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Summary

Covering systems were introduced by Paul Erdős [8] in 1950. A covering system

is a collection of congruences of the form x ≡ ai(mod mi) whose union is the integers.

These can then be specialised to being incongruent (that is, having distinct moduli), or

disjoint, in which each integer satisfies exactly one congruence.

This thesis studies incongruent restricted disjoint covering systems (IRDCS), col-

lections of congruence classes which cover a finite interval of the integers disjointly,

subject to an additional technical condition. There exist IRDCS of length 11 and all

lengths greater than or equal to 17. These IRDCS are used to study questions analogous

to those of interest in covering systems. We focus on the following questions.

(1) Can the smallest modulus of some IRDCS be arbitrarily large?

(2) Do there exist IRDCS with all moduli odd?

(3) What is the appropriate two-dimensional generalisation?

This thesis addresses these questions and makes significant headway towards their res-

olution.

Chapter 5 studies IRDCS with large minimum modulus. We present, amongst

other examples, one IRDCS with minimum modulus 50.

In Chapter 6 it is shown that there are IRDCS with only odd moduli. The smallest

example is one of length 83. This chapter will present information on all of the known

examples of what will be referred to as odd IRDCS.

Finally, in Chapter 7, we extend the definition of IRDCS to two dimensions,

determining conditions on the relevant parameters for the existence of such structures.

In this chapter we also study some of the structural properties, analogous to those of

one-dimensional IRDCS, for these new constructions.
iv



Acknowledgements

My sincerest thanks go to my supervisor Gerry Myerson, without whom this thesis

would not exist. Your guidance and support has been invaluable to me, during my time

as both an undergraduate and postgraduate student. I cannot thank you enough for your

encouragement, giving me the confidence to do my PhD and follow my dreams. I would

also like to acknowledge the continual support of the entire Mathematics Department

at Macquarie University; it has been a pleasure working with you.

I owe more than I could ever hope to repay to my family. Thank you for your

unwavering support throughout my life. To Dad, for being an inspiration, especially

over these last few hard years. To Mum, for your constant love and support of us all. To

Grant, Andrew, Laura and Stuart, for being the best collection of siblings I could have

hoped for. And to King, Phil and Jimmy, I’m so glad you have been such a constant

fixture in my life. I look forward to birthday dinners as much as I do anything else.

I will never stop thanking my closest friends Tim, Gina and Shannon, and Paddy,

Phil and Ben. Without exception I know that you are always there to support me and

your encouragement and belief in me is the biggest reason I am where I am today. Tim,

these last few years have been the happiest of my life, and you are the reason for that.

Any time I need a laugh, some serious scheme advice, or a game, I know where to turn.

You are a true friend. To The Schemestress and Shannon, thank you for being perhaps

the greatest supporters of my schemes, this big fella loved our coffee Mondays. Last but

certainly not least to Paddy, Phil and Ben, I would not be who I am without the three
v



vi

of you in my life. I owe so much of my happiness and success to you being with me. I

know that you are there for me today, and will be there again tomorrow. Your support

through the course of my studies has been invaluable.

To Elli and Tylah, you make me so happy and have brought so much joy into

my life. I will always remember the time we have spent together during the course of

this thesis. You make me feel special, and remind me that you are proud of what I am

doing. Thank you, it means the world to me.

Lastly, thank you to my high school teachers Brian Shanley and Keith Chester,

who started me on this journey.



Contents

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

1 Introduction 1

1.1 Covering Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Arbitrarily Large Minimum Modulus . . . . . . . . . . . . . . . . . . . . 5

1.3 Covering Systems With Only Odd Moduli . . . . . . . . . . . . . . . . . 7

1.4 Incongruent and Disjoint Covering Systems . . . . . . . . . . . . . . . . 8

2 IRDCS Introduction 13

2.1 Computational and Structural Results . . . . . . . . . . . . . . . . . . . 16

2.2 Bounds on Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1 A new result on the order bound . . . . . . . . . . . . . . . . . . 22

2.3 Bounds on Heft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Open Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Computing IRDCS 35

3.1 The Algorithm, Technically . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 The Algorithm In Words . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 Knuth’s Algorithm X and Dancing Links . . . . . . . . . . . . . . . . . . 46

4 IRDCS with minimum hits 3 and higher 51



viii

5 IRDCS with large minimal modulus 59

5.1 Smallest Solution Summary Statistics . . . . . . . . . . . . . . . . . . . 62

5.2 Manual Method To Find IRDCS With Large Minimum Modulus . . . . 68

5.2.1 Open Question . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2.2 Summary Statistics - Manual Method . . . . . . . . . . . . . . . 73

6 IRDCS with only odd moduli 97

6.1 Open Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7 2 Dimensional IRDCS Properties 109

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.2 Some two-dimensional IRDCS that always work . . . . . . . . . . . . . . 121

7.3 Open Question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.4 Doubling two-dimensional IRDCS . . . . . . . . . . . . . . . . . . . . . . 128

7.4.1 Open Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.5 Two-dimensional IRDCS reversals . . . . . . . . . . . . . . . . . . . . . 135

7.5.1 Open Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

7.6 Computing Two-Dimensional IRDCS . . . . . . . . . . . . . . . . . . . . 147

7.6.1 An Algorithm for the Two-Dimensional Case . . . . . . . . . . . 152

7.7 A miscellaneous two-dimensional IRDCS question . . . . . . . . . . . . . 160

7.8 Two-dimensional Heft . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

7.8.1 If X ≡ 0 (mod m) or Y ≡ 0 (mod m) . . . . . . . . . . . . . . . 165

7.8.2 If X 6≡ 0 (mod m) and Y 6≡ 0 (mod m) . . . . . . . . . . . . . . 166

7.8.3 Calculating Heft . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

7.9 Two Dimensional Order . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

7.9.1 Open Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187



ix

Appendix

A One Dimensional IRDCS Additional Data 191

A.1 All IRDCS of a given length . . . . . . . . . . . . . . . . . . . . . . . . . 191

A.2 Minimum modulus data . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

B Two Dimensional IRDCS Additional Data 199

B.1 The existence of two-dimensional IRDCS of given dimensions . . . . . . 199

B.2 Data summaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

C One Dimensional Heft 215

Bibliography

Bibliography





Chapter 1

Introduction

1.1 Covering Systems

Covering systems were introduced by Paul Erdős [8] in 1950. Erdős used covering

systems to show that there exists an arithmetic progression of odd numbers containing

no terms of the form 2k + p, p a prime. Numbers of this form have positive density in

the integers, as shown by Romanoff [28]. We begin with some elementary definitions.

Definition 1.1. A covering system is a collection of congruences of the form

x ≡ ai(mod mi) whose union is the integers.

Definition 1.2. An incongruent covering system is a covering system with congruences

whose moduli are all distinct.

Definition 1.3. A disjoint covering system is a covering system in which each integer

satisfies exactly one congruence.

For the course of this thesis, unless otherwise stated, all covering systems discussed

are assumed to be incongruent, and the modulus 1 is disallowed to avoid triviality.

These covering systems provide the classical setting for the problems of interest

in this thesis. Our approach is to study the related construction introduced in [23],

incongruent restricted disjoint covering systems. Many questions about this
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construction are analogous to those asked for covering systems, and only require minor

modifications to the original statement.

While it is not immediately obvious that any incongruent covering systems exist,

Erdős provides the simplest covering system:

0 (mod 2), 0 (mod 3), 3 (mod 4), 1 (mod 6), and 5 (mod 12).

This covering system can be represented geometrically as:

1

{{wwwwwwwww

##GGGGGGGGG

0, 2 1, 2

||yyyyyyyyy

!!DDDDDDDD

1, 4

||yyyyyyyyy

�� ""EEEEEEEEE
3, 4

1, 12� _ 5, 12 9, 12� _

1, 6 0, 3

where a,m represents the congruence a (mod m). A collection of p, a prime, downward

arrows leaving a congruence class modulo m implies that the congruence class modulo

m is being split disjointly into the p congruence classes modulo pm which cover it. The

inclusion arrow, as in above the arrow joining 1, 12 and 1, 6, shows that we are using

the lower congruence class to cover the one from which it branches. All underlined

congruences are used in the final cover.

For technical reasons, this simplest covering system did not solve the problem

Erdős was studying, so he also produced the covering system

0 (mod 2), 0 (mod 3), 1 (mod 4), 3 (mod 8), 7 (mod 12), 23 (mod 24).

This can be represented geometrically as in the previous example, where we instead
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keep 1 (mod 4) and cover 3 (mod 4) as

3, 4

{{wwwwwwwww

��
3, 8 7, 8

{{xxxxxxxxx

�� ##HHHHHHHHH

7, 24� _ 15, 24� _
23, 24

7, 12 0, 3

Erdős also gave the covering system made up of the following congruences with smallest

modulus 3:

0 (mod 3), 0 (mod 4), 0 (mod 5), 1 (mod 6), 6 (mod 8), 3 (mod 10),

5 (mod 12), 11 (mod 15), 7 (mod 20), 10 (mod 24), 2 (mod 30),

34 (mod 40), 59 (mod 60), 98 (mod 120),
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The moduli in this cover have least common multiple 120. This is the smallest such

least common multiple in any known cover with minimum modulus 3. Furthermore, it is

strongly conjectured by Churchhouse [7] that this is the smallest possible least common

multiple of the moduli for a cover with least modulus 3. It is also known that the only

possible smaller least common multiples are 60 and 90.

A cover with least modulus 3 must have largest modulus at least 36 (see Theorems

2.6 and 2.7 in [20]). An example of such a covering system is:

1

zzuuuuuuuuuu

%%KKKKKKKKKKK

0, 2

{{wwwwwwwww

��

1, 2

zzuuuuuuuuuu

�� %%JJJJJJJJJJ

0, 4 2, 4

{{xxxxxxxxx

��

1, 6 3, 6� _ 5, 6

�� %%KKKKKKKKKK

**UUUUUUUUUUUUUUUUUUUUUUU

2, 8 6, 8

{{xxxxxxxxx

�� ##HHHHHHHHH
0, 3 5, 18

�� %%KKKKKKKKKK
12, 18 17, 18� _

6, 24� _ 14, 24� _
20, 24 5, 36

ttjjjjjjjjjjjjjjjjjjjj

zztttttttttt

�� %%KKKKKKKKKK

**UUUUUUUUUUUUUUUUUUUUU 23, 36 8, 9

0, 3 2, 12 5, 180� _
41, 180� _

77, 180� _
113, 180� _

149, 180� _

0, 5 1, 10 2, 15 13, 20 29, 30

The moduli in this covering system have least common multiple 360.

1.2 Arbitrarily Large Minimum Modulus

Questions raised in Erdős’ original paper are still unsolved today. After noting the orig-

inal covering system which used the modulus 2, along with these covers with minimum

modulus 3, Erdős conjectured that “It seems likely that for every c there exists such a

system (a covering system) all the moduli of which are > c” [8].



6

Conjecture 1.1 (Erdős [8]). There exists a covering system with minimum modulus c

for any c ∈ N.

This question remains open to this day, despite being an area of continual research.

Erdős also provided additional motivation to solving this as if the minimum modulus

conjecture holds, then for all c there exists an arithmetic progression containing no term

of the form 2k + u, where the number of distinct prime factors of u is less than c [8].

Erdős referred to the least modulus conjecture as his favourite problem in [10]. An

analogous question to this will be further explored in Chapter 5.

For any covering system with moduli mi it is well known, and easily shown with

density considerations, that ∑
i

1
mi
≥ 1,

and that this sum is equal to 1 only in the case of a disjoint cover. Erdős and John

Selfridge conjectured that for any number B, there is some NB such that an incongruent

covering system with least modulus NB has sum of reciprocals of its moduli greater than

B [11]. This conjecture was proved when Filaseta, Ford, Konyagin, Pomerance and Yu

showed that for a covering system with minimum modulus m1, as m1 goes to infinity,

so to must
∑ 1

mi
[12]. These results have been generalized to number fields by Sun Kim

[18].

A number of authors have contributed to continued improvement in the record

for the largest minimum modulus in a covering system. Churchhouse [7] in 1968 found

covering systems with minimum modulus m1 = 2, 3, . . . , 9 using early computational

techniques. Following this, Krukenberg [20] in 1971 gave examples with minimum mod-

ulus m1 = 2, 3, . . . , 18. Krukenberg states in reference to his example with minimum

modulus 18 that “The structure at this stage is, to say the least, quite complicated and

not easy to visualize”.

Soon after, Choi [5] found a covering system with minimum modulus 20, and



7

proposed that further elaboration of the methods using his theoretical result may be

capable of finding a larger minimum modulus, but would be limited by a prohibitively

large amount of computations. Krukenberg and Choi do not appear to have used com-

puters to aid them in their searches.

More recently there was a claim of a covering system with minimum modulus

24 due to Morikawa [22] which was followed by Gibson [14] in 2008, who found a

covering system with minimum modulus 25, and Nielsen [25] in 2009, who found one

with minimum modulus 40. Gibson’s cover was found using a combination of a greedy

algorithm similar to that used by Churchhouse and some theoretical results that turn

‘near covers’ into covers, while Nielsen’s cover uses more than 1050 congruences and

does not rely on computers.

1.3 Covering Systems With Only Odd Moduli

The survey of Porubsky [26] serves as an excellent initial resource for many of the other

questions in the area of covering systems. Other valuable surveys can be found in [27]

and [32]. Another difficult and well known problem discussed in these papers, first

considered by Erdős and Selfridge [9], is the result of the following conjecture.

Conjecture 1.2 (Erdős [9]). There exists a covering system with only odd moduli.

This conjecture provides the motivation for Chapter 6 and was proposed in the

negative by Selfridge [9] who offered $2000 for an explicit odd covering, according to

[13]. Erdős and Graham also ask whether a covering system exists with all moduli

divisible by a given integer d. Both of these questions remain open.

In a paper studying the reducibility of polynomials Schnizel made the following

conjecture which is intrinsically related to the previous conjecture.

Conjecture 1.3 (Schinzel [29]). In every covering system at least one modulus divides

another.
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Selfridge’s conjecture (that there is no odd cover) has been shown to imply

Schinzel’s conjecture due to work of Schinzel [29], in which he gives credit to Selfridge

for previously proving the implication. Other than this, little progress has been made

on Conjecture 1.2 or its negation. Churchhouse [7] shows that there is no incongruent

covering system with all moduli of the form 3a5b7c11d, and that it is highly unlikely

that a covering set based on the divisors of 3a5b7c11d13e exists. Berger, Felzenbaum

and Fraenkel [3] show that a necessary condition for an incongruent covering system

with only odd moduli is
n∏
i=1

pi − 1
pi − 2

−
n∑
i=1

1
pi − 2

> 2,

where the pi are the distinct prime divisors of the moduli of the system, using finite

geometry. It has also been shown by Guo and Sun [15] that if there exists an odd

covering system with square-free moduli then the least common multiple of the moduli

must have at least 22 distinct prime divisors. This has improved the previous results of

13 [3] and 18 [31] distinct prime divisors.

Work has also been done on analogous questions to Conjecture 1.2 in number

fields [17]. However this work does not shed light on the question for the integers.

Nielsen asks whether the methods he used to find a covering system with large

minimum modulus might be used to find an odd covering system. While attempts here

fail, perhaps more can be done by developing the ideas in [25] further.

1.4 Incongruent and Disjoint Covering Systems

It is well known that there can be no finite incongruent and disjoint covering system,

a fact proved independently by Mirsky, Newman, Davenport and Rado [26]. The first

proof of this uses complex numbers, a tool not used elsewhere in the literature of covering

systems. We will reproduce the proof here.
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Take a disjoint covering system using the congruences x ≡ ai (mod mi), i =

1, 2, . . . , t where 0 ≤ ai < mi and 1 < n1 < n2 < · · · < nt. Let z be a complex number

with |z| < 1, then
1

1− z
=

t∑
i=1

zai

1− zni
.

Let z → ζ, where ζ is a primitive ntht root of unity. The fact that the moduli increase

yields a contradiction with the left side approaching a finite limit, as do all but the

last term in the sum on the right side. This proof shows that every disjoint covering

system contains at least two residue classes with modulus nt. For some time no proof of

this result was known which does not use complex numbers. Berger, Felzenbaum and

Fraenkel [2] have since given an elementary proof of this result using geometry.

Work was done soon after this result by Stein, Znam and Porubsky [26] to com-

pletely categorise disjoint covering systems with a single modulus repeated up to 5

times, allowing only the largest modulus in the covering system to be repeated. Znam

and Newman [26] also showed that for a disjoint covering system with greatest modulus

nt having least prime divisor p then the covering system contains at least p congruence

classes modulo nt.

There are a number of other results on how many times the largest modulus must

be repeated in a disjoint, but not incongruent, covering system, based on the prime

divisors of the moduli in the covering system. These results are due to Burshtein [4],

Simpson [30] and Berger, Felzenbaum and Fraenkel [1].

While there is no such cover for Z, it is known that there exists a disjoint and

incongruent cover for Z3 using only a finite number of pairs of congruences, namely,

Z3 = {x ≡ y ≡ 0 (mod 2)} ∪ {{x ≡ z ≡ 0 (mod 2)}+ (1, 0, 0)}

∪ {{y ≡ z ≡ 0 (mod 2)}+ (0, 1, 1)} ∪ {{x ≡ y ≡ z (mod 2)}+ (0, 1, 0)}.
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This is equivalently presented as

1
(1− x)(1− y)(1− z)

=
1

(1− x2)(1− y2)(1− z)
+

x

(1− x2)(1− y)(1− z2)

+
yz

(1− x)(1− y2)(1− z2)
+

y + xz

(1− x2)(1− y2)(1− z2)
.

This cover can be extended to cover Zn for n ≥ 3 by adjoining n− 1 new variables with

no restrictions to each of the above subgroup cosets. The only remaining question is

whether Z2 can be covered with a finite union of disjoint cosets of distinct subgroups.

This question is still open, and provides some of the motivation for Chapter 7.

The main focus of this thesis will be to discuss and further the idea of an incon-

gruent restricted disjoint covering system (IRDCS). The definition of an IRDCS is as

follows.

Definition 1.4. An incongruent restricted disjoint covering system of length n is a

collection of congruence classes which covers the integers in the interval [1, n], where no

modulus is repeated, each integer is contained in exactly one congruence class and each

congruence class contains at least two numbers in the interval.

Note: we take the plural of IRDCS to be IRDCS. It will always be clear from context

whether we are referring to the singular or the plural.

We will use these IRDCS to study the analogous questions to those of interest in

covering systems. This thesis discusses incongruent restricted disjoint covering systems

and some related constructions in the coming chapters. We focus on the following

previously proposed questions from [23].

(1) Can the smallest modulus of some IRDCS be arbitrarily large?

(2) Do there exist IRDCS with all moduli odd?

(3) Do there exist IRDCS where all moduli are used at least k times for some k > 2?
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This thesis addresses these questions and makes significant headway towards their res-

olution.

Chapter 5 studies IRDCS with large minimum modulus. We present, amongst

other examples, one IRDCS with minimum modulus 50.

In Chapter 6 it is shown that there are IRDCS with only odd moduli. The smallest

example is one of length 83. This chapter will present information on all of the known

examples of what will be referred to as odd IRDCS.

Finally, in Chapter 7, we extend the definition of IRDCS to two dimensions,

determining conditions on the relevant parameters for the existence of such structures.

In this chapter we also study some of the structural properties, analogous to those of

one-dimensional IRDCS, for these new constructions. The next natural question would

be to extend to three and higher dimensions, though two dimensions will be the extent

of explorations for this thesis.
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Chapter 2

IRDCS Introduction

This chapter describes the rudiments of incongruent restricted disjoint covering systems,

giving the grounding from which to build. The vast majority of results and data in this

Chapter initially appear in [23] and will be cited as such. From this point onwards

our focus will be almost exclusively on incongruent restricted disjoint covering systems

rather than the classical setting of covering systems. We begin by restating the definition

of IRDCS from Chapter 1.

Definition 2.1. An incongruent restricted disjoint covering system (hereafter IRDCS)

of length n is a collection of congruence classes which covers the integers in the interval

[1, n], where no modulus is repeated, each integer is contained in exactly one congruence

class and each congruence class contains at least two numbers in the interval.

Notation. S(m, a) will denote the congruence class {x : x ≡ a (mod m)}.

It is easy to construct simple covering systems such as the collection

S(2, 0), S(2, 1).

While this covering system is disjoint, it is not particularly interesting. Including the

additional condition that the covering system must be incongruent, then as in [8] the

simplest such covering is the collection, as seen in Chapter 1,

S(2, 0), S(3, 0), S(4, 3), S(6, 1), S(12, 5)
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(see Chapter 1 for a geometric representation of this covering system).

IRDCS require covers of the first n integers (or more generally any n consecutive

integers) that are simultaneously incongruent and disjoint. This is not possible in the

classical setting ([26]). Moreover, to avoid trivialities the definition requires that each

congruence class contains at least two points in the interval. These conditions are

precisely what makes our situation interesting. It may be of interest to consider related

constructions where a small number of congruence classes are allowed to cover only one

position in the interval. This is equivalent to having IRDCS with a small number of

uncovered positions, since we may then choose any suitably large modulus to cover these

remaining positions. These constructions will not be studied here.

It is not immediately obvious that IRDCS exist. An exhaustive search, by an

algorithm which will be presented in Chapter 3, shows that the first example is the

collection of congruences

S(6, 1), S(9, 2), S(3, 0), S(4, 0), S(5, 0), (2.1)

being an IRDCS of length 11. This notation does not provide a clear picture of the

given IRDCS, and the following notation is used.

Notation. Rather than expressing an IRDCS of length n as a collection of congruences,

write a sequence of n integers where the ith member of the sequence represents the

modulus of the unique congruence class to which i belongs. This is the alternate

notation for an IRDCS.

For example, the first IRDCS (2.1) expressed in alternate notation is

6, 9, 3, 4, 5, 3, 6, 4, 3, 5, 9.

Thus it would be equivalent to define an IRDCS of length n as a sequence of

integers s1, s2, . . . , sn with the property that si = m for some m if and only if si+km = m

for all k ∈ Z such that i + km ∈ [1, n], sj 6= m for all j which cannot be expressed as
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i+km for such k, and all integers in the sequence appear at least twice. Myerson, Poon

and Simpson [23] note that this is reminiscent of Langford Sequences [21]. A Langford

Sequence of order n is defined as a sequence l1, l2, . . . , l2n of 2n integers in which each

integer from 1 to n appears exactly twice, and such that if li = lj then li = |i− j| − 1,

for example

4, 1, 3, 1, 2, 4, 3, 2.

Nothing more on Langford Sequences will be studied in this thesis, but may provide an

interesting avenue for related work.

Rather large IRDCS will be required to discuss some of the questions considered

in later chapters, having lengths over 100. In these instances even the alternate notation

will become unwieldy.

Notation. The compact notation of an IRDCS is achieved by listing the moduli of

the congruences which cover the n integers in the order in which they first appear in

the IRDCS.

The compact notation is clearly unique for a given length, since if two IRDCS of

the same length use the same moduli in the same order then they must be equal. The

compact notation for the IRDCS (2.1) is 6, 9, 3, 4, 5.

A few more definitions are required to further discuss the structure of IRDCS.

Given an IRDCS covering all of the elements in [1, n] as {S(m1, a1), S(m2, a2), . . . , S(mt, at)}

then:

Definition 2.2. The number of integers n covered by the IRDCS is its length.

Definition 2.3. The order t of an IRDCS is the number of congruences used.

Definition 2.4. The heft of an IRDCS with moduli m1,m2, . . . ,mt is
∑t

i=1 1/mi.

So the initial example (2.1) is an IRDCS of length 11 with order 5 and heft

191/180 = 1.0611 . . . .
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There are instances where the same compact notation can provide IRDCS of

different lengths, particularly in some examples to be presented in Chapter 5. These

IRDCS are clearly very similar, since they use the same moduli, and have the same heft

and order. The process of generating two IRDCS of different lengths with the same

compact notation can be viewed as extending the length of the shorter IRDCS to the

right, for so long as there is no clash and no position remains uncovered. One such

example is the length 17 IRDCS with compact notation 9, 11, 4, 5, 12, 6, 8, where the

modulus 6 alone also covers the 18th position. Attempting to increase it to a length 19

IRDCS sees the moduli 4 and 5 clash. One can also manufacture a different compact

notation (which will just be a reordering of the original) in some circumstances by

extending the length of the original IRDCS to the left, rather than the right. Again

there is a length 17 IRDCS which provides an example, namely the length 17 IRDCS

with compact notation 12, 8, 4, 5, 11, 6, 9 producing the length 18 IRDCS with compact

notation 6, 12, 8, 4, 5, 11, 9, since we could cover what was position 0 by the modulus

6. These two length 17 (and then 18) IRDCS are related in that they are reversals

which will be defined shortly. Neither of these constructions will significantly alter any

of our analysis or methods. This construction will be prevalent in examples that occur

in Chapter 5, but does not otherwise warrant any further consideration.

2.1 Computational and Structural Results

There exists an algorithm to find all IRDCS of given length and in particular with

given conditions. These conditions include restricting the moduli in the IRDCS to be

all larger than a given minimum, or to be all odd. This along with structural properties

of IRDCS that will be developed will be exploited to say all that we can about IRDCS.

The following lemma will be used to show the existence of IRDCS for all sufficiently

large lengths.
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Lemma 2.1. [23] For any IRDCS A = {S(mi, ai) : i = 1, 2, . . . , t} of length n.

A′ = {S(2mi, 2ai) : i = 1, 2, . . . , t} ∪ S(2, 1)

produces IRDCS of lengths 2n − 1, 2n and 2n + 1. Moreover if A has order t and heft

h then A′ has order t+ 1 and heft 1
2(1 + h). We call this doubling.

Proof. If the alternate notation of the initial IRDCS is m1,m2, . . . ,mn then the doubling

process, which doubles both the moduli and the initial position of all of the congruences,

before adding the congruence modulo 2 will produce a partial IRDCS which looks like

, 2m1, , 2m2, , . . . , , 2mn, ,

to which adding the congruence modulo 2 gives

2, 2m1, 2, 2m2, 2, . . . , 2, 2mn, 2,

which is an IRDCS of length 2n + 1. It can be contracted to an IRDCS of length 2n

(respectively, 2n − 1) by removing one of (respectively, both of) the 2s at the ends of

the IRDCS of length 2n+ 1 (and shifting everything down one, if necessary).

Also the order of A′ is clearly t+ 1, and the heft of A′ is

1
2

+
t∑
i=1

1
2mi

=
1
2
(
1 +

t∑
i=1

1
mi

)
=

1
2

(1 + h),

as required

This doubling process can be iterated to produce arbitrarily long IRDCS with heft

approaching 1 and order O(log n). A consequence of this observation is the following

theorem.

Theorem 2.1. [23] There exist IRDCS for all lengths greater than 16.

A little more discovery is required before we can present a proof for this theorem.

Firstly, all IRDCS for smaller lengths need to be manually found. This is done via the
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exhaustive algorithm to be presented in Chapter 3. An exhaustive search for all IRDCS

of lengths up to 32 gives the number of IRDCS and structural properties presented in

the table below, first appearing in [23].

Length Number of IRDCS Orders Heft Range

11 2 5 1.06111

17 4 7 1.0123 - 1.02702

18 6 7, 8 1.0123 - 1.02702

19 18 7, 8 1.00394 - 1.04488

20 14 7, 8 1.00394 - 1.03238

21 26 6 - 9 0.9968 - 1.03056

22 84 6, 8 - 10 0.9968 - 1.05156

23 88 6, 8 - 10 0.9968 - 1.04225

24 46 8 - 10 0.991306 - 1.03013

25 176 8 - 10 0.996205 - 1.02775

26 380 8 - 12 0.996205 - 1.0506

27 812 8 - 12 0.996205 - 1.05051

28 844 8 - 12 0.989552 - 1.04808

29 1770 9 - 13 0.989552 - 1.04947

30 2164 9 - 13 0.989406 - 1.04288

31 5554 9 - 14 0.991297 - 1.05823

32 9244 9 - 14 0.992184 - 1.0578

Note that there are no IRDCS with n < 11 or 12 ≤ n ≤ 16. With these results we are

now in position to prove the theorem.

Proof. As shown in Lemma 2.1, for any IRDCS of length n IRDCS of lengths 2n−1, 2n

and 2n + 1 can be constructed. So, beginning with the above table, IRDCS of lengths

33 through to 65 are constructed by doubling those that exist of length 17 through 32
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(for example, the length 33 comes from doubling the length 17 and removing the 2’s at

either end, while the length 65 comes from doubling the length 32 example). There are

now IRDCS for a block of consecutive lengths twice as long as previous. All of these

new IRDCS may now be doubled, removing the 2’s when required, to produce IRDCS

of all required lengths up to and including length 131. Iterating this process gives us

IRDCS of all lengths above 16.

Given this information concerning the existence of IRDCS, we begin to study

their structure. If the collection

A = {S(mi, ai) : i = 1, . . . , t}

is an IRDCS of length n on [1, n], then so too is

A′ = {S(mi, n+ 1− ai) : i = 1, . . . , t}.

This modified IRDCS is called the reversal of A, since it is generated by writing the

alternate notation of the original IRDCS in reverse order.

While the proof of the following lemma is given in [23], we present it in detail

here as we will need similar arguments in a later chapter.

Lemma 2.2. [23] No IRDCS equals its reversal.

Proof. Assume that such an IRDCS exists and call it palindromic.

If the length of this palindromic IRDCS is even, then the two central positions

must be covered by the same congruence, which is not possible since the modulus 1 is

not allowed.

If the length is odd, n = 2r+1, then the two positions around the centre must be

covered by the modulus 2. If an IRDCS contains the modulus 2, then it must contain

only even moduli. Say the IRDCS has moduli 2,m2, . . . ,mt. Then it can be replaced

by one of length r or r + 1, whichever is odd, with moduli m2/2,m3/2, . . . ,mt/2. This
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new construction is an IRDCS since removing the 2s halves the distance between any

pair of points, which means that all moduli must also be halved. We can think of this

new IRDCS as the ‘un-doubled’ version of the original IRDCS.

If the original odd length IRDCS is palindromic, then this un-doubled IRDCS

must also be palindromic. The un-doubled IRDCS still has a central element, so its

length can’t be even. The process of un-doubling the original IRDCS may be repeated

until either there is no modulus 2, or the length of the IRDCS is under 11, both of

which lead to a contradiction.

Hence, no palindromic IRDCS exists.

By the above lemma, the number of IRDCS of any given length is even. For

example there are two IRDCS of length 11. These length 11 IRDCS are effectively

equivalent, since one is the reversal of the other.

2.2 Bounds on Order

For the remainder of the chapter write n(A), t(A) and h(A) for the length, order and

heft of an IRDCS A respectively. These will revert to n, t and h when it will cause no

confusion. Lemma 2.1 shows that doubling produces IRDCS with t(A) = O(log(n(A))),

but how large can the order be in terms of n(A)?

Details of the proof of the following Theorem appear in [23], but they are presented

here as we will be using similar arguments in Section 2.2.1.

Theorem 2.2. [23] For an IRDCS A,

t(A) ≤ n(A)− 1
2

(2.1)

with equality if and only if n(A) = 11.

Proof. For n = 11 we have t = 5 = 11−1
2 , giving equality in (2.1). There are no IRDCS

for n = 12, . . . , 16 as seen in the table following Theorem 2.1.
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For n ≥ 17 odd, let n = 2r − 1. The middle position, position r, must be used

to cover at least 3 or a greater odd number of positions, since its hits are all symmetric

about the middle of the IRDCS. If it is used 5 or more times then there are at most

n− 5 other positions to be covered and thus

t ≤ 1 +
n− 5

2
<
n− 1

2
,

as each modulus must be used at least twice. Thus, we may assume that the modulus

covering r covers exactly three positions. If any other modulus is used 3 or more times

then clearly t ≤ 2 + n−6
2 < n−1

2 .

Note that for n ≥ 17 with middle modulus hitting only 3 positions the middle

modulus must be larger than 4. Now for all the other congruences covering exactly two

positions, the positions r ± 1 must be covered by moduli r − 1 and r. Without loss of

generality, let the modulus r − 1 cover positions r − 1 and 2r − 2 = n− 1 and modulus

r cover positions r + 1 and 1. Then the modulus covering r + 2 must be r − 2, also

covering position 4, and the modulus covering r−2 must be r+1, also covering position

2r− 1 = n. The modulus covering r− 3 must be r− 3 also covering 2r− 6 = n− 5 and

then there is no way to cover position r + 3, so t < n−1
2 .

Now suppose that n is even and let n = 2r. Either r or r + 1 must be covered

by a modulus less than r, thus belonging to a class of size at least 3, and as above only

one class may be of size 3 or greater else t < n−1
2 . Suppose that the modulus r is used

to cover positions r and 2r = n and that the class containing position r + 1 is the only

one of size greater than 2. By Theorem 2.1 r > 8 and so the modulus covering position

r + 1 must be larger than 4. Then the modulus r − 1 must cover positions r − 1 and

2r − 2 = n − 2, and so position r + 2 must be covered by the modulus r + 1 covering

positions 1 and r + 2 and then position r − 2 must be covered by the modulus r − 2

covering positions r − 2 and 2r − 4 = n − 4. This leaves no modulus to cover position

r + 3. A similar argument holds, by symmetry, assuming the position r + 1 is covered
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by the modulus r and thus t < (n− 1)/2.

2.2.1 A new result on the order bound

The fact that this bound is no better than the worst case, since every congruence

must hit at least two points, begs the question of how often can the order of an IRDCS

be close to this bound.

There do exist some IRDCS with n = 2t + 2 and n = 2t + 3. Data in the

appendix presents summary statistics for all IRDCS up to and including n = 50. The

following theorem gives the necessary conditions required for there to exist such IRDCS

for n > 50.

Theorem 2.3. For there to exist an IRDCS with n = 2t + 2 then two moduli in the

IRDCS are used 3 times, the others are used twice and either

• n = 18, 22, 26, or

• n > 50 and the moduli used three times must cover the two separate middle

positions of the IRDCS.

Also, for there to exist an IRDCS with n = 2t+3 then three moduli in the IRDCS

are used 3 times, one of them covering the middle position, all others are used twice

and n = 11, 17, 19, 21, 23, 27, 29, 31, 35, 37, 41 or n > 50. Further, at least one of the

positions t− 1, t, t+ 1, t+ 3, t+ 4, t+ 5 must be covered by one of the congruences that

covers 3 positions.

Proof. A look at the summary table before the proof of Theorem 2.1 shows that this

is possible for t = 5 and for all t = 7, 8, . . . , 14 excluding t = 11. Data presented in

Appendix A shows that up to length 49, and thus t ≤ 23, it is possible only for t = 16, 17

and 19.
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If n = 2t+ 2, then either all but one of the moduli are used precisely twice, and

one modulus is used four times, or all but two of the moduli are used precisely twice

and two of the moduli are used precisely three times.

In the first case, the middle positions of this IRDCS are t + 1 and t + 2. Let

position t + 1 be inside a congruence with two hits. Then the modulus covering this

position must be t+1. Then position t+2 cannot be covered by moduli t+1 or by t, as

it will clash with the already chosen modulus, so that this congruence will have at least

three hits and must thus have four hits. As such, it must have one hit to the right, and

two to the left of position t+ 2. The first restriction on the modulus m forces 2m > t,

while the second gives 2m ≤ t + 1, so that we must have t odd and 2m = t + 1. This

congruence covers the positions 1, t+3
2 , t + 2, 3t+5

2 . Next position t must be covered by

the modulus t, and position t + 3 cannot be covered. So there must be precisely two

congruences covering three positions and all of the remaining congruences covering 2

positions.

The proof of the bound for order shows that the two congruences covering three

positions must cover at least one of t + 1, t + 2 and if not both of these another from

the set {t−1, t, t+ 3, t+ 4}. For two of these points to be covered by the same three hit

congruence, then modulus must satisfy m ≤ 4 (note that hitting t−1 and t+4 will force

the congruence to hit four positions as it is symmetric about the middle). However this

congruence can only have three hits for n ≤ 17, so that four of these positions must be

in a two hit congruence. Firstly, lets assume that only one of t+1, t+2 are covered by a

three hit congruence, and without loss of generality let it be position t+1. If congruences

with precisely two hits are forced for as long as possible while the IRDCS is filled from

the middle out (as in the algorithm in Chapter 3) then the following congruences are

forced:
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Initial Position Modulus Other Positions Covered

t+ 2 t+ 1 1

t+ 1
[
t+1
2

]
+ 1 ≤ m ≤ t -

t+ 3 t 3

t t+ 2 2t+ 2

t+ 4 t− 1 5

t− 1 - Three hits

t+ 5 t− 2 7

t− 2 t+ 3 2t+ 1

t+ 6 t− 3 9

and then there is no choice available for a modulus to cover position t − 3, where the

congruence has only two hits. This collection of choices will fail so long as t− 3, t+ 6 or

more central positions cannot be covered by one of the three hit congruences. If it were

possible, then the one with largest modulus will be the t − 1, t + 6 pair. This implies

t − 8 ≥ 1, t − 15 ≤ 0 and t + 13 ≥ 2t + 3, so that 9 ≤ t ≤ 10, and all possibilities with

these orders have been manually checked.

If two hit congruences stop being forced one step earlier, we get:
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Initial Position Modulus Other Positions Covered

t+ 2 t+ 1 1

t+ 1 - -

t+ 3 t 3

t t+ 2 2t+ 2

t+ 4 - Three hits

t− 1 t− 1 2t− 2

t+ 5 t− 2 or t+ 3 7 or 2

t− 2 t+ 3 or t− 2 2t+ 1 or 2t− 4

t+ 6 t− 3 or t+ 4 9 or 2

t− 3 t+ 4 or t− 3 2t+ 1 or 2t− 6,

in either case both positions 2, 2t + 1 must be covered. Then position t + 7 must be

covered by the modulus t− 4 and there is nothing to cover position t− 4. So this fails

so long as none of these positions is covered by the three hit congruence. For this to be

true, the largest available modulus would be t+6−(t−4) = 10, for which t−4−10 ≤ 0,

and these cases have already been manually checked.

By the same arguments it is possible to show that positions t or t+ 3 cannot be

the second position with a three hit congruence. The only remaining case is where the

two middle positions are both covered by the three hit congruences.

