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Abstract

Quantum emitters such as quantum dots or colour centres in diamond have a range of

interesting applications ranging from quantum sensing to biomedical imaging to being the

active material in the newest generation of screen technologies. However, the particular

environment a quantum emitter is exposed to can lead to intermittency of its fluorescence

known as blinking. Understanding blinking dynamics and its causes is essential for optimizing

quantum emitters for technological applications. A first step in this process is the correct

analysis and inference of underlying blinking rates which characterize the internal switching

process of the quantum emitter from a dark to a bright state and vice versa. This thesis

develops a methodology for inferring these rates from data using Bayesian analysis. It treats

the underlying blinking process as a hiddenMarkov chain. Both discrete and continuous-time

Markov models are developed and applied in order to infer switching rates from fluorescence

time-series having a physically realistic range from very slow to very fast blinking. The

hidden-chain Markov model developed here could find applications in other areas such as

finance and computational biology.
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1
Introduction

Single photon emitters or quantum emitters are fundamental ingredients for many quantum

technological applications. As the name indicates, single photon emitters are capable of

emitting a single photon per excitation pulse [1]. Only true quantum emitters ensure the

correct experimental realisation of quantum cryptographic protocols and quantum computa-

tion schemes [2]. Over the years, many different physical implementations of single photon

emitters have been developed [1]. Starting originally from trapped atoms and ions, the first

stable single-photon emitter in the solid state at room temperature with enormous practical

implications was successfully demonstrated in diamond [3]. Today, the most prominent

single-photon sources in the solid state include colour centres in diamond [4, 5] and quantum

dots [6, 7], with many new candidates in other material systems being heavily explored [8].

One of the predominant requirements of a useful single-photon emitter is its stability in emis-

sion. That means, the emitter should be free from blinking (periods of different intensities)

or bleaching (permanent loss of the ability to fluoresce) [8]. However, many of the current
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quantum light sources exhibit this unsought blinking phenomena [9], depending on the par-

ticular mesoscopic environment they are embedded in. Blinking will naturally limit their

potential for applications. This thesis develops powerful new techniques to analyse blinking

data for quantum emitter systems. Accurate analysis provides a tool to better understand the

physical processes responsible for blinking, paving the way for novel engineering of quantum

emitters to eliminate blinking.

1.1 Background and motivation

There are mainly two mechanisms reported in the literature that explain the physical mecha-

nism behind the blinking phenomenon. These are photo-induced blinking [9] and charge-state

induced blinking [10, 11]. As a concrete recent example of blinking, the behaviour of gal-

lium nitride (GaN) single-photon emitters was studied with varying laser excitation power

in Ref [9]. The normally stable emission from GaN started to exhibit blinking when the

excitation power was increased over a certain threshold. The authors also found that the

onset of blinking was accompanied by a significant change in photon statistics. As a possible

explanation, the authors invoked the light-induced activation of a new trap state that can

provide a new non-radiative pathway to the ground state. An example for a charge-state

induced blinking behaviour was reported in Ref [10]. They detected two types of blinking

in their data. One they attributed to the change in charge state happening in the core of QDs

and the other one to the fluctuations in the charge state of electron-accepting surface states.

In a study of nitrogen-vacancy (NV) centres in nanodiamonds [12], blinking was observed

once the ND size was reduced to 5nm and below. A possible explanation there again is the

closeness of NV centres to electron-accepting surface states. In any case it is clear that a good

understanding of the underlying physical mechanism of the process is needed to eliminate

blinking from these systems and make them useful for applications. The key insight into

the physical mechanism typically comes from a thorough analysis of the switching rates.

However, these rates are often the hardest information to extract from the raw time series of

counts [13]. This thesis focuses on developing novel methods for reliably inferring the rates

of switching events from blinking data for a better insight into blinking mechanisms.

Blinking typically leads to step-like switches in the fluorescence time trace, as illustrated

in Figure 1.1(a). The most commonmethod used to differentiate between the on and off states
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Figure 1.1: (a) Simulated blinking time-trace with clear on and off states. The doted line represents a threshold

intensity level that differentiates between the on and off states. (b) Simulating a blinking time trace with

the same switching rates as in (a) but reduced signal-to-background ratio results in obvious blinking but no

applicable threshold. (c) When the switching rates between on and off are high relative to the data sampling

rate then it is hard even to see that the emitter is blinking.

is threshold analysis [13–16]. A plausible threshold is illustrated in Figure 1.1(a). However,

the choice of threshold intensity and sampling interval can significantly influence the statistics

of the on and off states [17, 18]. These are often essentially arbitrary choices. What is more,

this method is useful only if the on and off states are clearly differentiated from the blinking

time series as for the simulated data in Figure 1.1(a). The use of the threshold technique

to analyse the on and off states becomes difficult for emitters fluorescing at low intensity

levels or when there is a high background noise as depicted in Figure 1.1(b). In both these

cases brief on and off intervals are difficult to distinguish from the noise spikes. A similar

problem arises if the blinking switches at rates high relative to the sampling rate as shown in

Figure 1.1(c). This thesis presents a method based on Bayesian statistical inference to find

the blinking rates from photon-count data series. The method works for blinking quantum

light emitters independent of their brightness or speed of switching. Bayesian analysis is

a powerful probabilistic modelling tool that allows inference of unknown parameters from

noisy data. This method does not require a threshold intensity level to differentiate between

the on and off states.

The observed photon counts that are accumulated over the sampling interval obscure

the underlying process of a blinking quantum light emitter. In this thesis we have developed

three different models for a blinking quantum light source. These models are based on hidden

discrete and continuous-time Markov processes [19]. A Markov process is a memoryless

stochastic process in which the current state is sufficient to determine the future dynamics

[20, 21]. The simplest model considered is a blinking emitter with very low switching
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rates. In this case, the possibility of switching within a sampling interval can be assumed to

negligible. Such an emitter is well modelled using a discrete-time Markov process, with state

transition happening only at the sampling boundaries. The second model proposed considers

the possibility of multiple switching events inside the sampling interval or equivalently, that

the sampling interval spans several time steps of the model. The last model is the extreme

case of where the emitter can switch states at any point in time. This case is modelled with a

continuous-time Markov process. The Bayesian inference on these models then allows us to

determine the underlying switching rates of the state of the emitter hidden in the discretely-

sampled detection counts. Consequently we can tackle switching rates ranging anywhere

from low rates to very high rates with the appropriate model and inference.

1.2 Outline of the thesis

Chapter 2 briefly outlines blinking quantum light emitters. This chapter also explains discrete

and continuous-time Markov processes required to model a blinking process. Chapter 3 is

an introduction to Bayesian statistics and it introduces the essential tools required in the

following chapters. Chapter 4 analyses the two models based on discrete time Markov

processes. The first model is the simplest blinking process where the emitter is assumed to

stay either on or off during the entire sampling interval, and switching of state can occur

only at the sampling boundaries. This model is applied to published experimental data as an

illustration of its utility. The second model considers subintervals inside a sampling interval

to account for faster rates. Chapter 5 analyses the continuous switching of a blinking emitter

using a continuous timeMarkov process. In this chapter we also analyse the error in the single

step model when the switching rates are high. Chapter 6 concludes the thesis, presenting

some of the extensions that may grow out of this work.
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Blinking Quantum Emitters

Quantum light emitters received a lot of attention in the scientific community for their promis-

ing applications in various fields, such as quantum technology and medical applications. As

introduced in Chapter 1, blinking imposes severe limitations on the usefulness of quantum

light emitters. The occurrence of dark intervals can greatly affect the overall number of

emitted photons plus the photon statistics of the emitted light. Though these states are not

directly observable, they are correlated with the photon counts that are measured.

It is necessary to understand the underlying physical mechanism of the blinking emitters

in order to make them stable for engineering systems with desired properties. Investigators

have put forward a variety of possible explanations behind blinking phenomena based on the

characteristics of the observed blinking. This thesis particularly focuses on the analysis and

understanding of rates of the switching events in a blinking emitter using simulated blinking

time traces, which is necessary for understanding the blinking process more deeply.

This chapter is organized in sections as follows: Section 2.1 gives a short review of

blinking in quantum emitters and focuses on the characterisation of blinking from observed
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photon counts. It also briefly outlines the conventional analysismethod used to separate the on

and off states in experimental blinking data, Section 2.2 discusses discrete and continuous-

time Markov processes which are essential for understanding the coming chapters while

modelling of physical blinking processes.

2.1 Photoluminescence intermittency

The term photoluminescence (PL) refers to the emission of light frommatter when it is excited

with electromagnetic radiation. The random fluctuation in the emission states between bright

and dark state on continuous excitation in a quantum emitter is referred as blinking. In fact,

it is a common phenomenon that has been observed with most of the current quantum light

emitters [9], including quantum dots [22–25], diamond colour centers [12, 13, 26–28] and

single molecules [29, 30]. The potential applications of these quantum light sources are

limited by the PL blinking. A detailed characterisation of the blinking mechanism is needed

for understanding the underlying physics of the blinking system in particular.

An understanding of the underlying physical mechanisms often comes from the de-

pendence of switching rates on particular external parameters such as excitation intensity,

wavelength, temperature, and polarisation. Yet, these rates are often the hardest to extract

from the raw time series of photon counts. The presence of noise in the data makes it even

worse and the task of extracting meaningful switching rates from blinking signals has been

a challenge [13]. A universal physical mechanism that could possibly explain the blinking

phenomena is still an open problem [9, 24, 31].

