

- 87 -

Chapter 4

Mobile Service Provider in P2P
Environments

In recent years, Peer to Peer (P2P) technology is being used in vast

application domains like entertainment systems, ubiquitous computing,

pervasive computing, collaborative systems, etc. P2P architecture

enhances the adoption of mobile service provider in commercial

environments. Mobile service providers can share resources of individual

peers to respond to client requests. P2P offers a large scope for many

applications with mobile service provider. Apart from the application

scopes, P2P architecture also offers many technical advantages to mobile

web service provisioning and enhances the service discovery of huge

number of services possible with mobile service providers. Most recently,

ad-hoc networks of mobile terminals are also participating in such P2P

applications.

4.1 P2P Systems and Mobile Web Services

P2P systems are generally designed to enable loosely coupled distributed

systems. The concept of services and similarities of description stack

make P2P and web services comparable [Schneider, 2001]. Web services

are provided by well-known hosts, and are based on a centralized model

primarily focused on standard messaging formats and communication

protocols. On the other hand, P2P systems are based on a decentralized

model, and are less focused on the semantics of messaging formats and

communication protocols. This section introduces the P2P technologies,

their convergence with web services, and the projects working on the

Chapter 4. Mobile Service Provider in P2P Environments

- 88 -

convergence of P2P and web services technologies. The section also

introduces Lucene, a tool used in advanced matching/filtering of mobile

web services.

4.1.1 P2P Technologies

P2P is a set of distributed computing models used to perform a critical

function in a decentralized manner. P2P networks are typically used for

connecting nodes largely via ad-hoc connections. Peers are autonomous,

as they are not wholly controlled by each other or by some authority.

Peers depend on each other for getting information, computing resources,

and forwarding requests. In P2P communication models each party has

the same capabilities and can initiate a communication session. Thus in

its pure form, each peer can act as both server and client. P2P takes

advantage of resources of individual peers like storage space, processing

power, content and achieves scalability, cost sharing, and anonymity.

Thus, enables ad-hoc communication and collaboration with many data

and computing intensive applications. Peers can collaborate through

firewalls, NATs, and proxies to connect to other peers.

P2P technology is gaining popularity as low-cost individual

computing technology. Over time, three main categories of applications

have emerged in the P2P environment. First category includes the

Content and file management P2P applications, like Napster [Carlsson

and Gustavsson, 2001] and Gnutella [Ripeanu et al., 2002]. Second

category includes the Parallelizable P2P applications that split large

tasks into smaller chunks to execute in parallel over autonomous peers,

like SETI@Home [Anderson et al., 2002] and Avaki [Grimshaw et al.,

1997]. Third category includes the Collaborative P2P applications that

allow users to collaborate with each other without the help of central

servers to collect and relay information, like Groove [Ozzie and Burton,

2003] and Skype [Skype, 2009]. Ad-hoc networks of mobile terminals are

Chapter 4. Mobile Service Provider in P2P Environments

- 89 -

now also participating in enterprise P2P networks and applications, like

Magi Enterprise [Bolcer et al., 2000; Milojicic et al., 2003].

P2P systems have evolved across time and provide a stable

platform for many data and computation intensive applications. The

applications can be categorized among three generations of P2P systems.

The first generation P2P systems like Napster used centralized servers for

maintaining an index of the connected peers and their resources. The

indexes can later be queried by the peers, and the resources are

downloaded from the providers using IP networks. But these centralized

systems have single points of failure, produce giant communication

traffic, and occupy large storage on server; thereby resulting bottlenecks.

The drawbacks of the first generation P2P systems lead to the

development of second generation P2P systems like Gnutella and Freenet

[Clarke et al., 2002], which used a complete decentralized network.

Unlike Napster, Gnutella would connect users directly to a group of other

users, and so on. The users on the system act as gateways to other users

to find the data they need. For connecting to users, Gnutella uses a pre-

existing extendable list of possible working peers, whose addresses are

embedded inside the application code. But these decentralized networks

formed isolated clusters in the P2P network, and their search functions

were unreliable and not always capable to query the entire network.

Moreover, the second generation P2P systems suffered from major

overhead generated by the binding messages and queries propagating

around the network, leading to bottlenecks. For example, in Gnutella the

amount of broadcast messages increase exponentially with a linear

increase in the depth of the search [Kwok et al., 2003].

The third generation P2P systems like Skype [Skype, 2009], Kazaa

[Kazaa, 2009], Bit Torrent [Pouwelse et al., 2005], etc. are a hybrid of the

previous two generation technologies, and have improved ability to deal

with large number of peers using concepts like Super peers and Edge

peers. Super peers have higher resource capabilities comparing to edge

peers, and act as relays for other edge peers and super peers. Super peers

Chapter 4. Mobile Service Provider in P2P Environments

- 90 -

are organized dynamically and have abilities to traverse NAT and

firewall. Only super peers participate in peer and resource discovery,

which significantly decreases the stress to the network. Moreover, several

optimization methods are used for decreasing the message overheads

[Harjula et al., 2004]. Figure 4.1 categorizes some of the well-known P2P

systems according to their characteristics and provided application types.

Figure 4.1: Classification of P2P technologies.

4.1.2 Convergence of P2P Systems and Web Services

Analogous to web services, P2P systems can also leverage SOA and are

also designed to enable loosely coupled systems. P2P services can also be

described using XML schema and WSDL. The concept of services and the

similarities of description stack used in both P2P and web services make

them comparable [Schneider, 2001]. Both of the technologies have a

heavy emphasis on distributed computing and target reliable delivery of

services. To achieve this, web services use centralized servers to create

highly available systems, while P2P systems use distributed peers

running the same service in a redundant manner to respond to the

requests. The major difference between the technologies is that, web

Chapter 4. Mobile Service Provider in P2P Environments

- 91 -

services are provided from well-known hosts, based on a centralized

model, and primarily focused on standardized messaging formats and

communication protocols. On the other hand, P2P systems are based on a

decentralized model and primarily focused on contributing processing

power, content, or applications to peers in a distributed manner. P2P is

less focused on the semantics of messaging formats and communication

protocols.

Apart from these differences, the discovery mechanisms of the

technologies are also significantly different. Web services discovery is

based on centralized UDDI registries. P2P systems do not rely on

centralized mechanism and distribute the information using

advertisements. Peers perform service discovery in a variety of ways

including multicasts, inquiring to other peers, and using hubs (known as

rendezvous, to act as a meeting place for peers with similar interests).

Considering the benefits of decentralized discovery over centralized

registries, a P2P based mobile web service discovery mechanism is

developed using the JXTA technology. Most of the current P2P

technologies like Gnutella, Napster, and Magi are proprietary and

generally targeted to specific applications. Only project JXTA offers a

language agnostic and platform neutral system for P2P computing [JXTA

Community, 2007b].

4.1.3 JXTA

JXTA technology (also known as Juxtapose), is a set of open protocols that

allow any connected device on the network ranging from cellular phones

or PDAs to PCs or servers, to communicate and collaborate in a P2P

manner [JXTA, 2008]. JXTA enables these devices running on various

platforms to share data and functions of their respective peers. JXTA

technology is based on proven standards such as, HTTP and TCP/IP

protocols. JXTA is independent of programming language, networking

platform, or system platform and can work with any combination of these.

Chapter 4. Mobile Service Provider in P2P Environments

- 92 -

JXTA peers use XML as standard messaging format and create a virtual

P2P network of devices connected over different networks.

Figure 4.2 shows the basic architecture of the JXTA. The Core

layer encapsulates minimal and essential primitives that are common to

P2P networking. It incorporates building blocks like discovery, transport

with firewall handling, creation of peers and peer groups, and associated

security primitives. The Services layer includes network services that are

common in P2P environment but may not be mandatory for the operation

of P2P network. For example, searching and indexing, directory, storage

systems, file sharing, distributed file systems, resource aggregation and

renting, protocol translation, authentication services, etc. The

Applications layer includes implementation of integrated applications,

like P2P instant messaging, entertainment content management and

delivery, document and resource sharing, distributed auction systems,

P2P Email systems etc. [Wilson, 2002].

Figure 4.2: JXTA architecture.

Peers and Peer Groups

Any device like PC, PDA, or smartphone that implements one or more of

the JXTA protocols could be a peer. Within JXTA network, each peer is

Chapter 4. Mobile Service Provider in P2P Environments

- 93 -

uniquely identified by a static Peer ID, which allows the peer to be

addressed independently of its physical IP address. This peer ID remains

permanent for the device, though it supports multiple network interfaces

like Ethernet, WiFi, GPRS, etc. for connecting to the P2P network. The

peers can communicate with each other using the network interface best

supported by the devices. Moreover, JXTA dynamically uses either TCP

or HTTP protocol to traverse network barriers like NATs and firewalls.

JXTA network supports different types of peers to be connected to

the network. The general peers are called full-featured edge peers. A

minimal edge peer can send and receive messages just like full-featured

edge peer, but does not cache advertisements or route messages for other

peers. An edge peer registers itself with a rendezvous peer to connect to

the JXTA network. Rendezvous peers cache and maintain an index of

advertisements published by other peers in the P2P network. Rendezvous

peers also participate in forwarding the discovery requests across the P2P

network. A relay peer maintains route information and routes messages

to peers behind the firewalls. A super peer has the functionality of both

relay and rendezvous peers. Peers can self-organize into peer groups.

The peers within a peer group agree upon a common set of services.

Not all services within a peer group must be implemented by each peer. A

peer just needs to implement services which are useful for it and use the

implementation of services provided by the default Net Peer Group. Such

services are Membership Service, Discovery Service, Pipe Service, etc.

Each peer in JXTA network by default belongs to the Net Peer Group.

Pipes

Pipes are virtual communication channels that are used to send messages

by JXTA peers. They support the transfer of any object such as binary

code, data strings, and Java based objects. Pipes are bound to specific

endpoints, such as TCP port and associated IP address. The endpoints of

a pipe are referred to as the input pipe and the output pipe. JXTA pipes

Chapter 4. Mobile Service Provider in P2P Environments

- 94 -

offer two basic modes of communication, point to point and propagate. A

point to point pipe connects exactly two pipe ends (an output pipe and an

input pipe). The pipe is asynchronous and unidirectional. A propagate

pipe sends messages from one output pipe to multiple input pipes. The

broadcast is performed using IP multicast. IP Multicast is a one-to-many

messaging protocol used to send one copy of data to a group of recipients

who are configured to receive it. Messages transferred across pipes are

simple XML documents whose envelope contains routing, digest, and

credential information.

Advertisements

In JXTA the decentralization is achieved with the advertisements. All

resources like peers, peer groups, and the services provided by peers in

JXTA network are described using advertisements. Advertisements are

language-neutral metadata structures represented as XML documents.

Peers discover each other, the resources available over the network, and

the services provided by other peers and peer groups, by searching for

their corresponding advertisements. Peers may cache any of the

discovered advertisements locally. Every advertisement exists with a

lifetime that specifies the availability of that resource. Lifetimes provide

the opportunity to control out of date resources without the need for any

centralized control mechanism. To extend the lifetime, the

advertisements are to be republished.

Modules

JXTA specifies Modules as a generic abstraction that allows peers to

describe and instantiate any type of behavior in the JXTA world.

Therefore, the mobile web services are published as JXTA modules in the

P2P network. The module abstraction includes a module class, module

specification, and module implementation. The module class is primarily

used to advertise the existence of a behavior. Each module class contains

Chapter 4. Mobile Service Provider in P2P Environments

- 95 -

one or more module specifications, which contain all the information

necessary to access or invoke the module. The module implementation is

the implementation of a given specification. There can be more than one

implementation for a given specification across different platforms.

Protocols

JXTA platform supports a set of basic protocols. Peers use these protocols

to discover each other, advertise or discover network resources, and

communicate or route messages. The protocols are implemented in Java

and C [Traversat et al., 2003]; they are listed below.

 Peer Discovery Protocol enables peers to discover peer services on

the network. The protocol can find peers, peer groups, and all other

published advertisements.

 Peer Resolver Protocol allows peers to send and process generic

requests. Queries can be directed to all peers in a peer group or to

specific peers within the group.

 Rendezvous Protocol handles the details of propagating messages

between peers. The rendezvous protocol is used by the Peer

Resolver Protocol and the Pipe Binding Protocol to propagate

messages.

 Peer Membership Protocol allows a peer to join or leave a peer

group. The protocol supports the authentication and authorization

of peers into peer groups.

 Peer Information Protocol provides peers a way to obtain status

information from other peers on the network.

 Pipe Binding Protocol provides a mechanism to bind a virtual

communication channel to a peer endpoint.

Chapter 4. Mobile Service Provider in P2P Environments

- 96 -

 Endpoint Routing Protocol provides a mechanism used for routing

messages from a source peer to a destination peer.

JXTA for J2ME (JXME)

JXTA was initially targeted for the standalone systems. Several

requirements in JXTA protocols made it hard to implement JXTA on

MIDP devices; such as, caching and transfer of XML based

advertisements, provisioning socket and datagram connections. The

JXTA community has developed a light version of JXTA for mobile

devices, called JXME (JXTA for J2ME) [Knudsen, 2002]. The goal of the

JXME project is to bring JXTA functionality to MIDP supporting devices

like smart phones. JXME simplified Mobile Host’s entry into P2P domain.

JXME has two versions: proxyless and proxied. The proxyless JXME

version works similar to native JXTA, whereas the proxied JXME version

needs a native JXTA peer to be set up as its proxy. The proxied version is

lighter of the two versions and peers using this version participate in

HTTP based binary communication with their proxies.

4.1.4 Related Projects Converging Web Services and JXTA

Several projects have taken steps to combine web services and JXTA

domains. The project JXTA-SOAP [JXTA Community, 2007a] has

implemented a transport mechanism for SOAP over JXTA. As discussed

earlier, SOAP messages can be transmitted over any transport protocol,

like HTTP, BEEP etc. JXTA-SOAP is a transport for Apache Axis, an

open-source web services platform for Java. JXTA-SOAP is a transport

plug-in allowing SOAP to work over JXTA. When JXTA-SOAP is used,

the request/response messages are put in JXTA messages and sent

through JXTA pipes, rather than putting in HTTP messages and sending

over TCP/IP. The JXTA-SOAP project is being maintained by the

Distributed Systems Group of University of Parma, Italy.

Chapter 4. Mobile Service Provider in P2P Environments

- 97 -

[Hajamohideen, 2003] proposed a Proxy Model for the invocation of

web services in JXTA network (Figure 4.3). The model specifies how

services can be published using the module advertisements and can be

discovered using the discovery service. But the model does not mention

how the services are invoked. The current JXTA model can use a service

class implemented as local C++ or Java modules or as binary executable

to invoke methods on the local class implementation. The proxy model

adapts this feature of JXTA and uses the WSDL document to dynamically

generate a proxy class. Systinet WASP (Web Applications and Services

Platform) [Allan, 2004] toolkit was used to invoke the remote web

services using the proxy class. The proxy model creates an interface to

access the web service in an implementation independent manner. The

proxy class thus becomes a JXTA service that can be advertised in the

JXTA network. The JXTA clients do not require prior knowledge of a web

service or any specific web services toolkit.

Figure 4.3: Proxy model architecture [Hajamohideen, 2003].

[Qu and Nejdl, 2004] present the mechanism of exposing existing

JXTA services as web services with their Edutella product. Edutella also

integrates web service enabled content providers into JXTA using the

proxy model. Edutella is a P2P semantic web application, which is aimed

to accommodate heterogeneous resource metadata repositories in a P2P

Chapter 4. Mobile Service Provider in P2P Environments

- 98 -

manner. Edutella facilitates the exchange of resource metadata based on

RDF (Resource Description Framework).

Some similar approaches of integrating the web services, semantic

web standards, and JXTA P2P technology are adopted by WS-Talk Project

Consortium [WS-Talk, 2007]. WS-Talk uses WSDL for web service

description, OWL (Web Ontology Language) for ontology description,

SOAP for access and transfer; all based on JXTA pipes or sockets as a

transport layer. Figure 4.4 shows the mechanism of WS-Talk in

integrating web services into the JXTA environment.

Figure 4.4: JXTA / Web services integration [WS-Talk, 2007].

4.1.5 Lucene

Lucene is the tool used in advanced matching/filtering of services for

mobile web service discovery in P2P networks. It is an open source project

hosted by Apache and provides a Java based high-performance, full-

featured text search engine library [Cutting, 2007]. To search large

Chapter 4. Mobile Service Provider in P2P Environments

- 99 -

amounts of text quickly, one must first index the text and convert it to a

format that can be searched rapidly, eliminating the slow sequential

scanning of each file for the given word or phrase.

Lucene allows adding indexing and searching capabilities to user

applications, which can index and search any data that can be converted

to a textual format. Lucene can be used to search and index information

kept in JXTA advertisements, webpages on remote web servers,

documents stored in local file systems, etc. Lucene supports simple text

files, Microsoft Word documents, HTML (HyperText Markup Language),

PDF (Portable Document Format), or any other format from which

textual information can be extracted.

Java Lucene is a rapid and reliable tool and the product is being

used by many well-known websites like Wikipedia, as well as in many

Java applications. To build an Index, Lucene uses different types of

analyzers like StandardAnalyzer, WhitespaceAnalyzer, StopAnalyzer,

SnowballAnalyzer, etc. The analyzer breaks text fields into index-able

tokens. For example, StandardAnalyzer is a sophisticated general-

purpose analyzer; WhitespaceAnalyzer is a simple analyzer that

separates tokens using white spaces; StopAnalyzer removes common

English words which are not usually useful for indexing [Gospodnetic and

Hatcher, 2007].

4.2 Mobile Web Services in JXTA Network

JXTA peers use XML as standard messaging format and create a virtual

P2P network across the devices connected over different networks. JXME

provides a perfect platform for mobile service hosts in P2P domain, as

JXTA eliminates many of the low level details of the P2P systems, like

transport details. Peers can communicate with each other using the best

of available network interfaces supported by the devices, like Bluetooth,

WiFi, GPRS, etc.

Chapter 4. Mobile Service Provider in P2P Environments

- 100 -

Considering the advantages and features of JXTA, the mobile

service provider is adapted in the JXTA network to check its feasibility in

P2P networks. The architecture of deployment scenario in the JXME

network is shown in Figure 4.5 [Hassan, 2009]. The virtual P2P network

(also called mobile P2P network) is established under a mobile operator

network, where at least one of the nodes belongs to the operator

proprietary network and acts as a JXTA super peer. As explained

previously, JXTA network supports different types of peers to be

connected to the network. The general peers are called edge peers. The

edge peers register themselves with a rendezvous peer to connect to the

JXTA network. Rendezvous peers cache and maintain an index of

advertisements published by other peers, and participate in forwarding

the discovery requests across the P2P network. The relay peers maintain

route information and route messages to peers behind the firewalls. The

super peer has the functionality of both relay and rendezvous peers. The

super peer can exist at a Base Transceiver Station (BTS) and can be

connected to other base stations, extending the JXTA network.

Figure 4.5: The deployment scenario in JXME network.

Chapter 4. Mobile Service Provider in P2P Environments

- 101 -

Any mobile service host or mobile service client can join the P2P

network using the super peer at base station as the rendezvous peer. The

super peer can also relay requests to and from JXTA network to

smartphones. If the operator network supports, stationary peers can also

join this network as both rendezvous and relay peers, which further

extends the mobile P2P network.

Mobile service provider in JXME network offers many advantages

in domains like collaborative learning, image sharing, and location based

services, by taking advantage of individual peers’ resources like storage

space or processing power. Moreover, the general mobile phone users are

interested in applications rather than individual components. The

applications might use one or more web services at the backend and can

be provided as installable applications. In this setting, the P2P network

can offer easy means of storing and sharing the installable applications

for the participating peers.

Within the JXTA network, each peer is uniquely identified by a

static peer ID, which allows a peer to be addressed independently of its

physical IP address. This peer ID remains permanent for the device,

though it can support multiple network interfaces (e.g. Ethernet, WiFi) to

connect to the P2P network. Using the peer ID, mobile service provider

can remain always visible to the web service clients regardless of the

operator networks. Mapping the peer ID to its IP address is taken care of

by the JXTA system, thus eliminating the need for static public IP.

Moreover, the web services deployed on the mobile service hosts

can be advertised as JXTA modules in the P2P network [JXTA, 2008].

The module advertisements are searchable, therefore the web services

can be found as standard JXTA services. The module advertisements

together can represent a combination of UDDI and WSDL; as they enable

publishing and finding service description, and defining transport binding

to the service [Schneider, 2001]. The SOAP messages are transmitted

across JXTA pipes for transformation.

Chapter 4. Mobile Service Provider in P2P Environments

- 102 -

4.3 P2P Framework based on Mobile Services Gateway

To achieve interoperability of web services at mobile service hosts,

messages need to be transformed at some intermediary level. Such

transformation of messages may also be required to achieve proper

scalability for mobile service hosts. This demands the necessity for some

intermediate gateway in the mobile web service infrastructure. Therefore,

the proposed architecture of the system is based on a Mobile Services

Gateway (MSG), which maintains individual user profiles and

personalization information (Figure 4.6).

The mobile services gateway is established as an intermediary

between the service clients and the mobile service providers in JXTA

network. The virtual P2P network is established within a mobile operator

network having at least one node in the proprietary network, acting as a

super peer. The mobile services gateway supports super peer

functionality, and leads the JXTA network to mobile operator’s

proprietary network. The web service clients can access the services

deployed across the JXTA network and MSG. External service clients can

also access the services deployed on mobile service hosts through the

Gateway Service Registry (GSR) of MSG. Thus the MSG also acts as a

gateway from the Web to the mobile P2P network.

As hand-held devices have many resource limitations like low

computation power, limited storage, and limited battery life, so to

conserve resources mobile service hosts can work as ‘turn-on only on

client request’. The MSG can identify which request is for particular

service host using their profiles and can send message to activate the

mobile service provider. Besides, as the mobile service providers are in a

JXTA virtual P2P network, therefore MSG supports super peers for the

JXME edge peers. At least one super peer maintains a Local Service

Registry (LSR) for the peer group, providing fast service registration and

invocation within the peer group environment.

Chapter 4. Mobile Service Provider in P2P Environments

- 103 -

Figure 4.6: Mobile Services Gateway bridging P2P and Web environments.

Though web services deployed on mobile devices are advertised as

JXTA modules and identified with peer ID, the devices can still have

public IP. This enables the external clients to search the GSR registry at

MSG and access the mobile web services directly. Therefore, MSG

supports accessing the services over both P2P and standard web services

protocols.

4.3.1 Enterprise Service Bus for Mobile Services Gateway

Enterprise Service Bus (ESB) [Borck, 2005] is the preferred choice for

realizing MSG in this architecture. ESB provides a dedicated

infrastructure that supports messaging, web services, data

transformation, and intelligent routing for loosely coupled and highly

scalable integration networks. The infrastructure is established based on

web services specifications and standards. ESB exploits a message

oriented middleware, and provides content based routing and

transformation.

Chapter 4. Mobile Service Provider in P2P Environments

- 104 -

The architecture of the ESB is built on a bus, which provides

message delivery, transformation, and routing of service requests; and

handles the communication, integration, and service interaction. The bus

is typically designed for high-throughput and guaranteed message

delivery, for a variety of service providers and consumers.

When making a request, a client simply refers to the WSDL

interface of a service and the service bus selects one of the available

implementations of this interface to process client’s request [Leymann,

2005]. The transformation functionality maps a data format onto another

(usually XML) to ensure interoperability between various systems

plugged onto the ESB. The bus also can perform content based routing. In

this mechanism, the message is routed based on its content by evaluating

the statement in the header. ESB enables services to interact with each

other based on the QoS requirements of individual transactions.

The mobile services gateway is realized based on the ESB platform

[Hassan, 2009]. Therefore, MSG supports transforming and routing the

web service messages. The routing is based on message contents. This

provides better QoS for the mobile service hosts and the clients. MSG can

also be responsible to handle the security issues regarding proper

authentication and authorization. To support scalability, MSG performs

message transformation between web services specifications and other

specifications feasible for mobile communications.

4.3.2 Categorization of Mobile P2P Services

The services provided by different mobile peers can be combined together

to achieve high-level of service reusability by creating mash-ups [Schroth

and Janner, 2007] of mobile peer services at the MSG. Based on this,

mobile services can be categorized as node services and compound services

(Figure 4.7).

Chapter 4. Mobile Service Provider in P2P Environments

- 105 -

Figure 4.7: Categorization of mobile P2P services.

Node services are the fundamental services provided by the mobile

nodes in the P2P network. Node services can be used as building blocks to

compose new compound services to meet complex requests of clients. As

some of the node services are private within their peer group, therefore

the node services which are provided also for other peer groups to access

can only participate in forming compound services.

On the other hand, compound services are comprised of several

node services, which may also encapsulate features from other services

available on the Internet. Compound services are published in the MSG

so that they can be discovered by all the nodes in the network.

4.3.3 Distributed Service Registries for Mobile P2P Service

Providers

The proposed architecture is based on the integration of different P2P

networks and the MSG with SOAP connectivity. In this setting, mobile

peers residing as the neighbors on the same P2P network are pulled

together to form a peer group [Yang and Garcia, 2003]. Usually, the peers

in same peer group have similar interests or come from the same

Chapter 4. Mobile Service Provider in P2P Environments

- 106 -

organizations. There is at least one super peer in each peer group. Super

peers are responsible for mediating the other peers and providing security

services in their own peer group (Figure 4.8).

A Local Service Registry (LSR) is maintained by the super peer,

providing fast service registration and invocation within the peer group.

A Gateway Service Registry (GSR) is maintained at the MSG, which is

directly accessed by clients across the Internet. The GSR provides access

to different physical P2P networks by interconnecting super peers using

different transport protocols, and maintains the mapping of service

descriptions between GSR and LSRs.

Figure 4.8: Service registries in mobile P2P networks.

When a mobile peer wants to publish its services, it registers the

services to the LSR on super peer in its peer group. Some peers may only

want to share their services within the peer group. In that case,

registering the services onto GSR is not needed for these peers. If the

peers want to provide their services to other peer groups or to any client

outside their own peer group, then the super peer registers the services

Chapter 4. Mobile Service Provider in P2P Environments

- 107 -

onto the GSR, so that any client can discover the services and connect to

them.

When a mobile peer wants to find a certain service, the request will

be first directed to the super peer in its own peer group. The super peer

will look up the LSR on its own site. If a matching service exists, the

service description will be returned back to the requestor. Otherwise, the

request will be forwarded to the GSR and the mapping maintained by

GSR will indicate the service provider’s details. The algorithm of the

process is shown in Listing 4.1. After getting the service description from

GSR, the requestor will connect and bind directly to access the services.

Listing 4.1: Finding a service in the virtual P2P network.

DiscoverServiceAdvertisement(){

 while(the number of service request ≠ Ø){

 Lookup Advertisements in local service cache;

 if(Search result does not match the request){

 Send service request to LSR;

 if(Search result matches the request)

 Save result in local service cache;

 else{

 Send service request to GSR;

 if(Search result matches the request)

 Save result in local service cache;

 else

 Return result of no matches;

 }

 }

 Return result of service discovery;

 }

 }

An important advantage of this architecture is the flexibility of

registering new services by using super peers and LSRs. This reduces the

heavy load on GSR when the number of service providers and services in

the environment are very large. The other advantage is that the service

requests are not flooded across the whole networked systems.