If n = 2t+ 3 then since n is odd, the middle position t+ 2 must be covered by a

congruence with either three or five hits. If t+ 2 is covered by a modulus with five hits,

then all of the remaining moduli must be used precisely twice. The modulus covering

the middle position must satisfy the inequalities 2m ≤ t+1 and 3m ≥ t+2. The moduli

covering the positions t + 1 and t + 3 must be either t + 1 or t + 2. With this we also

cover either the pair 1, 2t + 2 or 2, 2t + 3. The positions t and t + 4 must be covered

by the moduli t and t + 3. For these congruences the additional positions covered are

either 1, 2t or 4, 2t + 3. In either case positions 1 and 2t + 3 are now covered. Then
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position t+ 5 must be covered by the modulus t− 1 and there is no modulus available

to cover t − 1. So long as t − 1 is not in the same congruence as the middle position,

then t + 2 cannot be covered by a modulus which is used 5 times. This would require

modulus m = 3 which for this to have 5 hits implies n ≤ 17.

Next, consider whether there can be one modulus being used precisely four times,

one modulus being used precisely three times, which must be the modulus covering the

middle position, and all other congruences being used precisely twice. More calculations

of the form used for the n = 2t+ 2 case show that this is not possible.

It remains to see whether there can be precisely three congruences which hit

precisely three points, one of which must include the middle position, and all other

congruences covering precisely two points. The order proof shows that the second of

these three hit congruences must occur at least as early, in the sense of filling around

the middle, as the position t+ 5. To see this replace t+ 2 with r in the order proof.

2.3 Bounds on Heft

A density argument alluded to in Chapter 1 shows that for a classical covering system

the heft is always at least 1, and equals 1 if and only if the system is disjoint. The

following result gives us bounds on heft for IRDCS. These results are an improvement

on results on heft appearing in [23].

Theorem 2.4. For any IRDCS A,

1− (n− 1)t− t2

n(n− 1)
≤ h(A) ≤ 1 +

1
n+ 1

(
t− 3 +

2
t+ 1

)
. (2.1)

Proof. Consider the IRDCS A = {S(mi, ai) : i = 1, . . . , t} and assume, without loss

of generality, that m1 < m2 < · · · < mt, and 1 ≤ ai ≤ mi for all i, so that ai always

represents the first position that the given congruence S(mi, ai) covers in [1, n]. Define

the last position that the congruence S(mi, ai) covers in [1, n] to be n+ 1− bi, so that

the ai are positive and distinct and so are the bi. Given this information, the number
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of elements of [1, n] belonging to S(mi, ai) is

n+ 1− bi − ai
mi

+ 1.

Since each member of [1, n] belongs to exactly one class

t∑
i=1

(
n+ 1− bi − ai

mi
+ 1
)

= n.

Thus,

n

t∑
i=1

1
mi

=
t∑
i=1

bi + ai − 1
mi

+ n− t. (2.2)

The right hand side is minimised when

ai = bi = i

for each i, so that

n

t∑
i=1

1
mi
≥

t∑
i=1

2i− 1
mi

+ n− t.

Now

t∑
i=1

2i− 1
mi

≥ 1
mt

t∑
i=1

(2i− 1)

=
t2

mt
,

so that

nh ≥ t2

mt
+ n− t

≥ t2

n− 1
+ n− t,

(nh− n)(n− 1) ≥ t2 − (n− 1)t,

which gives

h ≥ 1 +
t2 − (n− 1)t
n(n− 1)

. (2.3)

In the other direction note that ai ≤ mi and bi ≤ mi for each i. This gives

congruences which do not cover the first and last m1 − 1 positions in [1, n], so that

t∑
i=1

ai + bi − 1
mi

≤ 1
mt

+
2

mt−1
+ · · ·+ m1 − 1

mt+1−(m1−1)
+
t+1−m1∑
i=1

2mi − 1
mi

, (2.4)
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where since m1 ≥ 2 at worst then

t∑
i=1

ai + bi − 1
mi

≤ 1
mt

+
t−1∑
i=1

2mi − 1
mi

=
2
mt

+ 2(t− 1)− h

≤ 2
2 + (t− 1)

+ 2(t− 1)− h,

and so

nh ≤ n− t+
2

t+ 1
+ 2(t− 1)− h

h(n+ 1) ≤ n+ t+
2

t+ 1
− 2

and then
t∑
i=1

1
mi
≤ 1
n+ 1

(
n− 2 + t+

2
t+ 1

)
. (2.5)

Combining (2.3) and (2.5) completes the proof.

Corollary 2.1. For any length n IRDCS,

3
4

+
1

4n
≤ h ≤ 3n− 5

2(n+ 1)
+

4
(n+ 1)2

. (2.6)

Proof. Substitute t = (n−1)/2 into (2.1) on noting in the lower bound that the quadratic

in t in (2.3) is minimised for t = n−1
2 , and that the function in t in (2.5) is increasing in

t.

In the case of the lower bound, more care can be taken to slightly improve the

given bound for a given IRDCS. The bound retains the same asymptotic value of 3
4 .

Take
t∑
i=1

2i− 1
mi

=
2t
mt

+ 2
t−1∑
i=1

i

mi
− h,
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where

t−1∑
i=1

i

mi
≥ 1
m1

+
1
m2

+
t−1∑
i=3

i

mi
+

1
mt

= h+
t−1∑
i=3

i− 1
mi

≥ h+
1

mt−1

t−1∑
i=3

(i− 1)

which gives

nh ≥ h+
2t
mt

+
t(t− 3)
mt−1

+ n− t.

Taking mt ≤ n− 1 and mt−1 ≤ n− 3 (if it were n− 2 then the largest modulus would

be n− 1 and it would have already covered both of the end points, a contradiction) and

minimising the resultant polynomial in t gives

h ≥ n

n− 1
− (n2 − 3n+ 6)2

4(n− 1)3(n− 3)
,

which can be seen to be a slightly better bound than that in the theorem, but still no

better than 3
4 in the limit. Moreover any improvement given by this formula over that

in the theorem is bounded by 0.015 for n ≥ 50. Data to be presented in the Appendices

will give actual heft ranges for all IRDCS with n ≤ 50.

Attempting to improve the upper bound using the same or similar methods to

those used for the lower bound yields no improvement.

It is apparent from the empirical evidence that we should be able to improve the

upper bound as we did the lower bound. The bounds effectively only tell us that heft

is bounded as 3
4 < h < 3

2 , the upper bound for n > 15, which is clearly fine since the

only counter example to this is the length 11 IRDCS. Of all IRDCS up to and including

length 50, the heft is actually bounded by 0.987952 ≤ h ≤ 1.07287, and it appears

that methods such as these presented are not sufficient to significantly improve either
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of the bounds. An examiner of this thesis has found an improvement of this bound. We

present his argument in Appendix C.

Studying IRDCS leads to some natural questions, first asked in [23], motivated

in particular by the relationship between covering systems and IRDCS.

(1) Do there exist IRDCS with all moduli odd?

(2) Can the smallest modulus of some IRDCS be arbitrarily large?

(3) Our definition requires that each congruence be used at least twice. Do there

exist IRDCS where all moduli are used at least k times for some k > 2?

(4) Do there exist IRDCS where no modulus is divisible by any of the first k primes?

These questions provide much of the motivation for the remainder of the thesis. Many

of these questions will be studied in later chapters.

2.4 Open Questions

At this stage it is worth highlighting a few areas in which we have some questions of

interest where enough progress has not been made to warrant any significant exposition.

2.4.0.1 Moduli Divisibility

In [23] the following question is asked. Do there exist IRDCS with all moduli divisible

by some integer d for d > 2? Doubling produces examples where all moduli are divisible

by 2. For an example with all moduli divisible by three, take two IRDCS of the same

length with disjoint moduli sets. Two IRDCS of length 43 are given in [23], but as we

will see in one of the following questions, the smallest examples are for length 33 IRDCS

with compact notation

24, 2, 16, 8, 10, 22, 12, 18, and 21, 17, 11, 4, 6, 25, 14, 9, 23, 13, 15.
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Generally for any two sets of congruences {S(m1, a1), . . . , S(mt, at)} and

{S(n1, b1), . . . , S(ns, bs)} giving IRDCS on [1, n] with distinct moduli the collection

{S(3mi, 3ai + 1) : i = 1, . . . , t} ∪ {S(3ni, 3bi + 2) : i = 1, . . . , s} ∪ {S(3, 0)}

is an IRDCS on [1, 3n] where every modulus is divisible by 3.

2.4.0.2 Families of IRDCS

The paper [23] introduces the notion of families of IRDCS. Much like doubling, this in-

volves finding conditions for which we may always find or produce IRDCS. The example

given in the paper is called good IRDCS.

Definition 2.5. An IRDCS on [1, n] is good if,

(1) n is an odd multiple of 3,

(2) if m1 is the modulus of the class containing 1 then m1 > 2n/3. Along with the

first point this implies that

3n > 3m1 ≥ 2n+ 3,

(3) 3m1 − n− 1 is not a power of 2,

(4) no modulus in the collection is a power of 2.

These good IRDCS do exist. The presented example is the collection {S(19, 1), S(13, 2),

S(9, 3), S(5, 4), S(6, 5), S(10, 6), S(11, 7), S(17, 8), S(12, 10), S(14, 13)}. There is then an

algorithm which creates another good IRDCS from this IRDCS.

Let {S(mi, ai) : i = 1, . . . , t} be a good IRDCS on [1, n] where a1 = 1, so that

m1 > 2n/3. The following collection of congruence classes form a good IRDCS on

[1, 3n]. Set A = {S(3, 0)}. Set B = {S(3mi, 3ai − 2) : i = 1, . . . , t}. Labeling x1 = 1

and x2 = 1 + 3m1 then B covers all of S(3, 1) ∩ [1, 3n] excluding x1 and x2.
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Let θ = [log2(n/3)] and m = 3(2θ) and set y1 = n + 2 and y2 = n + 2m + 2,

then set C = {S(3(2i), y1 + 3(2i−1)) : i = 1, . . . , θ + 1}. C covers all of S(3, 2) ∩ [1, 3n]

excluding y1 and y2. Lastly set D = {S(y2−x1, x1), S(x2−y1, y1)}. Then A∪B∪C ∪D

is a good IRDCS on [1, 3n].

The previous two questions were raised in [23]. We now present two new questions.

A possibility for another family of IRDCS is the following based on the use of

the moduli 9, 6 and 3 in consecutive positions. Any IRDCS with 963 somewhere in its

alternate notation looks like

. . . , 9, 6, 3,−,−, 3,−, 6, 3, 9,−, 3,−, 6, 3,−,−, 3, . . . ,

where this pattern repeats indefinitely. So long as n ≥ 18 the modulus 9 always covers

at least two positions, and so a completed interval will be an IRDCS. The question is

whether there exists some N such for all n ≥ N there exists a length n IRDCS using

this 963 construction.

2.4.0.3 IRDCS using only even moduli that aren’t doublings

We know that there are IRDCS with only even moduli, namely doublings. It will be

shown in Chapter 6 that there also exist IRDCS with only odd moduli. This leads

to the question of whether there are any IRDCS with only even moduli that are not

doublings, meaning that they do not use the modulus 2. These IRDCS do exist. The

first such solution is one with n = 66, having heft 1.01857 and order 19, with compact

notation 48, 42, 4, 34, 32, 22, 8, 16, 12, 50, 20, 28, 44, 18, 46, 24, 26, 36, 30.

Say that we have such an IRDCS with congruences S(mi, ai). Since all moduli are

even, if a congruence has odd ai then all of the positions it covers will be odd. Similarly

congruences with even ai only cover even positions. If we remove all congruences with

ai odd and for the remaining congruences set the moduli mi to mi/2 and the initial
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point ai to ai/2, then it is easy to see that this will be an IRDCS. Similarly removing

congruences with ai even, halving the moduli and sending the respective ai to (ai+1)/2

will give an IRDCS. Thus any even IRDCS not using the modulus 2 must be generated

by two IRDCS with disjoint moduli sets, which may or may not have the same length.

If the original IRDCS has length 2n then the two smaller IRDCS must both have length

n, while if the original IRDCS is of length 2n + 1 then the two smaller IRDCS must

have length n and n+ 1.
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Chapter 3

Computing IRDCS

Given the existence and structural properties of IRDCS the natural question to ask

is how to compute all IRDCS of a given length n? This question naturally extends

to how to compute all IRDCS of given length n with given conditions, for example all

moduli being odd or with given minimum modulus. The answer comes in the form of

the following algorithm, which will first be presented technically, the details being first

published in [24], and then the algorithm will be explained in words, supported by an

example.

The algorithm is presented in detail, even though details have already been pub-

lished, in order to familiarize the reader with concepts and techniques needed in Chapter

7, when we tackle the algorithmically more challenging extension of the IRDCS concept

to higher dimensions.

3.1 The Algorithm, Technically

3.1.0.4 Backtracking

The algorithm is based on backtracking. Backtracking refers to the process of exhaust-

ing all possibilities at a given position and then transitioning back to the most recent

decision and updating there. Begin with an array x of length n, initially containing

a 1 in each position. This will represent the IRDCS in alternate notation, built up
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one modulus at a time. If a modulus is found to clash with a congruence that has

already been filled (i.e. attempting to cover a single position with two separate moduli)

then the algorithm attempts to use a larger modulus in the current position, if one is

available. Otherwise backtrack to the position most recently filled with a new modulus

and attempt to use a larger modulus in that position if one is available, repeating as

necessary. This is backtracking.

The algorithm also requires some other arrays to keep track of the process. The

first will be the modusage array, again of length n. This array will take the value 1

(true) in position k if the modulus k cannot be selected at that point by the algorithm,

and a 0 otherwise. This array in particular will be useful for searching for IRDCS

with given conditions. For example, to find an IRDCS with all odd moduli, before

commencing set the modusage of all even moduli to the value true. To find an IRDCS

with a given smallest modulus begin by setting the modusage of all moduli smaller than

this value to 1 before beginning the search, with similar considerations for other search

possibilities. Next is the array primary, once again of length n. This array will keep

track of the particular congruences, by storing the first position, in the sense of how the

algorithm fills the congruence, where moduli are used. This array is used to determine

the point to which the algorithm must backtrack when looking for the next position to

attempt to fill with a new congruence. The primary array takes the value true if that

position in the x array is empty or if it was the first position which used some modulus,

and is false otherwise. Given that the method used for filling moduli alternates around

the middle of the x array leaving no position unfilled, to be shown more precisely in what

follows, backtracking will never move through an empty position. Thus the algorithm

may always backtrack until primary = true, taking the process to the next position to

attempt a new congruence. For more exposition through example see Section 3.2.

To show how the IRDCS is filled some variables are required. The variable posi-

tion stores the current position of the algorithm, where the primary modulus, the first
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position to be filled, will be inserted. This variable starts at [n/2] + 1 and is adjusted

by the variables increment and polarity. The variable increment begins at value

1, and is increased by 1 with every change in position. Polarity takes the values ±1,

starting with value −1 and changing sign with every change in position. The position

changes by increment ∗ polarity at each step in the algorithm. This setup enables the

algorithm to fill the IRDCS by alternating around the middle position. For instance, for

length 11 the algorithm starts at position 6, then once that is filled it moves to position

5, then position 7, position 4 and so on. The IRDCS is filled by reflecting around the

middle, which was found to be faster and more intuitive than filling from one end of the

IRDCS when computing examples by hand. This method of filling also seems to work

best in proving various properties of IRDCS.

The variable clash takes the value true if a clash is generated on trying to fill a

given congruence, and takes the value false at other times. The variable maxmodulus

will be constantly updated to calculate the maximum possible modulus at the current

position. It will not be shown how to update this variable in the algorithm, but it

should be clear to the reader how to do so in an appropriate fashion. The update

depends on the conditions of the IRDCS, such as all congruences having at least 3 hits

in the IRDCS. Last of all the variable finished will take the value false so long as there

remains the possibility of more IRDCS with given conditions, and takes the value true

once all possibilities are exhausted.

The algorithm is now presented, firstly in technical form.

3.1.0.5 The Algorithm

The algorithm was first published in [24], and our version is not significantly different.

Any bold sentences prefaced with a ‘%’ will refer to a comment.

% Initialisation

Input n
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Set all entries of vectors x to 1, primary to true, modusage[2, 3, . . . , n−1] to false

and modusage[1] and modusage[n]to true. Set position = [n/2]+1, polarity = −1,

increment = 1, finished = false and clash = false.

% Begin main loop

while not finished do

% Calculate maxmodulus and choose next modulus

Set m = next unused modulus after x[position]

Calculate maxmodulus based off of current position and conditions for the IRDCS

if m ≤ maxmodulus then

% Feasible modulus found - enter while checking for clashes.

x[position] := m

i := position (mod m)

while i ≤ n and not clash do

if i 6= position then

if x[i] = 1 then

x[i] := x[position]

primary[i] := false

else

clash := true

i := i−m

end if

end if

i := i+m

end while

if clash then
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% If clash has occurred clear last modulus except at current position

modusage[m] := false

while i ≥ 1 and primary[i] = false do

if i 6= position then

x[i] := 1

primary[i] := true

end if

i := i−m

end while

clash := false

else

% Check to see if finished current system

while x[position] > 1 and 1 ≤ position ≤ n do

position := position+ increment ∗ polarity

increment := increment+ 1

polarity := polarity ∗ (−1)

end while

if position < 1 or position > n then

% Output system and backtrack

modusage[m] := false

while primary[position] = false do

increment := increment− 1

polarity := polarity ∗ (−1)

position := position− increment ∗ polarity

end while

% Remove previously filled congruence

i := position (mod m)
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while i < n do

if i 6= position then

x[i] := 1

primary[i] := true

end if

i := i+m

end while

end if

end if

else

% Backtrack or finish

if position = [n/2] + 1 then

finished := true

Output “No more solutions”

else

% Backtrack to previously filled position

while primary[position] = false do

increment := increment− 1

polarity := polarity ∗ (−1)

position := position− increment ∗ polarity

end while

% Remove previously filled congruence

m := x[position]

i := position (mod m)

while i < n do

if i 6= position then

x[i] := 1
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primary[i] := true

end if

i := i+m

end while

end if

end if

end while

3.2 The Algorithm In Words

To make some more sense of this algorithm, it will be illustrated with a simple example,

keeping track of the variables and vectors as the algorithm progresses. For the sake of

simplicity, all length 11 IRDCS will be calculated.

Begin with vectors and variables initialised based on length 11, with no special

conditions on the IRDCS. Note that the variables clash and finished are both false

and will remain so until otherwise stated.

x 1,1,1,1,1,1,1,1,1,1,1

modusage 1,0,0,0,0,0,0,0,0,0,1

primary 1,1,1,1,1,1,1,1,1,1,1

position / polarity / increment 6 / -1 / 1

Firstly, start filling in the [n/2] + 1 = 6 position, using the first available modulus 2.

After filling, move to position 6 + (−1)× 1 = 5, since polarity is (−1) and increment

is 1. The algorithm is now in the state below.

x 1,2,1,2,1,2,1,2,1,2,1

modusage 1,1,0,0,0,0,0,0,0,0,1

primary 1,0,1,0,1,1,1,0,1,0,1

position / polarity / increment 5 / 1 / 2
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Position 5 has primary 1, and so the algorithm attempts to fill it with a new modulus.

The next smallest modulus available is 3, however this will clash with the modulus 2 at

position 8, as attempting to fill the modulus 3 will create clash = true at position = 8

and so the algorithm backtracks the modulus 3 to get back to the same state as above

including resetting clash = false. The next modulus available is 4, which will not clash,

and so fill and move to position 5 + 1× 2 = 7.

x 4,2,1,2,4,2,1,2,4,2,1

modusage 1,1,0,1,0,0,0,0,0,0,1

primary 0,0,1,0,1,1,1,0,0,0,1

position / polarity / increment 7 / -1 / 3

At position 7, the next available modulus is 3, which will clash with modulus 2 at

position 4, so the algorithm attempts modulus 5. The modulus 5 will clash with modulus

2 at position 2, modulus 6 will clash with the modulus 4 at position 1, and then any

larger modulus will only intersect [1, 11] in position 7, and so is invalid. Thus the

algorithm backtracks. As such set polarity to (−1) × (−1), increment to 3 − 1 = 2

and move to position 7 − 1 × 2 = 5, which has the modulus 4 and primary value 1,

so that this was the first position used for this modulus. As such remove the modulus

4 and attempt to fill this position with the next available modulus. The modulus 3

has already been attempted in this position, so the next available modulus is 5. The

modulus 5 clashes with the modulus 2 in position 10, so try and use the modulus 6,

which works.

x 1,2,1,2,6,2,1,2,1,2,6

modusage 1,1,0,0,0,1,0,0,0,0,1

primary 1,0,1,0,1,1,1,0,1,0,0

position / polarity / increment 7 / -1 / 3

At position 7, modulus 3 clashes with 2 at position 4, modulus 4 clashes with modulus

6 at position 11, modulus 5 clashes with modulus 2 at position 2, modulus 6 is already
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used, and modulus 7 will not intersect the interval of the IRDCS twice. Thus the

algorithm needs to backtrack. Removing the modulus 6, the next modulus will be 7

which will only intersect [1, 11] once, and so will be invalid. As such, backtrack to

position 6 and try the next available modulus at that position, which will be 3.

x 1,1,3,1,1,3,1,1,3,1,1

modusage 1,0,1,0,0,0,0,0,0,0,1

primary 1,1,0,1,1,1,1,1,0,1,1

position / polarity / increment 5 / 1 / 2

At position 5, the moduli 2 and 4 will both clash, so we fill the modulus 5.

x 1,1,3,1,5,3,1,1,3,5,1

modusage 1,0,1,0,1,0,0,0,0,0,1

primary 1,1,0,1,1,1,1,1,0,0,1

position / polarity / increment 7 / -1 / 3

Now at position 7 moduli 2 and 4 will once again clash, but the modulus 6, which is

then the next available modulus, will work, and move to position 7 + (−1)× 3 = 4.

x 6,1,3,1,5,3,6,1,3,5,1

modusage 1,0,1,0,1,1,0,0,0,0,1

primary 0,1,0,1,1,1,1,1,0,0,1

position / polarity / increment 4 / 1 / 4

Now at position 4, the modulus 2 will clash, but the modulus 4 will work, and then

move to position 4 + 1× 4 = 8.

x 6,1,3,4,5,3,6,4,3,5,1

modusage 1,0,1,1,1,1,0,0,0,0,1

primary 0,1,0,1,1,1,1,0,0,0,1

position / polarity / increment 8 / -1 / 5
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Position 8 is already filled, so the algorithm moves to position 8 + (−1)×5 = 3, and the

polarity changes to 1, increment to 6. The position 3 is already filled, and so we move

to position 3 + 1× 6 = 9, which again is full. Thus once more adjust the increment and

polarity and move to position 9 + (−1)× 7 = 2 which is empty. Next cycle through the

available moduli looking for the next valid modulus. Modulus 2 will clash, as will 7 and

8. Modulus 9 will work and take the system to:

x 6,9,3,4,5,3,6,4,3,5,9

modusage 1,0,1,1,1,1,0,0,1,0,1

primary 0,1,0,1,1,1,1,0,0,0,0

position / polarity / increment 2 / 1 / 8

which is a full IRDCS, and the algorithm has found a solution of length 11.

Now to find all of the solutions the algorithm backtracks. The most recently filled

modulus is first removed and thus is the modulus 9, but clearly nothing else works here,

so iterate the changes to position, increment and polarity until reaching position 4

where the modulus 4 was used, removing this also.

x 6,1,3,1,5,3,6,1,3,5,1

modusage 1,0,1,1,1,1,0,0,0,0,1

primary 0,1,0,1,1,1,1,1,0,0,1

position / polarity / increment 4 / 1 / 4

The only other valid modulus here would be 7 (to intersect again at position 11),

x 6,1,3,7,5,3,6,1,3,5,7

modusage 1,0,1,0,1,1,1,0,0,0,1

primary 0,1,0,1,1,1,1,1,0,0,0

position / polarity / increment 8 / 1 / 4

but this leaves only positions 2 and 8 free, which would require the already used modulus

6, and so is invalid.
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At this point note that the manual method has a nice way to either quickly finish,

or show that given the current status of the system show it cannot be finished, an almost

full IRDCS by analysing the remaining free positions and seeing what moduli must be

used to fill them. This is particularly useful in finding the large minimum modulus

examples of Chapter 5. It does not seem that there is an efficient way to implement

this way of thinking into the algorithm, but this bears further consideration.

Backtrack further now to position 7 and remove the modulus 6. However, this was

the largest possible modulus at this position, any other modulus will only hit once, and

so backtrack further still to position 5 and replace the modulus here with the modulus

6.

x 1,1,3,1,6,3,1,1,3,1,6

modusage 1,0,1,0,0,1,0,0,0,0,1

primary 1,1,0,1,1,1,1,1,0,1,0

position / polarity / increment 7 / -1 / 3

At this point notice that the positions of the moduli 3 and 6 are reflected from

those in the first IRDCS. Thus, continuing with this system will at least find the re-

versal of the first IRDCS. Based on the previous results of the search it is known that

position 7 cannot use moduli 2, 3, or 4, that the only time it can use modulus 5 is in

the reversal of the first IRDCS, and any modulus larger than 6 will only hit the IRDCS

in the one position, so that the only IRDCS with the 3 and the 6 in these position is

the reversal of the first IRDCS. Thus we have found the second solution

x 9,5,3,4,6,3,5,4,3,9,6

and can immediately backtrack to trying the next available modulus to replace the

modulus 6 in position 5, for which there are no valid options. Thus backtrack to the

beginning and try the modulus 4.
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x 1,4,1,1,1,4,1,1,1,4,1

modusage 1,0,0,1,0,0,0,0,0,0,0

primary 1,0,1,1,1,1,1,1,1,0,1

position / polarity / increment 5 / 1 / 2

Shortening the analysis somewhat, next try a 2

x = 1, 4, 2, 1, 2, 4, 2, 1, 2, 4, 2,

which takes us to position 4, where there are no valid moduli available, so we weren’t

able to use the modulus 2. The modulus 2 can’t be replaced with a 3 or a 5 as they will

cause a clash, but this position can be filled with a 6

x = 1, 4, 1, 1, 6, 4, 1, 1, 1, 4, 6,

taking us to position 7, where 2, 3, 5 and 6 are all unavailable, and 7 is too large, so

remove the 6. However, replacing the 6 with anything larger will not hit the interval

twice, which means the modulus 4 must be replaced with a 5

x = 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5.

Now in position 5 the moduli 2, 3 and 4 all cause clashes, and 6 is too large, so the 5

was invalid. Now backtracking to the start shows that clearly anything larger than a 5

as our starting modulus is invalid, and so we have found all length 11 IRDCS and the

algorithm terminates.

3.3 Knuth’s Algorithm X and Dancing Links

Donald Knuth describes Algorithm X in [19]. This algorithm was designed to solve the

NP-complete Exact Cover problem. In particular, Knuth suggests using the dancing

links implementation of this algorithm to solve these problems. The algorithm has been

used to study tilings with polyominoes, the N queens problem [19] and more recently has
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been used in Sudoku solvers [6]. We will not discuss the dancing links implementation

here; details can be found in [19].

To turn the problem of finding an IRDCS into an exact cover problem, it must

be represented by a matrix consisting of only 0’s and 1’s. In this matrix, each row will

represent an available congruence. For an IRDCS of length n, the first n columns will

represent the positions in the IRDCS, where a 1 in the jth column will mean that the

congruence represented by that row contains the number j, and then the remaining n−2

columns will represent the modulus of the congruence. The matrix is filled from the top

down by congruences S(2, 0), S(2, 1), S(3, 0), S(3, 1), . . . . So for a length 6 IRDCS the

component of the matrix which represents the congruences is:

1 0 1 0 1 0 1 0 0 0

0 1 0 1 0 1 1 0 0 0

1 0 0 1 0 0 0 1 0 0

0 1 0 0 1 0 0 1 0 0

0 0 1 0 0 1 0 1 0 0

1 0 0 0 1 0 0 0 1 0

0 1 0 0 0 1 0 0 1 0

1 0 0 0 0 1 0 0 0 1



.

After adding all of the rows that represent congruences, n − 2 additional rows

which have all 0’s for the positions within the IRDCS and a single 1 in the modulus

section are required. These rows are added so that once we have a full IRDCS, the

moduli that have not been used for the IRDCS can be filled out to give an appropriate

matrix solution. This necessity will become clearer once Algorithm X is discussed more

formally.
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3.3.0.6 Algorithm X

Start with the matrix A which in our case is as described above. Then Algorithm X is

described, as in [19], by the following.

(1) If the matrix A is empty, the problem is solved; terminate successfully.

(2) Otherwise choose a column c deterministically (for example, first column from

the left with the lowest number of 1’s).

(3) Choose a row r such that Ar,c = 1 (choose this row randomly, but implement

in such a way that you can backtrack when the search for a solution fails or

finishes).

(4) Include row r in the partial solution matrix.

(5) For each column j such that Ar,j = 1, for each row i such that Ai,j = 1,

• delete row i from matrix A,

• delete column j from matrix A.

(6) Repeat this algorithm recursively on the reduced matrix A.

Note that in the above example the algorithm can terminate unsuccessfully if

there is a column containing zero 1’s. This corresponds to not being able to cover the

equivalent position in the IRDCS given the current system.

The dancing links implementation alters Algorithm X by the presentation of the

matrix A. Rather, each row and column in the matrix will consist of a circular doubly

linked list of nodes. These links are designed to significantly reduce the time needed

during the search for 1’s and removal of the relevant rows and columns. In a naive

implementation of Algorithm X it is the search for 1’s and column and row removal

which occupies the majority of the computing time for the algorithm, thus the dancing

links implementation.
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For our problem A will have n2/4+O(n) rows ([24]). The modulus n−1 can only

be used in one congruence in a length n IRDCS, namely x ≡ 1(mod n − 1), and thus

only requires one row in A. The moduli 2 and n−2 both have two possible congruences

in a length n IRDCS and will thus both generate two rows in the matrix A. Similarly

the moduli 3 and n − 3 will generate three rows, and so on. This pairing of moduli

continues until, for n even, the modulus n
2 which generates n

2 rows or for n odd the

moduli n−1
2 and n+1

2 which both generate n−1
2 rows. In either case, counting these gives

n2/4 + O(n) rows. Adding on the final n − 2 rows, used to fill in the unused moduli

once the IRDCS is finished, maintains this bound due to the O(n).

This algorithm can be systematically extended to find all possible IRDCS of a

given length, and can also be easily altered to find all IRDCS with a given condition,

such as only odd moduli, by removing invalid congruence rows wherever appropriate.

The dancing links implementation of Algorithm X is significantly more efficient

than the backtracking algorithm at finding the first solution for a given IRDCS. For

instance, in finding the first odd IRDCS of length 83, the backtracking algorithm took

approximately 7 minutes while dancing links found a solution in approximately 30 sec-

onds. We used a quad-core 2.67 GHz processor with 4 GB of memory on a 64-bit

Windows 7 operating system.
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Chapter 4

IRDCS with minimum hits 3 and higher

In the paper [23] by Myerson, Poon and Simpson, the authors ask the following question.

Question. Can we have an IRDCS where every congruence intersects the IRDCS in 3

or more positions?

Definition 4.1. An IRDCS of length n is said to have minhits k if the minimum

number of times any congruence used in the IRDCS intersects the interval [1, n] is k.

An exhaustive search has thus far shown that there are no IRDCS with

minhits ≥ 3 for lengths up to and including 105.

Given a length n IRDCS with minhits 3, then the maximum possible modulus is[
n−1

2

]
, which can cover the positions

1,
n

2
, n− 1, or, 2,

n

2
+ 1, n if n is even, or

1,
n+ 1

2
, n, if n is odd.

Say that, in the sense of the exhaustive backtracking algorithm from Chapter 3, the

primary position for a congruence being filled is p, which is to the left of the middle

of the IRDCS. Given that the algorithm fills by alternating around the middle, all

positions closer to the middle on either side will already be filled by other moduli. Thus

the modulus at position p must be at least as large as

m = 2
([n

2

]
+ 1− p

)
.
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On the other hand, for the congruence to hit another position to the left of p, then

m ≤ p− 1. If the congruence hits no points to the left of p then m ≥ p and positions at

least as large as 2p and 3p are covered. To avoid clashing with the already filled middle

then 2p ≥ 2
[
n
2

]
+ 2 − p, so that 3p ≥ 2

[
n
2

]
+ 2 > n, a contradiction, thus m ≤ p − 1

and the congruence must cover positions both to the left and the right of p. So

2
([n

2

]
+ 1− p

)
≤ m ≤ p− 1.

Therefore, we must have, for n even

n+ 2− 2p ≤ p− 1⇒ n+ 3 ≤ 3p

⇒ p ≥ n

3
+ 1,

and p ≥ n+2
3 for n odd.

If the algorithm were attempting to fill a congruence with primary position q to

the right of the middle of the IRDCS, then to avoid clashing with those positions in the

middle already covered, the modulus at position q must satisfy

m ≥ 2
(
q −

[n
2

]
− 1
)

+ 1.

A symmetric argument will show that we must hit a position to the right of q, so that

m ≤ n− q, and

2q − 2
[n

2

]
− 1 ≤ m ≤ n− q.

Hence 2q − 2
[
n
2

]
− 1 ≤ n− q ⇒ 3q ≤ n+ 2

[
n
2

]
+ 1, which gives q ≤ 2n

3 for n odd and

q ≤ 2n+1
3 for n even.

Thus for a length n IRDCS with minhits 3, the primary positions for all congru-

ences must be numbers x satisfying

n+ 2
3
≤ x ≤ 2n+ 1

3
.

Alternately all positions with x < n+2
3 or x > 2n+1

3 must be filled by a congruence with

primary position closer to the middle.
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Recall that we use t for the order of our IRDCS, as defined in Definition 2.3. If

t = [n3 ], then the IRDCS must contain a modulus at least as small as

A =
[
n− 1

2

]
−
([n

3

]
− 1
)

=



n
2 −

n
3 if n ≡ 0 (mod 6),

n−1
2 −

n−1
3 + 1 if n ≡ 1 (mod 6),

n
2 −

n−2
3 if n ≡ 2 (mod 6),

n−1
2 −

n
3 + 1 if n ≡ 3 (mod 6),

n
2 −

n−1
3 if n ≡ 4 (mod 6),

n−1
2 −

n−2
3 + 1 if n ≡ 5 (mod 6),

≤
[n

6

]
+ 2.

For any k ∈ N, all moduli m with
[

n
k+1

]
< m ≤

[
n
k

]
will hit the IRDCS at least k

times and at most k+1 times. If for an IRDCS with minhits 3 only the largest available

moduli are used this produces the fewest possible hits in the IRDCS. Define #hits to

be the number of positions covered by the congruences in this IRDCS, thus

#hits ≥ 3
([

n− 1
2

]
−
[n

3

])
+ 3

([n
3

]
−
[n

4

])
+ 4

([n
4

]
−
[n

5

])
+ 5

([n
5

]
−
[n

6

]
− 1
)

= 3
[
n− 1

2

]
+
[n

4

]
+
[n

5

]
− 5

[n
6

]
− 5

≥ 3
(n

2
− 1
)

+
(
n

4
− 3

4

)
+
(
n

5
− 4

5

)
− 5n

6
− 5

=
67
60
n− 191

20
,

so that #hits > n so long as n > 191×60
20×7 = 816

7 . These lengths have been checked for

minhits 3 exhaustively using the algorithm, finding no results. Thus t <
[
n
3

]
.

Repeating this process assuming that t = [n3 ] − k, where
[
n−1

2

]
− t ≤ [n5 ] gives
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#hits ≥ 67
60n−

191
20 − 5k. Comparing this to n

#hits ≥ 67
60
n− 191

20
− 5k > n

7
60
n− 191

20
− 5k > 0,

where substituting k = 1, 2, . . . will give the minimal length possible for such an IRDCS

to have order t = [n3 ]−k. For example, to have order t =
[
n
3

]
−1 the particular solution

with minimum hits 3 must have length n < 291×60
20×7 = 124.714 . . . . Note that a solution

in this range does not imply that it must have order t =
[
n
3

]
− 1.

Moreover, this method will always provide a contradiction so long as

7n
60
− 5k >

191
20

→ k <
7n
300
− 191

100
.

Thus

t ≤
[n

3

]
− 7n

300
+

191
100
≤ 31n

100
+

191
100

,

so that

t ≤
[

31n+ 191
100

]
.

This bound is a tighter bound than the trivial bound
[
n
3

]
. We may hope to try to

extend this bound to t ≤ 31n
100 . However while for 5k < 7n

60 a large enough length n can

always be found which will give #hits > n, it is not true in general for all such n, and

thus the constant term is required in the bound. As such the best possible constant

associated to this linear relationship that can be achieved by this method is sought.

For an IRDCS with minhits = 3 and order t a modulus at least as small as
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n−1

2

]
−t+1 must be used. Let t =

[
31n
100 + γ

]
, then so long as

[
n
6

]
≤
[
n−1

2

]
−t+1 ≤

[
n
5

]
,

#hits ≥ 3
([

n− 1
2

]
−
[n

4

])
+ 4

([n
4

]
−
[n

5

])
+ 5

([n
5

]
−
[
n− 1

2

]
+
[

31n
100

+ γ

])
= −2

[
n− 1

2

]
+
[n

4

]
+
[n

5

]
+ 5

[
31n
100

+ γ

]
≥ −n+ 1 +

n

4
− 3

4
+
n

5
− 4

5
+ 5

(
31n
100

+ γ − 1
)

= n+ 5γ − 111
20

.

Now [
n− 1

2

]
−
[

31n
100

+
111
100

]
+ 1 ≥ n

2
− 1− 31n+ 111

100
+ 1

=
19n
100
− 111

100
,

so that
19n
100
− 111

100
≥
[n

6

]
,

if
19n
100
− n

6
≥ 111

100
,

which is always true for n ≥ 474
7 , where there do not exist any minhits = 3 examples

up to this length. Similarly[
n− 1

2

]
−
[

31n
100

+
111
100

]
+ 1 ≤ n− 1

2
− 31n+ 111 + 99

100
+ 1

=
19n− 160

100

≤
[n

5

]
.