2.1.1 Characterisation of blinking data

Usually, in photon counting experiments the photons are counted over a given sampling

interval of fixed width [17, 32]. That is, the photon counts that are registerd during the

sampling interval get integrated to produce photon counts per time bin. The discrete nature

of photons causes statistical fluctuations in their detection on short time scales. These kind

of fluctuations in the registred photon counts are intrinsic and cannot be avoided. They are

called shot noise. An uncorrelated light source with a constant intensity can be modelled

using Poissonian statistics [33], with the probability of observing k photons in a sampling
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Figure 2.1: Experimental blinking data for a silicon-vacancy centre in nanodiamond material under 30nW

excitation, reproduced from [13] with authors’ consent. (a) Photon counts were recorded periodically at a

certain sampling rate, here normalised to unity. The illustrated threshold was not sufficient, and the authors

required multiple thresholds to identify “on” and “off” intervals. (b) Once on and off intervals are identified,

the histogram of their durations yields a characteristic lifetime, and hence a blinking rate.

interval given by,

Pk =
n̄k e−n̄

k!
. (2.1)

here, n̄ is the average number of photons observed in the particular chosen sampling interval.

The simplest and generally accepted model for PL blinking is that there are only two

states included — a bright (on) and a dark (off ) state. The most common analysis method

for extracting the on and off states from a blinking time series is threshold analysis [13–16].

Here, an ad-hoc threshold intensity Ithreshold is chosen to distinguish between on and off

states, as illustrated in Figure 1.1(a). There are various procedures described in the literature

to determine a sensible Ithreshold for a given blinking time trace. Examples include choosing

Ithreshold to be the mid point between the peaks of the on-off intensities, and selecting a point

about 2–3 times standard deviation higher than the average intensity of the off state from the

blinking time trace [15, 16].

It can be difficult to find a suitable threshold for certain experimental data. A particularly

illustrative example is provided by [13], in which blinking is reported for Silicon-vacancy

centres in nanodiamonds. Figure 2.1 reproduces the blinking data summary from [13]with the

authors’ permission, renormalised to make the sampling interval unity for better comparison

with the rest of this thesis. In their original analysis, the authors required multiple thresholds

to differentiate the on and off states to find the switching rates.

Given a threshold, the emitter is taken to be in the on state if the intensity In in an nth

time bin, satisfies In > Ithreshold and it is off if In ≤ Ithreshold . Once the on and off states are

distinguished, then the durations of on and off intervals can be found from the binned data

series [15, 17], and the appropriate parameter distributions can be fitted to this data. This
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thesis presents a more direct method for inferring the switching rates that does not rely on

selecting an arbitrary threshold intensity.

There have been general proposals for the possible physical mechanisms behind blinking

phenomena. For example, Efros and Rosen [34] proposed an explanation for the random

fluctuations of a quantum dot (QD). The theory was based on the charge states found in QD’s.

When a QD is neutral, the electron-hole pair generated by the photo-excitation recombines

radiatively leading to photoluminescence, converting to the on state of the system. However,

photo-excitation can cause Auger ionisation as the electron leaves the QD and stays in

surrounding acceptor-like states. This leaves the QD in a charged state. This charged

QD influences the surrounding electron-hole pairs and thereby causes rapid Auger-like non

radiative recombination [24]. Auger recombinations are faster compared with radiative

recombinations. So this suppresses the photoluminescence in charged QDs. The QD remains

in the dark state until it get neutralized again. This theory predicted the characteristic durations

of on and off intervals to be exponential. It should be noted that some experiments found

a power law behaviour, characterised using conventional methods [14, 24, 31]. It is clear

that careful discrimination of exponential and power law dependence is only possible by

careful and reliable analysis of the blinking data. The focus of this thesis itself is to develop a

new theoretical approach to analyse blinking data more efficiently and accurately. We model

blinking as a two state Markov process which naturally models a system whose time spent in

each on and off state decays exponentially. The following section gives a detailed description

of discrete and continuous-time Markov processes underlying our model of a blinking light

emitter.

2.2 Markovian Models for blinking

A Markov process is a memoryless stochastic process, and as such makes minimal assump-

tions about the physical mechanism causing the blinking. The evolution of the two states

from a blinking emitter can be modelled using such a process. In particular, for a slow

switching process our study assumes a discrete-time Markov process. As an extension we

also developed a continuous-time Markov process which will be valid for modelling blinking

for slow to fast switching rates. In general, the state of the system is not directly observable,

and therefore we talk about a hidden Markov model. This model will be described in the
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sections to follow.

2.2.1 Discrete Time Markov Chain (DTMC)

The defining characteristic of a Markov chain is the Markov property, which says the state of

the system in the future depends only on the current state of the system and is independent of

the past states [20, 21]. This can be mathematically written as,

P(Xn+1 = k |Xn = ln,Xn−1 = ln−1, ....X0 = l0) = P(Xn+1 = k |Xn = ln), (2.2)

here, Xn refers to current state at time n, Xn+1 to the future state and X0,X1..Xn−1 to past

states of the system. k, ln, ln−1.. represents the discrete set of states in a state space S. For a

time-homogeneous system,

P(Xn+1 = k |Xn = l) = plk for all n ≥ 0, l, k ∈ S. (2.3)

plk is called the transition probability of Markov chain, which gives the probability to jump

from a state l to k for all possible values of n. The evolution of the state can be represented

by a transition matrix P where, Plk = [plk], which gives all possible transitions between the

states in S. The two properties that a probability transition matrix satisfies are, plk ≥ 0 and∑
k∈S plk = 1 for all k in S, this is called a column stochastic matrix. Consider a system with

initial state l with a probability distribution sl . After n transitions the probability distribution

of a state k can be found from,

sk =
∑
l∈S

sl p(n)lk , (2.4)

where, p(n)lk = P(Xn = k |X0 = l), which is the n-step transition probability.

The n-step transition probabilities satisfy an equation called Chapman-Kolmogorov

equations given by [19, 21],

p(n)lk =
∑
r∈S

p(m)lr p(n−m)
rk l, k ∈ S (2.5)

here, r is an intermediate state on the trajectory from l to k and occurs at a time 0 ≤ m ≤ n.

This can be written in matrix notation as P(n) = [p(n)lk ] with P(n) as the n-step transition

probability matrix, which satisfies the Chapman-Kolmogorov equation, P(n) = P(m)P(n−m).

Here P(n) = Pn where n is the power of P.

As an example consider the relevant on-off blinking system. The system can be either

in the on (1 ≡ [0 1]T ) or the off (0 ≡ [1 0]T ) state at a given time step. Let the transition
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Figure 2.2: Transition graph for an on-off system with a DTMC

probabilities be p01 = α1, p10 = β1. This two state Markov chain can be represented using

a graph known as transition graph given in Figure 2.2. The nodes represent the possible

states of the system and arrows represent the transition probabilities between the states. The

transition matrix for the on-off system is given by,

P = ©«
0 1

0 1 − α1 β1

1 α1 1 − β1

ª®¬. (2.6)

With the above matrix we can find the transition probability for the system to be in the

state 0 or 1 in next time step given the current state, which is plk . If P has definite eigenvalues

then the n-step transition matrix Pn can be found by first diagonalizing P. If that is the case

then there exists a 2 × 2 matrix S such that, P = S D S−1. Here, D is the diagonal matrix of

P. The two eigenvalues of P are λ1 = 1 and λ2 = (1 − α1 − β1), so the terms are given by,

S =

α1
β1
−1

1 1

 , D =

1 0

0 1 − α1 − β1

 , S−1 =
1

α1 + β1


α1 α1

−α1 β1

 . (2.7)

The n-state transition matrix can be written by considering the convention, Pn = S Dn S−1,

that is,

Pn =
1

α1 + β1


β1
α1
−1

1 1



1n 0

0 (1 − α1 − β1)
n



α1 α1

−α1 β1

 . (2.8)

On matrix multiplication the above equation gives,

Pn =
1

α1 + β1


β1 β1

α1 α1

 +
(1 − α1 − β1)

n

α1 + β1


α1 −β1

−α1 β1

 . (2.9)

Consider one of the eigenvalues of the transition matrix λ2 = (1 − α1 − β1). Since,

0 ≤ α1, β1 ≤ 1, the limits of λ2 are −1 ≤ λ2 ≤ 1. The two cases when α1 = β1 = 0

and α1 = β1 = 1 are not interesting because the former condition satisfies a steady state

and the later indicates an indefinite swapping of states. Thus |λ2 | < 1, which implies
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(1 − α1 − β1)
n −→ 0 as n → ∞. Hence the steady-state limit of the transition probabilities

are given by the first term of the Equation 2.9,

lim
n→∞

Pn =
1

α1 + β1


β1 β1

α1 α1

 . (2.10)

Here, the two elements in the rows are identical, which implies that the system is in the on

state with a probability of α1/(α1 + β1) and in off state with a probability of β1/(α1 + β1) regardless

of the initial state of the system. That is,

1
α1 + β1


β1 β1

α1 α1




q

1 − q

 =
1

α1 + β1


β1

α1

 , (2.11)

where, [q 1 − q]T represents the state of the system.

2.2.2 Continuous Time Markov Chain (CTMC)

Continuous Time Markov Chains (CTMC) also have the memoryless property as that the

discrete version (DTMC) does. However unlike DTMC, the state of the CTMC is explicitly a

function of time. We write the state as X(t)where t ≥ 0. In general, the state space of CTMC

is finite or countably infinite set S. The Markov property for CTMC at each time point for

any pair of states i, j ∈ S can be written as,

P(X(t + t′) = j | X(t′) = i,X(u)) = P(X(t + t′) = j | X(t′) = i) = pi j(t), (2.12)

where, t, t′ ≥ 0 and 0 ≤ u ≤ t′.

