
Digital image processing based on

the residue number system

By

Azadeh Safari

A thesis submitted to Macquarie University

for the degree of

Doctor of Philosophy

Department of Engineering, Faculty of science

October 2014

mailto:azadehsafari2008@gmail.com
http://www.mq.edu.au/

ii

c© Azadeh Safari, 2014.

Typeset in LATEX 2ε.

mailto:azadehsafari2008@gmail.com

iii

Except where acknowledged in the customary manner,

the material presented in this thesis is, to the best of my

knowledge, original and has not been submitted in whole

or part for a degree in any university.

Azadeh Safari

mailto:azadehsafari2008@gmail.com

Dedicated to

My beloved husband, Peyman, whose endless love and support made PhD a

significant journey,

and

My parents, whose unconditional love and encouragement allowed me to start and

complete this journey.

iv

Acknowledgements

I would like to express my sincere gratitude and heartfelt appreciation to my supervisor,

Dr Yinan Kong for his excellent guidance and continuous encouragement throughout

my research. I particularly appreciate his patience and motivation that helped me to

learn a lot, and challenge myself to do the best job that I could do.

I also would like to extend my thanks to A/Prof. Sam Reisenfeld, my co-supervisor,

for his excellent support. I am thankful to Niras C.V., James Nugent, Fujimi Bentley,

Fateme Ghasemi, and Davar Kheirandish for being great collaborators, and for helpful

ideas.

I would like to thank Mr Adrian Ng and Synopsys Customer Support for providing

outstanding support and frequent meetings to help us solve technical problems with

Synopsys tools.

I also thank Professor Danijela Cabric of the Electrical Engineering Department of

the University of California, Los Angeles, and Professor Philip Leong of the University

of Sydney for inviting me to visit their research laboratories to collaborate and meet

with their graduate students and faculty members.

I am grateful to Dr Keith Imrie for valuable advice and useful comments that

improved the quality of this thesis. I am also thankful to the admirable staff in the

Department of Engineering for their wonderful support.

I wish to acknowledge Macquarie University for awarding me the International Mac-

quarie University Research Excellence Scholarship (iMQRES), and providing financial

support to attend national and international conferences during this project.

v

vi Acknowledgements

List of Publications

Publications related to the field of this thesis for which the author is the primary author

are as follows.

• Azadeh Safari and Yinan Kong. Simple, Fast and Synchronous Hybrid Scaling

Scheme for the 8-bit Moduli Set, Journal of Emerging Trends in Computing and

Information Sciences, Vol. 3, No. 6, June 2012.

• Azadeh Safari and Yinan Kong. Four Tap Daubechies filter banks based on

RNS, International Symposium on Communications and Information Technolo-

gies (ISCIT) 2012, pp. 957-960, 2-5 Oct., Gold Coast, Australia.

• Azadeh Safari and Yinan Kong. The application of lifting in Digital Image pro-

cessing, Advances in Mechanical and Electronic Engineering, Lecture Notes in

Electrical Engineering, Volume 178, 2013, pp. 449-453, Springer, 2013.

• Azadeh Safari, Niras C V, and Yinan Kong. VLSI architecture of multiplier-

less DWT image processor, IEEE TENCON Spring 2013 Conference in Sydney

Australia, pp. 280-284, 17-19 April 2013.

• Azadeh Safari, James Nugent, and Yinan Kong. Novel Implementation of Full

Adder Based Scaling in Residue Number Systems, IEEE 56th International Mid-

west Symposium on Circuits and Systems (MWSCAS2013), The Ohio Union at

the Ohio State University, Columbus Ohio, August 4-7, 2013.

• Azadeh Safari and Yinan Kong. Performance comparison of orthogonal and

biorthogonal wavelets using technology libraries, The 13th International Sympo-

sium on Communications and Information Technologies, IEEE, Samui Island,

Thailand, September 4-6, 2013.

• Azadeh Safari, Fujimi Bentley, and Yinan Kong. Operational Capability and

Suitability of Image Compression Methods for Different Applications, CCECE

vii

viii List of Publications

2014, Ontario, Canada 4-7 May, pp.875-880, 2014.

• Azadeh Safari, and Yinan Kong. Power-Performance Enhancement of RNS-

Based DWT Image Processor Using Multiple Voltage Domains, In preparation.

Publications related to the field of this thesis for which the author is the second

author are as follows.

• Davar Kheirandish, Azadeh Safari, and Yinan Kong. Using one hot residue

number system (OHRNS) for digital image processing, The 16th international

symposium on artificial intelligence and signal processing (AISP 2012), 2-3 May

2012, Shiraz University, Shiraz, Iran.

• Niras C V, Azadeh Safari, and Yinan Kong. Overlapped block processing VLSI

architecture for separable 2D filters, National Conference on Emerging Trends in

VLSI and ES, January 2013.

• Davar Kheirandish, Azadeh Safari, and Yinan Kong. A Novel Approach for Im-

proving Error Detection and Correction in WSN, CCECE 2014, Ontario, Canada,

4-7 May, pp. 370-373, 2014.

• Yinan Kong, Azadeh Safari, Niras C.V. A low-cost architecture for DWT filter

banks in RNS applications, Abstract accepted in International Symposium on

Integrated Circuits (ISIC 2014), Singapore, 10-12 December, 2014.

• Fatemeh Ghasemi, Azadeh Safari, Saied Sorouri, Amir Sabbagh Molahosseini,

Yinan Kong, An Efficient RNS Scaler for the Four-Moduli Set {2n − 1, 22n, 2n +

1, 22n + 1}, Submitted to Very Large Scale Integration (VLSI) Systems, IEEE

Transactions on.

Abstract

This thesis presents the design, optimisation and physical implementation of a two-

dimensional (2D) discrete wavelet transform (DWT) image processor using the residue

number system (RNS), and examines it against an initial processor designed based on

existing binary modules. The original contributions of the proposed design include a

low-complexity hardware architecture of the RNS-based filter banks, optimised trans-

position units, and exploitation of the multi-voltage scheme to reduce the power con-

sumption. Modular adders and multipliers of the RNS-based filter banks are simplified

to save on hardware complexity, while modular arithmetic and 6-bit dyadic-fraction

filter coefficients are applied to improve the system performance. The proposed design

is synthesised with the Synopsys 90 nm Generic Library (SAED90nmEDK) using

the Synopsys synthesis and implementation tools. The synthesis results show that

the proposed RNS-based processor is 23% faster than the initial processor. Another

noteworthy result is that the total area of the RNS-based processor is less than the

total area in the initial binary processor. It confirms that using the proposed architec-

ture for RNS-based filter banks has saved on the hardware complexity and the system

area requirement. The proposed RNS-based processor is implemented using the multi-

voltage (MV) low power design (LPD) scheme to improve the power performance of

the proposed processor. The power synthesis results show that using the multi-voltage

scheme reduces the total power of the proposed RNS-based design by up to 50%. The

proposed residue arithmetic units are explained in details to illustrate the novelty of

the proposed design.

ix

x Abstract

Contents

Acknowledgements v

List of Publications vii

Abstract ix

List of Figures xix

List of Tables xxiii

1 Introduction 1

1.1 Existing Literature . 2

1.2 Motivation for This Research . 5

1.3 Research Objectives . 6

1.4 Thesis Outline . 6

1.5 Tools . 8

2 Review of Image-Compression Algorithms and Schemes 11

2.1 Image-Compression Schemes . 12

2.2 Common Image-Compression Algorithms 14

2.2.1 Run-Length Encoding . 14

2.2.2 Entropy Coding . 16

2.2.3 Discrete Cosine Transform . 16

2.2.4 Discrete Wavelet Transform . 17

2.3 Performance Comparison and Applications of Common Compression Al-

gorithms . 17

2.3.1 Performance of RLE Algorithm on Test Images 18

2.3.2 Performance of Entropy Coding on Test Images 18

2.3.3 Performance of DCT Algorithm on Test Images 19

xi

xii Contents

2.3.4 Performance of DWT Algorithm on Test Images 20

2.4 Overall Performance of Selected Algorithms 21

2.4.1 Performance of RLE Over DCT Coefficients 21

2.4.2 Performance of Huffman Coding Over DWT Coefficients 22

2.5 Discussion of Simulation Results . 22

2.6 Convolution vs. Lifting . 25

2.6.1 Lifting-Based DWT Image Compression 26

2.7 Chapter Summary . 29

3 Discrete Wavelet Transform for Image-Processing Applications 31

3.1 Discrete Wavelet Transform . 32

3.2 Orthogonal and Bi-Orthogonal Wavelets 35

3.3 Orthogonal DWT . 36

3.3.1 Haar Wavelet Transform . 36

3.3.2 Daubechies Wavelet Transform 37

3.4 Bi-Orthogonal DWT . 39

3.4.1 Cohen-Daubechies-Feauveau (CDF97) Wavelet 40

3.4.2 LeGall (b, c) Wavelet . 40

3.5 Performance Comparison of Wavelets 41

3.6 Synthesising Wavelets Using Design Compiler 41

3.7 Chapter Summary . 45

4 The Residue Number System 47

4.1 Algebraic Operations in the RNS . 48

4.2 Forward and Reverse Conversions . 49

4.2.1 The Chinese Remainder Theorem 50

4.2.2 Multiplicative Inverse for (2n − 1, 2n, 2n + 1) 50

4.2.3 Modified CRT . 51

4.2.4 Mixed-Radix Conversion . 52

4.3 Moduli Set Selection and Bit-Efficiency Improvement 52

4.3.1 Moduli Set Selection . 52

4.3.2 Moduli Set for Video and Image Processing 54

4.4 Scaling in the RNS . 55

4.5 Residue Number System Merged With Other Number Systems 55

4.5.1 Polynomial Residue Number System 55

4.5.2 One-Hot Residue Number System 56

4.6 Chapter Summary . 57

Contents xiii

5 Scaling in the Residue Number System 59

5.1 Previous Work . 60

5.2 Mathematical Basis for Designing Scalers 62

5.3 Scaling Scheme Based on Modular Reducers 64

5.3.1 Modulo-(2n − 1) Reduction . 66

5.3.2 Modulo-(2n + 1) Reduction . 66

5.3.3 Optimised Modulo-(2n + 1) Reducer 67

5.3.4 Numerical Example . 67

5.3.5 Synthesising the Proposed Modular-Reducer-Based Scaler . . . 68

5.3.6 Comparison of the Synthesis Results of the Proposed Modular-

Reducer-Based Scaler and a Full-Adder-Based Scaler 72

5.4 Simple, Fast, Hybrid Scaling Scheme Using Full-Adders and LUTs . . . 73

5.4.1 Proposed Hybrid Scaler . 74

5.4.2 Error Analysis of Approximation 75

5.4.3 Synthesis Results . 76

5.4.4 Evaluation and Comparison . 80

5.5 Proposing a Scaler for Four-Moduli Set

(2n − 1, 22n, 2n + 1, 22n + 1) . 82

5.5.1 Proposed Algorithm . 83

5.5.2 Generating y1 . 88

5.5.3 Generating y2 . 89

5.5.3.1 Generating y21 . 90

5.5.3.2 Generating y22 . 91

5.5.3.3 Generating y23 . 92

5.5.3.4 Generating y24 . 93

5.5.4 Generating y3 . 95

5.5.4.1 A New Modulo-(2n + 1) Adder 97

5.5.5 Generating y4 . 98

5.5.6 Performance Evaluation . 101

5.5.7 Comparison of Design Compiler Synthesis Results for the Pro-

posed Four-Moduli Scaler and the Chang Scaler 102

5.5.8 Design Summary . 105

5.6 Chapter Summary . 106

xiv Contents

6 Logic Design and FPGA Implementation of RNS-Based DWT Digital

Image Processor 107

6.1 Hierarchy of the Proposed Image Processor 108

6.2 Logic Design of the Proposed Image Processor Using Xilinx Tools . . . 109

6.2.1 The RNS-Based Filter Banks 109

6.2.1.1 Existing Design of RNS-Based Filter Banks 109

6.2.1.2 Proposed RNS-Based Filter Banks 112

6.2.2 Transposition Unit . 118

6.2.2.1 VLSI Architecture of a Scalable Matrix Transposer . . 118

6.2.2.2 Proposed Transposition Unit with Overlapped Sub-Blocks123

6.2.2.3 Modified Transposition Unit with Symmetric Extension

(Extender) . 124

6.2.3 Control Logic . 126

6.3 Simulation and Functionality of the Proposed Processor 127

6.4 Top-Level and Hierarchy Synthesis Results 127

6.4.1 Synthesising the Modular Adders 130

6.4.2 Synthesising the Modular Multipliers 130

6.4.3 Synthesising the Modular Filter Banks 131

6.5 Initial Binary Processor . 132

6.6 Performance Comparison of the Proposed RNS-Based Image Processor

with Existing Designs . 132

6.6.1 Comparing Synthesis Results of Modular Scalable Transposer

and the Proposed Transposer (Extender) 132

6.6.2 Comparison of the Initial and Proposed RNS-based CDF97 Filter

Banks Designed Using Existing and Proposed Modules 133

6.6.3 Comparison of Initial and RNS-based Processors 134

6.7 Comparison of Initial and RNS-based Processors with Existing Designs 135

6.8 FPGA Implementation of Proposed RNS-Based Image Processor 137

6.8.1 Translate . 137

6.8.2 Map . 137

6.8.3 Place and Route . 138

6.9 Chapter Summary . 138

7 RTL-to-Gate Synthesis 141

7.1 Logic Synthesis . 141

7.1.1 The RTL Source . 142

Contents xv

7.1.2 Libraries . 142

7.1.3 Design Constraints . 143

7.1.4 Design Environment . 145

7.1.4.1 Operating Conditions 145

7.1.4.2 Wire-Load Model and Wire-Load Mode 145

7.1.4.3 Interface Characteristics 146

7.1.4.4 Drive Characteristics of Input Ports and Driving Cell . 146

7.1.4.5 Load on Input and Output Ports 147

7.1.4.6 Fanout load on Output Ports 147

7.1.5 Synthesis Reports . 147

7.2 Synthesis Flow . 148

7.2.1 Read Design . 149

7.2.2 Compile Strategies . 150

7.3 Comparison of Proposed RNS-based Image Processor with Initial Binary

Processor . 153

7.4 Optimising Power Consumption of Proposed Image Processor 156

7.4.1 Components of Power Dissipation 157

7.4.2 Leakage Power Sources . 157

7.4.3 Low-Power Design Techniques 159

7.4.4 Impact of LPD Techniques on Standard Cell Libraries 161

7.4.5 Impact of LPD Techniques on Synthesis Flow 162

7.5 Impact of the Multi-Voltage LPD Technique on Quality of Results . . . 162

7.6 Preparing the Design for Power Analysis Using VCS 168

7.7 Multi-Voltage Power Analysis Using PrimeTime PX and UPF Flow . . 173

7.8 Chapter Summary . 177

8 Physical Implementation Using Design Compiler Topographical Tech-

nology in ASIC Methodology 181

8.1 Physical Synthesis Using IC Compiler 182

8.2 Physical Synthesis Flow . 182

8.2.1 Library Data Preparation . 183

8.2.2 Floorplanning . 184

8.2.3 Placement . 185

8.2.4 Clock Tree Synthesis . 186

8.2.5 Routing . 189

8.2.6 Design Verification . 190

xvi Contents

8.2.7 Finishing and Saving the Results 190

8.3 Comparison of the Proposed RNS-Based Image Processor with Dedi-

cated Hardware Designs . 193

8.4 Chapter Summary . 196

9 Thesis Conclusion and Recommendations for Future Work 197

9.1 Thesis Conclusion . 197

9.2 Future Research Directions . 198

A Computer Specifications Used for Running MATLAB 201

A.1 Computer Benchmark for Running MATLAB 201

A.2 MATLAB Benchmark . 202

B Synopsys Design Compiler Synthesis Results of Full-Adder-Based Scaler203

C Tcl Scripts for Synthesising Initial Binary and the Proposed RNS-

based Image Processors Using Synopsys DC 209

C.1 Synopsys DC Setup File-Setup.tcl . 209

C.2 Synopsys DC Constraints File-Defaults.con 210

D Tcl Scripts for Multi-Voltage Synthesis of Initial Binary and the Pro-

posed RNS-Based Image Processors Using Synopsys DC Topograph-

ical Mode 211

D.1 Synopsys DC Topographical Mode Setup File-Setup topo.tcl 211

D.2 Multi-voltage Setting Tcl File for Topographical Mode Synthesis -Voltage.tcl212

D.3 UPF File for Compiling the Proposed RNS-based Image Processor Using

Synopsys DC Topographical Mode-binary.upf 212

E Synopsys VCS-MX Tcl Scripts for Simulation of the Proposed RNS-

based Image Processor 215

E.1 Synopsys DVE Setup File-Setup DVE.tcl 215

E.2 Tcl File Used to Generate VCD File 216

F Synopsys PrimeTime PX Tcl Scripts for Multi-voltage Power Analy-

sis of the Proposed RNS-based Image Processor 217

F.1 Tcl Script for PrimeTime PX Post Lay Power Analysis 217

Contents xvii

G Synopsys DC Report of Post Compile UPF of the Proposed RNS-

based Image Processor 219

G.1 Visual UPF - Post Compile UPF . 219

H Synopsys IC Compiler Tcl Scripts for Physical Implementation of the

Proposed RNS-based Image Processor 223

H.1 Synopsys IC Compiler Setup File-Setup icc.tcl 223

H.2 Creat MilkyWay Library “RNS2D” . 224

H.3 Set TLU+ Files . 224

H.4 Import the Design and Constraints File 224

H.5 Initialise Floorplan . 224

H.6 Set Power and Ground Nets and Pins 224

H.7 Add Rectangular Power and Ground Rings 225

H.8 Create Power Straps . 225

H.9 Core Placement and Optimisation . 225

H.10 Clock Tree Synthesis . 225

H.11 Preroute Standard Cells . 226

H.12 Core Route and Optimisation . 226

H.13 Insert Fillers . 226

H.14 Verification . 226

H.15 Save the File . 226

I Synopsys IC Compiler Reports for Physical Implementation of the

Proposed RNS-based Image Processor 227

I.1 Linking the Design . 227

I.2 Sanity Check on TLU+ Files . 228

I.3 Floorplanning . 228

I.4 Placement . 228

I.5 Chip Summary . 229

I.6 Legalize Displacement . 229

I.7 Clock Tree Summary . 230

I.8 Filler Cell Insertion . 232

I.9 Design Verification . 233

List of Acronyms/Abbreviations 235

References 239

xviii Contents

List of Figures

2.1 RLE flowchart . 15

2.2 Test images: (a) a solid 0101 extreme, (b) a solid 1111 extreme, (c) one

row 1111 and one row 0000 alternately, (d) a normal image. 18

2.3 Overall performance of selected algorithms 23

2.4 Lifting scheme with three steps: split, predict and update 26

2.5 Lifting-based image compression: (a) Original image ”phone.jpg” 256×
256, (b) One level of lifting decomposition 29

3.1 Wavelet db7 (blue) and a centre-frequency-based approximations 33

3.2 One-dimensional DWT . 34

3.3 Two-dimensional DWT . 34

3.4 Decomposition of an image using 2D DWT to LL,LH,HL and HH

data sets . 35

3.5 Decomposition of a binary image using 2D DWT: (a) Original image

“circles.png” (256× 256), (b) Image at level one, (c) Image at level two 35

3.6 Haar transform: (a) Mother wavelet function, (b) Scaling function (Fig-

ure is generated using Matlab) . 38

3.7 db4: (a) Wavelet function, (b) Scaling function (Figure is generated

using Matlab) . 38

3.8 db8: (a) Wavelet function, (b) Scaling function (Figure is generated

using Matlab) . 39

3.9 Endpoint slack histogram of CDF97 with no timing violations 44

3.10 Endpoint slack histogram of LeGall with no timing violations 44

3.11 Endpoint slack histogram of Haar with no timing violations 44

3.12 Endpoint slack histogram of db4 with no timing violations 44

3.13 Endpoint slack histogram of db8 with no timing violations 45

xix

xx List of Figures

5.1 Full-adder-based scaler [1] . 65

5.2 Proposed scaling scheme using full-adder-based modular reducers . . . 65

5.3 VLSI architecture of modulo-(2n − 1) reducer 69

5.4 VLSI architecture of modulo-(2n + 1) reducer 69

5.5 VLSI architecture of the 3:2 compressor (full adder) used in modular

reducers . 70

5.6 VLSI architecture of the half adder used in designing the modulo-(2n−1)

reducer . 70

5.7 Proposed hybrid scaling scheme . 77

5.8 Schematic of the proposed hybrid scaling scheme 78

5.9 Proposed method to generate y1 in the moduli set (2n − 1, 22n, 2n + 1, 22n + 1) 89

5.10 Proposed method to generate y2 in moduli set (2n − 1, 22n, 2n + 1, 22n + 1) 95

5.11 Proposed method to generate y3 in moduli set (2n − 1, 22n, 2n + 1, 22n + 1) 97

5.12 Proposed modulo-(2n + 1) adder . 99

5.13 Proposed method to generate y4 in moduli set (2n − 1, 22n, 2n + 1, 22n + 1)100

6.1 Hierarchy of initial binary image processor 108

6.2 Hierarchy of proposed RNS-based image processor 108

6.3 Schematic of the proposed 2D RNS-based DWT digital image processor 110

6.4 A filter bank with a modular adder tree 111

6.5 Multiplierless implementation of DWT filter banks [2] 113

6.6 Generating lowpass and highpass filter coefficients using shifts and ad-

ditions . 114

6.7 Block diagram of (a) RNS-based filter banks based on the design in [3],

(b) Proposed RNS-based filter banks 115

6.8 Partitioned-operand modulo-m multiplier [4] 115

6.9 Optimised modulo-m multiplier . 116

6.10 Basic modulo-m adder where (m̃) denotes 2’s-complement of m [4] . . . 117

6.11 Proposed modulo-m adder . 117

6.12 Transposition unit . 118

6.13 Modular scalable transposer . 119

6.14 Serial-in, serial-out transposition unit 119

6.15 VLSI architecture of the “transposition” in Figure 6.14 121

6.16 VLSI architecture of COLTM4 in Figure 6.15 122

6.17 VLSI architecture of DFM in Figure 6.16 122

6.18 Reading pattern of image data in transposition units 124

List of Figures xxi

6.19 Symmetric extension: (a) Original data of length N , (b) Extension(1,1),

(c) Extension(1,2), (d) Extension(2,1), (e) Extension(2,2) 125

6.20 ModelSim simulation of proposed RNS-based image processor 128

6.21 Camera-man image after one level of 2D processing using proposed image

processor . 129

6.22 Generation of iMPACT PROM file . 139

7.1 Input and output files of Design Compiler for logic synthesis 142

7.2 Design constraints classified as design-rule constraints and design-optimisation

constraints [5] . 144

7.3 DC synthesis flow used for logic synthesis of the image processor 149

7.4 Schematic of GTECH (technology independent) of the proposed 2D

RNS-based DWT digital image processor 151

7.5 The multi-voltage strategies: (a) Static, (b) With power gating, (c)

Dynamic voltage/frequency scaling, (d) Adaptive voltage scaling (AVS)

[6] . 161

7.6 Optimised synthesis flow to synthesise the proposed RNS-based image

processor using the multi-voltage technique 163

7.7 Structure of level shifters: (a) High to low, (b) Low to high 165

7.8 Level-shifter placements in power domains 165

7.9 Unified Power Format (UPF) diagram of the proposed image processor 166

7.10 VCS schematic of the test bench including top-level, read and write

modules . 169

7.11 VCS schematic of a RNS-based filter of the image processor 169

7.12 VCS schematic of the main controller of the image processor 170

7.13 VCS schematic of a transposition unit of the image processor 170

7.14 VCS schematic of demux module of the image processor 171

7.15 VCS schematic of a flip flop of the image processor 171

7.16 VCS schematic of a invert module the image processor 171

7.17 VCS schematic of mux module of the image processor 172

7.18 Files generated by Synopsys tools to be used for power analysis 174

7.19 Overall view of the proposed RNS-based image processor waveforms . . 178

7.20 Zoomed view of the proposed RNS-based image processor waveforms . 179

8.1 Input and output of IC compiler . 182

8.2 Physical synthesis flow used to implement the RNS-based processor . . 183

8.3 Path-to-path schematic of the proposed 2D RNS-based image processor 191

xxii List of Figures

8.4 Schematic of the proposed 2D RNS-based image processor 192

A.1 Computer benchmark used for running MATLAB 201

A.2 MATLAB benchmark . 202

List of Tables

2.1 The RLE Algorithm: results for encoding and decoding the test images 19

2.2 The Canonical Huffman algorithm: results for encoding and decoding

the test images . 19

2.3 The DCT variant’s encoding delay (s) over the test images 20

2.4 The DCT variant’s decoding delay (s) over the test images 20

2.5 The DWT encoding and decoding delay for the test images 20

2.6 Performance of RLE over standard DCT coefficients 21

2.7 Performance of RLE over FFT-based DCT coefficients 21

2.8 Performance of RLE over AAN-based DCT coefficients 22

2.9 Performance of Huffman coding over Db4 coefficients 22

2.10 Performance of Huffman coding over Haar coefficients 22

2.11 Forward filter coefficients of lifting-based LeGall53 26

2.12 Reverse filter coefficients of lifting-based LeGall53 27

2.13 Pseudocode of the lifting scheme . 28

3.1 Haar lowpass and highpass filter coefficients [7] 37

3.2 CDF97 analysis filter coefficients [8] . 40

3.3 LeGall53 analysis filter coefficients . 40

3.4 Area, speed and power consumption of selected wavelet families 41

3.5 Library TCB015GHDWC report . 42

3.6 Area comparison of the selected wavelet families (µm2) 43

3.7 Top-level design power analysis . 43

3.8 Critical path delay (ns) . 44

4.1 Decimal, binary and one-hot residue modulo-mi 57

5.1 Hardware utilisation of modular-reducer-based scaler 71

5.2 Power supply summary of modular-reducer-based scaler 71

xxiii

xxiv List of Tables

5.3 On-chip power summary of modular-reducer-based scaler 71

5.4 Hardware utilisation of full-adder-based scaler 72

5.5 Supply power of full-adder-based scaler 72

5.6 On-chip power summary of full-adder-based scaler 73

5.7 Numerical example of proposed hybrid scaler for residue set (123, 55,

250) and scaling factor 256 . 76

5.8 Hardware utilisation of hybrid scaling scheme 79

5.9 On-chip power summary of hybrid scaling scheme 79

5.10 Supply power of hybrid scaling scheme 79

5.11 Estimation of unit gate area of the proposed hybrid scaler 81

5.12 Estimation of unit gate delay of the proposed hybrid scaler 81

5.13 Estimated number of transistors of proposed hybrid scaler 81

5.14 Comparison of estimated number of transistors in proposed hybrid scaler

and other designs for n = 8, (255, 256, 257), and M = 16776960 82

5.15 Comparison of estimated unit gate delay of proposed hybrid scaler and

other designs for n = 8, (255, 256, 257), and M = 16776960 82

5.16 Numerical example of proposed scaler for four-moduli set (3, 16, 5, 17)

and scaling factor 16 . 101

5.17 Full adder based (Chang) scaler Scale 1 (2n − 1) synthesis results . . . 102

5.18 Full adder based (Chang) Scaler Scale 2 (2n) synthesis results 102

5.19 Full adder based (Chang) scaler Scale 3 (2n + 1) synthesis results . . . 102

5.20 Full adder based (Chang) scaler all components synthesis results (2n −
1, 2n, 2n + 1) . 103

5.21 Four-moduli Scale 1 (2n − 1) synthesis results 103

5.22 Four-moduli Scale 2 (22n) synthesis results 103

5.23 Four-moduli Scale 3 (2n + 1) synthesis results 104

5.24 Four-moduli Scale 4 (22n + 1) synthesis results 104

5.25 Four-moduli scaler all components (2n − 1, 2n + 1, 22n, 22n + 1) synthesis

results . 104

5.26 Four-moduli Scale 3 (2n + 1) synthesis results 105

5.27 Four-moduli Scale 4 (22n + 1) synthesis results 105

5.28 Four-moduli scaler all components (2n − 1, 2n + 1, 22n, 22n + 1) synthesis

results . 105

6.1 CDF97 filter coefficients multiplied by decimal number 256 111

6.2 Dyadic fractions of CDF97 filter coefficients 112

List of Tables xxv

6.3 Symmetric extensions of signal x with filter length of N0 125

6.4 Target FPGA device . 129

6.5 Parameter set . 129

6.6 Delay of the modular adder . 130

6.7 FPGA resource consumption and power consumption of modular adders 130

6.8 Delay of the modular multiplier . 131

6.9 FPGA resource consumption and power consumption of modular mul-

tipliers . 131

6.10 Delay of modular channels . 131

6.11 FPGA resource and power consumption of the modular channels 132

6.12 Delay of modular scalable and proposed transposers 132

6.13 FPGA resource consumption and power consumption of transposers . . 133

6.14 Delay of CDF97 filter banks designed by existing and proposed RNS-

based modules . 133

6.15 FPGA resource consumption and power consumption of modular filter

banks . 134

6.16 Delay of binary and RNS-based image processors 134

6.17 FPGA resource consumption and power consumption of processors . . 135

6.18 Comparison of the proposed RNS-based image processor with similar

designs . 136

7.1 Setting up the search path, and target, link, symbol and work libraries 143

7.2 Design constraints . 144

7.3 Design environment . 145

7.4 Library saed90nm max hth report . 146

7.5 Power hierarchy of all the references of the initial binary image processor 153

7.6 Area hierarchy of all the references of the initial binary image processor 154

7.7 Power hierarchy of all the references of the RNS image processor 154

7.8 Area hierarchy of all the references of the RNS image processor 155

7.9 Critical path delay (In/out put: 25 bits, Filter coefficients: 6 bits, Op-

erating voltage: 1.08 V) . 155

7.10 Area comparison of the binary and RNS designs (In/out put: 25 bits,

Filter coefficients: 6 bits, Operating voltage: 1.08 V) 156

7.11 Top-level design power analysis of initial binary and RNS processors

(In/out put: 25 bits, Filter coefficients: 6 bits, operating voltage: 1.08V) 156

7.12 Comparison of common LPD methods [9] 160

xxvi List of Tables

7.13 Library saed90nm max report used as low-voltage library 164

7.14 Power state table (PST) of the multi-voltage processor 164

7.15 Critical path delay of the initial binary and proposed RNS-based designs

(In/out put: 25 bits, Filter coefficients: 6 bits, Top-level voltage: 1.08

V , Extender voltage: 0.7 V) . 166

7.16 Area comparison of the initial binary and proposed RNS-based designs

(In/out put: 25 bits, Filter coefficients: 6 bits, Top-level voltage: 1.08

V , Extender voltage: 0.7 V) . 167

7.17 Top-level-design power analysis of initial binary and proposed RNS-

based processors (In/out put: 25 bits, Filter coefficients: 6 bits, Top-

level voltage: 1.08 V , Extender voltage: 0.7 V) 167

7.18 List of cells in the proposed processor 175

7.19 Power domains of the multi-voltage processor 176

7.20 Supply nets of the multi-voltage processor 176

7.21 Supply sets of the multi-voltage processor 176

8.1 The Max TLU+, Min TLU+, and the layer-mapping file between tech-

nology library and ITF file . 184

8.2 Planner summary of RNS-based image processor implementation 185

8.3 The power and ground nets and pins setting of RNS-based image pro-

cessor implementation . 185

8.4 Creating rectangular rings for VDD and VSS nets of the RNS-based

image processor . 186

8.5 Place optimisation settings used in placement step of RNS-based image

processor implementation . 186

8.6 RNS-based image processor chip summary report 187

8.7 Legalise displacement of the chip . 187

8.8 Clock tree summary . 188

8.9 Route optimisation strategy for the design 189

8.10 Filler cell insertion . 189

8.11 Comparison of the proposed RNS-based image processor with dedicated

hardware designs . 194

8.12 Chip characteristics . 196

B.1 Synopsys DC synthesis results of Chang scaler-Scale 1 204

B.2 Synopsys DC synthesis results of Chang scaler-Scale 2 205

B.3 Synopsys DC synthesis results of Chang scaler-Scale 3 206

List of Tables xxvii

B.4 Synopsys DC synthesis results of Chang scaler 207

xxviii List of Tables

1
Introduction

As technology has advanced in past decades, people have seen the potential of com-

puting devices and have dreamed of the faster and more efficient products and services

that can be provided only by digital hardware. This has created a demand for continual

advancement in the speed and efficiency of existing systems.

Advances in science and technology have also required the use of digital image

compression in demanding applications such as commercial photography, industrial im-

agery, geophysics, machine vision, medical imaging, control and automation, telemetry,

satellite imagery, military and security sciences, agriculture applications, graphic arts

and multimedia, network, Internet, or storage media. All these applications require a

large volume of computational operations for processing images. Hence, exploring a

way to increase the processing speed and reduce the power consumption is essential.

Various methods have been developed and introduced to optimise existing image

processing systems. Among proposed schemes, optimising the arithmetic level of image

processors and replacing conventional number systems by the Residue Number System

(RNS), have drawn more attention, since arithmetic system plays an important role

in satisfying the requirement for a large volume of computational operations in image

processing [10, 11].

Conventional number systems use a base approach, where each digit is multiplied

1

2 Introduction

by a base value to attain its real value. All the weighted values are then added up to

attain the actual number. The three most commonly used examples of conventional

number systems are binary (base 2), decimal (base 10) and hexadecimal (base 16).

Replacing conventional binary number systems with the Residue Number System

(RNS) has been steadily rising in favour over the last 50-60 years. The RNS-based

architecture allows the processing of modular channels simultaneously, and saves sig-

nificant delays in arithmetic operations. Using small integers in independent channels

also reduces the carry propagation and the number of partial products in adders and

multipliers, respectively [12, 13].

Despite many publications regarding the application of RNS for digital image pro-

cessing [3, 14–19], it is still at an early stage. Due to RNS’s complex operations (sign

detection, division and magnitude comparison) most of these studies are based on

ultimately unjustified assumptions, and are inexact with many errors in the results.

This thesis will provide a design and optimisation for a RNS-based digital image

processor in detail and examine it against a binary processor. The study will also

implement the proposed processor with static voltage scaling to achieve the best power-

performance trade-off in the proposed image processor.

1.1 Existing Literature

The literature regarding RNS-based image processing is sparse. An extensive litera-

ture search on the “RNS-based image processor” results in only a few tens of hits and

many of them are not directly relevant to the interests of this thesis. The literature

which has been deemed to be directly relevant to our topic is discussed below. The

first FIR filter implementation using RNS has been reported in 1977, by Jenkins [20].

They implemented a dual-bandpass FIR filter using the moduli set (7, 9, 11, 13, 16),

and compared it with a 2’s-complement contender. The authors concluded that the

RNS-based FIR filters perform with higher throughput than the 2’s-complement con-

tender. In 2000, a RNS application in implementing orthogonal wavelet filter banks

was presented [21, 22]. The filter banks were designed using LUTs, and they processed

8-bit inputs with 10-bit filter coefficients. The resulting system ran 23.45% and 96.58%

faster than a 2’s-complement design for one and two octaves, respectively. The weak-

ness of their design was using LUTs for modular multiplications. They provided a

comparison between FPL implementation of RNS and binary 1D DWT architectures.

No details of the synthesis results were provided.

In 2001, Ammar et al. [23] used RNS and the Chinese Remainder Theorem (CRT)

1.1 Existing Literature 3

for encoding and encryption of image pixels. The result was an encrypted image that

needed the moduli set (key) for decryption and reading. They used look-up tables

(LUT) for conversion from RNS to the binary number system; however there was no

compression process in the proposed technique.

The design and implementation of a RNS wavelet processor using custom IC tech-

nologies has been presented by in 2003 [14]. They used RNS for implementing wavelet

filter banks using an enhanced index transformation over a Galois field. Their sys-

tem was compared with 2’s-complement designs, and showed up to 100% performance

improvement. The authors only contributed to designing the filter banks rather than

implementing the whole processor. The main shortcoming of the Ramirez design is that

it does not address any other RNS modules in the RNS wavelet processor apart from

the filter banks. Hence, they neglected the effect of the multi-dimensional requirement

of processing an image, which is addressed in this thesis.

In contrast with [14], the authors in [24] used RNS to implement low-power and

low-leakage FIR filters. This idea was contrary to the Ramirez design, that concluded

that RNS increased the speed of operations but also increased the hardware complexity

and power consumption. They applied RNS in order to reduce the static and dynamic

power consumption of FIR filters. [24] compared 16-, 32- and 64-tap FIR filter im-

plementations in 2’s-complement and RNS, and showed that the RNS filters offer a

reduction of 50% in static power dissipation and a total power reduction of 40%. The

effect of RNS on power consumption of a system is provided in Chapter 7.

In 2004, the authors in [25] investigated the application of RNS for digital image

processing. They presented a VLSI implementation of an image coding scheme using

the RNS and modified CRT. The proposed scheme encrypted the entire image and did

not require any additional component other than a standard RNS system. Again, no

compression algorithm was used for image compression. The details of the modular

units, nor the synthesis results of their processor were not provided.

Another RNS-based design in 2004 was the design and implementation of an RNS-

based image processor using DWT filter banks and RNS arithmetic in [3]. The proposed

design used 27 look-up tables (LUT) for modular multiplication, each with 8-bit width

and 256 entries. The downside of their processor was that the LUTs and RAMs are the

main sources of leakage power, which is the major concern of standalone applications

like mobile phones and cameras. In addition, the authors in [14] have reported that

the best RNS designs have a hardware cost about the same as or more than the binary

designs. In other words, while using RNS can help to enhance the performance of an

4 Introduction

image processor, the architecture of using modular arithmetic might increase the hard-

ware complexity and power consumption of the system [26]. Therefore, one question

that needs to be answered is what aspects of RNS-based designs are superior to binary

designs.

The authors in [27] have discussed a modular implementation of image convolution

steps based on the Generalised Fermat number transform (GFNT), and implemented

the proposed circuit using VHDL. The proposed system used the Fermat Number

Transform (FNT) and modulus q = 2M + 1, where M is an integer power of two. The

resultant system has been suggested for image convolution applications; however, there

was a limitation on the appropriate word length for the moduli set. Two solutions were

proposed to overcome this limitation. The Generalised FNT (GFNT) is proposed as

the first solution, in which M was not restricted to be an integer power of two but

may be an arbitrary integer. This solution was suitable for block-based image and

video filtering applications, but it reduced the transform length to 16 or 32 points for

M < 32. A second solution was to use number-theoretic transforms based on the RNS

and enlarge the effective modulus with moduli q(1) = 2× 16 + 1 and q(2) = 2× 8 + 1.

It provided a transform length as large as 256 points, and a 24-bit dynamic range.

The authors in [28] suggested Number-Theory-based Image Compression Encryp-

tion (NTICE) using a number-theoretic paradigm and CRT for compression and en-

cryption of colour images. The results showed that this method was comparable to

more complicated methods. The algorithm was applied for image multiplexing to

achieve a high level of security with compression. This algorithm was tested on various

test images using Matlab, and no further studies on hardware complexity and power

efficiency of their algorithm were conducted.

The authors in [29] decided to combine binary and RNS architectures. They pro-

posed an adaptive FIR filter using a mixed binary-RNS architecture. The RNS has

been adopted for its great savings in time and power dissipation, while integrating the

design with a conventional binary system was to avoid the scaling step.

Finally, digital image filtering of spatial and frequency domains based on the RNS

has been studied in [18] to achieve high speed, high security and low-power-consumption

digital image processing. The transmission security and filtering issues in the frequency

domain are discussed, and the authors propose a method to compute new pixel values

using the selected mask in the RNS. The study concluded that the RNS permit efficient

digital image filtering.

As can be seen from the above literature review, the design and physical implemen-

tation of a RNS-based image processor has never been reported in scholarly papers.

1.2 Motivation for This Research 5

In this thesis, details of a RNS-based image processor, from designing modules to

verification will be presented. The resultant system is a chip that is ready for tape-out.

1.2 Motivation for This Research

In 1943 Thomas Watson, chairman of IBM, said: “I think there is a world market

for maybe five computers”. This is an indication of how the electronics industry has

developed, and has been a surprise even to this leader of industry. His prediction

became true in 1946 when early electronic computers used valves (vacuum tubes).

One of the world’s first computers, called Eniac, had 18000 valves which used 10

hp, and it weighed 30 tonnes. In 1947, the first transistor was developed by Walter

Houser Brattain, William Shockley, and John Bardeen in the Bell Laboratories. Early

transistors in the mid 1940s cost between 5 and 45 $ each. In contrast, today each

transistor costs 15 cents or less, and a tiny fraction of a cent in an integrated circuit.

It shows that things get cheaper as we advance them.

In 1949, there was a clue in Popular Mechanics magazine where they forecast that

“Computers in the future may weight no more than 1.5 ton”. In 1954, IBM produced

the first fully transistorised computer, that had 2000 separate transistors. In 1958, the

first integrated circuit (IC) was invented at Texas Instruments by Jack Kilby. In 1971,

the first microprocessor was produced by Intel, using 2300 integrated transistors. It

was a huge number at that date, which is tiny today.

In 1975, chip complexity was predicted to double every one and a half years (Moore’s

law) by Gordon Moore, who was one of the founders of Intel. His original prediction

in 1965 was:“The complexity for minimum component costs has increased at a rate of

roughly a factor of two per year”. In 1975, ten years later, he looked back and refined

his law to “one and half years”. So, Moore’s law says that, every one and half years,

chips achieve double complexity and do twice as much. Up to date, in 2014, Moore’s

law has continued to rule the industry.

In 1977, Ken Olsen, president, chairman and founder of Digital Equipment Corpo-

ration, gave a disturbing quote:“There is no reason any one would want a computer

in their home”. In 1983, Apple introduced the first user-friendly computer. She was

named “Lisa”, weighed 52 pounds and cost 10,000 dollars. This was the entry to the

portable computer age.

In 1998, the Intel Pentium II processor was produced with 7.3 million transistors.

So, in a short time, we have gone from 2000 transistors up to 7 million transistors. In

the same year, Aart J. De Geus, the CEO of Synopsys, said “Customers need to be 10

6 Introduction

times more productive every 6 years”, which is in line with and in support of Moore’s

law. In 2011, Inteligon produced a ten-core Westmere Xeon FX processor. This is 2600

million transistors in the size of a finger.

Today, the need for faster digital circuitry continues. Various methods have been

developed and introduced to optimise existing systems. RNS arithmetic was first used

in Computer Science. However, due to problems associated with the inefficient hard-

ware of that time, it was not as well appreciated as it deserved. Advances in VLSI

technology and an ability to design more efficient hardware has encouraged researchers

to use this arithmetic system more than ever. In this thesis, we will focus on design-

ing an image processor based on the RNS with less hardware complexity, a low area

requirement and less power consumption.

1.3 Research Objectives

The main issues of image processing are increasing the transmission speed, minimising

the power consumption and decreasing the storage requirement. This thesis seeks to

remedy these problems by designing and implementing a high-speed, low complexity,

power-efficient digital image processor. The main focus of this thesis is to investigate

the effect of using the RNS on the speed of calculations, hardware complexity and

power consumption of the proposed image processor. The resultant system is capable

of compression of images using low power and less area, at high speed. The aim of this

thesis is to serve as a gateway to enhance image processing features in the future.

1.4 Thesis Outline

The thesis is organised as follows:

• Chapter 2: A Review of Image Compression Algorithms and Schemes

In this chapter the necessary background and preliminary study of the most com-

mon image compression methods and ways to improve and expand the algorithms

are provided. It aims to provide an insight into the characteristics of commonly

used image compression algorithms. Each method is tested with controlled test

images to determine the compression method’s operational capabilities for the

different test cases. Their different performance under certain circumstances is

simulated and compared with other methods, and discussions on how algorithms

will behave in other circumstances are given in detail. The desired outcome of

1.4 Thesis Outline 7

this chapter is a clear comparison between each method simulated, thereby de-

termining its suitability for different applications. At the end of this chapter,

we will select the compression algorithm and filtering scheme for the proposed

digital image processor.

• Chapter 3: Discrete Wavelet Transform for Image Processing Applications

This chapter begins with a brief introduction to the discrete wavelet transform

(DWT). It will then move on to the description of orthogonal and bi-orthogonal

wavelets. The most common orthogonal wavelets compete with the bi-orthogonal

wavelets in the Xilinx synthesis tools. To establish the properties of each wavelet

family, further synthesis will be performed using Synopsys Application Specific

Integration Circuit (ASIC) technology libraries. This unique study of wavelets

with standard cell libraries using high-quality methodology and industry-leading

technical software will serve as a convenient reference for wavelet users and re-

views. At the end of this chapter, we will choose the right wavelet family for

image compression in this thesis.

• Chapter 4: The Residue Number System

This chapter provides background information and a preliminary study of the

residue number system (RNS) that are directly relevant and useful for designing

and implementing the proposed processor. The most useful tools in number the-

ory, including the Chinese remainder theorem (CRT) and a modified CRT, are

presented. Furthermore, efficient moduli set selection and bit efficiency improve-

ment are investigated. We use this study to choose the appropriate moduli set

and bit width of the RNS operational blocks in the proposed image processor.

• Chapter 5: Scaling in Residue Number System

In this chapter, we will propose a scaler based on modular reducers, as a modi-

fication to Chang’s full-adder-based scaler in [1]. Subsequently, a hybrid scaling

scheme for the three-moduli set (2n − 1, 2n, 2n + 1), scaling factor 2n (n = 8)

will be presented. Both LUTs and modular adders are employed efficiently to

generate the accurate scaled residues. A reverse conversion from residues to the

original binary number is generated as by-product of scaling. For the first time,

we propose a scaling scheme for a four-moduli set. To date, no scaling scheme is

reported for any form of four-moduli set, yet.

• Chapter 6: Logic Design and FPGA Implementation of Initial and the Proposed

2D RNS-based DWT Image Processors

8 Introduction

In this chapter, we will present the logic design of an initial and the proposed 2D

RNS-based DWT image processor. We will start with an initial image processor

designed based on binary arithmetic and optimise it to achieve the thesis goals.

Development of RNS-based architectures for the optimal performance and coor-

dination with VLSI will be carried out using Matlab, Maple and Xilinx FPGA

tools.

• Chapter 7: RTL to Gate Synthesis

We have considered timing and delay modification as the highest priority in our

design goals, followed by the power and area of the proposed processor. In this

chapter, we will synthesise the proposed logic design using Synopsys tools, and

look for the best trade-off between timing, area and power.

• Chapter 8: Physical Implementation Using Design Compiler (DC) Topograph-

ical Technology in ASIC Methodology

As the last step of the project, the proposed image processor will be implemented

using DC topographical technology in ASIC methodology. The DC topographical

technology is selected because it eliminates design iterations and reduces the

overall design cycle. The synthesised design will be ready for tape-out and final

testing and verification. Milkyway technology and the IC compiler are used for

this purpose.

• Chapter 9: Thesis Conclusion and Recommendations for Future Work

Finally, a conclusion of the thesis and an indication of future research directions

will be provided in this last chapter.

1.5 Tools

Tools used in this thesis:

• Matlab R2013b

• Maple 17

• Xilinx ISE project navigator 14.5

• PlanAheadTM

• Mentor Graphics Modelsim

1.5 Tools 9

• Synopsys Asia Pac FrontEnd University Bundle (Design Compiler, Design Vi-

sion, Custom Wave View, Prime Time PT-PX, VCSMX)

• Synopsys Asia Pac BackEnd University Bundle (IC Compiler, Milkyway Envi-

ronment)

• Red Hat Enterprise Linux WS release 4

• LATEX Basic MiKTex 2.9.5105

• Workstation: Dual Intel(R) Xeon(R) X5650 2.66 GHz, 12M cache, 6.4 GT/s

QPI, Turbo, HT, 6C 72GB (9 × 8BG) DDR3 RDIMM Memory, 1333MHz, ECC

500GB 7200 RPM 3.5” SATA hard drive Dell Precision T5500 Chassis with TPM

10 Introduction

2
Review of Image-Compression Algorithms

and Schemes

Image compression is one of the most widely used groups of signal processing schemes

in real-time applications. Compression of digital images is essential in image storage

and transmission. The main objective of image compression is to decrease the memory

space, increase the transmission speed and minimise bandwidth utilisation. There are

various algorithms for compressing images, each with pros and cons. Each method of

data compression behaves differently for various types of data, thus a review of the com-

mon image algorithms seems necessary to compare the compression ratio, compression

and decompression time, and generated file sizes [30].

In this chapter the necessary background and preliminary studies of the most com-

mon image-compression methods, and systematic approaches to improve and expand

the algorithms, are provided. It aims to provide an insight into the characteristics

of commonly used image-compression algorithms. Each algorithm is tested with con-

trolled test images to determine the operational capabilities of each algorithm for dif-

ferent test cases. Subsequently, the performance of each algorithm is simulated and

compared with other methods. Discussions on how algorithms behave with various test

images are given in detail. The desired outcome of this chapter is a clear description of

11

12 Review of Image-Compression Algorithms and Schemes

compression algorithms, and determining the suitability of each algorithm for different

applications.

2.1 Image-Compression Schemes

Minimising redundant information in digital images is the main concern in image-

compression algorithms. They can be classified, based on their integrity to the original

image, to be lossy or lossless (noisy or noiseless). Lossless image compression is the

exact reconstruction of the original image, while in lossy image compression some of

the information cannot be achieved in the receiver.

Each classification has merits to fulfil the requirements of particular applications.

Common lossless compression standards are PNG, JPEG-LS, GIF, JBIG and Photo

CD. They are generally based on Shannon and entropy coding theories. The Shannon-

Hartley theorem states that an infinite-bandwidth and noise-free analogue channel can

transmit error-free data/unit of time unlimitedly [31].

JPEG is an ISO/ITU standard for compression of continuous-tone images which

can be lossy or lossless. In 1991, a joint group of image specialists in the International

Organisation for Standardisation (ISO) and the International Electro-technical Com-

mission (IEC), called the “Joint Photographic Experts Group”, proposed the JPEG

compression scheme [32].

The JPEG scheme accepts an input image in 8 × 8 blocks, and provides 8 × 8

frequency-space components. In each block, the pixel located at row 0 and column 0

is called a “DC term”, and the remaining 63 pixels are called “AC components”. The

DC term represents the average frequency rate of the block, while the AC terms are

the spatial frequencies of the cosine terms within the series [31].

Two extensions of JPEG are JPEG-LS and JPEG 2000. The JPEG-LS compression

standard is based on the LOCO-I (LOw Complexity LOssless COmpression Image)

algorithm [33] which is known as an efficient algorithm. JPEG 2000 is the latest

version of JPEG, designed to provide efficient compression for existing compression

ratios [34]. The main feature of JPEG 2000 over prediction-based lossless JPEG is the

use of reversible DWT [35]. JPEG 2000 also has reversible and irreversible schemes,

depending on the filter bank coefficients. Reversible JPEG 2000 uses a rounded version

of the bi-orthogonal CDF 5/3 wavelet transform with no quantisation [36]. CDF 5/3

uses integer coefficients, and the quantisation step size is equal to one (no quantisation

performed). For irreversible coding, the CDF 9/7 wavelet transform is used. This

scheme is not reversible because it introduces quantisation noise (rounding) depending

2.1 Image-Compression Schemes 13

on the precision of the decoder [37].

Other popular coding techniques are Vector Quantisation (VQ), Discrete Wavelet

Transform (DWT) and Discrete Cosine Transform (DCT), which can be either lossy

or lossless.

The VQ algorithm is a block coding scheme that yields a better image quality only

when the bit rate is small. This algorithm needs K2 ×N computations for coding an

image of size N ×N , where K is the number of code words [38].

The DCT is the basis of the well-known JPEG compression standard. It is a

derivative of the Fourier Transform. By eliminating the sine components in a Fourier

Transform, the DCT is derived as a series of cosine expressions [39]. In theory, a

Fourier transform represents an input signal with a series of sine and cosine expres-

sions. However, in DCT the sine components are eliminated [40]. In DCT, N2log2N

operations are required for coding an image of size (N × N). In block-coding DCT

schemes, block size affects the image quality and compression efficiency. A large block

size causes quality degradation and ringing in the image.

Image-compression algorithms can also be classified based on the selected compres-

sion steps. Image compression has two main steps. The first step is decorrelation,

which is removing inter-pixel or spatial redundancy. The second step is entropy coding

which is removing coding redundancy.

Some of the decorrelation techniques are Differential Pulse Code Modulation (DPCM),

the Walsh-Hadamard Transform (WHT), and multi-resolution techniques. The multi-

resolution algorithms such as hierarchical interpolation (HINT), Laplacian pyramid,

and S-transform perform transmission of data in progressive levels of increasing resolu-

tion. The DPCM algorithm usually requires a high bit rate compared to other coding

algorithms for the same image quality, executes with a high capability of reducing

redundancies, and is very susceptible to channel errors [38].

Subsequent to decorrelation, entropy coding such as Huffman coding or arithmetic

coding are usually employed to achieve higher compression ratios [41]. Huffman coding

is a lossless compression technique which is complex when there are many colour levels.

In Huffman coding, the fundamental concept is to use long code words for infrequent

symbols and short code words for the most frequent symbols [41].

14 Review of Image-Compression Algorithms and Schemes

2.2 Common Image-Compression Algorithms

Among image-compression algorithms, the four most common algorithms are discussed

in detail in the following. Selected algorithms are simulated, and the results are com-

pared to provide a clear picture of the advantages and disadvantages of each algorithm.

2.2.1 Run-Length Encoding

The Run-Length Encoding (RLE) algorithm refers to a form of lossless data compres-

sion used for consecutive data elements. It is one of the simplest methods of data

compression and, depending on the variant and techniques used with it, can yield very

varied results in different circumstances. However, the only suitable application for the

general form of the RLE is when data is repeated in large amounts; otherwise, this

method can easily expand and create an output larger than the original data. The

expanding effect occurs due to the singular control element in the RLE. As a result,

many adaptations of RLE have been developed. Two main approaches are inclusion

of a table of elements, and a predictive algorithm. The inclusion table of elements is

a similar technique to Huffman coding, that uses a binary tree as a dictionary of ele-

ments. Predictive algorithms discard changes that are too small to change the control

element. The RLE algorithm provides lossy data compression, which can be acceptable

in particular applications. Using a predictive algorithm is generally a small modifica-

tion that is commonly used as a minor improvement but yields a greater compression

ratio at the cost of processing time [42]. The RLE algorithm performs linear decoding,

traversing through the encoded elements. There is no effective way to perform partial

decompression due to the linearly encoded nature of the RLE compression. Figure 2.1

shows the flowchart of the RLE algorithm.

2.2 Common Image-Compression Algorithms 15

Start RLE

Get
number of
elements

Set pointer
to top

left/start
of image
(1 × 1)

Set
variables

Is count
less than

number of
elements?

Current
= control
element?

Available
memory

for count?

Finish RLE
Create new

control
element

Increment
count

x, y
dimensions
and x × y

max
elements

(x, y)=(1,1)

control =
current,

count =0,
set max

count size

Move
to next
pointer
position

NO

YES YES

NO YESNO

Figure 2.1: RLE flowchart

16 Review of Image-Compression Algorithms and Schemes

2.2.2 Entropy Coding

Entropy coding is usually implemented using either Huffman or Arithmetic coding.

Huffman coding is, in effect, Arithmetic coding that has shortcuts at key points. Arith-

metic coding generates the most optimised values, while Huffman stops the process at a

certain point to maintain a balance between processing time and achieving acceptable

levels of entropy encoding. Entropy coding is a lossless algorithm, unless it has been

modified to include a prediction/merging algorithm, which is not common.

Although Arithmetic coding increases overall compression by 5% to 10% compared

to Huffman coding, it is not as widely used as Huffman. One reason is that the highly

computational requirement of Arithmetic coding makes it a less attractive algorithm

for image-compression applications. Dedicated hardware implementations exist which

greatly mitigate this factor, but in most cases Arithmetic coding is unsuitable for

real-time applications [43].

2.2.3 Discrete Cosine Transform

The Discrete Cosine Transform (DCT) is a very popular algorithm for image com-

pression due to its energy-compaction capability. The main driving force behind the

popularity of DCT is its use of real numbers and its potential for reaching the maximum

theoretical efficiency.

