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Abstract

Recently, there has been a considerable interest in applications of regime-switching

models in various aspects of finance and insurance. One of the main features of

these models is that some model parameters are modulated by a finite-state Markov

chain. This makes regime-switching models very useful to describe structural changes

in macro-economic conditions, periodical fluctuations in business cycles and sudden

transitions in market modes.

In this thesis, a continuous-time, finite-state, observable Markov chain is adopted to

model the regime switches. Our regime-switching models are a set of diffusion models,

jump-diffusion models or Lévy models coupled by the underlying Markov chain. Under

this modeling set up, the financial market is incomplete. So asset pricing and portfolio

optimization problems are more involved.

Roughly speaking, this thesis can be divided into two parts. The first part is de-

voted to asset pricing problems under regime-switching models. Due to the market

incompleteness, the equivalent martingale measure is not unique. Therefore, we either

choose a particular equivalent martingale measure using the Esscher transform or start

directly from a risk-neutral measure. We present analytical pricing formulae for Eu-

ropean options and variance swaps in Chapters 2 and 3, respectively. Numerical and

empirical implementations of these formulae show that the regime-switching effect is

ix



material for asset pricing problems.

In the second part of this thesis, we apply the stochastic optimal control theory to

discuss portfolio optimization problems under regime-switching models. In Chapter 4,

we use the dynamic programming principle approach to solve a mean-variance port-

folio selection problem with uncertain investment horizon. Explicit expressions of the

efficient portfolio and the efficient frontier are obtained. In Chapter 5, the stochastic

optimal control theory for portfolio optimization problems is borrowed to investigate an

fundamental issue in asset pricing problems, i.e. the selection of equivalent martingale

measures. We derive and compare equivalent martingale measures selected by three

different approaches, that is, the stochastic differential game approach, the Esscher

transformation approach and the general equilibrium approach.



Chapter 1

Introduction

Asset pricing, portfolio optimization and risk management are called the three pillars

of modern finance. They are not only important research topics in the fields of financial

mathematics and actuarial science, but also play vital roles in financial activities of both

individual and institutional investors. Indeed, various problems arising in insurance and

finance, such as option pricing and hedging, insurance product pricing, asset allocation,

asset-liability management and optimal reinsurance, can be categorized into these three

topics.

A major revolution in asset pricing came with the path-breaking works of Black

and Scholes (1973) and Merton (1973). The so-called Black-Scholes-Merton formula

provided an acceptable method of evaluating and pricing option contracts. Soon after-

wards, the new formula was applied on the new option exchanges all over the world.

In the last several decades, this formula has been extensively generalized in all possible

directions, and has evolved as a methodology to determine the value of derivatives.

For this, Robert C. Merton and Myron S. Scholes received the 1997 Nobel Prize in E-

conomics. Although Fischer Black became ineligible for the prize because of his death
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in 1995, he was mentioned as a contributor by the Swedish academy.

The first pioneering contribution in modern portfolio selection theory was made by

Markowitz’s Nobel winning work. Markowitz (1952) proposed a mathematical elegant

mean-variance paradigm, which simplified the multidimensional problem of investing

in a large number of assets into the issue of a trade-off between only two dimensions,

namely the mean and the variance of the return of the portfolio. Taking into account

of consumption opportunity and preference difference, Samuelson (1969) and Merton

(1969, 1971) considered investment-consumption problems in a multi-period setting

and a continuous-time set up, respectively. In particular, Samuelson (1969) and Merton

(1969) introduced the stochastic optimal control theory to study portfolio optimization

problems in discrete and continuous time, respectively.

One of the main shortcomings of both the Black-Scholes option pricing model and

the Merton asset allocation model is the use of the Geometric Brownian Motion (GBM)

for the underlying asset dynamics. It is known that the GBM assumption is not real-

istic, fails to incorporate many important stylised empirical features of assets’ returns,

and makes the Black-Scholes option pricing model unable to explain some importan-

t empirical behavior of option prices, namely, the implied volatility smile or smirk.

Moreover, the investment opportunity set remains constant over time under the GBM

assumption. However, more economic insights and implications can be gained if the

investment opportunity set is allowed to vary stochastically over time.

To investigate asset pricing and portfolio optimization problems, therefore, the first

task for us is to select more suitable models for primitive assets. As said by a famous

statistician, George Box, “All models are wrong, but some are useful.” Although there

is no perfect model, we can choose some useful models as our underlying dynamics.

Among them, regime-switching models are one of the most important candidates. The

history of regime-switching models may be dated back to the work of Quant (1958)
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and Goldfeld and Quandt (1973), where regime-switching regression models were in-

troduced to study nonlinearities in economic data. Tong (1978, 1983) and Tong and

Lim (1980) introduced the idea of regime switching to parametric nonlinear time series

analysis. Hamilton (1989) popularized the applications of regime-switching models

in econometrics. Since then, there has been a growing interest in applying regime-

switching models in various areas of finance and economics, particularly asset pricing

and portfolio optimization.

The basic idea of regime-switching models is to allow model parameters to change

over time according to the states of an underlying Markov chain, which represent

different market, or economic, modes. This provides flexibility in incorporating the

impact of structural changes in macro-economic conditions and business cycles. For

example, the states of the market can be roughly divided into two regimes,“bullish” and

“bearish”, in which the interest rate, appreciation rate and volatility of the asset differ.

Indeed, many empirical studies reveal that regime-switching models are consistent with

important stylized features of financial time series, such as time-varying conditional

volatility, the asymmetry and heavy tailedness of the unconditional distribution of

asset returns, volatility smile and skew and regime switches. Furthermore, through the

underlying Markov chain, regime-switching models allow us to introduce stochastic

interest rate, appreciation rate and volatility into the modeling framework. Then

investment opportunity sets under regime-switching models may evolve in a stochastic

fashion over time. Since the regime-switching models overcome many shortcomings of

the GBM model, they are ideal candidates to be used as the underlying dynamics in

asset pricing and portfolio optimization problems.

In recent years, much attention has been paid to studying asset pricing (particularly,

option valuation) and asset allocation under regime-switching models. Naik (1993)

was an early attempt to investigate option pricing under a two-state regime-switching
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model. Elliott at el. (2005) developed a regime-switching Esscher transform approach

to derive a martingale condition for the risk-neutral measure under a regime-switching

GBM model and then obtained an analytical pricing formula for European call options.

Interested readers may also refer to Guo (2001), Buffington and Elliott (2002), Boyle

and Draviam (2007), Siu (2008) and Yuen and Yang (2010) for option pricing, Elliott

and Mamon (2003), Elliott and Siu (2009), Siu (2010) and Elliott et al. (2011) for

bond pricing, and Elliott and Swishchuk (2007), Elliott et al. (2007) and Elliott and

Lian (2013) for volatility derivatives pricing under various regime-switching models.

Zhou and Yin (2003) considered a continuous-time mean-variance portfolio selection

problem with regime-switching and obtained mean-variance efficient portfolios and

efficient frontiers in closed forms. Sotomayor and Cadenillas (2009) investigated an

optimal investment-consumption problem in financial markets with regime-switching

and derived explicit optimal portfolio and consumption policies. Elliott and Siu (2010)

studied a risk minimizing portfolio problem under a regime-switching Black-Scholes

economy and formulated the problem as a stochastic differential game. Other recent

works on portfolio optimization under regime-switching models include Cheung and

Yang (2007), Chen et al. (2008), Wu and Li (2012) and Zhang et al. (2012), just to

name a few.

This thesis includes four self-contained chapters, each of which is concerned with

one asset pricing or portfolio optimization problem under regime-switching models.

Option pricing has long been a challenging and interesting problem in the history of

modern finance. Chapter 2 shall develop a methodology to incorporate macro-economic

risks into option prices. Volatility derivatives, such as variance swaps and volatility

swaps, are gaining increasing attention in the market. Which factors have impacts on

determining the price of variance swaps? We shall answer this question in Chapter

3. If the terminal time is uncertain, could the classical results of the dynamic mean-
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variance portfolio selection problem still hold? This is the major concern of Chapter 4.

Is there any relationship between asset pricing and portfolio optimization? Chapter 5

shall discuss how to find equivalent martingale measures using the stochastic optimal

control theory, that is, how we can apply the method in portfolio optimization problems

to solve asset pricing problems.

In Chapter 2, we consider an option valuation problem under a double regime-

switching model. Roughly speaking, regime switching refers to the feature in which

the model dynamics are allowed to change over time according to an underlying Markov

chain. In a double regime-switching model, the parameters (such as the appreciation

rate, volatility, and interest rate) and the price level are both allowed to switch when

a regime switch occurs. This is in contrast to the single regime-switching models in

which only the model parameters (and not the price level) are allowed to switch. The

jump component of the share price is modeled by a jump martingale related to the

modulating Markov chain, which introduces macro-economic risks or regime-switching

risk into the modeling framework. We develop a generalized version of the regime-

switching Esscher transform to select an equivalent martingale measure, which allows us

to endogenously determine the regime-switching risk from the double regime-switching

model. Indeed, one of the main issues in option valuation under regime-switching

models is how to price the regime-switching risk. In previous literature, this regime-

switching risk was either ignored or determined exogenously. Chapter 2 provides a

possible solution to incorporate the regime-switching risk into option prices. Next, we

use a Fourier transform to derive the integral pricing formula for an European call

option. We then adopt the fast Fourier transform method to discretize the integral

pricing formula. Finally, we provide numerical analysis and empirical study of option

prices under single and double regime-switching models to illustrate the implications

of our results. Chapter 2 is based on the paper by Shen et al. (2013).
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Chapter 3 develops a hybrid of two simpler models: a stochastic interest rate model

of Hull and White (1990) and a stochastic volatility model of Schöbel and Zhu (1999).

Both of these basic models use the Ornstein-Uhlenbeck processes to model the behav-

ior of two state variables, the interest rate and the volatility. Embedding them in a

Markovian regime-switching model, we combine these two state variables and allow for

correlation between them. We consider the valuation of a variance swap under this s-

tochastic interest rate and volatility model with regime switches, namely the Markovian

regime-switching Schöbel-Zhu-Hull-White hybrid model. The basic Gaussian structure

of the distribution of the state variables allows for semi-analytical solutions of the mod-

el. We present integral solutions for the value of the variance swap as well as for the

fair strike value of the variance swap. Using a Schöbel-Zhu-Hull-White hybrid model

with two regimes as an example, numerical results are presented to show the impacts

of stochastic interest rate and regime switches on the fair value of the variance swap.

This chapter is based on the paper by Shen and Siu (2013a).

Chapter 4 discusses a continuous-time mean-variance portfolio selection problem

with uncertain investment horizon under a regime-switching jump-diffusion model.

More specifically, the asset price processes are modulated by a continuous-time, finite-

state, observable Markov chain. To make the mean-variance problem with uncertain

investment horizon tractable, we first transform it to an equivalent min-max problem

with fixed investment horizon, where the (quadratic loss) minimization problem can

be readily solved via the dynamic HJB programming approach. After giving a version

of the verification theorem, we derive a regime-switching HJB equation related to the

quadratic loss minimization problem. We provide both the expectation solution and

the closed-form solution of the value function via solving the HJB equation. Using the

Lagrangian duality technique, we obtain the efficient portfolio and the efficient frontier

of our mean-variance problem. To illustrate our results, we provide several numerical
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examples of the efficient frontier under different values of parameters. This chapter is

based on the paper by Shen and Siu (2013b).

In Chapter 5, we discuss three different approaches to select an equivalent mar-

tingale measure for the valuation of contingent claims under a Markovian regime-

switching Lévy model, which is associated with an incomplete financial market due to

jumps and regime switches. These approaches are the game theoretic approach, the

Esscher transformation approach and the general equilibrium approach. Indeed, the

stochastic optimal control theory, which is tailored to portfolio optimization problems,

is employed in the stochastic differential game and the general equilibrium approaches.

In this sense, Chapter 5 investigates the interplay between asset pricing and portfo-

lio optimization under regime-switching models. We apply the dynamic programming

principle to solve the control problems arising in the stochastic differential game and

the general equilibrium approaches. We compare equivalent martingale measures cho-

sen by the three approaches and identify the conditions under which these measures

are identical. Chapter 5 is based on the paper by Shen and Siu (2013c).
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Chapter 2

Option valuation under a double

regime-switching model

2.1 Introduction

Since the last decade or so, there has been an interest on studying option valuation

problems in regime-switching models. Switches may occur in the model parameters

(e.g. the appreciation rate and the volatility) and the price level of the risky share

whenever transitions in the modulating Markov chain occur. The existing literature on

option valuation can be divided into two categories in terms of the regime-switching

models. The former includes Guo (2001), Buffington and Elliott (2002), Elliott et

al. (2005), Liu et al. (2006), Boyle and Draviam (2007), Siu (2008), Siu and Yang

(2009), Yuen and Yang (2010) and others, where the regime-switching models can only

describe the switches of the model parameters. The latter includes Naik (1993), Yuen

and Yang (2009) and Elliott and Siu (2011), where not only the model parameters

but also the price level of the share may switch whenever a regime switch occurs. To
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differentiate these two kinds of models, we call them the single regime-switching model

and the double regime-switching model, respectively. Numerous works focus on option

valuation under the single regime-switching models, while relatively little attention

has been paid to that under the double regime-switching models. However, the double

regime-switching models provide a more flexible way than their single regime-switching

counterpart to describe stochastic movements of the risky share due to the fact that

a jump in the share price level occurs in the former, but not in the latter, when there

is a regime switch. Regime switches caused by transitions in the modulating Markov

chain are often interpreted as structural changes in macro-economic conditions and in

different stages of business cycles. These changes are inevitable in a long time span.

They may cause not only shifts in the mean and volatility levels of the share price, but

also sudden jumps in the share price level, (see Naik (1993), Yuen and Yang (2009)

and Elliott and Siu (2011)). Except Siu and Yang (2009), almost all literature on

option valuation under the single regime-switching models do not consider the regime-

switching risk in the selection of a pricing kernel. Most of the existing works focus

on capturing regime-dependent risk. So option prices may be underestimated under

such regime-switching models. Although Siu and Yang (2009) developed a new version

of regime-switching Esscher transform and found a martingale condition incorporating

both the diffusion risk and the regime-switching risk, it was noted by the authors

themselves that there exist more than one risk-neutral measures.

It appears that Naik (1993) was an early attempt on option pricing under the

double regime-switching models, where a martingale method was employed for the

pricing of a European option under a two-state, double regime-switching model. Yuen

and Yang (2009) extended the model of Naik (1993) to a multi-regime case and adopted

the extended model for pricing of a European option, an American option and other

exotic options using a trinomial tree method. Elliott and Siu (2011) considered a
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risk-based approach for pricing an American contingent claim under a multi-state,

double regime-switching model. Compared with the single regime-switching models,

the double regime-switching models allow us to “naturally” price the regime-switching

risk when one changes the real-world measure to an equivalent martingale measure.

However, like a single regime-switching model, a financial market described by a double

regime-switching model is also incomplete. Consequently, not all contingent claims can

be perfectly hedged by continuously trading primitive securities and there is more than

one pricing kernel, or equivalent martingale measure. A primal problem is how to select

an equivalent martingale measure in such a market set up. In Naik (1993) and Yuen

and Yang (2009), equivalent martingale measures were selected by either ignoring the

regime-switching risk or taking an exogenous regime-switching risk. Neither of them

determines the regime-switching risk endogenously from their double regime-switching

models.

In this chapter, we consider option valuation under a double regime-switching mod-

el. More specifically, the model parameters, including the risk-free interest rate, the

appreciation rate and the volatility rate, are modulated by a continuous-time, finite-

state, observable Markov chain. In addition, when a regime switch occurs, there is a

jump in the price level of the risky share. Consequently, the dynamics of the share is a

discontinuous process. The jump component of the share price is modeled by the jump

martingale related to the modulating Markov chain. We first apply a generalized ver-

sion of the regime-switching Esscher transform to select a unique equivalent martingale

measure, which takes into account both the diffusion risk from the Brownian motion

and the regime-switching risk from the chain. Furthermore, the (local)-martingale

condition and the model dynamics of the share are obtained under this equivalent

martingale measure. Then we use the inverse Fourier transform to derive an integral

pricing formula of a European call option. The fast Fourier transform (FFT) method
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is adopted to discretize the integral pricing formula. Using the FFT method, we pro-

vide the numerical analysis of option prices under both the double regime-switching

model and the single regime-switching model and document the pricing implications

of these two models. Numerical examples reveal that ignoring the regime-switching

risk under the double regime-switching model would result in a significant underesti-

mation of the price of an out-of-money option over 6%, even though the market prices

of the regime-switching risk are relatively low in our configurations of the hypothetical

values of model parameters. This illustrates the economic importance of endogenizing

the regime-switching risk under the double regime-switching model. Finally, we pro-

vide an empirical application of the double regime-switching model using the real data

set of the S&P 500 index options. Our empirical results reveal that endogenizing the

regime-switching risk under the double regime-switching model improves the fitting

and prediction errors between market prices and model prices of the S&P 500 index

options. This provides empirical evidence that the regime-switching risk is priced in

the market.

This chapter contributes to the existing literature in at least three aspects. Firstly,

we obtain an analytical pricing formula for the multi-regime case via the Fourier trans-

form method. The pricing formula looks neater than those available in the existing

literture. In Naik (1993), the pricing formula involves the density of the occupation

time of the two-state chain, which makes it difficult, if not impossible, to extend to a

multi-state chain case. The trinomial tree method adopted by Yuen and Yang (2009)

only gave a numerical solution to the option pricing problem under the multi-state,

double regime-switching models. Our second contribution is to introduce a general-

ized version of the regime-switching Esscher transform and to derive its corresponding

(local)-martingale condition, which admits a unique solution for determining a pricing

kernel in the incomplete market described by the double regime-switching model. The

11



(local)-martingale conditions given by Naik (1993) and Yuen and Yang (2009) had more

than one solutions, which means the pricing kernels were not uniquely determined. In-

deed, the selection of a pricing kernel under the double regime-switching model is still

an open and challenging problem. To articulate this challenging problem, we provide a

possible solution by introducing the generalized version of the regime-switching Esscher

transform. It is also interesting to note that endogenizeing the regime-switching risk

is crucial in ensuring the uniqueness of the pricing kernel selected by the generalized

version of the regime switching Esscher transform. This may provide some theoretical

insights into understanding the use of the Esscher transform for option valuation in

an incomplete market. In the seminal work of Gerber and Shiu (1994), the Esscher

transform was first applied to option valuation in an incomplete market. It was shown

in Gerber and Shiu (1994) that a pricing kernel can be uniquely determined by the

Esscher transform in a Lévy-based asset price model. This uniqueness result may not

hold in the case of the double regime-switching model. We show that the generalized

version of the Esscher transform in coupled with endogenizeing the regime-switching

risk would lead to the uniqueness of the pricing kernel in the double regime-switching

model. Thirdly, our approach allows us to calculate the market prices of the regime-

switching risk endogenously from the model parameters of the double regime-switching

models, which provides a quantification for how large the regime-switching risk is.

The rest of this chapter is organized as follows. The next section presents the

model dynamics. In Section 2.3, we select an equivalent martingale measure using the

generalized version of the regime-switching Esscher transform. Section 2.4 applies the

inverse Fourier transform to derive an analytical option pricing formula. In Section 2.5,

we give numerical examples to illustrate the valuation of the European call options via

the FFT. In Section 2.6, we provide an empirical application of the double regime-

switching model. Section 2.7 concludes the chapter.
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2.2 The model dynamics

Consider a complete probability space (Ω,F ,P), under which all sources of randomness

are defined, including a standard Brownian motion and a Markov chain. We equip the

probability space (Ω,F ,P) with a filtration F := {F(t)|t ∈ T } satisfying the usual

conditions of right-continuity and P-completeness. Suppose that P is the real-world

probability measure. Let T denote the time index set [0, T ] of the model, where T <∞.

We describe the evolution of the state of an economy over time by a continuous-time,

finite-state, observable Markov chain X := {X(t)|t ∈ T } on (Ω,F ,P) taking values in

a finite-state space S := {s1, s2, · · · , sN}. The states of the chain X are interpreted

as different states of an economy or different stages of a business cycle. Indeed, these

states may be regarded as proxies for different levels of some observable macro-economic

indicators such as Gross Domestic Product, Consumer Price Index, Sovereign Credit

Ratings and others. Without loss of generality, we adopt the canonical state space

representation of the chain in Elliott et al. (1994) and identify the states of the chain

with a finite set of standard unit vectors E := {e1, e2, · · · , eN} ⊂ RN , where the lth

component of ej is the Kronecker delta δjl, for each j, l = 1, 2, · · · , N .

