

Service Provisioning From Resource Constrained Mobile Devices

Mahbub Hassan

B.Sc. (Hons), M.Eng.

A thesis submitted in fulfillment of the requirements for the degree of Master of Philosophy

> Department of Computing Faculty of Science Macquarie University Sydney, Australia

> > June 2011

 $\ensuremath{\mathbb{C}}$ 2011 Mahbub Hassan

Abstract

The primary goal of this thesis is to investigate how the service-oriented architecture can be extended to mobile environments, facilitating resource constrained mobile devices to host services. With the advances in mobile devices and wireless communications, the opportunities to run resource-demanding applications on the mobile devices are growing. The increasing processing power, storage and support of multiple network interfaces enable the mobile devices to host services and participate in service discovery networks. These characteristics facilitate that mobile devices can act both as service consumers and service providers. Besides, roaming of mobile devices across wireless networks provides nomadic characteristics to the service providers to be available anytime and anywhere. As in web services architecture, service consumers and providers are loosely coupled and dynamically bound; this architecture is especially advantageous for the frequently changing mobile environments.

Nevertheless, service provisioning from mobile devices is challenging, as the resources are far more constrained compared to the Internet servers that are originally targeted for web services technologies. Mobile devices have limited processing power and memory space; and suffer from lower bandwidths, higher error rates, and frequent disconnections compared to fixed networks. A few efforts have been taken to verify the feasibility of provisioning web services from mobile devices. However, they have not addressed the issue about how to host heavy-duty services on resource-constrained mobile devices with limited processing power, memory space, and transmission bandwidth.

This thesis attempts to overcome the issues by introducing a framework which partitions the workload of resource-demanding services involving complex business processes and keeps the web service interfaces on mobile devices. The framework effectively leverages the capability of mobile devices, by offloading the partitioned computing load to resource-rich surrogates. Therefore, the mobile device works as the integration point with the support of surrogate nodes and other web services. The functions that require the resources of the mobile device or interaction with the mobile user are executed locally.

The framework introduces an efficient partitioning approach for execution offloading from resource constrained mobile devices. The proposed approach considers the dynamic status of the resources of a mobile device to partition the tasks effectively. The framework provides a distributed platform for executing services, which adaptively offloads by considering both the interaction properties and the resource consumption of the tasks. The designed framework is analyzed using prototype experiments and the results have shown the effectiveness and efficiency of the approach in provisioning heavy-duty services from resource constrained mobile devices.

Statement of Originality

This is to certify that the thesis is my own original work and it has been written by me. No part of this thesis has been submitted to any other institution other than Macquarie University as part of any other degree or diploma.

In addition, I certify that all information sources and literature used in the thesis are properly indicated. Any help and assistance that I have received in my research and the preparation of the thesis have been appropriately acknowledged.

> Mahbub Hassan 30 June 2011

To my parents.

Acknowledgements

First and foremost, I would like to express my sincere gratitude to my principal supervisor Professor Jian Yang, for offering me the opportunity to do this research and for her continuous support and guidance that have made my research possible. Prof. Yang gave me the honor of becoming one of her students and has provided me the freedom to pursue my own research interests. Without Prof. Yang's help and support throughout my candidature, this work would not have been possible.

I owe much gratitude to my co-supervisor Dr. Weiliang Zhao, for his guidance, continuous support, encouragement, insightful ideas and critical evaluation of my work during my research period. I express my sincere thanks to him for agreeing to become my supervisor when I was critically in need of his expertise and guidance.

I would like to gratefully thank Dr. Abhaya Nayak and Ms. Jane Yang for their continuous support in all difficult situations throughout my candidature. I am also indebted to Dr. Rajan Shankaran for the encouragement he has given me and for offering me help in understanding research issues whenever I needed.

I would like to thank especially my colleague Ms. Yi Wang, and my friends Mr. Rezaul Bashar and Ms. Shermin Akther for their support on preparing the thesis. I sincerely thank all the people in the Department of Computing of Macquarie University, for their warm support and help.