Chapter 4. Mobile Service Provider in P2P Environments

- 108 -

4.4 Supporting Mobility of Mobile P2P Service Providers

The deployment of mobile web services faces a significant challenge due

to the mobility factor of the mobile service provider. Nodes can join or

leave network at any time and can switch from one network to another.

Movements of devices and services between networks make mobile web

services different and complex to control.

To understand the mobility issues let us consider the GSM

telephony system [Heine, 1999] to see how it allows a mobile device to

roam. Mobile services in GSM consist of components both located on the

mobile device and in the network. Figure 4.9 shows the simplified

architecture of roaming in GSM system. The Mobile Terminal (MT)

consists of two components. The Mobile Equipment (ME) is the phone

itself and the Subscriber Identity Module (SIM) is the Smart Card. For

mobile telephony, the components ME and SIM interact with the

components on the Mobile Switching Centre (MSC). These components

are Home Location Register (HLR) and Visitor Location Register (VLR).

While a mobile device is allocated to a unique HLR, it communicates with

different MSCs and VLRs according to its location.

Figure 4.9: Roaming of a mobile terminal across networks.

Chapter 4. Mobile Service Provider in P2P Environments

- 109 -

Figure 4.9 illustrates how the system allows a mobile device to

move between two different networks. The MT physically moves to a

remote location and needs to access another network which is reachable

in the new location. The MT now accesses the new radio network through

different Base Transceiver Stations (BTS). These BTSs are controlled by

different Base Station Controllers (BSC) and a different mobile switching

centre (MSC2). Therefore, the device is also registered in another visitor

location register (VLR2) in the new network. However, it still

communicates with the HLR of its original network. As shown in the

figure, as the mobile device moves, the components ME and SIM will

switch from interacting with MSC1 and VLR1, to MSC2 and VLR2.

This system is compatible with the proposed P2P architecture as

the mobile device still communicates with its HLR through its original

MSC. In the proposed P2P architecture, the gateway service registry

maintains some data (Figure 4.10) of each registered service; namely,

Service Advertisement, Peer ID, Home Peer Group, and Remote Peer

Group. Service advertisement is the actual description of the advertised

service. Peer ID is the unique identifier of the mobile peer service

provider. Home peer group is the original peer group the mobile peer

belongs to; and remote peer group is the new peer group the mobile peer

moved into as a visitor. Normally, when a peer is within its home peer

group, there is no value assigned to its remote peer group item. Having a

value for the item remote peer group indicates the GSR that, the provider

of the service currently belongs to a remote peer group.

Figure 4.10: Data maintained at GSR for service advertisements.

Chapter 4. Mobile Service Provider in P2P Environments

- 110 -

Three different scenarios are identified when a mobile service

provider physically moves from its peer group to a new peer network.

Figure 4.11 shows the node movement across peer groups; where peer C

moves from peer group 1 (PG1) to peer group 2 (PG2). The possible

scenarios are listed below and the strategies to handle them are discussed

in the next subsections.

 The mobile service provider moves to a remote peer group due to

node movement and still wants to provide the same services and

stay as a peer in the original peer group.

 The mobile service provider provides additional new services and

wants to join a new peer group of similar interests.

 The mobile service provider stops current services and leaves its

original peer group; and after moving to a remote location, joins a

new peer group.

Figure 4.11: Mobile service provider moving across peer groups.

Chapter 4. Mobile Service Provider in P2P Environments

- 111 -

4.4.1 Peer Moving to Remote Peer Group

In the first scenario, when the mobile service provider (i.e. peer C) moves

to a remote peer group, the mobile peer tries to register its services to the

LSR2 in the new peer group (Figure 4.12). The super peer in PG2 will

register the new service advertisements to its LSR2 and as well as to the

GSR at the mobile services gateway. The GSR will add/update the details

of the service advertisements provided by peer C. The reason for

registering the services of peer C to both local and gateway service

registries is that, peer C is in a remote network and still wants to

maintain relationship with its original peer group. Besides, peer C has

similar interests of services to its original peer group (PG1). Therefore, to

maintain availability to PG1, peer C must communicate through the

MSG.

Figure 4.12: Mobile service provider moves to remote peer group.

To publish the service advertisements of peer C from PG2, the GSR

will assign the value PG2 to its item remote peer group. But the LSR1 will

still keep the advertisements of peer C. When an external client requests

Chapter 4. Mobile Service Provider in P2P Environments

- 112 -

for a service provided by peer C, the GSR will find and locate peer C in

PG2 directly. But if any peer in PG1 searches for a service provided by

peer C, the super peer will be unable to locate the services and will look

up onto the GSR and will be able to find the services in remote peer group

PG2.

4.4.2 Peer Joining Multiple Peer Groups

In the second scenario, the mobile service provider (i.e. peer C) wants to

provide additional new services and wants to join new peer group (PG2)

of similar interests within reach (Figure 4.13).

Figure 4.13: Mobile service provider joins two peer groups.

In this case, peer C tries to register its new services to the LSR2 in

PG2, while continuing the previous services in PG1. Peer C has some

services registered with PG1 and some services registered with PG2. If

peer C wants to provide some or all of its services globally, then the

corresponding super peer will register that service to the GSR. The GSR

Chapter 4. Mobile Service Provider in P2P Environments

- 113 -

will update the entry by assigning the value PG2 to the item remote peer

group for the services registered at LSR2 of PG2. When an external client

requests for a service provided by peer C, the GSR will find and locate

peer C directly in PG1 or PG2, according to the LSR where it has

advertised.

4.4.3 Peer Migrating to Remote Location

In the third scenario, the mobile service provider (i.e. peer C) wants to

stop current services and leave PG1. Later on, peer C moves to a remote

location and joins PG2 (Figure 4.14).

Figure 4.14: Mobile service provider migrates to remote location.

At first, peer C notifies the super peer of PG1 about its suspension

of services. The super peer deletes the services from its LSR1 and also

notifies the GSR to do so (if GSR contains any entries). After moving to a

new location when peer C joins the new peer group (PG2), it will try to

register its service advertisements to the LSR2 of PG2. If peer C wants to

provide services globally, it will request the super peer accordingly and

the advertisements will also be published on GSR. In this case, there is

Chapter 4. Mobile Service Provider in P2P Environments

- 114 -

no value assigned to its remote peer group item; as peer C has no

attachment with its former peer group (PG1), and PG2 has become its

current home peer group.

In this manner, the movements of the mobile P2P service providers

are handled across peer groups in different networks.

4.5 Mobile Web Services Discovery

Service discovery mechanism is very crucial and the first step to achieve

in deploying applications in mobile environments. Although discovery

systems like DNS (Domain Name System) [Gulbrandsen et al., 2000],

LDAP (Lightweight Directory Access Protocol) [Hodges and Morgan,

2002], and UDDI are available, these systems are designed for statically

configured environments, and are not specifically suitable for mobile

computing. The mobile computing model requires more dynamic and

spontaneous discovery features, which are resilient to faults and require

minimal administration [Lee et al., 2003]. The following subsections

address the discovery aspects of mobile web services and propose the

JXTA based service discovery mechanism.

4.5.1 Discovery Aspects of Mobile Web Services

Typically, web services are built for static networks. Once a service

provider deploys the service, the service is published to a UDDI registry.

The registry maintains reference of the WSDL document. The WSDL

document describes the service, along with the location of service (binding

information) and the operations (methods) the service exposes. Any

potential web service client searches for the service in the public registry,

gets the description of the service and tries to access the service.

Since mobile web services are developed mostly by using the basic

web services architecture, the standard WSDL and UDDI can

theoretically be used to describe and publish services. But in commercial

Chapter 4. Mobile Service Provider in P2P Environments

- 115 -

environments with each mobile host being able to providing some

services, the bulk of services expected to be published could be quite high.

In such a condition, a centralized solution can create bottlenecks and

cause single points of failure.

Besides, mobile networks are quite dynamic due to the node

movements. Nodes can join or leave network at any time and can switch

from one operator to another. This will cause the binding information in

the WSDL documents to be inaccurate. Hence the services are to be

republished every time the mobile host changes its binding information.

This creates real difficulty in keeping up to date information of the

published mobile web services in the centralized registries.

4.5.2 Dynamic Service Discovery Mechanisms

Dynamic service discovery is an extensively explored research area. Most

of the available service discovery protocols are based on the announce-

listen model. In this model, periodic multicast mechanism is used for

service announcement and discovery. A service advertisement is

generally associated with a lifetime during which the service is expected

to remain available. Using these advertisements the services are

discovered dynamically. One of the frontrunners using this mechanism is

the RMI based Jini technology. The Jini discovery mechanism is

explained in detail for developing mobile service host, in section 3.2.

Similarly, [Yang et al., 2003] proposes an infrastructure for

efficiently accessing mobile web services in broadcast environments that

defines a multi-channel model to carry information about mobile web

services. But this mechanism assumes a service proxy object acting as the

registry and is available always. But services distributed over the

dynamic ad-hoc networks must be discovered without a centralized

registry. Specifically, the discovery protocols should be able to support

spontaneous peer to peer connectivity to facilitate ad-hoc collaboration.

Chapter 4. Mobile Service Provider in P2P Environments

- 116 -

[Dustdar and Treiber, 2006] proposes a distributed peer to peer web

service registry solution based on lightweight web service profiles. They

have developed VISR (View based Integration of Web Service Registries)

as a peer to peer architecture for distributed web service registry. VISR’s

distributed registry model allows VISR peers to operate on a common

data structure and provides a common vocabulary. The idea behind the

approach is that the concept of a dedicated web service registry decouples

web service providers from storing the actual web service description.

Therefore with VISR approach, each node has all the features of a SOA

(i.e. service requestor, provider, and broker).

Similarly, Konark service discovery protocol was designed for

discovery and delivery of device independent services in ad-hoc networks

[Lee et al., 2003]. In this approach, a node multicasts the differences

between services that the node knows and the ones others seem to know.

In other words, each participating node gossips its knowledge about

services minus the network’s knowledge. So the individual nodes

complement one another’s limited knowledge to attain the global view of

the entire network. For achieving this, Konark is designed based on a

P2P model with each participating device having the capabilities to host

and deliver services, and query the network for available services offered

by others.

Beside these developments, Universal Plug and Play (UPnP)

[UPnP Forum, 2003] discovery protocol allows devices to advertise their

services to control points (i.e. clients) on the network. The goals of UPnP

are to allow devices to connect seamlessly and to simplify the

implementation of networks. Unlike VISR and Konark where each node

maintains its own service registry, UPnP does not cache service

information at all. Services multicast their advertisements periodically.

UPnP control points discover services either by passively listening to the

advertisements or by actively multicasting service discovery request

messages.

Chapter 4. Mobile Service Provider in P2P Environments

- 117 -

Considering these developments and the need for distributed

registry and dynamic discovery, the thesis studied alternative means of

discovering mobile web services. The approach is based on JXTA P2P

network and is explained in detail in the following subsection. The

approach is conceptually similar to Konark but is truly scalable by

following the open standards of web services technology and JXTA P2P

protocols. The service descriptions are stored only at nodes with higher

capabilities (super peers) and the discovery process still preserves the

SOA. This approach of mobile web service discovery significantly differs

from VISR where all nodes are registries and UPnP where no node is a

registry. The service descriptions also benefit from widely accepted web

services standards.

4.5.3 Discovery of Mobile Web Services in JXTA Network

In JXTA the decentralization is achieved with the advertisements. All

resources like peers, peer groups, and the services provided by peers in

JXTA network are described using advertisements. Advertisements are

language-neutral metadata structures represented as XML documents.

Peers discover each other, the resources available in the network, and the

services provided by peers and peer groups, by searching for their

corresponding advertisements. Peers may cache any of the discovered

advertisements locally. Every advertisement exists with a lifetime that

specifies the availability of that resource. Lifetime gives the opportunity

to control out of date resources without the need for any centralized

control mechanism. To extend the lifetime of services, the advertisements

are to be republished.

Thus the services deployed on mobile host peers in JXTA network

are to be published as JXTA advertisements, so that they can be

identified as JXTA services among other peers. JXTA specifies modules as

a generic abstraction that allows peers to describe any type of behavior in

the JXTA environment. So the mobile web services are published as

Chapter 4. Mobile Service Provider in P2P Environments

- 118 -

JXTA modules in the P2P network. The module abstraction includes a

module class, module specification, and module implementation. The

module class is primarily used to advertise the existence of behavior.

Each module class contains one or more module specifications, which

contain the necessary information to invoke the module. The module

implementation is the implementation of a given specification.

Figure 4.15 shows the mapping between JXTA modules and web

services. The collection of module abstractions represent as UDDI in

terms of publishing and finding service description, and as WSDL in

terms of defining transport binding to the service.

Figure 4.15: Mapping between JXTA modules and web services.

To publish mobile web services in JXTA network, a standard

Module Class Advertisement (MCA) is published in the P2P network,

declaring the availability of the web service definitions. Once new web

services are developed for a mobile host, the WSDL descriptions of the

services are incorporated into the Module Specification Advertisements

(MSA) and are published in the P2P network. The MSAs are published in

JXME network with an approximate lifetime that specifies the duration

of time the mobile host wants to provide the service. The MSAs are

cached at rendezvous peers or any other peers with sufficient resource

Chapter 4. Mobile Service Provider in P2P Environments

- 119 -

capabilities. Once the lifetime expires the MSAs are automatically

deleted from the P2P network, thus avoiding the invalid advertisements.

If the mobile host wants to extend lifetime of the provided service, the

particular MSA can be republished. The structure of the MSA is shown in

Listing 4.2.

Listing 4.2: Structure of MSA advertising a mobile web service.

<?xml version="1.0" encoding="UTF-8" ?>

<jxta:MSA>

<MSID> … … … </MSID>

<Name> … … … </Name>

<Crtr> … … … </Crtr>

<SURI> … … … </SURI>

<Vers> … … … </Vers>

<Desc> … … … </Desc>

<Parm>

 <WSDL>

 <definitions … >

 <message … > … … … </message>

 <portType … > … … … </portType>

 … … …

 </definitions>

 </WSDL>

</Parm>

<jxta:PipeAdvertisement> … … … </jxta:PipeAdvertisement>

<Proxy> … … … </Proxy>

<Auth> … … … </Auth>

</jxta:MSA>

The MSA contains unique identifier <MSID> that also includes the

static module class ID, which identifies the web services module class

advertisement. The other elements of <MSID> include name, creator,

specification, and description of the advertisement. The optional element

<Parm> contains description of the web service being advertised. The

<PipeAdvertisement> contains the advertisement of the pipe which

can be used to connect to the web service deployed on the mobile service

host. The receiving endpoint of the pipe can be addressed with a Peer ID

of the respective peer. Thus if the invocation of mobile web service is

Chapter 4. Mobile Service Provider in P2P Environments

- 120 -

within JXTA network, using pipes the need for public IP is eliminated.

Once the web services are discovered, the communication between the

mobile service provider and the service client is still done using SOAP

over HTTP. The remaining two elements <Proxy> and <Auth> carry the

proxy module and the authentication information of the web service

module.

The MSAs carrying the web service descriptions can be searched by

name and description parameters. The JXTA discovery model uses a

Query Routing Protocol (QRP) which is text based (i.e. XML-based)

[Waterhouse et al., 2002]. Therefore, JXTA search implementations are

platform and language independent. The JXTA API provides a simple

keyword search on the name and description elements of the modules

advertised in mobile P2P network.

In fact, the basic parameters are not sufficient to find out exact

search results out of huge numbers of possible mobile web services. Some

studies tried to extend the search criteria to WSDL level. This means that

search parameters are not restricted to MSA details only, and will also

include the WSDL tags and information. Such an approach is taken in

the UDDI Explorer tool, developed for searching standalone web services

[Dao, 2005]. Index searching tools can be used to perform advanced

discovery of mobile web services in P2P, to match the best suited services.

4.5.4 Mobile Web Services Discovery Process

The complete mobile web service discovery process is shown as an activity

diagram in Figure 4.16. The mobile service host declares its services by

publishing the respective MSAs in their respective peer groups by joining

them. The client initiates the query for services at the mobile services

gateway. The MSG searches for the matching module advertisements in

the JXTA network. The module advertisements are then filtered by

weight of the keywords. The advanced matching is done using the profile

and context of the client (if available). The matching results are then

Chapter 4. Mobile Service Provider in P2P Environments

- 121 -

forwarded back to client. The client scrolls through the list of services and

selects the relevant mobile web service. The client can then access the

web service from the corresponding mobile service host.

Figure 4.16: Complete mobile web service discovery process.

4.6 Mobile Web Services Invocation in JXTA Network

Once the services are discovered, they can be accessed from Internet

using the IP feature. Accessing the services directly from the mobile host

is also possible in JXTA network without the need for public IP. As

already discussed in section 4.1.3, a pipe is to be created for receiving

incoming messages over the JXTA network. The mobile host creates a

Chapter 4. Mobile Service Provider in P2P Environments

- 122 -

pipe for the services and adds the pipe advertisement along with its peer

ID to the MSA of the services. As explained earlier, MSA has the

<jxta:PipeAdvertisement> parameter, which can be used to hold the

respective pipe advertisement of the service.

After the service discovery process, a client gets access to the pipe

along with the service description using the pipe advertisement. Using

this pipe the client can send the service requests to the mobile service

host. In JXTA the pipes are unidirectional. So the client should create its

own pipe for receiving the response and should advertise it along with the

web service request.

Once the request is initiated, the web service message is received

at the mobile host on default JXTA port (9700). But as the mobile host

follows SOAP over HTTP, it can only receive a web service message over

HTTP protocol on port 80. Therefore, a JXTA application is to be run on

the mobile host which receives the web service message, extracts the

SOAP contents, and initiates SOAP over HTTP request on port 80. The

response from the mobile service host also follows the same port

forwarding and the results are sent back to the client.

4.7 Evaluation of Prototype Mobile Services Gateway

A prototype of the mobile services gateway was designed using

ServiceMix ESB, to test the MSG extensively for its performance and

scalability using load test principles. A large number of clients were

generated for the prototype MSG, simulating real-time mobile operator

network load. The searchArticle service (explained in section 2.3.3) is

considered for this performance analysis of the MSG.

4.7.1 Test Setup

The ServiceMix based MSG is established on a Toshiba Satellite A100

laptop equipped with a 1GB RAM and 1.83 GHz Intel processor. A Java

Chapter 4. Mobile Service Provider in P2P Environments

- 123 -

based server was developed and run on the same laptop on an arbitrary

port (4444), mocking the mobile service provider. The server receives

service request for searchArticle from the client and populates

standard response. The response is then encoded in BinXML and the

compressed response is sent back to the client in HTTP response message

format. By considering this simple server, we can eliminate the pure

performance delays of the mobile host and the transmission delays of the

radio link; thus getting the actual performance analysis of the MSG.

For the load generation, a Java clone of the ApacheBench load

generator was used from WSO2 ESB [Apache Software Foundation,

2007b; WSO2, 2007]. The load generator can initiate a large number of

concurrent web service invocations simulating multiple parallel clients.

The command line executable benchmark.jar provides a detailed

statistics of the invocations, like the number of concurrent requests,

successful transactions per second, mean of the client invocation times,

etc. The benchmark.jar and commons-cli-1.0.jar are downloaded to

a working directory and are used to simulate a large number of

concurrent requests. The following sample command simulates 200

concurrent clients for the searchArticle service, with each client

generating 10 requests for the same service.

java -jar benchmark.jar -p searchArticleRequest.xml -n 10

-c 200 –H "SOAPAction: urn:searchArticle" –T "text/xml;

charset=UTF-8" http://localhost:8912/soap/Service

4.7.2 Test Results

Figure 4.17 shows the time taken for handling a client request under

multiple concurrent requests generated for the MSG. The MSG was

successful in handling up to 210 concurrent requests without any

connection refusals. Above this, higher numbers of concurrent requests

were generating connection refusals; as because, the ServiceMix ESB can

handle only as many concurrent requests as the number of threads

Chapter 4. Mobile Service Provider in P2P Environments

- 124 -

configured in the system [Perera, 2007]. Figure 4.17 also shows a steady

increase in the average time taken for handling a client request with the

increase in number of concurrent requests. After 240 concurrent requests,

there is a sharp decline in the time taken to handle a client. The decline

is because of a large number of failed requests at this concurrency level.

In this observation, more than 300 concurrent requests are not

considered, as at this high concurrency level the number of failed

requests is already more than 50% of the total requests. The mean

duration of handling a single request remains mostly constant in this

observation. The mean is calculated by observing the performance of

MSG over long durations. The mean value lies in the range 100-150

milliseconds, and improves slightly with the increase in concurrency

levels. This shows that the performance of MSG is actually improving

when there are large numbers of clients to handle.

Figure 4.17: Average times taken to handle clients at the MSG.

The results from this analysis show that the MSG has reasonable

levels of performance and can be scaled to handle large number of

concurrent clients possible in the real-world scenarios. Figure 4.18

further clarifies this by showing that the number of transactions handled

by the MSG per second, almost remains steady (in fact growing) even

0.00

5,000.00

10,000.00

15,000.00

20,000.00

25,000.00

30,000.00

1
6

2
6

3
6

4
6

5
6

6
6

7
6

8
6

9
6

1
0

6

1
1

6

1
2

6

1
3

6

1
4

6

1
5

6

1
8

0

2
1

0

2
3

0

2
4

0

2
6

0

2
8

0

3
0

0Ti
m

e
 t

o
 h

an
d

le
 s

in
gl

e
 c

lie
n

t
(m

s)

Number of concurrent requests

Chapter 4. Mobile Service Provider in P2P Environments

- 125 -

under heavy load conditions. The MSG successfully handles 6-8 mobile

web service invocations per second. The values can significantly grow,

when the MSG is established on reasonable servers with high resource

and performance capabilities.

Figure 4.18: Number of transactions handled per second by the MSG.

4.8 Summary

This chapter has introduced the concept of providing mobile services in

P2P networks from smartphones. The features, deployment scenario, and

realization details of the P2P based web services framework are

presented. Enterprise service bus is used to provide SOA features and

enterprise level integration of mobile service providers, JXTA virtual P2P

network, and existing web services infrastructure. The mobility and

discovery issues of mobile web services are discussed; and an alternative

for service discovery in P2P networks is suggested using the modules

feature of JXTA. The evaluation of the framework clearly showed that

MSG has reasonable levels of performance in handling large number of

concurrent clients possible in mobile P2P networks. Clearly, this

approach opens up numerous scopes for further research in domains like

collaborative learning, content sharing, location based services, etc.

0

2

4

6

8

10

12

14

16

1
6

2
6

3
6

4
6

5
6

6
6

7
6

8
6

9
6

1
0

6

1
1

6

1
2

6

1
3

6

1
4

6

1
5

6

1
8

0

2
1

0

2
3

0

2
4

0

2
6

0

2
8

0

3
0

0Tr
an

sa
ct

io
n

s
p

er
 s

ec
o

n
d

 (
TP

S)

Number of concurrent requests

- 127 -

Chapter 5

Partitioning Service Execution on
Resource Constrained Devices

Applications for mobile devices are getting more and more popular since

general consumers have started to utilize the advanced capabilities of

their mobile devices like smartphones. However, most of the available

mobile devices have low resource capabilities. Compared to stationary

nodes, mobile devices have limited capacity, slower processing speed,

unreliable communication links and run mostly on battery power.

Running complex services on a mobile device will consume most of its

resources and may obstruct the device to perform its core functions (e.g.

voice calls). It is not feasible and necessary for a single mobile device to

execute complex processes independently. Services should be designed in

a way to put less workload on the mobile device and delegate heavy-duty

tasks to backend servers or to the cloud. This kind of delegation of tasks

to servers is referred as offloading. Hosting services on mobile devices

demands a flexible, light-weight and scalable execution environment,

which can exploit resources from its surroundings as necessary.

This chapter proposes a framework for hosting services involving

complex business processes on mobile devices. The mobile device acts as

the integration point with the support of backend servers and remote web

services. The framework provides support for executing functions locally

which require the resources of the mobile device, and delegating the

heavy-duty tasks to backend servers. The partitioning framework

provides a high-level design about how to assign different tasks to be

executed on mobile devices and backend nodes. Service partitioning

Chapter 5. Partitioning Service Execution on Resource Constrained Devices

- 128 -

techniques are presented and different partitioning schemes are analyzed

based on the order of the execution process. A comparison between the

partitioned and un-partitioned execution engine has shown a significant

improvement in the performance.

5.1 Mobile Service Provider Architecture

The thesis presents a light-weight framework for hosting services from

mobile devices. The proposed service provider architecture is based on

three main modules: transport handler, execution engine, and deployed

services (Figure 5.1). Accommodating all parts of the modules on a single

node is not feasible for resource constrained devices. Hence, the execution

engine can be partitioned to execute the resource consuming partitions on

a larger backend node. A backend node is a computing node that executes

tasks on request and sends back the results to the provider. The

functional details of the individual modules are presented below.

Transport Handler

One of the major advantages of SOAP is its independence of the

underlying transport mechanism. This allows web service applications to

select the appropriate transport mechanism according to its availability

and the requirement of the quality of service. HTTP is used as the

transport mechanism in our framework, because it is firewall friendly

and most commonly used protocol for exchanging SOAP messages. The

transport handler processes the HTTP requests and extracts the SOAP

messages to forward them to the execution engine.

Execution Engine

This is the core module of the service provider architecture. This engine is

responsible for parsing the incoming request message (SOAP message)

and invokes a particular method of a web service class based on the

Chapter 5. Partitioning Service Execution on Resource Constrained Devices

- 129 -

requested service. The execution engine uses Remote Procedure Call

(RPC) as a binding technique between the messaging protocol and the

web service implementation. A mapping between the URIs of the

deployed services and their class instances is also maintained by the

execution engine. This mapping is used to invoke the requested operation

of a web service.

Figure 5.1: Mobile service provider architecture.

Deployed Services

This module contains a stack of the deployed services and the list of the

services is maintained in an XML file. A new service can be deployed by

simply putting its implementation package on the class path in the XML

file. A sample of the deployment configuration of such a web service

searchArticle is shown below (as presented before in Listing 2.2 in

Chapter 2).

Chapter 5. Partitioning Service Execution on Resource Constrained Devices

- 130 -

<webservice>

 <uri>http://mobilews.com/searchArticle</uri>

 <class>webservices.searchArticle</class>

 <operation>searchArticleByDate</operation>

</webservice>

5.2 Partitioning Service Execution Engine

Partitioning execution engine is conceptually similar to separating an

application into different parts that can be executed on different nodes.

Static application partitioning is separating application executions at

design time. Typical examples of this type of partitioning are client server

applications [Tanenbaum and Steen, 2002]. Dynamic application

partitioning is offloading some executions to a nearby surrogate node at

run time. This type of partitioning is more challenging than static

partitioning. More details on this concept can be found in [Hunt and

Scott, 1999], [Jamwal and Iyer, 2005] and [Chandra et al., 2002].

The key objective of the partitioning framework is to minimize the

execution load on the service provider mobile device. A service application

can be executed on the mobile device and a few of its tasks can be

offloaded to a powerful backend node. The control of the application

remains with the service provider and only the tasks requiring more

computing resources are offloaded to the backend node. The service

designer can decide which set of tasks to execute on the mobile device and

which on the backend node. The tasks that do not depend on resources of

the mobile device can be executed on the backend node. Such execution

engine partitioning also makes the system scalable in terms of the

number of concurrent clients.