Here, pi j(t) is the transition probability from state i to state j after time t. There proba-

bilities can be assembled into a transition matrix P(t) with [P(t)]i j = pi j(t). The transition

from one state to another depends on the transition probabilities. We are considering a time-

homogeneous process here. For a time-homogeneous process the probability of transition

from one state to another depends only on the time difference between the two state. Hence,

pi j(t) = P(X(t + t′) = j | X(t′) = i) = P(X(t) = j | X(0) = i). (2.13)

The transition matrix P(t) has the following properties,

1. If the system is at a particular state initially, a t = 0 it must remain in the state, i.e,

P(0) = I
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2. The transition probabilities from a state to all other states sum to one,
∑

j∈S pi j(t) = 1

3. P(t) satisfies the Chapman-Kolmogorov equation, P(t + t′) = P(t) P(t′)

The system spends a random duration of time in each state before jumping to another state.

The occurrences of jumps only depends on the transition probabilities but not the time spent

in a particular state. It turns out that there is a unique continuous distribution to describe

the time spent in each state that has the memoryless property and that is an exponential

distribution. So the time spent in a state i can be written with holding-time parameter νi as

e−νit . The time spent in state i (i.e, the lifetime of i) decreases with increasing νi. Hence νi

is the total exit rate out of state i. (for νi = 0, the system cannot transition to another state.)

The holding time parameter νi for a state i can be written as the sum of all the rates to other

states j, νi j :

νi =
∑
j,i

νi j i ∈ S (2.14)

All these transition rates νi j can be collected as a matrix Q matrix called an infinitesimal

generator or simply generator matrix, given by,

[Q]i j = νi j, (2.15)

where, i, j ∈ S and νii = −νi.

This generator matrix is analogous to the one-step transition matrix of DTMC. An im-

portant property associated with the generator matrix is that elements in a row sum to zero,∑
j∈S

νi j = 0. (2.16)

The relation between the generator matrix Q and the transition matrix P(t) is given by

the Kolmogorov forward and backward equations. Here P ′(t) is the derivative of the matrix

elements p′i j(t).

Backward equation: d
dt P(t) = P ′(t) = Q P(t)

Forward equation: d
dt P(t) = P ′(t) = P(t)Q

We can then write the forward equation as,

p′i j(t) =
∑
k∈S

pik(t) νk j . (2.17)

As a specialisation relevant to the blinking analysis, consider a two state system, say an

on-off system shown in Figure 2.3. Let rα ad rβ be the holding time parameter for the on
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Figure 2.3: Transition graph for an on-off system for a CTMC

and off states or since there is only one other state to switch to, the rate of switching on and

switching off respectively. As shown in Figure 2.4 each on period ends in the off state, the

time spent in the on state can be written as exp(−rβ t). Similarly the time spent in the off state

can be written as exp(−rα t). The generator matrix Q for the CTMC with (X(t), t ≥ 0) is,

Q =

−rα rα

rβ −rβ

 . (2.18)

We can now apply the Kolmogorov differential equations to the two-state model illustrated

in Figure 2.3. Here only the forward equations are considered and are given below,

p′00(t) = −rαp00(t) + rβp01(t) p00(0) = 1 (2.19)

p′01(t) = rαp00(t) − rβp01(t) p01(0) = 0 (2.20)

p′10(t) = −rαp10(t) + rβp11(t) p10(0) = 0 (2.21)

p′11(t) = rαp10(t) − rβp11(t) p11(0) = 1 (2.22)

From the property of transition probabilities, transition from a state to all other states sum to

one,

p00(t) + p01(t) = P(X(t) = 0 or 1|X(0) = 0) = 1, (2.23)

p10(t) + p11(t) = P(X(t) = 0 or 1|X(0) = 1) = 1. (2.24)

Substituting for p01 and p10 in the forward equations we can determine the transition proba-

bilities pab(t) from state a to state b in interval ∆t:

p00(∆t) =
1

rα + rβ

(
rβ + rαe−(rα+rβ)∆t

)
, (2.25)

p01(∆t) =
rα

rα + rβ

(
1 − e−(rα+rβ)∆t

)
, (2.26)
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Figure 2.4: Exponentially distributed dwell times for each state.

p10(∆t) =
rβ

rα + rβ

(
1 − e−(rα+rβ)∆t

)
, (2.27)

p11(∆t) =
1

rα + rβ

(
rα + rβe−(rα+rβ)∆t

)
. (2.28)

Relation between transition probability and rate of switching

Let α1 and β1 be the transition probabilities between states in a DTMCmodel. The probability

densities of switching on and off can be written in terms of an exponential distribution as

given below,

ρon(t) = rα e−rα t, (2.29)

ρoff(t) = rβ e−rβ t, (2.30)

where, rα and rβ are the switching on and switching off rates respectively. From the above

equations the probability of staying in on and off states is,

P(not swiching off in the inerval [0, t]) = 1 −
∫ t

0
rβ e−rβ t ′ dt′ = e−rβ t (2.31)

P(not swiching on in the inerval [0, t]) = 1 −
∫ t

0
rα e−rα t ′ dt′ = e−rα t (2.32)

The relationship between the transition probabilities and the rates of switching can be easily

obtained from the above two equations are,

α1 = 1 − e−rα t, (2.33)

β1 = 1 − e−rβ t . (2.34)

It is assumed that no switching events are occurring during the interval t.

The basic tools explained in this chapter are used in the construction of blinking models

in the following chapters.



3
Logic and Probability theory

In real life we often deal with situations or facts that are not perfectly predictable, such

as the question if it will rain tomorrow at 4 pm or not. Incomplete information makes it

hard to predict events with certainty. However, what we can do is make a statement of how

plausible the event would be. In the same way, scientific studies more often than not deal with

parameters that are not directly accessible. With limited information, an exact prediction of

the unknown parameters is not possible. However, finding a region of plausibility for the

unknown parameters is a viable approach. Probability theory in connection with logical

reasoning provides an appropriate tool for quantifying plausibility, and is called Bayesian

probabilistic inference. There are two main key attractive features in Bayesian inference.

The first one, is its ability to incorporate prior information for a problem under consideration.

The second one, is the possibility of marginalising unwanted parameters from the problem,

or the converse, adding additional parameters to an inference. These two make the Bayesian

inference a powerful method for inference even in the presence of noise. The key task in

the thesis is to infer unknown switching rates from noisy blinking data. In such situations
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Bayesian inference can provide a robust picture about parameter uncertainties. This chapter

deals with tools of probability theory that are necessary for the following chapters.

This chapter is organized in three sections: Section 3.1 introduces the concept of plausible

reasoning and its aspects. Section 3.2 introduces Bayesian inference and describes two useful

tools for plausible inference, Bayes’ rule and marginalisation. Section 3.3 clarifies parameter

independencies using a graphical model called a Bayesian network.

3.1 Deductive and Plausible reasoning

Deductive reasoning is a traditional way of determining if a statement is true or false. It uses

a series of premises (propositions) to draw conclusions about an event. The use of deductive

logic is applicable to situations which are certain. Let us consider the following example:

Premises Conclusion

If A is true, then B is true (major premise) Therefore A is false

B is false (minor premise)

We can summarize this structure with Boolean algebra as A = AB, where, the product

of propositions AB represents logical AND. It can also be written in terms of implication

operation A⇒ AB. Here, if B is true, then A can be either true or false. If B is false then A

is also false.

In real situations the information available is often not enough for deductive reasoning.

In these situations it is often desirable to argue about the plausibility of conclusion. The

plausibility of a conclusion changes as we get more information about the system. For

example in many situations people intuitively run arguments like the following:

Premises Conclusion

If A is true, then B is true A become more plausible

B is true

In scientific study, we often have to find the plausibility of unknown parameters given

experimental observations and prior knowledge. A ‘calculus’ of plausible reasoning is useful
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in such situations. Such a ‘calculus of plausibility’ follows from some conditions known as

desiderata.

3.1.1 Desiderata for plausible reasoning

It is a surprising fact that the entire calculus can be pinned down on just three of these

desiderata [35, 36],

1. Degrees of plausibility are represented using real numbers : If proposition A is

more plausible than B, then a greater number is assigned to A than B. Assigning

plausibility to a proposition A also depends on whether it is conditioned on any other

proposition (say C). This conditional plausibility can be expressed symbolically as,

A|C. This is called the “conditional plausibility of A is true given C is true" or simply

“A given C". If there is another proposition B|C, which is less plausible than A|C, then

B|C will be smaller than A|C (B |C < A|C).

2. Qualitative agreement with common sense : The number representing the plausibility

of a propositionmust increase continuously andmonotonically as we get more evidence

that supports the truth of the proposition. A larger number assigned to a proposition

represents its greater plausibility. Also in the limit of certainty it should agree with

logic.

3. Consistency :There are three sub-parts and each stands for a common colloquial

meaning of the word consistency. They are (i) Every possible way that a conclusion

can be reasoned out must give the same plausibility, (ii) All information relevant to

the question should be taken into consideration, (iii) Equal plausibility are assigned to

equal states of knowledge.

3.1.2 Rules for manipulating plausibility

Arguing from the desiderata it is possible to arrive at the rules of plausibility reasoning

[35, 36] and they are,

• 0 ≤ P(A|B) ≤ 1

• product rule: p (A B |C) = p (A | B C) p (B |C)
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• sum rule: p (A + B |C) = p (A |C) + p (B |C) − p (A B|C)

where P(A|B) denotes the plausibility of proposition A given the assumption proposition B

is true.

The function p defines the degree of plausibility of a proposition. These rules are

clearly the same as those obeyed by probability theory [35, 37]. So we arrive at probability

theory as the ‘calculus of plausibility’. These foundations of probability theory are known

as Bayesian probability theory or more specifically extended logic. Inference based on

Bayesian probability theory gives a clear picture about parameters from noisy data. The

following sections give a detailed discussion of Bayesian inference.