Thus, whenever γ > 111
100 we have #hits > n and so for an IRDCS with minhits =

3

t ≤
[

31n+ 111
100

]
.
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To highlight a slightly different approach to get a simpler proof of the first order

bound, for an IRDCS with order t the largest possible smallest modulus for the IRDCS

is
[
n−1

2

]
− (t− 1). Using similar methods to previously, take[

n

α+ 1

]
<

[
n− 1

2

]
− (t− 1) ≤

[n
α

]
,

which implies that[
n− 1

2

]
+ 1−

[n
α

]
≤ t <

[
n− 1

2

]
+ 1−

[
n

α+ 1

]
.

Following the same argument as previously, if α = 3, then

#hits ≥ 3
([

n− 1
2

]
−
[n

3

])
+ 3

([n
3

]
−
([

n− 1
2

]
− (t− 1)

))
≥ 3

([
n− 1

2

]
−
[n

3

])
≥ n

2
− 3,

which is fine. With the same analysis if α = 4 then #hits ≥ 3n
4 − 3, and for α =

5,#hits ≥ 19n
20 −

3
4 , both of which are always fine. Finally, if α = 6, then #hits ≥ 67

60n−
91
20

as before. Thus

t ≤
[
n− 1

2

]
−
[n

6

]
,

as with the original method.

Any hope of finding a lower bound for the order of a minimum hits 3 or higher

IRDCS is dashed by doubling. Any IRDCS with minimum hits 3 can always be dou-

bled to be another IRDCS of minimum hits 3, doubling the length but increasing the

number of moduli by just one. So should there exist any IRDCS with minhits 3 after

repeating the doubling process you can find t < εn for any ε > 0. No upper bound can

be much better than log n, as in the standard IRDCS case.
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We now extend this to studying IRDCS with minhits = 4. The maximum mod-

ulus in this case is
[
n−1

3

]
and if the order is t =

[
n
4

]
a modulus at least as small as

B =
[
n− 1

3

]
−
[n

4

]
+ 1 ≤

[ n
12

]
+ 2

must be used. As for the previous case assuming that only the largest available moduli

are used and each of these moduli only hits the IRDCS in the fewest possible places

#hits ≥ 4
([

n− 1
3

]
−
[n

4

])
+ 4

([n
4

]
−
[n

5

])
+ · · ·+ 11

([ n
11

]
−
[ n

12

]
− 1
)

≥ 37511
27720

n− 21
1759
27720

,

which is larger than n so long as n > 60. So the order must be t <
[
n
4

]
.

Repeating the process, assuming that t = [n4 ] − k, where
[
n−1

3

]
− t ≤ [ n11 ] then

#hits ≥ 37511
27720n− 21 1759

27720 − 11k. This will always produce a contradiction so long as

k <
9791n− 583879

11× 27720
,

so that

t ≤
[n

4

]
− 9791n− 583879

11× 27720
≤ 66439n+ 583879

11× 27720
≈ 0.218n+ 1.915,

and the process may in a similar fashion attempt to improve associated constant.

These methods to do not provide any improvement on the bounds for order in the

standard IRDCS case. It is the fact that the congruences with large modulus, between[
n
3

]
and

[
n
2

]
, must cover 3 positions, rather than 2, that gives the reductions in the

order bound that are found here.



58



Chapter 5

IRDCS with large minimal modulus

Perhaps the most famous open problem of covering systems is the one posed by Erdős

[8], which asks whether there is a covering system with arbitrarily large minimal mod-

ulus. There was famously a prize of $1,000 on offer for a solution to this problem [10].

For our purposes, the problem of interest is explicitly stated in [23].

Question. Can the smallest modulus of an IRDCS be arbitrarily large?

The following table shows the smallest length for which an IRDCS with given

minimum modulus M > 2, can be found, and a comparison of the length to 4M .
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Minimal Modulus Length Length Formula

3 11 4M - 1

4 17 4M + 1

5 18 4M - 2

6 22 4M - 2

7 26 4M - 2

8 30 4M - 2

9 34 4M - 2

10 37 4M - 3

11 41 4M - 3

12 45 4M - 3

13 49 4M - 3

14 53 4M - 3

15 57 4M - 3

It would seem that for all M we can find such IRDCS.

Conjecture 5.1. [23] For all sufficiently large M there exists an IRDCS of length

4M − 3 with minimum modulus M .

In this chapter we establish the conjecture for M < 20, and present results on

the weaker conjecture that for all M there exists an IRDCS with minimum modulus M .

Before considering this further, we have the following result on the lower bound for the

length of an IRDCS with minimum modulus M .

Lemma 5.1. An IRDCS with minimum modulus M has length n ≥ 2M + 6.

Proof. The proof follows the ideas of the proof of the upper bound for order in Theorem

2.2. For n = 2r−1 odd, the moduli covering position r and at least one of the positions

r±1, r±2 and r−3 must cover at least 3 points each in the IRDCS. As the proof considers

these positions close to the centre of the IRDCS that are forced to have congruences
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covering at least 3 positions, as in the proof of Theorem 2.2, the length of the IRDCS

is minimised when the positions with three hits are covered by the smallest possible

moduli.

If position r is covered by the modulus M then as all moduli are at least large as

M , the other congruence which covers 3 positions must be using a larger modulus. The

smallest case for this, avoiding clashes, is either of the positions r ± 1 being covered by

M + 2 or one of r ± 2 being covered by M + 1, with this congruence having three hits.

So r − 1 − (M + 2) ≥ 1, or equivalently r − 2 − (M + 1) ≥ 1, so that r ≥ M + 4 and

thus n ≥ 2M + 7, where all of these cases provide the same bound by symmetry.

If position r is covered by M + 1, then to avoid clashes we have either of r ± 1

covered by a modulus at least as large as M + 4. To minimise the length, take both of

these positions as being covered by congruences with only two hits, and let one of r± 2

be covered by the modulus M where this congruence has three hits in the IRDCS. Then

this case gives r + 1−M − 4 ≥ 1 and thus r ≥M + 4 giving n ≥ 2M + 7.

If position r is covered by M + 2, then since this congruence must cover at least

3 positions, namely r, r −M − 2 and r +M + 2, we have r − (M + 2) ≥ 1 which gives

n ≥ 2M + 5. If one of r ± 1 are covered by a congruence with three hits, then without

loss of generality let r− 1 be covered by modulus M . Covering it with M + 1 will cause

a clash with r +M + 2. Then r + 1 must be covered by M + 4 since using M + 1 will

clash with r+M+2 and using M+3 will clash with r−M−2, so that r+1−M−4 ≥ 1

giving n ≥ 2M + 7. It is easily seen with similar arguments that letting both r ± 1 be

covered by congruences with two hits and one of r± 2 and r− 3 having three hits gives

the same bound.

For n = 2r even, at least two of the positions r, r± 1 must be covered by congru-

ences with at least 3 hits in the interval [1, n]. If r+ 1 is one of these and is covered by

the modulus M , then either r must be covered by a modulus at least as large as M + 2

or r − 1 must be covered by a modulus at least as large as M + 1 with this position



62

being in a congruence with three positions covered. In either case r − (M + 2) ≥ 1 so

that n ≥ 2M + 6.

If r+ 1 is again one of the congruences with 3 hits and is covered by the modulus

M + 1, then position r must be covered by a modulus at least as large as M + 3 or

position r−1 must be covered by a modulus at least as large as M and be the congruence

with three hits. In the first case, we have r −M − 3 ≥ 1 which gives n ≥ 2M + 8. The

second case gives r − 1 −M ≥ 1 so that n ≥ 2M + 4. For this case the modulus that

covers position r must be at least as large as M + 3, so that r + M + 3 ≤ 2r giving

n ≥ 2M + 6. Any larger modulus covering r + 1 will also give this bound.

Lastly if it is positions r and r − 1 that are hit three times, then similar analysis

shows that the smallest case is when r is covered by M + 2 and r − 1 is covered by M .

Then position r + 1 must be covered by the modulus M + 4 giving n ≥ 2M + 6.

5.1 Smallest Solution Summary Statistics

This section will outline the summary statistics of IRDCS with a given minimal modulus

of smallest length. These are found by using the exhaustive search algorithm and taking

all examples for the best possible length. Recall our bounds for order t ≤ n−1
2 and heft

3
4

+
1

4n
≤ h ≤ 3n− 5

2(n+ 1)
+

4
(n+ 1)2

,

which we will use for comparison purposes.

Summary statistics for minimum modulus below 10 will not be presented, as they

do not prove to be particularly enlightening.

Minimum modulus 10

At length 37, there are 224 IRDCS with minimum modulus 10. All of the 224 IRDCS

use all of the moduli from 10 through to 26 inclusive, giving them heft 1.02545 and order

17, which compares to the formula from Chapter 2 which gives heft between 0.7568 and

1.3975 and order at most 18.
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Minimum modulus 11

At length 41, there are 752 IRDCS with minimum modulus 11. All of the 752 IRDCS

use all of the moduli from 11 to 28 inclusive and the modulus 30 giving them heft

1.03154 and order 19, which compares to the formula which gives heft between 0.7561

and 1.4070 and order at most 20.

Minimum modulus 12

At length 45, there are 19,752 IRDCS with minimum modulus 12. All of the IRDCS

use all of the moduli from 12 to 31 inclusive giving them heft 1.00737 and order 20,

which compares to the formula which gives heft between 0.7556 and 1.4149 and order

at most 22.

Minimum modulus 13

At length 49, there are 628,332 IRDCS with minimum modulus 13. All of them use

all of the moduli from 13 to 32 inclusive, and the moduli 33, 34, 35 and 36 are used

546,144, 338,426, 256,962 and 115,132 times respectively.

There are 256,238 IRDCS which use modulus 33 and 34, 174,774 which use 33

and 35, 82,118 which use 34 and 35 and 115,132 which use 33 and 36 and no others.

The IRDCS have heft between 1.01327 and 1.015 and order 22, which compares to the

formula which gives heft between 0.7551 and 1.4216 and order at most 24.

Minimum modulus 14

At length 53, there are 11,482,130 IRDCS with minimum modulus 14. The modulus

usage is represented in the following table.
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Modulus Number of IRDCS Proportion of Total

14 11,482,130 1.000

15 11,482,130 1.000

16 11,482,130 1.000

17 11,482,130 1.000

18 11,482,130 1.000

19 11,482,130 1.000

20 11,482,130 1.000

21 11,482,130 1.000

22 11,482,130 1.000

23 11,482,130 1.000

24 11,482,130 1.000

25 11,482,130 1.000

26 11,482,130 1.000

27 11,482,130 1.000

28 11,482,130 1.000

29 11,482,130 1.000

30 11,482,130 1.000

31 11,482,130 1.000

32 11,482,130 1.000

33 11,482,130 1.000

34 11,187,918 0.974

35 10,590,832 0.922

36 8,629,412 0.752

37 6,045,856 0.526

38 4,397,394 0.383

39 2,907,492 0.253

40 1,289,256 0.112

41 880,360 0.077
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The heft of these IRDCS ranges from 1.01836 to 1.02145, and all IRDCS have order 24.

This compares to the formula which gives heft between 0.7547 and 1.4273 and order at

most 26.

The growth in solution numbers for those IRDCS of a given length is comparable

to the growth of the total number of IRDCS of a given length, as seen in Section A.2.

Minimum modulus 15, 16, 17, 18, 19 and 20

We know that the first IRDCS with minimum modulus 15 is of length 57, but the com-

putation time to find all such solutions is prohibitively long. We have confirmed via the

dancing links implementation of Algorithm X that there exist IRDCS with minimum

modulus 16, 17, 18 and 19 with length n = 4M − 3. We have not confirmed that these

are the shortest possible lengths for these IRDCS. The IRDCS found, in their compact

notation, are:

Minimum modulus 15, length 57, IRDCS:

38, 34, 32, 29, 36, 26, 35, 19, 42, 24, 17, 18, 43, 15, 16, 21, 23, 20, 31, 37, 22, 33, 30, 25, 27, 28.

This IRDCS has heft 1.0234 and order 26, which compares to the formula which gives

heft ranging from 0.7554 to 1.4322 and order at most 28. Note that the modulus 28

covers the 26th position, so that all of the moduli are in a single block.

Minimum modulus 16, length 61, IRDCS:

41, 37, 33, 31, 32, 28, 36, 45, 20, 35, 48, 18, 19, 24, 16, 17, 39, 22, 25, 21, 40, 38, 23, 34, 30, 26,

27, 29.

This IRDCS has heft 1.028 and order 28, which compares to the formula which gives

heft ranging from 0.7541 to 1.4365 and order at most 30. Note that the modulus 29

covers the 28th position, so that all of the moduli are in a single block.
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Minimum modulus 17, length 65, IRDCS:

42, 40, 35, 36, 25, 31, 32, 41, 38, 21, 34, 24, 19, 20, 26, 17, 18, 43, 46, 44, 27, 22, 23, 39, 37, 33,

30, 28, 29.

This IRDCS has heft 1.014 and order 29, which compares to the formula which gives

heft ranging from 0.7538 to 1.4403 and order at most 32. Once again, the modulus 29

covers the 29th position, and this IRDCS also has all of its moduli in a single block.

Minimum modulus 18, length 69, IRDCS:

48, 42, 37, 35, 23, 36, 34, 44, 38, 40, 22, 49, 25, 20, 21, 27, 18, 19, 26, 28, 47, 24, 43, 45, 39, 41,

32, 29, 30, 31, 33.

This IRDCS has heft of 1.018 and order 31, which compares to the formula which gives

heft ranging from 0.7536 to 1.4437, and order at most 34. This time the moduli in the

IRDCS are not presented as a single block with the modulus 23 hitting positions 4 and

27.

Minimum modulus 19, length 73 (also 74), IRDCS:

51, 46, 42, 40, 38, 36, 24, 33, 41, 44, 52, 23, 49, 26, 21, 22, 29, 19, 20, 27, 30, 50, 48, 25, 28, 47,

43, 37, 39, 31, 32, 34, 35.

This IRDCS has heft of 1.020 and order 33, which compares to the formula which gives

heft ranging from 0.7534 to 1.4467, and order at most 36. This IRDCS is also an IRDCS

of length 74 (using the modulus 32 to cover position -1), and again the moduli are not

presented as a single block with the modulus 24 hitting positions 6 and 30.
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For minimum modulus 20, we have not found a solution of length 77, but we have also

not confirmed that there are no solutions for this length. For length 78 the first solution

found by the Dancing Links implementation of Algorithm X is

51, 49, 45, 26, 52, 41, 46, 36, 27, 39, 34, 38, 30, 28, 23, 21, 24, 22, 20, 40, 25, 55, 44, 31, 29, 42,

48, 50, 47, 43, 32, 33, 35, 37.

This IRDCS has heft 1.008 and order 34, comparing to the formula which gives heft

ranging from 0.7532 to 1.4500 and order at most 38. The moduli are not in a single

block, with modulus 26 covering positions 3 and 29.

The first solution for an IRDCS with minimum modulus 20 of length 79 can be

presented in the compact notation as;

56, 52, 47, 32, 30, 49, 44, 29, 37, 35, 45, 41, 34, 24, 33, 27, 22, 23, 25, 20, 21, 36, 26, 28, 42, 53,

51, 31, 48, 46, 43, 39, 40, 38.

This IRDCS has heft of 1.007 and order 34, which compares to the formula which gives

heft ranging from 0.7532 to 1.4506, and order at most 39. The moduli in this IRDCS

are presented in a single block. We present this solution only to mention that the com-

putation of this example took approximately 13 minutes, while the solution of length

78 took approximately 10 hours. A solution of length 80 took approximately 2 seconds

to compute, again using a quad-core 2.67 GHz processor with 4 GB of memory on a

64-bit Windows 7 operating system.

When the dancing links implementation of Algorithm X is used, only one solution

is found and the algorithm terminates. As such, no conclusions should be drawn on

IRDCS based upon the single solution that is found. For instance, in all of the presented

minimum modulus IRDCS, excluding the length 79 IRDCS with minimum modulus 20,

the modulus M is used to cover position M − 1. This is almost certainly not a general
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property for all such IRDCS, though it is possible that one may always exist for each

M . The growth in the solution numbers of IRDCS seen for minimum modulus up to

and including M = 14 lends weight to this possibility.

5.2 Manual Method To Find IRDCS With Large Minimum Modulus

Attempting to find IRDCS with large minimal modulus using the exhaustive algorithm

quickly becomes too time-consuming a process to produce any new results in a reason-

able timeframe. This is especially true since for Conjecture 5.1 to hold it is required to

check 3 lengths in full without discovering an example before the 4th length produces

the first example, since our conjectured formula for length is n = 4M − 3. As such

a method for finding an IRDCS with large minimum modulus without the use of the

exhaustive algorithm is presented here.

For minimum modulus M , take [1, 5M ] ∩ Z for what will be an IRDCS of length

5M or shorter. As the IRDCS is filled the length may be shortened to allow for cases

where the method of filling either produces clashes or leaves some positions unfilled close

to either end of the interval. The concept of closeness will be clarified in what follows.

To create these IRDCS, input modulus M at position M , modulus M + 1 at

position M + 1 and so on, for as long as the congruences do not produce unwanted

clashes. That is, use the congruences S(M, 0), S(M + 1, 0), . . . , S(M + k, 0), where k

is chosen so as to not generate a clash that will force the IRDCS to have length too

close to n = 4M thus making an IRDCS of this form harder, and perhaps impossible,

to construct. This can be represented by the following table:
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+ 1 2 3 4 . . . M - 1 M

0 M

M M+1 M+2 M+3 M+4 M

2M M+1 M+2 M

3M M+1 M

4M M+1 M

To further clarify the construction, an example with M = 10 will be completed.

After inserting the initial block of moduli starting with the modulus 10 at position 10

the IRDCS would look like:

+ 1 2 3 4 5 6 7 8 9 10

0 10

10 11 12 13 14 10

20 11 12 13 14 10

30 11 12 13 10

40 14 11 12 10

where the modulus 15 is not used at this stage since it would cause a clash at position

30, and the IRDCS is expected to be at best of length 37.

Now add the next available moduli M + k + 1,M + k + 2 and so on. Here

M + k + 1 = 15. The process now becomes more variable, as a choice must be made

as to where to insert these moduli. Attempt to insert them as another block, placing

modulus 15 at position α, the modulus 16 at α+ 1 and so on. Start with the modulus

15 at position 1 and then iterate this process at position 2, 3, 4 and so on, to see

which starting position allows the largest block of sequential moduli. This leads to the

following situation;
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+ 1 2 3 4 5 6 7 8 9 10

0 15 16 17 18 10

10 11 12 13 14 15 16 10

20 17 11 18 12 13 14 10

30 15 11 16 12 17 13 10

40 18 14 11 15 12 10

where using the modulus 19 will cause a clash with 11 at position 44, which is too close

to length 4M for our liking at this early stage, and starting at position 2 rather than 1

gives us a longer block of sequential moduli.

Now attempt to add more moduli, adding as many which cover 3 positions of the

IRDCS as possible. For the current example start by adding the modulus 19. Attempt

to add these new moduli into our IRDCS in increasing positions, starting at the first

free position, for no reason other than in examples it seems to be the most efficient

method, working as often as any other methods. Continue doing this with consecutive

moduli until moduli which hit 3 times without causing a clash can no longer be found.

So for our example, this becomes:

+ 1 2 3 4 5 6 7 8 9 10

0 15 16 17 18 19 20 10

10 11 12 13 14 15 16 10

20 17 11 18 12 13 19 14 20 10

30 15 11 16 12 17 13 10

40 18 14 11 19 15 12 20 10

where only the moduli 19 and 20 have been added, as no other modulus can hit 3 times.

The last step is to attempt to fill the remaining positions with whatever moduli are

available. In our current example, position 25 can only be covered with the modulus 24,

covering position 1 and clashing at position 49. This forces position 31 to use modulus

25, as it was either that or 24, which forces position 34 to use modulus 27, and then
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there are no moduli available to cover 18, thus our process must backtrack. If we remove

only the modulus 20 in our backtrack, the IRDCS can be finished as follows:

+ 1 2 3 4 5 6 7 8 9 10

0 24 15 16 17 18 23 27 19 22 10

10 11 12 13 14 30 21 15 25 16 10

20 17 11 18 12 24 13 19 14 23 10

30 22 15 11 27 16 12 21 17 13 10

40 18 14 25 11 30 19 15 12 24 10

This produces an IRDCS with minimal modulus 10 of length 44 at the shortest, up to

length 51 at its longest. This IRDCS has heft 1.007 and order 17. Note that this is an

example of an IRDCS whose compact notation provides IRDCS of different lengths. The

compact notation in this case is 24, 15, 16, 17, 18, 23, 17, 19, 22, 10, 11, 12, 13, 14, 30, 31, 25.

This particular compact notation provides IRDCS for lengths 45 to 51. The length 44

IRDCS requires removing the first 5 positions and position 50, length 51 comes from an

unseen modulus 16 at position 51 which is clash free.

The test for whether or not a clash is allowed during the stages of filling the

IRDCS is subjective. Forcing any clashes to be close to the ends of the interval [1, 5M ]

allows more possibilities for the choices of the particular congruences for the already

filled moduli, by removing positions on either end. More importantly, it maintains a

longer length IRDCS. Empirical evidence strongly suggests that, other than for some

small length IRDCS, the number of IRDCS with given conditions increases very rapidly

with length. Thus the larger the interval, the more likely it should be that we will find

an IRDCS with minimum modulus M .

If there were a clash close to position 4M then many possibilities for the IRDCS

would be ruled out prematurely. This would limit the possible congruences modulo

M,M + 1, . . . ,M + k, for which the residues can be altered by adjusting how many
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positions are left blank at the start of the IRDCS once it is finished. Given that the

conjectured smallest length for an IRDCS with minimum modulus M is n = 4M − 3,

and given that this method produces a special type of IRDCS, at this early stage it is

favourable to have as much flexibility in the length of the IRDCS as possible, maintaining

n ≈ 5M .

When there remains only a small number of blank positions left to fill at the

ends of the interval, so long as we don’t have clashes closer to the middle than the

empty spots, the blank ends can simply be removed from consideration. This adjusts

the length of the IRDCS constructed. The choice of 5M and the starting position of

the congruence modulo M is made so that congruences with any residues for the first

block of moduli can be utilized in the IRDCS, by removing positions at the beginning

of our interval.

This manual construction method gives an IRDCS with given minimum modulus,

and sometimes effectively the same IRDCS with multiple lengths. Present results give

an IRDCS of minimal modulus up to and including 40, along with minimum modulus

50. For example, an IRDCS of minimum modulus 40 has the following statistics:

Statistic Observed Notes

Length 189 to 194 4 ∗ 40− 3 = 157 is our expected best possible length

Order 69 Bounded above by 94

Heft 1.003 For length 189, bounded between 0.7689 and 1.3475

The IRDCS in question has compact notation 97, 102, 107, 88, 110, 56, 57, 58, 59, 60,

61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 91, 104, 71, 72, 98, 94, 73, 74, 100, 105, 75, 76, 80,

77, 81, 78, 95, 79, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 86, 82, 87,

89, 118, 93, 109, 99, 101, 83, 103, 85, 96, 114, 108.
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There is also the following IRDCS with minimum modulus 50.

Statistic Observed Notes

Length 241 to 248 4 ∗ 50− 3 = 197 is our expected best possible length

Order 87 Bounded above by 120

Heft 1.0044 For length 241, bounded between 0.7699 and 1.3472

This IRDCS has compact notation 112, 129, 133, 121, 132, 134, 68, 69, 70, 71, 72, 73,

74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 113, 115, 87, 88, 124, 114, 89, 90, 144,

125, 91, 92, 128, 118, 93, 94, 127, 95, 119, 96, 102, 97, 103, 98, 50, 51, 52, 53, 54, 55,

56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 135, 137, 139, 110, 100, 141, 143, 99, 106,

142, 105, 150, 104, 108, 109, 101, 136, 111, 140, 123.

5.2.1 Open Question

It does seem that the construction presented requires some luck as to whether or

not the particular block selections, especially the second block, gives an IRDCS. In some

instances in calculating the following IRDCS we found that the first block chosen did

not lead to an IRDCS, or that it was much quicker to chose a different block of moduli.

There are also choices to be made in which individual moduli hitting three positions

are used in the construction. Can this construction be improved to fully categorise

the block selection, and perhaps to guarantee finding an IRDCS with given minimum

modulus?

5.2.2 Summary Statistics - Manual Method

In this section we outline the results of the manual method for finding IRDCS

with large minimal modulus. The structural properties of the IRDCS found will be

compared to the bounds given in the results of Chapter 2. For all of our comparisons

with the heft formula, we will adopt the convention that the IRDCS of smallest length
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along with its order will be used to compare the results to those predicted by formula

(2.1) from Theorem 2.4.

The IRDCS are presented in an addition table where the value of the addition

gives the position of the IRDCS. All of these IRDCS are presented in this form, which is

similar to the alternate notation. It additionally provides more information to highlight

the particulars of the construction. The compact notation of the IRDCS is also presented

for each example.

Minimum modulus 20

+ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 57 55 52 47 28 29 30 31 32 33 34 35 36 51 53

15 37 45 38 40 20 21 22 23 24 25 26 27 46 42 61

30 56 54 28 49 29 59 30 39 31 20 32 21 33 22 34

45 23 35 24 36 25 47 26 37 27 52 38 55 57 40 20

60 28 45 21 29 51 22 30 53 23 31 42 24 32 46 25

75 33 39 26 34 20 27 35 49 21 36 54 56 22 28 37

90 61 23 29 38 59 24 30 47 40

The compact notation of this IRDCS is:

57, 55, 52, 47, 28, 29, 30, 31, 32, 33, 34, 35, 36, 51, 53, 37, 45, 38, 40, 20, 21, 22, 23, 24, 25, 26,

27, 46, 42, 61, 56, 54, 49, 59, 39.

This compact notation produces IRDCS with lengths from 95 to 99 which have

heft 1.003 and order 35. Adjusting the IRDCS to have lengths between 95 and 99

requires removing the appropriate number of hits from the congruences with moduli 24,

30, 47 and 40 from the right end of the IRDCS. This process of removing individual hits

of moduli from either or both ends of the IRDCS will almost always be possible for the

following examples, and it should always be clear how to find the IRDCS of the relevant

lengths. As such, we will not explicitly state how to adjust the lengths for any of the
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remaining examples, unless the method is decidedly different or particularly interesting.

Moduli that are removed must come from congruences which still have at least two hits

in the IRDCS, and there must never be any gaps left.

For the minimum modulus 20 IRDCS, the heft and order compare to heft between

0.7688 and 1.3339 and order at most 47 from the relevant formulae.

Minimum modulus 21

+ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 58 59 60 62 50 52 47 28 29 30 31 32 33 34

15 35 36 40 42 37 21 22 23 24 25 26 27 45 41 46

30 48 53 57 65 56 51 28 44 29 55 30 21 31 22 32

45 23 33 24 34 25 35 26 36 27 47 50 37 40 52 58

60 42 59 21 60 28 22 62 29 23 41 30 24 45 31 25

75 46 32 26 48 33 27 44 34 21 53 35 51 22 36 57

90 56 23 28 37 55 24 29 40 65 25 30 47 42 26

The compact notation of this IRDCS is:

58, 59, 60, 62, 50, 52, 47, 28, 29, 30, 31, 32, 33, 34, 35, 36, 40, 42, 37, 21, 22, 23, 24, 25, 26, 27,

45, 41, 46, 48, 53, 57, 65, 56, 51, 44, 55.

This compact notation produces IRDCS with lengths from 98 to 103 which have

heft 1.000 and order 37, which compares to heft between 0.7665 and 1.3440 and order

at most 48.
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Minimum modulus 22

+ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 50 41 57 65 42 43 47 45 54 56 46 22 23 24 25

15 26 27 28 29 30 31 63 32 48 33 49 34 53 35 58

30 36 61 37 22 38 23 39 24 40 25 55 26 41 27 52

45 28 42 29 43 30 50 31 45 47 32 22 46 33 23 57

60 34 24 54 35 25 56 36 26 65 37 27 48 38 28 49

75 39 29 22 40 30 53 23 31 41 63 24 32 58 42 25

90 33 43 61 26 34 55 52

The compact notation of this IRDCS is:

50, 41, 57, 65, 42, 43, 47, 45, 54, 56, 46, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 63, 32, 48, 33, 49,

34, 53, 35, 58, 36, 61, 37, 38, 39, 40, 55, 52.

This IRDCS has length 97 and has heft 1.006 and order 38, which compares to

heft between 0.7633 and 1.3577 and order at most 48.

Minimum modulus 23

+ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 56 61 32 33 34 35 36 37 38 39 40 41 42 52 50

15 43 44 53 45 54 47 55 23 24 25 26 27 28 29 30

30 31 48 65 49 32 59 33 51 34 46 35 64 36 57 37

45 23 38 24 39 25 40 26 41 27 42 28 56 29 43 30

60 44 31 61 45 50 52 32 47 23 33 53 24 34 54 25

75 35 55 26 36 48 27 37 49 28 38 46 29 39 51 30

90 40 23 31 41 59 24 42 65 32 25 57 43 33 26 44

105 64 34 27 45
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The compact notation of this IRDCS is:

56, 61, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 52, 50, 43, 44, 53, 45, 54, 47, 55, 23, 24, 25, 26,

27, 28, 29, 30, 31, 48, 65, 49, 59, 51, 46, 64, 57.

This compact notation produces IRDCS with lengths from 106 to 109 which have

heft 1.003 and order 39, which compares to heft between 0.7687 and 1.3369 and order

at most 52.

Minimum modulus 24

+ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 60 64 66 63 68 70 32 33 34 35 36 37 38 39 40

15 41 42 46 69 43 44 48 45 24 25 26 27 28 29 30

30 31 47 49 51 56 58 65 59 32 74 33 57 34 61 35

45 71 36 24 37 25 38 26 39 27 40 28 41 29 42 30

60 60 31 43 46 44 64 63 45 66 48 32 24 68 33 25

75 70 34 26 47 35 27 49 36 28 51 37 29 69 38 30

90 56 39 31 58 40 24 59 41 57 25 42 65 32 26 61

105 43 33 27 44 46 34 28 45 74 35 29 71 48 36

The compact notation of this IRDCS is:

60, 64, 66, 63, 68, 70, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 46, 69, 43, 44, 48, 45, 24, 25, 26,

27, 28, 29, 30, 31, 47, 49, 51, 56, 58, 65, 59, 74, 57, 61, 71.

This compact notation produces IRDCS with lengths from 117 to 119 which have

heft 1.000 and order 42, which compares to heft between 0.7710 and 1.3309 and order

at most 58.
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Minimum modulus 25

+ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 69 78 36 37 38 39 40 41 42 43 44 55 50

15 45 46 58 60 47 53 63 48 49 25 26 27 28 29 30

30 31 32 33 34 35 61 51 56 52 71 36 76 37 66 38

45 57 39 59 40 25 41 26 42 27 43 28 44 29 64 30

60 45 31 46 32 50 33 47 34 55 35 48 69 49 53 25

75 58 36 26 60 37 27 78 38 28 63 39 29 51 40 30

90 52 41 31 56 42 32 61 43 33 25 44 34 57 26 35

105 45 59 27 46 66 71 28 36 47 50 29 37 76 48 30

120 38 49 64

The compact notation of this IRDCS is:

69, 78, 36, 37, 38, 39, 40, 41, 42, 43, 44, 55, 50, 45, 46, 58, 60, 47, 53, 63, 48, 49, 25, 26, 27, 28,

29, 30, 31, 32, 33, 34, 35, 61, 51, 56, 52, 71, 76, 66, 57, 59.

This IRDCS has length 121 and has heft 1.003 and order 43, which compares to

heft between 0.7720 and 1.3282 and order at most 60.
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Minimum modulus 26

+ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 43 44 45 46 47 76 58 48 49 57 68 50 51 54 61

15 84 53 55 26 27 28 29 30 31 32 33 34 35 59 36

30 63 37 52 38 56 39 66 40 69 41 70 42 73 43 26

45 44 27 45 28 46 29 47 30 65 31 48 32 49 33 60

60 34 50 35 51 58 36 57 54 37 53 26 38 55 27 39

75 61 28 40 68 29 41 76 30 42 52 31 43 59 32 44

90 56 33 45 63 34 46 26 35 47 84 27 36 66 48 28

105 37 49 69 29 38 70 50 30 39 51 73 31 40 65 60

120 32

The compact notation of this IRDCS is:

43, 44, 45, 46, 47, 76, 58, 48, 49, 57, 68, 50, 51, 54, 61, 84, 53, 55, 26, 27, 28, 29, 30, 31, 32, 33,

34, 35, 59, 36, 63, 37, 52, 38, 56, 39, 66, 40, 69, 41, 70, 42, 73, 65, 60.

This compact notation produces IRDCS with lengths from 115 to 121 which have

heft 1.009 and order 45, which compares to heft between 0.7632 and 1.3624 and order

at most 57.
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Minimum modulus 27

+ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 36 37 38 39 40 41 42 43 44 45 46 47 59 61 48

15 49 66 60 50 51 65 52 57 53 64 69 27 28 29 30

30 31 32 33 34 35 56 36 63 37 58 38 68 39 71 40

45 72 41 79 42 54 43 55 44 27 45 28 46 29 47 30

60 62 31 48 32 49 33 67 34 50 35 51 59 36 52 61

75 37 53 60 38 57 27 39 66 28 40 65 29 41 64 30

90 42 56 31 43 69 32 44 58 33 45 63 34 46 54 35

105 47 55 27 36 68 48 28 37 49 71 29 38 72 50 30

120 39 51 62 31 40 52 79 32 41 53 59 33 42 67 27

The compact notation of this IRDCS is:

36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 59, 61, 48, 49, 66, 60, 50, 51, 65, 52, 57, 53, 64, 69,

27, 28, 29, 30, 31, 32, 33, 34, 35, 56, 63, 58, 68, 71, 72, 79, 54, 55, 62, 67.

This compact notation produces IRDCS with lengths from 121 to 135 which have

heft 1.005 and order 46, which compares to heft between 0.7656 and 1.3528 and order

at most 60.
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Minimum modulus 28

+ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 70 75 40 41 42 43 44 45 46 47 48 49 50 66 67

15 51 52 73 69 53 54 63 71 55 56 74 76 28 29 30

30 31 32 33 34 35 36 37 38 39 57 65 77 40 78 41

45 79 42 82 43 59 44 86 45 61 46 28 47 29 48 30

60 49 31 50 32 68 33 51 34 52 35 70 36 53 37 54

75 38 75 39 55 66 56 67 40 28 63 41 29 69 42 30

90 73 43 31 71 44 32 57 45 33 74 46 34 76 47 35

105 65 48 36 59 49 37 28 50 38 61 29 39 51 77 30

120 52 78 40 31 79 53 41 32 54 82 42 33 68 55 43

135 34 56 86 44

The compact notation of this IRDCS is:

70, 75, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 66, 67, 51, 52, 73, 69, 53, 54, 63, 71, 55, 56, 74,

76, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 57, 65, 77, 78, 79, 82, 59, 86, 61, 68.

This compact notation produces IRDCS with of lengths 138 and 139 which have

heft 1.006 and order 49, which compares to heft between 0.7719 and 1.3312 and order

at most 68.



82

Minimum modulus 29

+ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 85 82 72 76 40 41 42 43 44 45 46 47 48 49 50

15 51 52 65 62 53 77 73 54 55 67 56 74 61 29 30

30 31 32 33 34 35 36 37 38 39 64 66 68 80 83 40

45 84 41 87 42 89 43 70 44 59 45 63 46 29 47 30

60 48 31 49 32 50 33 51 34 52 35 71 36 53 37 72

75 38 54 39 55 76 62 56 65 82 40 85 29 41 61 30

90 42 67 31 43 73 32 44 77 33 45 74 34 46 64 35

105 47 66 36 48 68 37 49 59 38 50 29 39 51 63 30

120 52 70 80 31 40 53 83 32 41 84 54 33 42 55 87

135 34 43 56 89 35 44 71 62 36

The compact notation of this IRDCS is:

85, 82, 72, 76, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 65, 62, 53, 77, 73, 54, 55, 67, 56,

74, 61, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 64, 66, 68, 80, 83, 84, 87, 89, 70, 59, 63, 71.

This compact notation produces IRDCS with lengths 142, 143 and 144 which

have heft 1.004 and order 51, which compares to heft between 0.7708 and 1.3359 and

order at most 70.
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Minimum modulus 30

+ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 74 78 81 77 40 41 42 43 44 45 46 47 48 49 50

15 51 52 65 68 53 86 73 54 55 67 56 92 61 57 30

30 31 32 33 34 35 36 37 38 39 58 63 59 70 72 40

45 64 41 75 42 85 43 87 44 76 45 66 46 69 47 30

60 48 31 49 32 50 33 51 34 52 35 71 36 53 37 74

75 38 54 39 55 78 77 56 65 81 40 57 68 41 61 30

90 42 67 31 43 73 32 44 58 33 45 59 34 46 63 35

105 47 86 36 48 64 37 49 70 38 50 72 39 51 92 30

120 52 66 75 31 40 53 69 32 41 76 54 33 42 55 85

135 34 43 56 87 35 44 71 57 36 45

The compact notation of this IRDCS is:

74, 78, 81, 77, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 65, 68, 53, 86, 73, 54, 55, 67, 56,

92, 61, 57, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 58, 63, 59, 70, 72, 64, 75, 85, 87, 76, 66, 69, 71.

This compact notation produces IRDCS with lengths 142, 143, 144 and 145 which

have heft 1.004 and order 52, which compares to heft between 0.7689 and 1.3429 and

order at most 70.
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Minimum modulus 31

+ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 72 77 44 45 46 47 48 49 50 51 52 53 54 71 73

15 74 90 92 94 55 56 82 78 57 58 69 65 59 60 68

30 31 32 33 34 35 36 37 38 39 40 41 42 43 98 80

45 85 44 79 45 66 46 67 47 96 48 81 49 76 50 62

60 51 31 52 32 53 33 54 34 84 35 83 36 72 37 55

75 38 56 39 77 40 57 41 58 42 71 43 59 73 60 74

90 44 65 31 45 69 32 46 68 33 47 78 34 48 82 35

105 49 90 36 50 92 37 51 94 38 52 66 39 53 67 40

120 54 62 41 31 80 42 79 32 43 55 85 33 56 76 44

135 34 81 57 45 35 58 98 46 36 72 59 47 37 60 96

150 48 38 84 83

The compact notation of this IRDCS is:

72, 77, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 71, 73, 74, 90, 92, 94,

55, 56, 82, 78, 57, 58, 69, 65, 59, 60, 68, 31, 32, 33, 34, 35, 36, 37,

38, 39, 40, 41, 42, 43, 98, 80, 85, 79, 66, 67, 96, 81, 76, 62, 84, 83.