The partitioning technique is focused on the processing of SOAP

messages in such a way that the execution on the resource constrained

mobile device is minimized. At this stage, the target is to split the

execution engine into two partitions: one for the mobile device that hosts

the mobile execution engine, and the other for the backend node that

Chapter 5. Partitioning Service Execution on Resource Constrained Devices

- 131 -

hosts the static execution engine. A service execution engine performs a

series of tasks while invoking a web service (WS). These tasks may

include conforming to WS specifications for address resolution, WS-policy

and transaction management, verification of security, and so on.

Conforming to each WS specification can be considered as one processing

task for the execution engine. For example, verification of XML signature

is one task and decrypting a SOAP message can be another task for the

execution engine. Likewise, invoking the actual web service application

can be considered as another separate task.

To explain the concept of a distributed execution engine, let us

consider a WS invocation that requires clients to send encrypted request

with identity of the requestor. The tasks that are performed by the WS

execution engine are: verifying client identity (T1), decrypting incoming

message (T2), verifying message integrity (T3), invoking other web

services (T4), incorporating value-added services (T5), and signing

response message with service provider’s certificate (T6). Figure 5.2(a)

shows the sequence of all these tasks performed by a single service

execution engine. Figure 5.2(b) shows the execution of these tasks by a

distributed service execution engine.

Figure 5.2: Partitioning service execution engine.

Chapter 5. Partitioning Service Execution on Resource Constrained Devices

- 132 -

As mentioned earlier, the execution engine is divided into two

parts: the mobile execution engine and the static execution engine. The

mobile execution engine is designed to be deployed on the mobile device

and is responsible to process the tasks that require local resources or

require actions of the service provider. The static execution engine is to be

deployed on a backend node and is responsible for handling tasks that

demand more computing resources.

For example, if signing a response message requires a security

certificate of the mobile service owner, then such tasks are better not to

be placed on a backend node. Considering these facts, division of tasks

between the mobile and the static execution engine is presented in Figure

5.2(b). In this partitioning scheme, the mobile execution engine verifies

client identity (T1), incorporates value-added services (T5), and signs the

response message (T6). The static execution engine decrypts incoming

message (T2), verifies message integrity (T3), and invokes the required

Web services (T4).

5.3 Service Partitioning Techniques

Two application partitioning techniques can be used for service

partitioning in the proposed framework: coarse grain partitioning and

fine grain partitioning. The first technique suggests partitioning of a

service application at the package or class level and wraps these

partitions into multiple child services, while the second technique

suggests partitioning of a service at the method level.

The objective of partitioning the service application is to offload the

complex components of a service from the mobile node with limited

resources and execute them on a powerful backend node. The partition of

the service that requires to be executed on the mobile device can be put in

a separate service or a remotely accessible application (depending on the

chosen technique) and deployed on the device. The rest of the components

can execute on a powerful backend node that does not suffer from the

Chapter 5. Partitioning Service Execution on Resource Constrained Devices

- 133 -

resource limitations of a mobile device. The details of these service

partitioning techniques are discussed next.

5.3.1 Coarse Grain Partitioning

Coarse grain partitioning is primarily for services that are implemented

using packages and classes. With coarse grain partitioning, a service is

decomposed into child partitions such that each partition has one or more

classes in it and can be executed on a separate node. Although the child

partitions can be deployed as independent distributed applications, but to

provide interoperability across different partitions the thesis proposes to

wrap the child partitions into web services. Wrapping child partitions to

web services is better for heterogeneous service execution environments

since the web services can be deployed on any node irrespective of the

platform it uses.

But processing of multiple (child) web services can add extra

overheads due to additional XML/SOAP messaging. For complex systems,

the response of multiple child web services can be collected and

coordinated by using a workflow engine. The workflow engine is

responsible for the arrangement and management of different web

services to achieve the desired results. Workflow engines can be built

using workflow languages that define the flow of execution of different

web services or business processes. The commonly used workflow

languages are Web Service Flow Language (WSFL) [Leymann, 2002] and

Business Process Execution Language (BPEL) [WS-BPEL, 2002].

5.3.2 Fine Grain Partitioning

Fine grain partitioning is for decomposing a service application at a finer

level; method or procedure level for example. This partitioning technique

is useful for services that are implemented using native code of the

devices. The complexity of performing the partitioning is increased as the

granularity level becomes finer and finer.

Chapter 5. Partitioning Service Execution on Resource Constrained Devices

- 134 -

In fine grain partitioning, it is possible to create partitions as

remotely accessible applications by using distributed technologies such

as, Remote Method Invocation (RMI) [Tanenbaum and Steen, 2002],

Distributed Component Object Model (DCOM) [DCOM, 2007], and

Common Object Request Broker Architecture (CORBA) [CORBA, 2007].

Since this technique of partitioning is mainly for implementations that

are written in the device’s native code, therefore the mobile services in

the framework are not partitioned using this technique.

5.4 Service Partitioning Design Guidelines

The criteria for service partitioning include a number of factors; such as,

the number of partitions, local resource requirement, frequency of

communication between different components of a service, and resource

limitations of the mobile device. Thus in the context of mobile services,

knowledge on the type of the device (embedded device, handheld device,

or smartphone) may also be important for partitioning. Depending on the

complexity of the service, there can be multiple partitions of the

application to improve performance. Based on these factors, three design

guidelines are listed for partitioning services hosted on mobile devices.

 Services hosted on mobile devices will use some local resources of

the device and there will be a set of local systems calls in the

application. This guideline suggests quarantining part of the

application in a separate partition that makes local system calls.

The part of the application that does not use local resources can be

put in the partition that is to be deployed on a remote node.

 For improving system performance, the communication between

different modules of an execution engine should be minimized. The

different partitions of a service must be engineered to reduce inter-

component communication. This guideline suggests delegating part

of the service to a remote node, only if this part does not use local

Chapter 5. Partitioning Service Execution on Resource Constrained Devices

- 135 -

resources of the mobile device; and moving it to a remote node does

not demand a large amount of data transfer between the remote

node and the mobile device.

 For optimized performance, this guideline suggests using the

façade design pattern for multiple services hosted on the same

mobile node. The façade design pattern [Gamma et al., 1995] is a

structural pattern that provides simpler interface for complex

subsystems. One of the most important benefits of the façade

pattern is that it reduces network round trips between remote

systems. This is especially important for mobile services, since the

wireless data transmission is slow. In the context of mobile web

services, the façade design pattern can be used to integrate

responses of multiple services hosted on the same mobile device.

For example, let us assume a service provider offers two services

and . A workflow engine may require both services and to

satisfy a service request. The façade design pattern suggests that it

would be economical to combine the two services and into one

service , so that the workflow engine can make one call to get

the responses of both.

5.5 Mobile Service Partitioning Schemes

Three different partitioning schemes can be devised for mobile web

services. All schemes are assumed to have an asynchronous mode of

communication between the service providers and clients. In brief these

schemes are presented below.

5.5.1 Backend-node Based Scheme

A backend node executes a part of an application of the service provider

and sends the results back to it. In this scheme, a client request is

directly received by a resource constrained mobile device. The service

Chapter 5. Partitioning Service Execution on Resource Constrained Devices

- 136 -

application is executed on the mobile device and few of its components are

offloaded to a powerful backend node for improving performance. The

interactions of different components in this scheme are shown in Figure

5.3(a). On receiving a service request, the mobile device runs some parts

of the requested application locally and offloads rest of the execution to a

backend node. As shown in Figure 5.3(a), it is the responsibility of the

mobile service provider to collect results from the remote partitions,

aggregate the results and send the final response back to the client.

Figure 5.3: (a) Backend-node based scheme, (b) Intermediate-node based

scheme, (c) Forwarding-node based scheme.

In this scheme, the mobile service provider itself has the control of

coordinating the different partitions. It can either use a design-time or a

run-time application partitioning strategy. With the run-time strategy, a

number of run-time parameters are used to decide when to offload to a

Chapter 5. Partitioning Service Execution on Resource Constrained Devices

- 137 -

backend node. An advantage of this scheme is that the mobile device

controls the different partitions. This makes the services provisioned from

the mobile hosts to the clients. From business point of view, this scheme

opens up completely new opportunities for small businesses by being

mobile web service providers. The framework proposed in this chapter is

based on this scheme.

5.5.2 Intermediate-node Based Scheme

An intermediate node intercepts the client requests and processes partly

before forwarding them to the service provider mobile device. In this

scheme, an intermediate node works as a surrogate node. The surrogate is

an interface of the published services to clients. To the external world, a

service is assumed to be hosted on the intermediate node. A high level

overview of this scheme is shown in Figure 5.3(b). The intermediate node

receives the service request, executes some tasks locally and assigns

other tasks to the mobile service provider. It is also the responsibility of

the intermediate node to create a final response and send it to the client.

There are a number of advantages of using this scheme. The

intermediate node can facilitate access to the existing application as a

service. The use of an intermediate node allows the service to be

implemented using the device’s native code while providing an interface

to the service consumer. For example, this approach may be useful to

collect data from sensor devices and provide the sensor functionality as a

web service by using an appropriate wrapper without deploying any

service execution environment on the resource constrained sensor device.

In the other case, if the service is deployed on the mobile device, the

intermediate node can be useful for session management and supporting

other extended web service specifications for security and transactions.

In this scheme, the use of an intermediate node as a service proxy

ensures availability of the service at all time. The intermediate node is

solely responsible for delegating service requests to or collecting results

Chapter 5. Partitioning Service Execution on Resource Constrained Devices

- 138 -

from the actual service hosted on a mobile device. This scheme is most

suitable for design time application partitioning strategies. In this

scheme, the mobile service provider has less control on the accessed

application. The services that require extensive access to the resources of

the mobile device or frequent involvement of device’s owner are not

suitable for this scheme.

5.5.3 Forwarding-node Based Scheme

The objective of this scheme is to alleviate the drawback of collecting

results from backend node and aggregating locally on the mobile service

provider. Some tasks can be executed on the mobile device first and then

rest of the execution can be moved to a forwarding node. In this scheme,

responsibility of sending the final response to the client is delegated to

the forwarding node. A high level overview of the interactions of this

scheme is presented in Figure 5.3(c).

This scheme is suitable for the applications which require the

partition on the mobile device to be executed first. This scheme requires

the forwarding node to communicate with clients directly, which may not

be feasible in many scenarios (e.g. peer to peer services). Besides, this

scheme allows less control to the mobile service provider and introduces

additional binding issues between the forwarding node and the client.

5.6 Framework for Partitioned Mobile Services

The partitioning framework makes use of both design-time and run-time

partitioning for the division of tasks between the execution engines

(mobile execution engine and static execution engine). Design-time

partitioning is used to separate the tasks which require the resources of

the mobile device or mobile owner’s input. Service designer can pre-

partition the tasks to be executed on the mobile and static execution

engines. Run-time partitioning is used to make optimal partitioning

Chapter 5. Partitioning Service Execution on Resource Constrained Devices

- 139 -

decision for heavy-weight services, where the services may require

dynamic allocation of tasks to utilize available resources based on the

costs of service components being executed. The design-time partitioning

is defined at the time of deploying a service through a predefined

partitioning policy. The tasks that can be offloaded to a backend server

depending on the availability of resources are identified in the policy

statement. The policy uses an XML schema that defines the XML

elements for each task execution. A sample partitioning policy is shown in

Listing 5.1.

Listing 5.1: Sample partitioning policy.

 <partition>

 <mobile><IDENTITY required=”true”/></mobile>

 <static><WEBSERVICE class-name=”location”/></static>

 <mobile><SIGNATURE required=”true”/></mobile>

 </partition>

In this partition, verification of a client identity and signing a

response message are assigned to the mobile execution engine. The task

of invoking a web service is assigned to the static execution engine. The

sequence of tasks performed by the execution engines is the same as

specified in the partitioning policy. In this example, there are two

<mobile>...</mobile> XML blocks. The <mobile>...</mobile>

block that comes after the <static>...</static> block, contains a

task to be done on the mobile device after the completion of task on the

static execution engine.

The overall framework based on the backend-node based scheme is

depicted in Figure 5.4 and the details of the components are discussed in

the following subsections. Light-weight and open-source packages kSOAP

[kSOAP2, 2007] and kXML [kXML2, 2007] are used for implementing the

partitioned execution engines. kXML is an XML parser based on pull

parsing and is an implementation of XMLPULL parser API [XMLPULL,

2007]. kSOAP is used for processing SOAP messages.

Chapter 5. Partitioning Service Execution on Resource Constrained Devices

- 140 -

Figure 5.4: A partitioned mobile service provider framework.

5.6.1 Mobile Service Controller

A client request (SOAP message) is first received by the Transport

Handler in any compatible transport mechanism and the Request

Handler forwards the message to the Mobile Service Controller. The

controller decides whether or not to partition the execution, and which

tasks are to be offloaded. The partitioning policy is configurable because

the partitioning depends both on the nature of a service and the resource

capabilities of the mobile device. Depending on the context of available

resources, the controller decides whether to allocate more tasks to offload,

or to execute all tasks locally.

5.6.2 Function Managers

After splitting the tasks, the controller passes the message blocks to

Local Function Manager and Remote Function Manager accordingly. The

local function manager further separates the data and templates from the

message blocks to reduce the processing load on the mobile device. The

data and templates are passed to the Mobile Execution Engine for local

execution. The remote function manager forwards message blocks to the

Static Execution Engine on a backend node. The static engine invokes

Chapter 5. Partitioning Service Execution on Resource Constrained Devices

- 141 -

additional web services as necessary to process the forwarded messages

and replies back the results. These results are then passed to the mobile

execution engine to be aggregated with the local execution results. The

both execution engines use similar implementation, but they differ in

terms of tasks they perform at run-time.

5.6.3 Mobile Execution Engine

This component is responsible for executing the local execution tasks

within the mobile device. The user or administrator of the mobile device

can administrate the execution engine if necessary. For some request

processing, it might be necessary to get the administrator input to

proceed or to deliver responses. After getting the data and templates

separated from the local function manager, the mobile execution engine

performs the tasks costing less computing power. Then it aggregates its

results with the results obtained from the backend node. At the last step,

the transport handler sends the response message (SOAP message) to the

original client from the mobile host.

5.6.4 Context Manager

The Context Manager monitors the available resources on the mobile host

and helps the controller to allocate tasks accordingly to the execution

engines. For example, when the available memory or processing power is

low, the controller can allocate more tasks to the backend node if the

available bandwidth is sufficient. At the run-time, if available resources

become low due to any principal operations (e.g. voice calls) of the mobile

device, the controller can offload more tasks. The context manager

proposes to partition the tasks by calculating a context suitability using

the following equation,

 ∑

 (5.1)

Chapter 5. Partitioning Service Execution on Resource Constrained Devices

- 142 -

where, is the available context value of the th resource, is the

required context value of the th resource, and is the weight of the th

resource. If the calculated context suitability value becomes negative, the

mobile service controller partitions the tasks between the local function

manager and the remote function manager to offload. As shown in

Equation (5.1), the context manager has the least context information

required to execute a service and proposes to partition based on it.

For instance, let us consider the case of a mobile host with

available 500MB memory and 400MHz CPU. For simplicity, we suppose

that the weight values and are 0.5 and 0.5 respectively, and the

available bandwidth is sufficient to offload. When a service executes

locally and the required resources are 100MB memory and 300MHz CPU,

the context suitability will be calculated as,

In this case, the context manager will propose to execute the

service locally within the mobile host. Now, let us suppose that the mobile

host has 300MB memory and 100MHz CPU available. With the same

required resources for executing the service, the context suitability in this

case is calculated as,

 ()

In this case, as the context suitability is negative, the context

manager will propose the mobile service controller to partition the

execution and offload the resource intensive tasks to a remote backend

node.

Chapter 5. Partitioning Service Execution on Resource Constrained Devices

- 143 -

5.7 Performance Model

The performance of the system is analyzed by measuring the end to end

response time. Response Time is the total time taken to invoke a service.

It is measured by taking the difference between the times when the

service request was sent to the server and when the service response is

received by the client.

Partitioning mobile service execution across multiple nodes adds

overheads of coordination and communication among the different

partitions. Therefore, the performance benefits that are expected from

partitioning a mobile service should be enough to outstrip these

overheads. Web service hosting requires a service execution environment

on the mobile device. This execution environment handles receiving a

service request, de-serializing the request message, invoking the

requested service, serializing the results into a response message, and

sending the response to the client. If we denote the CPU time required by

the execution environment by , and the CPU time required by the

service application itself by , then the overall response time is

the sum of and (network delays are not considered).

 (5.2)

 includes the CPU time spent on sending and receiving SOAP

messages and executing WS protocols. If the execution engine performs

total number of tasks, then total CPU time required by the service

application is:

 ∑

 (5.3)

Equation (5.3) only considers CPU time while running all the tasks

sequentially on the mobile device. Let us assume that we divide the tasks

into two sets to be executed in two partitions. One set of tasks is executed

Chapter 5. Partitioning Service Execution on Resource Constrained Devices

- 144 -

on the mobile device and the other set of tasks is offloaded to a static

remote node. Therefore, equation (5.3) now can be written as,

 ∑

 ∑

 (5.4)

where, are the tasks executed locally on the mobile device

and are the tasks executed on a remote node.

There are two additional overheads that will occur if the service

application is partitioned across multiple nodes. One overhead arises

from the coordination of different partitions, and the other overhead

arises from the transfer of data between the partitions. If we denote these

two overheads by and respectively, then Equation (5.4) becomes,

 ∑

 ∑

 (5.5)

Therefore, the overall response time of a mobile service invocation

can be obtained by combining Equations (5.2) and (5.5),

 ∑

 ∑

 (5.6)

Equation (5.6) gives an estimate of the time required to invoke a

mobile hosted service that is partitioned across multiple nodes. In this

estimate, the executions on the mobile device and on the remote node are

assumed to be not concurrent.

5.8 Performance Evaluation

In this section, the performance of the partitioned execution engine is

evaluated by measuring the end to end response time to invoke a service.

The prototype implementations are tested and the impact of service

partitioning techniques on corresponding response times are presented.

Chapter 5. Partitioning Service Execution on Resource Constrained Devices

- 145 -

5.8.1 Effect of Partitioning on Performance

To investigate performance of the partitioned execution engine for mobile

hosts, a test prototype is developed to compare the end to end response

time for different number of concurrent clients. For this investigation, the

backend-node based scheme is chosen and a sample service

searchArticle is deployed on a smartphone. The mobile hosted service

searchArticle performs the operation searchArticleByDate and

provides a list of articles written on a particular date by a journalist. The

service extracts the input parameter ‘date’ from the incoming message

and returns the list of articles as a response. The average response time

for each input value is measured by sending 10 requests to the service

provider and then taking the average.

Test Setup

The service clients are run on a Toshiba Satellite A100 laptop equipped

with a RAM of 1GB and 1.83GHz Intel processor. The backend node is a

desktop computer equipped with an Intel single core processor of 3.0GHz

CPU speed and a RAM of 1GB. Both machines operate with Windows XP

professional operating system. The service provider is deployed on a

Nokia E63 smartphone equipped with 369MHz ARM11 processor and a

RAM memory of 128MB, running on Symbian OS v9.2 operating system.

The Java ME technology available on the device is, JSR 172 J2ME Web

Services Specification. The light weight execution engine is based on

J2ME and deployed on the smartphone. The client machine, the

smartphone and the backend node are equipped with wireless interfaces

using IEEE 802.11 b/g standard, and they communicate using a wireless

local area network.

Chapter 5. Partitioning Service Execution on Resource Constrained Devices

- 146 -

Test Results

In this test, the execution engine is partitioned at design time. The task

of client’s authentication checking is partitioned to be offloaded at the

backend node. After verifying the signature, the backend node sends the

message to the mobile service provider. The service provider does all the

tasks of service invocation for the authorized clients and sends back the

results to them. In the second test, the same client requests were

executed without partitioning the execution. The client’s authentication

checking is done within the mobile device. Each client operates cyclically

and sends one request at a time. The system is stressed by increasing the

number of concurrent clients. Table 5.1 shows the average response times

obtained from these observations. Figure 5.5 is obtained by plotting the

values from Table 5.1.

Table 5.1: Comparison of response times with and without partitioning.

Concurrent

clients

Average response

time when

partitioned (ms)

Average response

time when not

partitioned (ms)

1 1186.82 1766.53

3 2466.35 4232.21

6 3742.41 7542.37

9 5013.26 13708.82

12 8651.44 18857.34

Chapter 5. Partitioning Service Execution on Resource Constrained Devices

- 147 -

Figure 5.5: Effect of execution engine partitioning on performance.

As we can see for both of the cases, demand for resources increases

with an increase of concurrent clients and the mean response time

increases. Figure 5 shows that the mean response time for the partitioned

execution engine is significantly lower than the mean response time with

no partitioning. The result of distributing the execution engine from the

mobile host is promising. For a single client the improvement in response

time is 32% and for 12 concurrent clients the improvement is 54%.

5.8.2 Effect of Partitioning as Child Services

For this experimental investigation a sample Location Service is deployed

on a smartphone and the intermediate-node based scheme is chosen to

evaluate the effect of partitioning as child services. The functionality of

the Location service is to provide the exact location of the device on which

the service is deployed. The service provides the address of the location,

its elevation, time zone and the population of the area. As the first step,

the service fetches the actual GPS coordinates from a GPS receiver. For

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

1 3 6 9 12

R
e

sp
o

n
se

 t
im

e
 (

m
s)

Number of concurrent clients

Not Partitioned

Partitioned

Chapter 5. Partitioning Service Execution on Resource Constrained Devices

- 148 -

this experiment, we emulate the step of getting GPS coordinates by

fetching a random set of coordinates from a local file containing more

than a thousand locations. In the next step, the service queries a

database of locations to find the details of a location closest to the

coordinates. The location database is downloaded from a well-known

geographical database GeoNames [GeoNames, 2009]. In the last step, the

location information is serialized as a response message and sent back to

the requester.

Test Setup

In the experiments, a Nokia E71 smartphone was used, equipped with

369MHz ARM11 processor and a RAM memory of 128MB, running on

Symbian OS v9.2 operating system. It has a built-in GPS receiver with

preloaded maps (i.e. Nokia Maps) for location identification. The Java ME

technology available on the device is, JSR 172 J2ME Web Services

Specification. Services are deployed on the device using a J2ME (J9)

runtime environment. The service surrogate (i.e. intermediate node) is

deployed on a desktop node that is equipped with a 3.0GHz Intel single

core processor and a memory of 1GB. The service clients are running on a

Toshiba Satellite A100 laptop equipped with a RAM memory of 1GB and

an Intel single core processor of 1.83GHz speed. The inter-communication

between the intermediate node (the service surrogate) and the

smartphone is based on a wireless local area network. The intermediate

node and the smartphone are equipped with wireless adaptors compatible

with IEEE 802.11 b/g standard.

Test Results

Location service involves system calls to local resources and has a

component for querying a large database that requires a large amount of

processing capacity and physical space for storage. For simplicity, the

Location service was partitioned into two child partitions. These child

Chapter 5. Partitioning Service Execution on Resource Constrained Devices

- 149 -

partitions are deployed both as child services (coarse grain partitioning)

and as remote distributed objects (fine grain partitioning). SOAP is used

for intercommunication in coarse grain partitioning, whereas Remote

Method Invocation (RMI) is used for fine grain partitioning.

Figure 5.6: Location service (a) un-partitioned, (b) partitioned into child

services, (c) partitioned into remotely accessible objects.

Figure 5.6(a) shows the Location service as a whole (un-

partitioned), deployed on the smartphone in one of the experiments.

Later, the Location service is partitioned into two child services. The

getGPSCoordinates uses local resources, so this task is kept in one

partition and installed on the mobile device. The queryDatabase

requires accessing a large database with thousands of records containing

locations, and does not use any local resources of the mobile device.

Therefore, the queryDatabase partition along with the database was

moved to the backend node. Figure 5.6(b) shows the result of a coarse

grain partitioning of the Location service, in which the two partitions are

deployed as two child services. Figure 5.6(c) shows the result of a fine

grain partitioning of the Location service, in which the two partitions are

deployed as two remotely accessible distributed objects. The advantage of

using distributed objects is that they can use an optimized transport

mechanism for exchanging data.

Chapter 5. Partitioning Service Execution on Resource Constrained Devices

- 150 -

The performance of using these partitioning techniques on the

Location service is observed by sending 100 requests (one after the other)

from multiple concurrent clients. The system is tested using one, five,

eight, and ten concurrent clients. The results are summarized in Table

5.2 and Figure 5.7.

Table 5.2: Response times with different partitioning techniques.

Concurrent

clients

Not partitioned

(ms)

Partitioned as

child services

(ms)

Partitioned as

distributed

objects (ms)

1 43580.12 3623.15 4675.17

5 208470.55 11660.62 17953.10

8 336051.34 18331.90 28379.47

10 427626.85 23851.35 36110.25

Figure 5.7: Effect of execution engine partitioning as child services.

The results show that the Location service partitioned into two

partitions performs much better in comparison to the un-partitioned

Location service which is deployed as one entity on the mobile device. The

response time achieved with the un-partitioned Location service is

0

20000

40000

60000

80000

100000

1 5 8 10

R
e

sp
o

n
se

 t
im

e
 (

m
s)

Number of concurrent clients

Not
partitioned

Partitioned as
child services

Partitioned as
distributed
objects

208470 336051 427626

Chapter 5. Partitioning Service Execution on Resource Constrained Devices

- 151 -

inordinately large and is clearly unacceptable. Among the rest, Location

service deployed as two child services (coarse grain partitioning) performs

better than the service that is deployed as two distributed objects (fine

grain partitioning).

Though the system with distributed objects does not have

additional overhead of SOAP/XML processing, but still it performs

inferior due to the RMI framework and its implementation available for

J2ME. At first, the RMI client uses a registry to get a reference of the

remote object and then uses the reference to invoke a particular method

on the remote object. Therefore, partitioning a service into multiple RMI

based remote objects results in more overhead due to the increased

number of messages between the service surrogate and the nodes hosting

remote objects. Another reason of the inferior performance of RMI based

partitioning is due to its thread creating strategy. A new thread is created

for each new request. The RMI runtime keeps the newly created thread

for a certain amount of time period to serve another request. If no new

request arrives during this period, then the thread is destroyed. This

thread creating strategy adds further overheads to service delivery.

Hence, partitioned (coarse grained) service deployed as child

services performs better than the partitioned (fine grained) service that is

deployed as distributed objects.

5.8.3 Effect of Using Façade Design Pattern on Service Partitioning

In this investigation, the same Location Service is deployed along with a

Schedule Service on a smartphone to evaluate the effect of using the

Façade Design Pattern on service partitioning. The Schedule service is a

simple service that can be used to fetch the schedule detail of an

especially skilled person (e.g. doctor, nurse) from his/her device. It is

assumed that the person is using a scheduling application for managing

his/her appointments and is exposing the schedule as a service. The data

Chapter 5. Partitioning Service Execution on Resource Constrained Devices

- 152 -

of all private meetings and appointments are assumed to be private and

not available to the service to expose.

Test Setup

In this experiment, the same setup is used as the previous experiment in

subsection 5.8.2. The Schedule service is deployed along with the Location

service on the same mobile device (i.e. Nokia E71 smartphone). The

significance of the façade design pattern is investigated for aggregating

light weight services if they are deployed on the same mobile node and

are required for service composition [Zeng et al., 2003]. In this

experiment, it is assumed that a service composition entity requires the

Location service and the Schedule service to provide the location of a

person and his/her current schedule.