3.2 Bayesian Inference

The primary aim of the present study is to infer the unknown switching rates from blinking

data. Utilizing Bayesian inference as the main tool. The probability distribution of unknown

model parameters that are being calculated are called posterior probability distribution. A

simple rule that is utilized to estimate the posterior probability distribution of the model

parameters is called Bayes’ rule, which can be directly derived from the above-described

sum and product rules. Bayes’ rule lets us switch the parameter being infered and the

conditional parameter. Bayesian inference makes use of Bayes’ rule to update the probability

distributions of model parameters as new information becomes available. A detailed account

of the process to be utilized in this study is given in the sub-sections. A more detailed

description on Bayesian Inference and its scope can be found in literature [35, 36].

3.2.1 Bayes’ rule and Marginalisation

The two main pillars of Bayesian inference are Bayes’ rule and marginalisation. These can

be deduced from the sum and product rules as follow:

Bayes’ rule: Bayes’ rule is a very useful tool in data analysis. The ultimate reason for its

usefulness is the fact that it swaps the ‘givens’ with the propositions. Bayes’ rule follows

directly from the product rule and is given by:

p (A | B C) =
p (A |C) p(B | A C)

p (B |C)
. (3.1)
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The above equation can be easily obtained by equating the expansion of p (A B |C) and

p (B A |C) sing the product rule. Now replace A, B and C in Equation 3.1 with propositions

describing the model parameters (M), experimental data (D) and prior information (I) re-

spectively. Then we can use Bayes’ rule to calculate the plausibility of the model parameters,

given the experimental data and the prior information:

p (M | D I) =
p (M | I) p (D | M I)

p (D | I)
, (3.2)

here, p (M | D I) is the posterior probability distribution of M , given D and I, p (M | I) is the

prior probability distribution of theM before observing any data, p (D | M I) is the likelihood,

i.e. probability of observing D, given M and I are true, p (D | I) is the prior predictive

probability for D. Here p (D | I) is the normalisation factor which ensures p (M | D I) = 1.

Hence, Equation 3.2 can be also written as p (M | D I) ∝ p (M | I) p (D | M I).

Marginalisation: Marginalisation is a procedure that helps eliminating the unwanted param-

eters from a model, i.e. it handles the nuisance parameters emerging in the specific model

underlying. Nuisance parameters are occasionally important for analysis but not interesting

for the final conclusions. The marginalisation equation is obtained from the sum and product

rules and reads as follows:

p (A |C) =
∫ +∞

−∞

p (A K |C) dK . (3.3)

Suppose if we are trying to find the probability of the proposition A and we know there is

another parameter K on which A depends. The p (A |C) is calculated irrespective of the true

value of K by considering all possible values K1,K2, ..Kn that K can take. We can write the

probability of A as,

p (A |C) =
n∑

i=1
p (A Ki |C). (3.4)

In real situations, our focus would be on finding the probability of the model parameter

(M). But, often we need to deal with nuisance parameters appearing in the analysis (for exam-

ple background noise in the signal, say γ). Provided experimental data (D) and background

information (I), the marginalisation procedure can be used to get rid of γ. That is,

p (M | D I) =
∫ γn

γ1

p (M γ | D I) dγ. (3.5)

where the summation in Equation 3.4 has been changed to integration for continuous γ.
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3.2.2 Prior probability distribution

The prior probability distribution describes the distribution of the model parameters before

observing some data. Basically there are two kind of priors, one is called an informative

prior and other is non-informative prior.

As the name indicates, the informative prior directly influences the posterior distribution.

For example the prior could contain information from previous studies, prior information

about the model etc. We can use the posterior distribution as prior, while we update the

model with a new set of data.

The non-informative prior is often used when the prior knowledge about the model is

limited. Then it is usual to assign equal probability for all parameters. A more sophisticated

approach would be that a non-informative prior assumes certain symmetries that are then

represented by the probability assignments. The simplest example would be that the state of

knowledge is invariant under permutations of labels. This symmetry implies that we should

assign equal probability to all labels.

3.2.3 Parameter estimation

Parameter estimation refers to the estimation of values of parameters of the model from the

data [36]. In the blinking problem, the switching rates of a blinking system are the model

parameters that we want to estimate. Bayes’ theorem forms a posterior distribution of model

parameters: p(θ |D, I). The posterior distribution can then be used to form summaries about

the model parameters by using point estimates or interval estimates. The point estimate gives

a single most probable value of the parameter. The thesis uses interval estimates for inference,

called credible regions. With credible regions we can find a region containing the true value

of the parameter with a specific probability from a posterior probability distribution [36]. For

example, a 95% credible region contains the true value with 95% probability. The posterior

density region R is then defined by the valueC assigned the desired probability of the credible

region such that, ∫
R

p(θ |D, I) dθ = C. (3.6)
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3.3 Bayesian networks

Bayesian networks (BNs) denote the graphical representation of variables and their relations

in a probabilistic domain. Such graphical models make it easier to visually tackle the con-

ditional dependencies and independencies between variables and describe their probabilistic

distributions. BNs are directed acyclic graphs (DAGs), where each edge in such a graph has

a direction and there are no cycles [38]. The nodes represent variables and edges reflect the

immediate dependencies. An example of a BN is shown in Figure 3.1. A BN can be used to

determine conditional independencies between the variables of a problem, using the property

of d-separability, a concept that will be explained further below.

3.3.1 Independencies from Bayesian network

Consider a DAG given in Figure 3.1. Here, a ‘direct casual influence’ is assumed between

variables that are connected with edges. As an example, Rain (R) is a direct cause of Wet

grass (G). Common notations for BNs associated with a variable X are as folows [38]:

• Parents(X) : The parents of X are a set of variables, which form direct edges to variable

X. For example, in Figure 3.1 parents of variable G are R and S.

• Children(X) : The children of X are a set of variables to which edges from X are

connected. For example, variable W is a child of variable G in Figure 3.1.

• Descendant(X) : These are the children of X and their children and grand children etc.

• Non-descendants(X) : Non-descendant are a set of variables excluding Parents(X) and

Descendant(X). For example, in Figure 3.1, variables R and C are non-descendants of

variable S.

With this notation the general form of local independence statements can be written as,

X ⊥ Non-descendants(X) | Parents(X).

This can be read as X is conditionally independent of its Non-descendants given its Parents

(direct causes of X). The variables with no parents are said to be marginally independent of

their Non-descendants. For example, from Figure 3.1 R and S have no parents, hence R ⊥ S

and S ⊥ R C. The other independencies in Figure 3.1 are W ⊥ R C S |G, C ⊥ S G W | R
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Figure 3.1: A Bayesian network: the nodes represents variables and their dependencies are displayed by the

connected edges.

and G ⊥ C | S R. For example, if we are interested about wet shoes (W) and it is given that

grass is wet (G), then all extra information about Rain (R) or sprinkler on (S) are not any

more informative. Even they have influence on the wet shoes (W), the information about wet

grass (G) will provide all the information needed.

3.3.2 Joint probability distribution from Bayesian network

BN are a graphical representation of a factorization of the joint probability distribution

over all the parameters. The factors of the joint probability distribution are of the form of

conditional probabilities, p(X | Parents(X)). The full joint probability distribution is given by

the following chain rule of BNs [39, 40],

P(X1,X2..Xn) =
∏

i

P(Xi | Parents(X)). (3.7)

Using Equation 3.7, the joint probability distribution of Figure 3.1 can be written as,

P(R C S G W) = P(W |G) P(G | R S) P(C | R) P(R) P(S). (3.8)

3.3.3 d-separation

d-separation denotes a method of testing weather the independencies between two variables

A and C given B holds in a given BN, and goes beyond the local independencies mentioned

earlier. Two variables A and C are said to be d-separated given B, if all nodes between A and

C are blocked by B. The d-separation test can be used to find the indepedencies in a joint

probability distribution from a BN. Hence with a d-separation test for a set of variables A, B,
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Figure 3.2: Bayesian networks showing three types of connections defining d-separation. (a) Indirect casual

effect (b) Common cause. (c) Common effect.

C, one can write, P(A | B C) = P(A | B), if all paths between A and C are blocked by B. The

dependencies between A and C change as the information about B becomes available [41].

In the simple case of direct connection, A and C are directly connected through an edge

(A→ C). It is easy to see that there is a direct correlation between A and C regardless of any

other evidence, say B.

In an indirect connection, two variables whose dependencies are considered are not

connected with a single edge, but via other variables. For example consider a simple case

with three variables, A, B and C, as illustrated in Figure 3.2. There are mainly three types of

possible connections,

(a) Indirect casual effect (sequential value) with a sequential connection between A, B and

C as shown in Figure 3.2 (a), the information can flow from A to C if B is unknown.

However, the presence of evidence about B can block the information flow from A to

C. Hence, p(C |B, A) = p(C |B). The Joint probability distribution for the BNs can be

written as,

p(A,B,C) = p(B |A) p(A) p(C |B). (3.9)

(b) In the case of the common cause (divergent value), B is a parent, both A and C depend

on B, and there is no direct connection between A and C as depicted in Figure 3.2

(b). Here A and C are conditionally independent given B. That is p(A|B,C) = p(A|B).

Also the symmetry of the independencies follow, p(C |B, A) = p(C |B). With the BN, it

is easy to write the joint probability distribution of variables,

p(A,B,C) = p(A|B) p(B) p(C |B). (3.10)

(c) For the common effect (convergent value), A and C are parents of B as shown in

Figure 3.2 (c). Unlike in the above cases, information cannot flow between A and C, if
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B is not observed. That is, A can influence C only if B is known.

The conditional independencies obtained from the Bayesian network are used in the

following chapters to find the independencies between model parameters for the blinking

problem.



4
Discrete-time Markov Chain Models for a

Blinking Emitter

A critical step in making an inference on the blinking rates from observed fluorescence data

is the construction of a model of how the counts arise including all the sources of noise.

