
A DATA PLACEMENT APPROACH FOR SCIENTIFIC

WORKFLOW EXECUTION IN HYBRID CLOUDS

By

Amirmohammad Pasdar

A THESIS SUBMITTED TO MACQUARIE UNIVERSITY

IN PARTIAL FULFILMENT OF THE DEGREE OF

MASTER OF RESEARCH

DEPARTMENT OF COMPUTING

APRIL 2018

ii

c© Amirmohammad Pasdar, 2018.

Typeset in LATEX 2ε.

Declaration

I certify that the work in this thesis entitled "A DATA PLACEMENT APPROACH FOR SCIENTIFIC

WORKFLOW EXECUTION IN HYBRID CLOUDS" has not previously been submitted for a degree nor

has it been submitted as part of the requirements for a degree to any other university or institution

other than Macquarie University. I also certify that the thesis is an original piece of research and it

has been written by myself. Any help and assistance that I have received in my research work and

the preparation of the thesis itself have been appropriately acknowledged. In addition, I certify

that all information sources and literature used are indicated in the thesis.

Amirmohammad PasdarAmirmooooooooooooooomooomooohahhahhhahhhahahahhhhhhhhahhahaahaaaaaaaaaaaaaaaaaaaaaaammadd Pasdar

iii

iv DECLARATION

Dedication

In Loving Memory of My Dear Parents, Hasan and Zinat

Deep In My Heart

You Will Always Stay

Loved and Remembered

Everyday

To my beloved brothers and sister

With love and eternal appreciation

v

vi DEDICATION

Acknowledgements

I would like to express my sincere appreciation to Dr. Young Choon Lee for his professional

supervisory role throughout my career. He has been supportive of my career goals and actively

worked to provide me with the time to be a successful student. I would like to acknowledge that

without his support this piece of work could not have been accomplished.

I also appreciate the support I was offered during my studies by the Computing Department

for being on the right track of MRes. I would also like to acknowledge Macquarie University for

offering the Australian Commonwealth Government Scholarship as a funding scheme for my MRes

which paved the way for a successful Ph.D. career.

Lastly, I would sincerely like to thank my loving and supportive brothers, especially Amirhossein,

and my wonderful sister, Yukabed, whose unconditional love, encouragement, and support are

with me in whatever I pursue. I also wish to thank my elder brother, Alireza and his lovely

family, in particular, my beloved nieces, Shima and Zahra, who have been very inspirational and

motivational. May God surround all of them with loving care, always and forever.

vii

viii ACKNOWLEDGEMENTS

List of Publications

• A. Pasdar, K. Almi’ani, and Y. C. Lee, Data-Aware Scheduling of Scientific Workflows in Hybrid

Clouds, International Conference on Computational Science (ICCS2018).

ix

x LIST OF PUBLICATIONS

Abstract

Cloud computing has been widely adopted by industry practitioners and researchers. Recently,

applications in science and engineering such as scientific workflows have also been increasingly

deployed in clouds. As these applications are becoming resource intensive in both data and

computing, private clouds struggle to cope with their resource requirements. Public clouds claim

to overcome many shortcomings of private clouds. However, the complete offloading of workflow

execution to public clouds may introduce excessive data transfer and privacy/governance concerns.

In this thesis, we propose a hybrid cloud solution for workflow scheduling explicitly considering

data placement. To this end, we present Hybrid Scheduling for Hybrid Clouds (HSHC), which

schedules scientific workflows across private and public clouds incorporating a novel dynamic

data placement policy. HSHC consists of two phases: static and dynamic. The former uses an

extended genetic algorithm to solve the problem of workflow scheduling with static information

of workflows and cloud resources. The latter adjusts scheduling and data placement decisions

reflecting changing conditions of workflow execution in the hybrid cloud. We evaluate HSHC

with both real-world scientific applications and random workflows in performance and cost.

Experimental results demonstrate HSHC’s two-phase approach effectively deals with the dynamic

nature of the hybrid cloud.

xi

xii ABSTRACT

Contents

Declaration iii

Dedication v

Acknowledgements vii

List of Publications ix

Abstract xi

List of Figures xvii

List of Tables xix

1 Introduction 1

1.1 Lead-in . 1

1.2 Objective of The Thesis . 3

1.3 Organization of The Thesis . 4

2 Literature Review 5

2.1 Lead-in . 5

2.2 Workflow Scheduling in Clouds . 6

2.2.1 Computation-Centric Workflow Scheduling . 6

2.2.2 Data-Aware Workflow Scheduling . 6

xiii

xiv CONTENTS

2.3 Workflow Scheduling in Hybrid Clouds . 7

2.4 Summary . 9

3 Problem Statement 11

3.1 Lead-in . 11

3.2 Definitions . 13

3.2.1 Cost . 13

3.2.2 Data Dependency . 13

3.2.3 Task Execution . 14

3.3 Problem Definition . 15

3.4 Summary . 15

4 Hybrid Scheduling for Hybrid Clouds 17

4.1 Lead-in . 17

4.2 Static Phase: A Genetic Algorithm Approach . 18

4.2.1 Chromosome Structure . 18

4.2.2 Fitness Function . 19

4.2.3 Static Algorithm . 22

4.3 Dynamic Phase . 23

4.3.1 In The Private Cloud . 23

4.3.2 In The Public Cloud . 24

4.4 Summary . 28

5 Evaluation 29

5.1 Lead-in . 29

5.2 Workflow Types . 30

5.3 Environment Setup . 31

5.4 Results and Discussion . 32

5.4.1 A Heterogeneous Private Environment . 32

5.4.2 A Homogeneous Private Environment . 36

5.5 Summary . 37

CONTENTS xv

6 Conclusion 39

6.1 Lead-in . 39

6.2 Conclusion . 40

6.3 Future Work . 41

List of Symbols 43

References 47

xvi CONTENTS

List of Figures

1.1 Montage workflow. 2

3.1 Example of a DAG representation of a workflow . 12

4.1 The overall HSHC structure . 17

4.2 The chromosome structure. 18

4.3 (a) A cell, (b) tasks with sorted required intermediate datasets, and (c) the priority

of tasks within the virtual machine. 20

4.4 k-way-crossover. 21

4.5 The concurrent-rotation process. 21

5.1 Workflow types . 30

5.2 Average execution time: (a) LIGO in hetero. (b) Montage in hetero. (c) Random in

hetero. (d) LIGO in homo. (e) Montage in homo. (f) Random in homo. 33

5.3 Average cost of public cloud utilization: (a) LIGO in hetero. (b) Montage in hetero.

(c) Random in hetero. (d) LIGO in homo. (e) Montage in homo. (f) Random in homo. 34

5.4 Average missed deadlines: (a) LIGO in hetero. (b) Montage in hetero. (c) Random

in hetero. (d) LIGO in homo. (e) Montage in homo. (f) Random in homo. 35

5.5 Average dispatched tasks to the public cloud: (a) LIGO in hetero. (b) Montage

in hetero. (c) Random in hetero. (d) LIGO in homo. (e) Montage in homo. (f)

Random in homo. 36

xvii

xviii LIST OF FIGURES

5.6 Average transferring time to the public cloud: (a) LIGO in hetero. (b) Montage

in hetero. (c) Random in hetero. (d) LIGO in homo. (e) Montage in homo. (f)

Random in homo. 37

List of Tables

2.1 Summary of the literature and its comparison . 10

5.1 Hybrid cloud simulation parameters . 31

xix

xx LIST OF TABLES

1
Introduction

1.1 Lead-in

Cloud computing has been brought forth with advances in x86 virtual machine (VM) techniques,

such as VMware and Xen. The main difference between traditional computing systems and clouds

is the elastic resource provisioning, with pay-as-you-go pricing, of clouds from the support of such

VM techniques. Benefits from the elasticity and pricing model of clouds include cost efficiency,

scalability, and improved performance. The major real-life debut was the launch of Amazon Web

Services (AWS) S3 in late 20061 [1]. Since then, clouds have been widely adopted by not only

industry practitioners, but also researchers.

1https://aws.amazon.com/s3/

1

2 INTRODUCTION

FIGURE 1.1: Montage workflow.

Over the past few decades, scientific applications, for ex-

ample in bio-informatics and astronomy, have become increas-

ingly large scale which necessitates the need for extensive

computation and storage resources. Many of these applica-

tions deal with a large number of interdependent tasks, in

the form of the workflow (i.e., scientific workflows) and they

are resource intensive in terms of both computation and data.

For example, a Montage astronomical image mosaic work-

flow (Figure 1.1) [2] with 6.0-degree data spawns nearly nine

thousand precedence-constrained tasks and deals with several

gigabytes of data. This trend of heavy resource usage has been

handled to a certain extent by the fine-grained use of resources—VMs and containers in clouds

whether they are private clouds or public clouds.

A cloud is classified as a private cloud or a public cloud depending on access mode. A private

cloud is an infrastructure for performing workloads within a single administrative domain. It

gives full system control, privacy and security and data governance while the resource capacity is

limited or less flexible/elastic.

In the meantime, a public cloud, such as AWS, Microsoft Azure or Google Cloud Platform

provides a wide range of cloud services with claims of virtually unlimited resources. Users, in

theory, can acquire as many resources as needed and pay only for what has been used. For example,

Amazon EC2 offers instances1 of various types with different capacities. The pricing of these

instances is based on the number of machine hours.