An image to be processed by DCT is broken down into matrices, and is then further

broken down into sections of size N , where N is typically 8, however fairly common

variants of DCT exist where N = 4, 8 or 16. The effect of increasing the value of N

has very well documented properties, where N = 8 is regarded as balanced as it yields

an acceptable compression delay / (compression ratio + quality), a lower value has a

high compression delay / (lower compression ratio and decreased quality) and higher

values of N yields the inverse.

Due to the energy compaction nature of the DCT algorithm, the precision required

to accurately recreate an image decreases the further the pixel is from the top left.

The actual method of determining how much quantisation should be applied is another

reason as to why there are so many different variants of DCT. Quantisation reduces

the number of bits needed to store an integer value. The Joint Photographic Experts

Group created a quantisation matrix by finding the error between input and output

and determining what an acceptable level of error is by trial and error, and as such

there are many different variants of this matrix.

In this thesis, three different variants of DCT is considered. The standard version

2.3 Performance Comparison and Applications of Common Compression
Algorithms 17

of DCT needs O(N4) clock cycles for computations. It has been optimised to O(N2)

clock cycles. which is very close to the optimum O(NlogN), through the inclusion of

the Fast Fourier Transform (FFT). DCT benefits from energy compaction and focuses

most of the required data (described as energy) in a small area. Thus, the rest of the

image requires less information to be reproduced [44].

It is important to note that DCT itself does not create a compressed or lossy com-

pression (unless the accuracy of the trigonometric function are approximate), the quan-

tisation of the coefficients and rouding combined with some form of simple compression

such as RLE and commonly combined with entropy encoding result in compression.

2.2.4 Discrete Wavelet Transform

The DWT works the same as the human eye and in the same way that the brain pro-

cesses an image. In other words, luminance (brightness) or low-frequency components

are more important than chrominance (colour difference) or high-frequency components

to provide a fine-quality image. Taking advantage of this feature, many applications

use the multi-resolution capability of DWT to decompose an image into high- and low-

frequency sub-bands or “Chroma sub-sampling”. DWT also has the ability to localise

finite signals such as images in both frequency and time domains simultaneously. It

transforms a discrete signal from the time domain to the time-frequency domain. The

transformation product is a set of coefficients organised in a way that enables not only

a spectrum analysis of the signal, but also the spectral behaviour of the signal in time.

Compared to traditional transforms such as the Fourier transform, the DWT yields a

higher compression ratio and better visual quality [27, 45].

2.3 Performance Comparison and Applications of

Common Compression Algorithms

The performance of selected compression algorithms is compared for four monochrome

N×N test images shown in Figure 2.2 using Matlab simulations. All images are 65536

bytes in raw form. The peak-signal-to-noise-ratio (PSNR), which is the difference (er-

ror) between original and compressed image, is used to evaluate quality of compressed

images. Matlab benchmark and workstation specifications are provided in Appendix

A.

18 Review of Image-Compression Algorithms and Schemes

(a) Extreme 1 (b) Extreme 2

(c) Extreme 3 (d) Normal

Figure 2.2: Test images: (a) a solid 0101 extreme, (b) a solid 1111 extreme, (c) one row
1111 and one row 0000 alternately, (d) a normal image.

2.3.1 Performance of RLE Algorithm on Test Images

The RLE encoding traverses through the test images linearly, therefore the processing

delay is O(N) clock cycles. The decoding process is also performed linearly through

the RLE encoded data, which populates an empty matrix. This clearly shows the

effect of the RLE and its performance on different test images. Table 2.1 shows the

results produced for encoding and decoding the test images using RLE. The Peak

Signal-to-Noise Ratio (PSNR) is an infinite value as the noise is zero.

2.3.2 Performance of Entropy Coding on Test Images

Canonical Huffman coding is normally selected over Arithmetic coding due to its pop-

ularity and efficiency. The PSNR is omitted from the results because this method is

lossless and no predictive algorithms are used. Table 2.2 shows the results of encoding

2.3 Performance Comparison and Applications of Common Compression
Algorithms 19

Table 2.1: The RLE Algorithm: results for encoding and decoding the test images
Test image Encoded size (bytes) CR Encoding delay (s) Decoding delay (s)

Extreme 1 13557 0.2069 0.1032 4.266

Extreme 2 199 0.003 0.0028434 0.0021296

Extreme 3 212 0.0032 0.0028434 0.0021296

Normal 7959 0.1214 0.0071 0.1976

Table 2.2: The Canonical Huffman algorithm: results for encoding and decoding the test
images

Test image Encoded size (bytes) CR Encoding delay (s) Decoding delay (s)

Extreme 1 410 0.0063 1.259 6.8752

Extreme 2 179 0.0027 4.6039 6.8689

Extreme 3 311 0.0047 1.293 6.8693

Normal 6744 0.1029 1.2389 6.7013

and decoding the test images using the Huffman algorithm. The compression delay

for Extreme 2 is due to Matlab’s own functions. Another reason is that the operation

have caused it to perform extra functions with every iteration.

2.3.3 Performance of DCT Algorithm on Test Images

Three versions of the DCT algorithm are simulated on test images: the standard DCT

that requires O(N4) clock cycles, the FFT-based DCT, and the AAN direct-matrix-

manipulation DCT.

The direct matrix manipulation method uses the precalculated matrix solution

created by Arai, Agui and Nakajima’s (AAN) matrix. The advantage of the AAN-

based DCT is that it uses the least number of multiplications to produce the DCT

encoded image. The decoding operation for both FFT-based and AAN-based DCTs

can be performed with the inverse of the DCT algorithm, which is inefficient, or by

reversing the encoding operations. Quantisation of test images is performed with a

simple quantisation matrix approved by JPEG. The resulting PSNR is 356.4725, which

is very high for a lossy compression algorithm. This result is due to the use of the same

quantisation matrix for all test images. Tables 2.3 and 2.4 show the results of encoding

and decoding the test images using DCT algorithms.

20 Review of Image-Compression Algorithms and Schemes

Table 2.3: The DCT variant’s encoding delay (s) over the test images

Test image Standard DCT FFT-based DCT AAN-based DCT

Extreme 1 4.6382 0.0265 13.8028

Extreme 2 4.4732 0.0238 13.6482

Extreme 3 4.4589 0.0242 13.6528

Normal 4.6151 0.0258 14.3034

Table 2.4: The DCT variant’s decoding delay (s) over the test images

Test image Standard DCT FFT-based DCT AAN-based DCT

Extreme 1 6.8651 0.32267 13.6348

Extreme 2 6.3974 0.3059 13.1631

Extreme 3 6.4022 0.3021 13.1629

Normal 6.7578 0.3249 14.2998

2.3.4 Performance of DWT Algorithm on Test Images

The objective of the DWT algorithm is to decompose the input signal into approxima-

tion and detail coefficients, and analyse them separately. Compression occurs because

DWT distributes the majority of the coefficients into a few large coefficients. Quantis-

ing and Entropy coding (Huffman or Arithmetic coding) of the resulting data provide

the actual compression.

Lossy types of DWT are created by quantising negligible values and smoothing

the wavelet, which results in faster decompression and a greater overall compression

ratio with Entropy encoding but with less detail [44, 46]. A threshold of 15 is used

in quantisation while increasing the threshold to 20 has often been used in removing

noise. A PSNR value of 67.4630 is received for both transforms. Table 2.5 shows the

Table 2.5: The DWT encoding and decoding delay for the test images

Test images
Db4 Haar

Encoding Decoding Encoding Decoding

Extreme 1 2.4293 3.7559 2.3467 3.6495

Extreme 2 0.8322 1.7434 2.2848 3.6271

Extreme 3 0.8438 1.734 2.3486 3.7054

Normal 1.0459 2.1477 2.3509 3.6352

2.4 Overall Performance of Selected Algorithms 21

Table 2.6: Performance of RLE over standard DCT coefficients

Test image Encoded size Compression Compression Decompression

(bytes) ratio delay (s) delay (s)

Extreme 1 203 0.0031 4.6626 7.4238

Extreme 2 199 0.0030 4.5032 7.0362

Extreme 3 221 0.0034 4.9643 7.0409

Normal 3425 0.0523 4.9935 7.3592

Table 2.7: Performance of RLE over FFT-based DCT coefficients

Test image Encoded size Compression Compression Decompression

(bytes) ratio delay (s) delay (s)

Extreme 1 203 0.0031 0.0499 0.9887

Extreme 2 199 0.0030 0.0468 0.9775

Extreme 3 221 0.0034 0.0472 0.9739

Normal 3425 0.0523 0.0483 0.9872

DWT encoding and decoding delay for Daubechies (Db4) and Haar wavelets.

It is noteworthy that Daubechies and Haar show the same encoding/decoding de-

lay, and that the Daubechies wavelet is faster than the Haar for all the test images

(approximately 50% faster encoding/decoding delay) except for Extreme 1.

2.4 Overall Performance of Selected Algorithms

In this section, the performance of the selected image-compression algorithms from the

overall system viewpoint is investigated.

2.4.1 Performance of RLE Over DCT Coefficients

The RLE algorithm is performed over the DCT coefficients generated in Section 2.3.3.

Simulation results show that RLE is very consistent and performed well with DCT as

expected. As expected, the RLE algorithm operated very fast. Tables 2.6 to 2.8 show

the simulation results.

22 Review of Image-Compression Algorithms and Schemes

Table 2.8: Performance of RLE over AAN-based DCT coefficients

Test image Encoded size Compression Compression Decompression

(bytes) ratio delay (s) delay (s)

Extreme 1 219 0.0033 13.84012 14.3623

Extreme 2 231 0.0035 13.6825 13.8362

Extreme 3 238 0.0036 13.6893 13.8459

Normal 3318 0.0506 14.3410 14.9684

Table 2.9: Performance of Huffman coding over Db4 coefficients

Test image Encoded size Compression Compression Decompression

(bytes) ratio delay (s) delay (s)

Extreme 1 5530 0.0844 3.6229 10.5125

Extreme 2 81 0.0012 2.0174 8.5923

Extreme 3 79 0.0012 2.0496 8.3264

Normal 3004 0.0458 2.2034 8.7484

2.4.2 Performance of Huffman Coding Over DWT Coefficients

Performing Huffman coding over the wavelet coefficients of Section 2.3.4 produced the

simulation results of Tables 2.9 and 2.10.

2.5 Discussion of Simulation Results

Comparing the simulation results on the test images shows that some results are con-

sistent with the existing literature, while some results are slightly unexpected. Tables

Table 2.10: Performance of Huffman coding over Haar coefficients

Test image Encoded size Compression Compression Decompression

(bytes) ratio delay (s) delay (s)

Extreme 1 5524 0.0843 3.5928 10.4962

Extreme 2 5531 0.0843 3.5374 10.4527

Extreme 3 5527 0.0843 3.5587 10.4697

Normal 4868 0.0743 3.5622 10.4684

2.5 Discussion of Simulation Results 23

Ext
re

m
e 1

Ext
re

m
e 2

Ext
re

m
e 3

Nor
m

al
0

1´102

2´102

3´102

4´102

3´103

4´103
5´103

E
nc

od
ed

si
ze

(b
yt

es
)

Ext
re

m
e 1

Ext
re

m
e 2

Ext
re

m
e 3

Nor
m

al
0

1´10 -2

2´10 -2

3´10 -2

4´10 -2

5´10 -2

0.07

0.08

0.09

0.10

C
om

pr
es

si
on

R
at

io

Ext
re

m
e 1

Ext
re

m
e 2

Ext
re

m
e 3

Nor
m

al
0

1

2

3

4

5

6
9

12
14

C
om

pr
es

si
on

ti
m

e
(s

)

D
ec

om
pr

es
si

on
T

im
e

(s
)

Ext
re

m
e 1

Ext
re

m
e 2

Ext
re

m
e 3

Nor
m

al
0

2

4

6

8

10

12

14

16 Standard DCT and RLE

FFT-based DCT and RLE

AAN-based DCT and RLE

Db4 and Huffman

Haar and Huffman

Figure 2.3: Overall performance of selected algorithms

24 Review of Image-Compression Algorithms and Schemes

2.6 to 2.10 are summarised in charts in Figure 2.3.

All test images except Extreme 2 were very consistent when coded with Huffman.

It is believed that it is the dictionary/probability table creation process that created

the unexpected compression delay.

The AAN-based DCT produced slow results in Matlab. It was not expected to

produce results slower than the standard DCT. One reason is the in-built optimised

Matlab sine and cosine functions in the standard form of DCT.

It was expected that the Haar and Daubechies wavelets would have slightly different

file sizes when compressed with entropy. However, Extreme 1 (where the data is always

different) generated an almost identical file size. The DWT algorithm performed slower

than the FFT-based DCT, which is due to Matlab optimisation of the FFT and matrix

specific operations.

Comparing RLE and Huffman coding shows that the simplicity of RLE allows

better performance in optimum situations, while Huffman coding is more consistent

with different test images as expected.

Performing RLE on AAN-based DCT created a different level of compression com-

pared to other DCT variants. It performed marginally better with random data than

with sorted data. Although the difference is minor, it is interesting that it performed al-

most equally with Extreme 2 and Extreme 3, where the FFT-based DCT and standard

DCT performed almost identically to RLE compression.

At the end of this section, based on the simulation results, DWT is selected as

the transformation to design the proposed digital image processor. It outperformed

standard and AAN-based DCT on encoding delay. The performance of Huffman coding

over Db4 DWT coefficients shows low compression and decompression delay and small

encoded size. Another reason for choosing DWT over DCT is that the DCT algorithm

uses complex cosine operations, but DWT can be implemented using simple operations.

The Discrete Wavelet Transform (DWT) has already proven to be the most widely

used group of the wavelet family, and has been extensively used for image compression

due to its multi-resolution features and its ability to localise finite signals. Examples

of successful applications of DWT in digital image compression and noise reduction

applications are the FBI wavelet scalar quantisation and the JPEG2000 still-image

compression standard [41, 47, 48].

2.6 Convolution vs. Lifting 25

2.6 Convolution vs. Lifting

A greyscale image is a two-dimensional array (matrix) M × N , where each index

represents the brightness level of that point (pixel) in the image.

To process an image with a compression algorithm, it should be convolved or lifted

by filter coefficients. Convolution-based filtering is the most common filtering scheme,

that performs convolution of the sequence to be transformed (image) and the transform

(filter or mask). Convolution-based image processing can be applied either directly like

the Fourier transform or indirectly such as the Hartley transform.

The transforms directly possessing the convolution property can be defined generi-

cally as [27]:

Xk =
N−1∑
n=0

XnW
kn (2.1)

where k = 0, ..., N−1, N is the transform length, Xn is the sequence to be transformed,

Xk is the transformed sequence, and W is the transform kernel. Convolving digital

images with a filter or mask results in sharpening, noise removing or edge detection in

many applications [35, 49].

Lifting-based filtering splits odd and even samples followed by prediction and up-

dating steps. The split step divides the odd and even samples into two sets of samples.

Then consecutive samples are predicted. Prediction is done by taking advantage of

the correlation of neighbouring samples. In the last step, new samples are updated by

previous samples [50].

Figure 2.4 shows the lifting scheme. The differences between the actual samples and

the prediction of input data X is calculated d = (b−a), and stored (updated) in b. An

average, s, is then computed using a and newly computed difference, as s = (a+ d)/2.

Therefore, the lifting scheme requires only integer add and shift [51]. The inverse

transform can be performed by inverting the signs of polynomials and reversing the

algorithm stages [52].

The lifting scheme helps to optimise the speed and area requirement of image-

compression algorithms [53–56]. It uses fixed-point arithmetic instead of more costly

floating-point mathematical operations of convolution-based processing. In hardware

perspective, using fixed-point arithmetic saves on design complexity.

Lifting-based image processing is preferred in some studies. Authors in [53] pre-

sented techniques for improving the performance and lowering the power consumption

of image processors by employing lifting image filtering. In [54] a lifting scheme has

26 Review of Image-Compression Algorithms and Schemes

Predict Update Split

+

- Difference

Average

a

b
a

d=b-a

d=b-a

s=(a+d)/2

X

Figure 2.4: Lifting scheme with three steps: split, predict and update

Table 2.11: Forward filter coefficients of lifting-based LeGall53

x2i si

x2i+1 di

di − (si + si+1)/2 di

si + (di−1 + di)/4 si

improved the performance of a 2D DWT image processor. A scalable architecture of

different DWT families using a lifting scheme has been proposed in [55]. The perfor-

mance of the convolution- and lifting-based DWT has been compared in [56], which

showed that using a lifting DWT for digital image processing reduces the complexity

of operations and improves the simplicity of design by saving on computation steps.

Despite the above mentioned studies, the authors in [52] doubted the lifting advantages

in VLSI implementations, and argued that there is no indication that lifting reduces

the hardware complexity.

2.6.1 Lifting-Based DWT Image Compression

Convolution-based image processing is a traditional method of image-compression im-

plementation. For further clarification about lifting features, the wavelet transform

LeGall53 is implemented using a lifting scheme.

The original highpass and lowpass LeGall53 analysis filters have 5 + 3 = 8 coef-

ficients, whereas an implementation with the lifting scheme has only 2 + 2 = 4 filter

coefficients [57]. Tables 2.11 and 2.12 show forward and reverse filter coefficients, where

x is the input data, s is the average or low-frequency coefficient, and d is the difference

or high-frequency coefficient.

2.6 Convolution vs. Lifting 27

Table 2.12: Reverse filter coefficients of lifting-based LeGall53

si − di/2 si

di + si di

si x2i

di x2i+1

Wavelet-based image compression is inherently a multi-resolution signal analyser,

and variable levels of compression can be easily achieved. The number of filtering

levels results in different numbers of sub-bands. If there are 2k elements in the row or

column, then k lowpass and k highpass coefficients will be produced after each level of

filtering. The analysis filter equations are shown in (2.2) and (2.3):

Highpass coefficients:

g(k) = 2.x(2k + 1)− x(2k)− x(2k + 2) (2.2)

Lowpass coefficients:

h(k) = x(2k) + g(k − 1) + g(k)/8 (2.3)

where g(k) is the kth highpass coefficient, h(k) is the kth lowpass coefficient, and x(k)

is the input data at the kth position. The synthesis filter equations are shown in (2.4)

and (2.5).

Even samples:

x(2k) = h(k)− (g(k − 1) + g(k + 1)/8) (2.4)

Odd samples:

x(2k + 1) = g(k) + h(k) + h(k + 1)/2 (2.5)

A pseudocode for the lifting scheme is developed in Table 2.13.

The lifting pseudocode is implemented using a Maple R© worksheet for a 256× 256

phone.jpg image. Package ImageTools performs various functions of image processing.

By invoking this package, both greyscale and colour images are presented as arrays of

64-bit-hardware floating-point data.

with(ImageTools):

A1 := Matrix(ToGrayscale(Read(cat(kernelopts(datadir), phone)))):

The procedure to perform the transform:

T:=proc(x,n, st, off1):

28 Review of Image-Compression Algorithms and Schemes

Table 2.13: Pseudocode of the lifting scheme

Start
Get input parameters: image, decomp level
Set i := 0;
Set mid = (n/2)− 1;
while (the end condition is not met)
Split the image pixels:
s(i+ 1) := x(off1 + (2 ∗ i ∗ st) + 1);
d(i+ 1) := x(off1 + (2 ∗ i ∗ st) + st+ 1);
Predict the highpass and lowpass coefficients:
d(i+ 1) := d(i+ 1) + d(i+ 1)− s(i+ 1)− s(i+ 1 + 1);
s(i+ 1) := s(i+ 1) + ((d(i− 1 + 1) + d(i+ 1))/8);
Update the approximation signal:
x(off1 + (i ∗ st) + 1) := s(i+ 1);
x(off1 + ((i+mid+ 1) ∗ st) + 1) := d(i+ 1);
i := i + 1;
end

Using pseudo code in Table 2.13, the transform is as below:

for i from 0 by 256 to (nt-1)*256 do:

imgT:= T(A1,nt, ROW, i):

end do:

for i from 0 by 1 to nt-1 do:

imgT:= T(A1, nt, COL, i):

end do:

View(Create(imgT));

Figure 2.5 shows the original and decomposed image after one level of DWT using

the lifting scheme in Maple R©.

In the lifting scheme, the analysis and synthesis filters work in the reverse order,

hence two different VLSI realisations are needed,a disadvantage in the perspective of

this hardware project. Another problem with lifting is that it runs sequentially and

fails to increase the speed of operation. The throughput of the lifting scheme is less

than half that of parallel working convolution-based methods.

Convolution-based filtering, however, has a number of attractive features, such as

no image blurring or spatial dislocation in multi-resolution analysis. This thesis will

use convolution-based filtering for the proposed image processor.

2.7 Chapter Summary 29

(a) (b)

Figure 2.5: Lifting-based image compression: (a) Original image ”phone.jpg” 256× 256,
(b) One level of lifting decomposition

2.7 Chapter Summary

In this chapter, image-compression algorithms have been studied, and common algo-

rithms are compared and simulated using Matlab. Subsequently, simulation results are

discussed, and potential improvements and suitable applications for each algorithm are

provided.

RLE performed lossless data compression, and is suggested for palette-based icons.

The wavelet transform outperformed DCT. Huffman coding is suggested as a “back-

end” to other compression methods.

Convolution and lifting filtering schemes are suggested as the main methods to

implement image-compression algorithms.

Finally, convolution-based DWT is selected because it overcomes the convolution-

based sub-band filtering problem that increases the coefficient length and causes data

expansion and boundary artifacts. CDF97 is very well-known for it’s compatibility

of symmetry and exact reconstruction. Furthermore, its symmetrical features and

four vanishing moments makes it suitable to distinguish a smooth signal in gray scale

images.

Publications pertaining to this chapter:

• Azadeh Safari and Yinan Kong. The application of lifting in Digital Image pro-

cessing, Advances in Mechanical and Electronic Engineering, Lecture Notes in

Electrical Engineering, Volume 178, 2013, pp. 449-453, Springer, 2013.

30 Review of Image-Compression Algorithms and Schemes

• Azadeh Safari, Fujimi Bentley, and Yinan Kong. Operational Capability and

Suitability of Image Compression Methods for Different Applications, CCECE

2014, Ontario, Canada 4-7 May, pp.875-880, 2014.

3
Discrete Wavelet Transform for

Image-Processing Applications

Various image-compression algorithms and schemes have been discussed in Chapter 2.

There have been methods used to divide an input signal into various components

in the frequency domain. Fourier analysis is among the most common approaches.

The Fourier transform converts a signal from the time/spatial domain to the frequency

domain. This is done by breaking down the signal into sinusoids of different frequencies

but of infinite duration. Using the Fourier transform, time/spatial information is lost

after transforming to the frequency domain, i.e. it can be said that there was a special

event but not when, or in the case of images, where it occurred. One approach to

overcome this shortcoming is the Short-Time Fourier Transform (STFT); another one

is the wavelet transform [58].

The STFT approach applies the Fourier transform, not to the whole signal at once

but to small sections of the signal. Thereby, it provides some information about the

frequency and the time. The sections are created by a window function. The size of the

window is fixed and determines the resolution. A wide window allows good frequency,

but poor time, resolution. A narrow window has good time, but poor frequency,

resolution.

31

32 Discrete Wavelet Transform for Image-Processing Applications

There is another approach that can be used to divide signal data in the frequency

domain, which is wavelets. Wavelets transform the signal to the frequency domain

using small waveforms (wavelets) as base functions instead of sinusoids. Wavelets are

transient waveforms of finite duration defined by mother wavelet function ψ(t) and scal-

ing function φ(t). The mother wavelet is scaled and shifted during the transformation.

The wavelet and scaling functions are shown in (3.1) and (3.2).

ψj,k[t] = 21/2
∑
k

dj,kψ[2jt− k] (3.1)

φj,k[t] = 21/2
∑
k

cj,kφ[2jt− k] (3.2)

where dj and cj are the wavelet and scaling coefficient at scale j [59]. The wavelet and

scaling functions associate with highpass (g) and lowpass (h) filter coefficients in filter

banks, respectively.

The wavelet transform is called a multi-scale or multi-resolution approach. It anal-

yses the signal at different scales and allows a good time resolution for high frequencies

(=low scale) and good frequency resolution for low frequencies (=high scale) [60].

As mentioned before, wavelets are a multi-scale approach. Hence, for a wavelet a

pseudo-frequency Fa could be calculated, and a purely periodic signal of frequency Fc

is associated with a given wavelet:

Fa =
Fc

a×∆
(3.3)

where a is the scale, ∆ is the sampling period and Fc is the centre frequency. Figure 3.1

shows wavelet db7 (blue) and a centre-frequency-based approximation.

The order of wavelet transforms are usually determined by the number of vanishing

moments of the analysis wavelet. In Daubechies dbA wavelets, A refers to the number of

vanishing moments. Number of vanishing moments of scaling and wavelet functions is

significant in smoothness of wavelets [61]. A more smooth function has more vanishing

moments [62].

3.1 Discrete Wavelet Transform

In DWT, an image is decomposed by passing through an analysis filter bank. The

analysis filter bank decomposes the image to lowpass and highpass filter coefficients

3.1 Discrete Wavelet Transform 33

Figure 3.1: Wavelet db7 (blue) and a centre-frequency-based approximations

and “decimate them by two”. The decimated outputs constitute the approximation

(L) and the detail (H) signals. Figure 3.2 shows a one-dimensional DWT splitting an

input signal F (x, y) into L and H.

In a two-dimensional (2D) DWT, a one-level DWT is performed on the rows and

columns of a 2D input signal (image), and generates an approximation signal (LL) and

detail signals (LH,HL and HH). If further decomposition is required, the previous

level’s approximation signal (LL) becomes the next-level input [36, 60, 63]. Figure 3.3

shows how 2D DWT decomposes an input signal to LL,LH,HL and HH data sets.

Figure 3.4 shows the arrangement of the data sets in the compressed image. The effect

of one and two levels of 2D DWT on a binary image are shown in Figure 3.5.

DWT can be implemented using the pyramid algorithm (an octave-band filter bank

with j levels) in the multi-resolution analysis framework. The level j specifies the scales

of the wavelets a = 2j. For a signal sequence x(n), the approximation ain and detail

signals din at level j are defined using (3.4) and (3.5), respectively [22, 64]:

ain =
n−1∑
k=0

hka
(i−1)
2n−k (3.4)

34 Discrete Wavelet Transform for Image-Processing Applications

Figure 3.2: One-dimensional DWT

Figure 3.3: Two-dimensional DWT

3.2 Orthogonal and Bi-Orthogonal Wavelets 35

2D DWT
LL

HHHL

LH

Image

Figure 3.4: Decomposition of an image using 2D DWT to LL,LH,HL and HH data
sets

(a) (b) (c)

Figure 3.5: Decomposition of a binary image using 2D DWT: (a) Original image “cir-
cles.png” (256× 256), (b) Image at level one, (c) Image at level two

din =
n−1∑
k=0

gka
(i−1)
2n−k (3.5)

where i = 1, 2, ..., j, and hk and gk are lowpass and highpass coefficients selected based

on the chosen wavelet family, n is the filter length, k is the coefficient length.

3.2 Orthogonal and Bi-Orthogonal Wavelets

The DWT can be classified according to the wavelet properties. One such classification

is orthogonal or bi-orthogonal, depending on the relation between the analysis and

synthesis filter banks. When the analysis and synthesis filters are transposes as well as

inverses of each other, the filter bank is orthogonal, e.g. Haar and Daubechise. When

they are inverses, but not necessarily transposes, the filter bank is bi-orthogonal, e.g.

CDF97 and LeGall [65].

There is a vast use of orthogonal and bi-orthogonal wavelets in various fields and

36 Discrete Wavelet Transform for Image-Processing Applications

applications. Some applications fit well to orthogonal wavelets while others prefer bi-

orthogonal wavelets [3, 66, 67]. However, fewer studies have surveyed the properties

of each family in real-time processing applications. This is done in the subsequent

sections.

3.3 Orthogonal DWT

The wavelet transform decomposes a signal in terms of a set of basis functions, which

are localised both spatially and spectrally. In the case of orthogonal wavelets, this

decomposition can be performed by quadrature mirror filters (QMF). Usually, in QMF

schemes the forward transform is computed by a hierarchical arrangement of g, h filter

pairs and decimators, and the inverse transform via ḡ, h̄ filter pairs and adders. Or-

thogonality of filter banks halves the number of multipliers and adders at each level

of decomposition and reconstruction; hence they require less memory space. Equa-

tions (3.6) and (3.7) show the filter relations in orthogonal wavelets [22]:

hk = (−1)k+1gn−k−1 (3.6)

h̄k = (−1)k+1ḡn−k−1 (3.7)

where k = 0, 1, ..., N − 1, gk and ḡk are highpass, and hk and h̄k are lowpass, decom-

position and reconstruction filter coefficients, respectively.

Orthogonal wavelets have non-linear and balanced frequency responses. They are

useful in noise removal from audio signals and in data compression due to their use

of overlapped windows and a high-frequency coefficient spectrum, which reflects all

high-frequency changes [7].

In [67], the authors employed the orthogonal wavelet for image compression because

of the excellent spatial and spectral locality features of orthogonal families. Implement-

ing and comparing the Haar and Daubechies wavelets using FPGA technology has been

described in [7]. It showed that the Daubechies wavelet is more efficient for audio ap-

plications than the Haar wavelet based on the results of FPGA implementation.

3.3.1 Haar Wavelet Transform

The Haar transform is the oldest and simplest possible wavelet, proposed by Alfred

Haar in 1909. Like all wavelet transforms, the Haar transform decomposes a discrete

3.3 Orthogonal DWT 37

signal into two sub-signals of half the length. It actually serves as a prototype for all

other wavelet transforms. The Haar transform is one of the fast and simple family

of wavelets which can be used in memory-efficient designs. It is the only orthogonal

wavelet family that is exactly reversible without edge effects, a problem with other

orthogonal wavelet transforms [7].

The Haar transform also has limitations, which can be a problem with some appli-

cations [68]. The Haar window is only two elements wide. If a big change takes place

between two successive elements, the change will not be reflected in the high-frequency

coefficients. So, the Haar transform is not useful in compression and noise removal of

audio signal processing. The Haar wavelet is a square wave, which is equivalent to a

“sum and difference” transformation. The Haar lowpass and highpass filter coefficients

are shown in Table 3.1 [69].

Table 3.1: Haar lowpass and highpass filter coefficients [7]

h0 h1 g0 g1

0.5 1 1 0.5

0.5 -1 1 -0.5

The Haar scaling function and mother function are presented in (3.8), (3.9) and

(3.10). The mother wavelet and scaling functions of the Haar transform are shown in

Figure 3.6.

φ(x) =

1 0≤x < 1

0 otherwise
(3.8)

Ψ(x) = φ(2x)− φ(2x− 1) (3.9)

Ψ(x) =


1 0≤x < 1/2

−1 1/2≤x < 1

0 otherwise

(3.10)

3.3.2 Daubechies Wavelet Transform

The Daubechies wavelets are a family of orthogonal wavelets developed by Ingrid

Daubechies [64]. The Daubechies wavelet extends the Haar wavelets by using longer

38 Discrete Wavelet Transform for Image-Processing Applications

(a) (b)

Figure 3.6: Haar transform: (a) Mother wavelet function, (b) Scaling function (Figure is
generated using Matlab)

filters to produce smoother scaling functions. It has a higher number of vanishing

moments, which allows better compression of a signal. It is important to note that

the Haar wavelet is significantly simpler to encode but has approximately the same

complexity as the Daubechies wavelet [46].

In the db(n) family, n is the number of vanishing moments, and the resulting filter

has 2n filter taps. Figures 3.7 and 3.8 show the wavelet and scaling functions of db4

and db8, respectively.

(a) (b)

Figure 3.7: db4: (a) Wavelet function, (b) Scaling function (Figure is generated using
Matlab)

The coefficient relations of orthogonal wavelets in (3.6) and (3.7) can be substituted

in approximation and detail sequences in (3.4) and (3.5). Hence, the detail sequence

3.4 Bi-Orthogonal DWT 39

(a) (b)

Figure 3.8: db8: (a) Wavelet function, (b) Scaling function (Figure is generated using
Matlab)

will be:

d(i)n =
∑N−1

k=0
(−1)k+1gN−k−1a

(i−1)
2n−k

=
∑N

2
−1

k=0
gN−2k−2a

(i−1)
2n−2k−1 −

∑N
2
−1

k=0
gN−2k−2a

(i−1)
2n−2k

(3.11)

Equation (3.11) indicates that lowpass and highpass coefficients share N multipliers

in alternative cycles to compute approximation and detail coefficients. The relation

between filters allows the forward and inverse transforms to be calculated using shared

hardware. Therefore, the Daubechies-based encoders are hardware efficient.

3.4 Bi-Orthogonal DWT

One common well-known problem in sub-band filtering is that linear convolution or

filtering increases the coefficient length and causes boundary artifacts. One simple

method to overcome this problem is symmetric extension and linear-phase wavelet

filters. In orthogonal wavelets the same FIR filters are used for decomposition and

reconstruction, so symmetry and exact reconstruction are incompatible (except in the

Haar wavelet). In addition, other than Haar, none of the orthogonal filters are linear-

phase. Thus, bi-orthogonal wavelets are the de-facto standard for applications that

avoid data expansion. The viability of symmetric extension with bi-orthogonal wavelets

is the primary reason cited for their superior performance. The bi-orthogonal DWT

uses a linear-phase filter, which solves the problem of coefficient expansion, border

artifacts, image blurring and spatial dislocations in multi-resolution analysis [66, 70].

In bi-orthogonal filters, two wavelets are introduced instead of just one; one wavelet

40 Discrete Wavelet Transform for Image-Processing Applications

is used for analysis, and the other wavelet is used for synthesis [37, 54].

3.4.1 Cohen-Daubechies-Feauveau (CDF97) Wavelet

The analysis filter bank in Cohen-Daubechies-Feauveau (CDF97) uses nine-tap lowpass

filters, and seven-tap highpass filters. CDF97 has four vanishing moments for both

lowpass and highpass filters, which makes it suitable for distinguishing smooth greyscale

input data from rough noise. The CDF97 wavelet has been used in the JPEG2000

image-compression standard for lossy compression, and the FBI national fingerprint-

storage database. Table 3.2 shows the FIR filter coefficients for the CDF97 wavelet

[71].

Table 3.2: CDF97 analysis filter coefficients [8]

k Lowpass Filter (hk) Highpass Filter (gk)

0 0.6029490182363579 1.115087052456994

±1 0.2668641184428723 -0.5912717631142470

±2 -0.07822326652898785 -0.05754352622849957

±3 -0.01686411844287495 0.09127176311424948

±4 0.02674875741080976

3.4.2 LeGall (b, c) Wavelet

The LeGall (b, c) is a family of bi-orthogonal wavelets in which b and c can be any

positive integers whose sum is even. b and c are the number of vanishing moments of the

analysis and synthesis filters, respectively. LeGall53 has been used in the JPEG2000

image-compression standard for lossless compression. The LeGall53 analysis filters

coefficients are shown in Table 3.3.

Table 3.3: LeGall53 analysis filter coefficients

k Lowpass Filter (hk) Highpass Filter (gk)

0 6/8 1

±1 2/8 1/2

±2 -1/8 0

3.5 Performance Comparison of Wavelets 41

Table 3.4: Area, speed and power consumption of selected wavelet families

Coefficient Hardware utilisation Power Delay

Bit width (FPGA slices) (mW) (ns)

CDF97 6 622 1297.84 5.551

LeGall53 3 241 1298.09 4.043

Haar 1 103 1297.25 2.048

db4 5 496 1298.03 7.732

db8 4 459 1298.29 6.189

3.5 Performance Comparison of Wavelets

We have designed and implemented selected orthogonal and bi-orthogonal DWT fam-

ilies using VHDL in Xilinx ISE Design Suite. For consistency, the same structure of

filter banks is used for all wavelets. Details of the filter designs are provided in Section

6.2.1.2.

The wavelets are designed, and simulated using Modelsim on Virtex6 part xc6vcx75t

over speed grade -2. Table 3.4 shows the area, speed and power consumption of selected

wavelet families.

Table 3.4 shows that Haar is the best choice in applications with limited area

concerns, followed by other orthogonal families. This is due to the strong link between

the orthogonality of filter banks and hardware utilisation. The orthogonal families

use the same analysis and synthesis filter banks, while bi-orthogonal filters use two

separate filters. One unanticipated result is that LeGall53 bettered the orthogonal

family in hardware utilisation which is due to fewer coefficient bits.

Comparing the power consumption results, Haar used the least power followed by

CDF97, closely followed by db4 and LeGall53. db8 has the most power dissipation

among the wavelets.

In the delay comparison, Haar is the fastest. The bi-orthogonal families are slower

and other orthogonal families are slowest. The delay of LeGall53 is twice that of Harr,

which makes selection easier in applications with fast processing requirements.

3.6 Synthesising Wavelets Using Design Compiler

In this section, the area, speed and power consumption of the selected orthogonal and

bi-orthogonal wavelets are compared, based on Design Compiler (DC) synthesis results.

42 Discrete Wavelet Transform for Image-Processing Applications

Table 3.5: Library TCB015GHDWC report

Library type Technology TSMC150nm

Process General Purpose Nominal Vt

Time Unit 1 ns

Capacitive Load Unit 1.000000 pf

Pulling Resistance Unit 1 kilo− ohm
Voltage Unit Leakage 1 V

Current Unit 1 mA

Dynamic Energy Unit 1.000000 pJ

Power Unit 1 nW

Operating Conditions:

Operating Condition Name WCCOM

Library Tcb015ghdwc

Process 1.00

Temperature 125.00

Voltage 1.35

Interconnect Model Balanced tree

The aim of this section is to serve as a convenient reference for selecting appropriate

wavelets for specific applications.

To synthesise a wavelet using Design Compiler (DC), it is analysed and elaborated

with a technology-independent library (GTECH).

The TSMC150nm standard-cell library is used to compile wavelets and refine the

timing and environmental restrictions. Table 3.5 reports the library specifications and

worst-case operating conditions used to define the design environment.

For the purpose of area measurements, the top-level designs of wavelets are com-

piled with a “medium map effort” to execute area optimisations. Table 3.6 reports

combinational, non-combinational, and total area for each wavelet family. Compar-

ing Tables 3.4 and 3.6, the total cell areas of the designs are similar to those of the

FPGA synthesis results. The results also confirm the theoretical equations in that the

relations within filters reduce memory space requirements in orthogonal families.

The power consumptions of the designs are evaluated using the same libraries and

operating conditions. The segmented wire load model mode is selected. Hence, the

wire-load model of each segment of a net is determined by the design encompassing the

3.6 Synthesising Wavelets Using Design Compiler 43

Table 3.6: Area comparison of the selected wavelet families (µm2)

Combinational Buf/Inv Non-combinational Total cell

CDF97 9333.273 675.993 5016.038 14349.312

LeGall 3668.198 499.737 3440.102 7108.300

Haar 1600.819 460.339 2258.150 3858.969

db4 8941.363 564.019 3489.868 12431.232

db8 7755.264 651.110 4622.054 12377.318

Table 3.7: Top-level design power analysis

Internal Switching Total Dynamic Leakage Total

Power (mW) Power (mW) Power (µW) Power (µW) Power (mW)

CDF97 0.5823 (54%) 0.4923 (46%) 1.0745 (100%) 7.2498 1.0818

LeGall 0.3546 (48%) 0.3319 (52%) 686.4899 (100%) 3.3317 0.6898

Haar 0.2008 (57%) 0.1513 (43%) 352.0773 (100%) 1.6756 0.3538

db4 0.3369 (59%) 0.2298 (41%) 566.7487 (100%) 6.7170 0.5735

db8 0.5046 (56%) 0.4044 (44%) 908.9482 (100%) 6.2136 0.9152

segment. The total power dissipated falls into two broad categories which are dynamic

power (including cell internal power and net switching power) and leakage power. The

results are provided in Table 3.7 for Wire-load model: TSMC8K Conservative. These

results are also consistent with the results in Table 3.4, where Haar has the least, and

CDF97 and db8 have the most power consumption.

The design is first mapped to gates without setting constraints. This helps deter-

mine the initial design speed. Then, the speed of the initial design is used to determine

a starting-point value for constraints.

To check for timing violations and whether the designs have met the timing con-

straints, the data arrival time is generated, which is relative to the rising edge of the

clock at time zero when the data is launched from the starting point. None of the

designs have negative time slack, hence the path with the least positive timing slack

has the critical path delay. The data required time, data arrival time and the slack for

the critical path delay are provided in Table 3.8.

The endpoint slack histograms of selected wavelets are also shown in Figures 3.9

to 3.13 as high-level graphical descriptions of how the designs have met the timing

constraints. The overall timing performance of the designs shows that CDF97 has the

most critical delay paths, followed by db8. The distribution of the timing-slack values

44 Discrete Wavelet Transform for Image-Processing Applications

Table 3.8: Critical path delay (ns)

Data required time Data arrival time Slack Timing constraints

CDF97 9.39 9.10 0.29 MET

LeGall 9.43 5.05 4.38 MET

Haar 9.43 3.48 5.96 MET

db4 9.31 7.33 1.98 MET

db8 9.43 6.84 2.60 MET

Figure 3.9: Endpoint slack histogram of
CDF97 with no timing violations

Figure 3.10: Endpoint slack histogram of
LeGall with no timing violations

Figure 3.11: Endpoint slack histogram of
Haar with no timing violations

Figure 3.12: Endpoint slack histogram of
db4 with no timing violations

for Haar shows that most paths have delay close to the defined timing constraint, so

3.7 Chapter Summary 45

Figure 3.13: Endpoint slack histogram of db8 with no timing violations

Haar is the fastest design. These results support the results provided in Table 3.4.

3.7 Chapter Summary

Different types of predefined wavelets exist and new wavelets can be created by users.

It is important to choose a correct wavelet for an application. Hence, an important

question is: “When is the wavelet transform a good choice?”

The wavelet transform achieves good results if the signal is transient; for smooth

signals other transforms (e.g. the cosine transform) could be better choices.

The results of both FPGA and Synopsys Design Compiler give an account of,

and the reason for, the widespread use of different wavelets in various applications.

Selected families from orthogonal and bi-orthogonal wavelets are provided, and prop-

erties of each family based on a comparison of the area, speed and power consumption

are investigated. The results are consistent with those of VHDL implementations in

literature.

The mother and scaling functions of wavelets are window-like functions in spatial

and spectral domains. Hence, they are unique in localising finite signals like images.

The bi-orthogonal DWT is chosen for image compression using simple, short FIR filters.

CDF97 is chosen because it is symmetric and has four vanishing moments, which makes

it suitable to distinguish a smooth signal in greyscale images.

Publication pertaining to this chapter:

46 Discrete Wavelet Transform for Image-Processing Applications

• Azadeh Safari and Yinan Kong. Performance comparison of orthogonal and

biorthogonal wavelets using technology libraries, The 13th International Sympo-

sium on Communications and Information Technologies, IEEE, Samui Island,

Thailand, September 4-6, 2013.

4
The Residue Number System

Digital image processing involves many algebraic operations. These operations in-

troduce delay and power-dissipation overhead to the system. Hence, we should seek

methods to increase speed and decrease power by decreasing the number of algebraic

operations on the input image. One way to increase the speed of operations is to use

the residue number system (RNS).

Splitting large integers to small residues in RNS can significantly enhance the perfor-

mance of the image processor by speeding up the operations and reducing the processing

time, switching activity, storage space and dynamic power consumption. Implement-

ing modular operations in RNS can be accomplished by simple, parallel, independent

blocks. Furthermore, applying RNS provides easy error correction and detection. Since

RNS is a non-positional system and modular channels have no weight information, an

error in one channel does not propagate to other channels. Therefore, isolation of the

faulty residues allows fault tolerance and facilitates error detection and correction.

The first documented occurrence of multiple-residue representation of a number

dates back to more than 1500 years ago. Sun Tsu was a Chinese scholar who proposed

using a set of smaller numbers instead of a large number [72].

The RNS is a non-weighted number system. Each number (X) in the RNS is

represented as a set of the least positive remainders (residue set) when it is divided

47

48 The Residue Number System

by a set of moduli (moduli set). The residue set is commonly shown as (r1, r2, . . ., ri),

where ri is the ith residue. The moduli set is shown as (m1,m2, . . .,mi), where mi is

the ith modulus, and mi and mj should be relatively prime to each other.

Each number (X) in RNS can be expressed as:

|X|mi
= ri (4.1)

where ri is calculated using:

ri =

X mod mi, X ≥ 0

(mi −X) mod mi, X < 0
(4.2)

The RNS has a dynamic range which is the total number of different values that

can be represented using the moduli set [72]:

M =
n∏
i=1

mi. (4.3)

In the RNS any number in the range [0,M − 1] has a unique set of residues. If the

integer (X) is greater than (M − 1) or negative, then the residue set will be repeated.

Hence more than one integer can have the same residue representation. It shows the

importance of the pair-wise relatively prime integers, and the moduli set selection which

results in the size of the dynamic range [73].

4.1 Algebraic Operations in the RNS

The RNS algebraic operations are classified into two main groups:

• The simple operations (addition, subtraction and multiplication)

• The complex operations (sign detection, division and magnitude comparison).

For the residue set of X = (x1, x2, . . ., xn) and Y = (y1, y2, . . ., yn), addition, sub-

traction and multiplication are performed independently on each digit, i.e only the ith

residue of the operands participates in a simple operation:

|XoY |M = (|x1oy1|m1 , |x2oy2|m2 ,, |xnoyn|mn) (4.4)

4.2 Forward and Reverse Conversions 49

where (o) represents addition or multiplication. Subtraction is performed as addition

of the addition inverse:

|X − Y |M = (|x1 − ȳ1|m1 , |x2 − ȳ2|m2 ,, |xn − ȳn|mn) (4.5)

where r̄i is the mi complement of ri, and should satisfy the relation |ri + r̄i|mi
= 0. It

can be calculated using

r̄i = |mi − ri|mi
. (4.6)

Simple operations are the primary advantage of using the RNS. Modulo-dependent

operations also solve the carry-propagation problem by limiting it within a single

residue [74].

Division, sign detection and magnitude comparison in the RNS are considered as

complex operations. Unfortunately, (4.4) does not hold for division. Dividing an integer

by a divisor to give a quotient, is a complicated process. If there was an accurate way

to represent the inverse of the divisor, it would be easy to multiply the inverted divisor

and the dividend. However, unlike 2’s-complement systems, there is no easy way to

accurately represent the multiplicative inverse of a divisor in RNS, and no easy way to

perform division. Division would be even more complex by a random number.

The common solution for performing complex operations is to convert residues to

a weighted number system and perform the complex operations, then convert back

the results to the RNS. Complex operations are the reasons that RNS has not been

extensively applied [75, 76].

In spite of the great advantages of RNS-based architectures, research on this topic

is in the early stages. In addition, complex operations are far more difficult and costly

to implement. Also, conversion circuits from residue back to binary are complex and

offset the high speed of the processor. Therefore, the RNS is mostly suggested for

applications with predominantly addition and multiplication computations within a

certain range of results.

4.2 Forward and Reverse Conversions

To design a system in the RNS, the first step is to convert the weighted numbers in 2’s-

complement into the RNS. The binary-to-residue (B/R) converters convert binary inte-

gers into the residues in the RNS. If (X) is a decimal integer and X10 = (bn−1, ..., b1, b0)2

50 The Residue Number System

is the binary representation of X, then X modulo-mi can be calculated using:

|X|mi
= |
∑n−1

i=0
bi|2i|mi

|mi
(4.7)

where bi is a bit value of either 0 or 1 in the binary number system.

After performing modular operations, the results can be converted back to the

binary system using residue-to-binary (R/B) converters. Converting binary numbers

to the RNS is straightforward; however, converting residues back to binary numbers is

a very complicated and costly operation. The most popular method in R/B conversion

is the Chinese Remainder Theorem (CRT).

4.2.1 The Chinese Remainder Theorem

The most useful tool for R/B conversion is the “Chinese Remainder Theorem (CRT)”.

Theorem [10, 72, 74] Given the residue set (x1, x2, ..., xi) corresponding to the co-

prime moduli set (m1,m2, ...,mi), the system has one and only one common solution

modulo-M :

|X|M = |
n−1∑
i=0

M̂i|αixi|mi
|M (4.8)

where:

M̂i =
M

mi

(4.9)

and

αi = |M̂−1
i |mi

(4.10)

where αi is the multiplicative inverse of M̂i and should satisfy the condition |M̂i|αi|mi
|mi

=

1.

4.2.2 Multiplicative Inverse for (2n − 1, 2n, 2n + 1)

As (4.8) shows, the multiplicative inverse is required for reverse conversion. To calculate

the multiplicative inverse of moduli set (2n − 1, 2n, 2n + 1), (4.9) is used for i = 1, 2, 3:

M̂1 =
M

m1

=
(2n − 1)(2n)(2n + 1)

2n − 1
= 2n(2n + 1) (4.11)

4.2 Forward and Reverse Conversions 51

M̂2 =
M

m2

=
(2n − 1)(2n)(2n + 1)

2n
= (2n − 1)(2n + 1) = (22n − 1) (4.12)

M̂3 =
M

m3

=
(2n − 1)(2n)(2n + 1)

2n + 1
= (2n − 1)2n (4.13)

The condition |M̂i|αi|mi
|mi

= 1 should be satisfied. Therefore, the multiplicative

inverse of moduli set (2n − 1, 2n, 2n + 1) using (4.10) is as follows:

Theorem [1, 77] Given the moduli set {m1,m2,m3} = {2n − 1, 2n, 2n + 1}, the

following holds true.

α1 = |M̂−1
1 |m1 = 2n−1 (4.14)

α2 = |M̂−1
2 |m2 = 2n − 1 (4.15)

α3 = |M̂−1
3 |m3 = 2n−1 + 1 (4.16)

4.2.3 Modified CRT

The CRT limits the implementation efficiency of large dynamic ranges. In the modified

CRT a set of reduced modules is used to reduce the dynamic limitation of CRT, and

increase speed and efficiency [78].

X = x1 + p1|
m∑
i=1

wix
′

i|p2..pm (4.17)

where

w1 =
N1|N−11 |p1 − 1

p1
(4.18)

x′1 = x1 (4.19)

and for i = 2, 3, ...,m:

wi =
Ni

P1

(4.20)

x′i = |N−1i xi|pi (4.21)

52 The Residue Number System

4.2.4 Mixed-Radix Conversion

Another method for R/B conversion is mixed-radix conversion (MRC).

Theorem Given the moduli set (m1,m2, . . . ,mk) and residue set (x1, x2, . . . , xk),

number (X) can be calculated as:

X = ak

k−1∏
i=1

pi + ...+ a3p1p2 + a2p1 + a1 (4.22)

where (ai) is the Mixed-Radix coefficient:

a1 = |X|p1 = x1, a2 = | X
P1
|p2 ,. . . ,

and ai = | X∏i−1
j=1

|mi
.

4.3 Moduli Set Selection and Bit-Efficiency Improve-

ment

4.3.1 Moduli Set Selection

The general moduli set is usually shown as (m1,m2, . . .,mi), where mi is the ith mod-

ulus, where for (i 6= j) congruence (4.23) should hold true [73]:

GCD(mi,mj) = 1. (4.23)

Selecting an efficient moduli set is very important in performance of a RNS-based

system since an efficient moduli set for a specific dynamic range improves the bit

efficiency of the system [4]. In addition, a moduli set should be selected appropriate to

the application [79]. There are different moduli sets available in the literature [80–82]

for various applications. Some of the most common moduli sets are [18]:

• (2n − 1, 2n, 2n + 1)

• (2n, 2n − 1, 2n−1 − 1)

• (2n − 3, 2n + 1, 2n − 1, 2n + 3)

• (ra, rb − 1, rc + 1)

• (rn − 1, rn, rn − 2)

• (rn − 1, rn, rn + 1)

4.3 Moduli Set Selection and Bit-Efficiency Improvement 53

• (2n − 1, 2n + 1, 2n+1 − 1)

• (2n + 1, 2n, 2n − 1, 2n+1 − 1, 2n−1 − 1)

Finding the best moduli set used to be done heuristically. Yet there are some

guidelines and theoretical analysis that guarantee the best selection. The following

steps are the “rules” of successful moduli set selection S = m1,m2, ...,mi reported in

[83].

1. Each pair of moduli should be relatively prime.

2. The largest modulus determines the speed of the arithmetic operations and should

be selected as small as possible. Another consideration is the form of modulus,

i.e modulus 16 is a better choice than the smaller modulus 13 because it is of the

form 2k and saves significantly on arithmetic operations. The best moduli set

can be chosen based on the following:

(a) There should be only one modulus of the form 2k.

(b) Any number of moduli of the form 2k + 1 is allowed unless they are from

the same sd, where sd={all numbers of the form Fk,d = 22dk+2d−1
+ 1 with

k = 0, 1, 2, 3, ... and d = 1, 2, 3, ...}.

(c) Any number of moduli of the Rq is allowed as long as rule (2b) is met, where

Rq = {all numbers of the form Mk,q = 22k+1q − 1 with k = 0, 1, 2, 3, ... and

q an odd prime}.

(d) One modulus of the form 2m − 1 (m even) is allowed. This rule follows

rule (1), that all moduli set should be pairwise prime to each other. 2m1 − 1

and 2m2 − 1 are not prime to each other (Section 5.2, Theorem 2).

(e) Any number of moduli of the form 2r − 1 (r odd) is allowed. 2r1 − 1 and

2r2 − 1 are prime to each other.

(f) Where possible decompose the selected moduli into smaller “sub-moduli”,

with one of the sub-moduli being of the form 2k ± 1. The sub-modulus

satisfies all the rules of moduli set selection.

3. Efficient conversion and inter-moduli operations should be possible. The moduli

set (2k1 − 1, 2k2 , 2k3 − 1) has already solved the problem of conversions, and has

simple mathematical operations.

4. The dynamic range of the moduli set should cover all the arithmetic operations.

54 The Residue Number System

5. The moduli set should keep the balance of the number of bits. In other words,

the moduli set should avoid large gaps between the numbers of bits of different

moduli.

6. Keep the number of moduli in the moduli set as small as possible.

4.3.2 Moduli Set for Video and Image Processing

The most recommended moduli set in greyscale video and image processing is (2n −
1, 2n, 2n + 1), called the “low cost moduli set”[23, 84, 85]. This moduli set is very

popular due to its simplicity and the design efficiency of functional and conversion

units [1, 80, 86].

The authors in [87] have recommended the moduli set (2n − 1, 2n, 2n + 1) as “the

most standard and widely used” moduli set. Also, the authors in [88] have compared

the low-cost moduli set with “general moduli sets” in term of speed and hardware

complexity. They compared the area and speed of four general moduli sets for 8-, 16-,

32- and 64-bit ranges and concluded that the R/B converter of the low-cost moduli set

“is the fastest and requires the least amount of data”.

The B/R conversion of this moduli set is straightforward and the R/B conversion

problem is well resolved [89]. Another reason for the popularity of this moduli set is the

ease of implementing modular addition, subtraction, multiplication, and shift circuits

[73, 90].

The authors in [91] argued that, for the medium dynamic range (21 bits or less),

the most efficient moduli set is the low-cost moduli set. They suggested that, for

large dynamic ranges (22 bits or more), the low-cost moduli set cannot be used any

more, and the set should be of the form (2n1 , 2n1 + 1, 2n1 − 1, 2n2 ± 1, ..., 2ni ± 1). Later

on, they referred to [92] and said: “the upper bound of the dynamic range for using

three-moduli sets is around 24 bits”.

In this thesis, the low-cost moduli set is selected for n = 8. The dynamic range

(M) has 16776960 different values or 24 bits, which is in the range suggested by [91].

The total number of bits required for different arithmetic blocks is shown in (4.24). It

shows that, for the selected moduli set, each operating block should have 25 bits to

avoid overflow.

dlog2m1e+ dlog2m2e+ dlog2m3e = 8 + 8 + 9 = 25 (4.24)

4.4 Scaling in the RNS 55

4.4 Scaling in the RNS

Scaling in the RNS corresponds to division of an integer (X) by a constant (k). It can

be shown as

Y =

⌊
X

k

⌋
(4.25)

where k is called the scaling factor, Y is the result of scaling X by k and bxc is the

floor function (the greatest integer function) [93].

