

=
⇑cRL

A

yA

OO

L

aa

B

yB

OO

RL

``

A

yA

OO

L
oo

That η is the inverse of η∗ follows from an easy calculation using Remark 2.3.7. Conversely,

if the unit η is invertible then so is ϕL by Remark 2.3.7.
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Remark 2.4.7. If we define a map L to be P-fully faithful when PL is fully faithful, then

as a consequence of Proposition 2.3.6 (Part 2) and Proposition 2.4.6 we see that for any

P-admissible map L, this L is P-fully faithful if and only if every left extension along L into

a P-cocomplete object is exhibited by an invertible 2-cell.

In the following remark we compare PL being fully faithful with L being fully faithful,
and point out sufficient conditions for these notions to agree.

Remark 2.4.8. Note that if PL is fully faithful then L is fully faithful assuming P is locally

fully faithful, as y is pseudonatural. Conversely if L is fully faithful, then (supposing our

corresponding left extension RL is pointwise) the exhibiting 2-cell is invertible [54, Prop.

2.22], equivalent to PL being fully faithful by the above. This converse may also be seen

when the KZ doctrine is locally fully faithful and good (meaning axiom (d) is satisfied for

P-admissible maps) as we can use the argument of [47, Prop. 9]. However, as we now see,

this converse need not hold in general.

An example in which L is fully faithful but PL is not is given as follows. Take A to be

the 2-category containing the two objects 0,1 and two non-trivial 1-cells x, y : 0 → 1, and

take B to be the same but with an additional 2-cell α : x → y. Define L as the inclusion of

A into B. Then for the free Cat-cocompletion of A given by yA : A → [Aop,Cat] we note

that yA and RL · L are not isomorphic, and so the 2-cell ϕL is not invertible meaning PL is

not fully faithful (despite L being fully faithful).

2.5 Future Work

We have seen that the notions of pseudo algebras and admissibility for a given KZ doctrine,
and KZ doctrines themselves, may be expressed in terms of left extensions. In a soon
forthcoming paper we show that pseudodistributive laws over a KZ doctrine may be simply
expressed entirely in terms of left extensions and admissibility, allowing us to generalize
some results of Marmolejo and Wood [42].
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3
Distributive laws via admissibility

Abstract

This paper concerns the problem of lifting a KZ doctrine P to the 2-category of pseudo
T-algebras for some pseudomonad T . Here we show that this problem is equivalent to giving
a pseudo-distributive law (meaning that the lifted pseudomonad is automatically KZ), and
that such distributive laws may be simply described algebraically and are essentially unique
(as known to be the case in the (co)KZ over KZ setting).

Moreover, we give a simple description of these distributive laws using Bunge and Funk’s
notion of admissible morphisms for a KZ doctrine (the principal goal of this paper). We then
go on to show that the 2-category of KZ doctrines on a 2-category is biequivalent to a poset.

We will also discuss here the problem of lifting a locally fully faithful KZ doctrine, which
we noted earlier enjoys most of the axioms of a Yoneda structure, and show that a bijection
between oplax and lax structures is exhibited on the lifted “Yoneda structure” similar to
Kelly’s doctrinal adjunction. We also briefly discuss how this bijection may be viewed as
a coherence result for oplax functors out of the bicategories of spans and polynomials, but
leave the details for a future paper.

Contribution by the author

As the sole author, this paper is entirely my own work. This paper was submitted for
publication on June 27th 2017 and was provisionally accepted pending revisions on Jan 31st
2018.
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3.1 Introduction

It is well known that to give a lifting of a monad to the algebras of another monad is to give a
distributive law [2]. More generally, to give a lifting of a pseudomonad to the pseudoalgebras
of another pseudomonad is to give a pseudo-distributive law [39, 8]. However, in this paper
we are interested in the problem of lifting a Kock-Zöberlein pseudomonad P (also known
as a lax idempotent pseudomonad), as introduced by Kock [31] and Zöberlein [57], to the
pseudoalgebras of some pseudomonad T . These KZ pseudomonads are a particular type of
pseudomonad for which algebra structures are adjoint to units; an important example being
the free cocompletion under a class of colimits Φ.

But what does it mean to give a lifting of a KZ doctrine to the setting of pseudoalgebras
such that the lifted pseudomonad is also KZ? One objective of this paper is to show that
this problem is equivalent to giving a pseudo-distributive law (meaning a lifting of this
pseudomonad automatically inherits the KZ structure), and consequently that such pseudo-
distributive laws have a couple of simple descriptions. One simple description being purely
algebraic (a generalization and simplification of a description given in [39, Section 11]),
and another being a novel description purely in terms of left Kan extensions and Bunge and
Funk’s admissible maps of a KZ doctrine [6]. In fact, Bunge and Funk’s admissible maps
are a central tool in the proof of these results. We also see that these distributive laws are
essentially unique, a generalization capturing [42, Theorem 7.4] and strengthening parts of
[40, Prop. 4.1].

These two descriptions of a pseudo-distributive law correspond to two different descrip-
tions of a KZ pseudomonad. The first, which from now on we call a KZ pseudomonad, is
a well known algebraic description similar to Kock’s [31]; the second, which we call a KZ
doctrine, is to be the description in terms of left Kan extensions due to Marmolejo and Wood
[42, Definition 3.1].

Bunge and Funk showed that admissibility in the setting of a KZ pseudomonad also has
both an algebraic definition and a definition in terms of left Kan extensions. Indeed, Bunge
and Funk defined a morphism f to be admissible in the context of a KZ doctrine P when P f

has a right adjoint [6, Definition 1.1], and showed that this notion of admissibility also has a
description in terms of left Kan extensions [6, Prop. 1.5]. We refer to this as P-admissibility.

The central idea here is that instead of thinking about the problem of lifting a KZ doctrine
algebraically, we think about the problem in terms of algebraic left Kan extensions. Moreover,
this notion of admissibility is crucial here as it allows us to show that certain left extensions
exist and are preserved.

A well known and motivating example the reader may keep in mind is the KZ doctrine
for the free small cocompletion on locally small categories, with its lifting to the setting of
monoidal categories described by Im and Kelly [22] via the Day convolution [11].

In Section 3.2 we give the necessary background for this paper, and recall the basic
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definitions of pseudomonads, pseudo algebras and morphisms between pseudo algebras. In
particular, we recall the notion of a KZ pseudomonad and KZ doctrine and some results
concerning them. In addition, we recall some results concerning algebraic left extensions.
These notions will be used regularly throughout the paper.

In Section 3.3, which is the bulk of this paper, we use Bunge and Funk’s notion of admis-
sibility to generalize some results of Marmolejo and Wood concerning pseudo-distributive
laws of (co)KZ doctrines over KZ doctrines, such as the simple form of such distributive laws
[39, Section 11] or essential uniqueness of them [42, Theorem 7.4]. Our first improvement
here is to show that an axiom concerning the (co)KZ doctrine may be dropped, allowing
us to generalize these results to pseudo-distributive laws of any pseudomonad over a KZ
doctrine. For example, this level of generality allows us to capture the case studied by Im and
Kelly [22]; showing that the lifting of the small cocompletion from categories to monoidal
categories is essentially unique.

In addition, we use this simplification to give a simple algebraic description of a pseudo-
distributive lawof a pseudomonad over aKZpseudomonad, consisting only of a pseudonatural
transformation and three invertiblemodifications subject to three coherence axioms, and prove
this definition is equivalent to the usual notion of pseudo-distributive law. However, the main
new result of this section is a simple description of pseudo-distributive laws over a KZ
doctrine purely in terms of left Kan extensions and admissibility.

Furthermore, through these calculations we find that in the presence of a such a dis-
tributive law, the lifting of a KZ doctrine P to pseudo-T-algebras (for a pseudomonad T)
is automatically a KZ doctrine. The proof of these results is highly technical, relying on T

preserving P-admissible maps; however, the main result of this section is simply stated in
Theorem 3.3.8.

In Section 3.4 we study some properties of the lifted KZ doctrine P̃, such as classifying
the P̃-cocomplete T-algebras as those for which the underlying object is P-cocomplete and
the algebra map separately cocontinuous, thus justifying the usual definition of algebraic
cocompleteness. We also compare our results to that of Im-Kelly [22], but seen from the KZ
doctrine viewpoint.

After checking that the 2-category of KZ doctrines on a 2-category is biequivalent to a
poset, we go on to give some examples in which we apply our results. Our first example
concerns the case of the small cocompletion andmonoidal categories, and our second example
concerns multi-adjoints as studied by Diers [14].

In Section 3.5 we consider the problem of lifting a locally fully faithful KZ doctrine.
These locally fully faithful KZ doctrines are of interest as they almost give rise to Yoneda
structures (see Chapter 2). In particular, it is the goal of this section to describe a bijection
between oplax and lax structures on the lifted “Yoneda structure” when we have such a
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distributive law; that is a bijection between cells α exhibiting L as an oplax T-morphism

B RL // PA
ϕL
⇐=

(
B,TB

y
→ B

)
(RL,β) //

(
PA,TPA zx

→ PA
)

ϕL
⇐=

A

yA

OO

L

]]

(
A,TA x

→ A
)(yA,ξx)

OO

(L,α)

gg

and cells β exhibiting RL as a lax T-morphism for diagrams as on the right above, underlain
by a “Yoneda structure” diagram such as that on the left above. As an instance of this result
we recover Kelly’s bijection between oplax structures on left adjoints and lax structures on
right adjoints [27]. An interesting application of this bijection is as a coherence result for
the bicategories of spans and polynomials (and in particular the oplax functors out of these
bicategories). We briefly discuss the applications here, but leave this to be explored in more
detail in a forthcoming paper.

3.2 Background

It is the purpose of this section to give the background knowledge necessary for this paper. We
start off by recalling the basic definitions of pseudomonads, pseudo algebras, and morphisms
between pseudo algebras, as these notions will be used regularly throughout the paper. We
then recall the notion of a left extension in a 2-category, and consider when these left
extensions lift to the setting of pseudo-algebras and morphisms between them (in a sense
which will be applicable in later sections). Finally, we go on to recall the notion of a KZ
pseudomonad, a special type of pseudomonad for which the algebra structuremaps are adjoint
to units, and give their basic properties and some examples.

3.2.1 Pseudomonads and their Algebras

In order to define pseudomonads, we first need the notions of pseudonatural transformations
and modifications. The notion of pseudonatural transformation is the (weak) 2-categorical
version of natural transformation. There are weaker notions also of lax and oplax natural
transformations, however those will not be used here. Modifications, defined below, take the
place of morphisms between pseudonatural transformations.

Definition 3.2.1. A pseudonatural transformation between pseudofunctors t : F → G : A →

B where A and B are bicategories provides for each 1-cell f : A→ B in A , 1-cells tA and
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tB and an invertible 2-cell t f in B as below

FA F f //

tA
��

FB

tB
��

tf
=⇒

GA
G f

// GB

satisfying coherence conditions outlined in [28, Definition 2.2]. Given two pseudonatural

transformations t, s : F → G : A → B as above, a modification α : s → t consists of, for

every object A ∈ A , a 2-cell αA : tA → sA such that for each 1-cell f : A → B in A we

have the equality αB · F f ◦ t f = s f ◦ G f · αA.

The following defines the (weak) 2-categorical version of monad to be used throughout
this paper. For brevity, we will suppress pseudofunctoriality constraints in this definition and
those following.

Definition 3.2.2. A pseudomonad on a 2-category C consists of a pseudofunctor equipped

with pseudonatural transformations as below

T : C → C , u : 1C → T, m : T2 → T

along with three invertible modifications

T uT //

id
  

T2

m

��

TTuoo

id
��

T3 Tm //

mT
��

T2

m

��

α
⇐=

β
⇐=

T T2
m

// T

γ
⇐=

subject to the two coherence axioms

T4 T2m //

mT2

��
TmT

  

T3

Tm

  

T4 T2m //

mT2

��

T3

Tm

  
mT
��

Tγ
⇐=

m−1
m
⇐=

T3

mT
  

γT
⇐= T3 Tm //

mT
��

T2

m

��

= T3

mT
  

Tm
// T2

m

  

γ
⇐= T2

m

��

γ
⇐=

γ
⇐=

T2
m

// T T2
m

// T

and

T2
m
%%

T3
Tm
&&

T2 TuT // T3

Tm
88

mT &&

⇓γ T = T2

TuT
88

TuT &&

id //
⇓Tα

⇓βT
T2 m // T

T2
m

99

T3 mT

88
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Remark 3.2.3. One should note here that there are three useful consequences of these pseu-

domonad axioms [38, Proposition 8.1] originally due to Kelly [25]. Of these, we will only

need the consequence that

T2
m

%%

T
uT
%%

1C
u // T

uT
99

Tu %%

id //
⇓α

⇓β

T = 1C

u
99

u %%

⇓u−1
u T2 m // T

T2
m

99

T
Tu

99

(3.2.1)

Given a pseudomonad (T,u,m) on a 2-category C one may consider its strict T-algebras
and strict T-morphisms, or the weaker counterparts where conditions only hold up coherent
2-cells. These weaker notions are what will be used throughout this paper, though usually
with the coherent 2-cells in question being invertible. For convenience, we will leave the
modifications α, β and γ in the above definition as unnamed isomorphisms throughout the
rest of the paper.

Definition 3.2.4. Given a pseudomonad (T,u,m) on a 2-category C , a lax T-algebra consists

of an object A ∈ C , a 1-cell x : TA→ A and 2-cells

T2A
mA
��

T x //

⇓µ

TA
x
��

A id //

uA   
⇓ν

A

TA x
// A TA

x

>>

such that both

⇓ν
TA

x

��
⇓µ

A uA //

id

##

⇓u−1
x

TA x //

⇓µ

A ⇓Tν

TA

id
11

TuA
//

id
,,

T2A

T x

>>

mA
��

A

TA uTA
//

id

;;

x

OO

T2A

T x

OO

mA
// TA

x

OO

�

�

TA

x

AA

paste to the identity 2-cell at x, known as the left and right unit axioms respectively. Moreover,
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the associativity axiom asks that we have the equality

T2A T x //

mA

""
⇓m−1

x

TA
x

  

⇓µ

T2A T x //

⇓T µ

TA
x

  
⇓µT3A

T2x

<<

mTA ""

TA x //

⇓µ

A = T3A TmA //

T2x

<<

mTA ""

T2A

T x

<<

mA
""

�

A

T2A mA
//

T x

<<

TA
x

>>

T2A mA
// TA

x

>>

If the above 2-cells ν and µ are isomorphisms, we call this a pseudo T-algebra. If ν and µ

are identity 2-cells, we call this a strict T-algebra.

These T-algebras may be regarded as the objects of a category, with morphisms of
(pseudo) T-algebras defined as follows.

Definition 3.2.5. Given a pseudomonad (T,u,m) on a 2-category C , an oplax T-morphism

of pseudo T-algebras

(L, α) :
(
A,TA x

→ A
)
→

(
B,TB

y
→ B

)
consists of a 1-cell L : A→ B and a 2-cell

TB y //

⇑α

B

TA x
//

T L

OO

A
L

OO

such that (leaving the pseudo T-algebra coherence cells as unnamed isomorphisms)

B uB //

⇑uL

id

��
TB y //

⇑α

�

B

A
L

OO

uA
//

id

BBTA x
//

T L

OO

�

A
L

OO
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is the identity 2-cell on L, and for which

TB
y

  
T2B T y //

⇑Tα

mB
<<

TB y //

⇑α

�

B
=

T2B mB //

⇑mL

TB y //

⇑α

B

T2A
T2L

OO

T x
//

mA ""

TA x
//

T L

OO

A
L

OO

T2A
T2L

OO

mA
// TA x

//

T L

OO

A
L

OO

TA
x

>>

�

If the 2-cell α goes in the opposite direction, this is the definition of a lax T-morphism,

and if α is invertible this is then the definition of a pseudo T-morphism.

The usual definition of T-transformation between oplax or lax T-morphisms is not gen-
eral enough for our purposes as we will be considering situations in which we have both
oplax and lax T-morphisms, and so we define T-transformations as based on the double
category viewpoint [19]. Such transformations are sometimes referred to as generalized
T-transformations.

Definition 3.2.6. Suppose we are given a square of morphisms of pseudo T-algebras

(B, y) (R,β) // (C, z)
ζ
⇐=

(D,w)
(M,ε)

//

(N,ϕ)

OO

(A, x)

(I,ξ)

OO

where the verticalmaps are oplaxT-morphisms and the horizontalmaps are laxT-morphisms.

A T-transformation ζ as in the above square is a 2-cell ζ : I · M → R · N for which we have

the equality of the two sides of the cube

TB y //

⇑ϕ

B
R

��
⇑ζ

TB y //

T R

""
⇑Tζ

B
R

  
⇑β

TD w //

T M ""

T N
<<

D

M !!

N
==

⇑ε

C = TD

T M ""

T N
<<

TC z //

⇑ξ

C

TA x
// A

I

??

TA x
//

T I

<<

A
I

>>

Wewill call the 2-category of pseudoT-algebras, pseudoT-morphisms, andT-transformations

ps-T-alg (we may consider squares where both horizontal maps are identities or both vertical

maps are identities to recover the usual notions of transformation between lax/oplax/pseudo

T-morphisms).
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Remark 3.2.7. Note that in this language it makes sense to talk about the unit and counit of

an adjunction where the left adjoint is oplax and the right adjoint lax. Indeed the oplax-lax

bijective correspondence in Kelly’s doctrinal adjunction [27] is unique such the counit ε (and

unit η) of the adjunction is a T-transformation1. Note also that in this setting of a doctrinal

adjunction L a R (with an oplax structure α on L corresponding a lax structure β on R via

the mates correspondence) it makes sense to view the unit and counit as T-transformations

as we have squares

(B, y) (id,id) // (B, y)
ε
⇐=

(B, y) (R,β) // (A, x)
η
⇐=

(B, y)
(R,β)

//

(id,id)

OO

(A, x)

(L,α)

OO

(A, x)
(id,id)

//

(L,α)

OO

(A, x)

(id,id)

OO

As a convention, will will usually omit these identity T-morphisms. The reader may just

remember that it makes sense to consider T-transformations from a lax followed by an oplax

T-morphism, into an oplax followed by a lax T-morphism, and that any such transformation

may be uniquely expressed as a square in the form of the above definition by inserting the

appropriate identity T-morphisms; which is what we have done in the case of the unit and

counit above.

Example 3.2.8. Let Cat be the category of locally small categories. One may define the

category of Cat-enriched graphs, denoted CatGrph, with objects given as families of hom-

categories

(C (X,Y ) : X,Y ∈ obC )

and morphisms consisting of locally defined functors(
FX,Y : C (X,Y ) → D (FX,FY ) : X,Y ∈ C

)
which have not been endowed with the structure of a bicategory or a lax/oplax functor

respectively [33]. This gives rise to, via a suitable 2-monad T on CatGrph, the 2-category of

bicategories, oplax functors and icons [34]. We may of course replace oplax here with “lax”

or “pseudo”. Note that inside this 2-category lives the one object bicategories (isomorphic

to monoidal categories), giving the 2-category of monoidal categories, lax/oplax/strong

monoidal functors and monoidal transformations (which may also be constructed directly

1This is shown in more generality in Proposition 3.5.6.
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via a suitable 2-monad [34]).

3.2.2 Left Extensions and Algebraic Left Extensions

In this section wewill consider how pseudomonads interact with left extensions. In particular,
we start off by recalling the notion of a left extension in a 2-category, and go on to give
conditions under which such a left extension lifts to a suitable notion of left extension in the
setting of pseudoT-algebras, T-morphisms andT-transformations. The results of this section
are mostly due to Koudenburg, shown in a more general double category setting [32].

Definition 3.2.9. Suppose we are given a 2-cell η : I → R · L as in the left diagram

⇑σ
B R // C

η
⇐=

B R //

M
��
C

η
⇐=

A

I

OO

L

``

A

I

OO

L

``

in a 2-category C . We say that R is exhibited as a left extension of I along L by the 2-cell

η when pasting 2-cells σ : R → M with the 2-cell η : I → R · L as in the right diagram

defines a bijection between 2-cells R → M and 2-cells I → M · L. Moreover, we say such

a left extension (R, η) is respected (also called preserved) by a 1-cell E : C → D when the

whiskering of η by E , as given by the pasting diagram below

B R // C
η
⇐=

E //
id
⇐=

D

A

I

OO

L

``

E ·I

==

exhibits E · R as a left extension of E · I along L.

We now give a suitable description of when a lax T-morphism may be regarded as a left
extension in the setting of pseudo T-algebras.

Definition 3.2.10. Suppose we are given an oplax T-morphism (L, α) and lax T-morphisms

(R, β) and (I, σ) between pseudo T-algebras equipped with a T-transformation η : I → R · L

as in the diagram (
B,TB

y
→ B

)
(R,β) //

(
C,TC z

→ C
)

η
⇐=(

A,TA x
→ A

)(I,σ)

OO

(L,α)

ff
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We call such a diagram a T-left extension if for any given pseudo T-algebra (D,w), lax

T-morphism (M, ε) and oplax T-morphism (N, ϕ) as below(
D,TD w

→ D
)
(M,ε)
(((

B,TB
y
→ B

)
(R,β)

//

(N,ϕ) 66

⇑ζ (
C,TC z

→ C
)

η
⇐= (

A,TA x
→ A

)(I,σ)

OO

(L,α)

jj

pastingT-transformations of the form ζ abovewith theT-transformation η defines the bijection

of T-transformations:

(D,w) (M,ε) // (C, z)

ζ
⇐=

(D,w) (M,ε) // (C, z)

ζ
⇐=

∼ (B, y)
(N,ϕ)

OO

(B, y)
(R,β)

//

(N,ϕ)

OO

(C, z)

(id,id)

OO

(A, x)
(I,σ)

//
(L,α)

OO

(C, z)

(id,id)

OO

Remark 3.2.11. Note that if ζ and η are both T-transformations then so is the composite

ζL · η; this is a simple calculation which we omit.

In order to lift left extensions to T-left extensions as above we will require the following
algebraic cocompleteness property.

Definition 3.2.12. Given a pseudomonad (T,u,m) on a 2-category C , we say a left extension

(H, ϕ) in C as on the left below is T-preserved by a 1-cell z : TC → D when

B H // C
ϕ
⇐=

TB TH // TC
Tϕ
⇐=

z // D
id
⇐=

X

F

OO

G

``

TX

TF

OO

TG

bb

z·TF

DD

the pasting diagram on the right exhibits (z · TH, z · Tϕ) as a left extension.

Remark 3.2.13. Given a pseudo T-algebra
(
C,TC z

→ C
)
if we ask that the underlying object

C is cocomplete in the sense that all left extensions (along a chosen class of maps) into C

exist, and moreover that the algebra structure map z T-preserves these left extensions, then

this is (essentially) the notion of algebraic cocompleteness as given by Weber [56, Definition

2.3.1] (except that we are not using pointwise left extensions here). In the setting monoidal

categories, this condition of z (when z is an algebra structure map) T-preserving the left



36 Distributive laws via admissibility

extensions is the analogue of asking the tensor product be separately cocontinuous; see [56,

Prop. 2.3.2].

We now recall a result for algebraic left extensionsmostly due to Koudenburg [32] (though
we avoid working in a double categorical setting). We will include some details of the proof
as we will need them later.

Proposition 3.2.14. Suppose we are given a diagram

B R // C
η
⇐=

A

I

OO

L

``

which exhibits R as a left extension in a 2-categoryC equipped with a pseudomonad (T,u,m).

Suppose further that(
A,TA x

−→ A
)
,

(
B,TB

y
−→ B

)
,

(
C,TC z

−→ C
)

are pseudo T-algebras. Suppose even further that the left extension (R, η) is T-preserved by

z, and the resulting left extension (z · T R, z · Tη) is itself T-preserved by z. Then given a

lax T-morphism structure σ on I and an oplax T-morphism structure α on L, there exists a

unique lax T-morphism structure β on R for which η is a T-transformation. Moreover, this

left extension is then lifted to the T-left extension(
B,TB

y
→ B

)
(R,β) //

(
C,TC z

→ C
)

η
⇐=(

A,TA x
→ A

)(I,σ)

OO

(L,α)

ff

Proof. Given our structure cells σ and α as below

TA
T I
��

x //

⇑σ

A
I
��

TA
T L
��

x //

⇓α

A
L
��

TC z
// C TB y

// B

our lax constraint cell for R is given as the unique β such that η is a T-transformation, that is

the unique 2-cell such that
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TB y // B

R

��

TB y //

T R

��

B

R

��

TA

T L
<<

x //

T I ""

A

I   

L
>>

⇑η

⇑α

⇑σ

= TA

T L
<<

T I ""

⇑Tη ⇑β

TC z
// C TC z

// C

as z ·Tη exhibits z ·T R as a left extension. From here, the proof of the coherence axioms for β

being a lax T-morphism structure on R is the same as in [56, Theorem 2.4.4]2. Checking that

the lax T-morphism (R, β) is then a T-left extension is a straightforward exercise, of which

we omit the details.

3.2.3 KZ Pseudomonads and KZ Doctrines

AKZpseudomonad is a special type of pseudomonad for which the algebra structuremaps are
adjoint to units; with typical examples including the cocompletion of a category under some
class of colimitsΦ. For this paper, we will use two different (but equivalent) characterizations
of KZ pseudomonads. The first characterization we will use is a well known algebraic
description of a KZ pseudomonad, described via conditions on a “KZ structure cell” (similar
to [31]), the second characterization is in terms of left extensions, and will be referred to as
a KZ doctrine.

Remark 3.2.15. Note that there are other (still equivalent) characterizations which may be

referred to as KZ pseudomonads or KZ doctrines. For example the characterization through

adjoint strings [38], or the characterization as lax idempotent pseudomonads [29].

Definition 3.2.16. AKZ pseudomonad (P, y, µ) on a 2-categoryC consists of a pseudomonad

(P, y, µ) on C along with a modification θ : Py → yP for which

P
yP

%%
1C

y // P

yP
%%

Py

;;⇑θ P2 = 1C

y
99

y %%

⇑yy P2

P
Py

99

(3.2.2)

2The assumptions of [56, Theorem 2.4.4] concerning comma objects are not required for the proof of the
coherence axioms.
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and

⇑α

P
yP
((

Py

66⇑θ

idP

��

idP

AAP2 µ // P = ididP
⇑β

(3.2.3)

Remark 3.2.17. It is shown in [38, Prop. 3.1, Lemma 3.2] that given the adjoint string char-

acterization we recover the definition given above, and conversely given the above definition

it is not hard to recover the adjoint string definition, especially since it suffices to give only

one adjunction [38, Theorem 11.1].

The above is an algebraic description of a KZ pseudomonad; however there is another
description in terms of left Kan extensions given by Marmolejo and Wood [42] which we
refer to as a KZ doctrine.

Definition 3.2.18. [42, Definition 3.1] A KZ doctrine (P, y) on a 2-category C consists of

(i) An assignation on objects P : obC → obC ;

(ii) For every object A ∈ C , a 1-cell yA : A→ PA;

(iii) For every pair of objects A and B and 1-cell F : A→ PB, a left extension

PA F //
cF
⇐=

PB

A
F

<<

yA

OO (3.2.4)

of F along yA exhibited by an isomorphism cF as above.

Moreover, we require that:

(a) For every object A ∈ C , the left extension of yA as in 3.2.4 is given by

PA idPA // PA
id
⇐=

A

yA

OO

yA

cc

Note that this means cyA is equal to the identity 2-cell on yA.

(b) For any 1-cell G : B → PC, the corresponding left extension G : PB → PC preserves

the left extension F in 3.2.4.

Remark 3.2.19. These two descriptions are equivalent in the sense that each gives rise to the

other [42, 38]. In Section 3.4 we will express this relationship as a biequivalence between

the 2-category of KZ pseudomonads and the preorder of KZ doctrines.



3.2 Background 39

The following definitions in terms of left extensions are equivalent to the preceding
notions of pseudo P-algebra and P-homomorphism, in the sense that we have an equivalence
between the two resulting 2-categories of pseudo P-algebras arising from the two different
definitions [42, Theorems 5.1,5.2].

Definition 3.2.20 ([42]). Given a KZ doctrine (P, y) on a 2-category C , we say an object

X ∈ C is P-cocomplete if for every G : B → X

PB G //
cG
⇐=

X PA F //
cF
⇐=

PB G // X

B
G

<<

yB

OO

A
F

<<

yA

OO

there exists a left extension G as on the left exhibited by an isomorphism cG, and moreover

this left extension respects the left extensions F as in the diagram on the right. We say a

1-cell E : X → Y between P-cocomplete objectsX andY is a P-homomorphism (also called

P-cocontinuous) when it preserves all left extensions along yB into X for every object B.

Remark 3.2.21. It is clear that PA is P-cocomplete for every A ∈ C .

We now recall the notion of P-admissibility in the setting of a KZ doctrine P. This
notion of admissibility is useful for showing that certain left extensions exist, and moreover
are preserved. Note that this notion will be used regularly throughout the paper.

Definition 3.2.22. Given a KZ doctrine (P, y) on a 2-category C , we say a 1-cell L : A→ B

is P-admissible if any of the following equivalent conditions are met:

1. In the left diagram below

B RL // PA
ϕL
⇐=

B RL // PA
ϕL
⇐=

H //
cH
⇐=

X

A

yA

OO

L

aa

A

yA

OO

L

aa

H

<<

there exists a left extension (RL, ϕL) of yA along L, and moreover the left extension is
preserved by any H as in the right diagram where X is P-cocomplete;

2. Every P-cocomplete object X ∈ C admits, and P-homomorphism preserves, left
extensions along L. This says that for any given 1-cell K : A → X , where X is
P-cocomplete, there exists a 1-cell J and 2-cell δ as in the left diagram below

B J // X
δ
⇐=

B J // X
δ
⇐=

E // Y

A

K

OO

L

``

A

K

OO

L

``
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exhibiting J as a left extension, and moreover this left extension is preserved by any
P-homomorphism E : X → Y for P-cocomplete Y as in the right diagram;

3. PL := lanL given as the left extension

PA PL //

cyB ·L
⇐=

PB

A
L

//

yA

OO

B

yB

OO

has a right adjoint.

Remark 3.2.23. For a proof that the descriptions (1), (2) and (3) above are equivalent, we

refer the reader to [6] or Chapter 2.

It is well known that pointwise left extensions along fully faithful maps are exhibited by
invertible 2-cells; in the following definition we give an analogue of this fact for KZ doctrines.

Definition 3.2.24. Given a KZ doctrine (P, y) on a 2-category C , we say a 1-cell L : A→ B

is P-fully faithful if PL is fully faithful.

Remark 3.2.25. The importance of the P-fully faithful maps stems from the fact that for a

P-admissible map L : A → B, this L is P-fully faithful if and only if every left extension

along L into a P-cocomplete object is exhibited by an isomorphism (see Remark 2.4.7).

Clearly each yA is both P-admissible and P-fully faithful.

For any given KZ doctrine P on a 2-category C a natural question to ask is: what are the
P-cocomplete objects; P-homomorphisms; P-admissible maps and P-fully faithful maps?
Let us consider a couple of examples.

Example 3.2.26. A well known example of a KZ doctrine is the free small cocompletion

operation on locally small categories, which sends a locally small categoryA to its category

of small presheaves. In particular, when A is small the free small cocompletion is PA =

[Aop,Set]. In this example, the P-cocomplete objects are those locally small categories which

are small cocomplete and the P-homomorphisms are those functors between such categories

preserving small colimits. The P-admissible maps are those functors L : A → B for which

B (L−,−) : B → [Aop,Set] factors through PA. Of these P-admissible maps, the P-fully

faithful maps are precisely the fully faithful functors.

Another example is the free large cocompletion KZ doctrine on locally small categories.
The reader should keep in mind a theorem of Freyd showing that any locally small category
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which admits all large colimits is a preorder. Consequently, a locally small category is
large cocomplete precisely when it is a preorder with all large joins. This KZ doctrine has
some unusual properties. For example it is a cocompletion KZ doctrine (in the simple sense
that its algebras are described as categories admitting a certain class of colimits) with unit
components not always fully faithful. Moreover, every functor is admissible against the large
cocompletion. We define this KZ doctrine P : Cat→ Cat by the assignment

P : obCat→ obCat : A 7→ [Aop,2]

with unit maps for each A ∈ Cat given by

yA : A→ [Aop,2] : X 7→ A 〈−,X〉

with each A 〈−,X〉 is defined as

A 〈−,X〉 : Aop → 2 : S 7→


1, ∃ S
f
−→ X in A

0, otherwise.

For any functor F : A → D where D is a preordered category with all large joins (such as
PB for any B) we may define a left extension F : [Aop,2] → D as in the left diagram

[Aop,2]
F // D

id
⇐=

F (H) = sup
X∈A : HX=1

FX

A

yA

OO

F

AA

by the assignment on the right. Hence for this KZ doctrine, the P-cocomplete objects are the
large cocomplete categories, and the P-homomorphisms are the order and join preserving
maps between such categories. Every map is P-admissible, and it is easily checked that a
map L : A→ B is P-fully faithful precisely when there exists a map X → Y inA if and only
if there exists a map LX → LY in B.

Remark 3.2.27. For a set X seen as a discrete category, the large cocompletion of X is

(PX,⊇); and dually, the large completion is (PX,⊆), where PX is the powerset of X .

3.3 Pseudo-Distributive Laws over KZ Doctrines

It was shown by Marmolejo that pseudo-distributive laws of a (co)KZ doctrine over a KZ
doctrine have a particularly simple form [39, Definition 11.4]. Here we show that one can
give a description which is both simpler (in that less coherence axioms are required) and more
general (in that the assumption of the former pseudomonad being (co)KZ may be dropped).
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Hence the problem of lifting a cocompletion operation to the 2-category of pseudo algebras
may be more easily understood.

Part of the motivation of our method comes from the observation that if a KZ doctrine
lifts to a pseudomonad on the 2-category of pseudo algebras, then this pseudomonad is a KZ
doctrine automatically3. Indeed, this fact means we may consider the problem of lifting a
KZ pseudomonad in terms of algebraic left extensions.

In the proof we will make regular use of the admissibility perspective; in fact, the
preservation of admissible maps is crucial here, and it is the main goal of this paper to
describe such pseudo-distributive laws in terms of this admissibility property.

The proof of these results is quite technical, though the results are summarized in Theorem
3.3.8.

3.3.1 Notions of Pseudo-Distributive Laws

Beck [2] defined a distributive law of a monad (T,u,m) over another monad (P, y, µ) on a
category C to be a natural transformation λ : TP → PT rendering commutative the four
diagrams

TP λ // PT TP λ // PT
= =

P

Pu

OO

uP

ff

T

yT

OO

T y

ff

TTP

mP
��

Tλ //

=

TPT λT // PTT

Pm
��

TPP

=T µ
��

λP // PTP Pλ // PPT

µT
��

TP
λ

// PT TP
λ

// PT

A well known example on Set is the canonical distributive law of the monad for monoids
over the monad for abelian groups (whose composite is the monad for rings).

More generally, one may talk about a pseudo-distributive law of a pseudomonad over
another pseudomonad on a 2-category [39, 26, 48, 8]. In this generalization the four conditions
above are replaced by four pieces of data (four invertible modifications) which are then
required to satisfy multiple coherence axioms, which we will omit here.

Definition 3.3.1. A pseudo-distributive law of a pseudomonad (T,u,m) over a pseudomonad

(P, y, µ) on a 2-category C consists of a pseudonatural transformation λ : TP → PT , along

with four invertible modifications ω1,ω2,ω3 and ω4 in place of the four equalities above.

These four modifications are subject to eight coherence axioms; see [41, 39].

3A fact perhaps most easily seen from the adjoint string definition [38], in view of doctrinal adjunction [27].



3.3 Pseudo-Distributive Laws over KZ Doctrines 43

As a convention, we choose the direction of these four modifications to be from right to

left in the above four diagrams.

In this section, as in the background, we differentiate between “KZ doctrine” defined in
terms of left extensions, and “KZ pseudomonad” defined algebraically.

We now define a pseudo-distributive law over such a KZ pseudomonad, though showing
this data and these coherence conditions suffice will take some work.

Definition 3.3.2. Suppose we are given a 2-category C equipped with a pseudomonad

(T,u,m) and a KZ pseudomonad (P, y, µ). Then a pseudo-distributive law over a KZ pseu-

domonad λ : TP→ PT consists of a pseudonatural transformation λ : TP→ PT along with

three invertible modifications4

TP λ // PT TP λ // PT TTP

mP
��

Tλ //

ω3
⇐=

TPT λT // PTT

Pm
��

ω1
⇐=

ω2
⇐=

P

Pu

OO

uP

bb

T

yT

OO

T y

bb

TP
λ

// PT

subject to the three coherence axioms:

TP

T yP

~~

λ //

yTP

��

y−1
λ
⇐=

PT

PyT

��

yPT

��

θT
⇐=TP

TPy

��

T yP

��

Tθ
⇐=

λ //

λy
⇐=

PT

PT y

��

PyT

!!

coh 1
=

ω2P
⇐=

Pω2
⇐=

TPP
λP

// PTP
Pλ

// PPT
µT

// PT

TPP
λP

// PTP
Pλ

// PPT
µT

// PT

TP
λ
##

P uP //

uy
⇐=

TP λ //

ω2
⇐=

PT P
Pu

//

uP ==

y−1
u
⇐=

⇑ω1
PT

coh 2
=

1 u
//

y

OO

T

T y

OO

yT

@@

1 u
//

y

OO

T

yT

OO

4Note the direction of the modifications are different in [39]. We use here the direction in which they will
naturally arise from left extension and admissiblilty properties. Our direction agrees with that of [49, Section
4].
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TP
λ

''
TTP mP // TP

my
⇐=

λ //

ω2
⇐=

PT TTP

mP

66

Tλ // TPT λT //

⇑ω3

PTT Pm //

y−1
m
⇐=

PT

coh 3
=

Tω2
⇐=

ω2T
⇐=

TT m
//

T2y

OO

T

T y

OO

yT

@@

TT m
//

T2y

``

yT2

<<

T yT

OO

T

yT

@@

Remark 3.3.3. (1) We will see later that ω1 and ω3 are uniquely determined by ω2, due to the

last two axioms and left extension properties. (2) Actually, even the naturality cells of λ may

be determined given ω2 and the first coherence axiom. (3) With the 2-cells ω1 and ω3 and

the last two coherence axioms omitted, we still have sufficient data to lift P to lax T-algebras.

(4) These last two axioms may be seen as invertibility conditions on ω1 and ω3, analogous

to those in [39, Definition 11.4]. (5) During the proof, we will see that each component ωA
2

necessarily exhibits each component λA as a left extension. As ω2 uniquely determines the

rest of the data, this will show that such pseudo-distributive laws are essentially unique. (6)

In fact, the first coherence axiom above is equivalent to preservation of admissible maps, in

the presence of such a pseudonatural transformation λ and invertible modification ω2.

We will need a notion of separately cocontinuous in the context of KZ doctrines, and so
we define the following.

Definition 3.3.4. Suppose we are given a 2-category C equipped with a pseudomonad

(T,u,m) and a KZ doctrine (P, y). We define a 1-cell z : TX → C where X and C are

P-cocomplete objects to be:

1. TP-cocontinuous when every left extension along a unit component yA : A→ PA into

X is T-preserved by z;

2. TP-adm-cocontinuous when every left extension along a P-admissible map L : A→ B

into X is T-preserved by z;

Remark 3.3.5. We will see later in Proposition 3.3.20 that these two notions are equivalent

in the presence of a pseudo-distributive law of T over P.

We are now ready to give the definition of a pseudo-distributive law over a KZ doctrine
in terms of admissibility and left extensions.

Definition 3.3.6. Suppose we are given a 2-category C equipped with a pseudomonad

(T,u,m) and a KZ doctrine (P, y). Then a pseudo-distributive law over a KZ doctrine

λ : TP→ PT consists of the following assertions:
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1. T preserves P-admissible maps;

and for every A ∈ C ,

2. the exhibiting 2-cell ωA
2 of the left extension λA5 in

TPA λA // PTA
ωA2
⇐=

TA

yTA

OO

T yA

dd

is invertible6;

3. the 1-cell λA above is TP-cocontinuous7;

4. the respective diagrams

PA uPA // TPA
uyA
⇐=

λA //
ωA2
⇐=

PTA T2PA mPA // TPA
myA
⇐=

λA //
ωA2
⇐=

PTA

A uA
//

yA

OO

TA

T yA

OO

yTA

;;

T2A mA
//

T2yA

OO

TA

T yA

OO

yTA

;;

exhibit both λA · uPA and λA · mPA as left extensions.

Remark 3.3.7. Note that a pseudo-distributive law as defined above is unique, as it contains

only assertions, and these assertions are invariant under the choice of left left extension

(unique up to coherent isomorphism).

3.3.2 The Main Theorem

We are now ready to state the main result of this section (and this paper), justifying our
definitions above.

Theorem 3.3.8. Suppose we are given a 2-categoryC equipped with a pseudomonad (T,u,m)

and a KZ pseudomonad (P, y, µ). Then the following are equivalent:

(a) P lifts to a KZ doctrine P̃ on ps-T-alg;

(b) P lifts to a KZ pseudomonad P̃ on ps-T-alg;

(c) P lifts to a pseudomonad P̃ on ps-T-alg;

(d) There exists a pseudo-distributive law over a KZ doctrine λ : TP→ PT;

5The left extension is unique up to coherent isomorphism, and exists since T yA is P-admissible.
6Equivalently one could ask that each T yA is P-fully faithful (see Proposition 2.4.6).
7Equivalently one could ask that each λA is TP-adm-cocontinuous.
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(e) There exists a pseudo-distributive law over a KZ pseudomonad λ : TP→ PT;

(f) There exists a pseudo-distributive law λ : TP→ PT .

The proof of this theorem is lengthy, and so we will leave the more difficult aspects of
the proof for subsequent subsections. Before moving on to these subsections, we give the
remainder of the proof.

Proof of Theorem 3.3.8. In order to prove this theorem, we will complete the cycle of impli-

cations

(a) +3 (b)
%-

(d)
19

(c)
rz

(e)
em

( f )ks

where the more difficult implications left to later sections are dotted above.

(a) =⇒ (b) : A KZ doctrine gives rise to a pseudomonad whose structure forms a fully

faithful adjoint string by [42, Theorem 4.1], and this in turn gives rise to a KZ pseudomonad

by [38, Prop. 3.1, Lemma 3.2].

(b) =⇒ (c) : This implication is trivial.

(c) =⇒ ( f ) : For the correspondence between pseudo-distributive laws and liftings to

pseudo T-algebras see [8, Theorem 5.4].

( f ) =⇒ (e) : Given a pseudo-distributive law λ : TP → PT where P is a KZ pseu-

domonad, to check that we then have a pseudo-distributive law over a KZ pseudomonad in

the sense of Definition 3.3.2 we need only check the first axiom. But this axiom follows from

coherences 7 and 8 as given in [39, Section 4] along with the KZ pseudomonad coherence

axiom 3.2.3.

(e) =⇒ (d) : This is shown later in Theorem 3.3.17.

(d) =⇒ (a) : This is shown later in Theorem 3.3.21.

3.3.3 Distributive Laws over KZ Monads to those over KZ Doctrines

We will devote this entire subsection to showing that a pseudo-distributive law over a KZ
pseudomonad, as in Definition 3.3.2, gives rise to a pseudo-distributive law over a KZ
doctrine, as in Definition 3.3.6. This is (e) =⇒ (d) of Theorem 3.3.8. As this is the most
difficult implication to show, we will break the proof up into a number of propositions and
lemmata, starting with the following proposition.

Note for reader. During this subsection and the next, the reader will keep the three
equivalent characterizations of P-admissible maps (given in Definition 3.2.22) in mind.
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Indeed, all three characterizations are to be used repeatedly throughout these two subsections.

Remark 3.3.9. Most of our diagrams are constructed from the following 2-cells, where P is

a KZ doctrine and T a pseudomonad on a bicategory C :

1. As noted in Definition 3.2.22, for any P-admissible 1-cell L : A → B we have a left

extension (RL, ϕL) of yA along L. In particular if L = T yA is P-admissible, we will

denote this left extension by
(
λA,ω

A
2
)
. Moreover, by Remark 2.3.7, if we are given a

chosen right adjoint resL to PL, then the canonical way to define (RL, ϕL) is by

B RL // PA
ϕL
⇐=

B yB // PB resL// PA

:=
yL
⇐=

PAlanL

YY
η
⇐= idPA
OO

A

yA

OO

L

__

A
L

[[

yA
OO

2. As noted in Definition 3.2.18, for any 1-cell F : A → PB we have a left extension(
F, cF

)
of F along yA with cF invertible. If F = RL for a P-admissible L, we will

denote this left extension by
(
resL, cRL

)
, and note that resL defined this way is right

adjoint to PL (see Lemma 2.3.4).

Proposition 3.3.10. Suppose we are given a 2-category C equipped with a pseudomonad

(T,u,m) and a KZ doctrine (P, y). Further suppose that for each object A ∈ C , T yA is

P-admissible, and the left extension8 which we denote λA in

TPA λA // PTA
ωA2
⇐=

TA

yTA

OO

T yA

dd

is exhibited by an isomorphism denoted ωA
2 . Then for every P-admissible 1-cell L : A→ B

such that T L : TA→ TB is also P-admissible, the respective pastings

PTA TPAλAoo
ωA2
=⇒

TPBTresLoo PTA PTBresTLoo
cRTL
=⇒

TPBλBoo
TcRL
=⇒

TϕL
=⇒

ϕTL
=⇒

ωB2
=⇒

TA

T yA

OO

T L
//

yTA

dd

TB

T yB

OO

T RL

dd

TA
T L

//

yTA

cc

TB

T yB

OO

yTB

dd

RTL

ii (3.3.1)

exhibit λA · TresL and resT L · λB as left extensions of yTA along T yB · T L; yielding an

8This left extension exists since T yA is P-admissible.
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isomorphism of left extensions:

TPB λB //

TresL
��

⇑γL

PTB
resTL

��
TPA

λA
// PTA

Moreover, if the left diagram below exhibits RL as a left extension

B RL // PA
ϕL
⇐=

TB T RL // TPA
TϕL
⇐=

λA //
ωA2
⇐=

PTA

A
L

aa

yA

OO

TA
T L

cc

T yA

OO

yTA

::

then the right diagram exhibits λA · T RL as a left extension.

Proof. Firstly, we consider the diagram

PTA TPAλAoo
ωA2
=⇒

TPBTresLoo
TcRL
=⇒

TϕL
=⇒

TA

T yA

OO

T L
//

yTA

dd

TB

T yB

OO

T RL

dd

and note that λA ·TresL is a left extension since for any 1-cell H : TPB → PTA we have the

natural bijections

λA · TresL → H mates correspondence
λA → H · T lanL since λA is a left extension
yTA → H · T lanL · T yA PL · yA � yB · LyTA → H · T yB · T L

and one may check this is the correct exhibiting 2-cell using Remark 2.3.7. We may also

consider the diagram

PTA PTBresTLoo
cRTL
=⇒

TPBλBoo

ϕTL
=⇒

ωB2
=⇒

TA
T L

//

yTA

cc

TB

T yB

OO

yTB

dd

RTL

ii

and note that since T yB is P-admissible the left extension λB is preserved by resT L . Noting

cRTL is invertible, we then apply the pasting lemma for left extensions (the dual of [47, Prop.

1]) to see the outside diagram exhibits resT L · λB as a left extension. By uniqueness of left

extensions, we derive our desired isomorphism γL : λA · TresL � resT L · λB. Now, to show
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that

TB T RL // TPA
TϕL
⇐=

λA //
ωA2
⇐=

PTA

TA
T L

cc

T yA

OO

yTA

:: (3.3.2)

exhibits λA · T RL as a left extension, it suffices to show that we have an isomorphism

λA · T RL � RT L and that pasting the left extension (RT L, ϕT L) with this isomorphism yields

the above. This is the case since all regions in the following diagram commute up to

isomorphism

�TcRL
TPA

λA
((

�γL

TB

yTB

77
T yB //

RTL

;;

T RL ..

TPB λB //

TresL 66

PTB resTL // PTA
�ωB

2 �cRTL

and it is easy to check ϕT L pasted with this isomorphism yields the pasting 3.3.2 if one uses

the definition of γL .

Remark 3.3.11. Note that the above proposition tells us something about the components of

λ being separately cocontinuous, without any assumptions on pseudonaturality of λ. This

may seem unusual in view of the following lemma, in which we show pseudonaturality of λ

is precisely equivalent to the TP-cocontinuity of its components.

Lemma 3.3.12. Suppose we are given a 2-categoryC equipped with a pseudomonad (T,u,m)

and a KZ doctrine (P, y). Further suppose that for each object A ∈ C , T yA is P-admissible

and the left extension which we call λA as on the left below

TPA λA // PTA
ωA2
⇐=

TPB λB // PTB

TA

yTA

OO

T yA

dd

TPA
λA

//

TPL

OO

⇑λL

PTA

PT L

OO

is exhibited by an isomorphism ωA
2 . Then for all L : A→ B the naturality squares for λ as
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on the right above commute up to a coherent isomorphism λL , with coherent meaning

TPB
λB
((

TPA λA //

TPL 66

PTA
ωA2
⇐=

PT L //

y−1
TL
⇐=

⇑λL

PTB TPA TPL //

Ty−1
L
⇐=

TPB λB // PTB

=
ωB2
⇐=

TA

yTA

OO

T yA

cc

T L
// TB

yTB

OO

TA

T yA

OO

T L
// TB

yTB

;;

T yB

OO

(the condition for ω2 to be a modification), if and only if each λA is TP-cocontinuous.