Test Results

The steps of partitioning the services and applying the façade design

strategy on the partitions are depicted in Figure 5.8. Figure 5.8(a) shows

the invocation of the Location service and the Schedule service

independently to accomplish a service request for the location of a person

and his/her current schedule. Figure 5.8(b) shows that the Location

service is partitioned into two child services and the queryDatabase

child service is deployed on a stationary node. In this case, the composite

service surrogate invokes three services to accomplish the goal, i.e.

getGPSCoordinates, queryDatabase, and Schedule service. In Figure

5.8(c), the two services hosted on the same mobile device are combined

using the façade pattern and now the composite service surrogate invokes

a single service to get the GPS coordinates and the schedule.

Chapter 5. Partitioning Service Execution on Resource Constrained Devices

- 153 -

Figure 5.8: Partitioning approach with aggregating two services using

façade design pattern.

The invoked composite service is based on the Location service and

the Schedule service together. The partitioned composite services with

and without using the façade pattern, are then compared by observing

the response times of the corresponding composite services. The

observations are taken with one, five, and ten concurrent clients and the

results are summarized in Table 5.3 and Figure 5.9.

Table 5.3: Response times with and without façade design strategy.

Concurrent

clients

Partitioned without

façade design

strategy (ms)

Partitioned with

façade design

strategy (ms)

1 5015.32 4660.12

5 17080.15 12290.07

10 32920.74 23695.22

Chapter 5. Partitioning Service Execution on Resource Constrained Devices

- 154 -

Figure 5.9: Effect of using façade design pattern on partitioning.

As the number of concurrent clients increases, the performance of

the system using façade design strategy improves. The response time of

invoking the composite service using the façade pattern is observed to be

reduced by 7% for one client and by 28% for 5 and 10 concurrent clients,

compared to the response time of invoking the composite service without

using the façade pattern.

5.9 Summary

This chapter introduced a framework for provisioning web services from

resource constrained mobile devices, based on partitioning the application

execution of the services. The architecture of the service execution engine

has been provided with the details of each component. The proposed

architecture facilitates the use of application partitioning techniques to

offload parts of the service application to a backend surrogate node. The

framework is tested using sample prototypes and some sample web

services to observe the effect of applying different partitioning techniques.

As we can perceive from the observations, partitioning the computation

intensive tasks has led to a significant improvement in response time of

the services hosted on mobile devices.

0

5000

10000

15000

20000

25000

30000

35000

1 5 10

R
e

sp
o

n
se

 t
im

e
 (

m
s)

Number of concurrent clients

Composite
service without
façade design
strategy

Composite
service without
façade design
strategy

- 155 -

Chapter 6

Approach for Efficient Service
Partitioning

Recent years have seen a significant increase in research and

development of mobile and wireless networks, including UMTS

(Universal Mobile Telecommunications System), mobile ad hoc networks,

and sensor networks. The potentials of these network systems lie in their

ability to provide users with cost-effective services that have the potential

to run anywhere, anytime and on any device without (or with little) user

attention. Services with these features are termed as pervasive services

[Satyanarayanan, 2001]. Hosting pervasive services can bring great

convenience for the owners of mobile devices to administrate and manage

their business services anytime and anywhere. By hosting services on

mobile devices, business users will benefit from collaboration and data

sharing, and personal users will benefit from social networking, sharing

multimedia contents, incorporating address books, or exchanging

calendar schedules etc.

In comparison to desktop nodes, mobile devices usually come with

limited memory capacity, slower processing speed, and limited

communication bandwidth. In this context, a mobile device can be a

smartphone, a PDA, or any other portable computing device. Hosting

complex and heavy-weight services on mobile devices demand

mechanisms for employing more computing resources to support the

mobile devices. Mobile devices can host such type of services by

partitioning the tasks and delegating the resource intensive tasks to their

backend servers. Offloading is the technique to achieve task delegation to

remote servers for employing additional resources on demand for mobile

Chapter 6. Approach for Efficient Service Partitioning

- 156 -

devices. This chapter presents an efficient approach for service

partitioning by considering a combination of the costs of memory, CPU,

and bandwidth resources on mobile devices.

6.1 Offloading Pervasive Services

Offloading is not a completely new concept. It has been utilized in the

form of proxies and surrogates for many years. Offloading has been used

for load balancing in distributed systems [Satyanarayanan, 2001].

However, exploiting offloading mechanisms in the domain of service

provisioning from resource constrained mobile devices has not yet

explored enough. Some research work earlier proposed different

offloading mechanisms for resource constrained devices [Chen et al.,

2004; Flinn et al., 2002; Li et al., 2001; Balan et al., 2003]. However, they

are limited in one way or another, for not considering the dynamic

condition of available resources on the devices. Since pervasive services

tend to be quite complex and dynamic [Satyanarayanan, 2001], the

offloading system should consider multiple types of resource constraints

at the same time. It is still lacking of a partitioning solution that

considers memory, CPU power, and bandwidth simultaneously. Focusing

on only one of them renders the solution to be unfeasible in practice.

The proposed partitioning framework uses an approach which

considers the dynamic conditions of the resources, to partition the tasks

between a mobile device and its backend nodes. The offloading approach

significantly increases the efficiency of services hosted on mobile devices,

by considering a combination of the cost values of memory, CPU, and

bandwidth resources. The offloading approach considers both the

interaction properties and the resource consumption while performing

partitioning and offloading. The adaptability and efficiency of the

approach lies in its efficient service partitioning algorithm and feasible

offloading mechanisms.

Chapter 6. Approach for Efficient Service Partitioning

- 157 -

6.2 Cost-based Dynamic Offloading

The costs of service components change during service execution on the

run-time in mobile environments. Therefore, for better performance and

optimization, cost-based dynamic partitioning can guarantee a reliable

and robust service provisioning. The offloading approach considers the

costs of resource consumption depending on the nature of the provided

services and clients requests.

6.2.1 Weighting the Costs of Service Components

In general, there are two approaches to weight the costs of service

components: online-profiling and offline-profiling. The latter uses a pre-

defined profile to describe the resource consumption of each service

component. An offline-profile needs to be defined during the design period

with the knowledge of the execution code. The practical advantage of

offline-profiling is the simplicity in its implementation. If an offloading is

needed before the start of service application execution, the offline-

profiling has to be used. The drawback of offline-profiling is that it cannot

reflect dynamic resource changes during application execution. On the

other hand, the online-profiling approach generates a multi-cost graph

dynamically by monitoring the runtime execution environment. It does

not need knowledge of the execution code. The demerit of online-profiling

is that it introduces extra overhead due to its real-time and dynamic

nature. The proposed offloading approach supports both online-profiling

and offline-profiling, depending on the services provided and the runtime

execution environment.

6.2.2 Monitoring Dynamic Resource Utilization

To make dynamic offloading decisions, there are two viable approaches

for monitoring the runtime resource utilization of the environment:

periodical and event-driven resource snapshots. The former takes

Chapter 6. Approach for Efficient Service Partitioning

- 158 -

resource utilization snapshots periodically with a time interval. The

interval can be smaller for more precise evaluation (e.g. a few

milliseconds). However, frequent snapshots increases overhead.

Nevertheless, the event-driven approach takes snapshots only when

resource utilization changes (e.g. the events of JVM’s memory allocation

and release). The offloading framework takes the event-driven snapshots

and complements them with a periodical triggering of longer interval

snapshots (e.g. a few seconds). The following approaches are used to

obtain the cost values of service components.

 Memory usage: The memory usage of a class changes during its

execution. The context manager obtains the memory usage of each

class by monitoring the JVM heap.

 CPU utilization: It is difficult to measure CPU utilization. For a

given time slot if only one class is running, the CPU utilization can

go to 100%. Whereas, if two classes are running and the CPU

utilization is 100%, it does not imply that the classes’ CPU

utilizations are 50% each. Therefore, the percentage of occupied

CPU is not a feasible way to represent the CPU utilization. A

simple approach can be used by calculating the cumulated CPU

occupying time of a class during the snapshot intervals, as the CPU

processing cost of the class.

 Bandwidth usage: Network bandwidth usage comes from the

exchanged data between the mobile device and the remote

surrogate hosts (e.g. downloading or uploading). The context

manager monitors remote data accesses to obtain the bandwidth

usage of each class.

6.2.3 Issues for Dynamic Offloading Decision

As mentioned earlier in section 5.6.4, the context manager calculates a

context suitability value and helps the mobile service controller to

Chapter 6. Approach for Efficient Service Partitioning

- 159 -

allocate tasks accordingly. If over run time, available resources become

low of the mobile device, the controller can offload more tasks to the

backend nodes. Let, , , and represent the values of context suitability

and , , and represent the importance factors for memory, CPU,

and bandwidth respectively. Therefore, according to Equation (5.1) the

value of context suitability for memory is,

 (6.1)

which implies,

if the tasks should be executed locally; and

if the heavy-weight tasks should be offloaded.

Likewise, the value of context suitability for CPU is,

 (6.2)

which implies,

if the tasks should be executed locally; and

if the heavy-weight tasks should be offloaded.

In the case of bandwidth, the effect is different on offloading

decisions. More available bandwidth implies that there is more

opportunity to optimize the performance by offloading more tasks. Thus,

the value of context suitability for bandwidth is,

 (6.3)

which implies,

if the heavy-weight tasks should be offloaded; and

if the tasks should be executed locally.

Chapter 6. Approach for Efficient Service Partitioning

- 160 -

Considering these issues about memory, CPU, and bandwidth, we

can make the following implications for making offloading decisions:

(i). If

 } , then all tasks will be executed locally.

When the available memory and CPU on the mobile host are more

than required to execute the tasks locally and the available bandwidth is

insufficient to offload them, in such case, all the tasks will be executed

locally on the mobile host.

(ii). If

 } , then tasks will be offloaded as many possible.

When the available memory and CPU on the mobile host are less

than required to execute the tasks locally and the available bandwidth is

sufficient to offload them, in such case, maximum number of tasks that do

not require the resources of the mobile host, will be offloaded. The tasks

that are not possible to be offloaded will be executed locally on the mobile

host.

(iii). If

 } , then memory-intensive tasks will be offloaded.

When the available memory on the mobile host is insufficient to

execute the tasks locally and the available CPU is more than required

and available bandwidth is sufficient to offload them, in such case, the

memory intensive heavy-weight tasks that do not require the resources of

the mobile host, will be offloaded. The light-weight tasks that do not

require a large portion of memory will be executed locally on the mobile

host.

Chapter 6. Approach for Efficient Service Partitioning

- 161 -

(iv). If

 } , then CPU-intensive tasks will be offloaded.

When the available CPU on the mobile host is insufficient to

execute the tasks locally and the available memory is more than required

and available bandwidth is sufficient to offload them, in such case, the

CPU intensive heavy-weight tasks that do not require the resources of

the mobile host, will be offloaded. The light-weight tasks that do not

require a large portion of CPU will be executed locally on the mobile host.

(v). If

 } , then tasks execution is delayed.

When the available memory and CPU on the mobile host are

insufficient to execute the tasks locally and the available bandwidth is

insufficient to offload them, in such case, task execution is delayed due to

the lack of available resources. The delayed tasks will be executed locally

when sufficient memory and CPU become available, or will be offloaded

for execution when sufficient bandwidth becomes available to offload.

(vi). If

 } , then tasks execution is delayed.

When the available memory on the mobile host is insufficient to

execute the tasks locally and the available CPU is more than required

and available bandwidth is insufficient to offload them, in such case, task

execution is delayed as it is neither possible to execute locally nor possible

to offload for the lack of available memory and bandwidth. The delayed

tasks will be executed locally when sufficient memory becomes available,

or will be offloaded for execution when sufficient bandwidth becomes

available to offload.

Chapter 6. Approach for Efficient Service Partitioning

- 162 -

(vii). If

 } , then tasks execution is delayed.

When the available CPU on the mobile host is insufficient to execute

the tasks locally and the available memory is more than required and

available bandwidth is insufficient to offload them, in such case, task

execution is delayed as it is neither possible to execute locally nor possible

to offload for the lack of available CPU and bandwidth. The delayed tasks

will be executed locally when sufficient CPU becomes available, or will be

offloaded for execution when sufficient bandwidth becomes available to

offload.

(viii). If

 } , then heavy-weight tasks can be offloaded.

When the memory, CPU, and bandwidth resources on the mobile

host are all available more than required, tasks can either be executed

locally or can be offloaded for execution. In this case, heavy-weight tasks

can still be offloaded for optimizing the performance of mobile services if

the cost of offloading is less compared to the cost of executing tasks locally

on the mobile host. The cost of executing heavy-weight tasks locally will

generally be higher than the cost of offloading them if the available

bandwidth is high to interact with the remote server.

6.3 Partitioning Algorithm

The main goal of the partitioning algorithm is to keep the component

interaction between the partitions (i.e. the communication cost between

the mobile device and surrogates) as less as possible. This section

presents the cost modeling of such a pervasive service. Then the

partitioning problem is formulated and a partitioning algorithm

is proposed. Furthermore, this section discusses the Edge and Vertex

Chapter 6. Approach for Efficient Service Partitioning

- 163 -

Matching (EVM) algorithm in detail, which is the core part of the

partitioning algorithm.

6.3.1 Service Component Weighting Using Multi-cost Graph

An undirected multi-cost graph , is used to represent a

pervasive service. The vertex set represents service components. As

Java applications are selected as the partitioning target, each vertex in

the multi-cost graph represents a Java class. Each vertex is annotated

with 3 cost weights via a 3-tuple 〈 〉, which represents the

normalized memory, CPU time, and bandwidth requirements of the

vertex. To reduce computational complexity, a composite vertex weight is

used to represent the three weights,

 (6.4)

where , , and are the importance factors of each weight. The edge

set of the multi-cost graph represents the interactions (including

method invocation and data access) amongst classes. For example, an

edge represents the interactions between vertices and .

The weight of an edge, is the total number of interactions

amongst and . The edge-weights represent only the numbers of

interactions. The bandwidth required for interactions is considered in the

vertex-weights. Figure 6.1 shows the partitioning concept of the

undirected graph, where each vertex represents a class (i.e. task) and

each edge represents the interaction between two classes.

Chapter 6. Approach for Efficient Service Partitioning

- 164 -

Figure 6.1: Partitioning undirected graph.

The importance factors , , and , defined in Equation (6.4) are

utilized to weigh the resources memory, CPU, and bandwidth

respectively. The values of these factors can be determined using one of

the following means:

Chapter 6. Approach for Efficient Service Partitioning

- 165 -

 Their values can be set by the service designers based on the

knowledge of the source code.

 Alternatively, they can be directly set by the end users according to

their real-time scenarios. For instance, if the memory utilization is

low on the mobile device, the user can lower the memory factor and

increase the CPU and bandwidth factors in order to save

processing time.

 These values can be dynamically decided by the offloading systems

according to resource availabilities in the mobile device.

6.3.2 Partitioning Algorithm

The problem of pervasive service partitioning is similar to that of

partitioning a finite element graph into a certain number of disjoint

subsets of vertices while fulfilling some given objectives (e.g. minimizing

the amount of connection between the subsets). This algorithm is an

attempt to find an optimal solution. Given a service’s multi-cost graph

 and a non-negative integer | | , the partitioning

algorithm is intended to find one un-offloadable partition and

disjoint offloadable partitions

 satisfying:

(i) ⋃

 and

 for , and ;

(ii) the edge-cut of , for , {

 }

 ∑ (6.5)

i.e. the sum of the edge-weights whose incident vertices belong to

different partitions is minimized subject to the constraints defined by (iii);

(iii) , where is the sum of vertex-weights in

partition , i.e.,

Chapter 6. Approach for Efficient Service Partitioning

- 166 -

 ∑ (6.6)

 and are the constraints that are predefined to represent the

threshold and the fluctuation in partition .
 define the

lower and upper bounds of the constraints.

The algorithm involves two main steps: un-offloadable vertex

merging and coarse partitioning.

(1) Un-offloadable vertex merging: All un-offloadable vertices need

be merged into a multinode . (A multinode is composed of two or more

vertices. The multinode will be treated as a normal vertex afterwards).

Let represent the set of all unoffloadable vertices. The weight of vertex

 is the sum of all the un-offloadable vertices’ weight, i.e.

∑ . The edges connecting to are the unions of the edges which

connect the un-offloadable vertices being merged, i.e.

⋃ . The weight of a united edge is the sum of the weights of

those edges being merged, i.e. () ⋃ .

(2) Coarse partitioning: Let the multi-cost graph with all

the un-offloadable vertices merged be the graph . The aim of this step is

to coarsen to the coarsest graph , such that | | and all the

vertex-weights fulfil the multiple constraints defined. Note that the

multinode from the previous step is treated as a normal vertex during

coarsening. The final coarsest graph consists of multinodes. The

multimode including becomes the un-offloadable partition and the

other multinodes are the offloadable partitions, i.e.

 . This

step is described by the following pseudo-code.

Chapter 6. Approach for Efficient Service Partitioning

- 167 -

Listing 6.1: The coarse partitioning algorithm.

1. begin

2. Define multi-constraints of partitions:

 …

 and
 …

 ;

3. ;

 ; // sum of vertex-weights

4. Appoint the multinode including as ;

5. while | | do { // if the graph is not coarse
 enough

6. Appoint weightiest multinode as

 ;

7. if then Mark multinode as

 matched;

8. for to { // check the partitions

9. if

 then Mark

 as matched; }

10. if

 are matched and

 then
11. Partition Failure;

12. Invoke EVM algorithm to coarsen the graph;

13. Update

 to add new merged vertices;

14. Update

 to add new merged

 vertex-weights;

15. }

16. end

In lines 7 and 9, the total weight of each multinode (i.e. partition)

is checked to examine whether it has already reached the lower bound of

the predefined cost constraint. If yes, it is marked as matched and no

more vertices will be added in. If all partitions satisfy the cost constraints

and there is still an unmatched vertex left, the partition is a failure (lines

10 and 11), which means the partitions cannot be found under predefined

constraints. In this case, either the constraints need to be lightened or the

service executes without being offloaded. In line 12, the EVM algorithm is

invoked for graph coarsening.

6.3.3 The EVM Algorithm

The Edge and Vertex Matching (EVM) algorithm is the core of the

coarse partitioning. At the graph coarsening phase, a sequence of

successively coarser graphs is constructed from the graph

Chapter 6. Approach for Efficient Service Partitioning

- 168 -

such that | | | | (i.e. the number of vertices in the successively

coarser graph is smaller). Two main approaches are proposed in [Karypis

and Kumar, 1998a] for coarsening a graph. The first is to merge the

highly connected vertices into a multinode, while the second is to find a

matching and then to collapse the matched vertices into a multinode. We

adopt these two approaches in the algorithm. EVM coarsens the graph by

collapsing the heavy edges.

A matching of a graph is a subset of edges with no two edges

incident upon the same vertex. The task of finding a maximum matching

is to select a maximum subset of such edges. The coarser graph is

constructed from by finding a matching of and collapsing the

matched vertices into multinodes. The unmatched vertices are simply

copied over to . Since the goal of collapsing vertices using matching is

to decrease the size of the graph , we are trying to find the maximum

matching of the graph .

For finding maximum matching, Karypis and Kumar proposed

Random Matching (RM), Heavy Edge Matching (HEM), and Light Edge

Matching (LEM) in [Karypis and Kumar, 1998a; Karypis and Kumar,

1998b]. All these heuristics only consider the edge-weights. However, in

the context of service partitioning for offloading systems, they are not

sufficient as most of the resource constraints are related to the vertex-

weights. The work in [Karypis and Kumar, 1998c] considered the vertex-

weights. However, their focus is to balance constraints in partitions by

selecting vertex-pairs with minimized difference for matching.

In the offloading approach, the aim is to keep more highly

connected vertices in one partition, satisfying the multiple constraints. In

the EVM algorithm, the heavy-edge means the incident vertices are

tightly connected (i.e. with heavy edge-weight); whereas, the light-vertex

means that more vertices will be merged under the predefined

constraints. The basic idea of the algorithm is that when selecting an

edge for matching, instead of only comparing the edge-weight, the vertex-

weights of the incident vertices are also compared. A vertex-and-edge-

Chapter 6. Approach for Efficient Service Partitioning

- 169 -

composite-weight is used to scale the weight of an edge and its incident

vertices. The vertex-and-edge-composite-weight of vertex in relation to

vertex is,

 () (6.7)

where, () is the edge-weight, and is the composite-vertex-

weight of calculated by Equation (6.7). and

 are the importance factors of edge-weight and vertex-weight

respectively. If , then the EVM algorithm becomes heavy-edge

matching.

If vertex is selected to match with due to the vertex-and-edge-

composite-weight being maximum, then is called the tightest-

and-lightest vertex in relation to . If there is more than one vertex in

relation to vertex that has the same maximum vertex-and-edge-

composite-weight, then one of them is selected by the following approach.

Let be the set of such tightest-and-lightest vertices. The vertex is

selected if,

 ∑ (6.8)

is maximized; i.e., the weight sum of the edges that connect to the

vertices which are also adjacent to is maximized. That means, to choose

the one not only tightly linked with vertex but also tightly linked with

the vertices adjacent to . If still more than one vertices are found, select

the first one or a random one in . The EVM algorithm is as follows.

Chapter 6. Approach for Efficient Service Partitioning

- 170 -

Listing 6.2: The EVM algorithm.

1. begin

2. Mark all vertices of vertex set as unmatched;
3. while do {

4. ;
5. ;
6. if then {

7. Put edge into the matching;
8. Mark as matched vertex; }
9. Mark as matched vertex;
10. }

11. end

The function is used to select the tightest-

and-lightest vertex, which is implemented as follows.

Listing 6.3: The tightest-and-lightest vertex selection function.

1. Function
2. Input: - the given vertex; – the vertex set
3. Output: the tightest-and-lightest vertex to
4. begin

5. [] ;
6. ;
7. ; // the maximum composite-weight
8. ;
9. ; // The TightestLightestVertex set
10. for to {

11. [] [] ;
12. if [] then {

13. if [] then {

14. [] ;
15. ; // Clear TightestLightestVertex set

16. ;
17. } else {

18. ; }
19. [] ; // Put current vertex into the set
20. }

21. }

22. if then

23.
 ;
24. return ;
25. end

Chapter 6. Approach for Efficient Service Partitioning

- 171 -

By using the EVM algorithm, a maximum matching can be found.

The vertices being matched will be collapsed into multinodes. The weight

vectors of the multinodes are set equal to the sum of the weight vectors of

the vertices being merged. Meanwhile, to keep the connectivity

information in the coarser graph, the edges of a multinode are the union

of the edges of vertices being merged.

Figure 6.2 is an example showing how to select the tightest-and-

lightest vertex for matching. The vertices within the areas shaded by the

dotted lines are already matched. There are still five unmatched vertices

 , , , and . Suppose, vertex is now selected randomly; one of its

unmatched adjacent vertices , , and , will be selected to match with

vertex .

Figure 6.2: An example of EVM algorithm.

As shown in the figure, the vertex-weight of is . By using

Equation (6.7), we can calculate , for { }, to select the

tightest-and-lightest vertex. Let (i.e. the edge-weight and

the vertex weight have the same importance). The vertex-and-edge-

composite-weight of the four candidate vertices in relation to are

calculated by,

Chapter 6. Approach for Efficient Service Partitioning

- 172 -

We need to select the maximum value as the tightest-and-heaviest

vertex in order to put the related edge into the matching. As we can see,

there are two tightest-and-heaviest vertices and , in relation to .

Equation (6.8) is then used for further selection. In the case of vertex , it

is connected to and that are adjacent to , therefore,

 () ()

In the case of vertex , it is connected to and that are adjacent

to , therefore,

 () ()

As, , the vertex is finally selected as the

tightest-and-heaviest vertex and the edge is put into the matching.

6.3.4 Complexity of the Partitioning Algorithm

The first step of the algorithm merges all un-offloadable vertices. It

traverses each vertex in the multi-cost graph to examine if that is un-

offloadable. In the worst case, all the vertices may need to be examined.

Thus, the worst case complexity of this step is | | .

In the second step, the algorithm coarsens the multi-cost graph by

using the EVM algorithm. The worst case is that all the vertices are mesh

connected. In this case, the complexity of the

 function is | | . Accordingly, the

complexity of EVM algorithm is | | and thus, the worst case

complexity of the second step is | | .

Chapter 6. Approach for Efficient Service Partitioning

- 173 -

6.4 Experimental Evaluation

In this section, the evaluation of the partitioning approach is carried out

by utilizing different applications running on mobile devices. The first

experiment is to validate the proposed offloading mechanism. Then the

second experiment is to validate the efficiency of the EVM algorithm.

These experiments aim to justify the introduction of an offloading

mechanism to demonstrate its potential for efficient service provisioning

from mobile devices.

6.4.1 Sample Service: Calculator

In this experiment, a calculator service is deployed on the mobile device

for testing the offloading approach. It consists of two Java classes:

PiCalculator and Pi. The class Pi computes the value of , whereas

the class PiCalculator handles the graphical user interface (GUI). This

interface takes user’s input for the required accuracy (i.e. how many

decimal places) of the value; then invokes the calculation function in

class Pi; and finally, outputs the result. The calculator is computation

intensive.

Test Setup

The mobile device used in this experiment is a HP iPAQ HX2750 PDA

running Microsoft Pocket PC 2003 as the operating system. The service is

deployed on the device using a J2ME runtime environment IBM J9. A

desktop PC equipped with a 3.0GHz Intel single core processor and 1GB

memory, is used to serve as the surrogate. The offloading middleware is

based on J2ME and deployed on the PDA. The service host and the

surrogate are equipped with IEEE 802.11 b/g wireless interfaces, and

they communicate using a wireless local area network.

Chapter 6. Approach for Efficient Service Partitioning

- 174 -

Test Results

The calculator runs in three different cases. First, on the mobile device

only; then using the offloading middleware involving both mobile device

and surrogate; and at last, entirely running on the surrogate machine. In

this experiment, the offline-profiling is used and only one surrogate is

engaged.

Figure 6.3 shows the time consumption, memory usage and CPU

utilization for the calculation, respectively. The Y-axis represents the

resource usage and the X-axis represents the accuracy of (i.e. decimal

places). The curves in Figure 6.3(a) show that the response time in the

mobile-device-only case is the slowest. It gets faster in the offloading case,

because the class Pi is offloaded to the surrogate to take advantage of the

rich computational resources. The surrogate-only case has the fastest

response, since all the classes are running on the surrogate. Note that

this specific application does not involve much inter-class interaction.

Figure 6.3(b) and Figure 6.3(c) show that the memory usages and CPU

utilizations on the mobile device are significantly decreased in the

offloading cases. The reason for higher memory usage in the surrogate-

only case is the larger JVM heap size setting for providing more memory

space on the surrogate.

Chapter 6. Approach for Efficient Service Partitioning

- 175 -

Figure 6.3(a): calculator response time.

Figure 6.3(b): calculator memory usage.

0

50

100

150

200

250

300

350

5 50 100 200 300 500 700 1000

Ti
m

e
 (

m
s)

Places of Decimals

(a) Time Surrogate Only

Mobile Device Only

Offloading

0

2

4

6

8

10

12

14

5 50 100 200 300 500 700 1000

M
em

o
ry

 (
M

B
)

Places of Decimals

(b) Memory
Surrogate Only

Mobile Device Only

Offloading

Chapter 6. Approach for Efficient Service Partitioning

- 176 -

Figure 6.3(c): calculator CPU utilization.