There are many scaling schemes available in the literature. Some studies have

chosen a constant as the scaling factor [94], while other schemes have suggested using

a scaling factor co-prime to the moduli set [93]. The authors in [1] have suggested one

of the moduli as the scaling factor, saying that using one of the moduli as the scaling

factor reduces the complexity of inter-modulo operation. In other studies [95–97] the

scaling factor has been the product of a subset of the moduli set, such as k =
∏s

i=1mi,

where (s < n) and n is the number of the moduli.

4.5 Residue Number System Merged With Other

Number Systems

The RNS can be merged with other number systems to form new number systems

such as: the logarithmic residue number system (LRNS), the polynomial residue num-

ber system (PRNS), and the one-hot residue number system (OHRNS). Each number

system is suitable for a specific application, with pros and cons.

4.5.1 Polynomial Residue Number System

The polynomial Residue Number System (PRNS) is very similar to the Residue Number

System (RNS). It was first introduced on GF (2m) in [98]. Generally, PRNS is employed

to achieve a better performance in parallel digital signal processing [99–101]. In RNS-

based systems each modular channel is a representation of a residue, however in PRNS

each channel is a polynomial of residues. The Chinese Remainder Theorem (CRT)

is still valid in the PRNS [102–104]. The PRNS can be used on GF (2m) for error

detection. In addition to these operations, addition, subtraction and multiplication

of each channel is independent and can be performed in parallel [105]. The PRNS

architecture is also supported for encryption systems [106]. A set of polynomials in

56 The Residue Number System

the binary number system are selected for each polynomial channel in PRNS. In the

moduli set= (m1,m2, . . . ,mn), n is the number of selected channels for PRNS and di

is the degree of mi. In order to demonstrate the value of GF (2m) as a unique measure

of the degree di, a product of polynomials is used which should be less than m [107]:

n∑
i=1

di ≥ m (4.26)

If (4.26) holds true, the P (x) element of the polynomial can be formatted using

PRNS and can be shown as a list of the remaining:

P̄ = (p1, p2, ..., pn) (4.27)

where P̄ = p(x) mod mi(x) for i = 1, 2, ..., n

Equations (4.28) and (4.29) show that, in PRNS based on GF (2m), addition, sub-

traction and multiplication can be done in parallel.

A±B = (< a1 ⊕ b1 > m1, ..., < an ⊕ bn > mn) (4.28)

A×B = (< a1 × b1 > m1, ..., < an × bn > mn) (4.29)

Addition and subtraction are performed by XOR-bit binary systems. So there is

no overflow problem and the need to reduce modulo operation is eliminated. How-

ever, modulo reduction is necessary for multiplication [103, 104]. Converting from

PRNS format to weighted polynomial can be performed based on the extended CRT

to polynomial conversion. Mixed-Radix Conversion (MRC) is also valid for a conver-

sion algorithm [98]. Equation (4.30) is used to convert the residue number system to

the polynomial weighted number system [98, 107]:

p(x) =
n∑
i=1

(pili mod mi)Mi(x) (4.30)

where Mi(x) = M(x)
mi(x)

= m1...mi−1mi+1...mn and li = |M−1
i |mi

.

4.5.2 One-Hot Residue Number System

The OHRNS has been suggested for applications with intense algebraic operations like

image processing [108]. In [109] new circuits for the OHRNS addition and subtraction

using one barrel-shifter structure have been proposed. The proposed circuits have a

4.6 Chapter Summary 57

reduced amount of hardware, and can generate the addition and subtraction results

simultaneously. The authors in [110] proposed a modulo-(rn − 1) adder by combining

OHRNS and Multi-Valued Logic to reduce the required number of transistors and the

power consumption.

Implementing OHRNS-based systems is simple and has regular structure. Addition

in OHRNS can be done by shifts and rotates [23, 111, 112]. To represent the numbers

in OHRNS, (m) signals are used for (m) moduli, and the residues modulo-(mi) are

between zero and (mi − 1). At each clock cycle only one signal is high (active) and

other signals are low (inactivated), where each active signal is the respective residue in

that moduli set [25]. Table 4.1 shows decimal, binary and the OHRNS moduli (mi).

Table 4.1: Decimal, binary and one-hot residue modulo-mi

Decimal Binary OHRNS

0 000 . . . 00 1000 . . . 0

1 000 . . . 01 0100 . . . 0

2 000 . . . 10 0010 . . . 0
...

...
...

mi − 1 000 . . . 01 0000 . . . 1

The delay of operations in OHRNS is equal to delay of a transistor. However, they

are not usually recommended for large moduli sets since the number of transistors

increases exponentially with number of moduli set [113].

4.6 Chapter Summary

The residue number system is a non-weighted number system that enhances system

performance by high speed parallel and fault tolerant operations. In a RNS-based

system, moduli set and dynamic range selection have direct effect on the speed of the

process and the implementation of efficient VLSI circuits for B/R and R/B converters.

In this thesis, the low-cost moduli set (2n−1, 2n, 2n+1) is selected for designing a digital

image processor. The greyscale image pixels are between [0,255], hence n = 8 will

cover all possible inputs. Each operating block should have 25 bits to avoid overflow.

Numbers in this system can be efficiently scaled by any of the moduli; however, scaling

by 2n is simpler than scaling by (2n − 1) or (2n + 1).

Publications pertaining to this chapter:

58 The Residue Number System

• Davar Kheirandish, Azadeh Safari, and Yinan Kong. Using one hot residue

number system (OHRNS) for digital image processing, The 16th international

symposium on artificial intelligence and signal processing (AISP 2012), 2-3 May

2012, Shiraz University, Shiraz, Iran.

• Davar Kheirandish, Azadeh Safari, and Yinan Kong. A Novel Approach for Im-

proving Error Detection and Correction in WSN, CCECE 2014, Ontario, Canada,

4-7 May, pp. 370-373, 2014.

5
Scaling in the Residue Number System

RNS has always been challenging in its complex and costly operations for sign detection,

division, magnitude comparison, base extension, scaling and reverse conversion. Nev-

ertheless, these operations are very common when applying the RNS in computation-

intensive applications such as digital signal and image processing [10, 72, 74].

Among all the complex operations, reverse conversion and scaling have been the

main concern since they are the gateway for RNS-based designs to communicate with

binary systems. Conversion from residue back to binary is a complex operation and

would offset speed of the processor [88–90, 114]. Scaling is necessary to avoid dynamic-

range overflow. Hence, simplifying the reverse conversion and scaling operations will

be a breakthrough for using the RNS more than ever [76, 115–117].

In this Chapter, we will propose a modification to the full-adder-based scaler in [1]

and the results will be compared with the full-adder-based scaling scheme in [1]. Subse-

quently, a hybrid scaling scheme for the three-moduli set (2n − 1, 2n, 2n + 1) will be pre-

sented. In the proposed designs, the scaling factor is one of the moduli (2n) and n = 8.

For the first time, a scaling scheme for the four-moduli set (2n − 1, 22n, 2n + 1, 22n + 1)

with dynamic range 6n and scaling factor m2 = 22n is proposed. Scaling for four-

moduli sets has never been reported in the literature previously. Hence, this is the

first scaler for a four-moduli set. The proposed scaling scheme is designed based on

59

60 Scaling in the Residue Number System

CRT algorithm since it can be applied in parallel. Furthermore, a new modulo-(2n+1)

adder which can also be used for the modulo-(22n + 1) adder is proposed.

5.1 Previous Work

The first scaling scheme has been proposed by Szabo and Tanaka in 1967. They

proposed a scaler that needed n clock cycles for a n-bit moduli set. Although scaled

residues had errors, and the scheme did not provide correct scaled residues, it was

a significant stage in the development of RNS-based systems [74]. In another major

study in 1973, Okeefe and Wright designed a faster and more efficient scaler than the

Szabo scaler. Again the results were not error-free but their approach provided results

closer to the correct scaled integers [118]. In 1987, Jullien was successful in designing

an algorithm that needed fewer clock cycles, but provided faulty results [119].

In 1981, Taylor and Huang proposed a design based on the MRC [120]. It was

the first time a scaler based on the MRC was proposed. Until then, all designs were

based on CRT or base-extension. The CRT-based algorithms generally generated frac-

tional errors due to coarse assumptions, while the latter approach was error-free but

computationally intensive. One year later, Taylor and Huang presented a scaler that

used a special moduli set and LUTs. However, their design required n clock cycles to

generate the scaled residues [121]. In 1984, Polky and Miller proposed a design that

needed (n + 1) clock cycles but the scaled residues were closer to the correct results

[122]. In other words, their design provided more accurate scaled residues at the cost

of more clock cycles.

Two scaling algorithms for the 8-bit moduli set (2n− 1, 2n, 2n + 1) using CRT were

proposed in 1988 [95]. The first algorithm was based on the L-CRT algorithm for

L-tuple RNS. The second algorithm was based on 22n−q-CRT using an approximation

of M = 23n and M
′

= 2q, q < 2n. Although both algorithms came with assumptions

and errors, the most important consequence of the L-CRT algorithm appeared in [96],

where the authors suggested dividing the errors into two distinct bands: a band of

small errors, and a band of errors on the order of the reduced-moduli system.

Five years later, Shenoy and Kumarson proposed two scaling techniques (approxi-

mate and exact), where residues were scaled by the product of a subset of the moduli set

[76]. The approximate technique used a redundant residue to eliminate modulo-(M)

operation, while the exact technique used a modified version of CRT. The modified

CRT states that (5.1) never exceeds the dynamic range more than once (M), i.e. the

5.1 Previous Work 61

sum is either (M) or (X +M):

X =
∣∣∣∑ ˆMi |αixi|mi

∣∣∣
M

(5.1)

The scaling error in the approximate technique was bounded by [i/2], where i is the

number of moduli in the moduli set. Their design saved a considerable amount of

delay and generated results in only log n clock cycles. The exact technique, however,

generated an error of at most unity, and used a redundant channel to keep track of

odd or even residues. Ulman published a modified version of the Szabo scaler in 1993

[123], and since then, the results of all scalers have errors less than 1.5.

Another CRT-based scaling scheme was presented in 1995 [124]. It used LUTs

and log2 n clock cycles to generate scaled residues. The aim of the design was to

achieve a precise result without using any redundant representation of numbers. The

disadvantage was its worst case delay is n clock cycles. In 1999, two stages of look-

up-cycle scaling, namely look-up calculation and look-up generation, was presented in

[125]. The design was recommended for 5-bit input and three moduli sets. It was

cascadable to other algorithms for larger sets of moduli, and reduced the bulk memory

requirement for small moduli sets. In 2003, an alternative CRT-based scaler for up

to 16-bit dynamic range was proposed [94]. The proposed scheme used only RNS

operations within small-word-length channels. It was suitable for small-word-length

applications and performed scaling directly on the residue digits rather than relying

on residue-to-binary conversion.

From the implementation point of view, scaling algorithms are implemented either

in LUT-based approaches [76, 93, 95, 123] or adder-based approaches [1, 73, 126, 127].

Generally, all the LUT-based designs in the literature are subject to poor pipeline-

ability and high hardware complexity when the number of moduli increases. Adder-

based designs are faster and provide huge savings in storage space. There are also other

scaling circuits that benefit from both LUTs and full adders [128]. Most scaling schemes

reported in the literature are based on LUTs, and none of the papers discussed the order

of generation of scaled residues until 2007 [29]. Almost all publications have agreed

that LUTs are more efficient for small inputs, as in image processing applications, while

a FA-based structure is well suited for long inputs [129].

Extensive measurements in area, delay and hardware utilisation for full-adder-based

designs have been provided in [126]. Subsequently, the authors in [130] have proposed

full-adder-based RNS scaling schemes for VLSI implementation. They used CRT and

a redundant modulus to perform the base extension and obtain the n least-significant

bits of residues. In 2011, Chang [1] offered a new perspective in scaling circuits by

62 Scaling in the Residue Number System

modular full adders which resulted in speed increase and less power consumption [131].

Chang [1] scaler is the fastest and the most efficient full-adder based scaler to date.

Downside of Chang scaler is that it is designed for three-moduli set with a dynamic

range of 3n bits, which does not suffice for todays computer needs. Chang [1] proposed

an error-free design and achieved improvements over previous implementations. It used

both MRC and CRT in parallel. Channel one and three were designed based on MRC,

while channel two used only CRT to generate the scaled residue.

Other contributions such as scaling negative integers by introducing a corrective

factor have been reported in [132] and [130].

Reverse-conversion schemes have been also changing along with the scaling schemes.

The first designs required many consecutive addition cycles for reverse conversions

[127]. However, recent schemes have embedded reverse conversion as a by-product of

the scaling procedure and saved a significant hardware cost [1, 123].

5.2 Mathematical Basis for Designing Scalers

Some useful lemmas, axioms and a theorem to simplify scaling equations are presented

in the following.

Scaling in the RNS corresponds to division of an integer (X) by a constant (k). It

can be shown as

Y =

⌊
X

k

⌋
(5.2)

where k is called the scaling factor, Y is the result of scaling X by k and bxc is the

floor function (the greatest integer function) [93].

Axiom 1:

a|X|b = |aX|ab (5.3)

Axiom 2:

|X ± Y |m = ||X|m ± |Y |m|m (5.4)

Axiom 3:

|X.Y |m = ||X|m.|Y |m|m (5.5)

Axiom 4:

If X is an n-bit number, then:

|−X|2n+1 = X + 2 (5.6)

5.2 Mathematical Basis for Designing Scalers 63

Lemma (a) [72, 74]

Given: |aX|m = b and (a,m) = 1 , where a,m > 0, what is |X|m =?

Ans: |a−1a|m = 1 and |X|m = |X|m, therefore:

|a−1aX|m = |X|m. (5.7)

If |aX|m = b, then (5.7) can be written as:

|a−1aX|m = |a−1b|m (5.8)

The left sides of (5.7) and (5.8) are equal. Hence, the right sides are equal too:

|X|m = |a−1b|m (5.9)

Lemma (b) [72, 74]

Given: |X|m = a, k|x and (k,m) = 1, what is |X
k
|m =?

Ans: Let X
k

= b , hence X = kb

Given |X|m = a, which is |kb|m = a

Using lemma (a):

|b|m = |k−1a|m, hence we have

|X
k
|m = |k−1a|m (5.10)

Lemma (c)

Given: 1 ≤ a ≤ m− 1 and (a,m) = 1, evaluate the multiplicative inverse of a with

regard to m, i.e. evaluate a−1 such that |a−1a|m = 1.

Method 1:

a−1 =

1, a = 1

mk+1
a
, 1 ≤ k ≤ a− 1

(5.11)

where k is the value that can make a−1 an integer.

Method 2:

a−1 = |aϕ(m−1)|m (5.12)

where ϕ(m) = m
∏

p|m(1− 1
p
) is the number of values in (1, 2, ...,m) that are prime to

m, and p is a prime factor of m.

Theorem 1

64 Scaling in the Residue Number System

Given p = kq, where k is an integer:∣∣∣|X|p∣∣∣
q

= |X|q (5.13)

Proof:

|X|p = X − εp (5.14)

where ε = 0, 1, 2, Using (5.4) and (5.5), it can be expanded as:

∣∣∣|X|p∣∣∣
q

= |X − εp|q =
∣∣∣|X|q − |ε|q.|p|q∣∣∣

q
. (5.15)

Since p = kq (p is divisible by q) and |p|q = 0, then:∣∣∣|X|p∣∣∣
q

= |X|q (5.16)

Theorem 2 The following holds true [133]:

The positive integers (2a − 1) and (2b − 1) are relatively prime if and only if a and

b are relatively prime.

5.3 Scaling Scheme Based on Modular Reducers

The full-adder-based scaling scheme has been presented in [1]. It proposed an error free

design and achieved improvements over previous implementations. It used both the

MRC and CRT in parallel. Channel one and three were designed based on MRC, while

channel two used only CRT to generate the scaled residue. It has been shown that a

full-adder-based scaler yields savings on total power consumption and leakage power

up to 44.3% and 41.4%, respectively. Figure 5.1 shows the full-adder-based scaler in

[1].

In this section, a modified version of the scaling scheme in [1] is proposed. The

proposed scheme is performed using full adders as opposed to Read-Only Memory

(ROM) and LUTs. One particular advantage of the proposed scheme over [1] is that

the proposed design can be easily pipelined, which is one of the main ways of increasing

throughput. It also reduces the complex lower-level logic of Chang scaler [1].Various

contributions and substitutions are made to the logic blocks at the various stages, as

shown by its structure in Figure 5.2.

5.3 Scaling Scheme Based on Modular Reducers 65

y1 y3

2n-bit Carry Save Adder

with End-Around Carry

Diminished-one

Modulo-2n+1 Adder

Modulo-2n-1 Adder

One’s

Complement

Modulo-2n-1 Adder

x1
x2 x3

y2

n n

Binary Y

Modified Full

Adders

n-bit Carry Save Adder

with Complementary

End-Around Carry

Bit Rewiring

Figure 5.1: Full-adder-based scaler [1]

Modulo-(2n+1)

reducer

Modulo-(2n-1)

reducer

Modulo-(2n)

rewiring

Scaling arithmetic Scaling arithmetic Scaling arithmetic

Modulo-(22n-1)

reducer

Modulo-(2n-1)

reducer

Modulo-(2n)

rewiring

Modulo-(2n+1)

reducer

X

y1 y2
y3

Figure 5.2: Proposed scaling scheme using full-adder-based modular reducers

66 Scaling in the Residue Number System

There are two key aspects of the proposed scheme that make it different from the

majority of scaling circuits in literature. First, it is designed using full-adder-based

modular reducers, while most scaling circuits use LUTs to implement RNS scalers

[95, 123]. Second, the use of forward converters is eliminated.

The proposed scaler assumes that the given inputs are not in residue form, i.e. the

binary inputs need to be converted to residues. Conversion from binary to residues

increases the overall time, complexity and power consumption of the system. Hence,

we have modified the proposed scaler and eliminated the forward-conversion overhead.

5.3.1 Modulo-(2n − 1) Reduction

With any n-bit RNS-based system, the dynamic range of that system is 3n-bit [134],[73].

This means that the system needs a reduction that can handle 3n-bit inputs. Luckily,

the reduction of a 3n-bit number can be broken down in to three smaller reductions.

We choose to represent the 3n-bit input X as A, B, and C, where:

A = X3n−1X3n−2. . .X3n−n (5.17)

B = X2n−1X2n−2...X2n−n (5.18)

C = Xn−1Xn−2...X0 (5.19)

According to the numeric properties of residues and moduli sets, there is a relation

between A, B, and C of

|X|2n−1 = |A+B + C|2n−1 (5.20)

While (5.20) may seem to increase the complexity of reduction, it significantly helps

reduce the problem, as this modular reducer can be implemented as an addition with

an End-Around Carry (EAC). To implement the modulo-(2n − 1) reducer, a modulo

adder is used based on half-adders and Brent-Kung (BK) adders [135].

5.3.2 Modulo-(2n + 1) Reduction

Implementing the modulo-(2n + 1) reducer is done similar to the modulo-(2n − 1)

reducer. We represent (X) as three separate n-bit numbers A, B, and C, and reduce

5.3 Scaling Scheme Based on Modular Reducers 67

the modular operation into the reduction of the addition and subtraction of A, B and

C.

|X|2n+1 = |A−B + C|2n+1 (5.21)

To implement the (2n + 1) reduction using (5.21), an End-Around-Carry (EAC)

adder is used. The design uses BK and half-adders to implement the modulo-(2n + 1)

reducer.

As the signal goes through different stages the size of the signal changes. The

expected size for the second channel before the modulo-(22n − 1) reducer is up to 24

bits. Hence, the resize functions are necessary to keep the outputs constant. Essentially

the outputs are padded with zeros on the left side of the most significant bit (MSB).

5.3.3 Optimised Modulo-(2n + 1) Reducer

The modulo-(2n + 1) reducer is limited to only two inputs. This initially is not a

problem, but for a system with a 3n-bit dynamic range, each reducer would be expected

to receive three inputs: A, B, and C. The solution is to use two stages of adders for

adding three numbers; however, when joining the output of one adder to the input of

another, the (2n + 1) reducer requires (n+ 1) bits (9 bits in our case) to fully represent

all the possible solutions. To handle this issue, a correction bit is subtracted from the

input after the second stage of modular addition. During testing it is found that, when

the 9th bit is one, the result would be (+2) off. To correct this error, a subtraction is

required. The easiest way to implement a subtraction is type casting, taking advantage

of the unsigned integer arithmetic library of Xilinx tools.

typeCast3 <= unsigned(in3)− 2 ∗ unsigned(correctionBit); (5.22)

where typeCasti corresponds to xi. The design requires another type casting into and

back from the unsigned integer signal, when it undergoes its final (2n+1) reduction, to

allow for the correction bit. The ideal solution would be implementing full-adders or

three-two compressors on the top level of the modulo reducer as opposed to half-adders.

5.3.4 Numerical Example

A numerical example of the proposed modular-reducer-based scaler is considered. Let

X = 10079317 which is equivalent to 24 bits (100110011100110001010101) in the binary

number system. The proposed algorithm splits (X) to three eight-bit numbers: C =

68 Scaling in the Residue Number System

10011001, B = 11001100 and A = 01010101.

For scaling factor k = 256, the scaled (X) is equal to X
k

= 39372, and the algorithm

yields the scaled residues s1 = 102, s2 = 204, s3 = 51 which are same as the results

using (11), (12) and (13) in [1].

s1 = |x1 − x2|m1 = |187− 85|255 = 102 (5.23)

s2 = ||(22n−1 + 2n−1)x1 − 2nx2 + (22n−1 + 2n−1 − 1)x3|m1m3 |m2

= ||32896× 187− 256× 85 + 32895× 34|65535|256 = 204
(5.24)

s3 = |x2 − 2nx3|m3 = |85− 256× 34|257 = 51 (5.25)

5.3.5 Synthesising the Proposed Modular-Reducer-Based Scaler

The proposed scaler is designed using Xilinx tools in such a way that the entire code

is reusable if the design is to be scaled or fitted as sub-modules of a larger design.

The VLSI architecture of modulo-(2n − 1) and modulo-(2n + 1) reducers are shown in

Figures 5.3 and 5.4, respectively.

5.3 Scaling Scheme Based on Modular Reducers 69

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

A A

B B

C C

D D

th
re

e
T

w
o

C
a

rr
y

C
in

S
U

M
X

1

X
2

th
re

e
T

w
o

C
a

rr
y

C
in

S
U

M
X

1

X
2

th
re

e
T

w
o

C
a

rr
y

C
in

S
U

M
X

1

X
2

th
re

e
T

w
o

C
a

rr
y

C
in

S
U

M
X

1

X
2

th
re

e
T

w
o

C
a

rr
y

C
in

S
U

M
X

1

X
2

th
re

e
T

w
o

C
a

rr
y

C
in

S
U

M
X

1

X
2

th
re

e
T

w
o

C
a

rr
y

C
in

S
U

M
X

1

X
2

th
re

e
T

w
o

C
a

rr
y

C
in

S
U

M
X

1

X
2

th
re

e
T

w
o

C
a

rr
y

C
in

S
U

M
X

1

X
2

th
re

e
T

w
o

C
a

rr
y

C
in

S
U

M
X

1

X
2

th
re

e
T

w
o

C
a

rr
y

C
in

S
U

M
X

1

X
2

th
re

e
T

w
o

C
a
rr

y

C
in

S
U

M
X

1

X
2

th
re

e
T

w
o

C
a

rr
y

C
in

S
U

M
X

1

X
2

th
re

e
T

w
o

C
a

rr
y

C
in

S
U

M
X

1

X
2

th
re

e
T

w
o

C
a

rr
y

C
in

S
U

M
X

1

X
2

th
re

e
T

w
o

C
a

rr
y

C
in

S
U

M
X

1

X
2

S
0

S
1

S
2

S
3

S
4

S
5

S
6

S
7

X
0
0

X
1
0

X
2
0

X
0
1

X
1
1

X
2
1

X
0
2

X
1
2

X
2
2

X
0
3

X
1
3

X
2
3

X
0
4

X
1
4

X
2
4

X
0
5

X
1
5

X
2
5

X
0
6

X
1
6

X
2
6

X
0
7

X
1
7

X
2
7

Figure 5.3: VLSI architecture of modulo-(2n − 1) reducer

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

A A

B B

C C

D D

th
re

e
T

w
o

C
a

rr
y

C
in

S
U

M
X

1

X
2

th
re

e
T

w
o

C
a

rr
y

C
in

S
U

M
X

1

X
2

th
re

e
T

w
o

C
a

rr
y

C
in

S
U

M
X

1

X
2

th
re

e
T

w
o

C
a
rr

y

C
in

S
U

M
X

1

X
2

th
re

e
T

w
o

C
a

rr
y

C
in

S
U

M
X

1

X
2

th
re

e
T

w
o

C
a

rr
y

C
in

S
U

M
X

1

X
2

th
re

e
T

w
o

C
a

rr
y

C
in

S
U

M
X

1

X
2

th
re

e
T

w
o

C
a

rr
y

C
in

S
U

M
X

1

X
2

X
0

0

X
1

0

X
2

0

X
0

1

X
1
1

X
2

1

X
0

2

X
1

2

X
2

2

X
0

3

X
1

3

X
2

3

X
0

4

X
1

4

X
2

4

X
1
5

X
0
6

X
1
6

X
0
7

X
1
7

th
re

e
T

w
o

C
a
rr

y

C
in

S
U

M
X

1

X
2

th
re

e
T

w
o

C
a
rr

y

C
in

S
U

M
X

1

X
2

th
re

e
T

w
o

C
a
rr

y

C
in

S
U

M
X

1

X
2

th
re

e
T

w
o

C
a
rr

y

C
in

S
U

M
X

1

X
2

th
re

e
T

w
o

C
a
rr

y

C
in

S
U

M
X

1

X
2

th
re

e
T

w
o

C
a
rr

y

C
in

S
U

M
X

1

X
2

th
re

e
T

w
o

C
a
rr

y

C
in

S
U

M
X

1

X
2

h
a
lfA

d
d
e
rAB

C
a
rr

y

S
u

m

S
7

S
6 S

5 S
3 S

2 S
1

S
4

IN
V

IN
V

IN
VIN

VIN
V

IN
VIN

V

IN
V

IN
V

IN
V

S
8

O
R

2

S
0

X
0
5

X
2
5

X
2
6

X
2
7

Figure 5.4: VLSI architecture of modulo-(2n + 1) reducer

70 Scaling in the Residue Number System

In designing the modulo-(2n − 1) reducer, the 3:2 compressors (full-adders) and

half-adder. The VLSI architectures of these modules are shown in Figures 5.5 and 5.6,

respectively.

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

A A

B B

C C

D D

X
O

R
2

X
O

R
2

M
2
_
1

O
D

0

D
1

S
0

X
1

X
2

C
in

S
U

M

C
a
rr

y

Figure 5.5: VLSI architecture of the 3:2 compressor (full adder) used in modular reducers

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

A A

B B

C C

D D

A
N

D
2

X
O

R
2

A B
C

a
rr

y

S
u

m

Figure 5.6: VLSI architecture of the half adder used in designing the modulo-(2n − 1)
reducer

The design is synthesised using Xilinx tools with a clock period of 20 ns (clock

cycle 50%) on target device: xc6vlx75t − 3 − ff484. The synthesis results show that

the total timing of the circuit is 33.11 ns, which is a combination of both routing and

logic delays. The hardware utilisation is provided in Table 5.1.

Table 5.2 provides a power-supply summary. The estimated power including the

resource utilisations of factors such as LUTs, I/Os, registers and clock frequency in

5.3 Scaling Scheme Based on Modular Reducers 71

Table 5.1: Hardware utilisation of modular-reducer-based scaler

Slice Logic Utilisation

Number of slice registers 403 out of 93120

Number of Slice LUTs 518 out of 46560

Number used as Logic 518 out of 46560

Slice Logic Distribution

Number of LUT Flip Flop pairs used 529

Number with an unused Flip Flop 126 out of 529

Number with an unused LUT 11 out of 529

Number of fully used LUT-FF pairs 392 out of 529

Number of unique control sets 1

IO Utilisation

Number of IOs 66

Number of bonded IOBs 58 out of 240

Specific Feature Utilisation

Number of BUFG/BUFGCTRLs 1 out of 32

the design are presented in Table 5.3. The Target device specifications and logic slice

utilisation are also provided. The total memory usage is 251944 kilobytes.

Table 5.2: Power supply summary of modular-reducer-based scaler

Total Dynamic Quiescent

Supply Power (mW) 1347.01 50.59 1296.42

Table 5.3: On-chip power summary of modular-reducer-based scaler

On-Chip Power (mW) Used Available Utilisation (%)

Clocks 3.11 1 - -

Logic 2.61 350 46560 0

Signals 2.44 580 - -

I/Os 42.43 58 240 24

Leakage 1296.42 - - -

Total 1347.01 - - -

72 Scaling in the Residue Number System

5.3.6 Comparison of the Synthesis Results of the Proposed

Modular-Reducer-Based Scaler and a Full-Adder-Based

Scaler

For comparison purposes, the-full-adder based scaler in [1] is designed and synthesised

as well. For consistency reasons, the same clock period and target device are selected.

Tables 5.4 to 5.6 show the synthesis results. Details of the synthesis results of full-

adder-based scaling scheme (Chang scaler) in [1] are provided in Appendix B.

Table 5.4: Hardware utilisation of full-adder-based scaler

Slice Logic Utilisation

Number of slice registers 207 out of 93120

Number of Slice LUTs 232 out of 46560

Number used as Logic 168 out of 46560

Number used as memory 64 out of 16720

Slice Logic Distribution

Number of LUT Flip Flop pairs used 289

Number with an unused Flip Flop 82 out of 289

Number with an unused LUT 57 out of 289

Number of fully used LUT-FF pairs 150 out of 289

Number of unique control sets 2

IO Utilisation

Number of IOs 51

Number of bonded IOBs 51 out of 240

Specific Feature Utilisation

Number of BUFG/BUFGCTRLs 1 out of 32

Table 5.5: Supply power of full-adder-based scaler

Total Dynamic Quiescent

Supply Power (mW) 1326.76 30.82 1295.94

A comparison of the modular-reducer-based scaler synthesis results in Table 5.1 and

the full-adder-based scaler in Table 5.4 reveals that there is no decrease in hardware

utilisation. In other words, any benefit of using modular reducers in decreasing the

5.4 Simple, Fast, Hybrid Scaling Scheme Using Full-Adders and LUTs73

Table 5.6: On-chip power summary of full-adder-based scaler

On-Chip Power (mW) Used Available Utilisation (%)

Clocks 2.83 1 - -

Logic 0.71 221 46560 0

Signals 0.70 334 - -

I/Os 26.58 51 240 21

Leakage 1295.94 - - -

Total 1326.76 - - -

hardware utilisation could not be identified in the synthesis results. The comparison

of the supply power and the on-chip power summary in Tables 5.2 and 5.3 with Tables

5.5 and 5.6 does not show much increase in performance either.

Although no performance improvements are reported in the proposed modular-

reducer-based scaler, it is able to generate accurate scaled residues which was not

achieved in the primary scalers. We propose several suggestions to reduce the hardware

complexity of the modular-reducer-based scaler. One suggestion is that the multiplexer

would be switched by a 2n- or n-bit EAC. When the multiplexer select input is one, it

switches to the n-bit EAC. When it is zero, it switches to the 2n-bit EAC. Hardware

reduction would generally occur in a larger system that would be able to monitor the

stage of the algorithm to determine the appropriate value of the determining bit. When

the adder is in n-mode, it assumes that all other values are outside of the n-bit range,

hence they are assumed to be zero. In the proposed scheme, this solution would be

inappropriate as there is no governing circuit monitoring the stages of the algorithm,

but in a bigger system where scaling is useful, such as DSP, there may be a use for

such a reduction. In the following section, we will present a scaler based on full-adders

and LUTs to achieve the desired results.

5.4 Simple, Fast, Hybrid Scaling Scheme Using Full-

Adders and LUTs

This section presents a hybrid scaling scheme for RNS-based systems using a three-

moduli set (2n − 1, 2n, 2n + 1). We will use this scaler in an initial RNS-based image

processor in Chapter 6. It is based on a combination of LUT-based and adder-based

approaches, and provides a scaled integer in the normal binary representation. Hence

the tedious reverse conversion is totally eliminated. The main contributions of the

74 Scaling in the Residue Number System

proposed scaler are as follows:

1. It is a hybrid implementation and benefits from combining both high-speed

LUTs and area-efficient modular adders

2. There is the same delay in generating each of the scaled residues in the modular

channels

3. Scaling in the channel modulo-(2n + 1) is simplified

4. This scheme is specifically efficient for RNS-based image processing applications

where the image pixels are in limited bound and the LUTs are small.

5.4.1 Proposed Hybrid Scaler

Since scaling is an inter-moduli operation, it is necessary to have a knowledge of all

the residues for scaling and generating the original scaled integer [96, 124]. For a

three-moduli set, the CRT algorithm is expressed as:

X =

∣∣∣∣∣
N∑
i=1

Mi

∣∣M−1
i

∣∣
mi

xi

∣∣∣∣∣
M

=

∣∣∣∣∣
3∑
i=1

Mi

∣∣M−1
i

∣∣xi
∣∣∣∣∣
M

=
∣∣∣m2m3

∣∣M−1
1

∣∣
m1
x1 +m1m3

∣∣M−1
2

∣∣
m2
x2 +m1m2

∣∣M−1
3

∣∣
m3
x3

∣∣∣
M

(5.26)

For scaling (X) by (k), both sides of (5.26) should be divided by k followed by the

floor operation:

⌊
X

k

⌋
=

⌊
|(m2m3)

k
|M̂−1

1 |m1x1 +
(m1m3)

k
|M̂−1

2 |m2x2 +
(m1m2)

k
|M̂−1

3 |m3x3|M
k

⌋
(5.27)

For the scaling factor k = m2 = 2n, (5.27) can be simplified to calculate the scaled

integer directly using the residues of (X).

⌊
X

k

⌋
=

⌊
|m3|M̂−1

1 |m1x1 +
(m1m3)

m2

|M̂−1
2 |m2x2 +m1|M̂−1

3 |m3x3|m1m3

⌋
(5.28)

5.4 Simple, Fast, Hybrid Scaling Scheme Using Full-Adders and LUTs75

In channel one, where m1 = 2n−1, (5.28) is simplified, and needs no multiplication:∣∣∣∣⌊Xk
⌋∣∣∣∣
m1

= |x1 − x2|m1 (5.29)

If the last modulo-m2 step is neglected, the original binary number is achieved with

no additional logic or delay cost.

∣∣∣∣⌊Xk
⌋∣∣∣∣
m2

= ||(22n−1 + 2n−1)x1 − 2nx2 + (22n−1 + 2n−1 − 1)x3|m1m3|m2 (5.30)

In channel three, this simplification leads to∣∣∣∣⌊Xk
⌋∣∣∣∣
m3

= |x2 + 2nx3|m3 . (5.31)

However, the multiplication (2nx3) modulo-(2n + 1) can be further simplified to

(−x3) modulo-(2n + 1). Thus, instead of evaluating (5.31) containing a multiplication,

it can be directly calculated using [73]:∣∣∣∣⌊Xk
⌋∣∣∣∣
m3

= |x2 − x3|m3 (5.32)

5.4.2 Error Analysis of Approximation

The error analysis of the approximation made in (5.29) - (5.32) is reconsidered. The

exact equation in (5.30) is⌊
X

k

⌋
=

⌊
|(22n−1 + 2n−1)x1 + (22n − 2n+1 + 2n − 1 +

1

2n
)x2

+(22n−1 + 2n − 2n−1 − 1)x3|m3m1

⌋ (5.33)

The relation between the approximate equation (5.30) and the exact equation (5.33)

is: ⌊
X

k

⌋
=

⌊
X

k

⌋′
+
⌊x2

2n

⌋
(5.34)

where
⌊
X
k

⌋′
is the approximate scaling. Since 0 ≤ x2 < 2n, then 0 ≤ x2

2n
< 1 and as a

property of the floor function, therefore bx2
2n
c = 0. The proposed algorithm is accurate

and error free.

76 Scaling in the Residue Number System

Table 5.7: Numerical example of proposed hybrid scaler for residue set (123, 55, 250)
and scaling factor 256

Channel 1 Channel 2 Channel 3

mi 255 256 257

xi 123 55 250

Mi 65792 65535 65280

M−1
i 128 255 129

xi.Mi.M
−1
i 1035829248 919128375 2105280000

yi 68 65 62

Example Table 5.7 shows a numerical example the of proposed algorithm. Con-

sider the residues x1 = 123, x2 = 55 and x3 = 250 corresponding to the moduli set

(255, 256, 257). The dynamic range of the system is M =16776960, and M1 = 65792,

M2 = 65535 and M3 = 65280. Using (4.11) to (4.13), the multiplicative inverses are

M−1
1 = 128, M−1

2 = 255 and M−1
3 = 129. The scaling factor is k = 2n for n = 8. The

scaling is performed for each channel using (5.29), (5.30) and (5.32) as:

y1 = |x1 − x2|m1 = |123− 55|255 = 68 (5.35)

y2 = ||32896×123− 256×55 + 32895×250|65535|256 = 65 (5.36)

y3 = |x2 − x3|m3 = |55− 250|257 = 62 (5.37)

Note that channel two generates the 16-bit original binary number (X) and y2 is

the eight least-significant bits (LSB) of the result. Channel two generates a binary

number (X = 000001101000001), equivalent to 833 in the decimal number system.

This is the scaled original binary number, and this number modulo-256 is the scaled

residue y2.

5.4.3 Synthesis Results

We use n-bit two-operand modulo-(2n − 1) and modulo-(2n + 1) subtractors to imple-

ment the scaled residues y1 and y3, respectively. To generate the scaled residue y2, all

three residues have to be present for computations. We use three (256× 16) LUTs for

this purpose. The size of the LUTs is selected based on the 256 levels of luminance in

5.4 Simple, Fast, Hybrid Scaling Scheme Using Full-Adders and LUTs77

greyscale images, and the 16-bit width is the result of using modulo-65535 operations.

LUT1, LUT2 and LUT3 store the following modular-operation results:

LUT1:

|(22n−1 + 2n−1)x1|m1.m3 = |32896× x1|65535 (5.38)

LUT2:

|2nx2|m1.m3 = |256×x2|65535 (5.39)

LUT3:

|(22n−1 + 2n−1 − 1)x3|m1.m3 = |32895×x3|65535 (5.40)

Outputs from the LUTs go to a 2n-bit modular subtractor and a 2n-bit modular

adder. The result of the 2n-bit modular adder is the scaled original number, and

the eight least-significant bits of the result represent the scaled residue y2. Figure

5.7 shows the block diagram of the proposed hybrid scaling scheme. It consists of

three 256-word by 16-bit LUTs, two n-bit modular subtractors, one 2n-bit modular

subtractor and one 2n-bit modular adder. Although the arithmetic operations are

performed independently in each channel, the three residues from each channel should

be present at the same time for scaling.

2n-bit 2n-bit

2n-bit

2n-bit 2n-bit

n-bit n-bit

n-bit

Modulo-257

Subtractor

Modulo- 255

Subtractor

Modular

Subtractor

Modular Adder

Binary Y

LUT_1 LUT_2 LUT_3

Figure 5.7: Proposed hybrid scaling scheme

78 Scaling in the Residue Number System

The proposed hybrid scaler is implemented using Xilinx tools. The logic synthesis

and gate-level Modelsim simulations are performed to verify the functionality and logic

of the design. The placement and routing is performed, and the RTL and technology

layouts are generated. Figure 5.8 shows the schematic of the proposed hybrid scaler

using Xilinx tools.

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

A A

B B

C C

D D

clk y_1(7:0)

subtractor_255
clk_1

x(7:0)

y(7:0)

z(7:0)

y_3(7:0)

x_3(7:0)

x_1(7:0)

x_2(7:0)

subtractor_257
clk_1

x(7:0)

y(7:0)

z(7:0)

LUT_1
address(7:0)result(15:0)

LUT_2
address(7:0)result(15:0)

LUT_3
address(7:0)result(15:0)

mod_sub
clk_1

x(15:0)

y(15:0)

z(15:0)

y_2(7:0)

mod_adder
clk

x(15:0)

y(15:0)

z(7:0)

Figure 5.8: Schematic of the proposed hybrid scaling scheme

Table 5.8 shows the summary of the estimated values of device utilisation. The syn-

thesis results show that the minimum period is 8.295 ns (Maximum Frequency:120.550

MHz), while the minimum input arrival time before the clock is 7.401 ns, and the

maximum output required time after the clock is 3.597 ns.

5.4 Simple, Fast, Hybrid Scaling Scheme Using Full-Adders and LUTs79

Table 5.8: Hardware utilisation of hybrid scaling scheme

Slice Logic Utilisation

Number of slice registers 24 out of 93120

Number of Slice LUTs 156 out of 46560

Number used as Logic 156 out of 46560

Slice Logic Distribution

Number of LUT Flip Flop pairs used 156

Number with an unused Flip Flop 132 out of 156

Number with an unused LUT 0 out of 156

Number of fully used LUT-FF pairs 24 out of 156

Number of unique control sets 1

IO Utilisation

Number of IOs 49

Number of bonded IOBs 49 out of 240

Specific Feature Utilisation

Number of BUFG/BUFGCTRLs 1 out of 32

The on-chip power summary and supply power of the proposed scaler are provided in

Tables 5.9 and 5.10, respectively. It is based on resource utilisations of the LUTs, I/Os,

registers, and the clock frequency of the design. The total on-chip power consumption

is 1310.41 mW , where 14.85 mW is dynamic and 1295.55 mW is the quiescent power

consumption.

Table 5.9: On-chip power summary of hybrid scaling scheme

On-Chip Power (mW) Used Available Utilisation (%)

Clocks 1.73 1 - -

Logic 0.33 133 46560 0

Signals 0.35 202 - -

I/Os 12.44 49 240 20

Leakage 1295.55 - - -

Total 1310.41 - - -

Table 5.10: Supply power of hybrid scaling scheme

Total Dynamic Quiescent

Supply Power (mW) 1310.41 14.85 1295.55

80 Scaling in the Residue Number System

5.4.4 Evaluation and Comparison

In this section, the area and delay of the proposed hybrid scaler are evaluated and

compared with other scaling schemes surveyed in [1] and [126] including themselves in

terms of hardware implementation, scaling error, area and unit gate delay. For this

purpose, the transistor count, which is the most common measure of integrated-circuit

complexity, is used to evaluate the hardware cost.

The unit-gate model presumes that each two-input monotonic gate (except XOR)

performs one elementary gate function for both area and delay, i.e. one unit of area

and one unit of delay. There is an exception for the XOR gate that counts for two

elementary gates for both area and delay, i.e. two units of area and two units of delay

[136]. The area and delay of an inverter is a negligible fraction of a unit, hence it is

assumed to have a zero unit area and delay [1].

The area and delay for each modular channel is evaluated independently by study-

ing the area and time complexity of the logic-gate implementation of scaling in each

channel. Based on the proposed architecture in Figure 5.7, both channels one and

three have one n-bit modulo-255 and one modulo-257 subtractor, respectively. The

authors in [137] have estimated the area and delay for a modulo-(2n − 1) adder to be

3n dlog2n− 1e+ 12n and 2 dlog2n− 1e+ 3 units, respectively. We need n inverters for

implementing the one’s-complement module. In modular channel two, the proposed

design has three LUTs of size 2n× n. Therefore, the total number of transistors of the

proposed design is about 3 × AROM(2n×n). The area, AROM , and the unit gate delay,

TROM , for a LUT of size 2n × n are [138]:

AROM = 2d
n
2 e(
⌈n

2

⌉
+ 1) + 2nn+ 2b

n
2 cn(

⌊n
2

⌋
+ 2) + n(2b

n
2 c + 1) (5.41)

TROM = (1 + dlog2ne+
⌈n

2

⌉
).tNAND (5.42)

where n is the bit width of the moduli set, and tNAND is the delay of a two-input

NAND gate with the minimum drive. As discussed before, a NAND gate is presumed

to have one unit of delay and one unit of area. Table 5.11 shows the estimation of area

for each modular channel.

The speed of the proposed design is evaluated in terms of gate delay as well. Gen-

erally, the execution speed of the arithmetic operations of a design depends on two

factors: the technology of the circuit, and the selected algorithm. In this section, we

are interested only in the algorithm and not in the technology; therefore, the speed of

5.4 Simple, Fast, Hybrid Scaling Scheme Using Full-Adders and LUTs81

Table 5.11: Estimation of unit gate area of the proposed hybrid scaler

Modulus Aadder ALUT Total

m1 3n dlog2n− 1e+ 12n - 3n dlog2n− 1e+ 12n

m2 6n dlog2ne+ 24n 3AROM 6n dlog2ne+ 24n+ 3AROM

m3 3n dlog2n− 1e+ 12n - 3n dlog2n− 1e+ 12n

the algorithms will be expressed in terms of gate delays. Translating the number of gate

delays for a given technology to the actual speed can be simply done by multiplying

the number of gate delays by the gate speed of that technology [139]. The estimation

of the unit gate delay of the proposed design is presented in Table 5.12.

Table 5.12: Estimation of unit gate delay of the proposed hybrid scaler
Modulus Dadder DLUT Total

m1 2 dlog2n− 1e+ 3 - 2 dlog2n− 1e+ 3

m2 2 dlog2ne+ 3 (1 +
⌈
log2n+

⌈
n
2

⌉
).tNAND 2 dlog2ne+ 3+(1 +

⌈
log2n+

⌈
n
2

⌉⌉
).tNAND

m3 2 dlog2n− 1e+ 3 - 2 dlog2n− 1e+ 3

Since the hardware complexity is expressed as a number of transistors, the transistor

count of the proposed scaler is estimated from its unit-gate area by reasonably and

conservatively assuming that a two-input monotonic gate can be implemented with

six transistors using a classical CMOS implementation. We consider an inverter as

equivalent to two transistors. The conversion of the unit gate area from Table 5.11 to

the equivalent number of transistors of the proposed scaler is shown in Table 5.13.

Table 5.13: Estimated number of transistors of proposed hybrid scaler

Modulus Aadder ALUT Total

m1 18n dlog2n− 1e+ 72n - 18n dlog2n− 1e+ 72n

m2 18n dlog2ne+ 144n 18AROM 18n dlog2ne+ 144n+ 18AROM

m3 18n dlog2n− 1e+ 72n - 18n dlog2n− 1e+ 72n

The proposed scaler is compared with existing schemes in the literature using the

same bit-width (n = 8) and the same moduli set. Table 5.14 shows a summary of the

hardware implementation strategy (LUT and FA), and the scaling errors from Table

V of [1] and for the proposed design. All the schemes except [1] and [126] have used

LUTs. In comparison, the proposed design uses mixed FAs and LUTs. Table 5.14 also

shows that all designs have scaling errors except the proposed design, [1] and [125].

82 Scaling in the Residue Number System

Table 5.14: Comparison of estimated number of transistors in proposed hybrid scaler
and other designs for n = 8, (255, 256, 257), and M = 16776960

Hybrid scaler [1] [126] [125] [123] [76] [95]

Implementation LUT+ FA FA FA LUT LUT LUT LUT

Scaling error 0 0 N/A 0 1 1.5 N

Number of transistors 56160 4696 11940 928152 323438 1216816 89196

Area reduction - - - 93.94% 82.63% 95.38% 37.03%

Comparing Table VII of [1] with the proposed design shows that FA-based designs

need the least number of transistors, while LUT-based designs require a large number

of transistors. Among these designs, the complexity of the proposed design is ranked

just after the fully FA-based design in [1]. The proposed scaler has less complexity

than all the LUT-based designs, with 37.03% less area. Moreover, it has merits over

the FA-based designs in [1] and [126]. The merit over [126] is that the current design

is error free but [126] is not even able to produce the correct scaled residue. The merit

over [1] is that modular channel three is simplified in the proposed scaler.

Comparison of the estimated unit gate delay in Table VIII of [1] and for the proposed

design is shown in Table 5.15. It shows that the proposed design is faster than all

LUT-based designs, with a 19.04% delay reduction over [125]. It is even faster than

the FA-based design in [126]. The reason lies in the many iterative steps that [126]

has used to calculate the scaled residues. The proposed scaler shows a 87.02% delay

reduction over [126], and up to 69.64% savings over LUT-based designs.

Table 5.15: Comparison of estimated unit gate delay of proposed hybrid scaler and other
designs for n = 8, (255, 256, 257), and M = 16776960

Hybrid scaler [1] [126] [125] [123] [76] [95]

Unit gate delay 17 15 131 21 50 26 56

Delay reduction - - 87.02% 19.04% 66% 34.61% 69.64%

5.5 Proposing a Scaler for Four-Moduli Set

(2n − 1, 22n, 2n + 1, 22n + 1)

Scaling is one of the most important units and a necessary module to avoid over-

flow in a RNS-based system. Various scalers for three moduli set (2n − 1, 2n, 2n + 1)

have been developed and introduced in the literature. Nowadays with the increasing

5.5 Proposing a Scaler for Four-Moduli Set
(2n − 1, 22n, 2n + 1, 22n + 1) 83

demand for large dynamic range and parallel computing, four-moduli sets are more at-

tractive. In this paper, for the first time, design and implementation of a four-moduli

set RNS scaler is presented. In order to retain high performance while decreasing

hardware complexity, three main points are considered: First, the four-moduli set

(2n − 1, 2n + 1, 22n, 22n + 1) is selected due its large dynamic range and well-formed

moduli set. Second, the Chinese Remainder Theorem with arithmetic simplifications

are used to reduce complexity. Finally, a special design of modulo-2n + 1 adder is used

to adapt with scaling formulas of the selected moduli set which resulted in efficient

design of the proposed scaler. The proposed scaler is synthesised using Synopsys De-

sign Compiler (DC) with csm18os120 typ Library for n = 4, 8, 16, 32, 64, 128 for all

components and for separate modular channels.

5.5.1 Proposed Algorithm

One of the common methods to decrease the high power consumption of ROM matri-

ces in ROM-based scaling schemes is to replace them by modular multiplexers. This

method, however, increases the cost of implementation drastically, which would be

even worse for large moduli sets. As pointed before, hardware cost of all ROM-based

scalers increase by increasing the number of moduli. Hence, they can be manipulated

with full, adders for less area requirement [15]. The proposed algorithm is based on

full-adders and uses CRT for the four-moduli set (2n − 1, 22n, 2n + 1, 22n + 1). For this

moduli set, the CRT (5.1) becomes:

X =
∣∣∣m2m3m4

∣∣M−1
1

∣∣
m1
x1 +m1m3m4

∣∣M−1
2

∣∣
m2
x2

+ m1m2m4

∣∣M−1
3

∣∣
m3
x3 +m1m2m3

∣∣M−1
4

∣∣
m4
x4

∣∣∣
M

(5.43)

where x1, x2, x3, and x4 are n-bit, 2n-bit, (n+ 1)-bit, and (2n+ 1)-bit integers. Equa-

tion (5.43) needs the dynamic range to calculate Mi = M
mi

for i = 1, 2, 3, 4. The

dynamic range of the four-moduli set (2n − 1, 22n, 2n + 1, 22n + 1) is the product of its

four moduli:

M =
N∏
i=1

mi =
4∏
i=1

mi = (2n − 1)(22n)(2n + 1)(22n + 1) (5.44)

84 Scaling in the Residue Number System

For i = 1:

M1 = m2m3m4 =
(2n − 1)(22n)(2n + 1)(22n + 1)

(2n − 1)
= (22n)(2n + 1)(22n + 1) (5.45)

For i = 2:

M2 = m1m3m4 =
(2n − 1)(22n)(2n + 1)(22n + 1)

(22n)
= (2n − 1)(2n + 1)(22n + 1) (5.46)

For i = 3:

M3 = m1m2m4 =
(2n − 1)(22n)(2n + 1)(22n + 1)

(2n + 1)
= (2n − 1)(22n)(22n + 1) (5.47)

For i = 4:

M4 = m1m2m3 =
(2n − 1)(22n)(2n + 1)(22n + 1)

(22n + 1)
= (2n − 1)(22n)(2n + 1) (5.48)

To calculate the multiplicative inverse, condition (5.49) should be satisfied:

M−1
i =

∣∣Mi ×M−1
i

∣∣
mi

= 1. (5.49)

Equation (5.49) for i = 1, 2, 3, 4 gives:

i = 1⇒M−1
1 :

∣∣M1 ×M−1
1

∣∣
m1

= 1⇒
∣∣(2n)(2n + 1)(22n + 1)×M−1

1

∣∣
(2n−1) = 1

⇒M−1
1 = (2n−2) (5.50)

i = 2⇒M−1
2 :

∣∣M2 ×M−1
2

∣∣
m2

= 1⇒
∣∣(2n − 1)(2n + 1)(22n + 1)×M−1

2

∣∣
(22n)

= 1

⇒M−1
2 = (22n − 1) (5.51)

i = 3⇒M−1
3 :

∣∣M3 ×M−1
3

∣∣
m3

= 1⇒
∣∣(2n − 1)(22n)(22n + 1)×M−1

3

∣∣
(2n+1)

= 1

⇒M−1
3 = (2n−2) (5.52)

i = 4⇒M−1
4 :

∣∣M4 ×M−1
4

∣∣
m4

= 1⇒
∣∣(2n − 1)(22n)(2n + 1)×M−1

4

∣∣
(22n+1)

= 1

⇒M−1
4 = (22n−1 + 1) (5.53)

5.5 Proposing a Scaler for Four-Moduli Set
(2n − 1, 22n, 2n + 1, 22n + 1) 85

Scaling of X in (5.43) using (5.2) gives:

Y =

⌊
X

k

⌋
=

⌊
1

k

∣∣∣m2m3m4

∣∣M−1
1

∣∣
m1
x1 +m1m3m4

∣∣M−1
2

∣∣
m2
x2

+m1m2m4

∣∣M−1
3

∣∣
m3
x3 +m1m2m3

∣∣M−1
4

∣∣
m4
x4

∣∣∣
M

⌋
=

⌊∣∣∣∣m2m3m4

k

∣∣M−1
1

∣∣
m1
x1 +

∣∣∣m1m3m4

k

∣∣∣
m2

x2

+
∣∣∣m1m2m4

k

∣∣∣
m3

x3 +
∣∣∣m1m2m3

k

∣∣∣
m4

x4

∣∣∣∣
M
k

⌋
(5.54)

For the scaling by the second modulus k = m2 = 22n, (5.54) can be simplified to

(5.55):

Y =

∣∣∣∣⌊Xk
⌋∣∣∣∣
m2

=

⌊
X

m2

⌋
=

∣∣∣∣∣∣∣∣m3m4

∣∣M−1
1

∣∣
m1
x1 +

m1m3m4

m2

∣∣M−1
2

∣∣
m2
x2

+m1m4

∣∣M−1
3

∣∣
m3
x3 +m1m3

∣∣M−1
4

∣∣
m4
x4

∣∣∣
m1m3m4

∣∣∣∣
(5.55)

Scaling in each channel using Theorem 1 (5.13) for i = 1, 2, 3, 4 gives:

i = 1⇒ y1 =

∣∣∣∣⌊Xk
⌋∣∣∣∣
m1

=

∣∣∣∣m3m4

∣∣M−1
1

∣∣
m1
x1 +

m1m3m4

m2

∣∣M−1
2

∣∣
m2
x2

∣∣∣∣
m1

(5.56)

i = 2⇒ y2 =

∣∣∣∣⌊Xk
⌋∣∣∣∣
m2

=

⌊
X

m2

⌋
=

∣∣∣∣∣∣∣∣m3m4

∣∣M−1
1

∣∣
m1
x1 +

m1m3m4

m2

∣∣M−1
2

∣∣
m2
x2

+m1m4

∣∣M−1
3

∣∣
m3
x3 +m1m3

∣∣M−1
4

∣∣
m4
x4

∣∣∣
m1m3m4

∣∣∣∣
m2

(5.57)

i = 3⇒ y3 =

∣∣∣∣⌊Xk
⌋∣∣∣∣
m3

=

∣∣∣∣m1m3m4

m2

∣∣M−1
2

∣∣
m2
x2 +m1m4

∣∣M−1
3

∣∣
m3
x3

∣∣∣∣
m3

(5.58)

86 Scaling in the Residue Number System

i = 4⇒ y4 =

∣∣∣∣⌊Xk
⌋∣∣∣∣
m4

=

∣∣∣∣m1m3m4

m2

∣∣M−1
2

∣∣
m2
x2 +m1m3

∣∣M−1
4

∣∣
m4
x4

∣∣∣∣
m4

(5.59)

Some terms are repeated in (5.56)-(5.59). They can be combined to give:

m3m4

∣∣M−1
1

∣∣
m1

= (2n + 1)(22n + 1)(2n−2) = (24n−2 + 22n−2 + 23n−2 + 2n−2) (5.60)

m1m4

∣∣M−1
3

∣∣
m3

= (2n − 1)(22n + 1)(2n−2) = (24n−2 + 22n−2 − 23n−2 − 2n−2) (5.61)

m1m3

∣∣M−1
4

∣∣
m4

= (2n − 1)(2n + 1)(22n−1 + 1) = (24n−1 + 22n − 22n−1 − 1) (5.62)

m1m3m4

m2

∣∣M−1
2

∣∣
m2

=
(2n − 1)(2n + 1)(22n + 1)(22n − 1)

(22n)
=

(26n − 22n − 24n + 1)

22n

=
22n(24n − 1− 22n + 1

22n
)

22n
= 24n − 1− 22n +

1

22n
= 24n − 22n − 1

(5.63)

The (5.60)- (5.63) are divided by 1
22n

to derive new vaiables as k1 = 24n−2 + 22n−2 +

23n−2 + 2n−2, k2 = 24n − 22n − 1, k3 = 24n−2 + 22n−2 − 23n−2 − 2n−2, k4 = 24n−1 + 22n −
22n−1 − 1, and also p = m1m3m4. Hence:

⌊
X

S

⌋′
=

=
⌊∣∣(24n−2 + 22n−2 + 23n−2 + 2n−2)x1 + (24n − 22n − 1)x2

+(24n−2 + 22n−2 − 23n−2 − 2n−2)x3 + (24n−1 + 22n − 22n−1 − 1)x4
∣∣
m1m3m4

⌋
(5.64)

⌊
X

S

⌋′
=
⌊
|k1x1 + k2x2 + k3x3 + k4x4|p

⌋
(5.65)

5.5 Proposing a Scaler for Four-Moduli Set
(2n − 1, 22n, 2n + 1, 22n + 1) 87

Using (5.14), the above equation (5.65) is reconstituted as:

⌊
X

S

⌋′
=
⌊
|k1x1 + k2x2 + k3x3 + k4x4 − εp|p

⌋
= k1x1 + k2x2 + k3x3 + k4x4 − εp

(5.66)

where ε is a nonnegative digit.