While scientists can offload their applications (scientific workflows in this study) to public

clouds to take advantage of cost efficiency and improved performance, the data-intensiveness of

recent large-scale scientific workflows significantly hinders such complete offloading (i.e., cloud

sourcing). Besides, many organizations including research labs often operate their own private

clouds due to privacy, security and data governance. A more practical alternative is the hybrid use

of private cloud, and public cloud referred to as cloud bursting. In particular, tasks of a workflow

are distributed across these different clouds explicitly taking into account data dependencies and

1An instance in the context of Amazon EC2 is referred to a VM.

1.2 OBJECTIVE OF THE THESIS 3

locality; here, scheduling plays a crucial role.

There have been extensive studies on workflow scheduling [3–6]. The work in [3] runs

scientific workflows in grids considering resource heterogeneity. The works in [4, 5] focus on

improving a specific objective, such as performance (makespan) and cost efficiency, respectively.

The applicability of these works [3–5] is limited to a single system of tightly coupled resources

within the same geographical location. Although the work in [6] considers the hybrid cloud, its

focus is on compute-intensive workflows.

In this thesis, we address the problem of scheduling scientific workflows in hybrid clouds

explicitly taking into account data placement. More specifically, for a given workflow, our workflow

scheduling problem deals with the following: (1) resources of which cloud environment are used

for which tasks, and (2) how data is distributed prior and during workflow execution considering

costs and performance.

1.2 Objective of The Thesis

This thesis presents a data placement approach for scientific workflow execution in a hybrid

cloud, called Hybrid Scheduling for Hybrid Clouds (HSHC). The main objective is to optimize

the trade-off between performance and costs by maximizing private cloud usage and minimizing

data movement; however, they are conflicting objectives. HSHC reconciles this conflict with its

two-phase approach based on a genetic algorithm and dynamic programming. They are defined

as static and dynamic.

In the static phase, offline decisions are made through an extended genetic algorithm to deal

with data locality before actual execution. The resultant schedule from this phase can be considered

as the ideal execution plan with the assumption that tasks and resources perform as predicted.

In the dynamic phase, the “ideal” schedule from the static phase is adjusted based on changing

conditions of both tasks and resources. These changing conditions include communication delays

due to changes in intermediate data generation and volume, and performance variations of

resources due to resource contention.

Our main contributions in this thesis can be summarised as follows:

• We present HSHC for workflow scheduling in a hybrid cloud with a data placement strategy.

4 INTRODUCTION

• HSHC balances the performance and cost of workflow execution.

• We have conducted an extensive evaluation study with real-world scientific workflows.

We evaluate HSHC based on random workflows and real-world scientific workflows such as

Montage and LIGO [7]. The results of HSHC are compared with First Come First Serve (FCFS)

and AsQ [8]. Our results confirm the efficacy of HSHC in terms of performance and cost.

1.3 Organization of The Thesis

The remainder of the thesis is organized as follows: In chapter 2, we overview studies on workflow

scheduling in clouds. We define the problem and explain required preliminaries for a hybrid

cloud in chapter 3. In chapter 4, HSHC is presented. We evaluate HSHC and show the results in

chapter 5. Lastly, the conclusion and future works are discussed in chapter 6.

2
Literature Review

2.1 Lead-in

Scheduling plays an important role in the execution of workflows in terms of cost and performance.

Workflow scheduling also needs to pay attention to user-defined Quality-of-Service (QoS) metrics

such as security and energy consumption. However, it faces several challenges that emerge from

limited resources in the private cloud and the multi-tenancy, on-demand, and pay-per-use model

of resources in the public cloud.

Typical performance metrics of workflow scheduling include:

• Makespan. It mainly concerns the amount of time taken to execute a workflow.

• Utilization. The goal is to leverage idle time slots of instances to increase the overall

utilization. It is beneficiary in terms of cost, energy consumption, and budget savings.

5

6 LITERATURE REVIEW

• Cost efficiency. It is an important matter as users are charged based on their usage. The

less it costs, the more budget is saved, and as a consequence, more workflows could be

dispatched for execution.

2.2 Workflow Scheduling in Clouds

Scheduling workflows have been extensively studied [4, 9, 10]. Due to their precedence constraint

dictated by data dependency, the quality of schedule (e.g., makespan) is mainly dependent on

reducing communication costs between tasks. This communication cost stems from transferring

data among different instances, and it could happen in any cloud environments.

Workflow scheduling could be divided into two separate groups: computation-centric workflow

scheduling and data-aware workflow scheduling. While the former focuses on improving workflow

execution performance, the latter takes explicitly into account data management prior and/or

during execution.

2.2.1 Computation-Centric Workflow Scheduling

It has been a challenge to acquire the proper amount of resources for workflow execution. The

availability of resources could explicitly affect the execution time and its usage cost. Cost reduction

has necessitated resource management which can be through an extended Partial Critical Paths

(PCP) [4], dynamic, and priority-based scheduling [11], and Cluster Combining Algorithm (CCA)

[12] to allocate resources to tasks for maximizing resources usage appropriately. It also goes

further as successful execution of a workflow depends on the type and amount of resources that a

workflow should request. Therefore, an optimal resource provisioning to execute the workflow

within an acceptable deadline could be achieved through resource estimation [5].

2.2.2 Data-Aware Workflow Scheduling

Optimizing the execution performance in a cloud environment is very important when it deals

with data-intensive workflows. It increases the total cost as users are also charged for the amount

of bandwidth usage. Data placement is well-known for being an NP-Hard [9, 10, 13] problem. An

2.3 WORKFLOW SCHEDULING IN HYBRID CLOUDS 7

efficient data placement could explicitly reduce the execution time. Data clustering could be done

through machine learning strategies like k-means [9, 13, 14], Bayesian Network [15], or graphs

[10]. What it follows is to keep the relevant datasets close to each other and could be stored as

chunks in different locations.

In terms of dependency, data locality could also become extended into data-task and task-task

[16, 17] which might be done through task duplication. Data replication [17] could also increase

data locality that would ease required data retrieving; however, it would increase storage space

usage. It can also be in the form of choosing the best place for intermediate datasets [18] produced

during the workflow execution. Thus, the usage rate of the intermediate data per a specific time

could be monitored to decide to store the data or remove it from the system to reduce the overall

storage cost.

2.3 Workflow Scheduling in Hybrid Clouds

Workflow scheduling has recently leveraged hybrid clouds as well to take advantage of both internal

and external resources. As cloud resources are available with different capacities, an appropriate

scheduling approach should take control of instances selection. The scheduling approach may be

defined as a cost model to address minimum execution time as well as public resources rental cost

by presenting a list of resources for execution purposes to the user [19]. The division for the price

is based on considering the budget as a part of user application requirement. Workflow scheduling

within a hybrid cloud is also implicitly related to the workflow type. For example, the majority of

studies have addressed Bag-of-Tasks applications due to its simple structure as well as parallelism

[20, 21].

Scheduling for a Bag-of-Tasks application can be classified as cost-based approaches which

may come with prediction [22–24] to reduce the total cost. In other words, estimation could

have a significant impact on the decision for task offloading. It may also apply a binary nonlinear

programming [25] to maximize the local utilization and minimize the cost of public environment

utilization. The cost model could also be in the form of profit maximization [26], a resource

management and allocation scheme [8, 20, 27], increasing user privacy [28], and improving the

throughput [29] via a combination of a grid environment and a public cloud.

8 LITERATURE REVIEW

The cost model can also be extended in a way to support deadline and/or a specific budget. It

may be a cost comparison between private and public cloud [30] or a binary integer programming

approach [9] as a part of a scheduler component. Extending the cost model [31] is also done by

introducing the network cost. The size of datasets as an essential factor should be considered as it

influences deadline as well as the total cost of the public environment to reduce the makespan

and to achieve a minimum cost [32].

In contrast, scientific workflows are also considered to some extent but employing a data

management scheme has been the neglected matter. In other words, datasets regardless of their

locations are accessible at any time [6, 33]. Malawski et al., [33] presented a resource calculator

for scientific applications on multiple cloud environments through a mathematical model and

integer programming. The aim was providing a better resource management decisions for both

users and providers. They divided the workflow into several layers with the objective to treat

each layer as a set of tasks that could be executed in one instance. Then, they utilized the mixed

integer programming to optimize the total cost via multiple constraints including, but not limited

to, the deadline. However, due to lack of a data management scheme, the transferring cost had a

negative influence on the cost optimization for their model.

In [6] the cost was also modeled for workflow scheduling by considering data accessibility

time and queue time services on instances where resources might be limited or unlimited. The

cost model was solved through a mixed integer nonlinear programming for better deployment

of resources for workflow execution in a hybrid cloud environment. Lin et al., [34] proposed an

online strategy for scheduling continuous workflow submission on hybrid clouds. Their approach

aims to execute the workflow within the given deadline while keeping the public cloud utilization

at a lower cost. Their method consists of leveraging a hierarchical iterative application partition

(HIA) to cluster the workflow into a set of dependent tasks. It then collaborates with a hybrid

scheduler to achieve a minimum cost for execution. Due to uncertainties of task arrival time, new

arrival tasks were periodically clustered to be scheduled together. Then, via a hybrid scheduler task

dispatching was performed by an iterative hierarchical algorithm to turn the tasks into sub-groups

for better scheduling decisions. An internal queue scanner was also presented to manage public

cloud dispatching when a task deadline could not be met in the private cloud. For the queue,

different strategies were considered with the focus on selecting tasks which could be executed

2.4 SUMMARY 9

quicker.