As can be observed from the figures, the offloading middleware

itself caused some overhead. If the calculation is carried out to less than

100 decimal places, the time used for offloading is longer than the time

taken without offloading. Memory usage and CPU utilization remain the

same if the calculation is performed to less than 80 and 50 decimal places,

respectively.

6.4.2 Efficiency of EVM Algorithm

This experiment is performed to validate the efficiency of the EVM

algorithm, which is the core of the service partitioning algorithm.

This experiment compares the EVM algorithm with Random Matching

(RM), Heavy Edge Matching (HEM), and MINCUT [Stoer and Wagner,

1997] algorithms by partitioning services in which the constituent tasks

have different resource consumptions. For example, some tasks are

computation intensive, whereas the other tasks are memory and

bandwidth intensive.

0

20

40

60

80

100

120

5 50 100 200 300 500 700 1000

C
P

U
 u

ti
liz

at
io

n
 (

%
)

Places of Decimals

(c) CPU utilization

Surrogate Only

Mobile Device Only

Offloading

Chapter 6. Approach for Efficient Service Partitioning

- 177 -

Test Setup

The mobile device used in this experiment is the same as before, a HP

iPAQ HX2750 PDA running Microsoft Pocket PC 2003 as the operating

system. The services are deployed on the device using a J2ME runtime

environment IBM J9. A desktop PC equipped with a 3.0GHz Intel single

core processor and 1GB memory, is used to serve as a surrogate. The

service MobileVideo is designed for the test, which generates and plays

MPEG-4 audio/video files and also downloads files from remote hosts.

MobileVideo is a Java program that integrates the functionalities of the

MPEG-4 audio/video generator AVgen and the MPEG-4 audio/video

player M4Play, provided by IBM Toolkit for MPEG-4 [MPEG-4, 2007].

Test Results

The service executes in the following order: (1) downloads video and audio

sequences from a remote host; (2) generates an MPEG-4 format video clip

from the downloaded sequences; (3) plays the MPEG-4 clip. The execution

includes tasks with different levels of resource demands. The tasks

involving MPEG-4 generation are computation and memory intensive.

The tasks for remote file downloading are bandwidth intensive. The tasks

for MPEG-4 playback are computation intensive.

Different matching algorithms are applied on the system to

partition MobileVideo. The value of is set to 1 for the

partitioning algorithm, to partition the application into two partitions (for

comparing with MINCUT, as MINCUT only partitions an application into

two). The partitioning parameters are set as following: ,

 , , , , , ,

 .

In the evaluation environment, we assume that the bandwidth

resource is relatively rich in comparison to the other two resources.

Therefore, is set to a smaller value. Besides, equals to due to the

Chapter 6. Approach for Efficient Service Partitioning

- 178 -

assumption that memory and CPU have equal importance to the

MobileVideo application.

Figure 6.4: Edge-cut comparison for MobileVideo application.

Figure 6.4 shows all the edge-cuts with the change of (the

threshold of the un-offloadable partition). The values of RM are large and

without regularity in variations; this reflects its random-selecting

feature. The edge-cuts of HEM gets larger when increases. The

MINCUT gives smaller edge-cuts when . However, in the rest

of the cases it gives larger edge-cuts. Finally, EVM gives significantly

smaller edge-cuts and it is threshold insensitive. This is due to selecting

the tightest and lightest vertex for matching by the EVM algorithm.

6.5 Summary

This chapter presented an efficient application partitioning approach for

pervasive services hosted on resource constrained mobile devices. The

partitioning algorithm considers the dynamic condition of the mobile

device in terms of available memory, CPU power, and bandwidth in

making partitioning decision of the tasks and offloading the computation

intensive tasks to backend surrogates. The experimental results show the

effectiveness and the feasibility of the proposed approach and algorithms.

0

100

200

300

400

500

600

700

1000 1500 2000 2500 3000 3500 4000 4500 5000

Ed
ge

-c
u

t

RM

HEM

MINCUT

EVM

𝑻𝑼

- 179 -

Chapter 7

Adaptive Offloading for Pervasive
and Cloud Environments

Mobile devices are becoming increasingly pervasive and provide rich

computing functionality and strong connectivity with powerful machines

ranging from laptops and desktops to commercial clouds. In near future,

computing resources in our surroundings will provide plentiful resources

to support services in the locality. People will use a multitude of devices

to access numerous services from their environment at any time.

In recent years, there has been a growing adoption of mobile

devices such as smartphones, PDAs, mobile Internet devices, and

netbooks. Examples include the Apple iPhone [iPhone, 2010], Google

Android phone [Android, 2010; Nexus, 2010], RIM Blackberry phone

[Blackberry, 2010], and netbooks from several vendors. These devices

support exciting new features that provide a connected Internet

experience to users. Users also have growing demand for running

complex resource-demanding applications on mobile devices. Such

applications can be the heavy-duty applications using diverse inputs like

cameras and sensors. These applications demand increasing amounts of

computation, storage, and communications despite the limited

capabilities of the mobile devices.

Mobile cloud applications can help to reduce the workload of

mobile devices by exploiting remote resources on the cloud and thereby

allowing complex services to be hosted on resource-constrained devices.

According to ABI Research [ABI, 2010], it has been predicted that by the

end of 2014, more than 240 million business customers will be leveraging

cloud computing services through mobile devices, which will deliver

Chapter 7. Adaptive Offloading for Pervasive and Cloud Environments

- 180 -

annual revenues of 20 billion dollars. This underlines the potential

significance of cloud computing for mobile based services.

This chapter investigates about how to achieve adaptive

capabilities in making offloading decisions to exploit resources from

surroundings, and introduces an adaptive offloading system for pervasive

services in cloud environments. The distributed platform monitors the

execution needs and resource availability of mobile devices, and

dynamically decides the usage of remote resources for offloading

applications transparently.

7.1 Boosting Pervasive Applications in Cloud

Environments

Resource constraints (limited computation power, memory, and

bandwidth) are the major obstacles for mobile devices to host and execute

services that require heavy computation. Fortunately, there is

increasingly broad availability of tethered computing, storage, and

communication resources being spare on commercial clouds, or at

wireless hotspots equipped with computational resources (e.g., Cloudlet

[Satyanarayanan et al., 2009]), or at users’ personal computers. This

chapter proposes an approach that allows diverse, resource-constrained

devices to host and execute complex services.

In this context, a device is referred to as a surrogate that can

provide some or all of its resources to other devices to use. A device

performing the role of a surrogate for a mobile host, can still work

independently for other purposes. Also, surrogates are viewed as having

more computing power and memory than the resource constrained mobile

devices. The assumption here is that resource constraints can be

alleviated by transparently using surrogate resources. A distributed

platform can be used to achieve the transparent usage of resource from

the environment. Such transparent use of surrogate resources is referred

to as offloading, as the computation is offloaded from the host to the

Chapter 7. Adaptive Offloading for Pervasive and Cloud Environments

- 181 -

surrogate. The idea is to enhance a mobile device’s run-time capacity so

that it can dynamically and transparently establish a distributed

platform with other computing resources in its environment. This

approach provides the capability for using memory, network and

processing resources from surrogate nodes as needed. If the necessary

resources are unavailable at the closest surrogate, multiple surrogates

could be used by the host, or surrogates could offload to other surrogates

to provide access to suitable resources for the mobile host.

Conceptually, the approach automatically transforms a single

machine execution (e.g., computation on a smartphone) into a distributed

execution that is optimal, given the network connection to remote

resources or to the cloud (Figure 7.1). The underlying motivation for such

a system is that, as long as execution on the cloud is significantly faster

(or more reliable, more secure, etc.) than execution on the mobile device,

therefore paying the cost for data transmission between the device and

the cloud is worth it [Chun et al., 2011]. It makes sense to partition an

application only when the metric (e.g. performance) of the newly

partitioned application performs better than that of the existing

application.

Figure 7.1: Transforming a single-machine execution (mobile device) into a

distributed execution (mobile device and cloud) [Chun and Maniatis, 2009].

Chapter 7. Adaptive Offloading for Pervasive and Cloud Environments

- 182 -

Furthermore, the decision may be impacted not only by the

application itself, but also by the expected workload and the execution

conditions, such as network connectivity and CPU speed of both mobile

and cloud resources. If a mobile device becomes resource constrained at

run-time and believes it can beneficially use remote resources, then the

device will transparently offload part of the application execution to

them. By monitoring execution needs and resource availability, the

platform dynamically decides how much of the remote resources to use.

As a result, the distributed platform increases the level of abstraction at

which services view the resources of a mobile device.

Benefits of Mobile Cloud Applications

Mobile cloud applications bring the functionalities and services not just to

smartphone users but to a much broader range of mobile subscribers, by

moving the computing and data storage from mobile devices onto the

cloud. The potential benefits of mobile cloud applications are highlighted

below.

 Mobile cloud applications can help to overcome limitations of

mobile devices, in particular processing power and storage space.

 It also can help to extend the battery life by moving the

computation-intensive execution to the cloud.

 Mobile cloud applications can also be a potential solution for the

fragmented market of platform dependent mobile applications.

 It can increase security level for mobile devices by facilitating

centralized monitoring of services.

 It can also become a one-stop service option for mobile device users,

since mobile cloud operators simultaneously can act as virtual

network operators, provide e-payment services, and provide

software, data storage, etc. as a service.

Chapter 7. Adaptive Offloading for Pervasive and Cloud Environments

- 183 -

 A number of new functionalities can be provided by mobile clouds.

In particular, provisioning of context-awareness and location-

awareness can be enabled for personalization of services.

 Mobile cloud applications can open up cloud based business

opportunities for individuals. At present, cloud computing mostly

addresses enterprises as the potential consumers for services.

7.2 Decision-Making for Adaptive Offloading

It can be anticipated that many environments in future will contain a

multitude of devices with computing capabilities. These devices can be in

many forms, including desktops, embedded servers and computers (e.g.

meeting room servers), personal computing devices, and so forth. Each

device may contain different resources (i.e. processing power or memory),

resulting in an environment full of computing resources. Also availability

of high Internet bandwidth offers the reliable availability of cloud

computing resources.

In pervasive computing environment, resource availability and

user mobility are highly dynamic. For example, wireless network

bandwidth can fluctuate significantly while a user moves around. To

ensure efficient service execution, runtime offloading needs an intelligent

decision-making module to adapt to the dynamic changes in a pervasive

computing environment. The offloading system should trigger offloading

at the right time and offload the right tasks to achieve low offloading

overhead and efficient service execution. For example, when the wireless

connection is excellent, the offloading system could decide to offload a

large amount of application execution to avoid additional offloading in the

near future. When the wireless connection is poor, the offloading system

could decide to offload only the minimal amount of application execution

to overcome resource constraints and avoid high offloading overhead.

Chapter 7. Adaptive Offloading for Pervasive and Cloud Environments

- 184 -

Two important decision-making problems are identified for

adaptive offloading: (1) adaptive offloading triggering, and (2) efficient

application partitioning. For the first problem, the issues to be addressed

are: adaptability to the pervasive computing environment, configurability

to different application-specific offloading goals, and stability of the

offloading system. For the second problem, the issue is efficiently

selecting the most effective partitioning from multiple candidate

partitions of the application. The most effective application partitioning

should be able to meet multiple requirements for offloading

simultaneously, such as minimizing wireless bandwidth requirement,

minimizing average interaction delay, and minimizing total execution

time. To realize the goal of pervasive service delivery without degrading

its fidelity, this chapter proposes an adaptive offloading system that can

dynamically partition the application and transparently offload the

execution to a surrogate. In the following sections, the adaptive offloading

system is presented that includes two cooperating parts: (1) distributed

offloading platform, and (2) offloading inference engine (Figure 7.2).

Figure 7.2: Adaptive offloading system architecture.

Chapter 7. Adaptive Offloading for Pervasive and Cloud Environments

- 185 -

7.3 Distributed Offloading Platform

The distributed offloading platform refers to a system-level layer that

provides a shared execution environment across two or more machines.

This enables solving the problems of diversity and resource constraints of

mobile service hosts.

7.3.1 Features

A distributed execution platform that supports transparent offloading for

resource-constrained mobile devices requires the following features.

 Transparent distributed execution: Executing a service

collaboratively on multiple machines should be possible without

the application being aware that multiple machines are being used.

In addition, the platform should provide the service an appearance

as if the application is executing only on the mobile device. These

features allow the platform to hide the complexities of remote

execution and allow services to be created more independently of

the underlying resources.

 Application partitioning: Dynamically dividing an application

tasks into multiple partitions should be possible at run time that

can be placed on different devices. Partitioning may take place at

any granularity suitable to the platform or service. The

partitioning should create a partition for the mobile device, which

is suitable for the device to execute under its constraints.

 Adaptive offloading: To be effective, it should be possible for the

partitioning scheme to consider the available resources and the

service’s execution patterns. Based on either resource variation

triggers or periodic re-evaluation, the platform should be able to

adapt to load and execution changes to maintain good partitioning

decisions.

Chapter 7. Adaptive Offloading for Pervasive and Cloud Environments

- 186 -

 Beneficial offloading: The platform should only offload a portion

of the tasks if doing so benefits the mobile host. Offloading is

defined as being beneficial if it improves the performance of the

service (e.g. overcomes limitations with available processing speed

or memory). It should also be possible for the user to specify what

is beneficial. For example, a mobile device owner may choose to

keep memory space available for performing other operations on

the mobile device and offload more tasks of the service application

to allow the device to continue functioning.

 Ad-hoc platform creation: It should be possible to create or

terminate the distributed platform between a mobile host and a

surrogate at run-time. The mobile host should be able to determine

which surrogate is the most appropriate to be used, based on

factors such as latency of access and resource availability.

Several of these features are available in particular platforms or in

other research contexts, but no framework is available supporting them

in the context of hosting pervasive services on mobile devices.

7.3.2 The Platform

The platform is visualized as shown in Figure 7.3. While the service

executes, the platform on the mobile host monitors the application

execution and the state of system resources such as memory, processing

power, and network bandwidth. When a trigger event occurs, such as

resources running low or periodical re-evaluation, the host platform

analyzes the context information and decides whether offloading should

occur. If it appears to be beneficial to offload, the host platform will select

the tasks and will offload them to one or more surrogates running the

distributed platform. The application will then continue to execute and

monitoring will resume. The mobile host transparently communicates to

pass execution or to access the surrogate node, and the execution on the

Chapter 7. Adaptive Offloading for Pervasive and Cloud Environments

- 187 -

surrogate node transparently refers back to the mobile host for data

accesses and method invocations on the host.

Figure 7.3: Interaction and operation of the distributed platform.

7.3.3 Benefits

A distributed service execution platform with the above mentioned

features will provide the following benefits:

 Applications can be created generically for a diverse set of devices,

as resource constraints will require less consideration.

 The division of responsibility between a mobile host and a

surrogate node can be dynamically altered based on the available

resources on the network, or the surrogate, or the mobile host.

 Component-oriented and monolithic applications can all be

supported, as long as components can be offloaded independently

and information on component interactions can be gathered.

 Resources of surrogate nodes can be used as needed depending on

the context, i.e. when doing so is beneficial for the mobile host and

service application.

Chapter 7. Adaptive Offloading for Pervasive and Cloud Environments

- 188 -

7.3.4 Assumptions

This work focuses on investigating the possibilities and benefits of a

distributed platform incorporating all the above mentioned features in

the context of resource-constrained mobile devices hosting services. The

following assumptions are made as a basis of the investigation and to

limit its scope.

 The reliability of communication connectivity between mobile hosts

and surrogates will be good enough that errors are not the obstacle

for distributed communication. Otherwise, the reliability can be

orthogonally added to the platform using existing techniques such

as replication/redundancy.

 Computing resources in the environment will be always more than

enough compared to how much it is required by the platform at any

particular time.

 Physical device limitations such as screen size and user interface

constraints will be handled by orthogonal techniques such as

transcoding.

7.4 Approach for Distributed Offloading Platform

The intended transparent distributed execution can be implemented

based on Java virtual machine (JVM). Using Java resolves many of the

standard heterogeneity problems and allows hosting numerous

applications that have already been developed in Java. The detail on how

to realize the transparent distributed platform is discussed in the

following subsections.

Chapter 7. Adaptive Offloading for Pervasive and Cloud Environments

- 189 -

7.4.1 Componentization

From a high level view, a Java application is written as a single

monolithic unit or as a group of interacting components. Some research

has been done on statically partitioning applications that are composed of

high-level components [Hunt and Scott, 1999]; whereas, we require

dynamic partitioning on run-time. In addition, we need to handle

monolithic applications, which account for most of the applications

developed in Java already.

Generally, all Java applications can be considered component

oriented, as they are composed of objects and classes. Thus for

componentization, objects and classes are the two levels of component

granularities. Each level influences the overhead of execution monitoring,

the flexibility of offloading, and the type of support required for remote

execution. The offloading platform considers classes as the application

components; because, (1) classes represent a natural unit for service

operations, (2) classes enable more precise offloading decisions than

coarser component granules, and (3) classes enable to avoid from

manipulating a large execution graph with too many fine-grained objects

(e.g. a simple image-editing Java program created 16,994 distinct objects

during 174 seconds of execution).

7.4.2 Surrogate Discovery

In the offloading platform, the mobile device runs as the master device

and each surrogate runs as a slave device. The slave device runs a JVM

and the monitoring modules. During runtime if the mobile device decides

that offloading is needed, it triggers a new offloading action. The mobile

device then initiates a discovery protocol to find a nearby surrogate that

will accept the executions to be offloaded. A surrogate can be discovered

using a wireless broadcast of a ‘surrogate discovery’ message or a more

complex discovery protocol such as UPnP [UPnP Forum, 2003] or Jini

[Sun Microsystems, 2001]. The mobile device then transfers the byte-code

Chapter 7. Adaptive Offloading for Pervasive and Cloud Environments

- 190 -

and data it will execute remotely on the surrogate. The surrogate loads

the related classes and awaits RPC requests from the mobile device to

continue the task execution.

 However, in certain cases surrogate discovery could be a lengthy

process, though offloading would be triggered when urgent action is

needed. Therefore, another option could be to perform surrogate discovery

at an earlier time. For instance, surrogate discovery can be done at the

configuration phases or at the time when the mobile device enters a new

environment.

7.4.3 Transparent Distributed Execution

To support transparent offloading, a mechanism is required for

transparent RPCs between virtual machines. Java’s existing support for

remote execution (RMI) does not provide transparent mapping of calls

into RPCs between machines. For diverse clients, RMI requires new

client/server applications to be written for each combination. Such

limitation prevents from using RMI to support a fully transparent

execution of applications across multiple machines.

This limitation can be overcome by modifying the JVMs and

allowing objects to be migrated transparently between the mobile device

and surrogate node. In a JVM, an object is uniquely identified by an

object reference. To support remote execution, the JVMs can be modified

to flag object references to remote objects. Then by using these hooks the

offloading platform can convert remote accesses into transparent RPCs

between the JVMs. A JVM that receives an RPC request uses a pool of

threads to perform execution on behalf of the other JVM. Using this

approach, threads are not migrated. Rather, invocations and data

accesses follow the placement of objects. However, this approach brings

up several issues that must be addressed to support transparent

distributed execution between the JVMs.

Chapter 7. Adaptive Offloading for Pervasive and Cloud Environments

- 191 -

Native methods: Native methods cannot be offloaded because

they are implemented using native code and may have different effects on

different platforms. To solve this issue, native invocations are directed

back to the master JVM on the mobile device. This gives an application

the appearance of executing on the mobile device, even though part of

their execution is on a surrogate node.

Static functions and data: Static functions and data are

statically shared between application components. Like native methods,

the JVM may also contain some static data that is specific to the host

where it is located. Therefore, to ensure consistency all accesses to static

data are directed back to the master JVM on the mobile device.

Object references: Each JVM has a private object reference name-

space and does not understand an object reference from another JVM. To

overcome name-space limitations, the JVMs can be modified to map each

other’s references into their own name-space. Each JVM keeps local

references for remote objects as placeholders. When a JVM invokes a

method on the other JVM, it sends an operation referring to the object

using its local object reference. The receiving JVM then maps the first

JVM’s local reference to its own local reference for the object. As a result,

each JVM maintains its object reference mappings when objects and

object references move between the two JVMs.

7.4.4 Partitioning Execution

The rationale behind partitioning is that if two components interact

frequently (e.g. because of invocations), the graph will reflect this with a

high-weighted edge. A partitioning policy should have a high probability

of placing frequently interacting components on one machine, as because

splitting them across the network could severely affect performance.

Execution history can reflect future execution and can be used to predict

the future behavior. Combining execution history with resource

Chapter 7. Adaptive Offloading for Pervasive and Cloud Environments

- 192 -

availability will allow a partitioning policy to effectively create partitions

that balances the service’s resource requirements, the device’s resource

availability, and the user’s preferences.

The offloading platform attempts to create partitions suitable for

resource-constrained devices to satisfy the partitioning policy. To achieve

this, the offloading platform generates a set of possible candidate

partitions and selects the partitioning that best satisfies the partitioning

policy. The approach begins by placing all of the classes that cannot be

offloaded, into one partition. That means, placing the classes that contain

native methods, into the first partition. This is the partition that will

remain on the mobile device and will not be offloaded. Then the approach

continues by moving one node at a time. It bisects the graph along the cut

with the maximum interactions or the highest interaction weight (Figure

7.4). Therefore, the next node to move to the first partition will be the

node having highest connectivity with the first partition. This process is

repeated until the first partition contains all but one of the nodes.

Figure 7.4: Multiple partitioning of execution graph.

All the intermediate partitions are evaluated according to the

partitioning policy. The selected partitioning may not have the minimum

interaction cost, but will satisfy the overall policy best. A particular

intermediate partitioning is evaluated by applying a cost function that

represents part of the partitioning policy. The cost function returns the

historical information of the interactions between the two partitions. The

Chapter 7. Adaptive Offloading for Pervasive and Cloud Environments

- 193 -

partitioning policy then determines whether any part of the application

can be beneficially offloaded. If so, it determines whether components can

be offloaded without affecting other constraints severely. For example, a

constraint can be that at least a certain amount of memory must be freed

by the partitioning. If no such partitioning exists, offloading will not

occur. Conceptually, this policy offloads a significant amount of

processing while placing minimal load on the network bandwidth.

Algorithm to generate possible candidate partitions

Let represent the current application execution graph, where

is the set of nodes and is the set of edges. Each edge is associated with a

cost value reflecting the inter-class interactions. Let represent the

partition on the mobile device, and represent the partition on the

surrogate. At the beginning both and are initialized as empty. The

candidate partition generating algorithm is as follows.

 Step 1. Merge all the nodes that cannot be offloaded to the

surrogate (i.e. nodes containing native methods), into one node .

If there are edges from a node to the merged nodes, then

substitute the edges with one edge. The new edge has an edge

cost equal to the sum of the costs of old edges. Suppose there are

 nodes after merging. Let and .

 Step 2. Among the neighbors of representing the partition on

the mobile device, select the one that has the largest edge cost to

 . Suppose the selected node is . Merge with and move

from to . Consider the cut as one of the

candidate partitions. This candidate partition is recorded with its

information about the partitioning cost and the two partitions.

 Step 3. Repeat Step 2 until all nodes have been merged with .

Chapter 7. Adaptive Offloading for Pervasive and Cloud Environments

- 194 -

Figure 7.5: Illustration of candidate partition generation.

Figure 7.5 illustrates the process of the candidate partition

generation. The original execution graph with cost annotation is shown

by Figure 7.5(a). First, is selected among the neighbors of , which

has the largest edge cost. Then is merged with , generating a new

graph illustrated by Figure 7.5(b). From this new graph, another

candidate partition can be derived. The merging process will continue

until all four nodes are merged into one. The offloading platform can then

select the best partitioning from the above candidate partitions, based on

their partitioning cost metric.

7.4.5 Application Execution Monitoring

To be able to partition an application efficiently, its execution information

needs to be collected on the runtime. This is accomplished by augmenting

the JVM’s code for method invocations, data accesses, object creation, and

object deletion. The information is obtained at the object level and

aggregated to the class level. The system monitors the amount of memory

occupied by a class, the number of interactions between two classes, and

the amount of information exchanged between two classes.

The execution information is characterized by a fully connected

weighted graph to reflect the application’s execution history. Each node

Chapter 7. Adaptive Offloading for Pervasive and Cloud Environments

- 195 -

represents a class and is annotated with the amount of memory occupied

and CPU processing cost by the class. Each edge represents the

interaction between two classes and is annotated with the number of

interactions and the total amount of information transferred between the

classes.

7.4.6 Resource Monitoring

For a partitioning to remain effective, the partitioning process needs to

adapt to the resource changes in the environment. The offloading

platform needs to monitor the resources of the mobile device, the

surrogate, and the wireless network. The viable resource monitoring

techniques are briefly discussed in the previous chapter in subsection

6.2.2.

The available memory on the mobile device and surrogate are

monitored by tracking the amount of free space in the Java heap, which is

obtained from the garbage collector of the JVM. However, measuring

CPU utilization can be difficult. The percentage of CPU occupied is not a

feasible way to represent a class’s CPU utilization. A viable approach is to

calculate the cumulated CPU occupying time of a class and normalizing it

as the CPU processing cost of the class. The wireless bandwidth can be

estimated by passively observing ongoing traffic through the offloading

platform, or by actively measuring the remote data accesses to obtain

bandwidth usage of each class.

Whenever any significant change happens (e.g., a certain amount

of memory or CPU is consumed, or a sufficiently large wireless bandwidth

fluctuates), the offloading inference engine decides whether offloading

should be triggered.

Chapter 7. Adaptive Offloading for Pervasive and Cloud Environments

- 196 -

7.5 Adaptive Offloading Inference Engine

The design detail of the offloading inference engine is presented in this

section. The offloading inference engine performs the decision making

tasks for triggering offloading and selecting partitioning. Offloading can

add overhead to the service application’s execution. This overhead

includes the cost of transferring objects between the mobile device and

the surrogate, and performing remote data accesses and function

invocations over a wireless network. One of the goals of the inference

engine is to minimize the offloading overhead while relieving the memory

or CPU constraints on the mobile device. The offloading inference engine

is illustrated in Figure 7.6.

Figure 7.6: Offloading inference engine architecture.

7.5.1 Trigger Offloading based on a Fuzzy Control Model

To trigger offloading, the offloading inference engine examines the

current resource consumption of the application and the available

resources in the pervasive computing environment. It then decides

whether offloading should be triggered given the user’s offloading goals. If

Chapter 7. Adaptive Offloading for Pervasive and Cloud Environments

- 197 -

offloading is to be triggered, it decides what level of resource utilization

should be done on the mobile device. That means, how much memory or

CPU should be freed up by offloading task objects to the surrogate. At a

first glance, the problem can be solved using a simple threshold-based

approach. For example, threshold-based rules can be predefined in the

offloading inference engine; such as, “if the current amount of free memory

on the mobile device is less than 20% of its total memory, then trigger

offloading and offload enough task objects to free up at least 40% of the

mobile device’s memory”. However, such a simple approach cannot meet

the challenges of adaptability, configurability, and stability requirements

(discussed in section 7.2) in dynamically changing environments.