Let A := [ajl]j,l=1,2,··· ,N be the rate matrix of the chain X under P, where ajl is

a constant transition intensity of the chain X from state el to state ej. Note that

ajl ≥ 0, for j ̸= l and
∑N

l=1 ajl = 0, so ajj ≤ 0, for each j, l = 1, 2, · · · , N . Under the

canonical state space representation of X, Elliott et al. (1994) obtained the following

semi-martingale dynamics for the chain:

X(t) = X(0) +

∫ t

0

AX(s)ds+M(t) , t ∈ T ,

where {M(t)|t ∈ T } is an RN -valued, (FX,P) -martingale. Here FX := {FX(t)|t ∈ T }

is the right-continuous, P-complete, natural filtration generated by the chain X.
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In what follows, we introduce a set of basic martingales associated with the chain

X. For each t ∈ T and j, l = 1, 2, · · · , N , let J jl(t) be the number of jumps of the

chain X from state ej to state el up to time t. That is

J jl(t) :=
∑
0<s≤t

⟨X(s−), ej⟩ ⟨X(s), el⟩

=
∑
0<s≤t

⟨X(s−), ej⟩ ⟨X(s)−X(s−), el⟩

=

∫ t

0

⟨X(s−), ej⟩ ⟨dX(s), el⟩

=

∫ t

0

⟨X(s−), ej⟩ ⟨AX(s), el⟩ ds+
∫ t

0

⟨X(s−), ej⟩ ⟨dM(s), el⟩

= ajl

∫ t

0

⟨X(s−), ej⟩ ds+mjl(t) ,

where mjl(t) :=
∫ t

0
⟨X(s−), ej⟩ ⟨dM(s), el⟩ and, for each j, l = 1, 2, · · · , N , mjl :=

{mjl(t)|t ∈ T } is an (FX,P)-martingale.

For each l = 1, 2, · · · , N , Φl(t) counts the number of jumps of the chain X into

state el from other states up to time t, i.e.

Φl(t) :=
N∑

j=1,j ̸=l

J jl(t)

=
N∑

j=1,j ̸=l

ajl

∫ t

0

⟨X(s−), ej⟩ ds+ Φ̃l(t) ,

where Φ̃l := {Φ̃l(t)|t ∈ T }, with Φ̃l(t) :=
∑N

j=1,j ̸=lmjl(t), is an (FX,P)-martingale.

Denote by, for each l = 1, 2, · · · , N ,

ϕl(t) :=
N∑

j=1,j ̸=l

ajl

∫ t

0

⟨X(s−), ej⟩ ds ,

and

al(t) :=
N∑

j=1,j ̸=l

ajl ⟨X(t), ej⟩ .
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Then, the martingale Φ̃l and its differential form can be represented as

Φ̃l(t) = Φl(t)− ϕl(t) ,

and

dΦ̃l(t) = dΦl(t)− al(t−)dt ,

for each l = 1, 2, · · · , N . The former representation may be related to a version of the

Doob-Meyer decomposition for a counting process relating to the chain.

We consider a continuous-time financial market with two primitive assets, namely,

a bank account B and a risky share S. The instantaneous market interest rate is given

by

r(t) := ⟨r,X(t)⟩ ,

where r := (r1, r2, · · · , rN)′ ∈ RN with rj > 0 for each j = 1, 2, · · · , N ; y′ is the

transpose of a vector or a matrix y; ⟨·, ·⟩ denotes the inner product in RN . Then the

dynamics of the price process B := {B(t)|t ∈ T } for the bank account is given by

dB(t) = r(t)B(t)dt, B(0) = 1 .

Similarly, the appreciation rate µ(t) and the volatility σ(t) of the risky share are

also modulated by X as follows:

µ(t) := ⟨µ,X(t)⟩ , σ(t) := ⟨σ,X(t)⟩ , t ∈ T ,

where µ := (µ1, µ2, · · · , µN)
′ ∈ RN and σ := (σ1, σ2, · · · , σN)′ ∈ RN with µj > rj and

σj > 0 for each j = 1, 2, · · · , N .

Let W := {W (t)|t ∈ T } be a standard Brownian motion on (Ω,F ,P). To simplify

our discussion, we suppose that W and X are stochastically independent under P.

15



The price process of the risky share S := {S(t)|t ∈ T } then evolves over time

according to the following double regime-switching model:

dS(t)

S(t−)
= µ(t−)dt+ σ(t−)dW (t) +

N∑
l=1

(
eβl(t−) − 1

)
dΦ̃l(t) , S(0) = S0 > 0 ,(2.2.1)

where βl(t) := ⟨βl,X(t)⟩ and βl := (β1l, β2l, · · · , βNl)
′ ∈ RN . Write β := (β1,β2, · · · ,

βN) ∈ RN×N . Here we provide the flexibility that the jump size of the share price

depends on the states of the chain before and after a state transition, i.e., eβjl − 1 is

the ratio of a jump in the share price level when the chain transits from state ej to

state el. We further assume that βll = 0, which implies that there is no jump in the

share price level when the chain X remains in state el, for each l = 1, 2, · · · , N .

The double regime-switching model (2.2.1) is an N -state extension of Naik (1993),

which was also considered in Yuen and Yang (2009). The key feature of the double

regime-switching model is that a change in the state of an underlying economy not only

causes a structural change in the dynamics of the risky share price, but also a sudden

jump in the price level of the risky share. The assumption that there is a jump in the

price level when the regime changes is not unreasonable if the regime-switching risk

(the risk of state transitions) is non-diversifiable. For example, when jumps in price

levels of different assets in a market during a state transition would not be cancelled

out with each other as a whole, a state transition really imposes a change in the price

level of an aggregate portfolio consisting of these risky assets in the market. Here we

suppose that the regime-switching risk is non-diversifiable. This assumption is also not

unreasonable given the fact that macro-economic risks are usually structural in nature.

When the regime-switching risk is non-diversifiable, how to price this source of risk

becomes a key question. We shall address this important question in the next section.

For each t ∈ T , we define Y (t) = log(S(t)/S0) as the logarithmic return of the
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share over time horizon [0, t]. Then by Itô’s differentiation rule, it is easy to see that

dY (t) =

[
µ(t−)− 1

2
σ2(t−)−

N∑
l=1

(
eβl(t−) − 1− βl(t−)

)
al(t−)

]
dt

+σ(t−)dW (t) +
N∑
l=1

βl(t−)dΦ̃l(t) , t ∈ T . (2.2.2)

Write Y := {Y (t)|t ∈ T }. Let FS = {FS(t)|t ∈ T } and FY = {FY (t)|t ∈ T } be

the right-continuous, P-complete, natural filtrations generated by the processes S and

Y , respectively. Since FS and FY are equivalent, we can use either one of them as an

observed information structure. We define the filtration G = {G(t)|t ∈ T } by setting

G(t) := FY (t) ∨ FX(t), the minimal σ-field containing FY (t) and FX(t).

2.3 Esscher transform and equivalent martingale

measure

Esscher transform is a time-honored tool in actuarial science. Gerber and Shiu (1994)

pioneered the use of the Esscher transform in option valuation. Indeed, it provides a

convenient tool to specify an equivalent martingale measure in an incomplete market.

Under the single regime-switching model, Elliott et al. (2005) introduced a regime-

switching version of the Esscher transform for option valuation. Siu (2008) justified

that the equivalent martingale measure selected by the regime-switching Esscher trans-

form is related to a saddle point of a stochastic differential game for the expected power

utility maximization. Siu (2011) further verified that this equivalent martingale mea-

sure coincides with the minimal relative entropy measure.

In this section, we first present a generalization of the regime-switching Essch-

er transform to select an equivalent martingale measure under the double regime-
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switching model. Then we derive the (local)-martingale condition and obtain the model

dynamics under the equivalent martingale measure.

Let L(Y ) be the space of all processes θ := {θ(t)|t ∈ T } such that

1. For each t ∈ T , θ(t) := ⟨θ,X(t)⟩, where θ := (θ1, θ2, · · · , θN)′ ∈ RN ;

2. θ is integrable with respect to Y in the sense of stochastic integration.

For each θ ∈ L(Y ), we write

(θ · Y )(t) :=

∫ t

0

θ(s)dY (s) , t ∈ T ,

for the stochastic integral of θ with respect to Y . We call θ the Esscher transform

parameter in the sequel.

For each θ ∈ L(Y ), define a G-adapted exponential process Dθ := {Dθ(t)|t ∈ T }

by

Dθ(t) := exp((θ · Y )(t)) .

Applying Itô’s differentiation rule to Dθ(t) under P, we have

Dθ(t) = 1 +

∫ t

0

Dθ(s−)dHθ(s) ,

where Hθ := {Hθ(t)|t ∈ T } is defined as a G-adapted process

Hθ(t) :=

∫ t

0

θ(s)

[
µ(s)− 1

2
σ2(s)−

N∑
l=1

(
eβl(s) − 1− βl(s)

)
al(s)

]
ds

+

∫ t

0

1

2
θ2(s)σ2(s)ds+

∫ t

0

N∑
l=1

(
eθ(s)βl(s) − 1− θ(s)βl(s)

)
al(s)ds

+

∫ t

0

θ(s)σ(s)dW (s) +

∫ t

0

N∑
l=1

(
eθ(s)βl(s) − 1

)
dΦ̃l(s) .
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Consequently, Dθ is the Doléans-Dade stochastic exponential of Hθ, i.e.

Dθ(t) = E(Hθ(t)) , t ∈ T .

Since Hθ is a special semi-martingale, its predictable part of finite variation is the

Laplace cumulant process 1 of the stochastic integral process (θ · Y ) under P. The

Laplace cumulant process Mθ := {Mθ(t)|t ∈ T } is given by

Mθ(t) =

∫ t

0

θ(s)

[
µ(s)− 1

2
σ2(s)−

N∑
l=1

(
eβl(s) − 1− βl(s)

)
al(s)

]
ds (2.3.1)

+

∫ t

0

1

2
θ2(s)σ2(s)ds+

∫ t

0

N∑
l=1

(
eθ(s)βl(s) − 1− θ(s)βl(s)

)
al(s)ds .

The Doléans-Dade exponential E(Mθ(t)) ofMθ(t) is (up to indistinguishability unique)

the solution of the following equation:

E(Mθ(t)) = 1 +

∫ t

0

E(Mθ(s))dMθ(s) , t ∈ T .

Given the fact that {Mθ(t)|t ∈ T } is a finite variation process,

E(Mθ(t)) = exp(Mθ(t)) .

Consequently, the logarithmic transform M̃θ := {M̃θ(t)|t ∈ T } of Mθ(t), for each

θ ∈ L(Y ), is given by

M̃θ(t) := log(E(Mθ(t))) = Mθ(t) , t ∈ T . (2.3.2)

Let Λθ := {Λθ(t)|t ∈ T } be a G-adapted process associated with θ ∈ L(Y ) as follows:

Λθ(t) := exp
(
(θ · Y )(t)− M̃θ(t)

)
, t ∈ T .

1For more discussion on the Laplace cumulant process as well as the Esscher transform given below,

interested readers can refer to Kallsen and Shiryaev (2002) and Elliott and Siu (2013).
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Then from (2.2.2) and (2.3.2), we obtain

Λθ(t) = exp

{∫ t

0

θ(s)σ(s)dW (s)− 1

2

∫ t

0

θ2(s)σ2(s)ds+

∫ t

0

N∑
l=1

θ(s)βl(s)dΦ̃l(s)

−
∫ t

0

N∑
l=1

[
eθ(s)βl(s) − 1− θ(s)βl(s)

]
al(s)dt

}
. (2.3.3)

Lemma 2.3.1. Λθ is a (G,P)-(local)-martingale.

Proof. Applying Itô’s differentiation rule to (2.3.3) under P gives

Λθ(t) = 1 +

∫ t

0

Λθ(s−)θ(s)σ(s)dW (s) +

∫ t

0

Λθ(s−)
N∑
l=1

(
eθ(s)βl(s) − 1

)
dΦ̃l(s) .

Since the processes {θ(t)σ(t)|t ∈ T } and {eθ(t)βl(t) − 1|t ∈ T }, l = 1, 2, · · ·N , can only

take finite different values, they are bounded. Consequently, Λθ is a (G,P)-(local)-

martingale.

For each θ ∈ L(Y ), we define a new probability measure Qθ equivalent to P on G(T )

by a generalized version of the regime-switching Esscher transform Λθ(T ) as follows:

dQθ

dP

∣∣∣∣
G(T )

:= Λθ(T ) .

According to the fundamental theorem of asset pricing established by Harrison

and Kreps (1979) and Harrison and Pliska (1981, 1983), the absence of arbitrage is

“essentially” equivalent to the existence of an equivalent martingale measure under

which discounted asset prices are (local)-martingales. The following lemma presents a

necessary and sufficient condition for the (local)-martingale condition.

Lemma 2.3.2. Define the discounted price of the risky share as follows:

S̃(t) := exp

{
−
∫ t

0

r(s)ds

}
S(t), t ∈ T .
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Then the discounted price process S̃ := {S̃(t)|t ∈ T } is a (G,Qθ)-(local)-martingale if

and only if the Esscher transform parameter θ satisfies the following equation:

µ(t)− r(t) + θ(t)σ2(t) +
N∑
l=1

(
eθ(t)βl(t) − 1

)(
eβl(t) − 1

)
al(t) = 0 . (2.3.4)

Proof. By Lemma 7.2.2 in Elliott and Kopp (2004), S̃ is a (G,Qθ)-(local)-martingale

is equivalent to that ΛθS̃ := {Λθ(t)S̃(t)|t ∈ T } is a (G,P)-(local)-martingale. By Itô’s

differentiation rule and the fact that {Φj(t)|t ∈ T } and {Φl(t)|t ∈ T }, do not change

for a common jump when j ̸= l, j, l = 1, 2, · · ·N , we have

Λθ(t)S̃(t)− Λθ(0)S̃(0)

=

∫ t

0

Λθ(s−)dS̃(s) +

∫ t

0

S̃(s−)dΛθ(s) +

∫ t

0

d[S̃(s),Λθ(s)]c +
∑
0<s≤t

∆Λθ(s)∆S̃(s)

=

∫ t

0

Λθ(s−)S̃(s−)(µ(s)− r(s))ds+

∫ t

0

Λθ(s−)S̃(s−)σ(s)dW (s)

+

∫ t

0

Λθ(s−)S̃(s−)
N∑
l=1

(
eβl(s) − 1

)
dΦ̃l(s) +

∫ t

0

Λθ(s−)S̃(s−)θ(s)σ(s)dW (s)

+

∫ t

0

Λθ(s−)S̃(s−)
N∑
l=1

(
eθ(s)βl(s) − 1

)
dΦ̃l(s) +

∫ t

0

Λθ(s−)S̃(s−)θ(s)σ2(s)ds

+

∫ t

0

Λθ(s−)S̃(s−)
N∑
l=1

(
eβl(s) − 1

)(
eθ(s)βl(s) − 1

)
dΦ̃l(s)

+

∫ t

0

Λθ(s−)S̃(s−)
N∑
l=1

(
eβl(s) − 1

)(
eθ(s)βl(s) − 1

)
al(s)ds . (2.3.5)

Then ΛθS̃ is a (G,Qθ)-(local)-martingale if and only if the predictable part of finite

variation in (2.3.5) is indistinguishable from the zero process. That is

µ(t)− r(t) + θ(t)σ2(t) +
N∑
l=1

(
eθ(t)βl(t) − 1

)(
eβl(t) − 1

)
al(t) = 0 .

This completes the proof.
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Remark 2.3.1. When the chain is in state ej, Equation (2.3.4) becomes the following

N equations:

µj − rj + θjσ
2
j +

N∑
l=1,l ̸=j

(eθjβjl − 1)(eβjl − 1)ajl = 0, j = 1, 2, · · · , N . (2.3.6)

Once the regime-switching parameter θj for state ej is determined, the market prices

of the regime-switching risk from state ej to state el can be calculated as eθjβjl − 1, for

each j, l = 1, 2, · · · , N and l ̸= j. Note that when the regime-switching risk is not priced

(see Section 5.1 in Yuen and Yang (2009)), the (local)-martingale condition becomes

µ(t)− r(t) + θ(t)σ2(t) = 0 , (2.3.7)

or

µj − rj + θjσ
2
j = 0, j = 1, 2, · · · , N . (2.3.8)

The following lemma follows from Lemma 2.3 in Dufour and Elliott (1999). We

present it here without giving the proof.

Lemma 2.3.3. For each t ∈ T , let

W θ(t) := W (t)−
∫ t

0

θ(s)σ(s)ds ,

and

Φ̃θ
l (t) := Φl(t)− ϕθ

l (t)

= Φl(t)−
∫ t

0

aθl (s−)ds ,

where

ϕθ
l (t) := eθ(t)βl(t)ϕl(t)
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=
N∑

j=1,j ̸=l

eθjβjlajl

∫ t

0

⟨X(s−), ej⟩ ds ,

and

aθl (t) := eθ(t)βl(t)al(t)

=
N∑

j=1,j ̸=l

eθjβjlajl ⟨X(t), ej⟩ .

Then W θ := {W θ(t)|t ∈ T } is a standard Brownian motion under Qθ, and Φ̃θ
l :=

{Φ̃θ
l (t)|t ∈ T } is an (FX,Qθ)-martingale, for each l = 1, 2, · · · , N .

Furthermore, suppose Aθ is an (N ×N)-matrix with the following entries:

aθjl :=


eθjβjlajl , j ̸= l ,

−
N∑

l=1,l ̸=j

eθjβjlajl , j = l .

Then the chain X has the following semimartingale decomposition under Qθ

X(t) = X(0) +

∫ t

0

AθX(s)ds+Mθ(t) ,

where Mθ := {Mθ(t)|t ∈ T } is an RN -valued, (FX,Qθ)-martingale.

Lemma 2.3.4. Under Qθ, the dynamics of the return process are given by:

dY (t) =

[
r(t−)− 1

2
σ2(t−)−

N∑
l=1

eθ(t−)βl(t−)(eβl(t−) − 1− βl(t−))al(t−)

]
dt

+σ(t−)dW θ(t) +
N∑
l=1

βl(t−)dΦ̃θ
l (t) , t ∈ T . (2.3.9)

Proof. From Lemmas 2.3.2 and 2.3.3, we immediately have

dY (t)
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=

[
µ(t−)− 1

2
σ2(t−)−

N∑
l=1

(
eβl(t−) − 1− βl(t−)

)
al(t−)

]
dt

+ σ(t−)
(
dW θ(t) + θ(t−)σ(t−)dt

)
+

N∑
l=1

βl(t−)
(
dΦ̃θ

l (t) + (aθl (t−)− al(t−))dt
)

=

[
r(t−)− 1

2
σ2(t−)−

N∑
l=1

eθ(t−)βl(t−)(eβl(t−) − 1− βl(t−))al(t−)

]
dt

+ σ(t−)dW θ(t) +
N∑
l=1

βl(t−)dΦ̃θ
l (t) .

This completes the proof.

The generalized version of the regime-switching Esscher transform allows us to find

an equivalent martingale measure incorporating not only the diffusion risk described

by the Brownian motion but also the regime-switching risk modeled by the Markov

chain. Furthermore, the regime-switching risk is endogenously determined in our mod-

eling framework. This advances over the works of Naik (1993) and Yuen and Yang

(2009), where the regime-switching risk is either ignored or taken exogenously. More

specifically, our method provides us with the flexibility to evaluate the market prices

of the regime-switching risk once the model parameters are known. For an N -state

Markov chain, the double regime-switching model reduces to the single one when β

is an (N × N)-zero matrix. In this sense, the double regime-switching model incor-

porates the single one. The regime-switching Esscher transform adopted by Elliott et

al. (2005) and Siu (2008, 2011) is a particular case of our generalized version of the

regime-switching Esscher transform.
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2.4 Option valuation using the fast Fourier trans-

form

In this section, we apply the inverse Fourier transform to derive an analytical option

pricing formula under the double regime-switching model. For ease of computation,

we then use the FFT method to discretize the pricing formula.

Consider a European call option written on the share S with strike K and maturity

T > 0. Under the risk-neutral probability measure Qθ, the option price C(0, T,K) at

time zero is given by

C(0, T,K) = Eθ

[
exp

(
−

∫ T

0

r(t)dt

)
(S0e

Y (T ) −K)+

]
,

where Eθ[·] denotes an expectation under Qθ. Denote by k = log(K/S0) the modified

strike price, then the above equation can be written as

C(0, T, k) = S0E
θ

[
exp

(
−

∫ T

0

r(t)dt

)
(eY (T ) − ek)+

]
.