Throughout the thesis, the blinking emitter is considered to have only two relevant states that

affect the fluorescence levels: an on state and an off state. Further we assume that there

is some mechanism that causes the emitter to switch between these states. In the present

work, various models for blinking are constructed, but in general they will all be Markov

processes. This chapter discusses modelling a blinking emitter with a Discrete-time Markov

Chain (DTMC) and conducting the inference accordingly. In DTMC, a system is considered

to be in a particular state for the entire interval of a time step.

This chapter is organized in sections, with Section 4.1 focuses on a simple model for the

blinking emitter in which the state of the system fixed for the entire sampling interval and

can only switch at the boundaries of the sampling interval. Section 4.2 consider the model
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where the sampling interval spans multiple time steps.

4.1 Discrete-time Markov Chain - Single-step Model

As discussed in section 2.2.1, a two-state Markov chain can be used to model a blinking

emitter. The key point is that the current state of the emitter is sufficient to determine the

future dynamics, i.e. the process has no memory. For simplicity, this chapter starts out by

considering the state to be fixed for the entire sampling interval. Switching events only occur

at the boundaries of the sampling intervals.

4.1.1 DTMC single-step model description

Consider an emitter which can change its state only at the boundaries of sampling intervals.

We denote the switch-on and switch-off probabilities as α1 and β1, respectively. Later, the

subscript will represent the number of time steps in a given sampling interval. The graphical

representation of the model is depicted in Figure 4.1.

OFFON

��

��

1-��1-��

Figure 4.1: A discreteMarkov process for state evolution of the blinking emitter with one time-step per sampling

interval. α1 and β1 are the switching probabilities at each time step.

The blinking model is also parametrized by the fluorescence and background photon

count rates λ and µ respectively. If the emitter is in an off state then the detector can

still register counts due to noise processes in the detector itself or the associated counting

electronics known as dark-counts. These counts are well-modelled by a Poissonian process

with a rate µ. While fluorescing, it is assumed that the detector registers photon counts in a

time scale which is much longer than the quantum regime. Then the photon counts are also

well modelled by a Poissonian process (i.e. shot noise) with an overall rate λ that includes

detector inefficiencies. The observed counts are then Poissonian with a rate of either µ or

µ + λ since the combination of two independent Poissonian processes is again Poissonian.
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Given the state sn−1 at the beginning of time-step n, and λ and µ, the probability of seeing cn

counts as given in Equation 2.1 is

P(cn | sn−1 λ µ I1) =


e−µ µcn

cn! sn−1 = 0
e−(λ+µ) (λ+ µ)cn

cn! sn−1 = 1
(4.1)

where sn−1 = 1 represents the on state and sn−1 = 0 represents the off state of the system. I1

tags the single-interval model as the background information. Clearly, if we knew the state

of the emitter at each data point, it would be a simple matter to infer the switching rates.

Unfortunately, the states are not directly observable, and worse still, because the states are

not observed, the switching probabilities become dependent on the entire history of the count

data. This makes the inference considerably more involved.

Bayesian network for the DTMC single-step model

We can summarize the dependencies amongst the variables by the Bayesian network (BN)

[42] shown in Figure 4.2. In the BN, sn−1 represents the initial state of the emitter at the

nth sampling interval. For the single-step model I1, the initial state extends for the whole

duration of the interval.

The key variable independencies are the following

α1 ⊥ β1 ⊥ λ ⊥ µ | I1, (4.2)

sn ⊥ su | sn−1Ω1 (u < n − 1), (4.3)

cn ⊥ cu sv | sn−1 Ω1 (u , n, v , n), (4.4)

where Ω1 = α1 β1 λ µ I1 for compactness and a ⊥ b | c denotes a is indepenedent of b given

c. We will make use of these independencies in the following section.

4.1.2 Bayesian Inference on the DTMC single-step model

Ultimately, the quantity that needs to be inferred is P(α1 β1 | ®c I1), which is the probability

distribution of α1 and β1 given photon counts ®c and background information about single-step

model I1. Using Bayes’ rule, the posterior probability distribution of α1 and β1 can be written

as,

P(α1 β1 | ®c I1) =
P(α1 β1 | I1) P(®c | α1 β1 I1)

P(®c | I1)
. (4.5)
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Figure 4.2: A partial Bayesian network representing the joint probability distribution of problem parameters.

The pattern of nodes and connections inside the central shaded region representing sampling intervals, which

are repeated for each data value. The parameters of interest are α1, β1, λ, and µ, given the observed counts cn.

Enough of the full network is drawn to be able to easily determine the variable independencies. In the case of

a single step over the sampling time, sn−1 is the state over the entire sampling interval.

The rates of fluorescence and background counts, λ and µ, can be added and then

subsequently removed by marginalisation as discussed in Section 3.2.1,

P(α1 β1 | ®c I1) =

∫
dλ

∫
d µ

P(α1 β1 | I1) P(®c λ µ | α1 β1 I1)

P(®c | I1)
(4.6)

=

∫
dλ

∫
d µ

P(α1 β1 | I1) P(®c | λ µα1 β1 I1) P(λ µ | α1 β1 I1)

P(®c | I1)
. (4.7)

The above equation can be simplified using the product rule to give,

P(α1 β1 | ®c I1) =

∫
dλ

∫
dµ

P(α1 β1 λ µ|I1) P(®c |Ω1)

P(®c | I1)
. (4.8)

Given independencies in 4.2, we can write,

P(α1 β1 λ µ | I1) = P(α1 | I1) P(β1 | I1) P(λ | I1) P(µ | I1), (4.9)

these are the prior probability distributions of α1, β1, λ and µ, and can be taken as constant

over some initial range so that,

P(α1 β1 | ®c I1) =
1
N

∫
dλ

∫
dµ P(®c |Ω1), (4.10)

where,N = P(®c | I1)/P(α1 β1 λ µ | I1) is the normalisation factor and has to be determined at

the end.
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Figure 4.3: Simulated blinking time trace with very low switching rates. The on and off states are clear from

the time trace.

If all the states ®s ≡ s0 s1 . . . sN−1 were known together with Ω1, the probability of all the

counts given Ω1 (P(®c |Ω1)) would be easily determined. As before, we can use he same trick

of adding parameters then marginalising over them. We therefore obtain,

P(®c |Ω1) =
∑
®s

P(®c ®s |Ω1) =
∑
®s

P(®c | ®sΩ1)P(®s |Ω1), (4.11)

where
∑
®s =

∑
s0 . . .

∑
sN−1 . Using the independencies in 4.4, P(®c |®sΩ1) can be simplified to

P(®c | ®sΩ1) =

N∏
n=1

P(cn | sn−1Ω1), (4.12)

where each individual term is determined by Equation 4.1.

The remaining term P(®s |Ω1) cannot be simply factorised over the states despite being

a Markov chain, as observing Ω1 introduces possible dependencies. However it can be

expanded using the product rule and simplified by making use of the independencies in 4.3:

P(®s |Ω1) =

N∏
n=1

P(sn | sn−1Ω1) P(s0 |Ω1), (4.13)

where the terms are expanded in temporal order repeatedly using the product rule. The first

term in the RHS of the above equation is the transition probability of the Markov chain from

a state sn−1 to a state sn. The term P(s0 |Ω1) is the probability of the initial state s0 and can

be taken as equal for both states on and off.

Finally combining the above equations, the inference becomes

P(α1 β1 | ®c I1) =
1
N

∫
dλ

∫
dµ

∑
®s

N∏
n=1

P(cn | sn−1Ω1) (4.14)

× P(sn | sn−1Ω1) P(s0 |Ω1).
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Figure 4.4: Number of plausible histones of the state as the counts are accumulated.

Equation 4.4 can then be used to write the joint distribution between cn and sn,

P(α1 β1 | ®c I1) =
1
N

∫
dλ

∫
dµ

∑
®s

N∏
n=1

P(cn sn |sn−1Ω1) × P(s0 |Ω1). (4.15)

The problemwith Equation 4.15 is that the sum over ®s contains 2N terms each of which has

N products. This will rapidly become intractable as the size of the data grows, as illustrated

in Figure 4.4. Fortunately, it is possible to rewrite Equation 4.15 as a single term with N 2×2

matrix products. Consider the following matrix:

Rn =


P(cn sn=0|sn−1=0Ω1) P(cn sn=0|sn−1=1Ω1)

P(cn sn=1|sn−1=0Ω1) P(cn sn=1|sn−1=1Ω1)

 , (4.16)

and vector

®D0 =


P(s0=0|Ω1)

P(s0=1|Ω1)

 , (4.17)

then ∑
®s

N∏
n=1

P(cn sn |sn−1Ω1)P(s0 |Ω1) = [1 1]
N∏

n=1
Rn ®D0, (4.18)

where the product on the RHS is in decreasing n to the right. The equivalence in Equation 4.18

is readily verified by expanding a few terms out. The matrix multiplication will sum over

the columns of Rn which is a summation over the states sn−1. Each successive multiplication

sums over another state and the final multiplication by the row vector [1 1] will sum over sN .

With this equivalence, the inference reads

P(α1 β1 | ®c I1) =
1
N

∫
dλ

∫
dµ [1 1]

N∏
n=1

Rn ®D0, (4.19)
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Figure 4.5: (a) Contour plot showing the posterior probability distribution for α1 and β1 obtained from the

inference on the simulated time trace shown in Figure 4.3. (b) The credibility regions obtained from the

inference, contain the 50%, 90%, and 99% credible regions. The red dot shown inside the credibility regions

represents the true values of the parameters used in the simulation.