This compact notation produces IRDCS with lengths 153 and 154 which have

heft 1.008 and order 55, which compares to heft between 0.7706 and 1.3379 and order

at most 76.
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Minimum modulus 32

+ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 82 87 44 45 46 47 48 49 50 51 52 53 54 55 56

15 57 58 70 73 59 60 85 78 61 62 72 63 67 64 74

30 94 32 33 34 35 36 37 38 39 40 41 42 43 69 65

45 88 44 71 45 66 46 79 47 68 48 81 49 84 50 90

60 51 83 52 32 53 33 54 34 55 35 56 36 57 37 58

75 38 77 39 59 40 60 41 82 42 61 43 62 70 87 63

90 44 73 64 45 67 32 46 72 33 47 78 34 48 74 35

105 49 85 36 50 65 37 51 69 38 52 66 39 53 71 40

120 54 68 41 55 94 42 56 32 43 57 79 33 58 88 44

135 34 81 59 45 35 60 84 46 36 83 61 47 37 62 90

150 48 38 63 77 49 39 64 70 50

The compact notation of this IRDCS is:

82, 87, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 70, 73,

59, 60, 85, 78, 61, 62, 72, 63, 67, 64, 74, 94, 32, 33, 34, 35, 36, 37, 38,

39, 40, 41, 42, 43, 69, 65, 88, 71, 66, 79, 68, 81, 84, 90, 83, 77.

This compact notation produces IRDCS with lengths from 154 to 159 and have

heft 1.004 and order 55, which compares to heft between 0.7712 and 1.3357 and order

at most 76.
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Minimum modulus 33

+ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 59 74 76 60 61 79 81 62 63 71 64 70 65 77 82

15 78 83 33 34 35 36 37 38 39 40 41 42 43 80 44

30 72 45 73 46 85 47 103 48 84 49 87 50 104 51 67

45 52 97 53 66 54 33 55 34 56 35 57 36 58 37 59

60 38 69 39 60 40 61 41 68 42 62 43 63 75 44 64

75 74 45 65 76 46 71 70 47 33 79 48 34 81 49 35

90 77 50 36 78 51 37 82 52 38 83 53 39 72 54 40

105 73 55 41 80 56 42 67 57 43 66 58 33 44 59 85

120 34 45 84 60 35 46 61 87 36 47 69 62 37 48 63

135 68 38 49 64 103 39 50 65 97 40 51 104 75 41

The compact notation of this IRDCS is:

59, 74, 76, 60, 61, 79, 81, 62, 63, 71, 64, 70, 65, 77, 82, 78, 83, 33, 34, 35, 36, 37, 38,

39, 40, 41, 42, 43, 80, 44, 72, 45, 73, 46, 85, 47, 103, 48, 84, 49, 87, 50, 104, 51, 67,

52, 97, 53, 66, 54, 55, 56, 57, 58, 69, 68, 75.

This compact notation produces IRDCS with lengths from 147 to 149 which have

heft 1.008 and order 57, which compares to heft between 0.7642 and 1.3626 and order

at most 73.

It is worth noting that in manually calculating this IRDCS, the original represen-

tation found had a block of congruences as described in the method with the moduli 44

through to 59 at positions 1 through to 16. This representation has a clash at position

15, and as such remove the first 15 positions. The standard method of using two long

blocks of moduli was used to find this IRDCS, but we allowed for a fairly late clash to

see if we could finish the IRDCS, giving the length n = 4M+15 = 4M+ M−3
2 , relatively

short compared to the other large minimum modulus cases.
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Minimum modulus 34

+ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 84 87 92 93 48 49 50 51 52 53 54 55 56 57 58

15 59 60 80 81 61 62 117 86 63 90 121 64 65 83 66

30 75 67 70 34 35 36 37 38 39 40 41 42 43 44 45

45 46 47 76 110 68 79 69 48 73 49 77 50 85 51 94

60 52 89 53 82 54 97 55 34 56 35 57 36 58 37 59

75 38 60 39 88 40 61 41 62 42 84 43 63 44 87 45

90 64 46 65 47 92 66 93 80 67 81 48 34 70 49 35

105 75 50 36 86 51 37 83 52 38 90 53 39 68 54 40

120 69 55 41 76 56 42 73 57 43 79 58 44 77 59 45

135 34 60 46 117 35 47 61 85 36 62 82 121 37 48 63

150 89 38 49 94 64 39 50 65 110 40 51 66 97 41 52

165 67 88 42

The compact notation of this IRDCS is:

84, 87, 92, 93, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 80, 81, 61, 62, 117, 86, 63, 90,

121, 64, 65, 83, 66, 75, 67, 70, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 76, 110,

68, 79, 69, 73, 77, 85, 94, 89, 82, 97, 88.

This compact notation produces IRDCS with lengths from 167 to 168 which have

heft 1.008 and order 60, which compares to heft between 0.7706 and 1.3395 and order

at most 73.
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Minimum modulus 35

+ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 96 141 97 92 99 85 48 49 50 51 52 53 54 55 56

15 57 58 59 60 61 62 115 76 63 64 87 83 65 66 72

30 67 75 68 82 35 36 37 38 39 40 41 42 43 44 45

45 46 47 86 70 81 77 73 69 93 48 90 49 91 50 94

60 51 95 52 98 53 100 54 102 55 35 56 36 57 37 58

75 38 59 39 60 40 61 41 62 42 88 43 63 44 64 45

90 85 46 65 47 66 92 96 67 76 97 68 72 48 99 35

105 49 75 36 50 83 37 51 87 38 52 82 39 53 70 40

120 54 69 41 55 73 42 56 77 43 57 81 44 58 86 45

135 59 115 46 60 35 47 61 141 36 62 90 93 37 91 63

150 48 38 64 94 49 39 95 65 50 40 66 98 51 41 67

165 100 52 42 68 102 53 43 88 72

The compact notation of this IRDCS is:

96, 141, 97, 92, 99, 85, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 115, 76, 63,

64, 87, 83, 65, 66, 72, 67, 75, 68, 82, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 86,

70, 81, 77, 73, 69, 93, 90, 91, 94, 95, 98, 100, 102, 88.

This compact notation produces IRDCS with lengths from 174 to 175 which have

heft 1.006 and order 62, which compares to heft between 0.7714 and 1.3373 and order

at most 86.
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Minimum modulus 36

+ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 90 94 106 93 48 49 50 51 52 53 54 55 56 57 58

15 59 60 61 62 63 118 96 64 65 74 77 66 67 71 68

30 75 80 69 81 70 36 37 38 39 40 41 42 43 44 45

45 46 47 76 72 86 82 78 48 73 49 89 50 84 51 87

60 52 88 53 91 54 92 55 95 56 97 57 36 58 37 59

75 38 60 39 61 40 62 41 63 42 85 43 64 44 65 45

90 90 46 66 47 67 94 93 68 74 71 48 69 77 49 70

105 75 50 36 106 51 37 80 52 38 81 53 39 96 54 40

120 72 55 41 76 56 42 73 57 43 78 58 44 82 59 45

135 86 60 46 118 61 47 84 62 36 89 63 87 37 48 88

150 64 38 49 65 91 39 50 92 66 40 51 67 95 41 52

165 68 97 42 53 85

The compact notation of this IRDCS is:

90, 94, 106, 93, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 118, 96, 64, 65,

74, 77, 66, 67, 71, 68, 75, 80, 69, 81, 70, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 76,

72, 86, 82, 78, 73, 89, 84, 87, 88, 91, 92, 95, 97, 85.

This IRDCS has length 170 only and has heft 1.003 and order 62, which compares

to heft between 0.7691 and 1.3452 and order at most 84.
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Minimum modulus 37

+ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 90 95 52 53 54 55 56 57 58 59 60 61 62 63 64

15 65 66 112 84 67 68 120 82 69 70 80 88 71 72 94

30 73 77 85 74 86 76 37 38 39 40 41 42 43 44 45

45 46 47 48 49 50 51 75 102 79 52 83 53 78 54 91

60 55 96 56 81 57 100 58 101 59 104 60 89 61 37 62

75 38 63 39 64 40 65 41 66 42 93 43 67 44 68 45

90 90 46 69 47 70 48 95 49 71 50 72 51 84 73 82

105 80 52 74 77 53 37 76 54 38 88 55 39 85 56 40

120 86 57 41 94 58 42 75 59 43 112 60 44 79 61 45

135 78 62 46 83 63 47 120 64 48 81 65 49 37 66 50

150 91 38 51 67 102 39 68 96 52 40 89 69 53 41 70

165 100 54 42 101 71 55 43 72 104 56 44 73 93 57 45

180 90 74 58 46 37

The compact notation of this IRDCS is:

90, 95, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 112, 84, 67, 68, 120, 82, 69, 70,

80, 88, 71, 72, 94, 73, 77, 85, 74, 86, 76, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50,

51, 75, 102, 79, 83, 78, 91, 96, 81, 100, 101, 104, 89, 93.

This compact notation produces IRDCS with lengths from 178 to 185 which have

heft 1.006 and order 64, which compares to heft between 0.7705 and 1.3410 and order

at most 88.
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Minimum modulus 38

+ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 94 99 101 124 52 53 54 55 56 57 58 59 60 61 62

15 63 64 65 66 67 68 84 135 69 82 96 70 71 90 95

30 72 73 77 74 81 75 76 38 39 40 41 42 43 44 45

45 46 47 48 49 50 51 119 78 80 85 87 52 79 53 86

60 54 97 55 91 56 83 57 98 58 93 59 102 60 105 61

75 38 62 39 63 40 64 41 65 42 66 43 67 44 68 45

90 92 46 69 47 94 48 70 49 71 50 99 51 72 101 73

105 84 82 74 52 77 75 53 76 38 54 81 39 55 90 40

120 56 96 41 57 95 42 58 124 43 59 78 44 60 80 45

135 61 79 46 62 85 47 63 87 48 64 86 49 65 83 50

150 66 38 51 67 91 39 68 135 97 40 52 69 93 41 53

165 98 70 42 54 71 119 43 55 102 72 44 56 73 105 45

180 57 74 92 46 58 75 77 47

The compact notation of this IRDCS is:

94, 99, 101, 124, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 84, 135,

69, 82, 96, 70, 71, 90, 95, 72, 73, 77, 74, 81, 75, 76, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,

48, 49, 50, 51, 119, 78, 80, 85, 87, 79, 86, 97, 91, 83, 98, 93, 102, 105, 92.

This compact notation produces IRDCS with lengths from 183 to 188 which have

heft 1.006 and order 66, which compares to heft between 0.7701 and 1.3426 and order

at most 91.
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Minimum modulus 39

+ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 106 104 101 97 52 53 54 55 56 57 58 59 60 61 62

15 63 64 65 66 67 68 136 151 69 100 84 70 71 99 83

30 72 73 89 74 81 75 82 76 39 40 41 42 43 44 45

45 46 47 48 49 50 51 103 90 77 85 78 52 79 53 86

60 54 87 55 88 56 121 57 91 58 93 59 94 60 105 61

75 95 62 39 63 40 64 41 65 42 66 43 67 44 68 45

90 92 46 69 47 96 48 70 49 71 50 97 51 72 101 73

105 104 106 74 52 84 75 53 83 76 54 81 39 55 82 40

120 56 89 41 57 100 42 58 99 43 59 77 44 60 78 45

135 61 79 46 62 85 47 63 90 48 64 86 49 65 87 50

150 66 88 51 67 103 39 68 136 91 40 52 69 93 41 53

165 94 70 42 54 71 95 43 55 151 72 44 56 73 105 45

180 57 74 92 46 58 75 121 47 59 76 96 48 60 84 39

The compact notation of this IRDCS is:

106, 104, 101, 97, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 136, 151,

69, 100, 84, 70, 71, 99, 83, 72, 73, 89, 74, 81, 75, 82, 76, 39, 40, 41, 42, 43, 44, 45, 46, 47,

48, 49, 50, 51, 103, 90, 77, 85, 78, 79, 86, 87, 88, 121, 91, 93, 94, 105, 95, 92, 96.

This compact notation produces IRDCS with lengths from 191 to 195 which have

heft 1.007 and order 68, which compares to heft between 0.7714 and 1.3387 and order

at most 95.
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Minimum modulus 40

+ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 97 102 107 88 110 56 57 58 59 60 61 62 63 64

15 65 66 67 68 69 70 91 104 71 72 98 94 73 74 100

30 105 75 76 80 77 81 78 95 79 40 41 42 43 44 45

45 46 47 48 49 50 51 52 53 54 55 86 82 87 89 118

60 93 109 56 99 57 101 58 83 59 103 60 85 61 96 62

75 114 63 108 64 40 65 41 66 42 67 43 68 44 69 45

90 70 46 88 47 71 48 72 49 97 50 73 51 74 52 102

105 53 75 54 76 55 107 77 91 80 78 110 81 79 56 40

120 94 57 41 98 58 42 104 59 43 100 60 44 95 61 45

135 105 62 46 82 63 47 86 64 48 87 65 49 89 66 50

150 83 67 51 93 68 52 85 69 53 40 70 54 99 41 55

165 71 101 42 72 96 109 43 103 73 56 44 74 118 57 45

180 88 75 58 46 76 108 59 47 77 114 60 48 78 80 61

The compact notation of this IRDCS is:

97, 102, 107, 88, 110, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 91, 104, 71, 72,

98, 94, 73, 74, 100, 105, 75, 76, 80, 77, 81, 78, 95, 79, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49,

50, 51, 52, 53, 54, 55, 86, 82, 87, 89, 118, 93, 109, 99, 101, 83, 103, 85, 96, 114, 108.

This compact notation produces IRDCS with lengths from 189 to 194 which have

heft 1.003 and order 69, which compares to heft between 0.7689 and 1.3475 and order

at most 94.
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Minimum modulus 50

+ 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 112 129 133 121 132 134 68 69 70 71 72 73 74 75

14 76 77 78 79 80 81 82 83 84 85 86 113 115 87

28 88 124 114 89 90 144 125 91 92 128 118 93 94 127

42 95 119 96 102 97 103 98 50 51 52 53 54 55 56

56 57 58 59 60 61 62 63 64 65 66 67 135 137 139

70 110 100 141 143 68 99 69 106 70 142 71 105 72 150

84 73 104 74 108 75 109 76 101 77 136 78 111 79 140

98 80 50 81 51 82 52 83 53 84 54 85 55 86 56

112 112 57 87 58 88 59 123 60 89 61 90 62 121 63

126 91 64 92 65 129 66 93 67 94 133 132 95 113 134

140 96 115 68 97 114 69 98 102 70 50 103 71 51 124

154 72 52 118 73 53 125 74 54 119 75 55 128 76 56

168 127 77 57 100 78 58 99 79 59 144 80 60 110 81

182 61 106 82 62 105 83 63 104 84 64 101 85 65 108

196 86 66 109 50 67 87 135 51 88 137 111 52 139 89

210 68 53 90 141 69 54 143 91 70 55 92 142 71 56

224 112 93 72 57 94 136 73 58 95 150 74 59 96 140

238 75 60 97 123 76 61 98 121 77 62

The compact notation of this IRDCS is:

112, 129, 133, 121, 132, 134, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84,

85, 86, 113, 115, 87, 88, 124, 114, 89, 90, 144, 125, 91, 92, 128, 118, 93, 94, 127, 95, 119, 96,

102, 97, 103, 98, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 135, 137,

139, 110, 100, 141, 143, 99, 106, 142, 105, 150, 104, 108, 109, 101, 136, 111, 140, 123.
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This compact notation produces IRDCS with lengths from 241 to 248 which have

heft 1.004 and order 87, which compares to heft between 0.7699 and 1.3472 and order

at most 120.
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Chapter 6

IRDCS with only odd moduli

In the classical setting of covering systems Erdős and Selfridge ask in Conjecture 1.2

whether there exists a covering system with only odd moduli. This question has proven

famously difficult to decide. Myerson, Poon and Simpson [23] provide an analogous

problem in our new setting, namely, do there exist IRDCS with only odd moduli?

Using the exhaustive algorithm presented in Chapter 3 with the additional condi-

tion that modusage[2i] = true for all i such that 2 ≤ 2i ≤ n, we may search for IRDCS

with only odd moduli for given length n.

The first odd IRDCS is one of length 83. This IRDCS and its reversal are the

only odd IRDCS of length 83. One of these IRDCS, written in the alternate notation,

is:

61, 41, 21, 65, 9, 43, 53, 59, 11, 15, 37, 17, 13, 9, 23, 19, 27, 33, 55, 11, 35, 25, 9, 21, 15, 13, 31, 29,

17, 51, 11, 9, 49, 45, 19, 47, 39, 23, 13, 15, 9, 11, 41, 27, 21, 17, 25, 37, 43, 9, 33, 13, 11, 19, 15, 35,

29, 31, 9, 53, 23, 61, 17, 11, 13, 21, 59, 9, 65, 15, 27, 25, 19, 55, 11, 39, 9, 13, 45, 17, 51, 49, 47,

the other being the reversal of this. The compact notation for the above IRDCS is

61, 41, 21, 65, 9, 43, 53, 59, 11, 15, 37, 17, 13, 23, 19, 27, 33, 55, 35, 25, 31, 29, 51, 49, 45, 47, 39.

These IRDCS have heft = 1.02042, order 27 and use all of the available odd moduli

from 9 to 65 excluding 57 and 63.
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Theorem 6.1. There exist odd IRDCS for lengths 83 to 101 inclusive.

We have computed exhaustive data for lengths 83 to 90 inclusive, and will present

the results in what follows. In discussing comparisons to formulae for heft and order,

we refer to the formulae from Theorems 2.4 and 2.2 respectively, and we compare heft

based on the orders of the particular IRDCS, not for all IRDCS of a given length, thus

giving a tighter bound.

Once we reach length 90, the computation time required to exhaustively find all

odd IRDCS for a given length becomes unfeasible. As such, for lengths 91 and higher we

have used Knuth’s Dancing Links implementation of Algorithm X [19] to find a single

solution and thus prove the existence of at least 2 odd IRDCS for the given length. We

have computed odd IRDCS of lengths up to and including 101 using this algorithm.
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Length 84 Odd IRDCS

There are 14 odd IRDCS of length 84. Below are the 7 unique IRDCS up to reversals,

along with some summary statistics.

The IRDCS in alternate notation are:

57, 13, 59, 47, 17, 21, 9, 29, 11, 39, 49, 35, 37, 15, 13, 9, 23, 27, 19, 11, 25, 17, 45, 31, 9, 55, 21, 13,

15, 53, 11, 33, 51, 9, 43, 41, 29, 19, 17, 23, 13, 11, 9, 15, 27, 25, 35, 21, 39, 37, 47, 9, 11, 13, 31, 17,

19, 57, 15, 49, 9, 59, 23, 11, 33, 29, 13, 45, 21, 9, 25, 27, 17, 15, 11, 19, 41, 43, 9, 13, 55, 35, 53, 51;

49, 13, 59, 47, 17, 21, 9, 29, 11, 39, 57, 35, 45, 15, 13, 9, 23, 27, 19, 11, 25, 17, 37, 31, 9, 55, 21, 13,

15, 53, 11, 33, 51, 9, 43, 41, 29, 19, 17, 23, 13, 11, 9, 15, 27, 25, 35, 21, 39, 49, 47, 9, 11, 13, 31, 17,

19, 45, 15, 37, 9, 59, 23, 11, 33, 29, 13, 57, 21, 9, 25, 27, 17, 15, 11, 19, 41, 43, 9, 13, 55, 35, 53, 51;

59, 13, 55, 51, 17, 21, 9, 29, 11, 41, 19, 35, 37, 15, 13, 9, 23, 27, 43, 11, 25, 17, 53, 57, 9, 31, 21, 13,

15, 19, 11, 33, 45, 9, 49, 47, 29, 39, 17, 23, 13, 11, 9, 15, 27, 25, 35, 21, 19, 37, 41, 9, 11, 13, 51, 17,

31, 55, 15, 59, 9, 43, 23, 11, 33, 29, 13, 19, 21, 9, 25, 27, 17, 15, 11, 53, 39, 45, 9, 13, 57, 35, 47, 49;

49, 13, 59, 53, 17, 21, 9, 29, 11, 41, 19, 35, 45, 15, 13, 9, 23, 27, 57, 11, 25, 17, 37, 31, 9, 55, 21, 13,

15, 19, 11, 33, 51, 9, 43, 47, 29, 39, 17, 23, 13, 11, 9, 15, 27, 25, 35, 21, 19, 49, 41, 9, 11, 13, 31, 17,

53, 45, 15, 37, 9, 59, 23, 11, 33, 29, 13, 19, 21, 9, 25, 27, 17, 15, 11, 57, 39, 43, 9, 13, 55, 35, 47, 51;

59, 13, 55, 53, 17, 21, 9, 29, 11, 41, 19, 35, 37, 15, 13, 9, 23, 27, 57, 11, 25, 17, 39, 31, 9, 51, 21, 13,

15, 19, 11, 33, 45, 9, 49, 47, 29, 43, 17, 23, 13, 11, 9, 15, 27, 25, 35, 21, 19, 37, 41, 9, 11, 13, 31, 17,

53, 55, 15, 59, 9, 39, 23, 11, 33, 29, 13, 19, 21, 9, 25, 27, 17, 15, 11, 57, 51, 45, 9, 13, 43, 35, 47, 49;

59, 13, 55, 51, 17, 21, 9, 29, 11, 41, 19, 35, 37, 15, 13, 9, 23, 27, 57, 11, 25, 17, 39, 53, 9, 31, 21, 13,

15, 19, 11, 33, 45, 9, 49, 47, 29, 43, 17, 23, 13, 11, 9, 15, 27, 25, 35, 21, 19, 37, 41, 9, 11, 13, 51, 17,

31, 55, 15, 59, 9, 39, 23, 11, 33, 29, 13, 19, 21, 9, 25, 27, 17, 15, 11, 57, 53, 45, 9, 13, 43, 35, 47, 49.
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All of these IRDCS have heft 1.00619 and order 26. They all use every available odd

modulus from 9 to 59 inclusive. Our formula from Chapter 2 predict that for the 12

new IRDCS the heft is between 0.7874 and 1.2715, and that the order is less than 41.

The final two length 84 odd IRDCS are the length 83 odd IRDCS extended in

length by, in this instance, covering the position before the start of the previously

presented length 83 IRDCS with the modulus 13, and the other is its reversal. The

IRDCS in alternate notation is

13, 61, 41, 21, 65, 9, 43, 53, 59, 11, 15, 37, 17, 13, 9, 23, 19, 27, 33, 55, 11, 35, 25, 9, 21, 15, 13, 31,

29, 17, 51, 11, 9, 49, 45, 19, 47, 39, 23, 13, 15, 9, 11, 41, 27, 21, 17, 25, 37, 43, 9, 33, 13, 11, 19, 15,

35, 29, 31, 9, 53, 23, 61, 17, 11, 13, 21, 59, 9, 65, 15, 27, 25, 19, 55, 11, 39, 9, 13, 45, 17, 51, 49, 47,

and again has heft 1.02042 and order 27.

Length 85 Odd IRDCS

There are 80 odd IRDCS of length 85, all with minimum modulus 9. The minimum

heft is 1.00504, while the maximum is 1.02091. There are 22 IRDCS of order 26, and 58

IRDCS of order 27, which compares to the predicted range for heft of between 0.7845

and 1.2799 and order at most 42. The number of times each modulus is used in these

IRDCS is presented in the following table.

Modulus Times Used Modulus Times Used

9 to 49 80 63 34

51 78 65 16

53 66 67 6

55 70 69 12

57 56 71 14

59 50 73 6

61 48 75 2
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Length 86 Odd IRDCS

There are 382 odd IRDCS of length 86, all with minimum modulus 9. The heft ranges

from 1.00373 to 1.02091, with 14 IRDCS of order 26 and 368 of order 27. This compares

to the formulae which predict heft between 0.7858 and 1.2767 and order at most 42.

The number of times each modulus is used in these IRDCS is summarised in the table

below:

Modulus Times Used Modulus Times Used

9 to 41 382 67 36

43 and 45 378 69 54

47 and 49 370 71 64

51 360 73 86

53 300 75 52

55 306 77 28

57 282 79 6

59 248 81 8

61 210 83 12

63 146 85 8

65 104
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Length 87 Odd IRDCS

There are 474 odd IRDCS of length 87, all with minimum modulus 9 and with heft

ranging from 1.00563 to 1.0196. Among these odd IRDCS there are 4 with order 26,

462 with order 27 and 8 with order 28. This compares to the heft range of from 0.7829

to 1.2846, and order at most 43. The number of times each modulus is used in these

IRDCS is presented in the table below.

Modulus Times Used Modulus Times Used

9 to 27 and 31 to 37 474 59 276

29 466 61 214

39 468 63 252

41 470 65 184

43 464 67 114

45 468 69 100

47 454 71 58

49 442 73 50

51 408 75 40

53 394 77 44

55 396 79 28

57 356 81 / 83 12 / 8
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Length 88 Odd IRDCS

There are 152 odd IRDCS of length 88, all with minimum modulus 9. The heft ranges

from 1.00988 to 1.01884, and all solutions have order 27. This compares to the predicted

heft range of from 0.7884 to 1.2705 and order at most 43. The number of times the

various moduli are used in these IRDCS is presented in the table below:

Modulus Times Used Modulus Times Used

9 - 33, 39, 41, 45 and 47 152 63 62

35 146 65 44

37 142 67 12

43 150 69 4

49 144 71 14

51 128 73 10

53 106 75 18

55 122 77 32

57 140 79 24

59 126 81 20

61 76
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Length 89 Odd IRDCS

There are at 80 odd IRDCS of length 89. These IRDCS have heft ranging from 1.00619

to 1.01739 and 78 of these IRDCS have order 26 with the other 2 having order 25.

These figures compare to the formulae which give heft ranging from 0.7942 to 1.2564,

and order at most 44. The number of times the various moduli are used in these IRDCS

is presented in the following table:

Modulus Times Used Modulus Times Used

9 - 33 and 39 - 47 80 63 40

35 76 65 20

37 72 67 2

49 74 69 6

51 76 71 2

53 56 73 6

55 54 75 10

57 74 77 18

59 56 79 16

61 48 81 12

Length 90 Odd IRDCS

There are only 4 odd IRDCS of length 90, made up of two IRDCS and their reversals.

The two unique IRDCS up to reversals are presented below in their compact notations.

55, 15, 23, 51, 31, 17, 9, 19, 11, 49, 13, 61, 35, 27, 39, 21, 25, 37, 29, 59, 53, 41, 33, 43, 47, 45.

55, 15, 23, 51, 31, 17, 9, 19, 11, 63, 13, 47, 35, 27, 39, 21, 25, 37, 29, 57, 53, 41, 33, 43, 49, 45.

All four IRDCS have order 26, with heft either 1.00504 or 1.00511 and minimum modulus

9. These IRDCS use all of the moduli from 9 to 55 inclusive, with the first presented

example above and its reversal additionally using the moduli 59 and 61, and the second



105

example and its reversal using additional moduli 57 and 63. The formulae predicted

heft between 0.7955 and 1.2536, and order at most 44.

Larger Lengths Using Dancing Links

For length 91 and higher, Knuth’s dancing links implementation of Algorithm X [19] is

used to compute a single example of an IRDCS for the particular lengths. For length

91, the IRDCS has heft 1.010 and order 27. The IRDCS in compact notation is:

63, 69, 45, 49, 15, 51, 17, 13, 9, 29, 11, 31, 19, 35, 41, 43, 25, 21, 23, 27, 57, 59, 33, 55, 47, 39, 53.

For length 92, the IRDCS has heft 1.003 and order 26. The IRDCS in compact notation

is:

51, 17, 9, 19, 11, 57, 13, 47, 35, 59, 43, 15, 21, 25, 33, 29, 23, 27, 39, 41, 63, 31, 49, 55, 37, 45.

For length 93, the IRDCS has heft 1.005 and order 26. It is also an IRDCS of length 94,

by moving the modulus 25 to the front of the compact notation. The compact notation

of the length 93 IRDCS is:

39, 15, 17, 45, 13, 9, 49, 11, 57, 19, 35, 53, 21, 29, 43, 63, 23, 41, 25, 27, 31, 33, 47, 37, 55, 51.

For length 94, the IRDCS has heft 1.016 and order 30. The IRDCS in compact notation

is:

55, 47, 63, 57, 65, 23, 13, 9, 29, 11, 71, 19, 17, 27, 21,

61, 33, 39, 41, 25, 31, 35, 67, 51, 59, 37, 53, 43, 49, 45.

For length 95, the IRDCS has heft 1.014 and order 30. The IRDCS in compact notation

is:

57, 77, 47, 63, 59, 37, 23, 13, 9, 61, 11, 45, 19, 17, 27,

43, 29, 33, 21, 71, 25, 31, 35, 67, 39, 49, 41, 55, 53, 51.
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For length 96, the IRDCS has heft 1.0108 and order 28. The IRDCS in compact notation

is:

49, 57, 15, 17, 61, 13, 9, 33, 11, 47, 19, 35, 63, 21,

81, 45, 29, 23, 41, 59, 27, 39, 31, 37, 53, 55, 43, 51.

For length 97, the IRDCS has heft 1.0184 and order 31. The IRDCS in compact notation

is:

69, 59, 53, 15, 63, 23, 65, 9, 19, 11, 29, 43, 83, 49, 31, 17,

21, 39, 35, 25, 27, 33, 61, 67, 55, 47, 37, 57, 41, 51, 45.

For lengths 98 and 99, the computed IRDCS for length 98 can be extended to one of

length 99. The length 98 IRDCS has heft 1.0194 and order 32. The length 99 example

is found by moving the modulus 47 to the first position in the compact notation of the

length 98 example, which is:

9, 25, 65, 59, 55, 77, 23, 61, 13, 15, 67, 19, 51, 43, 17, 21,

27, 29, 71, 31, 33, 37, 69, 35, 63, 39, 57, 41, 53, 45, 49, 47.

Below is an independent IRDCS of length 99 which has heft 1.018 and order 32. In

compact notation this IRDCS is:

63, 59, 49, 53, 69, 9, 65, 47, 19, 13, 15, 17, 81, 45, 21, 33,

75, 29, 25, 23, 31, 67, 27, 35, 37, 57, 39, 41, 61, 43, 51, 55.

In searching for this length 99 odd IRDCS I assumed that the modulus covering the

middle position was 9, in order to produce input for our implementation of that algo-

rithm that was of an acceptable size. Excluding length 90, all of the lengths for which

exhaustive data has been computed had at least one solution with middle modulus 9.

For lengths 100 and 101 assume once more that the middle modulus is 9. For

length 100, the IRDCS has heft 1.0187 and order 32. The IRDCS of length 100 can also
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be modified to be an IRDCS of length 101 by letting the modulus 41 cover position -1.

The IRDCS in compact notation is:

63, 55, 69, 57, 17, 9, 47, 19, 31, 13, 75, 23, 21, 15, 67, 77, 45,

33, 25, 29, 43, 27, 65, 37, 35, 59, 61, 39, 41, 49, 53, 51.

For length 101 our independent IRDCS has heft 1.0181 and order 32. The IRDCS in

compact notation is:

13, 59, 61, 53, 47, 9, 49, 57, 25, 67, 75, 17, 15, 33, 19, 29,

71, 21, 27, 23, 31, 73, 69, 41, 39, 35, 37, 63, 43, 55, 45, 51.

6.1 Open Questions

All of the odd IRDCS that we have found so far have minimum modulus 9. Is it true

that all odd IRDCS must use moduli at least as large as 9? Moreover all of the odd

IRDCS found, excluding those of length 90, use the modulus 9 to cover the middle

position. Is there a good reason for this, or is it just chance?

The number of odd IRDCS for a given length decays from length 87 to length 90,

and perhaps does not grow after this given that we have not calculated all IRDCS for

larger lengths. Is there a reason for this? This may be similar to the standard IRDCS

case where there is a solution of length 11 and then no solutions until length 17. The

numbers in the standard case also don’t grow all the time, for example from length 23

to 24 and length 27 to 28.
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Chapter 7

2 Dimensional IRDCS Properties

7.1 Introduction

The paper by Myerson, Poon and Simpson [23] gives motivation for finding an IRDCS

of more than one dimension. Begin by taking the box [0, X)× [0, Y )∩Z2, with X,Y ≥ 2

for what we will call an X by Y IRDCS, or an X×Y IRDCS. A two-dimensional IRDCS

will be constructed by filling [0, X)×[0, Y )∩Z2 with congruences of the form ax+by ≡ c

(mod m).

As in the one-dimensional case, notation to assist in visualising these two-dimensional

IRDCS, to be fully defined shortly, is required. We call this the alternate notation.

Putting aside for a moment the precise definition of an X ×Y IRDCS, rather than pre-

senting an X × Y IRDCS as the collection of congruences that make it up; for example

the 9× 3 IRDCS

x+ y ≡ 2 (mod 3), x+ y ≡ 4 (mod 5), x+ y ≡ 0 (mod 6),

x+ 5y ≡ 7 (mod 8), x+ 5y ≡ 1 (mod 10), x+ 3y ≡ 3 (mod 11),

present it as an X×Y array of integers where, again as in the one-dimensional case, the

number at position (x, y) is the modulus of the congruence in the IRDCS containing
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this position, taking in this instance the lower left corner to be (0, 0). This previous

IRDCS is thus presented in its alternate notation as

3 10 5 3 6 8 3 5 11

11 3 8 5 3 6 10 3 5

6 10 3 11 5 3 6 8 3

.

We now look to precisely define the conditions on a two-dimensional IRDCS. The

emphasis for the construction of the IRDCS in two-dimensions is on the congruences,

as was the case in the one-dimensional case. As a result the conditions that define a

two-dimensional IRDCS will be related to these congruences. In the one-dimensional

case, having constructions that avoided trivialities meant requiring that each congruence

intersect the interval at least twice and that each modulus be used at most once. The

moduli here will again be required to be distinct.

The first of the constructions considered trivial that we wish to disallow is one

where the finished X × Y IRDCS has alternate notation

k k + 1 k + 2 . . . k +X − 1
...

...
...

...

k k + 1 k + 2 . . . k +X − 1

k k + 1 k + 2 . . . k +X − 1

.

As a collection of congruences this is

x ≡ 0 (mod k), x ≡ 1 (mod k + 1), . . . , x ≡ X − 1 (mod k +X − 1).

This construction works for any k ≥ X, and is not particularly interesting. Extending

this further, if congruences are able to cover positions directly above one another, then

taking a length X IRDCS with alternate notation a1, a2, . . . , aX this X×Y IRDCS can

always be constructed;
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a1 a2 a3 . . . aX

...
...

...
...

a1 a2 a3 . . . aX

a1 a2 a3 . . . aX

.

As such, congruences of the form {(x, y) ∈ Z2 : x ≡ a (mod m)} or {(x, y) ∈ Z2 : y ≡ b

(mod m)} are removed from consideration. Moreover, two-dimensional IRDCS will

only use cosets of subgroups of Z2 which are the solution set to a single congruence

ax + by ≡ c (mod m) where 1 < a, b < m. This is motivated by the work in [16]. The

following definition is required to further discuss these congruence solution sets in work

that follows.

Definition 7.1. A subgroup of Z2 is said to have corank 2 if and only if it is the

solution set of a system of 2 homogenous congruences, and not of any smaller system.

For example, the set {(2a, 4b) : a, b ∈ Z} is of corank 2, as it is the solution set of

x ≡ 0 (mod 2) and y ≡ 0 (mod 4) and not the solution of a single congruence.

The definition of two-dimensional IRDCS should also remove any constructions

that are too easily finished once a certain point is reached in the construction. This is

equivalent to not allowing any congruences in the one-dimensional case to cover only a

single point in the interval. In two dimensions any two suitably distant positions may

be covered by a congruence with a large modulus that will not intersect [0, X)× [0, Y )

in any other positions. So to avoid trivialities all congruences must cover at least 3

positions in the box. If these 3 positions are all allowed to be collinear, then any n× 3

box with n ≥ 5 could be filled as:

n− 1 n+ 1 n+ 2 n+ 3 . . . n n− 1

n− 2 n− 1 n+ 1 n+ 2 . . . n− 2 n

n n− 2 n− 1 n+ 1 . . . 2n− 4 n− 2

where the congruences used are x + y ≡ 0 (mod n), x + y ≡ 1 (mod n − 2), x + y ≡ 2

(mod n− 1) and x+ y ≡ i (mod n+ i− 2) for i = 3, . . . n− 2. As in the first example,
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the moduli n + 1 through to 2n − 4 inclusive may be replaced with any larger moduli

not already being used. Thus each congruence is required to cover at least 3 positions

in the box, not all of these positions being collinear. This is then enough to remove any

trivial cases.

We are now in a position to define the two-dimensional IRDCS, recalling the

standard definition of gcd(a, b) being the greatest common divisor of a and b.

Definition 7.2. An X×Y two-dimensional incongruent restricted disjoint covering sys-

tem (henceforth two-dimensional IRDCS) is a collection of congruences in two variables

such that

• each modulus is used at most once,

• every element in [0, X)× [0, Y ) ∩ Z2 satisfies precisely one congruence,

• all congruences are satisfied by at least three elements of [0, X) × [0, Y ) ∩ Z2

that are not all collinear, and

• all congruences are of the form ax + by ≡ c (mod m) with 1 < a, b < m and

gcd(a, b) = 1.

Note that since gcd(a, b,m) = 1, if for a congruence gcd(a, b) = k > 1 then take

k

(
a

k
x+

b

k
y

)
≡ c (mod m),

and since gcd(k,m) = 1 there must exist some k−1 such that kk−1 ≡ 1 (mod m) so

that the congruence can be taken to be

a

k
x+

b

k
y ≡ ck−1 (mod m),

which is the equivalent congruence but with smaller coefficients, and will thus be used

in its place.
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In order to clarify this construction we provide some examples of two-dimensional

IRDCS in their alternate notation. Firstly, the smallest X for which there exists an X×2

IRDCS is X = 10, as discovered by an exhaustive search. Two such IRDCS are

9 3 4 5 3 6 4 3 5 9

6 9 3 4 5 3 6 4 3 5
, and

9 5 6 4 8 7 5 4 6 9

7 8 4 5 9 6 4 7 5 8
.