Lin et al., [35] also presented a scheduling approach for considering the QoS regarding meeting

the deadline and minimizing the overall cost. They also considered the heterogeneity of cloud

resources for a workflow structure by compacting a Critical Path (CP). The aim was to find two

points as the right path for offloading purposes of reducing execution time through planing all

unscheduled parents by greedily assigning to a best-fit instance. Before dispatching tasks for

execution, they applied a pre-assessment on the workflow structure to extract and merge tasks

that they have a directed edge; tasks whose the rear and front nodes have access to one node.

This assessment aims to reduce the transferring time and reduce the complexity of the workflow.

Rahman et al., [36] developed an Adaptive Hybrid Heuristic (AHH) scheduling strategy to map

tasks to the available instances through a genetic algorithm to stay with the deadline and budget

while user constraints are also satisfied. A pre-schedule approach is applied to assign and distribute

the given budget and deadline within the workflow structure to the task levels. A heuristic is then

utilized to dispatch the tasks level-by-level based on the initial schedule dynamically. Combination

of transferring and execution fee when datasets were already placed, were considered to model

the cost of a Workflow Management System (WMS) to stay with user satisfaction criteria.

Luiz and Edmundo [37] with the help of Heuristic Path Clustering (HPC) tried to manage

resource assignment to stay with the expected deadline. As a resource selection strategy, it aims

to choose proper resources from the public cloud to be attached to the private environment for

providing the sufficient processing power, i.e., cores, to stay with the expected execution time.

Prioritized task groups as an initial scheduling step were used for instance selections. They are

initially checked whether the private cloud can execute tasks within the deadline. If an expected

deadline could not be met, it would be rescheduled to be assigned to the public cloud.

2.4 Summary

This chapter has reviewed studies about workflow scheduling in a cloud environment. Workflow

scheduling has been intensively studied, and different approaches have been proposed for better

makespan and/or in a cost-effective way. This cost could be increased if a cloud environment

10 LITERATURE REVIEW

TABLE 2.1: Summary of the literature and its comparison

Related Work Cost Model Deadline Budget Communication Cost Data Management

Cunha et al., [22] � � � � �

Marcu et al., [23] � � � � �

Rahman et al., [36] � � � � �

Wang et al., [25] � � � � �

Chunlin and LaYuan [38] � � � � �

Charrada and Tata [39] � � � � �

Rezaeian et al., [28] � � � � �

Wei and Meng [40] � � � � �

Bossche et al., [31] � � � � �

Lin et al., [35] � � � � �

Yuan et al., [26] � � � � �

Abdi et al., [41] � � � � �

Bittencourt et al., [32] � � � � �

Bossche et al., [42] � � � � �

Zennen and Engel [24] � � � � �

Calatrava et al., [29] � � � � �

Hoseinyfarahabady et al., [27] � � � � �

Chu and Simmhan [20] � � � � �

Wang et al., [8] � � � � �

Bittencourt and Maderia [37] � � � � �

Malawski et al., [6] � � � � �

Malawski et al., [33] � � � � �

Lin et al., [30] � � � � �

would deal with the execution of data-intensive workflows. Thus, data management approaches

have become more and more essential as a complementary role for workflow scheduling.

Table 2.1 represents the overview of workflow scheduling in the hybrid cloud context. It

illustrates that although existing approaches address the cost reduction to some extent, they barely

consider better data management that could complement the cost model to reduce the public

utilization fees significantly.

3
Problem Statement

3.1 Lead-in

A workflow structure is presented as a Directed Acyclic Graph (DAG), G = (V, E), to show the

precedence-constrained in the form of a set of nodes V = {v1, · · · , vn} as tasks and a set of edges

E = {ei j, · · · , emn} as data dependencies between tasks. A task vi is the parent task of vj if vj relies

on the output of vi. In this case, vj is considered as the child task of vi which leads to a data

dependency in a way that vj will not be performed until the parent vi is executed. A workflow

may have some tasks that do not have any parents. In this case, these tasks are called entry tasks.

If a task does not have any children, it is considered an exit task.

The time required to transfer necessary data from a node vi to another node vj to run a task is

considered as communication time ci j. If tasks vi and vj are on the same node, the communication

11

12 PROBLEM STATEMENT

v1

v2 v3 v4 v5

v6 v7

v8 v9 v10

v11

5 5

5

55

5 555

55

55 5

13

1313

1313

13
13

13

13

13

FIGURE 3.1: Example of a DAG representation of a workflow

time will be zero; otherwise, it will be a non-zero value if they run on different nodes.

An example of a workflow which is represented by a DAG is shown in figure 3.1. In this

structure, there are 11 nodes that v1 and v11 are the entry and exit nodes, respectively. When

node v1 is executed, the rest of nodes in the workflow will be performed based on the availability

of their required inputs. Moreover, nodes are labeled with their computation cost which can

be, for example, number of instructions. In the given DAG, edges are also tagged with their

communication cost, e.g., the amount of transferred data in megabytes.

A private cloud is considered as a set of M heterogeneous or homogeneous resources R =

{r1, · · · , rm}, with associated computation C = {c1, · · · , cm}, bandwidth B = {b1, · · · , bm}, and stor-

age S = {s1, · · · , sm}. Values of computation (C) and storage (S) are chosen from �+. The

bandwidth (B) is a set of links ∈ �+ between resources ri ∈ R that can be represented as

lri
= {li,r1

, · · · , li,m}. If the cloud is a homogeneous environment, instances will have the same

computation, bandwidth, and storage configuration.

A public cloud is a set of N virtualized resources U = {u1, · · · , un} that users are charged in a pay-

as-you-go manner. These resources have characteristics in terms of computation Cu = {cu1, · · · , cun},
bandwidth Bu = {bu1, · · · , bun}, and storage Su = {su1, · · · , sun} that their values belong to �+. Each

resource uj ∈ U has a set of links luj
= {l j,u1

, · · · , l j,um
}. Furthermore, each ui ∈ U has a cost per

time unit Costuj
. A set Lτu ⊆ U is contemplated as leased resources that are obtained from the

public cloud at the time of τ.

A hybrid cloud is a blend of private and public cloud environments with their available resources

3.2 DEFINITIONS 13

which can be stated as H = (
⋃m

i=1 R)∪ (⋃Un
j=1). The public cloud can provide virtually unlimited

resources. Therefore, the size of resources in the public cloud could be unbounded unless the

number of required resources would be demanded.

3.2 Definitions

There are variables in terms of cost, data dependency, and execution which are defined as follows:

3.2.1 Cost

Utilizing the public cloud is costly and as public instances come with different characteristics,

their corresponding cost also differs. In other words, users are charged based on the amount of

allocated storage Cost(S), consumed bandwidth Cost(B), and assigned computation Cost(C) for

an instance in the public cloud. Cost(B) is determined based on the amount of input and output

bandwidth consumption, thus, it can be rewritten as follows:

Cost(B) = |B(in)|+ |B(out)| (3.1)

The cost of execution on the private cloud is negligible but this value for the public cloud based on

the type of instance it is assigned to would be calculated as follows.

Cost(V mi) = Cost(Bi) + Cost(Si) + Cost(Ci) (3.2)

3.2.2 Data Dependency

To define the dependency, suppose task i and j require datasets DTi and DTj, respectively.

Dependenc yi j is defined as the following equation.

Dependenc yi j = |DTi ∩ DTj| (3.3)

This dependency can also be extended and defined as internal DI v and external DOv dependency.

The DI v represents the correlation degree among datasets which are placed within an instance v,

and DOv shows the correlation degree between datasets within instance v and the other available

14 PROBLEM STATEMENT

instances within an environment. They are defined as follows.

DI v =
|DT i |∑

i=0

|DT j |∑

j=0

Dependenc y i j (3.4)

DOv =
|DT i |∑

i=0

|V M |∑

j=0, j �=v

Dependenc y i,DT j
(3.5)

In equation 3.5, Dependenc y i,DT j
presents the correlation degree between task i of virtual ma-

chine(VM) v and DT j of virtual machines other than v.

A workflow consists of t interdependent tasks that uses d input datasets and produces m

intermediate data. A portion of intermediate datasets may not be used during the workflow

execution, hence, the effective intermediate data is called me.

Each task ti has a user-specified deadline Di, required input data DSi and intermediate datasets

I DSi. Each DSi consists of some ds that might be flexible or fixed data. In a case of fixed dataset,

it has to be placed at the designated virtual machine.

DSi = {ds1, · · · , dsn} (3.6)

3.2.3 Task Execution

Execution time of a task ti is denoted as Exec(ti, V mj) in its instance V mj which is calculated

based on the equation 3.7. In this equation, M T (ti, V mj) represents the amount of time that the

task has to wait to get its required datasets in the target instance. PT (ti, V mj) shows how long

V mj takes to process ti.

Exec(ti, V mj) = M T (ti, V mj) + PT (ti, V mj) (3.7)

A task may have to wait to be executed if there are other tasks to be performed on a specific instance.

The waiting time termed as dela y(ti, V mj) based on the concurrent tasks could be determined by

equation 3.8. In this equation, k represents the amount of tasks that are ahead of task tc in the

concurrent list. The deadline Di of task i in that list is subtracted from its corresponding execution

time of ti to be understood that those tasks within the list of that instance are not behind their

deadlines. If they are, the value would be negative and would show some tasks would miss their

3.3 PROBLEM DEFINITION 15

deadlines on the same virtual machine.

dela y =
k∑

i=0

Di − Exec(ti, V mj) (3.8)

3.3 Problem Definition

The hybrid cloud model in our problem consists of a private cloud and a public cloud which contains

M and N virtual machines, respectively. Instances within these environments are heterogeneous

that each of which has their resources in terms of storage, computation, and bandwidth. They are

called Rprivate
i (i ≤ M) and Rpublic

j (j ≤ N), correspondingly.