Proof. The following implications prove the logical equivalence.

(=⇒) : Suppose that for each L : A → B the naturality square of λ commutes up to a

coherent isomorphism λL . Then noting that idPB = RyB , we see that for any left extension as

on the left (which is isomorphic to
(
F, cF

)
by uniqueness)

PA PF //

y−1
F
⇐=

P2B
resyB // PB TPA TPF //

Ty−1
F
⇐=

TP2B
TresyB // TPB λB // PTB

cidPB
⇐=

TcidPB
⇐=

A

yA

OO

F
// PB

yPB

OO

idPB

;;

TA

T yA

OO

TF
// TPB

T yPB

OO

T idPB

::

it suffices to check that the right diagram above exhibits λB ·TresyB ·TPF as a left extension.

To see this we note that the pasting

PTA PTF //

⇑λ−1
F

PTPB
resTyB

$$

⇑γyB

TPA TPF //

Ty−1
F
⇐=

λA

;;

TP2B
TresyB //

λPB

99

TPB λB // PTB
TcidPB
⇐=

TA

T yA

OO

TF
// TPB

T yPB

OO

idTPB

99

is equal to the pasting (using λB = RT yB)

TPA λA // PTA PTF //

y−1
TF
⇐=

PTPB
resTyB // PTB

ωA2
⇐=

cλB
⇐=

TA
TF

//

yTA

OO

T yA

dd

TPB

yTPB

OO

λB

::

This is shown by first using the coherence condition on λ−1
F , and then using the definition

of γyB from Proposition 3.3.10. Note also this last diagram exhibits resT yB · PTF · λA as

a left extension since T yA is P-admissible (using preservation of the left extension λA by
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P-homomorphisms).

(⇐=) : For any L : A→ B, we know PT L · λA is a left extension of yTB ·T L along T yA

since T yA is P-admissible. Also λB · TPL is such a left extension as λB is TP-cocontinuous,

giving us an isomorphism of left extensions λF coherent as in the statement of this lemma.

Remark 3.3.13. A Beck condition is satisfied here. Indeed, the 2-cell γL as in Proposition

3.3.10 is the mate of λL as in the above lemma. This may be seen by pasting the left diagram

of 3.3.1 with the mate of λL and then recovering the right diagram making use of Remark

2.3.7 and the coherence condition on λL).

In the following lemma we see that for a pseudo-distributive law over a KZ pseudomonad
as in Definition 3.3.2, the modification components ωA

2 necessarily exhibit each λA as a left
extension, and from this we deduce the existence of invertible components ωA

4 .

Lemma 3.3.14. Suppose we are given a 2-categoryC equipped with a pseudomonad (T,u,m)

and a KZ pseudomonad (P, y, µ). Suppose further that we are given a pseudo-distributive

law over a KZ pseudomonad λ : TP → PT . Then for each A ∈ C , T yA is P-admissible,

exhibited by an adjunction

PT yA a µTA · PλA

Moreover, the diagrams as on the left exhibit each λA as a left extension,

TPA λA // PTA
ωA2
⇐=

TPPA λPA //

ωA4
⇐=

T µA
��

PTPA PλA // PPTA
µTA
��

TA

yTA

OO

T yA

dd

TPA
λA

// PTA

and there exists canonical isomorphisms as on the right for each A.

Proof. We now prove the three assertions of the above lemma.

Each T yA is P-admissible. Firstly, we note that the below diagram exhibits µTA · PλA

as a left extension

PTPA PλA //

y−1
λA
⇐=

P2TA µTA //

�

PTA

TPA
λA

//

yTPA

OO

PTA

yPTA

OO

idPTA

:: (3.3.3)

Indeed, the construction of a KZ doctrine from a pseudomonad whose structure forms a fully

faithful adjoint string is outlined in [42], and the above is an instance of this construction.

Noting λA = µTA · PλA, we define our unit η as the unique solution to the left extension
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problem

PTPA
λA
&&

PTA PT yA //

⇑y−1
TyA

PTPA PλA //

⇑y−1
λA

P2TA µTA //

�

PTA

PTA
id

//

PT yA 88
⇑η

⇑id

PTA =

TA
T yA

//

yTA

OO

yTA

99TPA
λA

//

yTPA

OO

⇑ωA
2

PTA

yPTA

OO

id

<<

TA

yTA

OO

yTA

BB

Note that the unit η must then be given by

⇓PωA
2

�

PTA PT yA //

PyTA

((

idPTA

##
PTPA PλA // P2TA µTA // PTA

as y : 1→ P is a pseudonatural transformation. We define our counit ε as the unique solution

to the left extension problem

⇑ε
⇑(ωPA

2 )
−1

PTPA λA //

idPTPA

%%
PTA PT yA // PTPA = TPA

T yPA **

TPyA

88⇑Tθ

yTPA

��

λA ++

TP2A λPA // PTPA

�

TPA

yTPA

OO

λA

FF

PT A PT yA

FF

⇑λyA

where the unnamed isomorphism above is 3.3.3. One could also define ε directly in terms of

θ, but that would result in a more complicated proof. Of the triangle identities:

PT yA

idPTyA ((

PT yA·η // PT yA · λA · PT yA

ε·PT yA

��

λA

idλA ''

η·λA // λA · PT yA · λA

λA·ε
��

PT yA λA

the left identity, which is equivalent to asking for equality when whiskered by yTA, can be

proven using that ω2 is a modification. The right triangle identity, which is equivalent to

asking for equality when whiskered by yTPA, amounts to asking that the pasting
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PTA

yPTA

��

idPTA

��

⇑(ωPA
2 )

−1

�

TPA
T yPA **

TPyA

88⇑TθA

yTPA

��

λA ++

λA

//

TP2A λPA // PTPA PλA //

⇑yλA

P2TA µTA // PTA
⇑PωA

2

PTA
PT yA

FF

⇑λyA

PyTA

::

idPTA

99

�

is the identity. This is where the first axiom for a pseudo-distributive law over a KZ pseu-

domonad is used, in addition to the second coherence axiom 3.2.3 of a KZ pseudomonad.

Each ωA
2 exhibits λA as a left extension. As T yA is P-admissible, we know by

Remark 2.3.7 that the pasting

TPA yTPA // PTPA
resTyA // PTA

yTyA
⇐= PTA

PT yA
OO

η ·yTA
⇐=

TA

yTA

OO

T yA

[[

yTA

ii

exhibits resT yA · yTPA as a left extension, where resT yA = λA = µTA · PλA, and η is the unit

of PT yA a resT yA as just defined. From a substitution of the definition of η (and pasting with

a couple of isomorphisms) we see that the pasting

�

PTA yPTA //

idPTA

��⇑yλA

P2TA
µTA %%

TPA yTPA //

λA 99

PTPA

PλA 88

PωA2
⇐=

� PTA

PTA
PT yA

aa

id

??PyTA

OO

=yTyA
⇐=

TA

yTA

OO

T yA

]]

yTA

__

exhibits λA as a left extension. Note that this pasting is equal to ω2 as a consequence of ω2

being a modification as well as the coherence condition 3.2.1 satisfied by P.
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There exists canonical isomorphisms ωA
4 . We have the left extension

TP2A λPA // PTPA PλA //

y−1
λA
⇐=

PPTA µTA // PTA
ωPA

2
⇐=

�

TPA

yTPA

OO

T yPA

ee

λA
// PTA

yPTA

OO

idPTA

::

since T yPA is P-admissible, and also the left extension

TP2A T µA // TPA λA // PTA
⇑Tcid

TPA
T id

::

T yPA

OO

since λA is TP-cocontinuous by Lemma 3.3.12, giving us our isomorphism of left extensions

ωA
4 . Note that this means ω4 satisfies coherence axiom 7 of [39].

In the following proposition we show that the admissible maps are preserved. Note that
the proof relies on the existence of isomorphisms ωA

4 as above, which in turn relies on the
the admissibility of yA being preserved (also shown above).

Proposition 3.3.15. Suppose we are given a 2-category C equipped with a pseudomonad

(T,u,m) and a KZ pseudomonad (P, y, µ). Suppose further that we are given a pseudo-

distributive law over a KZ pseudomonad λ : TP → PT . Then T preserves P-admissible

maps.

Proof. Suppose we are given a 1-cell L : A → B which is P-admissible, meaning that we

have an adjunction PL a resL with unit and counit denoted η and ε respectively. We show that

T L : TA→ TB must then be P-admissible, with the admissibility exhibited by an adjunction

PT L a µTA · PλA · PTresL · PT yB

Firstly, we note that this right adjoint is exhibited as the left extension

PTB PT yB //

y−1
TyB
⇐=

PTPB PTresL //

y−1
T resL
⇐=

PTPA PλA //

y−1
λA
⇐=

P2TA µTA //

�

PTA

TB

yTB

OO

T yB
// TPB

yTPB

OO

TresL
// TPA

λA
//

yTPA

OO

PTA

yPTA

OO

idPTA

:: (3.3.4)
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and denote it RL for convenience. We then define our unit n as the unique 2-cell rendering

PTB RL

%%
TA yTA

// PTA
idPTA

//

PT L 99
⇑n

PTA

equal to

PTA PT L //

y−1
TL
⇐=

PTB PT yB //

y−1
TyB
⇐=

PTPB PTresL //

y−1
T resL
⇐=

PTPA PλA //

y−1
λA
⇐=

P2TA µTA //

�

PTA

TA
T L

//

yTA

OO

T yA //

yTA

88TB

yTB

OO

T yB
// TPB

yTPB

OO

TresL
//

⇑Tη

TPA
λA

//

yTPA

OO

PTA

yPTA

OO

idPTA

::

⇑T yL

TPA
TPL

OO

T id

::

⇑ωA
2

and note that the unit n is then given by

PTA PT L //

PT yA 00

PyTA

::

idPTA

::PTB PT yB // PTPB PTresL //

⇑PTη

PTPA PλA // P2TA µTA // PTA
⇑PT yL

PTPA
PTPL

OO

PT id

<<

⇑PωA
2

�

(3.3.5)

as y : 1→ P is a pseudonatural transformation. We define our counit e as the unique solution

to the left extension problem

⇑e ⇑(ωB
2 )
−1

TB yTB //

λA·TresL ·T yB

::PTB RL //

idPTB

&&
PTA PT L // PTB = TB

T yB
��

T yB //

yTB

&&
TPB λB // PTB

�
=

⇑Tε
⇑λL

TPB

T id

;;

TresL
// TPA

TPL

OO

λA
// PTA

PT L

OO

where the unlabeled isomorphism is 3.3.4. Of the triangle identities:

PT L

idPTL
((

PT L·n // PT L · RL · PT L

e·PT L
��

RL

idRL
''

n·RL // RL · PT L · RL

RL ·e
��

PT L RL

the left identity (or equivalently the left triangle identity whiskered by yTA) easily follows

from the whiskered definitions of n and e as well as the corresponding triangle identity for

PL a resL , and ω2 being a modification. The right triangle identity (or that whiskered by
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yTB) is more complicated. This identity amounts to checking that

⇑(ωB
2 )
−1

TB

T yB
��

T yB //

yTB

&&
TPB λB // PTB PT yB //

⇑PT yL

PTPB PTresL // PTPA PλA // P2TA µTA // PTA

⇑Tε

=
⇑λL

⇑PTη

�

TPB

T id

;;

TresL
// TPA

TPL

OO

λA
// PTA

PT L

OO

PT yA // PyTA

::

idPTA

99

PTPA

PTPL

OO

PT id

99

⇑PωA
2

(3.3.6)

is just the isomorphism 3.3.4. The first step here is to make our diagrams more like the first

axiom of a pseudo-distributive law over a KZ doctrine. Upon using that ω2 is a modification

and the coherence axiom 3.2.3, the problem reduces to showing that 3.3.6 with the unnamed

isomorphism and cell ωB
2 removed is equal to

PTB PT yB //

⇑λ−1
yB

PTPB PTresL //

⇑λ−1
resL

PTPA PλA //

y−1
λA
⇐=

P2TA µTA // PTA

TPB TPyB //

λB
::

TP2B TPresL //

λPB
88

TP2A ωPA
2
⇐=

λPA
88

θTA
⇐=

TB
T yB

//T yB

ee
⇑T y−1

yB
TPB

TresL
//T yPB

ff
⇑T y−1

resL

TPA
λA

//

yTPA

OO

T yPA

ff

PTA

yPTA

DD

PyTA

ZZ (3.3.7)

We then simplify 3.3.7 using the first axiom of a pseudo-distributive law over a KZ doctrine,

canceling PωA
2 , and pasting λyB , λyA and λresL to the other side of the desired equation. By

pseudonaturality of λ, the problem may then be reduced to showing that

TB

T yB
��

T yB // TPB TPyB // TP2B TPresL // TP2A λPA // PTPA PλA // P2TA µTA // PTA

⇑Tε

=
⇑TPyL

⇑TPη

TPB

T id

;;

TresL
// TPA

TPL

OO

TPyA
// TP2A

TPid

::

TP2L

OO

is equal to

TPB TPyB // TP2B TPresL // TP2A λPA // PTPA PλA // P2TA µTA // PTA

⇑T y−1
yB ⇑T y−1

resL

TθA
⇐=

TB
T yB

//

T yB

OO

TPB
TresL

//

T yPB

OO

TPA

T yPA

EE

TPyA

YY

Since we have the isomorphism ωA
4 as in Lemma 3.3.14, and as TθB · T yB is invertible

(meaning we can paste with TθB and maintain the logical equivalence), we may reduce the
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problem to showing that

TB

T yB
��

T yB // TPB
TPyB

22

T yPB ,,
⇑TθB TP2B TPresL // TP2A T µA // TPA λA // PTA

⇑Tε

=

⇑TPyL

⇑TPη

TPB

T id

;;

TresL
// TPA

TPL

OO

TPyA
// TP2A

TPidPA

::

TP2L

OO

is equal to

TPB
TPyB

22

T yPB ,,
⇑TθB TP2B TPresL // TP2A T µA // TPA λA // PTA

⇑T yyB ⇑T y−1
resL

TθA
⇐=

TB
T yB

//

T yB

OO

TPB
TresL

//

T yPB

OO

TPA

T yPA

EE

TPyA

YY

From here, use that θ is a modification, the axioms 3.2.2 and 3.2.3, and pseudonaturality of

y to deduce the triangle identity from that of the adjunction PL a resL .

Remark 3.3.16. Note that here, as well as in the preceding lemma, we only used that ω2 is an

invertible modification and the first axiom for a pseudo-distributive law over a KZ doctrine,

along with pseudo naturality of λ.

We are now ready to prove the main result of this subsection.

Theorem 3.3.17. In the statement of Theorem 3.3.8 (e) implies (d).

Proof. We first note by Proposition 3.3.15 that T preserves P-admissible maps. Also, we

know by Lemma 3.3.14 that each λA is a left extension exhibited by the distributive law data

as in

TPA λA // PTA
ωA2
⇐=

TA

yTA

OO

T yA

dd

with ωA
2 invertible by assumption. That each λA is TP-cocontinuous is a consequence of

Lemma 3.3.12 and ω2 being a modification. Finally, that the diagrams

PA uPA // TPA
uyA
⇐=

λA //
ωA2
⇐=

PTA T2PA mPA // TPA
myA
⇐=

λA //
ωA2
⇐=

PTA

A uA
//

yA

OO

TA

T yA

OO

yTA

;;

T2A mA
//

T2yA

OO

TA

T yA

OO

yTA

;;

exhibit both λA ·uPA and λA ·mPA as left extensions is due to the last two axioms for a pseudo-

distributive law over a KZ pseudomonad (as pasting a left extension with an isomorphism
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ω1 or ω3 will preserve the left extension property). Indeed, it is clear the left diagram below

exhibits PuA as a left extension.

PA PuA //

y−1
uA
⇐=

PTA T2PA TλA // TPTA
TωA2
⇐=

λTA //

ω2T
A

⇐=

PT2A PmA //

y−1
mA
⇐=

PTA

A uA
//

yA

OO

TA

yTA

OO

T2A

T yTA

OO

T2yA

dd

y
T2A

::

mA
// TA

yTA

;; A

To see that the composite PmA · λTA · TλA on the right is a left extension, note that Propo-

sition 3.3.10 shows λTA · TλA is a left extension above, and since T2yA is P-admissible by

Proposition 3.3.15, the left extension property is respected upon whiskering by PmA.

3.3.4 Lifting a KZ Doctrine to Algebras via a Distributive Law

In this subsection we show that given a pseudo-distributive law of a pseudomonad T over a
KZ doctrine P, we may lift P to a KZ doctrine P̃ on the 2-category of pseudo T-algebras.
This is (d) =⇒ (a) of Theorem 3.3.8. However, before we show this implication we will first
need to verify the following proposition.

Proposition 3.3.18. Suppose we are given statement (d) of Theorem 3.3.8. It then follows

that:

1. T preserves P-admissible maps;

and for every pseudo T-algebra
(
A,TA x

→ A
)
,

2. there exists a 1-cell zx given as the left extension via an isomorphism ξx

TPA zx // PA

TA x
//

T yA

OO

⇑ξx

A

yA

OO

which we call the Day convolution at x;

3. each zx is TP-cocontinuous;

4. the respective diagrams

PA uPA // TPA

⇑uyA

zx //

⇑ξx

PA T2PA mPA // TPA
⇑myA

zx //

⇑ξx

PA

A uA
//

yA

OO

TA

T yA

OO

x
// A

yA

OO

T2A mA
//

T2yA

OO

TA

T yA

OO

x
// A

yA

OO
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exhibit zx · uPA and zx · mPA as left extensions.

Proof. (1) This property is straight from the definition. We include this property here so that

this proposition may be taken as one the equivalent conditions of Theorem 3.3.8. We will

remark about this later in this subsection. Now, let a pseudo T-algebra
(
A,TA x

→ A
)
be

given. (2) The left extension (zx, ξx) is given by the diagram

TPA λA // PTA
ωA2
⇐=

Px //

y−1
x
⇐=

PA

TA

yTA

OO

T yA

dd

x
// A

yA

OO

where the left extension λA is preserved by Px as T yA is P-admissible. (3) Suppose we are

given a left extension as on the left below.

PD F // PA TPD TF // TPA zx // PA
cF
⇐=

TcF
⇐=

D

yD

OO

F

<<

TD

T yD

OO

TF

;;

As this left extension is T-preserved by λA, which in turn is preserved by Px as T yD is

P-admissible, the diagram on the right exhibits zx · TF = Px · λA · T F as a left extension.

(4) Again noting each T yA is P-admissible, we see the left extensions

PA uPA // TPA
uAy
⇐=

λA //
ωA2
⇐=

PTA T2PA mPA // TPA
mA
y
⇐=

λA //
ωA2
⇐=

PTA

A uA
//

yA

OO

TA

T yA

OO

yTA

;;

T2A mA
//

T2yA

OO

TA

T yA

OO

yTA

;;

are preserved upon composing with Px. Trivially, these left extensions are then preserved

upon pasting with the isomorphism yx .

The following remark is not needed for the proof of Theorem 3.3.8, it merely explains
why the consequences in the above proposition are equivalent to the conditions (a) through
to (f ) of this theorem.

Remark 3.3.19. Note that from this proposition one may recover statement (d) of Theorem

3.3.8. This is since given the data of this proposition, one may recover a choice of each λA
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and its exhibiting invertible 2-cell ωA
2 as a left extension, by taking the pasting

TPA
⇑T y−1

uA

TPuA // TPTA
zmA //

⇑ξmA

PTA

TA

T yA

OO

TuA
// T2A

T yTA

OO

mA
// TA

yTA

OO

The condition of each λA being TP-cocontinuous is inherited from the corresponding

condition on each zmA . Condition (4) of this proposition yields the corresponding conditions

on the maps λA. We omit this last calculation, as it is not required for the proof of the

main theorem. We just note that this last calculation relies on the pseudo-algebra structure

of the maps zx : TPA→ PA constructed later on in this subsection. The construction of the

algebra structure may be done with all of the axioms for a pseudo-distributive law over a KZ

doctrine without the last (which we have recovered from the proposition), in addition to the

last condition of the proposition.

The following proposition will be useful in the proof that (d) implies (a).

Proposition 3.3.20. Suppose we are given a 2-category C equipped with a pseudomonad

(T,u,m) and a KZ doctrine (P, y). Further suppose that we are given a pseudo-distributive

law over a KZ doctrine λ : TP → PT . Then for any two P-cocomplete objects C and D, a

1-cell u : TC → D is TP-cocontinuous if and only if it is TP-adm-cocontinuous.

Proof. Supposing thatu isTP-cocontinuouswe check thatu is necessarilyTP-adm-cocontinuous.

To see this, we first note that we have an induced isomorphism of left extensions as a conse-

quence of having the two left extensions

TPC λC // PTC Pu // PD
(yD)∗ // D TPC

T(yC)∗ // TC u // D
ωC2
⇐=

TcidC
⇐= �

TC

T yC

OO

yTC

::

u
// D

yD

<<

y−1
u
⇐=

idD

>>

cidD
⇐=

TC

T yC

OO

T idC

;;

u

>>

We must check that the left extension (where L is P-admissible)

B RL // PA
ϕL
⇐=

PH // PC
(yC)∗ // C

cidC
⇐=

A
L

aa

yA

OO

H
//

y−1
H
⇐=

C

yC

OO

idC

==

is T-preserved by u. Indeed, on applying T and whiskering by u, and then pasting with this

isomorphism of left extensions and a naturality isomorphism of λ (which we have by Lemma



3.3 Pseudo-Distributive Laws over KZ Doctrines 61

3.3.12), we obtain

PTA PTH // PTC Pu // PD
(yD)∗

""
TB T RL // TPA

TϕL
⇐=

TPH //

λA

OO

λ−1
H
⇐=

TPC
T(yC)∗ //

λC

OO

�

TC u // D
TcidC
⇐=

TA
T L

cc

T yA

OO

TH
//

Ty−1
H
⇐=

TC

T yC

OO

T idC

;;

Then noting that pasting with invertible 2-cells preserves left extensions and that

TB T RL // TPA
TϕL
⇐=

λA //
ω2
⇐=

PTA PTH // PTC Pu // PD
(yD)∗ // D

TA
T L

cc

T yA

OO

yTA

::

is a left extension as a consequence ofT L being P-admissible (thus the left extension λA ·T RL

in Proposition 3.3.10 being preserved), we have the result.

We now have everything required to complete the proof of the main theorem.

Theorem 3.3.21. In the statement of Theorem 3.3.8 (d) implies (a).

Proof. Firstly, we observe that each zx is TP-adm-cocontinuous as a consequence of Propo-

sition 3.3.20. It follows that we have the left extensions

T2PA T zx // TPA
⇑Tξx

zx //

⇑ξx

PA T3PA T2zx // T2PA T zx //

⇑T2ξx

TPA
⇑Tξx

zx //

⇑ξx

PA

T2A
T x

//

T2yA

OO

TA

T yA

OO

x
// A

yA

OO

T3A
T2x

//

T3yA

OO

T2A
T x

//

T2yA

OO

TA

T yA

OO

x
// A

yA

OO

upon noting that each T2yA and T3yA is P-admissible.

Secondly, we check that each (PA, zx) is a pseudo T-algebra. We define our algebra

structure maps as the unique solutions to the following left extension problems (and note they
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are invertible as they are isomorphisms of left extensions by Proposition 3.3.18)

TPA
zx

##

TPA zx //

⇑ξx

PA

PA idPA //

uPA
::

⇑σx

PA = PA

uPA
::

⇑uyA TA x
//

T yA

OO

�

A

yA

OO

A

yA

OOid
⇐=

yA

ii

A
uA

::

idA

<<

yA

OO

TPA
zx

##

TPA zx //

⇑ξx

PA

T2PA T zx //

mPA
::

⇑Tξx

TPA zx //

⇑ξx

⇑δx

PA = T2PA

mPA
::

⇑myA TA x
//

T yA

OO

�

A

yA

OO

T2A
T x

//

T2yA

OO

TA x
//

T yA

OO

A

yA

OO

T2A
mA

::

T2yA

OO

T x
// TA

x

<<

Note that these are the axioms for ξx to exhibit yA as a pseudo T-morphism. To check that

the algebra structure coherence axioms are satisfied, we note that the equalities

T2PA mPA //
T zx
%%

�

TPA
zx
$$

TPA id //
TuPA

99

idTPA

&&

⇑Tσx

TPA zx //

⇑ξx

⇑δx

PA TPA zx //

⇑ξx

PA
=

=

TA x
//

T yA

OO

T yA

88

A

yA

OO

TA

T yA

OO

x
// A

yA

OO

TPA
zx

��

T2PA T zx //

mPA
44

�

TPA
zx
$$

⇑δx

TPA zx
//

uTPA
99

idTPA --

PA
idPA

//

uPA 99
⇑u−1

zx ⇑σx

PA TPA zx //

⇑ξx

PA
=

=

TA x
//

T yA

OO

⇑ξx

A

yA

OO

yA

ff

TA

T yA

OO

x
// A

yA

OO

and the equality between
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T2PA

mPA

((
� T2PA mPA //

T zx

##

TPA
zx

""
T3PA T2zx //

TmPA

::

mTPA

OO

T2PA T zx //

⇑Tδx

TPA zx //

⇑δx

PA

T3A
T2x

//

T3yA

OO

⇑T2ξx

T2A
T x

//

T2yA

OO

⇑Tξx

TA x
//

T yA

OO

⇑ξx

A

yA

OO

and

TPA

zx

��

T2PA T zx //

mPA

::

TPA
zx

""

⇑δx

T3PA T2zx //

mTPA

::

T2PA T zx //

mPA

;;

⇑m−1
zx

TPA zx //

⇑δx

PA

T3A
T2x

//

T3yA

OO

⇑T2ξx

T2A
T x

//

T2yA

OO

⇑Tξx

TA x
//

T yA

OO

⇑ξx

A

yA

OO

easily follow from the respective conditions on (A, x) being a pseudo T-algebra and the

definitions of δx and σx .

We now use the above to define our KZ doctrine

P̃ : ps-T-alg→ ps-T-alg

We use the assignment on objects (A, x) 7→ (PA, zx). We take our units as the pseudo

T-morphisms (yA, ξx) : (A, x) → (PA, zx). Now suppose that we are given a pseudo T-

morphism (F, φ) : (A, x) → (PB, zr), where (PB, zr) = P̃ (B,r), as in the diagram

(PA, zx)
(F,φ) //

cF
⇐=

(PB, zr)

(A, x)
(F,φ)

99

(yA,ξx)

OO

Since zr is TP-cocontinuous, we may apply Proposition 3.2.14 to find a lax T-morphism
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F, φ

)
as above. Indeed the lax structure map φ is given as the unique solution to

TPA zx // PA

F

��

TPA zx //

T F

��

PA

F

��

TA x //

T yA
;;

TF ##

A
F

##

yA
;;

⇑cF

⇑ξx

= TA

T yA
;;

TF ##

⇑TcF ⇑φ

TPB zr
//

⇑φ

PB TPB zr
// PB

But we notice that

TPA T F //
TcF
⇐=

TPB zr // PB TPA zx // PA F // PB
cF
⇐=

TA

T yA

OO

TF

::

TA x
//

T yA

OO

⇑ξx

TF --

A

yA

OO

F

88

�φ

TPB

zr

FF

are both left extensions since zr is TP-cocontinuous and T yA is P-admissible respectively. It

follows that the laxT-morphism structure map φ is an isomorphism of left extensions, making(
F, φ

)
a pseudo T-morphism. Of course, if we only assume (F, φ) to be a lax T-morphism

then we can only expect F to admit a lax T-morphism structure.

We now check that such left extensions are preserved by other left extensions of this form.

Suppose we are given two left extensions of pseudo T-algebras and pseudo T-morphisms

(PA, zx)
(F,φ) //

cF
⇐=

(PB, zr) (PB, zr)
(G,σ) //

cG
⇐=

(PC, zh)

(A, x)
(F,φ)

99

(yA,ξx)

OO

(B,r)
(G,σ)

99

(yB,ξr )

OO

To see that

(PA, zx)
(F,φ) // (PB, zr)

(G,σ) // (PC, zh)

(G,σ)cF
⇐=

(PB, zr)
(G,σ)

55

(A, x)
(F,φ)

55
(yA,ξx)

OO

is a left extension we need only observe that the T-morphism structure on GF resulting from

an application of Proposition 3.2.14 (on the outside diagram) is given by composing φ and σ

as above. This is shown by pasting the defining diagram for φ with σ which gives
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TPA zx // PA

F

��

TPA zx //

TF

��

PA

F

��

TA x //

T yA
;;

TF ##

A
F

##

yA
;;

⇑cF

⇑ξx

TA

T yA
;;

TF ##

⇑TcF ⇑φ

TPB zr
//

⇑φ

TG

��

PB

G

��

= TPB zr
//

TG

��

PB

G

��

⇑σ ⇑σ

TPC zh
// PC TPC zh

// PC

(3.3.8)

which is the defining diagram for the induced lax structure on G · F from an application of

Proposition 3.2.14.

It is an easy consequence of Proposition 3.2.14 that each (yA, ξx) is dense. Indeed since

zx T-preserves the left extension

PA idPA // PA
=

A

yA

OO

yA

<<

(as well the resulting left extension) the density property may be lifted to pseudo-T-algebras

applying Proposition 3.2.14.

3.4 Consequences and Examples

In this section we point out some consequences of Theorem 3.3.8 proven in the previous
section, and in particular some properties of the lifted KZ doctrine P̃ on ps-T-alg. Before
considering the properties of P̃, we mention two easy corollaries.

Corollary 3.4.1. Pseudo-distributive laws over KZ pseudomonads are essentially unique.

Proof. As shown in Lemma 3.3.14, the modification components ωA
2 exhibit λA as a left ex-

tension. The last two coherence axioms of a pseudo-distributive law over a KZ pseudomonad

then define the components ωA
1 and ωA

3 as unique solutions to a left extension problem. Note

that ωA
4 is also defined as the unique solution to a left extension problem (see the proof of

3.3.14). The essential uniqueness of left extensions then tells us these pseudo-distributive

laws are essentially unique.

Corollary 3.4.2. When the conditions of Theorem 3.3.8 are met, the lifted pseudomonad
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arising from the pseudo-distributive law is automatically KZ.

Proof. As a consequence of the essential uniqueness of pseudo-distributive laws over KZ

pseudomonads, any lifted pseudomonad must be equivalent to the KZ pseudomonad whose

existence is guaranteed by Theorem 3.3.8.

3.4.1 The Lifted KZ Doctrines

Wefirst check that in addition to having a lifting to ps-T-alg, we have a lifting to the 2-category
of pseudo-T-algebras, lax (or oplax) T-morphisms, and T-transformations.

Proposition 3.4.3. Suppose any of the equivalent conditions of Theorem 3.3.8 are satisfied.

Then

(a) P lifts to a KZ doctrine P̃oplax on ps-T-algoplax;

(b) P lifts to a KZ doctrine P̃lax on ps-T-alglax;

Proof. (a) : P lifts to a KZ doctrine P̃oplax on ps-T-algoplax since given any oplax structure

cell ϕ on a map F : A→ PB as below

(PA, zx)
(F,ϕ) //

cF
⇐=

(PB, zr)

(A, x)
(F,ϕ)

99

(yA,ξx)

OO

we get an oplax structure cell ϕ given as unique the solution to

TPB zr //

⇑ϕ

PB TPB zr //

⇑ϕ

PB

TPA zx //

⇑ξx

TF

OO

PA

F

OO

= TPA

T F
;;

Tc−1
F
=⇒

cF
=⇒ PA

F
bb

TA

T yA

OO

x
// A

yA

OO

TA
T yA

cc

x
//

TF

OO

A
yA

<<F

OO

with the coherence conditions for ϕ being an oplax T-morphism structure following from

Proposition 3.3.18 (Part 4). Note that the induced oplax structure when composed by an

oplax T-morphism
(
G, τ

)
as below

(PA, zx)
(F,ϕ) //

cF
⇐=

(PB, zr)
(G,τ) // (PC, zk)

(A, x)
(F,ϕ)

99

(yA,ξx)

OO
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is still
(
G, τ

)
·

(
F, ϕ

)
. To see that

(
F, ϕ

)
is a left extension in the sense of transformations,

suppose we are given a transformation σ : (F, ϕ) → (H,ψ) · (yA, ξx), then the induced cell

σ : F → H is a transformation since

TPB zr //

⇑ϕ

PB TPB zr //

⇑ψ

PB
Tσ
⇐=

σ
⇐=

TPA zx //

⇑ξx

TF

OO

TH

99

PA

F

OO

= TPA zx //

⇑ξx

TH

99

PA

F

OO

H

99

TA

T yA

OO

x
// A

yA

OO

TA

T yA

OO

x
// A

yA

OO

as a consequence of σ being a transformation. By Proposition 3.2.14 the density property is

still valid in the setting of oplax T-morphisms; this being why we proved the general case of

Proposition 3.2.14 in terms of composites of lax and oplax morphisms.

(b) : The proof that P lifts to a KZ doctrine P̃lax on ps-T-alglax is essentially given in

Theorem 3.3.21.

We now check that the KZ structure cell θ : Py → yP remains the same upon lifting to
algebras.

Proposition 3.4.4. Suppose any of the equivalent conditions of Theorem 3.3.8 are satisfied.

Then the KZ structure cell θ : Py → yP for P is also the KZ structure cell for P̃.

Proof. Recall that the components of θ are recovered as the induced cells out of the left

extensions PyA as in the diagram below

PA PyA //

⇑y−1
yA

P2A

A yA
//

yA

OO

PA

yPA

OO

such that the composite with this diagram is an identity. Now apply Proposition 3.2.14 to

this naturality square noting that each yA extends to a pseudo T-morphism (yA, ξx) in order

to recover the components of the KZ structure cell for P̃.

If we are to study the lifted KZ doctrine P̃, we should consider the P̃-cocomplete objects
and the P̃-admissible maps. We start with the former.

Algebraic cocompleteness is usually defined by asking that the underlying object be
cocomplete, and that the algebra structure map be separately cocontinuous. The following
proposition justifies this definition.
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Proposition 3.4.5. Suppose any of the equivalent conditions of Theorem 3.3.8 are satisfied.

Then a pseudo T-algebra (A, x) is

(a) P̃-cocomplete iff A is P-cocomplete and x : TA→ A is TP-cocontinuous;

(b) P̃lax-cocomplete iff A is P-cocomplete and x : TA→ A is TP-cocontinuous;

(c) P̃oplax-cocomplete iff A is P-cocomplete.

Moreover, the pseudo/lax/oplax T-morphisms (F, φ) which are P̃/P̃lax/P̃oplax-cocontinuous

are all classified by those maps for which the underlying F is P-cocontinuous.

Proof. We start off by proving part (a).

(=⇒) : Suppose that (A, x) is a P̃-cocomplete pseudo T-algebra. Then, by doctrinal

adjunction [27], the pseudo T-morphism (yA, ξx) has a reflection left adjoint
(
(yA)∗ ,

(
ξ−1

x
)
∗

)
for which

(
ξ−1

x
)
∗
is defined by the mates correspondence and is invertible. That is, we have

isomorphisms

TPA zx //

⇓ξ−1
x

PA TPA zx //

⇓(ξ−1
x )∗T(yA)∗

��

PA

(yA)∗
��

TA

T yA

OO

x
// A

yA

OO

TA x
// A

Now (yA)∗ a yA via a reflection adjoint soA is P-cocomplete. We thus check that x : TA→

A is TP-cocontinuous. Suppose we are given a left extension as on the left

PD F //

⇑cF

A TPD F //

⇑TcF

TA x // A

D
F

<<

yD

OO

TD
TF

;;

T yD

OO

We check that the right diagram is a left extension. We first note this is equivalent to showing

that x T-preserves left extensions as on the left below

PD PF //

⇑cyA ·F

PA
(yA)∗ //

⇑cidA

A TPD TPF //

⇑TcyA ·F

TPA
T(yA)∗ //

⇑TcidA

TA x // A

D
F

//

yD

OO

A

yA

OO

idA

<<

TD
TF

//

T yD

OO

TA

T yA

OO

T idA

;;

and so it suffices to check the right diagram is a left extension. This is seen upon pasting

with the isomorphism
(
ξ−1

x
)
∗
as zx is TP-cocontinuous and (yA)∗ is a left adjoint (and hence

preserves all left extensions).
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(⇐=) : Suppose that A is P-cocomplete and x is TP-cocontinuous. Then (A, x) is P̃-

cocomplete as (A, x) admits left extensions along (yA, ξx) by Proposition 3.2.14, and showing

that such left extensions admit a pseudo T-morphism structure and are preserved is a similar

calculation to that in the proof of Theorem 3.3.21.

(b) : The proof of the classification of P̃lax-cocomplete pseudo P-algebras is almost the

same (as the reflection left adjoint must again be pseudo by doctrinal adjunction [27]), and

so we omit the details.

(c) : The P̃oplax-cocomplete pseudoP-algebras are thosewith an underlyingP-cocomplete

object, as a consequence of doctrinal adjunction [27].

That the T-morphisms (F, φ) which are P̃/P̃lax/P̃oplax-cocontinuous are all classified

by those morphisms for which the underlying F is P-cocontinuous is a straightforward

calculation. Indeed, given a pseudo T-morphism (F, φ) for which F is P-cocontinuous,

checking that (F, φ) is then P̃-cocontinuous requires only checking a coherence condition

(similar to 3.3.8). Conversely, given that (F, φ) is P̃-cocontinuous, that is, a pseudo P̃-

morphism on ps-T-alg, we know the underlying F must be a pseudo P-morphism on C (by

forgetting that certain morphisms and 2-cells are T-algebraic), so that F is P-cocontinuous.

The P̃lax and P̃oplax case may be similarly seen.

Proposition 3.4.6. Suppose any of the equivalent conditions of Theorem 3.3.8 are satisfied.

Assume (L, α) : (A, x) → (B, y) is a pseudo T-morphism and L : A → B is P-admissible.

Then (L, α) is P̃-admissible if and only if for every P̃-cocomplete pseudo T-algebra (C, z) and

pseudo T-morphism (I, ξ) as in the diagram

(B, y) (R,β) // (C, z)
δ
⇐=

(A, x)

(I,ξ)

OO

(L,α)

dd

the induced lax structure cell β on the underlying left extension R as in Proposition 3.2.14 is

invertible. Moreover, for pseudo, lax and oplax (L, α) respectively,

1. (L, α) is P̃-admissible iff P̃ (L, α) has a pseudo right adjoint;

2. (L, α) is P̃lax-admissible iff P̃ (L, α) is pseudo;

3. (L, α) is P̃oplax-admissible iff P̃ (L, α) has a pseudo right adjoint.

Proof. Thefirst part of this proposition follows an equivalent characterization ofP-admissibility

as given by Bunge and Funk (discussed in [6] and Chapter 2), along with Proposition 3.2.14.
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The last three properties are a direct consequence of doctrinal adjunction [27].

Remark 3.4.7. Note that the conditions of P̃/P̃oplax-admissibility are analogous to asking a

Guitart exactness condition is satisfied [20] (in the presence of some additional structure, and

in the context of pointwise left extensions). However, we omit discussion of this as it would

take us beyond the scope of this paper.

Remark 3.4.8. Note that if P (and thus P̃) is locally fully faithful, and (L, α) is a lax T-

morphism, then P̃ (L, α) being pseudo implies (L, α) is. Indeed, the lax structure cell α when

whiskered by yA is invertible (a direct consequence of how the structure cell of P̃ (L, α) is

defined in Proposition 3.2.14). As yA is fully faithful, this means α is invertible. Hence, in

this case, Statement 2 of the above proposition is equivalent to saying (L, α) is pseudo.

Given a KZ doctrine P on a 2-category C we have an equivalence given by composi-
tion with the unit yA, namely Cccts (PA,B) ' C (A,B), with Cccts (PA,B) containing left
extensions of maps A→ B along the unit yA. This is clearly essentially surjective as for an
F : A→ B we may take F : PA→ B, and fully faithful as yA is dense. We can thus recover
Im and Kelly’s following result.

Corollary 3.4.9 (Im-Kelly [22]). Suppose we are given a 2-category C equipped with a

pseudomonad (T,u,m) and a KZ doctrine (P, y). Suppose any of the equivalent conditions of

Theorem 3.3.8 are met. Then for every pair of pseudo T-algebras (A, x) and (B,r) where B

is P-cocomplete, composition with the unit (yA, ξx) defines the equivalence

Oplax [(A, x) , (B,r)] ' Oplaxccts [(PA, zx) , (B,r)]

where a morphism of pseudo T-algebras is cocontinuous when the underlying morphism

is. Suppose further that r is TP-cocontinuous. Then composition with the unit (yA, ξx) also

defines the equivalences

Lax [(A, x) , (B,r)] ' Laxccts [(PA, zx) , (B,r)]

Pseudo [(A, x) , (B,r)] ' Pseudoccts [(PA, zx) , (B,r)]

Moreover, the above three equivalences restrict to P-admissible underlying morphisms.

Proof. We need only check the restriction. Note that if L : PA→ B is P-admissible then so

is the composite L · yA � L due to closure under composition. If L is P-admissible, then L

has a right adjoint by Lemma 2.3.3, and so PL also does.
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3.4.2 The Preorder of KZ Doctrines on a 2-Category

In the following discussion of morphisms between KZ pseudomonads and doctrines we will
omit most of the details, as this would take us beyond the scope of this paper. Moreover, the
calculations are quite similar to those in Section 3.3.

It is the goal of this subsection to show that the 2-category of KZ pseudomonads on a
2-category C is biequivalent to a preorder. This is a property one might expect given the
“property like structure” viewpoint [29]; and the tools of admissible maps give us a method
of proving this result.

Definition 3.4.10. Given KZ pseudomonads (P, y, µ) and (P′, y′, µ′) on a 2-category C , a

morphism of KZ pseudomonads P =⇒ P′ (corresponding to a lifting of the identity on C )

consists of a pseudonatural transformation α : P→ P′ and an invertible modification

P α // P′
ψy
⇐=

1C

y′

OO

y

``

such that

P α //

y′P

��

yP

��

P′

P′y′

��

y′P′

��

P α //

Py

��

yP

��

P′

P′y

��

P′y′

  

=
ψy P
⇐=

(y′)−1
α
⇐=

θ ′

⇐=

θ
⇐=

αy
⇐=

P′ψy
⇐=

PP
αP
// P′P

P′α
// P′P′

µ′
// P′

PP
αP
// P′P

P′α
// P′P′

µ′
// P′

The reader will notice the following is similar to Lemma 3.3.14, meaning we are justified
in omitting most of the details.

Lemma 3.4.11. Given a morphism of KZ pseudomonads as above, the 2-cell ψy exhibits α

as a left extension of y′ along y.

Proof. We first observe that P′y a µ′ · P′α (note that this right adjoint is α, similar to λ in

Lemma 3.3.14) with unit η given by

P′P P′α// P′P′
µ′

##
P′

P′y <<

P′y′

DD

idP′

88

⇑P′ψy
� P′
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We define the counit ε as the unique 2-cell for which

⇑ε
⇑(ψyP)

−1

P
y′P //

α ,,

P′P P′α //

id

''
P′P′

µ′ // P′
P′y // P′P = P

yP
))

Py

55⇑θ

y′P

��

α ..

PP αP // P′P

P′
y′P

==
⇑(y′α)

−1

idP′

77
�

P′ P′y

BB
⇑αy

Wewill omit the triangle identities (as this is almost the same calculation as earlier). The result

then follows from Remark 2.3.7 and naturality and pseudomonad coherence axioms.

Remark 3.4.12. Given a morphism of KZ pseudomonads, we automatically have an invertible

modification

PP α∗α //

µ

��

P′P′

µ′

��
�

P α
// P′

so that multiplication is respected. Indeed α · µ may be seen as a left extension of y′ along

Py · y exhibited by the bijections

α · µ → H mates correspondence
α → H · Py

since α is a left extension
y′ → H · Py · y

and µ′ · α ∗ α may be seen as left extension of y′ along yP · y by recalling that RL = resL · yB

for admissible L : A → B (using Remark 2.3.7) and taking L to be an arbitrary component

of yP · y with respect to P′-admissibility. In particular, noting that P′y a µ′ · P′α and

P′yP a µ′ · P′αP gives us the necessary data for constructing RL . Finally, noting that

yP · y � Py · y gives the result.

Definition 3.4.13. Given KZ doctrines (P, y) and (P′, y′) on a 2-category C a morphism of

KZ doctrines P =⇒ P′ consists of the assertions that:

1. every P-admissible map is also P′-admissible;

2. for each A ∈ C , the resulting 2-cell exhibiting the left extension αA

PA αA // P′A
ψAy
⇐=

A

y′A

OO

yA

bb

is invertible;
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3. for each A,B ∈ C , left extensions along yA into PB are preserved by αB.9

Lemma 3.4.14. Suppose we are given two KZ doctrines (P, y) and (P′, y′) on a 2-categoryC ,

with corresponding KZ pseudomonads (P, y, µ) and (P′, y′, µ′). Then morphisms P =⇒ P′ of

KZ doctrines are in bijection with morphisms P =⇒ P′ of KZ pseudomonads (identified via

uniqueness of left extensions up to coherent isomorphism).

Proof. Given that every P-admissible map is also P′-admissible, we know that P′y has a

right adjoint (and that we have a left extension α as above, assumed invertible). In particular,

this right adjoint may be constructed as in Proposition 3.2.22, and thus we have an adjunction

P′y a µ′ · P′α with unit and counit as above. The triangle identities then force the coherence

condition. Pseudonaturality of α is equivalent to the preservation condition.

Conversely, given a morphism of KZ pseudomonads (which always gives rise to a usual

morphism of pseudomonads) we know that every P′-cocomplete object is also P-cocomplete

(as the cocomplete objects may be characterized as algebras), and similarly for homomor-

phisms. Hence given a P-admissible map L : A → B and map K : A → X for a P′-

cocomplete (and thus also P-cocomplete) object X , there exists a left extension J : B → X

which is preserved by any P′-homomorphism (as such is necessarily a P-homomorphism

also). Consequently, L must be P′-admissible.

Combining this with the results of [42], yields the following proposition.

Proposition 3.4.15. Given a 2-category C , the assignation of [42, Theorems 4.1,4.2] under-

lies a biequivalence

KZdoc (C ) ' KZps (C )

where KZps (C ) is the 2-category of KZ pseudomonads, morphisms of KZ pseudomonads

and isomorphisms of left extensions, and KZdoc (C ) is the preorder of KZ doctrines and

morphisms of KZ doctrines.

3.4.3 Examples

Consider the 2-monad T on locally small categories for strict monoidal categories, and
take P to be the free small cocompletion KZ doctrine on locally small categories. Note
that the pseudo-T-algebras are unbiased monoidal categories (equivalent to (strict) monoidal

9Consequently, components of α are P-homomorphisms.
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categories [37]) and sowemaywrite ps-T-alg ' MonCatpswith the latter being the 2-category
of monoidal categories, strong monoidal functors and monoidal transformations.

Given a monoidal category (A,�) we may define a monoidal structure on PA by Day’s
convolution formula

F �Day G :=
ˆ a,b∈A

A (−,a � b) × Fa × Gb

for small presheaves F and G on A. Note that F �Day G is then small, see [12, Section 7].
This can be shown to give a monoidal structure by the arguments of Day [11], equivalent to
the structure of a pseudo-T-algebra. As the convolution algebra structure map is separately
cocontinuous (and hence TP-cocontinuous [56, Prop. 2.3.2]) we have enough of Proposition
3.3.18 to show condition (a) of Theorem 3.3.8 is met.

We thus know that T preserves P-admissible maps. This says that if we suppose that
L : A→ B is P-admissible, meaning that each B (L−, b) is a small colimit of representables,
then each

TB (T L−,b) = TB [(L−, · · · L−) , (b1, · · · , bn)] =

n∏
j=1

B
(
L−, b j

)
is also a small colimit of representables.

For simplicity, we will consider the preservation of the admissibility of L = yA (which is
equivalent to preservation for all L). The existence of a pseudo-distributive law of T over P

then yields the following example.

Proposition 3.4.16. Let X,Y : Aop → Set be two small presheaves on A. Then

X × Y : (A ×A)op → Set, (a1,a2) 7→ X (a1) × Y (a2)

is a small presheaf on A ×A.

Proof. Note that T yA is P-admissible, and hence

TPA (T yA−,X) : (TA)op → Set

is a small presheaf on TA for each X = (X1, · · · ,Xn) in TPA. In particular, if we take
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X = (X,Y ) then

TPA (yA−,X) =


TPA [(yA−, yA−) , (X,Y )] , a ∈ (A ×A)op

∅, otherwise

=


X (−) × Y (−) , a ∈ (A ×A)op

∅, otherwise

is a small presheaf on
∑

n∈NAn and so X (−) × Y (−) is a small presheaf on A ×A.