The first may look familiar as it is based on the length 11 one-dimensional IRDCS, a

construction we will study further in Lemma 7.5. It uses the congruences x + y ≡ 2

(mod 3), x + y ≡ 3 (mod 4), x + y ≡ 4 (mod 5), x + y ≡ 0 (mod 6) and x + y ≡ 1

(mod 9). The second example uses the congruences x + 3y ≡ 2 (mod 4), x + 2y ≡ 3

(mod 5), x+ 3y ≡ 5 (mod 6), x+ 2y ≡ 0 (mod 7), x+ 5y ≡ 1 (mod 8) and x+ 4y ≡ 4

(mod 9).

The smallest case with Y = 3 is the 9 × 3 case. Among these, there is again a

construction related to the length 11 one-dimensional IRDCS, but there are also other

IRDCS including the following three

3 10 5 3 6 8 3 5 11

11 3 8 5 3 6 10 3 5

6 10 3 11 5 3 6 8 3

,

5 8 10 11 6 5 7 13 9

13 6 7 9 5 8 10 6 11

10 8 11 5 6 7 13 9 5

,

and

9 5 7 13 6 11 5 8 10

11 6 8 10 5 9 7 6 13

13 9 5 7 6 8 11 5 10

.

The first of these uses the congruences x+ y ≡ 2 (mod 3), x+ y ≡ 4 (mod 5), x+ y ≡ 0

(mod 6), x + 5y ≡ 7 (mod 8), x + 5y ≡ 1 (mod 10), and x + 3y ≡ 3 (mod 11). The

second uses the congruences x + 4y ≡ 3 (mod 5), x + 3y ≡ 4 (mod 6), x + 3y ≡ 5

(mod 7), x + 4y ≡ 1 (mod 8), x + 4y ≡ 7 (mod 9), x + 4y ≡ 0 (mod 10), x + 5y ≡ 2

(mod 11) and x + 6y ≡ 6 (mod 13). The third of these IRDCS uses the congruences

x+ 3y ≡ 2 (mod 5), x+ 3y ≡ 4 (mod 6), x+ 4y ≡ 3 (mod 7), x+ 3y ≡ 5 (mod 8),
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x+5y ≡ 1 (mod 9), x+5y ≡ 8 (mod 10), x+6y ≡ 6 (mod 11) and x+5y ≡ 0 (mod 13).

Interestingly the last two examples use the same moduli set, but do not appear to be

otherwise related.

The next case is Y = 4 for which the smallest example is a 6×4 IRDCS. There is

effectively only one example for these dimensions, the rest being reflections of this one.

8 7 6 5 9 6

4 5 4 7 4 8

6 9 8 6 5 7

7 4 5 4 9 4

.

This IRDCS uses the congruences 2x+ y ≡ 2 (mod 4), x+ 3y ≡ 2 (mod 5), 2x+ y ≡ 1

(mod 6), x+ 2y ≡ 0 (mod 7), x+ 5y ≡ 7 (mod 8), and x+ 3y ≡ 4 (mod 9).

Some other examples include this 7× 7 IRDCS

3 13 20 3 15 9 3

9 3 10 21 3 14 18

12 14 3 12 9 3 12

3 15 18 3 10 13 3

20 3 13 9 3 20 21

21 10 3 14 15 3 10

3 12 9 3 12 18 3

,

which uses the congruences x + y ≡ 0 (mod 3), x + 4y ≡ 2 (mod 9), 2x + 7y ≡ 9

(mod 10), 4x+y ≡ 4 (mod 12), x+ 10y ≡ 9 (mod 13), x+ 10y ≡ 13 (mod 14), x+ 9y ≡

13 (mod 15), x+ 7y ≡ 5 (mod 18), 4x+ 3y ≡ 6 (mod 20), x+ 15y ≡ 15 (mod 21), and

the 10× 8 IRDCS
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2 16 2 6 2 30 2 38 2 6

18 2 32 2 6 2 20 2 24 2

2 24 2 16 2 6 2 18 2 32

6 2 38 2 22 2 6 2 20 2

2 6 2 18 2 16 2 6 2 22

30 2 6 2 24 2 30 2 6 2

2 20 2 6 2 32 2 16 2 6

16 2 22 2 6 2 18 2 38 2

,

which uses the congruences x+y ≡ 1 (mod 2), x+y ≡ 4 (mod 6), x+9y ≡ 0 (mod 16),

x+ 7y ≡ 6 (mod 18), x+ 11y ≡ 12 (mod 20), x+ 5y ≡ 2 (mod 22),

x + 17y ≡ 14 (mod 24), 5x + y ≡ 2 (mod 30), x + 7y ≡ 12 (mod 32), x + 11y ≡ 8

(mod 38). This uses only even moduli, but the modulus 2 cannot be removed to gen-

erate a smaller IRDCS. Removing the 2’s causes the collections of positions covered by

congruences in the original to shift and no longer be solution sets of a congruence. The

details of why this fails will be explained in detail in Section 7.4.

The primary method for describing the structure of IRDCS is to discuss the way

that the particular congruences fill the IRDCS. The terms generators and lattice will

be used to describe these congruences, the standard use of these terms being adjusted

to suit our purposes as follows.

Definition 7.3. Define a set of generators of a homogenous congruence to be a pair

of vectors u,v such that w = (x, y) satisfies the congruence if and only if there exists

a, b ∈ Z such that w = au + bv. These generators are not unique.

Definition 7.4. We call u, v a set of generators of a non-homogeneous congruence if

they are generators of the associated homogeneous congruence

Definition 7.5. Define the lattice of a congruence to be the collection of all points in

Z2 which satisfy the congruence.
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As in the one-dimensional case, the quantities heft and order tell something of

the structure of the IRDCS.

Definition 7.6. An X × Y two-dimensional IRDCS

t⋃
i=1

{(x, y) ∈ Z2 : aix+ biy ≡ ci (mod mi)},

has, analogous to the one-dimensional case, order t and heft h where

h =
t∑
i=1

1
mi
.

The following definition will be important in our analysis.

Definition 7.7. Call the first point of a congruence the point satisfying the congruence

in [0, X)× [0, Y ) with the smallest possible y coordinate, and smallest x coordinate for

this particular y.

All these concepts will be illustrated with examples in the next few pages

It is generally easiest to analyze a congruence lattice by using its generators.

This will be used in discussing many of the structural properties of two-dimensional

IRDCS and proving various results. Take a congruence ax+ by ≡ c (mod m) in which

gcd(a, b) = 1 so that it is in lowest form. This congruence forms a lattice with generators

of the form (x0, d) and (m/d, 0), where d = gcd(a,m). To see this, if gcd(a,m) = 1 then

ax ≡ c (mod m) has a solution for all c, and thus for all y there exists an x such that

ax+by ≡ c (mod m), hence giving the generator (x0, 1). Meanwhile, since the modulus

of the congruence is m the congruence must repeat every m/k points on any given row,

for some natural number k dividing m. This makes our generators (x0, 1) and (m/k, 0).

Putting them in a 2×2 matrix and setting the absolute value of the determinant to the

modulus m gives k = 1 as required.

On the other hand, if gcd(a,m) = d > 1 then

ax ≡ γ (mod m)→ d(a/d)x ≡ γ (mod d(m/d))
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and this has a solution if and only if d|γ. Therefore, since gcd(a, b) = 1, if there exists

some point (x1, y1) such that ax1 + by1 ≡ c (mod m) then ax + by ≡ c (mod m) ↔

d(a/d)+by ≡ c (mod d(m/d)) has solutions if and only if y ≡ y1 (mod d). Using similar

arguments to above gives us the generators (x0, d) and (m/d, 0), where d = gcd(a,m).

It is not difficult to see that any congruence with these generators can also be

seen to have generators (e, y0) and (0,m/e), for some e with gcd(d, e) = 1.

Lemma 7.1. A subgroup H of Z2 has corank 2 if and only if there is an integer e > 1

such that for every (x, y) ∈ H we have e|x and e|y.

Proof. For a proof of this lemma see Theorem 9 in [16].

Corollary 7.1. Congruences with an integer e > 1 dividing all of the components of the

generator pair (x0, d) and (m/d, 0) have solution set the coset of a subgroup of corank

2.

Proof. All lattice points that are the solution to a homogenous congruence with this

generator pair can be written in the form

(x, y) = s(x0, d) + t(m/d, 0),

for s, t ∈ Z. So if e|{x0, d,m/d} then e|x and e|y for all points (x, y) in the homogenous

congruence. The lattice points of a non-homogenous congruence are a coset of the

subgroup associated to the homogenous congruence.

Definition 7.8. A rectangular congruence has generators (a, 0) and (0, b).

Corollary 7.2. The only valid rectangular congruences have generator pairs (m/d, 0)

and (0, d) with d > 1 and gcd(m/d, d) = 1.

Proof. The definition of IRDCS does not allow congruences with d = 1 and x0 = 0. For

d > 1 the condition gcd(m/d, d) = 1 forces the congruence to have solution set which is

a coset of a subgroup not of corank 2, and thus be a single valid congruence.
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Lemma 7.2. For two congruences ax+ by ≡ 0 (mod m) and dx+ ey ≡ 0 (mod m) to

have the same solution set, either:

(1) If gcd(r,m) = 1 for some r ∈ {a, b, d, e}, then

bd ≡ ae (mod m), or

(2) If gcd(r,m) > 1 for all r ∈ {a, b, d, e}, then if gcd(a,m) = s then

bd ≡ ae
(

mod
m

s

)
.

Proof. In the first case, assume without loss of generality that gcd(a,m) = 1, then there

exists an r ∈ {0, 1, . . . ,m− 1} such that ar ≡ d (mod m). Thus

dx+ bry ≡ 0 (mod m),

so that for the congruences to be equivalent br ≡ e (mod m) → abr ≡ ae (mod m) →

bd ≡ ae (mod m).

In the second case gcd(a,m) > 1, and similarly for b, d and e. Take gcd(a,m) = s,

then there exists an r ∈ {0, 1, . . . ,m − 1} such that a
s r ≡ d (mod m

s ). Then ar ≡ ds

(mod m), dsx + bry ≡ 0 (mod m), so that if br ≡ es (mod m), then the lattices are

equivalent. Thus abr ≡ aes (mod m) → dsb ≡ aes (mod m) → bd ≡ ae (mod m
s ),

where gcd(a,m) = s.

This lemma is important for the computation of two-dimensional IRDCS, being

used to avoid attempting to fill a position with a congruence which will certainly fail.

Note that whatever first point (x1, y1) this congruence will cover, there is a unique c

such that ax1 + by1 ≡ c (mod m), so that there is only one such congruence to attempt.

Forcing the requirement gcd(a, b) = 1 is important. It will be shown in Section

7.6.1 that the algorithm selects congruences by cycling through possible values of c, b

and a in that order. If gcd(a, b) = 1 were not forced then the algorithm would consider
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the congruence 2x + 5y ≡ 0 (mod 6) equivalent to 2x + 2y ≡ c (mod 6) and thus it

would not be attempted. However the second congruence is actually a congruence class

modulo 3, so long as c is even, and thus invalid, and has no solutions for c odd. So

the algorithm would never attempt to use the congruence 2x + 5y ≡ 0 (mod 6) in the

IRDCS, even though it is valid.

We next prove a simple result which will help to simplify our analysis of two-

dimensional IRDCS.

Lemma 7.3. Any X × Y IRDCS can be reflected along either diagonal to a Y × X

IRDCS.

Proof. Take any X × Y IRDCS with congruences with generator pairs (x0, d) and

(m/d, 0). Transforming all of these generators to (d, x0) and (0,m/d) we get a Y ×X

IRDCS. The translation from one IRDCS to the other takes the points in the corner

of the original IRDCS (0, 0), (X − 1, 0), (0, Y − 1) and (X − 1, Y − 1) to (0, 0), (0, Y −

1), (X − 1, 0) and (X − 1, Y − 1) respectively. This can be seen as in the figures below.

m(0,Y−1) m(1,Y−1) . . . . . . . . . . . . . . . m(X−1,Y−1)

...
...

...
...

m(0,0) m(1,0) . . . . . . . . . . . . . . . m(X−1,0)

↓

m(X−1,0) m(X−1,1) . . . . . . . . . m(X−1,Y−1)

...
...

...
...

...
...

...
...

m(0,0) m(0,1) . . . . . . . . . m(0,Y−1)
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For this translation clearly the modulus m of a congruence remains the same, while

the congruence ax + by ≡ c (mod m) becomes bx + ay ≡ c (mod m) as the x and y

coordinates of the original congruence are being switched.

In the other case the generators may instead be replaced by (0,−m/d) and

(−d,−x0), swapping the corner positions (0, 0) and (X − 1, Y − 1). This produces

a two-dimensional IRDCS which behaves as the matrix transpose. For this construc-

tion the congruence ax + by ≡ c (mod m) becomes a∗x + b∗y ≡ c∗ (mod m), where

ax0 + bd ≡ 0 (mod m) and a∗(−d) + b∗(−x0) ≡ 0 (mod m), so that a∗ = b and b∗ = a.

Here c∗ may or may not equal c.

An example of this is the 6× 4 IRDCS presented previously

8 7 6 5 9 6

4 5 4 7 4 8

6 9 8 6 5 7

7 4 5 4 9 4

,

which can be reflected to

4 7 8 6

9 5 4 9

4 6 7 5

5 8 4 6

4 9 5 7

7 6 4 8

.

An immediate consequence of this lemma is that any X ×Y IRDCS with Y > X

can be reflected to a Y ×X IRDCS. As such when studying two-dimensional IRDCS we

may consider them as being of dimension X × Y with X ≥ Y and if required reflecting

after our analysis.
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7.2 Some two-dimensional IRDCS that always work

The following lemma will be useful in what follows.

Lemma 7.4. For all lengths n = 11 and n ≥ 17 there exists an IRDCS which does not

use the modulus n− 1.

Proof. Firstly, a search with the exhaustive algorithm shows that the statement is true

for all lengths up to and including n = 32. Now using the doubling technique from the

proof of Theorem 2.1, generate IRDCS of all possible lengths. Since our first collection

of IRDCS do not use the modulus n − 1, and given that an IRDCS with alternate

notation a1, a2, . . . , an doubles to one of the following

2a1, 2, 2a2, 2, . . . , 2, 2an,

2, 2a1, 2, 2a2, 2, . . . , 2, 2an, or

2, 2a1, 2, 2a2, 2, . . . , 2, 2an, 2,

the largest modulus these IRDCS can contain is 2(n−2) < (2n−1)−1, where 2n−1 is

the length of the shortest doubled IRDCS. And so the last two doubled IRDCS fit the

statement of the lemma. This argument is finished as in the proof of Theorem 2.1.

There are length n IRDCS that use the modulus n−1. The smallest such example

is the length 22 IRDCS

21, 12, 10, 4, 6, 13, 8, 4, 9, 11, 6, 4, 10, 12, 8, 4, 6, 9, 13, 4, 11, 21,

which has heft 1.05156 and order 9. The fact that IRDCS which do not use this modulus

exist will be used to establish conditions for which two-dimensional IRDCS can always

be found.
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Lemma 7.5. For any IRDCS of length n with alternate notation a1, a2, a3, . . . , an,

where a1 6= n− 1 there exists an (n− 1)× 2 two-dimensional IRDCS

a2 a3 a4 . . . an−1 an

a1 a2 a3 . . . an−2 an−1

.

Proof. It is required to check that all of the properties for two-dimensional IRDCS are

satisfied. Since a1, a2, a3, . . . , an is an IRDCS in alternate notation and congruences in

this IRDCS with modulus m have the same modulus in the two-dimensional IRDCS it

has distinct moduli. Since a1 6= an, every modulus appears at least once on each row

and at least twice on at least one row, giving three non-collinear hits. Lastly ai ≥ 2,∀i,

so that positions above one another are not covered by the same congruence, making

all congruences of valid form. Thus it is indeed a two-dimensional IRDCS.

Theorem 7.1. If there exists an n× 2 IRDCS with congruences

x+ y ≡ ci (mod mi), i = 1, 2, . . . t,

then there exists an (n− k)× (k + 2) IRDCS with congruences

x+ y ≡ ci (mod mi), i = 1, 2, . . . t,

for all 0 ≤ k ≤ n− 2.

Proof. Proceed via induction. Any n×2 IRDCS with congruences x+y ≡ ci (mod mi)

has alternate notation

a2 a3 a4 . . . an an+1

a1 a2 a3 . . . an−1 an

where a1, a2, a3, . . . , an, an+1 is an IRDCS of length n+ 1 written in alternate notation

with a1 6= n. This is as the congruences must have 3 non-collinear hits and so every

modulus appears at least once in every row and at least twice in one row, and the only

way to hit only once in both rows is to have a1 = an+1 = n.
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Then

a3 a4 a5 . . . an an+1

a2 a3 a4 . . . an−1 an

a1 a2 a3 . . . an−2 an−1

is also a two-dimensional IRDCS. In removing the last column exactly one copy of the

moduli an, an+1 were removed, both being regained by adding in the top row. It remains

to check the collinearity condition. When the moduli an, an+1 were added into the top

row, it was done in the same diagonal as the copies that were removed. As the previous

case was an IRDCS, there must be other copies of these moduli elsewhere in the IRDCS

not on this diagonal. So this new construction is an (n− 1)× 3 IRDCS.

Now assume that we have an (n−k)× (k+2) IRDCS of the required form, where

0 ≤ k ≤ n− 3. Such an IRDCS can be represented as

ak+2 ak+3 ak+4 . . . an an+1

. . . . . . . . . . . . . . . . . .

a2 a3 a4 . . . an−k an−k+1

a1 a2 a3 . . . an−k−1 an−k

Now in removing the last column one copy of the elements an−k, an−k+1, . . . , an+1 are

lost, and in adding in the top row the elements ak+3, ak+4, . . . , an+1 are gained. The

new possible IRDCS is represented below.

ak+3 ak+4 ak+5 . . . an an+1

ak+2 ak+3 ak+4 . . . an−1 an

. . . . . . . . . . . . . . . . . .

a2 a3 a4 . . . an−k−1 an−k

a1 a2 a3 . . . an−k−2 an−k−1

As in the initial case, all points added back into the IRDCS appear on the same diagonal

as those that have been removed. Since the original was a two-dimensional IRDCS, all
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moduli in the original covered positions on at least two different lines. All moduli that

have been removed, excluding the top right corner position, are solutions to congruences

which have at least one other solution on that particular diagonal line, where the top

right corner is always added back to the top right hand corner at any rate. So the

collinearity condition will be maintained. For this to be an IRDCS it remains to check

that all congruences have at least three hits.

If n − k ≥ k + 3 then all points that were removed are added back in, creating

a new two-dimensional IRDCS. In the other case, one count of an−k, an−k+1, . . . , ak+2

are lost. Each of these moduli now appear on the diagonal we have removed it from

n− k− 1 times. As we are only concerned with two-dimensional IRDCS n− k− 1 ≥ 2,

and as they all have at least one other non-collinear point all congruences must have at

least three hits and thus this is also a two-dimensional IRDCS.

Corollary 7.3. If there exists an s× t IRDCS with congruences

x+ y ≡ ci (mod mi), i = 1, 2, . . . t,

then there exists a k × (t+ (s− k)) IRDCS with congruences

x+ y ≡ ci (mod mi), i = 1, 2, . . . t,

for all 2 ≤ k ≤ s+ t− 2.

Proof. The proof of Theorem 7.1 gives the method for converting an s × t IRDCS to

an (s − 1) × (t + 1) IRDCS, while an analogous argument will take the IRDCS to an

(s+ 1)× (t−1) IRDCS. Repeating this process as many times as is needed will give the

required IRDCS.

Corollary 7.4. There exist two-dimensional IRDCS of dimensions s× t for s+ t = 12

and for s+ t ≥ 18.
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Proof. There exists an n × 2 IRDCS for n = 10 and n ≥ 16 by Lemma 7.5. Thus, by

the above corollary, there exists a k × (n + 2 − k) IRDCS for all 2 ≤ k ≤ n. Setting

k = s, then t = n+ 2− k is required. Thus s+ t = n+ 2, as required.

These results give two-dimensional IRDCS for most dimensions. However they

are all constructed from the one-dimensional case.

7.2.0.1 Using reflections

Call a congruence in a length n IRDCS centrally symmetric if for some k ∈ N the

congruence is satisfied by both k and n + 1 − k. Call a one-dimensional IRDCS non-

centrally symmetric if none of its congruences are centrally symmetric. Only IRDCS of

even length can be non-centrally symmetric, as the congruence that covers the middle

position in an odd length IRDCS will always be centrally symmetric.

Lemma 7.6. For any non-centrally symmetric IRDCS with alternate notation a1, . . . , an,

taking the IRDCS and writing its reversal above or below it as

an an−1 . . . a2 a1

a1 a2 . . . an−1 an

or
a1 a2 . . . an−1 an

an an−1 . . . a2 a1

produces two n× 2 IRDCS.

Proof. The fact that the IRDCS is non-centrally symmetric means that in the two-

dimensional IRDCS no modulus will appear directly above itself and so the congruences

will all be of the valid type. Since the initial case is a one-dimensional IRDCS, all

congruences cover at least two positions on each row with generator (m, 0) and by

taking the change from the first point of the congruence to the nearest point to the

right on the top row with the same modulus gives the second generator (x0, 1) where

0 < x0 < m.

All congruences will be of the form x − x0y ≡ am (mod m) where am is the

congruence class for the modulus m in the one dimensional IRDCS reversal.
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These IRDCS have heft and order the same as that of the original IRDCS.

Definition 7.9. A near IRDCS of length n is an exact cover of [1, n] where some of

the congruences only have one solution in the interval and where there would be either

a clash or an empty position, on extending the length in either direction, before all

congruences have two solutions.

So a near IRDCS can never be turned into a one-dimensional IRDCS by ex-

tending the length in either direction, other than perhaps by adding in new congruences

in empty positions that may be created.

Theorem 7.2. All n× 2 IRDCS are constructed by either

• two copies of a single one-dimensional IRDCS, the second row of the IRDCS

either being shifted or having had the reversal taken, or

• two different IRDCS with the same moduli, one on each row, possibly with a

shift, or

• made up of at least one near IRDCS on one of the rows, where the second row is

either an IRDCS or another near IRDCS, in both cases with the same moduli.

Proof. Clearly the first two cases can form two-dimensional IRDCS so long as all con-

gruences are of co-rank 1. If it is neither of the first two cases, then as we must have

each congruence covering at least 3 non-collinear points in the IRDCS each congruence

must hit each row at least once and hit one row at least twice. Since the generators are

(m, 0) and (x0, 1) both rows will have all of the properties of a one-dimensional IRDCS

excluding all congruences having at least two hits. The rows are then a section of either

an IRDCS or a near IRDCS.

All of these IRDCS can be summarised by saying that each row is a segment of an

IRDCS, or a near-IRDCS, the two rows sharing the same moduli. One example which

is of the third type in the above lemma is the 10× 2 IRDCS
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9 5 6 4 8 7 5 4 6 9

7 8 4 5 9 6 4 7 5 8

where the top row does not use the modulus 8 twice before there is an uncovered

position, and similarly for the bottom row with the modulus 9. Note that the top row

for this IRDCS is not a shift of the bottom. Moreover for n × 2 IRDCS of the third

type in the above Lemma this is not possible, otherwise each row would have at least

two hits and be an IRDCS. Also note that this IRDCS has order 6 =
[

10×2
3

]
, which will

be alluded to later.

7.3 Open Question

Start with the following easy lemma.

Lemma 7.7. Take a pair of different length n IRDCS I1, I2 with the same moduli sets

m1 < m2 < · · · < mt and with residues a1, . . . at, and b1, . . . bt respectively. If ai 6= bi

for all i then two different X × 2 IRDCS can be constructed by placing either I1 above

I2 or vice-versa in the alternate notation.

Proof. If ai 6= bi for all i, putting one of the IRDCS on top of the other clearly gives 3

non-collinear hits and all congruences will be associated to subgroups of corank 1.

Note that the case where ai = bi for all i has been previously studied in Lemmas

7.5 and 7.6.

We believe that the following statement is also true:

Given the conditions of the previous lemma, if ai = bi for some but not all i then, so

long as neither IRDCS uses the modulus n−1, there exists a shift by k places such that

putting I1 shifted by k places above I2 or vice-versa and removing the ends as needed

in the alternate notation gives two X × 2 IRDCS, where X = n− k.



128

7.4 Doubling two-dimensional IRDCS

Doubling with the modulus 2

This section will attempt, as in the one-dimensional case (see Lemma 2.1), to construct

a two-dimensional IRDCS of dimensions twice as large from an existing IRDCS.

Take a two-dimensional IRDCS on [0, X)× [0, Y ), with order t and heft h, where

the congruences are of the form

{aix+ biy ≡ ci (mod mi) : i = 1, 2, . . . t;mi+1 > mi},

and the ith congruence has generators (mi/di, 0) and (x0,i, di). This IRDCS has alternate

notation

A(0,Y−1) A(1,Y−1) A(2,Y−1) . . . A(X−1,Y−1)

...
...

...
...

A(0,1) A(1,1) A(2,1) . . . A(X−1,1)

A(0,0) A(1,0) A(2,0) . . . A(X−1,0)

where A(i,j) is the modulus of the congruence covering (i, j) ∈ Z2. Assuming that Y is

odd and extending the IRDCS horizontally by adding the congruence x+y ≡ 1 (mod 2)

to the collection of congruences already used gives the following

A∗(0,Y−1) 2 A∗(1,Y−1) 2 . . . A∗(X−1,Y−1) 2
...

...
...

...
...

...

A∗(0,2) 2 A∗(1,2) 2 . . . A∗(X−1,2) 2

2 A∗(0,1) 2 A∗(1,1) . . . 2 A∗(X−1,1)

A∗(0,0) 2 A∗(1,0) 2 . . . A∗(X−1,0) 2

,

which is of dimensions 2X×Y and not necessarily an IRDCS. The equivalent extension

for Y even is obvious.

If it actually generates an IRDCS, we call this construction, along with the ex-

tension by x+ y ≡ 0 (mod 2), is horizontal doubling.
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Theorem 7.3. If an X × Y two-dimensional IRDCS can be horizontally doubled to

a 2X×Y IRDCS then it must have all of its congruences with solutions on precisely two

rows of the IRDCS and the congruences must have generator pair (m/d, 0) and (x0, d)

with d odd and m/d ≤ X − 1.

Should it exist this new IRDCS will have heft 1
2(1 + h) and order t+ 1.

Delaying the proof of the theorem for a moment, any X×2 IRDCS can be doubled,

since all congruences hit only two rows, and must hit one row at least twice in order to

have 3 hits in the IRDCS. An example is the following 10× 2 IRDCS

9 3 4 5 3 6 4 3 5 9

6 9 3 4 5 3 6 4 3 5
=⇒

18 2 6 2 8 2 10 2 6 2 12 2 8 2 6 2 10 2 18 2

2 12 2 18 2 6 2 8 2 10 2 6 2 12 2 8 2 6 2 10
.

Otherwise these conditions on the original two-dimensional IRDCS prove to be quite

restrictive. Computations have so far failed to find any other IRDCS which can be

doubled. Along with this, excluding the X × 2 case these doubled IRDCS cannot

themselves be doubled as the congruence modulo 2 fails to be of the required form,

clearly covering positions on more than two rows and columns. Thus there is no way

to use this construction to prove the existence of two-dimensional IRDCS for all dimen-

sions.

Proof. For all of the congruences in the original IRDCS this operation doubles the length

of the horizontal generators to become (2mi/di, 0). This is clear for congruences that

have two hits on some row. If a congruence does not have two hits on some row, then in

the original two-dimensional IRDCS, due to the non-collinearity condition, one solution

to the congruence, (x2, y2) say, must be reached using the congruence’s generators as

(x2, y2) = (x, y) + β(x0, di)− γ(mi/di, 0),
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assuming x0 > 0. Here β, γ ∈ N, x + βx0 ≥ X, and no rows between row x and row

x2 contain any solutions to the congruence. The equivalent transition after adding the

congruence modulo 2 will again require γ copies of the horizontal generator, but this

must move twice as far, and so the horizontal generator again becomes (2mi/di, 0). The

argument is symmetric for x0 < 0 and if x0 = 0 for the non-collinearity condition every

row with one solution must have at least two.

For all of the congruences where the second generator was originally (x0, d), the

addition of the congruence modulo 2 has not adjusted d and so we have doubled all of

the moduli to give A∗i,j = 2Ai,j . This construction is valid so long as the collections

of A∗(i,j) which were originally all of the solutions to a single congruence remain the

solution set to a single congruence.

If some congruence has di is even, then if the doubling process produces a solution

set to a single congruence the generator pair of (x0,i, di) and (mi/di, 0) in the original

must become (2x0,i, di) and (2mi/di, 0), but then all elements of the generator pair are

divisible by 2, and Corollary 7.1 tells us this is invalid. On the other hand if di were

odd, and the congruence covers positions on two rows distance di apart then the vector

connecting these rows must be (x∗0,i, di) where,

(x∗0,i, di) = (2x0,i + 1, di) when the initial y−coordinate is even,

(x∗0,i, di) = (2x0,i − 1, di) when the initial y−coordinate is odd.

If the congruence doesn’t ever cover positions on two rows distance di apart then there

are two possibilities:

(1) if the congruence only covers positions on rows an even distance apart, then

if the new collection of points is the solution set to a single congruence the

generators for this new congruence can be set to the vectors joining any three

non-collinear points that form a parallelogram of area 2mi, and will only have

even elements, associating the congruence to a subgroup of corank 2, or
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(2) if the congruence covers positions on two rows an odd distance apart, then as

above the connecting vector depends on the initial y-coordinate.

This vector (x∗0,i, di) must always produce the same x∗0,i otherwise the new collection

of points covered will not be a coset of a subgroup in Z2. Since x∗0,i varies depending

on whether the vector is leaving an odd or even numbered row and since di is odd, the

only possible way to have a consistent x∗0,i is to cover positions on only two rows and

have them be an odd distance apart. Given that all congruences must cover at least 3

positions mi/di ≤ X − 1, di odd and so the congruence will hit two rows distance di

apart. Thus for a congruence with first position (x1, y1),

max(y1, (Y − y1)/2) < d ≤ Y − y1.

Similarly, extending by the congruence x + y ≡ 0 (mod 2) horizontally, to give

for odd Y

2 A∗(0,Y−1) 2 A∗(1,Y−1) . . . 2 A∗(X−1,Y−1)

...
...

...
...

...
...

2 A∗(0,2) 2 A∗(1,2) . . . 2 A∗(X−1,2)

A∗(0,1) 2 A∗(1,1) 2 . . . A∗(X−1,1) 2

2 A∗(0,0) 2 A∗(1,0) . . . 2 A∗(X−1,0)

it is not difficult to see that the same conditions on all of the congruences in the original

IRDCS are required. Thus, if possible, there exist two different horizontally doubled

two-dimensional IRDCS.

We may similarly attempt to double the IRDCS vertically using congruences

modulo 2. Firstly take the generators of the ith congruence to be (0,mi/di) and (di, y0,i),

then extend the IRDCS by x+ y ≡ 1 (mod 2) to get, assuming X is even
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2 A∗(1,Y−1) 2 A∗(3,Y−1) 2 . . . 2 A∗(X−1,Y−1)

A∗(0,Y−1) 2 A∗(2,Y−1) 2 A∗(4,Y−1) . . . A∗(X−2,Y−1) 2
...

...
...

...
...

...
...

...

A∗(0,1) 2 A∗(2,1) 2 A∗(4,1) . . . A∗(X−2,1) 2

2 A∗(1,0) 2 A∗(3,0) 2 . . . 2 A∗(X−1,0)

A∗(0,0) 2 A∗(2,0) 2 A∗(4,0) . . . A∗(X−2,0) 2

where this time the length of the vertical generator was doubled to (0, 2mi/di). In a

very similar fashion to the previous cases, di must be odd and the second generator

becomes (di, y∗0,i), where

(di, y∗0,i) = (di, 2y0,i + 1) when the initial x−coordinate is even,

(di, y∗0,i) = (di, 2y0,i − 1) when the initial x−coordinate is odd.

So analogous conditions are required on the generators to the previous case, and the

case for the other congruence modulo 2 is almost identical.

Corollary 7.5. For a two-dimensional IRDCS to be able to be vertically doubled,

all of its congruences must have solutions on only two columns and have generator pair

(0,m/d) and (d, y0) for d odd and m/d ≤ Y − 1.

Extending with one-dimensional IRDCS Take an X × Y IRDCS with X = 11 or

X ≥ 17 and attempt to turn it into an X×2Y and an X× (2Y ±1) IRDCS by inserting

a one-dimensional IRDCS as in the following construction. Write the one-dimensional

IRDCS in its alternate notation as a0, a1, a2, . . . , aX−1, then insert this IRDCS into a

two-dimensional IRDCS, using the notation of the previous section:

A(0,Y−1) A(1,Y−1) A(2,Y−1) . . . A(X−1,Y−1)

...
...

...
...

A(0,1) A(1,1) A(2,1) . . . A(X−1,1)

A(0,0) A(1,0) A(2,0) . . . A(X−1,0)

=⇒
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A(0,Y−1) A(1,Y−1) A(2,Y−1) . . . A(X−1,Y−1)

...
...

...
...

2a0 2a1 2a2 . . . 2aX−1

A(0,1) A(1,1) A(2,1) . . . A(X−1,1)

2a0 2a1 2a2 . . . 2aX−1

A(0,0) A(1,0) A(2,0) . . . A(X−1,0)

This is possibly an X × (2Y − 1) IRDCS. To produce the X × 2Y and X × (2Y + 1)

versions add in extra copies of the one-dimensional IRDCS on the top and bottom of

the above alternate notation.

Theorem 7.4. For an X × Y two-dimensional IRDCS to be extended with a one-

dimensional IRDCS as in this construction, then X ≥ 83 and the moduli in the two-

dimensional IRDCS must be distinct from the set of moduli for some length X odd

IRDCS. Also, the generators for the congruences in the two-dimensional IRDCS (m/d, 0)

and (x0, d) must have at least one of x0 and m/d odd.

Proof. Clearly the (x0, d) generators for the new congruences from the one-dimensional

IRDCS are always (0, 2) making their modulus 2ai. Since congruences must be associ-

ated to subgroups of corank 1, and these congruences have second generator (m, 0), m

the moduli in the IRDCS, all of these congruences must have odd moduli. The genera-

tor pair of the congruences in the original two-dimensional IRDCS become (m/d, 0) and

(x0, 2d) in all cases. Thus these congruences can’t have both m/d and x0 even. The

moduli in the original two-dimensional IRDCS must be distinct from those in the odd

one-dimensional IRDCS as in both instances the moduli are doubled.

A similar construction will give a 2X×Y and (2X±1)×Y IRDCS by inserting the

one-dimensional IRDCS vertically. In this case Y ≥ 83, and the analogous conditions

hold.

A slightly different construction would be to insert a one-dimensional IRDCS on
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the second row above, and then insert its reversal, known to be distinct by Lemma 2.2,

two rows above, continuing to alternate between them every second row. In this case

the congruence in the one-dimensional IRDCS x ≡ a (mod m) will cover positions (a, 1)

and (X−1−a, 3) in the two-dimensional IRDCS, thus its generator pair must be (m, 0)

and (X − 1− 2a, 2). Now the congruence must also cover the position (a, 5) so that

(X − 1− a) + (X − 1− 2a) ≡ a (mod m)

2X − 2 ≡ 4a (mod m).

Hence X ≡ 1 (mod 2), and then the second generator (X−1−2a, 2) has both elements

even, so that m must be odd, the one-dimensional IRDCS must again be odd and

have distinct moduli from the original two-dimensional IRDCS. Thus this construction

requires the same conditions as Theorem 7.4.

One example which works is to take a length 84 IRDCS with even moduli by

doubling a length 42 IRDCS. Combine this IRDCS with a copy of itself shifted by 1

in either direction to get an 83 × 2 IRDCS. All congruences in this IRDCS have even

moduli and will have generator pair (m, 0) and one of (1, 1) and (m − 1, 1) depending

on the direction of the shift, so that at least one of x0 and m are odd. A length 83 odd

IRDCS can then be used to create 83×4 and 83×5 IRDCS. The equivalent construction

works for all dimensions X × 2 where there exists an odd IRDCS of length X.

7.4.1 Open Questions

As seen in Lemma 7.2 for Y = 2 there is only one type of two-dimensional IRDCS

which is not effectively a one-dimensional IRDCS, namely the IRDCS based on a near

IRDCS. Call these Type 3 X×2 IRDCS. We know that those X×2 IRDCS related to

the one-dimensional case exist for all X and also that they can be horizontally doubled.

It remains to see whether there exist Type 3 X × 2 IRDCS for all X ≥ k for some k.
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Any X × 2 IRDCS

a(0,1) . . . a(X−1,1)

a(0,0) . . . a(X−1,0)

,

can be doubled to two 2X × 2 IRDCS

2 2a(0,1) . . . 2 2a(X−1,1)

2a(0,0) 2 . . . 2a(X−1,0) 2
, and

2a(0,1) 2 . . . 2a(X−1,1) 2

2 2a(0,0) . . . 2 2a(X−1,0)

.

But these only create 2X×Y IRDCS, not (2X−1)×Y IRDCS. To do this would require

at least one of a(0,1), a(X−1,1), a(0,0) and a(X−1,0) to not come from a 3 hit congruence,

so that one of the columns on the end of these IRDCS can be removed.

A similar question begs in the more general doubling case. Even if some two-

dimensional IRDCS were able to be doubled, the construction only creates a 2X × Y

IRDCS, not necessarily a (2X − 1)× Y IRDCS.

7.5 Two-dimensional IRDCS reversals

It is relatively simple to see that any X × Y IRDCS may be reflected horizontally.

This is done by changing the generators of the congruences from (m/d, 0) and (x0, d) to

(m/d, 0) and (−x0, d). This changes the congruence ax+ by ≡ c (mod m) to ax− by ≡

c∗ (mod m), where c∗ is determined by the first point of the reflected congruence

ax1 − by1 ≡ c∗ (mod m). Motivated by these, we give the following definition.