The input of our algorithm is a workflow with t interdependent tasks which require d datasets.

The execution of a task(ti) on an instance(V mj) is influenced by the amount of required data-set

DSti
. The presented problem intends to allocate tasks and their required datasets of a given

workflow to the resources within a hybrid cloud environment; t → Rprivate + Rpublic such that

maximize the private cloud utilization and reduce the number of offloading tasks to the public

cloud which would lead to having a cost-effective strategy that meets the tasks deadline.

3.4 Summary

This chapter has provided preliminaries for task execution on virtual machines in a hybrid cloud

environment. As a workflow is an interdependent structure, data dependency is defined to illustrate

how tasks are related to each other. This dependency will be used in HSHC for the static phase.

Determination of a task makespan and its cost on a public cloud are also discussed. In the end,

the problem is defined as a mapping function to assign tasks to the hybrid cloud resources in a

cost-efficient way while considering tasks deadlines.

16 PROBLEM STATEMENT

4
Hybrid Scheduling for Hybrid Clouds

4.1 Lead-in

FIGURE 4.1: The overall HSHC structure

Hybrid Scheduling for Hybrid Clouds (HSHC)

goes through two different phases to prepare

the right location of datasets and tasks in a hy-

brid cloud environment. They are static and

dynamic, respectively. The overall structure of

the approach is shown in figure 4.1. The main

reason for this division is to adequately prepare

the combined environment for task execution

in a productive way and avoid any unwanted

data movement or lousy task scheduling for the available resources. The static phase aims to use

17

18 HYBRID SCHEDULING FOR HYBRID CLOUDS

an extended genetic algorithm approach to place optimally datasets and tasks at the same time

based on the available virtual machines in a private cloud. In the next phase- dynamic- a dynamic

programming approach is used which utilizes the previous phase output to find the best place of

tasks in the combined environment based on the status of the private cloud workload.

4.2 Static Phase: A Genetic Algorithm Approach

The genetic algorithm (GA) is an optimization technique [43], which can be used to find the optimal

(or near-optimal) solution. GA is a search method that is inspired by the theory of evolution.

In this method, the solution space (population) is represented as a set of chromosomes, where

each chromosome represents a feasible solution to the problem. Each chromosome consists of

several variables (genes), which defines the structure of the problem. Each solution (chromosome)

is assigned a fitness value, which represents how fit that chromosome is compared to other

chromosomes.

4.2.1 Chromosome Structure

FIGURE 4.2: The chromosome structure.

The genetic algorithm as an optimization ap-

proach is used to find the optimal placement of

data and assign their corresponding tasks to the

available virtual machines. In the core of algo-

rithm, chromosome plays the important role as

a solution representative. Therefore, for the cur-

rent problem the structure shown in figure 4.2 is

used that presents a combination of datasets and

tasks at the same time to find the optimal allocation of tasks and data concurrently. The cell i

consists of a task-set TSi, data-set DSi, and an instance V mi.

4.2 STATIC PHASE: A GENETIC ALGORITHM APPROACH 19

4.2.2 Fitness Function

Evaluation of a chromosome is done through a fitness function which considers data dependency

and availability, controlling parameters, and the delay to choose the most eligible solution as a

result.

4.2.2.1 Data Dependency and Availability

The main objective of our approach is determining the locality of the tasks and datasets such that

the overall execution time is minimized. This results in considering several factors during the

representation of the fitness function. During the construction of the solution, for any given task,

in order to reduce the delay in execution, this task must be assigned to the VM that results in

increasing the number of available datasets for this task execution. We denote the percentage

of available datasets for task i at virtual machine j by ava(ti, V Mj). Moreover, for any given

virtual machine (j), the dependency between datasets assigned to this VM and datasets located

at different VMs must be minimized. In other words, the dependency between datasets assigned

to the same VM must be maximized. For a virtual machine (j), we refer to the data dependency

between the datasets assigned to this VM as DI j and the data dependency between these VM

datasets and other VMs datasets as DOj which were discussed in chapter 3, equations 3.4 and 3.5.

4.2.2.2 Controlling Parameters

To ensure the feasibility of a solution, we use the variable ckf to check if the assignment for the

fixed datasets and tasks does not violate the locality constraints. We also use the variable ckr

to check if the assigned task can retrieve the required datasets from its current VM. Moreover,

to pick up the best VMs, we use a variable termed Pratio. The value for the variable reflects

the overall computational power for the selected VMs. For example, among M private virtual

machines, there are four unique computation capabilities as C P1, C P2, C P3, C P4, which are sorted

in descending order with the corresponding values 1,0.75, 0.5,0.25. This ratio represents how

robust the selected instances for task execution are. The higher the ratio, the better the solution;

this ratio is calculated as follows:

Pratio =
M∑

i=0

si (4.1)

20 HYBRID SCHEDULING FOR HYBRID CLOUDS

Tasks assigned to a virtual machine might have the ability to be executed concurrently. Thus, a

delay is defined to help the fitness function with the selection of solutions that have less concurrent

values. To find the concurrent tasks within a virtual machine, the workflow structure has to be

considered. In other words, tasks are monitored to be realized when they will be available for

execution under their required intermediate datasets.

4.2.2.3 Task Delay Within an Instance

(a) (b)

(c)

FIGURE 4.3: (a) A cell, (b) tasks with sorted re-
quired intermediate datasets, and (c) the priority of
tasks within the virtual machine.

Then, they are categorized, and their execution

time is examined against their assigned dead-

line. If within an instance, there are tasks that

do not need any intermediate datasets, they will

also influence concurrent tasks. The lesser the

delay, the better the solution is provided. The

process is shown in figure 4.3. Once the prior-

ities are ready, the amount of time they would

be behind their defined deadline is evaluated.

The total amount of delay for a solution based

on equation 3.8 in chapter 3 is obtained by the

following:

T dela y =
M∑

i=0

dela y(vmi) (4.2)

where dela y(vmi) represents the total delay at virtual machine i. In some situations, a solution

might have virtual machines that do not have either a task-set or data-set. Thus, to increase the

number of used VMs, we introduced the variable Vuj, which denotes the percentage of the used

virtual machine in the solution. Given these variables, the fitness function is defined as follows.

f i tness = (pr × ckr × ckf ×
M∑

j=0

vuj)× (
|T |,M∑

i=0; j=0

ava(ti, V Mj)

× (
|T |,M∑

i=0; j=0

DI j −
|T |,M∑

i=0; j=0

DOj)−
M∑

j=0

T dela yj)

(4.3)

4.2 STATIC PHASE: A GENETIC ALGORITHM APPROACH 21

The first part of the fitness function deals with the controlling parameters. The parameters ckr

and ck f ensure the solution meets criteria in terms of fixed dataset constraint and the feasibility of

transferring task i datasets to the designated instances, respectively. Variables pr and vuj aim to

select better solutions in terms of computation capability while the selected virtual machines are

properly in charge of hosting data-sets or task-sets.

The second part mainly facilitates discovering the most suitable solutions which consist of a

mixture of data availability, dependency, and the tasks delays inside an instance. If the availability

of highly correlated data inside a virtual machine would exist, less delay for tasks would be

attained.

4.2.2.4 Genetic Algorithm Operators

FIGURE 4.4: k-way-crossover.

The new solutions are produced based on the

available ones. Due to the combined structure of

the chromosome, the normal crossover operation

cannot be applied for generating new solutions.

Thus, the newly proposed crossover called k-way-

crossover is introduced in figure 4.4. In this op-

eration, after getting the candidates based on a

tournament selection, k-worst and k-best cells of

each parent are swapped with each other. By utilizing this crossover, the length of a solution may

be increased, decreased, or fixed. If either the best or worst cell has any fixed datasets, they and

their corresponding tasks will remain within the cell.

FIGURE 4.5: The concurrent-rotation process.

Concurrent-rotation is introduced to mutate

a solution. In figure 4.5 the structure is shown.

It would create four different ways to mutate a

chromosome. For each cell within a solution, the

task and dataset with least dependency would be

selected and by the direction- clockwise or coun-

terclockwise- they would be exchanged with the

next or previous cell, correspondingly. If the least

22 HYBRID SCHEDULING FOR HYBRID CLOUDS

Algorithm 1: Static Algorithm
Data: private instances list, task-list, dataset-list, generation size, mutation probability

Result: The optimal placement of datasets and assignment of tasks

1 Prepare the initGeneration;

2 Evaluate initGeneration by equation 4.3;

3 while either the optimal is not found, or generation size is not exceeded do

4 apply tournament-selection;

5 apply k-way-crossover;

6 apply concurrent-rotation mutation;

7 evaluate the new solution;

8 add the new solutions to the population;

9 end

10 Rank the population and return the best one;

dependency is related to a fixed dataset and its corresponding task, the next least task, and dataset

would be selected.

4.2.3 Static Algorithm

The Static algorithm represents the static phase which is shown in algorithm 1. The outcome

of this phase will be used to initially place datasets and assign their corresponding tasks to the

most suitable virtual machines inside a private environment. This phase would provide better a

situation during the dynamic phase in terms of execution time as well as data transfer.