As in Carr and Madan (1999) and Liu et al. (2006), we define the dampened call

option price by

c(0, T, k) := eαk
C(0, T, k)

S0

,

where α is called the dampening coefficient and is assumed to be positive such that

c(0, T, k) is square integrable with respect to k over the entire real line. We consider

the Fourier transform of the dampened call price c(0, T, k):

ψ(0, T, u) =

∫
R
eiukc(0, T, k)dk , i =

√
−1 . (2.4.1)

For each t ∈ T and u ∈ R, let

φY (t)|FX(t)(0, t, u) := Eθ
[
eiuY (t)|FX(t)

]
,
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and

φ̃Y (t)|FX(t)(0, t, u) := exp

(
−

∫ t

0

r(s)ds

)
φY (t)|FX(t)(0, t, u) ,

be the conditional characteristic function and its discounted version of Y (t) given FX(t)

under Qθ. So the unconditional, discounted characteristic function of Y (t) under Qθ

is given by

φ̃Y (t)(0, t, u) = Eθ[φ̃Y (t)|FX(t)(0, t, u)] .

Before giving the option pricing formula, we present two useful lemmas.

Lemma 2.4.1. Under Qθ, the Fourier transform ψ(0, T, u) of the the dampened call

price and the unconditional, discounted characteristic function φ̃Y (T )(0, T, u) of Y (T )

has the following relationship

ψ(0, T, u) =
φ̃Y (T )(0, T, u− i(α + 1))

α2 + α− u2 + (2α + 1)iu
. (2.4.2)

Proof. For notational simplicity, write RT :=
∫ T

0
r(t)dt. Let FY (T )|FX(T )(y) be the

conditional distribution function of Y (T ) given FX(T ) under Qθ. Then

ψ(0, T, u) =

∫
R
eiukc(0, T, k)dk

=

∫
R
eiukeαkEθ[e−RT (eY (T ) − ek)+]dk

= Eθ

[ ∫
R
eiukeαkEθ[e−RT (eY (T ) − ek)+|FX(T )]dk

]
= Eθ

[ ∫
R
e−RT eiukeαk

∫ ∞

k

(ey − ek)FY (T )|FX(T )(dy)dk

]
= Eθ

[ ∫
R
e−RT

∫ y

−∞
(eye(α+iu)k − e(1+α+iu)k)dkFY (T )|FX(T )(dy)

]
= Eθ

[ ∫
R
e−RT

(
e(1+α+iu)y

α + iu
− e(1+α+iu)y

1 + α+ iu

)
FY (T )|FX(T )(dy)

]
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=
Eθ[e−RTφY (T )|FX(T )(u− i(α+ 1))]

α2 + α− u2 + (2α + 1)iu

=
φ̃Y (T )(0, T, u− i(α + 1))

α2 + α− u2 + (2α + 1)iu
. (2.4.3)

This completes the proof.

Lemma 2.4.2. The unconditional, discounted characteristic function of Y (T ) under

Qθ is given by:

φ̃Y (T )(0, T, u) =
⟨
X(0) exp

[
(diag(g(u)) +Bθ)T

]
,1

⟩
,

where g(u) := (g1(u), g2(u), · · · , gN(u))′ and Bθ = [bθjl]j,l=1,2,··· ,N with

gj(u) := −rj + iu
(
rj −

1

2
σ2
j

)
− 1

2
u2σ2

j

+
N∑

l=1,l ̸=j

eθjβjl

((
eiuβjl − 1

)
− iu

(
eβjl − 1

))
ajl ,

and

bθjl =


eiuβjlaθjl , j ̸= l ,

−
N∑

l=1,l ̸=j

eiuβjlaθjl , j = l .

Proof. Applying Itô’s differentiation rule to eiuY (t), we have

deiuY (t) = eiuY (t)

{
iu

[
r(t)− 1

2
σ2(t)−

N∑
l=1

eθ(t)βl(t)
(
eβl(t) − 1− βl(t)

)
al(t)

]
dt

−1

2
u2σ2(t)dt+

N∑
l=1

(
eiuβl(t) − 1− iuβl(t)

)
aθl (t)dt+ iuσ(t)dW θ(t)

+
N∑
l=1

(
eiuβl(t) − 1

)
dΦ̃θ

l (t)

}

= eiuY (t)

{[
iu
(
r(t)− 1

2
σ2(t)

)
− 1

2
u2σ2(t) +

N∑
l=1

eθ(t)βl(t)

((
eiuβl(t) − 1

)
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−iu
(
eβl(t) − 1

))
al(t)

]
dt+ iuσ(t)dW θ(t) +

N∑
l=1

(
eiuβl(t) − 1

)
dΦ̃θ

l (t)

}
.

Since Φ̃θ
l is an (FX,Qθ) martingale, Φ̃θ

l is adapted to FX, i.e. Φ̃θ(t)l is an FX(t)-

measurable process, for each t ∈ T and l = 1, 2, · · · , N . Then conditioning both sides

on FX(t) under Qθ, we have

dφY (t)|FX(t)(0, t, u)

= φY (t)|FX(t)(0, t, u)

{[
iu
(
r(t)− 1

2
σ2(t)

)
− 1

2
u2σ2(t) +

N∑
l=1

eθ(t)βl(t)

((
eiuβl(t) − 1

)
− iu

(
eβl(t) − 1

))
al(t)

]
dt+

N∑
l=1

(
eiuβl(t) − 1

)
dΦ̃θ

l (t)

}
.

Then

dφ̃Y (t)|FX(t)(0, t, u)

= φ̃Y (t)|FX(t)(0, t, u)

{[
− r(t) + iu

(
r(t)− 1

2
σ2(t)

)
− 1

2
u2σ2(t) +

N∑
l=1

eθ(t)βl(t)

((
eiuβl(t) − 1

)
− iu

(
eβl(t) − 1

))
al(t)

]
dt+

N∑
l=1

(
eiuβl(t) − 1

)
dΦ̃θ

l (t)

}
.

Note that
N∑
l=1

(
eiuβl(t) − 1

)
dΦ̃θ

l (t) =
(
D0X(t)− 1+X(t)

)′
dΦ̃

θ
(t) , (2.4.4)

where 1 := (1, 1, · · · , 1)′ ∈ RN , Φ̃
θ
:= (Φ̃θ

1, Φ̃
θ
2, · · · , Φ̃θ

N)
′ ∈ RN and

D0 := [djl]j,l=1,2,··· ,N − diag[(d11, d22, · · · , dNN)
′] ,

with

djl =


eiuβjl , j ̸= l ,∑N

l=1,l ̸=j e
iuβjlaθjl∑N

l=1,l ̸=j a
θ
jl

, j = l .
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Here diag(y) is a diagonal matrix with the diagonal elements given by the vector y. It

is easy to see that djl = bθjl/a
θ
jl, for each j, l = 1, 2, · · · , N .

Denote by

h(t, u) := X(t)φ̃Y (t)|FX(t)(0, t, u) , t ∈ T .

Using the stochastic integration by parts, we have

dh(t, u) =
(
diag(g(u)) +Aθ

)
h(t, u)dt+ h(t, u)

N∑
l=1

(
eiuβl(t) − 1

)
dΦ̃θ

l (t)

+φ̃Y (t)|FX(t)(0, t, u)dM
θ(t) + ∆X(t)∆φ̃Y (t)|FX(t)(0, t, u) . (2.4.5)

From Lemma 2.2 in Dufour and Elliott (1999), the chain X has the following represen-

tation under Qθ:

X(t) = X(0) +

∫ t

0

(
I−X(s−)1′)dΦθ(s) , (2.4.6)

where Φθ := (Φθ
1,Φ

θ
2, · · · ,Φθ

N)
′ ∈ RN and I is an (N ×N)-identity matrix.

Denote by

Aθ
0 := Aθ − diag

[
(aθ11, a

θ
22, · · · , aθNN)

′] ,
and

Bθ
0 := Bθ − diag

[
(bθ11, b

θ
22, · · · , bθNN)

′] .
It is easy to check that

(
I−X(t)1′)diag(Aθ

0X(t))X(t) ≡ 0 ,

where 0 := (0, 0, · · · , 0)′ ∈ RN .
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Combining (2.4.4) and (2.4.6), we follow the proof of Lemma 2.3 in Dufour and Elliott

(1999) to derive that

∆X(t)∆φ̃Y (t)|FX(t)(0, t, u)

= (I−X(t)1′)∆Φθ(t)
(
D0X(t)− 1+X(t)

)′
∆Φθ(t)φ̃Y (t)|FX(t)(0, t, u)

=
(
I−X(t)1′)diag(dΦ̃θ

(t))
(
D0X(t)− 1+X(t)

)
φ̃Y (t)|FX(t)(0, t, u)

+
(
I−X(t)1′)diag(Aθ

0X(t))
(
D0X(t)− 1+X(t)

)
φ̃Y (t)|FX(t)(0, t, u)dt

=
(
I−X(t)1′)diag(dΦ̃θ

(t))
(
D0X(t)− 1+X(t)

)
φ̃Y (t)|FX(t)(0, t, u)

+
(
I−X(t)1′)(Bθ

0X(t)−Aθ
0X(t)

)
φ̃Y (t)|FX(t)(0, t, u)dt

=
(
I−X(t)1′)diag(dΦ̃θ

(t))
(
D0X(t)− 1+X(t)

)
φ̃Y (t)|FX(t)(0, t, u)

+
(
BθX(t)−AθX(t)

)
φ̃Y (t)|FX(t)(0, t, u)dt

=
(
I−X(t)1′)diag(dΦ̃θ

(t))
(
D0X(t)− 1

)
φ̃Y (t)|FX(t)(0, t, u)

+
(
Bθ −Aθ

)
h(t, u)dt .

Then taking expectation on both sides of (2.4.5) under Qθ, we have

dEθ[h(t, u)] =
(
diag(g(u)) +Bθ

)
Eθ[h(t, u)]dt .

Solving gives

Eθ[h(T, u)] = X(0) exp
[
(diag(g(u)) +Bθ)T

]
.

Consequently,

φ̃Y (T )(0, T, u) =
⟨
Eθ[h(T, u)],1

⟩
=

⟨
X(0) exp

[
(diag(g(u)) +Bθ)T

]
,1

⟩
.

This completes the proof.
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Based on Lemmas 2.4.1 and 2.4.2, we obtain the main result of our paper, which

gives an integral representation of the call option price.

Theorem 2.4.1. Under Qθ, the call option price under the double regime-switching

model (2.2.1) can be represented in the following integral form:

C(0, T, k) =
S0e

−αk

π

∫ ∞

0

e−iukψ(0, T, u)du , (2.4.7)

where

ψ(0, T, u) =

⟨
X(0) exp

[
(diag(g(u− i(α + 1))) +Bθ)T

]
,1

⟩
α2 + α− u2 + (2α + 1)iu

. (2.4.8)

Proof. Applying the inverse Fourier transform to (2.4.1), we have

C(0, T, k) = S0e
−αkc(0, T, k)

=
S0e

−αk

2π

∫
R
e−iukψ(0, T, u)du

=
S0e

−αk

π

∫ ∞

0

e−iukψ(0, T, u)du .

Furthermore, combining Lemmas 2.4.1 and 2.4.2 gives (2.4.8).

In the rest of this section, we briefly introduce the FFT method for numerical com-

putation. Compared with other approaches such as finite difference method and Monte

Carlo simulation, the FFT method is much faster. Indeed if we used finite difference

method or Monte Carlo simulation to compute option prices under the regime-switching

models, we would solve a system of second-order, coupled PDEs or simulate sample

paths of both Brownian motion and Markov chain. This would cost much more com-

putation effort. Furthermore, to apply the FFT method, we first need to derive an

analytical option pricing formula, which is very useful in calibration of model parame-

ters in empirical studies.
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The FFT method is an efficient method for computing the sum of the following

form:

w(n) =
M∑

m=1

e−i 2π
M

(m−1)(n−1)x(m) , for n = 1, 2, · · · ,M . (2.4.9)

To apply the FFT method, we first need to write the integration (2.4.7) as the sum-

mation (2.4.9).

As in Carr and Madan (1999), we can approximate the option price (2.4.7) by the

following summation

C(0, T, k) ≈
S0e

−αk

π

M∑
m=1

e−iumkψ(0, T, um)η , (2.4.10)

where um = (m− 1)η, m = 1, 2, · · · ,M . Here η represents the grid size in u.

The effective upper limit (UL) for the integration is:

UL =Mη .

The FFT returns M values of k and the values for k are defined as follows:

kn = −b+ λ(n− 1), for n = 1, · · · ,M , (2.4.11)

where b = Mλ
2

and λ is the grid size in k.

Then substituting (2.4.11) into (2.4.10) gives

C(0, T, kn) ≈
S0e

−αkn

π

M∑
m=1

e−ium(−b+λ(n−1))ψ(0, T, um)η, for n = 1, · · · ,M .

Noting that um = (m− 1)η, we write

C(0, T, kn) ≈
S0e

−αkn

π

M∑
m=1

e−iλη(m−1)(n−1)eibumψ(0, T, um)η . (2.4.12)

32



To apply the fast Fourier transform, the following restriction need to be imposed:

λη =
2π

M
.

Then (2.4.12) becomes

C(0, T, kn) ≈
S0e

−αkn

π

M∑
m=1

e−i 2π
M

(m−1)(n−1)eibumψ(0, T, um)η .

2.5 Numerical examples

In this section, we perform a numerical analysis for option valuation under the double

regime-switching model. For ease of comparison, we also provide the numerical results

for option prices under the single regime-switching model. To simplify our computation,

we consider a two-state Markov chain X, where State 1 and State 2 of the chain

represent a ‘Bad’ economy and a ‘Good’ economy, respectively. We write X(t) = (1, 0)′

and X(t) = (0, 1)′ for State 1 and State 2.

In what follows, we give configurations of the parameter values. The rate matrix of

the chain X under P is given by

A =

 −a a

a −a

 ,

where a takes discrete values from {0, 0.1, 0.2, · · · , 1}. The larger a is, the more volatile

the economy is. That is, the probability of the transition of the economy from one

state to another increases with a. Note that when a = 0, the regime-switching effect

is degenerate. Generally speaking, the main features of the financial market in a ‘Bad’

(‘Good’) economy are low (high) appreciation rate, low (high) interest rate and high

(low) volatility. So we consider the following vectors for the appreciation rate, risk-free
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interest rate and volatility, respectively:

µ = (0.04, 0.08)′ , r = (0.02, 0.04)′ , σ = (0.4, 0.2)′ .

1. The double regime-switching (DRS) model

The jump ratio of the double regime-switching model is described by the matrix

β =

 0 β

−β 0

 .

To see the effect of the jump ratio on option valuation, we float β from 0 to 1.

2. The single regime-switching (SRS) model

When the jump ratio remains zero during a state transition of the chain, the

jump component of the double regime-switching model is absent. That is

β =

 0 0

0 0

 .

In other words, the double regime-switching model reduces to the single one.

Table 2.5.1 presents the prices of the European call options with different strike

levels under the DRS model and the SRS model, where we assume β = 0.1 for the DRS

model and S0 = 100, T = 1, a = 0.5 for both models. Under the above configurations

of the hypothetical values of model parameters, the regime-switching Esscher transform

parameters are θ1 = −0.1210 and θ2 = −0.8894. Then, the market prices of the regime-

switching risk are calculated as eθ1β − 1 = −0.012 in State 1 and e−θ2β − 1 = 0.093 in

State 2, respectively. In Table 2.5.1, the DRS model I and II represent the DRS model

where the regime-switching risk is endogenously determined and ignored, respectively.

In other words, the regime-switching risk is priced under the DRS model I and not
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Table 2.5.1: Option prices calculated via the FFT

DRS model I DRS model II SRS model

Strikes State 1 State 2 State 1 State 2 State 1 State 2

70 34.3847 33.4744 33.9481 33.4357 34.0904 33.1151

(0.00%) (0.00%) (1.27%) (0.12%) (0.86%) (1.07%)

80 27.1651 25.1079 26.6486 25.0263 26.7779 24.5557

(0.00%) (0.00%) (1.90%) (0.32%) (1.43%) (2.20%)

90 21.0267 17.7843 20.4409 17.6632 20.6144 17.1617

(0.00%) (0.00%) (2.79%) (0.68%) (1.96%) (3.50%)

100 15.9804 11.8606 15.3623 11.7194 15.6171 11.3358

(0.00%) (0.00%) (3.88%) (1.20%) (2.27%) (4.42%)

110 11.9595 7.4749 11.3576 7.3378 11.6953 7.1553

(0.00%) (0.00%) (5.03%) (1.83%) (2.21%) (4.28%)

120 8.8423 4.4927 8.2969 4.3757 8.6931 4.3873

(0.00%) (0.00%) (6.17%) (2.60%) (1.68%) (2.35%)
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priced under the DRS model II. Indeed, both the DRS model I and II are the two-

state double regime-switching models given by Eq. (2.2.1). Their (local)-martingale

conditions are given by (2.3.4) and (2.3.7), respectively. This chapter is concerned with

the option prices under the DRS model I. For the purpose of comparison, we also present

the option prices under the DRS model II, which was considered in Section 5.1 in Yuen

and Yang (2009). In the sequel, the DRS model always denotes the DRS model I

unless otherwise stated. In each state, the numbers in parentheses under option prices

denote the percentages of underestimation of the option prices under other models

compared with those under the DRS model I. As shown in Table 2.5.1, for the same

strike level, the option prices in State 1 are systematically higher than those in State

2 under all three models. This makes intuitive sense. State 1 (‘Bad’ economy) has

a lower interest rate and higher volatility compared with State 2 (‘Good’ economy).

Consequently, it is reasonable that the option prices in State 1 are higher than the

corresponding prices in State 2 due to the additional amount of risk premium required

to compensate for a ‘Bad’ economic condition. The option prices under the DRS

model II are lower than those under the DRS model I. This also makes intuitive sense

since additional risk premiums are required when the regime-switching risk is priced

under the DRS model I. It is worth mentioning that although the market prices of the

regime-switching risk are relatively small, the underestimation of option prices is not

negligible. If the regime-switching risk is not priced, the percentage of underestimation

reaches as high as 6.17% for an out-of-money option with K = 120 in a ‘Bad’ economy

(State 1). So it is of economic significance to price the regime-switching risk under

the DRS model. Since the risk-free interest rate and the volatility of the asset price,

as well as the generator of the Markov chain are assumed to be the same under the

DRS model and the SRS model, the DRS model apparently gives higher option prices,

due to additional jump risk induced by state transitions. If the DRS model is the
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more suitable or “true” model, which is indeed evidenced by the empirical studies in

Section 2.6, the option prices are underestimated under the SRS model. Note that the

option prices converge very quickly. In our illustration, we always adopt the number

of discretization M = 4096 2. Indeed, varying M from 512, 1024, 2048 to 4096, only

slight changes occur in the four decimal places of the option prices. There is almost

no difference between the option prices using M = 2048 and M = 4096. So adopting

M = 4096, we can achieve accuracy to four decimal places in the option prices.

Furthermore, we also assume β = 0.1, T = 1 and a = 0.5 to illustrate option prices

under the DRS model with different levels of the initial share price S0 and modified
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Figure 2.5.1: Option prices corresponding to d-

ifferent S0 and k in State 1
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Figure 2.5.2: Option prices corresponding to d-

ifferent S0 and k in State 2

strike prices k = log(K/S0) in both State 1 and State 2. Figs. 2.5.1 and 2.5.2 illustrate

that option prices increase with S0 for fixed k, while decreases with k for fixed S0 in both

State 1 and State 2. This feature is similar to that under the classical Black-Scholes

2To control the approximation errors, Carr and Madan (1999) discussed the selection of the upper

limit of the integral. Lee (2004) studied the discretization errors of approximation. Liu et al. (2006)

showed that the truncation errors are considerably small.
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model, even though the double regime-switching effect is present in our model.

We report the implied volatilities of the DRS model when β = 0.1, T = 1 and

a = 0.5 . Figs. 2.5.3 and 2.5.4 show the implied volatility surface with different
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Figure 2.5.3: Implied volatilities corresponding

to different k and T in State 1
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Figure 2.5.4: Implied volatilities corresponding

to different k and T in State 2

modified strike prices k and maturities T in State 1 and State 2. The volatilities in a

‘Bad’ economy (State 1) are higher than the volatilities in a ‘Good’ economy (State 2).

The implied volatilities show the volatility skewness effect in State 1 and the volatility

smile effect in State 2, respectively. This may attribute to the different model dynamics

in two states. It can be seen that the implied volatilities are relatively low for at-the-

money options in State 2 while they are higher for in-the-money and out-of-money

options. The volatility skewness and smile effects are more remarkable for options

with shorter maturities in both states.

Under the DRS model, we assume β = 0.1, S0 = 100 and T = 1. We provide the

sensitivity analysis for the option prices with respect to the rate of transition a. From

Figs. 2.5.5 and 2.5.6, we notice that the option prices decrease with a in State 1 while

increase with a in State 2. When a increases, the probability of the chain X transiting
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between State 1 and State 2 will increase. As explained earlier, the European options

are more expensive in State 1 and cheaper in State 2. Thus, the option prices in State

1 decrease with the probability of the chain transiting from State 1 to State 2. On

the contrary, the option prices in State 2 increase with the probability of the chain

changing from State 2 to State 1. This is the reason why the European options are

cheaper when a increases in State 1, while they are more expensive when a increases

in State 2. Note that the probability of the chain transiting between State 1 and State

2 is zero when a = 0. Under this degenerate case, the regime-switching effect does not

exist. Therefore, the option prices are the maximal in State 1 and the minimal in State

2 when a = 0.