Without replacing k1,k2,k3 and k4, it would be:

⌊
X

S

⌋
=

=

⌊∣∣∣∣(24n−2 + 22n−2 + 23n−2 + 2n−2)x1 + (24n − 22n − 1 +
1

22n
)x2

+(24n−2 + 22n−2 − 23n−2 − 2n−2)x3 + (24n−1 + 22n − 22n−1 − 1)x4
∣∣
m1m3m4

⌋
=

⌊∣∣∣∣k1x1 + (k2 +
1

22n
)x2 + k3x3 + k4x4

∣∣∣∣
p

⌋

=

⌊∣∣∣k1x1 + k2x2 +
x2
22n

+ k3x3 + k4x4

∣∣∣
p

⌋

(5.67)

If c = x2
22n

, then (5.67) is simplified as follow:⌊
X

S

⌋
=
⌊
|k1x1 + k2x2 + k3x3 + k4x4 + c|p

⌋
= bk1x1 + k2x2 + k3x3 + k4x4 + c− εpc

(5.68)

⌊
X

S

⌋
= k1x1 + k2x2 + k3x3 + k4x4 − εp+ bcc (5.69)

Since 0 ≤ x2 ≤ 22n, then:

c =
x2
22n
⇒ 0 ≤ c < 1⇒ bcc = 0 (5.70)

which concludes that: ⌊
X

S

⌋′
=

⌊
X

S

⌋
(5.71)

Using (5.71) and Notes in the following, modular channels yi of proposed scaler are

calculated.

88 Scaling in the Residue Number System

Note 1: If a k bite digit (such as y) is multiplied by a number of the form 2n, the

|2ny|2k−1 is the n-bit circular left shift of y.

Note 2: If y is negative, then | − y|2k−1 is the two’s complement of y.

5.5.2 Generating y1

Substituting (5.60) and (5.63) in (5.56), the scaled residue y1 splits into two terms, A

and B:

y1 =

∣∣∣∣⌊Xk
⌋∣∣∣∣
m1

=

∣∣∣∣∣∣
A︷ ︸︸ ︷

(2n + 1)(22n + 1)(2n−2)x1 +

B︷ ︸︸ ︷
(24n − 22n − 1)x2

∣∣∣∣∣∣
2n−1

(5.72)

where

A =
∣∣(2n + 1)(22n + 1)(2n−2)x1

∣∣
2n−1 (5.73)

Using (5.13), A is given by:

⇒


|(2n + 1)|2n−1 = 2

|(22n + 1)|2n−1 = |2n × 2n + 1|2n−1 = 2

|(2n−2)|2n−1 = 2n−2

|x1|2n−1

⇒
∣∣(2× 2× 2n−2 × x1)

∣∣
2n−1 = |x1|2n−1 (5.74)

and similarly

B :
∣∣(24n − 22n − 1)x2

∣∣
2n−1

⇒
∣∣(24n − 22n − 1)x2

∣∣
2n−1

= |(1− 1− 1)x2|
2n−1

= |−x2|
2n−1

(5.75)

Using (5.74) and (5.75), the scaled residue y1 is given by

y1 =

∣∣∣∣⌊Xk
⌋∣∣∣∣
m1

= |x1 − x2|2n−1. (5.76)

Since x2 is a 2n-bit negative integer, we split (5.76) to x21 and x22, and express

it as (5.131), where x̄2 is the two’s complement of x2. Figure 5.9 shows the proposed

5.5 Proposing a Scaler for Four-Moduli Set
(2n − 1, 22n, 2n + 1, 22n + 1) 89

Operand preparation unit

(n-bit) CSA with EAC

(n-bit) CPA-EAC

X2

X1 X21 X22

y1

2n

n n n

n n

n

Figure 5.9: Proposed method to generate y1 in the moduli set
(2n − 1, 22n, 2n + 1, 22n + 1)

method to generate y1.

y1 = (
n︷ ︸︸ ︷

x1,n−1......x1,0) + (

n︷ ︸︸ ︷
x2,2n−1......x2,n︸ ︷︷ ︸

x21

) + (

n︷ ︸︸ ︷
x2,n−1......x2,0︸ ︷︷ ︸

x22

) (5.77)

5.5.3 Generating y2

Substituting (5.60), (5.61) and (5.62) in (5.57) results in the scaled residue y2 that can

be split into four terms: y21, y22, y23 and y24 .

y2 =

∣∣∣∣⌊Xk
⌋∣∣∣∣
m2

=

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣(2
n + 1)(22n + 1)(2n−2)︸ ︷︷ ︸

y21

x1 + (
(2n − 1)(2n + 1)(22n + 1)(22n − 1)

(22n)
)︸ ︷︷ ︸

y22

x2

+ (2n − 1)(22n + 1)(2n−2)︸ ︷︷ ︸
y23

x3 + (2n − 1)(2n + 1)(22n−1 + 1)︸ ︷︷ ︸
y24

x4

∣∣∣∣∣∣
(2n−1)(2n+1)(22n+1)

∣∣∣∣∣∣∣
22n

(5.78)

90 Scaling in the Residue Number System

⇒ y2 = |y21 + y22 + y23 + y24|22n (5.79)

5.5.3.1 Generating y21

The first term in (5.78) splits into four terms A, B, C, and D.

y21 =

∣∣∣∣∣∣(
A︷ ︸︸ ︷

24n−2 +

B︷ ︸︸ ︷
22n−2 +

C︷ ︸︸ ︷
23n−2 +

D︷︸︸︷
2n−2)x1

∣∣∣∣∣∣
24n−1

(5.80)

Each term modulo-(24n − 1) is given by:

A =
∣∣24n−2x1

∣∣
24n−1 =

∣∣∣∣∣∣24n−2(

3n︷ ︸︸ ︷
00......0,

n︷ ︸︸ ︷
x1,n−1......x1,0)

∣∣∣∣∣∣
24n−1

= (
2︷ ︸︸ ︷

x1,1x1,0,

3n︷ ︸︸ ︷
00......0,

n−2︷ ︸︸ ︷
x1,n−1......x1,2)

(5.81)

B =
∣∣22n−2x1

∣∣
24n−1 =

∣∣∣∣∣∣22n−2(

3n︷ ︸︸ ︷
00......0,

n︷ ︸︸ ︷
x1,n−1......x1,0)

∣∣∣∣∣∣
24n−1

= (

(n+2)︷ ︸︸ ︷
00......0,

n︷ ︸︸ ︷
x1,n−1......x1,0,

(2n−2)︷ ︸︸ ︷
00......0

(5.82)

C =
∣∣23n−2x1

∣∣
24n−1 =

∣∣∣∣∣∣23n−2(

3n︷ ︸︸ ︷
00......0,

n︷ ︸︸ ︷
x1,n−1......x1,0)

∣∣∣∣∣∣
24n−1

= (

2︷︸︸︷
00 ,

n︷ ︸︸ ︷
x1,n−1......x1,0,

(3n−2)︷ ︸︸ ︷
00......0)

(5.83)

D =
∣∣2n−2x1∣∣24n−1 =

∣∣∣∣∣∣2n−2(
3n︷ ︸︸ ︷

00......0,
n︷ ︸︸ ︷

x1,n−1......x1,0)

∣∣∣∣∣∣
24n−1

= (

(2n+2)︷ ︸︸ ︷
00......0,

n︷ ︸︸ ︷
x1,n−1......x1,0,

(n−2)︷ ︸︸ ︷
00......0)

(5.84)

Replacing terms A, B, C, and D in (5.80) gives

y21 = |(A+B + C +D)x1|24n−1. (5.85)

5.5 Proposing a Scaler for Four-Moduli Set
(2n − 1, 22n, 2n + 1, 22n + 1) 91

Substituting (5.81) to (5.84) in (5.85) gives

y21 = (
2︷ ︸︸ ︷

x1,1x1,0,

n︷ ︸︸ ︷
x1,n−1......x1,0,

n︷ ︸︸ ︷
x1,n−1......x1,0,

n︷ ︸︸ ︷
x1,n−1......x1,0,

(n−2)︷ ︸︸ ︷
x1,n−1......x1,2) (5.86)

5.5.3.2 Generating y22

The second term in (5.78) splits into three terms, A, B, and C:

y22 =

∣∣∣∣∣
∣∣∣∣((2n − 1)(2n + 1)(22n + 1)(22n − 1)

(22n)
)x2

∣∣∣∣
(2n−1)(2n+1)(22n+1)

∣∣∣∣∣
22n

(5.87)

y22 =

∣∣∣∣∣∣(
A︷︸︸︷

24n −
B︷︸︸︷

22n −
C︷︸︸︷
1)x2

∣∣∣∣∣∣
24n−1

(5.88)

Modulo-(24n − 1), each term is given by:

A =
∣∣24nx2

∣∣
24n−1 =

∣∣∣∣∣∣24n(

2n︷ ︸︸ ︷
00......0,

2n︷ ︸︸ ︷
x2,2n−1......x2,0)

∣∣∣∣∣∣
24n−1

= (

2n︷ ︸︸ ︷
00......0,

2n︷ ︸︸ ︷
x2,2n−1......x2,0)

(5.89)

B =
∣∣−22nx2

∣∣
24n−1 =

∣∣∣∣∣∣−22n(

2n︷ ︸︸ ︷
00......0,

2n︷ ︸︸ ︷
x2,2n−1......x2,0)

∣∣∣∣∣∣
24n−1

= (

2n︷ ︸︸ ︷
x2,2n−1......x2,0,

2n︷ ︸︸ ︷
11......1)

(5.90)

C = |−x2|24n−1 =

∣∣∣∣∣∣−(

2n︷ ︸︸ ︷
00......0,

2n︷ ︸︸ ︷
x2,2n−1......x2,0)

∣∣∣∣∣∣
24n−1

= (

2n︷ ︸︸ ︷
11......1,

2n︷ ︸︸ ︷
x2,2n−1......x2,0) (5.91)

By swapping the 2n MSBs of B and C, they will be:

B = (

2n︷ ︸︸ ︷
11......1,

2n︷ ︸︸ ︷
11......1) (5.92)

92 Scaling in the Residue Number System

C = (

2n︷ ︸︸ ︷
x2,2n−1......x2,0

2n︷ ︸︸ ︷
x2,2n−1......x2,0) (5.93)

Hence A+ C = (

2n︷ ︸︸ ︷
x2,2n−1......x2,0,

2n︷ ︸︸ ︷
11......1). Replacing A, B and C in (5.87) gives

y22 = |A+B + C|24n−1 = (

2n︷ ︸︸ ︷
x2,2n−1......x2,0,

2n︷ ︸︸ ︷
11......1) (5.94)

5.5.3.3 Generating y23

To calculate y23, we use the third term in (5.78) and split it into four terms A, B, C,

and D:

y23 =
∣∣(2n − 1)(22n + 1)(2n−2)x3

∣∣
24n−1 (5.95)

y23 =

∣∣∣∣∣∣(
A︷ ︸︸ ︷

24n−2 +

B︷ ︸︸ ︷
22n−2−

C︷ ︸︸ ︷
23n−2−

D︷︸︸︷
2n−2)x3

∣∣∣∣∣∣
24n−1

(5.96)

Modulo-(24n − 1), each term is calculated as:

A =
∣∣(24n−2)x3

∣∣
24n−1 =

∣∣∣∣∣∣24n−2(

(3n−1)︷ ︸︸ ︷
00......0,

(n+1)︷ ︸︸ ︷
x3,n......x3,0)

∣∣∣∣∣∣
24n−1

= (
2︷ ︸︸ ︷

x3,1x3,0,

(3n−1)︷ ︸︸ ︷
00......0,

(n−1)︷ ︸︸ ︷
x3,n......x3,2)

(5.97)

B =
∣∣(22n−2)x3

∣∣
24n−1 =

∣∣∣∣∣∣22n−2(

(3n−1)︷ ︸︸ ︷
00......0,

(n+1)︷ ︸︸ ︷
x3,n......x3,0)

∣∣∣∣∣∣
24n−1

= (

(n+1)︷ ︸︸ ︷
00......0,

(n+1)︷ ︸︸ ︷
x3,n......x3,0,

(2n−2)︷ ︸︸ ︷
00......0)

(5.98)

C =
∣∣(−23n−2)x3

∣∣
24n−1 =

∣∣∣∣∣∣−23n−2(

(3n−1)︷ ︸︸ ︷
00......0,

(n+1)︷ ︸︸ ︷
x3,n......x3,0)

∣∣∣∣∣∣
24n−1

= (

(1)︷︸︸︷
1 ,

(n+1)︷ ︸︸ ︷
x3,n......x3,0,

(3n−2)︷ ︸︸ ︷
11......1)

(5.99)

5.5 Proposing a Scaler for Four-Moduli Set
(2n − 1, 22n, 2n + 1, 22n + 1) 93

D =
∣∣(−2n−2)x3

∣∣
24n−1 =

∣∣∣∣∣∣−2n−2(

(3n−1)︷ ︸︸ ︷
00......0,

(n+1)︷ ︸︸ ︷
x3,n......x3,0)

∣∣∣∣∣∣
24n−1

= (

(2n+1)︷ ︸︸ ︷
11......1,

(n+1)︷ ︸︸ ︷
x3,n......x3,0,

(n−2)︷ ︸︸ ︷
11......1)

(5.100)

For simplification the last MSB of A and C are swapped as:

A = (

2︷︸︸︷
1x3,0,

(3n−1)︷ ︸︸ ︷
00......0,

(n−1)︷ ︸︸ ︷
x3,n......x3,2) (5.101)

C = (

(1)︷︸︸︷
x3,1 ,

(n+1)︷ ︸︸ ︷
x3,n......x3,0,

(3n−2)︷ ︸︸ ︷
11......1) (5.102)

Hence:

A+B = (

2︷︸︸︷
1x3,0,

(n−1)︷ ︸︸ ︷
00......0,

(n+1)︷ ︸︸ ︷
x3,n......x3,0,

(n−1)︷ ︸︸ ︷
00......0,

(n−1)︷ ︸︸ ︷
x3,n......x3,2) (5.103)

Similarly by swapping the n+ 2 MSBs of C and D, the result of C +D would be:

C +D = (
1︷︸︸︷
x3,1 ,

(n+1)︷ ︸︸ ︷
x3,n......x3,0,

(n−1)︷ ︸︸ ︷
11......1,

(n+1)︷ ︸︸ ︷
x3,n......x3,0,

(n−2)︷ ︸︸ ︷
11......1) (5.104)

Replacing (5.103) to (5.104) in (5.95) gives

y23 = |(A+B + C +D)|24n−1

=

2︷︸︸︷
1x3,0,

(n−1)︷ ︸︸ ︷
00......0,

(n+1)︷ ︸︸ ︷
x3,n......x3,0,

(n−1)︷ ︸︸ ︷
00......0,

(n−1)︷ ︸︸ ︷
x3,n......x3,2

+ (
1︷︸︸︷
x3,1 ,

(n+1)︷ ︸︸ ︷
x3,n......x3,0,

(n−1)︷ ︸︸ ︷
11......1,

(n+1)︷ ︸︸ ︷
x3,n......x3,0,

(n−2)︷ ︸︸ ︷
11......1)

(5.105)

5.5.3.4 Generating y24

To calculate y21, we use the last term in (5.78) and split it into four terms A, B, C,

and D:

y24 =
∣∣(2n − 1)(2n + 1)(22n−1 + 1)x4

∣∣
24n−1 (5.106)

94 Scaling in the Residue Number System

y24 =

∣∣∣∣∣∣(
y241︷ ︸︸ ︷

24n−1 +

y242︷︸︸︷
22n −

y243︷ ︸︸ ︷
22n−1−

y244︷︸︸︷
1)x4

∣∣∣∣∣∣
24n−1

(5.107)

Each term modulo-(24n − 1) gives

y241 =
∣∣(24n−1)x4

∣∣
24n−1 =

∣∣∣∣∣∣24n−1(

(2n−1)︷ ︸︸ ︷
00......0,

(2n+1)︷ ︸︸ ︷
x4,2n......x4,0)

∣∣∣∣∣∣
24n−1

= (
1︷︸︸︷
x4,0 ,

(2n−1)︷ ︸︸ ︷
00......0,

(2n)︷ ︸︸ ︷
x4,2n......x4,1)

(5.108)

y242 =
∣∣(22n)x4

∣∣
24n−1 =

∣∣∣∣∣∣22n(

(2n−1)︷ ︸︸ ︷
00......0,

(2n+1)︷ ︸︸ ︷
x4,2n......x4,0)

∣∣∣∣∣∣
24n−1

= (

(2n)︷ ︸︸ ︷
x4,2n−1......x4,0,

(2n−1)︷ ︸︸ ︷
00......0,

1︷︸︸︷
x4,2n)

(5.109)

y243 =
∣∣(−22n−1)x4

∣∣
24n−1 =

∣∣∣∣∣∣−22n−1(

(2n−1)︷ ︸︸ ︷
00......0,

(2n+1)︷ ︸︸ ︷
x4,2n......x4,0)

∣∣∣∣∣∣
24n−1

= (

(2n+1)︷ ︸︸ ︷
x4,2n......x4,0,

(2n−1)︷ ︸︸ ︷
11......1)

(5.110)

y244 = |−x4|24n−1 =

∣∣∣∣∣∣−(

(2n−1)︷ ︸︸ ︷
00......0,

(2n+1)︷ ︸︸ ︷
x4,2n......x4,0)

∣∣∣∣∣∣
24n−1

= (

(2n−1)︷ ︸︸ ︷
11......1,

(2n+1)︷ ︸︸ ︷
x4,2n......x4,0) (5.111)

Replacing (5.108) to (5.111) in (5.106) gives

y24 = |(y241 + y242 + y243 + y244)|24n−1

= (
1︷︸︸︷
x4,0 ,

(2n−1)︷ ︸︸ ︷
00......0,

(2n)︷ ︸︸ ︷
x4,2n......x4,1) + (

(2n)︷ ︸︸ ︷
x4,2n−1......x4,0,

(2n−1)︷ ︸︸ ︷
00......0,

1︷︸︸︷
x4,2n)

+ (

(2n+1)︷ ︸︸ ︷
x4,2n......x4,0,

(2n−1)︷ ︸︸ ︷
11......1) + (

(2n−1)︷ ︸︸ ︷
11......1,

(2n+1)︷ ︸︸ ︷
x4,2n......x4,0)

(5.112)

Figure 5.10 shows the proposed method to generate y2.

5.5 Proposing a Scaler for Four-Moduli Set
(2n − 1, 22n, 2n + 1, 22n + 1) 95

X1 X4 X3 X2

y2

y231 y22 y21 y232 y241 y242

y243 y244

Operand operation unit

(4n-bit) CSA with EAC (4n-bit) CSA with EAC

(4n-bit) CSA with EAC (4n-bit) CSA with EAC

(4n-bit) CSA with EAC

(4n-bit) CSA with EAC

(4n-bit) CPA - EAC

2n n (n+1) (2n+1)

4n 4n 4n 4n 4n 4n

4n 4n 4n 4n

4n 4n

4n 4n 4n

4n 4n

4n 4n

4n

2n

Figure 5.10: Proposed method to generate y2 in moduli set (2n − 1, 22n, 2n + 1, 22n + 1)

5.5.4 Generating y3

Replacing (5.61) and (5.63) in (5.58), the scaled residue y3 splits into two terms, A and

B:

y3 =

∣∣∣∣⌊Xk
⌋∣∣∣∣
m3

=

∣∣∣∣m1m3m4

m2

∣∣M−1
2

∣∣
m2
x2 +m1m4

∣∣M−1
3

∣∣
m3
x3

∣∣∣∣
m3

=
∣∣(24n − 22n − 1)x2 + (2n − 1)(22n + 1)(2n−2)x3

∣∣
2n+1

(5.113)

where A and B can be simplified to:

A :
∣∣(24n − 22n − 1)x2

∣∣
2n+1

= |(+1− 1− 1)x2|
2n+1

= |−x2|
2n+1

(5.114)

96 Scaling in the Residue Number System

B :


|(2n − 1)|2n+1 = −2

|(22n + 1)|2n+1 = |(2n × 2n + 1)|
2n+1

= 2

|(2n−2)|2n+1 = 2n−2

⇒
∣∣(−4)(2n−2)x3

∣∣
2n+1

= |(−2n)x3|2n+1 = |x3|2n+1 (5.115)

Substituting (5.114) and (5.115) in (5.113) gives

A,B ⇒ y3 = |−x2 + x3|
2n+1

(5.116)

To design y3 we use (5.6):

y3 = |−x2 + x3|
2n+1

=

∣∣∣∣∣(−2n(
n︷ ︸︸ ︷

x2,2n−1......x2,n))− (
n︷ ︸︸ ︷

x2,n−1......x2,0) + x3

∣∣∣∣∣
2n+1

=

∣∣∣∣∣∣∣(x2,2n−1......x2,n) + (

(Axiom:|−z|2n+1=z+2)︷ ︸︸ ︷
(x2,n−1......x2,0) + 2) + x3

∣∣∣∣∣∣∣
2n+1

(5.117)

|x3|2n+1 =

∣∣∣∣∣∣x3,n × 2n +

x∗3︷ ︸︸ ︷
x3,n−1......x3,0

∣∣∣∣∣∣
2n+1

= |−x3,n + x∗3|2n+1 = |(x3,n + 2) + x∗3|2n+1

= |(x2,2n−1......x2,n) + ((x2,n−1......x2,0) + 2) + (x3,n + 2) + x∗3|2n+1

⇒ y3 = |(x2,2n−1......x2,n) + (x2,n−1......x2,0) + x3,n + x∗3 + 4|
2n+1

= |(x2,2n−1......x2,n) + (x2,n−1......x2,0) + x∗3 + x∗∗3 |2n+1

(5.118)

where

x∗∗3 = x3,n + 4 =

∣∣∣∣∣∣(
(n−1)bits︷ ︸︸ ︷
11......1,

1bit︷︸︸︷
x3,n) + (

(n−3)bits︷ ︸︸ ︷
00......0

3bits︷︸︸︷
100)

∣∣∣∣∣∣
2n+1

=

∣∣∣∣∣∣(
(n−2)bits︷ ︸︸ ︷
00......0

1bit︷︸︸︷
1x3,n) + 2n

∣∣∣∣∣∣
2n+1

=

∣∣∣∣∣∣(
(n−2)bits︷ ︸︸ ︷
00......0

1bit︷︸︸︷
1x3,n)− 1

∣∣∣∣∣∣
2n+1

(5.119)

5.5 Proposing a Scaler for Four-Moduli Set
(2n − 1, 22n, 2n + 1, 22n + 1) 97

x3,n can be either zero or one. Hence (5.119) can be simplified to:

x3,n = 1⇒ (x3,n = 0, x∗3 = 0)→ y3 = |(x2,2n−1......x2,n) + (x2,n−1......x2,0) + 1|
2n+1

(5.120)

x3,n = 0⇒ (x3,n = 1, x∗3)→ y3 = |(x2,2n−1......x2,n) + (x2,n−1......x2,0) + x∗3 + 2|
2n+1

(5.121)

Figure 5.11 shows the proposed method to generate y3.

x3
*

n+1

n+1

x22 x21

y3

Operand preparation unit

Modulo-(2n+1) adder

Modulo-(2n+1) adder

X2

X 3 (n-1 downto 0)
1

Increment Operator

n+1

n+1 n+1

Mux

2n

n n n

1

n

Figure 5.11: Proposed method to generate y3 in moduli set (2n − 1, 22n, 2n + 1, 22n + 1)

5.5.4.1 A New Modulo-(2n + 1) Adder

The proposed method to calculate y3 in Figure 5.11 uses (x21) and (x22), which are

n-bit numbers. However, existing modulo-(2n + 1) adders use (n+ 1)-bit numbers. To

solve this problem, we propose a new modulo-(2n + 1) adder which can be used as a

modulo-(22n + 1) adder as well. The operation of the proposed adder for two residues

98 Scaling in the Residue Number System

a and b is:

|a+ b|2n+1 =

{
a+ b+ 1− (2n + 1) if(a+ b+ 1) > 2n + 1

a+ b+ 1 otherwise
(5.122)

Equation (5.122) can be shortened to

|a+ b|2n+1 =

{
a+ b− 2n if(a+ b+ 1) > 2n

a+ b+ 1 otherwise
(5.123)

To add two n-bit numbers and subtract 2n from them in (5.123), all we need to do

is to use the n LSB bits of that number. Hence, to implement the proposed adder, we

use a multiplexer as shown in Figure 5.12, controlled by the carry out from the (n-bit)

CPA adder. Equation (5.121) can be written, based on x21 and x22, as

x3,n = 0⇒ (x3,n = 1, x∗3)→ y3 =

∣∣∣∣∣(
x21︷ ︸︸ ︷

x2,2n−1......x2,n) + (

x22︷ ︸︸ ︷
x2,n−1......x2,0) + 1 + x∗3 + 1

∣∣∣∣∣
2n+1

(5.124)

We split (5.124) into two terms y31 and y32. A multiplexer will choose between

these two possible inputs depending on the carry out from the CPA adder.

y31 =

∣∣∣∣∣(
x21︷ ︸︸ ︷

x2,2n−1......x2,n) + (

x22︷ ︸︸ ︷
x2,n−1......x2,0) + 1

∣∣∣∣∣
2n+1

(5.125)

y32 = |x∗3 + 1|
2n+1

(5.126)

Equation (5.125) has already been calculated in (5.120). To calculate (5.125), the

unit increment is used since x∗3 is n-bit. A final modulo-2n + 1 adder is used for final

addition. The selection of one of the (5.125) and (5.126) is done using a multiplexer.

5.5.5 Generating y4

The scaled integer y4 is calculated using (5.59), which can be split into two terms, A

and B:

y4 =

∣∣∣∣⌊Xk
⌋∣∣∣∣
m4

=

∣∣∣∣m1m3m4

m2

∣∣M−1
2

∣∣
m2
x2 +m1m3

∣∣M−1
4

∣∣
m4
x4

∣∣∣∣
m4

=
∣∣(24n − 22n − 1)x2 + (2n − 1)(2n + 1)(22n−1 + 1)x4

∣∣
22n+1

(5.127)

5.5 Proposing a Scaler for Four-Moduli Set
(2n − 1, 22n, 2n + 1, 22n + 1) 99

(n-bit) CPA(n-bit) CPA

MUX 2×1

n+1n+1

a b a b

1

|a+b|2
n

+1

n n n n

Figure 5.12: Proposed modulo-(2n + 1) adder

Modulo-22n − 1, each term gives:

A :
∣∣(24n − 22n − 1)x2

∣∣
22n+1

= |(1− (−1)− 1)x2|
22n+1

= |x2|
22n+1

(5.128)

B :
∣∣(2n − 1)(2n + 1)(22n−1 + 1)x4

∣∣
22n+1

=
∣∣(24n−1 + 22n − 22n−1 − 1)x4

∣∣
22n+1

=

∣∣∣∣∣∣∣∣∣((2
4n × 1

2︸ ︷︷ ︸
1
2

) + (22n︸︷︷︸
−1

)− (22n × 1

2︸ ︷︷ ︸
− 1

2

))− 1)x4

∣∣∣∣∣∣∣∣∣
22n+1

= |−x4|
22n+1

(5.129)

Substituting (5.128) and (5.129) in (5.127) gives:

A,B ⇒ y4 = |x2 − x4|22n+1 (5.130)

y1 = (
n︷ ︸︸ ︷

x1,n−1......x1,0) + (

n︷ ︸︸ ︷
x2,2n−1......x2,n︸ ︷︷ ︸

x21

) + (

n︷ ︸︸ ︷
x2,n−1......x2,0︸ ︷︷ ︸

x22

) (5.131)

100 Scaling in the Residue Number System

y4 =

∣∣∣∣∣∣∣∣∣∣∣
(2n)︷ ︸︸ ︷

(x2,2n−1......x2,0)︸ ︷︷ ︸
x2

+

(2n)︷ ︸︸ ︷ (n−1)︷ ︸︸ ︷
00.....0

1︷︸︸︷
x4,2n


︸ ︷︷ ︸x41

+

(2n)︷ ︸︸ ︷
(x4,2n−1......x4,0)︸ ︷︷ ︸x42 + 2

∣∣∣∣∣∣∣∣∣∣∣
22n+1

(5.132)

2n 2n 2n

n+1 n+1

X41 X42

Operand preparation unit

Modulo-(2n+1) adder

Modulo-(2n+1) adder

X4

X2

y4

1

Increment Operator

1

2n+1

2n+1

Figure 5.13: Proposed method to generate y4 in moduli set (2n − 1, 22n, 2n + 1, 22n + 1)

Example Table 5.16 shows a numerical example of the proposed algorithm for n = 2.

Consider the residues x1 = 2, x2 = 15, x3 = 2 and x4 = 13 corresponding to moduli

set (3, 16, 5, 17). The dynamic range of the system is M =4080, and M1 = 1360,

M2 = 255, M3 = 816 and M4 = 240. The multiplicative inverses are M−1
1 = 1,

M−1
2 = 15, M−1

3 = 1, and M−1
4 = 9. The scaling factor is k = 22n for n = 2. The

scaling is performed for each channel using (5.76), (5.79), (5.116) and (5.130).

5.5 Proposing a Scaler for Four-Moduli Set
(2n − 1, 22n, 2n + 1, 22n + 1) 101

Table 5.16: Numerical example of proposed scaler for four-moduli set (3, 16, 5, 17) and
scaling factor 16

Channel 1 Channel 2 Channel 3 Channel 4

mi 3 16 5 17

xi 2 15 2 13

Mi 1360 255 816 240

M−1
i 1 15 1 9

yi 2 2 2 2

5.5.6 Performance Evaluation

Synthesis results of proposed scaler for the four moduli set (2n − 1, 22n, 2n + 1, 22n + 1)

is presented in this section. The proposed four-moduli scaler is designed using Xilinx

tools in such a way that the modular channels (Scale1, Scale2, Scale3, Scale4) can be

synthesised separately. The proposed scaler is designed VHDL code, and performance

and accurate functionality of the design are investigated using Modelsim simulation

tool.

It is also synthesised using Synopsys Design Compiler (DC) with csm18os120 typ

(WORST case operating condition and 1.62 V) library. For comparison purpose, the

Chang scaler [1] is also designed and synthesised using DC. The proposed scaler and

Chang scaler are designed using generic variables, hence they are synthesised for n =

8, 16, 32, 64, 128.

The proposed scaler is designed for four moduli set (2n − 1, 22n, 2n + 1, 22n + 1)

which has 6n bits dynamic range. The synthesis results of proposed scaler are compa-

rable with Change scaler in terms of dynamic range. In other words, since the dynamic

range of the selected moduli set is two times the dynamic range of the moduli set in

the Chang scaler, we can make a fair comparison by choosing the n in proposed scaler

half the n in Chang scaler. For example suppose n in Chang scaler is 8, then with

dynamic range 3n, the dynamic range would be 24 bits. In the proposed scaler the

dynamic range is 6n, so we should consider n = 4, therefore comparison of two scalers

are performed for the same dynamic ranges.

In addition, since no scaler is designed for four moduli set and the fact that our

proposed scaler is the first design for four moduli set, we are obliged to survey another

comparison that is related to implementing the proposed scaler.

The proposed scaler is synthesised with and without the proposed modulo-2n + 1

adder. Since the proposed modulo-2n+1 adder is only used in designing y3 and y4 (Scale

102 Scaling in the Residue Number System

3 and Scale 4, respectively), results for these two scales are presented i.e. synthesis

results of y1 and y2 did not change.

5.5.7 Comparison of Design Compiler Synthesis Results for

the Proposed Four-Moduli Scaler and the Chang Scaler

Tables 5.17 to 5.19 are the synthesis results of the four-moduli scaler for each modular

channel. Table 5.20 presents the synthesis results of the whole scaler.

Table 5.17: Full adder based (Chang) scaler Scale 1 (2n − 1) synthesis results

n Total Area (µm2) Critical Path Delay(ns) Dynamic Power(mW)

8 141.5671701 7.97 0.6479695

16 382.3178201 7.92 1.3442

32 1223.3960751 8.05 2.8404

64 2088.9032141 8.05 5.4510

128 4328.8594161 8.05 11.1017

Table 5.18: Full adder based (Chang) Scaler Scale 2 (2n) synthesis results

n Total Area (µm2) Critical Path Delay(ns) Dynamic Power(mW)

8 419.3385001 8.03 0.8705410

16 938.3209391 8.05 1.7581

32 2588.0806131 8.03 1.3466

64 4796.9495391 8.05 7.7639

128 8256.000000 8.05 15.9356

Table 5.19: Full adder based (Chang) scaler Scale 3 (2n + 1) synthesis results

n Total Area (µm2) Critical Path Delay(ns) Dynamic Power(mW)

8 529.2107291 8.03 0.8845161

16 1517.0663771 8.04 1.8815

32 3087.6980271 8.05 3.6661

64 6450.7495011 8.53 7.5083

128 12223.3692681 9.72 14.4292

5.5 Proposing a Scaler for Four-Moduli Set
(2n − 1, 22n, 2n + 1, 22n + 1) 103

Table 5.20: Full adder based (Chang) scaler all components synthesis results (2n −
1, 2n, 2n + 1)

n Total Area (µm2) Critical Path Delay(ns) Dynamic Power(mW)

8 2618.9877081 8.05 5.4435

16 5392.0567041 8.01 10.5801

32 7149.3175761 8.05 10.6893

64 13895.1950201 8.73 21.2366

128 26587.5102861 9.90 42.1940

The proposed scaler is designed using proposed modulo-2n + 1 adder. Tables 5.21

to 5.24 are the synthesis results of the four-moduli scaler for each modular channel.

Table 5.25 presents the synthesis results of the whole scaler.

Table 5.21: Four-moduli Scale 1 (2n − 1) synthesis results

n Total Area (µm2) Critical Path Delay (ns) Dynamic Power (mW)

4 182.386340 4.92 0.5258

8 362.885000 7.97 1.0638

16 814.599744 9.34 2.1900

32 2175.369701 7.77 4.5914

64 4148.985167 9.06 8.9315

128 7939.613555 9.34 17.7401

Table 5.22: Four-moduli Scale 2 (22n) synthesis results

n Total Area (µm2) Critical Path Delay (ns) Dynamic Power (mW)

4 1055.451209 9.29 1.6939

8 2220.734298 9.35 3.3027

16 4800.863481 9.36 6.7997

32 9713.336072 9.35 13.6283

64 18970.837927 9.32 26.8167

128 39299.516447 9.34 54.6831

104 Scaling in the Residue Number System

Table 5.23: Four-moduli Scale 3 (2n + 1) synthesis results

n Total Area (µm2) Critical Path Delay (ns) Dynamic Power (mW)

4 256.670060 7.38 0.5924

8 498.080921 9.35 1.1542

16 1341.058380 9.19 2.3970

32 3058.576897 9.34 4.9337

64 6261.598690 9.34 9.8388

128 13115.207755 9.32 19.9361

Table 5.24: Four-moduli Scale 4 (22n + 1) synthesis results

n Total Area (µm2) Critical Path Delay (ns) Dynamic Power (mW)

4 422.655319 9.18 0.8866

8 1218.871812 9.12 1.8186

16 2848.215605 9.34 3.6305

32 5862.153464 9.34 7.2182

64 12170.822912 9.41 14.5167

128 25819.124727 9.33 29.2811

Table 5.25: Four-moduli scaler all components (2n − 1, 2n + 1, 22n, 22n + 1) synthesis re-
sults

n Total Area (µm2) Critical Path Delay (ns) Dynamic Power (mW)

4 1718.873714 9.41 3.2619

8 3941.477415 9.42 6.5072

16 9210.649533 9.34 13.4007

32 14365.195717 9.34 18.0601

64 39372.413472 9.34 54.0209

128 79594.399595 9.34 108.1393

The proposed scaler is also designed without proposed modulo-2n + 1 adder. Syn-

thesis results of the proposed scaler for Scale 3, Scale 4 and overall system performance

are presented in Tables 5.26 to 5.28.

5.5 Proposing a Scaler for Four-Moduli Set
(2n − 1, 22n, 2n + 1, 22n + 1) 105

Table 5.26: Four-moduli Scale 3 (2n + 1) synthesis results

n Total Area (µm2) Critical Path Delay (ns) Dynamic Power (mW)

4 322.951070 9.34 0.6727

8 896.565629 9.34 1.3893

16 2525.772698 9.34 3.0362

32 5260.317860 9.34 6.2973

64 11465.669641 9.56 13.3694

128 21108.661270 11.51 25.1989

Table 5.27: Four-moduli Scale 4 (22n + 1) synthesis results

n Total Area (µm2) Critical Path Delay (ns) Dynamic Power (mW)

4 880.317850 9.33 1.0558

8 2426.100002 9.33 2.2047

16 5041.457724 9.35 4.4953

32 10729.681824 9.55 9.3871

64 19768.513598 11.31 17.8143

128 38369.412324 13.42 34.9114

Table 5.28: Four-moduli scaler all components (2n − 1, 2n + 1, 22n, 22n + 1) synthesis re-
sults

n Total Area (µm2) Critical Path Delay (ns) Dynamic Power (mW)

4 2193.937235 9.35 3.4981

8 5602.178795 9.35 7.1300

16 12369.907155 9.33 14.8756

32 25772.426149 9.64 30.1932

64 50123.309240 11.22 59.8731

128 97675.514330 13.46 118.3128

5.5.8 Design Summary

In recent years, RNS became very popular in extended use of special-purpose proces-

sors, and increase in hardware capability of complex operations. Optimising perfor-

mance of complex operations plays a significant role in the RNS-based system perfor-

mance. In this paper, a new efficient and low-cost scaler for a 6n bits dynamic range

for four moduli set (2n − 1, 2n + 1, 22n, 22n + 1) is presented. Proposed scaler is de-

signed based on the CRT algorithm, and is simplified to an efficient VLSI architecture.

106 Scaling in the Residue Number System

Proposing a scaler for larger dynamic ranges will ultimately overcome restrictions of

using RNS in applications with large dynamic range requirements.

5.6 Chapter Summary

Complexity of scaling and reverse-conversion overhead are the major challenges of RNS-

based systems. In this chapter, we have studied various scaling schemes, and proposed

a (2n − 1, 2n, 2n − 1) scaler based on modular reducers as a modification to Chang’s

FA-based scaler. For the same moduli set, a hybrid scaling scheme is proposed to avoid

overflow error in iterative computations in RNS-based systems. The main objective

was to simplify the implementation of current designs for greyscale image and video

processors. Furthermore, scaling for the four-moduli set (2n − 1, 22n, 2n + 1, 22n + 1)

has been proposed for the first time.

Publications pertaining to this chapter:

• Azadeh Safari and Yinan Kong. Simple, Fast and Synchronous Hybrid Scaling

Scheme for the 8-bit Moduli Set, Journal of Emerging Trends in Computing and

Information Sciences, Vol. 3, No. 6, June 2012.

• Azadeh Safari, James Nugent, and Yinan Kong. Novel Implementation of Full

Adder Based Scaling in Residue Number Systems, IEEE 56th International Mid-

west Symposium on Circuits and Systems (MWSCAS2013), The Ohio Union at

the Ohio State University, Columbus Ohio, August 4-7, 2013.

• Fatemeh Ghasemi, Azadeh Safari, Saied Sorouri, Amir Sabbagh Molahosseini,

Yinan Kong, An Efficient RNS Scaler for the Four-Moduli Set {2n − 1, 22n, 2n +

1, 22n + 1}, Submitted to Very Large Scale Integration (VLSI) Systems, IEEE

Transactions on.

6
Logic Design and FPGA Implementation of

RNS-Based DWT Digital Image Processor

In Chapter 2, the DWT image-compression algorithm and convolution-based filtering

have been selected based on simulation results, for the proposed digital image processor.

The biorthogonal wavelet family CDF97 was chosen in Chapter 3, because it is very

well-known for its compatibility of symmetry and exact reconstruction. Furthermore,

its symmetrical features and four vanishing moments make it suitable to distinguish a

smooth signal in gray scale images. The RNS has been studied in Chapter 4. It was

concluded that, for a dynamic range of no longer than 24 bits, the low-cost moduli set

(2n − 1, 2n, 2n + 1) results in the least delay. Subsequently, 25-bit operational blocks

was selected based on calculations for the proposed image processor.

In this chapter, logic design and FPGA implementations of the proposed RNS-based

DWT digital image processor is provided in detail. The proposed image processor is

examined against an binary image processor which is used as a set point to measure

the proposed processor’s improvements and costs.

The dynamic range of the selected moduli set for the proposed RNS-based image

processor is 24 bits, hence the binary processor uses 24-bit computational blocks to

be comparable with the proposed design. The proposed residue arithmetic units are

107

108
Logic Design and FPGA Implementation of RNS-Based DWT Digital

Image Processor

explained in details to illustrate the novelty of the proposed design.

6.1 Hierarchy of the Proposed Image Processor

Initially, an image processor is designed which uses binary arithmetics. Figure 6.1 shows

the hierarchy of the binary processor. The logic modules of the initial binary processor

are optimised to the RNS-based image processor for the goals of this thesis: increased

speed of operations, reduced hardware complexity, and decreased power consumption.

Figure 6.2 shows the hierarchy of the proposed RNS-based image processor. A modular

library is developed for modular calculations in the filter banks.

Initial Binary

Image Processor

CDF97 Extender Control Logic Extender CDF97

Data_RAM

Mux Demux

Data_RAM

Figure 6.1: Hierarchy of initial binary image processor

Proposed 2D RNS-based DWT

Image Processor

CDF97 Extender Control Logic Extender CDF97

Data_RAM

Demux

Data_RAM

Modular_lib Mux

Figure 6.2: Hierarchy of proposed RNS-based image processor

6.2 Logic Design of the Proposed Image Processor Using Xilinx Tools109

6.2 Logic Design of the Proposed Image Processor

Using Xilinx Tools

The logic modules of initial and the proposed image processor are designed using Xil-

inx ISE project navigator. Figure 6.3 shows the schematic of the proposed processor,

consisting of the RNS-based filter banks (CDF97) for row-wise and column-wise pro-

cessing, the transposition units with embedded symmetric extension (Extender), and

the main control unit.

Since binary conversion for the low-cost moduli set is resolved in the literature [88],

it is assumed that the proposed processor is already in the RNS domain, and that

binary conversion overheads are eliminated. In the following, details of the modules of

proposed processor are explained.

6.2.1 The RNS-Based Filter Banks

Two-dimensional image processing is performed using two separable one-dimensional

filters because using one-dimensional filters reduces computational complexity. A two-

dimensional filter is separable [140] if the filter kernel can be expressed as the product

of two vectors. Filtering a M ×N image with a P ×Q filter kernel requires (MNPQ)

multiplications and additions. With a separable filter kernel, 2D operations can be sim-

plified as a one-dimensional filtering in the horizontal direction and a one-dimensional

filtering in the vertical direction. Horizontal filtering requires (MNP) multiplications

and additions, and vertical filtering requires (MNQ) multiplications and additions,

which is a total of MN(P + Q). Hence, the separation of operations saves on the

number of clock cycles required to generate 2D filter coefficients.

6.2.1.1 Existing Design of RNS-Based Filter Banks

Existing RNS-based filter banks are designed using LUTs and modular adder trees.

Authors in [3] used LUTs with an 8-bit width and 256 entries for modular multiplica-

tions. Figure 6.4 shows a filter bank with a modular adder tree.

In designing the filter banks, floating-point coefficients require large hardware re-

sources to retain the precision and to implement the multipliers. The authors in [63]

have multiplied each coefficient by decimal number 256, and scaled by 256 after row-

wise filtering in the scaling module. The CDF97 filter coefficients in Table 3.2 are

110
Logic Design and FPGA Implementation of RNS-Based DWT Digital

Image Processor

11

22

33

44

55

66

77

88

A
A

B
B

C
C

D
D

c
o
n

tro
l_

lo
g

ic
c
lk

re
s
e

t

vb
lo

c
k
s
(3

:0
)

s
e

l

e
n

_
a

e
n

_
b

c
o

l_
e
n

fd
_
o

u
t

e
n

d
_
b

lo
c
k
s

e
n

d
_
lin

e

m
o
d

e
_
a
(1

:0
)

m
o
d

e
_
b

(1
:0

)

m
u
x

s
e

l

ip
0
(2

4
:0

)

ip
1
(2

4
:0

)

o
p

(2
4
:0

)

e
x
te

n
d

e
r

rwe
n

c
lk

re
s
e
t

d
in

(2
4
:0

)

m
o
d

e
(1

:0
)

d
o
u

t(2
4
:0

)

INV

C D
Q

F
D

INV

e
n
_
a

e
n
_
b

m
o
d

_
a

(1
:0

)

m
o

d
_

b
(1

:0
)

sel

c
o
l_

e
n

e
x
te

n
d

e
r

rwe
n

c
lk

re
s
e
t

d
in

(2
4
:0

)

m
o
d

e
(1

:0
)

d
o
u

t(2
4
:0

)

c
d
f9

7

e
n

c
lk

re
s
e
t

x(2
4

:0
)

y
(2

4
:0

)

c
d
f9

7

e
n

c
lk

re
s
e
t

x(2
4
:0

)
y
(2

4
:0

)

V
C

C

d
e

m
u

x
s
e
l

ip
(2

4
:0

)

o
p

0
(2

4
:0

)

o
p

1
(2

4
:0

)

vb
lo

c
k
s
(3

:0
)

e
n

d
_

b
lo

c
k
s

e
n

d
_

lin
e

fd
_

o
u

t

y(2
4

:0
)

ro
w

l(2
4

:0
)

c
o
l(2

4
:0

)

c
lk

re
s
e
t

x(2
4

:0
)

F
ig
u
r
e
6
.3

:
S

ch
em

atic
of

th
e

p
rop

osed
2D

R
N

S
-b

ased
D

W
T

d
igital

im
age

p
ro

cessor

6.2 Logic Design of the Proposed Image Processor Using Xilinx Tools111

++

+

× ×××

D DDD

D DDD

DD

Q QQQ

h0 h3h2
h1

Q

Q

Q Q Q

Q

y(n)

x(n)

Figure 6.4: A filter bank with a modular adder tree

Table 6.1: CDF97 filter coefficients multiplied by decimal number 256

k Lowpass Filter (hk) Highpass Filter (gk)

0 154 285

±1 68 -151

±2 -20 -14

±3 4 23

±4 6

multiplied by 256, and the new filter coefficients are shown in Table 6.1.

Existing modular filter banks use two modular adder trees (shown in Figure 6.4)

to generate the highpass and lowpass sequences. The lowpass modular adder tree is

composed of modular adders, while the highpass modular adder tree is composed of

modular adders and a modular subtractor. The subtraction operation is implemented

by augmenting the inputs of the adders with logic, controlled by a special signal, to

conditionally negate the second operand, based on a control signal activated. The

modular adders are clocked at half the frequency of the main clock.

The image pixels pass through delay registers at each clock cycle, and go through

“selecting multiplexers”. The multiplexers split the image pixels based on the odd and

even clock cycles. It selects the highpass filter at odd clock cycles, and the lowpass filter

at even clock cycles. Two out-of-phase clocks are used for the modular adders. The

112
Logic Design and FPGA Implementation of RNS-Based DWT Digital

Image Processor

Table 6.2: Dyadic fractions of CDF97 filter coefficients

k Lowpass Filter (hk) Highpass Filter (gk)

0 46/64 1

±1 16/64 -9/16

±2 -8/64 0

±3 0 1/16

±4 1/64

LUTs are used for modular multiplication of the image pixels and filter coefficients.

The downside of existing RNS-based filter banks is that the LUTs are the main

sources of power leakage, which is the major concern of standalone applications like

mobile phones and cameras. In addition, using LUT increases the hardware complexity

of RNS-based designs.

6.2.1.2 Proposed RNS-Based Filter Banks

To optimise the existing modular filter banks, multiplierless RNS-based filter banks

are proposed, where the floating-point filter coefficients are dyadic fractions (numbers

of the form k/2n, k, n ∈ Z) [141]. The dyadic fractions of the CDF97 filter coefficients

are shown in Table 6.2.

Using the dyadic fractions shown in Table 6.2, the lowpass and highpass filter coef-

ficients are calculated using (6.1) and (6.2). The VLSI architecture of a multiplierless

filter bank is shown in Figure 6.5.

LPF = (46w0 + 16w1 − 8w2 + 0w3 + w4)/64 (6.1)

HPF = (16w0 − 9w1 + w3)/16 (6.2)

It has nine shift registers at the input to load the input data (xi±n for n = 0, 1, ..., 4).

After loading all nine registers, they are added together using w0 − w4 adders in the

specific order of w0 = xi, and for n = 1, 2, 3, 4:

wn = (xi−n) + (xi+n) (6.3)

These adders are shared between the lowpass and highpass filters (LPF and HPF),

6.2 Logic Design of the Proposed Image Processor Using Xilinx Tools113

yli yhi

+ +

+

+ + + +

+ + +++++

xi xi-1 xi+1 xi-2 xi+2
xi-3 xi+3

xi-4 xi+4 xi xi-1 xi+1 xi-2 xi+2
xi-3 xi+3

h0 h4h3h2h1
g3g2g1g0

w4w1w0
w2w3

w3w2 w0
w1

Figure 6.5: Multiplierless implementation of DWT filter banks [2]

which saves on hardware complexity. The results from the register adders are then

shifted by 2, 4, 8 or 16 bits.

Multiplication by 2n is a simple shift, and this covers all the coefficients in Table

6.2 except 46 and 9. The solution is that total 46 is composed of (1 + 2 + 4 + 16)× 2,

and total 9 is composed of (8 + 1), shown in Figure 6.6, where the generating steps of

the LPF and HPF are provided.

Each operating block of the RNS-based processor is packed in a 25-bit binary-coded

number format. The first 9 bits (24 downto 16) are modulo-257 diminished-one data

with the MSB as the indication flag, followed by 8 bits (15 downto 8) of modulo-256

data and 8 bits (7 downto 0) of modulo-255 data. Figure 6.7 shows the block diagram

of the RNS-based filter banks in [3], and the proposed RNS-based filter banks in this

thesis.

To implement the RNS-based filter banks, modular multipliers and adders are used

instead of the binary blocks. In the following, details of the modular multipliers and

adders for the moduli set (255, 256, 257) are described.

114
Logic Design and FPGA Implementation of RNS-Based DWT Digital

Image Processor

Shift left by 3Shift left by 2Shift left by 1 Shift left by 4 Shift left by 2

Shift left by 1

w0 w4w1 w3w2

+ +

+

+ -

+

LPF

46w0+16w1-8w2+w4

23w0+8w1-4w2

23w0+8w1
23w0

7w0

3w0

2w0 4w0
16w0 8w1

4w2

HPF

16w0-9w1+w3

16w0+w3
9w1

-

+
+

x0 x1 x2 x3 x4 x5 x6 x7 x8x

Figure 6.6: Generating lowpass and highpass filter coefficients using shifts and additions

Modulo-mi multiplier Designing the modulo-256 multiplier is straightforward and

can be performed by selecting the least-significant eight bits of the binary data. How-

ever, to implement modulo-255 and -256 multipliers, a simple modification of the prod-

uct partitioning scheme is selected [4]. In this scheme, a modulo-m reduction of a

normal unsigned multiplication is considered. The mathematical representation of

the product partitioning idea is presented in (6.4). Figure 6.8 shows the partitioned-

operand modulo-m multiplier [4].

|AB|m = |2nU + L|m
= ||2nU |m + |L|m|m
= |cU + L|m

(6.4)

since |2n|m = c and L < m.

Optimised modulo-mi multiplier The modulo-mi multipliers are optimised by

using filter coefficients of the form 2n and the low-cost moduli set. Hence, in the first

multiplier in Figure 6.8, one of the operands is always of the form 2n. Therefore,

the first multiplier is replaced with a “shift left by n” in the optimised modulo-m

6.2 Logic Design of the Proposed Image Processor Using Xilinx Tools115

(a) (b)

Figure 6.7: Block diagram of (a) RNS-based filter banks based on the design in [3],
(b) Proposed RNS-based filter banks

Modulo-m

adder

A B

Multiplier

Multiplier

|AB|m

2n

n n

n

n n

AB
c

cU

Figure 6.8: Partitioned-operand modulo-m multiplier [4]

multiplier. In Figure 6.8, the middle multiplier is used to find cU . For modulo-255 and

-257 multiplication, c becomes ±1 and U is a few bits of MSB of the input. Therefore,

the middle multiplier is not required and can be replaced with bit rewiring which

impose no delay to the design. In other words, only a modular adder/subtractor is

needed to implement the multiplication. Modulo-257 multiplication requires additional

116
Logic Design and FPGA Implementation of RNS-Based DWT Digital

Image Processor

care for the cases when the result is 256 (9 bits). In this thesis, a diminished-one

representation of numbers is used for modulo-257 arithmetic. In the diminished-one

number system, each number (X) is represented as
∗
X = X − 1, except for zero.

∗
X is

an n-bit vector (the number part). Calculations including zero are done separately. X

is represented as az
∗
X, where az is a single bit, i.e. an additional bit (MSB) is used for

zero indication,where MSB = 0 means the data is not zero, and MSB = 1 indicates

the data is zero.

Figure 6.9 shows the optimised modulo-m multiplier.