Typically, the initial set of chromosomes is created randomly. Furthermore, the number

of evolutionary iteration on the initial population is pre-defined. In each round, some of the

chromosomes will be chosen via a selection strategy, e.g., tournament selection. Chromosomes with

higher fitness values via equation 4.3 are more likely to be nominated. These selected chromosomes

will be passed to a k-way crossover operator, which generates new chromosomes (offspring). In

addition, the concurrent mutation operator is also used to generate new chromosomes. At the end

of each iteration, the fitness value for each chromosome is evaluated, and the ones with highest

4.3 DYNAMIC PHASE 23

values survive.

4.3 Dynamic Phase

The static outcome is used to place available datasets and assign corresponding tasks to the

designated virtual machines. As the previous step is an offline phase, the situation during the

workflow execution would be changed, and the cloud environment is required to be reevaluated.

In other words, some of the tasks would be needed to either assign to a different virtual machine

or to be offloaded to the public cloud environment for execution. The dynamic phase is split up

into two sub-phases to increase the performance of the private environment as well as reducing

the offloading costs to the public cloud.

4.3.1 In The Private Cloud

In the beginning, we divide the ready-to-execute tasks into flexible and non-flexible sets. The

non-flexible set contains tasks with fixed datasets, and this results in restricting the locality of the

VMs, where these tasks must be executed. The flexible set contains the tasks that can be executed

at any VMs, as long as necessary criteria like deadline and storage are met. Our algorithm is mainly

concerned with scheduling the flexible tasks. We start by calculating the available capacity and

workload for the current ActiveVMs; instances that are processing tasks. This is used to determine

the time in which these VMs can execute new tasks. During the execution of our algorithm, for

each task (ti) and VM (vmi), we maintain a value that represents the time when vmi can finish

executing ti. We refer to this value as T (ti, vmi). These values are stored in the F T Matri x (line

1).

The objective of algorithm 2 is to determine the identity of the task that can be assigned in

each round (for loop line 8). The allocation is established by identifying the task (ti ∈ T) and

the VM (vmi ∈ V M) such that F T (ti, vmi) value is the lowest possible value in F T Matri x . If

assigning ti to vmi does not violate this task deadline and its required storage, this assignment will

be confirmed. In this case, we will refer to ti and vmi as the last confirmed assignment. Otherwise,

this task will be added to an offloading list (lo f f), where all tasks belonging to this list will be

scheduled on the public cloud at a later stage. There is an exception to the list, and it is when

24 HYBRID SCHEDULING FOR HYBRID CLOUDS

the storage criterion would be the only violation for a task that could not be satisfied. Thus, the

task would be removed from the list and would be added again in another time fraction to the

ready-to-execute list.

In the first round, we determine the expected finishing time for every task (F T) at each VM

while it considers required data availability. For any given task and VM, this is calculated by

adding the execution time for this task to the time where this VM becomes available to execute

a new task (line 16). After the execution of the first round, we examine where the task with

the lowest F T (ti, vmi) value can be assigned without violating its deadline and required storage.

If this assignment is confirmed, we update the values in the F T Matri x to state that vmi will

be responsible for executing task ti. If this assignment violates ti deadline and/or storage, this

task will be added to the offloading list. In both cases, ti will be removed from consideration on

consecutive rounds.

Thereafter in each round, the expected finishing time for every task on a specific VM is

determined based on the identity of the task and the VM. Assuming that we are currently processing

task (t j) and virtual machine (vmj), where the last confirmed assignment in the previous round

is represented by tc to vmc, if vmj is actually vmc, we increase the expected finishing time of task

t j on vmj, since this VM is responsible for executing tc. In other situations, the value of the task

F T will stay the same. By adopting this strategy, we aim to maximize the number of tasks to be

executed in the private cloud.

The procedure findMinValue checks the F T Matri x and evaluates it against the current storage

of the corresponding virtual machines. What it returns is the index of the task and the corresponding

instance for offloading purposes. If it fails to find the indexes, the task would be added to the

offloadingList.

4.3.2 In The Public Cloud

All of the offloaded tasks will be scheduled to be executed in the public cloud, and algorithm 4

shows the steps in this scheduling process.

Scheduling these tasks uses a strategy similar to the private cloud scheduling. We start by

4.3 DYNAMIC PHASE 25

Algorithm 2: Tasks allocation algorithm
Data: F(flexible tasks), NF(non-flexible tasks), and private cloud

V Ms = idleV Ms ∪ act iveV Ms

Result: S(final schedule)

1 initialize F T Matri x with size |F | × |V Ms|
2 lo f f ← null, V ← null

3 Assign NF tasks and initialize Storage[|V Ms|]
4 for vmi ∈ V Ms do

5 update Storage[vmi] and calculate vmi workload

6 end

7 for i ← 0 to |F | do

8 for tk ∈ F \ (lo f f ∪ V) do

9 for vmj ∈ V Ms do

10 if i = 0 then

11 F T Matri x[tk][vmj]← Exec(tk, vmj)

12 end

13 else

14 if vmj = vmcand tk �= tr then

15 F T Matri x[tk][vmj]← F T Matri x[tk][vmj] + Exec(tk, vmj)

16 end

17

18 end

19 end

20 end

21 [Tr , V mc] = F indMinValue(F T Matri x , Storage)

22 S = DeadlineConst raintCheck(Tr , V mc)

23 S ← S ∪ publicC loudAssi gnment(lo f f)

24 end

26 HYBRID SCHEDULING FOR HYBRID CLOUDS

Algorithm 3: Deadline Constraint Check
Data: Tr(corresponding task index in the task-set), V mc(corresponding Vm index in the

private cloud VMs)

Result: S(final schedule)

1 if tr deadline is satisfied then

2 assign tr to vmc

3 Update F T Matri x and add tr to V

4 add [Tr , V mc] to S

5 end

6 else

7 add tr to lo f f , tr ← null

8 end

9 Return S

calculating the workload for all VMs. In this algorithm, for each task (ti) and virtual machine(vmi),

we maintain a value (DT) that represents the gap between this task deadline (Di) and the expected

finishing time for this task on vmi (F T). In situations where this value is less than zero, this task

cannot be executed on this VM. These values are stored in the DT Matri x (line 1).

In each round, we identify the task (ti ∈ T) and the virtual machine (vmi ∈ V M) such that

DT(ti, vmi) value is the lowest possible in the DT Matri x . This is established to minimize the

cost of execution, since low-speed VMs that satisfy the task deadline will result in a lower gap,

compared to high-speed virtual machines. Once they are identified, we perform this assignment

and remove this task from consideration in consecutive rounds. Then in each round, the execution

gap (DT) for each task on a specific VM is determined based on the identity of the task and the

VM in the last confirmed assignment. Assuming that we are currently processing task (t j) and VM

(vmj), in this situation, if vmj is the same VM used in the last confirmed assignment, we modify

the execution gap of t j on vmj to measure the processing time of the last assigned task.

4.3 DYNAMIC PHASE 27

Algorithm 4: PublicCloudAssignment
Data: lo f f and public cloud V Ms = idleV Ms ∪ act iveV Ms

Result: C(schedule on cloud)

1 initialize DT Matri x with size |lo f f | × |V Ms|
2 V ← null

3 for vmi ∈ V Ms do

4 update Storage[vmi]

5 calculate vmi workload

6 end

7 for i ← 0 to |lo f f | do

8 for tk ∈ (lo f f \ V) do

9 for vmj ∈ V Ms do

10 if i = 0 then

11 DT Matri x[tk][vmj]← Dti
− Exec(tk, vmj)

12 end

13 else

14 if vmj = vmcand tk �= tr then

15 DT Matri x[tk][vmj]← DT Matri x[tk][vmj]− Exec(tk, vmj)

16 end

17

18 end

19 end

20 end

21 [Tr , V mc] = MinCost(DT Matri x , V)

22 assign tr to vmc

23 Update DT Matri x and add tr to V

24 add[tr , V mc]toC

25 end

28 HYBRID SCHEDULING FOR HYBRID CLOUDS

4.4 Summary

This chapter has illustrated the core components of HSHC as static and dynamic. The first phase

with the help of an extended GA mainly deals with data placement and assign tasks to the most

suitable virtual machines. The fitness function is elaborated to select the most suitable solutions.

It consists of the following parts: controlling parameters, variables and a combination of data

dependency and task delay in instances. Controlling parameters such as ck f and ckr are defined

to check immovability of datasets and storage requirement for the task and data at the designated

host, respectively. Variables Vuj and pr are explained for determination of instances regarding

hosting a data-set or task-set and also selecting powerful instances for execution as much as

possible, correspondingly. The task delay and data dependency are criteria to evaluate how well

tasks are assigned to instances and how their corresponding data are placed.

The dynamic phase is responsible for task dispatching in the hybrid cloud during actual

execution. It utilizes two algorithms to correctly assign tasks to the best environment based on

the storage and the deadline. In fact, each environment has its scheduler to dispatch the tasks to

the most capable instances while the constraints are considered. If the private cloud could not

execute some tasks, they would be offloaded to the best performance to cost ratio instances in the

public cloud.