Furthermore, we assume S0 = 100, T = 1 and a = 0.5. We provide sensitivity

analysis for the option prices with different β in both State 1 and State 2. Figs. 2.5.7

and 2.5.8 illustrate that the option prices increase with β in both State 1 and State

2. The explanation to this finding is that the larger β is, the larger the jump risk

is. Therefore, a higher jump-risk premium leads to a higher option price. It is worth
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ifferent β with K = 80, 90
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Figure 2.5.8: Option prices corresponding to d-

ifferent β with K = 100, 110

mentioning that the European call price increases rapidly as β does. In Figs. 2.5.7

and 2.5.8, the percentage price increases at different strike levels are approximately

70%−210% in State 1 and 60%−210% in State 2 as β goes from 0 to 1. This indicates

that the jump risk in the double regime-switching model has a material effect on the

option price. A comparison of Figs. 2.5.5 and 2.5.6 with Figs. 2.5.7 and 2.5.8 implies

that the option price is more sensitive to β than a. Therefore, during a structural

change in the underlying economy, the sudden jump in the share price level, rather

than the change of the model parameters in the dynamics of the share price, may have

a greater impact on the option price. This may provide some evidence for justifying

the use of the double regime-switching model.

2.6 Empirical studies

In this section, we provide an empirical application of the double regime-switching

model to illustrate the practical usefulness of the model, how well the DRS model might
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fit the observed data and how the DRS model might improve on prior models. More

specifically, we calibrate the model parameters to the market prices of the European call

options and compare the in-sample fitting errors and out-of-sample prediction errors

of different models, including the BS model, the SRS model and the DRS model. As

in numerical examples, we only consider a two-regime case for illustration.

For the sake of liquidity and availability of option prices data, we choose European

call option prices written on the S&P 500 for five consecutive trading days from 1

October 2012 to 5 October 2012 as our data set. These prices are close prices of cor-

responding options obtained from the Datastream Database of Reuters. Accordingly,

the close prices of the S&P 500 are collected as the initial prices of the underlying

asset. For each trading day, the data set consists of 39 call option prices, with 13

strikes ranging from 1300 to 1600 (i.e., the moneyness ratios are approximately 90%

to 110%), and 3 maturities: 17 November 2012, 16 March 2013 and 18 January 2014.

Consequently, our data set consists of 195 call option prices in total, where we take the

first 156 option prices from 1 October 2012 to 4 October 2012 as in-sample data, and

the rest 39 option prices from 5 October 2012 as out-of-sample data.

To focus on the stochastic movements of the risky share, we set the risk-free interest

rate to be r = (0.02, 0.04)′. Unlike the assumptions imposed in numerical examples,

the rate matrix A = [ajl]j,l=1,2 and the jump ratio matrix β = [βjl]j,l=1,2 are not

necessarily symmetric matrices in practice. Note that a11 = −a12, a22 = −a21 and

β11 = β22 = 0. As in Chen and Hung (2010), we employ the method of nonlinear

least squares for calibration using the in-sample data set. Particularly, we calibrate

the model parameters Θ := (µ1, µ2, σ1, σ2, a12, a21, β12, β21, p) by minimizing the sum of

squared errors between the market prices and model prices over the in-sample reference

period, where the model prices are weighted average of the option prices in State 1 and

State 2 calculated from Eq. (2.4.7) with weights p and 1 − p (0 ≤ p ≤ 1). Using the
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language of the Bayesian statistics, the weights p and 1− p can be thought of as priori

probabilities of the chain X in State 1 and State 2, respectively. Consequently, the

calibrated or implied parameter p may provide information about the market belief

on the economic condition, which may be used to represent prior information about

the economic condition in the Bayesian context. The parameter estimates of the DRS

model based on the in-sample data are as follows:

Θ = (0.0936, 0.0974, 0.1099, 0.0700, 0.3573, 0.4694, 0.0484,−0.2302, 0.9999) .

From the (local)-martingale condition (2.3.4), the market prices of the regime-switching

risk are eθ1β12 − 1 = −0.2428 in State 1 and eθ2β21 − 1 = 0.5042 in State 2, respectively.

This means that the market compensates a regime switch from State 1 to State 2 and

penalizes that from State 2 to State 1. This makes intuitive sense if State 1 represents

a ‘Bad’ economy while State 2 represents a ‘Good’ economy. Indeed, a regime switch

from State 1 to State 2 induces an upward jump in the price level of the risky share. An

investor could profit from a regime switch from State 1 to State 2. Consequently the

market price of the regime-switching risk in State 1 is negative. Similar explanations

apply to the positive market price of the regime-switching risk in State 2. From the

calibration results of the DRS model, the weight p = 0.9999 implies that the chain X

is almost surely in State 1 over the in-sample reference period. In other words, the

market may believe that the economy over the in-sample reference period is bad with

a 99.99% confidence level.

To show how well the DRS model might fit the observed data and how the DRS

model might improve the performances of some existing models, we compare the fitting

and prediction errors of the DRS model with those of the BS model and the SRS model,

whose model parameters are calibrated on the same in-sample data. The out-of-sample

prediction errors of each model are calculated using the implied parameters from the
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in-sample data. We adopt the root mean square error (RMSE) in percentage of the

initial share price as a proxy for the fitting and prediction errors. Table 2.6.1 reports

the RMSE of the in-sample and out-of-sample data for each model. As in Table 2.5.1,

Table 2.6.1: In-sample fitting errors and Out-of-sample prediction errors

Errors DRS model I DRS model II SRS model BS model

In-sample 0.1844% 0.2065% 0.2268% 0.5198%

Out-of-sample 0.3019% 0.3240% 0.5668% 0.9534%

the DRS model I and II represent the DRS model where the regime-switching risk

is priced and not priced, respectively. It is shown that the DRS model I performs

the best, being the one with the lowest RMSE both in fitting the in-sample data and

predicting the out-of-sample data. Although the in-sample fitting errors of the DRS

model and the SRS model are close to each other, the out-of-sample prediction error

of the SRS model is almost twice that of the DRS model I. The in-sample fitting and

out-of-sample errors of the BS model are about three times those of the DRS model

I. Consequently, the DRS model provides a significant empirical improvement on the

existing models, including the SRS model and the BS model.

2.7 Conclusions

We investigate option valuation under the double regime-switching model with an

emphasis on how the regime-switching risk is priced. A key feature of the double

regime-switching model is that a regime switch causes both a structural change in the

underlying share price dynamics and a sudden jump in the share price level. A gen-

eralized version of the regime-switching Esscher transform is used to select a pricing
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kernel. Using the FFT method, we obtain an integral pricing formula and numerically

and empirically implemented the European call option pricing. Numerical examples

illustrate the regime-switching effects, especially jumps in the price level caused by

transitions of the states, have a material effect on option prices. Our empirical results

based on real option prices data reveal that the double regime-switching model out-

performs the single regime-switching model and the Black-Scholes model in terms of

fitting and predicting option prices data.
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Chapter 3

Pricing variance swaps under a

stochastic interest rate and

volatility model with regime

switching

3.1 Introduction

Volatility derivatives, such as variance swaps, volatility swaps and VIX options, have

been playing an increasingly prominent role in the banking and finance industry. These

products can provide information for the volatility level of an underlying risky asset

and act as potential tools to manage the market volatility risk. Just as options began

trading shortly after the introduction of the Black-Scholes-Merton formula in the 1970s,

variance swaps was first launched in the 1990s partly stimulated by the seminal works

of Neuberger (1990, 1994) and Dupire (1992, 1993) on variance swaps pricing. Ever
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since then the rapid development of trading volatility derivatives has attracted consid-

erable attention from both academics and industrial practitioners. In fact, volatility

derivatives can be regarded as derivatives contracts written on a specified measure of

volatility, which represents risk and uncertainty of the underlying asset prices. There

are different measures of volatility, including realized volatility, implied volatility and

model-based volatility. Realized volatility (or historical volatility) refers to the stan-

dard deviation of financial returns over a fixed period in the past; implied volatility

is the volatility implied by the market price data of the option based on an assumed

option pricing formula, say, the Black-Scholes-Merton formula; model-based volatility

uses various versions of stochastic models to describe the evolution of volatility, such

as Heston’s model and ARCH/GARCH models. Interested readers may refer to Becker

et al. (2007) for predictability in future volatility of implied volatility approach and

model-based volatility approach.

Variance swaps have been actively traded in over-the-counter markets since the

collapse of the LTCM in late 1998. They allow one to speculate on or hedge risks

associated with volatility of some underlying assets, such as exchange rate, interest

rate, stock index and so on. A variance swap is a forward contract where the short

party pays a floating leg equal to the realized annual variance over the swap’s life at

maturity in exchange of receiving a fixed leg at maturity. Typically, the fixed leg of

a variance swap contract is the predetermined strike price such that the value of the

variance swap is zero at transaction. This is called a fair strike value of the variance

swap. Like other forward contracts, the dynamics of the interest rate (or the discount

factor) and the realized annual variance (i.e. the underlying asset) are two crucial

factors for pricing variance swaps. In what follows, various models on these two factors

are recalled dating back to the well-known Black-Scholes-Merton formula.

Black and Scholes (1973) and Merton (1973) established the theory of option pricing
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in their path-breaking works. Despite of the popularity of the Black-Scholes-Merton op-

tion pricing formula, it is well-documented that the assumption for the price dynamics

of the Black-Scholes-Merton model is not realistic. In the Black-Scholes-Merton model,

the interest rate is assumed to be constant, which is untenable in recent years due to

the more fluctuating feature of the market interest rate. Thus modeling the stochastic

behavior of the interest rate is a topic of crucial importance in finance. In the past

three decades or so, numerous short rate models for the term structure of interest rates

have been proposed. Some examples include those introduced by Vasicek (1977), Cox

et al. (1985), Hull and White (1990), and others. These models and their variants

treat the short rate dynamics as continuous-time diffusion processes or jump-diffusion

processes. An important feature of these short rate models is that the short rate pro-

cesses will eventually revert to a long term value. This is called the mean-reverting

property of short rates. This property is widely accepted in the theory and practice of

interest rate modeling.

Furthermore, the classical Black-Scholes-Merton model cannot explain the “volatil-

ity smile” phenomenon, which indicates that implied volatility varies across the strike

and the expiry. Stochastic volatility models are an approach to overcome this short-

coming of the Black-Scholes-Merton model. By assuming that the volatility of the

underlying price is a stochastic process rather than a constant, the pricing and hedging

of derivative securities become more accurate. Indeed, attempts have been made to

develop different stochastic volatility models, including the Heston (1993) model and

the Schöbel-Zhu (1999) model, which is a generalized version of the Stein-Stein (1991)

model.

Stochastic interest rate and volatility models mentioned above are all effective in a

short term. However, in the long run, there is strong evidence that structural changes

in macro-economic conditions indispensably lead to dramatic transitions in market
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fundamentals. Consequently, it is of practical relevance to develop stochastic interest

rate and volatility models incorporating the impact of regime shifts. Regime-switching

models provide a natural and convenient way to describe the effect of changes in macro-

economic conditions on price series and economic series. In particular, regime-switching

models do play an important role in interest rate and volatility modeling. The Marko-

vian regime-switching Hull-White model was considered in Elliott and Mamon (2003)

and Elliott and Wilson (2007). Adopting the concept of stochastic flows, Elliott and Siu

(2009) and Elliott et al. (2011) developed regime-switching term-structure models and

exponential-affine forms of bond prices. So et al. (1998) proposed a regime-switching

stochastic volatility model and conducted an empirical analysis for the S&P 500’s data.

Variance swaps for stochastic volatility driven by Markov process were also studied in

Elliott and Swishchuk (2007). Elliott et al. (2007) developed a Markov-modulated

version of the Heston model for pricing volatility derivatives. Elliott and Lian (2013)

presented a set of closed-form exact solutions of pricing discretely sampled variance

swaps and volatility swaps under a regime-switching Heston model. Some other appli-

cations of regime-switching models include Elliott and van der Hoek (1997) for asset

allocation, Elliott et al. (2005) and Mamon and Rodrigo (2005) for option valuation,

and Zhang et al. (2012) for mean-variance portfolio selection.

In this chapter, we consider the pricing of variance swaps under a stochastic in-

terest rate and volatility model with regime switches, which is flexible enough to in-

corporate interest rate risk, volatility risk and economic risk. More specifically, we

adopt the Markovian regime-switching Schöbel-Zhu-Hull-White hybrid model, where

the regime-switching Hull-White model drives the dynamics of interest rate and the

regime-switching Schöbel-Zhu model describes the stochastic movements of volatility.

In both models, some parameters, including the mean-reversion levels and the volatility

rates of both interest rate and volatility, are assumed to be modulated by a continuous-
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time, finite-state, observable Markov chain. The states of the chain represent different

states of the macro-economic conditions or different stages of a business cycle, which

are usually regarded as proxies for different levels of macro-economic indicators such as

Gross Domestic Product, Consumer Price Index, Sovereign Credit Ratings and others.

We decompose the valuation of variance swaps under our hybrid model into two steps.

In the first step, we adopt a PDE approach to derive an exponential form of the bond

price under the regime-switching Hull-White model and provide the related forward

measure via Girsanov’s theorem for the Brownian motion and the Markov chain. In

the second step, we obtain an integral representation for the price of variance swaps by

virtue of measure changes. In a two-state Markov chain case, we provide a numerical

analysis for the fair strike value of variance swaps against different values of the rate

matrices of the chain, which illustrates that the effect of both stochastic interest rate

and regime-switching is significant in the pricing of variance swaps.

The rest of this chapter is structured as follows. Section 3.2 describes the model

dynamics. In Section 3.3, we derive the bond pricing formula and the related for-

ward measure under the Markovian regime-switching Hull-White model. Section 3.4

considers the pricing of variance swaps under the Markovian regime-switching Schöbel-

Zhu-Hull-White hybrid model. In Section 3.5, we conduct a numerical analysis for the

prices of variance swaps. The final section makes the concluding remarks.

3.2 The model dynamics

We consider a continuous-time financial market with a finite time horizon T := [0, T ],

where T < ∞. Uncertainty over time is modeled by a complete probability space

(Ω,F ,P), which is assumed to be rich enough to describe all sources of uncertainties

in the model. Suppose that P is a risk-neutral probability measure. Here, like most of
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the literature about pricing interest-rate related derivatives, we start by the risk-neutral

probability measure P directly. We model the evolution of the state of an economy

over time by a continuous-time, finite-state, observable Markov chain {X(t)|t ∈ T }

on (Ω,F ,P) taking values in a finite state space S := {s1, s2, · · · , sN}. The states

of the chain X is interpreted as different states of an economy or different stages of

a business cycle. Without loss of generality, we adopt the formalism in Elliott et

al. (1994) and identify the states of the chain with a set of standard unit vectors

E := {e1, e2, · · · , eN} ⊂ ℜN , where the jth component of ei is the Kronecker delta

δij for each i, j = 1, 2, · · · , N . This is called the canonical state space representation

of the chain. Let Q := [qij]i,j=1,2,··· ,N be the rate matrix of the chain X under P,

where qij is a constant transition intensity of the chain X from state ej to state ei.

Let FX := {FX(t)|t ∈ T } be the right-continuous, P-complete, natural filtration

generated by the chain X. With the canonical state space representation of X, Elliott

et al. (1994) obtained the following semimartingale dynamics for the chain:

X(t) = X(0) +

∫ t

0

QX(s)ds+M(t) , t ∈ T . (3.2.1)

Here {M(t)|t ∈ T } is an ℜN -valued, (FX,P)-martingale. It is worth noting that

the bounded variation term in the semimartingale dynamics, which is not a (local)-

martingale, is predictable. This decomposition is called a canonical decomposition.

Consequently, the Markov chain X is a special semimartingale and the decomposition

(3.2.1) is unique.

In what follows, we specify the Markovian regime-switching Schöbel-Zhu-Hull-

White hybrid model for the short rate and the volatility. For modeling stochastic

interest rate, the Markovian regime-switching Hull-White model was used in Elliott

and Mamon (2003) and Elliott and Wilson (2007). For modeling stochastic volatili-

ty, the Markovian regime-switching Heston stochastic volatility model was adopted in
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Elliott et al. (2007) and Elliott and Lian (2013). The Markovian regime-switching

Schöbel-Zhu model proposed in this paper is a new model for stochastic volatility.

Let y′ be the transpose of a vector or a matrix y. ⟨·, ·⟩ is the scalar product in ℜN .

Define {α(t)|t ∈ T } and {a(t)|t ∈ T }, respectively, as the mean-reversion levels of

the short rate process and the volatility process:

α(t) := ⟨α,X(t)⟩ ,

and

a(t) := ⟨a,X(t)⟩ ,

where α := (α1, α2, · · · , αN)
′ ∈ ℜN with αi > 0, and a := (a1, a2, · · · , aN)′ ∈ ℜN with

ai > 0, for each i = 1, 2, · · · , N . They are interpreted as the long-run interest rates

and volatilities corresponding to the different possible states of an economy.

Let γ(t) and c(t) be the volatility rates of the short rate process and the stochastic

volatility process at time t, respectively. Then, we suppose that

γ(t) := ⟨γ,X(t)⟩ ,

and

c(t) := ⟨c,X(t)⟩ ,

where γ := (γ1, γ2, · · · , γN)′ ∈ ℜN with γi > 0, and c := (c1, c2, · · · , cN)′ ∈ ℜN with

ci > 0, for each i = 1, 2, · · · , N .

Let β(t) and b(t) be two parameters controlling the speed of mean reversion for

the short rate process and the volatility process, both of which are called the mean-

reversion coefficients, where β(t) and b(t) are assumed to be deterministic, bounded

functions of time t and β(t), b(t) > 0, ∀t ∈ T .
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Then we assume that under P, the evolution of the short rate process r := {r(t)|t ∈

T } and the volatility process σ := {σ(t)|t ∈ T } over time is governed by the following

Markovian regime-switching Schöbel-Zhu-Hull-White hybrid model: dr(t) = β(t)(α(t)− r(t))dt+ γ(t)dWr(t) ,

dσ(t) = b(t)(a(t)− σ(t))dt+ c(t)dWσ(t) ,
(3.2.2)

where Wr := {Wr(t)|t ∈ T } and Wσ := {Wσ(t)|t ∈ T } are two standard Brow-

nian motions with respect to their right-continuous, P-complete, natural filtrations

under P. Suppose that the two Brownian motions Wr and Wσ are correlated and the

instantaneous covariance is given by

Cov(dWr(t), dWσ(t)) = ρ(t)dt ,

where ρ(t) := ρ(t,X(t)) = ⟨ρ,X(t)⟩ and ρ := (ρ1, ρ2, · · · , ρN)′ ∈ ℜN with −1 < ρi < 1,

for each i = 1, 2, · · · , N .

Note that in the Schöbel-Zhu-Hull-White hybrid model, there is a positive proba-

bility that the interest rate or the volatility will take a negative value. However, the

Schöbel-Zhu-Hull-White model leads to some analytically tractable results for pricing

volatility derivatives, which will facilitate their uses in practical situations, one may

adjust the parameters in the Schöbel-Zhu-Hull-White model so that the probability of

getting a negative value of the interest rate or the volatility is small.

We finish this section by introducing the information structure of our model. Let

Fr := {F r(t)|t ∈ T } and Fσ := {Fσ(t)|t ∈ T } denote the right-continuous, P-

complete filtrations generated by the short rate process r and the volatility process σ.

We define two enlarged filtrations G := {G (t)|t ∈ T } and H := {H (t)|t ∈ T }, where

G (t) := F r(t) ∨ FX(t) ,
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and

H (t) := F r(t) ∨ Fσ(t) ∨ FX(t) .

Here G (t) is the minimal σ-field containing F r(t) and FX(t), and H (t) is the minimal

σ-field containing F r(t), Fσ(t) and FX(t).

3.3 Bond pricing and the forward measure

In this section, we employ the PDE approach to derive an exponential affine formula for

the price of a zero-coupon bond. This method is different from the concept of stochastic

flows adopted by Elliott and Siu (2009), Siu (2010) and Shen and Siu (2012) for pricing

bonds under the regime-switching Hull-White or Vasicek model. Furthermore, we give

the forward measure when taking the zero-coupon bond as the numéraire.