Modulo-m

adder

x 2n

Shift left by n

Bit rewiring

|±x|m

2n

n n

n

n n

Figure 6.9: Optimised modulo-m multiplier

Modulo-mi adder The modular adders are required to add the results from modular

multiplication and generate the filter coefficients. They are designed based on the

general function of a modulo-mi adder:

|A+B| mod mi =

A+B ifA+B < m

A+B −m otherwise
(6.5)

In this thesis, a modulo-255 adder is implemented based on the basic modulo adder

in [4]. Basic modulo-m adder is shown in Figure 6.10. The proposed architecture is

6.2 Logic Design of the Proposed Image Processor Using Xilinx Tools117

modified to a low-cost high-performance modular adder as shown in Figure 6.11. The

modified modulo-255 adder uses inputs A and B concurrently to generate A + B and

A + B + 1 and makes a decision based on the carry out. If c1 = c2 = 0, the result is

s = A + B; otherwise the result is the eight LSBs of s = A + B + 1. To implement a

modulo-257 adder, the diminished-one parallel-prefix adder is employed [142].

Example: Let A = 236 and B = 117. The result of the first adder is S = A+B =

353 with carry out= 1. According to the above algorithm, the least-significant eight

bits of s = A + B + 1 give 98 which is consistent with the theoretical calculation of

|353|255 = 98.

Figure 6.10: Basic modulo-m adder where (m̃) denotes 2’s-complement of m [4]

A B

Adder

|A+B|m

Mux

1

C1

S1 S2

Adder
C2

Figure 6.11: Proposed modulo-m adder

118
Logic Design and FPGA Implementation of RNS-Based DWT Digital

Image Processor

6.2.2 Transposition Unit

To process a two-dimensional data set like an image, a one-dimensional wavelet trans-

form should be performed on both row and column directions. To this end, the pro-

posed image processor uses two RNS-based filter banks, one for row-wise processing

and the other for column-wise processing. The outputs from the row-wise filter have

to be transposed before going for column-wise processing; hence a transposition unit

is necessary between the two filter banks.

6.2.2.1 VLSI Architecture of a Scalable Matrix Transposer

Various matrix transposition designs have been reported in the literature [143–148].

Generally, the most efficient technique is the memory addressing technique, which

stores data in rows and accesses them in columns. Having said that, the authors in

[143] presented a modular and cascadable matrix transposer for real-time applications.

They chose not to use memory addressing techniques to avoid address-sequence compu-

tation and memory-access-time overheads. In this section, scalable transposition unit

is implemented, and is evaluated whether it is the best choice for the proposed image

processor. Figures 6.12 and 6.13 show the transposition unit using a modular scalable

transposer, and the structure of the modular scalable transposer, respectively.

Figure 6.12: Transposition unit

Figure 6.14 shows a serial-in, serial-out transposition unit. It consists of a scalable

matrix transposer [143], shift register, serial-in parallel-out (SI-PO) and parallel-in

serial-out (PI-SO) modules.

The transposition unit accepts input data serially, likewise provides transposed

output data serially. Hence, two SI-PO and PI-SO modules are necessary to connect

6.2 Logic Design of the Proposed Image Processor Using Xilinx Tools119

0,0

.

.

.

Control

Signal

0,1 0,7

1,0 1,1 1,7

7,0 7,77,1

.

.

.

.

.

.

...

...

...
.

.

.

...

x0 x1 x7

y0

y1

y7

8 88

8

8

8

Figure 6.13: Modular scalable transposer

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

A A

B B

C C

D D

SI_PO

clk

in_SIPO(7:0) o_1(7:0)

o_2(7:0)

o_3(7:0)

o_4(7:0)

o_5(7:0)

o_6(7:0)

o_7(7:0)

o_8(7:0)

PI_SO_con
Load

clk

D_1(7:0)

D_2(7:0)

D_3(7:0)

D_4(7:0)

D_5(7:0)

D_6(7:0)

D_7(7:0)

D_8(7:0)

Q(7:0)

reset

shift_reg
clk Q_9

Q_8

Q_7

Q_6

Q_4

Q_3

Q_2

Q_5

cont
clk q

A3(7:0)

A4(7:0)

A5(7:0)

A6(7:0)

A7(7:0)

A8(7:0)

A2(7:0)

Q_9

Q_8

Q_7

Q_6

Q_2

Q_3

Q(7:0)

clk

in_SI(7:0)

Q_5

reset

transposition

I1(7:0)

I2(7:0)

I3(7:0)

I4(7:0)

I5(7:0)

I6(7:0)

I7(7:0)

I8(7:0)

clk

data_valid

B8(7:0)

B7(7:0)

B6(7:0)

B5(7:0)

B4(7:0)

B3(7:0)

B2(7:0)

A2(7:0)

A3(7:0)

A4(7:0)

A5(7:0)

A6(7:0)

A7(7:0)

A8(7:0)

A1(7:0)

Figure 6.14: Serial-in, serial-out transposition unit

120
Logic Design and FPGA Implementation of RNS-Based DWT Digital

Image Processor

the scalable transposer with other modules of the image processor.

Figure 6.15 shows the transposer consisting of 16 COLTM4 (one column of the

Transposer Module (TM) with four) elements for transposing eight image pixels. Each

COLTM4 is composed of four DFM (D-type flip-flop with multiplexer) cells. In other

words, the transposer consists of 64 DFM cells connected as eight rows by eight columns

for transposing an 8× 8 matrix of data. The VLSI architectures of the COLTM4 and

DFM are shown in Figures 6.16 and 6.17, respectively.

At each clock cycle, a row of eight pixels is loaded into and out of the transposer.

Since the 1D DWT is providing the results of row computation in series, there is a

need for a parallel-to-series module as an interconnection module to convert the serial

data to eight-bit parallel data. It accepts eight image pixels at eight consecutive clock

cycles and provides the transposed output at the 9th clock cycle. This module generates

outputs at each clock cycle, however only the data that appear every eight clock cycles

are valid. For this purpose handshaking signals (data valid) and an eight-bit ring

counter are employed.

Two control signals determine the direction of row and column data movements.

When Mode A is active, register (i, j) is copied from register (i, j − 1), hence data

move horizontally from left to right. When Mode B is active, register (i, j) is copied

from register (i− 1, j) and data move upward.

To generate the Mode A and Mode B control signals, a counter is used which

counts the number of the Data valid signals. Initially the transposer is on Mode A to

accept the data, and when the counter reaches eight it will switch to Mode B.

Data valid indicates that the serial-to-parallel module has valid data on that clock

cycle. It is high only when data is valid, and during the rest of the clock cycles

Data valid is low. Every eight clock cycles, a set of valid data is available from the

serial-to-parallel module. Thus, a “valid” signal is sent to the modular scalable trans-

poser and valid data is loaded to the module. The procedure continues and the module

is loaded with eight rows of valid data while shifting them horizontally in Mode A. As

soon as the last row of valid data is loaded into the modular scalable transposer, it

switches to Mode B. In this mode, the data are shifted vertically and the transposed

rows are available through the outputs.

6.2 Logic Design of the Proposed Image Processor Using Xilinx Tools121
1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

A
A

B
B

C
C

D
D

C
O

LT
M

4
c
lk

I1
(7

:0
)

I2
(7

:0
)

I3
(7

:0
)

I4
(7

:0
)

I5
(7

:0
)

s
e
l

Q
1
(7

:0
)

Q
2
(7

:0
)

Q
3
(7

:0
)

Q
4
(7

:0
)

C
O

LT
M

4
c
lk

I1
(7

:0
)

I2
(7

:0
)

I3
(7

:0
)

I4
(7

:0
)

I5
(7

:0
)

s
e
l

Q
1
(7

:0
)

Q
2
(7

:0
)

Q
3
(7

:0
)

Q
4
(7

:0
)

C
O

LT
M

4
c
lk

I1
(7

:0
)

I2
(7

:0
)

I3
(7

:0
)

I4
(7

:0
)

I5
(7

:0
)

s
e
l

Q
1
(7

:0
)

Q
2
(7

:0
)

Q
3
(7

:0
)

Q
4
(7

:0
)

C
O

LT
M

4
c
lk

I1
(7

:0
)

I2
(7

:0
)

I3
(7

:0
)

I4
(7

:0
)

I5
(7

:0
)

s
e
l

Q
1
(7

:0
)

Q
2
(7

:0
)

Q
3
(7

:0
)

Q
4
(7

:0
)

C
O

LT
M

4
c
lk

I1
(7

:0
)

I2
(7

:0
)

I3
(7

:0
)

I4
(7

:0
)

I5
(7

:0
)

s
e
l

Q
1
(7

:0
)

Q
2
(7

:0
)

Q
3
(7

:0
)

Q
4
(7

:0
)

C
O

LT
M

4
c
lk

I1
(7

:0
)

I2
(7

:0
)

I3
(7

:0
)

I4
(7

:0
)

I5
(7

:0
)

s
e
l

Q
1
(7

:0
)

Q
2
(7

:0
)

Q
3
(7

:0
)

Q
4
(7

:0
)

C
O

L
T

M
4

c
lk

I1
(7

:0
)

I2
(7

:0
)

I3
(7

:0
)

I4
(7

:0
)

I5
(7

:0
)

s
e
l

Q
1
(7

:0
)

Q
2
(7

:0
)

Q
3
(7

:0
)

Q
4
(7

:0
)

C
O

LT
M

4
c
lk

I1
(7

:0
)

I2
(7

:0
)

I3
(7

:0
)

I4
(7

:0
)

I5
(7

:0
)

s
e
l

Q
1
(7

:0
)

Q
2
(7

:0
)

Q
3
(7

:0
)

Q
4
(7

:0
)

C
O

L
T

M
4

c
lk

I1
(7

:0
)

I2
(7

:0
)

I3
(7

:0
)

I4
(7

:0
)

I5
(7

:0
)

s
e
l

Q
1
(7

:0
)

Q
2
(7

:0
)

Q
3
(7

:0
)

Q
4
(7

:0
)

C
O

L
T

M
4

c
lk

I1
(7

:0
)

I2
(7

:0
)

I3
(7

:0
)

I4
(7

:0
)

I5
(7

:0
)

s
e
l

Q
1
(7

:0
)

Q
2
(7

:0
)

Q
3
(7

:0
)

Q
4
(7

:0
)

C
O

L
T

M
4

c
lk

I1
(7

:0
)

I2
(7

:0
)

I3
(7

:0
)

I4
(7

:0
)

I5
(7

:0
)

s
e
l

Q
1
(7

:0
)

Q
2
(7

:0
)

Q
3
(7

:0
)

Q
4
(7

:0
)

C
O

LT
M

4
c
lk

I1
(7

:0
)

I2
(7

:0
)

I3
(7

:0
)

I4
(7

:0
)

I5
(7

:0
)

s
e
l

Q
1
(7

:0
)

Q
2
(7

:0
)

Q
3
(7

:0
)

Q
4
(7

:0
)

C
O

L
T

M
4

c
lk

I1
(7

:0
)

I2
(7

:0
)

I3
(7

:0
)

I4
(7

:0
)

I5
(7

:0
)

s
e
l

Q
1
(7

:0
)

Q
2
(7

:0
)

Q
3
(7

:0
)

Q
4
(7

:0
)

C
O

L
T

M
4

c
lk

I1
(7

:0
)

I2
(7

:0
)

I3
(7

:0
)

I4
(7

:0
)

I5
(7

:0
)

s
e
l

Q
1
(7

:0
)

Q
2
(7

:0
)

Q
3
(7

:0
)

Q
4
(7

:0
)

C
O

L
T

M
4

c
lk

I1
(7

:0
)

I2
(7

:0
)

I3
(7

:0
)

I4
(7

:0
)

I5
(7

:0
)

s
e
l

Q
1
(7

:0
)

Q
2
(7

:0
)

Q
3
(7

:0
)

Q
4
(7

:0
)

C
O

LT
M

4
c
lk

I1
(7

:0
)

I2
(7

:0
)

I3
(7

:0
)

I4
(7

:0
)

I5
(7

:0
)

s
e
l

Q
1
(7

:0
)

Q
2
(7

:0
)

Q
3
(7

:0
)

Q
4
(7

:0
)

tr
a
n

s
_
m

o
d

c
lk

q

d
a
ta

_
va

lid

I5
(7

:0
)

I6
(7

:0
)

I7
(7

:0
)

I8
(7

:0
)

I8(7:0)

I7(7:0)

I6(7:0)

I5(7:0)

I4(7:0)

I3(7:0)

I2(7:0)

I1(7:0)

B7(7:0)

B6(7:0)

B5(7:0)

B4(7:0)

B3(7:0)

B2(7:0)

A
2

(7
:0

)

A
3

(7
:0

)

A
4

(7
:0

)

A
5

(7
:0

)

A
6

(7
:0

)

A
7

(7
:0

)

A
8

(7
:0

)

A
1

(7
:0

)

I3
(7

:0
)

I2
(7

:0
)

I1
(7

:0
)

I4
(7

:0
)

B8(7:0)
d

a
ta

_
va

lid cl
k

F
ig
u
r
e
6
.1
5
:

V
L

S
I

ar
ch

it
ec

tu
re

of
th

e
“t

ra
n

sp
os

it
io

n
”

in
F

ig
u

re
6.

14

122
Logic Design and FPGA Implementation of RNS-Based DWT Digital

Image Processor

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

A A

B B

C C

D D

DFM
A(7:0)

B(7:0)

sel

clk

Q(7:0)

DFM
A(7:0)

B(7:0)

sel

clk

Q(7:0)

DFM
A(7:0)

B(7:0)

sel

clk

Q(7:0)

DFM
A(7:0)

B(7:0)

sel

clk

Q(7:0)

clk

I1(7:0)

I2(7:0)

I3(7:0)

I4(7:0)

I5(7:0)

sel

Q1(7:0)

Q2(7:0)

Q3(7:0)

Q4(7:0)

Figure 6.16: VLSI architecture of COLTM4 in Figure 6.15

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

A A

B B

C C

D D

Mux_trans
sel

in_1(7:0)

in_2(7:0)

o(7:0)

flip_flop_trans
clk

D(7:0)

Q(7:0)

sel

clk Q(7:0)

B(7:0)

A(7:0)

Figure 6.17: VLSI architecture of DFM in Figure 6.16

6.2 Logic Design of the Proposed Image Processor Using Xilinx Tools123

6.2.2.2 Proposed Transposition Unit with Overlapped Sub-Blocks

The main drawback of the modular scalable transposer is its hardware cost, which is in-

compatible with area-efficient design. Hence, a memory-based transposition technique

is developed. Using this technique to process an image, however, requires huge mem-

ories, proportional to the image size. These huge memories generally require external

memory access, which fails to compress a high-quality image. One common solution

for this problem is to divide the entire image into sub-blocks and perform processing

on sub-blocks [149]. This method leads to block artifacts, which is undesirable in many

image-processing applications.

The proposed image processor in Figure 6.3 uses two Extenders (transposers em-

bedded with symmetric extension) to transpose lowpass and highpass filter coefficients.

They are serial-in serial-out modules, and provide the transposed and overlapped data

at the output only after completing write operations. Hence, two such units are re-

quired for continuous operation. While one transposition unit is accepting outputs

of row processing (writing mode) the other one is reading data and sending them for

column-wise filtering. After completing write/read cycles, they switch their modes.

While reading the next sub-block and saving it to the other transposition unit, the

previous transposition unit feeds transposed data to the column filter, and 2D coeffi-

cients are generated in the output of the column CDF97 filter.

Figure 6.18 shows the reading pattern of the transposition units. In this figure,

the image is processed by the overlapped sub-blocks to provide intermediate results.

This approach saves on the large memory requirements of image processing. In this

scheme, sub-blocks of size B × B are selected and the overlapping data is (L − 1)

filter taps, where (L) is the filter length and should be odd and greater than 1. In

this thesis design, the sub-block size is B = 64 and the filter length is L = 9. For

further explanation of how the overlapped scheme works, consider the row processing

of the image. In row-wise processing, (L − 1) coefficients are overlapped in each row

from the previous block. The filter bank loads the (L − 1) outputs of the previous

row and discards the first (L − 1) coefficients of the output. Hence, the results are

the continuation of the previous sub-block. Another advantage of this approach is

that discarding (L − 1) bits of data from each row of a (B × B) sub-block requires

only B × (B + L − 1) clock cycles and saves on computations. The transposition

units are also responsible for symmetric extension. While writing (B × B) sub-block

data into the transposition unit, it preserves the last B × (L− 1) written data, which

serve as the necessary overlapped data to the column-filter inputs. To avoid coefficient

124
Logic Design and FPGA Implementation of RNS-Based DWT Digital

Image Processor

Symmetrical extension Overlapped data

B

B

(L-1)

Figure 6.18: Reading pattern of image data in transposition units

expansion, the transposition unit is embedded with a symmetric extension (1, 1) of the

row-processing outputs. Different operating modes, i.e. with or without symmetrical

extension, are selected via mode inputs.

6.2.2.3 Modified Transposition Unit with Symmetric Extension (Exten-

der)

Coefficient expansion is a problem in DWT operation as it uses linear convolution.

One solution is to use circular convolution by periodic extension (wraparound) of in-

puts. But this generally introduces a jump, and hence boundary artifacts. Circular

convolution of the inputs results in large wavelet coefficients in the highpass filter at

the location of a jump or discontinuity. This large number of wavelet coefficients in

the highpass filter is undesirable, because it requires a large number of bits to store

the image accurately. Symmetric extension does not introduce a jump or boundary

artifacts, and eliminates the large wavelet coefficients caused by the border discontinu-

ities. The CDF97 wavelet used in this design involves symmetric bi-orthogonal filters

(or linear-phase filters), hence the periodic symmetric inputs give a periodic symmetric

output [27, 67, 150] and efficient symmetric extensions are the best choice. Table 6.3

shows various synthesis extensions for a signal x of length N0. The symmetric extension

6.2 Logic Design of the Proposed Image Processor Using Xilinx Tools125

E
(1,1)
s shown in Figure 6.19 is used, and to prevent the coefficient expansion redundant

samples have been removed from the output.

Table 6.3: Symmetric extensions of signal x with filter length of N0

Signal x Filter Sub-band Shift Synthesis

Length N0 h Center Center Dimension extension

Even 2v v N0/2 v E
(1,2)
s

2v + 1 v + 1/2 N0/2 v + 1 E
(2,1)
s

Odd 2v v (N0 + 1)/2 v E
(1,1)
s

2v + 1 v + 1/2 (N0 + 1)/2 v + 1 E
(2,2)
s

(a)

(b) (c)

(d) (e)

Figure 6.19: Symmetric extension: (a) Original data of length N , (b) Extension(1,1), (c)
Extension(1,2), (d) Extension(2,1), (e) Extension(2,2)

126
Logic Design and FPGA Implementation of RNS-Based DWT Digital

Image Processor

The Extenders read the first block of data with symmetrical extension. The row

coefficients are saved in one transposition unit, and moved to the right-hand block. In

each sub-block of the image, the data is read row-wise. The transposing and overlapping

are done with the help of s simple address-generation unit in the transposition unit.

In this thesis, the transposition unit with an embedded symmetric extension is called

an “Extender”.

6.2.3 Control Logic

The control logic is the main controller of the design. It controls the processor oper-

ations using input ports clk and reset, and the number of vertical blocks (vblocks) of

input image. The number of vertical blocks is determined by dividing the number of

rows of the input image by the number of rows of the sub-blocks. In this thesis, the size

of the sub-blocks is 64× 64. Therefore, the largest image size can be 1024× 1024 with

16 vertical blocks, as previously shown in Figure 6.18. The functions of the control unit

are to select the output and input of the row (sel) and column (col en) RNS-based

filter banks, and enable them using (en a and en b). It also controls the operating

mode and the read/write mode of each transposition unit (mode a and mode b).

The mode a and mode b signals are responsible for controlling the symmetric ex-

tension of the first and second transposition units, respectively. Mode = 01 represents

the initial symmetric extension where, the writing address starts at zero. In this mode,

there is no need for the previous output data, and overwriting is allowed. Hence, data

reading can be started with a specific address. This writing address can be deter-

mined by checking for column-counter overflow when changing from writing to reading

mode. Mode = 10 represents the symmetric extension at the end, and the address

is decremented after the counter crosses its limit. Hence, to calculate further points,

(L − 1)/2 clock cycles should be provided. The new address can be found by adding

(RAM size− Image width) to the current address.

For the initial symmetric extension, only (L − 1)/2 samples are extended and the

number of clock cycles required is the same as the number of clock cycles required

for sub-block processing with no extension. However, in the case of the symmetric

extension at the end, (L − 1) samples are extended. The remaining samples are re-

dundant, and should be discarded. It also requires (L − 1)/2 more clock cycles than

the initial extension mode. Hence, the controller must keep all other modules disabled

while providing additional clock cycles to the transposition units.

The control unit also provides other control signals such as end of line (end line),

6.3 Simulation and Functionality of the Proposed Processor 127

end of blocks (end blocks), and enable data outputs (fd out) to properly arrange the

output data. The control logic uses a main counter to enable the first transposition unit

and a counter that counts up to (RAM−size−1) state for sub-block image processing.

When the sub-block counter is equal to (RAM−size− 1), it resets to zero for the next

sub-block image. The size of the required RAM is calculated using

RAM size = Sub image size+ (L− 1) ∗ Image width

= 64× 64 + 8× 64 = 4608

where L is the number of filter taps (should be even), Image width is the sub-block

width (or height) and Sub image size is the product of the sub-image width and height.

6.3 Simulation and Functionality of the Proposed

Processor

The proposed image processor has been designed using Xilinx ISE project navigator. To

check whether the proposed image processor has accurate functionality, it is simulated

using the ModelSim simulator. Figure 6.20 shows the generated waveforms of the

proposed image processor.

The image data has been saved as a text file (image input.txt) and read to the test

bench. It has been processed by the proposed image processor and the results of the 2D

processing have been written back to the output text file (image output.txt) through

the test bench. Matlab is used to reconstruct the decomposed image. Figure 6.21

shows the compressed image after one-level 2D DWT processing using the proposed

image processor.

6.4 Top-Level and Hierarchy Synthesis Results

The proposed RNS-based image processor is synthesised using target device xc6vlx75t

for synthesis and FPGA implementation. Tables 6.4 and 6.5 show the selected FPGA

device and the parameter set of the design, respectively.

128
Logic Design and FPGA Implementation of RNS-Based DWT Digital

Image Processor

0
 n
s

5
0
0
 n
s

1
,0
0
0
 n
s

1
,5
0
0
 n
s

F
ig
u
r
e
6
.2
0
:

M
o
d

elS
im

sim
u

lation
of

p
rop

osed
R

N
S

-b
ased

im
age

p
ro

cessor

6.4 Top-Level and Hierarchy Synthesis Results 129

Figure 6.21: Camera-man image after one level of 2D processing using proposed image
processor

Table 6.4: Target FPGA device

Family Virtex6

Part xc6vlx75t

Package ff484

Temp Grade Commercial

Process Typical

Speed Grade -3

Characterisation Production,v1.3,2011-05-04

Table 6.5: Parameter set

Parameter Variable

Number of bits n = 25 bits

Image width IMAGE WIDTH = 64 bits

RAM size RAM SIZE = 4608 bits

Address line no of bits for RAM a = 13

Filter length L = 9

Symmetric extension start address SYM ADDR START = 512

Extended clocks EXTENDED CLOCKS = 256

130
Logic Design and FPGA Implementation of RNS-Based DWT Digital

Image Processor

6.4.1 Synthesising the Modular Adders

The modular adders work under a main clock signal of frequency 100 MHz. Timing

details of the modular adders are provided in Table 6.6 for timing constraint clock

period 10 ns and 50% duty cycle.

Table 6.6: Delay of the modular adder

MET Constraint Check Worst-case slack Delay

YES TS clk MINPERIOD 8.750 1.250 ns

“clk” 10 ns

HIGH 50%

The synthesis results show the best case available for modular adders is 1.250 ns.The

FPGA resource consumption and power consumption of the modular adders are shown

in Table 6.7.

Table 6.7: FPGA resource consumption and power consumption of modular adders

Channels Total Power Logic Power Signal Power FFs LUTs CARRY4s

(mW) (mW) (mW)

255 0.28 0.09 0.20 1 18 2

256 0.21 0.04 0.17 - 8 2

257 0.26 0.07 0.19 8 17 2

6.4.2 Synthesising the Modular Multipliers

The modular multipliers are designed to work under a main clock signal of frequency

100 MHz. Timing details for the modular multipliers are provided in Table 6.8 for

timing constraint clock period 10 ns and 50% duty cycle. The FPGA resource con-

sumption and power consumption of the modular multipliers are shown in Table 6.9.

The synthesis results show that the best case available of the modular multipliers

is the same as for the modular adders. This shows that the modular multipliers are

optimised, and the delay of the modular multipliers is reduced to the delay of the

modular adders.

6.4 Top-Level and Hierarchy Synthesis Results 131

Table 6.8: Delay of the modular multiplier

MET Constraint Check Worst-case slack Delay

YES TS clk MINPERIOD 8.750 1.250 ns

“clk” 10 ns

HIGH 50%

Table 6.9: FPGA resource consumption and power consumption of modular multipliers

Channels Total Power Logic Power Signal Power FFs LUTs

(mW) (mW) (mW)

255 0.14 0.03 0.11 8 10

256 0.09 0.00 0.09 8 3

257 0.10 0.00 0.10 8 3

6.4.3 Synthesising the Modular Filter Banks

The timing details for the modular channels are provided in Table 6.10 for timing

constraint clock period 10 ns and 50% duty cycle. It shows that timing constraints are

MET in all three modular channels. Modulo-256 channel is the fastest and requires

almost one third of the delay used by other two modular channels. Modulo-255 and

-257 channels have similar delays. Modulo-255 channel is slighly faster, though.

Table 6.10: Delay of modular channels

Channels n Constraint SETUP HOLD Delay

(ns) (ns) (ns)

255 8 MET 0.182 0.132 9.818

256 8 MET 6.665 0.116 3.335

257 9 MET 0.110 0.143 9.89

The power and FPGA resource consumption of modular channels are shown in Table

6.11. According to the table, similar pattern of timing analysis for modular channels

has accured in FPGA resource and power consumption. Modulo-256 channel requires

least amount of FPGA resources and dissipates least power than other two modular

channels. Modulo-255 and -257 channels require same amount of power, however, the

latter channel demands more FPGA resources.

132
Logic Design and FPGA Implementation of RNS-Based DWT Digital

Image Processor

Table 6.11: FPGA resource and power consumption of the modular channels

Channels Total Power Logic Power Signal Power FFs LUTs CARRY4s

(mW) (mW) (mW)

255 5.74 3.30 2.44 92 272 22

256 2.69 1.48 1.21 86 84 8

257 5.74 2.90 2.84 105 318 26

6.5 Initial Binary Processor

Initially, an image processor is designed which uses binary arithmetics. The initial

binary image processor is designed based on the LUT based RNS filter banks, modular

scalable transposers and 24-bit binary arithmetic blocks. Subsequently, the logic mod-

ules of the initial binary processor are optimised to the proposed RNS-based image

processor.

6.6 Performance Comparison of the Proposed RNS-

Based Image Processor with Existing Designs

In this section, the performance of the proposed image processor is compared with the

initial binary processor and similar existing implementations available in the literature.

6.6.1 Comparing Synthesis Results of Modular Scalable Trans-

poser and the Proposed Transposer (Extender)

Both the modular scalable transposer in Figure 6.14 and the proposed transposer 6.18

are synthesised. Table 6.12 shows delay of each transposer. The synthesis results show

that the proposed overlapped sub-block with symetric extension transposer, which is

memory based, is faster than the modular scalable transposer in [143].

Table 6.12: Delay of modular scalable and proposed transposers

Transposer n Constraint SETUP HOLD Delay

(ns) (ns) (ns)

Modular scalable 8 MET 6.057 0.001 3.943

Proposed 8 MET 6.274 0.061 3.726

6.6 Performance Comparison of the Proposed RNS-Based Image
Processor with Existing Designs 133

Comparisons of the power and FPGA resource consumption of the modular scalable

and the proposed transposer are shown in Table 6.13. It shows that the proposed

transposer uses only 34% of the total power used by modular scalable transposer. It

requires less amount of FPGA resources, too.

Table 6.13: FPGA resource consumption and power consumption of transposers

Transposer Total Power Logic Power Signal Power FFs LUTs BRAMs CARRY4s

(mW) (mW) (mW)

Modular scalable 15.38 8.06 7.32 615 611 - 8

Proposed 5.27 4.45 0.82 41 149 4 12

6.6.2 Comparison of the Initial and Proposed RNS-based CDF97

Filter Banks Designed Using Existing and Proposed Mod-

ules

The initial and proposed RNS-based filter banks are designed based on the proposed

multiplierless structure of filter banks (shown in Figure 6.6), and dyadic fraction filter

coefficients. The RNS-based filters, however, take advantage of optimised modular

adders and multipliers, and less bit-width in modular channels. Comparison of two set

of filters is in Table 6.14. It shows that the proposed RNS-based filters operate 22%

faster than the existing filter banks operated by binary arithmetic.

Table 6.14: Delay of CDF97 filter banks designed by existing and proposed RNS-based
modules

Filter Bank n Constraint SETUP HOLD Delay

(ns) (ns) (ns)

Initial 24 MET 0.082 0.081 9.918

Proposed RNS-based 25 MET 2.272 0.092 7.728

Comparison of the power and FPGA resource consumption of the initial and RNS-

based CDF97 filter banks in Table 6.15 shows that proposed RNS-based filter banks

use 43% less power and 7% less FPGA resources. This result shows that using RNS

arithmetic and optimising modular adders and multipliers have saved on FPGA sources.

134
Logic Design and FPGA Implementation of RNS-Based DWT Digital

Image Processor

Table 6.15: FPGA resource consumption and power consumption of modular filter banks

Filter Bank Total Power Logic Power Signal Power FFs LUTs CARRY4s

(mW) (mW) (mW)

Initial 13.99 7.76 6.22 285 654 56

Proposed RNS-based 7.96 5.11 2.85 316 502 104

6.6.3 Comparison of Initial and RNS-based Processors

A comparison of the timing constraints of the initial and proposed RNS-based image

processors is shown in Table 6.16. The initial processor uses multiplierless filter banks,

modular scalable transposers and 24-bit binary arithmetic blocks. The RNS-based

processor, however, uses proposed transposers (Extenders) and optimised filter banks.

The table shows that the proposed RNS-based processor requires 2.297ns less delay

to generate the 2D filter coefficients. In other words, the worst case available for the

proposed RNS-based processor is 23% less than for the initial processor. Based on

these results, it is confirmed that using a RNS-based processor increases the speed of

operations.

Table 6.16: Delay of binary and RNS-based image processors

Processor n Constraint SETUP HOLD Delay

(ns) (ns) (ns)

Initial 24 MET 0.103 0.036 9.897

Proposed RNS-Based 25 MET 2.400 0.075 7.600

From the FPGA resource consumption of the initial and proposed RNS-based image

processors in Table 6.17, it can be seen that hardware complexity of the proposed RNS-

based processor is similar to that of initial binary processor. Usually, it is expected to

get higher hardware complexity in RNS-based designs than designs operated on binary

arithmetics. This expectation is due to use of LUTs as modular multipliers, scalers and

transposers. Current results show that replacing LUTs with multiplierless filter banks,

optimising transposers and optimising the design to remove scalers have retained the

hardware complexity of proposed RNS-based processor similar to the initial processor.

6.7 Comparison of Initial and RNS-based Processors with Existing
Designs 135

Table 6.17: FPGA resource consumption and power consumption of processors

Processor Total Power Logic Power Signal Power FFs LUTs BRAMs CARRY4s

(mW) (mW) (mW)

Initial 62.59 45.31 17.28 695 1760 26 142

Proposed RNS-Based 52.29 39.57 12.71 753 1416 24 236

6.7 Comparison of Initial and RNS-based Proces-

sors with Existing Designs

Table 8.11 shows the parametric comparison of the proposed RNS-based image pro-

cessor with similar designs. Comparison of the number of multipliers shows that all

the proposed designs use multipliers except the initial binary-based processor, which

uses the proposed multiplier-less filter banks. They use simple left shift. Multiplier-

less filter banks are a highlight of the initial processor. They are replaced by modular

multipliers in the RNS-based filters. Nevertheless, proposed RNS-based processor uses

fewer multipliers than previous designs. The authors in [3] have used LUTs for modular

multiplications, which is not hardware efficient. In [151], [152] and [153] the number

of adders is twice the number of multipliers, which is not an efficient way of design-

ing filters. The filter banks are optimised to use 2 log2(N) + 1 adders, which is one

adder more than the number of multipliers in the RNS-based filters. The authors in [3]

have used seven times as many adders as multipliers, which introduces a big hardware

overhead to the design.

The proposed RNS-based processor needs N × (N +L−1) clock cycles to process a

64×64 image block (L is the filter length), while [3] needs N2 clock cycles to compress

4×4 image blocks. In other words, the proposed processor and the processor in [3] need

65535 and 4608 clock cycles to compress a 64 × 64 image block, respectively. Hence,

proposed processor is 90% faster to compress the same image block.

The existing designs have been selected to be either SI-SO or PI-PO, which affects

the speed (pixels per clock cycle). Proposed processor uses the SI-SO scheme, thus

it takes one image pixel per clock cycle and generates one compressed data per clock

cycle.

The filter banks in [3] have been clocked by a 25 MHz clock signal derived from

the main clock. The authors used two separate 180-degree out-of-phase clocks in the

lowpass and highpass filter banks. In the proposed design, the filter banks are clocked at

the same frequency as the main circuit. Thus, faster modular filter banks are developed

136
Logic Design and FPGA Implementation of RNS-Based DWT Digital

Image Processor

T
a
b
l
e
6
.1
8
:

C
o
m

p
a
rison

of
th

e
p

rop
osed

R
N

S
-b

ased
im

age
p

ro
cessor

w
ith

sim
ilar

d
esign

s
D

esign
Y

ear
N

o.
of

N
o.

of
T

ran
sform

C
y
cles/b

lo
ck

S
p

eed
S
p

eed
/

T
ran

sp
osition

I/o
F

req
u
en

cy

m
u
ltip

liers
ad

d
ers

(p
ix

els/cy
cles)

n
o.

of
M

u
ltip

lier
op

eration
M
H
z

G
on

g
[153]

2004
N

2N
D

C
T

N
2

1
1/N

N
o

P
I-P

O
125

L
iu

[3]
2004

L
U

T
7N

D
W

T
1

N
2

N
/A

Y
es

P
I-P

O
100

C
h
en

g[154]
2008

24
76

D
W

T
-

N
2/3

N
2/3

-
-

58.73

T
ian

[155]
2011

4×
T
h
rou

g
h
pu
tra

te
8×
T
h
rou

g
h
pu
tra

te
D

W
T

-
N

1/4
Y

es
P

I-P
O

63.52

B
asan

t[156]
2012

4.5N
8N

D
W

T
8N

−
-

Y
es

P
I-P

O
-

In
itial

2014
0

2
log

2 (N
)

+
1

D
W

T
N

(N
+
L
−

1)
1

-
Y

es
S
I-S

O
100

p
ro

cessor

P
rop

osed
R

N
S

2014
2

log
2 (N

)
2

log
2 (N

)
+

1
D

W
T

N
(N

+
L
−

1)
1

1/(2
log

2 (N
)

+
1)

Y
es

S
I-S

O
100

p
ro

cessor

6.8 FPGA Implementation of Proposed RNS-Based Image Processor 137

which work under the same frequency of 100 MHz as the main circuit.

6.8 FPGA Implementation of Proposed RNS-Based

Image Processor

The proposed RNS-based image processor is synthesised using Xilinx front-end tools.

To implement the design on the target device, a synthesised netlist and timing con-

straints are generated in the Netlist Constraints File (NCF) and User Constraints

File (UCF), and placed on back-end tools to finalise the processor design. Additional

placement constraints are also placed on the target device. At the end of the implemen-

tation process, a bit-stream file is generated. In the following, implementation process

including translate, map and place and route (P&R) is presented.

6.8.1 Translate

For checking the timing and logical-design specifications, the design is translated.

Translating involves I/O allocations and setting design constraints. The first con-

straint to place on the design is timing constraints. Timing constraints are created

with a clock period of 100 ns and a 50% duty cycle. Rising-edge constraints (exter-

nal setup time-offset in and data-valid duration) are setup to 100 ns. The System

Synchronous Single Data Rate (SDR) Rising Edge interface is selected to capture one

word of data per clock cycle using the rising clock edge. The Constraints Editor and

PlanAheadTM softwares are used to create the UCF file, assign I/O locations and set

placement constraints.

The clock in the System Synchronous interface is the same for both the transmitting

and receiving devices. To properly analyse this interface, rising-clock-edge registers

are constrained with an (OFFSET IN) constraint. The timing constraints for outputs

(OFFSET OUT) are set on output ports y(24) to y(0) and a timing group is created.

6.8.2 Map

The next step is to assign I/O locations using the PlanAhead software. This pin

planning is used for post-synthesis purposes. The I/O ports of the processor are listed

under scalar ports:

Input ports: x(24 : 0), clk, reset, vblocks(3 : 0)

Output ports: end blocks, end line, fd out, y(24 : 0)

138
Logic Design and FPGA Implementation of RNS-Based DWT Digital

Image Processor

During mapping, I/O signals are also placed to appropriate pin locations, and the

file is saved. The design is mapped to CLBs and IOBs. A set of reports is generated

containing warning and error messages from the translation process, information about

how the target device resources are allocated, references to trimmed logic, and device

utilisation.

After mapping the design, timing analysis is used to evaluate block delays. To

avoid timing violations, the post-map static timing report is reviewed and checked.

The report generates clk, offset in/out and group timing delays. The setup path, hold

path, and component switching limits of the clock path are set. The offset-out-path

report also reports the slowest and fastest paths in the design. The post-map static

timing reports minimum period 6.852ns, (Maximum frequency: 145.943MHz) and

minimum output required time after clock: 7.781ns.

6.8.3 Place and Route

There are two methods to Place and Route (P&R) a design: using timing constraints

and ignoring all timing constraints. In the first step of implementation (translate), the

timing constraints have been created, so the P&R using timing constraints is performed.

The P&R generates a set of reports containing device utilisation and delay summary.

The asynchronous delay report also lists all nets and the delays of all loads on the net.

After analysing the reports and optimising the timing and I/O assigning, a config-

uration bit stream of the design is generated for the selected target device. A config-

uration file is generated for a Xilinx Serial PROM using iMPACT. Figure 6.22 shows

the generation PROM file using iMPACT.

6.9 Chapter Summary

Image-processing applications demand faster VLSI architectures of image processors

with low power dissipation and less storage space. In this chapter, the logic design and

FPGA implementation of the proposed 2D RNS-based image processor are presented.

The proposed processor processes images of size 1024 × 1024. For any other size of

images a simple modification in parameter settings is required. Comparing the FPGA

synthesis results with the initial processor, the proposed processor is best designed

for applications with high number of operations on large numbers in short processing

time and less storage space concerns. Hence, it minimises the chip overhead and over-

comes the performance restrictions of particular applications. The proposed processor,

6.9 Chapter Summary 139

Figure 6.22: Generation of iMPACT PROM file

however, showed slightly more power consumption which is due to the use of modular

library. To moderate the power consumption and develop an efficient processor, multi-

power domain technique is used to achieve a power-performance enhancement in the

next chapter.

Publications pertaining to this chapter:

• Azadeh Safari and Yinan Kong. Four Tap Daubechies filter banks based on

RNS, International Symposium on Communications and Information Technolo-

gies (ISCIT) 2012, pp. 957-960, 2-5 Oct., Gold Coast, Australia.

• Azadeh Safari, Niras C V, and Yinan Kong. VLSI architecture of multiplier-

less DWT image processor, IEEE TENCON Spring 2013 Conference in Sydney

Australia, pp. 280-284, 17-19 April 2013.

• Niras C V, Azadeh Safari, and Yinan Kong. Overlapped block processing VLSI

architecture for separable 2D filters, National Conference on Emerging Trends in

VLSI and ES, January 2013.

• Yinan Kong, CV Niras, Azadeh Safari, A low-cost architecture for DWT filter

banks in RNS applications, Abstract accepted in International Symposium on

Integrated Circuits (ISIC 2014), Singapore, 10-12 December, 2014.

140
Logic Design and FPGA Implementation of RNS-Based DWT Digital

Image Processor

7
RTL-to-Gate Synthesis

In this thesis, three goals are specified in designing the proposed image processor:

Timing - fast operation

Power - low power consumption

Area - small area

The timing is considered as the highest priority in design goals, followed by power

consumption and the area requirement. In this chapter, the logic design of the proposed

image processor will be synthesised using Synopsys Design Compiler (DC) for the best

trade-off between timing, power and area.

7.1 Logic Synthesis

Logic synthesis is the process that creates a logic circuit from a circuit description.

Synthesising a design generates the gate-level netlist [5]. To synthesise the proposed

image processor, the RTL code, design constraints and environment attributes are

defined. The target technology library, symbol library and link library are set. A

search path for sources, scripts and libraries is created. Figure 7.1 shows the inputs

and outputs of logic synthesis using DC. In the following, input and output files of the

141

142 RTL-to-Gate Synthesis

RTL source code
(.vhd)

Design

Compiler

Synthesis reports
(.rpt, .log)

Gate level netlist
(.ddc, .db)

Design constraints
(.con, .sdc)

Design libraries

(target, link, symbol)

Design environment

Figure 7.1: Input and output files of Design Compiler for logic synthesis

DC are introduced.

7.1.1 The RTL Source

The RTL source-code format can be Verilog, VHDL or System verilog. In Chapter 6,

the VHDL source codes have been developed for the proposed image processor. In this

chapter, the Tcl (Tool command language) scripts to read the RTL source codes are

developed. It is noteworthy to mention that DC checks for validity of the code and the

syntax. Correct function of the code is a concern for the designer rather than for DC.

DC also checks whether the RTL source code and synthesised netlist are equivalent [5].

Functionality of the source code has been checked in Chapter 6.

7.1.2 Libraries

The target library should be set for optimisation. It contains various logic cells (for

example NAND gates) with various areas, drive strengths, power and area require-

ments. The link library, however, searches the memory to solve the references used

in hierarchies. This library will be used after analysing and elaborating the design

while linking the references. The DesignWare libraries set advanced architectures. In

addition, by setting DesignWare libraries, DC will leverage from more arithmetic and

data-path components with more complex architectures [157].

7.1 Logic Synthesis 143

Table 7.1: Setting up the search path, and target, link, symbol and work libraries

Search path /home/.../ref/models

/home/.../work

/home/.../src

/home/.../db

/

Target library saed90nm max hth.db

Link library * saed90nm max hth.db

Set symbol library saed90nm.sdb

Design Library WORK

There are two views available from foundaries: the front-end view and the back-

end view. The front-end view contains library information for synthesis, and place and

route. This view of libraries does not include technology files that are necessary for

tape-out. The back-end view contains tap-out information like GDSII, OASIS, LEF

and DEF file formats. DC uses the front-end view of libraries [158]. Table 7.1 shows

the search path necessary to find the source codes, library files and constraints file. It

also shows the and target, link, symbol and work libraries used in this thesis.

7.1.3 Design Constraints

As Figure 7.1 shows, design constraints are also set for logic synthesis. The design

constraints are classified as design-rule constraints and optimisation constraints. The

design-rule constraints are defined in the technology (target) library (see target li-

brary in Table 7.1), hence they are applied to the design when it is mapped to the

target library. These constraints must be met for correct function. The optimisation

constraints are design goals that are followed in the proposed design. Both these con-

straints are applied to the design; however, design rule constraints have priority over

optimisation constraints [5]. Figure 7.2 shows the classification of design constraints.

Table 7.2 shows the design constraints of the proposed processor. The clock period

is 100 ns. The proposed design has a clock port “clk”, hence it creates a real clock;

otherwise, it would set a virtual clock. The input delay 1.2 ns is set on the input ports.

This delay is related to clock port clk, and includes all the input ports except the

clk port itself. The output delay and clock uncertainty are set to 1.5 ns and 0.45 ns,

144 RTL-to-Gate Synthesis

Design

Constraints

Optimisation

Constraints

Design Rule

Constraints

Maximum:

Transition time

Fanout

Capacitance

Cell

Degradation

Area

Minimum

Capacitance

Speed

set_max_transition

set_max_fanout

set_max_capacitance

set_cell_degradation

set_min_capacitance

set_max_delay

set_min_delay

set_max_area

create_clock

set_input_delay

set_output_delay

Figure 7.2: Design constraints classified as design-rule constraints and design-
optimisation constraints [5]

Table 7.2: Design constraints

Attribute Constraint Port

System clock period 100 ns clk

Real clock period 100 ns clk

Virtual clock period 100 ns vclk

Input delay 1.2 ns vblocks[3] vblocks[2] vblocks[1] vblocks[0]

x[24] x[23] x[22] x[21] x[20] x[19]

x[18] x[17] x[16] x[15] x[14] x[13]

x[12] x[11] x[10] x[9] x[8] x[7] x[6]

x[5] x[4] x[3] x[2] x[1] x[0] reset

Output delay 1.5 ns all outputs

Clock uncertainty 0.45 ns clk

respectively.

7.1 Logic Synthesis 145

7.1.4 Design Environment

The environmental conditions of the design is specified prior to optimisation as they

have direct effect on the synthesis results. Design environment includes operating con-

ditions (temperature, voltage, and process variations), wire-load models, and interface

characteristics of design to model the system interface (input drives, input and output

loads, and fanout loads) [5]. Table 7.3 shows the design environment of choice. In the

following selected design environment attributes are discussed.

Table 7.3: Design environment

Attribute Constraint Port

Load on output ports 1.5 all outputs

Driving cell INVX0 all inputs

Infinite drive strength 0 clk

Operating condition WORST

Auto wire load selection True

7.1.4.1 Operating Conditions

The operating conditions are defined in the selected technology library. They are

placed on the design automatically when reading the design from technology libraries.

It includes the temperature, voltage, process and interconnect model of the oper-

ating environment [5]. Table 7.4 shows the operating conditions of target library

lib90nm max hth. The library has a WORST operating condition.

7.1.4.2 Wire-Load Model and Wire-Load Mode

The technology library provides information about the resistance, capacitance and area

of the wire-load model. This information, is needed to calculate the speed and wire

delays. There are three methods available to set up the wire-load model: user defined,

automatic selection, and technology library specification. A design with no wire-load

model selection provides an optimistic timing budget due to a lack of loading and

propagate information. There are three wire-load modes for hierarchical designs [5]:

- Top: The same wire-load model is used for all nets of the top-level design and all

subdesigns. All the wire load model constraints of the subdesigns are overwritten by

the top-level constraints.

146 RTL-to-Gate Synthesis

Table 7.4: Library saed90nm max hth report

Library type Technology, PG pin based

Time Unit 1 ns

Capacitive Load Unit 1.000000 ff

Pulling Resistance Unit 1 kΩ

Voltage Unit 1 V

Current Unit 1 µA

Dynamic Energy Unit 0.0010000 pJ

Leakage Power Unit 1 pW

Operating Conditions:

Operating Condition Name WORST

Library SAED90nm max hth

Process 1.00

Temperature 125.00◦C

Voltage 1.08

Interconnect Model Balanced tree

- Enclosed : A more accurate inter-block constraint is to use wire-load model of the

smallest design that fully encloses a net. This constraint is recommended for designs

with similar logical and physical hierarchies.

- Segmented : Nets crossing hierarchical boundaries form divided segments. The

segmented wire-load model uses the wire-load model of the design containing that

segment.

The auto wire-load selection is default in the selected technology library, and has

been set on the design.

7.1.4.3 Interface Characteristics

To accurately model the design’s interface with other peripherals, the characteristics

of input and output ports are defined.

7.1.4.4 Drive Characteristics of Input Ports and Driving Cell

The drive resistance and capacitance load of an input port determines the transition

time delay. Hence, the setting drive characteristics of an input port directly affects

the transition delay of that port. The assumption of infinite drive strength is set

7.1 Logic Synthesis 147

on input ports by default. This assumption is kept in design environment attributes

for heavily loaded driving ports (clock) to avoid buffering the net. By setting the

drive characteristics on ports that are driven by cells in the technology library, delay

calculators can accurately model the drive capability of an external driver. If a driving

cell has different arcs (two-input AND gate) with different transition times, the arc

with the worst case should be chosen as the driver. The worst-case arc is the slowest in

set up violations and the fastest in hold violations. The drive resistance of the top-level

design also can be set when the input port drive cannot be characterised with a cell in

technology library [5]. The driving cell INVX0 is chose for all inputs.

7.1.4.5 Load on Input and Output Ports

The typical loads on the input and output ports are selected to obtain the appropriate

cell drive strength of the output ports and also models the transition delay on the input

ports. The load unit set on the ports are same as the load unit in the target library [5].

7.1.4.6 Fanout load on Output Ports

Fanout is a capacitive parameter for CMOS. The selected technology library provides

information about the maximum fanout limit. The expected fanout load values on the

output ports plus the fanout load of cells connected to the output port driver should

be less than the maximum-fanout limit of the technology library [5]. The maximum

fanout limit of output port clk is set to 1000.

7.1.5 Synthesis Reports

The information whether the design meets or violates the constraints is generated in

synthesis reports. The most important information is in the following reports [5]:

The constraints report shows the results of checking design rules and optimisa-

tion goals.

The library report shows the content of the library including library units, cells,

operating conditions (PVT), and the wire-load models.

The timing report is in effect the most important information from design syn-

thesis. A design must meet the timing constraints in order to operate at the intended

clock rate. The timing report shows the path start/end point, path delays, data ar-

rival/required time, slack, path-group name and path-timing check type (set up or

hold).

148 RTL-to-Gate Synthesis

The power report provides the leakage power, internal power and multiple power

supplies information.

The area report can be generated for the top-level design, or hierarchy levels.

The latter one is a detailed area report and provides a hierarchical area distribution.

It gives the combinational (basic logic gates such as AND, OR, ...), non-combinational

(registers) and total area of a design. The total area also reports target library, library

directory, number of ports, nets, cells, combinational cells, sequential cells, macros,

buf/inv, and references. The most common area units are µm2 and the number of

equivalent gates. The library vendor decides on the area unit and provides it in the

library data sheet.

Gate density evaluation is either a raw estimation or accurate information. The

first approach is based on the two-gate density definition, and the accurate approach

is based on the P&R information. It is a design-dependent information.

The TSMC libraries use two gate-density definitions, based on the two-input NAND-

gate area, and the ratio of the combinational and sequential cell areas. In a typical

design, sequential cells are more common than combinatorial cells (20% to 40% of total

cells). The first gate-density definition uses the area of a ND2D0 cell (6.2208µm2) equiv-

alent to one gate for combinatorial cells. In standard-cell libraries, four transistors are

equivalent to a gate. The second gate-density definition uses the unit area as the com-

bination of 20 two-input NAND cells and one scan flip-flop (20∗ND2D0 + SDFD1 =

170.0352µm2). In the TSMC standard cell libraries, the layout of the sequential cells

is more compact than the layout of combinatorial cells; hence, typically the first defi-

nition (of raw estimation) is greater than the second definition [5]. The selected target

library provides the area report in µm2 units.

Synthesis reports of initial and RNS-based image processors are provided in Sec-

tion 7.3.

7.2 Synthesis Flow

To synthesise the logic design of image processors, the synthesis flow is followed as

shown in Figure 7.3. Initially, the search path, and the link, target, and working

libraries are set up. The saed90nm max hth.db technology library is selected for com-

piling the design.

7.2 Synthesis Flow 149

Develop HDL files

Specify libraries

Analyse

Elaborate

Link

Set design constraints

Compile

Generate time, area and power reports

Figure 7.3: DC synthesis flow used for logic synthesis of the image processor

7.2.1 Read Design

As the first step, the source codes are read using DC. The designs are read using

“Analyse and elaborate”. The first time that the design is analysed, the VHDL source

codes are checked for syntax errors. The errors are fixed and the design is analysed

again until all the errors are removed. The errors which are about the code format

are removed within the Synopsys tools; however, to change or check the functionality

of a source code the ISE design suite is used. This is because the Synopsys tools do

not check the functionality of the designs. The top-level design and subdesigns can be

analysed either one by one or all together. The latter one is fastre, hence it is used. The

VHDL source codes of the RNS-based image processor contain a library (modulo lib)

and a reference code (param) which defines the design parameters, they are analysed

first, otherwise analysis was not successful. After analysing the designs, HDL library

objects are generated and saved in the working directory.

The VHDL source code of the top-level design (RNS2D.vhd) and the hierarchies

(subdesigns) of the proposed image processor are analysed.

150 RTL-to-Gate Synthesis

analyze -library WORK -format vhdl {/home/.../src/dwt_param.vhd

/home/.../src/modulo_lib.vhd

.

.

.

/home/.../src/RNS2D.vhd}

The top-level design is then elaborated. It translates the top-level design to the

technology-independent library GTECH using output files from the analysing step. It

allocates generic values of the source code, and uses the symbol library to replace the

arithmetic operators in the source code. By elaboration out-of-date libraries are re-

analysed, and design references are resolved (link). Figure 7.4 shows the GTECH

schematic of the proposed RNS-based processor including the in/output ports and

subdesign modules.

elaborate RNS2D -architecture BEHAVIORAL -library WORK -update

link

Once the design is analysed and elaborated, they can be skipped, and structural or

gate-level source codes are loaded to memory by read in next time uses. Reading source

codes integrates analyse and elaborate, and does not generate the intermediate files.

Hence, linking a design and resolving the references are done separately [5]. Reading

can be done individually or for a list of designs. A Tcl file to read the design is used

for every time use.

7.2.2 Compile Strategies

Different compile strategies suit different hierarchy levels and components of a design.

Three compile strategies can be considered [5]:

-Top-Down Compile

The top-down compile strategy is a push-button approach for small designs, that

compiles the top-level design and all sub-designs at the same time. The top-down

strategy is useful for small designs (less than 100k gates) with no memory limitations.

Otherwise, it takes too long to compile all levels of hierarchy simultaneously.

-Bottom-Up Compile

The Bottom-up compile strategy compiles all the sub-designs of a medium to large

design, separately. The compile starts from the bottom of the hierarchy and compiles

up through the hierarchy levels to the top-level design. The top-level design is the last

design compiled. This strategy requires less memory and takes less running time.

7.2 Synthesis Flow 151

X
L
X
I_
1
0

X
L
X
I_
9

X
L
X
I_
8

X
L
X
I_
1

X
L
X
I_
4

X
L
X
I_
4
3

X
L
X
I_
4
4

X
L
X
I_
5

X
L
X
I_
6

X
L
X
I_
7

in
v
e
rt

in
v
e
rt

fl
ip
_f
lo
p

co
n
tr
o
l_
lo
g
ic

m
u
x

cd
f9
7

cd
f9
7

d
e
m
u
x

e
x
te
n
d
e
r

e
x
te
n
d
e
r

U
1

In
p
u
t

In
p
u
t

D cl
k

cl
k

re
se
t

v
b
lo
ck
s[
3
:0
]

se
l

ip
0
[2
4
:0
]

ip
1
[2
4
:0
]

e
n

cl
k

re
se
t

x
[2
4
:0
]

e
n

cl
k

re
se
t

x
[2
4
:0
]

se
l

ip
[2
4
:0
]

rw e
n

cl
k

re
se
t

d
in
[2
4
:0
]

m
o
d
e
[1
:0
]

rw e
n

cl
k

re
se
t

d
in
[2
4
:0
]

m
o
d
e
[1
:0
]

O
u
tp
u
t

O
u
tp
u
t

Q

se
l

e
n
_a

e
n
_b

co
l_
e
n

fd
_o
u
t

e
n
d
_b
lo
ck
s

e
n
d
_l
in
e

m
o
d
e
_a
[1
:0
]

m
o
d
e
_b
[1
:0
]

o
p
[2
4
:0
]

y[
2
4
:0
]

y[
2
4
:0
]

o
p
0
[2
4
:0
]

o
p
1
[2
4
:0
]

d
o
u
t[
2
4
:0
]

d
o
u
t[
2
4
:0
]

X
L
X
N
_4

X
L
X
N
_6

XLXN_3

co
l_
e
n

e
n
_b

e
n
_a

se
l

fd
_o
u
t

e
n
d
_l
in
e

e
n
d
_b
lo
ck
s

re
se
t

cl
k

*L
o
g
ic
0
*

XLXN_143[24:0]

XLXN_148[24:0]

co
l[
2
4
:0
]

m
o
d
_a
[1
:0
]

m
o
d
_b
[1
:0
]

ro
w
l[
2
4
:0
]

v
b
lo
ck
s[
3
:0
]

x
[2
4
:0
]

cl
k

re
se
t

v
b
lo
ck
s[
3
:0
]

x
[2
4
:0
]

e
n
d
_b
lo
ck
s

e
n
d
_l
in
e

fd
_o
u
t

y[
2
4
:0
]

F
ig
u
r
e
7
.4

:
S

ch
em

at
ic

of
G

T
E

C
H

(t
ec

h
n

ol
og

y
in

d
ep

en
d

en
t)

of
th

e
p

ro
p

os
ed

2D
R

N
S

-b
as

ed
D

W
T

d
ig

it
al

im
ag

e
p

ro
ce

ss
or

152 RTL-to-Gate Synthesis

-Mixed Compile

The mixed compile strategy takes advantage of both the top-down and bottom-up

strategies. The sub-designs use either of the strategies, whichever is most appropriate.