5
Evaluation

5.1 Lead-in

To evaluate HSHC, several experiments are conducted, and they are mainly divided into two

different sections as heterogeneous and homogeneous for the private environment. This is due to

policies which may be followed by installing new devices or setting up the same devices for the

internal cloud that may create different infrastructure. Also, baseline policies that are used and

implemented are FCFS and AsQ. The former is the traditional scheduling approach for assigning

tasks to instances through a queue-based system that the first-assigned task to the instance would be

executed early. The latter intends scheduling deadline-based applications in a hybrid environment

with a cost-effective approach, however, without a specific data management strategy. In fact, it is

an adaptive scheduling approach with QoS satisfaction to maximize private cloud utilization and

reduce the task response time. It also utilizes a cost strategy for dispatching tasks to the public

29

30 EVALUATION

(a) LIGO (b) Montage (c) Epigenomics

(d) SPHIT (e) CyberShake (f) Random

FIGURE 5.1: Workflow types

cloud.

5.2 Workflow Types

There are five types of scientific workflows1 which are presented in figure 5.1. Figure 5.1(a) as

Laser Interferometer Gravitational Wave Observatory (LIGO) is a gravitational-wave detectors

network to detect and determine gravitational waves as anticipated by Einstein in his theory of

gravity. Features of this workflow are less in the number of tasks as well as dealing with terabytes of

data to produce the useful results. Figure 5.1(b) describes the Montage workflow as an astronomy

application which forms large image mosaics of the sky and is recognized as a data-intensive

application. Epigenomics that is presented in figure 5.1(c) shows a data-processing pipeline that

1https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator

5.3 ENVIRONMENT SETUP 31

TABLE 5.1: Hybrid cloud simulation parameters

Cloud Environment Hosts Instances Price($/h)

Public cloud

3 hosts

20

Small Medium Large

Small Medium Large
Default Double Triple

4 inst. 8 inst. 8 inst.

Private cloud 1 host 20 Free

facilitates the execution of the various genome-sequencing operations automatically. Sipht which

is depicted in figure 5.1(d) is a bioinformatics project that is administrating an extensive search

for small raw RNAs that organize several processes such as secretion or virulence in bacteria.

CyberShake is shown in figure 5.1(e) is a seismology application that computes probabilistic

seismic hazard curves for geographic sites in the Southern California region.

Random workflows presented in figure 5.1(f) is created based on an arbitrary structure that

considers multiple inputs and output connections for making the workflow more interdependent.

This inter-dependency causes the relationship between tasks to become more dependent on

multiple outputs of the other tasks within the structure.

We utilize scientific workflows such as Montage and LIGO [37] as data-intensive jobs and also

random workflows with user-defined deadlines as the input for our simulation.

5.3 Environment Setup

The simulation environment is composed of a private cloud and a public environment which is

shown in table 5.1. The cost of public cloud utilization is based on Amazon EC2 price list1 that

for the small instance as a default cost is $0.023 per hour, and $0.1 per GB for computation and

network, respectively. For the heterogeneous private environment, computation capabilities are 7

instances with 250MIPS, 4 instances with 500MIPS, 4 instances with 750MIPS, and 5 instances with

1000MIPS. For the homogeneous private cloud, the computation capability is considered 250MIPS.

For the public environment and based on the defined hosts, they are 2500MIPS, 3500MIPS, and

1https://aws.amazon.com/ec2/pricing/on-demand/

32 EVALUATION

4500MIPS, respectively.

For the static phase, the initial population size is 50, and max generation is 500. The probability

of the mutation after several experiments is considered close to 0.2. The random workflow is

created based on a hierarchical structure that has 85 datasets, and their size in MB is chosen from

[64-512]. The input and output degree are chosen from [3-8]. Due to the different type of datasets

within the cloud environment, the results are extracted based on the 10% fixed datasets for the

random workflow. The results are reported in average based on 10 simulation runs in CloudSim

[44].

5.4 Results and Discussion

The results of our proposed approach are compared with FCFS and AsQ above based on the number

of tasks that their deadlines are met, the time that is spent for data movements, execution time,

and the cost of utilizing the public cloud.

5.4.1 A Heterogeneous Private Environment

Our results in figure 5.2 agree with the fact that maximizing the private cloud utilization plays an

essential part in a hybrid cloud structure. Figure 5.2(a-c) shows the overall execution time for

scientific workflows as well as random workflows in the heterogeneous environment. It approves

that HSHC outperforms the other scheduling strategies. One reason which implicitly affects

the average execution time is that AsQ and FCFS look for the available instances despite their

capabilities.

As different computation capabilities exist in this environment, HSHC tends to select powerful

instances based on the static phase. In fact, it looks for available instances on the private cloud

based on the deadline and storage constraints. This leads to having minimum execution time even

when the number of tasks is increased as tasks could be performed quicker, and their results could

be transferred to the private cloud. Furthermore, AsQ and FCFS have different execution time

based on the type of workflows. Although HSHC in figure 5.2(a-b) has achieved the minimum time,

5.4 RESULTS AND DISCUSSION 33

(a) LIGO in Hetero. (b) Montage in Hetero. (c) Random in Hetero.

(d) LIGO in Homo. (e) Montage in Homo. (f) Random in Homo.

FIGURE 5.2: Average execution time: (a) LIGO in hetero. (b) Montage in hetero. (c) Random in hetero.
(d) LIGO in homo. (e) Montage in homo. (f) Random in homo.

the second minimum value for FCFS and AsQ have happened for LIGO and Montage, respectively.

This difference is due to the structure of workflows they have. They are both data-intensive,

but they have the different number of concurrent tasks for execution based on their required

intermediate datasets. It could also be explained as dispatching those tasks that are either behind

their deadline or unable to retrieve their required datasets at the designated virtual machines. In

figure 5.5(a-c) increasing the number of tasks would require extra facilities which the private cloud

could not provide when the workload is high, therefore, it explicitly represents that dispatching

tasks to the public cloud is the ideal approach to meet the deadline constraint.

Moreover, it is also understood that the structure of workflow could have an indirect impact on

offloading tasks to the public cloud. In other words, 5.5(c) represents that for different random

workflow structures, different dispatching numbers are expected. This could be explained from

different perspectives: (1) the private cloud could handle all concurrent tasks that become activated

due to their required intermediate datasets and (2) the level of concurrency it presents differs from

a workflow to another workflow. This concurrency also affects the private instances workload at

34 EVALUATION

(a) LIGO in Hetero. (b) Montage in Hetero. (c) Random in Hetero.

(d) LIGO in Homo. (e) Montage in Homo. (f) Random in Homo.

FIGURE 5.3: Average cost of public cloud utilization: (a) LIGO in hetero. (b) Montage in hetero. (c)
Random in hetero. (d) LIGO in homo. (e) Montage in homo. (f) Random in homo.

different execution stages which might be high or low. Hence, having all the execution within a

private environment can cause a few tasks to be sent off to the public cloud.

Dispatching to the public environment also explains the amount of transferring time that has

to be spent on the offloaded tasks. In other words, figure 5.6(a-c) for the LIGO and Montage

show how HSHC leverages public cloud resources to meet the deadline and/or storage constraints.

Figure 5.4(a-c) can explicitly explain that to avoid missing tasks deadlines, they would have to be

offloaded to the public cloud. As a result, HSHC meets all the deadline, however, FCFS and AsQ

could not execute tasks within the expected time frame. On the one hand, the dynamic nature

of HSHC for virtual machine selections, and the other hand, passive strategies followed by FCFS

and AsQ have created differences regarding missed deadlines. In fact, assigning tasks to available

instances either on the private or public cloud would not guarantee that tasks could be performed

within the expected time. For example, if the queue-based structure of FCFS would not be able to

have the right vision for the tasks within the queue, it would lead to dispatching many tasks to an

instance for execution which would end up starving tasks at the back of the queue. Therefore, it

5.4 RESULTS AND DISCUSSION 35

(a) LIGO in Hetero. (b) Montage in Hetero. (c) Random in Hetero.

(d) LIGO in Homo. (e) Montage in Homo. (f) Random in Homo.

FIGURE 5.4: Average missed deadlines: (a) LIGO in hetero. (b) Montage in hetero. (c) Random in hetero.
(d) LIGO in homo. (e) Montage in homo. (f) Random in homo.

explains why these strategies have the minimum number of dispatched tasks to the public cloud

for the LIGO and Montage; figure 5.5(a-b). However, it has the maximum number of dispatched

tasks in figure 5.5(c) for the random workflows due to its different structure.

From a cost perspective, it also explains why HSHC achieves relatively higher costs in figure

5.3(a-b) for scientific workflows and a lower costs for random workflows in figure 5.3(c). The

higher the offloading rate, the higher the cost of public cloud utilization. Therefore, considering the

deadline as well as the ability of the private cloud caused to execute tasks in the public cloud which

can directly impact on the utilization costs. However, the offloading process may be influenced by

the workflow structure as for random workflows in figure 5.3(c) the costs have been the highest

for the other methods.

Therefore, HSHC by the right placement of datasets as well as the proper assignment of their

corresponding tasks outperformed AsQ and FCFS in both random and scientific workflows.

36 EVALUATION

(a) LIGO in Hetero. (b) Montage in Hetero. (c) Random in Hetero.

(d) LIGO in Homo. (e) Montage in Homo. (f) Random in Homo.

FIGURE 5.5: Average dispatched tasks to the public cloud: (a) LIGO in hetero. (b) Montage in hetero. (c)
Random in hetero. (d) LIGO in homo. (e) Montage in homo. (f) Random in homo.

5.4.2 A Homogeneous Private Environment

Instances in the homogeneous private cloud come with the low computation capabilities. Conse-

quently, the higher offloading rate to the public cloud would be noticeable to stay with the task’s

deadline. The low computation capabilities will cause the higher execution time which is shown in

figure 5.2(d-f). However, utilization of public instances would lead to having minimum execution

time as it would reduce the average execution time but would increase the cost.