Since P is a risk-neutral probability measure, the price at time t ∈ T of a zero-

coupon bond with a unit payoff at maturity time T is:

P (t, T ) = E

[
exp

(
−

∫ T

t

r(s)ds

)∣∣∣∣G (t)

]
. (3.3.1)

Here E is an expectation under P. Note that (r,X) is a joint Markov process with

respect to the enlarged filtration G. Then

P (t, T ) = E

[
exp

(
−

∫ T

t

r(s)ds

)∣∣∣∣r(t),X(t)

]
:= F (t, T, r(t),X(t)) . (3.3.2)

Denote by

P̃ (t, T ) := e−
∫ t
0 r(s)dsP (t, T ) = e−

∫ t
0 r(s)dsF (t, T, r(t),X(t))

= E

[
exp

(
−

∫ T

0

r(s)ds

)∣∣∣∣G (t)

]
, t ∈ T ,

the discounted bond price process.
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In what follows, we suppose that for each x ∈ E , (t, r) → F (t, T, r,x) is continuously

differentiable with respect to t and twice continuously differentiable with respect to r,

where the corresponding partial derivatives are denoted by ∂F
∂t
, ∂F
∂r

and ∂2F
∂r2

.

Lemma 3.3.1. Under the following regularity conditions,

1. E[| exp (−
∫ T

0
r(t)dt)|] <∞;

2. E[
∫ T

0
|e−

∫ t
0 r(u)du ∂F

∂r
γ(t)|2dt] <∞;

the bond price process has the following regime-switching exponential-affine represen-

tation:

P (t, T ) = exp[A(t, T,X(t))−B(t, T )r(t)] , t ∈ T ,

where A(t, T,X(t)) and B(t, T ) are some “smooth” functions satisfying

A(t, T,X(t)) = log

{
E

[
exp

{∫ T

t

(
α(s)β(s)B(s, T )− 1

2
γ2(s)B2(s, T )

)
ds

}∣∣∣∣X(t)

]}
,

B(t, T ) =

∫ T

t

e−
∫ s
t β(u)duds , t ∈ T .

Proof. Firstly, we note that the discounted bond price process P̃ (t, T ), t ∈ T , is a

(G,P)-martingale. Applying Itô’s differentiation rule to P̃ (t, T ) = e−
∫ t
0 r(s)dsF (t, T, r(t),X(t))

gives:

dP̃ (t, T ) = e−
∫ t
0 r(s)ds

{
∂F

∂r
γ(t)dWr(t) + ⟨F(t, T, r(t)), dM(t)⟩

+

[
− r(t)F (t, T, r(t),X(t)) +

∂F

∂t
+
∂F

∂r
β(t)(α(t)− r(t))

+
1

2

∂2F

∂r2
γ2(t) + ⟨F(t, T, r(t)),QX(t)⟩

]
dt

}
, (3.3.3)

where F(t, T, r(t)) := (F (t, T, r(t), e1), F (t, T, r(t), e2), · · · , F (t, T, r(t), eN))′ ∈ ℜN .
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Since P̃ (t, T ) is a (G,P)-martingale, it must be a special semimartingale, which

admits a unique decomposition when the process of locally integrable variation is pre-

dictable. Consequently, the bounded variation terms, which are not martingales, in

the above stochastic integral representation must sum to zero. Therefore, the func-

tion (t, r,x) → F (t, T, r,x) solves the following regime-switching partial differential

equation (PDE):

−rF (t, T, r,x) + ∂F

∂t
+
∂F

∂r
β(t)(α(t)− r)

+
1

2

∂2F

∂r2
γ2(t) + ⟨F(t, T, r),Qx⟩ = 0 , (3.3.4)

with terminal condition:

F (T, T, r,x) = 1 .

We try the following regime-switching exponential-affine form solution:

F (t, T, r,x) = exp(A(t, T,x)−B(t, T )r) , (3.3.5)

with the terminal conditions A(T, T,x) = B(T, T ) = 0, for each x ∈ E . Note that

∂F

∂t
=

(
∂A

∂t
− r

∂B

∂t

)
F ,

∂F

∂r
= −BF ,

∂2F

∂r2
= B2F .

Substituting Eq. (3.3.5) into Eq. (3.3.4) gives

−
[
1 +

∂B

∂t
− β(t)B

]
r

+

[
∂A

∂t
− α(t)β(t)B +

1

2
γ2(t)B2 + Ã−1

⟨
Ã,Qx

⟩]
= 0 , (3.3.6)

where Ã := Ã(t, T,x) = exp(A(t, T,x)) and Ã := (Ã1, Ã2, · · · , ÃN)
′ ∈ ℜN with Ãi :=

Ã(t, T, ei), for each i = 1, 2, · · · , N .
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Since Eq. (3.3.6) must hold for all r, the coefficients of r in this equation must be

zeros. Then it implies that

B(t, T ) =

∫ T

t

e−
∫ s
t β(u)duds ,

and Ã(t, T,x) solves the following regime-switching ordinary differential equation (ODE):

∂Ã

∂t
− Ã

[
α(t)β(t)B − 1

2
γ2(t)B2

]
+
⟨
Ã,Qx

⟩
= 0 .

Using a version of the Feynman-Kac formula (see Theorem 6 in Elliott and Swishchuk

(2007)), we obtain the following expectation representation for Ã:

Ã(t, T,x) = E

[
exp

(∫ T

t

(
α(s)β(s)B(s, T )− 1

2
γ2(s)B2(s, T )

)
ds

∣∣∣∣X(t) = x

]
,

which obviously leads to the desired result.

Lemma 3.3.2. Define the forward measure PT equivalent to P on G (T ) by putting:

dPT

dP

∣∣∣∣
G (T )

= Λ(T ) :=
exp(−

∫ T

0
r(t)dt)

E[exp(−
∫ T

0
r(t)dt)]

. (3.3.7)

Assume that

E

[
exp

{
1

2

∫ T

0

γ2(t)B2(t, T )dt

}]
<∞ ,

and Ã(t, T,x) is a suitable function in the sense that

Ã(t, T,X(t))

Ã(0, T,X(0))
exp

{
−
∫ t

0

∂Ã
∂s

+QÃ(s, T,X(s))

Ã(s, T,X(s))
ds

}
, t ∈ T ,

is a (G,P)-martingale.

Then, under the forward measure PT ,
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1. the processes

W T
r (t) = Wr(t) +

∫ t

0

γ(s)B(s, T )ds , t ∈ T ,

and

W T
σ (t) = Wσ(t) +

∫ t

0

ρ(s)γ(s)B(s, T )ds , t ∈ T ,

are standard Brownian motions with respect to G;

2. the rate matrix of the chain X is QT (t) := [qTij(t)]i,j=1,2,··· ,N :

qTij(t) =


qij
Ã(t, T, ej)

Ã(t, T, ei)
, i ̸= j ,

−
∑
k ̸=i

qik
Ã(t, T, ek)

Ã(t, T, ei)
, i = j ,

(3.3.8)

and the semimartingale decomposition of the chain is given by:

X(t) = X(0) +

∫ t

0

QT (s)X(s)ds+MT (t) , t ∈ T , (3.3.9)

where {MT (t)|t ∈ T } is an ℜN -valued, (FX,PT )-martingale.

Proof. Recall Eq. (3.3.3) and the exponential-affine form of the bond price process, we

have

dP (t, T )

P (t, T )
= r(t)dt− γ(t)B(t, T )dWr(t) + Ã(t, T,X(t))−1

⟨
Ã(t, T ), dM(t)

⟩
.(3.3.10)

Denote by

Λ(t) := E[Λ(T )|F(t)] =
P̃ (t, T )

P (0, T )
= e−

∫ t
0 r(s)ds P (t, T )

P (0, T )
.

Then, from Eq. (3.3.10)

dΛ(t)

Λ(t)
=

dP (t, T )

P (t, T )
− r(t)dt
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= −γ(t)B(t, T )dWr(t) + Ã(t, T,X(t))−1
⟨
Ã(t, T ), dM(t)

⟩
. (3.3.11)

Since Wr and M are independent under P, it is easy to see that Λ(t) = Λ1(t) · Λ2(t),

where

dΛ1(t)

Λ1(t)
= −γ(t)B(t, T )dWr(t) ,

and

dΛ2(t)

Λ2(t)
= Ã(t, T,X(t))−1

⟨
Ã(t, T ), dM(t)

⟩
.

Hence

Λ1(t) = exp

{
−

∫ t

0

γ(s)B(s, T )dWr(s)−
1

2

∫ t

0

γ2(s)B2(s, T )ds

}
,

and

Λ2(t) =
Ã(t, T,X(t))

Ã(0, T,X(0))
exp

{
−
∫ t

0

∂Ã
∂s

+QÃ(s, T,X(s))

Ã(s, T,X(s))
ds

}
.

From the assumption in this lemma, the (G,P)-(local)-martingales {Λ(t)|t ∈ T },

{Λ1(t)| t ∈ T } and {Λ2(t)|t ∈ T } are also (G,P)-martingales. Therefore, the forward

measure PT defined by Eq. (3.3.7) is indeed a probability measure. The desired result

follows from Girsanov’s theorem for the Brownian motion and Lemma 12.3.3 in Rolski

et al. (1999) or Proposition 5.1 in Palmowski and Rolski (2002).

3.4 Pricing variance swaps

In this section, we derive the price of a variance swap under the regime-switching

Schöbel-Zhu-Hull-White hybrid model. By changing the risk-neutral measure to the
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forward one, we take out the stochastic discount factor from the expectation and sep-

arate the interest rate risk and the volatility risk in a variance swap. Then the price

of a variance swap and the fair strike value are represented in integral forms.

A variance swap is a forward contract written on realized annual variance. Under

the continuous sampling scheme, the price of a T -maturity variance swap at time 0 is

C(0, T ) = E

[
exp

(
−

∫ T

0

r(t)dt

)(
σ2
R −Kvar

)]
, (3.4.1)

where the realized annual variance is given by

σ2
R :=

1

T

∫ T

0

v(t)dt , (3.4.2)

and the (instantaneous) variance process v := {v(t)|t ∈ T } has the following relation-

ship with the (instantaneous) volatility process σ:

v(t) := σ2(t) , t ∈ T .

In practice, the realized annual variance is evaluated based on predetermined discrete

sampling scheme, which is clearly specified for a variance swap. The price of a variance

swap defined by Eqs. (3.4.1) and (3.4.2) is only a continuous approximation to that of

the actual contract. Since our main concern is the joint effect of interest rate, volatility

and regime-switching on the price of a variance swap, we only consider the continuous

sampling approximation in this paper. This approximation was also adopted by Elliott

and Swishchuk (2007), Elliott et al. (2007), and others.

To simplify our notation, we write in the following that

κ(t, T ) := a(t)b(t)− c(t)ρ(t)γ(t)B(t, T ) .

Then,

κ(t, T ) = κ(t, T,X(t)) = ⟨κ(t, T ),X(t)⟩ ,
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where κ(t, T ) := (κ1(t, T ), κ2(t, T ), · · · , κN(t, T ))′ ∈ ℜN and for each i = 1, 2, · · · , N ,

κi(t, T ) = aib(t)− ciρiγiB(t, T ) . (3.4.3)

With a little abuse of notation, we denote κ2(t, T ) := (κ21(t, T ), κ
2
2(t, T ), · · · , κ2N(t, T ))′ ∈

ℜN and φ2 := (φ2
1, φ

2
2, · · · , φ2

N)
′ ∈ ℜN , φ = a, c. Therefore,

κ2(t, T ) =
⟨
κ2(t, T ),X(t)

⟩
,

and

φ2(t) =
⟨
φ2,X(t)

⟩
.

Before deriving the price of a variance swap, we present the following useful lemma

about the expectation of the chain X.

Lemma 3.4.1. Let X be a Markov chain defined in Section 2. Then

E[X(t)] = eQtX(0) , (3.4.4)

and

ET [X(t)] = Φ(t)X(0) , t ∈ T , (3.4.5)

where the matrix-valued function Φ(t) ∈ ℜN×N is the fundamental solution of the

following matrix-valued ODE:

dΦ(t)

dt
= QT (t)Φ(t) , Φ(0) = I . (3.4.6)

Here ET is an expectation under the forward measure PT .

Proof. Taking expectation on both sides of Eq. (3.2.1), we have

E[X(t)] = X(0) +

∫ t

0

QE[X(s)]ds , (3.4.7)

which immediately leads to Eq. (3.4.4). The proof of Eq. (3.4.5) is similar. Hence we

do not repeat it here.
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The following theorem is the main result of this section, which gives the price of a

variance swap under the regime-switching Schöbel-Zhu-Hull-White hybrid model.

Theorem 3.4.1. Under the Markovian regime-switching Schöbel-Zhu-Hull-White hy-

brid model, the price of a variance swap has the following integral representation:

C(0, T )

=
P (0, T )

T

∫ T

0

{
e−2

∫ t
0 b(s)ds[c2(0) + 2κ(0, T )σ(0)]

+ 2

∫ t

0

e−2
∫ t
s b(u)due−

∫ s
0 b(u)duκ(0, T )σ(0)ds+

∫ t

0

e−2
∫ t
s b(u)du

[ ⟨
c2,Φ(s)X(0)

⟩
+ 2

∫ s

0

e−
∫ s
z b(u)du

⟨
κ2(z, T ),Φ(z)X(0)

⟩
dz

]
ds

}
dt− P (0, T )Kvar , (3.4.8)

and the fair strike value is given by:

Kvar =
1

T

∫ T

0

{
e−2

∫ t
0 b(s)ds[c2(0) + 2κ(0, T )σ(0)]

+2

∫ t

0

e−2
∫ t
s b(u)due−

∫ s
0 b(u)duκ(0, T )σ(0)ds

+

∫ t

0

e−2
∫ t
s b(u)du

[ ⟨
c2,Φ(s)X(0)

⟩
+2

∫ s

0

e−
∫ s
z b(u)du

⟨
κ2(z, T ),Φ(z)X(0)

⟩
dz

]
ds

}
dt . (3.4.9)

Proof. By change of measures, Eq. (3.4.1) becomes

C(0, T ) = P (0, T )ET [σ2
R −Kvar]

= P (0, T )

{
1

T

∫ T

0

ET [v(t)]dt−Kvar

}
= P (0, T )

{
1

T

∫ T

0

ET
[
ET [v(t)|FX(t)]

]
dt−Kvar

}
. (3.4.10)

Under PT , the dynamics of stochastic volatility are governed by:

dσ(t) = b(t)(a(t)− σ(t))dt+ c(t)(dW T
σ (t)− ρ(t)γ(t)B(t, T ))
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=
[
κ(t, T )− b(t)σ(t)

]
dt+ c(t)dW T

σ (t) . (3.4.11)

Conditioning both sides of Eq. (3.4.11) on FX(t) under PT , we have

dET [σ(t)|FX(t)] =
[
κ(t, T )− b(t)ET [σ(t)|FX(t)]

]
dt . (3.4.12)

Solving Eq. (3.4.12) gives

ET [σ(t)|FX(t)] = e−
∫ t
0 b(s)dsσ(0) +

∫ t

0

e−
∫ t
s b(u)duκ(s, T )ds .

In the same vein, we can derive that

ET [κ(t, T )σ(t)|FX(t)] = e−
∫ t
0 b(s)dsκ(0, T )σ(0) +

∫ t

0

e−
∫ t
s b(u)duκ2(s, T )ds . (3.4.13)

Under PT , applying Itô’s differentiation rule to v(t) = σ2(t) gives

dσ2(t) =
[
c2(t) + 2κ(t, T )σ(t)− 2b(t)σ2(t)

]
dt+ 2c(t)σ(t)dW T

σ (t) . (3.4.14)

Conditioning both sides of Eq. (3.4.14) on FX(t) under PT gives

dET [σ2(t)|FX(t)] =
[
c2(t) + 2ET [κ(t, T )σ(t)|FX(t)]

−2b(t)ET [σ2(t)|FX(t)]
]
dt . (3.4.15)

Substituting Eq. (3.4.13) and solving Eq. (3.4.15), we have

ET [σ2(t)|FX(t)] = e−2
∫ t
0 b(s)ds[c2(0) + 2κ(0, T )σ(0)]

+

∫ t

0

e−2
∫ t
s b(u)du

{
c2(s) + 2e−

∫ s
0 b(u)duκ(0, T )σ(0)

+2

∫ s

0

e−
∫ s
z b(u)duκ2(z, T )dz

}
ds . (3.4.16)

Using Lemma 3.4.1 and taking expectation on both sides, we obtain

ET [v(t)] = ET
[
ET [σ2(t)|FX(t)]

]
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= e−2
∫ t
0 b(s)ds[c2(0) + 2κ(0, T )σ(0)] + 2

∫ t

0

e−2
∫ t
s b(u)due−

∫ s
0 b(u)duκ(0, T )σ(0)ds

+

∫ t

0

e−2
∫ t
s b(u)du

[ ⟨
c2,Φ(s)X(0)

⟩
+2

∫ s

0

e−
∫ s
z b(u)du

⟨
κ2(z, T ),Φ(z)X(0)

⟩
dz

]
ds . (3.4.17)

Consequently, substituting Eq. (3.4.17) into Eq. (3.4.10) gives (3.4.8), the price of

a variance swap under the Schöbel-Zhu-Hull-White hybrid model. Furthermore, it is

not difficult to see that the fair strike value of a variance swap is represented by the

integral form (3.4.9).

The following corollary is a special case of Theorem 3.4.1. In Corollary 3.4.1, the

effect of stochastic interest rate is degenerate. More specifically, it gives the price of a

variance swap under a regime-switching Schöbel-Zhu model with deterministic interest

rate.

Corollary 3.4.1. Under the Markovian regime-switching Schöbel-Zhu model with a

deterministic interest rate {r(t)|t ∈ T }, the price of a variance swap has the following

integral representation:

C(0, T ) =
e−

∫ T
0 r(t)dt

T

∫ T

0

{
e−2

∫ t
0 b(s)ds[c(0) + 2a(0)b(0)σ(0)]

+2

∫ t

0

e−2
∫ t
s b(u)due−

∫ s
0 b(u)dua(0)b(0)σ(0)ds+

∫ t

0

e−2
∫ t
s b(u)du

[ ⟨
c2, eQsX(0)

⟩
+2

∫ s

0

e−
∫ s
z b(u)dub2(z)

⟨
a2, eQzX(0)

⟩
dz

]
ds

}
dt− e−

∫ T
0 r(t)dtKvar , (3.4.18)

and the fair strike value is given by:

Kvar =
1

T

∫ T

0

{
e−2

∫ t
0 b(s)ds[c(0) + 2a(0)b(0)σ(0)]

+2

∫ t

0

e−2
∫ t
s b(u)due−

∫ s
0 b(u)dua(0)b(0)σ(0)ds
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+

∫ t

0

e−2
∫ t
s b(u)du

[ ⟨
c2, eQsX(0)

⟩
+2

∫ s

0

e−
∫ s
z b(u)dub2(z)

⟨
a2, eQzX(0)

⟩
dz

]
ds

}
dt . (3.4.19)

3.5 Numerical Implementation

In this section, we perform a numerical analysis for pricing variance swaps under our

proposed model. To simplify our computation, we consider a two-state Markov chain

X, where State 1 and State 2 of the chain represent a ‘Good’ economy and a ‘Bad’

economy, respectively. We write X(t) = (1, 0)′ and X(t) = (0, 1)′, ∀t ∈ T , for State 1

and State 2.

First of all, we give configurations of the parameter values. Assume that the rate

matrix of the chain X under P is

Q =

 −q q

q −q

 ,

where q takes values in [0, 1]. For simplicity, we consider two positive constants con-

trolling the speed of mean reversion for the short rate and the volatility, β = 0.2 and

b = 4. The values of the other parameters of the Schöbel-Zhu-Hull-White hybrid model

are given by:

α = (α1, α2)
′ = (0.04, 0.02)′ , a = (a1, a2)

′ = (0.2, 0.4)′ ,

γ = (γ1, γ2)
′ = (0.02, 0.04)′ , c = (c1, c2)

′ = (0.2, 0.4)′ .

Then the two-state Schöbel-Zhu-Hull-White hybrid model becomes dr(t) = β(α1 − r(t))dt+ γ1dWr(t)

dσ(t) = b(a1 − σ(t))dt+ c1dWσ(t)
, if X(t) = (1, 0)′ , (3.5.1)
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and  dr(t) = β(α2 − r(t))dt+ γ2dWr(t)

dσ(t) = b(a2 − σ(t))dt+ c2dWσ(t)
, if X(t) = (0, 1)′ , (3.5.2)

where the instantaneous covariance of Wr and Wσ in State i is assumed to be ρi,

i = 1, 2, and ρ = (ρ1, ρ2) = (−0.25,−0.5). The initial values of the interest rate

and the volatility are r(0) = 0.02 and σ(0) = ⟨(0.2, 0.4),X(0)⟩. If the interest rate

is assumed to be constant (i.e. r(t) = 0.02, t ∈ T ), the two-state Schöbel-Zhu-Hull-

White (SZHW) hybrid model becomes the two-state Schöbel-Zhu (SZ) model.