The offloading inference engine addresses this problem with a

Fuzzy Control model [Li and Nahrstedt, 1999; Passino and Yurkovich,

1998], which has been shown to be effective for flexible, expressive, and

stable coarse-grained application adaptations. The use of this approach in

the offloading inference engine is novel because it applies the model to

coarse-grained application adaptation via runtime offloading. The Fuzzy

Control model includes: (1) linguistic decision-making rules provided by

application developers, (2) membership functions, and (3) a generic fuzzy

inference engine based on fuzzy logic theory.

The term ‘fuzzy’ refers to the ability of dealing with imprecise or

vague inputs. Instead of using complex mathematical equations, fuzzy

logic uses linguistic descriptions to define the relationship between the

input information and the output action. Based on the Fuzzy Control

model, the offloading rules can be specified for the offloading inference

engine as shown in Listing 7.1.

Chapter 7. Adaptive Offloading for Pervasive and Cloud Environments

- 198 -

Listing 7.1: Offloading rules for the offloading inference engine.

if (AvailMem is low) and (AvailBW is high)

 then NewMemSize:=low;

if (AvailMem is low) and (AvailBW is moderate)

 then NewMemSize:=average;

if (AvailMem is high) and (AvailBW is low)

 then NewMemSize:=high;

if (AvailCPU is low) and (AvailBW is high)

 then NewCPUalloc:=low;

if (AvailCPU is low) and (AvailBW is moderate)

 then NewCPUalloc:=average;

if (AvailCPU is high) and (AvailBW is low)

 then NewCPUalloc:=high;

The AvailMem, AvailCPU, and AvailBW are input linguistic

variables that represent the current available memory, available CPU,

and available wireless bandwidth respectively. The NewMemSize and

NewCPUalloc are the output linguistic variables representing the new

memory utilization and the new CPU utilization respectively, on the

mobile device. If any of these rules is matched by the current system

conditions, the offloading inference engine triggers offloading and derives

the offloading memory size or CPU allocation (i.e., current consumption –

new utilization). If the difference is negative, it means that some task

objects should be pulled back from the surrogate to adapt to the low

wireless bandwidth. The application developer or the user can easily

configure the offloading inference engine using the linguistic offloading

rules.

To interpret the linguistic offloading rules, the offloading inference

engine needs to establish mappings between numerical and linguistic

values for each linguistic variable. Low, moderate, and high are the

linguistic values. In fuzzy logic, the mapping between the numerical

value of a linguistic variable and its linguistic values are defined by a

membership function. A membership function represents a fuzzy set on

the universe of discourse [Passino and Yurkovich, 1998]. The membership

Chapter 7. Adaptive Offloading for Pervasive and Cloud Environments

- 199 -

function gives the grade or degree of membership within the set of any

element of the universe of discourse.

The membership function maps the elements of the universe onto

numerical values in the interval [0, 1]. A membership function value of

zero implies that the corresponding element is definitely not an element

of the fuzzy set, while a value of unity means that the element fully

belongs to the set. A grade of membership in between corresponds to the

fuzzy membership to the set. Each fuzzy set spans a region of input (or

output) value graphed with the membership. Any particular input is

interpreted from this fuzzy set and a degree of membership is

interpreted. The membership functions normally overlap to allow smooth

mapping of the system.

For example, Listing 7.2 shows the membership function definition

for the linguistic variable AvailMem. Figure 7.7 gives the graphical

representation of the corresponding membership function. In this

example, if the numerical value of AvailMem is within the range [0, 800],

the offloading inference engine’s stochastic confidence that AvailMem

belongs to the set of linguistic value ‘low’ is 100%. Whereas, if the

numerical value of AvailMem is within the range [800, 900], the

confidence that AvailMem belongs to ‘low’ is the linear decreasing

function from 100% to 0%.

Chapter 7. Adaptive Offloading for Pervasive and Cloud Environments

- 200 -

Listing 7.2: Membership function definition for linguistic variable AvailMem.

lingvar AvailMem on [0, 8000] with

 class low is 0 0 800 900

 class moderate is 850 1500 4000 4200

 class high is 4150 5500 7500 8000

end

Figure 7.7: Illustration of membership function AvailMem.

In another example, Listing 7.3 shows the membership function

definition for the linguistic variable AvailCPU. Figure 7.8 gives the

graphical representation of the corresponding membership function. In

this example, if the numerical value of AvailCPU is within the range [0,

100], the offloading inference engine’s stochastic confidence that

AvailCPU belongs to the set of linguistic value ‘low’ is 100%. Whereas, if

the numerical value of AvailCPU is within the range [100, 140], the

confidence that AvailCPU belongs to ‘low’ is the linear decreasing

function from 100% to 0%.

Chapter 7. Adaptive Offloading for Pervasive and Cloud Environments

- 201 -

Listing 7.3: Membership function definition for linguistic variable AvailCPU.

lingvar AvailCPU on [0, 500] with

 class low is 0 0 100 140

 class moderate is 120 170 270 320

 class high is 300 350 450 500

end

Figure 7.8: Illustration of membership function AvailCPU.

The intersection between different linguistic values (e.g. the values

within [850, 900] in Figure 7.7, or the values within [120, 140] in Figure

7.8) represents uncertainty in stochastic confidence and the result can

belong to either linguistic value ‘low’ or ‘moderate’ but with different

confidence probabilities. Membership functions are part of the rule

specifications provided by the application developer. If the current system

and network conditions match any specified rule, an offloading action is

triggered. In comparison to simple threshold-based offloading triggering,

the Fuzzy Control model allows us to implement more expressive and

configurable triggering conditions.

The generic fuzzy inference engine implements the fuzzy-logic

based mapping and non-linear adaptation process. It takes the confidence

values of fuzzy sets (e.g. low, average, and high) as inputs and generates

outputs in the form of confidence values of fuzzy sets for output variables

(e.g. NewMemSize, NewCPUalloc). Hence, to use the generic fuzzy

Chapter 7. Adaptive Offloading for Pervasive and Cloud Environments

- 202 -

inference engine, the offloading inference engine provides two functions.

The function fuzzification is to prepare input fuzzy sets for the generic

fuzzy inference engine. Fuzzification is the process of decomposing the

input values into one or more fuzzy sets. The function defuzzification is to

convert the output fuzzy sets to actual offloading decisions; such as, the

new memory or CPU utilization on the mobile device. Defuzzification is

the inverse transformation which maps the linguistic output variable into

a crisp numeric value that best represents the inferred offloading

decisions.

7.5.2 Efficient Partitioning Selection

The offloading inference engine selects the best application partitioning

from a group of candidate partitions generated by the offloading platform.

First, the offloading inference engine considers the target memory

utilization or target CPU utilization on the mobile device to discard

partitioning plans that do not meet the minimum requirement. Then the

offloading inference engine selects the best partitioning from the

remaining candidate partitions by using a composite cost metric. In the

case of offloading to overcome the memory or CPU constraints of mobile

devices, the user can have multiple offloading requirements. Such as,

minimizing wireless bandwidth overhead, minimizing average response

time stretch, and minimizing total execution time. The wireless

bandwidth cost comes from two factors: (1) migration of task objects

during offloading, and (2) remote function calls and remote data accesses.

The average response time stretch is decided by the total number of all

remote invocations. The total execution time stretch caused by offloading

includes all offloading delays and remote interaction delays.

The offloading inference engine addresses the problem by

considering different inter-class dependencies and interactions during

application execution. For each neighbor node of , denotes the

total amount of data traffic transferred between and . defines the

Chapter 7. Adaptive Offloading for Pervasive and Cloud Environments

- 203 -

total interaction number, and represents the current memory size of

 . The offloading inference engine uses a composite cost metric for the

application execution graph edge between and :

 . Such a composite cost metric is most effective for meeting different

offloading requirements, as it collectively considers the bandwidth,

interaction frequency, and memory size of the candidate neighbor during

the coalescing process. The cost of a candidate partition is the aggregated

costs of all edges whose end-points belong to different partitions. The

offloading inference engine then selects the best candidate partitioning

that minimizes the partitioning cost.

Suppose, , , and represent the upper bound of all

possible , , and . The comparison of any two composite cost

metrics and (for node) is defined as follows: if and only if,

 (7.1)

∑
 . (7.2)

The above equations imply that the offloading inference engine

always keeps the classes on the mobile device that are more active (i.e.,

that have larger bandwidth requirements and interaction frequencies)

and occupy smaller amount of memory space. Meanwhile, the offloading

inference engine intends to offload the classes to the surrogate that are

more inactive (i.e., that have smaller bandwidth requirements and

interaction frequencies) and occupy larger amount of memory space.

To allow customization, is used to represent the

importance factor of the th metric (e.g. wireless bandwidth, remote

interaction delay, and memory size of the class) in making the offloading

decision. These weights can be adaptively configured according to

application requirements and user preferences. For example, if the user

cares more about the interaction delay while having plentiful wireless

Chapter 7. Adaptive Offloading for Pervasive and Cloud Environments

- 204 -

bandwidth, in such case can be set to a lower value and to a higher

value of importance.

7.5.3 Class Granularity Consideration

As mentioned before, classes were selected as the execution graph nodes.

However, in practice it has been observed that the memory sizes of some

classes are too large to be treated as single nodes. For example, in an

experiment the string class in JavaNote application occupied 5.9MB

memory during execution. If such large classes are offloaded, they will

cause large migration and remote invocation overhead. On the other

hand, if they are not offloaded, the memory constraint of the mobile

device cannot be subdued.

Hence, if the memory size of a class exceeds a certain threshold, a

new node is created in the execution graph for the class. All the objects

belonging to the large class are distributed into two sets, each of which

represents a node in the execution graph. Thus, the large class node is

split into multiple nodes with smaller memory sizes to enable more

precise control over offloading execution. The decision-making algorithm

used by the offloading inference engine in splitting large classes is

illustrated in Listing 7.4.

Chapter 7. Adaptive Offloading for Pervasive and Cloud Environments

- 205 -

Listing 7.4: Decision-making algorithm used by offloading inference engine.

 memory size for Java class ;
 : execution graph;
 : the maximum memory size for a class node;
 ;

while offloading service is on

 while (no significant changes happen)

 perform executions and update
 accordingly;

 while ()

 create a new node to represent class ;
 // make the adaptive offloading triggering decision

 // set numerical values for all input linguistic

 variables

 ;
 // map the numerical values to the linguistic values

 ;
 ;
 // map the linguistic values to the numerical values

 ;
 if
 then offloading is not triggered;

 else // make the partitioning decision

 merge all un-offloadable classes into a

 node ;
 while
 one of its neighbors ;

 if current cut is better
 ;

 ;
 ;

7.6 Performance Evaluation

In this section, the performance of the dynamic offloading platform is

evaluated using extensive trace-driven simulation experiments. For this

study, the prototype is designed based on the distributed offloading

platform described in section 7.3. The prototype is developed by modifying

ChaiVM version 5.1, which is HP’s personal JVM for embedded and real-

Chapter 7. Adaptive Offloading for Pervasive and Cloud Environments

- 206 -

time systems. It supports the distributed execution of monolithic Java

applications and performs offloading from a mobile host device to a single

surrogate device.

In the experiments, it is assumed that graph partitioning is

performed solely on the JVM of the mobile device. Distributed monitoring

of the application execution and distributed partitioning of the execution

graph would be more suitable in a real-world solution. To simplify the

platform, it is also assumed that both VMs (on the mobile host and the

surrogate) have access to the application’s byte-codes. This allows both

VMs to have common knowledge about the application. In a real-world

solution, the surrogate may need to acquire the necessary byte-codes from

the mobile device or have them installed.

Setup and Methodology

The application execution traces are collected on a Linux desktop

machine. The execution trace files record method invocations, data field

accesses, and object creations or deletions by querying the instrumented

JVM. The wireless network traces are collected using the Ping system

utility on a Toshiba A300 laptop with an IEEE 802.11 WaveLAN network

card and available bandwidth measurement tools [Hu and Steenkiste,

2003]. The surrogate device is a desktop located in an office room and

attached to the 10Mbps corporate wireless network using a network

switch leading to the access point.

The mobile roaming scenario for the evaluation is conducted in a

three storied building equipped with wireless access points at all levels.

The wireless network traces are obtained by having a person with the

mobile device starting from the office room, entering an elevator and

riding up to the basement, exiting the elevator and then walking to a

stairway. The measured wireless bandwidth maintains around 4.8Mbps

until the person enters the elevator where it drops to about 2.4Mbps.

Then it rises to about 3.6Mbps when the person walks through the

Chapter 7. Adaptive Offloading for Pervasive and Cloud Environments

- 207 -

ground floor. The size of the parameters used for function interactions

and data accesses is quite small (i.e., 64 bytes in all execution traces).

Therefore, only the round-trip time (RTT) is measured for small packets,

which is about 2.4ms on average.

The prototype is driven by the execution and network traces

described above. The simulation emulates a remote function invocation by

stretching the total execution time. The remote data access delay is the

time duration between sending a request to the remote site and receiving

the requested data, which is approximately equal to the . The remote

function call delay is the time duration to redirect a function request to

the remote site, which is close to ⁄ each way. The offloading delay is

simulated by increasing execution time using the calculation,

∑

.

In all the evaluations, Adaptive Offloading Engine (AOE) denotes

the proposed approach with the offloading inference engine. For

comparison, two other common heuristic approaches are also

implemented in making offloading decisions: random and least recently

used (LRU). Unlike the proposed approach, which adaptively triggers

offloading by comprehensively considering both memory and wireless

network conditions, random and LRU adopt a simple fixed rule, which

triggers offloading when the available memory is lower than 5% of the

total memory and sets the new target memory utilization as 80% of the

total memory. In all of the experiments, the adaptive offloading platform

uses the offloading triggering rules presented in subsection 7.5.1.

The complete offloading inference engine is run with partitioning

selection using the composite metric defined by Equation (7.1). The

weights in Equation (7.2) are all set as ⁄ to specify equal

importance. Moreover, the random and LRU algorithms do not consider

the problem with large classes. Whereas, AOE splits the large class node

into smaller nodes with memory sizes smaller than 500KB. For

application partitioning, the random algorithm randomly selects some

classes to keep on the mobile device and offloads the rest of the classes to

Chapter 7. Adaptive Offloading for Pervasive and Cloud Environments

- 208 -

the surrogate. The LRU algorithm offloads those classes that are least

recently used according to their access frequencies.

Applications Used in the Observations

Table 7.1 lists the descriptions of three applications used in the

experiments. Dia is a simple Java image editor. For the execution trace, a

180 KB image file was opened with Dia and was dragged around. The

application is quite memory intensive as it loads a large image file and

allows editing on the mobile device. Biomer is a graphical molecular

editor that can be used to visualize and edit the chemical structure of

various molecules. For the execution trace, three complex molecules were

drawn. The application is both highly memory and CPU intensive as

performed. JavaNote is a Java text editing application. Its execution trace

is extremely memory intensive as JavaNote was used to read a large text

file of 600 KB. This causes JavaNote to keep creating and deleting objects

of the string class. The maximum memory capacity of the mobile device

(i.e., the Java heap size) was set to 8 MB for Dia, to 8 MB for Biomer, and

to 7 MB for JavaNote, according to their peak memory requirements.

Chapter 7. Adaptive Offloading for Pervasive and Cloud Environments

- 209 -

Table 7.1: Descriptions of applications used in the experiments.

Applica-

tion

Descrip-

tion

Operation Life-

time

Peak

memory

require-

ment

Oversizing Classes

Dia
Image

editor

Open a

180 KB

image file

and drag

it around

(memory

intensive)

174s
8,949

KB

11%

(8MB)
100

Biomer

Graphical

molecular

editor

Create

three

complex

molecules

(both

memory

and CPU

intensive)

261s
10,668

KB

34%

(8MB)
105

JavaNote
Text

editor

Open a

600 KB

text file

(extremely

memory

intensive)

268s
7,972

KB

14%

(7MB)
85

7.6.1 Evaluation of Different Performance Metrics

Three different performance metrics are considered in evaluating the

AOE with random and LRU algorithms to execute the three applications

in the experiments. The performance metrics are: total offloading

overhead, average interaction delay, and total bandwidth requirement.

The investigations and observations on these metrics are discussed below.

Total Offloading Overhead

The first performance metric considered is the total offloading overhead,

which consists of migration overhead, remote data access overhead, and

remote function call overhead. These overheads extend the total

Chapter 7. Adaptive Offloading for Pervasive and Cloud Environments

- 210 -

execution time of the three applications. Figure 7.9 illustrates the total

offloading overheads of the three applications by random, LRU, and AOE

algorithms respectively.

Figure 7.9: Total offloading overhead by different offloading algorithms.

The results show that the AOE algorithm consistently selects

classes more accurately, thereby achieving much less overhead than the

random and LRU algorithms. The reason behind this is that unlike AOE,

both random and LRU do not consider inter-class dependencies and

cannot adaptively trigger the offloading action according to the

fluctuations in the wireless network. Moreover, random and LRU do not

solve the problem with large classes, which causes large migration

overhead during offloading. The proposed approach AOE especially

reduces the offloading overhead for the highly memory intensive

applications Biomer and JavaNote. The performance improvements by

AOE can be as high as 66% for Dia, 73% for Biomer, and 94% for

JavaNote while compared with random and LRU. This demonstrates that

the combined selection metric (Equation 7.1) selects the appropriate

application partitioning very effectively. The reason is that the AOE

algorithm comprehensively considers all inter-class interactions to

properly split the application into two least-connected partitions.

0

50

100

150

200

250

300

350

400

450

500

Dia Biomer JavaNote

O
ff

lo
ad

in
g

o
ve

rh
ea

d
 (

se
co

n
d

)

Random

LRU

AOE

4840 4290

Chapter 7. Adaptive Offloading for Pervasive and Cloud Environments

- 211 -

Average Interaction Delay

The second performance metric considered is the average interaction

delay; measured by,
 ∑ ∑ ⁄

∑
. This

metric represents the average interaction time stretch caused by remote

data accesses and remote function calls. The average interaction delay

metric is very important for interactive applications because they are

sensitive to the response time of each interaction. It is of primary

importance that the dynamic offloading does not significantly compromise

the responsiveness of the application.

For each remote data access, the interaction delay is the time

required to send the request to the remote site and to receive the

requested data from the remote site. This is close to the of the

wireless connection. For each remote function call, the interaction delay

is the time required to send the function request and its parameters to

the remote site. This is close to half of the for the wireless

connection.

Figure 7.10: Average interaction delay by different offloading algorithms.

Figure 7.10 illustrates the average interaction delays for the

random, LRU, and AOE offloading algorithms respectively. The results

0

50

100

150

200

250

300

Dia Biomer JavaNote

A
ve

ra
ge

 in
te

ra
ct

io
n

 d
el

ay

(m
ic

ro
se

co
n

d
)

Random

LRU

AOE

457

Chapter 7. Adaptive Offloading for Pervasive and Cloud Environments

- 212 -

again show that AOE approach achieves the best performance. The delay

reduction can be as high as 87.5% for Biomer, 93% for Dia, and 97% for

JavaNote while compared with random and LRU. The reason for the

delay reduction is that AOE algorithm reduces the number of remote data

accesses and remote function calls to the minimum, by explicitly

considering interactions between classes during offloading.

Total Bandwidth Requirement

The third performance metric considered is the total bandwidth

requirement, which is measured by the sum of the total size of the

migrated objects and the total size of the parameters that are passed

during remote interactions. Figure 7.11 shows the bandwidth

requirements for the random, LRU, and AOE offloading algorithms

respectively. Again the observation shows that AOE approach requires

much less bandwidth to offload than the random and LRU approaches.

For all the three applications, AOE approach demands much less

bandwidth consumption to offload the executions, by generating less

remote function calls and less remote data accesses during offloading.

Figure 7.11: Total bandwidth requirements by different approaches.

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

Dia Biomer JavaNote

B
an

d
w

id
th

 r
e

q
u

ir
e

m
e

n
t

(K
B

)

Random

LRU

AOE

1,538,800 1,580,700

Chapter 7. Adaptive Offloading for Pervasive and Cloud Environments

- 213 -

7.6.2 Evaluation of Other Factors Affecting Performance

In this section, three important factors are examined related to the

offloading overhead which affects the performance of offloading. The

factors are: dynamic selection of partitioning policies, component

granularity, and native method execution. The investigations and

observations are discussed below.

Effect of Policy on Performance

To evaluate the effect of triggering and partitioning policies on the remote

execution overhead, the same execution traces were repartitioned under

multiple policies. The partition triggering threshold was varied from 2%

to when 50% of memory remained free, the tolerance to low-memory

signals from the garbage collector was varied from one to three events,

and the minimum amount of memory to free was varied from 10% to 80%.

Figure 7.12: Effect of different partitioning policies on execution overhead.

Figure 7.12 illustrates the minimum overhead observed for the

best policy for each application. From the experiments, the remote

execution overhead was reduced for Biomer and Dia by 30% to 43%, but

remained the same for JavaNote. Both Biomer and Dia happened to

0

50

100

150

200

250

300

350

400

Dia Initial Dia Best Biomer
Initial

Biomer
Best

JavaNote
Initial

JavaNote
Best

Ex
ec

u
ti

o
n

 t
im

e
 (

se
co

n
d

)

Overhead

Original

Chapter 7. Adaptive Offloading for Pervasive and Cloud Environments

- 214 -

perform best with a triggering threshold of 50%, one low-memory signal,

and a minimum of 80% memory freed. However, JavaNote performed best

with a triggering threshold of 5%, three low-memory signals, and a

minimum of 20% memory freed. This indicates that the system needs to

be able to dynamically select among partitioning policies and adjust

policy parameters to achieve the best performance. This can be achieved

based on analysis, knowledge about the type of the application, and so

forth.

Effect of Granularity on Partitioning

One consequence of using a class as the unit of placement is that the total

amount of memory associated with the objects in a single class can

represent a large percentage of the memory available for offloading. As all

of the objects of a class must be placed on the same site, therefore fewer

options remain available for the partitioning policy to be effective. For

example, in JavaNote the primitive character arrays (which contain the

document being edited, menu items, etc.) account for a large percentage of

the available memory. A class can be composed of groups of unrelated

objects that are used by the application in different ways. Using a class as

the unit of placement forces all of its objects to reside on one site, even

though some of the objects can be highly referenced on the other site.

Therefore, in some particular cases forcing all of the objects to reside on

one site can cause a higher remote execution overhead. For such

particular cases, it might be desirable to be able to offload just a selected

group of objects from a class to improve performance.

Effect of Native Methods on Performance

The next observation is to study how much the applications depend on

native methods that must execute on the mobile device. The number of

references from the execution on the surrogate to native methods is

measured, which are required to execute on the mobile device. Figure

Chapter 7. Adaptive Offloading for Pervasive and Cloud Environments

- 215 -

7.13 shows that for some applications native methods can account for

quite a large percentage of remote accesses (e.g., JavaNote, Dia); while for

others it is a relatively small percentage.

Figure 7.13: Effect of native method invocations on performance.

In fact, many of the native methods do not need to be executed only

on the mobile device. The reason is that they are stateless and/or

idempotent operations, such as string copy or mathematical functions.

However, some native methods which use the resources of the mobile

device will always have to be executed locally, such as graphical

framebuffer access. Given this, it can be expected that the number of

remote calls caused by native methods can be significantly reduced by

annotating the methods in the standard Java library according to their

operation types. Further, significant gains can be achieved by identifying

the native methods that are stateless and executing them on the device

where they are invoked. In this approach, the native methods must have

the same interface and behavior on both devices.

0

5000

10000

15000

20000

Dia Biomer JavaNote

N
u

m
b

er
 o

f
In

vo
ca

ti
o

n
s

Total Remote Calls

Total Native Calls

Chapter 7. Adaptive Offloading for Pervasive and Cloud Environments

- 216 -

7.7 Summary

This chapter presented an adaptive offloading system for mobile hosted

pervasive services, which includes the offloading platform support and

the offloading inference engine. The adaptive offloading system makes

offloading decisions without any prior knowledge about the application’s

execution or network conditions in the pervasive environment. Firstly,

decision-making issues in adaptive offloading triggering are addressed.

Secondly, the Fuzzy Control model is used to achieve adaptability,

configurability and stability when making the triggering decision for

offloading. Thirdly, a composite metric for selecting the efficient

partitioning is proposed that can simultaneously satisfy multiple user

requirements. The extensive evaluations performed show that with the

offloading inference engine, runtime offloading can effectively relieve

resource constraints for mobile devices, achieving much lower overhead

than other common approaches. The prototype experiments show that the

execution and memory overheads introduced by the adaptive offloading

system are acceptable in terms of achieved performance.

- 217 -

Chapter 8

Conclusions and Future Work

This chapter concludes the thesis with a summary of the findings and

discusses the future research directions from this work. The chapter

discusses what has been achieved in this research and explains whether

the goals set at the beginning of the thesis have been accomplished.

Finally, the chapter draws some concluding remarks based on the

outcomes and potentials of the thesis.

8.1 Summary of Thesis Contributions

This thesis has made a direct contribution to the field of service

provisioning from resource constrained mobile devices, by providing a

comprehensive framework that can integrate web services and P2P

platforms. The thesis concludes that it is now feasible to deliver business

services from mobile devices like smartphones due to the advances in

mobile technologies and the use of task offloading mechanisms in

pervasive environments. The work incorporates vigorous investigations

into the performance characteristics of the offloading system, in

considering the dynamic condition of processing power, memory space,

and communication bandwidth of the mobile device. The most substantial

contributions of the thesis are summarized below.

 Scalability and integration of mobile hosted services:

Communication using verbose XML based SOAP messages

introduces message overhead which hinders the scalability of

Chapter 8. Conclusions and Future Work

- 218 -

mobile hosted services. SOAP message based invocation consumes

resources of the mobile device extensively. On the other hand,

compression of SOAP messages leads to additional execution

workload, which causes performance latencies.

Therefore, the thesis thoroughly studied the performance

penalties of different compression techniques to identify the best

encoding method for mobile hosted service provisioning. The

observations identified BinXML as the most suitable compression

option available for mobile hosted service invocations. The

integration issues for mobile hosted services were also found to be

compatible with traditional web services. The study showed the

suitability of the ESB technology, the JBI specification, and the

ServiceMix tool in realizing the integration framework.

 Mobile service provider in P2P environments: The thesis has

introduced the idea of using smartphones to provide mobile

services in P2P networks. The features, deployment scenario, and

realization details of the P2P based web services framework have

been presented. The thesis realized mobile service provisioning

using the JXTA network in P2P environments. The framework is

designed with a mobile services gateway based on the ESB

architecture, which incorporates effective service discovery

mechanisms, manages the dynamic service registries, and handles

the mobility of the service providers.

The framework solves the integration and interoperability

problems of mobile P2P services with traditional web services

platforms. An alternative service discovery mechanism is proposed

in P2P networks using the modules feature of JXTA. The

evaluation of the framework clearly shows that the mobile services

gateway has reasonable levels of performance in handling the large

number of concurrent clients possible in mobile P2P networks.

Chapter 8. Conclusions and Future Work

- 219 -

 Partitioning mobile hosted service execution: The thesis

introduced a framework for partitioning the application execution

of the services provided from resource constrained mobile devices.

Hosting complex services on mobile devices demands a flexible and

scalable execution environment, which can exploit backend servers

to perform heavy-duty executions in a distributed manner. The

framework facilitates the use of application partitioning techniques

to offload some workload of the services to backend nodes, and

keeps the web service interfaces on mobile devices.