Our results also apply to the less general setting of distributing (co)KZ doctrines over KZ
doctrines. The following is such an example.

Example 3.4.17. Consider the KZ doctrine for the free coproduct completion

FamΣ : Cat→ Cat.

Here a map L : A→ B is FamΣ-admissible when FamΣL is a left adjoint; that is, when L is a

left multiadjoint. As noted by Diers [14], this is to say that for any Z ∈ B there exists a family

of morphisms (hi : LXi → Z)i∈I which is universal in the sense that given any k : LX → Z

there exists a unique pair (i, f ) with i ∈ I and f : X → Xi such that hi · L f = k.

It is well known the free product completion FamΠ distributes over this doctrine [42,

Section 8]. Thus, as a consequence of Theorem 3.3.8, we see that if a functor L is a left

multiadjoint, then the functor FamΠL is a left multiadjoint also.

The following is a simple consequence of the essential uniqueness of distributive laws
over KZ doctrines, shown in Corollary 3.4.1.

Example 3.4.18. Let Prof be the bicategory of profunctors on small categories, and let

PROF be the Kleisli bicategory of the free small cocompletion KZ doctrine P on locally

small categories. Clearly Prof lies inside PROF. By Corollary 3.4.1, the extension of a

pseudomonad T on locally small categories to the bicategory PROF is essentially unique.

3.5 Liftings of Locally Fully Faithful KZ Monads

In this section, we consider the case in which the KZ doctrine P being lifted is locally fully
faithful. The reader will recall that a KZ doctrine P is locally fully faithful precisely when
each unit map yA is fully faithful [6].
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The main goal of this section is to deduce an analogue of “Doctrinal Adjunction” on the
“Yoneda structure” induced by the locally fully faithful KZ doctrine P. We start however
with the following basic properties concerning fully faithful and P-fully faithful maps.

Proposition 3.5.1. Suppose any of the equivalent conditions of Theorem 3.3.8 are satisfied.

Then

(a) if yA is fully faithful for every A ∈ C , then every T yA is fully faithful;

(b) T preserves maps which are both P-admissible and P-fully faithful.

Proof. Firstly, note that if each yA is fully faithful (so that yTA is fully faithful) then so is

T yA, since we have an isomorphism

TP
λA // PT

ω2
⇐=

TA

yTA

OO

T yA

bb

Secondly, note that if L is a P-admissible P-fully faithful map, meaning the unit η of the

admissibility adjunction is invertible, then so is the unit n exhibiting the admissibility of T L

by Figure 3.3.5.

3.5.1 Doctrinal Partial Adjunctions

In this subsection we study how pseudomonads interact with absolute left liftings (also called
partial adjunctions or relative adjunctions), which we now define. In particular, we show that
we get an induced oplax structure on a partial left adjoint under suitable conditions, which
gives a lifting of the partial adjunction to the setting of pseudo algebras in a suitable sense.

This is in the same spirit as subsection 3.2.2 on algebraic left extensions, but not com-
pletely analogous (and therefore not a dual). In particular, herewe do not require any algebraic
cocompleteness conditions.

Definition 3.5.2. Suppose we are given a diagram of the form

B R // C
η
⇐=

A

I

OO

L

`` (3.5.1)

in a 2-category C equipped with a 2-cell η : I → R · L. We call such a diagram a partial

adjunction and say that L is a partial left adjoint to R if given any 1-cells M and N as below,
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for any 2-cell ζ : I · M → R · N there exists a unique ζ : L · M → N such that ζ is equal to

the pasting

B R // C
η
⇐=

ζ
⇐=

D
M

//

N

OO

A

I

OO

L

aa

That is, pasting 2-cells of the form ζ above with η defines a bijection of 2-cells.

Remark 3.5.3. It is an easy and well known exercise to check that we have an adjunction

L a R : B → A with unit η in a 2-category C if and only if

B R // A
η
⇐=

A

idA

OO

L

``

exhibits L as a partial left adjoint.

We now define a notion of partial adjunction in the context of pseudo T-algebras and
T-morphisms.

Definition 3.5.4. Suppose we are given oplax T-morphisms (I, ξ) and (L, α) and a lax T-

morphism (R, β) equipped with a T-transformation η (as in Remark 3.2.7 with appropriate

identities) as in the diagram(
B,TB

y
→ B

)
(R,β) //

(
C,TC z

→ C
)

η
⇐=(

A,TA x
→ A

)(I,ξ)

OO

(L,α)

ff

We call such a diagram a T-partial adjunction if for any given pseudo T-algebra (D,w), lax

T-morphism (M, ε), and oplax T-morphism (N, ϕ) as below(
B,TB

y
→ B

)
(R,β) //

(
C,TC z

→ C
)

η
⇐=

ζ
⇐=(

D,TD w
→ D

)
(M,ε)

//

(N,ϕ)

OO

(
A,TA x

→ A
)(I,ξ)

OO

(L,α)

gg

pastingT-transformations of the form ζ abovewith theT-transformation η defines the bijection
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of T-transformations:

(B, y) (B, y)

ζ
⇐=

(B, y) (R,β) // (C, z)
ζ
⇐=

∼

(D,w)
(M,ε)

//

(N,ϕ)

OO

(A, x)

(L,α)

OO

(D,w)
(M,ε)

//

(N,ϕ)

OO

(A, x)

(I,ξ)

OO

This operation of pasting the T-transformation ζ with η is given by pasting the underlying

2-cells. The verification that such a pasting of T-transformations yields a T-transformation

is a simple exercise.

Remark 3.5.5. Wemay be more general here by replacing (M, ε) and (N, ϕ) by a lax followed

by an oplax, and an oplax followed by a lax T-morphism respectively. However, this level of

generality will not be necessary for this paper.

We now give the doctrinal properties enjoyed by partial adjunctions.

Proposition 3.5.6. Suppose we are given a partial adjunction

B R // C
η
⇐=

A

I

OO

L

``

in a 2-category C equipped with a pseudomonad (T,u,m). Suppose further that(
A,TA x

−→ A
)
,

(
B,TB

y
−→ B

)
,

(
C,TC z

−→ C
)

are pseudo T-algebras. Then given an oplax T-morphism structure ξ on I and a lax

T-morphism structure β on R, there exists a unique oplax T-morphism structure α on L

such that η is a T-transformation. Moreover, this partial adjunction is then lifted to the

T-partial adjunction (
B,TB

y
→ B

)
(R,β) //

(
C,TC z

→ C
)

η
⇐=(
A,TA x

→ A
)(I,ξ)

OO

(L,α)

ff
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Proof. Given our 2-cells

TA

T I
��

x //

⇓ξ

A

I
��

TB

T R
��

x //

⇑β

B

R
��

TC z
// C TC z

// C

exhibiting I as an oplax T-morphism and R as a lax T-morphism, we can take our oplax

constraint cell of L (which we call α) as the unique solution to

TB y //

⇑α

B
R

��

TB y //

T R
""

B
R

  
⇑β

⇑η C = ⇑Tη TC z //

⇑ξ

C

TA x
//

T L

OO

A

L

OO

I

??

TA x
//

T L

OO

T I

<<

A
I

>>

which exists since L is a partial left adjoint. That is, α is the unique oplax structure on L for

which η : I → R · L is a T-transformation. The verification that α then satisfies the unitary

and multiplicative coherence axioms is a simple exercise which we omit.

The following example is an easy application of this result which does not involve Yoneda
structures.

Proposition 3.5.7. Suppose A ,B and C are bicategories. Consider a diagram

A F //

H

77B
G // C

where G is a lax and locally fully faithful functor, H is an oplax functor, and F is a locally

defined functor (
FX,Y : A (X,Y ) → B (FX,FY ) : X,Y ∈ A

)
where G · F = H locally. It then follows that F extends to an oplax functor.

Proof. To see this, recall that the fully faithfulness of each GM,N (for objects M,N ∈ B) may

be characterized by saying that each

B (M,N)
GM ,N // C (HM,HN)

id
⇐=

B (M,N)
idB(M ,N )

gg

GM ,N

OO
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is an absolute lifting [54, Example 2.18]. As this absolute left lifting is preserved upon

whiskering by

FX,Y : A (X,Y ) → B (FX,FY )

we have the family of partial adjunctions

B (FX,FY )
GFX ,FY // C (HX,HY )

id
⇐=

A (X,Y )
FX ,Y

gg

HX ,Y

OO

Endowing with the bicategory structure of A , and full sub-bicategory structures of B and C

restricted to objects in the images of F and H respectively, we see by Proposition 3.5.6 that

F extends to an oplax functor F : A → B.

Remark 3.5.8. Clearly, this may be statedmore generally in the setting of a pseudoT-algebras.

Also, it suffices to only have an isomorphism GF � H on the underlying 2-category.

Remark 3.5.9. In Kelly’s setting of a doctrinal adjunction [27], if both the left and right adjoint

are lax, exhibited by a counit and unit which are T-transformations of lax T-morphisms, then

the induced oplax structure on the left adjoint is inverse to the given lax structure. In

this partial adjunction case, the best we can say is that if (I, ξ) is pseudo, (L, α∗) lax, and

η : (I, ξ) → (R, β) · (L, α∗) a T-transformation of lax T-morphisms, then the induced oplax

structure on L given as α satisfies α∗ ·α = idL·x . This means the identity 2-cell is a generalized

T-transformation from (L, α) to (L, α∗), but not necessarily the other way around.

3.5.2 Doctrinal “Yoneda Structures”

Kelly [27] showed that given an adjunction L a R which lifts to pseudo algebras, oplax
structures on the left adjoint are in bijection with lax structures on the right adjoint. The goal
of this section is to give a similar result for “Yoneda structure diagrams”, that is diagrams of
the form

B R // PA
ϕL
⇐=

A

yA

OO

L

aa

for which L is an absolute left lifting, and R is a left extension exhibited by the same 2-cell ϕL

(as appear in Yoneda structures [47], or in the setting of a locally fully faithful KZ doctrine).
We state the following as one of the main results of this paper, due to its applications as
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a coherence result for oplax functors out of certain bicategories, such as the bicategories of
spans or polynomials. This application will be briefly discussed at the end of this section.

Theorem 3.5.10 (Doctrinal Yoneda Structures). Suppose we are given a 2-category C

equipped with a pseudomonad (T,u,m) and a locally fully faithful KZ doctrine (P, y). Suppose

that T pseudo-distributes over P. Suppose we are given pseudo T-algebra structures(
A,TA x

−→ A
)
,

(
B,TB

y
−→ B

)
Then for any P-admissible map L : A → B we have a Yoneda structure diagram as on the

left, underlying a “doctrinal Yoneda structure” diagram as on the right

B RL // PA
ϕL
⇐=

(B, y) (RL,β) // (PA, zx)
ϕL
⇐=

A

yA

OO

L

aa

(A, x)

(yA,ξ)

OO

(L,α)

ee

in that 2-cells α as on the left below exhibiting L as an oplax T-morphism

TB y // B TB y //

T RL

��

B

RL

��
⇑α ⇑β

TA x
//

T L

OO

A

L

OO

TC zx
// C

are in bijection with 2-cells β as on the right exhibiting RL as a lax T-morphism.

Proof. We need only check that the propositions concerning partial adjunctions and left

extensions10 are inverse to each other. But this is just a consequence of the fact that we can

go between the defining equalities for these propositions

TB y //

⇑α

B
RL

!!

TB y //

T RL

##

B
RL

##
⇑β

⇑ϕL PA = ⇑TϕL TPA zx //

⇑ξx

PA

TA x
//

T L

OO

A

L

OO

yA

==

TA x
//

T L

OO

T yA

;;

A
yA

;;

10Note that Proposition 3.2.14 applies since each zx is TP-cocontinuous by Proposition 3.3.18.
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and

TB y // B

R

��

TB y //

T RL

��

B

RL

��

TA

T L
;;

x //

T yA ##

A
yA

##

L

;;

⇑ϕL

⇑α

⇑ξ−1
x

= TA

T L
;;

T yA ##

⇑TϕL ⇑β

TPA zx
// PA TPA zx

// PA

by pasting with ξx and ξ−1
x .

Remark 3.5.11. In the “doctrinal Yoneda structure” of the above, ϕL is a T-transformation

exhibiting (RL, β) as a T-left extension and (L, α) as a T-partial left adjoint, provided α and

β correspond via this bijection.

We observe that the bijection between oplax structures on left adjoints and lax structures
on right adjoints as in “Doctrinal adjunction” [27] is a special case of this theorem.

Corollary 3.5.12 (Kelly). Suppose we are given a 2-category C equipped with a pseu-

domonad (T,u,m), pseudo T-algebra structures(
A,TA x

−→ A
)
,

(
B,TB

y
−→ B

)
and an adjunction L a R : B → A in C . Then oplax structures on L are in bijection with lax

structures on R.

Proof. Let P be the identity pseudomonad on C , which is clearly a locally fully faithful KZ

doctrine. Trivially, any pseudomonad T pseudo-distributes over the identity. Now observe

that for the identity pseudomonad, the admissible maps are the left adjoints and the “Yoneda

structure diagrams” are the units of adjunctions η : idA → R · L. Applying the above theorem

then gives the result.

3.5.3 Applications and Future Work

The motivating application of this result is not to give an analogous result to doctrinal
adjunction, but instead the observation that it may be seen as a coherence result. In particular,
consider the following special case of this theorem concerning the bicategory of spans in a
category E with pullbacks, denoted Span (E).

For the following corollary, we recall that locally defined functors are the morphisms
of CatGrph, and CatGrph gives rise to bicategories and oplax/lax functors via a suitable
2-monad [34].
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Corollary 3.5.13. Suppose we are given a small11 category with pullbacks E and a bicategory

C with the same objects, as well as locally defined functors

LX,Y : Span (E) (X,Y ) → C (X,Y )

with corresponding left extensions (RL)X,Y as components in the diagram

C
RL // ˆSpan (E)

ϕL
⇐=

Span (E)

Y

OO

L

cc

where ˆSpan (E) is the local cocompletion12 of Span (E). Then oplax structures on L are in

bijection with lax structures on RL .

To see why this is useful, recall that composition of spans is given by taking the terminal
diagram of the form

•

��

�� ��

�� ��

•
f

��

g

��

•
h

��

k

��
• • •

and so when evaluating the composite of two spans we may recover the two morphisms of
spans in the above diagram; that is, there is a relationship between the way 2-cells are defined
and how composition of 1-cells is defined.

This relationship between composition and 2-cells is captured in Day’s convolution for-
mula [11], and causes the coend defining the Day convolution to collapse to a more workable
sum. In particular, composition in ˆSpan (E) is given by the convolution formula

GF (s; t) =
∑

T
h
−→Y

F (s; h)G (h; t)

where s; t is an arbitrary span from X to Z through Y , and F and G are presheaves on
Span (E) (X,Y ) and Span (E) (Y, Z) respectively. As a result, it is easier to show that a
locally defined functor L : Span (E) → C is oplax by instead showing that the corresponding
RL : C → ˆSpan (E) is lax. Indeed, the reader should notice here that the problem of showing
L is oplax involves pullbacks, whereas the equivalent problem of showing R is lax does not
(once this convolution formula has been established).

11Note that one may work in a larger universe to work around this condition.
12The monoidal cocompletion as given by the Day convolution structure may be generalized to the setting of

bicategories; we call this the local cocompletion.



84 Distributive laws via admissibility

A more involved application along the same lines deals not with the bicategory of spans,
but instead Polyc (E), the bicategory of polynomials with cartesian 2-cells as studied by
Gambino, Kock andWeber [55, 17]. We see that due to the complicated nature of composition
inPolyc (E), showing that a locally defined functor L : Poly (E) → C is oplax becomes a large
calculation (especially for the associativity coherence conditions); however if we instead show
that RL : C → ˆPolyc (E) is lax our work will be reduced significantly; in fact by this method
we can completely avoid coherences involving composition of distributivity pullbacks.

In a soon forthcoming paper we will exploit this fact in more detail to give a complete
proof of the universal properties of polynomials which avoids the majority of the coherence
conditions.
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Generic bicategories

Abstract

It is a well known result of Bénabou that monads in a bicategory C are in bijection with lax
functors L : 1 → C where 1 is the terminal bicategory. Dually, comonads in C correspond
to oplax functors L : 1→ C .

Here we provide a generalization of this dual, exhibiting this correspondence as a special
case of a more general result. This is done by replacing the terminal bicategory by any
generic bicategory, that is a bicategory for which the composition functor admits generic
factorisations. We show that for generic bicategoriesA , the data of an oplax functorA → C

has a reduced description which is similar to the data of a comonad; the main advantage of
this description being that it does not directly involve composition in A . This in turn allows
for a greater understanding of the universal properties of some well known constructions in
category theory, particularly those of spans and polynomial functors. Moreover, we will show
how this generalization naturally arises from the algebraic properties of Yoneda structures.
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4.1 Introduction

A beautiful theorem of Bénabou [3] states that lax functors from the terminal bicategory 1
into a bicategory C correspond to monads in C . Dually, oplax functors 1→ C correspond
to comonads in C .

The purpose of this paper is to provide a generalization of this dual to Bénabou’s result,
thus providing further insight into questions such as “When is an oplax functor L : A → C

analogous to a comonad in C ?”.
This is done by replacing the terminal bicategory with bicategories A satisfying the

following special property: every functor

AX,Z (c,− ◦ −) : AY,Z ×AX,Y → Set, X,Y, Z, c ∈ A

is a coproduct of representables. A more informative and equivalent characterization is as
follows: every composition functor

◦ : AY,Z ×AX,Y → AX,Z, X,Y, Z ∈ A

admits generic factorisations. We will call bicategories A satisfying this property generic.
This property means that each 2-cell into a binary composite c→ ba in the bicategoryA

factors through a generic (also known as “diagonally universal” in the work of Diers [14, 15])
2-cell δ : c→ rl.

A simple example of this is given by takingA to be a cartesianmonoidal category (E,×,1)
seen as a one-object bicategory. Here the generics are the diagonal maps δT : T → T × T for
each T ∈ E , and clearly any γ : T → A × B factors as the generic δT followed by πAγ × πBγ

where πA and πB are the product projections.
Another example is given by takingA to be the bicategory of spans Span (E) in a category

E with pullbacks; here our generic maps are morphisms δ induced into pullbacks as in

T
δ��

t

��

s

��

M
π2
  

π1
~~ pbS

h
  

s
��

S
t
��

h
~~

X Y Z

such that π1δ and π2δ are identities. This can also be done for the bicategory of polynomials
Polyc (E) with cartesian 2-cells, but becomes more complicated.

Such bicategories also contain “nullary generics” or augmentations; these are the 2-cells
into identity 1-cells, and turn out to be unique in such bicategories.

The main result of this paper is that for generic bicategories A , the functors A → C

which respect these generic maps are precisely the oplax functors. Here “respecting generics”
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means that each generic δ and augmentation ε in A has a corresponding comultiplication
map Φδ and counit map Λε in C satisfying coherence conditions much like those for a
comonad.

When the domain bicategory A is generic, this description has an important advantage
over the usual definition of an oplax functor: it does not involve composition in the domain
bicategory. This reduction being possible since the information concerning composition
in A is encoded into these generic maps. Of course, this property is particularly useful if
composition inA is complicated; the bicategory of polynomials being an archetypal example.

In Section 4.2 we develop the theory of such bicategories A and their generic maps, and
prove the main result of this paper, Theorem 4.2.19, in which we prove the equivalence of
oplax functors and functors which respect these generics.

In Section 4.3, we use this result to give a description of oplax functors out of the
bicategory of spans which does not involve composition of spans (pullbacks), and then give
a description of oplax functors out of the bicategory of polynomials which does not involve
composition of polynomials.

These descriptions allow for a simpler proof of the universal properties of spans [9], and a
much simpler proof of the universal properties of polynomials. Moreover, these descriptions
may be used to explain some curious aspects of these universal properties. For example
Dawson, Paré and Pronk made the observation that the span construction has a universal
property which does not involve pullbacks [9], a fact which is explained by the results of this
paper. Indeed, the primary reason for this paper is to set the stage for future work in which
we will use these descriptions to give an efficient proof of the universal properties of the span
construction and polynomial functor construction.

In Section 4.4 we discuss how this description of oplax functors naturally arises from
the algebraic properties of Yoneda structures, making use of the simpler Day convolution
structure on generic bicategories.

4.2 Properties of generic bicategories

In this section we start off by recalling the basic theory of generic morphisms and functors
which admit them. We then define generic bicategories and consider the properties of generic
morphisms in these generic bicategories. After discussing the coherence properties of these
generic morphisms, we go on to give the main result of this paper; showing that the functors
which respect these generic morphisms are precisely the oplax functors.
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4.2.1 Generic morphisms and factorisations

Generic morphisms (and weaker analogues of them) have historically arisen in the charac-
terization the analytic endofunctors of Set [24], as well as the study of qualitative domains
[18, 35]. Characterizations of endofunctors which admit them have been studied by Weber
[52], and this is known to be related to familial representability as studied by Diers [14].

In this paper we do not consider arbitrary endofunctors which admit generics, but instead
composition functors which admit generics, giving us a richer structure to consider.

Definition 4.2.1. Given a functorT : A→ B between categoriesA andB, we say amorphism

δ : B → T A in B (where A ∈ A and B ∈ B) is T-generic if for any commutative square of

the form below

B
δ
��

f // TC
Tg
��

T A
T h
//

T f

<<

T D

there exists a unique morphism f in A such that T f · δ = f .

Remark 4.2.2. These are precisely the diagonally universal morphisms of Diers [15], who

noted that it must follow g · f = h since both fillers below

B
δ
��

Tg· f // T D

T1D
��

B
δ
��

Tg· f // T D

T1D
��

T A
T h
//

T
(
g· f

) <<
T D T A

T h
//

T h

<<

T D

render commutative the top triangles.

Definition 4.2.3. We say a functor T : A → B between categories A and B admits generic

factorisations if for any morphism f : B → TC in B there exists a T-generic morphism

δ : B→ T A in B and morphism f : A→ C in A rendering commutative

T A T f
##

B

δ ==

f
// TC

We are now ready to define generic bicategories, the structures to be considered in this
paper. It will be helpful to write composition in diagrammatic order, denoted by the symbol
“;”.

Definition 4.2.4. We say a bicategory A is generic if for every triple of objects X,Y, Z ∈ A
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the composition functor

AX,Y ×AY,Z
; // AX,Z

admits generic factorisations. Moreover, we simply call generic those 2-cells δ : c → l; r

which are ;-generic.

Remark 4.2.5. Unpacking the above definition into a more useful form, we see that a 2-cell

δ : c→ l; r is generic if and only if every commuting diagram of the form

c

δ
��

γ // f ; g
φ1;φ2

��
l; r

θ1;θ2
//

γ1;γ2

==

m; n

(where θ1, θ2, φ1, φ2 and γ are arbitrary 2-cells) admits a filler γ1; γ2 as displayed, such that

the top triangle commutes and the bottom triangle commutes component-wise. Moreover,

the pair (γ1, γ2) must be unique such that the top triangle commutes, justifying the notation.

Remark 4.2.6. As we will see in Section 4.3, there are a number of well known bicategories

and monoidal categories which are generic, such as:

• any cartesian monoidal category;

• finite sets and bijections with the disjoint union monoidal structure;

• the bicategory of spans;

• the bicategory of polynomials with cartesian 2-cells.

Generic bicategories may be alternatively defined in terms of familial representability, a
property which is often easier to verify. This is a consequence of the following known rela-
tionship1 between functors which admit generics and the familial representability conditions
of Diers [14].

Proposition 4.2.7 (Diers). Given a functor T : A → B between categories A and B the

following are equivalent:

1. the functor T admits generic factorisations;

1We include the proof of this relationship due to the difficulty of finding a reference.
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2. for every B ∈ B there exists a setMB and function P(−) : MB → Aob yielding isomor-

phisms

B (B,T A) �
∑
δ∈MB

A (Pδ, A)

natural in A ∈ A.

Proof. Suppose that T admits generic factorisations. Call two generic morphisms δ and δ′

equivalent if there exists an isomorphism α rendering commutative a diagram as below:

T M Tα // T M′

B
δ

<<

δ′

bb

Now takeMB to be the set of equivalence classes of generic morphisms out of B, with each

class labeled by a chosen representative. It follows that for any f : B → T A we can find a

representative generic morphism δ f and unique morphism f rendering commutative

B
f //

δf
""

T A

T M T f

;;

We note also that the representative generic δ f is itself unique (such a generic necessarily lies

in the same equivalence class). Therefore the assignment f 7→
(
δ f , f

)
is bijective, where

each Pδf is taken as the M above. Trivially, given a map x : A→ A′ the diagram

B
f //

δf ''

T A T x // T A′

T M
T f

OO

T
(
x f

) 77

commutes, and by genericity x f is the unique such map making the outside commute; thus

showing naturality.

Conversely, suppose we are given such a family of isomorphisms2

B (B,T A) �
∑

m∈MB

A (Pm, A)

natural in A ∈ A, where B ∈ B is given. We first note that by naturality, the inverse

assignment is necessarily defined by

m ∈ MB , Pm
α // A 7→ B

δm // TPm
Tα // T A

2HereMB is an arbitrary set, so we do not use the suggestive notation δ for its elements.
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where δm is the morphism corresponding to the identity at Pm. Also, this δm is generic since

given any commuting diagram as on the outside below

B
f //

δm
��

T A

T h
��

TPm Tg
//

T f

<<

T D

the morphism T h · f must correspond to the pair (δm,g) under the bijection. By naturality,

f must factor through this same δm, and so the pair
(
δm, f

)
corresponding to f is unique

such that the top triangle commutes. That g = h · f is also a consequence of naturality. It is

implicit in the above argument that T then admits generic factorisations.

Taking T to be the composition functor, we have the following.

Corollary 4.2.8. A bicategoryA is generic if and only if for any triple of objects X,Y, Z ∈ A

and 1-cell c : X → Z the functor

AX,Z (c,−;−) : AX,Y ×AY,Z → Set

is a coproduct of representables, meaning that for any (X,Y, Z, c) there exists a set MX,Y,Z
c

equipped with projections (
AX,Y

)
ob M

X,Y,Z
c

r(−) //
l(−)oo

(
AY,Z

)
ob

such that for all a : X → Y and b : Y → Z we have isomorphisms

AX,Z (c,a; b) �
∑

m∈MX ,Y ,Z
c

AX,Y (lm,a) ×AY,Z (rm, b)

natural in a and b.

We have defined generics as universal maps into a composite of two 1-cells; what one
might call “2-generics”. We might ask if there is a corresponding notion for “0-generics”
into composites of zero 1-cells, that is, identity 1-cells. However, as for each n : X → X the
functor

AX,X (n,1X) : 1→ Set

is trivially a coproduct of representables, there is no condition to impose on these 2-cells,
and so any 2-cell ε : n→ 1X may be regarded as a “0-generic”. Regardless, these 2-cells still
have an interesting property; they are unique.
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Proposition 4.2.9. Suppose A is a generic bicategory. Then for each X ∈ A , the identity

1-cell 1X is sub-terminal in AX,X .

Proof. Given a morphism n : X → X and two 2-cells s, t : n→ 1X we have two commuting

squares

n
δ1 //

δ2

��

l; n

h;s
��

n
δ1 //

δ2

��

l; n

h;t
��

n; r
s;k
//

θ;φ

;;

1X ; 1X n; r
t;k
//

θ;φ

;;

1X ; 1X

where δ1 and h : l → 1X are given by factorizing the unitor n→ 1X ; n through a generic, and

δ2 and k : r → 1X are given by factorizing the other unitor n → n; 1X . Now both of these

squares admit a unique filler, and moreover both these fillers must be equal as uniqueness is

forced by the top left triangles; we denote this filler θ; φ. Equating the left components of the

bottom right triangles we then find s = hθ = t.

It will be useful to give such 2-cells a name as they still play an important role, despite
the lack of a non-trivial universal property.

Definition 4.2.10. We call any 2-cell of the form ε : n→ 1X in a bicategory A an augmen-

tation.

4.2.2 Coherence of generics

The following two lemmata show that there exists “nice” choices of generics. This will later
be useful in regard to stating and checking coherence conditions.

Lemma 4.2.11. Suppose A is a generic bicategory. Then for any factorization of a left

unitor at a 1-cell c : X → Y through a generic δ as below

l; r
θ;φ
##

c unitor
//

δ ??

1X ; c

(4.2.1)

the induced 2-cell φ is invertible.

Proof. Define φ∗ : c→ r to be the composite

c δ // l; r
θ;r // 1X ; r unitor // r

and note that when this is post-composed by φ we recover the identity 2-cell at c, by

commutativity of the diagram 4.2.1 and naturality of unitors. We also note that by naturality
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of unitors the diagram

c unitor //

δ
��

1X ; c

1X ;φ∗
��

l; r
θ;r
//

θ;φ
<<

1X ; r

commutes and thus admits a filler such that both triangles commute. Moreover, we note

that as uniqueness is forced by the top triangle this filler must be θ; φ. Equating the second

components of the bottom right triangle we have established φ followed by φ∗ as being the

identity.

Remark 4.2.12. As φ is invertible above, composing the generic δ with φ still yields a

generic. This shows that there exists “nice” generics c → l; c and augmentations l → 1X

which compose to the unitor. Moreover, it is clear this may be similarly done for right unitors.

Lemma 4.2.13. Suppose A is a generic bicategory. Let W,X,Y, Z be objects in A , let T be

the functor given by composition(
AW,X ×AX,Y

)
×AY,Z → AW,Y ×AY,Z → AW,Z

and consider 1-cells

d : W → Z, l : W → X, m : X → Y, r : Y → Z .

Then a 2-cell d → (l; m) ; r in A is T-generic if and only if it has the form

d
δ1 // h; r

δ2;r // (l; m) ; r

for a pair of generics δ1 and δ2.

Proof. Suppose we are given generics δ1 and δ2 composable as in the diagram on the left

below

d
δ1 ��

γ // (a; b) ; c

(β1;β2);β3

��

h
γ1 //

δ2

��

a; b

β1;β2

��

h; r
δ2;r ��

γ1;γ2

55

(l; m) ; r
(α1;α2);α3

// ( f ; g) ; h l; m α1;α2
//

ζ1;ζ2

@@

f ; g

where α1, α2, α3, β1, β2, β3 and γ are arbitrary 2-cells such that the outside diagram commutes.

Then there exists a filler γ1; γ2 splitting the diagram into two commuting regions, by genericity

of δ1. Moreover, there exists a filler ζ1; ζ2 for the commuting diagram on the right above as
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δ2 is generic. We thus have a diagonal filler (ζ1; ζ2) ; γ2 for the diagram on the left above. For

uniqueness, suppose we are given another filler
(
ζ ′1; ζ ′2

)
; γ′2 and note that since δ1 is generic,

we have
[ (
ζ ′1; ζ ′2

)
◦ δ2

]
; γ′2 = γ1; γ2 component wise. Hence γ′2 = γ2 and

(
ζ ′1; ζ ′2

)
◦ δ2 = γ1.

Since δ2 is generic it follows that ζ ′1 = ζ1 and ζ
′
2 = ζ2.

Conversely, suppose we are given a 2-cell δ : d → (l; m) ; r which is T-generic. Now, we

know that the T-generic δ can be factored through a generic δ1 giving the triangle on the left

below

d
δ1 //

δ
��

h′; r′
δ2;r ′ //

α;β
zz

(l′; m′) ; r′

(γ1;γ2);βtt
(l; m) ; r

and the 2-cell α can be factored through a generic δ2 yielding the right triangle above. In

particular, the components of (γ1; γ2) ; β are invertible as this is an induced isomorphism of

T-generic morphisms [52, Lemma 5.7]. Hence upon taking δ∗1 to be δ1 pasted with β, and δ∗2
to be δ2 pasted with γ1; γ2, we see that δ is a pasting of generics δ∗1 and δ

∗
2.

Remark 4.2.14. The above lemma is an instance of a more general fact: if δ1 : C → SB is

S-generic and δ2 : B→ T A is T-generic, then

C
δ1 // SB

Sδ2 // ST A

is ST-generic. Moreover, if both S and T admit generic factorisations then all ST-generics

have this form.

Remark 4.2.15. Clearly, we can state and prove an analogue of the above lemma if we replace

T by the functor S given as the composite

AW,X ×
(
AX,Y ×AY,Z

)
→ AW,Y ×AY,Z → AW,Z

It is also clear that given a composite of generics

d
δ1 // h; r

δ2;r // (l; m) ; r

which is T-generic, that the composite

d
δ1 // h; r

δ2;r // (l; m) ; r assoc // l; (m; r)
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is S-generic, and hence by the analogue of the above lemma we may write this composite as

d
δ3 // l; k

l;δ4 // l; (m; r)

for some pair of generics δ3 and δ4.

It is sometimes advantageous to not consider all generics, but instead a smaller class of
generics which is still large enough to generate the entire class of generics when completed
under isomorphisms. Such a smaller class should satisfy the coherence properties outlined
in the following definition.

Definition 4.2.16. Let A be a generic bicategory. Let ∆2 and ∆0 be given collections of

generics and augmentations in A respectively. Denote by Ω2 the set of domains of the

generics in ∆2. We say the pair (∆2,∆0) is coherent if:

1. (completeness of generics) for every generic δ′ : c′→ l′; r′ in A there exists a generic

δ : c→ l; r in ∆2 and isomorphisms ζ1, ζ2 and ζ rendering commutative

c δ //

ζ
��

l; r

ζ1;ζ2
��

c′
δ′
// l′; r′

2. (completeness of augmentations) for every augmentation ε′ : n′→ 1X inA there exists

an augmentation ε : n→ 1X in ∆0 and isomorphism ξ : n→ n′ rendering commutative

n
ξ //

ε ��

n′

ε′~~1X

3. (associator coherence) for all generics δ1, δ2 ∈ ∆2 composable as below, there exists

generics δ3, δ4 ∈ ∆2 rendering commutative

c
δ3 ��

c
δ1��

l; k
l;δ4 ��

h; r
δ2;r��

l; (m; r) assoc
// (l; m) ; r

4. (left unitor coherence) for all c : X → Y in Ω2 there exists a δ ∈ ∆2 and ε ∈ ∆0



96 Generic bicategories

composable as below and rendering commutative

n; c
ε;c
$$

c unitor
//

δ ==

1X ; c

5. (right unitor coherence) for all c : X → Y in Ω2 there exists a δ ∈ ∆2 and ε ∈ ∆0

composable as below and rendering commutative

c; n
c;ε
$$

c unitor
//

δ ==

c; 1Y

Remark 4.2.17. If A is generic, we may always take (∆2,∆0) to be the class of all generic

2-cells and augmentations. This is a consequence of the previous two lemmata.

Remark 4.2.18. Informally, the conditions (3) to (5) guarantee that each 1-cell c ∈ Ω2 admits

the structure of an “A -comonoid”; a simple example of this being that objects in cartesian

monoidal categories admit the structure of a comonoid.

4.2.3 Functors which respect generics

It is well known that to give an oplax functor L : 1 → C is to give a comonad in C .
The following theorem generalizes this fact, replacing the terminal category by any generic
bicategory A .

At the same time, the following theorem may be seen as a coherence result; it provides a
reduction in the data of an oplax functor out of such an A , showing that the coherence data
of such an oplax functor is completely determined by the data at the diagonals.

The most important property of this result however is that it provides a description of
oplax functors L : A → C out of generic bicategoriesA which does not involve composition
in the domain bicategory; by this we mean expressions of the form L (a; b) or L (1X) do not
appear in our description below.

For completeness, we also give a reduced description of oplax natural transformations
and icons [34] between such oplax functors.

Theorem 4.2.19. Let A and C be bicategories, and suppose A is generic. Suppose we are

given a coherent class (∆2,∆0) of generics and augmentations of A . Then given a locally

defined functor

LX,Y : AX,Y → CLX,LY , X,Y ∈ A
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the following data are in bijection:

1. for every pair of composable 1-cells a and b, a constraint 2-cell

ϕa,b : L (a; b) → L (a) ; L (b)

and for every identity 1-cell 1X , a constraint 2-cell

λX : L (1X) → 1LX

exhibiting L as an oplax functor;

2. for every generic δ : c→ l; r in ∆2, a comultiplication 2-cell

Φδ : L (c) → L (l) ; L (r)

and for every augmentation ε : n→ 1X in ∆0, a counit 2-cell

Λε : L (n) → 1LX

satisfying the following coherence axioms:

(a) (naturality of comultiplication) for any 2-cell ζ : c→ c′ and commuting diagram

as on the left below with δ1, δ2 ∈ ∆2

c
δ1 //

ζ
��

l; r

ζ1;ζ2
��

Lc
Φδ1 //

Lζ
��

Ll; Lr

Lζ1;Lζ2
��

c′
δ2
// l′; r′ Lc′

Φδ2

// Ll′; Lr′

the diagram on the right above commutes;

(b) (naturality of counits) for any 2-cell ξ : n → n′ and pair of augmentations

ε : n → 1X and ε′ : n′ → 1X in ∆0 giving a commuting diagram as on the

left below

n
ξ //

ε ��

n′

ε′~~

Ln
Lξ //

Λε
""

Ln′

Λε′
{{

1X 1LX

the diagram on the right above commutes;

(c) (associativity of comultiplication) for every δ1, δ2, δ3, δ4 ∈ ∆2 yielding an equality
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as on the left below

c
δ3 ��

c
δ1��

Lc
Φδ3 ��

Lc
Φδ1��

l; k
l;δ4 ��

h; r
δ2;r��

Ll; Lk
Ll;Φδ4 ��

Lh; Lr
Φδ2 ;Lr��

l; (m; r) assoc
// (l; m) ; r Ll; (Lm; Lr) assoc

// (Ll; Lm) ; Lr

the diagram on the right above commutes;

(d) (left counit axiom) for any 1-cell c : X → Y , generic δ ∈ ∆2 and augmentation

ε ∈ ∆0 yielding an equality as on the left below

n; c
ε;c
$$

Ln; Lc
Λε ;Lc
''

c unitor
//

δ >>

1X ; c Lc unitor
//

Φδ ::

1LX ; Lc

the diagram on the right above commutes;

(e) (right counit axiom) for any 1-cell c : X → Y , generic δ ∈ ∆2 and augmentation

ε ∈ ∆0 yielding an equality as on the left below

c; n
c;ε
##

Lc; Ln
Lc;Λε
''

c unitor
//

δ >>

c; 1Y Lc unitor
//

Φδ ::

Lc; 1LY

the diagram on the right above commutes.

Suppose now we are given a locally defined functor L equipped with a collection (ϕ,λ) as

in (1), or equivalently equipped with a collection (Φ,Λ) as in (2). Denote this data by the

5-tuple (L, ϕ,Φ, λ,Λ) whilst noting the collections (ϕ,λ) and (Φ,Λ) uniquely determine each

other. Let (K,ψ,Ψ, γ,Γ) be another such 5-tuple. Then the following data are in bijection:

1. an oplax natural transformation ϑ : L =⇒ K of oplax functors;

2. for every object X ∈ A , a 1-cell ϑX : LX → K X in C , and for every 1-cell f : X → Y

in A , a 2-cell

LX
L f //

ϑX
��
⇓ϑf

LY

ϑY
��

K X
K f
// KY

natural in 1-cells f : X → Y and satisfying the following conditions:
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(a) for every generic δ : c→ l; r in ∆2,

LX Lc //

ϑX
��

⇓ϑc

LZ

ϑZ
��

LX Lc //

ϑX
�� Ll

,,

⇓Φδ

LZ

ϑZ
��

K X Kc //

Kl ,,

⇓Ψδ

K Z = K X

Kl ,,

⇓ϑl

LY
Lr

JJ

θY
��

K Z
⇓ϑr

KY Kr

JJ

KY Kr

JJ

(b) for every augmentation ε : n→ 1X in ∆0,

LX Ln //

ϑX
��

⇓ϑn

LX

ϑX
��

LX Ln //

ϑX
��

1LX

CC

⇓Λε

LX

ϑX
��

K X Kn //

1KX

CC

⇓Γε

K X = K X

1KX

CC

⇓id

K X

When L and K agree on objects, this restricts to the bijection of the following data:

1. An icon between oplax functors

ϑ : L =⇒ K : A → C

2. A collection of natural transformations

ϑX,Y : LX,Y =⇒ KX,Y : AX,Y → CX,Y , X,Y ∈ A

rendering commutative the diagrams

L (c)
Φδ //

ϑc
��

L (l) ; L (r)

ϑl ;ϑr
��

L (n)
ϑn //

Λn ""

K (n)

Γn||
K (c)

Ψδ

// K (l) ; K (r) 1X

Proof. We divide the proof into parts, verifying each bijection separately.

Bijection With Oplax Functors. We first show how to pass between the data of (1)

and (2), and then verify this defines a bijection.

(1) =⇒ (2) : Suppose we are given the data (L, ϕ, λ) of (1). We define Φδ for each

generic δ : c→ l; r by the composite

L (c) Lδ // L (l; r)
ϕl,r // L (l) ; L (r) (4.2.2)
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and define Λε for each augmentation ε : n→ 1X by the composite

L (n) Lε // L (1X)
λX // 1LX (4.2.3)

For naturality of comultiplication, we see that given a diagram as on the left below

c
δ1 //

ζ
��

l; r

ζ1;ζ2
��

Lc
Lδ1 //

Lζ
��

L (l; r)
ϕl,r //

L(ζ1;ζ2)
��

Ll; Lr

Lζ1;Lζ2
��

c′
δ2
// l′; r′ Lc′

Lδ2
// L (l′; r′) ϕl′,r ′

// Ll′; Lr′

the right commutes by naturality of ϕ and local functoriality of L. For naturality of counits

note that given a commuting diagram as on the left below

n

ξ

��

ε
  

Ln

Lξ

��

Lε
##

1X L1X
λX // 1LX

n′
ε′

>>

Ln′
Lε′
;;

the right trivially commutes. For associativity of comultiplication, note that given a com-

muting diagram

c
δ3 ��

c
δ1��

l; k
l;δ4 ��

h; r
δ2;r��

l; (m; r) assoc
// (l; m) ; r

we have the commutativity of the diagram

Lc
Lδ3 ��

Lc
Lδ1��

L (l; k)
ϕl,k ��

L(l;δ4)
))

L (h; r)
ϕh,r��

L(δ1;r)
uu

Ll; Lk
Ll;Lδ4 ��

L (l; (m; r))

ϕl,(m;r)uu
L(assoc)

// L ((l; m) ; r)

ϕ(l;m),r ))

Lh; Lr
Lδ2;Lr��

Ll; L (m; r)
Ll;ϕm,r ��

L (l; m) ; Lr
ϕl,m;Lr��

Ll; (Lm; Lr) assoc
// (Ll; Lm) ; Lr

by naturality of ϕ, associativity of ϕ and local functoriality of L. For the left counit axiom,
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suppose we are given a commuting diagram as on the left below

l; c
ε;c
""

Lc δ //

L(unitor) ..

L (l; c)
ϕl,r //

L(ε;c) &&

Ll; Lc
Lε;Lc // L1X ; Lc

λX ;Lc// 1LX ; Lc

c unitor
//

δ
??

1X ; c L (1X ; c)
ϕ1X ,c

88

L(unitor)
// L (c) unitor

AA

and note the composite on the right above is the unitor by local functoriality of L, naturality

of ϕ, and the unit axiom on λ. The right counit axiom is similar.

(2) =⇒ (1) : Suppose we are given the data (L,Φ,Λ) for a coherent class (∆2,∆0). Now

for any generic δ′ : c′→ l′; r′ in A we have a commuting diagram as on the left below with

ζ1, ζ2, ζ invertible and δ ∈ ∆2

c δ //

ζ
��

l; r

ζ1;ζ2
��

Lc
Φδ //

Lζ
��

Ll; Lr

Lζ1;Lζ2
��

c′
δ′
// l′; r′ Lc′

Φδ′
// Ll′; Lr′

and so we may define Φδ′ as the unique morphism making the diagram on the right above

commute; this being well defined as a consequence of naturality of comultiplication.

Similarly, for any augmentation ε′ : n′ → 1X in A there exists an augmentation ε : n→

1X in ∆0 and isomorphism ξ : n→ n′ rendering commutative the left diagram below

n
ξ //

ε ��

n′

ε′~~

Ln
Lξ //

Λε
""

Ln′

Λε′
{{

1X 1LX

and so we may defineΛε′ as the unique morphism making the right diagram above commute;

similarly well defined by naturality of counits.

We have now extended the definition of Φ and Λ to all generic morphisms and aug-

mentations. Moreover, the naturality properties now hold with respect to all generics δ and

augmentations ε. Indeed, given any generics δ and δ′ in A and a diagram as on the left

below (not assuming ζ, ζ1 or ζ2 are invertible)

c δ //

ζ

��

l; r

ζ1;ζ2

��

c δ //

θ ��

l; r
θ1;θ2��

=

c̃
φ ��

δ̃ // l̃; r̃
φ1;φ2��

c̃′
γ
��

δ̃′ // l̃′; r̃′
γ1;γ2��

c′
δ′
// l′; r′ c′

δ′
// l′; r′
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we can factor as on the right, where δ̃ and δ̃′ are in ∆2 and θ, θ1, θ2, γ, γ1 and γ2 are invertible.

Applying the naturality condition to the three squares on the right then gives the naturality

condition for the left diagram. A similar calculation may be done concerning augmentations.

To show that one may recover an oplax functor L : A → C we note we may define a

general oplax constraint cell ϕa,b : L (a; b) → La; Lb by taking a diagram as on the left below

with δ generic and then defining the right diagram to commute.

l; r
s1;s2
""

Ll; Lr
Ls1;Ls2
&&

a; b
id

//

δ <<

a; b L (a; b) ϕa,b
//

Φδ 88

La; Lb

(4.2.4)

Note that this is well defined since given two diagrams as on the left above, we have a

commuting diagram as on the left below

a; b δ //

δ′

��

l; r

s1;s2
��

La; Lb
Φδ //

Φδ′

��

Ll; Lr

Ls1;Ls2
��

l′; r′ t1;t2
//

γ1;γ2

<<

a; b Ll′; Lr′
Lt1;Lt2

//

Lγ1;Lγ2

99

La; Lb

(4.2.5)

composing to the identity, and this implies the right diagram commutes by naturality of

comultiplication (with ζ taken to be the identity). Trivially, we take each unit λX : L (1X) →

1X to be the component of Λ at id1X .

To see that the family ϕ satisfies naturality of the constraints suppose that we are given a

diagram as on the left below with the horizontal paths composing to identities

a; b δ //

α;β
��

l; r
s1;s2 //

γ1;γ2
��

a; b

α;β
��

L (a; b)
Φδ //

L(α;β)
��

Ll; Lr
Ls1;Ls2 //

Lγ1;Lγ2
��

La; Lb

Lα;Lβ
��

a′; b′
δ′
// l′; r′

s′1;s′2
// a′; b′ L (a′; b′)

Φδ′
// Ll′; Lr′

Ls′1;Ls′2
// La′; Lb′

and note that the right diagram commutes by naturality of comultiplication.

Before checking associativity we first note that given any generics δ′1, δ
′
2, δ
′
3 and δ′4 in A

such that (1) commutes below,

c
ζ−1

//

δ3 �� (5)
c′

δ′3 ��
(1)

c′
δ′1��

ζ //

(2)
c
δ1��

l; k
l;δ4 ��

α;β //

(6)
l′; k′

l ′;δ′4 ��

h′; r′
δ′2;r ′��

ζ1;ζ2 //

(3)
h; r

δ2;r��
l; (m; r)

φ−1
1 ;(φ−1

2 ;ζ−1
2 )
// l′; (m′; r′) assoc

//

φ1;(φ2;ζ2) ..

(l′; m′) ; r′
(φ1;φ2);ζ2

//

(4)
(l; m) ; r

l; (m; r) assoc

>>
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we can construct regions (2) and (3) as on the right above, where δ1 and δ2 lie in ∆2. By

naturality of the associator (4) commutes. Then since our given class of generics is coherent,

we can find a δ3 and δ4 in ∆2 such that the outside diagram commutes above. By genericity of

δ3 we then have induced 2-cells α and β such that (5) and (6) commute (invertible as δ′3 is also

generic). Now, by associativity of comultiplication the commutativity of the outside diagram

is respected by the transformation δ 7→ Φδ, and this is equivalent to the commutativity of (1)

being respected as the pasting with (2),(3),(4),(5) and (6) may be undone.

Now, to see that the family ϕ satisfies associativity of the constraints consider the outside

diagram of

(a; b) ; c
δ1 //

δ3 $$

assoc

��

h; r
s1;s2 //

δ2;r $$

(a; b) ; c
δ5;c //

(1)

( f ; g) ; c
(t1;t2);c// (a; b) ; c

assoc

��

l; k

l;δ4 $$

γ1;γ2

��

(3) (l; m) ; r

assoc
��

(ξ1;ξ2);s2

88

(5) l; (m; r)
ξ1;(ξ2;s2)

%%
γ1;(α;β)

��

(4)

(6) l̃; (m̃; r̃)
p1;(ζ1;ζ2)

%%
(2)

(7) f ; (g; c)
t1;(t2;c)

%%
a; (b; c)

δ6
// l̃; k̃ p1;p2

//

l̃;δ7
;;

a; (b; c)
a;δ8

// a; (u; v)
a;(q1;q2)

// a; (b; c)

where the appropriate horizontal composites are identity 2-cells. We first factor δ5s1 through

a generic δ2 to recover 2-cells ξ1 and ξ2 and the commuting region (1). Similarly, we create

the region (2). Now take δ3 and δ4 to be generics such that region (3) commutes, which exist

by Lemma 4.2.13. We then note that region (4) commutes by naturality of the associator in

A . Finally, note that we have an induced (γ1; γ2) by genericity of δ3, and thus δ7γ2 yields an

induced (α; β) through the generic δ4.