From Lemma 3.3.1, Lemma 3.3.2, Theorem 3.4.1 and Corollary 3.4.1, we calculate

the fair strike values of variance swaps with a maturity T = 1 with stochastic interest

rate and deterministic interest rate. Figs. 3.5.1 and 3.5.2 depict the plots of the fair

strike values of variance swaps against different values of the rate matrices. Note that

the fair strike value of a variance swap has a positive relationship with the price of the

variance swap. Therefore the larger the fair strike value is, the higher the price of the

variance swap is. From Figs. 3.5.1 and 3.5.2, we have the following findings:

1. The price of a variance swap under the regime-switching Schöbel-Zhu-Hull-White

hybrid model is higher than that under the regime-switching Schöbel-Zhu model.

2. The price of a variance swap in State 1 is lower than that in State 2.

3. The price of a variance swap increases with q in State 1 while decreases with q

in State 2.

4. In State 1, the price of a variance swap is minimum when q = 0; In State 2, it is

maximum when q = 0.

Our explanations for the above findings are listed below:
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Figure 3.5.1: Fair strike value of variance

swaps against q in State 1
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Figure 3.5.2: Fair strike value of variance

swaps against q in State 2

1. Compared with the regime-switching Schöbel-Zhu model, the regime-switching

Schöbel-Zhu-Hull-White hybrid model incorporates the effect of stochastic inter-

est rate, which leads to a higher price of the variance swap due to fluctuations in

the interest rate.

2. Since the rate matrices Q are symmetric, the probability of the chain transiting

from State 1 to State 2 within a fixed period is equal to the probability of the

chain transiting from State 2 to State 1. In other words, the probabilities of the

chain remaining in State i within the same period are equal, i = 1, 2. Variance

swaps are cheaper (more expensive) when the interest rate is higher (lower) and

the volatility is lower (higher). Hence the price of the variance swap in State 1

(a “Good” economy with a high interest rate and a low volatility) is lower than

that in State 2 (a “Bad” economy with a low interest rate and a high volatility).

3. The probability of the chain transiting from State 1 to State 2 increases with q.

As explained in Point 2, variance swaps are cheaper (more expensive) when the
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interest rate is higher (lower) and the volatility is lower (higher). Furthermore,

the interest rate is higher and the volatility is lower in State 1 than in State 2.

Thus, the price of variance swaps in State 1 (State 2) increases (decreases) with

the probability of the chain transiting from State 1 to State 2.

4. The probability of the chain transiting from State 1 to State 2 or from State 2

to State 1 is zero when q = 0. That is, there is no regime-switching effect when

q = 0. However, if the regime-switching effect is present, the possibilities of the

chain transiting from State 1 to State 2 (from State 2 to State 1) would make

the price of the variance swap higher (lower).

3.6 Conclusion

As shown in the above theoretical work and numerical analysis, both stochastic in-

terest rate and regime-switching have a considerable impact on the prices of variance

swaps. Although variance swaps are volatility derivatives, it is unreasonable to ignore

stochastic interest rate and regime-switching in the pricing. Our pricing framework

merits extension to other stochastic interest rate and stochastic volatility models, such

as the regime-switching Heston-Hull-White hybrid model. However, if stochastic inter-

est rate and volatility are correlated, the square-root term in the Heston model would

drastically complicate the derivation of the analytical pricing formula, especially when

the regime-switching effect is present. This difficulty will be one of our potential re-

search topics in the future. Other potential research topics include the price dynamics

of variance swaps and the valuation of swaptions. The former is important for portfolio

optimization problems with variance swaps as investment vehicles. Once the dynamics

of variance swaps are obtained, we can consider using variance swaps to hedge volatil-
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ity risk in portfolio selection problems. The latter is an interesting but challenging

problem. The challenge is that the payoff of swaptions depends on the whole path of

variance process rather than only the terminal value. The Fourier transform as adopted

in Chapter 2 or the Laplace transform of the first passage time of variance process may

be useful to solve this challenging problem.
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Chapter 4

Mean-variance portfolio selection

with uncertain investment horizon

under a regime-switching

jump-diffusion model

4.1 Introduction

Portfolio selection problem is of great importance in both the theory and practice of

insurance, banking and finance. The modern portfolio selection theory can be traced

back to the seminal work of Markowitz (1952), where the mean-variance formulation

was developed in a single-period setting. Ever since then, there has been a growing

interest in extending and generalizing Markowitz’s ground-breaking work. Using the

embedding techniques, Li and Ng (2000) solved analytically the mean-variance portfolio

selection problem in a multi-period setting. Applying the stochastic linear-quadratic
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theory, Zhou and Li (2000) investigated a continuous-time mean-variance portfolio

selection problem.

Although Zhou and Li (2000)’s results on the continuous-time mean-variance prob-

lem are mathematically elegant, the use of the Geometric Brownian Motion (GBM) for

the asset price dynamics has long been a controversial issue. Please refer to Chapter 1

for the shortcomings of the GBM model. Indeed, more economic insights and implica-

tions can be gained if the investment opportunity set is allowed to vary stochastically

over time. In recent years, there has been a growing interest in the mean-variance

portfolio selection problem under more realistic continuous-time asset price models,

which may incorporate aforementioned realistic features of assets’ returns and stochas-

tic investment sets. Some examples include stochastic interest rate models (Ferland

and Watier (2010)), stochastic volatility models (Dai (2011)), stochastic appreciation

rate models (Chiu and Wong (2011)) and so on.

In the new millennium, there arises a growing interest in the mean-variance portfolio

selection problems under regime-switching models. Zhou and Yin (2003) considered the

mean-variance problem under a continuous-time Markovian regime-switching model.

They formulated the problem as a stochastic linear-quadratic (LQ) optimization prob-

lem and obtained analytical results for the efficient portfolio and the efficient frontier.

Zhang et al. (2012) developed a sufficient maximum principle for a stochastic optimal

control problem under Markovian regime-switching jump-diffusion models. They ap-

plied the sufficient maximum principle to discuss the mean-variance problem. Donnelly

and Heunis (2012) applied a conjugate duality approach to study the mean-variance

problem with constraints under a random regime-switching model, where the market

parameters are random processes adapted to the joint filtration of the Brownian mo-

tion and the Markov chain. They provided explicit optimal portfolios in some special

cases. For the mean-variance approach to asset-liability management problems under
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regime-switching models, interested readers may refer to Chen et al. (2008), Xie (2012)

and Wu (2013).

In this chapter, we study a continuous-time mean-variance portfolio selection prob-

lem with uncertain investment horizon under a Markovian regime-switching jump-

diffusion model. Specifically, we assume that market parameters, including interest

rate, appreciation rate, volatility rate, jump ratio, Lévy density of random measure and

intensity of uncertain time, are all modulated by a continuous-time, finite-state, observ-

able Markov chain. The Markovian regime-switching jump-diffusion model provides us

with flexibility in modeling the asset price dynamics with not only switching regimes

but sudden jumps and hence integrates the advantages of both the regime-switching

GBM models and the jump-diffusion models. We consider an economic agent allocates

his/her wealth into one risky-free bond and multiple risky shares so as to minimize

the risk measured by the variance of his/her portfolio for some given expected return.

Unlike the traditional literature on the mean-variance problems with fixed investment

horizon, the agent does not know with certainty when the portfolio will be liquidated.

Interested readers may refer to Li et al. (2008) and Wu and Li (2011) and references

therein for the uncertainty of investment horizon in a multi-period setting up. To our

best knowledge, the continuous-time mean-variance problem with uncertain investment

horizon and regime-switching has not been considered in the literature. This chapter

will fill in this gap. We first transform and formulate the original problem as an un-

constrained stochastic optimal control problem with fixed investment horizon, which is

called a min-max problem. We employ the dynamic programming principle to solve the

problem. We provide a verification theorem for a Markovian regime-switching HJB e-

quation related to the control problem. By solving the regime-switching HJB equation,

we obtain explicit expressions for the efficient portfolio and the efficient frontier. Even

though the investment horizon is uncertain, we prove that the mutual fund theorem
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still holds in this general setting. To see the impact of uncertain investment horizon,

regime switching and sudden jump on the mean-variance problem, we provide several

numerical examples in a two-regime economy to illustrate our results.

The rest of this chapter is structured as follows. Section 4.2 introduces the model

dynamics and formulates our mean-variance problem. In Section 4.3, we solve the

quadratic loss minimization problem related to the mean-variance problem. Section

4.4 derives the efficient portfolio, the efficient frontier and the mutual fund theorem.

In Section 4.5, we provide several numerical examples to illustrate our results. Section

4.6 gives concluding remarks.

4.2 Problem formulation

In this section, we first introduce notation to be used throughout this paper. Then

we formulate the mean-variance portfolio selection problem with uncertain investment

horizon under a regime-switching jump-diffusion model. Finally, we transform the

original problem to an unconstrained stochastic optimal control problem with fixed

investment horizon, which can be readily solved by the dynamic programming principle.

Throughout this chapter, the following notation will be frequently used:

C⊤: the transpose of any vector or matrix C;

C−1: the inverse of a square matrix C;

tr(C): the trace of a square matrix C;

⟨C,D⟩: the inner product of C and D, that is ⟨C,D⟩ := tr(C⊤D);

||C||: the Euclidean norm of C, that is ||C||2 = ⟨C,C⟩;

72



diag(C): the diagonal matrix with the elements of a vector C on the diagonal.

We consider a filtered probability space (Ω,F ,F,P) satisfying the usual conditions,

where F is a right-continuous, P-complete filtration generated by a Brownian motion,

a Poisson random measure and a Markov chain, which will be defined below. Let

T := [0, T ] denote a finite time horizon, where T < ∞. We consider a continuous-

time, finite-state, homogeneous Markov chain X := {X(t)|t ∈ T } on (Ω,F ,P) with

state space S := {s1, s2, · · · , sN}. Without loss of generality, we identify the state space

of the chain to be a finite set of unit vectors E := {e1, e2, · · · , eN} ⊂ ℜN , where the

j-th component of ei is the Kronecker delta δij, for each i, j = 1, 2, · · · , N . Here E is

called the canonical state space of the chain X. To specify the statistical properties of

the chain X, we define a constant rate matrix or generator, A := [aij]i,j=1,2,··· ,N , of the

chain X under P , where, for i ̸= j, aij is the instantaneous intensity of the transition

of the chain X from state ej to state ei. Note that aij ≥ 0, for i ̸= j and
∑N

i=1 aij = 0,

so aii ≤ 0. With the canonical representation of the state space of the chain, Elliott et

al. (1994) provided the following semimartingale dynamics of the chain X

X(t) = X(0) +

∫ t

0

AX(s)ds+M(t) , t ∈ T , (4.2.1)

where {M(t)|t ∈ T } is an ℜN -valued, (F,P)-martingale.

Let W := {W (t)|t ∈ T } = {(W 1(t),W 2(t), · · · ,W d(t))⊤|t ∈ T } be a d-dimensional

standard Brownian motion on (Ω,F ,F,P). We now introduce a Markov regime-

switching Poisson random measure. Let ℜ0 := ℜ \ {0} and B(ℜ0) be the Borel σ-field

generated by open subset O of ℜ0, whose closure O does not contain the point 0. Sup-

pose that γl(dt, dz), l = 1, 2, · · · ,m, are independent Poisson random measures on the

product measurable space (T ×ℜ0,B(T )×B(ℜ0)) under P . Assume that the Poisson

random measure γl(dt, dz) has the following Markov-modulated compensator

νlX(t−)(dz)dt =
⟨
νl(dz),X(t−)

⟩
dt ,
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where

νl(dz) := (νle1(dz), ν
l
e2
(dz), · · · , ν leN (dz))

⊤ ∈ ℜN .

For each l = 1, 2, · · · ,m, write

γ̃lX(t−)(dt, dz) := γl(dt, dz)− νlX(t−)(dz)dt ,

for a compensated Poisson random measure, which is a real-valued, (F,P)-martingale.

Here we use the subscript X(t−) in νlX(t−)(dz), l = 1, 2, · · · ,m to indicate the de-

pendence of the probability law of the Poisson random measure on the Markov chain.

Indeed, for each l = 1, 2, · · · ,m, νlei(dz) is the Lévy density of jump size of the random

measure γl(dt, dz) if and only if X(t−) = ei. To unburden our notation, write

γ̃X(t−)(dt, dz) := (γ1(dt, dz)− ν1X(t−)(dz)dt, · · · , γm(dt, dz)− νmX(t−)(dz)dt)
⊤ ∈ ℜm ,

for anm-dimensional compensated Poisson randommeasure, which is an (F,P)-martingale.

To simplify our discussion, we assume that the Brownian motion and the Poisson

random measure are stochastically independent under P. Let FW := {FW (t)|t ∈ T },

FX := {FX(t)|t ∈ T } be the natural filtrations generated by the Brownian motion

W and the Markov chain X, respectively, and Fγ := {Fγ(t)|t ∈ T } be the natural

filtration generated by the Poisson random measure, i.e.

Fγ(t) := σ

(∫ s

0

∫
E

γ(dt, dz); 0 ≤ s ≤ t, E ∈ B(ℜ0)

)
.

Let F := {F(t)|t ∈ T } be a right-continuous, P-complete, enlarged filtration generated

by the Brownian motion, the Poisson random measure and the Markov chain, i.e.

F(t) :=
∩
s>t

(FW (s) ∨ Fγ(s) ∨ FX(s) ∨N ) ,
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where N denotes all P-null sets and σ1 ∨ σ2 denotes the minimal σ-field generated by

both σ1 and σ2.

We consider a financial market consisting of n + 1 primitive assets, namely, one

risk-free bond and n risky shares. Let r(t,X(t)) be the instantaneous risk-free rate at

time t, which is modulated by the chain X as follows:

r(t,X(t)) := ⟨r(t),X(t)⟩ ,

where

r(t) := (r(t, e1), r(t, e2), · · · , r(t, eN))⊤ ∈ ℜN .

Here r(t, ei) is a positive, deterministic, uniformly bounded function in time t, for each

i = 1, 2, · · · , N . Then the dynamics of the risk-free bond S0 := {S0(t)|t ∈ T } evolves

as

dS0(t) = r(t,X(t))S0(t)dt, S0(0) = 1 . (4.2.2)

The other n assets are risky shares whose price processes Sk := {Sk(t)|t ∈ T }, for

each k = 1, 2, · · · , n, are governed by the following regime-switching jump-diffusion

stochastic differential equations

dSk(t)

Sk(t−)
= µk(t,X(t−))dt+

d∑
j=1

σkj(t,X(t−))dW j(t)

+
m∑
l=1

∫
ℜ0

ηkl(t, z,X(t−))γ̃lX(t−)(dt, dz) , (4.2.3)

where µk(t,X(t)) is the appreciation rate of the k-th share at time t; σkj(t,X(t)) is

the volatility of the k-th share corresponding to the random shock from the Brownian

motion W j at time t; ηkl(t, z,X(t)) is the jump ratio in the price level of the k-th share

attributed to the l-th random jump with size z at time t.
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Furthermore, we assume that µk(t,X(t)), σkj(t,X(t)) and ηkl(t, z,X(t)), for each

j = 1, 2, · · · , d, k = 1, 2, · · · , n and l = 1, 2, · · · ,m, are also modulated by the chain X

as follows

µk(t,X(t)) := ⟨µk(t),X(t)⟩ ,

σkj(t,X(t)) := ⟨σkj(t),X(t)⟩ ,

ηkl(t, z,X(t)) := ⟨ηkl(t, z),X(t)⟩ ,

where

µk(t) := (µk(t, e1), µk(t, e2), · · · , µk(t, eN))
⊤ ∈ ℜN ,

σkj(t) := (σkj(t, e1), σkj(t, e2), · · · , σkj(t, eN))⊤ ∈ ℜN ,

ηkl(t, z) := (ηkl(t, z, e1), ηkl(t, z, e2), · · · , ηkl(t, z, eN))⊤ ∈ ℜN .

Here µk(t, ei), σkl(t, ei) and ηkj(t, z, ei) are deterministic, uniformly bounded functions

in time t, satisfying σkl(t, ei) > 0 and ηkj(t, z, ei) > −1, for each t ∈ T and i =

1, 2, · · · , N . To simplify our notation, we write

σ(t, ei) := [σkj(t, ei)]n×d ∈ ℜn×d , η(t, z, ei) := [ηkl(t, z, ei)]n×m ∈ ℜn×m ,

for the volatility matrix and the jump ratio matrix of the risky shares, for each i =

1, 2, · · · , N , respectively. We assume throughout this paper that the following non-

degeneracy condition is satisfied, that is

Θ(t, ei) := σ(t, ei)σ(t, ei)
⊤ +

∫
ℜ0

η(t, z, ei)diag(νei(dz))η(t, z, ei)
⊤ ≥ δIn×n , (4.2.4)

where

νei(dz) := (ν1ei(dz), ν
2
ei
(dz), · · · , νmei (dz))

⊤ ∈ ℜm ,
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for each t ∈ T and i = 1, 2, · · · , N . Here δ is some positive constant and In×n is an

(n× n)-identity matrix. For notational simplicity, we denote by

ρ(t, ei) := B(t, ei)
⊤Θ(t, ei)

−1B(t, ei) ,

for each t ∈ T and i = 1, 2, · · · , N .

In what follows, we consider the situation where an economic agent invests his

wealth into the financial market. Denote by πk(t), the amount of the agent’s wealth in-

vested in the k-th risky share at time t. We call π(·) := {π(t)|t ∈ T } = {(π1(t), π2(t), · · · ,

πk(t))
⊤|t ∈ T } a portfolio strategy of the agent. Denote by Y (t) := Y π(t) the wealth

of the agent, i.e. the total wealth of the agent at time t corresponding to the portfolio

strategy π(·). Note that once π(·) is determined, the amount of the agent’s wealth

invested in the risk-free bond is completely specified and equals Y (t)−
∑n

k=1 πk(t) at

time t. Suppose that (1) the assets can be traded continuously over time; (2) there

are no transaction costs, taxes, and short-selling constraints in trading; (3) the trading

strategies are self-financing. Then the wealth process {Y (t)|t ∈ T } of the agent is

governed by the following stochastic differential equation:

dY (t) = [r(t,X(t−))Y (t) + π(t)⊤B(t,X(t−))]dt+ π(t)⊤σ(t,X(t−))dW (t)

+

∫
ℜ0

π(t)⊤η(t, z,X(t−))γ̃(dt, dz) , Y (0) = y0 , (4.2.5)

where

B(t, ei) := (µ1(t, ei)− r(t, ei), · · · , µn(t, ei)− r(t, ei))
⊤ ∈ ℜn ,

for each t ∈ T and i = 1, 2, · · · , N .

Unlike the traditional mean-variance portfolio selection problem, we assume that

the investment horizon of the agent is [0, T ∧ τ ], i.e. the minimum of the planned

terminal time T and a non-negative random variable τ defined on (Ω,F ,P), which can
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be interpreted as the lifetime of the agent being alive at time 0 or the liquidation time of

the investment fund. In this sense, the uncertainty of investment horizon introduces an

additional source of risk to the portfolio, say, the mortality risk or the liquidation risk

depending on the situation of interest. Suppose that the intensity of τ is λ(t,X(t−))

at time t, which is also modulated by the chain as follows

λ(t,X(t−)) = ⟨λ(t),X(t−)⟩ ,

where

λ(t) := (λ(t, e1), λ(t, e2), · · · , λ(t, eN))⊤ ∈ ℜN .

Here λ(t, ei) is a positive, deterministic, uniformly bounded function in time t, for each

i = 1, 2, · · · , N . Therefore, given that F(t), we denote by the conditional survival

probability F (t) at time t:

F (t) = P(τ ≥ t|F(t))

= exp

{
−
∫ t

0

λ(s,X(s−))ds

}
, (4.2.6)

and by the conditional probability density f(t) at time t:

f(t) = λ(t,X(t−)) exp

{
−
∫ t

0

λ(s,X(s−))ds

}
. (4.2.7)

Indeed, our assumption on the intensity of the uncertain investment horizon is related

to the Markov aging process or the Markov credit rating process. Interested readers

may refer to Lin and Liu (2007) and Bielecki et al. (2011) for more details. Note

that the states of Markov chain in regime-switching models usually represent different

market or economic modes while the Markov process introduced in Lin and Liu (2007)

is used to model the health index called physiological age but not economic modes. It

seems more reasonable to regard the uncertain time horizon as the liquidation time of
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the investment fund or the uncertain exit time related to the investment psychology.