It is referred from the figure that the baseline minimum and maximum time for all scheduling

strategies have been increased, but HSHC has achieved the minimum one. As task execution

would take considerable time in the private cloud, dispatching more tasks to the public cloud is

anticipated. In figure 5.5(d-e) dispatched tasks for LIGO and Montage are higher than for HSHC

approach in comparison to FCFS and AsQ. However, this value for the random workflows in 5.5(f)

is the lower one for HSHC in comparison to other strategies due to its different workflow structure.

5.5 SUMMARY 37

(a) LIGO in Hetero. (b) Montage in Hetero. (c) Random in Hetero.

(d) LIGO in Homo. (e) Montage in Homo. (f) Random in Homo.

FIGURE 5.6: Average transferring time to the public cloud: (a) LIGO in hetero. (b) Montage in hetero.
(c) Random in hetero. (d) LIGO in homo. (e) Montage in homo. (f) Random in homo.

The higher offloading rate has an explicit impact on the cost. Therefore, it is expected that

HSHC would achieve relatively higher costs for the scientific workflows and the lower cost of the

random workflows. In figure 5.3(d-e) our proposed approach has a relatively higher cost than

FCFS and AsQ. This higher cost can be explained in this way that HSHC aims to execute tasks

within the expected deadline; thus, it is obvious that the private cloud would be helped more

by the public cloud. Thus, HSHC has executed tasks within the user-defined deadline in figure

5.4(d-f). Despite the fact that the cost for FCFS is almost zero for Montage which is shown in

figure 5.3(e) it could not achieve meeting deadlines in figure 5.4(e) and has a slightly higher rate

of the missed deadline.

5.5 Summary

In this chapter, HSHC is evaluated based on random workflows and data-intensive workflows

such as Montage and LIGO in a heterogeneous private cloud environment. The results for a

38 EVALUATION

homogeneous private cloud is also extracted due to policies which may be followed by installing

new devices for the internal cloud that may create different infrastructure.

Our results are compared with scheduling methods FCFS as a traditional strategy and AsQ as

cost-effective approach. The results are extracted based on execution time, cost of public cloud

utilization, transferring time, the number of tasks that have missed their deadlines, and the number

of tasks that are dispatched to the public cloud. We have achieved comparatively better results

regarding maximizing the private cloud utilization for task execution and meeting task deadlines.

6
Conclusion

6.1 Lead-in

Cloud computing is a widely adopted technology that has created a robust platform to help devel-

opers to thrive newly cloud-based services and applications like Spotify1 or Netflix2. Regardless of

the public cloud popularity, there are still small and medium organizations which leverage owned

infrastructure for internal usage. Although it might be beneficiary to utilize such administrated

infrastructure, drawbacks like incapability of dealing with the workload surges have been the

open issue. A solution to this problem is to use a public cloud next to a private cloud to address

insufficiency of resources when required.

This research has provided us with open issues in the hybrid cloud when data and computation

1https://www.spotify.com/
2https://www.netflix.com/

39

40 CONCLUSION

intensive applications may be deployed in this environment. We have studied workflow scheduling

from a data placement prospective to efficiently schedule interdependent tasks through reducing

unnecessary data movements between clouds. We have proposed HSHC through a dynamic

programming approach and with the help of an extended genetic algorithm. In this chapter, the

future directions for extending the current study is presented. We also summarize the research

work and highlight our significant contributions.

6.2 Conclusion

Scheduling is the key pivot for the execution of workflows in a cloud environment to achieve

better resource utilization which has been extensively studied. The thesis has presented HSHC for

addressing scientific workflow scheduling in a hybrid cloud based on a data placement approach to

properly manage data locality in the hybrid cloud to avoid unnecessary movements and eventually

reduce public cloud utilization cost.

This thesis has discussed HSHC in chapter 4. HSHC is a two-phase approach that is referred

to as static and dynamic. The first phase leverages an extended genetic algorithm to deal with

data locality. It uses a chromosome structure as the combination of task-set and data-set within a

designated instance which is discussed in section 4.2.1. To select the proper candidates a fitness

function- section 4.2.2- is presented based on the following criteria: (1) inner and outer virtual

machine data dependency, (2) datasets availability for the corresponding tasks, (3) controlling

factors for instance selections and constraint checks, and (4) the concurrent delay inside instances

which assigned tasks may have. The extended algorithm also utilizes customized operators known

as k-way crossover and concurrent mutation. The former swap the worst cells (genes) within a

solution with the best ones from the other solution. The latter rotates the least correlated task or

data with the adjacent cells based on the rotation direction. The output of this algorithm provides

better data management and tasks allocation to the available instances.

The second phase consists of two algorithms which deal with the situation of the hybrid cloud

during workflow execution. The first algorithm termed as Task Allocation deals with scheduling

tasks within the private cloud based on their deadline and required storage. It leverages a dynamic

programming approach such that it increases the private cloud utilization. The other algorithm

6.3 FUTURE WORK 41

referred to as Public Cloud Assignment copes with selecting the most performance to cost ratio in

the public environment.

In chapter 5, we have evaluated our approach against other scheduling strategies known as

FCFS and AsQ. We have comparatively obtained better results for both scientific and random

workflows in performance and cost. Our approach illustrates that effectively leveraging private

resources for workflow execution has an explicit influence on total execution time as well as

reducing dispatching tasks to the public cloud. Therefore, the more the private instances are

utilized, the fewer jobs are dispatched to the public cloud in the hybrid cloud.

6.3 Future Work

Hybrid cloud as a promising model for workload deployment still needs to be studied more

regarding security, energy efficiency, and load balancing. This thesis covered a portion of security

aspect which could be extended to more complex scenarios like applying encryption and studying

the effect of encryption on offloading decisions. As a conventional strategy splitting up the data

and tasks into sensitive and non-sensitive groups would resolve the issue to some extent. However,

how would the hybrid cloud manage workflow scheduling while all tasks and datasets could be

offloaded to the public cloud via different encryption methods? The overhead which could be

created by the encryption would explicitly influence the time which would be spent on transferring,

encrypting, and decryption of the data at the computation hosts [45]. Thus, light-weight strategies

should be utilized to extend the ability for offloading decisions to the public cloud.

42 CONCLUSION

List of Symbols

HSHC Hybrid Scheduling for Hybrid Clouds

FC FS First Come First Served

BoT Bag-of-Tasks

DAG Directed Acyclic Graph

SaaS Software as a Service

PaaS Platform as a Service

IaaS Infrastructure as a Service

FaaS Function as a Service

QoS Quality of Service

S Storage

C Computation

B Bandwidth

Cost(S) Cost(Storage)

Cost(C) Cost(Computation)

Cost(B) Cost(Bandwidth)

43

44 LIST OF SYMBOLS

B(in) Bandwidth(Input)

B(out) Bandwidth(Output)

lri
Links of Resource i

Lτr Leased resources at the time of τ

TS Task Set

DS Data Set

I DS Intermediate Data Set

ds Dataset

DT Data Task

D Deadline

Exec Execution

PT Performing Time

M T Movement Time

t Task

R Resource

V M Virtual Machine

DI Dependency Inner

DO Dependency Outer

P Performance

ava Availability

C P Computation Capability

45

Vu Virtual Machine Usage

ck_ f Check Fixed dataset

ck_r Check data retrieval

F T Finishing Time

F T Matri x Finishing Time Matrix

lo f f Offloading List

F Flexible Tasks

N F Non-Flexible Tasks

DT Matri x Deadline Task Matrix

M I PS Million Instructions Per Second

Homo. Homogeneous

Hetero. Heterogeneous

inst. Instance

46 LIST OF SYMBOLS

References

[1] A. Weiss. Computing in the clouds. netWorker 11(4), 16 (2007). 1

[2] J. C. Jacob, D. S. Katz, G. B. Berriman, J. C. Good, A. C. Laity, E. Deelman, C. Kesselman,

G. Singh, M.-H. Su, T. A. Prince, and R. Williams. Montage: a grid portal and software toolkit

for science-grade astronomical image mosaicking. Int. J. Comput. Sci. Eng. 4(2), 73 (2009).

URL https://doi.org/10.1504/IJCSE.2009.026999. 2

[3] S. Abrishami, M. Naghibzadeh, and D. H. J. Epema. Cost-driven scheduling of grid workflows

using partial critical paths. IEEE Transactions on Parallel and Distributed Systems 23(8),

1400 (2012). 3

[4] S. Abrishami, M. Naghibzadeh, and D. H. J. Epema. Deadline-constrained workflow scheduling

algorithms for infrastructure as a service clouds. Future Generation Computer Systems 29(1),

158 (2013). 3, 6

[5] E.-K. Byun, Y.-S. Kee, J.-S. Kim, E. Deelman, and S. Maeng. Bts: Resource capacity estimate

for time-targeted science workflows. Journal of Parallel and Distributed Computing 71(6),

848 (2011). 3, 6

[6] M. Malawski, K. Figiela, and J. Nabrzyski. Cost minimization for computational applications

on hybrid cloud infrastructures. Future Generation Computer Systems 29(7), 1786 (2013). 3,

8, 10

[7] A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoe-

maker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E.