0.00 0.01 0.02 0.03 0.04 0.05
(a)

0.0

0.1

0.2

P(
1)

0.00 0.01 0.02 0.03 0.04 0.05
(b)

0.0
0.1
0.2
0.3

P(
1)

0 2 4 6 8 10 12 14
(c)

0

1

P(
)

0 2 4 6 8
(d)

0

1

P(
)

Figure 4.6: panels (a) and (b) shows the posterior probability distributions of α1 and β1 respectively. Panel (c)

and (d) displays the marginal distributions of λ and µ respectively. The red line represents the true value used

for simulation of the blinking time trace.

which is easily computable. Note that care must be taken to avoid underflow or overflow in

calculating the matrix products.

As a demonstration of the algorithm, for the data given in Figure 4.3 (the data is simulated

with low rates of switch on (0.014 ) and switch off ( 0.01) ), we infer α1 and β1 and obtain

the posterior probability distribution in Figure 4.5 (a). To characterise the uncertainties in

the inference we plot several credible regions of the posterior distribution in Figure 4.5 (b).

Figure 4.6 shows the marginal distributions found from the inference. The red line in the

figure indicates the true value used for simulation. From the figure it is clear that the inference

gives peaks very close to the true values. Running a longer simulation will produce a tighter
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Figure 4.7: panels (a) and (b) shows the posterior probability distributions of α1 and β1 respectively inference

done on the experimental data given in Figure 1.1 (c). The red dotted line is the values the authors found in the

original paper using a double threshold technique. Panel (c) and (d) displays the marginal distributions of λ and

µ respectively.

convergence.

Experimental blinking data for a silicon vacancy centre Figure 2.1 was also analysed and

is plotted in Figure 4.7. In this case the red dotted line is the values that the authors found in

using a double threshold technique for analysis (the data was obtained from the corresponding

author). The inference gives similar values (although suggesting a smaller β1) and also carries

an indication of the uncertainty by providing the entire posterior distribution. This figure

shows the applicability of the method discussed here in real situations. The single-interval

model discussed here is most applicable of situations where the switching rates are low. This

model fails for cases with high switching rates as we will see next.

4.2 Discrete-time Markov Chain - Multi-step Model

In the previous section 4.1, the emitter could only switch states at the boundaries of the

sampling interval. Though this is a hidden Markov model, the inference was simple as the

state is only obfuscated by the Poissonian distribution of counts. The model presented is

expected to be valid if the switching rates per sampling interval are not too large. So that

most sampling intervals are either wholly on or wholly off. If the switching rates get too large

then this is clearly not the case as there is significant probability that the emitter switched

during the sampling interval possibly more than once per sampling interval. This section

successively approaches faster rates by considering the sampling interval as subdivided into



4.2 Discrete-time Markov Chain -Multi-step Model 33

more and more sub-intervals during which the emitter is wholly on or off.

4.2.1 DTMC Multi-step model description

For an emitter it is possible to assume that the total number of photon counts observed in a

sampling interval is the sum of all counts that are registered in each sub-interval within the

sampling interval. This kind of system which switches its state within the sampling interval

can also be modelled by a DTMC. Here we assume equally spaced sub-intervals within each

sampling interval and the probability of transition of states between these sub-intervals are αd

(probability of switching on) and βd (probability of switching off ), as illustrated in Figure 4.8.

OFFON

�d

�d

1-�d1-�d

Figure 4.8: A discrete Markov process modelling the evolution of the state with d time-steps per detection

interval. In this case, αd and βd are the switching probabilities.

The parameters of interest are rates of switch on (rα) and switch off (rβ) per sampling

interval. The switch on and switch off probabilities αd and βd can be written in terms of rα

and rβ as,

αd = 1 − e−rαT/d, (4.20)

βd = 1 − e−rβT/d, (4.21)

where T is the length of the sampling interval and d is the number of sub-intervals.

The counts arising in each of the sub-intervals can be considered as following a Poisson

distribution with a rate λ + µ when the emitter is on and a rate µ when the emitter is off, as

previously discussed in section 4.1. The Bayesian network for the DTMC multi-step model

is drawn in Figure 4.9. The independencies arising from the BN can be written as,

rα ⊥ rβ ⊥ λ ⊥ µ | Id, (4.22)

sn ⊥ su | sn−1Ωd (u < n − 1), (4.23)

cn ⊥ cu | sn−1 snΩd (u , n), (4.24)

where, Ωd = rα rβ λ µ Id for simplicity.
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Figure 4.9: BN for themulti-stepDTMCmodel. Each sampling interval consists of equally spaced sub-intervals,

which can be on or off depending upon the transition probabilities αd and βd . The states sn−1 and sn represent

the state of the emitter at the boundaries of the nth sampling interval.

4.2.2 Bayesian Inference on the DTMC multi-step model

Here we are inferring the rates of switch-on rα and switch-off rβ given the data counts ®c. As

in the previous section 4.1.2, we use Bayes’ rule to find the posterior probability distribution

of rα and rβ,

P(rα rβ | ®c Id) =
P(rα rβ | Id) P(®c | rα rβ Id)

P(®c | Id)
, (4.25)

where, Id denotes the underlying d sub-interval model. The unknown fluorescence (λ) and

background (µ) rates can be marginalized out as in section 4.1.2, and we obtain an expression

analogous to Equation 4.10,

P(rα rβ | ®c Id) =
1
M

∫
dλ

∫
dµ P(®c |Ωd), (4.26)

where,M = P(®c | Id)/P(rα rβ λ µ | Id) is the normalisation factor to be determined at the end.

Further we note,

P(rα rβ | ®c Id) ∝ P(®c |Ωd). (4.27)

The probability of counts observed depends on the state of the emitter. Here, the states

sn−1 and sn are the boundary states at the nth sampling interval, which again can be included

and then marginalized out,

P(®c |Ωd) =
∑
®s

P(®c ®s |Ωd) =
∑
®s

P(®c | ®sΩd) P(®s |Ωd). (4.28)
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Figure 4.10: Simulated blinking time trace with high rate of switching between on and off states. This time

trace is used to demonstrate the working of the multi-step model.

Using the independencies given in 4.23 and 4.24, we can write,

P(®c |Ωd) =
∑
®s

N∏
n=1

P(cn | sn sn−1Ωd) P(sn | sn−1Ωd) P(s0 |Ωd) (4.29)

=
∑
®s

N∏
n=1

P(cn sn | sn−1Ωd) P(s0 |Ωd). (4.30)

This equation can be converted into a matrix form identical to the one given in Equation 4.18,

that is, ∑
®s

N∏
n=1

P(cn sn | sn−1Ωd)P(s0 |Ωd) = [1 1]
N∏

n=1
Rn ®D0, (4.31)

with Rn and ®D0 as in Equation 4.16 and Equation 4.17 respectively.

The states at the boundaries are not enough information to determine the true states of the

emitter in a sampling interval from the observed counts. Since in the model considered here,

there are d sub-intervals and each sub-interval with their own state. Again, including these

states, then marginalization over the states of the sub-intervals in order to find the probability

of count.

A recursive relation for the probability of counts in a sampling interval

In this section, sn does not denote the state at the end of the nth measurement interval, but the

state of the emitter at time n. Also, cn denote the photons (signal + noise) emitted between

times sn−1 and sn. In the following derivation, the sub-state ζd is introduced, in order to

identify a useful recurrence relationship for the DTMC multi-step photon-count distribution

P(cn sn |sn−1Ωd). It is already noted that this distribution is independent of the photon counts

in adjacent measurement windows, which is formally given by the independence condition
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4.24. Consider a single sampling interval with boundary states s0 and s1. For a two sub-

interval case the total sampled counts will be given by c1 = κ1 + κ2, where κ1 and κ2 are the

counts from the first and second sub-intervals respectively. There are only a discrete number

of possibilities: either there are c1 counts in the first sub-interval and zero in the second, or

there are c1 − 1 counts in the first sub-interval and 1 count in the second, and so forth. This

gives rise to the expression

P(c1 s1 |s0Ωd)

= P (κ1 = c1, ζ1 |ζ0Ωd) P (κ2 = 0, ζ2 |ζ1Ωd)

+ P (κ1 = c1 − 1, ζ1 |ζ0Ωd) P (κ2 = 1, ζ2 |ζ1Ωd)

. . .

+ P (κ1 = 0, ζ1 |ζ0Ωd) P (κ2 = c1, ζ2 |ζ1Ωd)

=

c1∑
cd=0

P (κ1 = cd, ζ1 |ζ0Ωd) P (κ2 = c1 − cd, ζ2 |ζ1Ωd) ,

which is the discrete convolution of count probability distributions for each sub-interval.

Since the only measurable quantity is the number of counts c1 over this interval and we do

not have knowledge of the state ζ , it is important to marginalise over the two possibilities of

this intermediate state,

P(c1 s1 |s0Ωd) = (4.32)
c1∑

cd=0
P (κ1 = cd, ζ1 = 0 | ζ0Ωd) P (κ2 = c1 − cd, ζ2 | ζ1 = 0Ωd)

+

c1∑
cd=0

P (κ1 = cd, ζ1 = 1 | ζ0Ωd) P (κ2 = c1 − cd, ζ2 | ζ1 = 1Ωd) ,

where, ζ0 = s0 and ζ2 = s1 and

P(κd ζd | ζd−1Ωd) = P(κd | ζd ζd−1Ωd) P(ζd | ζd−1Ωd).