Definition 7.10. The horizontal reversal of a two-dimensional IRDCS Λ is the two-

dimensional IRDCS generated when Λ is reflected horizontally. Similarly define vertical

reversal. The complete reversal of a two-dimensional IRDCS is the combination of

the horizontal and vertical reversals, resulting in a rotation about the centre of the

IRDCS through π.
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Clearly these reflections are themselves IRDCS. It remains to study whether or

not these reflections provide different two-dimensional IRDCS.

Lemma 7.8. For any length Y one-dimensional odd IRDCS on [0, Y − 1]

{S(mi, ai) : i = 1, . . . , t}

there exists two X × Y IRDCS, X ≥ 3 which are constructed by congruences with

generator pairs

(2, 0), (1, 1) and (2, 0), (1,mi), i = 1, . . . , t.

If the length Y odd IRDCS has alternate notation (d0, d1, d2, . . . , dY−1) then the two-

dimensional IRDCS have alternate notation, for Y odd,

2 2dY−1 2 2dY−1 . . .
...

...
...

... . . .

2d1 2 2d1 2 . . .

2 2d0 2 2d0 . . .

, or

2dY−1 2 2dY−1 2 . . .
...

...
...

... . . .

2 2d1 2 2d1 . . .

2d0 2 2d0 2 . . .

,

and similarly for Y even.

Proof. Clearly all position in the IRDCS are covered, and each congruence contains

three non-collinear points as they are inherited from odd one-dimensional IRDCS so

that each column has at least one copy of every modulus. The congruences used for the

first of these IRDCS are

x+ y ≡ 0 (mod 2)

mix+ y ≡ ai (mod 2mi), for ai odd, and

mix+ y ≡ ai +mi (mod 2mi), for ai even,

and may be similarly found for the other IRDCS.
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Lemma 7.9. For a collection of α length Y one-dimensional odd IRDCS, which may

include repetitions, where the jth IRDCS has congruences x ≡ ai,j (mod mi,j), i =

1, . . . tj, there exists a two-dimensional IRDCS with dimensions (2X+1)×Y for 2X+1 ≥

2α + 1 in which the congruences used have generator pairs

(2j , 0) and (0,mi,j),

for j = 1, 2, . . . , α− 1 and i = 1, . . . , tj, and

(2α, 0) and (2α−1, 1), and

(2α, 0) and (2α−1,mi,α).

If the jth one-dimensional IRDCS has alternate notation (d0,j , d1,j , . . . , dY−1,j) then this

two-dimensional IRDCS has alternate notation, for Y even,

. . . 2αdY−1,α . . . 2dY−1,1 2α 2dY−1,1 . . . 2αdY−1,α . . .

. . . 2α . . . 2dY−2,1 2αdY−2,α 2dY−2,1 . . . 2α . . .
...

...
...

...
...

. . . 2αd3,α . . . 2d3,1 2α 2d3,1 . . . 2αd3,α . . .

. . . 2α . . . 2d2,1 2αd2,α 2d2,1 . . . 2α . . .

. . . 2αd1,α . . . 2d1,1 2α 2d1,1 . . . 2αd1,α . . .

. . . 2α . . . 2d0,1 2αd0,α 2d0,1 . . . 2α . . .

. . . X − 2α−1 . . . X − 1 X X + 1 . . . X + 2α−1 . . .

,

and similarly for Y odd, where the next columns around the centre not presented would

be 4di,2, then 8di,3 and so on.

Proof. Since the IRDCS is generated by one-dimensional IRDCS, 2X + 1 > 2α and

the IRDCS is symmetric about the middle, all of the congruences clearly have at least

3 non-collinear hits. All congruences have modulus 2jmi,j , where the mi,j is odd and

mi,j 6= mk,j for all i, k. As such, all moduli in the new construction are distinct. Lastly,
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again since the mi,j are odd, all congruences are associated to subgroups of Z2 of corank

1, and we do indeed have a two-dimensional IRDCS.

In this construction the x-axis is labeled to show that the particular IRDCS is

symmetric about the middle. This symmetry is not necessary to have an IRDCS, rather

it is only required that on the bottom row of the above alternate notation, the furthest

left position covered by the congruence with modulus 2αd1,α be at position (x, 0) such

that x+ 2α < X, to give 3 non-collinear hits.

Definition 7.11. Call a (2X + 1) × Y two-dimensional IRDCS special symmetric

when all of its congruences have generator pairs

(2α, 0) and (2α−1, d), or

(2α, 0) and (0, d),

for some collection of natural numbers α, with d > 1 and all of the congruences cover

positions that are horizontally symmetric.

Definition 7.12. Call a two-dimensional IRDCS super special symmetric when it

is special symmetric and there is some congruence with horizontal generator (2, 0)

which covers the middle position on some row.

Lemma 7.10. If there exists a special symmetric but not super special symmetric

IRDCS then all congruences with horizontal generator (2, 0) can be removed from the

IRDCS, adjusting all other congruence generators pairs to

(2α−1, 0) and (2α−2, d), or

(2α−1, 0) and (0, d).

Call this operation halving.

Note that being special symmetric but not super special symmetric implies

that all congruences with horizontal generator (2, 0) have second generator (0, d), d odd.
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Proof. All special symmetric but not super special symmetric IRDCS may be

repeatedly halved until they are a super special symmetric IRDCS. To see this,

rather than in the alternate notation present a single row of the IRDCS by placing

the non-zero element of a congruence’s generator (m/d, 0) in the position that it covers

on that row. Call this notation the horizontal alternate notation. So some row

with middle position covered by (2α, 0), where for the sake of illustration we assume

that α ≥ 3, looks like

. . . 2 8 2 4 2 2α 2 4 2 8 2 . . . .

Now assume that all of the congruences in the IRDCS with one generator (2, 0) have

second generator (0, d), d odd, and that these congruences never cover the middle po-

sition of a row. The IRDCS can then be viewed in horizontal alternate notation

as

. . . 2 4 2 2αY−1 2 4 2 . . .
...

...
...

...
...

...
...

. . . 2 4 2 2α1 2 4 2 . . .

. . . 2 4 2 2α0 2 4 2 . . .

where αi > 1 for all i. Halving this IRDCS in the above notation removes all of the

2’s, and changes the 4’s to 2’s and so on with 2αi becoming 2αi−1. This operation takes

a (4X + 1)× Y IRDCS and a (4X + 3)× Y IRDCS to a (2X + 1)× Y IRDCS, where

the +3 or +1 depends on whether the columns on either end of the original IRDCS are

all (2, 0), (0, d) congruences or not respectively. Being able to halve an IRDCS implies

that Y ≥ 83, as those congruences that were removed must have at least two hits of

odd distance apart on each column by the collinearity condition, making these columns

odd one-dimensional IRDCS.

On the other hand, if there is a congruence with generator (2, 0) which covers the

middle on some row, in performing the halving operation, this row would be completely
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removed. The case where all rows have a congruence with generator (2, 0) covering the

middle position will be considered in what follows, and are those in Lemma 7.8. It

remains to consider the case where there is some row which does not have its middle

position covered by such a congruence.

The congruences that remain on this row after removing those with generator

(2, 0) will have d which may become either even or inconsistent, causing an invalid

congruence.

No headway has been made on completely answering this question. Considering

a row which is not completely removed directly below one that was removed may be

something good to attempt. We are not yet saying that it is never possible to remove

these whole rows, but more that it is not possible to easily construct explicit cases where

it is possible.

Theorem 7.5. For a two-dimensional IRDCS to equal its horizontal reversal then

it must be either

• a (2X + 1) × Y two-dimensional IRDCS generated by a collection of length Y

odd one-dimensional IRDCS as in Lemma 7.9, or

• a (2X + 1)× Y two-dimensional special symmetric IRDCS.

The IRDCS in Lemma 7.9 are always equal to their horizontal reversal.

Proof. View the two-dimensional IRDCS as c1, c2, c3, . . . , cX, where ci is the ith column

of the IRDCS. If X is even, then the reflection process is

c1, . . . , cX
2
−1, cX

2
, . . . , cX −→ cX, . . . , cX

2
, cX

2
−1, . . . , c1,

and for these to be equal, we must have cX
2

= cX
2

+1, which since all moduli are used

only once means that the generator (m/d, 0) for all of the congruences on this column

must be (1, 0), giving congruences associated to subgroups not of corank 1, and so X

must be odd.
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If X is odd, the reflection process is

c1, . . . , c[X
2

], c[X
2

]+1, c[X
2

]+2, . . . , cX −→ cX, . . . , c[X
2

]+2, c[X
2

]+1, c[X
2

], . . . , c1,

so that cX−1
2

= cX−1
2

+2, cX−1
2
−1 = cX−1

2
+3 and so on. Thus the generators (m/d, 0)

for all congruences with a solution for x = X−1
2 must be (2, 0) and so all columns

1 ≤ X−1
2 + 2k ≤ X for integer k will be covered by congruences of this type. The

next free column, excluding the middle column, is cX−1
2
−1. The generators (m/d, 0)

of all congruences covering an element in this column must be either (2, 0), covering

the middle element in the same row also, or (4, 0). If some row has generator (2, 0)

here, then all of that particular row will be full. If the generator is (4, 0) then so will

be all other columns k with k ≡ X−1
2 − 1 (mod 4). Continuing this analysis, the next

possible free element can only be as close to the middle as cX−1
2
−3. The generators in

this column can either be (2, 0), if this generator was used to cover column X−1
2 − 1,

(4, 0), also covering the middle position or (8, 0). The next free column will then use

horizontal generator of length 2, 4, 8 or 16 and so on, so that every horizontal generator

must be of length a power of 2.

For the IRDCS to be symmetric through a horizontal reflection X must be odd

and a given row must have horizontal alternate notation

. . . 2 α 2 β 2 α 2 γ 2 α 2 β 2 α 2 . . .

where γ is covering the middle position and where α ∈ {2, 4}, β ∈ {2, 4, 8} and the next

free position at either end will be δ ∈ {2, 4, 8, 16}.

Take some congruence in a horizontally reversible two-dimensional IRDCS with

generators (2ω, 0) and (x0, d) and assume that 0 < x0 < 2ω. This congruence has first

point (x1, y1). If the middle position on row y1 is not covered by this congruence then

two points of distance 2ω apart which are symmetric about the middle must be covered

on row y1. There must then be some point on row y1 + d covered by the congruence

which is between these two points horizontally, achieved by adding (x0, d) to the y1 row.
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If this point is not in the centre, then it will have a reflected point on the other side of

the middle of this row, but as x0 > 0, these two points will be closer than distance 2ω

apart, a contradiction, and so x0 = 2ω−1. If the middle point were covered on row y1 by

this congruence then the middle will not be covered on row y1+d since 0 < x0 < 2ω, and

so two points symmetric about the middle column of distance 2ω apart and no closer

must be covered and thus x0 = 2ω−1.

Thus all congruences for a horizontally reversible two-dimensional IRDCS must

have generator pairs

(2ω, 0) and (2ω−1, d) or,

(2ω, 0) and (0, d).

As two-dimensional IRDCS only allow congruences which are associated to subgroups

of Z2 of co-rank 1, Corollary 7.1 tells us that we cannot have any number which divides

every element of the generators. As such, the rectangular congruences (Definition

7.2) in the second case can only occur for d ≥ 3 odd, and for the first type of congruences

with ω > 1, d must be odd, and d is free for ω = 1. The rectangular congruences may

or may not hit the middle column and the remaining congruences will cover the middle

position on every second row on which they cover some point.

Since every congruence which is not rectangular covers the middle in every second

row in which it has a solution, if there are more than 2 congruences with d = 1, then

at least 3
2Y middle positions are covered, a contradiction.

If the congruence that covers the middle position of a row has generator (2ω, 0),

then it will cover all of the positions that could possibly be covered by generators

(2ω+k, 0) for k ≥ 1 on that row. Thus, whatever congruence covers the middle position

of a row will have the largest (m/d, 0) on that row.

If there are precisely 2 congruences with d = 1, let the generator pairs for these

congruences be (2α, 0), (2α−1, 1) and (2β, 0), (2β−1, 1). Firstly, we must have α 6= β, else
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they will have the same modulus. Now these two congruences must cover the middle

position on all rows, so say that 2α covers the middle of the bottom row. Then since 2β

must also be on that row, we must have α > β. On the other hand, 2β will cover the

middle position on the second row, and since 2α will also be on that row, we must have

α < β.

Thus we can have at most one congruence with d = 1. Call the horizontal

generator of this congruence (2α, 0). This congruence will cover the middle position of

every second row, and since every congruence has odd d, excluding possibly some with

generator pair (2, 0) and (1, d), every congruence other than those excluded will hit some

row where the 2α covers the middle. If we do use some congruence with generator pair

(2, 0) and (1, d) for d even then this congruence will have solutions in at least two rows,

covering the middle position in at least one row, as well as only off-middle positions

in at least one row. Since these rows are evenly spaced, the congruence with d = 1

will only cover off-middle positions in these rows, and the row where (2, 0), (1, d) covers

the middle position forces α = 1, so that the congruences will clash in some row that

the congruence (2, 0), (1, d) covers only off-middle positions. Thus (2α, 0) is the largest

horizontal generator for this IRDCS, and there can be no congruences with even d.

Moreover, any congruence with generator pair (2a, 0) and (2a−1, d) will cover the

middle position on some row, and since the congruence (2α, 0), (2α−1, 1) will cover some

off-middle position on this row a ≥ α, but (2α, 0) is the largest horizontal generator,

so that a = α and all congruences which are not rectangular must have generator pair

(2α, 0) and (2α−1, d).

So a horizontally reversible IRDCS with some congruence with d = 1 must have

3 columns of distance 2α−1 apart, including the middle column, covered as
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...
...

. . . 2α, 1 . . . 2α, d2 . . . 2α, 1 . . .

. . . 2α, dk2 . . . 2α, 1 . . . 2α, dk2 . . .

. . . 2α, 1 . . . 2α, d1 . . . 2α, 1 . . .

. . . 2α, dk1 . . . 2α, 1 . . . 2α, dk1 . . .

where we write 2α, d to represent the congruence with generator pair (2α, 0) and (2α−1, d).

These and any other equidistant columns in either direction are the only solutions to

these congruences, so that removing 2α, 1 and concatenating the two leftmost columns

shows that these di’s must form an odd IRDCS, as they must be odd, each covering at

least two positions and covering Y consecutive integers disjointly, so Y ≥ 83. If α = 1

then this is a horizontally reversible two-dimensional IRDCS. If α ≥ 2 the two columns

on either side of the middle are at this stage empty, and so must be covered by congru-

ences with generators of the form (2, 0) and (0, d) for d > 1 odd. These congruences will

need to cover positions in at least two rows for non-collinearity and so these d’s must

again form an odd one-dimensional IRDCS of length Y and provide congruences with

modulus 2d. Continuing this for α ≥ 3 and so on shows that all of the reversible two-

dimensional IRDCS containing a congruence with d = 1 are the IRDCS from Lemma 7.9.

They can be viewed as generalisations of either a single one-dimensional odd IRDCS,

or collections of one-dimensional odd IRDCS if we use different length Y odd IRDCS

for different column sets in the two-dimensional IRDCS. This two-dimensional IRDCS

has heft and order

h =
1
2α

+
α∑
j=1

hi
2j
→ 1, t = 1 +

α∑
j=1

tj ,

j as in the notation of Lemma 7.9.

The only remaining case is that where there are no congruences with d = 1.

These must all be special symmetric IRDCS, and so it remains to consider the case

where all congruences have d > 1 and there is at least one congruence with horizontal

generator (2, 0) which covers the middle of some row.
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Corollary 7.6. For a two-dimensional IRDCS to equal its vertical reversal then it

must be either

• an X×(2Y+1) IRDCS generated by a collection of length X odd one-dimensional

IRDCS as in the obvious analogue to Lemma 7.9, or

• an X× (2Y +1) IRDCS which is the analogue to a special symmetric IRDCS

in the obvious way.

Lemma 7.11. For a two-dimensional IRDCS to equal its complete reversal it must

have both X and Y even.

Proof. For an IRDCS to equal its complete reversal then since the complete rever-

sal operation switches their places, the pair of positions (i, j) and (X − 1− i, Y − 1− j)

must have the same modulus. If X is odd and Y is even, then considering the middle col-

umn by taking i = X−1
2 and j = Y

2 in the above, positions
(
X−1

2 , Y2
)

and
(
X−1

2 , Y2 − 1
)

must be covered by the same congruence, implying a generator (0, 1), so that the con-

gruence is not of corank 1 and is invalid. Similarly for Y odd and X even, considering

the middle row gives a contradiction.

If X and Y are both odd, then presenting the horizontal alternate notation

of the middle row gives, after similar consideration as in the horizontal reversal proof,

. . . 2β 2 2α 2 ∗ 2 2α 2 2β . . . ,

where α ∈ {1, 2}, β ∈ {1, 2, 3} and so on. So all congruences which cover a position in

the middle row other than the very middle have one generator (2a, 0) for some a ∈ N.

Similar analysis on the middle column gives all congruences which cover a position in

the middle column other than the very middle have one generator (0, 2b) for some a ∈ N.

Now considering the next closest rows to the middle
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. . . d b ∗ a c . . .

. . . ∗ ∗ ∗ ∗ ∗ . . .

. . . c a ∗ b d . . .

,

clearly the labeled letters must be in the same congruence. So that so long as they don’t

cover the middle position the congruence that covers a must have generator (2, 2) and

the congruence that covers b must have generator (2,−2), c must have generator (4, 2)

and d must have generator (4,−2). The elements ∗ here are either the middle position,

or have already been considered. Continuing this analysis, all congruences excluding

the single congruence that covers the middle position will have generators with only

even elements, and thus by Corollary 7.1 be invalid. Since only one congruence covers

the middle position and it clearly can’t cover every position in the IRDCS, there is at

least one congruence which has solution set the coset of a subgroup with corank 2, and

so X and Y cannot both be odd.

If X and Y are both even and an X × Y IRDCS equals its complete reversal,

then the IRDCS must have alternate notation

B β1 β2 A]

α2 m2 m1 ᾱ1

α1 m1 m2 ᾱ2

A β̄2 β̄1 B]

,

where the αi are row vectors and the βi are column vectors and where if

α = (α1, α2, . . . , αj),

then

ᾱ = (αj , . . . , α2, α1),

and similarly for the column vectors. The A and B are (X/2− 1)× (Y/2− 1) matrices

and A](i,j) = A(X/2−i,Y/2−j) with the equivalent statement for B.
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m1 must be associated to a congruence with generators (1, 1) and (m1, 0), and

we can do similar analysis on the other elements as we move out from the middle. For

instance the lowest element of β1 must have one generator (1,−3). Other than this we

cannot categorize this case any further at this stage.

7.5.1 Open Questions

We suspect that we should be able to double all super special symmetric IRDCS,

but at the moment we are unable to categorise this. Can it be done? It is certainly

only possible if Y ≥ 83.

Also, can completely reversible IRDCS be further categorised?

7.6 Computing Two-Dimensional IRDCS

7.6.0.1 Structural Qualities to Assist in Computing IRDCS

Earlier lemmas showed two-dimensional IRDCS which are intrinsically related to the

one-dimensional case. It remains to see how many IRDCS there are, particularly IRDCS

not of these forms or some other form related to the traditional IRDCS, and to produce

an algorithm to find all such IRDCS.

The algorithm needs to be told at what point all possible moduli for a congruence

with given first point have been attempted. As in the one-dimensional case, the

algorithm will increment the moduli, in this case as we exhaust all possible congruences

with given moduli at given first point.

Lemma 7.12. For an X × Y IRDCS the largest modulus possible for any congruence

class is (X − 1)(Y − 1).

This is a special case of the following result.
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Lemma 7.13. For an X×Y IRDCS the largest modulus possible for a congruence class

with first point (x0, y0) is (X − 1)(Y − y0 − 1).

Proof. First, the congruence which hits the points (0, y0), (X − 1, y0) and (1, Y − 1) has

modulus (X − 1)(Y − y0 − 1) since it has generators (X − 1, 0) and (1, Y − y0 − 1).

For any congruence, take three non-collinear points A,B,C in its lattice that

determine a parallelogram with no other points in the lattice in its interior. Name these

A,B,C in order of increasing x-coordinate, followed by y-coordinate should they have

the same x-coordinate. Firstly take the differences B−A and C−A as the generators of

this congruence. In the case where two of these points are on a single row, this produces

a generator (m/d, 0) with m/d ≤ X − 1. The other generator must be of the form

(x1, d), where d ≤ Y − y0 − 1, so that the modulus m ≤ (X − 1)(Y − y0 − 1).

Similarly for the case where two of these points are on a single column, there is

a vertical generator (0,m/d) and second generator (d, y1), we have m/d ≤ Y − y0 − 1

and d ≤ X − 1, so that m ≤ (X − 1)(Y − y0 − 1).

Otherwise this congruence has either B below A and C, or B vertically in between

A and C, or B above A and C.

If the B is below A and C, then take the generators as B−A and C −A, so that

they are (x1, y1) and (−x2, y2), where x1, x2, y1, y2 > 0. Thus

m =
∣∣∣∣det

 x1 y1

−x2 y2

∣∣∣∣ = x1y2 + x2y1.

Since all three points must be inside the box y1, y2 ≤ Y − y0 − 1, and x1 + x2 ≤ X − 1,

so that m ≤ (x1 +x2)(Y −y0−1) ≤ (X−1)(Y −y0−1). An analogous argument works

where the B is above A and C, with generators (−x1,−y1) and (x2,−y2).

IfB is vertically in the middle ofA and C, then take the generators to be a = A−B

and b = B − C. Adding the generator b to the A will go to another point still in the

IRDCS, since A is below and to the left of B, and generator b applied to B moves up
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and to the right and still lands inside the IRDCS. Hence applying the generator b to

the leftmost point will also land inside the IRDCS, as in the following diagram.

C

B
b

66nnnnnnnnnnnnnnn

p4

A
b

66nnnnnnnnnnnnnn

a

GG��������������

Thus the points A,B,C and p4 form a parallelogram. The area of this parallelogram

is the modulus of the congruence, and the fact that it sits entirely within a box of

dimensions (X − 1) × (Y − y0 − 1) implies m ≤ (X − 1)(Y − y0 − 1). This argument

clearly also holds for the case where the points A,B,C increase in height from right to

left, rather than from left to right.

As the algorithm will be a backtracking algorithm, establishing the position with

greatest y coordinate in the two-dimensional IRDCS which may be the first point for

a congruence will give the point at which the algorithm will always backtrack.

Lemma 7.14. A congruence in an X × Y IRDCS with first point (x, y) must have

y ≤ [Y/2]− 1.

Proof. Take A,B and C as in the proof of the previous lemma, where A = (xa, ya) and

so on, and where ya, yb, yc ≥ [Y/2]. Assume that one of these points is the first point

of the congruence and thus has the smallest y-coordinate.

In the first case, if any pair of these three points lie on the same row, then the

congruence has generator (m/d, 0) with m/d ≤ X − 1. The second generator can be

taken to be (x0, d) which takes any of these two points to the third point, and where

d ≤ Y − 1− [Y/2]. Since m/d ≤ X − 1, this congruence will cover at least one position
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on every dth row, and so will cover a position on a row at most as low as[
Y

2

]
−
(
Y − 1−

[
Y

2

])
= 2

[
Y

2

]
− Y + 1

≥ 0,

a contradiction, so that the first point of the congruence must be below the [Y/2] row.

Otherwise, three cases remain. Either B is below or above A and C vertically, or

B is vertically in between A and C.

First consider the case where B is below both A and C. Either xb < [X/2] or

xb ≥ [X/2]. If xb < [X/2], then heuristically since B is less than halfway across the box

and A is further left still, and since the change in height between the two must be less

than half the height of the array then B with the addition of the vector B−A will land

inside the box. More precisely, since 0 ≤ xa < xb < [X/2] and [Y/2] ≤ yb < ya ≤ Y − 1

then xb+(xb−xa) < X and 0 ≤ yb+(yb−ya) < yb, so that B+(B−A) ∈ [0, X)× [0, Y )

and is lower than B, a contradiction. This is additionally presented graphically below.

A

  @@@@@@@ C

B

$$HHHHHHHHH

2B−A

If xb ≥ [X/2], then a similar argument gives 0 ≤ yb + (yb− yc) < yb, while xb < xc gives

0 ≤ 2[X/2]− xc ≤ xb + (xb − xc) ≤ [X/2]− 1, so that B + (B − C) ∈ [0, X)× [0, Y ).