We have now constructed the above diagram and shown each region commutes; all that
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remains is to notice in the corresponding diagram below

L ((a; b) ; c)
Φδ1 //

Φδ3 &&

L(assoc)

��

Lh; Lr
Ls1;Ls2//

Φδ2 ;Lr ''

L (a; b) ; Lc
Φδ5 ;c

//

(1)

(L f ; Lg) ; Lc
(Lt1;Lt2);Lc// (La; Lb) ; Lc

assoc

��

Ll; Lk

Ll;Φδ4 ''

Lγ1;Lγ2

��

(3) (Ll; Lm) ; Lr

assoc
��

(Lξ1;Lξ2);Ls2

66

(5) Ll; (Lm; Lr)
Lξ1;(Lξ2;Ls2)

((
Lγ1;(Lα;Lβ)

��

(4)

(6) Ll̃; L (m̃; r̃)
Lp1;(Lζ1;Lζ2)

''
(2)

(7) L f ; (Lg; Lc)
Lt1;(Lt2;Lc)

''
L (a; (b; c))

Φδ6

// Ll̃; Lk̃
Lp1;Lp2

//

Ll̃;Φδ7
88

La; L (b; c)
La;Φδ8

// La; (Lu; Lv)
La;(Lq1;Lq2)

// La; (Lb; Lc)

naturality of comultiplication implies (1), (2), (5) and (6) commute; associativity of comulti-

plication implies (3) commutes; naturality of the associators in C implies (4) commutes, and

(7) commutes as L is locally a functor.

Before checking the unit axioms on λ we note that given a generic δ′ and augmentation

ε′ composable as in the middle diagram below

n; c
ε;c

��

u1;u2��
n′; c′

ε′;c′
%%

c
ζ
//

δ

33

c′ unitor
//

δ′ <<

1X ; c′
1X ;ζ−1

// 1X ; c

we have an isomorphism ζ : c → c′ by axiom (1) of a coherent class. By axiom (5) we

then have a δ and ε in the coherent class such that the outside diagram commutes. It follows

from genericity of δ that we have an induced isomorphism u1; u2 such that the above diagram

commutes. As the commutativity of the outside diagram is respected by assumption, and the

commutativity of the left and right regions is respected by naturality of comultiplication and

augmentations respectively (and the pasting with these regions can be undone), it follows that

the commutativity of the middle diagram is respected.

Now, to see the left unit axiom on λ is satisfied note that given any commuting diagram
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as on the left below

1X ; c unitor //

δ
��

c unitor //

δ′

��

1X ; c L (1X ; c)
L(unitor) //

Φδ
��

Lc unitor //

Φδ′

��

1X ; Lc

l; r s1;s2
// l′; c

ε;c
<<

ε;c
// 1X ; c

id

OO

Ll; Lr
Ls1;Ls2

// Ll′; Lc

Λε ;Lc

99

Lε;Lc
// L1X ; Lc

Λ1X ;Lc

OO

we get a commuting diagram as on the right above by naturality of comultiplication, the left

counit axiom, and naturality of counits (the bottom composite in this diagram is a ϕ followed

by a λ). The right unit axiom is similar.

Finally, note that the composite assignment

(1) 7→ (2) 7→ (1)

is the identity, since with Φ defined as in (4.2.2), the oplax constraint cells as recovered by

(4.2.4), given by the family of constraints

L (a; b) Lδ // L (l; r)
ϕl,r // Ll; Lr

Ls1;Ls2// La; Lb

are clearly equal to ϕa,b by naturality. Moreover, the composite assignment

(2) 7→ (1) 7→ (2)

is the identity, since with ϕ defined as by (4.2.4), the comultiplication cells Φ at an arbitrary

generic δ̃ ∈ ∆2 are given by the composite in the top line on the left below

:=

Lc Lδ̃ //

Φδ̃
&&

L
(̃
l; r̃

)
Φδ //

(1)

ϕl̃,r̃

''

Ll; Lr
Ls1;Ls2 // Ll̃; Lr̃ l; r

s1;s2
��

Ll̃; Lr̃
Lδ̃1;Lδ̃2

77

l̃; r̃
id

//

δ
@@

l̃; r̃

(4.2.6)

where δ ∈ ∆2 is a generic and the right diagram commutes. Then we note that

c δ̃ //

δ̃
��

l̃; r̃

δ̃1;δ̃2
��

c δ̃ //

δ̃
��

l̃; r̃

id;id
��

id;id
~~

c δ̃ //

δ̃
��

l̃; r̃

id;id
~~

s1 δ̃1;s2 δ̃2��

l̃; r̃
δ
// l; r l̃; r̃

id;id
// l̃; r̃ l̃; r̃

id;id
// l̃; r̃

we have an induced δ̃1; δ̃2 rendering commutative the left diagram above by genericity of

δ̃, the middle diagram shows that the induced diagonal is necessarily a pair of identities
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(by component-wise commutativity of the bottom triangle), and whiskering the left diagram

with s1; s2 gives the right diagram, where as we have noted the induced diagonal making the

diagram commute is a pair of identities. Consequently, s1δ̃1 and s2δ̃2 are identities. We then

note that in diagram 4.2.6 the region (1) commutes by naturality of comultiplication, and

applying local functoriality of L we then see the given composite is Φδ̃ as required.

The bijection of the nullary data may be similarly proven using the respective naturality

properties, and so we omit the details.

Bijection With Oplax Natural Transformations. As the the data of (1) and (2) is

the same, we need only check that the coherence conditions correspond.

(1) =⇒ (2) : Suppose we are given an oplax natural transformation ϑ : L → K in the

usual sense. Then by the definition of Φ at a δ ∈ ∆2 we have

⇓Lδ

LX Lc //

ϑX
�� Ll

,,

⇓Φδ

LZ

ϑZ
��

LX

ϑX
�� Ll

,,

L(l;r) //

L(c)

""

⇓ϕl,r

LZ

ϑZ
��

K X

Kl ,,

⇓ϑl

LY
Lr

JJ

θY
��

K Z
⇓ϑr

= K X

Kl ,,

⇓ϑl

LY
Lr

JJ

θY
��

K Z
⇓ϑr

KY Kr

JJ

KY Kr

JJ

which by compatibility with composition is

⇓Lδ ⇓ϑc

LX

ϑX
��

L(l;r) //

L(c)

""

⇓ϑl;r

LZ

ϑZ
��

LX

ϑX
��

L(l;r)

""

⇓Kδ

LZ

ϑZ
��

K X

Kl ,,

K(l;r) //

⇓ψl,r

K Z = K X

Kl ,,

K(l;r) //

K(c)

""

⇓ψl,r

K Z

KY Kr

JJ

KY Kr

JJ

and by definition of Ψ this gives the required coherence condition. We omit the nullary

version.

(2) =⇒ (1) : Suppose we are given the data of (2) subject to the coherence conditions of
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(2). Then by the definition of the constraint data ϕ we have

⇓ϕ f ,g ⇓Φδ

LX
L f //

L( f ;g)

��

ϑX
��
⇓ϑf

LY
Lg //

ϑY
��
⇓ϑg

LZ

ϑZ
��

= LX
L f
33

L( f ;g)

��

ϑX
��
⇓ϑf

Ll ++
⇓Ls1 LY

ϑY
��
⇓ϑg

Lr ++

Lg
33⇓Ls2 LZ

ϑZ
��

K X
K f
// KY

Kg
// K Z K X

K f
// KY

Kg
// K Z

and so applying naturality of ϑ, this is equal to the left below

⇓Φδ ⇓ϑf ;g

LX Ll //

ϑX
��
⇓ϑl

L( f ;g)

��
LY Lr //

ϑY
��
⇓ϑr

LZ

ϑZ
��

= LX

L( f ;g)

��

ϑX
��

⇓Ψδ

LZ

ϑZ
��

K X
K f
22

Kl ,,
⇓Ks1 KY

Kr ,,

Kg
22⇓Ks2 K Z K X

K f
22

Kl ,,
⇓Ks1

K( f ;g)

��
KY

Kr ,,

Kg
22⇓Ks2 K Z

which by the assumed coherence axiom is the right above. Applying the definition of ψ, we

recover the compatibility of an oplax natural transformation with composition. Again, we

will omit the analogous nullary condition.

Bijection With Icons. This trivially follows taking each ϑX to be an identity 1-cell in

the above bijection.

Remark 4.2.20. The reader will have noticed from the proof of Theorem 4.2.19 that giving

binary oplax constraint cells

ϕl,r : L (l; r) → Ll; Lr

for generics δ : c→ l; r in ∆2 completely determines arbitrary oplax constraint cells

ϕa,b : L (a; b) → La; Lb.

This is since these ϕl,r suffice to construct each Φδ. Hence this theorem provides a reduction

in the data of an oplax functor when the domain bicategory A is generic.

Remark 4.2.21. Given a family of hom-categories AX,Y , sets MX,Y,Z
c , and natural isomor-

phisms

AX,Z (c,a; b) �
∑

m∈MX ,Y ,Z
c

AX,Y (lm,a) ×AY,Z (rm, b)

for all X,Y, Z and c, the formal composite a; b is essentially uniquely determined (by essential

uniqueness of representing objects).
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Given a complete class of generics ∆2 equipped with their universal properties, one

may recover the above by taking MX,Y,Z
c to be the set of equivalence classes of generics

δ : c→ l; r . It follows that composition in the bicategory is essentially uniquely determined

by the generics.

We now give another perspective on the above remark, seeing that composition in a
generic bicategory is essentially uniquely determined by the generics in that it must obey a
universal property similar to that of a product.

Remark 4.2.22. In the setting of a generic bicategory A , one can view composition as a sort

of generalized product. Indeed, as each composition functor ◦X,Y,Z : AY,Z × AX,Y → AX,Z

admits generic factorisations, one may form the spectrum [15] of ◦X,Y,Z given by the presheaf

M−X,Y,Z : A op
X,Z → Set. This gives a factorisation

AY,Z ×AX,Y

))

◦X ,Y ,Z // AX,Z

elM−X,Y,Z

77

where the first arrow has a left adjoint (which we may denote by (−)r × (−)l) and the second

is a discrete fibration [14, 15]. It follows that for all a ∈ AX,Y and b ∈ AY,Z there exists a

triple (
a; b ∈ AX,Z, m ∈ Ma;b

X,Y,Z

)
, π1 : ml → a, π2 : mr → b

which is universal in that given another triple(
c ∈ AX,Z, m′ ∈ Mc

X,Y,Z

)
, γ1 : m′l → a, γ2 : m′r → b

there exists a unique α : (c,m′) → (a; b,m) in elM−X,Y,Z such that

m′l
γ1 //

αl
  

a m′r
γ2 //

αr
  

b

ml

π1

??

mr

π2

??

commute.

4.3 Consequences and examples

In this section we discuss some of the main examples of Theorem 4.2.19. Viewing monoidal
categories as one-object bicategories, we first consider the case where A is a cartesian
monoidal category, giving a simple and informative example of this situation. We then go on



4.3 Consequences and examples 109

to consider more complicated examples, namely where A is the bicategory of spans or the
bicategory of polynomials with cartesian 2-cells.

For completeness, we also discuss the case where A is the category of finite sets and
bijections with the disjoint union monoidal structure, but will omit some details as this is a
rather trivial example.

4.3.1 Cartesian monoidal categories

Given a category E with finite products, one may construct the cartesian monoidal category
(E,×,1) where the tensor product is the cartesian product and the unit is the terminal object.
Clearly this monoidal category is generic, as

E (T,− × −) : E × E → Set

is representable (no coproducts are necessary). Now, seen as a one object bicategory, the
generics are the diagonal morphisms δT in E of the form

T

δT

��

id

""

id

||
T T × T π2

//
π1

oo T

and so we take3 ∆2 to be the class of diagonals δT : T → T × T for each T ∈ E . Trivially, we
take the augmentations as the unique maps into the terminal object from each object T ∈ E .
Applying Theorem 4.2.19 in this case then makes it clear why we may say the data of this
theorem is analogous to the data of a comonad; indeed, we have the following.

Corollary 4.3.1. Let E be a category with finite products and let (C,⊗, I) be a monoidal

category. Denote by (E,×,1) the category E equipped with the cartesian monoidal structure.

Then to give an oplax monoidal functor

L : (E,×,1) → (C,⊗, I)

is to give a functor L : E → C with comultiplication and counit maps

ΦT : L (T) → L (T) ⊗ L (T) , ΛT : L (T) → I

3Note that even in this simple case there can be different ways to define ∆2. For example, if we have an
isomorphism T � S in E (where T , S), we could take ∆2 to include δT but not δS . However, one should
normally use the canonical choice of ∆2 in order to make the coherence conditions easier to verify.
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for every T ∈ E , such that for every T ∈ E the diagrams

LT ⊗ LT
LT⊗ΛT

((

LT ⊗ LT
ΛT⊗LT
((

LT unitor
//

ΦT
88

LT ⊗ I LT unitor
//

ΦT
88

I ⊗ LT

commute, the diagrams

LT
ΦT ��

LT
ΦT��

LT ⊗ LT
LT⊗ΦT ��

LT ⊗ LT
ΦT⊗LT��

LT ⊗ (LT ⊗ LT) assoc
// (LT ⊗ LT) ⊗ LT

commute, and all morphisms f : T → T ′ in E render commutative

L (T)
L f //

ΛT ""

L (T ′)

ΛT ′{{

LT
ΦT //

L f
��

LT ⊗ LT
L f ⊗L f
��

1X LT ′
ΦT ′

// LT ′ ⊗ LT ′

The unitary and associativity conditions above ask that L sends each T ∈ E to a comonoid
(LT,ΦT,ΛT ) in (C,⊗, I), and the last two conditions ask that morphisms in E are sent to
morphisms of comonoids. Hence this may be simply stated as follows.

Corollary 4.3.2. Let Comon (C,⊗, I) be the category of comonoids in the monoidal category

(C,⊗, I). Then oplax monoidal functors (E,×,1) → (C,⊗, I) are in bijection with functors

E → Comon (C,⊗, I).

4.3.2 Bicategories of spans

Given a category E with pullbacks, one may form the bicategory of spans in E denoted
Span (E) with objects those of E , 1-cells given by spans

T
t
��

s
��

X Z

denoted (s, t), 2-cells given by morphisms f rendering commutative diagrams as on the left
below

K
b
��

a
~~

f

��

M
π2
  

π1
~~ pbX Y R

v
  

u
��

S q
��

p
~~

R
v

??

u

``

X Y Z

and composition of 1-cells given by forming the pullback as on the right above [3].
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The reader will then notice that by the universal property of pullback, giving a morphism
of spans (s, t) → (u, v) ; (p,q) as on the left below

T
��

t

��

s

��

T

h

��

t

��

s

��

�� ��

M
π2
  

π1
~~ pb

∼

R
v
  

u
��

S q
��

p
~~

R
v
��

u
��

S q
��

p
��

X Y Z X Y Z

is to give a morphism h : T → Y as well as pair of morphisms of spans as on the right above
such that each region in the diagram commutes. Therefore

Span (E)X,Z ((s, t) , (u, v) ; (p; q))

is isomorphic to ∑
h : H→Y

Span (E)X,Y ((s, h) , (u, v)) × Span (E)Y,Z ((h, t) , (p,q)) (4.3.1)

and so the bicategory of spans is generic. Our class of generics ∆2 consists of, for each
diagram

T
t

��

s

��
h
��

X Y Z

in E , the morphisms of spans δs,h,t : (s, t) → (s, h) ; (h, t) corresponding to

T

h

��

t

��

s

��

id
��

id
��

T
h
��

s
��

T
t
��

h
��

X Y Z

under this bijection. Our augmentations are the morphisms of spans as below for each
morphism h in E

T
h
  

h
~~

h

��

X X

X id

>>

id

``

and will be denoted by εh. Thus, applying Theorem 4.2.19 we have the following.

Corollary 4.3.3. Let E be a category with pullbacks and denote by Span (E) the bicategory
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of spans in E . Let C be a bicategory. Then to give an oplax functor

L : Span (E) → C

is to give a locally defined functor

LX,Y : Span (E)X,Y → CLX,LY , X,Y ∈ E

with comultiplication and counit maps

Φs,h,t : L (s, t) → L (s, h) ; L (h, t) , Λh : L (h, h) → 1LX

for every respective diagram in E

T
t
��

s
��

h
��

T
h��

X Y Z X

such that:

1. for any triple of morphisms of spans as below

R
u
��

v

��
f

��

R
u
��

k
��

f

��

R
k
��

v

��
f

��

X Z X Y Y Z

T
s

__

t

??

T
s

__

h

??

T
h

__

t

??

we have the commuting diagram

L (u, v)

L f
��

Φu,k ,v // L (u, k) ; L (k, v)

L f ;L f
��

L (s, t)
Φs,h,t

// L (s, h) ; L (h, t)

2. for any morphism of spans as on the left below

M
p

��

p

��
f
��

L (p, p)
L f //

Λp $$

L (q,q)

Λqzz
X Nq
oo

q
// X 1LX

the diagram on the right above commutes;
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3. for all diagrams of the form

T
s

ww

t

''h�� k ��
W X Y Z

in E , we have the commuting diagram

L (s, t)

Φs,h,t

��

L (s, t)

Φs,k ,t

��
L (s, h) ; L (h, t)

L(s;h);Φh,k ,t

��

L (s, k) ; L (k, t)

Φs,h,k ;L(k;t)
��

L (s, h) ; (L (h, k) ; L (k, t)) assoc
// (L (s, h) ; L (h, k)) ; L (k, t)

4. for all spans (s, t) we have the commuting diagrams

L (s, s) ; L (s, t)
Λs;L(s,t)

((

L (s, t) ; L (t, t)
L(s,t);Λt

''
L (s, t) unitor

//

Φs,s,t
88

1LX ; L (s, t) L (s, t) unitor
//

Φs,t ,t
88

L (s, t) ; 1LY

Remark 4.3.4. Note that this description of an oplax functor out of the bicategory of spans

does not involve pullbacks, thus allowing for a simpler for a simpler proof of the universal

properties of the span construction [9].

4.3.3 Bicategories of polynomials

Given a locally cartesian closed category E , one may form the bicategory of polynomials in
E with cartesian 2-cells [55, 17]. This bicategory we denote by Polyc (E) and has objects
those of E , 1-cells given by diagrams

E
s
~~

p // B
t
��

X Z

in E called polynomials and denoted by (s, p, t), and 2-cells given by commuting diagrams as
below

K

f

��

a
~~

i //

pb

I
b
��

g

��

X Y

R
u

``

j
// J

v

@@
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where the middle square is a pullback. Composition of 1-cells is more complicated and so
will be omitted; especially as it is not necessary to describe oplax functors out of Polyc (E)
once we know the generics.

The reader need only know the following corollary of [55, Prop. 3.1.6], a description of
polynomial composition due to Weber.

Corollary 4.3.5. Consider two polynomials in E as below:

K
a
~~

i // I
b
��

R
j //

u
��

J
v
��

X Y Y Z

Then to give a cartesian 2-cell (s, p, t) → (a, i, b) ; (u, j, v) is to give a factorization p = p1; p2

through an object T , a morphism h : T → Y , and a pair of cartesian morphisms (s, p1, h) →

(a, i, b) and (h, p2, t) → (u, j, v)

E
p1 //

p
��

w

��
s

��

pb

T
p2 //

y

��
x

�� h

��

B

z

��
t

��

pb

K
a
~~

i // I
b
��

R
j //

u
��

J
v
��

X Y Z

such that the above diagram commutes. Here we identify a septuple (p1, h, p2,w, x, y, z) as

above with another septuple
(
p′1, h

′, p′2,w
′, x′, y′, z′

)
if w = w′, z = z′ and there exists an

invertible α : T → T ′ rendering commutative the diagrams4

T p2
  

α

��

T

α

��

y

  
x
��

T

α

��

h
&&E

p1 >>

p′1
  

B I R Y

T ′ p′2

>>

T ′ y′

>>

x′

__

T ′ h′

88

(4.3.2)

It follows that
Polyc (E)X,Z ((s, p, t) , (a, i, b) ; (u, j, v))

is isomorphic to

∼∑
p=p1;p2, h : T→Y

Polyc (E)X,Y ((s, p1, h) , (a, i, b)) × Polyc (E)Y,Z ((h, p2, t) , (u, j, v)) (4.3.3)

where the equivalence relation “∼” indicates the sum is taken over representatives of equiv-
alence classes of triples (p1, h, p2) (where two such triples are seen as equivalent if there is

4It is clear that if the middle diagram commutes then the rightmost diagram also does. Also, such an
isomorphism α making the left diagram commute must be unique.
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an isomorphism α rendering commutative the left and right diagrams as in Figure 4.3.2).
We have thus exhibited the bicategory of polynomials with cartesian 2-cells as a generic
bicategory.

Here our class of generics ∆2 consists of, for each diagram

E
s
��

p1 // T
h
��

p2 // B
t
��

X Y Z

in E where p = p1; p2, the cartesian morphisms of polynomials

δs,p1,h,p2,t : (s, p, t) → (s, p1, h) ; (h, p2, t)

corresponding to

E
p1 //

p
��

id
��

s

��

T
p2 //

id
��

id
�� h

��

B

id
��

t

��

E
s
~~

p1 // T
h
��

T
p2 //

h
��

B
t
��

X Y Z

under this bijection. We take as our augmentations the cartesian morphisms

T
h
~~

h

��

id // T
h
  

h

��

X X

Xid

``

id
// X id

>>

and denote these by εh. There are more general morphisms into identity polynomials where
the middle map is invertible; but using those would lead to unnecessary complexity.

Remark 4.3.6. Note that our class of generics ∆2 does not involve representatives of equiva-

lence classes, unlike the summation formula given.

Now, applying Theorem 4.2.19 we have the following.

Corollary 4.3.7. Let E be a locally cartesian closed category and denote by Polyc (E) the

bicategory of polynomials in E with cartesian 2-cells. Let C be a bicategory. Then to give

an oplax functor

L : Polyc (E) → C

is to give a locally defined functor

LX,Y : Polyc (E)X,Y → CLX,LY , X,Y ∈ E
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with comultiplication and counit maps

Φs,p1,h,p2,t : L (s, p, t) → L (s, p1, h) ; L (h, p2, t) , Λh : L (h,1, h) → 1LX

for every respective diagram in E

E
s
��

p1 // T
h
��

p2 // B
t
��

T
h
��

id // T
h
��

X Y Z X X

where we assert p = p1; p2 on the left, such that:

1. for any morphisms of polynomials as below

R
u
��

f

��

q // I
v

��
g

��

R
u
��

f

��

q1 // S
k
��

c

��

S
k
��

c

��

q2 // I
v

��
g

��

X Z X Y Y Z

E
s

__

p
// B

t

??

E
s

__

p1
// T

h

??

T
h

__

p2
// B

t

??

we have the commuting diagram

L (u,q, v)

L( f ,g)
��

Φu,q1 ,k ,q2 ,v // L (u,q1, k) ; L (k,q2, v)

L( f ,c);L(c,g)
��

L (s, p, t)
Φs,p1 ,h,p2 ,t

// L (s, p1, h) ; L (h, p2, t)

2. for any morphism of polynomials as on the left below

R
s
��

f

��

id //

pb

R
s
��

f

��

L (s,1, s)
L( f , f ) //

Λs

��

L (t,1, t)

Λt

��

X X

T
t

__

id
// T

t

??

1LX

the diagram on the right above commutes;

3. for all diagrams of the form

F
s
~~

a // G b //

h ��

H c //

k��

K
t
��

W X Y Z
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in E , we have the commuting diagram

L (s,a; b; c, t)

Φs,a,h,b;c,t
��

L (s,a; b; c, t)

Φs,a;b,k ,c,t
��

L (s,a, h) ; L (h, b; c, t)

L(s,a,h);Φh,b,k ,c,t

��

L (s,a; b, k) ; L (k, c, t)

Φs,a,h,b,k ;L(k,c,t)
��

L (s,a, h) ; (L (h, b, k) ; L (k, c, t)) assoc
// (L (s,a, h) ; L (h, b, k)) ; L (k, c, t)

4. for all polynomials (s, p, t) the diagrams

L (s,1, s) ; L (s, p, t)
Λs;L(s,p,t)

))
L (s, p, t) unitor

//

Φs,1,s,p,t
66

1LX ; L (s, p, t)

L (s, p, t) ; L (t,1, t)
L(s,p,t);Λt

))
L (s, p, t) unitor

//

Φs,p,t ,1,t
66

L (s, p, t) ; 1LY

commute.

Remark 4.3.8. As the above description of oplax functors out of the bicategory of polynomials

does not rely on polynomial composition, it may be used for an efficient proof of the universal

properties of polynomials. Indeed, this allows us to avoid the large coherence diagrams which

would arise in a direct proof. We will discuss this in detail in our next paper.

4.3.4 Finite sets and bijections

Wegive this example for completeness, but will omit some details as Theorem 4.2.19 becomes
rather trivial in this case (due to all generic morphisms being invertible). Here we take A

to be the category of finite sets and bijections with the disjoint union monoidal structure,
denoted (P,t,∅). This monoidal category is generic since we have isomorphisms

P (C, A t B) �
∑

C=LtR

P (L, A) × P (R,B)

natural in finite sets A and B, where the sum is taken over decompositions of C into the
disjoint union of two sets. Here we choose our class of generics ∆2 to contain the chosen
bijection, where [n] = {1, · · · ,n},

δn1,n2 : [n1 + n2] → [n1] t [n2] , n 7→

(1,n) , n ≤ n1

(2,n) , n > n1
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for each pair of non-negative integers n1 and n2. Trivially, the only augmentation is the
identity map on the empty set. Taking (C,⊗, I) to be a monoidal category, it follows from
Theorem 4.2.19 that oplax monoidal functors L : (P,t,∅) → (C,⊗, I) may be specified by
giving comultiplication and counit maps

Φn1,n2 : L [n1 + n2] → L [n1] ⊗ [n2] , Λ : L (∅) → I

Of course, this may more easily be seen by simply taking the skeleton.

4.4 Convolution structures and Yoneda structures

By results of Day [11], given a bicategory A with small hom-categories one may construct
the local cocompletion of A , a new bicategory Â with objects those of A , hom-categories
given by

Â X,Y :=
[
A op

X,Y ,Set
]
, X,Y ∈ Aob

and a composite of two presheaves

F : A op
X,Y → Set, G : A op

Y,Z → Set

given by Day’s convolution formula

GF : A op
X,Z → Set, GF (c) =

ˆ a,b
AX,Z (c,a; b) × Fa × Gb.

With this definition of Â , the family of Yoneda embeddings

yAX ,Y
: A X,Y → Â X,Y , X,Y ∈ Aob

underlies a pseudofunctor yA : A → ˆA . This is of interest since in the case of generic
bicategories A , this convolution structure has an especially simple form. Moreover, just as
one can gain insight into a category by studying its category of presheaves, one can deduce
many of the properties of generic bicategoriesA as a consequence of this simple convolution
structure on ˆA .

Proposition 4.4.1. Suppose A is a generic bicategory. Then for any pair of presheaves

F : A op
X,Y → Set, G : A op

Y,Z → Set

there exists isomorphisms as below
ˆ a,b

AX,Z (c,a; b) × Fa × Gb �
∑

m∈MX ,Y ,Z
c

Flm × Grm
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thus reducing the Day convolution structure to a simpler formula.

Proof. We have

LHS =
ˆ a,b

AX,Z (c,a; b) × Fa × Gb

�

ˆ a,b 
∑

m∈MX ,Y ,Z
c

AX,Y (lm,a) ×AY,Z (rm, b)
 × Fa × Gb

�

ˆ a,b ∑
m∈MX ,Y ,Z

c

AX,Y (lm,a) × Fa ×AY,Z (rm, b) × Gb

�
∑

m∈MX ,Y ,Z
c

ˆ a,b
AX,Y (lm,a) × Fa ×AY,Z (rm, b) × Gb

�
∑

m∈MX ,Y ,Z
c

(ˆ a
AX,Y (lm,a) × Fa

)
×

(ˆ b
AY,Z (rm, b) × Gb

)
�

∑
m∈MX ,Y ,Z

c

Flm × Grm

= RHS

as required.

Remark 4.4.2. Unfortunately, the above formula has some disadvantages. Indeed, asMX,Y,Z
c

is isomorphic to the set of equivalence classes of generics out of c, it follows that explicitly

describingMX,Y,Z
c will involve a choice of representatives for each equivalence class. This is

problematic since choices of representatives do not nicely behavewith respect to composition.

As a consequence of this proposition and the formulas (4.3.1) and (4.3.3) given in the
previous section, we have the following.

Corollary 4.4.3. The Day convolution of two presheaves of spans

F : Span (E)opX,Y → Set, G : Span (E)opY,Z → Set

is given by

GF : Span (E)opX,Z → Set, GF (s, t) �
∑

h : T→Y

F (s, h) × G (h, t)

and the Day convolution of two presheaves of polynomials

F : Polyc (E)
op
X,Y → Set, G : Polyc (E)

op
Y,Z → Set
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is given by the formula

GF : Polyc (E)
op
X,Z → Set, GF (s, p, t) �

∼∑
p=p1;p2, h : T→Y

F (s, p1, h) × G (h, p2, t)

The purpose of the following is to describe howTheorem4.2.19may be seen as an instance
of a more general result, and to see how this theorem follows from the simple convolution
structure on ˆA . Indeed, as a special case of Theorem 3.5.10 we have the following corollary.

Corollary 4.4.4 (Doctrinal Yoneda Structures). Let A and C be two bicategories with small

hom-categories and the same objects. Let ˆA be the free small local cocompletion of A .

Then for any locally defined identity on objects functor L : A → C , with the corresponding

locally defined identity on objects functor R = C (L−,−) as below

C R // ˆA
ϕ
⇐=

A

yA

OO

L

aa

the structure of an oplax functor on L is in bijection with the structure of a lax functor on R.

Supposing that A is generic, and hence that composition on ˆA has the reduced form
given by Proposition 4.4.1, one sees from this corollary that for a given locally defined functor
L : A → C 5, giving L an oplax structure (L, ϕ, λ) : A → C with constraint cells

ϕa,b : L (a; b) → La; Lb, λX : L1X → 1X

is to give R a lax structure (R, φ,ω) : C → ˆA with constraints

φa,b : Ra; Rb→ R (a; b) , ωX : 1X → R1X .

By the definition of R and composition in ˆA , these binary constraints φ are functions for
each c : X → Z ∑

m∈MX ,Y ,Z
c

CX,Y (Llm,a) × CY,Z (Lrm, b) → CX,Z (Lc,a; b)

natural in a, b and c. By naturality, to give such a function is to give an assignment on the
identity pair (we may call the result Φc,m)

(id : Llm → Llm, id : Lrm → Lrm) 7→ Φc,m : Lc→ Llm; Lrm

Thus the binary constraints φ are determined by giving appropriate Φ. A similar calculation

5Note that here one can use bijective on objects - bijective on 1-cells factorisations to avoid the assumption
that L is the identity on objects.
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may be done to see the unit constraints ω are determined by augmentations Λ. In this way,
one constructs a bijection between the data of an oplax structure on L (containing cells ϕ and
λ) and a lax structure on R (containing cells Φ and Λ).

Remark 4.4.5. It is this observation which was the original motivation for Theorem 4.2.19.

However, this approach does not give an efficient proof of this theorem for a number of

technical reasons. In particular, we wish to avoid considering equivalence classes of generic

morphisms (such as the elements of the setMX,Y,Z
c ) to avoid technicalities involving choices

of representatives.

Though this approach is more technical (and thus not the method used in the proof), it
is conceptually nicer as it exhibits Theorem 4.2.19 as a natural result concerning the Yoneda
structures of Street and Walters [47] and their algebraic properties.
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5
Universal properties of bicategories of

polynomials

Abstract

We establish the universal properties of the bicategory of polynomials, considering both
cartesian and generalmorphisms between these polynomials. A direct proof of these universal
properties would be impractical due to the complicated coherence conditions arising from
polynomial composition; however, in this paper we avoid most of these coherence conditions
using the properties of generic bicategories.

In addition, we give a new proof of the universal properties of the bicategory of spans,
and also establish the universal properties of the bicategory of spans with invertible 2-cells;
showing how these propertiesmay be used to describe the universal properties of polynomials.

Contribution by the author

As the sole author, this paper is entirely my own work. This paper was accepted on November
4th 2018 in the Journal of Pure andAppliedAlgebra, and is currently in press. Any differences
from the journal version are limited to formatting and citation numbering changes.
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5.1 Introduction

In this paper we are interested in two constructions on suitable categories E : the bicategory of
spans Span (E) as introduced by Bénabou [3], and the bicategory of polynomials Poly (E) as
introduced by Gambino and Kock [17], and further studied by Weber [55] (all to be reviewed
in Section 5.2). Here we wish to study the universal properties of these constructions; that
is, for an arbitrary bicategory C we wish to know what it means to give a pseudofunctor
Span (E) → C or Poly (E) → C .

In the case of spans, these results have already been established. In particular, given any
category E with pullbacks, one can form a bicategory denoted Span (E) whose objects are
those of E and 1-cells are diagrams in E of the form below

•
s
��

t
��

• •

called spans. The universal property of this construction admits a simple description since
for every morphism f in E we have adjunctions

•
id
��

f

��
• •

a

•
f

��
id
��

• •

in Span (E), and these adjunctions generate all of Span (E).

Indeed, it was proven by Hermida [21, Theorem A.2] that composing with the canonical
embedding E ↪→ Span (E) describes an equivalence

pseudofunctors Span (E) → C

Beck pseudofunctors E → C

where a pseudofunctor FΣ : E → C is Beck if for every morphism f in E the 1-cell FΣ f has
a right adjoint F∆ f in C (such an FΣ is also known as a sinister pseudofunctor), and if the
induced pair of pseudofunctors

FΣ : E → C , F∆ : Eop → C

satisfy a Beck-Chevalley condition. A natural question to then ask is what these sinister
pseudofunctors correspond to when the Beck–Chevalley condition is dropped. This question
was solved by Dawson, Paré, and Pronk [9, Theorem 2.15] who showed that composing with
the canonical embedding describes an equivalence

gregarious functors Span (E) → C

sinister pseudofunctors E → C



5.1 Introduction 125

where gregarious functors are the adjunction preserving normal1 oplax functors.

An important special case of this is when C = Cat, where one may consider sinister
pseudofunctors E → Cat, or equivalently cosinister2 pseudofunctors Eop → Cat. In this
case we recover the equivalence

gregarious functors Span (E) → Cat
bifibrations over E

Note also that on Cat/E there is a KZ pseudomonad ΓE for opfibrations and a coKZ pseu-
domonad ΥE for fibrations. This yields (via a pseudo-distributive law) the pseudomonad
ΓEΥE for bifibrations satisfying the Beck–Chevalley condition [50] (also known as fibrations
with sums). The above equivalence then restricts to

pseudofunctors Span (E) → Cat
fibrations with sums over E

An archetypal example of this is the codomain fibration over E corresponding to the canonical
pseudofunctor Span (E) → Cat defined by

T
s
��

t
��

X Y
7→ E/X ∆s // E/T Σt // E/Y

where for every morphism f in E , the functor Σ f denotes composition with f , and the functor
∆ f denotes pulling back along f .

When considering polynomials it is convenient to assume some extra structure on E . In
particular, we will take E to be a category with finite limits, such that for each morphism f

in E the “pullback along f ” functor ∆ f has a right adjoint Π f . For such a category E (known
as a locally cartesian closed category) one can form a bicategory denoted Poly (E) whose
objects are those of E and 1-cells are diagrams in E of the form below

•
s
��

p // •
t
��

• •

called polynomials3. One can also form a bicategory Polyc (E) with the same objects and
1-cells by being more restrictive on the 2-cells (that is, only taking “cartesian” morphisms of
polynomials).

The purpose of this paper is to describe the universal properties of these two bicategories

1Here “normal” means the unit constraints are invertible.
2Here “cosinister” means arrows are sent to right adjoint 1-cells instead of left adjoint 1-cells. This is the

F∆ of such a pair FΣ-F∆.
3The bicategory of polynomials can be defined on any category E with pullbacks [55]; however, we will

assume local cartesian closure for simplicity.



126 Universal properties of bicategories of polynomials

of polynomials.

Similar to the case of spans, the universal property of Poly (E) admits a simple description
since for every morphism f in E we have adjunctions

•
id
��

id // •
f

��
• •

a
•

f

��

id // •
id
��

• •

a
•

id
��

f // •
id
��

• •

(5.1.1)

in Poly (E), and these adjunctions generate all of Poly (E) (to be shown in Proposition 5.2.25).
Using this fact, we show that in the case of polynomials with general 2-cells, composition
with the embedding E ↪→ Poly (E) describes the equivalence

pseudofunctors Poly (E) → C

DistBeck pseudofunctors E → C
(5.1.2)

where a pseudofunctorFΣ : E → C isDistBeck if for everymorphism f inE the 1-cellFΣ f has
two successive right adjoints F∆ f and FΠ f (such an FΣ is called a 2-sinister pseudofunctor),
and if the induced triple of pseudofunctors

FΣ : E → C , F∆ : Eop → C , FΠ : E → C

satisfies the earlier Beck-Chevalley condition on the pair FΣ and F∆, in addition to a “dis-
tributivity condition” on the pair FΣ and FΠ. Forgetting the distributivity condition yields
the notion of a 2-Beck pseudofunctor, so that (5.1.2) may be seen as a restriction of an
equivalence

gregarious functors Poly (E) → C

2-Beck pseudofunctors E → C

Similar to earlier, an important special case of this is when C = Cat, where one recovers
the equivalence

gregarious functors Poly (E) → Cat
fibrations with sums and products over E

Note also that on Fib (E) there is a KZ pseudomonad ΣE for fibrations with sums, and a
coKZ pseudomonad ΠE for fibrations with products. This yields (via a pseudo-distributive
law) a pseudomonad ΣEΠE for fibrations with sums and products which satisfy a distributivity
condition [50]. Here we recover the equivalence

pseudofunctors Poly (E) → Cat
distributive fibrations with sums and products over E

The codomain fibration is again an archetypal example of this, with the corresponding
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canonical pseudofunctor Poly (E) → Cat being defined by

E
s
��

p // B
t
��

I J

7→ E/I ∆s // E/E
Πp // E/B Σt // E/J

which is how one assigns a polynomial to a polynomial functor.
Another example of this situation is given by taking E to be a regular locally cartesian

closed category. In this case we have the 2-Beck pseudofunctor Sub : E → Cat which sends
a morphism f : X → Y in E to the existential quantifier ∃ f : Sub (X) → Sub (Y ) mapping
subobjects of X to those ofY , which has the two successive right adjoints ∆ f “pullback along
f ” and ∀ f “universal quantification at f ”, thus giving a gregarious functor Poly (E) → Cat
defined by the assignment

E
s
��

p // B
t
��

I J

7→ Sub (I) ∆s // Sub (E)
∀p // Sub (B) ∃t // Sub (J)

The distributivity condition here then amounts to asking that E satisfies the internal axiom of
choice.

With only cartesian morphisms we do not have the adjunctions on the right in (5.1.1)
since the units and counits of such adjunctions are not cartesian in general, thus making the
universal property of Polyc (E) more complicated to state. The universal property of this
construction is described as an equivalence

pseudofunctors Polyc (E) → C

DistBeck triple E → C

where a DistBeck triple E → C is a triple of pseudofunctors

FΣ : E → C , F∆ : Eop → C , F⊗ : E → C

such FΣ f a F∆ f for all morphisms f in E , with a Beck–Chevalley condition satisfied for the
pair FΣ and F∆, for which F∆ and F⊗ are related via invertible Beck–Chevalley coherence
data (as we do not have adjunctions F∆ f a F⊗ f this data does not come for free and must be
given instead, subject to suitable coherence axioms), such that the pair FΣ and F⊗ satisfy a
distributivity condition as before4. There are also weakened versions of the universal property
of Polyc (E) which arise from dropping these conditions.

An example of this is given by taking E to be the category of finite sets FinSet and C

to be the 2-category of small categories Cat. Taking (A,⊗, I) to be a symmetric monoidal
category such that A has finite coproducts, we can assign to any finite set n the category An

4The distributivity data need not be given as it may be constructed using the F∆-F⊗ Beck coherence data
and the adjunctions FΣ f a F∆ f .
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and to any morphism f : m→ n the functors

lan f : Am → An, (ai : i ∈ m) 7→
(
Σx∈ f −1( j) ax : j ∈ n

)
(−) ◦ f : An → Am,

(
a j : j ∈ n

)
7→

(
a f (i) : i ∈ m

)
⊗ f : Am → An, (ai : i ∈ m) 7→

(
⊗x∈ f −1( j) ax : j ∈ n

)
This gives the data of a Beck triple (that is aDistBeck triplewithout requiring the distributivity
condition). The distributivity condition here holds precisely when the functor X ⊗ (−) : A→
A preserves finite coproducts for all X ∈ A.

The reader should note that proving the universal properties concerning the polyno-
mial construction is much more complex than that of the span construction. This is since
composition of polynomials is significantly more complicated; this is especially evident in
calculations involving associativity of polynomial composition being respected by an oplax
or pseudofunctor, or calculations involving horizontal composition of general polynomial
morphisms.

Fortunately, we are able to avoid these calculations to some extent. This is done by
exploiting the fact that both Span (E) and Polyc (E) are “generic bicategories” (as detailed in
Chapter 4), that is a bicategory A with the property that each composition functor

◦X,Y,Z : AY,Z ×AX,Y → AX,Z

admits generic factorisations. The main result of Chapter 4 shows that oplax functors out of
such bicategories admit a much simpler description; thus allowing for a simple description of
oplax functors outSpan (E) andPolyc (E). A problemhere is that the bicategoryPoly (E) does
not enjoy this property. However, as Polyc (E) embeds into Poly (E) and both bicategories
have the same composition the universal property of the former will assist in proving the
latter.

In Section 5.2 we give the necessary background for this paper. We recall the definitions
and basic properties of the bicategories of spans and polynomials, the notions of lax, oplax
and gregarious functors, the basic properties of the mates correspondence, and the basic
properties of generic bicategories.

In Section 5.3 we give a proof of the universal properties of spans using the properties
of generic bicategories. This is to give a complete and detailed proof of these properties
demonstrating our method, before applying it the more complicated setting of polynomials
later on.

In Section 5.4 we give a proof of the universal properties of spans with invertible 2-cells.
This is necessary since the universal properties of polynomials with cartesian 2-cells will be
described in terms of this property.

In Section 5.5 we give a proof of the universal properties of polynomials with cartesian
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2-cells. It is in this section that our method is of the most use; indeed in our proof we
completely avoid coherences involving composition of distributivity pullbacks (the worst
coherence conditions which would arise in a direct proof).

In Section 5.6 we give a proof of the universal properties of polynomials with general
2-cells, by using the corresponding properties for polynomials with cartesian 2-cells and
checking some additional coherence conditions concerning naturality with respect to these
more general 2-cells.

5.2 Background

In this section we give the necessary background knowledge for this paper.

5.2.1 The bicategory of spans

Before studying the bicategory of polynomials wewill study the simpler andmore well known
construction of the bicategory of spans, as introduced by Bénabou [3].

Definition 5.2.1. Suppose we are given a category E with chosen pullbacks. We may then

form bicategory of spans in E , denoted Span (E), with objects those of E , 1-cells A 9 B

given diagrams in E of the form

X q
��

p
��

A B

called spans, composition of 1-cells given by taking the chosen pullback

•
π2
  

π1
~~

X q
��

p
��

Y
s
��

r
��

A B C

and 2-cells ν given by those morphisms between the vertices of two spans which yield

commuting diagrams of the form

X q
��

p
��

ν

��

A B

Y
r

??

s

__

The identity 1-cells are given by identity spans X X
1X //1Xoo X and composition extends to

2-cells by the universal property of pullbacks. The essential uniqueness of the limit of a
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diagram

X q
��

p
��

Y
s
��

r
��

Z
v
��

u
��

A B C D

yields the associators, making Span (E) into a bicategory.

We denote by Spaniso (E) the bicategory as defined above, but only taking the invertible
2-cells.

5.2.2 The bicategory of polynomials

In the earlier defined bicategory of spans the morphisms may be viewed as multivariate
linear maps (matrices). In this subsection we recall the bicategory of polynomials, whose
morphisms may be viewed as multivariate polynomials, and whose study has applications
in areas including theoretical computer science (under the name of containers and indexed
containers [1]) and the theory of W-types [43, 44].

Before we can define this bicategory we must recall the notion of distributivity pullback
as given by Weber [55].

Definition 5.2.2. Given two composable morphisms u : X → A and f : A→ B in a category

E with pullbacks, we say that:

1. a pullback around ( f ,u) is a diagram

T
p //

q
��

X u // A
f
��

Y r
// B

such that the outer rectangle is a pullback, and amorphism of pullbacks around ( f ,u) is

a pair of morphisms s : T → T ′ and t : Y → Y ′ such that p′s = p, q′s = tq and r = r′t;

2. a distributivity pullback around ( f ,u) is a terminal object in the category of pullbacks

around ( f ,u).

We also recall the notion of an exponentiable morphism, a condition which ensures the
existence of such distributivity pullbacks.

Definition 5.2.3. We say a morphism f : A→ B in a category E with pullbacks is exponen-

tiable if the “pullback along f ” functor ∆ f : E/B→ E/A has a right adjoint. We will denote

this right adjoint by Π f when it exists.
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Remark 5.2.4. Note that such an f is exponentiable if and only if for every u there exists a

distributivity pullback around ( f ,u) [55].

The following diagrams are to be the morphisms in the bicategory of polynomials.

Definition 5.2.5. A polynomial P : I 9 J in a category E with pullbacks is a diagram of the

form

E
p //

s
��

B
t
��

I J

where p is exponentiable.

We will also need the following universal property of polynomial composition.

Proposition 5.2.6. [55, Prop. 3.1.6] Suppose we are given two polynomials P : I 9 J and

Q : J 9 K . Consider a category with objects given by commuting diagrams of the form

A1

~~

// A2

}} !!

// A3

  
E //

��

B
""

M //

}}

N
  

I J K

for which the left and right squares are pullbacks (but not necessarily the middle), and

morphisms given by triples (Ai → Bi : i = 1,2,3) rendering commutative the diagram

A1

��

//

��

A2

��

//

�� ��

A3

��

��

B1

~~

// B2

}} !!

// B3

  
E //

��

B
""

M //

}}

N
  

I J K

Then in this category, the outside composite in the diagram formed below (which is a

polynomial I 9 K), where dpb indicates distributivity pullback

•

��

// •

��

// •

��

pb •

  ��

dpb

E
p //

s
��

B
t
��

pb M
q //

u
~~

N
v
  

I J K

(5.2.1)

is a terminal object.
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Definition 5.2.7. Suppose we are given a locally cartesian closed category E with chosen

pullbacks and distributivity pullbacks. We may then form the bicategory of polynomials with

cartesian 2-cells in E , denoted Polyc (E), with objects those of E , 1-cells A 9 B given by

polynomials, composition of 1-cells given by forming the diagram (5.2.1) just above, and

cartesian 2-cells given by pairs of morphisms (σ, ν) rendering commutative the diagram

E
p //

s

��
σ

��

B
t
��

ν

��

I pb J

M q
//

u

__

N
v

??

such that the middle square is a pullback. The identity 1-cells are given by identity poly-

nomials X X
1X //1Xoo X

1X // X . Composition of 2-cells and the associators may be recovered

from Proposition 5.2.6 above.

Definition 5.2.8. Suppose we are given a locally cartesian closed category E with chosen

pullbacks and distributivity pullbacks. We may then form the bicategory of polynomials with

general 2-cells, denoted Poly (E), with objects and 1-cells as in Polyc (E), and 2-cells given

by diagrams as below on the left below

E
s

~~

p // B
t

��

E
s

~~

p // B
t

��
X S1

f1
��

pe1 //

e1

OO

pb

B
g

��

Y ≈ X S2

f2
��

pe2 //

e2

OO

pb

B
g

��

Y

M q
//

u

``

N
v

??

M q
//

u

``

N
v

??

regarded equivalent to the diagram on the right provided both indicated regions are pullbacks.

For the other operations of this bicategory such as the composition operation on 2-cells

we refer the reader to the equivalence Poly (E) ' PolyFun (E) [17] where PolyFun (E) is the

bicategory of polynomial functors, described later in Example 5.2.12.

Remark 5.2.9. Note that it suffices to give local equivalences PolyFun (E)X,Y ' Poly (E)X,Y
since from this it follows that the bicategorical structure on PolyFun (E) endows the family of

hom-categories Poly (E)X,Y with the structure of a bicategory via doctrinal adjunction [27].