The small hierarchies of blocks use the top-down compile strategy. The bottom-up

compile strategy is used for larger hierarchies of blocks. If a block has no hierarchy,

the time budgets and specifications of the first level of hierarchy will be applied to it.

The top-down compile strategy is used to compile the image processors. This

strategy is selected because it is straight forward, and suitable for designs with small

hierarchy levels.

The proposed design contains multiple-referenced subdesigns (CDF97, EXTENDER,

invert). To compile them, there are three compiling methods [5]:

- The compile-once-don’t-touch method: This method compiles the reference

design and preserves it while the remaining designs are compiled. First the subdesign’s

instance with the worst-case environment is characterised and the referenced subdesign

is compiled. Using the set-don’t-touch method will preserve all instances referenced to

a compiled subdesign. It requires less memory and less running time than the uniquify

method below.

- The ungroup method: This method goes one step further than the uniquify

method by removing the user-defined design hierarchy. It creates unique copies of the

subdesign and also removes the hierarchy. This method provides the best synthesis

results but cannot be applied to designs with the don’t-touch attribute. This method

requires less compiling time than the compile-once-don’t-touch method. This method

is not used in this thesis to retain the hierarchy levels of the design.

- The uniquify method: In this method the design compiler copies the original

subdesign and creates new instances by renaming them uniquely for multiple uses,

and then removes the original design from memory. The new naming is based on the

original name and can be used when there are no memory or compile-time restrictions.

The compile-once-don’t-touch and uniquify methods are used for multiple-referenced

subdesigns while comiling the design. The design is compiled with a global volt-

age (1.08 V), and saved as RNS2D MAPPED.ddc. Another important file to save is

RNS2D.sdc, which is the design intent, including the timing, power and area con-

straints. This file is used in the next chapter for the physical implementation.

7.3 Comparison of Proposed RNS-based Image Processor with Initial
Binary Processor 153

7.3 Comparison of Proposed RNS-based Image Pro-

cessor with Initial Binary Processor

In this section, the synthesis results of the initial binary processor and the proposed

RNS-based processor from previous chapter are compared. For this purpose, synthe-

sis reports are generated to evaluate designs’ performance in terms of timing, area

and power consumption. The timing report is the most important information from

design synthesis. It contains the path start/end point, delays for the paths, data ar-

rival/required time, slack, path group name and path timing check type (SETUP or

HOLD). The power and area hierarchy of the initial binary processor and the proposed

RNS-based processor are generated for full path, max delay and max paths. The power

consumption of each cell as well as the area requirement is provided in Tables 7.5 to

7.8. The total area is the sum of the total cell area and the net-interconnect area. The

total cell area is the combinational area, buf/inv area and non-combinational area. The

net-interconnect area is the area of the wires that connect cells.

In some libraries, the area information for the wire-load models are not included.

So the net-interconnect and total area are left undefined. It appears as: “wire load has

zero net area” at the end of the area report

Table 7.5: Power hierarchy of all the references of the initial binary image processor

Cell Switch power Internal power Leakage power Total power %

cdf97 row 0.582 40.577 2.32e+08 272.684 0.2

Extender 0 0.197 1.93e+04 6.17e+10 8.10e+04 49.8

Demux 0.116 3.323 4.84e+07 51.860 0.0

CDF97 col 5.301 52.749 2.40e+08 297.874 0.2

Control logic 0.226 6.719 2.04e+07 27.386 0.0

Mux 4.58e-04 5.87e-03 3.57e+06 3.577 0.0

Extender 1 151.164 1.94e+04 6.15e+10 8.10e+04 49.9

OR gate 0.000 0.000 1.18e+05 0.118 0.0

Invert 0 6.65e-05 1.38e-05 4.75e+04 4.76e-02 0.0

Invert 1 5.15e-06 5.17e-04 1.65e+06 1.649 0.0

Flip flop 0.000 0.151 3.47e+05 0.498 0.0

Total 159.338 3.88e+04 1.24e+11 1.63e+05 100.0

154 RTL-to-Gate Synthesis

Table 7.6: Area hierarchy of all the references of the initial binary image processor

Cell Absolute total Combinational Non-combinational %

cdf97 row 26568.8063 4398.7967 8451.0721 0.2

Extender 0 5945173.3539 3250.4832 1322.4960 49.9

Demux 1225.7280 1225.7280 0.0000 0.0

CDF97 col 26568.8063 4398.7967 8451.0721 0.2

Control logic 2278.1952 804.5568 1281.9456 0.0

Mux 355.7376 355.7376 0.0000 0.0

Extender 1 5911585.6484 3442.1760 1322.4960 49.6

OR gate 7.3728 7.3728 0.0000 0.0

Invert 0 5.5296 5.5296 0.0000 0.0

Invert 1 31.3344 31.3344 0.0000 0.0

Flip flop 31.3344 0.0000 31.3344 0.0

Total 11913867.7894 5922577.5968 5991290.1926 100.0

Table 7.7: Power hierarchy of all the references of the RNS image processor

Cell Switch power Internal power Leakage power Total power %

cdf97 row 0.548 38.870 2.41e+08 280.230 0.2

Extender 0 3.740 1.86e+04 7.35e+10 9.21e+04 49.8

Demux 5.09e-04 2.69e-04 3.00e+06 3.000 0.0

CDF97 col 0.581 38.957 2.45e+08 284.512 0.2

Control logic 0.226 6.718 2.04e+07 27.336 0.0

Mux 4.57e-04 2.93e-03 3.44e+06 3.441 0.0

Extender 1 0.400 1.86e+04 7.38e+10 9.23e+04 49.9

OR gate 0.000 4.021 5.51e+06 9.530 0.0

Invert 0 6.62e-06 5.15e-04 1.65e+06 1.649 0.0

Invert 1 6.65e-05 1.37e-05 4.75e+04 4.76e-02 0.0

Flip flop 0.000 0.154 2.74e+05 0.428 0.0

Total 7.798 3.72e+04 1.48e+11 1.85e+05 100.0

7.3 Comparison of Proposed RNS-based Image Processor with Initial
Binary Processor 155

Table 7.8: Area hierarchy of all the references of the RNS image processor

Cell Absolute total Combinational Non-combinational %

cdf97 row 26543.9232 8588.3903 8096.2561 0.2

Extender 0 5919492.9615 30.4128 0.0000 49.8

Demux 442.3680 442.3680 0.0000 0.0

CDF97 col 26848.0512 8892.5183 8096.2561 0.2

Control logic 2272.6656 799.0272 1281.9456 0.0

Mux 343.7568 343.7568 0.0000 0.0

Extender 1 5919267.1696 31.3344 0.0000 49.8

OR gate 622.0800 0.0000 622.0800 0.0

Invert 0 31.3344 31.3344 0.0000 0.0

Invert 1 5.5296 5.5296 0.0000 0.0

Flip flop 32.2560 0.0000 32.2560 0.0

Total 11897814.4158 6129936.6493 5767877.7666 100.0

Table 7.9: Critical path delay (In/out put: 25 bits, Filter coefficients: 6 bits, Operating
voltage: 1.08 V)

Initial binary processor Proposed RNS-based processor

Timing constraints (ns) 29 27.12

Slack MET MET

The performance of the proposed RNS-based processor is compared with the initial

binary processor. For consistency and accuracy of performance comparison, similar

operating conditions are chosen for compiling designs. Table 7.9 shows the critical

path delay of the initial binary and the RNS-based processor for 25-bit in/output and

6-bit filter coefficients when the global operating voltage is 1.08 V . The results indicate

that the RNS-based processor is 34.6% faster than the initial binary processor and has

met the timing constraints.

The area reports are summarised in Table 7.10. It shows that there is a small

improvement in the total cell area of the RNS-based design. The results confirm that

the new architecture of the proposed processor has reduced the hardware complexity.

The dynamic power, leakage power and total power consumption of the top-level

design are presented in Table 7.11. It shows that there is more leakage power and hence

more total power for the RNS-based design. It is interesting to note that, although

156 RTL-to-Gate Synthesis

Table 7.10: Area comparison of the binary and RNS designs (In/out put: 25 bits, Filter
coefficients: 6 bits, Operating voltage: 1.08 V)

Area (µm2) Initial binary processor Proposed RNS-based processor

Combinational area 5922577 6129936

Buff/Inv area 1158010 1411490

Non-combinational area 5991290 5767877

Net interconnect area 3677441 3172405

Total cell area 11913867 11897814

Total area 15591308 15070219

Table 7.11: Top-level design power analysis of initial binary and RNS processors (In/out
put: 25 bits, Filter coefficients: 6 bits, operating voltage: 1.08V)

Power (mW) Initial binary processor Proposed RNS-based processor

Internal power 38.8487 37.2254

Net switching power 162.9202 6.1124

Total dynamic power 39.0117 37.2315

Leakage power 123.5424 147.70

Total power 1.6248e+02 1.8507e+02

the proposed processor saves on delay and area, it demands more power for the higher

speed and superior functionality than the initial binary processor.

Synthesis results of the proposed image processor shows a massive leakage power in

the memory modules of the extenders. Hence, reducing the power consumption of the

memory modules can contribute to a better design. In other words, circuit-level power

optimisation should be applied to the memory modules to achieve the maximum power

reduction. Scripts for synthesising initial binary and the proposed RNS-based image

processors using Synopsys DC are provided in Appendix C.

7.4 Optimising Power Consumption of Proposed Im-

age Processor

In this section, power management trends and developments, and the challenges of low-

power design are studied. The physics of sources of power consumption is discussed

and low-power-design (LPD) strategies are considered.

7.4 Optimising Power Consumption of Proposed Image Processor 157

7.4.1 Components of Power Dissipation

Dynamic and static (leakage) power are two sources of power consumption. The dy-

namic power is generated by current flow when the device is operating and signals are

changing. It is composed of the switching current and the short-circuit current. In

CMOS transistors, the switching current is used to charge and discharge the output

capacitance on a gate. The short-circuit current is consumed when both the NMOS

and PMOS transistors are on during switching of the cell [9].

The static (leakage) power is used for powering up the device with no change in

signals. The main source of static power consumption in CMOS devices is leakage

power. In new technologies, the leakage power tends to be greater than the dynamic

power; hence, power-consumption management should receive extra care. Equation 7.1

shows the power consumption components [9]:

Ptotal = Pdynamic + Pstatic (7.1)

The dynamic (7.2) and static (7.3) power consumption in a combinational circuit

is determined using leakage power (nW/gate), working frequency (MHz), switching

activity (F) and gate count of combinational logic (Scomb).

Pdynamic = Pcomb × F × Scomb ×Ncomb (7.2)

Pstatic = Pleakage ×Ncomb (7.3)

As the proposed image processor suffers from large leakage power in Extenders,

sources of the leakage power are considered.

7.4.2 Leakage Power Sources

Three major leakage-current sources are the subthreshold leakage, the gate leakage,

and the reverse-biased-junction leakage.

- The subthreshold leakage

The subthreshold leakage occurs when the MOSFET is operating in the subthresh-

old region. In this region, the CMOS gate is not turned off completely. In this case, the

magnitude of the threshold voltage is greater than the magnitude of the gate-to-source

voltage. Equation 7.4 shows the subthreshold current (Isub), which is exponentially

158 RTL-to-Gate Synthesis

dependent on (Vth):

Isub = Ioe
Vgs−Vth

nVT

(
1− e

−Vds
VT

)
(7.4)

where Io =
Wµ0CoxV 2

T e
1.8

L
, VT = KT

q
is the thermal voltage, V gs is gate-source voltage,

V ds is the drain to source voltage, V th is threshold voltage, n is a function of the

device fabrication process between [1.0, 2.5], µ is the carrier mobility, Cox is the gate

capacitance, and W and L are the dimensions of the transistor [159].

- The gate leakage

The gate leakage occurs when electrons directly flow by tunneling through the gate

oxide. The advanced processes with small oxide thickness, oxide field and voltage drop

across the oxide are particularly vulnerable for gate leakage.

- The reverse-biased-junction leakage

The reverse-biased (drain-substrate and source-substrate) junction leakage occurs

when the high electric field across a reverse-biased p-n junction causes significant cur-

rent to flow through the junction (band-to-band-tunnelling). This happens due to

tunnelling of electrons from the valence band of the p-region to the conduction band

of the n-region.

I = Io

(
e
−qV
kT − 1

)
(7.5)

where I is p-n junction current, Io is the reverse leakage current, and V is the reverse

junction voltage. As (7.5) shows, the junction-tunneling current depends exponentially

on the junction doping and the reverse bias across the junction. In a MOSFET, when

the drain-substrate and/or the source-substrate junction is reverse biased at a potential

higher than that of the substrate, a significant current flows through the junctions. In

nano-technology devices, this current may increase the total leakage current due to

higher doping at the junctions [9].

As nano-technology library is used to synthesis the proposed processor, all three

leakage sources are significant. Hence total leakage power has increased significantly.

The importance of each leakage current source changes with technology node. For

the 90nm technology library in this thesis, gate leakage current is concerned. For

technologies below 90nm, all three leakage sources are important [9].

7.4 Optimising Power Consumption of Proposed Image Processor 159

7.4.3 Low-Power Design Techniques

There are various low-power design (LPD) approaches to reduce total and leakage

power, from the early steps of circuit design to the very last steps of system implemen-

tation. The most common LPD methods are the clock-gating, power-gating, multi-

threshold and multi-voltage approaches [9]. These techniques are introduced in the

following, and the proper LPD method is investigated for lowering the leakage power.

- Clock gating:

Each IC or chip has a large number of buffer cells to distribute the clock signal

equally to the chip. These chips usually operate at very high frequencies, hence buffer

cells are switching very fast and consuming large switching power. Therefore, more

than 50% of the dynamic power dissipates in the clock buffers. Besides, ICs have

different activity patterns in different modules.

The clock gating technique eliminates clock distribution to regions that are not

active (operating) at certain times, and saves a considerable amount of dynamic power.

There are different clock gating approaches: general, multi-stage and hierarchical.

In the general clock-gating approach a special circuit called a “clock gating cell”

is used with clock signals that drive a large number of buffer cells. It prevents clock

distribution through a register bank when it is not necessary and the data is not

enabled. The clock gating should be done without changing the logic function of the

circuit. The clock gating cell contains an AND gate and a latch. The AND gate

disables the lock signal and the latch synchronises the enable and clock signals.

Clock gating can be applied not only near register banks but also in larger parts.

In this approach, the clock is gated globally for the blocks that are not operating at

a given time. These blocks should not be hierarchically related. Another approach is

using clock gating for hierarchical levels. This method is useful for hierarchy levels that

share a common enable and fall in the same clock group. It also reduces the number

of clock-gating cells automatically.

- Multi-threshold:

In the multi-threshold technique, multi-threshold (3-5) transistors are used in the

same design. The low-threshold-voltage transistors are faster than high-threshold-

voltage transistors. They have more sub-threshold leakage current, though. The low-

threshold voltage (LVT) cells are used in critical paths (delay on these paths should

be the smallest, hence they consume more power). The rest of the design uses high-

threshold voltage (HVT) cells to minimise leakage power and reduce the delay [160].

- Power gating:

The power-gating technique uses special transistors (switches) called “sleep control

160 RTL-to-Gate Synthesis

transistors” and turns off the power supply of modules that are not operating at a

given time. The sleep transistors are selected from high-threshold-voltage transistors

to minimise the leakage power. They are placed between the permanent power supply

and the main circuit power supply.

- Multi-voltage:

The muti-voltage technique is also based on the different activity profiles of the

circuit. In the multi-voltage technique, the internal logic of the chip is partitioned into

multiple voltage regions (power domains), each with its own supply. The blocks with

a low performance requirement receive less voltage and save power. In contrast, the

blocks with a high performance requirement receive high voltage and dissipate some

power. Hence, a trade-off between power and performance is necessary for different

blocks.

The idea behind the multi-voltage technique is that the instantaneous power is the

power drawn from a voltage source supplied through the VDD port (7.6).

P (t) = iDD(t)VDD (7.6)

If the block’s voltage always remains constant, the method is called “static multi-

voltage”. If the voltage and frequency are scaled based on a block’s performance, the

method is called “dynamic voltage and frequency scaling”. This is due to the scaling

of frequency to maintain the block functionality after scaling the voltage. The voltage

and frequency of blocks can be controlled based on on-chip conditions and performance

requirements using a voltage regulator. This approach is called “adaptive voltage and

frequency scaling”. The multi-voltage technique can be combined with the power-

gating method using sleeping-control transistors, and applied to non-critical functional

blocks [9]. Table 7.12 shows a comparison of common LPD techniques.

Table 7.12: Comparison of common LPD methods [9]
Technique Power benefit Timing penalty Area penalty Impact on

Architecture Design Verification P&R

Multi Vth Medium Little Little Low Low None Low

Clock gating Medium Little Little Low Low None Low

Multi voltage Large Medium Little High Medium Low Medium

According to Table 7.12, the multi-voltage method shows the largest power benefit.

It is a simple and efficient technique for designs with different performance objectives.

The MV method can be implemented using several strategies as shown in Figure 7.5.

7.4 Optimising Power Consumption of Proposed Image Processor 161

- Static voltage scaling (SVS): Different blocks are supplied with a selected

fixed supply voltage.

- Multi-level voltage scaling (MVS): The voltage of blocks switches between a

few (two or more) voltage levels.

- Dynamic voltage and frequency scaling (DVFS): The voltage of blocks

switches between a larger number of voltage levels than the multi-level voltage scaling

approach.

- Adaptive voltage scaling (AVS): A control loop adjusts the voltage of DVFS

blocks.

Figure 7.5: The multi-voltage strategies: (a) Static, (b) With power gating, (c) Dynamic
voltage/frequency scaling, (d) Adaptive voltage scaling (AVS) [6]

In this thesis, the static voltage scaling (SVS) approach of the multi-voltage tech-

nique is used for transposition units to reduce the total power consumption. In this

method different blocks are supplied with a selected fixed supply voltage.

7.4.4 Impact of LPD Techniques on Standard Cell Libraries

To implement a design using LPD techniques, different versions of libraries and special

versions of cells are required. Furthermore, additional data and attributes are needed

for tools to be able to work with power-related data. In addition to the standard

characterisation corners used for regular libraries, additional corners are needed to

place special cells in non-regular operation modes [158].

The special cell requirements and special versions of libraries for each LPD technique

are as follows:

Special cell requirements

- Clock gating technique: Clock gating cell

- Multi-voltage technique: Level shifter

- Power gating technique: Power gating cell (turning blocks on and off)

162 RTL-to-Gate Synthesis

State retention register (keep state of the register when the block is shut off)

Isolation cell (keep outputs at known state when the block is shut off)

Special versions of libraries

- Multi-threshold technique: Multi-Vth libraries (low Vth, standard Vth and high Vth)

-Multi-voltage technique: Libraries with level shifters

In this thesis, the SVS approach of the MV technique is used, hence specialised

libraries with special cells (level shifters) are necessary to meet the requirements of the

design. Specialised cells are required to prevent timing closure problems and excessive

short-circuit (crowbar) switching currents. They are used duo to the fast transmission

of signals between different power domains.

7.4.5 Impact of LPD Techniques on Synthesis Flow

To implement a chip using LPD techniques, they should be included at the earliest

design stages and at almost every step of the design flow. In the early stages of

design, the modules with maximum performance and the modules which can be shut

down during some periods of time should be known. Furthermore, logical and physical

synthesis tools need to be modified to accept the power intent or design strategy as an

input [26].

Formal verification tools should be modified to verify the gate-level design and initial

RTL. Additional file formats like the Unified Power Format (UPF) are also required to

follow a power-aware design. The clock-gating and multi-threshold techniques can be

implemented automatically, but the power-gating and multi-voltage techniques need

a specification of power intent (UPF). The UPF file can be generated at each step of

design (design specification, logic synthesis and physical synthesis) separately, and be

modified as required [26].

To synthesise the logic design of the proposed image processor using the multi-

voltage technique, the synthesis flow shown in Figure 7.6 is followed.

7.5 Impact of the Multi-Voltage LPD Technique on

Quality of Results

The synthesis results of the previous section confirm the expectation that the majority

of the power consumption of the system, when implemented with the nano-technology

process, is the leakage power, and the extenders (transposition units designed with

7.5 Impact of the Multi-Voltage LPD Technique on Quality of Results163

Elaborate

Develop HDL files

Specify libraries

Analyse

Link

Read UPF file

Compile Ultra

Generate time, area and power reports

Set design constraints

Set voltage domains

Figure 7.6: Optimised synthesis flow to synthesise the proposed RNS-based image pro-
cessor using the multi-voltage technique

static RAM) are the main source of leakage power. To moderate the leakage power and

decrease the total power, the synthesis methodology is modified based on a quality-of-

results (QoR) strategy with unified-power-format (UPF) flow. The flow is designed to

optimise the power consumption of the design using the SVS method. For this purpose,

the chip is partitioned into two power domains: the extender, and the top-level and

cell domains. The voltage level of the extender power domain is set lower (LV=0.7 V)

than the voltage of the top-level and cell domains (HV=1.08 V) while they share a

common V SS. The technology library saed90nm max with low operating voltage is

added. Table 7.13 shows the operating conditions of target library saed90nm max, and

Table 7.14 is the Power State Table (PST) showing the supply port, the state name

and the corresponding voltage level.

In order to create two different power domains, special library cells (level shifters)

are required to convert signals between selected voltage levels. They shift a signal that

comes in at one voltage level and goes elsewhere at a different voltage level. Another

164 RTL-to-Gate Synthesis

Table 7.13: Library saed90nm max report used as low-voltage library

Library type Technology, PG pin based

Time Unit 1 ns

Capacitive Load Unit 1.000000 ff

Pulling Resistance Unit 1 kΩ

Voltage Unit 1 V

Current Unit 1 µA

Dynamic Energy Unit 0.0010000 pJ

Leakage Power Unit 1 pW

Operating Conditions:

Operating Condition Name WORST

Library SAED90nm max

Process 1.00

Temperature 125.00◦C

Voltage 0.70

Interconnect Model Balanced tree

Table 7.14: Power state table (PST) of the multi-voltage processor

Supply Port State name Voltage level (V)

V DD HV 1.08

V DDXS HV 1.08

V DDGS LV 0.7

V SS GND 0

reason for using level shifters is that a 0.7 V signal, driving a 1.08 V gate, will turn on

both the NMOS and PMOS networks, causing crowbar currents. Hence, high-to-low

and low-to-high level shifters are employed in the proposed design.

A high-to-low level shifter is composed of two inverters in series with a single power

rail from a lower power domain. The delay introduced by a high-to-low level shifter is

a buffer delay and can be ignored. However, the low-to-high level shifters have more

complicated circuitry. Each is composed of a buffer and inverter for the lower-voltage

signal. The inverted voltage is used to drive cross-coupled transistors running at the

higher voltage. Figure 7.7 shows the high-to-low and low-to-high level shifters.

Figure 7.8 shows the placement of the level shifters in the power domains. They

7.5 Impact of the Multi-Voltage LPD Technique on Quality of Results165

Top-level design

Q
D

Clk

High voltage domain

Top-level voltage domain

Low voltage domain

OUT_L

VSS

VDDL

Top-level design

Q
D

Clk

Low voltage domain

Top-level voltage domain

High voltage domain

OUT_H

VSS

VDDH VDDL

(a) (b)

Figure 7.7: Structure of level shifters: (a) High to low, (b) Low to high

are placed in the receiving domain (the lower domain for high-to-low shifters and the

higher domain for low-to-high shifters). The extender power domain operates at a lower

voltage, hence high-to-low level shifters are inserted in the extender power domain and

low-to-high level shifters are placed in the cell power domain.

D

CLK

OUT_L

Extender

Q

Low voltage (0.7V) domain

Cell

Q

High voltage (1.08V) domain

D

CLK

VDDL

VSS

VSS

OUT_H

VDDLVDDH

Top-level design (RNS2D)

Top-level voltage domain (1.08 V)

Figure 7.8: Level-shifter placements in power domains

For consistency reasons, when comparing the initial binary and proposed RNS-

based designs an identical UPF file and PST are used for both designs. The UPF file

has specified power domains, power supply network (supply ports, supply nets, power

network connections), power state table, power switches, special dual-supply and cell

strategies on a per-power-domain basis (isolation, retention, level shifter). The UPF

diagram of the RNS-based processor is shown in Figure 7.9.

The RNS-based and binary designs are then compiled using the SVS method and

the critical path delay, area and power consumption reports are presented in Tables

166 RTL-to-Gate Synthesis

Figure 7.9: Unified Power Format (UPF) diagram of the proposed image processor

7.15 to 7.17. Tcl Scripts for Multi-Voltage Synthesis of Initial Binary and the Proposed

RNS-Based Image Processors Using Synopsys DC Topographical Mode are provided

in Appendix D.

Table 7.15: Critical path delay of the initial binary and proposed RNS-based designs
(In/out put: 25 bits, Filter coefficients: 6 bits, Top-level voltage: 1.08 V , Extender voltage:
0.7 V)

Initial Binary processor Proposed RNS-based processor

with SVS with SVS

Timing constraints (ns) 47 35.24

Slack Met Met

7.5 Impact of the Multi-Voltage LPD Technique on Quality of Results167

Table 7.16: Area comparison of the initial binary and proposed RNS-based designs
(In/out put: 25 bits, Filter coefficients: 6 bits, Top-level voltage: 1.08 V , Extender volt-
age: 0.7 V)

Area (µm2) Initial Binary processor Proposed RNS-based processor

with SVS with SVS

Combinational area 4736294 4910879

Buff/Inv area 126695 151376

Non-combinational area 5984146 5628070

Net interconnect area 6446384 5946379

Total cell area 10720440 10690325

Total area 17166825 16636704

Table 7.17: Top-level-design power analysis of initial binary and proposed RNS-based
processors (In/out put: 25 bits, Filter coefficients: 6 bits, Top-level voltage: 1.08 V , Extender
voltage: 0.7 V)

Power (mW) Initial binary processor Proposed RNS-based processor

with SVS with SVS

Internal power 31.6545 29.0756

Net switching power 48.3741 3.9957

Total dynamic power 31.7229 29.7540

Leakage power 48.0803 62.3578

Total power 79.903 91.716

The comparison of the critical path delays in Table 7.9 shows that using the RNS

in the arithmetic level of computationally intensive systems reduces the critical path

delay, which is consistent with other studies [3] and [14]. A similar pattern occurs

in studies of applying the SVS method. Applying the SVS method has reduced the

critical path delay in both the RNS and 2’s-complement image processors.

The area requirements of each design are also provided in Tables 7.10 and 7.16. It

is interesting that there is only a little area penalty (up to 9%) in the total area of

the processors after applying the SVS method, which can be due to using specialised

library cells such as level shifters. Another noteworthy result over the previous studies

is that the total area of the RNS-based processor is less than the total area in the initial

168 RTL-to-Gate Synthesis

binary processor. It confirms that using the proposed architecture for RNS-based filter

banks, and the binary-coded number format, has saved on the hardware complexity

and the system area requirement. For area analysis, the impact of using the multiplier-

less filters on area reduction is neglected since the same filter structure is used for both

the RNS-based and initial designs.

The power consumption of the RNS-based and initial binary designs in Table 7.11

showed that, although the RNS-based processor has better performance in area and

delay, it dissipates more power than the 2’s-complement processor. To overcome this

issue, the SVS method has been chosen to improve the power performance of the

proposed design. It shows that using the SVS method reduces the total power of the

initial binary and the RNS-based designs by up to 50%.

The present results are significant in at least two major aspects of system design:

the arithmetic-level optimisation and the low-power-design development. The results

support the idea that arithmetic-level optimisation with circuit-design techniques are

able to achieve the best trade-off for power-performance of the existing processors.

7.6 Preparing the Design for Power Analysis Using

VCS

Further simulations on the proposed RNS-based image processor are performed using

VCS-MX. VCS is the Synopsys simulator tool, and DVE (Discovery Visual Environ-

ment) is the VCS graphic user interface (GUI). DVE is used for functional verification,

and to view waveforms and schematics.

The VHDL source codes of the top-level design and subdesigns, with the test bench

are debugged and simulated to generate a VCD file, which is necessary for power

analysis. Three general steps to generate the VCD file are [161]:

• Analyse

The VHDL source codes of all designs are analysed using vhdlan. Since VCS is

a simulator, the test bench is also analysed using Synopsys 1076 VHDL Analyser

G-2012.09 in the same directory. The simulation machine is 64-bit, hence vhdlan

is run in -full64 option.

• Elaboration

After analysing the source files, the test bench is elaborated as the top-level

design. Elaboration is the second step, that builds the instance hierarchy and

7.6 Preparing the Design for Power Analysis Using VCS 169

generates a binary executable. The elaboration can be done either in “optimised

(batch)” or “debug (interactive)” mode. It is recommended to run the debug

mode before optimised mode. Figures 7.10 -7.17 are the schematic of the test

bench as the top-level design, and all subdesigns.

Figure 7.10: VCS schematic of the test bench including top-level, read and write modules

CLK

RESET

EN

X

Figure 7.11: VCS schematic of a RNS-based filter of the image processor

170 RTL-to-Gate Synthesis

Figure 7.12: VCS schematic of the main controller of the image processor

EN

MODE

RESET

RW

DIN

CLK

DOUT

 (0)

 (1)

Figure 7.13: VCS schematic of a transposition unit of the image processor

7.6 Preparing the Design for Power Analysis Using VCS 171

SEL

lP
OP0

OP1

Figure 7.14: VCS schematic of demux module of the image processor

Figure 7.15: VCS schematic of a flip flop of the image processor

Figure 7.16: VCS schematic of a invert module the image processor

172 RTL-to-Gate Synthesis

Figure 7.17: VCS schematic of mux module of the image processor

• Simulation

Lastly, the simulation opens a GUI window to view the waveforms. Simulation

uses the binary executable generated in the elaboration step. This step has also

two modes of simulation: “optimised (batch)” or “debug (interactive)”. The

debug mode is used in the initial phase of the design cycle, whereas the batch

mode is used when most of the design issues are resolved.

Analyze

vhdlan -full64 /home/.../src/(top-level and all subdesigns).vhd

Doing common elaboration using Chronologic VCS(TM)Version G-2012.09_Full64

vcs -full64 RNS2D_tb -debug_all

After elaborating the design, final.vpd is generated and converted to the final.vcd.

The VCD (Values Change Dump) file contains the switching activity information. This

file is used for the multi-voltage power analysis in next section. Synopsys VCS-MX

Tcl scripts for simulation of the proposed RNS-based image processor are provided in

Appendix E.

Generating VCD file using Synopsys VCS MX Compiled Simulator(simv) Version G-2012.09

./simv -ucli

ucli\% dump -file final.vpd -type vpd

VPD0

ucli\% dump -add FILTER2D_FILTER2D_SCH_TB/uut/* -fid VPD0

ucli\% run 500 us

ucli\% dump -close

ucli\% exit

7.7 Multi-Voltage Power Analysis Using PrimeTime PX and UPF Flow173

Generating VCD using VCD+ to VCD Translator G-2012.09_Full64

ls *.vpd

common.vpd final.vpd inter.vpd testbench.vpd

vpd2vcd final.vpd final.vcd

7.7 Multi-Voltage Power Analysis Using PrimeTime

PX and UPF Flow

The power-performance of the proposed RNS-based image processor is optimised using

the multi-voltage technique. It contains power domains with specific power behaviour.

The extenders are in the low-power domain, which should be considered when analysing

the power consumption of the whole system. The multi-voltage power analysis needs

comprehensive information to accurately report the power consumption. Using internal

and leakage power tables, an accurate power consumption can be calculated [162].

The power analysis of the proposed image processor is performed using the IEEE

1801 (UPF) standard. The Prime Time PX (PTPX) is a power analysis tool to perform

timing and power analysis. An advantage of using PTPX is that it generates power

consumption reports at the cell, block and chip level based on the switching activity,

net capacitance and circuit connectivity. It also calculates the power consumption

for each activity and generates average and peak power reports. Two power-analysis

methodologies are available [162]:

• Averaged power analysis is based on the default switching activity of the

circuit or the switching activity derived from RTL or gate level simulation, or

user-defined switching.

• Time-based power analysis is the most accurate power analysis, based on the

RTL or gate level simulation with respect to time.

The time-based power analysis is selected for the most accurate results. The link

library is set to saed90nm max hth and saed90nm max. These are the libraries previ-

ously used for mapping the design. Since the proposed design uses two different voltage

levels, two link libraries are used. Figure 7.18 shows the files generated by Synopsys

tools to be used for power analysis.

The proposed design is optimised using the multi-voltage technique, and compiled

in DC topographical mode; hence, the multi-voltage power analysis is done using the

IEEE standard using the UPF file. The MAPPED design, Milkyway library and TLU+

174 RTL-to-Gate Synthesis

D
V

E

D
esig

n

co
m

p
iler

V
C

S

IC

co
m

p
iler

P
rim

e T
im

e P
X

D
C

to
p
o
g
rap

h
ical

m
o
d

e

(T
o
p
-lev

el an
d
 su

b
d
esig

n
).
v
h
d

D
e
f
a
u
l
t
.
c
o
n

R
N
S
_
t
b

R
N
S
2
D
_
G
T
E
C
H
.
d
d
c

R
N
S
2
D
.
s
d
c

R
N
S
2
D
_
M
A
P
P
E
D
.
d
d
c

R
N
S
2
D
.
f
s
d
b

f
i
n
a
l
.
v
c
d

R
N
S
2
D
_
m
a
x
.
s
p
f

R
N
S
2
D
_
m
i
n
.
s
p
f

U
P
F

R
N
S
2
D
_
M
A
P
P
E
D
.
d
d
c

M
i
l
k
y
w
a
y

l
i
b
r
a
r
y

(
m
i
n
)
(
m
a
x
)
.
t
l
u
p
l
u
s

B
i
n
a
r
y
.
u
p
f

V
o
l
t
a
g
e
.
t
c
l

R
N
S
2
D
.
s
d
c

F
ig
u
r
e
7
.1
8
:

F
iles

gen
erated

b
y

S
y
n
op

sy
s

to
ols

to
b

e
u

sed
for

p
ow

er
an

aly
sis

7.7 Multi-Voltage Power Analysis Using PrimeTime PX and UPF Flow175

Table 7.18: List of cells in the proposed processor

Cell Reference Area Attributes

XLXI 1 control logic 2228.43 hierarchical

XLXI 4 mux 338.23 hierarchical

XLXI 5 demux 442.37 hierarchical

XLXI 6 extender 0 5359468.00 hierarchical

XLXI 7 extender 1 5359473.50 hierarchical

XLXI 8 flip flop 24.88 hierarchical

XLXI 9 invert 0 5.53 hierarchical

XLXI 10 invert 1 5.53 hierarchical

XLXI 43 cdf97 0 26398.16 hierarchical

XLXI 44 cdf97 1 26458.98 hierarchical

XLXI 70 scale 0.00 hierarchical

Total 12 cells 10774844.00

files are used in the IC compiler to generate parasitic exchange formats as .max.spf

and .min.spf. The event file which contains the switching activity is generated using

VCS. Table 7.18 shows the cells of the design, the references used to resolve them, the

area of each cell, and the cell attributes.

The three power domains defined for the design (TOP, CELL, EXTENDER) are

shown in Table 7.19.

The four supply nets defined on design (VDD, VSS, VDDGS, VDDXS) are shown

in Table 7.20.

The three supply sets defined for design (TOP.primary, CELL.primary, EXTEN-

DER.primary) are shown in Table 7.21.

When all the input files are ready, PT-PX analyses the power. The power analyser

is set, and the power analysis is time-based.

set power_enable_analysis true

set power_analysis_mode time_based

RNS2D MAPPED.ddc is linked to the references, and the necessary files are read before

update timing.

source /home/.../scripts/binary.upf

source /home/.../scripts/voltage.tcl

176 RTL-to-Gate Synthesis

Table 7.19: Power domains of the multi-voltage processor
Power Domain TOP CELL EXTENDER

Connections Primary Primary Primary

Power VDD VDDXS VDDGS

Ground VSS VSS VSS

Supply sets TOP.primary CELL.primary EXTENDER.primary

default retention TOP.default retention CELL.default retention EXTENDER.default retention

default isolation TOP.default isolation CELL.default isolation EXTENDER.default isolation

Elements top level XLXI 1 XLXI 6

XLXI 4 XLXI 7

XLXI 5

XLXI 8

XLXI 9

XLXI 10

XLXI 43

XLXI 44

XLXI 70

Table 7.20: Supply nets of the multi-voltage processor

Supply Net VDD VSS VDDGS VDDXS

Scope top level top level top level top level

Power Domains TOP TOP TOP TOP

EXTENDER EXTENDER CELL

CELL

Supply Ports VDD VSS VDDGS VDDXS

PG power pin N/A N/A N/A N/A

Max-delay Voltage 1.2 0.0 0.7 1.2

Min-delay Voltage 1.2 0.0 0.7 1.2

Table 7.21: Supply sets of the multi-voltage processor

Supply set TOP.primary CELL.primary EXTENDER.primary

Scope top level top level top level

Power supply net association VDD VDDXS VDDGS

Ground supply net association VSS VSS VSS

read_parasitics /home/.../db/RNS2D.spf.min

read_parasitics /home/.../db/RNS2D.spf.max

update_timing

7.8 Chapter Summary 177

final.vcd is set, and the power is updated.

read_vcd -strip_path RNS2D_TB/UUT /home/.../db/vcd/final.vcd

update_power

This step generates a series of power reports and .fsdb (Fast Signal Data Base),

which is the waveform file. The waveform file can be viewed in graphical waveform view-

ing software Custom WaveView. The over-all and zoomed waveforms of the proposed

image processor are shown in Figures 7.19 and 7.20, respectively. Synopsys PrimeTime

PX Tcl scripts for multi-voltage power analysis of the proposed RNS-based image pro-

cessor are provided in Appendix F. Synopsys DC report of post compile UPF of the

proposed RNS-based image processor is provided in Appendix G.

7.8 Chapter Summary

The use of specialised number systems like RNS arithmetic is very efficient at im-

proving the speed of computationally intensive processors, however this approach adds

new concerns for lowering the total power consumption. In this chapter, the proposed

two-dimensional RNS-based digital image processor with SVS implementation is im-

plemented. The proposed design is synthesised using high-end Synopsys tools, and the

performance improvement of the system is proven. Comparing the synthesis results of

the proposed design with the 2’s-complement contender, it is confirmed that, with a

well-designed system including an appropriate arithmetic level and a well-established

low-power method, the existing processors can be optimised to achieve higher perfor-

mance, less hardware complexity and lower power dissipation.

Publication pertaining to this chapter:

• Azadeh Safari, and Yinan Kong. Power-Performance Enhancement of RNS-

Based DWT Image Processor Using Multiple Voltage Domains, In progress.

178 RTL-to-Gate Synthesis

F
ig
u
r
e
7
.1
9
:

O
v
erall

v
iew

of
th

e
p

rop
osed

R
N

S
-b

ased
im

age
p

ro
cessor

w
aveform

s

7.8 Chapter Summary 179

F
ig
u
r
e
7
.2
0
:

Z
o
om

ed
v
ie

w
of

th
e

p
ro

p
os

ed
R

N
S

-b
as

ed
im

ag
e

p
ro

ce
ss

or
w

av
ef

or
m

s

180 RTL-to-Gate Synthesis

8
Physical Implementation Using Design

Compiler Topographical Technology in

ASIC Methodology

As the last step of the project, the proposed image processor is implemented using

DC topographical technology in ASIC methodology. DC topographical technology is

selected because it eliminates design iterations and reduces the overall design cycle.

Milkyway technology and IC compiler are used for this purpose.

In this stage, some restrictions have been imposed on using the back-end view

of libraries. The back-end view of libraries is not available to universities and non-

commercial organisations. Synopsys provides an educational design kit (SAED EDK90)

for educational and research purposes. This library is not designed for fabrication and

does not contain foundary information due to intellectual property (IP) restrictions im-

posed by IC manufacturing foundaries. Having this restriction, the saed90nm typ ht

library is used for physical implementation.

181

182
Physical Implementation Using Design Compiler Topographical

Technology in ASIC Methodology

8.1 Physical Synthesis Using IC Compiler

To physically implement the proposed image processor, the set of files shown in Fig-

ure 8.1 has been generated during design synthesis in Chapter 7. RNS2D MAPPED.ddc

contains the netlist of the mapped design to the target library. The RNS2D.sdc file

specifies the design constraints. RNS2D.script and UPF describe the power format

and design development strategies used during synthesis. The logic and libraries are re-

quired for performing physical optimisations and resolving hierarchical references. The

Milkyway reference libraries RNS2D.mw and technology files saed90nm icc 1p9m.tf are

also needed for physical library information. The TLUPlus (TLU+) files provide more

accurate resistance coefficient (RC) extraction results. The TLU+ files store the RC

coefficients in a binary table format and provide the effect of width, space, density and

temperature on RC. The physical synthesis flow using the above mentioned file formats

is followed to synthesise the proposed processor physically.

Net list
RNS2D_MAPPED.ddc

Target and link library
Saed90nm_typ_ht.db

Saed90nm_1p9m_1t_Cmin.tluplus

Saed90nm_1p9m_1t_Cmax.tluplus

MilkWay reference library
saed90nm_fr

Technology file
saed90nm_icc_1p9m.tf

StParasitic Exchange Format
RNS2D.spef

GDSII file
RNS2D.gds

RNS2D.v

IC

Compiler

Tech2itf.map

Figure 8.1: Input and output of IC compiler

8.2 Physical Synthesis Flow

As discussed in Chapter 7, using LPD techniques imposes some modifications on the

digital standard-cell libraries as well as the synthesis flow. It also imposes some mod-

ifications in the physical synthesis flow, as shown in Figure 8.2. The IC compiler is

8.2 Physical Synthesis Flow 183

set up with the target and link library saed90nm typ ht.db, and the working direc-

tory. Synopsys IC Compiler Tcl scripts for physical implementation of the proposed

RNS-based image processor are Provided in Appendix H.

Placement

Clock Tree Synthesis

Routing

Invoke ICC

Data Preparation

Floor Planning

Power Planning

Finishing

Results (.v, .gds, .spef)

Figure 8.2: Physical synthesis flow used to implement the RNS-based processor

8.2.1 Library Data Preparation

Library data preparation is the first step for physical implementation. A new Milkyway

library is created using the technology file saed90nm icc 1p9m.tf and the reference

library saed90nm fr. The new Milkyway library is called RNS2D. The time, resistance

and capacitance units in the created Milkyway library are:

Time Unit from Milkyway design library: ns

Resistance Unit from Milkyway design library: kΩ

Capacitance Unit from Milkyway design library: pF

The Milkyway technology file .tf contains information about the metal layers and

vias required for place and route tools in the IC Compiler. The TLU+ files are used for

RC estimation and provide information about all layers including active, poly, metal

184
Physical Implementation Using Design Compiler Topographical

Technology in ASIC Methodology

layers, etc. To accurately extract the RC results, there are TLU+ files available for each

library. The TLU+ files are binary tables containing RC coefficients, and are important

in the way that they specify the effect of width, space, density and temperature on

RC.

The Milkyway technology files may also contain parasitic models of wires (as in

the TLU+ files). If the TLU+ files are specified, the IC Compiler uses TLU+ files for

RC estimations. Otherwise, the IC Compiler reads the parasitic information from the

technology file.

It should be noted that using the TLU+ files gives more accurate RC estimations.

Another advantage of using the TLU+ file is that different TLU+ files can be used

for different RC corners (not PVT corners), while a technology file contains parasitic

information for only one RC corner. Furthermore, different TLU+ files can be spec-

ified for different scenarios. The Max TLU+, Min TLU+ and the layer-mapping file

between technology library and ITF file are shown in Table 8.1.

Table 8.1: The Max TLU+, Min TLU+, and the layer-mapping file between technology
library and ITF file

Max TLU+ Saed90nm 1p9m 1t Cmax.tluplus

Min TLU+ Saed90nm 1p9m 1t Cmin.tluplus

Layer-mapping file Tech2itf.map

8.2.2 Floorplanning

After setting the TLU+ files, the netlist of the mapped design RNS2D MAPPED.ddc is

imported. This design is mapped, compiled and saved using the same target library

as when creating the Milkyway library. The GTECH design cannot be used for floor-

planning because for un-mapped designs there is no Milkyway library.

The RNS2D MAPPED.ddc is compiled using the default constraints default.con.

Thus it is necessary to import RNS2D.sdc as well. Table 8.2 shows the planner summary

of RNS-based image processor implementation.

8.2 Physical Synthesis Flow 185

Table 8.2: Planner summary of RNS-based image processor implementation

Row Direction HORIZONTAL

Control Parameter Aspect Ratio

Core Utilisation 0.350

Number Of Rows 1924

Core Width 5543.68

Core Height 5541.12

Aspect Ratio 1.000

Double Back ON

Flip First Row YES

Start From First Row YES

Planner run Successful

Table 8.3: The power and ground nets and pins setting of RNS-based image processor
implementation

set power VDD

set ground VSS

set power port VDD

set ground port VSS

set mw logic0 net VSS

set mw logic1 net VDD

8.2.3 Placement

The power and ground rings are then added to the design in the PreRoute step. Before

adding these rectangular rings, there are two more steps to accomplish: setting the

power and ground ports, and defining the power and ground nets and pins. Table

8.3 shows the power and ground nets and pins of the RNS-based image processor

implementation.

To create the rectangular rings, both VDD and VSS nets are set with a 0.2 offset

(offsets applied after auto adjustments). The left- and right-side widths are 0.16, and

the bottom- and top-side widths are 0.14 (around the core). Creating rectangular rings

automatically connects the straps to the closest power and ground ring at or beyond

both ends of the straps. Wide straps have an advantage over thin straps since they

improve the quality of the placement and reduce the placement runtime. Table 8.4

186
Physical Implementation Using Design Compiler Topographical

Technology in ASIC Methodology

Table 8.4: Creating rectangular rings for VDD and VSS nets of the RNS-based image
processor

Offset Segment layer

Right 0.2 M4

Left 0.2 M4

Bottom 0.2 M3

Top 0.2 M3

shows the offset and segment layers of the rectangular rings.

Table 8.5: Place optimisation settings used in placement step of RNS-based image pro-
cessor implementation

place opt effort level High

Congestion removal Yes

Area recovery No

Optimise dft No

Clock tree synthesis No

Optimise power Yes

Optimise power mode leakage

Core placement and optimisation have the most run-time for power optimisation

in the physical implementation steps. The power optimisation is set to minimum

congestion and high-effort compilation. During this step, standard cells are placed

in horizontal placement rows. The design is then routed and optimised for power

consumption. Table 8.5 shows the place optimisation settings. The chip summary

report and legalise displacement report are provided in Tables 8.6 and 8.7, respectively.

8.2.4 Clock Tree Synthesis

For the core Clock Tree Synthesis (CTS) and optimisation, clock trees are built based

on the clock-tree design rule constraints. It balances the loads and minimises the clock

skew. The placements of the clock sinks are fixed, incremental logic and placement

optimisation are performed, and the placement of both the buffers and registers on the

clock tree are fixed. The clock opt command performs clock-tree synthesis, routing of

8.2 Physical Synthesis Flow 187

Table 8.6: RNS-based image processor chip summary report

Std cell utilisation 34.70% (11565605/(33331376-0)) (Non-fixed + Fixed)

Chip area 33331376 sites, bbox (1.00 1.00 5544.68 5542.12)µm

Std cell area 11565605 sites, (non-fixed:11565605 fixed:0)

Cells 654321 (non-fixed:654321 fixed:0)

Macro cell area 0 sites 0 cells

Placement blockages 0 sites

Routing blockages 0 sites

Partial p/g net blockages 0 sites

Lib cell count 64

Avg. std cell width 4.88 µm

Site array unit (width: 0.32 µm, height: 2.88 µm, rows: 1924)

Physical DB scale 1000 db unit = 1 µm

Table 8.7: Legalise displacement of the chip

Avg cell displacement 0.760 µm (0.26 row height)

Max cell displacement 3.853 µm (1.34 row height)

Std deviation 0.574 µm (0.20 row height)

Number of cells moved 416 (out of 654321)

clock nets, extraction, optimisation, and optionally hold-time violation fixing on the

current design. Table 8.8 shows the clock-tree summary.

188
Physical Implementation Using Design Compiler Topographical

Technology in ASIC Methodology

Table 8.8: Clock tree summary

Timing Path Group clk

Levels of Logic 62.00

Critical Path Length 37.14 (ns)

Critical Path Slack 62.26 (ns)

Critical Path Clk Period 100.00 (ns)

Total Negative Slack 0.00

No. of Violating Paths 0.00

Worst Hold Violation 0.00

Total Hold Violation 0.00

No. of Hold Violations 0.00

Cell count:

Hierarchical Cell Count 126

Hierarchical Port Count 3571

Leaf Cell Count 654321

Buf/Inv Cell Count 36599

CT Buf/Inv Cell Count 0

Combinational Cell Count 423246

Sequential Cell Count 231075

Macro Count 0

Area (µm):

Combinational Area 4904381.892862

Non-combinational Area 5754479.545292

Buf/Inv Area 418664.448485

Net Area 6352950.951578

Net XLength 25329066.00

Net YLength 23133108.00

Cell Area 10658861.438154

Design Area 17011812.389732

Net Length 48462176.00

Design rules:

Total Number of Nets 879437

Nets With Violations 12

Max Trans Violations 9

Max Cap Violations 3

8.2 Physical Synthesis Flow 189

Each standard cell has power and ground pins which are connected to the straps

and rings. The power and ground (VDD and VSS) rails in standard cells are connected.

The standard cells are pre-routed before performing global routing. The priority is to

ensure that the global router recognises these routing obstructions.

8.2.5 Routing

Finally, for routing the design, the core post-route and optimisation are executed on

the design. This step performs routing for the broken nets. The empty spaces in the

standard-cell rows are filled with instances of master filler cells in the library. Table

8.9 shows the route optimisation strategy in our design. The technology table contains

9 routable metal layers; this is considered as a 9-metal-layer design. Table 8.10 shows

the filler-cell insertion.

Table 8.9: Route optimisation strategy for the design

Stage Auto

Effort Medium

Power mode None

Search-Repair loops 10

ECO Search-Repair loops 4

Fix Hold Mode Route based

Route Violation threshold 3000

Table 8.10: Filler cell insertion

Placeable cells 654328

Cover cells 0

IO cells/pins 61

Cell instances 654389

Net pin threshold 33

Pre-routes for placement blockage/checking 120

Pre-routes for map congestion calculation 44393

Auto Set : first cut Vertical

Design style Horizontal

190
Physical Implementation Using Design Compiler Topographical

Technology in ASIC Methodology

8.2.6 Design Verification

To verify the physical design, the design rules are checked using DRC (Design Rule

Checking) and LVS (layout-versus-schematic). Details of design verification check are

as follow.

-- LVS START : --

Total area error in layer 0 is 0. Elapsed = 0:00:13, CPU = 0:00:13

Total area error in layer 1 is 0. Elapsed = 0:00:35, CPU = 0:00:35

Total area error in layer 2 is 0. Elapsed = 0:00:53, CPU = 0:00:53

Total area error in layer 3 is 0. Elapsed = 0:07:52, CPU = 0:07:52

Total area error in layer 4 is 0. Elapsed = 0:07:55, CPU = 0:07:55

Total area error in layer 5 is 0. Elapsed = 0:07:55, CPU = 0:07:55

Total area error in layer 6 is 0. Elapsed = 0:07:55, CPU = 0:07:55

Total area error in layer 7 is 0. Elapsed = 0:07:55, CPU = 0:07:55

Total area error in layer 8 is 0. Elapsed = 0:07:55, CPU = 0:07:55

Total area error in layer 9 is 0. Elapsed = 0:07:55, CPU = 0:07:55

Total area error in layer 10 is 0. Elapsed = 0:07:55, CPU = 0:07:55

Total area error in layer 11 is 0. Elapsed = 0:07:55, CPU = 0:07:55

Total area error in layer 12 is 0. Elapsed = 0:07:55, CPU = 0:07:55

Total area error in layer 13 is 0. Elapsed = 0:07:55, CPU = 0:07:55

Total area error in layer 14 is 0. Elapsed = 0:07:55, CPU = 0:07:55

Total area error in layer 15 is 0. Elapsed = 0:07:55, CPU = 0:07:55

8.2.7 Finishing and Saving the Results

The design is saved in the last step of physical synthesis. A VHDL netlist, a VHDL

file without power and ground ports, and a SPEF (Standard Parasitic Exchange For-

mat) file are generated. To write the design stream, the design data is written in a

specified library in GDS format. These files can be used for modifications and further

optimisations in the future. Figures 8.3 and 8.4 show the path-to-path schematic, and

the schematic of the proposed 2D RNS-based image processor, respectively. Synopsys

IC Compiler reports for physical implementation of the proposed RNS-based image

processor are provided in Appendix I.

8.2 Physical Synthesis Flow 191

F
ig
u
r
e
8
.3

:
P

at
h

-t
o-

p
at

h
sc

h
em

at
ic

of
th

e
p

ro
p

os
ed

2D
R

N
S
-b

as
ed

im
ag

e
p

ro
ce

ss
or

192
Physical Implementation Using Design Compiler Topographical

Technology in ASIC Methodology

F
ig
u
r
e
8
.4

:
S

ch
em

atic
of

th
e

p
rop

osed
2D

R
N

S
-b

ased
im

age
p

ro
cessor

8.3 Comparison of the Proposed RNS-Based Image Processor with
Dedicated Hardware Designs 193

8.3 Comparison of the Proposed RNS-Based Image

Processor with Dedicated Hardware Designs

For comparison of the proposed RNS-based image processor with existing hardware

designs, several 2D image-processor hardware implementations are considered. The

majority of architectures have reported results based on an 8 × 8 block-size DCT

or IDCT [151, 153, 163–173] except [151] that authors have reported the maximum

frequency for 16 × 16 block sizes as well. The only paper presenting hardware imple-

mentation of a DWT image processor is in [174], which was able to process images

without the need for fragmentation. They presented the hardware results of process-

ing an 256× 256 image using Haar wavelets. In this thesis, due to block artifacts and

boundary distortions caused by DCT, the proposed image processor uses DWT; thus it

is able to process 64×64 block sizes, which reduces the processing time and distortions

significantly. It is able to process images of up to 1024× 1024 pixels.

It is an inconsistent and incomplete comparison to compare processors that use dif-

ferent arithmetic operations, filter-bank features, power management techniques and

technology process. Almost all of the architectures in literature are customised by de-

signer preferences and contributions, which makes it hard to compare them. They dif-

fer in transform coefficient bits (accuracy), voltage, and technology process. They also

vary in the methodology they have adopted for optimisations, like the cost-effective ap-

proach in [153] and [169], the low-power technique [170], high-throughput design [173],

and low-complexity scheme [174]. The authors in [175] have proposed a methodology

for evaluating area and delay scale when comparing designs with different technology

processes. The authors have assumed a velocity saturated model, hence delay scales

1/S. In Table 8.11, delay scale of each design is provided with regard to the proposed

design in 90 nm.