A C

~~~~~~~~~

B

zzvvvvvvvvv

2B−C

Similarly if B is above both A and C then it is not difficult to show that depending
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on the x-coordinate of B at least one of A+ (C −B) and C + (A−B) will land inside

the array and be lower than both A and C.

Lastly if B is in between A and C vertically then without loss of generality assume

that A is below B. The slopes of the vectors B−A and C−B must be different. Assume

that the slope of B − A is larger than the slope of C − B. Apply the vector C − B

to A to get the point D in one of the following two figures, depending on whether

xc − xb ≥ xb − xa or xc − xb < xb − xa respectively.

C

B

  @@@@@@@

77nnnnnnnnnnnnnn

D

A

GG��������������

77nnnnnnnnnnnnnn

��@@@@@@@

E

C

B

����������������

66mmmmmmmmmmmmmmm

D∗

��
















D

66

A

88ppppppppppppp

@@����������������������������
E

In the first case, the newly created vector D − B is applied to A to generate a point

E in the array which is below A. In the second case, first note that the vector C − B

may be repeatedly applied to A for so long as the point this produces is to the left

of B. Once this produces the first point to the right of B, D∗ in the above diagram,

apply the vector D − B to this point. This takes the point D∗ to the left, but not so

far as to fall out of the array on the left, since D∗ is to the right of B. It also takes

this point down below A, but not out of the array, since D∗ is necessarily below B and

yd∗ > ya ≥ [Y/2]. Thus we generate a new point in the array E which is below A. The

more precise details for these two cases are very similar to those for the case of B being

below both A and C.

The case for the slope of C −B being larger is equivalent, and we are done.

On the other hand there exists a congruence which starts in the row [Y/2] − 1,
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namely the congruence lattice covering the points (0, [Y/2]− 1), (X − 1, [Y/2]− 1) and

(1, Y − 1) so that y = [Y/2] − 1 is the last row which can contain a congruence’s first

point.

If we use the generators (2, 0) and (1, [Y/2]) then there is a valid congruence with

first point (x, [Y/2] − 1) with modulus Y if Y is even, and Y − 1 if Y is odd. The

question remains as to whether any smaller moduli than 2
[
Y
2

]
can be used on this row.

If 2 ≤ m/d ≤ X, then every row has a position covered where y ≡ y0 (mod d),

where the first point of the congruence is (x0, y0), so that d ≥
[
Y
2

]
. Therefore, if

2 ≤ m/d ≤ X then m ≥ 2
[
Y
2

]
. On the other hand if m/d > X, then m > dX > X > Y ,

so that the smallest possible modulus must be 2
[
Y
2

]
.

Extending this, in attempting to fill a congruence with first point (x0, y0), if

2 ≤ m/d ≤ X then d ≥ y0 + 1, so that m ≥ 2(y0 + 1). Meanwhile, if m/d > X once

again m > Y ≥ 2(y0 + 1) since y0 ≤
[
Y
2

]
− 1.

This implies that if Y = 3, then since [Y/2]− 1 = 0 all moduli must hit the first

row.

7.6.1 An Algorithm for the Two-Dimensional Case

As with the one-dimensional IRDCS problem, an algorithm to find all of the two-

dimensional IRDCS for given dimensions and with given conditions will be constructed.

The algorithm is again a backtracking algorithm, being based on the one-dimensional

IRDCS algorithm, with the adjustments required to take it into the two-dimensional

case.

Before introducing the various vectors and variables required and presenting the

algorithm in technical detail, the workings of the algorithm will be described.

Take the X × Y lattice for which all of the possible two-dimensional IRDCS are

to be found. Analogous to the one-dimensional case, start by trying to fill the IRDCS
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from the middle of the bottom row, attempting all congruences with the next unused

modulus, and once a valid congruence is found fill it and move to the next free position.

Define this next position to be the first empty position the algorithm comes across in

firstly cycling around the middle of the current row, as in the one-dimensional case, and

once the end is reached, moving up one row, returning to the middle and repeating.

Continue in this fashion until either the lattice is full or a position which cannot

be filled by any of the available moduli is reached. In either case, backtrack to the

previously filled position, remove the current congruence and try the next available

congruence, which may or may not involve choosing a new modulus. Continue with

this until the algorithm is at the first position ([X/2], 0) and there are no more valid

congruences as the maximum modulus has been exceeded. At this point all possible

IRDCS have been found and the algorithm terminates.

7.6.1.1 The technical algorithm

Begin by creating an X × Y vector lattice to house the 2D IRDCS and a vector

modusage of length (X − 1)(Y − 1) to, as in the one-dimensional case, store whether

a modulus is already used. We then need a variable maxmodulus to keep track of

the largest possible modulus for a congruence with the current first position, position,

a two-element vector, which stores the current x and y position in the IRDCS, and

variables a, b, c, x0 and d, the coefficients and generator elements for a given congruence

as in the congruence ax+ by ≡ c (mod m) with generators (m/d, 0) and (x0, d).

The (X − 1)(Y − 1) × 5 vector congruences will store the coefficients a, b, c as

well as x0 and d for the congruence with modulus m in the mth row, with the mth row

of this vector empty if the modulus m is not being used. This vector is required to keep

track of how to choose the next congruence for the current modulus after backtracking.

The following variables are used to negotiate our way around the IRDCS, both in

the filling and the backtracking components of the algorithm. The variables polarity
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and increment act in the same way as in the one-dimensional IRDCS algorithm, with

polarity moving the current position around the lattice to find the next free position by

alternating it around the middle of the row, while increment makes these shifts larger

as the algorithm gets away from the middle of a row, so that it doesn’t double over any

positions. The algorithm will reset these as it moves up a row while filling the lattice.

Associated to these the backtracking portion of the algorithm will use a vector primary

of dimension X ×Y , which will store whether the particular hit of a congruence at that

position is the first position of that congruence covered by the algorithm, where this

will be the position closest to the middle horizontally, rather than furthest left as in the

definition of first point.

As in the one-dimensional case the variable clash will track whether a congruence

will clash with the current lattice and issolution will change to false when there are

no more IRDCS for this dimension.

Lastly the variable collinear counter will be used to ensure that each congruence

hits the lattice in three non-collinear points, flag nextmodulus will track when all

possible congruences for the current modulus have been attempted, and first height

will calculate the y-coordinate of the first point of the congruence, and be used to

check that it matches the current position in the algorithm.

If a congruence fits, it will be stored in the congruence storage lattice congru-

ences, and the algorithm will move on to the next free position to try to fill a new

congruence, while adjusting the polarity and increment variables. If, while choosing

the next congruence, the modulus exceeds the maximum possible modulus the algo-

rithm backtracks, in a very similar fashion as in the one-dimensional case, using the

congruences vector to keep track of the next congruence to attempt.

Backtracking will occasionally force the algorithm to move down a row. Whether

the last position cycled through on the lower row was on the left or right-hand end will

determine the values of increment and polarity required. Given that the first position
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filled is [X/2] and polarity on any given row starts at (−1), for X odd the algorithm

starts on the very middle position and thus finishes the left side of the row first, so

when the algorithm moves down a row, it resets to x = X − 1 with polarity = −1 and

increment = X. On the other hand for X even, the algorithm started at the right of

the two central positions, and so in filling finishes the right side of the row first. Thus

it resets to x = 0 with polarity = 1 and increment = X.

The algorithm refers to position[0] as the x-coordinate of position, and similarly

position[1] for the y-coordinate.

Any bold sentences in the algorithm prefaced with a ‘%’ will refer to a comment.

The algorithm is written in a mixture of pseudocode and plain English, in an attempt

to highlight its key features.

% Initialisation

Input X and Y , the dimensions in the search for an X by Y IRDCS.

Set all of the entries of vectors lattice and congruences to 1, primary to true.

Set modusage[2, 3, . . . ,maxmodulus] to false and modusage[1] to true.

Set maxmodulus = (X − 1)(Y − 1), position[0] = [X/2], position[1] = 0,

polarity = −1, increment = 1, finished = false and clash = false.

Set collinear counter to 1 and initialise the constants for the congruence to a =

1, b = 1, c = 0, x0 = 1, d = 1.

Set first height = −1 and flag nextmodulus = true.

% Begin main loop

while issolution do

maxmodulus := (X − 1)(Y − 1− position[1])

valid congruence := false

% Choose next modulus and associated congruence

while valid congruence is false do

if flag nextmodulus is true then
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Iterate to next available modulus and set m := modulus

if m > max modulus then

Break from while loop

end if

set flag nextmodulus = false

reset a = 1, b = 1, c = 0

end if

while The congruence does not cover the current position do

while c < m and the congruence does not cover the current position do

c := c+ 1

end while

if c = m then

c := 0

while b < m and (gcd(a, b) > 1 OR the congruence is a repeat of a previous

congruence) do

b := b+ 1

end while

end if

if b = m then

b := 1

a := a+ 1

if a = m then

set flag nextmodulus = true

Break from while loop

end if

end if

end while



157

if flag nextmodulus = false then

Find the first position the congruence hits, and set first height to the

y-coordinate

if first height = position[1] then

Calculate the generators (x0, d) and (m/d, 0)

valid congruence := true

end if

end if

end while

if the modulus is less than or equal to max modulus then

% Feasible modulus found - enter while checking for clashes and non-

collinear hits

Fill the congruence using the generators, while checking that there are no clashes

and at least 3 non-collinear hits using the variable collinear counter

Set primary to false for all but the original position of the congruence

if There is a clash, only two hits, or the points are all collinear then

flag nextmodulus = false

Erase all filled values

else

% valid congruence found

flag nextmodulus = true

% Store the congruence coefficients and generators in the congru-

ences vector

congruences[m][0] := a, congruences[m][1] := b, congruences[m][2] := c,

congruences[m][3] := x0 and congruences[m][4] := d.

while lattice at the current position is already filled do

% Iterate the position using polarity and increment to find the
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next free position

position[0] := position[0] + polarity × increment

polarity := polarity × (−1), increment := increment+ 1

if position[0] < 0 OR position[0] ≥ X then

position[1] := position[1] + 1

position[0] :=
[
X
2

]
polarity = −1, increment = 1

if position[1] = Y then

% We have a two-dimensional IRDCS

Calculate heft and order and output the IRDCS

Backtrack: remove the most recently filled congruence and clear the

congruences vector

Backtrack: remove the second most recently filled congruence, setting

a, b and c as in the congruences vector and then clearing that row of

the congruences vector

% This is so that we can iterate for the next available congru-

ence at this position

end if

end if

end while

end if

else

% Modulus has exceeded maximum possible value, backtrack

while primary[position] = false do

if position[0] =
[
X
2

]
then

position[1] := position[1]− 1

if X is even then
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position[0] = 0, polarity = 1, increment = X

else

position[0] = X − 1, polarity = −1, increment = X

end if

if position[1] = −1 then

Break from the while loop

end if

else

polarity := polarity × (−1), increment := increment− 1

position[0] := position[0]− polarity × increment

end if

end while

if position[1] = −1 then

% there are no more two-dimensional IRDCS

Set issolution to false

else

Remove the congruence at the current position

Set a, b, c to the values from the congruences vector for the removed congru-

ence, from which to iterate

Clear the row of the congruences vector for this congruence

end if

end if

end while

It is possible to adjust this algorithm to search for two-dimensional IRDCS with specific

properties. Most often this can be achieved by adjusting either the allowable moduli,

or the specific allowable congruences, by enforcing specific generator pairs, or both.

For instance, one might want to search for reversible or double-able two-dimensional
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IRDCS, or for examples that are explored in what follows.

There may also be more efficient ways to calculate two-dimensional IRDCS. These

may be in the form of the dancing links algorithm, or by adjusting the algorithm pre-

sented above. One possibility is to alter the starting point of the algorithm from (X/2, 0)

to (X/2, Y/2) and then adjust the way that the algorithm works by introducing a sec-

ond pair of variables incrementy and polarityy. These variables would function as

increment and polarity, once a particular row is finished move to a new row by tak-

ing y = y + incrementy × polarityy, and then adjust these two variables by increasing

incrementy and adjusting the sign of polarityy. We have not implemented any of these

approaches.

7.7 A miscellaneous two-dimensional IRDCS question

Question. Can an X × Y IRDCS be translated to a length XY IRDCS, where the

transformation takes the rows of the two-dimensional IRDCS and places them next to

one another, the transformation in their respective alternate notation’s being

rY

...

r2

r1

=⇒ r1, r2, . . . , rY?

If so, what are the necessary and sufficient conditions for this transformation to produce

an IRDCS?

Note that if this is possible, the one-dimensional IRDCS will have minhits 3 or

greater, so that XY > 105 as seen in Chapter 4. This was the original motivation for

asking this question.
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Assume that for all congruences x0 ≥ 0, then the following holds.

Theorem 7.6. An X × Y IRDCS may be transformed into a length XY IRDCS by

the above transformation only if all congruences in the two dimensional IRDCS with

modulus m have generators (x0, 1) and (m, 0), where X + x0 = λm, λ ∈ N. For

m ≥ X,λ = 1 while for m ≤ X − 1, λ is the maximum number of positions covered in a

single row of the two-dimensional IRDCS by that congruence.

Proof. Call the two-dimensional IRDCS α and for a congruence in α with modulus

m call the modulus in the one-dimensional IRDCS m1. We study α by analysing the

possible generators of the congruences.

In the first instance if α has a congruence with generators (m, 0) and (x0, 1),

where m ≥ X and where the congruence hits two consecutive rows at some point then

assume without loss of generality that x0 > 0, since if x0 < 0 it may be replaced with

x0 +m. If at some stage this congruence covers positions in two sequential rows, these

positions must appear as either

X

X
or

X

X
.

The first case implies a modulus in the one-dimensional IRDCS of m1 = X+x0 while in

the second case m1 < X. In either case 3 non-collinear hits are required which without

loss of generality may be assumed to occur above the section of consecutive rows with

hits, the argument otherwise being symmetric. In the first diagram above if there is no

row skipped before the third position and this position appears to the left as in:

X

X

X

then the second transition here forces m1 < X, a contradiction. If two or more rows are

skipped then m1 > 2X, also a contradiction since here clearly x0 < X. If precisely one
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row is skipped, then position (x1, y1) goes to position (x1 + 2x0 − km, y1 + 2) for some

k ∈ N. This transition implies

m1 = (X − x1) +X + x1 + 2x0 − km

= 2X + 2x0 − km,

which must be X + x0, and so m1 = X + x0 ≡ 0 (mod m) is required, where x0 < X

so that m = X + x0.

Similar analysis of the second case shows that this scenario cannot generate any

valid congruences, since we have already shown that m1 < X.

If for this type of congruence two consecutive rows are never hit then since hits

cannot be collinear and consecutive hits cannot appear one above the other, at some

point in the IRDCS there must be a section where 3 hits appear as either

X

X

X

or the horizontal reflection of this scenario, where skipped rows have been omitted in our

illustration and where the positions covered needn’t appear in this precise arrangement,

but merely non-collinear. In this case, say that between the first two hits A rows are

skipped and between the second two hits B rows are skipped. The first transition implies

the modulus in the one-dimensional IRDCS satisfies AX < m1 < (A+ 1)X, where the

inequalities are strict since the positions covered by the congruence in this arrangement

cannot appear directly above one another. Similarly the transition from the middle row

to the top row implies (B − 1)X < m1 < BX, so that A + 1 = B. The same analysis

on the reflected case gives A = B + 1.

Now the movement from the bottom row to the middle row takes position (x1, y1)
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to position (x1 + (A+ 1)x0 − km, y1 +A+ 1), which implies

m1 = (x1 + (A+ 1)x0 − km− x1) + (A+ 1)X

= (A+ 1)(X + x0)− km.

The movement to the top row takes the second position above to (x1 + (A + 1)x0 −

km+ ((B + 1)x0 − lm) , y1 +A+ 1 +B + 1) which implies

m1 = (B + 1)x0 − lm+ (B + 1)X

= (A+ 2)(X + x0)− lm.

Forcing these to be equal takes X + x0 = (l − k)m so that X + x0 = m, and thus

m1 = (A+ 1− k)m.

If α has generators (x0, 1) and (m, 0) withm ≤ X−1 then the condition m ≤ X−1

implies that every row in the IRDCS must be hit by this congruence. In the first case,

if some row in the two-dimensional IRDCS is hit two or more times by the congruence,

then the modulus of the one-dimensional IRDCS must be m1 = m. The transition from

one row to the next as in

X

X

for the bottom position having x coordinate x1 must give

m1 = X − x1 + {(x1 + x0) (mod m)} = X − x1 + x1 + x0 − km,

for some k ∈ Z, which implies that

(k + 1)m = X + x0,

where k + 1 is the maximum number of times that the congruence hits any row.

In the other case, if no row is hit twice, then the fact that not all of the hits can

be collinear means that at some stage there must be three rows that look either like
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X

X

X

or the above reflected horizontally. The third hit here needn’t be to the left of the first,

or in fact to the left of the second hit, but the points must be non-collinear, and a

similar argument to what follows will still hold. In the illustrated case the transition

from the bottom row to the middle row implies that the one-dimensional IRDCS has

modulus larger than X, while the middle row to the top row implies modulus smaller

than X, a contradiction.

Last of all if α has generators (x0, d) and (m/d, 0) with d > 1, apply the methods

for the case of d = 1 with some minor adjustments to see the following.

• If m/d ≥ X study a section of the two-dimensional IRDCS with 3 non-collinear

hits, following the same arguments as previously, and since d > 1 we cannot

have any valid moduli.

• Ifm/d < X where some row is hit twice, then the modulus of the one-dimensional

IRDCS must be m/d, but given that d − 1 ≥ 1 rows are skipped the modulus

must also satisfy m1 > X, a contradiction.

• If m/d < X and no row is hit twice, then as in the equivalent (x0, 1), (m, 0) case

we take three non-collinear hits and perform a similar analysis to show that this

will not work.

Thus there can be no congruences with d > 1.
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7.8 Two-dimensional Heft

This section will be devoted to finding bounds for the heft of a two-dimensional IRDCS.

We begin by calculating how many times a congruence satisfying certain conditions will

intersect the box [0, X)× [0, Y ) ∩ Z2 of our IRDCS.

First of all, fix X, Y and the first point (x∗, y∗), where the first point of a given

congruence is defined as Definition 7.7 to be the position of the congruence which is

on the lowest row hit and furthest left on that row. We will now study the various

possible congruences. For the entirety of the analysis, all of the variables are taken to

be non-negative integers, and we will study the congruence ax+ by ≡ c (mod m).

7.8.1 If X ≡ 0 (mod m) or Y ≡ 0 (mod m)

We take the generators for this congruence to be (m/d, 0) and (x0, d) in the first

case, and (0,m/d) and (d, x0) in the second. We will focus only on the first case, and

the second case follows in a similar fashion.

If d = 1, then we have the generators (m, 0) and (x0, 1). Every row is hit precisely

X/m times, as the hits on a given row form a single congruence modulo m and X is a

multiple of m. Thus, the number of hits inside the box is XY
m .

If d > 1, then we have the generators (m/d, 0) and (x0, d). If Y ≡ 0 (mod d),

then since the congruence hits every dth row it will hit precisely Y
d rows, and will hit

each row X
m/d times, again since X is a multiple of m. Thus the number of hits inside

the box is Y
d .

X
m/d = XY

m .

If d > 1 and Y ≡ n (mod d), where n 6= 0 is the residue of Y modulo d, then let
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Y = ld+n. This congruence will hit l rows if y∗ ≥ n and l+ 1 rows if y∗ ≤ n− 1. Thus

number of hits =


X
m/d(l + 1) if y∗ ≤ n− 1,

X
m/d l if y∗ ≥ n.

=


XY
m −

n−d
m if y∗ ≤ n− 1,

XY
m −

n
m if y∗ ≥ n.

=
XY

m
− n− α

m
,

where α = 0 if y∗ ≥ n and α = d otherwise.

7.8.2 If X 6≡ 0 (mod m) and Y 6≡ 0 (mod m)

7.8.2.1 Case 1: X > m, generators (m, 0) and (x0, 1) where gcd(m,x0) = 1

If we have the generators (m, 0) and (x0, 1) where gcd(m,x0) = 1, begin by letting

X = mu+v and Y = mp+ q, where u, v, q > 0. Since gcd(m,x0) = 1, in each collection

of m consecutive rows our starting points on the rows, namely the leftmost points hit,

will form a complete set of residues modulo m. As such, in every m consecutive rows

we will hit v of those rows u + 1 times and m − v of them u times. Thus, the number

of hits on the first mp rows equals

p
(
v(u+ 1) + (m− v)u

)
= p(mu+ v) = pX.

On the last q rows, we will hit each row either u or u+ 1 times, depending on whether

the first position is smaller than v. So the number of hits on the last q rows equals

qu+ β, where β ∈ {max(0, q − (m− v)),max(0, q − (m− v)) + 1, . . . ,min{v, q}} counts
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the number of rows which are hit u+ 1 times. Thus the total number of hits equals

pX + qu+ β = X
Y − q
m

+ qu+ β

=
XY

m
+ q(u−X/m) + β

=
XY

m
− vq

m
+ β.

7.8.2.2 Case 2: X > m, generators (m, 0) and (x0, 1) where gcd(m,x0) = k > 1

Let X = mu + kv1 + v2 where 0 ≤ kv1 < m, 0 ≤ v2 < k and kv1 + v2 > 0, and let

Y = m
k p+ q, where 0 ≤ q < m

k and Y 6≡ 0 (mod m).

The first position hit by the modulus is (x∗, 0) so that all of the furthest left

points hit on the rows will be of the form x∗+ kl ∈ [0,m), l ∈ Z, and we will repeat the

set of first hits every m
k rows. This collection will form an incomplete set of residues

modulo m.

The number of hits on a given row will be u + 1 if the first position is less than

kv1 + v2, and will be u otherwise. Thus in any m
k rows there will be v1 + 1 rows with

u+ 1 hits if x∗ ≡ x∗ (mod k) < v2, and there will be v1 such rows otherwise.

Thus, the number of hits on any m
k rows will be

(u+ 1)v1 + u

(
m

k
− v1

)
+ γ1,

where γ1 ∈ {0, 1} and is 1 if and only if x∗ < v2. So the number of hits on the first m
k p

rows is

p
(

(u+ 1)v1 + u
(m
k
− v1

)
+ γ1

)
= p

(m
k
u+ v1 + γ1

)
= p

(
X − v2
k

+ γ1

)
.

Finally the number of hits on the last q rows is qu+ γ2, where γ2 counts the number of

these last q rows which are hit u+1 times. Thus γ2 runs from max
(
0, q −

(
m
k − v1 − γ1

))
to min(v1 +γ1, q). Thus in calculating the total number of hits by the congruence inside
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the box we get

# hits = p

(
X − v2
k

+ γ1

)
+ uq + γ2

=
p

k
(X − v2) + pγ1 + uq + γ2

=
1
m

(Y − q)(X − v2) + pγ1 + uq + γ2

=
XY

m
− qX

m
− v2Y

m
+
qv2
m

+ pγ1 +
q(X − kv1 − v2)

m
+ γ2

=
XY

m
− v2Y

m
− qkv1

m
+
k(Y − q)

m
γ1 + γ2

where γ2 ∈ {max
(
0, q −

(
m
k − v1 − γ1

))
, . . . ,min(v1 + γ1, q)} and γ1 ∈ {0, 1}, γ1 = 1 if

and only if x∗ < v2.

7.8.2.3 Case 3: X > m/d, generators (m/d, 0) and (x0, d) where d > 1 and

gcd(m/d, x0) = 1

Let X = m
d u + v and Y = mp + dq1 + q2, where 0 ≤ v < m

d , X 6≡ 0 (mod m) and

0 ≤ dq1 < m, 0 ≤ q2 < d with dq1 + q2 > 0.

Since gcd(m/d, x0) = 1 in every collection of m
d consecutively hit rows (i.e. every

m rows) our starting points will take all of the residues modulo m
d . Thus in any m rows,

there will be v rows which are hit u+ 1 times, and m
d − v rows hit u times.

Thus, the number of hits in the first mp rows is

p

(
v(u+ 1) +

(
m

d
− v
)
u

)
= p

(
m

d
u+ v

)
= pX.

On the next dq1 rows there will be uq1+δ1 hits, where δ1 runs from max (q1 − (m/d− v), 0)

to min(q1, v) and represents the number of rows that are hit u + 1 times. Lastly, the

number of hits on the last q2 rows is δ2 ∈ {0, u, u+ 1}, and δ2 6= 0 if and only if y∗ < q2.
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Thus for the total number of hits we have

# hits = pX + uq1 + δ1 + δ2

=
1
m

(
Y − (dq1 + q2)

)
X +

X − v
m

dq1 + δ1 + δ2

=
XY

m
− X

m
q2 −

vdq1
m

+ δ1 + δ2.

7.8.2.4 Case 4: X > m/d generators (m/d, 0) and (x0, d) where d > 1 and

gcd(m/d, x0) = k > 1

In this case we let X = m
d u + kv1 + v2 where 0 ≤ kv1 <

m
d , 0 ≤ v2 < k and X 6≡ 0

(mod m), and let Y = m
k p + dq1 + q2 where 0 ≤ dq1 <

m
k and 0 ≤ q2 < d and Y 6≡ 0

(mod m). Also, since we are only interested in lattices which correspond to subgroups

of corank 1, we must have gcd(k, d) = 1.

The first position hit on any given row will be of the form (x∗ + ki, y∗ + dj),

where i ∈ Z, j ∈ N0 and x∗ + ki ∈ [0,m/d). We will repeat this collection of initial

x-coordinates every m
kd rows hit, so every m

k rows. These x-coordinates will not take

all residues modulo m
d , but 1

k of them forming an incomplete set of residues modulo m
d .

The number of hits on a given row is u+ 1 if x∗+ki < kv1 + v2 and will be u otherwise.

Thus in every m
k rows, there will be either v1 or v1 + 1 rows with u+ 1 hits, depending

as in case 2 on whether x∗ ≡ x∗ (mod k) < v2. As such the number of hits on the first

m
k p rows is

# hits = p

(
v1(u+ 1) +

(
m

kd
− v1

)
u+ φ1

)
=
p

k

(
m

d
u+ kv1 + kφ1

)
=

1
m

(
Y − (dq1 + q2)

)
(X − v2 + kφ1),

where φ1 ∈ {0, 1} and φ1 = 1 if and only if x∗ < v2.

The hits on the next dq1 rows will be uq1 +φ2 where φ2 runs from max(q1− (mkd −

v1), 0) to min(q1, v1 + φ1) and represents the number of these rows that are hit u + 1
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times. The hits on the final q2 rows will be φ3 ∈ {0, u, u + φ1} and φ3 6= 0 if and only

if y∗ < q2. Thus, the total number of hits will be

# hits =
1
m

(
Y − (dq1 + q2)

)
(X − v2 + kφ1) + uq1 + φ2 + φ3

=
XY

m
−
(
X − v2
m

)
(dq1 + q2)− v2Y

m
+
kφ1

m

(
Y − (dq1 + q2)

)
+ dq1

(
X − kv1 − v2

m

)
+ φ2 + φ3

=
XY

m
− X − v2

m
q2 −

v2Y

m
− kv1dq1

m
+ pφ1 + φ2 + φ3

7.8.2.5 Case 5: X < m, generators (m, 0), (x0, 1)

In this case, not all rows are necessarily hit by the congruence. We can do no better

than taking #hits = θ, where θ represents the number of rows hits by the congruence,

since if a row is hit, it can be hit only once. Thus θ ∈ {3, 4, . . . ,min(X,Y )}. However,

since we know that any X × Y IRDCS is equivalent to a Y × X IRDCS (see Lemma

7.3), we may assume that X ≥ Y . Thus θ ∈ {3, 4, . . . Y }. An example satisfying θ = Y

is the congruence x− 2y ≡ 6 (mod 10) in a 9× 3 IRDCS.

7.8.2.6 Case 6: X < m/d, generators (m/d, 0), (x0, d)

As in case 5, not all rows are necessarily hit, so that #hits = ζ, where ζ ∈
{

3, 4, . . . ,
[
Y−y∗
d

]}
.

7.8.3 Calculating Heft

Before we can calculate the heft we need some more notation. A complete IRDCS

has order t, the following notation will be used to count how many of these congruences

in the IRDCS satisfy the particular cases above.
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Definition 7.13. Define t1 to be the number of congruences where X ≡ 0 (mod m)

and d = 1, or where X ≡ 0 (mod m), d > 1 and Y ≡ 0 (mod d) and define t2 to be the

number of congruences with X ≡ 0 (mod m), d > 1 and Y 6≡ 0 (mod d). Also define

t2+i to be the number of congruences satisfying, as in the notation above, the conditions

for case i, where i = 1, 2, . . . , 6.

By counting the number of hits of the various congruences, we get

XY =
t1∑
i1=1

XY

mi1

+
t2∑
i2=1

XY − (ni2 − αi2)
mi2

+
t3∑
i3=1

(
XY

mi3

− vi3qi3
mi3

+ βi3

)

+
t4∑
i4=1

(
XY

mi4

− Y

mi4

v2,i4 −
q2,i4ki4v1,i4

mi4

+
ki4γ1,i4

mi4

(
Y − q2,i4

)
+ γ2,i4

)

+
t5∑
i5=1

(
XY

mi5

− X

mi5

q2,i4 −
vi5di5q1,i4
mi5

+ δ1,i4 + δ2,i4

)

+
t6∑
i6=1

(
(X − v2,i6)(Y − q3,i6)

mi6

− ki6v1,i6dq2,i6
mi6

+ φ1,i6ki6

(
pi6 +

q1,i6
ki6

)
+ φ2,i6 + φ3,i6

)

+
t7∑
i7=1

θi7 +
t8∑
i8=1

ζi8 , (7.1)

where the indexing works as, for example, assigning q2,i4 as the value of q2 for the

congruence with modulus mi4 . So for all terms with a dual index the first index refers

to its initial usage, while its second index refers to a particular congruence. We may from

time to time compact this notation by writing q2 rather than q2,i4 where the meaning

is clear.

7.8.3.1 The lower bound

We now study the lower bound for heft. To do this we first analyse the more complicated

terms in equation (7.1).
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7.8.3.2 The third sum

In the third sum, we have

−vi3qi3
mi3

+ βi3 ≤ −
vi3qi3
mi3

+ min(vi3 , qi3).

Due to the symmetry of this expression, and the fact that 1 ≤ vi3 , qi3 ≤ m− 1, we may

assume qi3 ≤ vi3 , so that we are bounding

qi3
mi3

(mi3 − vi3).

If we let qi3 = vi3 − r then

qi3
mi3

(mi3 − vi3) =
1
mi3

(vi3 − r)(mi3 − vi3)

≤
(
mi3 + r

2
− r
)(

mi3 −
mi3 + r

2

)
1
mi3

=
1
mi3

(
mi3 − r

2

)2

≤ mi3

4
.

Thus

−vi3qi3
mi3

+ βi3 ≤
mi3

4
.

7.8.3.3 The fourth sum

In the fourth sum, we are trying to find a bound for

F4 = − Y

mi4

v2,i4 −
qi4ki4v1,i4
mi4

+
ki4γ1,i4

mi4

(
Y − qi4

)
+ γ2,i4 .

There are a number of cases to consider. If v1 = 0, then since X 6≡ 0 (mod m), then

we must have v2 6= 0, γ1 ∈ {0, 1} and γ2 ≤ min(γ1, q). If v2 = 0 then v1 6= 0, γ1 = 0 and
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γ2 ≤ min(v1, q). We then have

−Y v2,i4
mi4

− qi4ki4v1,i4
mi4

+
ki4γ1,i4

mi4

(Y − qi4) + γ2,i4

≤



− Y
mi4

+ ki4
mi4

(Y − qi4) + γ2,i4 if v1 = 0

− qi4ki4
v1,i4

mi4
+ γ2,i4 if v2 = 0

− Y
mi4
− qi4ki4

v1,i4
mi4

+ ki4
mi4

(Y − qi4) + γ2,i4 if v1, v2 6= 0

≤



− Y
mi4

+ Y−qi4
2 + min(1, qi4) if v1 = 0

−2qi4v1,i4
mi4

+ min(v1,i4 , qi4) if v2 = 0

− Y
mi4
− 2qi4v1,i4

mi4
+ Y−qi4

2 + min(v1,i4 + 1, qi4) if v1, v2 6= 0

We now study these terms for the various possibilities of qi4 . If qi4 6= 0, then for

v1,i4 = 0

F4 ≤ −
Y

mi4

+
Y + 1

2
.

If v2,i4 = 0 then by the symmetry of the expression we may take v1,i4 ≤ qi4 . Then

F4 ≤ v1,i4
(

1− 2qi4
mi4

)
,

where v1,i4 ≤ qi4 <
mi4
ki4
≤ mi4

2 , so that 2qi4
mi4

< 1 and

F4 ≤ q1,i4
(

1− 2qi4
mi4

)
≤ mi4

4

(
1− 2mi4

4mi4

)
=
mi4

8
,

where in the second step we maximised the quadratic in qi4 .

For the final case of qi4 6= 0, if v1,i4 , v2,i4 6= 0 then

F4 ≤
Y

2
− Y

mi4

− qi4
(

1
2

+
2v1,i4
mi4

)
+ min(v1,i4 + 1, qi4).
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If qi4 ≥ v1,i4 + 1 then

−qi4
(

1
2

+
2v1,i4
mi4

)
+ min(v1,i4 + 1, qi4) ≤ −qi4

(
1
2

+
2v1,i4
mi4

)
+ v1,i4 + 1

≤ (v1,i4 + 1)
(

1
2
− 2v1,i4

mi4

)
,

which is a quadratic and can be maximised by taking v1,i4 = mi4
8 −

1
2 so that

F4 ≤
Y

2
− Y

mi4

+
(
mi4

8
+

1
2

)(
1
4

+
1
mi4

)
.

On the other hand if qi4 < v1,i4 + 1 then

−qi4
(

1
2

+
2v1,i4
mi4

)
+ min(v1,i4 + 1, qi4) ≤ −qi4

(
1
2

+
2v1,i4
mi4

)
+ qi4

≤ qi4
(

1
2
− 2v1,i4

mi4

)
≤ vi4

(
1
2
− 2v1,i4

mi4

)
≤ mi4

8

(
1
2
− 1

4

)
=
m

32
.

Thus for qi4 6= 0

F4 ≤



− Y
mi4

+ Y+1
2 if v1 = 0

mi4
8 if v2 = 0

Y
2 −

Y
mi4

+
(mi4

8 + 1
2

) (
1
4 + 1

mi4

)
if v1, v2 6= 0.

If qi4 = 0 it is easy to see that

−Y v2,i4
mi4

− qi4ki4v1,i4
mi4

+
ki4γ1,i4

mi4

(Y − qi4) + γ2,i4 ≤ −
Y

mi4

+
Y

2
,

which is clearly not as good as our bounds for qi4 6= 0. If
(mi4

8 + 1
2

) (
1
4 + 1

mi4

)
≥ 1

2 we

use the third bound over the first, and(
mi4

8
+

1
2

)(
1
4

+
1
mi4

)
− 1

2
=
mi4

32
− 1

4
+

1
2mi4

=
(
mi4

8
− 1

2

)(
1
4
− 1
mi4

)
≥ 0,
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for mi4 ≥ 4, which is always true in this case. It remains to compare mi4
8 with

Y
2 −

Y
mi4

+ mi4
32 + 1

4 + 1
2mi4

. When we compute the heft, we will use mi4
8 ≤ X−1

8 and

Y
2 −

Y
mi4

+ mi4
32 + 1

4 + 1
2mi4

≤ Y
2 −

Y
X−1 + X−1

32 + 1
4 + 1

8 , and so the appropriate bound

will depend on the values of X and Y .

7.8.3.4 The fifth sum

Similar to the fourth sum, if v = 0 we have δ1 = 0 and δ2 ∈ {0, u}. Thus

− X

mi5

q2,i4 −
vi5di5q1,i4
mi5

+ δ1,i4 + δ2,i4 ≤


−Xq2,i4

mi5
+ δ2,i4 if v = 0

−Xq2,i4
mi5

− di5
q1,i4
mi5

+ δ1,i4 + δ2,i4 if v 6= 0

Now if q1 = 0, then q2 6= 0, δ1 = 0 and so we have

− X

mi5

q2,i4 −
vi5di5q1,i4
mi5

+ δ1,i4 + δ2,i4 ≤


− X
mi5

+ ui5 if v = 0

− X
mi5

+ ui5 + 1 if v 6= 0

where in the first case ui5 = X
mi5

/di5
, and in the second ui5 + 1 = X−vi5

mi5
/di5

+ 1, which is

larger since vi5
di5

mi5
< 1. So that here

− X

mi5

q2,i4 −
vi5di5q1,i4
mi5

+ δ1,i4 + δ2,i4 ≤ −
X

mi5

+
X − vi5
mi5/di5

+ 1. (7.2)

If q2 = 0, then q1 6= 0 and δ2 = 0 so that

− X

mi5

q2,i5 −
vi5di5q1,i5
mi5

+ δ1,i5 + δ2,i5 ≤


0 if v = 0

−di5
q1,i5
mi5

+ min(q1,i5 , vi5) if v 6= 0

≤ q1,i5
(

1− di5
mi5

)
≤
(
mi5

di5
− 1
)(

1− di5
mi5

)
=
mi5

di5
− 2 +

di5
mi5

, (7.3)

note that in the second step if we had taken q1,i5 > vi5 , this term would become

q1,i5

(
1− di5

mi5

)
− r for r > 0 where q1,i5 = vi5 + r, which is clearly smaller.



176

Finally if both q1, q2 6= 0,

− X

mi5

q2,i4 −
vi5di5q1,i5
mi5

+ δ1,i5 + δ2,i5 ≤


− X
mi5

+ ui5 if v = 0

− X
mi5

+ ui5 + 1 + mi5
di5
− 2 + di5

mi5
if v 6= 0

≤ (di5 − 1)X
mi5

− vi5di5
mi5

+ 1 +
mi5

di5
− 2 +

di5
mi5

(7.4)

Now − X
mi5

+ X−vi5
mi5

/di5
+ 1 > 0 so that (7.4) is a larger bound than (7.3). Similarly,(

mi5
di5
− 1
)(

1− di5
mi5

)
> 0 as each term is clearly positive, and so (7.4) provides a larger

bound than (7.2).

Thus, we bound this term by

(di5 − 1)X
mi5

− vi5di5
mi5

+
mi5

di5
− 1 +

di5
mi5

≤ X

mi5

− di5
mi5

+ (X − 1)− 1 +
di5
mi5

≤ 5
4
X − 2,

since di5 ≥ 2, mi5
di5
≤ X − 1 and mi5 ≥ 4.

7.8.3.5 The sixth sum

We’ll leave the details for the sixth sum until after finishing the calculation of the heft

lower bound, as the details get quite messy. It will be shown that

−X
m
q2−

v2Y

m
+
v2q2
m
−kv1dq1

m
+pφ1+φ2+φ3 ≤

X + Y + 3
2

− Y

(X − 1)(Y − 1)
+
(

(X − 1)(Y − 1)
12

− 1
)2

.
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7.8.3.6 Continuing the calculation of the lower bound

We now have

1 ≤
t1∑
i=1

1
mi

+
t2∑
i2=1

(
1
mi2

− ni2 − di2
mi2XY

)
+

t3∑
i3=1

(
1
mi3

+
mi3

4XY

)

+
t4∑
i4=1

(
1
mi4

+
1
XY

max
(
X − 1

8
,
Y

2
− Y

X − 1
+
X + 11

32

))

+
t5∑
i5=1

(
1
mi5

+
1
XY

(
5
4
X − 2

))
+
t7
X

+
1
XY

t8∑
i8=1

[
Y

di8

]

+
t6∑
i6=1

(
1
mi6

+
1
XY

(
X + Y + 3

2
− Y

(X − 1)(Y − 1)
+
(

(X − 1)(Y − 1)
12

− 1
)2
))

≤ h+
t2∑
i2=1

mi2
2 − 1
mi2XY

+
t3∑
i3=1

mi3

4XY
+ t4 max

(
X − 1
8XY

,
1

2X
− 1
X(X − 1)

+
X + 11
32XY

)

+
t5
XY

(
5
4
X − 2

)
+
t7
X
−

t7∑
i7=1

1
mi7

+
t8

2X
−

t8∑
i8=1

1
mi8

+
t6
XY

(
X + Y + 3

2
− Y

(X − 1)(Y − 1)
+
(

(X − 1)(Y − 1)
12

− 1
)2
)

≤ h+
t2
XY

(
1
2
− 1
X

)
+

t3
4Y

+ t4 max
(
X − 1
8XY

,
X + 11
32XY

+
X − 3

2X(X − 1)

)
+

t5
XY

(
5
4
X − 2

)
+
t7
X

+
t8

2X
− t7 + t8

(X − 1)(Y − 1)

+
t6
XY

(
X + Y + 3

2
− Y

(X − 1)(Y − 1)
+
(

(X − 1)(Y − 1)
12

− 1
)2
)
,

and so finally

h ≥ 1− t2
(

1
2XY

− 1
X2Y

)
− t3

1
4Y
− t4 max

(
X − 1
8XY

,
X + 11
32XY

+
1

4X

)
− t5
XY

(
5
4
X − 2

)
− t7
X
− t8

2X
+

t7 + t8
(X − 1)(Y − 1)

− t6
XY

(
X + Y + 3

2