47

48 REFERENCES

Zucker. Ligo: The laser interferometer gravitational-wave observatory. Science 256(5055),

325 (1992). http://science.sciencemag.org/content/256/5055/325.full.pdf,

URL http://science.sciencemag.org/content/256/5055/325. 4

[8] W.-J. Wang, Y.-S. Chang, W.-T. Lo, and Y.-K. Lee. Adaptive scheduling for parallel tasks with

qos satisfaction for hybrid cloud environments. The Journal of Supercomputing 66(2), 783

(2013). 4, 7, 10

[9] D. Yuan, Y. Yang, X. Liu, and J. Chen. A data placement strategy in scientific cloud workflows.

Future Generation Computer Systems 26(8), 1200 (2010). 6, 7, 8

[10] K. Deng, J. Song, K. Ren, D. Yuan, and J. Chen. Graph-cut based coscheduling strategy

towards efficient execution of scientific workflows in collaborative cloud environments. In 2011

IEEE/ACM 12th International Conference on Grid Computing, pp. 34–41. 6, 7

[11] M. Malawski, G. Juve, E. Deelman, and J. Nabrzyski. Algorithms for cost- and deadline-

constrained provisioning for scientific workflow ensembles in iaas clouds. Future Generation

Computer Systems 48, 1 (2015). 6

[12] A. Deldari, M. Naghibzadeh, and S. Abrishami. Cca: a deadline-constrained workflow schedul-

ing algorithm for multicore resources on the cloud. The journal of Supercomputing 73(2), 756

(2017). 6

[13] K. Deng, L. Kong, J. Song, K. Ren, and D. Yuan. A weighted k-means clustering based co-

scheduling strategy towards efficient execution of scientific workflows in collaborative cloud

environments. In 2011 IEEE Ninth International Conference on Dependable, Autonomic and

Secure Computing, pp. 547–554. 6, 7

[14] X. Liu and A. Datta. Towards intelligent data placement for scientific workflows in collabora-

tive cloud environment. In 2011 IEEE International Symposium on Parallel and Distributed

Processing Workshops and Phd Forum, pp. 1052–1061. 7

[15] F. Ma, Y. Yang, and T. Li. A data placement method based on bayesian network for data-intensive

scientific workflows. In 2012 International Conference on Computer Science and Service System,

pp. 1811–1814. 7

REFERENCES 49

[16] L. Teylo, U. de Paula, Y. Frota, D. de Oliveira, and L. M. Drummond. A hybrid evolutionary

algorithm for task scheduling and data assignment of data-intensive scientific workflows on

clouds. Future Generation Computer Systems 76, 1 (2017). 7

[17] E. I. Djebbar and G. Belalem. Optimization of Tasks Scheduling by an Efficacy Data Placement

and Replication in Cloud Computing, pp. 22–29 (Springer International Publishing, Cham,

2013). 7

[18] D. Yuan, Y. Yang, X. Liu, and J. Chen. On-demand minimum cost benchmarking for intermediate

dataset storage in scientific cloud workflow systems. Journal of Parallel and Distributed

Computing 71(2), 316 (2011). 7

[19] M. R. H. Farahabady, Y. C. Lee, and A. Y. Zomaya. Pareto-optimal cloud bursting. IEEE

Transactions on Parallel and Distributed Systems 25(10), 2670 (2014). 7

[20] H. Y. Chu and Y. Simmhan. Cost-efficient and resilient job life-cycle management on hybrid

clouds. In 2014 IEEE 28th International Parallel and Distributed Processing Symposium, pp.

327–336. 7, 10

[21] S. Wu, B. Li, X. Wang, and H. Jin. Hybridscaler: Handling bursting workload for multi-tier web

applications in cloud. In Parallel and Distributed Computing (ISPDC), 2016 15th International

Symposium on, pp. 141–148 (IEEE). 7

[22] R. L. Cunha, E. R. Rodrigues, L. P. Tizzei, and M. A. Netto. Job placement advisor based on

turnaround predictions for hpc hybrid clouds. Future Generation Computer Systems 67, 35

(2017). 7, 10

[23] O.-C. Marcu, C. Negru, and F. Pop. Dynamic scheduling in real time with budget constraints in

hybrid clouds. In International Conference on Grid Economics and Business Models, pp. 18–31

(Springer). 10

[24] A. Zinnen and T. Engel. Deadline constrained scheduling in hybrid clouds with gaussian processes.

In High Performance Computing and Simulation (HPCS), 2011 International Conference on,

pp. 294–300 (IEEE). 7, 10

50 REFERENCES

[25] B. Wang, Y. Song, Y. Sun, and J. Liu. Managing deadline-constrained bag-of-tasks jobs on

hybrid clouds. In Proceedings of the 24th High Performance Computing Symposium, p. 22

(Society for Computer Simulation International). 7, 10

[26] H. Yuan, J. Bi, W. Tan, and B. H. Li. Temporal task scheduling with constrained service delay

for profit maximization in hybrid clouds. IEEE Transactions on Automation Science and

Engineering 14(1), 337 (2017). 7, 10

[27] M. R. Hoseinyfarahabady, H. R. D. Samani, L. M. Leslie, Y. C. Lee, and A. Y. Zomaya. Handling

uncertainty: Pareto-efficient bot scheduling on hybrid clouds. In 2013 42nd International

Conference on Parallel Processing, pp. 419–428. 7, 10

[28] A. Rezaeian, H. Abrishami, S. Abrishami, and M. Naghibzadeh. A budget constrained scheduling

algorithm for hybrid cloud computing systems under data privacy. In Cloud Engineering (IC2E),

2016 IEEE International Conference on, pp. 230–231 (IEEE). 7, 10

[29] A. Calatrava, G. Molto, and V. Hernt’ndez. Combining grid and cloud resources for hybrid sci-

entific computing executions. In 2011 IEEE Third International Conference on Cloud Computing

Technology and Science, pp. 494–501. 7, 10

[30] Y. C. Lee and B. Lian. Cloud bursting scheduler for cost efficiency. In 2017 IEEE 10th International

Conference on Cloud Computing (CLOUD), pp. 774–777. 8, 10

[31] R. Van den Bossche, K. Vanmechelen, and J. Broeckhove. Online cost-efficient scheduling of

deadline-constrained workloads on hybrid clouds. Future Generation Computer Systems 29(4),

973 (2013). 8, 10

[32] L. F. Bittencourt, C. R. Senna, and E. R. Madeira. Scheduling service workflows for cost

optimization in hybrid clouds. In Network and Service Management (CNSM), 2010 International

Conference on, pp. 394–397 (IEEE). 8, 10

[33] M. Malawski, K. Figiela, M. Bubak, E. Deelman, and J. Nabrzyski. Cost Optimization of

Execution of Multi-level Deadline-Constrained Scientific Workflows on Clouds, pp. 251–260

(Springer Berlin Heidelberg, Berlin, Heidelberg, 2014). 8, 10

REFERENCES 51

[34] B. Lin, W. Guo, and X. Lin. Online optimization scheduling for scientific workflows with deadline

constraint on hybrid clouds. Concurrency and Computation: Practice and Experience 28(11),

3079 (2016). 8

[35] B. Lin, W. Guo, N. Xiong, G. Chen, A. V. Vasilakos, and H. Zhang. A pretreatment workflow

scheduling approach for big data applications in multicloud environments. IEEE Transactions

on Network and Service Management 13(3), 581 (2016). 9, 10

[36] M. Rahman, X. Li, and H. Palit. Hybrid heuristic for scheduling data analytics workflow

applications in hybrid cloud environment. In Parallel and Distributed Processing Workshops and

Phd Forum (IPDPSW), 2011 IEEE International Symposium on, pp. 966–974 (IEEE). 9, 10

[37] L. F. Bittencourt and E. R. M. Madeira. Hcoc: a cost optimization algorithm for workflow

scheduling in hybrid clouds. Journal of Internet Services and Applications 2(3), 207 (2011).

9, 10, 31

[38] L. Chunlin and L. LaYuan. Hybrid cloud scheduling method for cloud bursting. Fundamenta

Informaticae 138(4), 435 (2015). 10

[39] F. B. Charrada and S. Tata. An efficient algorithm for the bursting of service-based applications

in hybrid clouds. IEEE Transactions on Services Computing 9(3), 357 (2016). 10

[40] H. Wei and F. Meng. A novel scheduling mechanism for hybrid cloud systems. In 2016 IEEE 9th

International Conference on Cloud Computing (CLOUD), pp. 734–741. 10

[41] S. Abdi, L. PourKarimi, M. Ahmadi, and F. Zargari. Cost minimization for deadline-constrained

bag-of-tasks applications in federated hybrid clouds. Future Generation Computer Systems 71,

113 (2017). 10

[42] R. V. d. Bossche, K. Vanmechelen, and J. Broeckhove. Cost-optimal scheduling in hybrid iaas

clouds for deadline constrained workloads. In 2010 IEEE 3rd International Conference on Cloud

Computing, pp. 228–235. 10

[43] X.-S. Yang. Nature-inspired optimization algorithms (Elsevier, 2014). 18

52 REFERENCES

[44] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and R. Buyya. Cloudsim: A

toolkit for modeling and simulation of cloud computing environments and evaluation of resource

provisioning algorithms. Softw. Pract. Exper. 41(1), 23 (2011). URL http://dx.doi.org/

10.1002/spe.995. 32

[45] Z. Zhou, H. Zhang, X. Du, P. Li, and X. Yu. Prometheus: Privacy-aware data retrieval on hybrid

cloud. In 2013 Proceedings IEEE INFOCOM, pp. 2643–2651. 41