The architecture of the partitioned service execution

environment is designed using the light-weight and open-source

packages kXML and kSOAP. The components of the service

execution engines are provided with their functionalities in the

architecture. The framework is tested using sample prototypes and

web services to observe the performance of different partitioning

techniques. The experiments show that partitioning the

computation intensive tasks leads to a significant improvement in

response time of the services hosted on mobile devices.

 Efficient partitioning approach: The thesis formulated an

efficient application partitioning approach for pervasive services

hosted on resource constrained mobile devices. An ideal

partitioning solution must consider the dynamic conditions of the

resources in partitioning the tasks between a mobile device and its

backend nodes. The proposed partitioning algorithm considers the

context of memory space, computation power, and transmission

bandwidth to ascertain the dynamic condition of the mobile device

in partitioning the computation intensive tasks for offloading.

The thesis proposed an efficient partitioning

algorithm that considers a combination of the cost values of

resources for the classes that can be offloaded. The partitioning

approach also considers the interaction properties and

Chapter 8. Conclusions and Future Work

- 220 -

dependencies between the interacting classes while performing

execution partitioning. Experimental results have shown the

effectiveness of the proposed approach, by significantly increasing

the efficiency of mobile hosted services in dynamic resource

conditions.

 Adaptive offloading system: The thesis devised an adaptive

offloading system for mobile hosted pervasive services, which can

beneficially offload execution from mobile devices. The adaptive

offloading system can trigger offloading at the right time and

offload the right tasks to achieve low offloading overheads. The

proposed offloading system includes two cooperating parts; namely,

the distributed offloading platform and the offloading inference

engine. The offloading decisions are made without prior knowledge

about the application’s execution or network conditions in the

pervasive environment.

The adaptive offloading system uses the Fuzzy Control

model to make effective offloading decisions and to achieve

adaptability, configurability, and stability in triggering execution

offloading. A composite cost metric which represents the

interaction properties between executing classes is used by the

offloading system for efficiently selecting class partitioning at run

time. Experimental evaluation has shown that the offloading

inference engine can effectively relieve resource constraints of

mobile devices, achieving much lower overhead than commonly

used previous approaches. The prototype experiments have

demonstrated that the execution and memory overheads

introduced by the adaptive offloading system are acceptable in

terms of achieved performance.

Chapter 8. Conclusions and Future Work

- 221 -

8.2 Future Research Directions

While the thesis contributes a complete framework for provisioning

services from resource constrained mobile devices, it also raises several

issues which need to be explored further in the future. In particular,

security of mobile hosted services, context-aware service discovery,

mobility of the service provider in handling surrogates, and support for

engaging multiple surrogates are the most important research issues to

be addressed.

 Security of mobile hosted services: For the traditional

stationary web services, many standardized security specifications,

protocols, and implementations exist. But not much has been

explored and standardized for mobile hosted services in wireless

environments. The mobile service provider has to provide secure

and reliable communication in volatile mobile networks. Basic

service-level authentication and user-intervened authorization are

not sufficient for providing proper end-point security for mobile

hosted services. Therefore, maintaining the private keys of the

users and hardware level support for securing mobile hosted

services, are important issues that must be explored further.

 Context-aware service discovery: Mobile hosted service

discovery is another important direction for further research.

Commonly used service discovery mechanisms for stationary

networks, are obviously not suited for mobile hosted services

discovery. Effective discovery mechanisms that support the

dynamic and spontaneous nature of mobile environments need to

be developed. The thesis has demonstrated an alternative for

publishing and discovery of mobile web services with the help of

P2P networks. To facilitate effective service discovery in mobile

environments, a context-aware service discovery mechanism is

Chapter 8. Conclusions and Future Work

- 222 -

needed, which can provide semantic matching for mobile hosted

services. In addition, mechanisms for deploying mobile hosted

services in decentralized P2P networks need to be developed, so

that services can be discovered in ad-hoc environments.

 Mobility support in handling surrogates: Mobility of the

mobile service providers is another important issue to be examined

in terms of supporting execution offloading. New strategies are

needed to handle situations where a mobile service host moves

from one surrogate’s region to that of another surrogate. Cloud

based architectures can be a potential solution for the mobility

management of mobile hosts and supporting execution offloading to

surrogates. Another interesting issue for further research in this

direction is supporting the use of multiple surrogates for offloading.

That would essentially enable concurrent execution of multiple

partitions on multiple surrogates in parallel.

8.3 Concluding Remarks

This thesis has opened up numerous scopes and opportunities for further

research in provisioning business services from mobile devices. The

emergence of smartphones and the development of cloud based resources

clearly indicate the future prospect of mobile hosted services. The thesis

mainly focused on designing a light-weight and efficient framework for

providing services involving complex business processes on mobile

devices. The framework provides a distributed platform for executing

functions locally which require the resources of the mobile device and

offloading the resource-demanding tasks to surrogates. The offloading

system adaptively considers both the interaction properties and the

resource consumptions while performing execution partitioning and

offloading.

Chapter 8. Conclusions and Future Work

- 223 -

Nevertheless, some factors can affect the performance of the

proposed framework. Firstly, error modes (e.g., loss of communication

with the surrogate) can affect the distributed execution of service

applications. In this regard, the assumption is that wireless networking

technologies such as Ultra-Wideband in the future will provide fairly good

communication coverage and connectivity. Secondly, not all applications

are readily possible to be partitioned, because of being badly written (e.g.,

use of a single large class rather than an object-oriented approach).

However, it can be expected that most service applications do not fall into

this category and are good candidates for partitioning to offload their

execution.

It is envisaged that the future phases of this research will realize

the convergence of various computing domains; such as, pervasive

computing, ubiquitous computing, context-aware computing, service-

oriented computing, and mobile cloud computing. As a result of this

research, the expectation is that mobile hosted services will emerge as a

universal technology, capable of supporting all kinds of personalized

services.

- 225 -

Bibliography

3GPP (2007), Third Generation Partnership Project, [http://www.

3gpp.org/].

4GPress (2005), World’s First 2.5Gbps Packet Transmission in 4G Field

Experiment, 4G Press, [http://www.4g.co.uk/PR2006/ 2056.htm].

ABI Research (2010), [http://www.abiresearch.com/].

AgileDelta (2007), Efficient XML: Lightning-Fast Delivery of XML to

More Devices in More Locations, [http://www.agiledelta.com/

product_efx.html].

Allan, R. (2004), Systinet WASP, [http://tyne.dl.ac.uk/ReDRESS/

WebServices/].

Alonso, G., Casati, F., Kuno, H., and Machiraju, V. (2004), Web Services

Concepts, Architectures and Applications, Springer Verlag.

Anderson, D. P., Cobb, J., Korpela, E., Lebofsky, M., and Werthimer, D.

(2002), SETI@home: An experiment in public-resource computing,

Communications of the ACM, 45(11):56–61.

Android (2010), Android dev phone 1, [http://www.code.google.com/

android/dev-devices.html].

Apache Geronimo (2007), Welcome to Apache Geronimo - Home Page,

[http://geronimo.apache.org/].

Apache Software Foundation (2007a), Apache Axis2/Java - Version 1.2,

[http://ws.apache.org/axis2/].

Apache Software Foundation (2007b), Apache Benchmark,

[http://svn.apache.org/repos/httpcomponents/httpcore/truk

/contrib/benchmark/].

Apache Software Foundation (2007c), Apache ServiceMix, [http://

incubator.apache.org/servicemix/home.html].

Apache Software Foundation (2007d), Web Services – Axis, [http://

ws.apache.org/axis/].

Bibliography

- 226 -

Apache ServiceMix (2007), Apache ServiceMix 3.x Users’ Guide, Apache

ServiceMix community, [http://incubator.apache.org/service

mix/users-guide.html].

Apte, N., Deutsch, K., and Jain, R. (2005), Wireless SOAP: Optimizations

for Mobile Wireless Web Services, In the posters of the 14th international

conference on World Wide Web, pages 1178 – 1179, ACM Press.

ARM (2005), ARM Product Backgrounder, Technical report, ARM, [http:

//www.arm.com/miscPDFs/3823.pdf].

Balan, K., Satyanarayanan, M., Park, S. and Okoshi, T. (2003), Tactics-

Based Remote Execution for Mobile Computing, In Proceedings of the

International Conference on Mobile Systems, Applications, and Services

(MobiSys), San Francisco, California, USA, pp. 273–286.

Balani, N. (2003a), Deliver Web services to mobile apps, IBM

DeveloperWorks, [http://www-128.ibm.com/developerworks/wire

less/edu/].

Balani, N. (2003b), Using kXML to access XML files on J2ME devices,

IBM DeveloperWorks, [http://www-128.ibm.com/developerworks/

edu/].

Ballinger, K., Ehnebuske, D., Ferris, C., Gudgin, M., Karmarkar, A., Liu,

C. K., Nottingham, M., and Yendlurif, P. (2007), Basic Profile Version 1.2,

Technical report, The Web Services-Interoperability Organization (WS-I),

[http://www.ws-i.org/Profiles/BasicProfile-1.2.html].

BEA AquaLogic (2007), BEA AquaLogic Service Bus 2.6: The Enterprise

Service Bus for the Agile Business (Product Data Sheet), Technical

report, BEA Systems, Inc.

Bellwood, T. (2002), UDDI Version 2.04 API Specification, Technical

report, UDDI Committee Specification, [http://uddi.org/pubs/

ProgrammersAPI_v2.htm].

Benatallah, B. and Maamar, Z. (2003), Introduction to the special issue

on M-services, IEEE transactions on systems, man, and cybernetics - part

a: systems and humans, 33(6):665–666.

Belov, N., Braude, I., Krandick, W., and Shaffer, J. (2005), Wireless

Internet Collaboration System on Smartphones, In 3rd International

Workshop on Ubiquitous Mobile Information and Collaboration Systems

(UMICS 2005), a CAiSE’05 workshop.

Bibliography

- 227 -

Bilorusets, R., Box, D., Cabrera, L. F., Davis, D., Ferguson, D., Ferris, C.,

Freund, T., Hondo, M. A., Ibbotson, J., Jin, L., Kaler, C., Langworthy, D.,

Lewis, A., Limprecht, R., Lucco, S., Mullen, D., Nadalin, A., Nottingham,

M., Orchard, D., Roots, J., Samdarshi, S., Shewchuk, J., and Storey, T.

(2005), Web Services Reliable Messaging Protocol (WS-

ReliableMessaging), Technical report, BEA Systems, IBM, Microsoft

Corporation Inc. and TIBCO Software Inc.

Blackberry (2010), Blackberry smartphones. [http://na.blackberry.

com/eng/].

Bolcer, G. A., Gorlick, M., Hitomi, A. S., Kammer, P., Morrow, B., Oreizy,

P., and Taylor, R. N. (2000), Peer-to-Peer Architectures and the MagiTM

Open-Source Infrastructure, Technical report, Endeavors Technology, Inc.

Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion, M., Ferris, C.,

and Orchard, D. (2004), Web Services Architecture, Technical report,

W3C Working Group Note, [http://www.w3.org/TR/ws-arch/].

Borck, J. R. (2005), Enterprise service buses hit the road, Infoworld,

pages 26–40, [http://www.infoworld.com/article/].

Boyer, J. (2001), Canonical XML, Version 1.0, Technical report, W3C

Recommendation, [http://www.w3.org/TR/xml-c14n].

Brisaboa, N. R., Luaces, M. R., Parama, J. R., and Viqueira, J. R. (2007),

Managing a Geographic Database from Mobile Devices Through OGC

Web Services, In International Workshop on DataBase Management and

Application over Networks (DBMAN 2007).

Brown, N. and Kindel, C. (1998), Distributed Component Object Model

Protocol – DCOM/1.0, Technical report, Microsoft Corporation,
[http://samba.osmirror.nl/samba/ftp/specs/draft-brown-

dcom-v1-spec-03.txt].

Burbeck, S. (2000), The Tao of e-business services - The evolution of Web

applications into service-oriented components with Web services, IBM

DeveloperWorks, [http://www-128.ibm.com/developerworks/web

services/library/ws-tao/].

Carlsson, B. and Gustavsson, R. (2001), The Rise and Fall of Napster - An

Evolutionary Approach, In Proceedings of the 6th International Computer

Science Conference on Active Media Technology, pages 347 – 354,

Springer-Verlag.

Chandra, D., Fensch, C., Hong, W., Wang, L., Yardımci, E. and Franz, M.

(2002), Code Generation At The Proxy: An Infrastructure-Based

Bibliography

- 228 -

Approach To Ubiquitous Mobile Code, In Proceedings of the 5th ECOOP

Workshop on Object-Orientation and Operating Systems (ECOOP-

OOOSWS02), Malaga, Spain.

Chappell, D. A. (2004), Enterprise Service Bus, O’Reilly Media, Inc.

Chatti, M. A., Srirama, S., Kensche, D., and Cao, Y. (2006), Mobile Web

Services for Collaborative Learning, In Fourth IEEE International

Workshop on Wireless, Mobile and Ubiquitous Technology in Education -

(WMUTE’06), pages 129–133.

Chen, G., Kang, B. and Kandemir, M. (2004), Studying energy trade-offs

in offloading computation/compilation in java-enabled mobile devices,

IEEE Transactions on Parallel and Distributed Systems 15(9).

Cheney, J. (2001), Compressing XML with Multiplexed Hierarchical PPM

Models, In Proceedings of IEEE Data Compression Conference, pages

163–172.

Chun, B. G., and Maniatis, P. (2009), Augmented smartphone

applications through clone cloud execution, In Proceedings of HotOS

2009.

Chun, B. G., Ihm, S., Maniatis, P., Naik, M. and Patti, A. (2011),

CloneCloud: Elastic Execution between Mobile Device and Cloud, In

Proceedings of EuroSys’11, Salzburg, Austria.

Christensen, E., Curbera, F., Meredith, G., and Weerawarana, S. (2001),

Web Services Description Language (WSDL) 1.1, Technical report, W3C

Note, [http://www.w3.org/TR/wsdl].

CIA (2006), Smartphones to Outsell PDAs by 5:1 in 2006, Computer

Industry Almanac Inc., [http://www.c-i-a.com/pr0306.htm].

Clarke, I., Miller, S. G., W.Hong, T., Sandberg, O., and Wiley, B. (2002),

Protecting Free Expression Online with Freenet, IEEE Internet

Computing, 6(1):40–49.

Cleary, J. G. and Teahan, W. J. (1997), Unbounded Length Contexts for

PPM, The Computer Journal, 40(2/3):67–75.

Cunnings, R., Fell, S., and Kulchenko, P. (2001), SMTP Transport

Binding for SOAP 1.1, [http://www.pocketsoap.com/specs/smtp

binding/].

Contreras, P., Zervas, D., and Murtagh, F. (2005), Web Services in

Natural Language: Towards an Integration of Web Service and Semantic

Bibliography

- 229 -

Web Standards in the JXTA Peer to Peer Environment,

[http://thames.cs.rhul.ac.uk/wstalk/papers/].

CORBA (2007), Common Object Request Broker Architecture, [http://

www.corba.org/].

Curbera, F., Duftler, M., Khalaf, R., Nagy, W., Mukhi, N., and

Weerawarana, S. (2002), Unraveling the Web services web: an

introduction to SOAP, WSDL, and UDDI, IEEE Internet Computing,

6(2):86–93.

Cutting, D. (2007), Apache Lucene, [http://lucene.apache. org/].

Dao, T. (2005), UDDI Explorer: Tool for searching web services, The Code

Project.

Davis, D. and Parashar, M. (2002), Latency Performance of SOAP

Implementations, In IEEE Cluster Computing and The Grid 2002.

DCOM (2007), Distributed Component Object Model (DCOM), Microsoft

Corporation, [http://msdn2.microsoft.com/en-us/library/ms

809332.aspx].

Dustdar, S. and Treiber, M. (2006), Integration of transient Web services

into a virtual peer to peer Web service registry, Distributed and Parallel

Databases, 20:91–115.

Ellis, J. and Young, M. (2003), J2MEWeb Services 1.0 - Final Draft (JSR

172), Technical Report 11, Sun Microsystems, Inc.

Endrei, M., Ang, J., Arsanjani, A., Chua, S., Comte, P., Krogdahl, P., Luo,

M., and Newling, T. (2004), Patterns: Service-Oriented Architecture and

Web Services, IBM Redbooks, [http://www.redbooks.ibm.com/

abstracts/sg246303.html].

Engelen, R. A. and Gallivan, K. A. (2002), The gSOAP Toolkit for Web

Services and Peer-To-Peer Computing Networks, In The proceedings of

the 2nd IEEE International Symposium on Cluster Computing and the

Grid (CCGrid2002).

Ericsson (2003a), Enhanced Data Rates for GSM Evolution (EDGE) -

Introduction of high-speed data in GSM/GPRS networks, Technical

report, Ericsson AB, [http://www.ericsson.com/technology/

whitepapers/edge_wp_technical.pdf].

Ericsson, M. (2003b), A study of compression of XML-based messaging,

Technical report, Växjö University.

Bibliography

- 230 -

Ericsson, M. and Levenshteyn, R. (2003), On optimization of XML-based

messaging, In Second Nordic Conference on Web Services (NCWS 2003),

pages 167–179.

ETC (2007), New Media Review, European Travel Commission, [http://
www.etcnewmedia.com/review/default.asp?sectionid=10&overv

iewid=6].

ETSI (1997), GSM Technical Specification, GSM 03.64: General Packet

Radio Service (GPRS), Technical report, European Telecommunications

Standards Institute (ETSI).

Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P.,

and Berners-Lee, T. (1999), Hypertext Transfer Protocol – HTTP/1.1, RFC

2616, Technical report, Network Working Group, [http://www.w3.org/

Protocols/rfc2616/rfc2616.html].

Flinn, J., Park, S. and Satyanarayanan, M. (2002), Balancing

performance, energy, and quality in pervasive computing, In Proceedings

of 22nd IEEE International Conference on Distributed Computing

Systems, Austria.

Forum Nokia (2004), Introduction to Web Services in Nokia Devices –

Version 1.0, Technical report, Forum Nokia, [http://sw.nokia.com/].

Forum Nokia (2007a), Nokia Mobile Web Services Framework,

Architecture, APIs, SDK, Forum Nokia, [http://www.forum.nokia.

com/main/resources/technologies/web_services/].

Forum Nokia (2007b), Nokia Series 60 Platform, Forum Nokia, [http://

www.forum.nokia.com/main/platforms/s60/].

Forum Nokia (2007c), Nokia Series 80 Platform, Forum Nokia, [http://

www.forum.nokia.com/main/platforms/s80/].

Fox, D. and Box, J. (2004), Building solutions with the Microsoft .NET

compact framework architecture and best practices for mobile

development, Addison-Wesley, Boston, ISBN 0321197887

(9780321197887), ID: 52948769.

Frank, S. P. (2004), Personal Java and Inferno for Today’s Consumer

Devices, Java Developers Journal, 3(3).

Gamma, E., Helm, R., Johnson, R. and Vlissides, J. (1995), Design

Patterns: Elements of Reusable Object-Oriented Software, Addison-Wesley

Professional Computing Series, 1st edition.

Bibliography

- 231 -

Gehlen, G., Aijaz, F., and Walke, B. (2006), Mobile Web Service

Communication over UDP, In Proceedings of the 64th IEEE Vehicular

Technology Conference.

GeoNames (2009), GeoNames geographical database, [http://www.

geonames.org/].

Girardot, M. and Sundaresan, N. (2000), Millau: an encoding format for

efficient representation and exchange of XML over the Web, In

Proceedings of the Ninth International World Wide Web Conference.

Google (2007), Google Maps, [http://maps.google.com/].

Google Mobile (2007), Search, find and browse with Google on your

mobile device, [http://www.google.com/mobile/search/].

Gospodnetic, O. and Hatcher, E. (2007), Meet Lucene, [http://www.

developer.com/java/other/article.php/].

Gottschalk, K., Graham, S., Kreger, H., and Snell, J. (2002), Introduction

to Web Services architecture, IBM Systems Journal: New Developments

in Web Services and E-commerce, 41(2):178–198.

Greenberg, I. (2005), Memory breakthroughs will propel smartphone

development – Transition from NOR to NAND flash memory a key,

Smartphone & Pocket PC magazine.

Grimshaw, A. S., Wulf, W. A., and THE LEGION TEAM (1997), The

Legion vision of a worldwide virtual computer, Communications of the

ACM, 40(1):39–45.

GSM1 2009, GSM World: GSM - The Wireless Evolution, viewed 14 May

2009, [http://www.gsmworld.com/technology/].

Gu, X., Nahrstedt, K., Messer, A., Greenberg, I. and Milojicic, D. (2003),

Adaptive offloading inference for delivering applications in pervasive

computing environments, In Proceedings of 1st International Conference

on Pervasive Computing and Communications, IEEE Press.

Gudgin, M., Hadley, M., Mendelsohn, N., Moreau, J.-J., and Nielsen, H.

F. (2003), SOAP Version 1.2 Part 2: Adjuncts, Technical report, World

Wide Web Consortium Recommendation, [http://www.w3.org/TR/

REC-soap12-part2-20030624/].

Gudgin, M., Combs, H., Justice, J., Kakivaya, G., Lindsey, D., Orchard,

D., Regnier, A., Schlimmer, J., Simpson, S., Tamura, H., Wright, D., and

Wolf, K. (2004), SOAP-over-UDP, Technical report, BEA Systems Inc.,

Bibliography

- 232 -

Lexmark, Microsoft Corporation, Inc, and Ricoh, [http://specs.

xmlsoap.org/ws/2004/09/soap-over-udp/].

Gudgin, M., Mendelsohn, N., Nottingham, M., and Ruellan, H. (2005),

SOAP Message Transmission Optimization Mechanism, Technical report,

W3C Recommendation, [http://www.w3.org/TR/soap12-mtom/].

Gudgin, M., Hadley, M., Mendelsohn, N., Moreau, J. J., Nielsen, H. F.,

Karmarkar, A., and Lafon, Y. (2007), SOAP Version 1.2 Part 1:

Messaging Framework (Second Edition), Technical report, World Wide

Web Consortium Recommendation, [http://www.w3.org/TR/soap12

-part1/].

Gulbrandsen, A., Vixie, P., and Esibov, L. (2000), A DNS RR for

specifying the location of services (DNS SRV) (RFC 2782), Technical

report, Network Working Group, [http://rfc.sunsite.dk/rfc/rfc

2782.html].

Hajamohideen, S. H. (2003), A Model for Web Service Discovery and

Invocation in JXTA, Master’s thesis, Technical University Hamburg-

Harburg.

Halteren, A. and Pawar, P. (2006), Mobile Service Platform: A

Middleware for Nomadic Mobile Service Provisioning, 2nd IEEE

International Conference On Wireless and Mobile Computing, Networking

and Communications (WiMob 2006).

Hanson, J. J. (2005), ServiceMix as an enterprise service bus: Use

ServiceMix 2.0 as a service-oriented message routing framework,

JavaWorld.com, [http://www.javaworld.com/javaworld/jw-12-

2005/jw-1212-esb.html].

Hao, W., Gao, T., Yen, I-L., Chen, Y. and Paul, R. (2006), An

Infrastructure for Web Services Migration for Real-Time Applications, In

Proceedings of 2nd IEEE International Symposium on Service-Oriented

System Engineering (SOSE'06), pp. 41-48, Shanghai, China.

Harjula, E., Ylianttila, M., Ala-Kurikka, J., Riekki, J., and Sauvola, J.

(2004), Plug-and-play application platform: Towards mobile peer-to-peer,

In Third International Conference on Mobile and Ubiquitous Multimedia

(MUM2004), pages 63–69.

Harrison, R. (2003), Symbian OS C++ for Mobile Phones, John Wiley and

Sons Ltd.

Hassan, M. (2009), Mobile Web Service Provisioning in Peer to Peer

Environments, In Proceedings of IEEE International Conference on

Bibliography

- 233 -

Service-Oriented Computing and Applications (SOCA 2009), pp. 138-141,

Taipei, Taiwan.

Hassan, M., Zhao, W. and Yang, J., (2010), Provisioning Web Services

From Resource Constrained Mobile Devices, In Proceedings of Third

IEEE 2010 International Conference on Cloud Computing (CLOUD 2010),

pp. 490-497, Miami, Florida, USA.

Heine, G. (1999), GSM Networks: Protocols, Terminology and

Implementation, ISBN 0-8900-6471-7.

Helal, A., Haskell, B., Carter, J., Brice, R., Woelk, D., and Rusinkiewicz,

M. (1999), Any Time, Anywhere Computing; Mobile Computing Concepts

and Technology, Kluwer Academic Publishers.

Hemmati, H., Ranjbar, A., Niamanesh, M. and Jalili, R. (2005), A Model

to Support Context-Aware Service Migration in Pervasive Computing

Environments, In Proceedings of 9th World Multi-Conference on

Systemics, Cybernetics and Informatics, VTT Elektroniikka, Florida,

USA.

Heuer, J., Thienot, C., and Wollborn, M. (2002), Introduction to MPEG-7:

Multimedia Content Description Interface, Chapter Binary Format, pages

61–80, Jon Wiley and Son.

Hirsch, F., Kemp, J. and Ilkka, J. (2006), Mobile Web Services:

Architecture and Implementation, John Wiley and Sons, ISBN 0-470-

01596-9.

Hodges, J. and Morgan, R. (2002), Lightweight Directory Access Protocol

(v3): Technical Specification (RFC 3377), Technical report, Network

Working Group, [http://www.rfc-editor.org/rfc/rfc3377.txt].

Hu, N. and Steenkiste, P. (2003), Evaluation and Characterization of

Available Bandwidth Probing Techniques, IEEE JSAC Special Issue in

Internet and WWW Measurement, Mapping, and Modeling.

Hunt, G. and Scott, M. (1999), The Coign Automatic Distributed

Partitioning System, In Proceedings of the 3rd Symposium on Operating

System Design and Implementation (OSDI’99), New Orleans, LA, U.S.A.,

pp. 187-200.

IBM Corporation (2007a), IBM WebSphere Studio Device Developer, IBM

developer-Works, [http://www-306.ibm.com/software/wireless/

wsdd/].

Bibliography

- 234 -

IBM Corporation (2007b), WebSphere Enterprise Service Bus,

WebSphere Software, [http://www-306.ibm.com/software/integra

tion/wsesb/].

IBM Corporation (2008), IBM WebSphere MQ - Home page, WebSphere

Software, [http://www-01.ibm.com/software/websphere/].

Ichikawa, K. (2002), The View of NTT DoCoMo on the Further

Development of Wireless Internet, In Tokyo Mobile Round Table

Conference.

iPhone (2010), Apple iPhone, [http://www.apple.com/iphone].

Imielinski, T., Viswanathan, S., and Badrinath, B. R. (1994), Power

efficient filtering of data on air, In Proceedings of the 4th international

conference on extending database technology on Advances in database

technology, pages 245 – 258, Springer-Verlag.

IONA Technologies (2005), ESB: evolving beyond EAI, Technical report,

IONA Technologies, [http://www.itarchitects.ca/whitepaper/

ESB-EvolvingBeyondEAI.pdf].

ITU (2010), International Telecommunication Union, [http://www.itu.

int/ITU-D/ict/statistics/at_glance/].

java.net (2008), Project Open ESB, [https://open-esb.dev.java.

net/index.html].