− Y

(X − 1)(Y − 1)
+
(

(X − 1)(Y − 1)
12

− 1
)2
)
,
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7.8.3.7 Upper bound

7.8.3.8 The third sum

In the third sum for this bound we take

−vi3qi3
mi3

+ βi3 ≥ −
vi3qi3
mi3

+ max(0, vi3 + qi3 −mi3).

If vi3 + qi3 ≤ mi3 then we are trying to maximise vi3
qi3

mi3
subject to this restriction. This

occurs when vi3 = qi3 = mi3
2 and

−vi3qi3
mi3

+ βi3 ≥ −
mi3

4
.

On the other hand if vi3 + qi3 > mi3 , then

−vi3qi3
mi3

+ βi3 = −vi3qi3
mi3

+ vi3 + qi3 −mi3

= − 1
mi3

(mi3 − vi3)(mi3 − qi3)

≥ − 1
mi3

(
mi3 −

(mi3

2
+ 1
))(

mi3 −
mi3

2

)
,

which is not as small as −mi3
4 so that the number of hits for this sum is bounded below

by
XY

mi3

− mi3

4
.
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7.8.3.9 The fourth sum

Here, recalling the facts from the lower bound calculation for this term and that

γ2,i4 ≥ max
(

0, qi4 + v1,i4 + γ1,i4 −
mi4
ki4

)
, we have

G4 = −Y v2,i4
mi4

− qi4ki4v1,i4
mi4

+
ki4
mi4

(Y − qi4)γ1,i4 + γ2,i4

≥



−v2,i4
Y

mi4
+ ki4

mi4
(Y − qi4)γ1,i4 if v1 = 0

− qi4ki4
v1,i4

mi4
+ γ2,i4 if v2 = 0

−v2,i4
Y

mi4
− qi4ki4

v1,i4
mi4

+ ki4
mi4

(Y − qi4)γ1,i4 + γ2,i4 if v1, v2 6= 0.

≥ −v2,i4Y
mi4

− qi4ki4v1,i4
mi4

+ γ2,i4

≥ −(ki4 − 1)Y
mi4

− qi4ki4v1,i4
mi4

+ γ2,i4 ,

taking γ1,i4 = 0. So it remains to minimise max
(

0, qi4 + v1,i4 −
mi4
ki4

)
− qi4ki4

v1,i4
mi4

. Fol-

lowing almost exactly the same argument as for the third sum above we then have

G4 ≥ −
(ki4 − 1)Y

mi4

− mi4

4ki4
,

taking qi4 = v1,i4 = mi4
2ki4

. Since Y ≥ 2 we take ki4 = mi4
2 and thus

G4 ≥
(

1
mi4

− 1
2

)
Y − 1

2

≥
(

1
X
− 1

2

)
Y − 1

2
.

7.8.3.10 The fifth sum

We analyse this as in the lower bound case to find

G2 = − X

mi5

q2,i5 −
vi5di5q1,i5
mi5

+ δ1,i5 + δ2,i5

≥


−Xq2,i5

mi5
if v = 0

−Xq2,i5
mi5

− vi5
di5

q1,i5
mi5

+ max
(

0, qi5 + vi5 −
mi5
di5

)
if v 6= 0,
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taking δ2,i5 = 0. It remains to study −vi5
di5

q1,i5
mi5

+ max
(

0, qi5 + vi5 −
mi5
di5

)
, and as in

the previous case, this is minimised for qi5 = vi5 = mi5
2di5

. This gives us

G2 ≥ −
(di5 − 1)X

mi5

− mi5

4di5

≥
(

1
mi5

− 1
2

)
X − 1

2

≥
(

1
(X − 1)(Y − 1)

− 1
2

)
X − 1

2
.

7.8.3.11 The sixth sum

This will again be left until after the upper bound calculation for heft is completed, as

the details are messy. It will be shown that

−q3,i6X
mi6

− v2,i6(Y − q3,i6)
mi6

−ki6v1,i6dq2,i6
mi6

+ φ1,i6ki6

(
pi6 +

q1,i6
ki6

)
+ φ2,i6 + φ3,i6

≥ −X
2
− Y

3
+

X + Y + 2
(X − 1)(Y − 1)

− 1
4
.

7.8.3.12 Calculating the upper bound

Here we have

1 ≥
t1∑
i=1

1
mi

+
t2∑
i2=1

(
1
mi2

− di2 − 1
mi2XY

)
+

t3∑
i3=1

(
1
mi3

− mi3

4XY

)

+
t4∑
i4=1

(
1
mi4

+
1
XY

((
1
X
− 1

2

)
Y − 1

2

))

+
t5∑
i5=1

(
1
mi5

+
1
XY

((
1

(X − 1)(Y − 1)
− 1

2

)
X − 1

2

))

+
t6∑
i6=1

(
1
mi6

+
1
XY

(
−X

2
− Y

3
+

X + Y + 2
(X − 1)(Y − 1)

− 1
4

))
+

1
XY

(
t7∑
i7=1

θi7 +
t8∑
i8=1

ζi8

)
.
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In the seventh and eighth sum, the number of hits is at least 3, thus

1 > h−
t2∑
i2=1

(
mi2
2 − 1
mi2XY

)
−

t3∑
i3=1

mi3

4XY
+

t4∑
i4=1

(
1
X2
− 1

2X
− 1

2XY

)

+
t5∑
i5=1

(
1

(X − 1)(Y − 1)Y
− 1

2Y
− 1

2XY

)

+
t6∑
i6=1

(
− 1

2Y
− 1

3X
+

X + Y + 2
X(X − 1)Y (Y − 1)

− 1
4XY

)

+
3t7
XY

−
t7∑
i7=1

1
mi7

+
3t8
XY

−
t8∑
i8=1

1
mi8

.

Last of all, in the second and third case X > m so that 1
m > X and −m > −X

respectively, while in the seventh case X < m ≤ (X − 1)(Y − 1) and in the eighth case

2X < dX < m ≤ (X − 1)(Y − 1), and so finally

h < 1 +
t2
XY

(
1
2
− 1
X

)
+

t3
4Y

+ t4

(
1

2X
+

1
2XY

− 1
X2

)
+ t5

(
1

2Y
+

1
2XY

− 1
(X − 1)(Y − 1)Y

)
+ t6

(
1

2Y
+

1
3X

+
1

4XY
− X + Y + 2
X(X − 1)Y (Y − 1)

)
+
t7
X

(
1− 3

Y

)
+
t8
X

(
1
2
− 3
Y

)
.

This and the lower bound for heft would be much more useful if paired with

bounds on the various sub-orders t2, t3, . . . , t8. No insight has been gained on how to

bound these, let alone any good bounds on order t as will be seen in Section 7.9.

To compare these bounds to those seen in actual examples, start with dimensions

6×5 and 7×4 for which we have computed all IRDCS. In the first case all IRDCS have

heft 0.973785 ≤ h ≤ 1.03654 and order t = 6, 7, 8. For our bound, in the worst case the

IRDCS would have t = t6, producing −0.04388 < h < 2.1377. The best case, assuming

that heft is in fact approximately 1 as supported by examples is to take t = t2 which

gives 0.9333 < h < 1.0667. Similarly for 7 × 4 IRDCS, the actual bounds for heft are

0.98195 ≤ h ≤ 1.0254 and they have order t = 6, 7, 8. The worst case is produced by
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taking t = t6 giving −1.0079 < h < 2.246. The best case here is to again take t = t2

which gives 0.9235 < h < 1.0765.

These bounds are similar to the one-dimensional case, where the heft is bounded

between 0.75 and 1.5, though all examples so far have heft between 0.987289 and 1.07287.

7.8.3.13 Bounding the sixth sum for the lower bound

For this calculation we will remove the i6 subscript for the sake of clarity. Recall that

φ1 ∈ {0, 1}, φ3 ∈ {0, u, u+φ1} and φ2 runs from max
(
0, q1 + v1 − m

kd

)
to min(q1, v1+φ1).

The function φ1 = 1 if there are v1 + 1 rows with u + 1 hits and so for this we must

have v2 > 0, while the function φ3 is the number of hits on the last q2 rows. Also recall

that X = m
d + kv1 + v2 and Y = m

k p+ dq1 + q2.

For this sum we are bounding

F6 = −X
m
q2 −

v2Y

m
+
v2q2
m
− kv1dq1

m
+ pφ1 + φ2 + φ3

≤



−X
mq2 + u if v1 = v2 = 0

−X
mq2 + u+ min(v1, q1)− kv1dq1

m if v1 6= 0, v2 = 0

−X
mq2 −

Y
m + q2

m + p+ u+ 1 + φ1 if v1 = 0, v2 6= 0

−X
mq2 −

Y
m + q2

m + p+ u+ 1 + min (q1, v1 + φ1)− kv1dq1
m if v1, v2 6= 0,

(7.5)

since Y > q2 and where u = d
m(X − kv1 − v2). We have kv1 < m

d and so if q1 < v1

then min(q1, v1) − kv1dq1
m = q1

(
1− dkv1

m

)
≥ 0, and similarly if v1 ≤ q1, and so the

second bound here beats the first. Along with this, if in the fourth bound we replace

min (q1, v1 + φ1) with min (q1, v1)+φ1, which is clearly at least as large, then the fourth
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bound beats the third. Thus we are left with

F6 = −X
m
q2 −

v2Y

m
+
v2q2
m
− kv1dq1

m
+ pφ1 + φ2 + φ3

≤


−X
mq2 + u+ min(v1, q1)− kv1dq1

m if v1 6= 0, v2 = 0

−X
mq2 + u+ min(q1, v1)− kv1dq1

m + p+ 2− Y−q2
m if v1, v2 6= 0.

(7.6)

Now

p+ 2− Y − q2
m

=
Y − dq1 − q2

m
k − Y − q2

m
+ 2

=
(Y − q2)(k − 1)− dq1

m
+ 2

≥ 0,

since Y ≥ dq1 + q2. Thus the second term in (7.6) is larger and

F6 ≤ −
X

m
q2 +

X − kv1 − v2
m

d+
(Y − q2)(k − 1)− dkq1

m
+ 2 + min(q1, v1)− kv1dq1

m
.

Take v2 = 1, since it must be non-zero, and taking the terms in q2

−X
m
q2 −

k − 1
m

q2 = −(X + k − 1)q2
m

≤ 0

since X > k − 1, so we take q2 = 0 and

F6 ≤
X − kv1 − 1

m
d+

(k − 1)Y − dkq1
m

+ 2 + min(q1, v1)− kv1dq1
m

.

It remains to study

β = −kv1d
m
− dkq1

m
+ min(q1, v1)− kv1dq1

m
.

It is clear that increasing q1 or v1 decreases all but the min(q1, v1) term, and thus this

term is maximised when we take q1 = v1 and so

β ≤ −2v1
kd

m
+ v1 −

kdv2
1

m

= −v1
kd

m

(
v1 −

(m
kd
− 2
))

.
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This is maximised at v1 = m
2kd − 1 and so

β ≤ −
( m

2kd
− 1
)(

1− m

2kd

)
=
( m

2kd
− 1
)2

≤
(m

12
− 1
)2
.

So we have

F6 ≤
d(X − 1)

m
+

(k − 1)Y
m

+ 2 +
( m

2kd
− 1
)2
.

Now dk
m ≤ 1, so that

F6 ≤
X − 1
k

+
Y

d
− Y

m
+ 2 +

( m

2kd
− 1
)2
,

and so we take m ≤ (X − 1)(Y − 1) and k, d ≥ 2 with kd ≥ 6 since k 6= d, and so finally

F6 ≤
X + Y + 3

2
− Y

(X − 1)(Y − 1)
+
(

(X − 1)(Y − 1)
12

− 1
)2

,

where if X − 1 ≥ Y we could have taken k = 3 everywhere, but we cannot be sure of

this, and it will not make a large difference in our final bound.

7.8.3.14 Bounding the sixth sum for the upper bound

We again ignore the i6 subscripts, and all of the functions satisfy the same conditions

as previous. For this sum we are bounding

G6 = −X
m
q2 −

v2Y

m
+
v2q2
m
− kv1dq1

m
+ pφ1 + φ2 + φ3.
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Firstly we consider the various possibilities for the values of vi to get, on noting that

Y > q2,

G6 ≥



−X
mq2 if v1 = v2 = 0

−X
mq2 −

(k−1)Y
m + (k−1)q2

m if v1 = 0, v2 6= 0

−X
mq2 −

kv1dq1
m + max

(
0, q1 + v1 − m

kd

)
if v1 6= 0, v2 = 0

−X
mq2 −

(k−1)Y
m + (k−1)q2

m − kv1dq1
m + max

(
0, q1 + v1 − m

kd

)
if v1, v2 6= 0.

(7.7)

Since Y > q2 we have − (Y−q2)(k−1)
m < 0 so that the second term dominates the first and

the fourth term dominates the third. We then have

G6 ≥


−X
mq2 −

(k−1)Y
m + (k−1)q2

m

−X
mq2 −

(k−1)Y
m + (k−1)q2

m − kv1dq1
m + max

(
0, q1 + v1 − m

kd

)
, v1 6= 0.

(7.8)

If q2 = 0 then −X
mq2 −

(k−1)Y
m + (k−1)q2

m = − (k−1)Y
m , while if q2 6= 0 then

−X
m
q2 −

(k − 1)Y
m

+
(k − 1)q2

m
= −q2

m
(X − k + 1)− k − 1

m
Y

≥ −d− 1
m

(X − k + 1)− k − 1
m

Y,

sinceX > x0 > k and so we take q2 6= 0. Next we consider I = −kv1dq1
m +max

(
0, q1 + v1 − m

kd

)
.

Since kv1 < m
d we have kv1d

m < 1 and thus once q1 + v1 ≥ m
kd increasing q1 (or equally,

v1) increases I, thus

I ≥ −kv1dq1
m

,

where q1 + v1 = m
kd . So we have

I ≥ −kd
m

( m

2kd

)2
= − m

4kd
.

This term is negative, so we take the second bound in (7.8) and we have

G6 ≥ −
d− 1
m

X − k − 1
m

Y +
(d− 1)(k − 1)

m
− m

4kd
.
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Since kd
m ≤ 1 we have −dm ≥

−1
k and similarly −km ≥

−1
d giving us

G6 ≥ −
X

k
− Y

d
+
X + Y

m
+

(d− 1)(k − 1)
m

− m

4kd
,

where the first four terms here are best bounded for k ≤ d small and m large, while the

final term wants the opposite, and so we bound this term as

G6 ≥ −
X

2
− Y

3
+

X + Y + 2
(X − 1)(Y − 1)

− 1
4
.

7.9 Two Dimensional Order

Clearly an X × Y IRDCS must have order

t ≤
[
XY

3

]
,

as every congruence in the IRDCS must cover at least 3 of the XY total positions within

the IRDCS. However, there exist IRDCS with order t =
[
XY
3

]
. One such example is

the following 10× 2 IRDCS, which was presented in Section 7.1.

9 5 6 4 8 7 5 4 6 9

7 8 4 5 9 6 4 7 5 8
.

This has order 6 =
[

20
3

]
.

Take an IRDCS with dimensions (2X + 1) × (2Y + 1), which recall covers the

positions [0, 2X + 1) × [0, 2Y + 1) ∩ Z2. Then consider the congruence which covers

the position (X,Y ). Take the generators of this congruence to be (α1, β1) and (α2, β2).

These vectors when applied to (X,Y ) both positively and negatively will land in the

box, since (X,Y ) is exactly in the middle of the box. Thus the congruence covers at

least 5 positions and so

t ≤
[
XY − 2

3

]
.



187

7.9.1 Open Questions

As in the one-dimensional case, we would like to be able to improve this trivial

bound. At this stage for anything other than both X and Y odd there is no improvement

at all on the trivial bound.

Studying congruences which cover the middle rows or columns in these examples

does not force congruences with more than three positions covered. As such, similar

analysis to that presented for both X and Y odd will not improve the order bound.
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Appendix A

One Dimensional IRDCS Additional Data

A.1 All IRDCS of a given length

The first table gives exhaustive data for IRDCS with lengths 33 through to 45 inclusive.

We then present data on the proportion of IRDCS for the given length with particular

orders. This extends and corrects unpublished work of Jacky Poon.

Length Number of IRDCS Orders Heft Range

33 25,384 8–14 0.992184–1.05867
34 62,092 8–15 0.988973–1.06213
35 68,176 8–16 0.990813–1.06149
36 85,762 8–16 0.990561–1.04313
37 304,892 8–17 0.990192–1.05947
38 855,072 8–17 0.989847–1.06768
39 1,229,050 8–17 0.988657–1.06535
40 1,805,096 8–18 0.988343–1.05875
41 4,433,674 7–19 0.989216–1.05968
42 8,732,554 7–19 0.988944–1.06208
43 19,480,154 7–19 0.987952–1.06461
44 32,765,794 7–20 0.988944–1.06636
45 75,748,582 7–20 0.987289–1.06028

Note that in the following tables, percentages may not sum to 100, due to rounding.
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A.1.0.1 Length 33

Order 8–9 10 11 12 13 14

% of total solutions 0 1 3 18 57 20

A.1.0.2 Length 34

Order 8–10 11 12 13 14 15

% of total solutions 0 1 9 43 43 3

A.1.0.3 Length 35

Order 8–10 11 12 13 14 15 16

% of total solutions 0 0.5 5 26 40 28 0.5

A.1.0.4 Length 36

Order 8–11 12 13 14 15 16

% of total solutions 0 3 21 45 30 0.5

A.1.0.5 Length 37

Order 8–12 13 14 15 16 17

% of total solutions 0 10 39 40 11 0

A.1.0.6 Length 38

Order 8–12 13 14 15 16 17

% of total solutions 0 4 22 47 26 1

A.1.0.7 Length 39

Order 8–13 14 15 16 17

% of total solutions 0 13 43 34 8

A.1.0.8 Length 40

Order 8–12 13 14 15 16 17 18

% of total solutions 0 1 6 30 47 16 0
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Up to and including length 40, all IRDCS with order 8 are doubled IRDCS of smaller

lengths. For length 40 all of the solutions with order 8 and 9 (there are 28 = 2 × 14

such IRDCS) are doubled length 20 IRDCS.

A.1.0.9 Length 41

Order 7–13 14 15 16 17 18 19

% of total solutions 0 3 17 44 33 4 0

For length 41, there are IRDCS for small order which are not doublings. The following

IRDCS in compact notation have order 10 and heft 0.998007 and 1.0099 respectively:

9, 23, 3, 18, 6, 19, 12, 21, 17, 22, and 18, 23, 3, 9, 6, 27, 12, 16, 14, 22. Given that

there are length 21 IRDCS with order 9, there are other IRDCS of length 41 with order

10 that are doublings. The IRDCS presented are the IRDCS with smallest order for

length 41 that are not doublings. Interestingly they are both examples of IRDCS with

the moduli 9, 6, 3 covering sequential positions in the IRDCS, as in Section 2.4.

A.1.0.10 Length 42

Order 7–13 14 15 16 17 18 19

% of total solutions 0 1 10 31 42 16 1

For length 42, there are IRDCS for small order which are not doublings. The following

IRDCS in compact notation have order 10 and heft 1.00299 and 0.998007 respectively:

3, 25, 18, 6, 9, 12, 17, 24, 16, 20, and 3, 6, 18, 22, 9, 21, 12, 17, 19, 23. There are also

IRDCS of length 42 with order 10 that are doublings of length 21 IRDCS. The IRDCS

presented are the IRDCS with smallest order for length 42 that are not doublings. Once

again they are both examples of IRDCS with the moduli 9, 6, 3 covering sequential

positions in the IRDCS, as in Section 2.4.



194

A.1.0.11 Length 43

Order 7–13 14 15 16 17 18 19

% of total solutions 0 1 5 22 45 25 3

A.1.0.12 Length 44

Order 7–14 15 16 17 18 19 20

% of total solutions 0 3 14 38 36 8 0

A.1.0.13 Length 45

Order 7–14 15 16 17 18 19 20

% of total solutions 0 1 7 27 44 20 1
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Given the amount of solutions for lengths 46 and above, we present data for them in a

different format.

A.1.0.14 Length 46 and 47

Length 46 Length 47

Order Solutions Proportion Solutions Proportion

7 4 0.00% 2 0.00%

8 – 0.00% – 0.00%

9 36 0.00% 26 0.00%

10 96 0.00% 72 0.00%

11 268 0.00% 272 0.00%

12 2,414 0.00% 1,966 0.00%

13 9,704 0.00% 6,494 0.00%

14 79,188 0.03% 54,354 0.01%

15 714,516 0.32% 505,564 0.12%

16 7,165,836 3.16% 5,682,120 1.40%

17 36,716,134 16.20% 38,984,702 9.59%

18 86,298,618 38.09% 123,180,540 30.31%

19 76,842,486 33.91% 169,165,764 41.63%

20 18,404,950 8.12% 64,901,208 15.97%

21 355,336 0.16% 3,910,188 0.96%

Total 226,589,586 406,393,272

Heft range min max min max

0.988485 1.0638 0.988705 1.07287
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A.1.0.15 Length 48 and 49

Length 48 Length 49

Order Solutions Proportion Solutions Proportion

9 16 0.00% 24 0.00%

10 48 0.00% 82 0.00%

11 222 0.00% 264 0.00%

12 1,530 0.00% 1,170 0.00%

13 2,680 0.00% 7,444 0.00%

14 29,390 0.01% 31,702 0.00%

15 312,200 0.06% 402,254 0.03%

16 3,838,688 0.68% 4,242,342 0.27%

17 30,212,674 5.39% 38,142,260 2.41%

18 120,565,818 21.50% 185,127,866 11.67%

19 243,658,564 43.45% 518,769,882 32.71%

20 145,753,714 25.99% 644,168,204 40.62%

21 16,354,736 2.92% 191,457,490 12.07%

22 - - 3,470,538 0.22%

Total 560,730,280 1,585,821,522

Heft range min max min max

0.988387 1.0617 0.98832 1.06302
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A.1.0.16 Length 50

Length 50

Order Solutions Proportion

9 32 0.00%

10 116 0.00%

11 298 0.00%

12 1,010 0.00%

13 11,916 0.00%

14 34,718 0.00%

15 438,654 0.01%

16 5,158,884 0.13%

17 46,155,870 1.19%

18 262,924,406 6.75%

19 892,488,328 22.92%

20 1,633,116,224 41.93%

21 930,723,090 23.90%

22 122,225,234 3.14%

23 1,454,908 0.04%

Total 3,894,733,688

Heft range min max

0.988021 1.06782
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A.2 Minimum modulus data

The conjectured formula for the shortest length of an IRDCS with minimum modulus

M,n = 4M + 3, holds in a consistent fashion for M = 10, . . . , 15. Below we compare

summary statistics for all IRDCS of smallest length with minimum modulus M =

10, . . . , 14.

A.2.0.17 Minimum modulus solutions versus all IRDCS solutions

Minimum

modulus

Length Min. modulus

solution counter

Multiplicative

increase

All IRDCS

solution counter

Multiplicative

increase

10 37 224 – 304,892 –

11 41 752 3.357 4,433,674 14.542

12 45 19,752 26.266 75,748,582 17.085

13 49 628,332 31.812 1,585,821,522 20.935

14 53 11,482,130 18.274 – –



Appendix B

Two Dimensional IRDCS Additional Data

B.1 The existence of two-dimensional IRDCS of given dimensions

Here we present our results for the computation of two-dimensional IRDCS. Given the

relative complexity of the algorithm, computation for an X × Y IRDCS is significantly

slower than the computation for a length XY IRDCS. Thus for most lengths only partial

computation has been completed.

Two tables of data will be presented. In the first table, if there is no additional

notation the solution counter is the total number of solutions for those dimensions.

Otherwise for the first table the counter written as n∗ means that there are at least n

solutions. Moreover this means that there are precisely n solutions for all IRDCS where

the modulus covering the position ([X/2], 0), the first position covered in the algorithm,

is at most 4.

The second table presents the data for dimensions where no standardised end

point for our computations exists. This is done for dimensions where calculating up to

even the smaller case in the first table takes a prohibitively long time. This table is

used to prove the existence rather than frequency of these IRDCS. For example, in the

case of 13× 10 IRDCS all IRDCS with the modulus 2 covering ([X/2], 0) have not been

calculated.
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Some dimensions will have data in both tables. This will be the case when we have

computed some additional data beyond the standard endpoint for those dimensions, but

to complete the computation would take many more hours.

Given that the endpoint in the second table is not standardised, no conclusions

should be drawn from the relative growth or decay of solutions for different dimensions.

B.1.0.18 Standardised end point data

6 1, 018∗

5 0 244 5038∗ 410∗

4 0 0 4 300 48∗ 58∗

3 0 0 0 0 0 0 16 184 62∗

2 0 0 0 0 0 0 0 20 24 16 300 748 2,352 9,872

Y/X 3 4 5 6 7 8 9 10 11 12 13 14 15 16

B.1.0.19 Non-standardised end point data

13 3

12 6 10

11 4 6 8

10 6 9 21 23

9 2 5 16 13 17

8 108 4 44 4 7 6

7 41 87 237 23 5 13 26

6 532 100 117 146 16 20 5

5 5038 410 370 15 34 16 7

4 666 130 347 107 30 16

3 109 8

Y/X 7 8 9 10 11 12 13
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B.2 Data summaries

B.2.0.20 6 by 4 IRDCS

There are 4 IRDCS with dimensions 6 × 4. All have heft 0.995635 and order 6. The

solutions are the horizontal, vertical and complete reversals of one another. The first

example found by the exhaustive algorithm from Section 7.6.1 is, in its alternate nota-

tion:

8 7 6 5 9 6

4 5 4 7 4 8

6 9 8 6 5 7

7 4 5 4 9 4

B.2.0.21 6 by 5 IRDCS

There are 244 IRDCS with dimensions 6×5. The heft ranges from 0.973785 to 1.03654,

and there are 4 solutions with order 6, 36 with order 7 and 204 with order 8. Below we

present a few examples in their alternate notation.

20 3 7 9 3 20

3 8 6 3 10 6

9 10 3 7 8 3

7 3 6 9 3 6

3 20 8 3 7 10

,

5 3 12 6 3 5

3 8 10 3 5 6

12 6 3 5 8 3

10 3 5 6 3 12

3 5 8 3 10 6

these two IRDCS have, respectively, heft 1.02897 and 1.00833, order 7 and 6 and are

the first and second solutions found by the algorithm.
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8 12 9 4 6 9

4 7 6 10 4 8

6 4 8 7 12 4

9 10 4 9 6 7

7 12 6 4 8 10

,

11 20 7 4 10 9

4 8 6 11 4 6

10 4 9 7 8 4

7 6 4 10 6 9

20 11 8 4 7 20

these two IRDCS have, respectively, heft 0.978968 and 1.03654 and order 7 and 8.

14 6 5 11 7 9

7 8 10 6 5 8

11 5 9 7 14 6

10 6 8 5 11 9

5 14 7 6 10 5

,

14 7 6 8 5 13

13 5 11 10 6 7

6 8 7 5 14 11

5 10 6 13 8 5

11 14 5 7 6 10

these two IRDCS have, respectively, heft 1.00797 and 0.973785 and both have order 8.

B.2.0.22 6 by 6 IRDCS

We have computed 1138 244 IRDCS with dimensions 6 × 6. The heft ranges from

0.975372 to 1.06111, and of these solutions there are 4 with order 5, 14 with order

7, 204 with order 8, 880 with order 9 and 36 with order 10. Below we present a few

examples in their alternate notation.

8 3 16 6 3 7

12 6 3 7 12 3

3 7 10 3 8 6

16 3 8 6 3 10

8 6 3 12 7 3

3 10 7 3 16 6

,

15 3 10 7 3 15

12 16 3 11 12 3

3 9 7 3 9 16

11 3 15 10 3 7

10 7 3 12 11 3

3 16 9 3 7 9

these two IRDCS have, respectively, heft 1.0137 and 0.9907, order 7 and 8 and are the

first and second solutions found by the algorithm.



203

6 9 3 4 5 3

9 3 4 5 3 6

3 4 5 3 6 4

4 5 3 6 4 3

5 3 6 4 3 5

3 6 4 3 5 9

,

15 14 4 11 6 15

6 17 12 4 9 14

4 9 6 10 4 17

10 4 11 15 6 4

6 12 4 14 9 12

17 9 6 4 10 11

these two IRDCS have, respectively, heft 1.0611 and 0.9989, order 5 and 9 and the

first is constructed from the one-dimensional IRDCS of length 11 as in Lemma 7.5 and

Theorem 7.1.

13 12 4 18 10 15

8 16 14 4 8 13

4 10 15 11 4 16

18 4 13 8 12 4

11 12 4 10 14 18

14 16 8 4 11 15

,

16 8 10 5 13 8

14 9 12 11 5 15

5 15 8 9 16 5

11 5 13 10 14 9

10 12 5 8 11 12

9 14 16 5 15 13

these two IRDCS have, respectively, heft 0.9823 and 0.9879 and both have order 10. The

second of these two solutions is the last solution we have computed with the algorithm.

B.2.0.23 7 by 4 IRDCS

There are 300 IRDCS with dimensions 7× 4. The heft ranges from 0.980195 to 1.0254,

and of these solutions there are 16 with order 6, 56 with order 7 and 228 with order 8.

Below we present a few examples in their alternate notation.

4 10 5 11 4 6 10

12 4 6 5 8 4 12

11 8 4 10 5 6 4

5 12 6 4 11 5 8

,

4 5 9 8 4 7 5

12 4 5 7 10 4 12

8 7 4 5 8 9 4

10 12 9 4 5 10 7

these two IRDCS have, respectively, heft 1.01591 and 1.0123 both have order 7 and are

the first and second solutions found by the algorithm.
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12 4 6 5 7 4 14

7 5 9 4 12 6 5

14 4 6 7 5 4 9

12 9 5 4 14 6 7

,

12 9 5 7 10 6 12

7 10 6 8 5 11 9

11 5 9 12 7 6 5

8 7 6 5 8 10 11

these two IRDCS have, respectively, heft 1.0254 and 1.01988 and order 7 and 8.

10 6 5 15 7 9 11

9 7 11 8 5 6 10

15 5 10 6 9 7 5

8 6 7 5 8 11 15

,

8 5 14 10 7 9 5

9 6 5 12 6 8 7

10 7 8 5 9 10 14

12 14 6 7 5 6 12

these two IRDCS have, respectively, heft 1.00321 and 1.0004 and order 8.

6 14 3 6 5 3 6

10 3 8 5 3 10 8

3 6 5 3 6 14 3

14 5 3 8 10 3 5

,

12 11 14 5 10 7 12

5 6 8 7 6 5 8

10 7 5 12 11 10 14

11 14 6 8 5 6 7

these two IRDCS have, respectively, heft 0.996429 and 0.980195 and order 6 and 8.

B.2.0.24 7 by 5 IRDCS

We have calculated 5038 IRDCS with dimensions 7× 5. For these, the heft ranges from

0.957875 to 1.07537, and of these solutions there are 4 with order 5, 20 with order 7,

426 with order 8, 2500 with order 9 and 2088 with order 10. Below we present a few

examples in their alternate notation.

9 6 3 11 16 3 12

3 14 10 3 9 6 3

11 3 12 6 3 10 14

16 6 3 9 11 3 12

3 10 14 3 16 6 3

,

10 3 11 4 3 10 24

4 9 3 12 4 3 11

3 4 10 3 9 4 3

24 3 4 11 3 12 4

12 9 3 4 10 3 24
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these two IRDCS have, respectively, heft 1.01928 and 1.01035 and order 8 and 7. The

first of these is the first solution found by the algorithm.

8 14 11 4 5 12 9

4 5 9 8 4 16 5

16 4 12 5 14 4 8

5 8 4 9 11 5 4

14 11 5 4 8 12 16

,

7 12 6 4 10 13 14

13 10 4 15 6 7 4

6 4 14 7 12 4 6

4 7 6 13 4 10 15

15 12 10 4 6 14 7

these two IRDCS have, respectively, heft 0.994282 and 0.957875 and both have order 8.

15 22 7 4 12 15 8

4 8 11 10 4 9 7

12 4 9 7 8 4 22

7 11 4 15 12 10 4

22 10 8 4 7 9 11

,

15 6 18 4 12 14 8

4 8 13 11 4 6 15

12 4 14 6 8 4 18

11 6 4 15 12 13 4

13 18 8 4 11 6 14

these two IRDCS have, respectively, heft 1.01533 and 0.986483 and both have order 9.

14 13 6 4 12 6 11

8 4 10 9 8 4 12

13 11 6 4 14 6 10

10 4 9 8 11 4 13

12 14 6 4 10 6 9

,

9 12 16 4 10 18 14

10 4 11 8 9 4 15

18 15 14 4 12 11 10

8 4 10 9 8 4 16

11 12 16 4 18 14 15

these two IRDCS have, respectively, heft 1.07537 and 1.0165 and both have order 10.

B.2.0.25 7 by 6 IRDCS

We have calculated 532 IRDCS with dimensions 7× 6. For these, the heft ranges from

0.978106 to 1.03916, and of these solutions there are 2 with order 6, 52 with order 8, 176

with order 9 and 302 with order 10. Below we present a few examples in their alternate

notation.
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2 12 2 18 2 6 2

18 2 6 2 8 2 10

2 8 2 10 2 6 2

10 2 6 2 12 2 8

2 12 2 8 2 6 2

8 2 6 2 10 2 18

,

15 3 5 8 3 15 18

8 18 3 5 19 3 12

3 12 13 3 5 8 3

5 3 8 15 3 5 13

19 5 3 12 18 3 5

3 13 5 3 8 19 3

these two IRDCS have, respectively, heft 1.03056 and 0.992444 and order 6 and 8. The

first of these is the first solution found by the algorithm, the second is the third. The

second solution found is the horizontal reversal of the first solution.

11 3 16 7 3 18 16

15 6 3 12 6 3 7

3 18 7 3 15 11 3

6 3 11 6 3 7 6

12 7 3 16 12 3 18

3 15 6 3 7 6 3

,

9 3 15 13 3 7 21

21 12 3 7 19 3 14

3 7 14 3 12 9 3

15 3 13 9 3 15 7

19 9 3 21 7 3 13

3 12 7 3 14 19 3

these two IRDCS have, respectively, heft 1.00182 and 0.985904 and have order 8 and 9.

13 3 22 6 3 9 16

15 6 3 11 13 3 18

3 18 9 3 15 6 3

11 3 16 6 3 9 22

22 6 3 13 11 3 16

3 15 9 3 18 6 3

,

9 3 20 12 3 13 16

19 15 3 10 9 3 15

3 16 13 3 14 19 3

20 3 12 9 3 10 12

14 10 3 15 16 3 20

3 19 9 3 13 14 3

these two IRDCS have, respectively, heft 1.00912 and 1.00793 with orders 9 and 10.
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15 3 17 12 3 15 16

11 9 3 10 9 3 14

3 16 14 3 11 17 3

10 3 12 15 3 10 12

9 11 3 9 16 3 9

3 17 10 3 14 11 3

,

12 17 3 16 12 3 11

15 3 18 10 3 15 16

3 11 9 3 13 9 3

13 10 3 12 11 3 17

18 3 17 15 3 10 18

3 9 16 3 9 13 3

these two IRDCS have, respectively, heft 0.978106 and 1.03916 with orders 9 and 10.

B.2.0.26 7 by 7 IRDCS

We have calculated 41 IRDCS with dimensions 7 × 7. For these, the heft ranges from

0.995971 to 1.01502, and of these solutions there are 5 with order 9, 26 with order 10

and 10 with order 11. Below we present a few examples in their alternate notation.

3 14 6 3 9 16 3

6 3 15 13 3 14 6

19 9 3 18 6 3 15

3 16 6 3 9 19 3

6 3 13 14 3 16 6

18 9 3 15 6 3 13

3 19 6 3 9 18 3

,

3 13 6 3 15 6 3

18 3 16 19 3 14 16

9 6 3 9 6 3 9

3 15 14 3 18 13 3

6 3 13 6 3 15 6

19 9 3 16 9 3 14

3 18 6 3 19 6 3

these two IRDCS both have heft 0.996817 and order 9. They are the first two solutions

found by the algorithm.

3 15 9 3 18 6 3

13 3 22 6 3 9 16

12 6 3 12 13 3 12

3 16 9 3 15 6 3

15 3 18 6 3 9 22

22 6 3 13 16 3 18

3 12 9 3 12 6 3

,

3 21 9 3 20 19 3

14 3 12 13 3 9 12

20 16 3 15 18 3 21

3 19 9 3 14 16 3

18 3 13 12 3 9 19

15 14 3 21 20 3 13

3 16 9 3 15 18 3
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these two IRDCS have, respectively, heft 1.00154 and 1.01111 with orders 9 and 11.

3 15 9 3 24 18 3

18 3 8 13 3 9 8

12 20 3 14 12 3 20

3 8 9 3 15 8 3

15 3 13 18 3 9 24

8 14 3 12 8 3 13

3 24 9 3 20 14 3

,

3 13 20 3 15 9 3

9 3 10 21 3 14 18

12 14 3 12 9 3 12

3 15 18 3 10 13 3

20 3 13 9 3 20 21

21 10 3 14 15 3 10

3 12 9 3 12 18 3

these two IRDCS have, respectively, heft 1.01502 and 0.995971 with order 10.

B.2.0.27 9 by 3 IRDCS

There are 16 IRDCS with dimensions 9 × 3. For these, the heft ranges from 1.01347

to 1.06111 and there are 4 with order 5 and order 6 and there are 8 with order 8. Of

these, there is essentially one solution with orders 5 and 6, and the others are the three

possible reversals of this IRDCS. Similarly there are essentially two IRDCS with order

8 and the others are all the possible reversals of these IRDCS. Below we present one of

each example in their alternate notation.

3 4 5 3 6 4 3 5 9

9 3 4 5 3 6 4 3 5

6 9 3 4 5 3 6 4 3

this IRDCS is constructed from the one-dimensional IRDCS of length 11 as in Lemma

7.5 and Theorem 7.1. It has heft 1.06111 and order 5.

3 10 5 3 6 8 3 5 11

11 3 8 5 3 6 10 3 5

6 10 3 11 5 3 6 8 3

this IRDCS has heft 1.01591 and order 6.
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5 8 10 11 6 5 7 13 9

13 6 7 9 5 8 10 6 11

10 8 11 5 6 7 13 9 5

this IRDCS has heft 1.01347 and order 8.

9 5 7 13 6 11 5 8 10

11 6 8 10 5 9 7 6 13

13 9 5 7 6 8 11 5 10

this IRDCS has heft 1.01347 and order 8.

These last three IRDCS are not at all related to the one dimensional case.

B.2.0.28 10 by 2 IRDCS

There are 20 IRDCS with dimensions 10×2. For these, the heft ranges from 0.995635 to

1.06111 and there are 4 with order 5 and 16 with order 6. All of the order 5 IRDCS are

effectively the length 11 one-dimensional IRDCS. For the remaining 16 IRDCS there are

4 different IRDCS and the remainder are all of the possible reversals for these IRDCS.

Below we present one of each order 6 example in their alternate notation.

9 5 6 4 8 7 5 4 6 9

7 8 4 5 9 6 4 7 5 8

9 5 6 4 7 8 5 4 6 9

7 8 4 5 9 6 4 7 5 8

9 6 4 5 8 7 4 6 5 9

8 5 7 4 9 6 5 4 8 7

9 6 4 5 7 8 4 6 5 9

8 5 7 4 9 6 5 4 8 7

these all have heft 0.995635.
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B.2.0.29 11 by 2 IRDCS

There are 24 IRDCS with dimensions 11× 2. All of these have heft 0.995635 and order

6. Two of these (and their reversals) are the first and second examples for the 10 × 2

case extended by one horizontally to the left in the representatives that we pick. These

are:

4 9 5 6 4 8 7 5 4 6 9

6 7 8 4 5 9 6 4 7 5 8

4 9 5 6 4 7 8 5 4 6 9

6 7 8 4 5 9 6 4 7 5 8

The remaining 16 examples are made up by the following 4 IRDCS and their various

reversals.

4 9 5 6 4 8 7 5 4 6 9

7 8 4 5 9 6 4 7 5 8 4

4 9 5 6 4 7 8 5 4 6 9

7 8 4 5 9 6 4 7 5 8 4

8 5 7 4 6 9 5 4 8 7 6

4 9 5 6 4 7 8 5 4 6 9

6 7 8 4 5 9 6 4 7 5 8

9 6 4 5 7 8 4 6 5 9 4

These behave quite similarly to the 10× 2 case, where in the examples one row has 7, 8

while the other has 8, 7 and the IRDCS are otherwise identical.

B.2.0.30 12 by 2 IRDCS

There are 16 IRDCS with dimensions 12× 2. All of these have heft 0.995635 and order

6. Two of these (and their various reversals) are the first and last examples above for

the 11× 2 case extended by one horizontally to the right. These are respectively:
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8 5 7 4 6 9 5 4 8 7 6

6 4 5 7 8 4 6 5 9 4 7

7 8 4 5 9 6 4 7 5 8 4

6 4 5 7 8 4 6 5 9 4 7

The other two are quite similar to the 11× 2 case.

5 8 6 4 7 5 9 4 6 8 5

6 4 5 7 8 4 6 5 9 4 7

8 6 4 9 5 7 4 6 8 5 4

6 4 5 7 8 4 6 5 9 4 7

B.2.0.31 13 by 2 IRDCS

There are 300 IRDCS of dimension 13×2. These IRDCS have heft ranging from 0.986544

to 1.05397 and 188 of them have order 7 while the remaining 112 having order 8. None

of these IRDCS are inherited from the 11 × 2 or 12 × 2 cases, and none are inherited

from one-dimensional IRDCS since there are no one-dimensional IRDCS of length 14.

A few examples of these IRDCS are presented below in their alternate notation.

12 4 9 5 6 4 7 11 5 4 6 9 12

7 11 4 12 5 6 4 7 9 5 4 6 11

this IRDCS has heft 1.04488, order 7 and is the first solution found by the algorithm.

10 4 6 9 7 4 11 8 6 4 10 7 9

11 7 4 6 8 9 4 10 7 6 4 11 8

this IRDCS has heft 0.986544 and order 7.

10 12 6 4 5 7 9 4 6 5 10 4 7

12 4 9 5 6 4 7 10 5 4 6 9 12

this IRDCS has heft 1.05397 and order 7.

12 10 6 7 5 11 8 9 6 5 7 10 12

9 11 8 5 12 6 7 10 5 9 8 6 11

this IRDCS has heft 1.01988 and order 8.
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B.2.0.32 14 by 2 IRDCS

There are 748 IRDCS of dimension 14×2. These IRDCS have heft ranging from 0.986544

to 1.03377 and 252 of the IRDCS have order 7 with the remaining 496 having order 8.

B.2.0.33 15 by 2 IRDCS

There are 2352 IRDCS of dimension 15 × 2. These IRDCS have heft ranging from

0.985689 to 1.06347 and 268 of them have order 7 while the remaining 2084 have order 8.

B.2.0.34 16 by 2 IRDCS

There are 9872 IRDCS of dimension 16 × 2. These IRDCS have heft ranging from

0.980134 to 1.05797 and 240 of them have order 7, 2144 have order 8 while the remain-

ing 7488 have order 9.

We now present a few of the larger IRDCS calculated. Note that all use the mod-

ulus 2 and therefore use only even moduli, but they are not the result of doubling some

smaller IRDCS. The first example is an 11× 11 IRDCS with heft 0.997505 and order 9.

52 2 4 2 16 2 4 2 20 2 4

2 20 2 4 2 56 2 4 2 16 2

4 2 24 2 4 2 32 2 4 2 24

2 4 2 16 2 4 2 20 2 4 2

20 2 4 2 40 2 4 2 16 2 4

2 56 2 4 2 24 2 4 2 52 2

4 2 16 2 4 2 20 2 4 2 32

2 4 2 32 2 4 2 16 2 4 2

24 2 4 2 52 2 4 2 24 2 4

2 16 2 4 2 20 2 4 2 40 2

4 2 40 2 4 2 16 2 4 2 56
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Next is a 12× 6 IRDCS with heft 1.01349 and order 8.

2 28 2 4 2 36 2 4 2 20 2 4

4 2 24 2 4 2 40 2 4 2 24 2

2 4 2 12 2 4 2 12 2 4 2 12

36 2 4 2 20 2 4 2 28 2 4 2

2 28 2 4 2 24 2 4 2 20 2 4

4 2 12 2 4 2 12 2 4 2 12 2

2 4 2 40 2 4 2 36 2 4 2 40

Now a 12× 12 IRDCS with heft 0.994858 and order 10.

12 2 4 2 36 2 4 2 48 2 4 2

2 48 2 4 2 12 2 4 2 36 2 4

4 2 40 2 4 2 68 2 4 2 12 2

2 4 2 12 2 4 2 52 2 4 2 44

32 2 4 2 44 2 4 2 12 2 4 2

2 12 2 4 2 32 2 4 2 40 2 4

4 2 52 2 4 2 12 2 4 2 32 2

2 4 2 36 2 4 2 48 2 4 2 12

48 2 4 2 12 2 4 2 36 2 4 2

2 68 2 4 2 40 2 4 2 12 2 4

4 2 12 2 4 2 44 2 4 2 68 2

2 4 2 32 2 4 2 12 2 4 2 52
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Then we have a 13× 8 IRDCS with heft 1.01528 and order 7.

36 2 4 2 16 2 4 2 20 2 4 2 36

2 20 2 4 2 24 2 4 2 16 2 4 2

4 2 12 2 4 2 12 2 4 2 12 2 4

2 4 2 16 2 4 2 20 2 4 2 36 2

20 2 4 2 24 2 4 2 16 2 4 2 24

2 12 2 4 2 12 2 4 2 12 2 4 2

4 2 16 2 4 2 20 2 4 2 36 2 4

2 4 2 24 2 4 2 16 2 4 2 24 2

Lastly the following is one of the 13× 13 IRDCS with heft 0.998065 and order 9.

2 4 2 8 2 4 2 48 2 4 2 8 2

8 2 4 2 32 2 4 2 8 2 4 2 64

2 48 2 4 2 8 2 4 2 80 2 4 2

4 2 8 2 4 2 56 2 4 2 8 2 4

2 4 2 40 2 4 2 8 2 4 2 32 2

64 2 4 2 8 2 4 2 40 2 4 2 8

2 8 2 4 2 32 2 4 2 8 2 4 2

4 2 80 2 4 2 8 2 4 2 48 2 4

2 4 2 8 2 4 2 64 2 4 2 8 2

8 2 4 2 48 2 4 2 8 2 4 2 32

2 56 2 4 2 8 2 4 2 56 2 4 2

4 2 8 2 4 2 32 2 4 2 8 2 4

2 4 2 40 2 4 2 8 2 4 2 80 2

Please see the attached DVD for additional data on both the one-dimensional and two-

dimensional cases.



Appendix C

One Dimensional Heft

This appendix will present the results and proofs for one-dimensional heft as suggested

by one of the examiners.

Theorem C.1. For any IRDCS A,

h(A) ≥ 1 +
2t2 − nt
n(n− t)

>
√

8− 2 > 0.828.

Proof. Starting from equation (2.2), let ui = ai + bi− 1 ≤ 2mi− 1 which can be written

as mi ≥ (ui + 1)/2. We have ai + mi ≤ n + 1 − bi, so that mi ≤ n − ui. Combining

these gives (ui + 1)/2 ≤ n− ui, which becomes 3ui ≤ 2n− 1, so that ui < (2/3)n. Thus

the ui are integers in the interval [1, 2
3n] with sum at least t2.

Take the sum
t∑
i=1

ui
mi
≥ S =

t∑
i=1

ui
n− ui

.

Both the ui and the n− ui are positive. It can be shown that if a ≤ b then a/(n− a) +

b/(n− b) ≤ (a−1)/(n− (a−1)) + (b+ 1)/(n− (b+ 1)), so the sum S is minimized when

all the ui are equal, and so S ≥ t2

n−t . The stated inequality for h then follows from (2.2)

and the numerical lower bound follows from minimising this function of t.

Theorem C.2. For any IRDCS A,

h(A) ≤ 1.4055.
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Proof. Starting from equation (2.2), say there are xn of the mi’s in (0, n/3], yn of them

in (n/3, n/2] and zn of them in (n/2, n]. For mi in (0, n/3], we have ui
mi
≤ 2 and for

mi > n/3, we have ui
mi
≤ n

mi
− 1. Thus, by (2.2), we have n(h − 1) ≤

∑ n
mi
− 1 ≤

xn − 2yn + n
∑

1
1
mi
− 2zn + n

∑
2

1
mi

, where in
∑

1 we take the smallest yn values in

(n/3, n/2] and in
∑

2 we take the smallest zn values in (n/2, n]. The last two terms,

which involve z, together are non-positive, so we drop them and we use the sum of the

harmonic series to get that
∑

1 = log(1 + 3y) plus an error term that tends to 0 like

O(1/n). Hence we get the inequality that h ≤ 1 + x − 2y + log(1 + 3y) with x ≤ 1/3

and y ≤ 1/6. Maximising log(1 + 3y)− 2y gives the required bound for heft.

The examiner sketches a proof of h ≤ 1.26425, but I have been unable to verify

the details.
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[10] P. Erdős, On some of my problems in number theory I would most like to see
solved, Number theory (Ooctacamund, 1984), Lecture Notes in Math., vol. 1122,
Springer, Berlin, 1985, pp. 74–84. MR797781
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