This describes the bicategory structure on Poly (E).
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5.2.3 Morphisms of bicategories

There are a few types of morphisms between bicategories we are interested in for this paper.
These include oplax functors, lax functors, pseudofunctors, gregarious functors and sinister
pseudofunctors. After the following trivial definition we will recall these notions.

Definition 5.2.10. Given two bicategories A and B , a locally defined functor F : A → B

consists of:

• for each object X ∈ A an object FX ∈ B;

• for each pair of objects X,Y ∈ A , a functor FX,Y : AX,Y → BFX,FY ;

subject to no additional conditions.

It is one of the main points of this paper that many of the coherence conditions arising
from the associativity diagram (5.2.2) for oplax functors out of the bicategories Span (E) and
Polyc (E) may be avoided (for suitable categories E).

Definition 5.2.11. Given two bicategories A and B, a lax functor F : A → B is a locally

defined functor F : A → B equipped with

• for each object X ∈ A , a 2-cell λX : 1FX → F1X ;

• for each triple of objects X,Y, Z ∈ A and pair of morphisms f : X → Y and g : Y → Z ,

a 2-cell ϕg, f : Fg · F f → Fg f natural in g and f ,

such that the constraints render commutative the associativity diagram

Fh · (Fg · F f )
Fh·ϕg, f // Fh · F (g f )

ϕh,gf // F (h (g f ))

(Fh · Fg) · F f
ϕh,g ·F f

//

aFh,Fg,F f

OO

F (hg) · F f ϕhg, f
// F ((hg) f )

F(ãh,g, f )

OO
(5.2.2)

for composable morphisms h,g and f . In addition, the nullary constraint cells must render

commutative the diagrams

F f · 1FX
F f ·λX //

rF f

��

F f · F (1X)

ϕ f ,1X

��

1FY · F f
λY ·F f //

lF f

��

F (1Y ) · F f

ϕ1Y , f

��
F f F ( f · 1X)

F(rf )
oo F f F (1Y · f )

F(lf )
oo
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for all morphisms f : X → Y . If the direction of the constraints ϕ and λ is reversed, this is

the definition of an oplax functor. If the nullary constraints λ are invertible (in either the lax

or oplax case) we then say our functor is normal. If both types of constraint cells ϕ and λ are

required invertible, then this is the definition of a pseudofunctor.

Example 5.2.12. It is well known that given a category E with pullbacks there is a pseudo-

functor Span (E) → Cat which assigns an object X ∈ E to the slice category E/X and on

spans is defined the assignment

B
s
��

t
��

I J
7→ E/I ∆s // E/B Σt // E/J

where Σt is the “composition with t” functor, and ∆s is the “pullback along s” functor (the

right adjoint of Σs).

If E is locally cartesian closed, meaning that for each morphism p the functor ∆p has a

further right adjoint denoted Πp, then there is also such a canonical functor out of Poly (E)

[17] and Polyc (E) [55], which assigns an object X ∈ E to the slice category E/X and on

polynomials is defined the assignment

E
s
��

p // B
t
��

I J

7→ E/I ∆s // E/E
Πp // E/B Σt // E/J

A functor isomorphic to one as on the right above is known as a polynomial functor.

The objects of E , polynomial functors, and strong natural transformations form a 2-category

PolyFun (E) [17].

Remark 5.2.13. In the subsequent sections we are interested in pseudofunctors mapping into

a general bicategory C , not just Cat, however we will still use the above example to motivate

our notation.

The following is a special type of oplax functorwhich turns upwhen studying the universal
properties of the span construction [9, 10]. This notion will also be useful for studying the
universal properties of the polynomial construction.

Definition 5.2.14. [9, Definition 2.4]We say a normal oplax functor of bicategories F : A →

B is gregarious (also known as jointed) if for any pair of 1-cells f : A→ B and g : B → C

in A for which g has a right adjoint, the constraint cell ϕg, f : F (g f ) → Fg · F f is invertible.
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There is also an alternative characterization of gregarious functors worth mentioning,
which establishes gregarious functors as a natural concept.

Proposition 5.2.15. [9, Propositions 2.8 and 2.9] A normal oplax functor of bicategories

F : A → B is gregarious if and only if it preserves adjunctions; that is, if for every adjunction

( f a u : A′→ A, η, ε) in A there exists 2-cells η : 1F A → Fu · F f and ε : F f · Fu → 1F A′

which exhibit F f as left adjoint to Fu and render commutative the squares

F (1A)
Fη //

λA
��

F (u f )

ϕu, f
��

F ( f u) Fε //

ϕ f ,u

��

F (1A′)

λA′
��

1F A
η
// Fu · F f F f · Fu

ε
// 1F A′

We also need a notion of morphism between lax, oplax, gregarious or pseudofunctors. It
will be convenient here to use Lack’s icons [34], defined as follows.

Definition 5.2.16. Given two lax functors F,G : A → B which agree on objects, an icon

α : F ⇒ G consists of a family of natural transformations

AX,Y

FX ,Y
**

GX ,Y

33
⇓αX ,Y BFX,FY , X,Y ∈ A

with components rendering commutative the diagrams

Fg · F f
ϕg, f //

αg∗αf

��

F (g f )

αgf

��

1FX

ωX

""
λX

��
Gg · G f

ψg, f
// G (g f ) F1X α1X

// G1X

for composable morphisms f and g in A . Similarly, one may define icons between oplax

functors.

An important point about icons is that there is a 2-category of bicategories, oplax (lax)
functors, and icons. For convenience, we make the following definition.

Definition 5.2.17. We denote by Icon (resp. Greg) the 2-category of bicategories, pseudo-

functors (resp. gregarious functors) and icons.

Finally, we recall the notion of a sinister pseudofunctor, as well as the notion of a sinister
pseudofunctor which satisfies a certain Beck condition. These notions are to be used regularly
through the paper.
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Definition 5.2.18. Let E be a category seen as a locally discrete 2-category, and let C be

a bicategory. We say a pseudofunctor F : E → C of bicategories is sinister if for every

morphism f in E the 1-cell F f has a right adjoint in C .

Supposing further that E has pullbacks, for any pullback square in E as on the left below,

we may apply F and compose with pseudofunctoriality constraints giving an invertible 2-cell

as in the middle square below, and then take mates to get a 2-cell as on the right below

•

g′

��

f ′ // •

g

��

•

Fg′

��

F f ′ //

�

•

Fg
��

•
FΣ f ′ //

⇓b
f ′,g′

f ,g

•

•
f
// • •

F f
// • •

FΣ f
//

F∆g′
OO

•

F∆g

OO

We say the sinister pseudofunctor F : E → C satisfies the Beck condition if every such b f ′,g′

f ,g

as on the right above is invertible.

We will denote by Sin (E,C ) the category of sinister pseudofunctors E → C and invert-

ible icons, and Beck (E,C ) the subcategory of sinister pseudofunctors satisfying the Beck

condition.

Remark 5.2.19. Note that b f ′,g′

f ,g as above may be defined for any commuting square, not just

a pullback. We call such a b f ′,g′

f ,g the Beck 2-cell corresponding to the commuting square, but

should not expect it to be invertible if the square is not a pullback (even if the Beck condition

holds).

5.2.4 Mates under adjunctions

We now recall the basic properties of mates [30]. Given two pairs of adjoint morphisms

η1, ε1 : f1 a u1 : B1 → A1, η2, ε2 : f2 a u2 : B2 → A2

in a bicategory A , we say that two 2-cells

A1
g //

f1
��
⇓α

A2

f2
��

A1
g //

⇓β

A2

B1 h
// B2 B1 h

//

u1

OO

B2

u2

OO
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are mates under the adjunctions f1 a u1 and f2 a u2 if β is given by the pasting

A1
g //

f1
��

⇓α

A2

f2
��

id // A2

⇓ε1 ⇓η2

B1 id
//

u1
66

B1 h
// B2

u2

GG

or equivalently, α is given by the pasting

A1
id //

f1 ((

A1
g //

⇓β

A2
f2

��
⇓η1 ⇓ε2

B1 h
//

u1

OO

B2

u2

OO

id
// B2

It follows from the triangle identities that taking mates in this fashion defines a bijection
between 2-cells f2g → h f1 and 2-cells gu1 → u2h.

Moreover, it is well known that this correspondence is functorial. Given another adjunc-
tion η3, ε3 : f3 a u3 : B3 → A3 and 2-cells as below

A1
g //

f1
��
⇓αl

A2

f2
��

m //

⇓αr

A3

f3
��

A1
g //

⇓βl

A2
m //

⇓βr

A3

B1 h
// B2 n

// B3 B1 h
//

u1

OO

B2

u2

OO

n
// B3

u2

OO

where αl and αr respectively correspond to βl and βr under the mates correspondence, it
follows that the pasting of αl and αr corresponds to the pasting of βl and βr under the
mates correspondence. Moreover, the analogous property holds for pasting vertically. These
vertical and horizontal pasting properties5 are often referred to as functoriality of mates.

Remark 5.2.20. Given an adjunction η, ε : f a u : B→ A the left square below

A
f //

f
��
⇓id

A

id
��

A
f //

⇓ε

A

B
id
// B B

id
//

u

OO

B

id

OO

corresponds to the right above via the mates correspondence, allowing one to see the counit

of an adjunction as an instance of the mates correspondence. A similar calculation may

be done for the units. This will allow us to see calculations involving units and counits as

functoriality of mates calculations.

One consequence of the mates correspondence which will be of interest to us is the
following lemma; a special case of [9, Lemma 2.13], showing that the component of an icon

5There are also nullary pasting properties which we will omit.
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between gregarious functors at a left adjoint 1-cell is invertible.

Lemma 5.2.21. Suppose F,G : A → B are gregarious functors between bicategories which

agree on objects. Suppose that α : F ⇒ G is an icon. Suppose that a given 1-cell f : X → Y

has a right adjoint u in A with unit ε and counit η. Then the 2-cell α f : F f → G f has an

inverse given by the mate of αu : Fu→ Gu.

Proof. As f a u we have F f a Fu via counit

F f · Fu
ϕ−1
f ,u // F ( f u) Fε // F1Y

λY // 1FY

and unit

1FX
λ−1
X // F1X

Fη // F (u f )
ϕu, f // Fu · F f

and similarly G f a Gu. That the mate of αu constructed as the pasting

FX
1FX //

1FX
��
⇑λ−1

X

FX
1FX //

F1X
��
⇑Fη

FX
F f //

Fu f
��
⇑ϕu, f

FY
1FY //

Fu
��
⇑αu

FY
1FY //

Gu
��
⇑ψf ,u

FY
1FY //

G f u
��
⇑Gε

FY
1FY //

G1Y
��
⇑ωY

FY

1FY
��

FX
1FX

// FX
1FX

// FX
1FX

// FX
1FX

// FX
G f
// FY

1FY
// FY

1FY
// FY

is the inverse of α f is a simple calculation which we will omit (as the details are in [9, Lemma

2.13]).

Remark 5.2.22. Under the conditions of the above lemma we have corresponding functors

Fco,Gco : A co → Bcowhich are adjunction preserving (gregarious), and an iconαco : Gco ⇒

Fco. Thus noting u a f in A co we see that in Bco, αco
u : G f → F f has an inverse given as

the mate of αco
f . It follows that αu has an inverse given as the mate of α f in B.

5.2.5 Adjunctions of spans and polynomials

Later on we will need to discuss gregarious functors out of bicategories of spans and bicate-
gories of polynomials, and so an understanding of the adjunctions in these bicategories will
be essential.

We first recall the classification of adjunctions in the bicategory of spans. A proof of this
classification is given in [7, Proposition 2], but this proof does not readily generalize to the
setting of polynomials. We therefore give a simpler proof using the properties of the mates
correspondence.
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Proposition 5.2.23. Up to isomorphism, all adjunctions in Span (E) are of the form

X
1X
��

f

��
X Y

a

X
f

��

1X
  

Y X
(5.2.3)

with unit and counit

X
1X
zz

1X
$$

δ

��

X
f

��

f

��
f

��

X X Y Y

X ×Y X
π2

::

π1

dd

Y
1Y

??

1Y

__

where (X ×Y X, π1, π2) is the pullback of f with itself.

Proof. It is simple to check the above defines an adjunction. We nowcheck that all adjunctions

have this form, up to isomorphism. To do this, suppose we are given an adjunction of spans

•
s
��

t
��

• •

a

•
u
��

v

��
• •

and denote the unit of this adjunction (actually a representation of the unit using the universal

property of pullback) by

•

β
��

α
��

h

��

id

��

id

��

•

s
��

t
��

•

u
��

v
��

• • •

(5.2.4)

noting that vβ is the identity. We then factor this unit as

1 // (s, t) ; (h,1)
id;β // (s, t) ; (u, v)

where the first morphism is represented by

•

id
��

α
��

h

��

id

��

id

��

•

s
��

t
��

•

h
��

id
��

• • •

and β : (h,1) → (u, v) is pictured on the right in (5.2.4). Under the mates correspondence

this yields two morphisms

(u, v) // (h,1)
β // (u, v)
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which must compose to the identity. As the first morphism of spans is necessarily v we have

also established βv as the identity, and hence v as an isomorphism. This allows us to construct

an isomorphism of right adjoints (u, v) → ( f ,1) for an f as in (5.2.3), corresponding to an

isomorphism of left adjoints (1, f ) → (s, t) and hence showing s is invertible also.

Remark 5.2.24. If we restrict ourselves to the bicategory Spaniso (E) then we only have

adjunctions as above when f is invertible (necessary to construct the counit).

In the case of polynomials there are more adjunctions to consider.

Proposition 5.2.25. Up to isomorphism, every adjunction in Poly (E) is a composite of

adjunctions of the form

X
1X
��

1X // X
f

��
X Y

a
X

f

��

1X // X
1X
  

Y X

with unit and counit

X
1X
zz

1X // X
1X
$$

X
f

��

1X // X
f

��
X X

δ
��

1X
OO

1X // X
δ
��

X Y X
f
��

1X //
1X
OO

X
f
��

Y

X ×Y X
π1

dd

1X×Y X

// X ×Y X
π2

::

Y
1Y

__

1Y
// Y

1Y

??

and
X

f

��

1X // X
1X
  

Y X

a
X

1X
��

f // Y
1Y
��

X Y

with unit and counit

Y
1Y
��

1Y // Y
1Y
��

X ×Y X
π1

zz

π2 // X
1X
��

Y X
f //

1X ��

f
OO

Y
1Y��

Y X X
δ

OO

1X ��

1X // X
1X��

X

X
f
//

f

__

Y
1Y

??

X
1X

//
1X

dd

X
1X

??

Proof. It is simple to check that the above define adjunctions of polynomials, indeed this is

almost the same calculation as in the case of spans. We now check that all adjunctions have
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this form, up to isomorphism. To do this, suppose we are given an adjunction of polynomials

•
s
��

p // •
t
��

• •

a
•

u
��

q // •
v

��
• •

and denote the unit of this adjunction by6

•

id



id
��

•

α1
��

p′ //
e
OO

•

β1
��

α2
��

q′ //

h

��

•

β2
�� id

��

•

s
��

p // •

t
��

• q //

u
��

•

v
��

• • •

noting that vβ2 is the identity. We then factor this unit as, where (β1, β2) : (h,q′,1) → (u,q, v)

is the cartesian morphism of polynomials pictured on the right above,

1 // (s, p, t) ; (h,q′,1)
id;(β1,β2) // (s, p, t) ; (u,q, v)

which under the mates correspondence yields two morphisms

(u,q, v) // (h,q′,1)
(β1,β2)// (u,q, v)

which must compose to the identity; that is, a diagram below

•

u



q // •

v

��

• //

OO

��

•

v
��

• • q′ //hoo

β1
��

• 1 //

β2
��

•

• q //
u
__

•

v

??

composing to the identity, showing β2v is the identity, and hence that v is invertible. This

allows us to construct an isomorphism of right adjoints (u,q, v) → ( f ,g,1) for some f and g,

corresponding to an isomorphism of left adjoints (g,1, f ) → (s, p, t) and hence showing p is

invertible also.

Remark 5.2.26. If we restrict ourselves to the bicategory Polyc (E) then to have the second

adjunction of Proposition 5.2.25 we require f to be invertible.

6Here the cartesian part of the morphism of polynomials is represented using Proposition 5.2.6.
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5.2.6 Basic properties of generic bicategories

The bicategories of spans Span (E) and bicategories of polynomials with cartesian 2-cells
Polyc (E) defined above both satisfy a special property: they are examples of a bicategory A

which contains a special class of 2-cells (which one may informally think of as the “diagonal”
2-cells7) such that any 2-cell into a composite of 1-cells α : c → a; b factors uniquely as
some diagonal 2-cell δ : c→ l; r pasted with 2-cells α1 : l → a and α2 : r → b.

For the reader familiar with generic morphisms [14, 15, 52], this property can be stated
concisely by asking that each composition functor

◦X,Y,Z : AY,Z ×AX,Y → AX,Z

admits generic factorisations. A bicategory A with this property is called generic.
As shown in Chapter 4, one of the main properties of generic bicategoriesA is that oplax

functors out of them admit an alternative description, similar to the description of a comonad.
In particular, for a locally defined functor L : A → C one may define a bijection between
coherent binary and nullary oplax constraint cells

ϕa,b : L (a; b) → La; Lb, λX : L1X → 1X

and “coherent” comultiplication and counit maps

Φδ : Lc→ Ll; Lr, Λε : Ln→ 1X

indexed over diagonal maps δ : c → l; r and augmentations (2-cells into identity 1-cells)
ε : n→ 1X . Indeed, given the data (ϕ,λ) the comultiplication maps Φδ and counit maps Λε
are given by the composites

Lc Lδ // L (l; r)
ϕl,r // Ll; Lr Ln Lε // L1X

λX // 1X

and conversely given the data (Φ,Λ) the oplax constraints ϕa,b and λX are recovered by
factoring the identity 2-cell through a diagonal as on the left below and defining the right
diagram to commute.

l; r
s1;s2
""

Ll; Lr
Ls1;Ls2
&&

a; b
id

//

δ <<

a; b L (a; b) ϕa,b
//

Φδ 88

La; Lb

Trivially, we recover each unit λX : L (1X) → 1X as the component of Λ at id1X .
For the full statement concerning the bicategories of spans and cartesian polynomials,

see Proposition 5.3.4 and Proposition 5.5.9 respectively.

7Formally, these diagonals are defined as the generic morphisms against the composition functor. See
Chapter 4 for details.
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5.3 Universal properties of spans

In this section, we give a complete proof of the universal properties of spans [9] using the
properties of generic bicategories. This is to demonstrate our method in the simpler case of
spans before applying it to polynomials in Section 5.5.

5.3.1 Stating the universal property

Before stating the universal property we recall that we have two canonical embeddings into
the bicategory of spans given by the pseudofunctors denoted

(−)Σ : E → Span (E) , (−)∆ : Eop → Span (E) .

These are defined on objects by sending an object of E to itself, and are defined on each
morphism in E by the assignments

(−)Σ : X
f // Y 7→ X X

1Xoo f // Y

(−)∆ : X
f // Y 7→ Y X

foo 1X // X

Remark 5.3.1. Note that the embedding (−)Σ is an example of a pseudofunctor which is both

sinister and satisfies the Beck condition.

The universal property of spans is then the following result, as given by Hermida [21]
and Dawson, Paré, and Pronk [9, Theorem 2.15].

Theorem 5.3.2 (Universal Properties of Spans). Given a category E with chosen pullbacks,

composition with the canonical embedding (−)Σ : E → Span (E) defines the equivalence of

categories

Greg (Span (E) ,C ) ' Sin (E,C )

which restricts to the equivalence

Icon (Span (E) ,C ) ' Beck (E,C )

for any bicategory C .

5.3.2 Proving the universal property

Before proving Theorem 5.3.2 we will need to show that given a sinister pseudofunctor
E → C one may reconstruct an oplax functor Span (E) → C . The following lemma and
subsequent propositions describe this construction.
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Lemma 5.3.3. Let E be a category with pullbacks seen as a locally discrete 2-category, and

let C be a bicategory. Suppose F : E → C is a given sinister pseudofunctor, and for each

morphism f ∈ E define FΣ f := F f and take F∆ f to be a chosen right adjoint of F f (choosing

F∆ to strictly preserve identities). We may then define local functors

LX,Y : Span (E)X,Y → CLX,LY , X,Y ∈ E

by the assignment T 7→ FT on objects, and

T
s
��

f

��

t
��

FT
FΣt
""

X Y 7→ FX

F∆s
<<

F∆u ""

⇓α ⇓γ FY

S
u

__

v

??

FS

F∆ f

OO

FΣv

<<

on morphisms, where α is the mate of the isomorphism on the left below

FT
1FT //

FΣs
��

�

FT

FΣu·FΣ f
��

FT
FΣt //

FΣ f
��

�

FY

1FY
��

FX
1FX

// FX FS
FΣv
// FY

under the adjunctions FΣs a F∆s and FΣu · FΣ f a F∆ f · F∆u, and γ is the mate of the

isomorphism on the right above under the adjunctions FΣ f a F∆ f and 1FY a 1FY .

Proof. Functoriality is clear from functoriality of mates and the associativity condition and

unitary conditions on F.

To show that these local functors can be endowed with the structure of an oplax functor it
will be useful to recall the following reduced description of such an oplax structure, obtained
via the theory of Chapter 4.

Proposition 5.3.4. Let E be a category with pullbacks and denote by Span (E) the bicategory

of spans in E . Let C be a bicategory. Then to give an oplax functor

L : Span (E) → C

is to give a locally defined functor

LX,Y : Span (E)X,Y → CLX,LY , X,Y ∈ E
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with comultiplication and counit maps

Φs,h,t : L (s, t) → L (s, h) ; L (h, t) , Λh : L (h, h) → 1LX

for every respective diagram in E

T
t
��

s
��

h
��

T
h��

X Y Z X

such that:

1. for any triple of morphisms of spans as below

R
u
��

v

��
f

��

R
u
��

k
��

f

��

R
k
��

v

��
f

��

X Z X Y Y Z

T
s

__

t

??

T
s

__

h

??

T
h

__

t

??

we have the commuting diagram

L (u, v)

L f
��

Φu,k ,v // L (u, k) ; L (k, v)

L f ;L f
��

L (s, t)
Φs,h,t

// L (s, h) ; L (h, t)

2. for any morphism of spans as on the left below

M
p

��

p

��
f
��

L (p, p)
L f //

Λp $$

L (q,q)

Λqzz
X Nq
oo

q
// X 1LX

the diagram on the right above commutes;

3. for all diagrams of the form

T
s

ww

t

''h�� k ��
W X Y Z
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in E , we have the commuting diagram

L (s, t)

Φs,h,t

��

L (s, t)

Φs,k ,t

��
L (s, h) ; L (h, t)

L(s;h);Φh,k ,t

��

L (s, k) ; L (k, t)

Φs,h,k ;L(k;t)
��

L (s, h) ; (L (h, k) ; L (k, t)) assoc
// (L (s, h) ; L (h, k)) ; L (k, t)

4. for all spans (s, t) we have the commuting diagrams

L (s, s) ; L (s, t)
Λs;L(s,t)

((

L (s, t) ; L (t, t)
L(s,t);Λt

''
L (s, t) unitor

//

Φs,s,t
88

1LX ; L (s, t) L (s, t) unitor
//

Φs,t ,t
88

L (s, t) ; 1LY

We now prove that the locally defined functor L above may be endowed with an oplax
structure.

Proposition 5.3.5. Let E be a category with pullbacks seen as a locally discrete 2-category,

and let C be a bicategory. Suppose F : E → C is a given sinister pseudofunctor. Then the

locally defined functor

LX,Y : Span (E)X,Y → CLX,LY , X,Y ∈ E

as in Lemma 5.3.3 canonically admits the structure of an oplax functor.

Proof. ByProposition 5.3.4, to equip the locally defined functor L with an oplax structure is to

give comultiplicationmapsΦs,h,t : L (s, t) → L (s, h) ; L (h, t) and counit mapsΛh : L (h, h) →

1LX for diagrams of the respective forms

T
s
��

t
��

h
��

T
h
��

h
��

X Y Z X X

satisfying naturality, associativity, and unitary conditions. To do this, we take each Φs,h,t and

Λh to be the respective pastings

FT
FΣh

""
FX

F∆s // FT
FΣh //

1FT

��
FY

F∆h //

⇓ηFh

FT
FΣt // FZ FX

1FX //

F∆h
<<

⇓εFh

FX

(5.3.1)
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Associativity of comultiplication is trivial; indeed, given a diagram of the form

T
s

ww

t

''h�� k ��
W X Y Z

the pasting

FW
F∆s // FT

FΣh //

idFT

��
FX

F∆h //

⇓ηFh

FT
FΣk //

idFT

��
FY

F∆k //

⇓ηFk

FT
FΣt // FZ

evaluates to the same 2-cell regardless if we paste the bottom path with first ηFh and then ηFk ,

or vice versa. The unitary axioms are also trivial, an immediate consequence of the triangle

identities for an adjunction.

For the naturality condition, suppose we are given a triple of morphisms of spans

R
u
��

v

��
f

��

R
u
��

k
��

f

��

R
k
��

v

��
f

��

X Z X Y Y Z

T
s

__

t

??

T
s

__

h

??

T
h

__

t

??

and note that we have the commuting diagram

L (u, v)

L f
��

Φu,k ,v // L (u, k) ; L (k, v)

L f ;L f
��

L (s, t)
Φs,h,t

// L (s, h) ; L (h, t)

since the top composite is

FR 1FR
//

FΣk
""
⇓ηFk

FR
FΣv

""
FX

F∆u

<<

F∆s
""

⇓ ⇓ FY
F∆h

""

⇓

F∆k

<<

⇓ FZ

FT

FΣh

<<F∆ f

OO

FT

FΣt

<<F∆ f

OO

and the bottom composite is



148 Universal properties of bicategories of polynomials

FR 1FR
// FR

FΣv
""

FX

F∆u

<<

F∆s
""

⇓ = ⇓ FZ

FT 1FT //

F∆ f

OO

FΣh
""
⇓ηFh

FT

FΣt

<<F∆ f

OO

FY

F∆h

<<

where the unlabeled 2-cells are as in Lemma 5.3.3. That these pastings agree is a standard

functoriality of mates calculation. We omit the naturality of counits calculation, as it is a

simpler functoriality of mates calculation.

Remark 5.3.6. It is trivial that each λX given by Λ at 1X is invertible above.

We now check that the structure given above has its oplax constraints given by Beck
2-cells.

Lemma 5.3.7. Let the oplax functor L : Span (E) → C be constructed as in Proposition

5.3.5. Then the binary oplax constraint cell on L, at a composite of spans constructed as

below

M
c′

~~
b′

  
pbT

a
��

b
  

S
c
~~

d
��

X Y Z

(5.3.2)

is given by the Beck 2-cell for the pullback appropriately whiskered by F∆a and FΣd.

Proof. Given composable spans (a, b) and (c, d) the composite is given by the diagram (5.3.2).

We then have an induced diagonal

δac′,h,db′ : (ac′, db′) → (ac′, h) ; (h, db′)

and morphisms c′ : (ac′, h) → (a, b) and b′ : (h, db′) → (c, d) for which

(a, b) ; (c, d)
δac′,h,db′// (ac′, h) ; (h, db′)

c′;b′ // (a, b) ; (c, d)

is the identity on (a, b) ; (c, d). Hence the oplax constraint cell corresponding to the comulti-

plication maps Φ, namely

ϕ(a,b),(c,d) : L ((a, b) ; (c, d)) → L (a, b) ; L (c, d)
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is given by the pasting

FM 1FM
//

FΣh
""
⇓ηFh

FM
FΣdb′

""
FX

F∆ac′
;;

F∆a
##

⇓ ⇓ FY
F∆c

""

⇓

F∆h

<<

⇓ FZ

FT

FΣb

<<F∆c′

OO

FS

FΣd

<<F∆b′

OO (5.3.3)

where h = bc′ = cb′. It is an easy consequence of functoriality of mates that this pasting is

the usual Beck 2-cell for the pullback with the appropriate whiskerings.

Finally, we will need the following lemma, a consequence of Lemma 5.2.21, in order to
complete the proof.

Lemma 5.3.8. Suppose L,K : Span (E) → C are given gregarious functors. Then any icon

α : L ⇒ K is necessarily invertible.

Proof. We take identities to be pullback stable for simplicity, so that we have (s, t) =

(s,1) ; (1, t). Let us consider the component of such an icon α at a general span s, t. Since α

is an icon, the diagram

L (s, t)
ϕ //

α(s,t)
��

L (s,1) ; L (1, t)
α(s,1);α(1,t)
��

K (s, t)
ψ
// K (s,1) ; K (1, t)

(5.3.4)

commutes. By Lemma 5.2.21 we know α(1,t) is invertible, and by its dual we know α(s,1)

is invertible. As F and G are gregarious ϕ and ψ are invertible above. Hence α(s,t) is

invertible.

We now know enough for a complete proof of the universal properties of the span
construction as given by Dawson, Paré, Pronk and Hermida.

Proof of Theorem 5.3.2. We consider the assignment of Theorem 5.3.2, i.e. composition

with the embedding (−)Σ : E → Span (E) written as the assignment

Span (E)
G

55

F
))

⇓ α C 7→ E
GΣ

66

FΣ
((

⇓ αΣ C

We start by proving the first universal property.

Well defined. This is clear by Corollary 5.3.8.
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Fully faithful. That the assignment α 7→ αΣ is bijective follows from the condition(
α−1
Σ f

)∗
= α∆ f forced by Lemma 5.2.21, and the commutativity of (5.3.4). One need only

check that any collection

αs,t : F (s, t) → G (s, t)

satisfying these two properties necessarily defines an icon. Indeed, that such an α is locally

natural is a simple consequence of functoriality of mates and αΣ being an icon. To see that

such an α then defines an icon, note that each Φs,h,t may be decomposed as the commuting

diagram

F (s, t)
Φs,h,t //

Φs,1,t
��

F (s, h) ; F (h, t)

F (s,1) ; F (1, t)
F(s,1);Φ1,h,1;F(1,t)

// F (s,1) ; F (1, h) ; F (h,1) ; F (1, t)

Φ−1
s,1,h;Φ−1

h,1,t

OO

and so the commutativity of the diagram8

F (s, t)
Φs,h,t //

αs,t
��

F (s, h) ; F (h, t)

αs,h;αh,t
��

G (s, t)
Ψs,h,t

// G (s, h) ; G (h, t)

amounts to asking that the pastings

⇓ηGh

•
G∆s
66

F∆s
((

⇓ •
GΣh

66

FΣh
((

⇓

id

��
•

G∆h
66

F∆h
((

⇓ •
GΣt
66

FΣt
((

⇓ •

and

⇓ηGh

•
G∆s
66

F∆s
((

⇓ •
GΣh

//

id

��
•

G∆h
// •

GΣt
66

FΣt
((

⇓ •

agree; which is easily seen by expanding α∆h
in terms of α−1

Σh
and using the triangle identities.

The nullary icon condition is trivial. This shows that α indeed admits the structure of an

icon.

Essentially surjective. Given any sinister pseudofunctor F : E → C we take the

gregarious functor L : Span (E) → C from Proposition 5.3.5 and note that LΣ = F.

8This diagram is equivalent to the binary coherence condition on such an icon.
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We now verify the second universal property.

Restrictions. The second property is a restriction of the first. Indeed, given a pseudo-

functor L : Span (E) → C the corresponding pseudofunctor LΣ : E → C satisfies the Beck

condition, since the embedding (−)Σ : E → Span (E) satisfies the Beck condition. Moreover,

given a sinister pseudofunctor F : E → C which satisfies the Beck condition, the correspond-

ing map Span (E) → C is pseudo since the oplax constraint cells of this functor are Beck

2-cells by Lemma 5.3.7.

5.4 Universal properties of spans with invertible 2-cells

In this section we derive the universal property of the bicategory of spans with invertible
2-cells, denoted Spaniso (E). Indeed, an understanding of this universal property will be
required for stating the universal property of polynomials with cartesian 2-cells Polyc (E)
described in the next section.

5.4.1 Stating the universal property

The embeddings (−)Σ and (−)∆ into Spaniso (E) are defined the same as in the case of spans
with the usual 2-cells. The difference here is that we no longer have adjunctions fΣ a f∆ in
general, a fact which we will emphasize by replacing the symbol Σ with ⊗. Consequently the
universal property is more complicated to state, and so we will need some definitions.

Definition 5.4.1. Given a category E with chosen pullbacks, we may define the category of

lax Beck pairs on E , denoted LaxBeckPair (E,C ). This category has objects given by pairs

of pseudofunctors

F⊗ : E → C , F∆ : Eop → C

which agree on objects, equipped with, for each pullback square

•

g′

��

f ′ // •

g

��

•
F⊗ f ′ //

⇓b
f ′,g′

f ,g

•

•
f
// • •

F⊗ f
//

F∆g′
OO

•

F∆g

OO

in E as on the left, a 2-cell as on the right (which we call a Beck 2-cell). The collection of

these Beck 2-cells comprise the “Beck data” denoted Fb (or just b), and are required to satisfy

the following coherence conditions:
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1. (horizontal double pullback condition) for any double pullback

•
f ′2 //

g′′

��

•

g′

��

f ′1 // •

g

��
•

f2
// •

f1
// •

(5.4.1)

we have

�

•
F⊗ f ′2 //

F⊗( f ′1 f ′2 )

$$
•

F⊗ f ′1 //

⇓b
f ′′,g′′

f2 ,g′
⇓b

f ′1 ,g
′

f1 ,g

•

=

•
F⊗( f ′1 f ′2 ) //

⇓b
f ′1 f ′2 ,g

′′

f1 f2 ,g

•

•
F⊗ f2

//

F∆g′′
OO

F⊗( f ′1 f ′2 )

::•
F⊗ f1

//

F∆g′
OO

•

F∆g

OO

•

F∆g′′
OO

F⊗( f1 f2)
// •

F∆g

OO

�

2. (vertical double pullback condition) for any double pullback

•
f ′′ //

g′2
��

•

g2

��
• f ′ //

g′1
��

•

g1

��
•

f
// •

(5.4.2)

we have

•
F⊗ f ′′ //

⇓b
f ′′,g′2
f ,′g2

• •
F⊗ f ′′ //

⇓b
f ′′,g′1g

′
2

f ,g1g2

•

� •

F∆g′2

OO

F⊗ f ′ //

⇓b
f ′,g′1
f ,g1

•

F∆g2

OO

� =

•
F⊗ f

//

F∆g′1

OOF∆(g′1g
′
2)

==

•

F∆g1

OO F∆(g1g2)

bb

•
F⊗ f

//

F∆(g′1g
′
2)

OO

•

F∆(g1g2)

OO

3. (horizontal nullary pullback condition) for any nullary pullback as on the left below,

the right pasting below is the identity

•

id
��

f // •

id
��

�

•
F⊗( f ) //

⇓b
f ,id
f ,id

•

�

•
f
// • •

F⊗( f )
//

F∆(id)
OO

id

44

•

F∆(id)
OO

id

jj
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4. (vertical nullary pullback condition) for any nullary pullback as on the left below, the

right pasting below is the identity

�

•

g

��

id // •

g

��

• F⊗(id) //

⇓b
id,g
id,g

id

��
•

•
id
// • •

F∆g

OO

F⊗(id) //

id

BB•

F∆g

OO

�

We refer to these conditions as the Beck–Chevalley coherence conditions. A morphism in

this category
(
F⊗,F∆,F b

)
→

(
G⊗,G∆,

G b
)
is a pair of icons α : F⊗ ⇒ G⊗ and β : F∆ ⇒ G∆

such that for each pullback square as on the left below

•

g′

��

f ′ // •

g

��

F⊗ f ′ · F∆g′

Fb
f ′,g′

f ,g
��

αf ′∗βg′ // G⊗ f ′ · G∆g
′

Gb
f ′,g′

f ,g
��

•
f
// • F∆g · F⊗ f

βg∗αf

// G∆g · G⊗ f

(5.4.3)

the right diagramcommutes. The categoryBeckPair (E,C ) is the subcategory ofLaxBeckPair (E,C )

containing objects
(
F⊗,F∆,F b

)
such that every Beck 2-cell in Fb is invertible.

Before we can state the universal property, we will need to describe how lax Beck pairs
arise from suitable functors out of Spaniso (E).

Definition 5.4.2. Let E be a category with pullbacks (chosen such that identities pullback to

identities) and let C be a bicategory. Then the category

Greg⊗,∆
(
Spaniso (E) ,C

)
has objects given by those gregarious functors of bicategories Spaniso (E) → C which restrict

to pseudofunctors when composed with the canonical embeddings (−)⊗ : E → Spaniso (E)

and (−)∆ : E → Spaniso (E). Moreover, we require that each oplax constraint

F

(
•

t
��

s
��
• •

)
→ F

(
• id

��
s
��
• •

)
; F

(
•

t
��

id
��
• •

)
(5.4.4)

be invertible. The morphisms of this category are icons.

Proposition 5.4.3. Let E be a category with pullbacks (chosen such that identities pullback
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to identities) and let C be a bicategory. We then have a functor

(−)⊗∆ : Greg⊗,∆
(
Spaniso (E) ,C

)
→ LaxBeckPair (E,C )

defined by the assignment taking such a gregarious functor F : Spaniso (E) → C to the pair

of pseudofunctors

F⊗ : E → C , F∆ : Eop → C

equipped with Beck data Fb given by, for each pullback square as on the left below (with the

chosen pullback on the right below)

•

g′

��

f ′ // •

g

��

•

g̃
��

f̃ // •

g

��
•

f
// • •

f
// •

the composite of:

1. the inverse of an oplax constraint cell

F

(
• id

��
g′

��
• •

)
; F

(
• f ′

��
id
��
• •

)
→ F

(
• f ′

��
g′

��
• •

)
2. the application of F to the induced isomorphism of pullbacks

F

(
• f ′

��
g′

��
• •

)
→ F

(
• f̃

��
g̃

��
• •

)
3. the oplax constraint cell

F

(
• f̃

��
g̃

��
• •

)
→ F

(
• f

��
id
��
• •

)
; F

(
• id

��
g

��
• •

)
Proof. We must check the Beck 2-cells defined as above satisfy the required coherence

conditions. The nullary conditions on the Beck 2-cells are trivially equivalent to the nullary

conditions on the constraints of F. To see the “horizontal double pullback condition”

holds, we note that since F : Spaniso (E) → C is normal oplax, we have a resulting natural

transformation

N (F) : N
(
Spaniso (E)

)
→ N (C )

where the functor N : Bicat→ [∆op,Set] is given by the geometric nerve [46]. In particular
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(as in [5]), on 2-simplices the assignment

•

b

��

•

Fb

��

7→

• c
//

a

AA

α
KS

• •
Fc

//

Fa

AA

Fα
KS

•

(where Fα is Fα composed with the appropriate oplax constraint cell) satisfies the condition

that

• // •

��

• //

&&

•

��
α
KS

β

[c

=
γ
KS

δ ;C

• //

OO 88

• • //

OO

•

implies that

• // •

��

• //

&&

•

��Fα
KSFβ

[c

=
Fγ
KS

Fδ ;C

• //

OO 88

• • //

OO

•

Now consider the three spans

• f2
��

id
��

• f1
��

id
��

• id
��

g

��
• • • • • •

which we denote by shorthand as (1, f2), (1, f1) and (g,1) respectively (where f1, f2 and g are

as in (5.4.1)). Applying the above implication to the equality below, where each of the four

regions contains a canonical isomorphism or equality of spans

•
(1, f1) // •

(g,1)

��

•
(1, f1) //

(g′, f ′1 )

&&

•

(g,1)

��

=

•
(g′′, f ′1 f ′2 )

//

(1, f2)

OO

(1, f1 f2)

88

• •
(g′′, f ′1 f ′2 )

//

(1, f2)

OO

•

then gives the horizontal double pullback condition (after composing with the appropriate

pseudofunctoriality constraints of FΣ and constraints of the form (5.4.4)). The proof of the

vertical condition is similar. Finally, it is clear the canonical assignation onmorphisms is well

defined, and the assignment given by composing with the canonical embeddings is trivially

functorial.

We can now state the universal property of Spaniso (E).
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Theorem 5.4.4. Given a category E with chosen pullbacks (chosen such that identities

pullback to identities), the functor (−)⊗∆ of Proposition 5.4.3 defines the equivalence of

categories

Greg⊗,∆
(
Spaniso (E) ,C

)
' LaxBeckPair (E,C )

which restricts to the equivalence

Icon
(
Spaniso (E) ,C

)
' BeckPair (E,C )

for any bicategory C .

5.4.2 Proving the universal property

We prove Theorem 5.4.4 directly, as the properties of generic bicategories cannot be used
here. Also, for simplicity we assume without loss of generality thatC is a 2-category and that
the gregarious functors in question strictly preserve identities. This is justified since every
bicategory is equivalent to a 2-category and every normal oplax functor is isomorphic to one
which preserves identity 1-cells strictly.

Proof of Theorem 5.4.4. We start by proving the first universal property. We must prove that

the functor

(−)⊗∆ : Greg⊗,∆
(
Spaniso (E) ,C

)
→ LaxBeckPair (E,C )

defines an equivalence of categories.

Essentially Surjective. Given such a pair FΣ and F∆ with Beck data b we may define

local functors

LX,Y : Spaniso (E)X,Y → CX,Y , X,Y ∈ E

by the assignment (suppressing pseudofunctoriality of FΣ and F∆)

E
s
~~

f

��

t
  

FE
F⊗ f
##

X Y 7→ FX
F∆u // FM

F∆ f ;;

F⊗1 ##

⇓b
f , f
1,1 FM

F⊗v // FY

M
u

``

v

>>

FM
F∆1

;;

which is functorial by the Beck coherence conditions. An oplax constraint cell

L

(
• qv′

��
up′

��
• •

)
→ L

(
•

v
��

u
��
• •

)
; L

(
• q

��
p
��
• •

)
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is given by (suppressing pseudofunctoriality of F⊗ and F∆)

•
F⊗v′

��
•

F∆u // •

F∆p′ ??

FΣv ��

⇓b
v′,p′

v,p •
F⊗q // •

•
F∆p

??

That these constraints satisfy the identity conditions trivially follows from the unit con-

dition on the Beck 2-cells. For the associativity condition, suppose we are given diagrams of

chosen pullbacks as below, with p the induced isomorphism of generalized pullbacks, that is

the associator for the triple (a, b) , (c, d) , (e, f )),

X
p
��

X
i
�� j

��

Y

m

��

n
��

•
g

��
h
  

= •
k
~~

`

��
•

b
��

a
��

•
d
  

c
~~

•
f

��
e
��

•
b
��

a
��

•
d
  

c
~~

•
f

��
e
��

• • • • • • • •

Then we must check that

L (agi, f j)

Lp
��

ϕ // L (ag, dh) ; L (e, f )
ϕ // (L (a, b) ; L (c, d)) ; L (e, f )

L (am, f `n) ϕ
// L (a, b) ; L (ck, f `) ϕ

// L (a, b) ; (L (c, d) ; L (e, f ))

commutes. The top path is a pasting of Beck 2-cells corresponding9 to the left diagram in

(5.4.5) below, and the bottom path is the pasting of Beck 2-cells corresponding to the right

diagram in (5.4.5) below (suppressing pseudofunctoriality constraints of FΣ and F∆) which

9By “corresponding” we mean that one assigns each pullback square in (5.4.5) to the Beck data for that
square, as in Definition 5.4.1.
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are equal by the Beck coherence conditions.

•
p

��

p

��
•

i
��

np

��

•

id ��

ip−1

��

•

id��
n
��

•
g

��
h
��

•
`

��
k
��

= •
g

�� id ��

•
ip−1

��
n
��

•
`

��id��
•

b
��

a
��

•
d
��

c
��

•
f

��
e
��

•

id ��

•
g

��
h
��

•
k
��

`

��

•

id��
• • • • •

b
��

a
��

•
d
��

c
��

•
f

��
e
��

• • • •
(5.4.5)

For checking the oplax constraint cells are natural, consider a pair of morphisms of spans

•
s
��

f

��

t
��

•
m
��

g

��

n
��

• • • •

•
u

__

v

??

•
p

__

q

??

We must check the commutativity of

L (sm′,nt′)

L( f ;g)
��

ϕ // L (s, t) ; L (m,n)

L f ;Lg
��

L (up′,qv′) ϕ
// L (u, v) ; L (p,q)

The top path of this diagram corresponds to a pasting of Beck 2-cells for the left diagram

below, and the bottom path corresponds to the pasting of Beck 2-cells for the right diagram

below. Hence the commutativity of this diagram amounts to applying the Beck coherence

conditions to the diagrams of pullbacks (which compose to the same pullback)

•
t ′ //

m′

��

•
g //

g

��

•

1
��

•
h //

h
��

•
v′ //

1
��

•

1
��

•

p
��

1 // •

p
��

= •
1
//

p′
��

•
v′ //

p′
��

•

p
��

•

f
��

f // •
v //

1
��

•
1 //

1
��

•

1
��

•
1
// • v

// •

•
1
// • v

// •
1
// •

where h is the morphism of spans arising from horizontally composing the morphisms of
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spans f and g.

Inherited from Proposition 5.2.23 is the fact that all adjunctions in Spaniso (E) are of the

form (1, f ) a ( f ,1) up to isomorphism, where f must be invertible. To see F is gregarious,

meaning that this gives an adjunction FΣ f a F∆ f in C , note that we may construct the unit

and counit as the Beck 2-cells arising from the pullback squares

•
1 //

1
��

•

f
��

•
f //

f
��

•

1
��

•
f
// • •

1
// •

Fully Faithful. Suppose we are given two gregarious functors F,G : Spaniso (E) → C

along with their restrictions F⊗,G⊗ and F∆,G∆ and families of Beck 2-cells Fb and Gb.

We first check the assignment of icons is surjective. Suppose we are given icons α : F⊗ →

G⊗ and β : F∆ → G∆ such that (5.4.3) holds. Then we may define an icon γ : F → G on

each span (s, t) by

F (s, t)
γs,t //

ϕ

��

G (s, t)

ψ
��

F⊗t · F∆s
αt∗βs

// G⊗t · G∆s

(5.4.6)

where ϕ and ψ are the appropriate oplax constraint cells (necessarily invertible above). Now

(5.4.3) forces γ to be locally natural, as it suffices to check naturality on generating 2-cells,

that is diagrams such as

• f
��

f

��

f
��
• •

•
1

??

1

__

with f invertible (this only needs trivial pullbacks corresponding to b f , f
1,1 ). For checking γ is

an icon, the identity condition on γ is from that of α and β. The composition condition is

precisely (5.4.3).

We now check that the assignment of icons is injective. Suppose two given icons σ, δ

both restrict to icons α and β. Then since the icons σ and δ respect the composite of the

spans

• 1
��

s
��

•
t
��

1
��

• • • •

both σ and δ must satisfy (5.4.6) (in place of γ) and so are equal.
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Restrictions. It is clear from the above that the oplax constraints are invertible precisely

when the Beck data is invertible.

5.5 Universal properties of polynomials with cartesian 2-

cells

In this section we prove the universal property of the bicategory of polynomials with cartesian
2-cells, denoted Polyc (E). We will keep the proof as analogous to the case of spans as
possible, though it still becomes somewhat more complicated.

5.5.1 Stating the universal property

This universal property of Polyc (E) turns out to be an amalgamation of that of Span (E)
and Spaniso (E); in particular to give a pseudofunctor Polyc (E) → C is to give a pair of
pseudofunctors

Span (E) → C , Spaniso (E) → C

which “∆-agree” , that is coincide on objects and on spans of the form

Y X
1X //foo X

with an additional condition asking that certain “distributivity morphisms” be invertible. For
the purposes of the proof we will give a slightly different but equivalent description, for which
we will need the following definitions.

Definition 5.5.1. Given a category E with chosen pullbacks, we may define the category of

lax Beck triples from E to a bicategoryC , denoted LaxBeckTriple (E,C ). An object consists

of a triple of pseudofunctors which agree on objects

FΣ : E → C , F∆ : Eop → C , F⊗ : E → C

such that FΣ f a F∆ f for all morphisms f in E , along with “Beck data” denoted by Fb and

consisting of for each pullback square

•

g′

��

f ′ // •

g

��

•
F⊗ f ′ //

⇓b
f ′,g′

f ,g

•

•
f
// • •

F⊗ f
//

F∆g′
OO

•

F∆g

OO (5.5.1)
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in E as on the left, a 2-cell as on the right subject to the binary and nullary Beck coherence

conditions as in Definition 5.4.1.

Amorphism
(
FΣ,F∆,F⊗, Fb

)
→

(
GΣ,G∆,G⊗,Gb

)
in this category consists of an invertible

icon β : F∆ ⇒ G∆ and icon γ : F⊗ ⇒ G⊗ such that for each pullback square in E as above,

the diagram

F⊗ f ′ · F∆g′
γ f ′∗βg′//

Fb
f ′,g′

f ,g
��

G⊗ f ′ · G∆g
′

Gb
f ′,g′

f ,g
��

F∆g · F⊗ f
βg∗γ f

// G∆g · G⊗ f

(5.5.2)

commutes.

There are a number of conditions which may be imposed on a lax Beck triple; these are
defined as follows.