Jamwal, V. and Iyer, S. (2005), Automated Refactoring of Objects for

Application Partitioning, In Proceedings of the 12th Asia-Pacific Software

Engineering Conference (APSEC’05), Taipei, Taiwan, pp. 671-678.

JBoss (2007), JBoss Application Server, [http://www.jboss.org/

products/jbossas/].

Johnson, D., Perkins, C. and Arkko, J. (2004), Mobility Support in IPv6

(RFC 3775), Technical report, Network Working Group, [http://www.

ietf.org/rfc/rfc3775.txt].

Johnson, R. (2005), Introduction to the Spring Framework, TheServer-

Side.com, [http://www.theserverside.com/tt/articles/article

.tss?l=SpringFramework].

JXTA (2008), JXTA home page, [http://www.jxta.org/].

Bibliography

- 235 -

JXTA Community (2007a), JXTA-SOAP, java.net, [https://soap.

dev.java.net/].

JXTA Community (2007b), Project JXTA Community, java.net,

[https://jxta.dev.java.net/].

Kangasharju, J. (2007), Efficient implementation of xml security for

mobile devices, IEEE International Conference on Web Services, ICWS

2007, 00:134–141.

Kangasharju, J., Lindholm, T. and Tarkoma, S. (2006), On encrypting

and signing binary xml messages in the wireless environment, In

Proceedings of the IEEE International Conference on Web Services

(ICWS’06), pages 637–646, Washington DC, USA, IEEE Computer

Society, ISBN 0-7695-2669-1.

Kangasharju, J., Lindholm, T. and Tarkoma, S. (2007), XML messaging

for mobile devices: From requirements to implementation, Computer

Networks, 51(16):4634–4654.

Karypis, G. and Kumar, V. (1998a), A fast and highly quality multilevel

scheme for partitioning irregular graphs, SIAM Journal on Scientific

Computing.

Karypis, G. and Kumar, V. (1998b), Multilevel k-way partitioning scheme

for irregular graphs, Journal of Parallel and Distributed Computing 48

(1) 96–129.

Karypis, G. and Kumar, V. (1998c), Multilevel algorithms for multi-

constraint graph partitioning, In Proceedings of Super Computing’98,

Orlando, USA.

Kazaa (2009), Kazaa Home Page, [http://www.kazaa.com/].

Keen, M., Bishop, S., Hopkins, A., Milinski, S., Nott, C., Robinson, R.,

Adams, J., Verschueren, P., and Acharya, A. (2004), Patterns:

Implementing an SOA using an Enterprise Service Bus, IBM RedBooks,

[http://www.redbooks.ibm.com/redbooks/pdfs/sg246346.pdf].

Kefali, U. (2004), Development and Performance Evaluation of a Simple

Object Access Protocol (SOAP) Profile for Block Extensible Exchange

Protocol (BEEP), Master’s thesis, RWTH Aachen University.

Kim, Y. K. and Prasad, R. (2006), 4G Roadmap and Emerging

Communication Technologies, Artech House Publishers.

Bibliography

- 236 -

Knudsen, J. (2002), Getting Started with JXTA for J2ME, Sun Developer

Network, [http://developers.sun.com/mobility/midp/articles

/jxme/].

kSOAP (2007), kSOAP - An Open Source SOAP for the kVM, ObjectWeb,

[http://ksoap.objectweb.org/].

kSOAP2 (2007), kSOAP2 - An efficient, lean, Java SOAP library for

constrained devices, SourceForge.net, [http://sourceforge.net

/projects/ksoap2].

Kurose, J. F. and Ross, K. W. (2001), Computer Networking - A Top-Down

Approach Featuring the Internet, Pearson Education Addison Wesley.

Kwok, S. H., Lui, S., Cheung, R., Chan, S., and Yang, C. C. (2003),

Searching Behavior in Peer-to-Peer Communities, In International

Conference on Information Technology: Computers and Communications

(ITCC 03), page 130, IEEE Computer Society.

kXML2 (2007), kXML2 project, SourceForge.net, [http://kxml.

sourceforge.net/kxml2/].

LA (2007), Liberty Alliance project, [http://www.projectliberty

.org/].

Lai, K. Y., Phan, T. K. A., and Tari, Z. (2005), Efficient SOAP Binding for

Mobile Web Services, In Proceedings of the IEEE Conference on Local

Computer Networks 30th Anniversary (LCN’05).

Lee, C., Helal, A., Desai, N., Verma, V., and Arslan, B. (2003), Konark: A

System and Protocols for Device Independent, Peer-to-Peer Discovery and

Delivery of Mobile Services, IEEE transactions on systems, man, and

cybernetics - part a: systems and humans, 33(6):682–696.

Leymann, F. (2002), Web Services Flow Language (WSFL1.0),

[http://www.306.ibm.com/software/solutions/webservices/pd

f/WSFL.pdf].

Leymann, F. (2005), The Service Bus: Services Penetrate Everyday Life,

In Proceedings of the Third International Conference on Service-Oriented

Computing (ICSOC 2005), Netherlands.

Li, B. and Nahrstedt, K. (1999), A Control-based Middleware Framework

for Quality of Service Adaptations, IEEE Journal of Selected Areas in

Communications, Special Issue on Service Enabling Platforms, 17(9).

Bibliography

- 237 -

Li, Z., Wang, C. and Xu, R. (2001), Computation offloading to save energy

on handheld devices: A partition scheme, In Proceedings of International

Conference on Compilers, Architectures and Synthesis for Embedded

Systems, ACM Press.

Liefke, H. and Suciu, D. (1999), XMill: an efficient compressor for XML

data, Technical report, University of Pennsylvania.

LocatioNet (2007), amAze - Free GPS Navigation for your mobile phone,

LocatioNet Solutions, [http://www.amazegps.com/].

Loup Gailly, J. (2007), The GZip Home page, [http://www.gzip.org/].

MacVittie, L. (2006), Review: ESB Suites - Make Way for the Enterprise

Service Bus, Technical report, Network Computing.

Martin, B. and Jano, B. (1999), WAP Binary XML Content Format,

Technical report, W3C NOTE, [http://www.w3.org/TR/wbxml/].

McFaddin, S., Narayanaswami, C. and Raghunath, M. (2003), Web

Services on Mobile Devices – Implementation and Experience. In

Proceedings of the Fifth IEEE Workshop on Mobile Computing Systems &

Applications (WMCSA’03), pp. 100-109, Monterey, California, USA.

Milojicic, D. S., Kalogeraki, V., Lukose, R., Nagaraja, K., Pruyne, J.,

Richard, B., Rollins, S., and Xu, Z. (2003), Peer-to-Peer Computing.

Technical report, HP Laboratories Palo Alto, [http://www.hpl.hp.

com/techreports/].

Mitra, N. and Lafon, Y. (2007), SOAP Version 1.2 Part 0: Primer (Second

Edition), Technical report, W3C Recommendation.

Moyo, T., Irwin, B. and Wright, M. (2006), Securing mobile commerce

interactions through secure mobile web services, In 8th Annual

Conference on WWW Applications: South Africa.

MPEG-4 (2007), IBM toolkit for MPEG-4, [http://www.alphaworks.

ibm.com/tech/tk4mpeg4].

MSDN (2007a), .NET Compact Framework, Microsoft Corporation, [http

://msdn2.microsoft.com/en-us/netframework/aa497273.aspx].

MSDN (2007b), .NET Framework, Microsoft Corporation, [http://

msdn2.microsoft.com/en-us/netframework/].

MSDN (2007c), Web Services Enhancements (WSE), Microsoft

Corporation, [http://msdn2.microsoft.com/en-us/webservices/].

http://www.amazegps.com/

Bibliography

- 238 -

Nadalin, A. (2003), SOAP Message Security: Minimalist Profile (MProf),

Draft Technical Specification, OASIS Open, [http://docs.oasis-open

.org/wss/].

Nadalin, A., Kaler, C., Monzillo, R., and Hallam-Baker, P. (2006), Web

Services Security: SOAP Message Security 1.1(WS-Security 2004),

Technical Specification, OASIS Open, [http://www.oasis-open.

org/committees/download.php/16790/].

NAVSTAR (1995). Global Positioning System Standard Positioning

Service Signal Specification - 2nd Edition, Technical report, U.S. Coast

Guard Navigation Center, [http://www.navcen.uscg.gov/pubs/gps

/sigspec/gpssps1.pdf].

NAVSTAR (2007), USNO NAVSTAR Global Positioning System,

NAVSTAR GPS Operations, [http://tycho.usno.navy.mil/gpsinfo

.html].

Nexus (2010), Nexus One, [http://www.google.com/phone].

Novak, L. and Svensson, M. (2001), MMS - building on the success of

SMS, Ericsson Review No. 3, pages 102–109, [http://www.ericsson.

com/ericsson/corpinfo/publications/review/2001_03/].

NTT DoCoMo (2005), NTT DoCoMo Unveils 505i Series i-mode

compatible Mobile Phones Equipped for Macromedia Flash and Enhanced

Java-Based Applications, NTT DoCoMo Press Releases, [http://www.

nttdocomo.com/pr/2003/000946.html].

NTT DoCoMo (2007a), i-mode Business Model, [http://www.nttdocomo

.com/services/imode/business/index.html].

NTT DoCoMo (2007b), i-mode Technology, [http://www.nttdocomo

.com/technologies/present/imodetechnology/index.html].

NTT DoCoMo (2007c), NTT DoCoMo: HOME, [http://www.nttdocomo

.com/].

OMA (2004), Open mobile alliance overview, Technical report, Open

Mobile Alliance Group, [http://www.openmobilealliance.org/

docs/].

OMA (2006a), Mobile Web Services Requirements - Version 1.1, Technical

report, Open Mobile Alliance Group, [http://www.openmobileallian

ce.org/release_program/docs/].

Bibliography

- 239 -

OMA (2006b), OMA Web Services Enabler (OWSER): Core Specifications

- Version 1.1, Technical report, Open Mobile Alliance Group,

[http://www.openmobilealliance.org/release_program/docs/].

OMG (2004), Common Object Request Broker Architecture (CORBA):

Core Specification, Technical report, Object Management Group,

[http://www.omg.org/docs/formal/04-03-12.pdf].

Ozzie, J. and Burton, A. (2003), Delivering Collaboration Services to

Information Workers: Extending SharePoint with Groove, In Presentation

at Microsoft SharePoint products and technologies Developer’s conference.

Passino, K. M. and Yurkovich, S. (1998), Fuzzy Control, Addison Wesley

Longman, Menlo Park, CA.

Pawar, P., Srirama, S., van Beijnum, B. J. and van Halteren, A. (2007), A

Comparative Study of Nomadic Mobile Service Provisioning Approaches,

In International Conference and Exhibition on Next Generation Mobile

Applications, Services and Technologies (NGMAST 2007), pages 277–286,

IEEE Computer Society.

Perera, A. (2007), WSO2 ESB Performance Testing Round 2, [http://

wso2.org/library/2259].

Pham, L. and Gehlen, G. (2005), Realization and Performance Analysis of

a SOAP Server for Mobile Devices, In Proceedings of 11th European

Wireless Conference, vol. 2, pp. 20-27, Nicosia, Cyprus.

Plebani, P., Cappiello, C., Comuzzi, M., Pernici, B. and Yadav, S. (2011),

MicroMAIS: executing and orchestrating Web services on constrained

mobile devices, Software: Practice and Experience (2011), John Wiley &

Sons, Ltd.

PolarLake (2005), Understanding the ESB: What it is, why it matters,

and how to choose one (White Paper), Technical report, PolarLake,

[http://www.polarlake.com/files/esb.pdf].

Pouwelse, J., Garbacki, P., Epema, D., and Sips, H. (2005), The bittorrent

P2P file-sharing system: Measurements and analysis, In Proceedings of

4th International Workshop on Peer-to-Peer Systems (IPTPS’05).

Pratistha, D., Nicoloudis, N. and Cuce, S. (2003), A Micro-Services

Framework on Mobile Devices, In Proceedings of International Conference

on Web Services, Nevada, USA.

Pratistha, D., Zaslavsky, A., Cuce, S. and Dick, M. (2005a), Performance

Based Cost Models for Improving Web Service Efficiency Through

Bibliography

- 240 -

Dynamic Relocation, In Proceedings of 6th International Conference on

Electronic Commerce and Web Technologies (EC-Web), pp. 248-287,

Copenhagen, Denmark.

Pratistha, D., Zaslavsky, A., Cuce, S. and Dick, M. (2005b), A Generic

Cost Model and Infrastructure for Improving Web Service Efficiency

through Dynamic Relocation, In Proceedings of International Conference

on Web Services (ICWS 2005), pp. 381-388, Florida, USA.

Pulkkinen, M., Naumenko, A., and Luostarinen, K. (2007), Managing

Information Security in a Business Network of Machinery Maintenance

Services Business – Enterprise Architecture as a Coordination Tool,

Special Issue on Methodology of Security Engineering for Industrial

Security Management Systems, Journal of Systems and Software,

ELSEVIER.

Qu, C. and Nejdl, W. (2004), Interacting the Edutella/JXTA Peer-to-Peer

Network with Web Services, In Proceedings of the 2004 International

Symposium on Applications and the Internet (SAINT’04).

Ripeanu, M., Foster, I., and Iamnitchi, A. (2002), Mapping the Gnutella

Network: Properties of Large-Scale Peer-to-Peer Systems and

Implications for System Design, IEEE Internet Computing Journal,

6(1):51-57.

Riva, O., Nadeem, T., Borcea, C. and Iftode, L. (2010), Mobile Services:

Context-Aware Service Migration in Ad Hoc Networks, IEEE Transaction

on Mobile Computing, IEEE Educational Activities Department.

Rodriguez, S. (2002), XML optimization, [http://www.codeproject.

com/soap/betterxml.asp].

Rollman, R. and Schneider, J. (2004), Mobile web services, In XML 2004

Proceedings by SchemaSoft, [http://www.idealliance.org/procee

dings/xml04/papers/MobileWebServices.pdf].

Rysavy, P. (1998), General Packet Radio Service (GPRS), GSM Data

Today online journal. [http://www.rysavy.com/Articles/GPRS/

GPRS.htm].

Sandoz, P., Pericas-Geertsen, S., Kawaguchi, K., Hadley, M., and Pelegri-

Llopart, E. (2003), Fast Web Services, [http://java.sun.com/deve

loper/technicalArticles/WebServices/fastWS/].

Sandoz, P., Triglia, A., and Pericas-Geertsen, S. (2004), Fast Infoset,

[http://java.sun.com/developer/technicalArticles/xml/fast

infoset/].

Bibliography

- 241 -

Satyanarayanan, M. (2001), Pervasive computing: Vision and challenges,

IEEE Personal Communications.

Satyanarayanan, M., Bahl, V., Caceres, R. and Davies, N. (2009), The

Case for VM-based Cloudlets in Mobile Computing, Pervasive Computing,

8(4).

Schneider, J. (2001), Convergence of Peer and Web Services, OpenP2P,

[http://www.openp2p.com/pub/a/p2p/2001/07/20/convergence.

html].

Schroth, C. and Janner, T. (2007), Web 2.0 and SOA: Converging

Concepts Enabling the Internet of Services, IEEE IT Professional

Magazine, vol. 9, issue 3, pp. 36 – 41.

Schulte, R. W. (2007), The Enterprise Service Bus: Communication

Backbone for SOA, Gartner Inc.

Seward, J. (2005), bzip2 and libbzip2, version 1.0.3 - A program and

library for data compression, [http://www.bzip.org/1.0.3/bzip2-

manual-1.0.3.html].

Silva, R. D. (2001), SOAP and Embedded Systems - Draft 0.4, Technical

report, ConnectTel, Inc.

Silva, R. D. (2007), eSOAP - Features. [http://esoap.ultimodule.

com/bin/esoap/templates/].

Skype (2009), Skype Home page, [http://www.skype.com/].

Srirama, S. (2004), Concept, implementation and performance testing of a

mobile web service provider for smart phones, Master’s thesis, RWTH

Aachen, Germany.

Srirama, S., Jarke, M. and Prinz, W. (2006a), Mobile web service

provisioning, Proceedings of the Advanced International Conference on

Telecommunications and International Conference on Internet and Web

Applications and Services (AICT/ICIW 2006), pp. 120-128, Guadeloupe,

French Caribbean.

Srirama, S., Jarke, M., and Prinz, W. (2006b), Mobile Host: A feasibility

analysis of mobile Web Service provisioning, In 4th International

Workshop on Ubiquitous Mobile Information and Collaboration Systems,

UMICS 2006, a CAiSE’06 workshop, pp. 942–953.

Bibliography

- 242 -

Srirama, S. (2007), Mobile Web Service Provisioning, [http://www-
i5.informatik.rwth-aachen.de/lehrstuhl/staff/srirama/MWSP

.html].

Srirama, S., Jarke, M., and Prinz, W. (2007a), Security analysis of mobile

web service provisioning, International Journal of Internet Technology

and Secured Transactions (IJITST), 1(1/2):151–171.

Srirama, S., Jarke, M., and Prinz, W. (2007b), A performance evaluation

of mobile web services security, In Proceedings of 3rd International

Conference on Web Information Systems and Technologies (WEBIST

2007), Barcelona, Spain.

Srirama, S. and Naumenko, A. (2007), Secure Communication and Access

Control for Mobile Web Service Provisioning, In Proceedings of

International Conference on Security of Information and Networks (SIN

2007).

Stoer, M. and Wagner, F. (1997), A simple min-cut algorithm, Journal of

the ACM, 44(4):585–591.

Sun Microsystems (2000), J2ME Building Blocks for Mobile Devices -

White Paper on KVM and the Connected, Limited Device Configuration

(CLDC), Technical report, Sun Microsystems, Inc. [http://java.

sun.com/products/cldc/wp/KVMwp.pdf].

Sun Microsystems (2001), Jini Architecture Specification - Version 1.2,

Technical report, Sun Microsystems, Inc., [http://www.sun.com/

software/jini/specs/jini1.2html/].

Sun Microsystems (2005), CDC: JavaTM platform technology for connected

devices, Technical report, Sun Microsystems, Inc. [http://java.sun.

com/products/cdc/].

Sun Microsystems (2007a), J2ME Web Services APIs (WSA), JSR 172,

Sun Developer Network, [http://java.sun.com/products/wsa/].

Sun Microsystems (2007b), The Java ME Device Table, Sun Developer

Network, [http://developers.sun.com/mobility/device/].

Sun Microsystems (2007c), JavaTM 2 Platform, Micro Edition (J2METM)

Web Services Specification – Datasheet, Technical report, Sun

Microsystems, Inc., [http://java.sun.com/j2me/docs/].

Sun Microsystems (2007d), PersonalJava, Sun Developer Network,

[http://java.sun.com/products/personaljava/].

Bibliography

- 243 -

Sun Microsystems (2007e), Sun JavaWireless Toolkit for CLDC, Sun

Developer Network, [http://java.sun.com/products/sjwtool

kit/].

Sun Microsystems (2007f), The Java ME Platform - the Most Ubiquitous

Application Platform for Mobile Devices, Sun Developer Network,

[http://java.sun.com/javame/index.jsp].

Sun Microsystems (2007g), The JiniTM Technology Surrogate Architecture

Overview, Technical report, Sun Microsystems, Inc., [https://surro

gate.dev.java.net/doc/overview.pdf].

Sun Microsystems (2008), Java Development Kit (JDK), v 1.1 - Archive

Home page, Sun Developer Network.

Symbian (2007), Symbian OS - The mobile operating system, [http://

www.symbian.com/].

Tanenbaum, A. and Steen, M. (2002), Distributed Systems: Principles and

Paradigms, 1st edition, Prentice Hall.

Tate, B. (2005), Secrets of lightweight development success, Part 1: Core

principles and philosophies, IBM DeveloperWorks.

Teder, A. (2006), The problem sets of Java Micro Edition technology,

Master’s thesis, University of Tartu, 2006.

Ten-Hove, R. and Walker, P. (2005), JavaTM
 Business Integration (JBI) 1.0

- JSR 208 Final Release, Technical report, Sun Microsystems, Inc.

Ten-Hove, R. (2006), JBI Components: Part 1 (Theory), [https://open-

esb.dev.java.net/public/pdf/JBI-Components-Theory.pdf].

Thomas, N. and Buckley, W. (2003), The Enterprise Service Bus: A

Developer-Friendly Integration Engine, Web Services Journal, 3(10):30.

Tian, M., Voigt, T., Naumowicz, T., Ritter, H. and Schiller, J. (2004),

Performance considerations for mobile web services, Computer

Communications, 27(11):1097–1105.

TomTom (2007), TomTom, portable GPS car navigation systems,

[www.tomtom.com/].

Tourzan, J. and Koga, Y. (2006), Liberty ID-WSF Web Services

Framework Overview - Version: 2.0, Technical report, Liberty Alliance

Project, [http://www.projectliberty.org/liberty/].

Bibliography

- 244 -

Traversat, B., Abdelaziz, M., Doolin, D., Duigou, M., Hugly, J.-C., and

Pouyoul, E. (2003), Project JXTA-C: Enabling a Web of Things, In 36th

Annual Hawaii International Conference on System Sciences (HICSS’03),

page 282, IEEE Computer Society.

UIQ (2007), UIQ Technology Home, [http://www.uiq.com/].

Umtsworld (2002), Overview of the Universal Mobile Telecommunication

System, UMTS world, [http://www.umtsworld.com/technology/

overview.htm].

UPnP Forum (2003), Universal Plug and Play Device Architecture,

Technical report, UPnP Forum, [http://www.upnp.org/resources/

documents/].

Vinoski, S. (2005), Java Business Integration, IEEE Internet Computing,

pages 89–91.

Waterhouse, S., Doolin, D. M., Kan, G., and Faybishenko, Y. (2002),

Distributed Search in P2P Networks, IEEE Internet Computing, pages

68–73.

Werden, S., Evans, C., and Goodner, M. (2003), WS-I Usage Scenarios,

Technical report, Web Services Interoperability Organization,

[http://www.ws-i.org/SampleApplications/SupplyChainManage

ment/UsageScenarios-1.01.pdf].

Whiteside, A. (2007), OGC Web Services Common Specification, Technical

report, Open Geospatial Consortium Inc.

Wikman, J. (2006), Providing HTTP Access to Web Servers Running on

Mobile Phones, Nokia Research Center, Helsinki, [http://research.

nokia.com/tr/NRC-TR-2006-005.pdf].

Wilson, B. J. (2002), JXTA, New Riders Publishing.

Wingfoot (2007a), Wingfoot SOAP 1.06 - User Guide, Technical report,

Wingfoot Software, [http://www.wingfoot.com/docs/WSOAP_User_

Guide1_06.html].

Wingfoot (2007b), Wingfoot SOAP Client, [http://www.wingfoot.com/

products.html].

WS-BPEL (2002), Business Process Execution Language for Web Services

version 1.1, [http://www.ibm.com/developerworks/library/

specification/ws-bpel/].

Bibliography

- 245 -

WS-I (2004), Interoperability: Ensuring the Success of Web Services - An

Overview to WS-I, Web Services Interoperability organization (WS-I),

[http://www.ws-i.org/docs/].

WSO2 (2007), WSO2 ESB Benchmark, [https://www-lk.wso2.com/

benchmark/].

WS-Talk (2007), WS-Talk Project, [http://thames.cs.rhul.ac.uk/

wstalk/].

XMLPULL (2007), XMLPULL Parser API, [http://www.xmlpull.

org/].

Yang, B. and Garcia, M. H. (2003), Designing a Super-peer Network, In

Proceedings of the 19th International Conference on Data Engineering

(ICDE), IEEE Computer Society, pp. 49-60.

Yang, X., Bouguettaya, A., Medjahed, B., Long, H., and He, W. (2003),

Organizing and Accessing Web Services on Air, IEEE transactions on

systems, man, and cybernetics - part a: systems and humans, 33(6):742–

757.

Zeng, L., Benatallah, B., Dumas, M., Kalagnanam, J. and Sheng, Q. Z.

(2003), Quality Driven Web Services Composition, In Proceedings of the

12th International World Wide Web (WWW) Conference.

Zheng, P. and Ni, L. M. (2006), Spotlight: the rise of the smart phone,

Distributed Systems Online, IEEE, 7(3).

Ziv, J. and Lempel, A. (1977), A Universal Algorithm for Sequential Data

Compression, IEEE Transactions on Information Theory, 23(3):337–344.

- 247 -

Appendix

Hypertext Transfer Protocol (HTTP)

HTTP is the application layer protocol used to transfer or convey

information on intranets and the Web. It is implemented in two

communication peers: the client and the server, executed on different end

systems, and communicating through HTTP messages. The protocol

defines the method and the structure of message for the communication.

The HTTP client first initiates a Transmission Control Protocol

(TCP) connection to the server port (default port for HTTP is port 80).

Once the TCP connection is established, the client sends the HTTP

request message to the server through the socket associated with the TCP

connection. The HTTP server receives the request through the socket,

extracts the path name of the web page, and retrieves the page from the

storage (file system or RAM) of the server, encapsulates the object in an

HTTP response message, and sends it to the client using the socket. Once

the client receives the message, the TCP connection is closed. The

scenario explained here uses the non-persistent TCP connection mode, as

the TCP connection closes after processing the client request. A persistent

TCP connection is also possible, where the server maintains the

connection even after sending the response. Subsequent communication

between the same client and server utilizes the already established and

still open connection.

The HTTP specification defines two types of message formats,

HTTP request and HTTP response messages. The structures of the

request and response messages are shown in Figure A.1 and Figure A.2

respectively. The method field of the HTTP request indicates the method

to be performed on the object identified by the URL. HTTP defines eight

Appendix

- 248 -

methods indicating the desired action to be performed on the identified

resource. Method GET means retrieval of the data the URL identifies.

Method HEAD, which is same as GET, returns only the HTTP headers and

no document body. Method POST submits the data to be processed, to the

identified resource. This may result in the creation of a new resource or

the updates of existing resources or both. Other methods supported by

HTTP include PUT, DELETE, TRACE, OPTIONS and CONNECT.

Figure A.1: Structure of HTTP request message [Kurose and Ross, 2001].

Figure A.2: Structure of HTTP response message [Kurose and Ross, 2001]

Appendix

- 249 -

HTTP has evolved into multiple, mostly backward-compatible

protocol versions. The version field of both request and response messages

specify the version of HTTP being used by them. In the beginning of the

request, the client tells the version it uses, and the server uses the same

or earlier version in the response. The supported values are HTTP/1.0 or

HTTP/1.1 or HTTP/1.2.

Similarly, HTTP header fields of the HTTP request and HTTP

response messages define various characteristics of the data that is

requested or the data that has been provided. Some of the prominent

header fields are: Content-Length that specifies the length of the

content in bytes, Server that specifies the name of the server that

processed the message, etc. The status code of the HTTP response

message and the phrase associated with it indicate the result of the

HTTP request. Some of the prominent codes include 200 OK which is

standard response for successful HTTP requests, 404 Not Found which

indicates that the requested document does not exist on the server, 505

HTTP Version Not Supported, etc.

Last, but not least critical of the HTTP messages is the entity body

which contains the requested object itself. The body thus constitutes the

main payload of the HTTP messages. The entity body is used with POST

method and not with GET method. The body can be any ASCII (American

Standard Code for Information Interchange) message. Thus, in SOAP

over HTTP transportation of web service messages, the SOAP request is

encapsulated into the HTTP request message body and the SOAP

response is encapsulated into the body of the HTTP response.