If different technologies are taken into account, a trend of using smaller technolo-

gies in new designs is obvious. However, it does not conclude that new designs are

necessarily smaller than previous architectures. It can even be seen that designs using

similar transforms (IDCT) and technology (0.6 µm) have presented different core ar-

eas ([169] and [172]) which was due to different optimisation methodologies. [169] has

developed the folding scheme to obtain a low gate count and high throughput, while

[172] was a high-performance, low-cost design. The core area of our design is 30.28

mm2 (5.54368 mm× 5.54112 mm), which is comparable to the efficient design in [172].

The area consumption of the presented approach is smaller than that of the low-power

194
Physical Implementation Using Design Compiler Topographical

Technology in ASIC Methodology

T
a
b
l
e
8
.1
1
:

C
o
m

p
a
rison

of
th

e
p

rop
osed

R
N

S
-b

ased
im

age
p

ro
cessor

w
ith

d
ed

icated
h

ard
w

are
d

esign
s

D
esign

Y
ear

T
ran

sform
N

T
ech

n
ology

D
elay

S
cale

C
ore

area
V

oltage
F

req
u

en
cy

L
aten

cy
P

ow
er

L
P

D

(µ
m

)
(m
m

2)
(S

)
(V

)
(M

H
z)

(C
y
cles)

(m
W

)

T
otzek

[151]
1990

D
C

T
8
×

8
1.5

16.67
91

-
45

-
3100

N
o

16
×

16
22.5

...
...

...

C
h

an
g

[170]
2000

D
C

T
8
×

8
0.6

6.67
50.6

2
100

198
138

Y
es

F
an

u
cci

[171]
2002

D
C

T
8
×

8
0.18

2
-

1.6
33.6

227
8.7

Y
es

G
u

o
[172]

2003
ID

C
T

8
×

8
0.6

6.67
21

-
100

-
-

N
o

G
on

g
[153]

2004
D

C
T

8
×

8
0.25

1.5
2.78−

150
1

-
N

o

R
u

iz
[173]

2005
D

C
T

8
×

8
0.35

3.89
3

3.3
300

178
-

N
o

A
b

h
ish

ek
[176]

2006
D

C
T

104
×

128
0.5

5.55
2.99

3
100K

K
z

72
80µ

W
/f
ra
m
e

Y
es

D
iaz

[174]
2006

D
W

T
256
×

256
1.0

11.11
-

-
14

72
-

N
o

N
ilch

i[177]
2009

D
W

T
128
×

128
0.35

3.89
12.76

3.3
-

-
26.2

N
o

S
h

ah
[178]

2013
D

W
T

128
×

128
0.35

3.89
0.65

-
-

-
0.328

Y
es

R
N

S
p

ro
cessor

2014
D

W
T

64
×

64
0.09

1
30.28

1.08,
0.7

27
-

91
Y

es

8.3 Comparison of the Proposed RNS-Based Image Processor with
Dedicated Hardware Designs 195

8 × 8 processor in [170]. The authors in [170] achieved low power consumption by

simplifying the direct 2D algorithm and applying parallel distribute arithmetic. They

used a 2 V power supply, and the TSMC 0.6 µm single-poly double-metal technology.

The processor consumed 133 mW of power at 100 MHz and the maximum operation

speed achieved was 133 MHz.

The design of a test chip for the computation of the 2D DCT/IDCT using 1.5

µm CMOS technology has been presented in [151]. It was tested under worst case

conditions, and performed at 45 MHz for an 8 × 8 block size and 22.5 MHz for a

block size of 16 × 16. Slawecki et al. [163] used cyclic convolution IDCT and ROM-

based multiplications. Their design needed 1 W of power to process an 8×8 block-size

image using 2 µm technology.

A 2D DCT core processor has been presented in 1996, in [166]. It was a 0.9 V ,

150MHz, 10 mW , 4 mm2 core processor for a HDTV-resolution video compression and

decompression core processor. The authors used a variable-threshold-voltage technique

to reduce the active power dissipation, and a 0.3-µm CMOS triple-well, double-metal

technology.

Rambaldi [168] proposed a 2D IDCT processor using LPD techniques to reduce

power. The proposed design used 3.3 V and 1.1 V voltages, and was implemented

using 0.5 µm CMOS technology. It used 200 K transistors and operated at 27 MHz.

They achieved a low-power design: dissipates power as low as 67 mW .

Authors in [176] proposed an image processor architecture which was capable of

performing modular and programmable matrix operations. They used 0.5µ N-well

CMOS technology to produce a 100 kHz, 74 K transistor, and 80 µW/frame (V DD =

3 : 3V). A JPEG Encoder and DCT transform was used to process the image blocks

of 104× 128.

The “focal-plane algorithmically-multiplying CMOS computational image sensor”

was proposed in [177]. It was used to compute 2D video frames of up to 8 × 8 pixels

simultaneously.They used 0.35µm CMOS technology with 3.3 V supply voltage which

used 26.2 mW for processing images using 8× 8 kernel.

The performance characteristics of the physical implementation of the proposed

RNS-based image processor are provided in Table 8.12.

Our chip is implemented using a Synopsys 90 nmGeneric Library (SAED90nmEDK)

technology process, and compresses 64 × 64 block images at a frequency of 27 MHz

using the CDF97 algorithm. Multi-voltage UPF flow is used which makes the chip a

low-power RNS-based design. It operates with one clock-cycle latency (one pixel per

196
Physical Implementation Using Design Compiler Topographical

Technology in ASIC Methodology

Table 8.12: Chip characteristics

Internal word-length 25 bits

Technology Synopsys 90 nm Generic Library (SAED90nmEDK)

Core size 5.54368 mm× 5.54112 mm

Clock rate 27 MHz

Block size 64× 64

Supply voltage Multi-voltage 1.08, 0.7

Power 91 mW

clock cycle), and requires 30.28 mm2 of core area including the transposition modules

(RAM). The power consumption of the proposed compression chip is comparable with

designs in the literature. The current processor can be used to design a compact,

full-custom, complete image coder, not just the transform processor.

8.4 Chapter Summary

As the last step of the project, the proposed image processor is implemented using

DC topographical technology in ASIC methodology. DC topographical technology is

selected because it eliminates design iterations and reduces the overall design cycle.

The main purpose of ASIC prototyping is to identify any bugs in the design. The

synthesised design is ready for tape-out and final testing and verification.

9
Thesis Conclusion and Recommendations

for Future Work

9.1 Thesis Conclusion

Using specialised number systems like RNS is a promising new paradigm in improving

the speed of computationally intensive digital image processors. An optimised RNS-

based system performs mathematical operations on independent modular channels si-

multaneously, and accomplishes high-throughput hardware architectures for real-time

encoding, which can not be achieved using conventional number systems.

In this thesis, a two-dimensional RNS-based digital image processor with SVS im-

plementation has been presented. The proposed design has been synthesised using

high-end Synopsys tools, and the performance improvement of the system was proven.

Contributions are made in designing the multiplier-less filters and transposition

module with embedded symmetric extension to avoid blurring or spatial dislocations.

A strong relationship between the hardware utilisation and the power consumption

indicated that, by using overlapped blocks and reducing the amount of hardware,

memory usage as well as power consumption are saved.

197

198 Thesis Conclusion and Recommendations for Future Work

The power consumption of the proposed processor has been refined for portable-

device applications with high speed and superior functionality requirements such as

cell phones, GPS devices, laptops and ultra mobile PCs that should be either always

on or have intermittent usage.

High speed and more functionality of the proposed processor resulted in an increased

power consumption, facing us with power-management issues. The situation became

even worse when the design is implemented with a 90 nm technology process. The

increase in the power consumption was mainly due to leakage power in memory based

transposition modules (Extenders). The problem of power consumption was solved by

employing a multi-voltage LPD technique.

Comparing the synthesis results of the proposed RNS-based image processor with

initial binary processor, it was confirmed that, with a well-designed system including

an appropriate arithmetic level and a well-established low-power method, the existing

processors can be optimised to achieve higher performance, less hardware complexity

and lower power dissipation. The current processor can be used to design a compact,

full-custom, complete image coder, not just the transform processor.

Finally, a number of limitations and difficulties need to be considered. Synopsys

tools are extremely complicated and the hurdle of setting up and learning the tools

should not be ignored. In addition, some restrictions have been imposed for using the

back-end view of libraries as they are not available to universities and non-commercial

organisations. Hence, an educational design kit (SAED EDK90) is provided by Syn-

opsys for educational and research purposes. This library is not designed for fabrication

and does not contain foundary information due to intellectual property (IP) restrictions

imposed by IC manufacturing foundaries.

9.2 Future Research Directions

This research has laid significant groundwork for further investigation in designing

fast, simple and efficient digital image processors. Generally, RNS is very useful in

designing an Inner Product Step Processor (IPSP). Real-time applications demanding

new high-speed processors are limitless. The proposed image processor can be used in

video processing.

A further contribution can be made by decomposing the low-cost moduli set into

smaller “sub-moduli”. It is a good idea to design multi-level RNS-based designs. In

this suggestion, each modular channel can use sub-moduli itself. It would be very

useful in RNS-based systems that require large dynamic range, and modular channels

9.2 Future Research Directions 199

using a large number of bits (such as 1024-bit modular channels).

The issue of scaling is an intriguing one which can be usefully explored in further

research. There are several ways to reduce the hardware complexity of individual

components of scalers. One particular hardware reduction is to pipeline the (2n − 1)

and (2n + 1) adders. This can be done by using a multiplexer to connect the End-

Around Carry (EAC), rather than using two separate adders.

Another recommended future research is using the proposed image processor as a

sub-processor (or co-processor) to implement further processing of images. One can use

residue-to-binary converters to generate binary coefficients, and proceed with further

steps such as quantisation and entropy coding.

200 Thesis Conclusion and Recommendations for Future Work

A
Computer Specifications Used for Running

MATLAB

A.1 Computer Benchmark for Running MATLAB

Figure A.1: Computer benchmark used for running MATLAB

201

202 Computer Specifications Used for Running MATLAB

A.2 MATLAB Benchmark

Figure A.2: MATLAB benchmark

B
Synopsys Design Compiler Synthesis

Results of Full-Adder-Based Scaler

203

204
Synopsys Design Compiler Synthesis Results of Full-Adder-Based

Scaler

T
a
b
l
e
B
.1

:
S

y
n

op
sy

s
D

C
sy

n
th

esis
resu

lts
of

C
h

an
g

scaler-S
cale

1

n
A

rea
D

elay
P

ow
er

8
C

om
b
in

ation
al

area:
123.500000

D
ata

req
u
ired

tim
e

8.05
C

ell
in

tern
al

p
ow

er
=

92.1400
µ
W

(14%
)

B
u
f/In

v
area:

28.000000
D

ata
arrival

tim
e

-7.97
N

et
sw

itch
in

g
p

ow
er

=
555.8295

µ
W

(86%
)

N
et

In
tercon

n
ect

area:18.067170
S
lack

(M
E

T
)

T
otal

d
y
n
am

ic
p

ow
er

=
647.9695

µ
W

(100%
)

T
otal

area:141.5671701
C

ell
leakage

p
ow

er=
20.4122

n
W

16
C

om
b
in

ation
al

area:
319.750000

D
ata

req
u
ired

tim
e

8.05
C

ell
in

tern
al

p
ow

er
=

221.1405
µ
W

(16%
)

B
u
f/In

v
area:

72.000000
D

ata
arrival

tim
e

-7.92
N

et
sw

itch
in

g
p

ow
er

=
1.1231

m
W

(84%
)

N
et

In
tercon

n
ect

area:62.567820
S
lack

(M
E

T
)

T
otal

d
y
n
am

ic
p

ow
er

=
1.3442

m
W

(100%
)

T
otal

area:382.3178201
C

ell
leakage

p
ow

er=
67.4990

n
W

32
C

om
b
in

ation
al

area:
992.000000

D
ata

req
u
ired

tim
e

8.05
C

ell
in

tern
al

p
ow

er
=

520.8665
µ
W

(18%
)

B
u
f/In

v
area:

211.500000
D

ata
arrival

tim
e

-8.05
N

et
sw

itch
in

g
p

ow
er

=
2.3196

m
W

(82%
)

N
et

In
tercon

n
ect

area:231.396075
S
lack

(M
E

T
)

T
otal

d
y
n
am

ic
p

ow
er

=
2.8404

m
W

(100%
)

T
otal

area:1223.3960751
C

ell
leakage

p
ow

er=
139.4617

n
W

64
C

om
b
in

ation
al

area:
1711.750000

D
ata

req
u
ired

tim
e

8.05
C

ell
in

tern
al

p
ow

er
=

923.1697
µ
W

(17%
)

B
u
f/In

v
area:

437.750000
D

ata
arrival

tim
e

-8.05
N

et
sw

itch
in

g
p

ow
er

=
4.5279

m
W

(83%
)

N
et

In
tercon

n
ect

area:377.153214
S
lack

(M
E

T
)

T
otal

d
y
n
am

ic
p

ow
er

=
5.4510

m
W

(100%
)

T
otal

area:2088.9032141
C

ell
leakage

p
ow

er=
289.1568

n
W

128
C

om
b
in

ation
al

area:
3581.250000

D
ata

req
u
ired

tim
e

8.05
C

ell
in

tern
al

p
ow

er
=

1.9460
µ
W

(18%
)

B
u
f/In

v
area:

954.500000
D

ata
arrival

tim
e

-8.05
N

et
sw

itch
in

g
p

ow
er

=
9.1557

m
W

(82%
)

N
et

In
tercon

n
ect

area:747.609416
S
lack

(M
E

T
)

T
otal

d
y
n
am

ic
p

ow
er

=
11.1017

m
W

(100%
)

T
otal

area:4328.8594161
C

ell
leakage

p
ow

er=
598.3668

n
W

205

T
a
b
l
e
B
.2

:
S

y
n

op
sy

s
D

C
sy

n
th

es
is

re
su

lt
s

of
C

h
an

g
sc

al
er

-S
ca

le
2

n
A

re
a

D
el

ay
P

ow
er

8
C

om
b
in

at
io

n
al

ar
ea

:
34

9.
75

00
00

D
at

a
re

q
u
ir

ed
ti

m
e

8.
05

C
el

l
in

te
rn

al
p

ow
er

=
22

8.
77

35
µ
W

(2
6%

)

B
u
f/

In
v

ar
ea

:
53

.2
50

00
0

D
at

a
ar

ri
va

l
ti

m
e

-8
.0

3
N

et
sw

it
ch

in
g

p
ow

er
=

64
1.

76
75

µ
W

(8
6%

)

N
et

In
te

rc
on

n
ec

t
ar

ea
:6

9.
58

85
00

S
la

ck
(M

E
T

)
T

ot
al

d
y
n
am

ic
p

ow
er

=
87

0.
54

10
µ
W

(1
00

%
)

T
ot

al
ar

ea
:4

19
.3

38
50

01
C

el
l

le
ak

ag
e

p
ow

er
=

58
.9

54
8
n
W

16
C

om
b
in

at
io

n
al

ar
ea

:
78

4.
75

00
00

D
at

a
re

q
u
ir

ed
ti

m
e

8.
05

C
el

l
in

te
rn

al
p

ow
er

=
50

5.
56

67
µ
W

(2
9%

)

B
u
f/

In
v

ar
ea

:
12

3.
50

00
00

D
at

a
ar

ri
va

l
ti

m
e

-8
.0

5
N

et
sw

it
ch

in
g

p
ow

er
=

1.
25

25
m
W

(7
1%

)

N
et

In
te

rc
on

n
ec

t
ar

ea
:1

53
.5

70
93

9
S
la

ck
(M

E
T

)
T

ot
al

d
y
n
am

ic
p

ow
er

=
1.

75
81

m
W

(1
00

%
)

T
ot

al
ar

ea
:9

38
.3

20
93

91
C

el
l

le
ak

ag
e

p
ow

er
=

12
2.

24
48

n
W

32
C

om
b
in

at
io

n
al

ar
ea

:
21

36
.5

00
00

0
D

at
a

re
q
u
ir

ed
ti

m
e

8.
05

C
el

l
in

te
rn

al
p

ow
er

=
1.

34
66

m
W

(3
4%

)

B
u
f/

In
v

ar
ea

:
38

4.
00

00
00

D
at

a
ar

ri
va

l
ti

m
e

-8
.0

3
N

et
sw

it
ch

in
g

p
ow

er
=

2.
64

78
m
W

(6
6%

)

N
et

In
te

rc
on

n
ec

t
ar

ea
:4

51
.5

80
61

3
S
la

ck
(M

E
T

)
T

ot
al

d
y
n
am

ic
p

ow
er

=
3.

99
44

m
W

(1
00

%
)

T
ot

al
ar

ea
:2

58
8.

08
06

13
1

C
el

l
le

ak
ag

e
p

ow
er

=
36

2.
72

82
n
W

64
C

om
b
in

at
io

n
al

ar
ea

:
39

86
.5

00
00

0
D

at
a

re
q
u
ir

ed
ti

m
e

8.
05

C
el

l
in

te
rn

al
p

ow
er

=
2.

50
88

m
W

(3
2%

)

B
u
f/

In
v

ar
ea

:
71

8.
00

00
0

D
at

a
ar

ri
va

l
ti

m
e

-8
.0

5
N

et
sw

it
ch

in
g

p
ow

er
=

5.
25

51
m
W

(6
8%

)

N
et

In
te

rc
on

n
ec

t
ar

ea
:8

10
.4

49
53

9
S
la

ck
(M

E
T

)
T

ot
al

d
y
n
am

ic
p

ow
er

=
7.

76
39

m
W

(1
00

%
)

T
ot

al
ar

ea
:4

79
6.

94
95

39
1

C
el

l
le

ak
ag

e
p

ow
er

=
65

9.
36

9
n
W

12
8

C
om

b
in

at
io

n
al

ar
ea

:
82

56
.0

00
00

0
D

at
a

re
q
u
ir

ed
ti

m
e

8.
05

C
el

l
in

te
rn

al
p

ow
er

=
5.

33
54

m
W

(3
3%

)

B
u
f/

In
v

ar
ea

:
17

44
.5

00
00

0
D

at
a

ar
ri

va
l

ti
m

e
-8

.0
5

N
et

sw
it

ch
in

g
p

ow
er

=
10

.6
00

2
m
W

(6
7%

)

N
et

In
te

rc
on

n
ec

t
ar

ea
:1

70
3.

80
50

73
S
la

ck
(M

E
T

)
T

ot
al

d
y
n
am

ic
p

ow
er

=
15

.9
35

6
m
W

(1
00

%
)

T
ot

al
ar

ea
:9

95
9.

80
50

73
1

C
el

l
le

ak
ag

e
p

ow
er

=
1.

38
80

n
W

206
Synopsys Design Compiler Synthesis Results of Full-Adder-Based

Scaler

T
a
b
l
e
B
.3

:
S

y
n

op
sy

s
D

C
sy

n
th

esis
resu

lts
of

C
h

an
g

scaler-S
cale

3

n
A

rea
D

elay
P

ow
er

8
C

om
b
in

ation
al

area:
429.500000

D
ata

req
u
ired

tim
e

8.05
C

ell
in

tern
al

p
ow

er
=

235.5096
µ
W

(27%
)

B
u
f/In

v
area:

71.000000
D

ata
arrival

tim
e

-8.03
N

et
sw

itch
in

g
p

ow
er

=
649.0065

µ
W

(73%
)

N
et

In
tercon

n
ect

area:99.710729
S
lack

(M
E

T
)

T
otal

d
y
n
am

ic
p

ow
er

=
884.5161

µ
W

(100%
)

T
otal

area:529.2107291
C

ell
leakage

p
ow

er=
70.2844

n
W

16
C

om
b
in

ation
al

area:
1222.750000

D
ata

req
u
ired

tim
e

8.05
C

ell
in

tern
al

p
ow

er
=

567.4903
µ
W

(30%
)

B
u
f/In

v
area:

237.000000
D

ata
arrival

tim
e

-8.04
N

et
sw

itch
in

g
p

ow
er

=
1.3140

m
W

(70%
)

N
et

In
tercon

n
ect

area:294.316377
S
lack

(M
E

T
)

T
otal

d
y
n
am

ic
p

ow
er

=
1.8815

m
W

(100%
)

T
otal

area:1517.0663771
C

ell
leakage

p
ow

er=
171.6459

n
W

32
C

om
b
in

ation
al

area:
2516.750000

D
ata

req
u
ired

tim
e

8.05
C

ell
in

tern
al

p
ow

er
=

1.1131
m
W

(30%
)

B
u
f/In

v
area:

553.500000
D

ata
arrival

tim
e

-8.05
N

et
sw

itch
in

g
p

ow
er

=
2.5529

m
W

(70%
)

N
et

In
tercon

n
ect

area:570.948027
S
lack

(M
E

T
)

T
otal

d
y
n
am

ic
p

ow
er

=
3.6661

m
W

(100%
)

T
otal

area:3087.6980271
C

ell
leakage

p
ow

er=
354.1719

n
W

64
C

om
b
in

ation
al

area:
5292.750000

D
ata

req
u
ired

tim
e

8.05
C

ell
in

tern
al

p
ow

er
=

2.4024
m
W

(32%
)

B
u
f/In

v
area:

1227.000000
D

ata
arrival

tim
e

-8.53
N

et
sw

itch
in

g
p

ow
er

=
5.1059

m
W

(68%
)

N
et

In
tercon

n
ect

area:1157.999501
slack

(V
IO

L
A

T
E

D
)

-0.48
T

otal
d
y
n
am

ic
p

ow
er

=
7.5083

m
W

(100%
)

T
otal

area:6450.7495011
C

ell
leakage

p
ow

er=
761.9608

n
W

128
C

om
b
in

ation
al

area:
9959.000000

D
ata

req
u
ired

tim
e

8.05
C

ell
in

tern
al

p
ow

er
=

4.4119
m
W

(3%
)

B
u
f/In

v
area:

2223.000000
D

ata
arrival

tim
e

-9.72
N

et
sw

itch
in

g
p

ow
er

=
10.0173

m
W

(69%
)

N
et

In
tercon

n
ect

area:2264.369268
slack

(V
IO

L
A

T
E

D
)

-1.67
T

otal
d
y
n
am

ic
p

ow
er

=
14.4292

m
W

(100%
)

T
otal

area:12223.3692681
C

ell
leakage

p
ow

er=
1.4141

µ
W

207

T
a
b
l
e
B
.4

:
S

y
n

op
sy

s
D

C
sy

n
th

es
is

re
su

lt
s

of
C

h
an

g
sc

al
er

n
A

re
a

D
el

ay
P

ow
er

8
C

om
b
in

at
io

n
al

ar
ea

:
82

8.
50

00
00

D
at

a
re

q
u
ir

ed
ti

m
e

8.
05

C
el

l
in

te
rn

al
p

ow
er

=
3.

75
00

m
W

(6
9%

)

B
u
f/

In
v

ar
ea

:
12

4.
50

00
00

D
at

a
ar

ri
va

l
ti

m
e

-8
.0

5
N

et
sw

it
ch

in
g

p
ow

er
=

1.
69

35
m
W

(3
1%

)

N
et

In
te

rc
on

n
ec

t
ar

ea
:3

98
.7

37
70

8
S
la

ck
(M

E
T

)
T

ot
al

d
y
n
am

ic
p

ow
er

=
5.

44
35

m
W

(1
00

%
)

T
ot

al
ar

ea
:2

61
8.

98
77

08
1

C
el

l
le

ak
ag

e
p

ow
er

=
40

6.
23

21
n
W

16
C

om
b
in

at
io

n
al

ar
ea

:
18

34
.7

50
00

0
D

at
a

re
q
u
ir

ed
ti

m
e

8.
05

C
el

l
in

te
rn

al
p

ow
er

=
7.

25
66

m
W

(6
9%

)

B
u
f/

In
v

ar
ea

:
26

8.
75

00
00

D
at

a
ar

ri
va

l
ti

m
e

-8
.0

4
N

et
sw

it
ch

in
g

p
ow

er
=

3.
32

35
m
W

(3
1%

)

N
et

In
te

rc
on

n
ec

t
ar

ea
:9

11
.5

56
70

4
S
la

ck
(M

E
T

)
T

ot
al

d
y
n
am

ic
p

ow
er

=
10

.5
80

1
m
W

(1
00

%
)

T
ot

al
ar

ea
:5

39
2.

05
67

04
1

C
el

l
le

ak
ag

e
p

ow
er

=
83

6.
94

42
n
W

32
C

om
b
in

at
io

n
al

ar
ea

:
58

31
.0

00
00

0
D

at
a

re
q
u
ir

ed
ti

m
e

8.
05

C
el

l
in

te
rn

al
p

ow
er

=
3.

13
09

m
W

(2
9%

)

B
u
f/

In
v

ar
ea

:
12

34
.5

00
00

0
D

at
a

ar
ri

va
l

ti
m

e
-8

.0
5

N
et

sw
it

ch
in

g
p

ow
er

=
7.

55
83

m
W

(7
1%

)

N
et

In
te

rc
on

n
ec

t
ar

ea
:1

31
8.

31
75

76
S
la

ck
(M

E
T

)
T

ot
al

d
y
n
am

ic
p

ow
er

=
10

.6
89

3
m
W

(1
00

%
)

T
ot

al
ar

ea
:7

14
9.

31
75

76
1

C
el

l
le

ak
ag

e
p

ow
er

=
93

6.
12

53
n
W

64
C

om
b
in

at
io

n
al

ar
ea

:
11

40
6.

50
00

00
D

at
a

re
q
u
ir

ed
ti

m
e

8.
05

C
el

l
in

te
rn

al
p

ow
er

=
6.

21
38

m
W

(2
9%

)

B
u
f/

In
v

ar
ea

:
26

25
.7

50
00

0
D

at
a

ar
ri

va
l

ti
m

e
-8

.7
3

N
et

sw
it

ch
in

g
p

ow
er

=
15

.0
22

7
m
W

(7
1%

)

N
et

In
te

rc
on

n
ec

t
ar

ea
:2

48
8.

69
50

20
sl

ac
k

(V
IO

L
A

T
E

D
)

-0
.6

8
T

ot
al

d
y
n
am

ic
p

ow
er

=
21

.2
36

6
m
W

(1
00

%
)

T
ot

al
ar

ea
:1

38
95

.1
95

02
01

C
el

l
le

ak
ag

e
p

ow
er

=
1.

81
63

µ
W

12
8

C
om

b
in

at
io

n
al

ar
ea

:
21

71
5.

50
00

00
D

at
a

re
q
u
ir

ed
ti

m
e

8.
05

C
el

l
in

te
rn

al
p

ow
er

=
12

.1
56

3
m
W

(2
9%

)

B
u
f/

In
v

ar
ea

:
51

10
.2

50
00

0
D

at
a

ar
ri

va
l

ti
m

e
-9

.9
0

N
et

sw
it

ch
in

g
p

ow
er

=
30

.0
37

7
m
W

(7
1%

)

N
et

In
te

rc
on

n
ec

t
ar

ea
:4

87
2.

01
02

86
sl

ac
k

(V
IO

L
A

T
E

D
)

-1
.8

5
T

ot
al

d
y
n
am

ic
p

ow
er

=
42

.1
94

0
m
W

(1
00

%
)

T
ot

al
ar

ea
:2

65
87

.5
10

28
61

C
el

l
le

ak
ag

e
p

ow
er

=
3.

52
12

µ
W

208
Synopsys Design Compiler Synthesis Results of Full-Adder-Based

Scaler

C
Tcl Scripts for Synthesising Initial Binary

and the Proposed RNS-based Image

Processors Using Synopsys DC

C.1 Synopsys DC Setup File-Setup.tcl

set search_path "/home/.../models

/home/.../work /home/.../src /home/.../db /"

set link_library "* saed90nm_typ_ht.db"

set target_library "saed90nm_typ_ht.db"

alias h history

alias rc "report_constraint -all_violators"

define_design_lib WORK -path "/home/.../work"

set source_path "/home/.../src/"

set report_path "/home/.../reports/"

set script_path "/home/.../scripts/"

set db_path "/home/.../db/"

209

210
Tcl Scripts for Synthesising Initial Binary and the Proposed

RNS-based Image Processors Using Synopsys DC

C.2 Synopsys DC Constraints File-Defaults.con

Define system clock period

set clk_period 10

Create real clock if clock port is found

if {[sizeof_collection [get_ports clk]] > 0} {

set clk_name clk

create_clock -period $clk_period clk

}

Create virtual clock if clock port is not found

if {[sizeof_collection [get_ports clk]] == 0} {

set clk_name vclk

create_clock -period $clk_period -name vclk

}

Apply default drive strengths and typical loads for I/O ports

set_load 1.5 [all_outputs]

set_driving_cell -no_design_rule -lib_cell INVX0 [all_inputs]

If real clock, set infinite drive strength

if {[sizeof_collection [get_ports clk]] > 0} {

set_drive 0 clk

}

Apply default timing constraints for modules

set_input_delay 1.2 {vblocks[3] vblocks[2] vblocks[1] vblocks[0] x[24] x[23]

x[22] x[21] x[20] x[19] x[18] x[17] x[16] x[15] x[14] x[13] x[12] x[11] x[10]

x[9] x[8] x[7] x[6] x[5] x[4] x[3] x[2] x[1] x[0] reset} -clock $clk_name

set_output_delay 1.5 [all_outputs] -clock $clk_name

set_clock_uncertainty -setup 0.45 $clk_name

Set operating conditions

set_operating_conditions TYPICAL

Turn on auto wire load selection

(library must support this feature)

set auto_wire_load_selection true

D
Tcl Scripts for Multi-Voltage Synthesis of

Initial Binary and the Proposed RNS-Based

Image Processors Using Synopsys DC

Topographical Mode

D.1 Synopsys DC Topographical Mode Setup File-

Setup topo.tcl

source "/home/.../scripts/path.tcl"

analyze -library WORK -format vhdl

{/home/.../src/dwt_param.vhd

/home/.../src/Modular_lib.vhd

/home/.../src/RNS2D.vhd

/home/.../src/scale.vhd

/home/.../src/ram.vhd

/home/.../src/mux.vhd

/home/.../src/mem.vhd

211

212

Tcl Scripts for Multi-Voltage Synthesis of Initial Binary and the
Proposed RNS-Based Image Processors Using Synopsys DC

Topographical Mode

/home/.../src/invert.vhd

/home/.../src/flip_flop.vhd

/home/.../src/extender.vhd

/home/.../src/demux.vhd

/home/.../src/control_logic.vhd

/home/.../src/cdf97.vhd

/home/.../src/OR_gate.vhd}

elaborate BINARY -architecture BEHAVIORAL -library WORK -update

link

set upf_create_implicit_supply_sets false

source -verbose -echo /home/.../inputs/binary.upf

source -verbose -echo /home/.../scripts/voltage.tcl

source -verbose -echo /home/.../inputs/chiptop+_s0.sdc

compile_ultra

source -verbose -echo /home/.../scripts/report.tcl

uplevel #0 { report_power -analysis_effort medium -verbose }

D.2 Multi-voltage Setting Tcl File for Topographi-

cal Mode Synthesis -Voltage.tcl

set_voltage 0.7 -obj {VDDGS}

set_voltage 1.08 -obj {VDDXS}

set_voltage 1.08 -obj {VDD}

set_voltage 0.000 -obj {VSS}

name_format -level_shift_prefix "LS_"

set_operating_conditions -max TYPICAL -min TYPICAL

D.3 UPF File for Compiling the Proposed RNS-

based Image Processor Using Synopsys DC To-

pographical Mode-binary.upf

CREATE POWER DOMAIS

######################

create_power_domain TOP

D.3 UPF File for Compiling the Proposed RNS-based Image Processor
Using Synopsys DC Topographical Mode-binary.upf 213

create_power_domain CELL -elements {XLXI_1 XLXI_4 XLXI_5

XLXI_43 XLXI_44 XLXI_70 XLXI_72 XLXI_74 XLXI_75 XLXI_76}

create_power_domain EXTENDER -elements {XLXI_6 XLXI_7}

TOPLEVEL CONNECTIONS

#######################

VDD

create_supply_port VDD

create_supply_net VDD -domain TOP

connect_supply_net VDD -ports VDD

VSS

create_supply_port VSS

create_supply_net VSS -domain TOP

create_supply_net VSS -domain EXTENDER -reuse

create_supply_net VSS -domain CELL -reuse

connect_supply_net VSS -ports VSS

create_supply_net VDD -domain EXTENDER -reuse

create_supply_net VDD -domain CELL -reuse

VDDG

create_supply_port VDDGS

create_supply_net VDDGS -domain TOP

create_supply_net VDDGS -domain EXTENDER -reuse

connect_supply_net VDDGS -ports VDDGS

VDDX

create_supply_port VDDXS

create_supply_net VDDXS -domain TOP

create_supply_net VDDXS -domain CELL -reuse

connect_supply_net VDDXS -ports VDDXS

PRIMARY POWER NETS

#####################

set_domain_supply_net TOP -primary_power_net VDD -primary_ground_net VSS

set_domain_supply_net CELL -primary_power_net VDDXS -primary_ground_net VSS

set_domain_supply_net EXTENDER -primary_power_net VDDGS -primary_ground_net VSS

ADD PORT STATE INFO

#####################

add_port_state VDD -state {HV 1.08}

214

Tcl Scripts for Multi-Voltage Synthesis of Initial Binary and the
Proposed RNS-Based Image Processors Using Synopsys DC

Topographical Mode

add_port_state VDDXS -state {HV 1.08}

add_port_state VDDGS -state {LV 0.7}

add_port_state VSS -state {GND 0}

E
Synopsys VCS-MX Tcl Scripts for

Simulation of the Proposed RNS-based

Image Processor

E.1 Synopsys DVE Setup File-Setup DVE.tcl

VCS_HOME=/usr/synopsys/vcs

export VCS_HOME

PATH=$VCS_HOME/bin:$PATH

export PATH

echo $PATH

/usr/synopsys/vcs/bin:/usr/kerberos/sbin:

/usr/kerberos/bin:/usr/local/sbin:/usr/local/bin:

/sbin:/bin:/usr/sbin:/usr/bin:/usr/X11R6/bin:/root/bin

cd /usr/synopsys/vcs/bin/

vhdlan -full64 /home/.../src/test_bench.vhd

vcs -full64 filter2d_filter2d_sch_tb -debug_all

./simv -gui

215

216
Synopsys VCS-MX Tcl Scripts for Simulation of the Proposed

RNS-based Image Processor

E.2 Tcl File Used to Generate VCD File

./simv -ucli

Synopsys VCS MX Compiled Simulator(simv)

Version G-2012.09 -- Aug 24, 2012

Copyright (c) 1991-2012 by Synopsys Inc.

ALL RIGHTS RESERVED

ucli% dump -file temp.vpd -type vpd

VPD0

ucli% dump -add LEGALL_TEST/uut/* -fid VPD0

1

ucli% run 600000 ns

600000 NS

ucli% dump -close

ucli% exit

ls *.vpd

common.vpd inter.vpd temp.vpd

vpd2vcd temp.vpd temp.vcd

##

VCD+ to VCD Translator

Copyright (c) 1991-2012 by Synopsys Inc.

#############Version : G-2012.09_Full64 ############

Done with vcd+ hierarchy read.

Done with vcd hierarchy write.

Done writing vcd value changes.

Done

F
Synopsys PrimeTime PX Tcl Scripts for

Multi-voltage Power Analysis of the

Proposed RNS-based Image Processor

F.1 Tcl Script for PrimeTime PX Post Lay Power

Analysis

source "/home/.../post_lay/scripts/setup.tcl"

set power_enable_analysis TRUE

set power_analysis_mode time_based

read_ddc /home/.../db/RNS2D_MAPPED.ddc

current_design

link

remove_design -all

set power_enable_analysis TRUE

set power_analysis_mode time_based

set search_path "/home/.../ref/models /home/.../src /home/.../db ."

set target_library "saed90nm_typ_ht.db"

set link_library [concat $target_library "*"]

217

218
Synopsys PrimeTime PX Tcl Scripts for Multi-voltage Power Analysis

of the Proposed RNS-based Image Processor

read_ddc /home/.../db/RNS2D_MAPPED.ddc

current_design

link

read_sdc /home/.../db/RNS2D.sdc

check_timing

update_timing

update_power

write_sdc > /home/asafari/Prj/final/db/RNS2D_pt.sdc

G
Synopsys DC Report of Post Compile UPF

of the Proposed RNS-based Image Processor

G.1 Visual UPF - Post Compile UPF

create_power_domain TOP -include_scope

create_power_domain CELL -elements {XLXI_1 XLXI_4 XLXI_5

XLXI_43 XLXI_70 XLXI_72 XLXI_74 XLXI_75 XLXI_76 XLXI_44 }

create_power_domain EXTENDER -elements {XLXI_6 XLXI_7 }

create_supply_port VDD -direction in

create_supply_net VDD -domain TOP

connect_supply_net VDD -ports VDD

create_supply_port VSS -direction in

create_supply_net VSS -domain TOP

create_supply_net VSS -domain EXTENDER -reuse

create_supply_net VSS -domain CELL -reuse

connect_supply_net VSS -ports VSS

create_supply_net VDD -domain EXTENDER -reuse

create_supply_net VDD -domain CELL -reuse

create_supply_port VDDGS -direction in

create_supply_net VDDGS -domain TOP

create_supply_net VDDGS -domain EXTENDER -reuse

219

220
Synopsys DC Report of Post Compile UPF of the Proposed RNS-based

Image Processor

connect_supply_net VDDGS -ports VDDGS

create_supply_port VDDXS -direction in

create_supply_net VDDXS -domain TOP

create_supply_net VDDXS -domain CELL -reuse

connect_supply_net VDDXS -ports VDDXS

set_domain_supply_net TOP -primary_power_net VDD -primary_ground_net VSS

set_domain_supply_net CELL -primary_power_net VDDXS -primary_ground_net VSS

set_domain_supply_net EXTENDER -primary_power_net VDDGS -primary_ground_net VSS

add_port_state VDD -state {HV 1.080000}

add_port_state VDDXS -state {HV 1.080000}

add_port_state VDDGS -state {LV 0.700000}

add_port_state VSS -state {GND 0.000000}

name_format -isolation_suffix _UPF_ISO -level_shift_prefix LS_ -level_shift_suffix _UPF_LS

set derived_upf true

connect_supply_net VDD -ports {

XLXI_6/LS_rw_UPF_LS/VDDH LS_ip1[0]_UPF_LS/VDDH LS_ip1[1]_UPF_LS/VDDH

LS_ip1[2]_UPF_LS/VDDH LS_ip1[3]_UPF_LS/VDDH LS_ip1[4]_UPF_LS/VDDH

LS_ip1[5]_UPF_LS/VDDH LS_ip1[6]_UPF_LS/VDDH LS_ip1[7]_UPF_LS/VDDH

LS_ip1[8]_UPF_LS/VDDH LS_ip1[9]_UPF_LS/VDDH LS_ip0[0]_UPF_LS/VDDH

LS_ip0[1]_UPF_LS/VDDH LS_ip0[2]_UPF_LS/VDDH LS_ip0[3]_UPF_LS/VDDH

LS_ip0[4]_UPF_LS/VDDH LS_ip0[5]_UPF_LS/VDDH LS_ip0[6]_UPF_LS/VDDH

LS_ip0[7]_UPF_LS/VDDH LS_ip0[8]_UPF_LS/VDDH LS_ip0[9]_UPF_LS/VDDH

XLXI_6/LS_en_UPF_LS/VDDH XLXI_7/LS_en_UPF_LS/VDDH

XLXI_7/LS_rw_UPF_LS/VDDH XLXI_6/LS_mode[0]_UPF_LS/VDDH

XLXI_6/LS_mode[1]_UPF_LS/VDDH XLXI_7/LS_mode[0]_UPF_LS/VDDH XLXI_7/LS_mode[1]_UPF_LS/VDDH

XLXI_6/LS_reset_UPF_LS/VDDH XLXI_7/LS_reset_UPF_LS/VDDH

XLXI_6/LS_din[5]_UPF_LS/VDDH XLXI_6/LS_din[6]_UPF_LS/VDDH

XLXI_6/LS_din[7]_UPF_LS/VDDH XLXI_6/LS_din[8]_UPF_LS/VDDH

XLXI_6/LS_din[9]_UPF_LS/VDDH XLXI_6/LS_din[0]_UPF_LS/VDDH

XLXI_6/LS_din[1]_UPF_LS/VDDH XLXI_6/LS_din[2]_UPF_LS/VDDH

XLXI_6/LS_din[3]_UPF_LS/VDDH XLXI_6/LS_din[4]_UPF_LS/VDDH

XLXI_7/LS_din[5]_UPF_LS/VDDH XLXI_7/LS_din[6]_UPF_LS/VDDH

XLXI_7/LS_din[7]_UPF_LS/VDDH XLXI_7/LS_din[8]_UPF_LS/VDDH

XLXI_7/LS_din[9]_UPF_LS/VDDH XLXI_7/LS_din[0]_UPF_LS/VDDH

XLXI_7/LS_din[1]_UPF_LS/VDDH XLXI_7/LS_din[2]_UPF_LS/VDDH

XLXI_7/LS_din[3]_UPF_LS/VDDH XLXI_7/LS_din[4]_UPF_LS/VDDH}

connect_supply_net VSS -ports { XLXI_6/LS_rw_UPF_LS/VSS

LS_ip1[0]_UPF_LS/VSS LS_ip1[1]_UPF_LS/VSS LS_ip1[2]_UPF_LS/VSS

LS_ip1[3]_UPF_LS/VSS LS_ip1[4]_UPF_LS/VSS LS_ip1[5]_UPF_LS/VSS

LS_ip1[6]_UPF_LS/VSS LS_ip1[7]_UPF_LS/VSS LS_ip1[8]_UPF_LS/VSS

LS_ip1[9]_UPF_LS/VSS LS_ip0[0]_UPF_LS/VSS LS_ip0[1]_UPF_LS/VSS

LS_ip0[2]_UPF_LS/VSS LS_ip0[3]_UPF_LS/VSS LS_ip0[4]_UPF_LS/VSS

LS_ip0[5]_UPF_LS/VSS LS_ip0[6]_UPF_LS/VSS LS_ip0[7]_UPF_LS/VSS

G.1 Visual UPF - Post Compile UPF 221

LS_ip0[8]_UPF_LS/VSS LS_ip0[9]_UPF_LS/VSS XLXI_6/LS_en_UPF_LS/VSS

XLXI_7/LS_en_UPF_LS/VSS XLXI_7/LS_rw_UPF_LS/VSS

XLXI_6/LS_mode[0]_UPF_LS/VSS XLXI_6/LS_mode[1]_UPF_LS/VSS

XLXI_7/LS_mode[0]_UPF_LS/VSS XLXI_7/LS_mode[1]_UPF_LS/VSS

XLXI_6/LS_reset_UPF_LS/VSS XLXI_7/LS_reset_UPF_LS/VSS

XLXI_6/LS_din[5]_UPF_LS/VSS

XLXI_6/LS_din[6]_UPF_LS/VSS XLXI_6/LS_din[7]_UPF_LS/VSS

XLXI_6/LS_din[8]_UPF_LS/VSS XLXI_6/LS_din[9]_UPF_LS/VSS

XLXI_6/LS_din[0]_UPF_LS/VSS XLXI_6/LS_din[1]_UPF_LS/VSS

XLXI_6/LS_din[2]_UPF_LS/VSS XLXI_6/LS_din[3]_UPF_LS/VSS

XLXI_6/LS_din[4]_UPF_LS/VSS XLXI_7/LS_din[5]_UPF_LS/VSS

XLXI_7/LS_din[6]_UPF_LS/VSS XLXI_7/LS_din[7]_UPF_LS/VSS

XLXI_7/LS_din[8]_UPF_LS/VSS XLXI_7/LS_din[9]_UPF_LS/VSS

XLXI_7/LS_din[0]_UPF_LS/VSS XLXI_7/LS_din[1]_UPF_LS/VSS

XLXI_7/LS_din[2]_UPF_LS/VSS XLXI_7/LS_din[3]_UPF_LS/VSS

XLXI_7/LS_din[4]_UPF_LS/VSS}

connect_supply_net VDDGS -ports { XLXI_6/LS_rw_UPF_LS/VDDL

LS_ip1[0]_UPF_LS/VDDL LS_ip1[1]_UPF_LS/VDDL LS_ip1[2]_UPF_LS/VDDL

LS_ip1[3]_UPF_LS/VDDL LS_ip1[4]_UPF_LS/VDDL LS_ip1[5]_UPF_LS/VDDL

LS_ip1[6]_UPF_LS/VDDL LS_ip1[7]_UPF_LS/VDDL LS_ip1[8]_UPF_LS/VDDL

LS_ip1[9]_UPF_LS/VDDL LS_ip0[0]_UPF_LS/VDDL LS_ip0[1]_UPF_LS/VDDL

LS_ip0[2]_UPF_LS/VDDL LS_ip0[3]_UPF_LS/VDDL LS_ip0[4]_UPF_LS/VDDL

LS_ip0[5]_UPF_LS/VDDL LS_ip0[6]_UPF_LS/VDDL LS_ip0[7]_UPF_LS/VDDL

LS_ip0[8]_UPF_LS/VDDL LS_ip0[9]_UPF_LS/VDDL XLXI_6/LS_en_UPF_LS/VDDL

XLXI_7/LS_en_UPF_LS/VDDL XLXI_7/LS_rw_UPF_LS/VDDL

XLXI_6/LS_mode[0]_UPF_LS/VDDL XLXI_6/LS_mode[1]_UPF_LS/VDDL

XLXI_7/LS_mode[0]_UPF_LS/VDDL XLXI_7/LS_mode[1]_UPF_LS/VDDL

XLXI_6/LS_reset_UPF_LS/VDDL XLXI_7/LS_reset_UPF_LS/VDDL

XLXI_6/LS_din[5]_UPF_LS/VDDL XLXI_6/LS_din[6]_UPF_LS/VDDL

XLXI_6/LS_din[7]_UPF_LS/VDDL XLXI_6/LS_din[8]_UPF_LS/VDDL

XLXI_6/LS_din[9]_UPF_LS/VDDL XLXI_6/LS_din[0]_UPF_LS/VDDL

XLXI_6/LS_din[1]_UPF_LS/VDDL XLXI_6/LS_din[2]_UPF_LS/VDDL

XLXI_6/LS_din[3]_UPF_LS/VDDL XLXI_6/LS_din[4]_UPF_LS/VDDL

XLXI_7/LS_din[5]_UPF_LS/VDDL XLXI_7/LS_din[6]_UPF_LS/VDDL

XLXI_7/LS_din[7]_UPF_LS/VDDL XLXI_7/LS_din[8]_UPF_LS/VDDL

XLXI_7/LS_din[9]_UPF_LS/VDDL XLXI_7/LS_din[0]_UPF_LS/VDDL

XLXI_7/LS_din[1]_UPF_LS/VDDL XLXI_7/LS_din[2]_UPF_LS/VDDL

XLXI_7/LS_din[3]_UPF_LS/VDDL XLXI_7/LS_din[4]_UPF_LS/VDDL}

set derived_upf false

Visual UPF added these lines...

#Power State Table

create_pst pst -supplies { VDD VDDXS VDDGS VSS }

222
Synopsys DC Report of Post Compile UPF of the Proposed RNS-based

Image Processor

add_pst_state s0 -pst pst -state { HV HV LV GND }

H
Synopsys IC Compiler Tcl Scripts for

Physical Implementation of the Proposed

RNS-based Image Processor

H.1 Synopsys IC Compiler Setup File-Setup icc.tcl

set search_path "/home/.../icc/ref/models /home/.../icc/work /home/.../icc/source /"

set link_library "* saed90nm_typ_ht.db"

set target_library "saed90nm_typ_ht.db"

alias h history

alias rc "report_constraint -all_violators"

#define_design_lib WORK -path "/home/.../icc/work"

set source_path "/home/.../icc/source/"

set report_path "/home/.../icc/reports/"

set script_path "/home/.../icc/scripts/"

set db_path "/home/.../icc/db/"

223

224
Synopsys IC Compiler Tcl Scripts for Physical Implementation of the

Proposed RNS-based Image Processor

H.2 Creat MilkyWay Library “RNS2D”

create_mw_lib -technology /home/.../icc/ref/techfiles/saed90nm_icc_1p9m.tf

-mw_reference_library {/home/.../icc/ref/saed90nm_fr }

-hier_separator {/}

-bus_naming_style {[%d]}

-open ./RNS2D

H.3 Set TLU+ Files

set_tlu_plus_files -max_tluplus

/home/.../icc/ref/tluplus/saed90nm_1p9m_1t_Cmax.tluplus -min_tluplus

/home/.../icc/ref/tluplus/saed90nm_1p9m_1t_Cmin.tluplus -tech2itf_map

/home/.../icc/ref/tluplus/tech2itf.map

H.4 Import the Design and Constraints File

import_designs -format ddc {/home/.../icc/source/RNS2D.ddc}

read_sdc -version Latest "/home/.../icc/source/RNS2D.sdc"

H.5 Initialise Floorplan

create_floorplan -core_utilization 0.35 -left_io2core 1 -bottom_io2core 1

-right_io2core 1 -top_io2core 1

H.6 Set Power and Ground Nets and Pins

set power "VDD"

set ground "VSS"

set powerPort "VDD"

set groundPort "VSS"

set mw_logic0_net "VSS"

set mw_logic1_net "VDD"

derive_pg_connection -power_net VDD

-ground_net VSS

H.7 Add Rectangular Power and Ground Rings 225

-power_pin VDD

-ground_pin VSS

H.7 Add Rectangular Power and Ground Rings

create_rectangular_rings -nets {VSS VDD} -left_offset 0.2

-left_segment_layer M4 -right_offset 0.2

-right_segment_layer M4 -bottom_offset 0.2

-bottom_segment_layer M3 -extend_bh -top_offset 0.2 -top_segment_layer M3

H.8 Create Power Straps

create_power_straps -direction horizontal -nets {VDD}

-layer M4 -configure groups_and_step

-num_groups 28 -step 3

create_power_straps -direction horizontal -start_at 1.5

-nets {VSS} -layer M4 -configure groups_and_step

-num_groups 28 -step 3

create_power_straps -direction vertical -nets {VDD}

-layer M3 -configure groups_and_step

-num_groups 28 -step 3

create_power_straps -direction vertical -start_at 1.5 -nets {VSS}

-layer M3 -configure groups_and_step

-num_groups 28 -step 3

H.9 Core Placement and Optimisation

place_opt -effort high -power -continue_on_missing_scandef -congestion

H.10 Clock Tree Synthesis

clock_opt -only_psyn -continue_on_missing_scandef

226
Synopsys IC Compiler Tcl Scripts for Physical Implementation of the

Proposed RNS-based Image Processor

H.11 Preroute Standard Cells

preroute_standard_cells -nets {VDD VSS} -connect horizontal

-port_filter_mode off -cell_master_filter_mode off -cell_instance_filter_mode off

-voltage_area_filter_mode off -route_type {P/G Std. Cell Pin Conn}

H.12 Core Route and Optimisation

route_opt -effort low

H.13 Insert Fillers

insert_stdcell_filler

H.14 Verification

verify_drc

verify_lvs

H.15 Save the File

write_verilog -no_physical_only_cells /home/.../icc/results/RNS2D_fm.v

write_parasitics -output {/home/.../icc/results/RNS2D.spf}

set_write_stream_options -map_layer /home/.../icc/ref/saed90nm.gdsout.map

-output_filling fill -child_depth 20

-output_outdated_fill -output_pin {text geometry}

write_stream -format gds -lib_name /home/.../icc/work/RNS2D -cells {RNS2D} RNS2D.gds

write_stream -format gds -lib_name /home/.../icc/work/RNS2D -cells {RNS2D } write_stream

I
Synopsys IC Compiler Reports for Physical

Implementation of the Proposed RNS-based

Image Processor

I.1 Linking the Design

Linking design ‘‘RNS2D’’ Using the following designs and libraries:

{*} (129 designs) ../icc/RNS2D_MAPPED.ddc,etc

saed90nm_typ_ht (library) ../icc/ref/models/saed90nm_typ_ht.db

Info: Creating auto CEL.

Preparing data for query...................

Information: Performing CEL netlist consistency check. (MWDC-118)

Information: CEL consistency check PASSED. (MWDC-119)

Information: Saved design named RNS2D. (UIG-5)

Preparing data for query...................

1

227

228
Synopsys IC Compiler Reports for Physical Implementation of the

Proposed RNS-based Image Processor

I.2 Sanity Check on TLU+ Files

1. Checking the conducting layer names in ITF and mapping file ...

{[} Passed! {]}

2. Checking the via layer names in ITF and mapping file ... {[} Passed!

{]}

3. Checking the consistency of Min Width and Min Spacing between MW-tech

and ITF ... {[} Passed! {]}

----------------- Check Ends ------------------

TLUPlus based RC computation is enabled. (RCEX-141)

The distance unit in Capacitance and Resistance is 1 micron. (RCEX-007)

The RC model used is TLU+. (RCEX-015)

I.3 Floorplanning

Planner Summary:

This floorplan is created by using tile name (unit).

Row Direction = HORIZONTAL

Control Parameter = Aspect Ratio

Core Utilization = 0.350

Number Of Rows = 1924

Core Width = 5543.68

Core Height = 5541.12

Aspect Ratio = 1.000

Double Back ON

Flip First Row = YES

Start From First Row = YES

Planner run through successfully.

I.4 Placement

Beginning Coarse Placement

Information:

I.5 Chip Summary 229

Running stand-alone coarse placer in a separate process using temp directory ’/tmp’.

Warning: Scan DEF information is required. (PSYN-1099)

...13%...25%...38%...50%...63%...75%...88%...100% done.

Coarse Placement Complete

Information: connected 716661 power ports and 716661 ground ports

I.5 Chip Summary

**

Report : Chip Summary

Design : RNS2D

Version: G-2012.06-ICC-SP3

**

Std cell utilization: 35.28% (11838374/(33558849-0))

(Non-fixed + Fixed)

Std cell utilization: 35.28% (11838374/(33558849-0))

(Non-fixed only)

Chip area: 33558849 sites, bbox (1.00 1.00 5562.28 5562.28) um

Std cell area: 11838374 sites, (non-fixed:11838374 fixed:0)

709901 cells, (non-fixed:709901 fixed:0)

Macro cell area: 0 sites

0 cells

Placement blockages: 0 sites, (excluding fixed std cells)

0 sites, (include fixed std cells & chimney area)

0 sites, (complete p/g net blockages)

Routing blockages: 0 sites, (partial p/g net blockages)

0 sites, (routing blockages and signal pre-route)

Lib cell count: 53

Avg. std cell width: 4.46 um

Site array: unit (width: 0.32 um, height: 2.88 um, rows: 1931)

Physical DB scale: 1000 db_unit = 1 um

I.6 Legalize Displacement

**

230
Synopsys IC Compiler Reports for Physical Implementation of the

Proposed RNS-based Image Processor

Report : pnet options

Design : RNS2D

Version: G-2012.06-ICC-SP3

**

--

Layer Blockage Min_width Min_height Via_additive Density

--

M1 none --- --- via additive ---

M2 none --- --- via additive ---

M3 none --- --- via additive ---

M4 none --- --- via additive ---

M5 none --- --- via additive ---

M6 none --- --- via additive ---

M7 none --- --- via additive ---

M8 none --- --- via additive ---

M9 none --- --- via additive ---

Legalizing 709901 illegal cells...

Starting legalizer.