Definition 5.5.2. We say a lax Beck triple
(
FΣ,F∆,F⊗, Fb

)
from E to a bicategory C is a Beck

triple if both:

1. the ∆⊗ condition holds; meaning each component of the Beck data b f ′,g′

f ,g is invertible;

2. theΣ∆ condition holds; meaning each component of the FΣ-F∆ Beck data is invertible10;

Furthermore, we say such a Beck triple is a distributive Beck triple if in addition:

3. the Σ⊗ condition (distributivity condition) holds; meaning that for any distributivity

pullback in E as on the left below

•
q //

p

��

•

r

��

•
F⊗q //

⇓b
q,up′

f ,r

•

FΣr

��
•

u

��

•

FΣu

⇓ηFu

��

id //

=

F∆p
??

•

F∆p

OO

⇓εFr •

•
f
// • •

F⊗ f
//

F∆u

OO

•

F∆r

OO

id

?? (5.5.3)

the corresponding “distributivity morphism” (defined as the pasting on the right above)

is invertible.

.

10This is equivalent to asking the gregarious functor Span (E) → C resulting from FΣ be a pseudofunctor.
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In particular, we define a Beck triple to be a lax Beck triple such that both conditions

(1) and (2) hold, and a DistBeck triple to be a Beck triple also satisfying (3). We de-

note the corresponding subcategories of LaxBeckTriple (E,C ) as BeckTriple (E,C ) and

DistBeckTriple (E,C ) respectively.

There are a number of canonical embeddings into Polyc (E) to mention; the most obvious
being the embeddings

(−)Σ : E → Polyc (E) , (−)∆ : Eop → Polyc (E) , (−)⊗ : E → Polyc (E)

which are defined on objects by sending an object of E to itself, and are defined on each
morphism in E by the assignments

(−)Σ : X
f // Y 7→ X X

1Xoo 1X // X
f // Y

(−)∆ : X
f // Y 7→ Y X

foo 1X // X
1X // X

(−)⊗ : X
f // Y 7→ Y X

f //1Xoo Y
1Y // Y

We also have the inclusion (−)Σ∆ : Span (E) → Polyc (E) of spans into polynomials given by
the assignment

•
t

��

s

��
f

��

•
s

��

id //

f

��

•
t

��
f

��

• • 7→ • •

•

v

??

u

__

•

u

__

id
// •

v

??

The less obvious embedding (−)∆⊗ : Spaniso (E) → Polyc (E) is the canonical embedding of
spans with invertible 2-cells into polynomials, given by the assignment

•
t

��

s

��
f

��

•
s

��

t //

f

��

•
id

��
id

��

• • 7→ • •

•

v

??

u

__

•

u

__

v
// •

id

??

where one must note the appropriate square is a pullback since f is invertible.
We will need to consider gregarious functors which restrict to pseudofunctors on the

embeddings we have just defined, and so we make the following definition.

Definition 5.5.3. Let E be a locally cartesian closed category, let C be a bicategory and

form the category Greg
(
Polyc (E) ,C

)
. We define Greg⊗

(
Polyc (E) ,C

)
as the subcategory
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of gregarious functors F : Polyc (E) → C such that the restriction F⊗ : E → C is pseudo.

Define GregΣ∆,∆⊗
(
Polyc (E) ,C

)
as the subcategory of gregarious functors for which both

restrictions FΣ∆ : Span (E) → C and F∆⊗ : Spaniso (E) → C are pseudo.

Remark 5.5.4. Note that a gregarious functor F : Polyc (E) → C automatically restricts to

pseudofunctors FΣ and F∆. This is why we have omitted these conditions. Also note that

oplax constraints of the form

F ©«
•

s
��

t // • id
��

• •

ª®¬→ F ©«
•

s
��

id // • id
��

• •

ª®¬ ; F ©«
•id

��

t // • id
��

• •

ª®¬
are automatically invertible by gregariousness.

Definition 5.5.5. Given a category E with pullbacks, we define

Greg (Span (E) ,C ) ×∆ Greg⊗,∆
(
Spaniso (E) ,C

)
to be the full subcategory of

Greg (Span (E) ,C ) ×Greg⊗,∆
(
Spaniso (E) ,C

)
consisting of pairs H : Span (E) → C and K : Spaniso (E) → C which coincide on objects

and on spans of the form

Y X
1X //foo X

Noting that this forces HΣ f a H∆ f = K∆ f for all morphisms f in E , we denote by Ξ the

assignment of such a H and K to the lax Beck triple

HΣ : E → C , K∆ : Eop → C , K⊗ : E → C

with K∆-K⊗ Beck data Kb given by Proposition 5.4.3.

We now have enough to state the universal property of polynomials.

Theorem 5.5.6 (Universal Properties of Polynomials: Cartesian Setting). Given a locally

cartesian closed category E with chosen pullbacks and distributivity pullbacks, denote by Υ
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the composite operation

Greg⊗
(
Polyc (E) ,C

)
��

Greg (Span (E) ,C ) ×∆ Greg⊗,∆
(
Spaniso (E) ,C

)
��

LaxBeckTriple (E,C )

where the first operation is composition with the embeddings (−)Σ∆ and (−)∆⊗, and the second

operation is Ξ from Definition 5.5.5. Then Υ defines the equivalence of categories

Greg⊗
(
Polyc (E) ,C

)
' LaxBeckTriple (E,C )

which restricts to the equivalence

GregΣ∆,∆⊗
(
Polyc (E) ,C

)
' BeckTriple (E,C )

and further restricts to the equivalence

Icon
(
Polyc (E) ,C

)
' DistBeckTriple (E,C )

for any bicategory C .

Remark 5.5.7. There are five other equivalences of categories since each of the three inde-

pendent conditions Σ∆, ∆⊗ and Σ⊗ of Definition 5.5.2 may or may not be enforced (giving a

total of eight conditions). However, as the three above appear to be the most useful, we will

not mention the others.

5.5.2 Proving the universal property

Before proving Theorem 5.5.6 we will need to show that given a lax Beck triple E → C

one may reconstruct an oplax functor Polyc (E) → C . The following lemma and subsequent
propositions describe this construction. Also note that we are keeping the proof as similar as
possible to the case of spans, starting with the below lemma which is the analogue of Lemma
5.3.3.

Lemma 5.5.8. Let E be a locally cartesian closed category seen as a locally discrete 2-

category, and let C be a bicategory. Suppose we are given a lax Beck triple consisting of

pseudofunctors

FΣ : E → C , F∆ : Eop → C , F⊗ : E → C
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and Beck 2-cells b. We may then define local functors

LX,Y : Polyc (E)X,Y → CLX,LY , X,Y ∈ E

by the assignment T → FT on objects, and

E
s
~~

p //

f

��

pb

B
t
��

g

��

E
F⊗p //

⇓b

B
FΣt

��
X Y 7→ X

F∆s
>>

F∆u   

⇓α ⇓γ Y

M q
//

u

``

N
v

??

M
F⊗q
//

F∆ f

OO

N
FΣv

??F∆g

OO

on morphisms, where α is the mate of the isomorphism on the left below

FE
1FE //

FΣs
��

�

FE

FΣu·FΣ f
��

FB
FΣt //

FΣg
��

�

FY

1FY
��

FX
1FX

// FX FN
FΣv
// FY

under the adjunctions FΣs a F∆s and FΣu ·FΣ f a F∆ f ·F∆u, γ is the mate of the isomorphism

on the right above under the adjunctions FΣg a F∆g and 1FY a 1FY , and bp, f
q,g (simply denoted

b for convenience) is the component of the Beck data at the given pullback.

Proof. The local functor LX,Y sends the components of the composite

E
s

~~

p //

f
��

B
t

��
g
��

X M q //uoo

h
��

N v //

k
��

Y

T r
//

m

``

S
n

??

to the top and bottom halves of the pasting diagram below:

FE
F⊗p //

⇓b

FB

⇓γ1

FΣt

""
FX

⇓α1

F∆s
;;

F∆u //

F∆m

⇓α2

""

FM

F∆ f

OO

F⊗q //

⇓b

FN

F∆g

OO

FΣv // FY

FT
F⊗r

//

F∆h

OO

FS

F∆k

OO

FΣn

⇓γ2
<<

To see this is functorial, we insert an unlabeled constraint of F∆ and its inverse on both the
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left and right side of the above diagram, giving the pasting below

FE id // FE id // FE
F⊗p //

⇓b

FB id // FB id // FB

⇓γ1

FΣt

""
FX

⇓α1

F∆s
;;

F∆u //

F∆m

⇓α2

""

FM

F∆ f

OO

� � FM

F∆ f

OO

F⊗q //

⇓b

FN

F∆g

OO

� � FN

F∆g

OO

FΣv // FY

FT
id
//

F∆h

OO

FT
id
//

F∆h f

OO

FT
F⊗r

//

F∆h

OO

FS

F∆k

OO

id
// FS

F∆kg

OO

id
// FS

F∆k

OO

FΣn

⇓γ2
<<

and then apply the vertical double pullback condition on Beck data and use functoriality of

mates. This shows that the above diagram is LX,Y applied to the composite. That the identity

maps are preserved is similar to the case of spans, but using the vertical nullary pullback

condition on Beck 2-cells b.

As in the case of spans, it will be helpful to recall from Chapter 4 the reduced description
of an oplax structure on local functors out of the bicategory of polynomials.

Proposition 5.5.9. Let E be a locally cartesian closed category and denote by Polyc (E) the

bicategory of polynomials in E with cartesian 2-cells. Let C be a bicategory. Then to give

an oplax functor

L : Polyc (E) → C

is to give a locally defined functor

LX,Y : Polyc (E)X,Y → CLX,LY , X,Y ∈ E

with comultiplication and counit maps

Φs,p1,h,p2,t : L (s, p, t) → L (s, p1, h) ; L (h, p2, t) , Λh : L (h,1, h) → 1LX

for every respective diagram in E

E
s
��

p1 // T
h
��

p2 // B
t
��

T
h
��

id // T
h
��

X Y Z X X

where we assert p = p1; p2 on the left, such that:
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1. for any morphisms of polynomials as below

R
u
��

f

��

q // I
v

��
g

��

R
u
��

f

��

q1 // S
k
��

c

��

S
k
��

c

��

q2 // I
v

��
g

��

X Z X Y Y Z

E
s

__

p
// B

t

??

E
s

__

p1
// T

h

??

T
h

__

p2
// B

t

??

we have the commuting diagram

L (u,q, v)

L( f ,g)
��

Φu,q1 ,k ,q2 ,v // L (u,q1, k) ; L (k,q2, v)

L( f ,c);L(c,g)
��

L (s, p, t)
Φs,p1 ,h,p2 ,t

// L (s, p1, h) ; L (h, p2, t)

2. for any morphism of polynomials as on the left below

R
s
��

f

��

id //

pb

R
s
��

f

��

L (s,1, s)
L( f , f ) //

Λs

��

L (t,1, t)

Λt

��

X Z

T
t

__

id
// T

t

??

1LX

the diagram on the right above commutes;

3. for all diagrams of the form

O
s
~~

a // G b //

h ��

H c //

k��

K
t
��

W X Y Z

in E , we have the commuting diagram

L (s,a; b; c, t)

Φs,a,h,b;c,t
��

L (s,a; b; c, t)

Φs,a;b,k ,c,t
��

L (s,a, h) ; L (h, b; c, t)

L(s,a,h);Φh,b,k ,c,t

��

L (s,a; b, k) ; L (k, c, t)

Φs,a,h,b,k ;L(k,c,t)
��

L (s,a, h) ; (L (h, b, k) ; L (k, c, t)) assoc
// (L (s,a, h) ; L (h, b, k)) ; L (k, c, t)
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4. for all polynomials (s, p, t) the diagrams

L (s,1, s) ; L (s, p, t)
Λs;L(s,p,t)

))
L (s, p, t) unitor

//

Φs,1,s,p,t
66

1LX ; L (s, p, t)

L (s, p, t) ; L (t,1, t)
L(s,p,t);Λt

))
L (s, p, t) unitor

//

Φs,p,t ,1,t
66

L (s, p, t) ; 1LY

commute.

We now prove that the locally defined functor L above may be endowed with an oplax
structure.

Lemma 5.5.10. Let E be a locally cartesian closed category seen as a locally discrete

2-category, and let C be a bicategory. Suppose we are given a lax Beck triple

FΣ : E → C , F∆ : Eop → C , F⊗ : E → C

with Beck 2-cells b. Then the locally defined functor

LX,Y : Polyc (E)X,Y → CLX,LY , X,Y ∈ E

as in Lemma 5.5.8 canonically admits the structure of an oplax functor.

Proof. By Proposition 5.5.9, to equip the locally defined functor L with an oplax structure is

to give comultiplication mapsΦs,p1,h,p2,t : L (s, p, t) → L (s, p1, h) ; L (h, p2, t) and counit maps

Λh : L (h,1, h) → 1LX for all diagrams of the respective forms, where p = p2p1,

E
s
��

p1 // T
h
��

p2 // B
t
��

T
h
��

id // T
h
��

X Y Z X X

satisfying naturality, associativity, and unitary conditions. To do this, we take each Φs,p1,h,p2,t

to be the pasting

�

FX
F∆s // FE

F⊗p1 //

F⊗p

��
FT

FΣh //

1FT

��
FY

F∆h //

⇓ηFh

FT
F⊗p2 // FB

FΣt // FZ
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and each Λh to be the pasting

FT
F⊗1T

((

1FT
77� FT

FΣh

""
FX 1FX

//

F∆h
<<

⇓εFh

FX

Associativity of comultiplication is almost trivial; indeed, given a diagram of the form

O
s
~~

a // G b //

h ��

H c //

k��

K
t
��

W X Y Z

both paths in the associativity of comultiplication condition compose to

�

FW
F∆s // FO

F⊗a //

F⊗cba

%%
FG

FΣh //

1FG

  
FX

F∆h //
⇓ηFh

FG
F⊗b // FH

FΣk //

1FH

  
FY

F∆k //
⇓ηFk

FH
F⊗c // FK

FΣt // FZ

by associativity of the constraints of F⊗. The unitary axioms are also almost trivial, a

consequence of the triangle identities for an adjunction and the unitary axioms on F⊗.

For the naturality condition, suppose we are given a triple of cartesian morphisms of

polynomials

R
u
��

f

��

q // I
v

��
g

��

R
u
��

f

��

q1 // S
k
��

c

��

S
k
��

c

��

q2 // I
v

��
g

��

X Z X Y Y Z

E
s

__

p
// B

t

??

E
s

__

p1
// T

h

??

T
h

__

p2
// B

t

??

and consider the diagram

L (u,q, v)

L( f ,g)
��

Φu,q1 ,k ,q2 ,v // L (u,q1, k) ; L (k,q2, v)

L( f ,c);L(c,g)
��

L (s, p, t)
Φs,p1 ,h,p2 ,t

// L (s, p1, h) ; L (h, p2, t)
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Now the top composite is

�

FR F⊗q1 //

F⊗q

&&
FS 1FR

//

FΣk
""
⇓ηFk

FS F⊗q2 // FI
FΣv

""
FX

F∆u

<<

F∆s
""

⇓ ⇓b ⇓ FY
F∆h

""

⇓

F∆k

<<

⇓b ⇓ FZ

FE F⊗p1 //

F∆ f

OO

FT

FΣh

<<F∆c

OO

FT

F∆c

OO

F⊗p2 // FT

FΣt

<<F∆g

OO

where the unlabeled 2-cells are as in Lemma 5.5.8, and one may rewrite the pasting of the

three middle triangles above as an “identity square” and pasting with ηFh. It follows that this

is equal to the bottom composite given by the pasting

FR F⊗q //

⇓b

FI

FΣv
""

FX

F∆s
""

F∆u

<<

⇓ ⇓ FZ

FE
F⊗p1##

F⊗p //

F∆ f

OO

�

FB

F∆g

OO

FΣt

<<

FT 1FT //

FΣh ##⇓ηFh

FT
F⊗p2
;;

FY
F∆h
;;

using the horizontal binary axiom on elements of b; thus showing naturality of comultipli-

cation. Naturality of counits is similar to the case of spans (except that one must use the

horizontal nullary axiom on elements of b) and so will be omitted.

It will be useful to have a description of the oplax constraint cells ϕ corresponding to our
comultiplication maps Φ. This is described by the following lemma.

Lemma 5.5.11. Let the oplax functor L : Polyc (E) → C be constructed as in Proposition

5.5.10. Then the binary oplax constraint cell on L at a composite of polynomials constructed

as below

H
p1 //

w

��
pb

M

x~~ y   

p2 // K
z
  

pb

A
a
��

m // B
b
  

C
c
~~

n // D
d
��

X Y Z

(5.5.4)
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is given by the pasting

�

FH F⊗p1 //

F⊗p

&&
FM 1FM

//

FΣh
""
⇓ηFh

FM F⊗p2 // FK
FΣdz

""
FX

F∆aw

<<

F∆a
""

⇓ ⇓b ⇓ FY
F∆c

""

⇓

F∆h

<<

⇓b ⇓ FZ

F A F⊗m //

F∆w

OO

FB

FΣb

<<F∆x

OO

FC

F∆y

OO

F⊗n // FD

F∆z

OO

FΣd

<<

(5.5.5)

where p = p2p1 and h = bx = cy.

Proof. Given composable polynomials (a,m, b) and (c,n, d) the composite is given by the

terminal diagram as in (5.5.4) . We then have an induced diagonal

δac′,h,db′ : (aw, p, dz) → (aw, p1, h) ; (h, p2, dz)

and morphisms (w, x) : (aw, p1, h) → (a,m, b) and (y, z) : (h, p2, dz) → (c,n, d) for which

(a,m, b) ; (c,n, d)
δac′,h,db′// (aw, p1, h) ; (h, p2, dz)

(w,x);(y,z)// (a,m, b) ; (c,n, d)

is the identity on (a,m, b) ; (c,n, d). It follows that the binary oplax constraint cell correspond-

ing to the comultiplication maps Φ, namely

ϕ(a,m,b),(c,n,d) : L ((a,m, b) ; (c,n, d)) → L (a,m, b) ; L (c,n, d)

is given by (5.5.5).

We now know enough for a complete proof of the universal properties of the polynomials
with cartesian 2-cells.

Proof of Theorem 5.5.6. We consider the assignment

Υ : Greg⊗
(
Polyc (E) ,C

)
→ LaxBeckTriple (E,C )

of Theorem 5.5.6, i.e. given a gregarious functor F : Polyc (E) → C which restricts to a

pseudofunctor when composed with (−)⊗, we extract, via Theorem 5.4.4, the pseudofunctors

FΣ, F∆ and F⊗ equipped with the Beck data b. This data defines a lax Beck triple E → C .

Well defined. Given an icon α : F ⇒ G : Polyc (E) → C we know α∆ : F∆ ⇒ G∆

is invertible, as it is a restriction of an icon αΣ∆ : FΣ∆ ⇒ GΣ∆ : Span (E) → C which is
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necessarily invertible by Lemma 5.3.8.

We start by proving the first universal property.

Fully faithful. That the assignment α 7→ (α∆, α⊗) is bijective follows from the fact the

assignment αΣ∆ 7→ α∆ is bijective, and the necessary commutativity of

F (s, p, t)
ϕ //

α(s,p,t)
��

F (s,1,1) ; F (1, p,1) ; F (1,1, t)
α(s,1,1);α(1,p,1);α(1,1,t)
��

G (s, p, t)
ψ
// G (s,1,1) ; G (1, p,1) ; G (1,1, t)

(5.5.6)

where ϕ and ψ must be invertible constraints since F and G are gregarious.

Again, that
(
α−1
Σ f

)∗
= α∆ f is forced by Lemma 5.2.21 and one need only check that any

collection

αs,p,t : F (s, p, t) → G (s, p, t)

satisfying this property and (5.5.6) necessarily defines an icon.

We omit the calculation showing α is locally natural. Indeed, this calculation is almost

the same as in the proof of Theorem 5.3.2, except we must interchange a Beck 2-cell with the

components α∆ and α⊗ using the condition (5.5.2).

To see that such an α then defines an icon, note that each Φs,p1,h,p2,t may be decomposed

as the commuting diagram

F (s, p, t)
Φs,p1 ,h,p2 ,t //

Φs,p1 ,1,p2 ,t
��

F (s, p1, h) ; F (h, p2, t)

F (s, p1,1) ; F (1, p2, t)F(s,p1,1);Φ1,1,h,1,1;F(1,p2,t)
// F (s, p1,1) ; F (1,1, h) ; F (h,1,1) ; F (1, p2, t)

Φ−1
s,p1 ,1,1,h

;Φ−1
h,1,1,p2 ,t

OO

and so the commutativity of the diagram

F (s, p, t)
Φs,p1 ,h,p2 ,t //

αs,p,t
��

F (s, p1, h) ; F (h, p2, t)
αs,p1 ,h;αh,p2 ,t
��

G (s, p, t)
Ψs,p1 ,h,p2 ,t

// G (s, p1, h) ; G (h, p2, t)
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amounts to checking that the pastings

⇓ϕ

⇓ηGh

•
G∆s
66

F∆s
((

⇓ •
G⊗p1

66

F⊗p1
((

⇓

F⊗p

��
•

GΣh
66

FΣh
((

⇓

id

��
•

G∆h
66

F∆h
((

⇓ •
G⊗p2

66

F⊗p2
((

⇓ •
GΣt
66

FΣt
((

⇓ •

and

⇓ψ

⇓α⊗

⇓ηGh

•
G∆s
66

F∆s
((

⇓ •
G⊗p1

//

G⊗p

��

F⊗p

��
•

GΣh
//

id

��
•

G∆h
// •

G⊗p2
// •

GΣt
66

FΣt
((

⇓ •

agree. This is almost the same calculation as in spans except here we must use that α⊗ is an

icon.

Essentially surjective. Suppose we are given a lax Beck triple (FΣ,F∆,F⊗,b). Then by

Proposition 5.5.10, we get a normal oplax functor F : Polyc (E) → C (which is gregarious

as a consequence Proposition 5.2.25, and clearly restricts to a pseudofunctor on ⊗), and this

constructed F clearly restricts to the same lax Beck triple when Υ is applied.

We now prove the remaining two universal properties, seen as restrictions of the first.

Restrictions. It is clear that for any Greg⊗ functor F : Polyc (E) → C wemay write F �

F̃ where F̃ is given by sending F to its laxBeck triple and recovering amap F̃ : Polyc (E) → C

under the above equivalence.

Also it is clear that F (or equivalently F̃) restricts to pseudofunctors on Σ∆ and ∆⊗

precisely when this lax Beck triple is a Beck triple. This is seen by using the general

expression for an oplax constraint cell (5.5.5) on composites of polynomials (s,1, t) ; (u,1, v)

and (s, t,1) ; (u, v,1).

Now as each oplax constraint cell may be constructed from “Beck composites” as above

and “distributivity composites” of the form (1,1,u) ; (1, f ,1) (by the proof of [17, Prop. 1.12]),

it follows that asking F be pseudo corresponds to asking that, in addition, the oplax constraint

cells for composites (1,1,u) ; (1, f ,1) be invertible. But this is precisely the Σ⊗ distributivity

condition.
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5.6 Universal properties of polynomials with general 2-cells

In this section we prove the universal property of the bicategory of polynomials with general
2-cells, denoted Poly (E). As this bicategory is not generic, the methods of the previous
section do not directly apply. However, as composition in Polyc (E) and Poly (E) is the same
we can still apply some results of the previous section to help prove this universal property.

5.6.1 Stating the universal property

The universal property of Poly (E) ends up being simpler to state than that of Polyc (E) due to
the existence of more adjunctions. To state this property we will first require a strengthening
of the notions of “sinister” and “Beck” pseudofunctors as described in Definition 5.2.18. For
the following definition, recall that the categories of such pseudofunctors and invertible icons
are denoted Sin (E,C ) and Beck (E,C ) respectively.

Definition 5.6.1. Let E be a category with pullbacks, and letC be a bicategory. We denote by

2Sin (E,C ) the subcategory of Sin (E,C ) consisting of pseudofunctors F : E → C for which

F f has two successive right adjoints for every morphism f ∈ E . We denote by 2Beck (E,C )

the subcategory of 2Sin (E,C ) consisting of those pseudofunctors which in addition satisfy

the Beck condition.

Remark 5.6.2. The above Beck condition is on the pair FΣ-F∆, but one could also ask a Beck

condition on the pair F∆-FΠ. The reason for not using the latter is that the Beck 2-cells

(arising from adjunctions F∆ f a FΠ f ) are not in the direction required for constructing a lax

Beck triple, and are invertible if and only if the former Beck 2-cells are invertible.

The following lemma will be needed to describe a distributivity condition which may be
imposed on such pseudofunctors.

Lemma 5.6.3. Let E be a locally cartesian closed category seen as a locally discrete 2-

category, and let C be a bicategory. Suppose F : E → C is a given 2-Beck pseudofunctor,

and for each morphism f ∈ E define FΣ f := F f , take F∆ f to be a chosen right adjoint of

F f (choosing F∆ to strictly preserve identities), and take FΠ f to be a chosen right adjoint

of F∆ f (again choosing FΠ to strictly preserve identities). We may then define a Beck triple

with underlying pseudofunctors

FΣ : E → C , F∆ : Eop → C , FΠ : E → C
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and for each pullback as on the left below, the mate of the middle isomorphism below whose

existence is asserted by the Beck condition

•

g′

��

f ′ // •

g

��

•

FΣg′

��
�

•
F∆ f ′oo

FΣg
��

•
FΠ f ′ //

⇓b
f ′,g′

f ,g

•

•
f
// • • •

F∆ f
oo •

FΠ f
//

F∆g′
OO

•

F∆g

OO (5.6.1)

defining the Beck data as on the right above.

Proof. One needs to check that the defined Beck data satisfies the necessary coherence

conditions, but this trivially follows from functoriality of mates. Also, every component

of the Beck data b f ′,g′

f ,g defined as in the above lemma must be invertible. This is since an

isomorphism of left adjoints must correspond to an isomorphism of right adjoints under the

mates correspondence.

It will be useful to give the Beck triples arising this way a name, and so we make the
following definition.

Definition 5.6.4. We call a Beck triple E → C cartesian if for every morphism f ∈ E there

exists adjunctions FΣ f a F∆ f a FΠ f and the ∆Π Beck data corresponds to the Σ∆ data via

the mates correspondence as in (5.6.1).

We may also ask that a cartesian Beck triple (or the corresponding 2-Beck functor)
satisfies a distributivity condition.

Definition 5.6.5. Given the assumptions and data of Lemma 5.6.3, we say a 2-Beck pseudo-

functor F : E → C satisfies the distributivity condition if the cartesian Beck triple recovered

from Lemma 5.6.3 satisfies the distributivity condition of Definition 5.5.2 (meaning this

cartesian Beck triple is a DistBeck triple).

Similar to the case of Polyc (E), we again have embeddings

(−)Σ : E → Poly (E) , (−)∆ : Eop → Poly (E) , (−)Π : E → Poly (E)

The main difference here is that with these embeddings we have triples of adjunctions
fΣ a f∆ a fΠ for every morphism f ∈ E .

Trivially we have the inclusion (−)Σ∆ : Span (E) → Poly (E) of spans into polynomials
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given by the assignment

•
t

��

s

��
f

��

•
s

��

id // •
t

��
• • 7→ • •

f
��

id //

id

OO

•

f
��

•

•

v

??

u

__

•

u

__

id
// •

v

??

The less obvious embedding (−)∆Π : Span (E)co → Poly (E) is the canonical embedding of
spans with reversed 2-cells into polynomials, given by the assignment

•
t

��

s

��

•
s

��

t // •
id

��
• • 7→ • •

id
��

v //

f

OO

•

id
��

•

•

v

??

u

__ f

OO

•

u

__

v
// •

id

??

We now have enough to state the universal property of polynomials.

Theorem 5.6.6 (Universal Properties of Polynomials: General Setting). Given a locally

cartesian closed category E with chosen pullbacks and distributivity pullbacks, composition

with the canonical embedding (−)Σ : E → Poly (E) defines the equivalence of categories

Greg (Poly (E) ,C ) ' 2Beck (E,C )

which restricts to the equivalence

Icon (Poly (E) ,C ) ' DistBeck (E,C )

for any bicategory C .

Remark 5.6.7. Onemight ask if there is a universal property without the Beck condition being

required. The problem is that if the restrictions to Span (E) and Span (E)co are only required

gregarious, but not pseudo, we do not have a canonical way to construct the necessary ∆Π

Beck data b, and so such a universal property would be unnatural.

5.6.2 Proving the universal property

Before proving Theorem 5.6.6 we will need to show how to reconstruct a gregarious functor
Poly (E) → C from a 2-Beck pseudofunctor E → C . The following proposition describes
this construction.
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Proposition 5.6.8. Let E be a locally cartesian closed category seen as a locally discrete

2-category, and let C be a bicategory. Suppose F : E → C is a given 2-Beck pseudofunctor,

and for each morphism f ∈ E define FΣ f := F f , take F∆ f to be a chosen right adjoint of

F f (choosing F∆ to strictly preserve identities), and take FΠ f to be a chosen right adjoint of

F∆ f (again choosing FΠ to strictly preserve identities). We may then:

1. define a lax Beck triple as in Lemma 5.6.3;

2. define a gregarious functor L : Polyc (E) → C satisfying the Σ∆ and ∆Π Beck condi-

tions;

3. define local functors

L : Poly (E)X,Y → CLX,LY , X,Y ∈ E

assigning each general morphism of polynomials

E
s

~~

p // B
t

��
X S

f
��

pe //

e

OO

B
g
��

Y

M q
//

u

``

N
v

??

to the pasting

FE
FΠp //

F∆e
��

⇓m

FB
FΣt

""
FX

F∆s
<<

F∆u
""

⇓α FS FΠpe //

⇓b

FB ⇓γ FY

FM

F∆ f

OO

FΠq
// FN

F∆g

OO

FΣv

<<

where of the diagrams

FS
1FS //

FΣs·FΣe
��

�

FS
FΣu·FΣ f
��

FE
FΠp //

�

FB FB
FΣt //

FΣg
��

�

FY
1FY
��

FX
1FX

// FX FS FΠpe //

FΠe

OO

FB

1FB

OO

FN
FΣv
// FY

(a) α is constructed as the mate of the left diagram under the adjunctions FΣs · FΣe a

F∆e · F∆s and FΣu · FΣ f a F∆ f · F∆u;
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(b) m is constructed as the mate of the middle diagram under the adjunctions F∆e a

FΠe and 1FB a 1FB;

(c) b is the component of the Beck data at the given pullback;

(d) γ is the mate of the isomorphism on the right above under the adjunctions FΣg a

F∆g and 1FY a 1FY .

4. define a gregarious functor L : Poly (E) → C .

Proof. We prove the different parts of the statement separately.

Part 1. See Lemma 5.6.3.

Part 2. It then follows from Theorem 5.5.6 that this cartesian Beck triple gives rise to

a gregarious functor L : Polyc (E) → C . The Σ∆ invertibility condition translates to an ∆Π

invertibility condition via the mates correspondence; an isomorphism of left adjoints must

correspond to an isomorphism of right adjoints. Therefore each component of the Beck data

b is invertible.

Part 3. The goal here is to show that we have local functors

L : Poly (E)X,Y → CLX,LY , X,Y ∈ E

We first note, for well definedness, that given two general morphisms of polynomials as below

E
s

~~

p // B
t

��

E
s

~~

p // B
t

��
X S1

f1
��

pe1 //

e1

OO

B
g

��

Y ∼ X S2

f2
��

pe2 //

e2

OO

B
g

��

Y

M q
//

u

``

N
v

??

M q
//

u

``

N
v

??

equivalent in that there exists an isomorphism ν : S1 → S2 such that f2ν = f1 and e2ν = e1,

it follows from a straightforward functoriality of mates calculation that LX,Y assigns both

morphisms of polynomials to equal pastings.

As local functoriality with respect to cartesian morphisms was shown in Lemma 5.5.8,

local functoriality with respect to “triangle morphisms” is a straightforward functoriality of

mates calculation, and the case of a triangle morphism followed by a cartesian morphism is

almost by definition, it suffices to consider the case of a cartesian morphism followed by a

triangle morphism (the only non trivial case to consider).
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Suppose we are given a composite of polynomial morphisms as on the left below

E
s

~~

p //

f
��

pb

B
t

��
g
��

E
s

��

p // B
t

��
X M q //uoo N v // Y = X P

f ′
��

e′ //

e′
OO

pb

E
f
��

p //

pb

B
g
��

Y

J r
//

a

``

e

OO

N
b

??

J e
//

a

__

M q
// N

b

??

evaluated as the diagram on the right above. We must check that

FE
FΠp //

⇓b

FB FE
FΠp //

⇓mF∆e′
��

FB

FX

�

F∆s 44

F∆a
�

**

F∆u // FM FΠq //

F∆ f

OO

⇓mF∆e
��

FN

F∆g

OO

= FX

F∆s 55

F∆a **

⇓α FP
⇓b

FΠpe′ // FB

FJ
FΠr
// FN FJ

FΠr
//

F∆ f ′
OO

FN

F∆g

OO

(5.6.2)

To see this, we paste both sides with the inverse of the b appearing on the right above, and

check that have an equality. Starting with the observation that the left side pasted with this

inverse is the left diagram below, we see

FE
FΠp //

⇓b

FB FE
FΠp //

=

FB

� FN
F∆g

77

⇓b−1
�

FX

F∆s
77

F∆a
''

F∆u // FM
FΠq

66F∆ f

OO

F∆e

��

⇓m

FE

FΠp

OO

= FX

F∆s
77

F∆a
''

F∆u // FM

F∆ f

OO

F∆e

��

⇓η

id // FM
F∆ f

//

⇓b−1

FE

FΠp

OO

� FM

FΠq

OO

F∆ f
77

⇓b−1

�

FJ
F∆ f ′

//
FΠe

66

FP

FΠe′

OO

FJ
F∆ f ′

//

FΠe

CC

FP

FΠe′

OO

upon realizing m as a whiskering of a unit and canceling the b. Transferring the unit along

the mates correspondence gives the left diagram below

FE
FΠp //

=

FB FE
FΠp //

=

FB

� = �

FX

F∆s
55

F∆a ))

F∆u // FM

F∆ f

OO

F∆e
��

F∆ f //

�

FE

F∆e′

��

id //

FΠp

OO

FE

FΠp
ii

= FX

F∆s
55

F∆a ))

F∆u // FM

F∆ f

OO

F∆e
��

F∆ f //

�

FE

F∆e′

��

FΠp

OO

⇓m

� ⇓η �

FJ
F∆ f ′

// FP
FΠe′

FF

FJ
F∆ f ′

// FP

FΠpe′

dd

which is seen as the right diagram after writing the whiskering of the unit back in terms ofm.



180 Universal properties of bicategories of polynomials

This is clearly the right side of (5.6.2) with the pasting of the 2-cell b having been undone.

Part 4. The goal here is to show that this now defines a gregarious functor

L : Poly (E) → C

Now, as we already have a gregarious functor L : Polyc (E) → C , given by the restriction

of L to the cartesian setting, and composition of 1-cells Polyc (E) and Poly (E) is defined the

same way, it suffices to check that the oplax constraint data ϕ,λ of L defines oplax constraint

data on L. Indeed, ϕ and λ are already known to satisfy the nullary and associativity axioms

and so we need only check naturality of the constraint data with respect to our larger class of

2-cells.

Taking θ : P→ P′′ and φ : Q→ Q′′ to be general morphisms of polynomials, canonically

decomposed into triangle parts θt, φt and cartesian parts θc, φc, we note that to see that the

left diagram commutes below

L (P; Q)
ϕP,Q //

L(θ;φ)

��

LP; LQ

Lθ;Lφ

��

L (P; Q)
ϕP,Q //

L(θt ;φt )
��

LP; LQ
Lθt ;Lφt
��

L (P′; Q′)
L(θc ;φc)

��

ϕP′,Q′
// LP′; LQ′

Lθc ;Lφc
��

L (P′′; Q′)ϕP′′,Q′′
// LP′′; LQ′′ L (P′′; Q′)ϕP′′,Q′′

// LP′′; LQ′′

it suffices to check that the top square in the right diagram commutes. This is since the

bottom square on the right commutes by naturality of the constraint data ϕ with respect to L.

To prove the commutativity of this square, it will be helpful to decompose further into

L (P; Q)
L(θt ;Q) ��

ϕP,Q // LP; LQ
Lθt ;LQ
��

L (P′; Q)
L(P′;φt )

��

ϕP′,Q // LP′; LQ
LP′;Lφt
��

L (P′; Q′) ϕP′,Q′
// LP′; LQ′

and so we need only prove naturality for whiskerings of triangle morphisms.

We first check the naturality condition for right whiskerings of triangle morphisms. The

whiskering of such an x is constructed as the induced map x′ into the pullback as in the
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diagram below

•

`′

��

p′1

##
•
`

��

p′2 //
x′
``

•
e ��

// •

��

•

s1

��

p1

��

pb •

  
u′
��

dpb

E
p2 //

s2
��

x
__

B
t
��

pb M
q //

u
~~

N
v
  

I J K

The naturality condition then amounts to checking that

•
FΠp′1 //

⇓b

• •
FΠp′1 //

⇓mF∆x′
��

•

•

F∆s1`
′ 44

F∆s2 **

F∆s1 // • FΠp1 //

F∆`′
OO

⇓mF∆x
��

•

F∆u′e

OO

= •

F∆s1`
′ 44

F∆s2 **

⇓α •

⇓b

FΠp′2 // •

•
FΠp2

// • •
FΠp2

//

F∆`

OO

•

F∆u′e

OO

which is similar to the calculation in (5.6.2).

We now check left whiskerings of triangle morphisms, which is significantly more com-

plicated than the above situation. To simplify this calculation, we consider only simpler

triangle morphisms of the form x : (u1,1,1) → (u2, x,1). It will turn out that it suffices to

consider only these simpler triangle morphisms.

To construct the left whiskering of the triangle morphism x by a polynomial we first

construct the two relevant composites of polynomials as below

• p′1 //

`′1

��

•

t ′1

��
u′1

��

id // •

t ′1

��

•

`′2

��

p′2 // •

e
��

k // •

r ′2

��

•
t ′2   

u′2��

•

u1

��

id
��

E p //

s
��

B
t
��

M x //

u2
~~

x
OO

V
id
��

I J V

Now since we have a factorization of pullbacks as below

• y //

t ′2
��

•

t ′1
��

u′1 // •

t
��

=

• u′2 //

t ′2
��

•

t
��

• x // • u1 // • • u2 // •
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it follows that we have an induced cartesian morphism of polynomials

• h //

j

��

f
  

•

t ′2

��

u′2

��

y //

m
��

•
g
~~

t ′1

��

•

`′2

��

p′2 // •

e
��

k // •

r ′2

��

•
t ′2   

u′2��
E p //

s
��

B
t
��

M x //

u2
~~

V
id
��

I J V

where h and j are the pullback of p with u′2. We then give the factorization of pullbacks

•

h
��

α // •

p′1
��

`′1
// •

=p
��

•

h
��

j // •

p
��

• y // • u′1 // • • u′2 // •

and see the morphism of polynomials resulting from this whiskering is given by

•
s`′1

��

p′1 // •
t ′1

��
• •

f
��

yh //

α

OO

•

g

��

•

•
kp′2
//

s`′2

__

•
r ′2

??

The naturality condition then follows from seeing that, where z = u1t′1 = tu′1,

�

• FΠp′1 //

FΠp′1

##
• id //

FΣz
��
⇓ηFz

• FΠ id // •

FΣt ′1
��

•

F∆s`′1

??

F∆s
��

⇓ ⇓b ⇓ •

F∆u1
��

⇓

F∆z

??

F∆u2

##

⇓b ⇓ •

• FΠp //

F∆`′1

OO

•

FΣt

??F∆u′1

OO

⇓ •

F∆t ′1

OO

FΠ id //

F∆x
��
⇓m

•

F∆t ′1

OO

FΣid

??

⇓

•
FΠ x
// •

FΣid

OO
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is equal to the pasting, using an analogue of (5.6.2),

�

• FΠp′1 //

FΠp′1

##
• id //

FΣz
��
⇓ηFz

• FΠ id //

F∆y
��
⇓m

•

FΣt ′1
��

•

F∆s`′1

??

F∆s
��

⇓ ⇓b ⇓ •

F∆z

??

F∆u2
��

⇓ • FΠ y //

⇓b

• ⇓ •

• FΠp //

F∆`′1

OO

•

FΣt

??F∆u′1

OO

•
FΠ x
//

F∆t ′2

OO

•

FΣid

??

F∆t ′1

OO

which is equal to, where d = u2t′2e = tu′2e, noting dm = zy and u′2 = u′1y,

�

•

FΠp′1

##

F∆α
��

FΠp′1 //

⇓b−1

• id //

F∆y
��

=

• FΠ id //

F∆y
��
⇓m

•

FΣt ′1

��

• FΠh //

⇓b

• id //

=

• FΠ y //

⇓b

•

⇓

• F∆s`′2 //

F∆s

!!

⇓

F∆s`′1

==

⇓

• FΠp′2 //

F∆ f

OO

• id //

FΣd
��

F∆m

OO

⇓ηFd

• FΠk //

F∆m

OO

• FΣr ′2 //

F∆g

OO

•

⇓b ⇓ •

F∆u2
��

⇓

F∆d

??

⇓b

⇓

• FΠp //

F∆`′2

OO

•

FΣt

??F∆u′2e

OO

•

F∆t ′2e

OO

FΠ x // •

F∆r ′2

OO

FΣid

NN

finally resulting in

⇓m

•

FΠp′1

##

F∆α
��

⇓b

•

FΣt ′1

��

•

FΠ yh

##

�

•

⇓

• F∆s`′2 //

F∆s

!!

⇓

F∆s`′1

==

⇓

• FΠp′2 //

FΠkp′2

##
F∆ f

OO

• id //

FΣd
��
⇓ηFd

• FΠk // • FΣr ′2 //

F∆g

OO

•

⇓b ⇓ •

F∆u2
��

⇓

F∆d

??

⇓b

⇓

• FΠp //

F∆`′2

OO

•

FΣt

??F∆u′2e

OO

•

F∆t ′2e

OO

FΠ x // •

F∆r ′2

OO

FΣid

NN

Now, we wish to prove the naturality condition for any left whiskering of a general triangle

morphism, written P; θt . This can be written as P; (θx; R) for a simpler triangle morphism x

as above, and so we are trying to show region (1) commutes below (suppressing associators
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in C )

L (P; ((u1,1,1) ; R))
ϕ //

L(P;(θx ;R))
��

(1)

LP; L ((u1,1,1) ; R)
ϕ //

LP;L(θx ;R)
��

(2)

LP; L (u1,1,1) ; LR

LP;Lθx ;LR
��

L (P; ((u2, x,1) ; R)) ϕ
// LP; L ((u2, x,1) ; R) ϕ

// LP; L (u2, x,1) ; LR

We now note that for the commutativity of (1) it suffices to prove the outside diagram above

commutes, as both constraints ϕ are invertible in region (2) by gregariousness, and region

(2) is known to commute as naturality for right whiskerings has been shown.

As associativity of the constraints has been verified, this is the same as showing that the

outside of

L ((P; (u1,1,1)) ; R)
ϕ //

L((P;θx);R)
��

L (P; (u1,1,1)) ; LR
ϕ //

L(P;θx);LR
��

LP; L (u1,1,1) ; LR

LP;Lθx ;LR
��

L ((P; (u2, x,1)) ; R) ϕ
// L (P; (u2, x,1)) ; LR ϕ

// LP; L (u2, x,1) ; LR

commutes. But the left square commutes as naturality with respect to right whiskerings is

known for both triangle and cartesian morphisms, and the right square above commutes by

naturality of left whiskerings of θx . This gives the result.

We now have enough to complete the proof of Theorem 5.6.6.

Proof of Theorem 5.6.6. We consider the assignment of Theorem 5.6.6, i.e. composition

with the embedding (−)Σ : E → Poly (E) written as the assignment

Poly (E)
G

55

F
))

⇓ α C 7→ E
GΣ

66

FΣ
((

⇓ αΣ C

We start by proving the first universal property.

Well defined. That each icon is invertible is seen by restricting to spans and applying

Corollary 5.3.8.

Fully faithful. That the assignment α 7→ αΣ is injective follows from the necessary

commutativity of

F (s, p, t)
ϕ //

α(s,p,t)
��

F (s,1,1) ; F (1, p,1) ; F (1,1, t)
α(s,1,1);α(1,p,1);α(1,1,t)
��

G (s, p, t)
ψ
// G (s,1,1) ; G (1, p,1) ; G (1,1, t)
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where ϕ and ψ are invertible by gregariousness, and the identities α∆ f =
(
α−1
Σ f

)∗
and αΠ f =(

α−1
∆ f

)∗
forced by Lemma 5.2.21. For surjectivity, one need only check any collection α

consisting of 2-cells

αs,p,t : F (s, p, t) → G (s, p, t)

satisfying these properties defines an icon. As composition is the same in Polyc (E), the

compatibility of the collection α with the oplax constraint cells is the same calculation as in

Section 5.5. Thus one need only check local naturality of α. As local naturality with respect

to the cartesian morphisms is already known, one need only consider triangle morphisms.

But local naturality with respect to triangle morphism is almost the same calculation as in the

case of spans; this is expected as the triangle morphisms arise from the canonical embedding

(−)∆Π : Spanco (E) → Poly (E).

Essentially surjective. Given any 2-Beck pseudofunctor F : E → C we take the

gregarious functor L : Poly (E) → C from Proposition 5.6.8 and note that LΣ = F.

We now deduce the second universal property.

Restrictions. The second property is a restriction of the first. Indeed, given a pseud-

ofunctor L : Poly (E) → C the corresponding pseudofunctor LΣ : E → C satisfies the dis-

tributivity condition since LΣ is also the restriction of the pseudofunctor L : Polyc (E) → C .

Moreover, given a 2-Beck pseudofunctor F : E → C which satisfies the distributivity con-

dition, the corresponding map Poly (E) → C is pseudo since the map Polyc (E) → C (with

the same constraint data) arising from the cartesian Beck triple is pseudo.
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6
An elementary view of familial

pseudofunctors

Abstract

A classical result due to Diers shows that a presheaf F : A → Set on a category A is a
coproduct of representables precisely when each connected component of F’s category of
elements has an initial object. Most often, this condition is imposed on a presheaf of the form
B (X,T−) for a functor T : A → B, in which case this property says that T admits generic
factorisations at X , or equivalently that T has a left multiadjoint at X .

Here we generalize these results to the two dimensional setting, replacing A with an
arbitrary bicategory A , and Set with Cat. In this two dimensional setting, simply asking
that a pseudofunctor F : A → Cat be a coproduct of representables is often too strong of a
condition. Instead, we will only ask that F be a lax conical colimit of representables. This
is turn allows for the weaker notion of lax generic factorisations (and lax multiadjoints) for
pseudofunctors of bicategories T : A → B.

We also compare our lax multiadjoints to Weber’s familial 2-functors, finding our de-
scription is more general (not requiring a terminal object inA ), though essentially equivalent
when a terminal object does exist. Moreover, our description of lax generics allows for an
equivalence between lax generic factorisations and famility.

Finally, we characterize our lax multiadjoints as right lax F-adjoints followed by locally
discrete fibrations of bicategories, which in turn yields a more natural definition of parametric
right adjoint pseudofunctors.
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Contribution by the author

As the sole author, this paper is entirely my own work. This paper was submited to the arXiv
preprint server on December 23rd 2018 and will be submitted for publication in the very near
future.

6.1 Introduction

Given a category A and presheaf F : A → Set, it is often a natural question to ask whether
this presheaf is a coproduct of representable presheaves; meaning

F �
∑
m∈M

A (Pm,−)

for some set M and function P(−) : M → A. Such presheaves have a straightforward char-
acterization: a presheaf F is a coproduct of representables precisely when each connected
component of el F has an initial object. Said more explicitly, this means that for any (D,w)
in el F there exists an (A, x) and morphism k : (A, x) → (D,w) where (A, x) satisfies the
following property: for any diagram in el F as below

(C, z)

g

��
(A, x)

f
//

h
;;

(B, y)

there exists a h : (A, x) → (C, z) such that the diagram commutes, and moreover h is the
unique morphism (A, x) → (C, z) .

Of particular interest is the case where F is of the form B (X,T−) for a functor T : A→ B
between categories A and B. Here, asking that each connected component of el B (X,T−)
has an initial object amounts to asking that for any w : X → T D there exists an x : X → T A

and k : A→ D such that w = T k · x, and x is “generic” meaning that it satisfies the following
property: given any commuting square as on the left below

X z //

x
��

T B
Tg
��

X z //

x
��

T B
Tg
��

T A
T f
// TC T A

T f
//

T h

<<

TC

there exists a unique h : A → B such that T h · x = z (note that g · h = f can be shown as
a consequence). In this case we say T admits generic factorisations, and call x : X → T A a
generic morphism.

The reader will notice that the above condition onT makes nomention of terminal objects,
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and indeed there are natural examples of generic factorisations without terminal objects, such
as composition of spans in a category E with pullbacks

Span (E) (Y, Z) × Span (E) (X,Y ) → Span (E) (X, Z) .

Thus higher analogues of generic factorisations should also not require the existence of
terminal objects.