When switching probabilities are high, however, the emitter state will be (nearly always)

constant over sufficiently small time window. Then an integer d is chosen such that the

distribution P(κd ζd | ζd−1Ωd) is well-approximated by

P(κd ζd | ζd−1Ωd) =



P × (1 − αd) ζd−1 = 0, ζd = 0

P × (1 − βd) ζd−1 = 1, ζd = 1

P × αd ζd−1 = 0, ζd = 1

P × βd ζd−1 = 1, ζd = 0
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Figure 4.11: (a) Contour plot showing the posterior probability distribution for rα and rβ inferred from the

simulated data given in Figure Figure 4.10. (b) Credible regions of the switching rates inferred from the

simulated data. The contours lines indicate the 50%, 90%, and 99% credible regions. The true value is shown

as red dot.

here, P denotes the corresponding Poissonian distribution of counts.

Here, for the calculation of P(cn sn | sn−1Ωd), the requirement is to keep track of the

boundary states sn−1 and sn. Hence there will be four possible combinations of initial and

final states for a sampling interval: (0 → 0), (1 → 0), (0 → 1), (1 → 1). The calculation

of P(cn sn | sn−1Ωd) starts from the first two sub-intervals. Then each step of the calculation

accumulates the next sub-interval, one after another, up-to total of d sub-intervals. Hence the

procedure is to initially assume two sub-intervals, and find the new distribution of possible

counts c1 resulting from the first two sub-intervals. The distribution is calculated by finding

the sum of all possible combinations of counts that could have originated from the first two

subintervals as given in Equation 4.32. For simplicity call the new distribution from first two

sub-interval as P2ζ ,

P2ζ =

c1∑
i=0

P((κ1 = i) ζ1 | ζ0Ωd) P((κ2 = c1 − i) ζ1 | ζ0Ωd). (4.33)

Next, take the third sub-interval into account and consider the first two sub-intervals as a

single block with count distribution P2ζ . Then calculate the possible ways that the counts c1

could have been detected from the first three subintervals,

P3ζ =

c1∑
i=0

P2ζ (κ2ζ = i) P3ζ ((κ3 = c1 − i) ζ3 | ζ2Ωd). (4.34)

Now consider these three as a single distribution. The process continues up to sub-

interval d to find Pdζ , which can then be substituted back into Equation 4.31 to get the



38 Discrete-time Markov Chain Models for a Blinking Emitter

0 1 2 3
(a)

0

1

P(
r

)

0 1 2 3
(b)

0

1

P(
r

)

0 2 4 6 8 10 12 14
(c)

0

1

P(
)

0 2 4 6 8
(d)

0

1

P(
)

Figure 4.12: Marginal distribution: (a) and (b) shows the posterior probability distributions of rα and rβ

respectively. (c) and (d) gives the marginal distributions of the fluorescence and background rates λ and µ

respectively. The red lines represents the true value used for simulation.

posterior probability distributions of rα and rβ. Hence, the equation for inference can be

written as,

P(rα rβ | ®c Id) =
1
M

∫
dλ

∫
dµ [1 1]

N∏
n=1

Rn ®D0, (4.35)

where the normalising constant is given byM = P(rα rβ λ µ | Id)/P(®c | Id).

Figure 4.11 (a) shows the contour plot of the posterior distribution inferred for the

simulated data given in Figure 4.10. The data is simulated with a high rate of rα = 1 and

rβ = 1. The Figure 4.11 (b) shows the credible regions of rα and rβ for the data given in

Figure 4.10. The image can be made smoother by accumulating more number points for

inference while running the algorithm. The inference was done for a total of d = 4 sub-

intervals. The red dot indicates the true values of the parameters. The inference is converged

very close to the true value. The Figure 4.12 displays the posterior probability distribution

of rα and rβ along with the marginal distributions of λ and µ.



5
Continuous-time Markov Chain Model for a

Blinking Emitter

In the previous chapter, discrete-time Markov chains (DTMC) are used to construct a model

for a blinking emitter. This chapter deals with modelling of the blinking emitters using a

continuous-time Markov chain (CTMC). Compared to the discussion in the previous chapter,

the assumption is now that the emitter can change its state at any point in time within a

sampling interval. The first Section 5.1 describes the model in detail. In the last section 5.2

provides the numerical results for inference of switching rates from simulated blinking data.

5.1 Continuous-time Markov Chain model description

In the previous chapter, it was argued that the single-interval model is a good approximation

to the continuous time model in the limit that the switching rates are very small. In that

limit the occasional switch during a detection interval introduces negligible error and most
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Figure 5.1: Graphical representation of a continuous time Markov process modelling the time evolution of the

state. There are infinite time-steps within a given sampling interval. In this case, rα and rβ are the switching

rates.

intervals are either entirely on or entirely off. The emitter can switch at any time, so that the

state is a continuous function of time, i.e. s(t). This situation is modelled by a continuous

time Markov chain (CTMC) as depicted in the Figure 5.1. At any given time, the state can

still only have one of two values but can switch arbitrarily often in any given time interval.

The detection events are as before, with the detectors reporting the accumulated counts from

a finite time window of constant duration T .

The time spent in any state is exponentially distributed as discussed in chapter 2, and since

there are only two states, the next state is deterministic. Accordingly, a natural relationship

between the probabilities α1 and β1 in the previous model, or more generally a model that

allows d switches in a sampling interval with respective probabilities αd and βd , and the

switching rates rα and rβ is given by Equation 2.33 and Equation 2.34 from Section 2.2.2,

which are,

αd = 1 − e−rα T/d, (5.1)

βd = 1 − e−rβ T/d . (5.2)

They are based on the probability of no switching occurring during an interval of duration

T/d. Note that in the discrete model not remaining in the off state was equivalent to switching

on. In this continuous model however, switching can occur at any time, and so it is possible

for the emitter to switch on and then rapidly switch off again within any given time window.

For large d, however, the probability of two switching events in a period of T/d becomes

negligible. Thus in the fully continuous model, the probabilities for the states of the emitter

at the boundaries of the measurement windows of length T can be calculated by considering

d consecutive time windows of length T/d and with switching probabilities αd and βd , and

then taking the limit as d approaches infinity.

The CTMC can be solved by the forward Kolmogorov equations discussed in Section



5.1 Continuous-time Markov Chain model description 41

r�

st-1

� �

ct ct+1ct-1

st-2 st

r�

Figure 5.2: A BN representing the joint probability distribution of problem parameters. The pattern of nodes

and connections inside the central grey region represents sampling interval. Here rα and rβ indicate the rates

of switching. This BN is used to find the variable independencies.

2.2.2. Representing the off state by the vector [1 0]T and the on state by [0 1]T , the transition

dynamics are encoded by the equation

dP(t)
dt
= QP(t), (5.3)

where Q is the generator matrix from Equation 2.18. The formal solution of Equation 5.3

is given by P(t) = exp(Qt). From this solution, we can then determine the transition

probabilities Pab(t) from state a to state b in the interval ∆t as given in Equation 2.25–2.28.

Bayesian network for the CTMC model

A BN showing the relation between the variables in a CTMC model is shown in Figure 5.2.

The st−1 and st are the states at instantaneous time at the boundaries of a sampling inter-

val.i.e. s j = s(t j), where the nth detection interval goes from tn−1 to tn and tn = nT . The

independencies that arise between the variables in the BN, are

ct ⊥ cm |st−1 st Ωc m , t, (5.4)

st ⊥ sm |st−1 Ωc m < t − 1, (5.5)

where, Ωc = rα rβ λ µ Ic. Here Ic represents the background information for the CTMC

model.
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Figure 5.3: Switching events for state starts and ends in the off state (a) zero switch events (b) two switch events,

(c) four switch events, and (d) six switch events.

5.2 Bayesian Inference on CTMC model

The basic inference for rα and rβ using Bayes’ rule is as before,

P(rα rβ | ®c Ic) =
P(rα rβ | Ic) P(®c | rα rβ Ic)

P(®c | Ic)
. (5.6)

®c denotes a list of n detector counts and the parameters we want to infer are rα and rβ, while

at the same time we want to marginalise over the rates µ and λ, leading to an equivalent

expression to Equation 4.8. To get traction on the problem, we add states at the boundaries

of the detection interval s j ,

P(®c |Ωc) =
∑
®s

P(®c | ®sΩc)P(®s |Ωc). (5.7)

Note that in this situation the states s j at the boundaries are not enough to specify the state

during the detection interval, unlike in the DTMC single-step case where the state was

constant during the whole interval. Now with the independencies given in 5.4 and 5.5, the

above equation can be simplified to give

P(®c |Ωc) =
∑
®s

N∏
t=1

P(ct st |st−1Ωc)P(s0 |Ωc). (5.8)

This expression can again be converted into an efficient matrix equation as before Equa-

tion 4.18): ∑
®s

N∏
t=1

P(ct st |st−1Ωc)P(s0 |Ωc) = [1 1]
N∏

t=1
Rt ®D0, (5.9)

with Rt and ®D0 as in Equation 4.16 and Equation 4.17, respectively.
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Figure 5.4: simulated data with high rate of switching, rα = 3 and rβ = 2.

All that remains to be done is then to calculate P(ct st |st−1Ωc). Knowledge about the

fraction f of the interval for which the emitter was in the on state would make the evaluation

of these count probabilities easier, as it would result in a weighted Poissonian. That is,

P(ct st |st−1Ωc) =

∫ 1

0
df P(ct |st st−1 f Ωc)P(st f |st−1Ωc), (5.10)

and

P(ct |st st−1 f Ωc) = P(ct ; µ + f λ) =
(µ + f λ)ct e−(µ+ f λ)

ct!
. (5.11)

here, for simplicity, the length of the sampling interval is taken to be 1 (i.e. T =1)

Now, the task is to find an expression for P(st f |st−1Ωc). For brevity, introduce the

notation Rab( f ) ≡ P(st = b f |st−1 = aΩc). This probability accounts for all the possible

histories where the detection interval spent a fraction f in state on and ended in the state st

given it started in state st−1. The different histories can be decomposed into differing numbers

of switch events as shown in Figure 5.3. Consider the case where the state starts and ends

in the off state, i.e. R00( f ) (Figure 5.3 (a)). Clearly an odd number of switch events will

not be consistent with the boundary states and hence will have probability zero. With zero

switch events the entire interval is off and the probability is just the exponential distribution

δ( f )e−rα , where δ is the Dirac delta function. Two switch events partitions the interval into

three regions l1, l2, and l3 with states off–on–off and probability∫ 1− f

0
dl1e−rαl1rαe−rβ l2rβe−rαl3 = rαrβe−rα(1− f )−rβ f (1 − f ), (5.12)

where we have used l2 = f and l1 + l3 = 1 − f .