However, our modeling framework could be also accommodated to describe the regime-

switching dependent intensity of the uncertain lifetime of the agent. Indeed, the states

of the chain X can be interpreted as different “combined” or “joint” states of economic

and health factors. One may consider two Markov chains X1 and X2, one for modeling

the evolution of the state of an economy over time and another one for modeling the

state of health index over time. When the numbers of states of the two Markov chains

are equal, say both of them are equal to N , we can combine the two Markov chains

to form an N2-state Markov chain by vec(X1 ⊗ X2), where ⊗ represents the tensor

product in ℜN and vec is the vectorization operator. Consequently, to simplify our

notation, we could consider here a single Markov chain whose states represent joint

economic-health states.

Definition 4.2.1. A portfolio strategy π(·) is said to be admissible if the following

conditions hold

1. π(·) is F-predictable;

2. E[
∫ T

0
||π(t)||2dt] <∞;

3. the SDE (4.2.5) has a unique strong solution Y (·) corresponding to π(·).

The set of all admissible portfolio strategy is denoted by A.

The agent’s objective is to find an admissible portfolio π(·) ∈ A, such that the

expected terminal wealth satisfies Ey0,ei [Y (T ∧ τ)] = ξ for some given ξ ∈ ℜ while the

risk measured by the variance of the terminal wealth

Vary0,ei [Y (T ∧ τ)] = Ey0,ei [Y (T ∧ τ)− Ey0,ei [Y (T ∧ τ)]]2 = Ey0,ei [Y (T ∧ τ)− ξ]2 ,
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is minimized, where Ey0,ei [·] and Vary0,ei [·] are the conditional expectation and variance

given that Y (0) = y0 and X(0) = ei under P . Finding such a portfolio is referred

as the mean-variance portfolio selection problem with uncertain investment horizon.

Specifically, we formulate our mean-variance problem as follows:

Definition 4.2.2. The mean-variance portfolio selection problem with uncertain in-

vestment horizon is a constrained stochastic optimization problem. For each given

ξ ∈ ℜ: 
min
π(·)∈A

JMV (y0, ei;π(·)) = Ey0,ei [Y (T ∧ τ)− ξ]2 ,

subject to

Ey0,ei [Y (T ∧ τ)] = ξ ,

(Y (·), π(·)) satisfy (4.2.5) .

(4.2.8)

The mean-variance problem (4.2.8) is called feasible if there is at least one portfolio

satisfying all the constraints. An optimal portfolio of the problem is called an efficient

portfolio corresponding to ξ. Suppose that there exists an optiaml solution π∗(·) to

the problem (4.2.8). The wealth process corresponding to π∗(·) is denoted by Y ∗(·).

Then the pair (Vary0,ei [Y
∗(T ∧ τ)], ξ) is called an efficient point. The set of all efficient

points is called the efficient frontier.

To make the original problem tractable, we derive from the definitions of the condi-

tional survival probability (4.2.6) and the conditional probability density (4.2.7) that

Ey0,ei [Y (T ∧ τ)] = Ey0,ei [Y (τ)1{τ<T} + Y (T )1{τ≥T}]

= Ey0,ei

[
E[Y (τ)1{τ<T} + Y (T )1{τ≥T}|F(T )]

]
= Ey0,ei

[
E[Y (τ)1{τ<T}]|F(T )]

]
+ Ey0,ei

[
Y (T )E[1{τ≥T}|F(T )]

]
= Ey0,ei

[ ∫ T

0

λ(s,X(s))e−
∫ s
0 λ(u,X(u))duY (s)ds+ e−

∫ T
0 λ(u,X(u))duY (T )

]
.

Similarly, we can derive that

Ey0,ei [Y (T ∧ τ)− ξ]2
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= Ey0,ei

[ ∫ T

0

λ(s,X(s))e−
∫ s
0 λ(u,X(u))du(Y (s)− ξ)2ds+ e−

∫ T
0 λ(u,X(u))du(Y (T )− ξ)2

]
.

Therefore, the mean-variance portfolio selection problem with uncertain investment

horizon is equivalent to that with fixed investment horizon given below:

Definition 4.2.3. The equivalent mean-variance portfolio selection problem with fixed

investment horizon is a constrained stochastic optimization problem. For each given

ξ ∈ ℜ:

min
π(·)∈A

JMV (y0, ei;π(·)) = Ey0,ei

[ ∫ T

0

λ(s,X(s))e−
∫ s
0 λ(u,X(u))du(Y (s)− ξ)2ds

+ e−
∫ T
0 λ(u,X(u))du(Y (T )− ξ)2

]
,

subject to



Ey0,ei

[ ∫ T

0

λ(s,X(s))e−
∫ s
0 λ(u,X(u))duY (s)ds

+ e−
∫ T
0 λ(u,X(u))duY (T )

]
= ξ ,

(Y (·), π(·)) satisfy (4.2.5) .

(4.2.9)

Since the problem (4.2.9) involves a constraint, we need to discuss its feasibility.

Using Itô’s differentiation rule for regime-switching jump-diffusion processes, we could

follow Zhou and Yin (2003) to provide two sufficient and necessary conditions under

which our mean-variance problem is feasible.

Theorem 4.2.1. Let p(·, ei), i = 1, 2, · · · , N , be the solutions to the following system

of linear ordinary differential equations (ODEs):
pt(·, ei) + [r(t, ei)− λ(t, ei)]p(t, ei) +

N∑
j=1

aijp(t, ej) + λ(t, ei) = 0 ,

p(T, ei) = 1 .

(4.2.10)

Then the following statements are equivalent
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1. The mean-variance problem (4.2.9) is feasible for each given ξ ∈ ℜ;

2. E[
∫ T

0
e−

∫ t
0 λ(u,X(u))dup(t,X(t))2B(t,X(t))⊤B(t,X(t))dt] > 0;

3. E[
∫ T

0
B(t,X(t))⊤B(t,X(t))dt] > 0.

Proof. The proof of Theorem 4.2.1 follows the same rationale of Lemmas 3.1-3.2 in

Zhou and Yin (2003). So we omit it here.

Remark 4.2.1. Although the investment horizon is uncertain in our mean-variance

problem, the conditions of feasibility are very mild. For example, Condition 3 implies

that the problem is feasible as long as the appreciation rate of at least one share is

different from the interest rate in at least market state.

Having addressed the feasibility of the problem, we apply the Lagrange multiplier

technique to deal with the constraint. For each β ∈ ℜ, we consider an auxiliary

performance functional

JMV L(y0, ei; π(·), β)

:= Ey0,ei

[ ∫ T

0

λ(s,X(s))e−
∫ s
0 λ(u,X(u))du(Y (s)− ξ)2ds+ e−

∫ T
0 λ(u,X(u))du(Y (T )− ξ)2

]
+2β

{
Ey0,ei

[ ∫ T

0

λ(s,X(s))e−
∫ s
0 λ(u,X(u))duY (s)ds+ e−

∫ T
0 λ(u,X(u))duY (T )

]
− ξ

}
= Ey0,ei

[ ∫ T

0

λ(s,X(s))e−
∫ s
0 λ(u,X(u))du[Y (s)− (ξ − β)]2ds

+e−
∫ T
0 λ(u,X(u))du[Y (T )− (ξ − β)]2

]
− β2 .

Applying the well-known Lagrange duality theorem transforms the original problem

(4.2.9) into the following equivalent min-max problem:
max
β∈ℜ

min
π(·)∈A

JMV L(y0, ei;π(·), β) ,

subject to (Y (·), π(·)) satisfy (4.2.5) .

(4.2.11)
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Denote by ϑ := ξ − β. We define a new performance functional

JMV L(y0, ei;π(·)) = JMV L(y0, ei;π(·), β) + β2

= Ey0,ei

[ ∫ T

0

λ(s,X(s))e−
∫ s
0 λ(u,X(u))du[Y (s)− ϑ]2ds

+e−
∫ T
0 λ(u,X(u))du[Y (T )− ϑ]2

]
.

To solve the min-max problem (4.2.11), we first consider the following unconstrained

stochastic optimization problem,
min
π(·)∈A

JMV L(y0, ei;π(·)) ,

subject to (Y (·), π(·)) satisfy (4.2.5) .

(4.2.12)

which is called the quadratic-loss minimization problem in the next section.

4.3 Solution to the unconstrained problem

In this section, we employ the dynamic programming principle to solve the uncon-

strained problem (4.2.12). We first provide a verification theorem for the regime-

switching HJB equation related to the problem. Then we derive explicit solutions to

the HJB equation.

To pave the way for the dynamic programming principle, we define the dynamic

performance functional of the quadratic-loss minimization problem (4.2.12) as follows:

JMV L(t, y, ei;π(·)) = Et,y,ei

[ ∫ T

t

λ(s,X(s))e−
∫ s
t λ(u,X(u))du[Y (s)− ϑ]2ds

+e−
∫ T
t λ(u,X(u))du[Y (T )− ϑ]2

]
,

where Et,y,ei [·] is the conditional expectation given that Y (t) = y and X(t) = ei under

P . The value function of the problem is defined by

v(t, y, ei) = inf
π(·)∈A

JMV L(t, y, ei;π(·)) . (4.3.1)
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Since the dynamics of the state processes {Y (t)|t ∈ T } and {X(t)|t ∈ T } are join-

t Markovian, the optimal control processes can be taken to be Markovian (see, for

example, Elliott (1982) and Øksendal and Sulem (2007b)). In what follows, we restric-

t ourselves to consider only Markovian controls for the problem. Let O := (0, T ) ×

(−∞,+∞) be our solvency region. Suppose that D denotes the set such that π(t) ∈ D.

To restrict ourselves to Markovian controls, we assume that

π(t) = π(t, Y (t),X(t)) ,

for some functions π : O×E → D. In the following, we do not distinguish notationally

between π and π whenever no confusion arises. So, we can simply identify the control

processes with a measurable function π(t, y, ei), for each (t, y, ei) ∈ O × E . This is

called the feedback control.

Let V (·, ·, ·) : O × E → ℜ be a function satisfying V (·, ·, ei) ∈ C1,2(O), for each

i = 1, 2, · · · , N , where the partial derivatives of V with respect to t and y are denoted

by Vt, Vy and Vyy. We define the regime-switching generator Lπ acting on V as

Lπ[V (t, y, ei)]

= −λ(t, ei)V (t, y, ei) + Vt(t, y, ei) + [r(t, ei)y + π⊤B(t, ei)]Vy(t, y, ei)

+
1

2
π⊤σ(t, ei)σ(t, ei)

⊤πVyy(t, y, ei) +
N∑
j=1

aijV (t, y, ej) (4.3.2)

+
m∑
l=1

∫
ℜ0

[
V (t, y + π⊤ηl(t, z, ei), ei)− V (t, y, ei)− Vy(t, y, ei)π

⊤ηl(t, z, ei)

]
νlei(dz) ,

where

ηl(t, z, ei) := (η1l(t, z, ei), η2l(t, z, ei), · · · , ηnl(t, z, ei))⊤ ∈ ℜn ,

for each (t, y, ei) ∈ O × E and l = 1, 2, · · · ,m.
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Proposition 4.3.1. Let O denote the closure of O. Suppose that there exists a function

V (·, ·, ei) ∈ C1,2(O) ∩ C(O), and a Markov control π∗(·) ∈ A such that:

1. Lπ[V (t, y, ei)] + λ(t, ei)(y − ϑ)2 ≥ 0, for all π(·) ∈ A and (t, y, ei) ∈ O × E ;

2. Lπ∗
[V (t, y, ei)] + λ(t, ei)(y − ϑ)2 = 0, for all (t, y, ei) ∈ O × E ;

3. for all π(·) ∈ A,

lim
t→T−

V (t, Y (t),X(t)) = (Y (T )− ϑ)2 ;

4. let K denote the set of stopping times κ ≤ T . The family {V (κ, Y (κ),X(κ))}κ∈K
is uniformly integrable.

Write, for each (t, y, ei) ∈ O × E and π(·) ∈ A,

JMV L(t, y, ei;π(·)) = Et,y,ei

[ ∫ T

t

λ(s,X(s))e−
∫ s
t λ(u,X(u))du[Y (s)− ϑ]2ds

+e−
∫ T
t λ(u,X(u))du[Y (T )− ϑ]2

]
.

Then,

V (t, y, ei) = v(t, y, ei)

= inf
π(·)∈A

JMV L(t, y, ei;π(·))

= JMV L(t, y, ei;π
∗(·)) ,

and π∗(·) is an optimal Markovian control.

Proof. The proof can be adapted from the proof of Theorem 3.2 in Mataramvura and

Øksendal (2008) to the regime-switching case (see also Elliott and Siu, 2010). We do

not repeat it here.
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Rearranging conditions in Proposition 4.3.1, we obtain the regime-switching HJB

equation associated with the quadratic-loss minimization problem (4.2.12), i.e.
inf

π(·)∈A

{
Lπ[V (t, y, ei)] + λ(t, ei)(y − ϑ)2

}
= 0 ,

V (T, y, ei) = (y − ϑ)2 .

(4.3.3)

To solve the problem (4.2.12), we only need to find a classical solution V (·, ·, ei) ∈

C1,2(O) to the HJB equation (4.3.3).

Proposition 4.3.2. Suppose that ϕ(·, ei), φ(·, ei), ψ(·, ei) ∈ C1(T ), for each i = 1, 2,

· · · , N . The optimal portfolio strategy and the value function of the quadratic-loss

minimization problem (4.2.12) is given by

π∗(t, y, ei) = −Θ(t, ei)
−1B(t, ei)

[
y − ϑ

φ(t, ei)

ϕ(t, ei)

]
, (4.3.4)

and

V (t, y, ei) = y2ϕ(t, ei)− 2ϑyφ(t, ei) + ϑ2ψ(t, ei) , (4.3.5)

where ϕ(·, ei), φ(·, ei), ψ(·, ei), for each i = 1, 2, · · · , N , are unique solutions of the

following linear systems of ODEs:
ϕt(t, ei) + [2r(t, ei)− ρ(t, ei)− λ(t, ei)]ϕ(t, ei) +

N∑
j=1

aijϕ(t, ej) + λ(t, ei) = 0 ,

ϕ(T, ei) = 1 ,

(4.3.6)


φt(t, ei) + [r(t, ei)− ρ(t, ei)− λ(t, ei)]φ(t, ei) +

N∑
j=1

aijφ(t, ej) + λ(t, ei) = 0 ,

ϕ(T, ei) = 1 ,

(4.3.7)
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ψt(t, ei)− λ(t, ei)ψ(t, ei) +

N∑
j=1

aijψ(t, ej) + λ(t, ei)− ρ(t, ei)
φ2(t, ei)

ϕ(t, ei)
= 0 ,

ψ(T, ei) = 1 .

(4.3.8)

Proof. From the terminal condition of the HJB equation (4.3.3), we try the following

quadratic form for the value function:

V (t, y, ei) = y2ϕ(t, ei)− 2ϑyφ(t, ei) + ϑ2ψ(t, ei) , (4.3.9)

where the functions

ϕ : T × E → ℜ ,

φ : T × E → ℜ ,

ψ : T × E → ℜ ,

are continuously differentiable in t, i.e. ϕ(·, ei), φ(·, ei), ψ(·, ei) ∈ C1(T ), for each ei ∈ E .

For each (t, y, ei) ∈ O × E and π ∈ A, let

Ψ(t, y, ei;π) := Lπ[V (t, y, ei)] + λ(t, ei)(y − ϑ)2 . (4.3.10)

First of all, we assume that Ψππ(t, y, ei; π) = Θ(t, ei)ϕ(t, ei) is a positive-definite matrix.

which is a sufficient condition for a regular interior minimum. Otherwise, the problem

(4.2.12) may not have a solution. Since Θ(t, ei) is a positive-definite matrix, the above

sufficient condition is equivalent to that

ϕ(t, ei) > 0, ∀(t, ei) ∈ T × E . (4.3.11)

We assume that (4.3.11) is satisfied at this stage. We shall verify it in the later part

of this section.

Using the first-order condition to (4.3.10) with respect to π gives that

Ψπ(t, y, ei; π)
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= B(t, ei)Vy(t, y, ei) + σ(t, ei)σ(t, ei)
⊤πVyy(t, y, ei) (4.3.12)

+
m∑
l=1

∫
ℜ0

[
Vy(t, y + π⊤ηl(t, z, ei), ei)− Vx(t, y, ei)

]
ηl(t, y, ei)ν

l
ei
(dz) = 0 .

Substituting (4.3.9) into (4.3.12) leads to

B(t, ei)[2yϕ(t, ei)− 2ϑφ(t, ei)] + 2Θ(t, ei)πϕ(t, ei) = 0 . (4.3.13)

Solving (4.3.13) gives

π∗(t, y, ei) = −Θ(t, ei)
−1B(t, ei)

[
y − ϑ

φ(t, ei)

ϕ(t, ei)

]
. (4.3.14)

Substituting (4.3.9) and (4.3.14) into the regime-switching HJB equation (4.3.3) yields

y2
{
ϕt(t, ei) + [2r(t, ei)− ρ(t, ei)− λ(t, ei)]ϕ(t, ei) +

N∑
j=1

aijϕ(t, ej) + λ(t, ei)

}

−2ϑy

{
φt(t, ei) + [r(t, ei)− ρ(t, ei)− λ(t, ei)]φ(t, ei) +

N∑
j=1

aijφ(t, ej) + λ(t, ei)

}

+ϑ2

{
ψt(t, ei)− λ(t, ei)ψ(t, ei) +

N∑
j=1

aijψ(t, ej) + λ(t, ei)− ρ(t, ei)
φ2(t, ei)

ϕ(t, ei)

}
= 0 .

(4.3.15)

Setting the coefficients of y2, y and 1 equal zeros gives the desired results (4.3.6)-(4.3.8).

Next, we prove the uniqueness and existence of solutions to the linear system of

ODEs (4.3.6). Denote by

ϕ(t) := (ϕ(t, e1), ϕ(t, e2), · · · , ϕ(t, eN))⊤ ∈ ℜN .

Then (4.3.6) can be written as the following vector-valued ODEϕt(t) +
[
diag(2r(t)− ρ(t)− λ(t)) + A

]
ϕ(t) + λ(t) = 0N×1 ,

ϕ(T ) = 1N×1 ,
(4.3.16)
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where

0N×1 := (0, 0, · · · , 0)⊤ ∈ ℜN ,

1N×1 := (1, 1, · · · , 1)⊤ ∈ ℜN .

Since each entry in the matrix “diag(2r(t) − ρ(t) − λ(t)) + A” is uniformly bounded

in t, the ODE (4.3.16) satisfies the global Lipschitz condition. Therefore, from the

theory of the ordinary differential equation, we conclude that there exists a unique

solution ϕ(t) to (4.3.16), for each t ∈ T . Equivalently, the linear system of ODEs

(4.3.6) admits unique solutions ϕ(t, ei), for each (t, ei) ∈ T × E . The proofs of the

uniqueness and existence of solutions to (4.3.7) and (4.3.8) are similar. We do not

repeat them here.

Proposition 4.3.3. Let Et,ei [·] denote the conditional expectation given that X(t) = ei.

The expectation representations for the solutions ϕ(t, ei), φ(t, ei), ψ(t, ei) of (4.3.6)-

(4.3.8) are given by

ϕ(t, ei) = Et,ei

[
e
∫ T
t [2r(u,X(u))−ρ(u,X(u))−λ(u,X(u))]du

]
+Et,ei

[ ∫ T

t

λ(s,X(s))e
∫ s
t [2r(u,X(u))−ρ(u,X(u))−λ(u,X(u))]duds

]
,(4.3.17)

φ(t, ei) = Et,ei

[
e
∫ T
t [r(u,X(u))−ρ(u,X(u))−λ(u,X(u))]du

]
+Et,ei

[ ∫ T

t

λ(s,X(s))e
∫ s
t [r(u,X(u))−ρ(u,X(u))−λ(u,X(u))]duds

]
, (4.3.18)

and

ψ(t, ei) = 1− Et,ei

[ ∫ T

t

ρ(s,X(s))
φ2(s,X(s))

ϕ(s,X(s))
e−

∫ s
t λ(u,X(u))duds

]
. (4.3.19)

89



Proof. We only derive (4.3.17) and (4.3.19). The derivation of (4.3.18) is similar. By

Itô’s differentiation rule,

d

{
ϕ(t,X(t))e

∫ t
0 [2r(u,X(u))−ρ(u,X(u))−λ(u,X(u))]du

+

∫ t

0

λ(s,X(s))e
∫ s
0 [2r(u,X(u))−ρ(u,X(u))−λ(u,X(u))]duds

}
= e

∫ t
0 [2r(u,X(u))−ρ(u,X(u))−λ(u,X(u))]du

{
ϕt(t,X(t))

+[2r(t,X(t))− ρ(t,X(t))− λ(t,X(t))]ϕ(t,X(t)) + ⟨ϕ(t), AX(t)⟩+ λ(t,X(t))

}
dt

+e
∫ t
0 [2r(u,X(u))−ρ(u,X(u))−λ(u,X(u))]du ⟨ϕ(t), dM(t)⟩

= e
∫ t
0 [2r(u,X(u))−ρ(u,X(u))−λ(u,X(u))]du ⟨ϕ(t), dM(t)⟩ , (4.3.20)

where the second equation is due to (4.3.6) if X(t) = ei, for each i = 1, 2, · · · , N .