It is the purpose of this paper to generalize these notions of famility to the two dimensional
setting, replacing the categoryAwith a bicategoryA , and replacing Set with Cat. However,
this is not a straightforward generalization, as asking that a pseudofunctor F : A → Cat
be a coproduct of representables is often too strong of a condition. To see why, consider
the case where a pseudofunctor T : A → B is such that each B (X,T−) is a coproduct of
representables, meaning we have an equivalence

B (X,T−) '
∑
m∈M

A (Pm,−)

for some set M. With such an equivalence, we would then have for each 2-cell α as on the
left below

X

f

$$

g

;;⇓α T A 7→ m, Pm

f

##

g

;;⇓α A

assigned to an α : f ⇒ g as on the right above, that f � T f · δ and g � Tg · δ for the same
generic δ : X → TPm corresponding to the identity at Pm. This is an unreasonably strong
condition: we should not expect two 1-cells to factor through the same generic δ just because
there is a comparison map between them. In general, this should only be expected when the
comparison map is invertible.

To address this problem, we weaken the condition on B (X,T−), now only asking that
it be a lax conical colimit of representables. In this paper we will give a characterization
of when a pseudofunctor F : A → Cat is a lax conical colimit of representables (also
giving appropriate notions of generic object and morphism in this setting), and then go on
to specialize this characterization to the case where F is of the form B (X,T−). We will
see that in this setting, the generics are morphisms x : X → T A for which we have universal
factorisations of any 2-cell α as on the left below

X z //

x
��

T B
Tg
��

=

X z //

x
��

γ
KS T B

Tg
��

T A
T f
//

α
KS

TC T A
T f
//

T h

<<

TC
Tν
KS

into a diagram as on the right above. The factorization being universal means it must satisfy
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a number of axioms detailed later in Definition 6.5.3.
To see why admitting lax-generic factorisations is a natural condition on a pseudofunctor

T : A → B, consider the problem of calculating a left extension as below

[A op,Cat] lanT // [Bop,Cat]

A

yA

OO

T
//B

yB

OO

for a given pseudofunctor T (where A and B are small). In general this left extension
should not be expected to have a nice form. However, if T is a pseudofunctor which admits
lax-generic factorisations, so that each B (X,T−) is a lax conical colimit of representables,
then this left extension will have a simple description. An important example of this situation
is given by taking T as the canonical inclusion of a small category E into its bicategory of
spans Span (E)

[Eop,Cat] lanT //
[
Span (E)op,Cat

]
E

yE

OO

T
// Span (E)

ySpan(E)

OO

and forming the left extension lanT as above, with right adjoint resT given by restricting
along T . Now, recognizing

[
Span (E)op,Cat

]
as the 2-category of fibrations with sums (by

the universal property of spans) [9], and noting that the extension-restriction adjunction is
pseudomonadic (a consequence ofT being bijective on objects) [36], the reader will recognize
this left extension as the free functor for the pseudomonad ΣE for fibrations over E with sums.
In this way one can derive the pseudomonad for fibrations with sums, and understand why
this pseudomonad has a simple description. Note the same can be done for fibrations with
products, replacing Span (E) with Span (E)co.

6.2 Background

In this section we will recall the necessary background for this paper. We first recall the
basic theory of generic factorisations in the one-dimensional case, and then go on to recall
the basics of lax conical colimits and the Grothendieck construction, which will replace the
category of elements in the two dimensional setting.

6.2.1 Generic factorisations in one dimension.

In the simple one dimensional case, the study of familial representability and generic factori-
sations stems from the following.
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Problem 6.2.1. When is a presheaf F : A→ Set a coproduct of representables, meaning it

is equivalent to the colimit of

Mop
Pop
(−) // Aop yA // [A,Set]

for some M ∈ Set and functor P(−) : M → A? In particular, when is a functor T : A → B

such that

B (X,T−) : A→ Set

is a coproduct of representables for all X ∈ B?

The classical answer to these questions is given by Diers [14, 15] (also see [52] for a more
recent account), which we will recall after a couple of definitions.

Definition 6.2.2. Given a presheaf F : A→ Set, define the category of elements of F as the

category with objects given by pairs (A ∈ A, x ∈ F A) and morphisms (A, x) 9 (B, y) given

by maps f : A→ B such that F f (x) = y. We denote this category el F.

Definition 6.2.3. Given a presheaf F : A→ Set, we say an object (A, x) ∈ el F is generic if

for any given objects (B, y), (C, z) and morphisms f and g as below

(C, z)

g

��
(A, x)

f
//

h
;;

(B, y)

there exists a morphism h : (A, x) → (C, z) such that the diagram commutes. Moreover, we

ask that h is the only morphism (A, x) → (C, z).

Remark 6.2.4. The above may be simply stated by asking (A, x) is initial within its connected

component.

Remark 6.2.5. The reader will note that this is stronger than asking for the existence of a

unique lifting h. In fact, asking that h be the unique morphism (and not just the unique

lifting), is a condition which will turn out to often be too strong in dimension two.

The answer to the first part of Problem 6.2.1 is then the following.

Proposition 6.2.6 (Diers). Given a presheaf F : A→ Set, the following are equivalent:

1. F : A→ Set is a coproduct of representables;
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2. each connected component of el F has an initial object;

3. for any (B, y) ∈ el F there exists a generic object (A, x) and morphism f : (A, x) →

(B, y).

Remark 6.2.7. Of course (3) above is simply expanding (2) into more detail. This detailed

version will be more analogous to the characterizations we give in the higher dimensional

case.

We now consider the second part of Problem 6.2.1 concerning functors T : A→ B, first
recalling the notion of “generic morphism” (also known as “diagonally universal morphism”
in the work of Diers).

Definition 6.2.8. Given a functor T : A→ B we say that a morphism x : X → T A for some

X ∈ B and A ∈ A is generic if for any commuting square as on the left below

X z //

x
��

T B
Tg
��

X z //

x
��

T B
Tg
��

T A
T f
// TC T A

T f
//

T h

<<

TC

there exists a unique h : A→ B such that T h · x = z. That f = g · h follows as a consequence

of this property.

The following characterization generalizes T having a left adjoint.

Definition 6.2.9. We say a functor T : A→ B has a left multiadjoint if for every X ∈ B the

presheaf B (X,T−) : A→ Set is a coproduct of representables.

Applying Proposition 6.2.6 to presheaves of the form B (X,T−) for a given functor
T : A→ B, we recover the following.

Proposition 6.2.10 (Diers). Given a functor T : A→ B the following are equivalent:

1. the functor T has a left multiadjoint;

2. for every morphism f : X → TW there exists a generic morphism δ : X → T A and

morphism f : A→ W such that f = T f · δ.

Remark 6.2.11. Condition (2) is usually stated by saying “T admits generic factorisations”.
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6.2.2 Lax conical colimits and the Grothendieck construction

Here we give the required background on lax conical colimits and the Grothendieck con-
struction.

Definition 6.2.12 (lax conical colimits). Given a category A, a bicategory K , and pseudo-

functor F : A→ K , the lax colimit of F consists of an object T ∈ K , along with for every

A ∈ A a map ϕA : F A→ T and for every morphism f : A→ B in A a 2-cell

T

F A

ϕA

==

F f
//

ϕ f +3

FB

ϕB
aa

compatible with the binary and nullary constraints of F. This data, which may be seen as a

lax natural transformation ϕ : ∆1 ⇒ K (F−,T) : Aop → K , is required to be universal in

that
K (T,S) → [Aop,Cat] (∆1,K (F−,S))

α 7→ K (F−, α) · ϕ

defines an equivalence (where [Aop,Cat] is the 2-category of pseudofunctors, lax natural

transformations, and modifications).

Remark 6.2.13. It is worth noting that the above definition can be used when F : A→ K is

only required to be a lax functor. Also, one may note that lax conical colimits can be seen as

an instance of weighted bi-colimits (though we will not use this).

When K = Cat, such a lax colimit can easily be evaluated by the so called Grothendieck
construction. We describe this construction below (though we will be more general by
replacing the category A with a bicategory A ).

Definition 6.2.14 (Grothendieck construction). Given a bicategory A and pseudofunctor

F : A → Cat, the category of elements of F, denoted by el F or by
ˆ A∈A

lax
F A

is the bicategory with:

Objects An object is a pair of the form (A ∈ A , x ∈ F A);

Morphisms A morphism (A, x) 9 (B, y) is a morphism f : A → B in A and a morphism

α : F f (x) → y in FB;
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2-cells A 2-cell ( f , α) ⇒ (g, β) : (A, x)9 (B, y) is a 2-cell ν : f ⇒ g in A such that

F f (x)
(Fν)x // Fg (x)

β // y

is equal to α.

The bicategory
´ A∈A
lax F A with its canonical projection to A is called the Grothendieck

construction of F, especially in the case where A is a 1-category.

Remark 6.2.15. When A is a category, the notation
´ A∈A
lax F A is justified as the category of

elements can be written as a lax colimit as in Definition 6.2.12. In the case where A is a

bicategory, el F is an appropriate tri-colimit of F, and the notation is still justified (though in

a more technical sense that we will not burden this paper with; see [4]).

Taking [A ,Cat] as the 2-category of pseudofunctors A → Cat, pseudonatural transfor-
mations, and modifications, we are now ready to state the main goal of this paper, which is
to answer the following:

Problem 6.2.16. When is a pseudofunctor F : A → Cat a lax conical colimit of representa-

bles, meaning it is equivalent to the lax colimit of

Mop
Pop
(−) // A op yA // [A ,Cat]

for someM ∈ Cat and pseudofunctor P(−) : M → A ? In particular, when is a pseudofunctor

T : A → B such that

B (X,T−) : A → Cat

is a lax conical colimit of representables for all X ∈ B (such that the construction of these

lax colimits is natural in X in an appropriate sense)1?

Note that given an F arising as in the first part of this problem, we may write

F '
ˆ m∈M

lax
A (Pm,−)

as the analogue of the usual notation F �
∑

m∈MA (Pm,−) in one dimension. Moreover, it
is easy to see

´ m∈M
lax A (Pm,−) is evaluated as the pseudofunctor A → Cat sending each

T ∈ A to the category with objects given by pairs (m ∈ M, f : Pm → T) and morphisms

1An extra condition ensuring naturality in X is not required in the simpler dimension one case.
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given by morphisms λ inM and 2-cells α in A as below

(m ∈ M, f : Pm → T)

(λ,α)

��

m

λ

��

Pm

Pλ

��

f

  
: α�� T .

(n ∈ M,g : Pn → T) n Pn

g

>>

In the next section we will characterize when F : A → Cat is a lax conical colimit of
representables in terms of properties satisfied by el F, using the fact that for such an F we
know el F has the form

el F '
ˆ A∈A

lax

ˆ m∈M

lax
A (Pm, A) '

ˆ m∈M

lax

ˆ A∈A

lax
A (Pm, A) .

Finally, we recall the notion of a fibration, which characterizes functors p : F → E (with
E a 1-category) which arise from a pseudofunctor F : Eop → Cat via the Grothendieck
construction (here we mean the dual version of Definition 6.2.14 using oplax colimits in
place of lax colimits).

Definition 6.2.17. A fibration is a functor p : F → E such that for anymorphism f : X → pB

in E there exists a morphism φ : f ∗B → B in F such that p (φ) = f and for any ψ : A→ B

and r : pA→ X rendering commutative the right diagram below

f ∗B
φ // B X

f // pB

A
ψ

>>

r

OO

pA
pψ

>>

r

OO

there exists a unique r : A → f ∗B such that p (r) = r and the left diagram commutes.

Moreover, we say a morphism φ : f ∗B → B in F is cartesian if the above property is

satisfied when f = p (φ).

Remark 6.2.18. Dually, we have an equivalence between pseudofunctors F : E → Cat and

opfibrations over E , with the equivalence given byDefinition 6.2.14. It is worth noting that for

such a pseudofunctor F : E → Cat, the morphisms of the form ( f , α) : (A, x) → (B, y) with

α invertible are the opcartesian arrows of el F with respect to the corresponding opfibration

el F → E .
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6.3 Lax generics in bicategories of elements

Before we can describe lax-generic objects and morphisms in bicategories of elements, we
will have to introduce the language needed to describe them. In particular, we define “mixed
left liftings” which are similar to left liftings, except that the induced arrow’s direction is
reversed. Note that basic properties for left liftings, such as the pasting lemma, or the lifting
through an identity being itself, do not hold in general for mixed left liftings.

Definition 6.3.1 (mixed left lifting property). Let C be a bicategory. We say a diagram as

on the left below

C
g

��

C
g

��
A

f
//

h
??

B
ν
KS

A
f
//

k
??

B
ψ
KS

exhibits (h, ν) as the mixed left lifting of f through g if for any diagram as on the right above,

there exists a unique 2-cell λ : k ⇒ h such that

C
g

��
=

C
g

��
A

f
//

k

??
h ++

B
ψ
KS

λ
KS

A
f
//

h
??

B .
ν
KS

Moreover, we say such a lifting (h, ν) is strong if h is sub-terminal in C (A,C).

Remark 6.3.2. It is clear that strong mixed liftings are unique up to unique isomorphism.

Indeed, it is this stronger notion that will be used though this section.

The following lemma shows that an arrow h which arises as a strong mixed lifting has the
property that the strong mixed lifting of h through the identity is itself.

Lemma 6.3.3. Suppose the left diagram below

C
g

��

C
1C
��

A
f
//

h
??

B
ν
KS

A
h
//

h
??

C
id
KS

exhibits (h, ν) as the strong mixed lifting of f through g. Then the right diagram above

exhibits (h, id) as the strong mixed lifting of h through 1C .

Proof. Given any k : A → C and ζ : h ⇒ k we have by universality of (h, ν) an induced

λ : k ⇒ h such that
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C
g

��
=

C
g

��
A

f
//

h

??k
//

h **

B
ν
KSζ

[cλ

[c

A
f
//

h
??

B ;
ν
KS

that is, since h is subterminal, a unique induced λ : k ⇒ h such that λζ is the identity. This

proves the result.

We now have the required theory to define notions of lax-generic object and lax-generic
morphism in bicategories of elements.

Definition 6.3.4 (lax-generic objects). Let A be a bicategory and F : A → Cat be a

pseudofunctor. We say that an object (A, x) in el F is lax-generic if:

1. for any (B, y), (C, z), ( f , α) and (g, β) as below with β invertible

(C, z)

(g,β)
��

(A, x)
( f ,α)

//

(h,γ)
;;

(B, y)
ν
KS

there exists a strong mixed left lifting (h, γ) : (A, x) → (C, z) exhibited by a 2-cell

ν : f ⇒ gh;

2. if α is invertible above, then both γ and ν are also invertible.

Remark 6.3.5. If we replace the isomorphism β with an identity above the definition remains

equivalent.

Definition 6.3.6 (generic morphisms). Let A be a bicategory and F : A → Cat be a

pseudofunctor, and suppose that (A, x) is a lax-generic object in el F. We say that a morphism

(`, φ) : (A, x) → (D,w) out of (A, x) in el F is generic if the diagram below

(D,w)

(1D,id)
��

(A, x)
(`,φ)

//

(`,φ)
::

(D,w)
id
KS

exhibits (`, φ) as the strong mixed left lifting of (`, φ) through (1D, id).

Remark 6.3.7. It is an easy consequence of the universal property that every 2-cell out of

(`, φ) is a section (in a unique way); and consequently that any 2-cell between generic 1-cells
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is invertible. Moreover, as (`, φ) is sub-terminal within its hom-category it follows that any

isomorphism between generic 1-cells is unique. It follows that if (A, x) and (B, y) are generic

objects, then the category of generic morphisms (A, x) → (B, y) is equivalent to a discrete

category (a set).

Remark 6.3.8. It is worth noting that for any generic object (A, x) and strong mixed lifting as

below

(C, z)

(g,β)
��

(A, x)
( f ,α)

//

(h,γ)
;;

(B, y)
ν
KS

with β invertible, the induced morphism (h, γ) is a generic morphism as a consequence of

Lemma 6.3.3.

The following proposition is a step towards characterizing when an F : A → Cat is a lax
conical colimit of representables.

Proposition 6.3.9. Let A be a bicategory and F : A → Cat be a pseudofunctor. Suppose

that generic morphisms between generic objects compose to generic morphisms. Define A F
g

as the locally full sub-bicategory of el F consisting of lax-generic objects and 1-cells. Define

M as the category consisting of lax-generic objects in el F and representatives of isomorphism

classes of generic 1-cells between them. Observe A F
g ' M. Take P(−) : M → A as

the assignment taking a generic object (A, x) to A and a representative generic morphism

between generic objects (s, φ) : (A, x) → (B, y) to s : A→ B. Then P(−) : M → A defines a

pseudofunctor, and for every T ∈ A there exists fully faithful functors

ΛT :
ˆ m∈M

lax
A (Pm,T) → FT

pseudo-natural in T ∈ A .

Proof. Firstly note that P(−) : M → A defines a pseudofunctor since it may be written

as the composite M → A F
g → el F → A . We may then define ΛT on objects by the

assignment (A, x, f ) 7→ F f (x), and on morphisms by the assignment (suppressing the
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pseudofunctoriality constraints of F)

(A, x, f : A→ T)

(h,γ,ν)

��

A

h

��

Fh (x)

γ

��

A

h

��

f

��

F f (x)

(Fν)x
��

ν�� T 7→ FgFh (x)

Fg(γ)
��

(B, y,g : B→ T) B y B
g

@@

Fg (y) .

(6.3.1)

Observe that we have the following conditions satisfied.

Functoriality. Given another

(B, y,g : B→ T)

(k ,ζ ,µ)

��

B

k

��

Fk (y)

ζ

��

B

k

��

g

��

Fg (y)

(Fµ)y
��

µ�� T 7→ FqFk (y)

Fq(ζ)
��

(C, z,q : A→ T) C z C
q

@@

Fq (z)

the commutativity of

F f (x)
(Fν)x // FgFh (x)

Fg(γ) //

(Fµ)Fh(x) ''

Fg (y)
(Fµ)y // FqFk (y)

Fq(ζ) // Fq (z)

FqFkFh (x)
FqFk(γ)

77

by naturality of Fµ exhibits binary functoriality. It is trivial that identities are preserved.

Fullness. Given any (A, x, f : A→ T) and (B, y,g : B→ T)with a φ : F f (x) → Fg (y),

we may construct the universal diagram

(B, y)

(g,id)
��

(A, x)
( f ,φ)

//

(h,γ)
99

(B,Fg (y))
ν
KS

using lax-genericity of (A, x). Now (h, γ) is generic by Lemma 6.3.3, and without loss of

generality we can assume it is a representative generic. Then (h, γ, ν) is assigned to φ.

Faithfulness. Given another triple (k,ψ,ω) which also maps to φ, we have the diagram

(B, y)

(g,id)
��

(A, x)
( f ,φ)

//

(k,ψ)
99

(B,Fg (y))
ω
KS
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But as (k,ψ) and (h, γ) are both generics, the induced (k,ψ) ⇒ (h, γ) arising from universality

of (h, γ) must be invertible. Also, as they are both representative, they must be equal. As the

identity must then be the induced morphism we conclude k = h, ψ = γ and ω = ν.

Pseudo-naturality. Clearly given any 1-cell α : T → S in A the squares

(A, x, f : A→ T)

ΛT

��

α·(−) // (A, x, α f : A→ S)

ΛS

��
F f (x)

Fα·(−)
// F (α f ) (x)

commute up to pseudo-functoriality constraints of F, and the above squares satisfy the

required naturality, nullary and binary coherence conditions as a consequence of the corre-

sponding pseudo-functoriality coherence conditions.

Remark 6.3.10. Given any (h, γ, ν) as in (6.3.1) we also have

(A, x, f : A→ T)

(id,id,ν)

��

A

id

��

x

id

��

A

id

��

f

��

F f (x)

(Fν)x
��

ν�� T 7→ Fgh (x)

Fgh(id)
��

(A, x,gh : A→ T) A x B
gh

@@

Fgh (x)

Remark 6.3.11. Each ΛT is well defined, but not necessarily fully faithful, taking M as the

category given by el F with no 2-cells (after replacing the bicategory el F with an equivalent

2-category).

We can now characterize precisely when a pseudofunctor F : A → Cat is a lax conical
colimit of representables.

Theorem 6.3.12. Let A be a bicategory and F : A → Cat be a pseudofunctor. Then the

following are equivalent:

1. the pseudofunctor F : A → Cat is a lax conical colimit of representables;

2. the following conditions hold:

(a) for every object (B, y) in el F there exists a lax-generic object (A, x) andmorphism

( f , α) : (A, x)9 (B, y) with α invertible;

(b) generic morphisms between lax-generic objects compose to generic morphisms.
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Proof. The direction (2) ⇒ (1) is clear from Proposition 6.3.9 as condition (a) means that for

any B ∈ A and y ∈ FB we have a lax generic (A, x) and morphism ( f , α) : (A, x) 9 (B, y)

in el F with α invertible, so that

ΛB (A, x, f : A→ B) = F f (x)
α
→ y

which witnesses the essential surjectivity of ΛB at y ∈ FB.

For (1) ⇒ (2), suppose we are given a category M and pseudofunctor P(−) : M → A

(assuming without loss of generality that P(−) strictly preserves identities) such that F '´ m∈M
lax A (Pm,−), and consequently

el F '
ˆ m∈M

lax
el A (Pm,−) .

This exhibits el F as the bicategory with:

Objects An object is a triple of the form (m ∈ M, A ∈ A , x : Pm → A);

Morphisms Themorphisms (m, A, x)9 (n,B, y) are triples comprising amorphism u : m→

n inM, a morphism f : A→ B in A and a 2-cell

Pm
x //

Pu

��
θ��

A

f
��

Pn y
// B

in A ;

2-cell A 2-cell λ : (u, f , θ) ⇒ (u,g, φ) : (m, A, x)9 (n,B, y) is a 2-cell λ : f ⇒ g in A such

that

Pm
x //

Pu

��
θ��

A

f
��

=

Pm
x //

Pu

��
φ
{�

A
g

��
f
��λ
ks

Pn y
// B Pn y

// B .

Existence of expected lax-generics. We first show that each

(m ∈ M,Pm ∈ A , id : Pm → Pm)
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in el F is lax-generic. Consider a diagram

(n,C, z)

(id,g,id)
��

(m,Pm, id)
(u, f ,α)

//

(u,h,γ)
88

(n,B, y)
ν
KS

where (u, f , α) and (id,g, id) are respectively

Pm
id //

Pu

��
α��

Pm

f
��

Pn
z //

Pid
��

id��

C
g

��
Pn y

// B Pn y
// B

then we recover a canonical (u, h, γ) as

Pm
id //

Pu

��
id��

Pm

z·Pu

��
Pn z

// C

(6.3.2)

with the 2-cell ν : f ⇒ gh = gzPu = yPu given as α. Now, for universality, suppose we have

a (u, k, φ) given as

Pm
id //

Pu

��
φ��

Pm

k
��

Pn z
// C

with a 2-cell ψ : f ⇒ gk such that

Pm
id //

Pu

��

α��

Pm

f

��

=

Pm
id //

Pu

��
φ��

Pm

k
��

f

��

Pn
z //

Pid
��

id��

C
g

��

ψ
ks

Pn y
// B Pn y

// B

(6.3.3)

Then we can take our induced map λ : k ⇒ h as φ : k ⇒ z · Pu. It is trivial that

Pm
id //

Pu

��
φ��

Pm

k
��

=

Pm
id //

Pu

��
id��

Pm

z·Pu

��
k

ttPn z
// C Pn z

// C
λ
ks

(6.3.4)

so that λ is a 2-cell (u, k, φ) ⇒ (u, h, γ). Also, from (6.3.4) it is clear that λ = φ is the

only 2-cell (u, k, φ) ⇒ (u, h, γ), meaning (u, h, γ) is sub-terminal within its hom-category.
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Moreover, (6.3.3) shows ψ pasted with λ = φ is α = ν.

Classification of lax-generics. We now show that an object

(m ∈ M, A ∈ A , x : Pm → A)

in el F is lax-generic if and only if x is an equivalence. It is clear the above argument

generalizes if one replaces (m,Pm, id) with (m, A, x) where x is an equivalence. Conversely,

if (m, A, x) is a generic object then we may construct the universal diagram

(m,Pm, id)

(1,x,id)
��

(m, A, x)
(1,1,id)

//

(1,x∗,γ)
88

(m, A, x)
ν
KS

noting that ν and γ are both invertible. In fact, this gives an adjoint equivalence. That ν is a

2-cell says

Pm
x //

id

��

id��

A

id

��

Pm
x //

id
��

γ{�

A

x∗
��

id

��

= Pm

id
��

id
//

id
{�

Pm

x
��

ν
ks

Pm x
// A Pm x

// A

which gives one triangle identity. For the other identity, note that 2-cells ξ : (1, x∗xx∗, γγ) ⇒

(1, x∗, γ), meaning 2-cells ξ such that

Pm
x //

id
��

γγ{�

A

x∗xx∗
��

Pm
x //

id
��

γ{�

A

x∗
��

x∗xx∗

ww
ξ
ks

Pm id
// Pm

=

Pm id
// A

(6.3.5)

are unique, as (1, x∗, γ) is sub-terminal within its hom-category. But we may take ξ to be

γx∗ : (1, x∗xx∗, γγ) ⇒ (1, x∗, γ)

or

x∗ν−1 : (1, x∗xx∗, γγ) ⇒ (1, x∗, γ)

which both satisfy (6.3.5). Thus γx∗ = x∗ν−1 and so γx∗ · x∗ν = id giving the other triangle

identity.

Existence of lax-generic factorisations . Suppose we are given a (n,B, y : Pn → B)
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in el F. We have the map (n,Pn, id : Pn → Pn)9 (n,B, y : Pn → B) given as

Pn
id //

Pid
��

id��

Pn

y

��
Pn y

// B

which is of the required form since the 2-cell involved is invertible.

Generic morphisms form a category. Before showing that generic morphisms form a

category, we will need a characterization of them. Now, specializing the earlier argument of

“existence of expected lax-generics” to the case when g is the identity (though generalizing

the identity on Pm to an equivalence x : Pm → A) we see that if (m, A, x) is generic (i.e. x is

an equivalence)

(n,C, z)

(id,id,id)
��

(m, A, x)
(u, f ,α)

//

(u,h,γ)
99

(n,B, y)
ν
KS

the lifting (u, h, γ) above, constructed as in (6.3.2), has γ invertible. It is also clear that if

(u, f , α) is such that α is invertible, then the lifting (u, h, γ) through (id, id, id) constructed as

in (6.3.2) is given by (u, f , α).

This shows that the generic morphisms between generic objects are diagrams of the form

Pm
x //

Pu

��
α��

A

f
��

Pn y
// B

with α invertible, and it is clear that these are closed under composition and that identities

are such diagrams.

Remark 6.3.13. When F : A → Cat is a lax conical colimit of representables, and from a

generic object (A, x) we construct the universal diagram

(C, z)

(g,β)
��

(A, x)
( f ,α)

//

(h,γ)
;;

(B, y)
ν
KS

the 2-cell ν is the unique 2-cell ( f , α) ⇒ (g, β) · (h, γ). This is since for such an F, generic

morphisms compose and any map (g, β) with β invertible is generic. Sub-terminality of
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(g, β) · (h, γ) then gives uniqueness.

Remark 6.3.14. When F : A → Cat is a lax conical colimit of representables, written

F '
´ m∈M
lax A , then M is equivalent to the category of strict2 lax-generic objects (A, x) and

representative generic morphisms in el F. This is a consequence of the characterization of

lax-generic objects and morphisms given in the above proof of Theorem 6.3.12. Moreover,

as Theorem 6.3.12 constructs M as the the category of lax-generic objects and morphisms,

we conclude this non-strict choice ofM is also equivalent.

It is a natural question to ask if Theorem 6.3.12 has a variant which does not require
generic morphisms to compose; and it turns out that this is the case. Given a pseudofunctor
F : A → Cat one can again defineM as the category containing generic objects (A, x) ∈ el F

and representative generic morphisms between them, but now defining the composite of two
generic morphisms

(A, x)
(h,γ) // (B, y)

(k,ζ) // (C, z)

to be the mixed lifting through the identity as below.

(C, z)

(1,id)
��

(A, x)
(h,γ)

//

(`,φ)
55

(B, y)
(k,ζ)

// (C, z)

λ
KS

Now, it is not hard to verify that this situation of generics not directly composing corre-
sponds to the following weaker notion of famility.

Definition 6.3.15. A pseudofunctor F : A → Cat is a weak lax conical colimit of repre-

sentables if there exists a category M and normal3 lax functor P(−) : M → A such that

F '
´ m∈M
lax A (Pm,−).

Meaning that we find the following variant of Theorem 6.3.12.

Theorem 6.3.16. Let A be a bicategory and F : A → Cat be a pseudofunctor. Then the

following are equivalent:

1. the pseudofunctor F : A → Cat is a weak lax conical colimit of representables;

2. for every object (B, y) in el F there exists a lax-generic object (A, x) and morphism

( f , α) : (A, x)9 (B, y) with α invertible.

2Strict here means if both α and β are identities, then both ν and γ are identities.
3By normal we mean the unit constraints are required to be invertible.
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Remark 6.3.17. Note that in practice, we will usually want the reindexing P(−) : M → A to

be a pseudofunctor. Indeed, P(−) is to be a pseudofunctor in all of the examples of Section

6.7.

The following simple lemmata concern uniqueness of generic factorisations, with a
generic factorisation in this abstract setting being an opcartesian map ( f , α) out of a lax-
generic object (A, x).

Lemma 6.3.18. A morphism (h, γ) : (A, x) → (B, y) is an equivalence if and only if h : A→

B is an equivalence and γ is invertible.

Proof. Given that (h, γ) has a pseudo-inverse (k,ψ) : (B, y) → (A, x) it is clear that h has

pseudo-inverse k and that γ : Fh (x) → y has pseudo-inverse

y
� // FhFk (y)

Fh(ψ) // Fh (x)

Conversely, given a (h, γ) : (A, x) → (B, y) such that h has pseudo-inverse k (wemay upgrade

this equivalence to an adjoint equivalence) and γ is invertible, we have a pseudo-inverse

(k,ψ) : (B, y) → (A, x) where ψ : Fk (y) → x is given by

Fk (y)
Fk(γ−1)// FkFh (x) � // x

It is then straightforward to verify (h, γ) is pseudo-inverse to (k,ψ).

Whilst generic factorisations are not unique in the sense one may initially expect; they
are unique in another sense.

Proposition 6.3.19. Given two generic factorisations (opcartesian maps out of a generic ob-

ject) ( f , α) : (A, x) → (C, z)and (g, β) : (B, y) → (C, z) there exists equivalence (h, γ) : (A, x) →

(B, y), unique up to unique isomorphism, such that

(A, x)
(h,γ) // (B, y)

(g,β) // (C, z)

is isomorphic to ( f , α).

Proof. We may form the mixed lifting diagram

(B, y)

(g,β)
��

(A, x)
( f ,α)

//

(h,γ)
;;

(C, z)
ν
KS
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where (h, γ) is necessarily generic and ν and γ invertible. Lifting in the other direction yields

the pseudo-inverse (k,ψ).

Lemma 6.3.20. Every opcartesian map between two generic objects (h, γ) : (A, x)9 (C, z)

is an equivalence.

Proof. Given such a (h, γ) we may form a (k,ψ) as on the left below

(A, x)

(h,γ)
��

(C, z)

(k,ψ)
��

(C, z)
(1,id)

//

(k,ψ)
;;

(C, z)
ν
KS

(A, x)
(1,id)

//

(h′,γ′)
;;

(A, x)
µ
KS

and one can then form a (h′, γ′) as on the right above. As ν and µ have inverses

(h′, γ′) � (h, γ) (k,ψ) (h′, γ′) � (h, γ)

so (h, γ) has pseudo-inverse (k,ψ).

6.4 An alternative characterization

In Section 6.3 we gave a characterization of when a pseudofunctor F : A → Cat is a lax
conical colimit of representables in terms of lax-generic objects and morphisms. However, it
is natural to ask if we can also give a characterization in terms of what we will call “pseudo-
generic” factorisations. Here we address this problem in the case where A is a 1-category
E , giving a simple description of when a pseudofunctor F : E → Cat is a lax conical colimit
of representables.

These pseudo-generics are to be defined in terms of a pseudo-lifting property which we
now recall.

Definition 6.4.1 (pseudo-lifting property). Let C be a bicategory. We say a diagram as on

the left below

C
g

��

C
g

��
A

f
//

h
??

B
ν
KS

A
f
//

k
??

B
ψ
KS

with ν invertible exhibits (h, ν) as the pseudo lifting of f through g if for any diagram as on

the right above with ψ invertible, there exists a unique invertible 2-cell λ : k ⇒ h such that
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C
g

��
=

C
g

��
A

f
//

k

??
h ++

B
ψ
KS

λ
KS

A
f
//

h
??

B
ν
KS

Moreover, we say such a lifting (h, ν) is strong if h is sub-terminal in C (A,C).

Remark 6.4.2. Note that when A is a 1-category E , the category of elements el F is a

1-category, and so the mixed and pseudo lifting properties both become the usual one-

dimensional lifting properties.

Definition 6.4.3 (pseudo-generic objects). Let A be a bicategory and F : A → Cat be a

pseudofunctor. We say that an object (A, x) in el F is pseudo-generic if:

1. for any (B, y), (C, z), ( f , α) and (g, β) as below with both α and β invertible

(C, z)

(g,β)
��

(A, x)
( f ,α)

//

(h,γ)
;;

(B, y)
ν
KS

there exists a strong pseudo lifting (h, γ) : (A, x) → (C, z) exhibited by an invertible

2-cell ν : f ⇒ gh;

2. every pseudo-lifting (h, γ) as above has γ invertible.4

We can now give a simple characterization of when a pseudofunctor F : E → Cat is a
lax conical colimit of representables.

Remark 6.4.4. For proving the below theorem, simplified descriptions of pseudo-genericity

would suffice as it concerns 1-categories E (for example every morphism becomes sub-

terminal within its hom-category in this case). However, we will leave the descriptions in full

generality above in case it is possible to generalize the below theorem to the bicategorical

case.

Theorem 6.4.5. Let E be a category and F : E → Cat be a pseudofunctor. Then the following

are equivalent:

1. the pseudofunctor F : E → Cat is a lax conical colimit of representables;

4One could omit this condition and still prove Theorem 6.4.5, however, we give it here as it forces the
lax-generic objects and pseudo-generic objects to coincide when F : E → Cat is a lax conical colimit of
representables.
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2. for every object (B, y) in el F there exists a lax-generic object (A, x) and morphism

( f , α) : (A, x)9 (B, y) with α invertible;

3. the following conditions hold:

(a) for every object (B, y) in el F there exists a pseudo-generic object (A, x) and

morphism ( f , α) : (A, x)9 (B, y) with α invertible;

(b) for every morphism f : X → Y in E the functor F f : FX → FY is a fibration.

Moreover, if any of the above equivalent conditions hold we then have

F '
ˆ m∈M

lax
E (Pm,−)

where P(−) : M → E is the canonical projection of the categoryM with:

Objects An object is a pseudo-generic (A, x) in el F;

Morphisms A morphism (A, x) 9 (B, y) is a morphism f : A → B in E equipped with a

morphism α : F f (x) → y in FB.

Proof. Firstly note (1) ⇔ (2) by Theorem 6.3.12. For (1,2) ⇒ (3), suppose that F is a

lax conical colimit of representables, i.e. that there exists a category M and pseudofunctor

P(−) : M → E and equivalences

FT '
ˆ m∈M

lax
E (Pm,T)

pseudonatural in T ∈ E . Then as every lax-generic object (A, x) is also pseudo-generic, we

have the pseudo-generic factorisations of condition (a). Now consider a morphism f : X → Y

in E and the functor F f : FX → FY . We know that F f : FX → FY is equivalent to (via an

appropriate pseudo-naturality square) the functor

f ◦ (−) :
ˆ m∈M

lax
E (Pm,X) →

ˆ m∈M

lax
E (Pm,Y )

and this functor is a fibration since for any λ : (m,u) ⇒ f ◦ (n, v) as on the right below

m

λ

��

Pm

Pλ

��

v·Pλ
%%

m

λ

��

Pm

Pλ

��

u
$$

X 7→ Y

n Pn
v

99

n Pn
f v

::
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we recover the f ◦(−)-cartesian lift on the left above. To see this lift is cartesian, and in fact that

every morphism in
´ m∈M
lax E (Pm,X) is f ◦(−)-cartesian, note that given any λ : (m,u) ⇒ (n, v)

as on the left below and ξ : (r, f w) ⇒ (m, f u) as on the top right below

r

ξ

��

Pr

Pξ
��

w

��

r

ξ

��

Pr

Pξ
��

f w

��
m

λ

��

Pm

Pλ
��

u // X 7→ m

λ

��

Pm

Pλ
��

f u // Y

n Pn

v

@@

n Pn

f v

AA

(6.4.1)

for which the right of (6.4.1) can be seen as the result of some assignation

r

φ

��

Pm

Pφ

��

w

%%

r

φ

��

Pr

Pφ

��

f w

$$
X 7→ Y

n Pn
v

99

n Pn
f v

::

the induced unique lift ξ : (r,w) ⇒ (m,u) given on the left in (6.4.1) is well defined since

u · Pξ = v · Pλ · Pξ = v · Pφ = w.

(3) ⇒ (1) : DefineM as above, i.e. the full sub-category of el F on the pseudo-generic

objects. Now,
´ m∈M
lax E (Pm,T) is the category consisting of:

Objects An object is a pair of the form (A ∈ E, x ∈ F A, f : A→ T)

Morphisms A morphism (A, x, f : A→ T) 9 (B, y,g : B→ T) is a morphism α : A → B

in E rendering commutative

A f
&&

α
��

T

B g

88

equipped with a morphism ξ : Fα (x) → y in FB.

It suffices to check that the functor
´ m∈M
lax E (Pm,Y ) → FT defined by the assignation

(A, x, f ) 7→ F f (x) on objects, and by

(A, x, f )

(α,ξ)

��

A

α

��

Fα (x)

ξ

��

F f (x)

Fg(ξ)

��

: 7→

(B, y,g) B y Fg (y)
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onmorphisms (suppressing pseudo-functoriality constraints) is an equivalence. Functoriality

is clear, and so it suffices to check the following.

Essentially Surjective. For any t ∈ FT we have (T, t) ∈ el F, and thus by (a) a

pseudo-generic (A, x) and morphism (k, φ) : (A, x)9 (Y, t) with φ invertible. Now note that

(A, x, k) 7→ Fk (x) � t as required.

Full. Suppose we are given a morphism ζ : F f (x) → Fg (y) in FT . We may then take

the Fg-cartesian lift ζ : ζ∗y → y and construct the universal diagram

(B, ζ∗y)

(g,id)
��

(A, x)
( f ,id)

//

(h,γ)
88

(T,F f (x))
ν
KS

with γ invertible. Note that ν is necessarily an identity and so Fg (γ) is the identity (suppress-

ing pseudo-functoriality constraints). It then suffices to observe that we have the assignation

A

h

��

Fh (x)
γ��

F f (x)

ζ

��

ζ∗y
ζ
��

7→

B y Fg (y)

Faithful. Now, given another

A

k

��

Fk (x)

φ

��

F f (x)

ζ

��

7→

B y Fg (y)

mapping to ζ , we have Fg (φ) = ζ and thus a factorization of φ through the cartesian lift

Fk (x) λ //

φ

99ζ∗y
ζ // y

with Fg (λ) the identity. Thus we have a diagram

(B, ζ∗y)

(g,id)
��

(A, x)
( f ,id)

//

(k,λ)
88

(T,F f (x))
id
KS
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and so (k, λ) = (h, γ) by uniqueness. Hence (k, φ) is equal to
(
h, ζγ

)
from earlier.

6.5 Lax generic factorisations and lax multiadjoints

Here we specialize the results of the previous section to the case when F : A → Cat is of
the form B (X,T−) for a pseudofunctor T : A → B. The following is a generalization of
“left multiadjoint” in Definition 6.2.9 to the case of a pseudofunctor T : A → B.

Definition 6.5.1. Let A and B be bicategories and let T : A → B be a pseudofunctor. We

say that T has a left lax multiadjoint if there exists a pseudofunctorM(−) : Bop → Cat and a

pseudofunctor P :
´ X∈B
lax MX → A such that

B (X,T−) '
ˆ m∈MX

lax
A

(
PX

m,−
)

for all X ∈ B, where each PX
(−)

: MX → A is obtained fromP by includingMX →
´ X∈B
lax MX .

Remark 6.5.2. Onemightwonderwhywedid not simply defineT to have a left laxmultiadjoint

when every

B (X,T−) : A → Cat

is a lax conical colimit of representables. The reason is that this condition would only be

sufficient to forceP (whichmay be constructed from this condition) to be a normal lax functor.

Before applying Theorem 6.3.12 to bi-presheaves of the formB (X,T−), we will need the
appropriate notions of genericity with respect to a pseudofunctorT : A → B. The following
definitions are recovered by specializing the definitions of genericity in the last section to the
case when F : A → Cat is of the form B (X,T−) for a pseudofunctor T : A → B.

Definition 6.5.3. Let A and B be bicategories and let T : A → B be a pseudofunctor.

Then a 1-cell δ : X → T A is lax-generic if for any diagram and 2-cell α as on the left below

X z //

δ
��

T B
Tg
��

=

X z //

δ
��

γ
KS T B

Tg
��

T A
T f
//

α
KS

TC T A
T f
//

T h

<<

TC
Tν
KS

there exists a diagram and 2-cells ν and γ as on the right above (suppressing the constraint

Tg · T h � Tgh) which is equal to α, such that:
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1. the top triangle is “sub-terminal” meaning that given any 2-cells ω,τ : k ⇒ h as below

X z //

δ
��

γ
KS

Tω
[c

T B

=

X z //

δ
��

γ
KS

Tτ
[c

T B

T A

T h

<<

T k

MM

T A

T h

<<

T k

MM

we have ω = τ;

2. given any other diagram

X z //

δ
��

φ
KS T B

Tg
��

T A
T f
//

T k

<<

TC
Tψ
KS

equal to α, there exists a (necessarily unique) 2-cell ψ : k ⇒ h such that

X z //

δ
��

φ
KS T B

=

X z //

δ
��

γ
KS

Tψ

[c

T B

T A

T k

<<

T A

T h

<<

T k

MM

and

B
g

��
=

B
g

��
A

f
//

k

??h --

C
ψ
KS

ψ
KS

A
f
//

h

??

C ;
ν
KS

3. if α is invertible, then both γ and ν are invertible.

We call a factorization

X z //

δ
��

T B
Tg
��

=

X z //

δ
��

γ
KS T B

Tg
��

T A
T f
//

α
KS

TC T A
T f
//

T h

<<

TC
Tν
KS

the universal factorization of α if both (1) and (2) are satisfied above.

Earlier in Definition 6.3.6 we defined a 1-cell to be generic when it satisfied a certain
strong mixed lifting property. Translating this definition into the context of a pseudofunctor
T : A → B results in the below definition.

Definition 6.5.4. Let A and B be bicategories and let T : A → B be a pseudofunctor. Let
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δ : X → T A be a generic 1-cell. Then a pair (h, γ) of the form

T A

T h

��

X

δ 99

z %%
γ{�

T B

is generic if:

1. the diagram is “sub-terminal” meaning that given any 2-cells ω,τ : k ⇒ h as below

T A

T h

��

T k

{{

T A

T h

��

T k

{{

X

δ 99

z %%
γ{� Tω

ks = X

δ 99

z %%
γ{� Tτ

ks

T B T B

we have ω = τ;

2. given any other diagram

T A

T k

��

X

δ 99

z %%
φ
{�

T B

and λ : h⇒ k such that

T A

T h

��

T A

T k

��

T h

{{

X

δ 99

z %%
γ{� = X

δ 99

z %%
φ
{�

Tλ
ks

T B T B

there exists a (necessarily unique) λ∗ : k ⇒ h such that

T A

T k

��

T A

T h

��

T k

{{

X

δ 99

z %%
φ
{� = X

δ 99

z %%
γ{� Tλ∗

ks

T B T B

and λ∗λ = idh.

From this definition, the following is clear.
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Corollary 6.5.5. For any universal factorization

X z //

δ
��

T B
Tg
��

=

X z //

δ
��

γ
KS T B

Tg
��

T A
T f
//

α
KS

TC T A
T f
//

T h

<<

TC
Tν
KS

it follows that (h, γ) is a generic 2-cell.

Before proving the main theorem of this section, it is worth defining the spectrum of a
pseudofunctor. This is to be the two dimensional analogue of Diers’ definition of spectrum
of a functor [15, Definition 3].

Definition 6.5.6. Let A and B be bicategories and let T : A → B be a pseudofunctor

such that B (X,T−) is a lax conical colimit of representables for every X ∈ B. For each

X ∈ B, define MX as the category with objects given by lax-generic morphisms out of X

and morphisms given by representative generic cells between them. We define the spectrum

of T to be the pseudofunctor

SpecT : Bop → Cat

assigning an object X ∈ Bop to MX and a morphism f : Y → X in B to the functor

M f : MX → MY which takes a generic morphism δ : X → T A to δ′ : Y → TP where

δ · f � Tu ·δ′ is a chosen generic factorization of δ · f , and takes a generic 2-cell γ : T h ·δ⇒ σ

as on the left below to the generic 2-cell γ : T h · δ′⇒ σ′ as on the right below

TP Tu //

�

T A

T h

��

TP Tu //

T h

��

T A

T h

��

Y
f //

δ′ 99

σ′ %%

X

δ 88

σ &&

γ{�
�

= Y

δ′ 99

σ′ %%
γ
{�

TQ
Tv
// T B TQ

Tv
//

Tν
{�

T B

constructed as the universal factorization of the left pasting above.

Remark 6.5.7. When A has a terminal object the spectrum has an especially simple form,

namely as the functor B (−,T1) : Bop → Cat.

Later on we will need to use the following reduced form of the Grothendieck construction
of the spectrum.

Lemma6.5.8. LetA andB be bicategories and letT : A → B be a pseudofunctor such that

B (X,T−) is a lax conical colimit of representables for every X ∈ B. Then the bicategory
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of elements of the spectrum SpecT : Bop → Cat is the bicategory

elM(−) �
ˆ X∈B

oplax
MX

consisting of:

Objects An object is a pair of the form (X ∈ B, δ : X → T A) where δ is a generic out of X;

Morphisms A morphism (X ∈ B, δ : X → T A) 9 (Y ∈ B, σ : Y → T B) is a morphism

f : X → Y in B and a representative generic cell (h, γ) as below

X δ //

f
�� γ{�

T A

T h
��

Y σ
// T B

2-cells A 2-cell ( f , h, γ) ⇒ (g, k, φ) : (X, δ)9 (Y, σ) is a 2-cell ν : f ⇒ g in B such that

X δ //

f
��

g
��

T A

T h
��

γ{� =

X δ //

g
��

φ
{�

T A

T h
��

T k
��

Y σ
//

ν
ks

T B Y σ
// T B

Tν
ks

for some (necessarily unique) ν : h⇒ k.

Moreover, the cartesian morphisms are precisely those ( f , h, γ) such that γ is invertible.

Proof. We know
´ X∈B
oplax M(−) is the bicategory with objects pairs (X ∈ B,m ∈ MX), mor-

phisms (X ∈ B,m ∈ MX) 9 (Y ∈ B,n ∈ MY ) given by a 1-cell f : X → Y and morphism

α : m→ F f (n) inMX , and 2-cells ν : ( f , α) ⇒ (g, β) those 2-cells ν : f ⇒ g such that

m

β

55
α // F f (n)

(Fν)n // Fg (n)

commutes. The objects are clearly as desired. By this formula, amorphism (X ∈ B, δ : X → T A)9

(Y ∈ B, σ : Y → T B) consists of an f : X → Y and an α : δ → M f (σ) in MX . Hence a

morphism is a pair f , (s, ξ) as below

X δ //

f

��

σf !! ξ
{�

T A

Ts||
TT T f

""
Y σ

//
�

T B
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where (s, ξ) is a representative generic cell. Using that generic cells (s, ξ) remain generic when

composed with opcartesian cells
(

f ,�
)
(because opcartesian cells are themselves generic),

the above diagram is itself a generic cell, isomorphic to a unique representative generic cell

X δ //

f
�� γ{�

T A

T h
��

Y σ
// T B

Conversely, one may form the representative generic factorization of γ

X δ //

σf

��

T A

T h
��

Ts
||

ξ
ks

TT
T f

// T B
Tζ
ks

to recover (s, ξ) (note that ζ is invertible as genericity of (s, ξ) is preserved by
(

f , id
)
and γ

is generic). That this is a bijection is a consequence of uniqueness of representative generic

factorisations.

It is now worth noting that the opcartesian morphisms, corresponding to the case where

(s, ξ) is an equivalence, are those squares where γ is invertible. This is a consequence of

Remark 6.5.12, as the case when γ is invertible represents a generic factorization, and to give

a choice of generic factorization (h, γ) is to give an equivalence (s, ξ).