Finally, I would like to thank my parents Mr. Shahjahan Miah and Mrs. Tahera Gulshan for their love, support, and encouragement throughout the whole period of my study and in so many ways. Without their support this work would have never been accomplished.

Table of Contents

Abstract	iii
Statement of Originality	\mathbf{v}
Acknowledgement	vii
Table of Contents	ix
List of Figures	xv
List of Tables	xix
List of Acronyms	xxi
List of Publications	xxv
Chapter 1. Introduction	1
1.1. Services Hosted on Mobile Devices	2
1.2. Motivation	3
1.3. Challenging Issues	7
1.4. Research Goals	9
1.5. Research Contributions	12
1.6. Thesis Structure	14
Chapter 2. Background	17
2.1. Web Services Technologies	17
2.1.1. Web Services Architecture	19
2.1.2. Simple Object Access Protocol (SOAP)	19
2.1.3. Web Services Description Language (WSDL)	21
2.1.4. Universal Description, Discovery and Integration	23
(UDDI)	
2.1.5. Web Services Interoperability	26
2.2. Developments in Mobile Technology Domain	27
2.2.1. Device Capabilities	28
2.2.2. Transmission Capabilities	29

2.2.3. Nomadic Mobile Services	30
2.3. Mobile Web Services	31
2.3.1. Platforms Supporting Mobile Web Services	34
2.3.2. SOAP Implementations for Resource Constrained	38
Environments	
2.3.3. Different Transportation Protocols	41
2.3.4. Standardization Efforts for Mobile Web Services	45
2.4. Open Issues and Challenges	47
2.5. Related Work	49
2.6. Summary	51
Chapter 3. Mobile Hosted Service Provisioning	53
3.1. Mobile Devices as Service Providers	53
3.1.1. Feasibility of Implementing Mobile Service Provider	55
3.1.2. Sample Services Provided by Mobile Service Provider	56
3.1.3. Performance Evaluation of Mobile Service Provider	58
3.1.4. Applications of Mobile Service Provider	63
3.2. Related Mobile Server Approaches	65
3.3. Scalability Aspects of Mobile Service Provider	69
3.3.1. XML Compression	69
3.3.2. Binary XML	71
3.3.3. BinXML	73
3.4. Integration Aspects of Mobile Hosted Service Provisioning	75
3.4.1. Enterprise Service Bus (ESB)	76
3.4.2. Java Business Integration (JBI)	80
3.4.3. ServiceMix	84
3.5. Summary	85
Chapter 4. Mobile Service Provider in P2P Environments	87
4.1. P2P Systems and Mobile Web Services	87
4.1.1. P2P Technologies	88
4.1.2. Convergence of P2P Systems and Web Services	90

4.1.3.	JXTA	91
4.1.4.	Related Projects Converging Web Services and JXTA	96
4.1.5.	Lucene	98
4.2. Mobi	le Web Services in JXTA Network	99
4.3.P2P	Framework based on Mobile Services Gateway	102
4.3.1.	Enterprise Service Bus for Mobile Services Gateway	103
4.3.2.	Categorization of Mobile P2P Services	104
4.3.3.	Distributed Service Registries for Mobile P2P Service	105
Р	Providers	
4.4. Supp	orting Mobility of Mobile P2P Service Providers	108
4.4.1.	Peer Moving to Remote Peer Group	111
4.4.2.	Peer Joining Multiple Peer Groups	112
4.4.3.	Peer Migrating to Remote Location	113
4.5. Mobi	le Web Services Discovery	114
4.5.1.	Discovery Aspects of Mobile Web Services	114
4.5.2.	Dynamic Service Discovery Mechanisms	115
4.5.3.	Discovery of Mobile Web Services in JXTA Network	117
4.5.4.	Mobile Web Services Discovery Process	120
4.6. Mobi	le Web Services Invocation in JXTA Network	121
4.7. Evalu	uation of Prototype Mobile Service Provider	122
4.7.1.	Test Setup	122
4.7.2.	Test Results	123
4.8. Sumi	nary	125
Chapter 5.	Partitioning Service Execution on Resource	127
Constra	ined Devices	
5.1. Mobi	le Service Provider Architecture	128
5.2. Parti	tioning Service Execution Engine	130
5.3. Servi	ce Partitioning Techniques	132
5.3.1.	Coarse Grain Partitioning	133
5.3.2.	Fine Grain Partitioning	133
5.4. Servi	ce Partitioning Design Guidelines	134