In general the interval will be partitioned into a set of on states of total duration f and a

set of off states of duration 1 − f so that the exponentials combine and will not depend on

the durations l j . For example with six switches there are seven regions with three switch on
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Figure 5.5: (a) Contour plot showing the posterior probability distribution for rα and rβ inferred from the

simulated data given in Figure 4.10. (b) Credible regions of the switching rates inferred from simulated data.

The contours contain the 50%, 90%, and 99% credible regions. The true value is shown as red dot.

and three switch off events as shown in Figure 5.3 (d). The probability is,

r3
αr3
βe−rα(1− f )−rβ f

×

∫ f

0
dl2

∫ f−r2

0
dl4︸              ︷︷              ︸

A

×

∫ 1− f

0
dl1

∫ 1− f−l1

0
dl3

∫ 1− f−l1−l3

0
dl5︸                                       ︷︷                                       ︸

B

1. (5.13)

The integrals in A calculate the volume of a two-dimensional simplex of side f , and

those in B the volume of a three dimensional simplex of side 1 − f . Since the volume of an

n-dimensional simplex of side f is f n/n!, Equation 5.13 evaluates to

f 2(1 − f )3r3
αr3
βe−rα(1− f )−rβ f

2!3!
. (5.14)

Summing over all switch events gives

R00( f ) =δ( f )e−rα + e−rα(1− f )−rβ f
∞∑

k=0

f k−1(1 − f )k

(k − 1)!k!
r k
αr k

β︸                      ︷︷                      ︸
C

. (5.15)

The summation term C can written as a Bessel function J1(x) of the first order with an

additional multiplication term. The above equation becomes,

R00( f ) =δ( f )e−rα − e−rα(1− f )−rβ f

√
( f − 1)rαrβ

f
× J1

(
2
√
( f − 1) f rαrβ

)
. (5.16)
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Figure 5.6: Marginal distribution: (a) and (b) shows the posterior probability distributions of rα and rβ

respectively. (c) and (d) gives the marginal distributions of the fluorescence and background rates λ and µ

respectively. The red lines represents the true value used for simulation.

A similar argument yields the other possible fraction probabilities:

R01( f ) =rαJ0

(
2
√
( f − 1) f rαrβ

)
e−rα(1− f )−rβ f , (5.17)

R10( f ) =rβJ0

(
2
√
( f − 1) f rαrβ

)
e−rα(1− f )−rβ f , (5.18)

R11( f ) =δ(1 − f )e−rβ + e−rα(1− f )−rβ f

√
f rαrβ
f − 1

× J1

(
2
√
( f − 1) f rαrβ

)
. (5.19)

Finally we have

P(cn sn |sn−1Ωc) =

∫ 1

0
dfP(cn; µ + f λ)Rsn−1sn( f ), (5.20)

which is an integral that needs to be done numerically.

The Figure 5.5 display the posterior probability distribution of the model parameters and

credible regions calculated for the data given in Figure 5.4. Even at a high rate of rα = 3 and

rβ = 2 the inference gave a fairly good estimation. In Figure 5.6 the marginal distributions of

λ and µ along with the probability distributions of rα and rβ are shown. The true values of λ

and µ are 10 and 3 respectively.

5.2.1 Relation between single interval model and continuous-time model

The aim of this section is to see how the continuous-time model behaves in a low rate

switching regime and compare it with the single interval model. For Bessel function of the
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first kind,

Jm(z) ≈
1

Γ(m + 1)

( z
2

)m
z << 1 (5.21)

where, Γ(x) is the Gamma function. Hence at a low rate of switching, we can expand first

order in rα, rβ to obtain R00( f ) ≈ δ( f )(1 − rα), R11( f ) ≈ δ(1 − f )(1 − rβ), R01( f ) ≈ rα and

R10( f ) ≈ rβ. Furthermore, from Equation 5.1 and Equation 5.2, α1 ≈ rα and β1 ≈ rβ. With

this approximations Equation 5.20 yields,

P(cn 0|0Ωc) ≈ (1 − α1) P(cn; µ) (5.22)

P(cn 1|1Ωc) ≈ (1 − β1) P(cn; µ + λ) (5.23)

P(cn 1|0Ωc) ≈ α1c̃n (5.24)

P(cn 0|1Ωc) ≈ β1c̃n (5.25)

where,

c̃n =

∫ 1

0
dfP(cn; µ + f λ), (5.26)

is the probability of obtaining cn counts averaged over all durations spent on in the interval.

The first two probabilities (Equation 5.22 and Equation 5.23) are identical to those

obtained in the single interval model. The last two (Equation 5.24 and Equation 5.25)

differ as in the single interval model we made the arbitrary decision to take the switch

event as happening at the ends of the intervals. However, sampling intervals that contain a

switch event become rare when the rates are small. So the continuous time model becomes

indistinguishable from the single step model in this limit.

The single interval model loses accuracy as the rate of switching increases. Figure 5.7

shows this by examining the difference between the true switching rate (for data simulated

from a continuous-switching model) and the result of a single-interval model inference. The

colour map represents the distance from the true value to the maximum value from the

posterior probability distribution. The black region corresponds to a small distance, and is

therefore themost applicable region for the single-interval inference. As the (continuous) rates

increase the single-interval model starts failing. An approximate threshold for applicability

of the single-step model is when rαrβ < 1. A grid of 150 × 150 simulations were run to

produce this colourmap, and the posterior distributions for switching rates are shown for four

illustrative cases. Note that the scales are different for each contour plot. The lower left plot

shows a good convergence of the inference to the true value, where the rates are small. The
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Figure 5.7: Accuracy of the single-step inference to simulated data of various switching rates. For small

switching probabilities the inference gives good agreement with the known parameters, but for higher switching

probabilities the inference is less accurate. An approximate threshold for applicability of the single-step model

is when rαrβ < 1.

sub-figure in the top left considers a rate where the off rate is very high and on rate is low.

The convergence is not good for this case, since the asymmetry of switching rates results in

very few switching on events—the data remains in the off state for most of the time. The

plot in the top centre shows the deviation of the inference from the true value as both rates

increase. In the top right this is further illustrated for the extreme case where both rates

are so high that there is an average of two switching events per measurement interval. The

posterior distribution is tightly converged since there are a large number of switching events,

but it is significantly diverged from the true value. The single-interval inference is clearly not

applicable for high rates. In this region, the continuous time model performs well as shown

in Figure 5.5, even though the traditional threshold technique cannot even be applied to the

data in Figure 5.4.
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6
Conclusion and Future Outlook

We have developed three models for extracting blinking rates from the time trace of blinking

emitters. The models are based on hidden discrete and continuous-time Markov processes.

The simplest and fastest model assumes the state only switches at the boundaries of the

sampling intervals, and is a good choice to model a blinking time trace with very slow

switching rates. The algorithmwas demonstratedwith simulated datawhere all the parameters

are known (in order to establish accuracy) and also on previously published experimental

data. If the true underlying mechanism can switch at any time, this single-interval model

fails for reasonably high switching rates but is applicable when the switching rates are fairly

low. Its key advantages are simplicity and speed.

The next model presented is again based on a discrete-time Markov process. This model

divides the sampling interval into subintervals of constant state that are shorter than the

sampling interval, to allow switching within a sampling interval to a limited extent. The

Bayesian inference on the model is capable of inferring slow as well as fast switching rates,

as long as sufficiently many subintervals are considered. The model is coded in a recursive
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way, and is a bit time consuming to run for a large number of sub-intervals.

The final model developed in the thesis assumes the state can switch at any time and is

based on a continuous-time Markov process. This can be considered as a limiting case of

the sub-interval model above as the number of subintervals goes to infinity. The Bayesian

inference on the continuous model works well for both fast and slow switching rates. Even

for a time trace simulated with a rate of switching too high to see, the continuous time model

is successful at inferring blinking rates. The fluorescence and background rates can also be

extracted more precisely using this model.

The choice of model for a given situation depends on a number of factors. The most

important factor is the time-scale of the switching relative to the sampling interval. For slow

rates the single-interval model is both accurate and efficient. For faster switching rates we

expect many switching events per sampling interval. Then the continuous or sub-interval

models are good choices, and the efficiency of the algorithm would be the determining factor.

As a starting point to generate beyond Poissonian counts the sub-interval model is more

flexible as it makes less assumptions.

For an arbitrary time trace the fluorescence and background photon detection rates are

not known. For all three models developed here, the Bayesian inference correctly treats

these parameters as unknowns and actually yields photon emission rate inferences as well

as the switching rate inferences. It should be emphasised that in each case the inference is

exact according to the chosen model. For analysis of experimental data, therefore, the only

assumption made in the data processing is the application of a particular model to the physical

system. There are several extensions or variations from this work. For instance instead of

inferring the rates we can tag each data point with the probability that the state was on or off

and this create an algorithm to filter the data to extract just the on intervals.

HiddenMarkovmodels are quite general and are used in awast variety of fields. Extending

the analysis presented here to other models where the hiding is not an accumulated Poissonian

distribution would be exciting and fruitful. Similarly extending the model beyond two states

would increase its generality and reach. The content of this thesis is being prepared for

publication [43].
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