Initial legalization: 100% (6 sec)

Optimizations pass 1: 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% (28.7 sec)

Optimizations pass 2: 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% (29.4 sec)

Optimizations pass 3: 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% (28.3 sec)

Legalization complete (106 total sec)

**

Report : Legalize Displacement

Design : RNS2D

Version: G-2012.06-ICC-SP3

**

avg cell displacement: 0.760 um (0.26 row height)

max cell displacement: 3.853 um (1.34 row height)

std deviation: 0.574 um (0.20 row height)

number of cell moved: 416 cells (out of 654321 cells)

Total 0 cells has large displacement (e.g. > 8.640 um or 3 row height)

Placement Optimization Complete

I.7 Clock Tree Summary

**

Report : qor

I.7 Clock Tree Summary 231

Design : RNS2D

Version: G-2012.06-ICC-SP3

**

Timing Path Group ’clk’

Levels of Logic: 62.00

Critical Path Length: 37.14

Critical Path Slack: 62.26

Critical Path Clk Period: 100.00

Total Negative Slack: 0.00

No. of Violating Paths: 0.00

Worst Hold Violation: 0.00

Total Hold Violation: 0.00

No. of Hold Violations: 0.00

Cell Count

Hierarchical Cell Count: 126

Hierarchical Port Count: 3571

Leaf Cell Count: 654321

Buf/Inv Cell Count: 36599

CT Buf/Inv Cell Count: 0

Combinational Cell Count: 423246

Sequential Cell Count: 231075

Macro Count: 0

Area

Combinational Area: 4904381.892862

Noncombinational Area:

5754479.545292

Buf/Inv Area: 418664.448485

Net Area: 6352950.951578

Net XLength : 25329066.00

Net YLength : 23133108.00

Cell Area: 10658861.438154

232
Synopsys IC Compiler Reports for Physical Implementation of the

Proposed RNS-based Image Processor

Design Area: 17011812.389732

Net Length : 48462176.00

Design Rules

Total Number of Nets: 934475

Nets With Violations: 0

Max Trans Violations: 0

Max Cap Violations: 0

ROPT: (SETUP) WNS: 0.0000 TNS: 0.0000 Number of Violating Path: 0

ROPT: (HOLD) WNS: 0.0000 TNS: 0.0000 Number of Violating Path: 0

ROPT: Number of DRC Violating Nets: 0

ROPT: Number of Route Violation: 0

1

I.8 Filler Cell Insertion

=== Filler Cell Insertion ======

PARAM: respectMacroPadding = FALSE

PARAM: respectPlacementBlockage = TRUE

Initializing Data Structure ...

Reading technology information ...

Technology table contains 9 routable metal layers

This is considered as a 9-metal-layer design

Reading library information from DB ...

Reading netlist information from DB ...

709087 placeable cells

0 cover cells

61 IO cells/pins

709148 cell instances

Sorting cells, nets, pins ...

net pin threshold = 33

Reading misc information ...

array <unit> has 0 vertical and 1931 horizontal rows

GRC ref loc X corrected

GRC ref loc Y corrected

227 pre-routes for placement blockage/checking

121642 pre-routes for map congestion calculation

I.9 Design Verification 233

Auto Set : first cut = vertical

Checking information read in ...

design style = Horizontal masters, Horizontal rows

Processing std cells for voltage threshold type...

Preprocessing design ...

processing macro cells (if any)

processing preroute blockages (if any)

processing hard placement blockages (if any)

processing soft placement blockages (if any)

Auto Set : first cut = vertical

processing std cells

Pass I: adjust placeable rows

Pass II: mark placed cells

Processing filler cells...

Hierarchical update for new filler cells

INFO: Fillers rules in use ...

** LR Filler Rules **

** VT Filler Rules **

=== End of Filler Cell Insertion ===

I.9 Design Verification

-- LVS START : --

Total area error in layer 0 is 0. Elapsed = 0:00:13, CPU = 0:00:13

Total area error in layer 1 is 0. Elapsed = 0:00:35, CPU = 0:00:35

Total area error in layer 2 is 0. Elapsed = 0:00:53, CPU = 0:00:53

Total area error in layer 3 is 0. Elapsed = 0:07:52, CPU = 0:07:52

Total area error in layer 4 is 0. Elapsed = 0:07:55, CPU = 0:07:55

Total area error in layer 5 is 0. Elapsed = 0:07:55, CPU = 0:07:55

Total area error in layer 6 is 0. Elapsed = 0:07:55, CPU = 0:07:55

Total area error in layer 7 is 0. Elapsed = 0:07:55, CPU = 0:07:55

Total area error in layer 8 is 0. Elapsed = 0:07:55, CPU = 0:07:55

Total area error in layer 9 is 0. Elapsed = 0:07:55, CPU = 0:07:55

Total area error in layer 10 is 0. Elapsed = 0:07:55, CPU = 0:07:55

Total area error in layer 11 is 0. Elapsed = 0:07:55, CPU = 0:07:55

Total area error in layer 12 is 0. Elapsed = 0:07:55, CPU = 0:07:55

Total area error in layer 13 is 0. Elapsed = 0:07:55, CPU = 0:07:55

Total area error in layer 14 is 0. Elapsed = 0:07:55, CPU = 0:07:55

Total area error in layer 15 is 0. Elapsed = 0:07:55, CPU = 0:07:55

234
Synopsys IC Compiler Reports for Physical Implementation of the

Proposed RNS-based Image Processor

List of Acronyms/Abbreviations

ASIC Application Specific Integrated Circuit

ATPG Automatic Test Pattern Generation

BDWT Bi-orthogonal Discrete Wavelet Transform

BK Brent-Kung

BPP Bits Per Pixel

BTC Block Truncation Coding

CDF Cumulative Distribution Function

CR Compression Ratio

CRT Chinese Remainder Theorem

CWT Continuous Wavelet Transform

DC Design Compiler

DCT Discrete Cosine Transform

DEF Design Exchange Format

DPCM Differential Pulse Code Modulation

DRC Design Rule Checking

DSP Digital Signal Processing

DVE Discovery Visual Environment

DWT Discrete Wavelet Transform

EAC End-Around Carry

EDA Electronic Design Automation

FA Full Adder

235

236 List of Acronyms/Abbreviations

FNT Fermat Number Transform

FPGA Field Programmable Gate Array

FSDB Fast Signal Data Base

FT Fourier Transform

GCD Greatest Common Divisor

GDSII Graphical Design Station Version II

GFNT Generalised Fermat Number Transform

GIF Graphics Interchange Format

GTECH Generic Technology

GUI Graphical User Interface

HDL Hardware Description Language

HH High High

HL High Low

IC Integrated Circuit

ICC IC Compiler

IEC International Electro-technical Commission

I/O Input/Output

IP Intellectual Property

ISO International Organisation for Standardisation

ITF Interconnect Technology Format

ITU International Telecommunication Union

JBIG Joint Bi-level Image Experts Group

JPEG Joint Photogaphic Expert Group

LEF Library Exchange Format

LH Low High

LL Low Low

LOCO-I LOw Complexity LOssless COmpression Image

LPD Low-Power Design

237

LS Level Shifter

LSB Least-Significant Bit

LUT Look-Up Table

LVS Layout Versus Schematic

LZW Lempel-Ziv-Welch

MCMM Multicorner-Multimode

MRC Mixed-Radix Converter

MSB Most-Significant Bit

MSE Mean Square Error

MV Multi-Voltage

NCF Netlist Constraints File

NTICE Number-Theory-based Image Compression Encryption

OASIS Open Artwork System Interchange Standard

PNG Portable Network Graphics

PSNR Peak Signal-to-Noise Ratio

PVT Process Voltage Temperature

QoR Quality of Results

RC Resistance Coefficient

RGB Red Green Blue

ROM Read-Only Memory

RNS Residue Number System

RTL Register Transfer Level

SDC Synopsys Design Constraints

SPEF Standard Parasitic Exchange Format

Tcl Tool Command Language

UCF User Constraints File

UPF Unified Power Format

VCD Values Change Dump

238 List of Acronyms/Abbreviations

VCS Synopsys Verilog Compiler Simulator

VHDL VHSIC Hardware Description Language

VLSI Very Large Scale Integration

VQ Vector Quantisation

WLM Wire Load Model

WT Wavelet Transform

2D Two Dimensional

References

[1] C.-H. Chang and J. Low. Simple, fast, and exact RNS scaler for the three-moduli

set. Circuits and Systems I: Regular Papers, IEEE Transactions on 58(11), 2686

(2011). xx, 7, 51, 54, 55, 59, 61, 62, 64, 65, 68, 72, 80, 81, 82, 101

[2] M. Martina and G. Masera. Low-complexity, efficient 9/7 wavelet filters VLSI

implementation. Circuits and Systems II: Express Briefs, IEEE Transactions on

53(11), 1289 (2006). xx, 113

[3] Y. Liu and E.-K. Lai. Design and implementation of an RNS-based 2-D DWT

processor. Consumer Electronics, IEEE Transactions on 50(1), 376 (2004). xx,

2, 3, 36, 109, 113, 115, 135, 136, 167

[4] A. Omondi and B. Premkumar. Residue number systems: theory and implemen-

tation (Imperial College Press, 2007). xx, 52, 114, 115, 116, 117

[5] Synopsys, Inc. Design compiler used guide, g-2012.06 ed. (2012). xxi, 141, 142,

143, 144, 145, 147, 148, 150, 152

[6] J. M. Williams. Digital VLSI Design with Verilog: A Textbook from Silicon Valley

Technical Institute (Springer, 2008). xxi, 161

[7] M. I. Mahmoud, M. I. Dessouky, S. Deyab, and F. H. Elfouly. Comparison

between haar and daubechies wavelet transformions on FPGA technology. World

Academy of Science, Engineering and Technology 26, 68 (2007). xxiii, 36, 37

[8] A. Skodras, C. Christopoulos, and T. Ebrahimi. The JPEG 2000 still image

compression standard. Signal Processing Magazine, IEEE 18(5), 36 (2001). xxiii,

40

[9] K. M, F. D, A. R, G. A, and S. K. Low power methodology manual for system-

on-chip design (springer.com, 2007). xxv, 157, 158, 159, 160

239

240 References

[10] C. Huang, D. Peterson, H. Rauch, J. Teague, and D. Fraser. Implementation of

a fast digital processor using the residue number system. Circuits and Systems,

IEEE Transactions on 28(1), 32 (1981). 1, 50, 59

[11] S. Waser and M. J. Flynn. Introduction to arithmetic for digital systems designers

(Harcourt Brace College Publishers, 1995). 1

[12] B. Rejeb, H. Henkelmann, and W. Anheier. Hardware/software implementation

of real-time fractal image coding (Citeseer, 2001). 2

[13] A. Safari and Y. Kong. Four tap daubechies filter banks based on RNS. In Commu-

nications and Information Technologies (ISCIT), 2012 International Symposium

on, pp. 952–955 (IEEE, 2012). 2

[14] J. Ramı́rez, U. Meyer-Bäse, F. Taylor, A. Garćıa, and A. Lloris. Design and

implementation of high-performance RNS wavelet processors using custom IC

technologies. Journal of VLSI signal processing systems for signal, image and

video technology 34(3), 227 (2003). 2, 3, 167

[15] S. Srinivasan. Modulo transforms-an alternative to lifting. Signal Processing,

IEEE Transactions on 54(5), 1864 (2006).

[16] W. L. Freking and K. K. Parhi. Low-power FIR digital filters using residue

arithmetic. In Signals, Systems & Computers, 1997. Conference Record of the

Thirty-First Asilomar Conference on, vol. 1, pp. 739–743 (IEEE, 1997).

[17] M. G. Arnold. The residue logarithmic number system: theory and implemen-

tation. In Computer Arithmetic, 2005. ARITH-17 2005. 17th IEEE Symposium

on, pp. 196–205 (IEEE, 2005).

[18] D. K. Taleshmekaeil and A. Mousavi. The use of residue number system for

improving the digital image processing. In Signal Processing (ICSP), 2010 IEEE

10th International Conference on, pp. 775–780 (IEEE, 2010). 4, 52

[19] A. Mousavi and D. K. Taleshmekaeil. Pipelined residue logarithmic numbers

system for general modules set (2n − 1, 2n, 2n + 1). In Computer Sciences and

Convergence Information Technology (ICCIT), 2010 5th International Confer-

ence on, pp. 699–703 (IEEE, 2010). 2

[20] W. Jenkins and B. Leon. The use of residue number systems in the design of

finite impulse response digital filters. Circuits and Systems, IEEE Transactions

on 24(4), 191 (1977). 2

References 241

[21] J. Ramı́rez, A. Garćıa, P. Fernández, L. Patrilla, and A. Lloris. RNS-FPL merged

architectures for orthogonal DWT. Electronics Letters 36(14), 1198 (2000). 2

[22] J. Ramirez, A. Garcia, L. Parrilla, A. Lloris, and P. Fernandez. Implementation

of RNS analysis and synthesis filter banks for the orthogonal discrete wavelet

transform over FPL devices. In Circuits and Systems, 2000. Proceedings of the

43rd IEEE Midwest Symposium on, vol. 3, pp. 1170–1173 (IEEE, 2000). 2, 33,

36

[23] A. Ammar, A. Al Kabbany, M. Youssef, and A. Amam. A secure image coding

scheme using residue number system. In Radio Science Conference, 2001. NRSC

2001. Proceedings of the Eighteenth National, vol. 2, pp. 399–405 (IEEE, 2001).

2, 54, 57

[24] G. C. Cardarilli, A. Del Re, A. Nannarelli, and M. Re. Low power and low leakage

implementation of RNS FIR filters. In Proc. of 39th Asilomar Conference on

Signals, Systems, and Computers, pp. 1620–1624 (2005). 3

[25] W. Wang, M. Swamy, and M. O. Ahmad. RNS application for digital image

processing. In System-on-Chip for Real-Time Applications, 2004. Proceedings.

4th IEEE International Workshop on, pp. 77–80 (IEEE, 2004). 3, 57

[26] M. Keating. Low Power Methodology Manual: For System on Chip Design

(Springer, 2007). 4, 162

[27] T. Toivonen and J. Heikkila. Video filtering with fermat number theoretic trans-

forms using residue number system. Circuits and Systems for Video Technology,

IEEE Transactions on 16(1), 92 (2006). 4, 17, 25, 124

[28] V. Jagannathan, A. Mahadevan, R. Hariharan, and S. Srinivasan. Number theory

based image compression encryption and application to image multiplexing. In

Signal Processing, Communications and Networking, 2007. ICSCN’07. Interna-

tional Conference on, pp. 59–64 (IEEE, 2007). 4

[29] G. Bernocchi, G. Cardarilli, A. Del Re, A. Nannarelli, and M. Re. Low-power

adaptive filter based on RNS components. In Circuits and Systems, 2007. ISCAS

2007. IEEE International Symposium on, pp. 3211–3214 (2007). 4, 61

[30] A. K. Jain. Fundamentals of digital image processing, vol. 3 (Prentice-Hall En-

glewood Cliffs, 1989). 11

242 References

[31] J. Rosenthal. JPEG Image Compression using an FPGA. Ph.D. thesis, UNI-

VERSITY OF CALIFORNIA (2006). 12

[32] P. Symes. Digital video compression (McGraw Hill Professional, 2004). 12

[33] M. J. Weinberger, G. Seroussi, and G. Sapiro. The LOCO-I lossless image com-

pression algorithm: principles and standardization into JPEG-LS. Image Pro-

cessing, IEEE Transactions on 9(8), 1309 (2000). 12

[34] Q. Lu, L. Du, and B. Hu. Low-power JPEG2000 implementation on DSP-based

camera node in wireless multimedia sensor networks. In Networks Security, Wire-

less Communications and Trusted Computing, 2009. NSWCTC’09. International

Conference on, vol. 1, pp. 300–303 (IEEE, 2009). 12

[35] M. Bhuyan, N. Amin, M. A. H. Madesa, and M. S. Islam. FPGA realization

of lifting based forward discrete wavelet transform for JPEG 2000. International

Journal of Circuits, Systems and Signal Processing 1(2), 124 (2007). 12, 25

[36] M. Vishwanath. The recursive pyramid algorithm for the discrete wavelet trans-

form. Signal Processing, IEEE Transactions on 42(3), 673 (1994). 12, 33

[37] C.-C. Chang and Y.-L. Lin. A dual mode (5, 3)/(9, 7) FDWT/IDWT hardware

accelerator IP (2004). 13, 40

[38] V. Jagannathan, A. Mahadevan, R. Hariharan, and E. Srinivasan. Simultaneous

color image compression and encryption using number theory. In Proceedings of

ICIS, vol. 5, p. 1 (Citeseer, 2005). 13

[39] P. Symes. Video compression demystified (McGraw-Hill Professional, 2000). 13

[40] J. Watkinson. Art of digital audio (CRC Press, 2013). 13

[41] M. Yang and N. Bourbakis. An overview of lossless digital image compression

techniques. In Circuits and Systems, 2005. 48th Midwest Symposium on, pp.

1099–1102 (IEEE, 2005). 13, 24

[42] U. S. Mehta, K. S. Dasgupta, and N. M. Devashrayee. Run-length-based test data

compression techniques: how far from entropy and power bounds?a survey. VLSI

Design 2010, 1 (2010). 14

References 243

[43] N. V. Boulgouris, D. Tzovaras, and M. G. Strintzis. Lossless image compression

based on optimal prediction, adaptive lifting, and conditional arithmetic coding.

Image Processing, IEEE Transactions on 10(1), 1 (2001). 16

[44] Z. Xiong, K. Ramchandran, M. T. Orchard, and Y.-Q. Zhang. A comparative

study of DCT and wavelet-based image coding. Circuits and Systems for Video

Technology, IEEE Transactions on 9(5), 692 (1999). 17, 20

[45] V. Spiliotopoulos, N. Zervas, Y. Andreopoulos, G. Anagnostopoulos, and C. E.

Goutis. Quantization effect on VLSI implementations for the 9/7 DWT filters. In

Acoustics, Speech, and Signal Processing, 2001. Proceedings.(ICASSP’01). 2001

IEEE International Conference on, vol. 2, pp. 1197–1200 (IEEE, 2001). 17

[46] A. S. Lewis and G. Knowles. Image compression using the 2-D wavelet transform.

Image Processing, IEEE Transactions on 1(2), 244 (1992). 20, 38

[47] C. M. Brislawn, J. N. Bradley, R. J. Onyshczak, and T. Hopper. FBI com-

pression standard for digitized fingerprint images. In SPIE’s 1996 International

Symposium on Optical Science, Engineering, and Instrumentation, pp. 344–355

(International Society for Optics and Photonics, 1996). 24

[48] M. Boliek. JPEG 2000 final committee draft. ISO/IEC FCD15444 1 (2000). 24

[49] M. M. Dewasthale and P. Mukherji. FPGA implementation of wavelet transform

based on lifting scheme. In Information Management and Engineering, 2009.

ICIME’09. International Conference on, pp. 456–460 (IEEE, 2009). 25

[50] M. Antonini, M. Barlaud, P. Mathieu, and I. Daubechies. Image coding using

wavelet transform. Image Processing, IEEE Transactions on 1(2), 205 (1992). 25

[51] H. Liao, M. K. Mandal, and B. F. Cockburn. Efficient architectures for 1-D and

2-D lifting-based wavelet transforms. Signal Processing, IEEE Transactions on

52(5), 1315 (2004). 25

[52] H. Olkkonen and J. T. Olkkonen. Simplified biorthogonal discrete wavelet trans-

form for VLSI architecture design. Signal, Image and Video Processing 2(2), 101

(2008). 25, 26

[53] M. Grangetto, M. Martina, G. Masera, G. Piccinini, F. Vacca, and M. Zam-

boni. FPGA power efficient inverse lifting wavelet IP. In Signals, Systems and

244 References

Computers, 2001. Conference Record of the Thirty-Fifth Asilomar Conference

on, vol. 2, pp. 1325–1329 (IEEE, 2001). 25

[54] P. McCanny, S. Masud, and J. McCanny. An efficient architecture for the 2-D

biorthogonal discrete wavelet transform. In Image Processing, 2001. Proceedings.

2001 International Conference on, vol. 3, pp. 314–317 (IEEE, 2001). 25, 40

[55] K. Andra, C. Chakrabarti, and T. Acharya. A VLSI architecture for lifting-based

forward and inverse wavelet transform. Signal Processing, IEEE Transactions on

50(4), 966 (2002). 26

[56] J. M. Jou, Y.-H. Shiau, and C.-C. Liu. Efficient VLSI architectures for the

biorthogonal wavelet transform by filter bank and lifting scheme. In Circuits and

Systems, 2001. ISCAS 2001. The 2001 IEEE International Symposium on, vol. 2,

pp. 529–532 (IEEE, 2001). 25, 26

[57] F. Iqbal. Wavelet transform based image compression on FPGA. Ph.D. thesis,

FLORIDA STATE UNIVERSITY (2004). 26

[58] P.-C. Wu and L.-G. Chen. An efficient architecture for two-dimensional discrete

wavelet transform. Circuits and Systems for Video Technology, IEEE Transac-

tions on 11(4), 536 (2001). 31

[59] J.-D. Wu and C.-H. Liu. Investigation of engine fault diagnosis using discrete

wavelet transform and neural network. Expert Systems with Applications 35(3),

1200 (2008). 32

[60] S. G. Mallat. Multifrequency channel decompositions of images and wavelet mod-

els. Acoustics, Speech and Signal Processing, IEEE Transactions on 37(12), 2091

(1989). 32, 33

[61] M. Unser. Vanishing moments and the approximation power of wavelet expan-

sions. In Image Processing, 1996. Proceedings., International Conference on,

vol. 1, pp. 629–632 (IEEE, 1996). 32

[62] G. Uytterhoeven, D. Roose, and A. Bultheel. Wavelet transforms using the lifting

scheme. ITA-Wavelets Report WP 1 (1997). 32

[63] M. Nagabushanam and S. Ramachandran. Design and implementation of parallel

and pipelined distributive arithmetic based discrete wavelet transform IP core.

European Journal of Scientific Research, ISSN pp. 378–392 (2009). 33, 109

References 245

[64] I. Daubechies. Ten lectures on wavelets, CBMS-NSF regional conference series

in Applied Mathematics, vol. 61, society for industrial and applied mathematics

(SIAM), Philadelphia, PA, 1992. MR MR1162107 (93e: 42045) . 33, 37

[65] S. Mallat. A wavelet tour of signal processing (Access Online via Elsevier, 1999).

35

[66] M. Lightstone, E. Majani, and S. K. Mitra. Low bit-rate design considerations

for wavelet-based image coding. Multidimensional systems and signal processing

8(1-2), 111 (1997). 36, 39

[67] A. Lewis and G. Knowles. VLSI architecture for 2D Daubechies wavelet transform

without multipliers. Electronics letters 27(2), 171 (1991). 36, 124

[68] J. S. Walker. A primer on wavelets and their scientific applications (CRC press,

2002). 37

[69] N. Kingsbury and J. Mugarey. Wavelet transforms in image processing. Signal

Analysis and Prediction p. 27 (1998). 37

[70] M. J. Smith and S. L. Eddins. Analysis/synthesis techniques for subband image

coding. Acoustics, Speech and Signal Processing, IEEE Transactions on 38(8),

1446 (1990). 39

[71] D. B. Tay. Rationalizing the coefficients of popular biorthogonal wavelet filters.

Circuits and Systems for Video Technology, IEEE Transactions on 10(6), 998

(2000). 40

[72] B. Parhami. Computer arithmetic: algorithms and hardware designs (Oxford

University Press, Inc., 2009). 47, 48, 50, 59, 63

[73] P. A. Mohan. Residue number systems: algorithms and architectures (Springer,

2002). 48, 52, 54, 61, 66, 75

[74] N. S. Szabo and R. I. Tanaka. Residue arithmetic and its applications to computer

technology, vol. 24 (McGraw-Hill New York, 1967). 49, 50, 59, 60, 63

[75] O. Abdelfattah. Data Conversion in Residue Number System. Ph.D. thesis,

McGill University (2011). 49

246 References

[76] M. A. P. Shenoy and R. Kumaresan. A fast and accurate RNS scaling technique

for high speed signal processing. IEEE Trans. Acoust., Speech, Signal Process

37(6), 929 (1989). 49, 59, 60, 61, 82

[77] R. Conway and J. Nelson. Fast converter for 3 moduli RNS using new property

of CRT. Computers, IEEE Transactions on 48(8), 852 (1999). 51

[78] C. Huang, D. Peterson, H. Rauch, J. Teague, and D. Fraser. Implementation of

a fast digital processor using the residue number system. Circuits and Systems,

IEEE Transactions on 28(1), 32 (1981). 51

[79] M. A. Soderstrand, W. K. Jenkins, G. A. Jullien, and F. J. Taylor. Residue

number system arithmetic: Modern applications in digital signal processing. IEEE

Press. (1986). 52

[80] M.-H. Sheu, S.-H. Lin, C. Chen, and S.-W. Yang. An efficient

VLSI design for a residue to binary converter for general balance moduli

(2n − 3, 2n + 1, 2n − 1, 2n + 3). Circuits and Systems II: Express Briefs, IEEE

Transactions on 51(3), 152 (2004). 52, 54

[81] M. Abdallah and A. Skavantzos. On multimoduli residue number systems with

moduli of forms (ra, rb − 1, rc + 1). Circuits and Systems I: Regular Papers, IEEE

Transactions on 52(7), 1253 (2005).

[82] S. Tan and J. Vandcwallc. Canonical forms for singular systcms. In 35th IEEE

Coil/. Decision Contr., pp. 214–2149 (1986). 52

[83] M. Abdallah and A. Skavantzos. A systematic approach for selecting practical

moduli sets for residue number systems. In Proceedings of the 27th Southeastern

Symposium on System Theory (SSST’95), pp. 445–449 (IEEE Computer Society,

1995). 53

[84] H. H. Rosenbrock. Structural properties of linear dynamical systems. Inr. J.

Cuntr 20, 191 (1974). 54

[85] G. Verghese, B. Levy, and T. Kailath. A generalized state-space for singular

systems. Automatic Control, IEEE Transactions on 26(4), 811 (1981). 54

[86] M. Abdallah and A. Skavantzos. On multimoduli residue number systems with

moduli of forms (ra, rb − 1, rc + 1). Circuits and Systems I: Regular Papers, IEEE

Transactions on 52(7), 1253 (2005). 54

References 247

[87] C. B. Dutta, P. Garai, and A. Sinha. A scheme for improving bit efficiency for

residue number system. In Advances in Computing and Information Technology,

pp. 649–656 (Springer, 2013). 54

[88] W. Wang, M. Swamy, M. O. Ahmad, and Y. Wang. A study of the residue-to-

binary converters for the three-moduli sets. Circuits and Systems I: Fundamental

Theory and Applications, IEEE Transactions on 50(2), 235 (2003). 54, 59, 109

[89] A. Hiasat and S. Abdel-Aty-Zohdy. Residue-to-binary arithmetic converter for

the moduli set (2k, 2k− 1, 2k−1− 1). Circuits and Systems II: Analog and Digital

Signal Processing, IEEE Transactions on 45(2), 204 (1998). 54

[90] Y. Wang, X. Song, M. Aboulhamid, and H. Shen. Adder based residue to binary

number converters for (2n− 1, 2n, 2n + 1). Signal Processing, IEEE Transactions

on 50(7), 1772 (2002). 54, 59

[91] W. Wang, M. Swamy, and M. O. Ahmad. Moduli selection in RNS for efficient

VLSI implementation. In Circuits and Systems, 2003. ISCAS’03. Proceedings of

the 2003 International Symposium on, vol. 4, pp. 512–515 (IEEE, 2003). 54

[92] A. Garcia, U. Meyer-Base, A. Lloris, and F. J. Taylor. RNS implementation of

FIR filters based on distributed arithmetic using field-programmable logic. In Cir-

cuits and Systems, 1999. ISCAS’99. Proceedings of the 1999 IEEE International

Symposium on, vol. 1, pp. 486–489 (IEEE, 1999). 54

[93] Y. Kong and B. Phillips. Fast scaling in the residue number system. Very Large

Scale Integration (VLSI) Systems, IEEE Transactions on 17(3), 443 (2009). 55,

61, 62

[94] U. Meyer-Base and T. Stouraitis. New power-of-2 RNS scaling scheme for cell

based IC design. IEEE Transaction Very Large Scale Integr. (VLSI) Syst 11(2),

280 (2003). 55, 61

[95] M. Griffin, F. Taylor, and M. Sousa. New scaling algorithms for the chinese

remainder theorem. In Signals, Systems and Computers, 1988. Twenty-Second

Asilomar Conference on, vol. 1, pp. 375–378 (IEEE, 1988). 55, 60, 61, 66, 82

[96] M. S. M. Griffin and F. Taylor. Efficient scaling in the residue number system.

In Int. Conf. Acoust., Speech, Signal Process., Glasgow, U.K., pp. 1075–1078

(1989). 60, 74

248 References

[97] H. O.Aichholzer. A fast method for modulus reduction in residue number system.

In Economicall parallel process, Vienna, Austria, pp. 41–54 (1993). 55

[98] A. Halbutogullari and C. K. Koc. Parallel multiplication in GF(2k) using poly-

nomial residue arithmetic. Designs, Codes and Cryptography 20(2), 155 (2000).

55, 56

[99] D. C. Feldmeier. Fast software implementation of error detection codes.

IEEE/ACM Transactions on Networking (TON) 3(6), 640 (1995). 55

[100] A. Skavantzos and F. J. Taylor. On the polynomial residue number system [digital

signal processing]. Signal Processing, IEEE Transactions on 39(2), 376 (1991).

[101] A. Skavantzos and T. Stouraitis. Polynomial residue complex signal processing.

Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transac-

tions on 40(5), 342 (1993). 55

[102] S. Pontarelli, G.-C. Cardarilli, M. Re, and A. Salsano. A novel error detection

and correction technique for RNS based FIR filters. In Defect and Fault Tolerance

of VLSI Systems, 2008. DFTVS’08. IEEE International Symposium on, pp. 436–

444 (IEEE, 2008). 55

[103] J. Chu and M. Benaissa. Polynomial residue number system GF(2M) multiplier

using trinomials. In 17th European Signal Processing Conference (2009). 56

[104] M. Roshanzadeh, A. Ghaffari, and S. Saqaeeyan. Using residue number systems

for improving QoS and error detection & correction in wireless sensor networks.

In Communication Software and Networks (ICCSN), 2011 IEEE 3rd Interna-

tional Conference on, pp. 1–5 (IEEE, 2011). 55, 56

[105] A. H. Navin, A. S. Khashandarag, A. R. Oskuei, and M. Mirnia. A novel approach

cryptography by using residue number system. In Computer Sciences and Conver-

gence Information Technology (ICCIT), 2011 6th International Conference on,

pp. 636–639 (IEEE, 2011). 55

[106] M. Ciet, M. Neve, E. Peeters, and J.-J. Quisquater. Parallel FPGA implemen-

tation of RSA with residue number systems-can side-channel threats be avoided?

In Circuits and Systems, 2003 IEEE 46th Midwest Symposium on, vol. 2, pp.

806–810 (IEEE, 2003). 55

References 249

[107] J. Chu and M. Benaissa. Error detecting AES using polynomial residue number

systems. Microprocessors and Microsystems 37(2), 228 (2013). 56

[108] D. Kheirandish and A. Safari. Using one hot residue number system (OHRNS)

for digital image processing. In AISP 2012 (2012). 56

[109] M. Labafniya and M. Eshghi. An efficient adder/subtracter circuit for one-

hot residue number system. In Electronic Devices, Systems and Applications

(ICEDSA), 2010 Intl Conf on, pp. 121–124 (IEEE, 2010). 56

[110] R. Farshidi, A. Habibi Zadnavin, and E. Gholami. A novel multiple valued logic

OHRNS adder circuit for modulo (rn − 1). In ADVCOMP 2010, The Fourth

International Conference on Advanced Engineering Computing and Applications

in Sciences, pp. 166–170 (2010). 57

[111] S. J. Jassbi, M. Hosseinzadeh, S. Gorgin, and K. Navi. One-hot multi-level residue

number system. IEEE EWDTS, Yerevan pp. 733–738 (2007). 57

[112] M. Hosseinzadeh, S. J. Jassbi, and K. Navi. A novel multiple valued logic OHRNS

modulo-rn adder circuit. International Journal of Electronics, Circuits and Sys-

tems 1(4), 245 (2007). 57

[113] P. Pirsch and H.-J. Stolberg. VLSI implementations of image and video mul-

timedia processing systems. Circuits and Systems for Video Technology, IEEE

Transactions on 8(7), 878 (1998). 57

[114] B. Vinnakota and V. V. B. Rao. Fast conversion technique for binary-residue

number system. IEEE Trans, Circuits Syst. I, Fundam. Theory Appl. 41(12),

927 (1994). 59

[115] G. Jullien. Residue number scaling and other operations using ROM arrays.

Computers, IEEE Transactions on C-27(4), 325 (1978). 59

[116] M. Kameyama and T. Higuchi. A new scaling algorithm in symmetric residue

number system based on multiple-valued logic. In Proc. IEEE International Sym-

posium on Circuits and Systems, Tokyo, pp. 189–192 (1979).

[117] C. Su and H. Lo. An algorithm for scaling and single residue error correction in

the residue number system. IEEE Trans. Computers 39(8), 1053 (1990). 59

[118] K. H. O’Keefe and J. L. Wright. Remarks on base extension for modular arith-

metic. Computers, IEEE Transactions on 100(9), 833 (1973). 60

250 References

[119] G. A. Jullien. Residue number scaling and other operations using ROM arrays.

Computers, IEEE Transactions on 100(4), 325 (1978). 60

[120] F. J. Taylor and C. H. Huang. A floating-point residue arithmetic unit. Journal

of the Franklin Institute 311(1), 33 (1981). 60

[121] F. J. Taylor and C. H. Huang. An autoscale residue multiplier. Computers, IEEE

Transactions on 100(4), 321 (1982). 60

[122] D. D. Miller and J. N. Polky. An implementation of the LMS algorithm in the

residue number system. Circuits and Systems, IEEE Transactions on 31(5), 452

(1984). 60

[123] M. C. Z. D. Ulman and J. M. Zurada. Effective RNS scaling algorithm with

the chinese remainder theorem decomposition. In Proc. IEEE Pacific Rim Conf.

Commun., Comput., Signal Process., Victoria, BC, Canada, pp. 528–531 (1993).

61, 62, 66, 82

[124] F. Barsi and M. C. Pinotti. Fast base extension and precise scaling in RNS for

look-up table implementations. Signal Processing, IEEE Transactions on 43(10),

2427 (1995). 61, 74

[125] A. Garćıa and A. Lloris. A look-up scheme for scaling in the RNS. IEEE Trans.

Comput. 48, 748 (1999). 61, 81, 82

[126] M. Dasygenis, K. Mitroglou, D. Soudris, and A. Thanailakis. A full-adder-based

methodology for the design of scaling operation in residue number system. Circuits

and Systems I: Regular Papers, IEEE Transactions on 55(2), 546 (2008). 61, 80,

81, 82

[127] P. Benardson. Fast memoryless,over 64 bits, residue-to-binary convertor. Circuits

and Systems, IEEE Transactions on 32(3), 298 (1985). 61, 62

[128] A. Safari and Y. Kong. Simple, fast and synchronous hybrid scaling scheme for

the 8-bit moduli set. Journal of Emerging Trends in Computing and Information

Sciences 3(6), 949 (2012). 61

[129] D. Soudris, M. Dasygenis, K. Mitroglou, K. Tatas, and A. Thanailakis. A full

adder based methodology for scaling operation in residue number system, electron-

ics, circuits and systems. In 9th International Conference on, vol. 3, pp. 891–894

(2002). 61

References 251

[130] S. Ma, J. Hu, Y. Ye, L. Zhang, and X. Ling. A 2n scaling scheme for signed RNS

integers and its VLSI implementation. Sci, China, Inf.Sci 53(1), 203 (2010). 61,

62

[131] A. Lindström, M. Nordseth, L. Bengtsson, and A. Omondi. Arithmetic circuits

combining residue and signed-digit representations. In Advances in Computer

Systems Architecture, pp. 246–257 (Springer, 2003). 62

[132] S. Ma, J. Hu, L. Zhang, and X. Ling. An efficient RNS parity checker for moduli

set (2n − 1, 2n + 1, 22n + 1) and its applications. Science in China Series F:

Information Sciences 51(10), 1563 (2008). 62

[133] K. Rosen. Elementary Number Theory and its Applications (Addison-Wesley

Educational Publishers Inc, 2D, 1985), reprint ed. 64

[134] B. Parhami. Computer Arithmetic Algorithm and Hardware Designs (Oxford:

Oxford University, Press, 2000). 66

[135] R. P. Brent and H. Kung. The area-time complexity of binary multiplication.

Journal of the ACM (JACM) 28(3), 521 (1981). 66

[136] H. Vergos, C. Efstathiou, and D. Nikolos. Diminished-one modulo 2n + 1 adder

design. Computers, IEEE Transactions on 51(12), 1389 (2002). 80

[137] G. Dimitrakopoulos, D. Nikolos, H. Vergos, D. Nikolos, and C. Efstathiou. New

architectures for modulo 2n − 1 adders. In Electronics, Circuits and Systems,

2005. ICECS 2005. 12th IEEE International Conference on, pp. 1–4 (2005). 80

[138] Z. D. Ulman and M. Czyzak. Highly parallel, fast scaling of numbers in nonre-

dundant residue arithmetic. IEEE Transaction on signal processing 46(2), 487

(1998). 80

[139] M. J. F. S. Waser. Introduction to Arithmetic for Digital Systems Designers (New

York: HRW, 1982). 81

[140] S. W. Smith et al. The scientist and engineer’s guide to digital signal processing

(1997). 109

[141] A. Safari, N. CV, and Y. Kong. VLSI architecture of multiplier-less DWT image

processor. In TENCON Spring Conference, 2013 IEEE, pp. 280–284 (IEEE,

2013). 112

252 References

[142] H. T. Vergos, C. Efstathiou, and D. Nikolos. Diminished-one modulo 2n+1 adder

design. Computers, IEEE Transactions on 51(12), 1389 (2002). 117

[143] O. Fatemi and S. Panchanathan. VLSI architecture of a scalable matrix trans-

poser. In Innovative Systems in Silicon, 1996. Proceedings., Eighth Annual IEEE

International Conference on, pp. 382–391 (IEEE, 1996). 118, 132

[144] S. Panchanathan. Universal architecture for matrix transposition. Computers

and Digital Techniques, IEE Proceedings E 139(5), 387 (1992).

[145] B. Bilgic, B. K. Horn, and I. Masaki. Efficient integral image computation on the

GPU. In Intelligent Vehicles Symposium (IV), 2010 IEEE, pp. 528–533 (IEEE,

2010).

[146] D. L. Zhang, Y. Yang, Y. K. Song, and G. M. Du. Design and implement of

large dimension matrix transpose based on DDR3 SDRAM. Advanced Materials

Research 760, 1423 (2013).

[147] S. Hsu, A. Agarwal, M. Anders, S. Mathew, H. Kaul, F. Sheikh, and R. Kr-

ishnamurthy. A 280mV-to-1.1 V 256b reconfigurable SIMD vector permutation

engine with 2-dimensional shuffle in 22nm CMOS. In Solid-State Circuits Confer-

ence Digest of Technical Papers (ISSCC), 2012 IEEE International, pp. 178–180

(IEEE, 2012).

[148] J. C. Bowman and M. Roberts. Adaptive matrix transpose algorithms for dis-

tributed multicore processors (2013). 118

[149] C.-T. Hsu and J.-L. Wu. Hidden digital watermarks in images. Image Processing,

IEEE Transactions on 8(1), 58 (1999). 123

[150] G. Strang. Wavelets and filter banks (Wellesley Cambridge Press, 1996). 124

[151] U. Totzek, F. Matthiesen, S. Wohlleben, and T. Noll. CMOS VLSI implementa-

tion of the 2D-DCT with linear processor arrays. In Acoustics, Speech, and Signal

Processing, 1990. ICASSP-90., 1990 International Conference on, pp. 937–940

(IEEE, 1990). 135, 193, 194, 195

[152] S.-i. Uramoto, Y. Inoue, A. Takabatake, J. Takeda, Y. Yamashita, H. Terane,

and M. Yoshimoto. A 100-MHz 2-D discrete cosine transform core processor.

IEICE TRANSACTIONS on Electronics 75(4), 390 (1992). 135

References 253

[153] D. Gong, Y. He, and Z. Cao. New cost-effective VLSI implementation of a 2-

D discrete cosine transform and its inverse. Circuits and Systems for Video

Technology, IEEE Transactions on 14(4), 405 (2004). 135, 136, 193, 194

[154] C. Cheng and K. K. Parhi. High-speed VLSI implementation of 2-D discrete

wavelet transform. Signal Processing, IEEE Transactions on 56(1), 393 (2008).

136

[155] X. Tian, L. Wu, Y.-H. Tan, and J.-W. Tian. Efficient multi-input/multi-output

VLSI architecture for two-dimensional lifting-based discrete wavelet transform.

IEEE transactions on computers 60(8), 1207 (2011). 136

[156] B. K. Mohanty, A. Mahajan, and P. K. Meher. Area-and power-efficient archi-

tecture for high-throughput implementation of lifting 2-D DWT. Circuits and

Systems II: Express Briefs, IEEE Transactions on 59(7), 434 (2012). 136

[157] Synopsys, Inc. Design vision user guide, g-2012.06 ed. (2012). 142

[158] Synopsys, Inc. Data Preparation for IC Compiler User Guide, h-2013.03 ed.

(2013). 143, 161

[159] C. Neau and K. Roy. Optimal body bias selection for leakage improvement and

process compensation over different technology generations. In Proceedings of the

2003 international symposium on Low power electronics and design, pp. 116–121

(ACM, 2003). 158

[160] S. Mutoh, T. Douseki, Y. Matsuya, T. Aoki, S. Shigematsu, and J. Yamada.

1 V power supply high-speed digital circuit technology with multithreshold-voltage

CMOS. Solid-State Circuits, IEEE Journal of 30(8), 847 (1995). 159

[161] Synopsys, Inc. VCS MX/VCS MXi user guide, f-2011.12-sp1 ed. (2012). 168

[162] Synopsys, Inc. PrimeTime PX user guide, g-2012.06 ed. (2012). 173

[163] D. Slawecki and W. Li. Dct/idct processor design for high data rate image coding.

Circuits and Systems for Video Technology, IEEE Transactions on 2(2), 135

(1992). 193, 195

[164] SGS-THOMSON Microelectronics. 2-D Discrete Cosine Transform Image Pro-

cessor, product no. imsa121 ed.

254 References

[165] Y.-T. Chang and C.-L. Wang. New systolic array implementation of the 2-D

discrete cosine transform and its inverse. Circuits and Systems for Video Tech-

nology, IEEE Transactions on 5(2), 150 (1995).

[166] T. Kuroda, T. Fujita, S. Mita, T. Nagamatsu, S. Yoshioka, K. Suzuki, F. Sano,

M. Norishima, M. Murota, M. Kako, et al. A 0.9-V, 150-MHz, 10-mW, 4 mm2,

2-D discrete cosine transform core processor with variable threshold-voltage (VT)

scheme. Solid-State Circuits, IEEE Journal of 31(11), 1770 (1996). 195

[167] J. Hunter and J. V. McCanny. Discrete cosine transform generator for VLSI

synthesis. In Acoustics, Speech and Signal Processing, 1998. Proceedings of the

1998 IEEE International Conference on, vol. 5, pp. 2997–3000 (IEEE, 1998).

[168] R. Rambaldi, A. Ugazzoni, and R. Guerrieri. A 35 µw 1.1 V gate array 8× 8

IDCT processor for video-telephony. In Acoustics, Speech and Signal Processing,

1998. Proceedings of the 1998 IEEE International Conference on, vol. 5, pp.

2993–2996 (IEEE, 1998). 195

[169] T.-H. Chen. A cost-effective 8× 8 2-D IDCT core processor with folded architec-

ture. Consumer Electronics, IEEE Transactions on 45(2), 333 (1999). 193

[170] H.-C. Chang, J.-Y. Jiu, L.-L. Chen, and L.-G. Chen. A low power 8×8 direct 2-D

DCT chip design. Journal of VLSI signal processing systems for signal, image

and video technology 26(3), 319 (2000). 193, 194, 195

[171] L. Fanucci and S. Saponara. Data driven VLSI computation for low power DCT-

based video coding. In Electronics, Circuits and Systems, 2002. 9th International

Conference on, vol. 2, pp. 541–544 (IEEE, 2002). 194

[172] J.-I. Guo and J.-C. Yen. An efficient IDCT processor design for HDTV appli-

cations. Journal of VLSI signal processing systems for signal, image and video

technology 33(1-2), 147 (2003). 193, 194

[173] G. A. Ruiz, J. A. Michell, and A. BurÃ3n. High throughput 2D DCT/IDCT

processor for video coding. In Image Processing, 2005. ICIP 2005. IEEE Inter-

national Conference on, vol. 3, pp. III–1036 (IEEE, 2005). 193, 194

[174] F. J. Dı́az, A. M. Burón, and J. M. Solana. Haar wavelet based processor scheme

for image coding with low circuit complexity. Computers & Electrical Engineering

33(2), 109 (2007). 193, 194

References 255

[175] C. H. Ho, P. H. W. Leong, W. Luk, S. J. Wilton, and S. López-Buedo. Virtual

embedded blocks: A methodology for evaluating embedded elements in fpgas. In

Field-Programmable Custom Computing Machines, 2006. FCCM’06. 14th Annual

IEEE Symposium on, pp. 35–44 (IEEE, 2006). 193

[176] A. Bandyopadhyay, J. Lee, R. W. Robucci, and P. Hasler. MATIA: a pro-

grammable 80 µw/frame CMOS block matrix transform imager architecture.

Solid-State Circuits, IEEE Journal of 41(3), 663 (2006). 194, 195

[177] A. Nilchi, J. Aziz, and R. Genov. Focal-plane algorithmically-multiplying CMOS

computational image sensor. Solid-State Circuits, IEEE Journal of 44(6), 1829

(2009). 194, 195

[178] D. Shah and C. Vithalani. Fpga based hardware design flow of distributed arith-

metic (DA) based 2D discrete wavelet transform (DWT) for the proposed image

compression algorithm (2013). 194

	Acknowledgements
	List of Publications
	Abstract
	List of Figures
	List of Tables
	1 Introduction
	1.1 Existing Literature
	1.2 Motivation for This Research
	1.3 Research Objectives
	1.4 Thesis Outline
	1.5 Tools

	2 Review of Image-Compression Algorithms and Schemes
	2.1 Image-Compression Schemes
	2.2 Common Image-Compression Algorithms
	2.2.1 Run-Length Encoding
	2.2.2 Entropy Coding
	2.2.3 Discrete Cosine Transform
	2.2.4 Discrete Wavelet Transform

	2.3 Performance Comparison and Applications of Common Compression Algorithms
	2.3.1 Performance of RLE Algorithm on Test Images
	2.3.2 Performance of Entropy Coding on Test Images
	2.3.3 Performance of DCT Algorithm on Test Images
	2.3.4 Performance of DWT Algorithm on Test Images

	2.4 Overall Performance of Selected Algorithms
	2.4.1 Performance of RLE Over DCT Coefficients
	2.4.2 Performance of Huffman Coding Over DWT Coefficients

	2.5 Discussion of Simulation Results
	2.6 Convolution vs. Lifting
	2.6.1 Lifting-Based DWT Image Compression

	2.7 Chapter Summary

	3 Discrete Wavelet Transform for Image-Processing Applications
	3.1 Discrete Wavelet Transform
	3.2 Orthogonal and Bi-Orthogonal Wavelets
	3.3 Orthogonal DWT
	3.3.1 Haar Wavelet Transform
	3.3.2 Daubechies Wavelet Transform

	3.4 Bi-Orthogonal DWT
	3.4.1 Cohen-Daubechies-Feauveau (CDF97) Wavelet
	3.4.2 LeGall (b, c) Wavelet

	3.5 Performance Comparison of Wavelets
	3.6 Synthesising Wavelets Using Design Compiler
	3.7 Chapter Summary

	4 The Residue Number System
	4.1 Algebraic Operations in the RNS
	4.2 Forward and Reverse Conversions
	4.2.1 The Chinese Remainder Theorem
	4.2.2 Multiplicative Inverse for (2n-1, 2n, 2n+1)
	4.2.3 Modified CRT
	4.2.4 Mixed-Radix Conversion

	4.3 Moduli Set Selection and Bit-Efficiency Improvement
	4.3.1 Moduli Set Selection
	4.3.2 Moduli Set for Video and Image Processing

	4.4 Scaling in the RNS
	4.5 Residue Number System Merged With Other Number Systems
	4.5.1 Polynomial Residue Number System
	4.5.2 One-Hot Residue Number System

	4.6 Chapter Summary

	5 Scaling in the Residue Number System
	5.1 Previous Work
	5.2 Mathematical Basis for Designing Scalers
	5.3 Scaling Scheme Based on Modular Reducers
	5.3.1 Modulo-(2n-1) Reduction
	5.3.2 Modulo-(2n+1) Reduction
	5.3.3 Optimised Modulo-(2n+1) Reducer
	5.3.4 Numerical Example
	5.3.5 Synthesising the Proposed Modular-Reducer-Based Scaler
	5.3.6 Comparison of the Synthesis Results of the Proposed Modular-Reducer-Based Scaler and a Full-Adder-Based Scaler

	5.4 Simple, Fast, Hybrid Scaling Scheme Using Full-Adders and LUTs
	5.4.1 Proposed Hybrid Scaler
	5.4.2 Error Analysis of Approximation
	5.4.3 Synthesis Results
	5.4.4 Evaluation and Comparison

	5.5 Proposing a Scaler for Four-Moduli Set (2n-1,22n,2n+1,22n+1)
	5.5.1 Proposed Algorithm
	5.5.2 Generating y1
	5.5.3 Generating y2
	5.5.3.1 Generating y21
	5.5.3.2 Generating y22
	5.5.3.3 Generating y23
	5.5.3.4 Generating y24

	5.5.4 Generating y3
	5.5.4.1 A New Modulo-(2n+1) Adder

	5.5.5 Generating y4
	5.5.6 Performance Evaluation
	5.5.7 Comparison of Design Compiler Synthesis Results for the Proposed Four-Moduli Scaler and the Chang Scaler
	5.5.8 Design Summary

	5.6 Chapter Summary

	6 Logic Design and FPGA Implementation of RNS-Based DWT Digital Image Processor
	6.1 Hierarchy of the Proposed Image Processor
	6.2 Logic Design of the Proposed Image Processor Using Xilinx Tools
	6.2.1 The RNS-Based Filter Banks
	6.2.1.1 Existing Design of RNS-Based Filter Banks
	6.2.1.2 Proposed RNS-Based Filter Banks

	6.2.2 Transposition Unit
	6.2.2.1 VLSI Architecture of a Scalable Matrix Transposer
	6.2.2.2 Proposed Transposition Unit with Overlapped Sub-Blocks
	6.2.2.3 Modified Transposition Unit with Symmetric Extension (Extender)

	6.2.3 Control Logic

	6.3 Simulation and Functionality of the Proposed Processor
	6.4 Top-Level and Hierarchy Synthesis Results
	6.4.1 Synthesising the Modular Adders
	6.4.2 Synthesising the Modular Multipliers
	6.4.3 Synthesising the Modular Filter Banks

	6.5 Initial Binary Processor
	6.6 Performance Comparison of the Proposed RNS-Based Image Processor with Existing Designs
	6.6.1 Comparing Synthesis Results of Modular Scalable Transposer and the Proposed Transposer (Extender)
	6.6.2 Comparison of the Initial and Proposed RNS-based CDF97 Filter Banks Designed Using Existing and Proposed Modules
	6.6.3 Comparison of Initial and RNS-based Processors

	6.7 Comparison of Initial and RNS-based Processors with Existing Designs
	6.8 FPGA Implementation of Proposed RNS-Based Image Processor
	6.8.1 Translate
	6.8.2 Map
	6.8.3 Place and Route

	6.9 Chapter Summary

	7 RTL-to-Gate Synthesis
	7.1 Logic Synthesis
	7.1.1 The RTL Source
	7.1.2 Libraries
	7.1.3 Design Constraints
	7.1.4 Design Environment
	7.1.4.1 Operating Conditions
	7.1.4.2 Wire-Load Model and Wire-Load Mode
	7.1.4.3 Interface Characteristics
	7.1.4.4 Drive Characteristics of Input Ports and Driving Cell
	7.1.4.5 Load on Input and Output Ports
	7.1.4.6 Fanout_load on Output Ports

	7.1.5 Synthesis Reports

	7.2 Synthesis Flow
	7.2.1 Read Design
	7.2.2 Compile Strategies

	7.3 Comparison of Proposed RNS-based Image Processor with Initial Binary Processor
	7.4 Optimising Power Consumption of Proposed Image Processor
	7.4.1 Components of Power Dissipation
	7.4.2 Leakage Power Sources
	7.4.3 Low-Power Design Techniques
	7.4.4 Impact of LPD Techniques on Standard Cell Libraries
	7.4.5 Impact of LPD Techniques on Synthesis Flow

	7.5 Impact of the Multi-Voltage LPD Technique on Quality of Results
	7.6 Preparing the Design for Power Analysis Using VCS
	7.7 Multi-Voltage Power Analysis Using PrimeTime PX and UPF Flow
	7.8 Chapter Summary

	8 Physical Implementation Using Design Compiler Topographical Technology in ASIC Methodology
	8.1 Physical Synthesis Using IC Compiler
	8.2 Physical Synthesis Flow
	8.2.1 Library Data Preparation
	8.2.2 Floorplanning
	8.2.3 Placement
	8.2.4 Clock Tree Synthesis
	8.2.5 Routing
	8.2.6 Design Verification
	8.2.7 Finishing and Saving the Results

	8.3 Comparison of the Proposed RNS-Based Image Processor with Dedicated Hardware Designs
	8.4 Chapter Summary

	9 Thesis Conclusion and Recommendations for Future Work
	9.1 Thesis Conclusion
	9.2 Future Research Directions

	A Computer Specifications Used for Running MATLAB
	A.1 Computer Benchmark for Running MATLAB
	A.2 MATLAB Benchmark

	B Synopsys Design Compiler Synthesis Results of Full-Adder-Based Scaler
	C Tcl Scripts for Synthesising Initial Binary and the Proposed RNS-based Image Processors Using Synopsys DC
	C.1 Synopsys DC Setup File-Setup.tcl
	C.2 Synopsys DC Constraints File-Defaults.con

	D Tcl Scripts for Multi-Voltage Synthesis of Initial Binary and the Proposed RNS-Based Image Processors Using Synopsys DC Topographical Mode
	D.1 Synopsys DC Topographical Mode Setup File-Setup_topo.tcl
	D.2 Multi-voltage Setting Tcl File for Topographical Mode Synthesis -Voltage.tcl
	D.3 UPF File for Compiling the Proposed RNS-based Image Processor Using Synopsys DC Topographical Mode-binary.upf

	E Synopsys VCS-MX Tcl Scripts for Simulation of the Proposed RNS-based Image Processor
	E.1 Synopsys DVE Setup File-Setup_DVE.tcl
	E.2 Tcl File Used to Generate VCD File

	F Synopsys PrimeTime PX Tcl Scripts for Multi-voltage Power Analysis of the Proposed RNS-based Image Processor
	F.1 Tcl Script for PrimeTime PX Post Lay Power Analysis

	G Synopsys DC Report of Post Compile UPF of the Proposed RNS-based Image Processor
	G.1 Visual UPF - Post Compile UPF

	H Synopsys IC Compiler Tcl Scripts for Physical Implementation of the Proposed RNS-based Image Processor
	H.1 Synopsys IC Compiler Setup File-Setup_icc.tcl
	H.2 Creat MilkyWay Library ``RNS2D"
	H.3 Set TLU+ Files
	H.4 Import the Design and Constraints File
	H.5 Initialise Floorplan
	H.6 Set Power and Ground Nets and Pins
	H.7 Add Rectangular Power and Ground Rings
	H.8 Create Power Straps
	H.9 Core Placement and Optimisation
	H.10 Clock Tree Synthesis
	H.11 Preroute Standard Cells
	H.12 Core Route and Optimisation
	H.13 Insert Fillers
	H.14 Verification
	H.15 Save the File

	I Synopsys IC Compiler Reports for Physical Implementation of the Proposed RNS-based Image Processor
	I.1 Linking the Design
	I.2 Sanity Check on TLU+ Files
	I.3 Floorplanning
	I.4 Placement
	I.5 Chip Summary
	I.6 Legalize Displacement
	I.7 Clock Tree Summary
	I.8 Filler Cell Insertion
	I.9 Design Verification

	List of Acronyms/Abbreviations
	References