By this formula, a 2-cell ν : ( f , s, ξ) ⇒ (g,u, θ) consists of a 2-cell ν : f ⇒ g such that

δ

(u,θ)

88
(s,ξ) // σ f

(Mν)σ // σg (6.5.1)

commutes, where (Mν)σ is given by the representative generic factorization (m, ϕ) below

TT T f

���

TT T f

��
Tm

��

X
f
&&

g

88ν��

σf 11

σg --

Y σ //

�

T B = X ϕ��

σf 11

σg --

Tλ�� T B

TS Tg

DD

TS Tg

DD
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Hence given such a ν we have

X δ //

σg

��

T A

T h

��

Tu

~~

X δ //

σg

��

σf
""

T A

T h

��

Ts
||θ

{�

Tτ
{�

= ϕ{� TT
T f
""

Tm
||

ξ
{�

Tλ
{�

Tζ
{�

TS
Tg

// T B TS
Tg

// T B

for some (necessarily unique) τ : h⇒ g · u. Moreover, given a diagram as above we can take

the representative generic factorization to recover (6.5.1).

We can now apply Theorem 6.3.12 to the case where F : A → Cat is of the form
B (X,T−) for a pseudofunctor T : A → B to help prove the following theorem.

Theorem 6.5.9. Let A and B be bicategories and let T : A → B be a pseudofunctor. Then

the following are equivalent:

1. the pseudofunctor T : A → B has a left lax multiadjoint;

2. the following conditions hold:

(a) for every object X ∈ A and 1-cell y : X → TC in B, there exists a lax-generic

morphism δ : X → T A and 1-cell f : A→ C such that T f · δ � y.

(b) for any triple of lax-generic morphisms δ, σ andω, and pair of generic cells (h, θ)

and (k, φ) as below

X

δ
��

f //

θ ;C
Y
σ
��

g //

φ ;C
Z
ω
��

T A
T h
// T B

T k
// TC

(6.5.2)

the above pasting (kh, φ f · θ) is a generic cell5.

Proof. (1) ⇒ (2) : Supposing thatT has a left laxmultiadjoint, it follows that eachB (X,T−)

is a lax conical colimit of representables. By Theorem 6.3.12, we have (2)(a), as well as 2(b)

when f and g are both the identity at X . To get the full version of (2)(b) we use that

P :
ˆ X∈B

lax
MX → A

is a pseudofunctor, where we have assumed without loss of generality that each MX is the

category of generic morphisms out of X and representative cells, using Remark 6.3.14.

5Suppressing pseudofunctoriality constraints of T .
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Indeed,
´ X∈B
lax MX is the bicategory with objects pairs (X, δ : X → T A) and morphisms

(X, δ : X → T A)9 (Y, σ : Y → T B) given by triples ( f , h, θ) as below

X

δ
��

f //

θ ;C
Y
σ
��

T A
T h
// T B

such that (h, θ) is a generic cell. As the lax functoriality constraints of P are given by factoring

diagrams such as (6.5.2) though a generic, the invertibility of these lax constraints of P forces

(2)(b).

(2) ⇒ (1) : Applying Theorem 6.3.12 to the conditions 2(a) and 2(b) (only needing the

case when f and g are identities at X), it follows that we may write

B (X,T−) '
ˆ m∈MX

lax
A

(
PX

m,−
)

where MX is the category of generic morphisms out of X and representative generic cells

between them. From this, we recover the spectrum SpecT : Bop → Cat taking each X to

MX . Also, we again we have the canonical normal lax functor

P :
ˆ X∈B

lax
MX → A

defined as in the reverse implication. The full version of (2)(b) forces this to be a pseudofunctor

as required.

Remark 6.5.10. The reader will notice that condition (2)(b) where f and g are identities at X

is what is required to ensure that PX
(−)

: MX → A is a pseudofunctor, whilst the full version

of 2(b) is what is required to ensure

P :
ˆ X∈B

lax
MX → A

is a pseudofunctor.

Under the conditions of this theorem, we also have a notion of generic factorisations on
2-cells, in a sense we now describe.

Remark 6.5.11. Suppose T has a left lax multiadjoint, δ and σ are generic objects, and
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consider a 2-cell α : T f · δ⇒ Tg · σ. Then α has a T-generic factorization

T A T f

!!
⇓α

T A T f

!!
T h

��

X

δ 55

σ ))

TC = X

δ 55

σ ))

⇓γ ⇓Tν TC

T B Tg

>>

T B Tg

>>

Also note that anymap k : X → TC can be factored asT k ·ξ for some generic ξ andmorphism

k, and so when T is surjective on objects we have a T-generic factorization of every 1-cell

and 2-cell in the bicategory B.

Rephrasing the statements in Section 6.3 concerning uniqueness of generic factorisations
in the context of a pseudofunctor T : A → B yields the following.

Remark 6.5.12. Specializing Proposition 6.3.19 to the case where F : A → Cat isB (X,T−)

for a pseudofunctor T : A → B and X ∈ B, says given a 1-cell f : X → T A in B and two

representative generic factorisations

X

δ %%

f // T A X
σ %%

f // T A

TP T f

99
α
KS

TQ
Tg

88
β
KS

as above, there exists a unique invertible representative generic cell (h, γ) : δ → σ such that

the representative of

X
δ
yy σ %%

f // T A

TP
T h

//

γ ;C

TQ
Tg

88β ;C

is equal to
(

f , α
)
.

6.6 Comparing to Weber’s familial 2-functors

The purpose of this section is to compare our definition of a familial 2-functor T : A → B

between 2-categories (assumingA has a terminal object) withWeber’s definition. It turns out
that these two definitions are essentially equivalent. Note also thatWeber’s definition assumes
some “strictness conditions” (such as identity 2-cells factoring into identity 2-cells) which
are natural conditions on 2-functors, but arguably less natural in the case of pseudofunctors.

We first recall the notion of generic morphism corresponding to what Weber refers to as
the “naive” 2-categorical analogue of parametric right adjoints [53].

Definition 6.6.1. Suppose A and B are 2-categories. Given a 2-functor T : A → B we say
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a morphism x : X → T A is naive-generic if:

1. for any commuting square as on the left below

X z //

x
��

T B
Tg
��

X z //

x
��

T B
Tg
��

T A
T f
// TC T A

T f
//

T h

<<

TC

there exists a unique h : A→ B such that T h · x = z and f = gh;

2. for two commuting diagrams

X
z1 //

x
��

T B
Tg
��

X
z2 //

x
��

T B
Tg
��

T A
T f
//

T h1

<<

TC T A
T f
//

T h2

<<

TC

the 2-cells θ : z1 ⇒ z2 such thatTg ·θ = id bijectively correspond to 2-cells θ : h1 ⇒ h2

such that T
(
θ
)
· x = θ and g · θ = id.

Definition 6.6.2. Suppose A and B are 2-categories, and that A has a terminal object. We

say a 2-functor T : A → B is a naive parametric right adjoint if every f : X → T A factors

as T f · x for a naive-generic morphism x.

Weber’s definition of famility requires certain maps in a 2-category to be fibrations. Thus
we will need to recall the definition of fibration in a 2-category B. Note that when B is
finitely complete there are other equivalent characterizations of fibrations [45].

Definition 6.6.3. We say a morphism p : E → B in a 2-category B is a fibration if:

1. for every X ∈ B, the functor B (X, p) : B (X,E) → B (X,B) is a fibration;

2. for every f : X → Y in B, the functor B ( f ,E) : B (Y,E) → B (X,E) preserves

cartesian morphisms.

If we have a choice of cartesian lifts which strictly respects composition and identities we say

the fibration splits.

We now have the required background to define famility in the sense of Weber.

Definition 6.6.4. Suppose A and B are 2-categories and that A has a terminal object. We

say a 2-functor T : A → B is Weber-familial if



222 An elementary view of familial pseudofunctors

1. T is a naive parametric right adjoint;

2. for every A ∈ A , and unique tA : A→ 1 in A , the morphism TtA : T A→ T1 is a split

fibration in B.

The following is Weber’s analogue of lax-generic morphisms.

Definition 6.6.5. Suppose A and B are 2-categories. Given a 2-functor T : A → B for

which each TtA : T A→ T1 is a split fibration, we say a morphism x : X → T A isWeber-lax-

generic if for any 2-cell α as on the left below,

X z //

x
��

T B
Tg
��

=

X z //

x
��

γ
KS T B

Tg
��

T A
T f
//

α
KS

TC T A
T f
//

T h

<<

TC
Tν
KS

there exists a unique factorization (h, γ, ν) as above such that (h, γ) is chosen TtB : T B→ T1

cartesian.6

The following lemma shows that for Weber-familial 2-functors T , the lax-generics of both
our sense and Weber’s coincide, and our generic 2-cells can equivalently be characterized as
certain cartesian morphisms.

Lemma 6.6.6. Suppose A and B are 2-categories and that A has a terminal object. Let

T : A → B be a Weber-familial 2-functor. Define M as the category with objects given

by chosen naive-generics δ : X → T A (meaning to be identified with another naive-generic

σ : X → T B if there exists a pair (h, γ) as below with h invertible and γ an identity), and

morphisms given by pairs (h, γ)

T A

T h

��

X

δ 99

σ %%
γ{�

T B

where γ is chosen TtB : T B→ T1 cartesian. Then:

1. for every X ∈ B we have isomorphisms

B (X,T−) �
ˆ m∈M

lax
A (Pm,−) ;

6This definition of lax-generics has the downside that it assumes some famility conditions, thus not allowing
for a theorem describing an equivalence between famility and lax-generic factorisations.
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2. a map δ : X → T A in B is naive-generic if and only if it is strict7 lax-generic;

3. a 2-cell in B as below

T A

T h

��

X

δ 99

z %%
γ{�

T B

is generic if and only if it is TtB : T B→ T1 cartesian.

Proof. (1) : It suffices to check that the functors
ˆ m∈M

lax
A (Pm,W) → B (X,TW)

are isomorphisms. That this assignment is bijective on objects is a consequence of the well

known one-dimensional case (see Proposition 4.2.7). That the assignment on morphisms

TPm

T h

��

Pm

h

��

f

!!

TPm

T h

��

T f

##
X

δm′ ""

δm
<<

⇓α W⇓β 7→ X

δm′ ""

δm
<<

⇓α TW⇓T β

TPm′ Pm′

g

==

TPm′
Tg

;;

is bijective follows from the fact each naive-generic is Weber-lax generic [53, Temma 5.8].

Naturality is also an easy consequence of this fact.

(2) : If δ is naive-generic, and thus isomorphic to a representative naive-generic, then δ

is lax-generic by (1). If δ is strict lax-generic, then from a θ : z1 ⇒ z2 we have a universal

factorization

X x //

x
��

θ
KS

T A

T h2
��

X x //

x
��

id
KS T A

T h2
��

T A
T h1
// T B

=

T A
T h1
//

T1

<<

T B
Tθ
KS

where we have used that Tg · θ is an identity to see the top right triangle above can be taken

as an identity. In this way, we recover the bijection required of a naive-generic.

(3) : Consider a 2-cell

T A

T h

��

X

δ 99

z %%
γ{�

T B

7By strict we mean identity 2-cells universally factor into identity 2-cells.
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If this 2-cell is generic, then we have a factorization

X z //

δ
��

γ
KS

T A

T id
��

X z //

δ
��

φ
KS T A

T id
��

T A
T h
// T B

=

T A
T h
//

T k

<<

T B
Tλ
KS

(6.6.1)

where φ is chosen cartesian. By genericity of γ, we have an λ∗ : k ⇒ h such that

T A

T k

��

T A

T h

��

T k

{{

X

δ 99

z %%
φ
{� = X

δ 99

z %%
γ{� Tλ∗

ks

T B T B

(6.6.2)

and λ∗λ = idh. Substituting (6.6.1) into (6.6.2) and using that δ is Weber-lax-generic gives

λλ∗ = idk . Conversely, if this 2-cell is cartesian we then have a factorization

X z //

δ
��

γ
KS

T A

T id
��

X z //

δ
��

φ
KS T A

T id
��

T A
T h
// T B

=

T A
T h
//

T k

<<

T B
Tλ
KS

where (k, φ) is a generic 2-cell (which must also be cartesian by the above argument). Since

φ and γ are cartesian, and thus isomorphic to chosen cartesian morphisms, it follows that λ

is invertible (by uniqueness of chosen cartesian factorisations).

Finally, we give the main result of this section, showing that for 2-functors T : A → B

our lax-multiadjoint condition is essentially equivalent to Weber’s familiarity condition.

Theorem 6.6.7. Suppose A and B are 2-categories and that A has a terminal object. Then

for a 2-functor T : A → B the following are equivalent:

1. T is Weber-familial;

2. T has a strict8 left lax multiadjoint.

Proof. (1) ⇒ (2) : SupposingT : A → B isWeber-familial, we have that eachB (X,T−) is

a lax conical colimit of representables by Lemma 6.6.6 part (1). Also, as the generic 2-cells

may be identified with the cartesian 2-cells, we know since the fibration TtB : T B → T1

respects precomposition we have the following property: for any generic 2-cell out of an

8By strict we mean isomorphic to a lax conical colimit of representables in place of equivalent, and that the
reindexings PX

(−)
are 2-functors instead of pseudofunctors.
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X ∈ B as on the left below

T A

T h

��

T A

T h

��

X

δ 99

z %%
γ{� Y k // X

δ 99

z %%
γ{�

T B T B

(6.6.3)

and map k : Y → X in B, the right diagram is a generic 2-cell. It is this property (along with

closure of generic cells under composition) which gives (2)(b) of Theorem 6.5.9.

(2) ⇒ (1) : Suppose T : A → B is a strict left lax multiadjoint. Then T is a naive

parametric right adjoint since T has strict lax generic factorisations, and lax-generic implies

naive generic (shown in the proof of Lemma 6.6.6).

It remains to check that each TtA : T A→ T1 is a split fibration. To see this, note that for

each X ∈ B the functor B (X,T A) → B (X,T1) may be written as the functor
ˆ m∈M

lax
A (Pm, A) →

ˆ m∈M

lax
A (Pm,1) � M

defined by the assignment

m

λ

��

Pm

Pλ

��

f

!!

m

λ

��

A⇓β 7→

m′ Pm′

g

==

m′ .

It is straightforward to verify that for each
(
m′,g : P′m → A

)
and λ : m → m′ we recover a

cartesian lift

m

λ

��

Pm

Pλ

��

g·Pλ

!!

m

λ

��

A⇓id 7→

m′ Pm′

g

==

m′

and it is clear the canonical choice of cartesian lifts given above splits. The cartesian mor-

phisms are diagrams as above (with the identity 2-cell possibly replaced by an isomorphism),

and these correspond to generic cells in B (X,T A). That for each k : Y → X the func-

tor B (k,T A) : B (Y,T A) → B (X,T A) preserves cartesian morphisms then follows from

condition (2)(b) of Theorem 6.5.9.
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6.7 Examples of familial pseudofunctors

We will first consider some simple examples of lax multiadjoints which concern pseudo-
functors T : A → B where A is a 1-category. Our first and simplest examples of such
pseudofunctors T : A → B concern the universal embeddings into bicategories of spans
and polynomials.

The reader will also recall that in this settingwhereA is a 1-category, el F = el B (X,T−)
is a 1-category for each X ∈ B, and so the mixed lifting properties become the usual lifting
properties. Indeed, it is clear that in such cases every pair (h, γ) out of a generic 1-cell is a
generic 2-cell.

Example 6.7.1. The canonical pseudofunctor T : E → Span (E) has a left lax multiadjoint.

To see this, first observe that a span X 9 T A is generic if it is isomorphic to the form

T A
s
yy

id
&&

X T A

This is since for a general span (s, t) genericity would imply we can factor the diagram on the

left below

X
(s,1) //

(s,t)
��

T M

Tt
��

=

X
(s,1) //

(s,t)
��

γ
KS T M

Tt
��

T A
T id
//

id
KS

T A T A
T id
//

Tu

<<

T A
Tν
KS

as on the right above, where ν is necessarily an identity and γ invertible. Hence tu = id and

ut is invertible, showing that t is invertible. Conversely, to see such a (s,1) is generic, note

that any diagram as on the left below

X
(u,v) //

(s,1)
��

T M
Tq
��

=

X
(u,v) //

(s,1)
��

γ
KS T M

Tq
��

T A
T p
//

α
KS

T B T A
T p
//

Tvθ

<<

T B
T id
KS

universally factors as on the right above, where α and γ are the respective morphisms of

spans

T A
s
yy

p
%%

θ

��

T A
s
yy

vθ
&&

θ

��

α : X T B γ : X T M

•
qv

88

u

ee

•
v

88

u

ee

As all cells between generic morphisms are generic, it follows that the category MX of

generics out of X is the slice E/X , and so for any X ∈ E we may take P(−) as the functor
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dom : E/X → E , giving

Span (E) (X,T−) �
ˆ m∈E/X

lax
E (Pm,−)

Dual to the above, we see that T : E → Span (E)co admits oplax-generic factorisations;

indeed we may write

Span (E)co (X,T−) �
ˆ m∈E/X

oplax
E (Pm,−)

Moreover, the pseudofunctor T : E → Spaniso (E) admits both lax and oplax generic factori-

sations, as we may write

Spaniso (E) (X,T−) �
ˆ m∈(E/X)iso

lax
E (Pm,−) �

ˆ m∈(E/X)iso

oplax
E (Pm,−)

where (E/X)iso contains the objects of E/X and only those morphisms which are invertible.

The reader will also note that we do not have

Spaniso (E) (X,T−) '
∑

ob E/X
E (Pm,−)

As for each T ∈ E, the right above is a discrete category, but isomorphisms of spans are not

unique (and so the canonical assignment is not fully faithful).

The case of spans is also interesting as it gives a simple example in which generic
factorisations are not unique in the sense that one might initially expect. That is to say, given
two generic factorisations

X

δ %%

f // T A X

δ %%

f // T A

TP T f

88
α
KS

TP Tg

88
β
KS

(meaning isomorphisms α and β as above), there is not necessarily a coherent comparison
2-cell f ⇒ g.

Example 6.7.2. Consider a span

2
σ

��

!

��
1 2

where σ is the swap map. Here we have the two distinct generic factorisations

1
(!,1) $$

(!,σ) // T2 1
(!,1) $$

(!,σ) // T2

T2 T1

99
σ
KS

T2 Tσ

99
id
KS
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In the following examples we will omit the verification that the generic morphisms are
classified correctly.

Example 6.7.3. Letting E be a locally cartesian closed category with chosen pullbacks, the

canonical pseudofunctor T : E → Poly (E) has a left lax multiadjoint. Indeed, a polynomial

X 9 T A is generic precisely when it is isomorphic to the form

T M
s
xx

p // T A
id
&&

X T A

and one may verify that any cell (general 2-cell of polynomials)

T A

Tt

��

X

(s,p,id) 99

(u,q,v) %%

γ��

T B

is generic. Consequently, wemay take P(−) as the functor pr : ΠE (E/X) → E whereΠE (E/X)

is the category with objects given by spans

X T
foo g // U

out of X , and morphisms of spans from ( f ,g) 9 ( f ′,g′) given by a pair α : W → T and

β : U → U′ rendering commutative the diagram

T
f

{{

g
)) U

β��X W
α

OO

��

55

pb
U′

T ′
f ′

bb

g′
55

such that W is the fixed chosen pullback of β and g′. As a consequence we have

Poly (E) (X,T−) �
ˆ m∈ΠE (E/X)

lax
E (Pm,−)

for all X ∈ Poly (E).

Remark 6.7.4. By the above, the usual inclusion Span (E) → Poly (E) can be seen as coming

from the unit components uE/X : E/X → ΠE (E/X) of the pseudomonad ΠE for fibrations

with products. Indeed, the family of functors Span (E) (X,Y ) → Poly (E) (X,Y ) may be
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written as the resulting functors
ˆ m∈E/X

lax
E (Pm,Y ) →

ˆ m∈ΠE (E/X)

lax
E (Pm,Y )

We now give a more complicated example, where A is not a 1-category. In this situation
the mixed lifting properties are necessary (unlike the earlier examples where usual liftings
would suffice), and so it is no longer the case that every (h, γ) out of a generic morphism is a
generic 2-cell.

Example 6.7.5. The canonical pseudofunctor T : Span (E)co → Poly (E) is such that Top

has a left lax multiadjoint. Here a polynomial T A9 X is opgeneric (meaning the opposite

polynomial is generic) if it is isomorphic to the form

T A
id
xx

id // T A f

%%
T A X

and a pair ((s, t) , γ) out of a opgeneric as below

X

T(s,t)=(s,t,1)

��

T A

(1,1, f ) 88

(v,u,g) &&
γ{�

T B

is generic when γ : (s, t, f ) ⇒ (v,u,g) is a cartesian morphism of polynomials. We note also

that cartesian morphisms of polynomials are closed under vertical composition as well as

precomposition by another polynomial.

Given a general morphism of polynomials φ : (s, t, f ) ⇒ (v,u,g) as given by the diagram

I
s
yy

t // M f
%%

h

��

T A P
e
OO u′ 99

h′ �� pb
X

J
v

ee

u
// N

g

99

the op-generic factorization of φ is given by

M (1,1, f )
  

T A

(s,t, f )

##

(v,u,g)

;;φ�� X = T A

T(s,t) 55

T(v,u) ))

Tν�� γ�� X

N (1,1,g)

??T(h,1)

OO
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where ν is the reversed morphism of spans on the left below

I
t
%%

s
yy

M
h
yy

1 //

h

��

M f
%%

h

��

T A M N X

P u′

::

vh′
ee e

OO

N
1

ee

1
// N

g

99

and γ is the cartesian morphism of polynomials on the right above. It follows that for any

X ∈ E we may take P(−) as the functor

E/X dom // E ι // Span (E)coop

where ι assigns each morphism h : A→ B to (h,1A) ∈ Span (E)coop, and get

Poly (E)op (X,T−) �
ˆ m∈E/X

lax
Span (E)coop (Pm,−) .

We now give a natural example which does not come from a pseudofunctor of bicategories
T : A → B. Indeed, the following may be seen as the main motivating example for this
paper.

Example 6.7.6. Consider the pseudofunctor Fam : CAT → CAT sending a category C to

the category Fam (C) with objects given by families of objects of C denoted (Ai ∈ C : i ∈ I),

and morphisms (Ai ∈ C : i ∈ I) 9
(
B j ∈ C : j ∈ J

)
given by a reindexing ϕ : I → J along

with comparison maps Ai → Bϕ(i) for each i ∈ I.

Now, the generic objects of el Fam are those elements of the form (I, (i : i ∈ I)) for a set

I. And it is clear that for any general element
(
C,

(
B j : j ∈ J

) )
of el Fam that we have the

“generic factorization” (that is an opcartesian map from a generic)

(J, ( j : j ∈ J))
(B(−),id) //

(
C,

(
B j : j ∈ J

) )
Also, a general morphism out of a generic object

(I, (i : i ∈ I))
(H(−),(ϕ,γ)) //

(
C,

(
B j : j ∈ J

) )
consists of a functor H(−) : I → C, a function ϕ : I → J, and morphisms γi : Hi → Bϕ(i)

indexed over i ∈ I. Such a morphism is generic precisely when every γi is invertible.

It is then clear that the category of generic objects and generic morphisms between them

(note H(−) is uniquely determined by ϕ in this case) is isomorphic to Set. It follows that the
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Fam construction is given by

Fam (C) =
ˆ X∈Set

lax
CX, C ∈ CAT

It is worth noting that restricting to the category of finite sets Setfin, yields the finite

families construction Fam f , and restricting further the category of finite sets and bijections

P yields the free symmetric (strict) monoidal category construction.

The above shows that Fam is familial in the sense that it is a lax conical colimit of
representables, however Fam is also familial in another sense: it has a left lax multiadjoint.

Example 6.7.7. The pseudofunctor Fam : CAT → CAT has a left lax multiadjoint. Here

the generic morphisms are those functors of the form

δF : C → Fam (el F) : X 7→ ((X, x) ∈ el F : x ∈ FX)

for a presheaf F : C → Set (Weber refers to these as “functors endowing C with elements”

[53, Definition 5.10]). A cell out of such a generic morphism

Fam (el F)

Fam(H)

��

C
δ 66

γ{�

z ((
Fam (B)

is generic when the comparison maps (not necessarily the reindexing maps) comprising each

γX for X ∈ C are required invertible. It follows that this lax multiadjoint is exhibited by the

formula

CAT (C,Fam (−)) �
ˆ F : C→Set

lax
CAT (el F,−)

for each C ∈ CAT.

6.8 The spectrum factorization of a lax multiadjoint

In the simpler dimension one case, Diers [14] showed that familial functors have the following
simple characterization:

Theorem 6.8.1 (Diers). Let T : A → B be a functor of categories. Then the following are

equivalent:

1. the functor T has a left multiadjoint;
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2. there exists a factorization

A T //

G %%

B

M V

99

such that:

(a) V is a discrete fibration;

(b) G has a left adjoint.

When A has a terminal object, it is not hard to see that M ' B/T1. This gives the
following simple consequence:

Corollary 6.8.2. Let T : A → B be a functor of categories, and assume A has a terminal

object. Then T has a left multiadjoint (is a parametric right adjoint) if and only if the

canonical projection

T1 : A/1→ B/T1

has a left adjoint.

It is the purpose of this section to find an analogue of these results in the dimension two
case. However, as we will see, this is much more complicated than simply asking for a left
bi-adjoint. Instead we will require certain types of “lax” adjunctions (or adjunctions up to
adjunction).

6.8.1 Lax F-adjunctions

In the setting of an adjunction of functors F a G : A → M we have natural hom-set
isomorphismsA (Fm, A) � M (m,GA). More generally, one can talk about bi-adjunctions of
pseudofunctors F a G : A →M where we only ask for natural hom-category equivalences
A (Fm, A) 'M (m,GA). However, even this notion is often too strong.

Central to the theory of lax multiadjoints is the theory of lax adjunctions (hence the
name), where one only asks that we have adjoint pairs

Lm,A : A (Fm, A) →M (m,GA) , Rm,A : M (m,GA) → A (Fm, A)

pseudonatural (or even lax natural) in A ∈ A and m ∈M .
The following type of lax adjunctions, called lax F-adjunctions, appear when studying

familial pseudofunctors. These are the lax adjunctions which naturally restrict to biadjunc-
tions on a class of “tight” maps. Before defining lax F-adjunctions, we must first define
F-bicategories and see how they assemble into a tricategory F-Bicat.
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Definition 6.8.3. The following notions below:

• an F-bicategory is a bicategory A equipped with an identity on objects, injective on

1-cells, locally fully faithful functor AT → A . The 1-cells of AT are called the tight

1-cells of A and are required to be closed under invertible 2-cells;

• an F-pseudofunctor (A ,AT ) 9 (B,BT ) is a pseudofunctor F : A → B which

restricts to a pseudofunctor FT : AT → BT ;

• a lax F-natural transformation α : F ⇒ G : (A ,AT ) → (B,BT ) is a lax natural

transformation α : F ⇒ G such that both:

1. for all X ∈ A , αX : FX → GX is tight;

2. for all f : X → Y tight, α f : G f · αX ⇒ αY · F f is invertible.

define the tricategory F-Bicat of F-bicategories, F-pseudofunctors, lax F-natural transfor-

mations, and modifications.

The above allows for a particularly simple definition of lax F-adjunctions.

Definition 6.8.4 (Lax F-adjunction). A lax F-adjunction of F-pseudofunctors

(A ,AT )

F //
⊥ (B,BT )
G

oo

is a biadjunction in the tricategory F-Bicat.

Remark 6.8.5. It is worth noting that the above immediately tells us that lax F-adjunctions

enjoy nice properties such as uniqueness of adjoints.

Whilst the above definition is conceptually informative, for our purposes it will be more
useful to define these adjunctions in terms of universal arrows. This is due to the connection
between the universal arrow definition and notions of genericity.

Remark 6.8.6. From now on we will regard the right adjoint G as a F-pseudofunctor

G : (A ,AT ) → (M ,MT ) to more closely match the notation we will use use later on.

Definition 6.8.7 (LaxF-adjunction via universal arrows). Given anF-pseudofunctorG : (A ,AT ) →

(M ,MT ), we say a 1-cell ηm : m → GFm is universal if for any 1-cell f : m → GA there

exists a f : Fm → A and 2-cell

m
f //

ηm ##

GA

GFm
G f

::
γ f
KS
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such that the pair
(

f , γ f

)
is universal; meaning that for any g : Fm → A and 2-cell β as below

m
f //

ηm !!

GA m
f //

ηm !!

GA

=

GFm

Gg

<<
β
KS

GFm

G f
<<

γ f
KS

Gg

LL

G β̃

[c

there exists a unique β̃ : g ⇒ f such that the above equality holds. If in addition

(i) the 1-cell ηm is tight;

(ii) for every tight 1-cell f : m→ GA in M , the 2-cell γ f is invertible and f : Fm → A is

tight;

(iii) the diagram

m
ηm //

ηm ""

GFm

GFm

G1Fm

::
id
KS

exhibits
(
1Fm, id

)
as a universal pair;

(iv) for any universal pair
(

f , γ f

)
, the G-whiskering by a tight g : A→ B

m
f //

ηm ##

GA
Gg // GB

GFm
G f

::
γ f
KS

Gg f

==

�

exhibits
(
g f ,Gg · γ f

)
as a universal pair;

we then say that ηm is F-universal9. Finally, we say G has a left lax F-adjoint if:

1. for every object m in M , there exists a F-universal 1-cell ηm : m→ GA;

2. for all 1-cells µ and ν as below, ηkν · ηnµ equipped with the 2-cell

m
ηm //

µ

��
γηnµ
{�

GFm

G(ηnµ)
��

G(ηkν·ηnµ)

zz

n
ηn //

ν
�� γηkν

{�

GFn

G(ηkν)
��

�

k ηk
// GFk

is universal.
9The reader will of course notice that such a ηm is unique up to equivalence.
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Remark 6.8.8. Note that it comes for free that for all A ∈ A , the universal pair

GA
1GA //

ηGA $$

GA

GFGA
Gid

::
γ1GA
KS

has the 2-cell component γ1GA invertible (as identity 1-cells are necessarily tight). This is

one of the triangle identities. The other triangle identity which asks for the composite of Fηm

and εFm constructed as below

m
ηm //

ηm
�� γηGFmηm

{�

GFm

GFηm
��

GFm
ηGFm //

γ1GFm

{�

1GFm ..

GFGFm

GεFm

��
GFm

to be isomorphic to the identity, is equivalent to (iii) in the presence of (iv). Pseudofunctori-

ality of F is clear from (2) and (iii).

The reader will also recognize that Lm,A and Rm,A are fully pseudonatural in A ∈ A and

m ∈ M respectively; and also fully pseudonatural in m ∈ MT and A ∈ AT respectively.

Indeed, Lm,A : A (Fm, A) → M (m,GA) is defined by applying G and composing with ηm,

and Rm,A : M (m,GA) → A (Fm, A) is defined by applying F and composing with εA. Also,

it is not hard to see that η and ε become lax F-natural transformations given the universal

arrow viewpoint. Finally, it is worth noting that each γ is invertible if and only if the unit η

is fully pseudonatural.

The following property of laxF-adjunctions, that the operations (̃−) respect isomorphisms,
will be useful later in this section.

Lemma 6.8.9. Given a pseudofunctor G : A → M with a left lax F-adjoint (F, η, γ), the

operation β 7→ β̃ respects isomorphisms on tight maps.

Proof. Suppose we have an equality as below where g : Fm → A is tight

m
f //

ηm !!

GA m
f //

ηm !!

GA

=

GFm

Gg

<<
β
KS

GFm

G f
<<

γ f
KS

Gg

LL

Gb
[c
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and suppose further that β has an inverse, so that we may also form the unique equality

m
ηm //

f
88

ηm !!

GFm
Gg // GA m

ηm //

ηm !!

GFm
Gg // GA

β−1KS

=

GFm

G f

<<

γ f
KS

GFm

Gg
<<

id
KS

G f

LL

Ga
[c

where we have used axioms (iii) and (iv) to realize the identity 2-cell as universal. It is then

straightforward to verify a is inverse to b.

Remark 6.8.10. It is not hard to see that in the presence of axiom (iv), the above lemma is

equivalent to (iii).

The following theorem, due to Johnstone [23], establishes semi-lax F-adjunctions as a
fundamental concept. These are the lax F-adjunctions such that ε is fully pseudonatural, or
equivalently, those for which axiom (iv) holds for all g : A→ B (not just on the tight maps).

Theorem 6.8.11 (Johnstone). A 1-cell f : X → Y in a bicategory K with pullbacks is a

fibration if and only if the functor on the lax slice

K � X
Σ f //K � Y

has a right semi-lax F-adjoint.

Remark 6.8.12. Johnstone’s choice of “oplax” and “lax” slice is the opposite of ours, and so

the above is stated on the oplax slice in [23].

Example 6.8.13. Let us see the above as an example of a lax F-adjunction via universal

arrows10. Here G : A →M is ∆ f : K � Y → K � X; which given a (w, θ) : a 9 b forms

the triangular prism (with commuting faces)

N ×Y X
π1 //

π2

��

w̃×Y1
&&

N

a

��

w

��

θ̂

[c N′ ×Y X
π1 //

π2

~~

ε̂
�#

N′

b

��

θ

[c

X
f

// Y

and ε̂ is invertible (as it is a pseudonaturality square of the counit), resulting in
(
w̃ ×Y 1, θ̂

)
.

10Alternatively, this example may be understood (perhaps more naturally) in terms of the dual notion of
co-universal arrows. However, the universal arrow definition will be used for consistency.
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Moreover, for a given p : M → X (thought of as an m ∈ M ), a : N → Y (thought of as an

A ∈ A ), and

M λ //

p   

N ×Y X

π2
{{

X

ϕ
ks

(thought of as an f : m→ GA) we have the unit ηm given by

M
(1,p) //

p   

N ×Y X

π2
{{

X

� +3

and the induced f : Fm → A is given by composing with the bipullback as below

M
(1,p) //

p   

N ×Y X

π2
{{

π1 //

�

N

a
{{

X

ϕ
ks

f
// Y

6.8.2 Factoring through the spectrum

We now have the necessary background on lax adjunctions, and can move towards under-
standing how a lax multiadjoint factors through the spectrum. This will only require the
following simple lemma.

Lemma 6.8.14. Suppose V : M → B is a locally discrete fibration of bicategories. Then

given any 2-cell α : f ⇒ g : X → Vm as on the right below

f ∗m
fc

))
α̂

��

X
f

))
id

��

α�� m 7→ α�� Vm

g∗m
gc

55

X
g

55

with cartesian lifts fc and gc of f and g, there exists a unique pair (α̂, α) as on the left above

which is assigned to α by V . Moreover, if α is invertible then both α̂ and α are.

Proof. Suppose without loss of generality that V is the projection
´ B∈B
lax FB → B for a
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pseudofunctor F : Bop → Cat. Then we may construct a diagram as on the left below

(X,a)
( f ,�)

**
(1,λ)

��

X
f
))

id

��

α�� (Y,m) 7→ α�� V (Y,m)

(X, b)
(g,�)

44

X
g

55

where λ is the unique map such that

a � // F f (m)
(Fα)m // Fg (m) = a λ // b � // Fg (m)

holds. It is clear this is the only choice of such a diagram, and that if α is invertible then so

is λ.

Remark 6.8.15. There should be an analogue of the above without assuming V to be locally

discrete, so that V is the projection
´ B∈B
lax FB → B for a trifunctor F : Bop → Bicat.

However, this is beyond the scope of this paper.

We can now prove the main result of this section, which provides a conceptually nice
description of lax multiadjoints. This characterization is interesting if one keeps in mind the
characterization of fibrations via semi-lax F-adjoints, but is perhaps not entirely unexpected
as the connection between the theory of familial 2-functors and the theory of fibrations was
already noted by Weber [53].

The reader will also note that if G : A →M is such that every 1-cell in A is tight, then
a left lax F-adjoint is equivalently a left semi-lax F-adjoint (as axiom (iv) then holds for all
g).

Theorem 6.8.16 (Spectrum factorization). Let T : A → B be a pseudofunctor of bicate-

gories. Then the following are equivalent:

1. the pseudofunctor T has a left lax multiadjoint;

2. there exists a factorization

A T //

G %%

B

M
V

99

such that:

(a) V is a locally discrete fibration of bicategories;

(b) G has a left lax F-adjoint (where all 1-cells in A are tight and the V-cartesian

1-cells of M are tight).
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Proof. (2) ⇒ (1) : We first note that for any f : X → T A in B, we have a cartesian lift

fc : m→ GA in M . We thus have an assignment

m

ηm
��

fc // GA X

δm
��

f // T A

7→

GFm

G fc

??

γ fc
KS

TFm

T fc

@@

Vγ fc
KS

and as γ is invertible on cartesian maps, this is a factorization of f . We thus need only check

that each δm is lax-generic, and that generic 2-cells compose.

Consider now a 2-cell α as on the right below

n

ηn

��

α̂ // m
fc // GA

Gk

��

X

δn

��

f // T A

T k

��

7→

GFn Gh
//

α
KS

GC TFn T h
//

α
KS

TC

and its unique preimage as on the left above given by Lemma 6.8.14. This α in turn has a

factorization as on the left below

n

ηn

��

α̂ // m
fc // GA

Gk

��

X

ηn

��

f // T A

T k

��

γ fc α̂
KS

7→
Vγ fc α̂
KS

GFn Gh
//

G fc α̂

88

GC
Gξ
KS

TFn T h
//

T fc α̂

99

TC
Tξ
KS

since universality of
(
fcα̂, γ fc α̂

)
is preserved by Gk, thus giving a factorization of α as on the

right above. Note that if α, and hence α̂ and α are invertible, then γ fc α̂ is invertible (as it is

on all cartesian 1-cells), and ξ is invertible by Lemma 6.8.9.

Given another factorization as on the right below, we can lift σ by Lemma 6.8.14

n

ηn

��

σ̂ // m
fc // GA

Gk

��

X

ηn

��

f // T A

T k

��

σ
KS

7→
σ
KS

GFn Gh
//

Gg

88

GC
Gϕ
KS

TFn T h
//

Tg

99

TC
Tϕ
KS

giving the left above. Noting that σ̂ = α̂ and that the left pasting above is α by uniqueness,

we can then factor σ through γ fc α̂ recovering a comparison map ψ : g ⇒ fcα̂ satisfying

the required conditions. The sub-terminality of each Vγ fc α̂ stems from the uniqueness of

factorisations through γ fc α̂.



240 An elementary view of familial pseudofunctors

Finally, to see that generic cells compose, observe that a cell as on the right below

n

γ̂

��

ηn // GFn

Gh

��

TFn

T h

��

γ�� 7→ X
z ))

δn
55

γ��

m zc
// GC TC

is generic precisely when its lift as on the left above, given by Lemma 6.8.14, exhibits (h, γ)

as a universal pair. Also observe that every generic is of the form δn, since given any generic

δ and cartesian lift δc we have an isomorphism

m

ηm
��

δc // GA X

δm
��

δ // T A

7→

GFm

Gδc

??

γδc
KS

TFm

Tδc

@@

Vγδc
KS

and we know that
(
δc,Vγδc

)
is an equivalence by Lemma 6.3.20. It follows that two generic

cells as on the right below

n
γ̂ ��

ηn // GFn

Gh

��

X
δn //

f

��

TFn

T h

��

•
fc ��

γ�� γ��

m ηm
//

φ̂ ��

GFm

Gk

��

7→ Y
δm //

g

��

TFm

T k

��

•
gc ��

φ�� φ��

w ηw
// GFw Z

δw
// TFw

compose to a generic, as the composite on the left above is universal.

(1) ⇒ (2) : Supposing that T : A → B has a left lax multiadjoint, we may construct the

spectrumM(−) : Bop → Cat as in Lemma 6.5.8 and factor T as

A
G //
ˆ X∈B

oplax
M(−)

pr //B

where G assigns each A ∈ A to T A ∈ B with the generic morphism δA : T A → T A

comprising the generic factorisation

T A
δA // T A

TeA // T A

of the identity. A 1-cell h : A → B in A is assigned to T h with the pair
(
h,�

)
comprising
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the left side

T A
δA //

T h �� �

T A
TeA //

T h�� �

T A
T h��

T B
δB
// T B

TeB
// T B

of the generic factorization above. A given 2-cell λ : h⇒ k is sent to Tλ : T h⇒ T k, which

satisfies

T A

T k

��

T h

��

δA // T A

T h
��

�

T A

T k

��

δA //

�

T A

T k
��

T h
		

Tλ
ks =

Tλ
ks

T B
δB
// T B T B

δB
// T B

for some (necessarily unique) λ : h⇒ k. To see this, note that the left diagram has a generic

factorisation

T A

T k

��

T h

��

δA // T A

T h
��

�

T A

T k

��

δA // T A

Tm
��

T h
		

Tλ
ks =

ξ
{�

Tλ
ks

T B
δB
// T B T B

δB
// T B

and thus the left diagram below has the generic factorisation

T A

T k

��

T h

��

δA //

�

T A
TeA //

T h
��

T�

T A

T h

��

T A

T k

��

δA // T A

Tm
��

T h
		

TeA //

T�

T A

T h

��
Tλ
ks =

ξ
{�

Tλ
ks

T B
δB
// T B

TeB
// T B T B

δB
// T B

TeB
// T B

But this is also the generic factorization of the diagram

T A
δA //

T k
��

�

T A
TeA //

T k
��

T�

T A

T k
��

T h
��

Tλ
ks

T B
δB
// T B

TeB
// T B

which has already been factored. By uniqueness of representative generic factorisations we

have (m, ξ) =
(
k,�

)
as required.

Now, we have the pseudofunctor P :
´ X∈B
oplax M(−) → A , and will sketch why P is a left

lax F-adjoint to G. To do this, we take our universal 1-cell η(X,δ) : (X, δ) → GF (X, δ) at an
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object (X, δ : X → L A) to be the pair (uA, γ) as below.

X δ //

δ

��

T A

T1A

  

TuA

��
γ{�

Tν
{�

T A
δA

// T A
TeA

// T A

Moreover, for a given 1-cell ( f , h, α) : (X, δ) → GC as on the left below, we have

X

f

��

δ // T A

T h

��

α{� T
(
echuA

)
ww

X δ //

δ
��

f

''

T A
TuA��γ{�

Tξ
ks = T A

δA
//

T(eCh)
��

TeCα
ks T A

T
(
eCh

)
���

TC
δc

// TC TC
δC

// TC

where ξ is the unique map induced from the fact that the RHS whiskered by TeC is TeC · α.

This defines the universal 2-cell

(X, δ)
( f ,h,α) //

η(X ,δ) ##

GC

GA
Gech

<<
Tec ·α
KS

where we have a bijection β 7→ β̃ as below

(X, δ)
( f ,h,α) //

η(X ,δ) ##

GC (X, δ)
( f ,h,α) //

η(X ,δ) ##

GC

=

TeC ·α
KS

GA
G`

==
β
KS

GA

GeCh
==

G`

LL

G β̃

[c

or equivalently, a bijection

X
f //

δ

��

TC

T id

��

X
f //

δ

��

TC

T id

��

=

TeC ·α
KS

T A
T`

//

β
KS

TC T A
T`

//

Tech

>>

TC

T β̃
KS

as genericity of (h, α) is respected by composition with TeC . The verification that this

bijection satisfies the required axioms is left for the reader.

Finally, the following provides what is perhaps a more natural definition of parametric
right adjoint pseudofunctors, obtained by applying the above theorem in the setting where A

has a terminal object.
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Corollary 6.8.17 (Parametric right adjoints). Suppose A is a bicategory with a terminal

object. Then a pseudofunctor T : A → B has a left lax multiadjoint if and only if the

canonical projection on the oplax slice

T1 : A � 1→ B � T1

has a left lax F-adjoint.

Remark 6.8.18. There are of course four variants of the above, concerning the case when

T/Top/Tco/Tcoop is familial.
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7
Conclusion and future directions

To conclude, we reflect on some of the highlights of this thesis. We have:

• shown that fully faithful KZ pseudomonads P give rise to near-Yoneda structures;

• given two simple descriptions of pseudo-distributive laws over KZ pseudomonads
(one algebraic and one in terms of the near-Yoneda structure arising from the KZ
pseudomonad);

• given a generalization of the oplax-lax correspondence in Kelly’s doctrinal adjunction
[27] to the setting of these KZ-induced near-Yoneda structures;

• introduced a class of bicategories which allows for a generalization of Bénabou’s
correspondence of (co)monads and (op)lax functors out of the terminal category, also
giving a greater understanding of the bicategories of spans and polynomials and maps
out of them;

• established the universal properties of the bicategory of polynomials with cartesian
and general 2-cells, both for pseudofunctors and the weaker gregarious functors, whilst
avoiding the worst of the coherence conditions coming from polynomial composition
that would be needed in a direct proof;

• defined a notion of famility for pseudofunctors which assumes no completeness con-
ditions, defined an appropriate analogue of generic factorisations for pseudofunctors,
and proved that famility is equivalent to having these generic factorisations (along with
a condition on generics ensuring they compose).
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However, there remains some unanswered questions to be addressed, which would tie together
our work on pseudo-distributive laws, familial pseudofunctors, and the bicategories of spans
and polynomials. This is to be the subject of future work.

7.1 Future work

In our fourth paper we showed that pseudofunctors Poly (E) → C correspond to pairs of
pseudofunctors Span (E) → C and Span (E)co → C which coincide on spans of the form
(s, id) and satisfy a distributivity condition (and also gave a version for cartesian morphisms
of polynomials). This however raises the following natural questions:

1. How is the bicategory of polynomialsPoly (E) constructed from the bicategory of spans
Span (E) and bicategory of spans with reversed 2-cells Span (E)co?

2. How is the bicategory of polynomials Polyc (E) constructed from the bicategory of
spans Span (E) and bicategory of spans with invertible 2-cells Spaniso (E)?

For one possible answer, see von Glehn’s work on polynomial functors and fibrations with
sums and products [50]. We will give a more direct (though closely related) answer, making
use of:

Theorem 7.1.1. Given a bicategory A , we have a correspondence

Bicategories B equipped with a bijective on objects pseudofunctor L : A → B

Bicocontinuous pseudomonads on [A op,Cat]

Remark 7.1.2. Note that there is a question of what the morphisms between such data should

be to define an equivalence. This is technical and so will be addressed in the future.

Definition 7.1.3. Under the correspondence of Theorem 7.1.1, we call B the representing

bicategory Rep (T) of the pseudomonad on T on [A op,Cat].

Taking A to be a 1-category E , so that T is now a pseudomonad on [Eop,Cat] ' Fib (E),
the correspondence of Theorem 7.1.1 returns the following table

Cocontinuous pseudomonad Representing bicategory

T = ΣE Rep (T) � Span (E)op

T = ΠE Rep (T) � Span (E)coop

T = ⊗E Rep (T) � Spaniso (E)op

T = ΣEΠE Rep (T) � Poly (E)op

T = ΣE⊗E Rep (T) � Polyc (E)op
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where ΣE is the pseudomonad for fibrations with sums, ΠE is the pseudomonad for fibrations
with products, ⊗E is a pseudomonad which we introduce (to be thought of as “fibrations with
tensors”), and the compositesΣEΠE andΣE⊗E are constructed via suitable pseudo-distributive
laws.

The reader will also notice that since it makes sense to talk about pseudo-distributive
laws between pseudomonads T and S on Fib (E), by Theorem 7.1.1, we must also have a
corresponding notion of pseudo-distributive laws between bijective on objects pseudofunctors
L : E → A and H : E → B out of the same bicategory A . Indeed, we find that such a
pseudo-distributive law of bijective on objects pseudofunctors consists of a coherent family
of functors

λX,Y :
ˆ I∈E

A (LX, LI) ×B (HI,HY ) →
ˆ J∈E

B (HX,HJ) ×A (LJ, LY )

for all X and Y in E , and that such a pseudo-distributive law allows one to construct a new
bicategory C with hom-categories given by

C (X,Y ) =
ˆ J∈E

B (HX,HJ) ×A (LJ, LY )

and composition resulting from the pseudo-distributive law. This gives rise to a pseudofunctor
L ∗ H : E → C .

The bicategory of polynomials is an example of this. Indeed, we have a pseudo-distributive
law of the pseudofunctors E → Span (E)op and E → Span (E)coop (corresponding to that
of fibrations with sums over fibrations with products) giving rise to the pseudofunctor E →
Poly (E)op. Consequently, we have the formulas for hom-categories of polynomials

Poly (E) (X,Y ) '
ˆ A∈Eop

Spanco (E) (X, A) × Span (E) (A,Y )

and

Polyc (E) (X,Y ) '
ˆ A∈Eop

Spaniso (E) (X, A) × Span (E) (A,Y )

in terms of hom-categories of spans. Also, these formulas are straightforward to evaluate
since E → Span (E)op has a lax left multiadjoint; so that for example

Polyc (E) (X,Y ) �
ˆ A∈Eop

Spaniso (E) (X, A) × Span (E) (A,Y )

�

ˆ A∈Eop

Spaniso (E) (X, A) ×
ˆ m∈E/Y

lax
E (Pm, A)

�

ˆ m∈E/Y

lax

ˆ A∈Eop

Spaniso (E) (X, A) × E (Pm, A)

�

ˆ m∈E/Y

lax
Spaniso (E) (X,Pm)
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where we have used that lax conical colimits (which may be seen as an instance of weighted
bi-colimits) commute with bi-colimits.
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