5.5. Mobi	le Service Partitioning Schemes	135
5.5.1.	Backend-node Based Scheme	135
5.5.2.	Intermediate-node Based Scheme	137
5.5.3.	Forwarding-node Based Scheme	138
5.6. Fram	nework for Partitioned Mobile Services	138
5.6.1.	Mobile Service Controller	140
5.6.2.	Function Managers	140
5.6.3.	Mobile Execution Engine	141
5.6.4.	Context Manager	141
5.7.Perfo	rmance Model	143
5.8. Perfo	rmance Evaluation	144
5.8.1.	Effect of Partitioning on Performance	145
5.8.2.	Effect of Partitioning as Child Services	147
5.8.3.	Effect of Using Façade Design Pattern on Service	151
Р	artitioning	
5.9. Sumi	nary	154
Chapter 6.	Approach for Efficient Service Partitioning	155
6.1. Offloa	ading Pervasive Services	156
6.2. Cost-	based Dynamic Offloading	157
6.2.1.	Weighting the Costs of Service Components	157
6.2.2.	Monitoring Dynamic Resource Utilization	157
6.2.3.	Issues for Dynamic Offloading Decision	158
6.3. Parti	tioning Algorithm	162
6.3.1.	Service Component Weighting Using Multi-cost Graph	163
6.3.2.	(k + 1) Partitioning Algorithm	165
6.3.3.	The EVM Algorithm	167
6.3.4.	Complexity of the $(k + 1)$ Partitioning Algorithm	172
6.4. Expe	rimental Evaluation	173
6.4.1.	Sample Service: π Calculator	173
6.4.2.	Efficiency of EVM Algorithm	176
6.5. Sumi	nary	178

Chapter 7.	Adaptive Offloading for Pervasive and Cloud	179
Environ	ments	
7.1. Boost	ting Pervasive Applications in Cloud Environments	180
7.2. Decis	sion-Making for Adaptive Offloading	183
7.3. Distr	ibuted Offloading Platform	185
7.3.1.	Features	185
7.3.2.	The Platform	186
7.3.3.	Benefits	187
7.3.4.	Assumptions	188
7.4.Appr	oach for Distributed Offloading Platform	188
7.4.1.	Componentization	189
7.4.2.	Surrogate Discovery	189
7.4.3.	Transparent Distributed Execution	190
7.4.4.	Partitioning Execution	191
7.4.5.	Application Execution Monitoring	194
7.4.6.	Resource Monitoring	195
7.5.Adap	tive Offloading Inference Engine	196
7.5.1.	Trigger Offloading based on a Fuzzy Control Model	196
7.5.2.	Efficient Partitioning Selection	202
7.5.3.	Class Granularity Consideration	204
7.6. Perfo	ormance Evaluation	205
7.6.1.	Evaluation of Different Performance Metrics	209
7.6.2.	Evaluation of Other Factors Affecting Performance	213
7.7. Sum	mary	216
Chapter 8.	Conclusions and Future Work	217
8.1. Sum	mary of Thesis Contributions	217
8.2. Futu	re Research Directions	221
8.3. Conc	luding Remarks	222
Bibliograp	hy	225
Appendix		247

List of Figures

Figure 1.1	Train travel scenario	7
Figure 2.1	SOA collaborations	18
Figure 2.2	SOAP message structure	20
Figure 2.3	Structure of WSDL document	22
Figure 2.4	Schematic view of a UDDI registry	25
Figure 2.5	Mobile devices as service providers and clients	32
Figure 3.1	Mobile devices as service provider	56
Figure 3.2	Mobile service invocation	59
Figure 3.3	Difference between round-trip durations for SOAP and HTTP requests	61
Figure 3.4	Timestamps for GPS data provisioning service	62
Figure 3.5	Proxy based NMS provisioning	66
Figure 3.6	MSP and NMS lifecycle	67
Figure 3.7	Enterprise service bus	77
Figure 3.8	Java business integration architecture	81
Figure 4.1	Classification of P2P technologies	90
Figure 4.2	JXTA architecture	92
Figure 4.3	Proxy model architecture	97
Figure 4.4	JXTA / Web services integration	98
Figure 4.5	The deployment scenario in JXME network	100
Figure 4.6	Mobile Services Gateway bridging P2P and Web	103
	environments	
Figure 4.7	Categorization of mobile P2P services	105
Figure 4.8	Service registries in mobile P2P networks	106
Figure 4.9	Roaming of a mobile terminal across networks	108

Figure 4.10	Data maintained at GSR for service advertisements	109
Figure 4.11	Mobile service provider moving across peer groups	110
Figure 4.12	Mobile service provider moves to remote peer group	111
Figure 4.13	Mobile service provider joins two peer groups	112
Figure 4.14	Mobile service provider migrates to remote location	113
Figure 4.15	Mapping between JXTA modules and web services	118
Figure 4.16	Complete mobile web service discovery process	121
Figure 4.17	Average times taken to handle clients at the MSG	124
Figure 4.18	Number of transactions handled per second by the	125
	MSG	
Figure 5.1	Mobile service provider architecture	129
Figure 5.2	Partitioning service execution engine	131
Figure 5.3	(a) Backend-node based scheme, (b) Intermediate-	136
	node based scheme, (c) Forwarding-node based	
	scheme	
Figure 5.4	A partitioned mobile service provider framework	140
Figure 5.5	Effect of execution engine partitioning on	147
	performance	
Figure 5.6	Location service (a) un-partitioned, (b) partitioned	149
	into child services, (c) partitioned into remotely	
	accessible objects	
Figure 5.7	Effect of execution engine partitioning as child	150
	services	
Figure 5.8	Partitioning approach with aggregating two services	153
	using façade design pattern	
Figure 5.9	Effect of using façade design pattern on partitioning	154
Figure 6.1	Partitioning undirected graph	164
Figure 6.2	An example of EVM algorithm	171
Figure 6.3(a)	π calculator response time	175
Figure 6.3(b)	π calculator memory usage	175

Figure 6.3(c)	π calculator CPU utilization	176
Figure 6.4	Edge-cut comparison for MobileVideo application	178
Figure 7.1	Transforming a single-machine execution (mobile	181
	device) into a distributed execution (mobile device	
	and cloud)	
Figure 7.2	Adaptive offloading system architecture	184
Figure 7.3	Interaction and operation of the distributed platform	187
Figure 7.4	Multiple partitioning of execution graph	192
Figure 7.5	Illustration of candidate partition generation	194
Figure 7.6	Offloading inference engine architecture	196
Figure 7.7	Illustration of membership function AvailMem	200
Figure 7.8	Illustration of membership function AvailCPU	201
Figure 7.9	Total offloading overhead by different offloading	210
	algorithms	
Figure 7.10	Average interaction delay by different offloading	211
	algorithms	
Figure 7.11	Total bandwidth requirements by different	212
	approaches	
Figure 7.12	Effect of different partitioning policies on execution	213
	overhead	
Figure 7.13	Effect of native method invocations on performance	215

List of Tables

Table 3.1	BinXML encoding of the SOAP message in Listing 3.1	74
Table 5.1	Comparison of response times with and without	146
	partitioning	
Table 5.2	Response times with different partitioning techniques	150
Table 5.3	Response times with and without façade design	153
	strategy	
Table 7.1	Descriptions of applications used in the experiments	209

List of Acronyms

Acronym	Meaning
ANSI AOE API ARM ARQ ASCII	American National Standards Institute Adaptive Offloading Engine Application Programming Interface Advanced RISC Machine Automatic Repeat Request American Standard Code for Information Interchange
BEEP	Blocks Extensible Exchange Protocol
BiM	Binary Format for Metadata
BPEL	Business Process Execution Language
BTS	Base Transceiver Station
CORBA	Common Object Request Broker Architecture
CPU	Central Processing Unit
DCOM	Distributed Component Object Model
DHCP	Dynamic Host Configuration Protocol
DNS	Domain Name System
DoD	Department of Defense
DOM	Document Object Model
DS	Device Service
EAI	Enterprise Application Integration
EDA	Event Driven Architecture
EDGE	Enhanced Data rates for GSM Evolution
ESAX	Encoded Simple API for XML
ESB	Enterprise Service Bus
EVM	Edge and Vertex Matching
GIS	Geographic Information Systems
GPRS	General Packet Radio Service
GPS	Global Positioning System
GSM	Global System for Mobile communications
GSR	Gateway Service Registry
GUI	Graphical User Interface
HEM	Heavy Edge Matching
HTML	HyperText Markup Language
HTTP	HyperText Transfer Protocol

ID-WSF	Identity Web Services Framework
JBI	Java Business Integration
JDK	Java Development Kit
JMS	Java Message Service
JMX	Java Management Extensions
JRE	Java Runtime Environment
JSR	Java Specification Request
JTAG	Joint Test Action Group
JVM	Java Virtual Machine
	Java virtual Machine
LBS	Location Based Services
LDAP	Lightweight Directory Access Protocol
LEM	Light Edge Matching
LRU	Least Recently Used
LSR	Local Service Registry
	Local Service Registry
MHM	Multiplexed Hierarchical Modelling
M-Learning	Mobile Learning
MMS	Multimedia Messaging Service
MPEG	Moving Picture Experts Group
MSG	Mobile Services Gateway
MSP	Mobile Service Platform
MTOM	Message Transmission Optimization
	Mechanism
NAT	Network Address Translation
NMR	Normalized Message Router
NMS	Nomadic Mobile Service
OGC	Open Geospatial Consortium
OS	Operating System
OTA	Over-the-air provisioning
OWL	Web Ontology Language
P2P	Peer to Peer
PDA	Personal Digital Assistant
PDF	Portable Document Format
PPM	Prediction by Partial Match
O-C	Or ality of Coursing
QoS	Quality of Service
QRP	Query Routing Protocol
RDF	Resource Description Framework
RISC	Reduced Instruction Set Computing
RM	Random Matching
RMI	Remote Method Invocation
IVITI	

RPC RTT	Remote Procedure Call Round-Trip Time
SDRAM SOAP SMS SMTP SS STL SwA	Synchronous Dynamic Random Access Memory Simple Object Access Protocol Short Message Service Simple Mail Transfer Protocol Surrogate Service Standard Template Library SOAP with Attachments
TCP	Transmission Control Protocol
UDDI	Universal Description, Discovery and Integration
UDP	User Datagram Protocol
UMTS	Universal Mobile Telecommunications System
UPnP	Universal Plug and Play
URI	Uniform Resource Identifier
URL	Uniform Resource Locator
WAP	Wireless Application Protocol
WASP	Web Applications and Services Platform
WBXML	WAP Binary XML
WLAN	Wireless Local Area Network
WSA	Web Services Activity
WSDL	Web Services Description Language
WSE	Web Service Enhancement
WSFL	Web Service Flow Language
WWW	World Wide Web
XML	eXtensible Markup Language
XPATH	XML Path Language
XSD	XML Schema Definition
XSLT	Extensible Stylesheet Language
	Transformations

List of Publications

- Hassan, M., Zhao, W. and Yang, J. (2011), A Partitioning Approach for Resource Constrained Mobile Devices to Host Services, The Ninth International Conference on Mobile Systems, Applications, and Services (MobiSys 2011), Washington, DC, USA (submitted).
- Hassan, M., Zhao, W. and Yang, J., (2010), Provisioning Web Services From Resource Constrained Mobile Devices, The Third IEEE International Conference on Cloud Computing (CLOUD 2010), pp. 490-497, Miami, Florida, USA.
- Hassan, M. (2009), Mobile Web Service Provisioning in Peer to Peer Environments, The IEEE International Conference on Service-Oriented Computing and Applications (SOCA 2009), pp. 138-141, Taipei, Taiwan.