Integrating (4.3.20) from t to T and conditioning on FX(t) give

ϕ(t,X(t))e
∫ t
0 [2r(u,X(u))−ρ(u,X(u))−λ(u,X(u))]du

+

∫ t

0

λ(s,X(s))e
∫ s
0 [2r(u,X(u))−ρ(u,X(u))−λ(u,X(u))]duds

= E

[
e
∫ T
0 [2r(u,X(u))−ρ(u,X(u))−λ(u,X(u))]du

+

∫ T

0

λ(s,X(s))e
∫ s
0 [2r(u,X(u))−ρ(u,X(u))−λ(u,X(u))]duds

∣∣∣∣FX(t)

]
= E

[
e
∫ T
0 [2r(u,X(u))−ρ(u,X(u))−λ(u,X(u))]du

+

∫ T

0

λ(s,X(s))e
∫ s
0 [2r(u,X(u))−ρ(u,X(u))−λ(u,X(u))]duds

∣∣∣∣X(t)

]
, (4.3.21)

where the second equation is due to that {X(t)|t ∈ T } is a Markov process with respect

to FX. Therefore, rearranging (4.3.21) and settingX(t) = ei yield the desired the result

(4.3.17).
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Consider the following transformed function

ψ̃(t, ei) = ψ(t, ei)− 1 , ∀(t, ei) ∈ T × E . (4.3.22)

Substituting (4.3.22) into (4.3.19) gives
ψ̃t(t, ei)− λ(t, ei)ψ̃(t, ei) +

N∑
j=1

aijψ̃(t, ej)− ρ(t, ei)
φ2(t, ei)

ϕ(t, ei)
= 0 ,

ψ̃(T, ei) = 0 .

(4.3.23)

Then we can derive as in (4.3.20)-(4.3.21) that

ψ̃(t, ei) = −Et,ei

[ ∫ T

t

ρ(s,X(s))
φ2(s,X(s))

ϕ(s,X(s))
e−

∫ s
t λ(u,X(u))duds

]
. (4.3.24)

Therefore, combining (4.3.22) and (4.3.24) gives the desired result (4.3.19).

Proposition 4.3.4. For each (t, ei) ∈ T × E , the solutions ϕ(t, ei), φ(t, ei), ψ(t, ei) of

(4.3.6)-(4.3.8) satisfy the following relationships:

(i) 0 < φ(t, ei) ≤ ϕ(t, ei);

(ii) φ2(t, ei) ≤ ϕ(t, ei)ψ(t, ei);

(iii) 0 < ψ(t, ei) < 1.

Proof. (i) Since r(t, ei), λ(t, ei) > 0, comparing (4.3.17) with (4.3.18) immediately leads

to 0 < φ(t, ei) ≤ ϕ(t, ei), for each (t, ei) ∈ T × E . Therefore, (4.3.11) is verified.

(ii) We consider two functions h(·, ·), g(·, ·) : T × E → ℜ defined by putting

h(t, ei) :=
φ(t, ei)

ϕ(t, ei)
, (4.3.25)

and

g(t, ei) := ψ(t, ei)−
φ2(t, ei)

ϕ(t, ei)
= ψ(t, ei)− h2(t, ei)ϕ(t, ei) . (4.3.26)
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From (4.3.17) and (4.3.18), it is not difficult to show that h(t, ei), for each i =

1, 2, · · · , N , satisfy the following system of ODEs

ht(t, ei)− r(t, ei)h(t, ei) +
1

ϕ(t, ei)

N∑
j=1

aijϕ(t, ej)[h(t, ej)− h(t, ei)]

+
λ(t, ei)

ϕ(t, ei)
[1− h(t, ei)] = 0 ,

h(T, ei) = 1 .

(4.3.27)

Similarly, we can derive from (4.3.17)(4.3.18) and (4.3.27) that g(t, ei), for each i =

1, 2, · · · , N , satisfy the following system of ODEs

gt(t, ei) +
N∑
j=1

aijϕ(t, ej)[h(t, ej)− h(t, ei)]
2

+ λ(t, ei)[1− h(t, ei)]
2 +

N∑
j=1

aijg(t, ej) = 0 ,

g(T, ei) = 0 .

(4.3.28)

As in Proposition 4.3.3, we can derive the following expectation solution for g(t, ei):

g(t, ei) = Et,ei

[ ∫ T

t

{ N∑
j=1

aijϕ(s, ej)[h(s, ej)− h(s,X(t))]2

+λ(s,X(s))[1− h(s,X(s))]2
}
ds

]
. (4.3.29)

Denote by

F (t, ei) :=
N∑
j=1

aijϕ(t, ej)[h(t, ej)− h(t, ei)]
2 + λ(t, ei)[1− h(t, ei)]

2 , ∀(t, ei) ∈ T × E ,

and

F (t) = (F (t, e1), F (t, e2), · · · , F (t, eN))⊤ ∈ ℜN .
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Then we further derive that

g(t, ei) = Et,ei

[ ∫ T

t

F (s,X(s))ds

]
= Et,ei

[ ∫ T

t

⟨F (s),X(s)⟩ ds
]

=

∫ T

t

⟨exp(A(s− t))ei, F (s)⟩ ds . (4.3.30)

Since ϕ(t, ei), λ(t, ei) > 0, for each i = 1, 2, · · · , N , and aij > 0, for each j ̸= i, we have

F (t, ei) =
N∑

j=1,j ̸=i

aijϕ(t, ej)[h(t, ej)− h(t, ei)]
2 + λ(t, ei)[1− h(t, ei)]

2 ≥ 0 .

Therefore, we can see from either (4.3.29) or (4.3.30) that g(t, ei) ≥ 0, which immedi-

ately results in φ2(t, ei) ≤ ϕ(t, ei)ψ(t, ei), for each (t, ei) ∈ T × E .

(iii) The non-degeneracy condition (4.2.4) implies that both Θ(t, ei) and its inverse

Θ−1(t, ei) are positive-definite matrices. Then

ρ(t, ei) = B(t, ei)
⊤Θ(t, ei)

−1B(t, ei) > 0 , ∀(t, ei) ∈ T × E .

So, from the results in (i) and Eq. (4.3.19), we can see that ψ(t, ei) < 1, for each

(t, ei) ∈ T × E . On the other hand, through the definition of the function g, we have

ψ(t, ei) = g(t, ei) + h2(t, ei)ϕ(t, ei) = g(t, ei) +
φ2(t, ei)

ϕ(t, ei)
.

Therefore, combining the results in (i) and (ii), we obtain that ψ(t, ei) > 0, for each

(t, ei) ∈ T × E . This completes the proof.

Proposition 4.3.5. Suppose that for each ei ∈ E, the coefficients of the model dy-

namics are time independent, i.e. r(t, ei) = r(ei), µ(t, ei) = µ(ei), σ(t, ei) = σ(ei),

λ(t, ei) = λ(ei). Denote by

r := (r(e1), r(e2), · · · , r(eN))⊤ ∈ ℜN ,
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ρ := (ρ(e1), ρ(e2), · · · , ρ(eN))⊤ ∈ ℜN ,

λ := (λ(e1), λ(e2), · · · , λ(eN))⊤ ∈ ℜN .

Then the closed-form solutions of (4.3.6)-(4.3.8) are given by

ϕ(t, ei) =

⟨
exp

{[
diag(2r − ρ− λ) + A

]
(T − t)

}
ei, 1N

⟩
+

∫ T

t

⟨
exp

{[
diag(2r − ρ− λ) + A

]
(s− t)

}
ei, λ

⟩
ds , (4.3.31)

φ(t, ei) =

⟨
exp

{[
diag(r − ρ− λ) + A

]
(T − t)

}
ei, 1N

⟩
+

∫ T

t

⟨
exp

{[
diag(r − ρ− λ) + A

]
(s− t)

}
ei, λ

⟩
ds , (4.3.32)

and

ψ(t, ei) = 1−
∫ T

t

⟨
exp

{[
− diag(λ) + A

]
(s− t)

}
ei, f(s)

⟩
ds , (4.3.33)

where

f(s) :=

(
ρ(e1)

φ2(s, e1)

ϕ(s, e1)
, ρ(e2)

φ2(s, e2)

ϕ(s, e2)
, · · · , ρ(eN)

φ2(s, eN)

ϕ(s, eN)

)⊤

∈ ℜN .

Proof. We only derive (4.3.31). The derivations of (4.3.32)-(4.3.33) are similar. Apply-

ing Itô’s differentiation rule to the process {X(s)e
∫ s
t [2r(X(u))−ρ(X(u))−λ(X(u))]du|s ∈ [t, T ]}

gives

d
{
X(s)e

∫ s
t [2r(X(u))−ρ(X(u))−λ(X(u))]du

}
(4.3.34)

= e
∫ s
t [2r(X(u))−ρ(X(u))−λ(X(u))]du

{[
diag(2r − ρ− λ) + A

]
X(s)ds+ dM(s)

}
.

Conditioning on X(t) = ei on both sides of (4.3.34) results in

dEt,ei

[
X(s)e

∫ s
t [2r(X(u))−ρ(X(u))−λ(X(u))]du

]
(4.3.35)
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=
[
diag(2r − ρ− λ) + A

]
Et,ei

[
X(s)e

∫ s
t [2r(X(u))−ρ(X(u))−λ(X(u))]du

]
ds .

Solving (4.3.35) gives

Et,ei

[
X(T )e

∫ T
t [2r(X(u))−ρ(X(u))−λ(X(u))]du

]
= exp

{[
diag(2r − ρ− λ) + A

]
(T − t)

}
ei . (4.3.36)

Therefore,

Et,ei

[
e
∫ T
t [2r(X(u))−ρ(X(u))−λ(X(u))]du

]
= Et,ei

[
⟨X(T ), 1N⟩ e

∫ T
t [2r(X(u))−ρ(X(u))−λ(X(u))]du

]
=

⟨
Et,ei

[
X(T )e

∫ T
t [2r(X(u))−ρ(X(u))−λ(X(u))]du

]
, 1N

⟩
=

⟨
exp

{[
diag(2r − ρ− λ) + A

]
(T − t)

}
ei, 1N

⟩
. (4.3.37)

Since the integrand in the following expectation

Et,ei

[ ∫ T

t

λ(X(s))e
∫ s
t [2r(X(u))−ρ(X(u))−λ(X(u))]duds

]
,

are bounded, we can employ Fubini’s Theorem to derive that

Et,ei

[ ∫ T

t

λ(X(s))e
∫ s
t [2r(X(u))−ρ(X(u))−λ(X(u))]duds

]
=

∫ T

t

Et,ei

[
λ(X(s))e

∫ s
t [2r(X(u))−ρ(X(u))−λ(X(u))]du

]
ds

=

∫ T

t

⟨
exp

{[
diag(2r − ρ− λ) + A

]
(s− t)

}
ei, λ

⟩
ds . (4.3.38)

Combining (4.3.37) and (4.3.38) gives the desired result (4.3.31).
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4.4 Efficient portfolio and efficient frontier

In this section, we derive the efficient portfolio, the efficient frontier and the mutual

fund theorem of the min-max problem (4.2.11), which is equivalent to the original mean-

variance problem (4.2.8) or (4.2.9). Surprisingly, although the investment horizon is

uncertain, we can still find the so-called efficient portfolio and efficient frontier as in

the classical mean-variance problem with fixed investment horizon. Furthermore, the

mutual fund theorem also holds in our problem.

Theorem 4.4.1. The efficient portfolio of the mean-variance portfolio selection prob-

lem associated with the expected value ξ ∈ ℜ is an optimal feedback control of (t, y, ei) ∈

O × E as

π∗(t, y, ei) = −Θ(t, ei)
−1B(t, ei)

[
y − (ξ − β∗)

φ(t, ei)

ϕ(t, ei)

]
, (4.4.1)

where

β∗ =
ξψ(0, ei)− y0φ(0, ei)

ψ(0, ei)− 1
. (4.4.2)

Furthermore, the efficient frontier of the mean-variance problem (4.2.9) is given by

Vary0,ei [Y
∗(T ∧ τ)]

=
ψ(0, ei)

1− ψ(0, ei)

[
ξ − φ(0, ei)

ψ(0, ei)
y0

]2
+
ϕ(0, ei)ψ(0, ei)− φ2(0, ei)

ψ(0, ei)
y20 . (4.4.3)

Here ϕ(t, ei), φ(t, ei) and ψ(t, ei) are given by the expectation expressions (4.3.17)-

(4.3.19) in Proposition 4.3.2. Particularly, if for each ei ∈ E , the coefficients of the

model dynamics are time independent, then the closed-form expressions of ϕ(t, ei),

φ(t, ei) and ψ(t, ei) are given by (4.3.31)-(4.3.33) in Proposition 4.3.2.

Proof. Denote by

V (0, y0, ei; β) := V (0, y0, ei)− β2 (4.4.4)
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= y20ϕ(0, ei)− 2(ξ − β)y0φ(0, ei) + (ξ − β)2ψ(0, ei)− β2 .

The relationship between the performance functionals of the quadratic-loss minimiza-

tion problem (4.2.12) and the min-max problem (4.2.11) implies that

Vary0,ei [Y
∗(T ∧ τ)] = V (0, y0, ei; β

∗) ,

where

β∗ = argmax
β∈ℜ

V (0, y0, ei; β) .

From (iii) in Proposition 4.3.4, it is clear that

∂2V

∂β2
= 2ψ(0, ei)− 2 < 0 .

Then applying the first-order condition to V (0, y0, ei; β) with respect to β yields that

2y0φ(0, ei) + 2(β − ξ)ψ(0, ei)− 2β = 0 . (4.4.5)

Solving (4.4.5) gives

β∗ =
ξψ(0, ei)− y0φ(0, ei)

ψ(0, ei)− 1
. (4.4.6)

Substituting (4.4.6) into (4.3.4) and (4.4.4) results in

π∗(t, y, ei) = −Θ(t, ei)
−1B(t, ei)

[
y − (ξ − β∗)

φ(t, ei)

ϕ(t, ei)

]
,

and

Vary0,ei [Y
∗(T ∧ τ)] = V (0, y0, ei; β

∗)

=
ψ(0, ei)

1− ψ(0, ei)

[
ξ − φ(0, ei)

ψ(0, ei)
y0

]2
+
ϕ(0, ei)ψ(0, ei)− φ2(0, ei)

ψ(0, ei)
y20 .
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Theorem 4.4.2. The efficient portfolio that achieves the minimum variance portfolio

Vary0,ei [Y
∗
min(T ∧ τ)] = ϕ(0, ei)ψ(0, ei)− φ2(0, ei)

ψ(0, ei)
y20 ≥ 0 , (4.4.7)

is given by

π∗
min(t, y, ei) = −Θ(t, ei)

−1B(t, ei)

[
y − ξmin

φ(t, ei)

ϕ(t, ei)

]
, (4.4.8)

with the expected terminal wealth

ξmin =
φ(0, ei)

ψ(0, ei)
y0 , (4.4.9)

and the Lagrange multiplier β∗
min = 0.

Proof. From (ii) and (iii) in Proposition 4.3.4, we have

ψ(0, ei)

1− ψ(0, ei)
> 0 ,

and

ϕ(0, ei)ψ(0, ei)− φ2(0, ei)

ψ(0, ei)
≥ 0 , ∀ei ∈ E .

Recalling (4.4.3) in Theorem 4.4.1, the desired results (4.4.7)-(4.4.9) are obvious. In

addition, substituting (4.4.9) into (4.4.2) yields that β∗
min = 0.

Remark 4.4.1. Contrary to the case without regime-switching, the efficient frontier

is no longer a perfect square and the efficient frontier in the mean-standard deviation

diagram is no longer a straight line. One can not achieve an investment resulting in

a zero terminal variance. That is, a risk-free investment. This is consistent with the

results in Zhou and Yin (2003). Zhou and Yin (2003) provided a sufficient condition,

i.e. the interest rate is deterministic, under which the risk-free investment is achievable.

However, the deterministic interest rate does not suffice to guarantee the solution of
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the ODEs (4.3.27) is state independent. As a consequence, one is unable to achieve

the risk-free investment even if the interest rate is deterministic in the mean-variance

problem with uncertain investment horizon under regime-switching models.

Although the investment horizon is uncertain in our modeling framework, the fol-

lowing mutual fund theorem still holds.

Theorem 4.4.3. Suppose that an efficient portfolio π∗
1(·) is given by (4.4.1) corre-

sponding to ξ = ξ1 > ξmin. Then a portfolio π∗(·) is efficient if and only if there is a

χ ≥ 0 such that

π∗(t) = (1− χ)π∗
min(t) + χπ∗

1(t) , (4.4.10)

where π∗
min(·) is the minimum variance portfolio defined in Theorem 4.4.2.

Proof. The proof is similar to Theorem 5.3 of Zhou and Yin (2003). So we do not

repeat it here.

4.5 Numerical examples

In this section, we provide several numerical examples to illustrate our results. We show

the efficient frontier of the mean-variance portfolio selection problem with uncertain

investment horizon under a regime-switching jump-diffusion model with a Markov-

modulated generalized Gamma distributed jump part.

In our examples, we consider a simple situation where there are only two states of

the continuous-time, finite-state Markov chain X, i.e. State 1 and State 2, representing

a “Good” economy and a “Bad” economy, respectively. The rate matrix of the Markov

chain is given by

A =

 1 −1

−1 1

 . (4.5.1)
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The initial wealth and the planned terminal time are assumed to be

y0 = 1 , T = 1 . (4.5.2)

To simplify our computation, we assume that the financial market consists of one risk-

free bond and two risky shares. Furthermore, we assume that the standard Brownian

motion defined in Section 2 is of two dimensions. That is, W (t) := (W 1(t),W 2(t))⊤ ∈

ℜ2, for each t ∈ T . When X(t) = ei, for each i = 1, 2, the dynamics of the risk shares

are governed by the following regime-switching jump-diffusion models:

dS1(t)

S1(t−)
= µ1(ei)dt+ σ11(ei)dW

1(t) + σ12(ei)dW
2(t)

+

∫
ℜ0

(ez − 1)[γ1(dt, dz)− ν1ei(dt, dz)] ,

dS2(t)

S2(t−)
= µ2(ei)dt+ σ21(ei)dW

1(t) + σ22(ei)dW
2(t)

+

∫
ℜ0

(ez − 1)[γ2(dt, dz)− ν2ei(dt, dz)] ,

(4.5.3)

where

νkei(dz) =
1

Γ(1− αk(ei))
e−bk(ei)zz−αk(ei)−1 , k = 1, 2 .

Suppose that the configurations of the parameter values, including the intensity of the

uncertain investment horizon and other parameters of the financial market, are given

in Table 4.5.1.

In what follows, we use the hypothetical parameter values given in (4.5.1)-(4.5.2)

and Table 4.5.1 as our benchmark, where y0 in (4.5.2) and r, µk, σk, for each k = 1, 2,

in Table 4.5.1 are the default choices of unvarying parameters. Varying the values of

T , A and λ, we provide several numerical examples for our mean-variance problem.

Comparing the efficient frontiers of these examples with that of our benchmark may

induce a deep understanding of the problem. Hence with y0, r, µk and σk unchanged
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Table 4.5.1: Model parameters

λ r µ1 µ2 (σ11, σ12) (σ21, σ22) b1 b2 α1 α2

State 1 0.01 0.06 0.08 0.04 (0.15, 0.20) (0.20, 0.25) 1.00 1.00 0.00 1.00

State 2 0.02 0.03 0.04 0.02 (0.30, 0.40) (0.40, 0.50) 1.00 0.50 0.50 0.50

in our benchmark, we also provide the efficient frontier when the jump parameters, the

planned terminal time, the rate matrix of the chain and the intensity of the uncertain

investment horizon are given by the following alternative values:

(I) when the jump parts are absent, the dynamics of the risk shares follows the

regime-switching GBM models:
dS1(t)

S1(t)
= µ1(ei)dt+ σ11(ei)dW

1(t) + σ12(ei)dW
2(t) ,

dS2(t)

S2(t)
= µ2(ei)dt+ σ21(ei)dW

1(t) + σ22(ei)dW
2(t) ;

(4.5.4)

(II) the terminal time:

T = 2 or 3 ; (4.5.5)

(III) the rate matrix

A =

 0 0

0 0

 or

 2 −2

−2 2

 ; (4.5.6)

(VI) the intensity rate

λ = (0, 0)⊤ or (0.25, 0.5)⊤ . (4.5.7)
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Figure 4.5.1: Efficient frontiers in the benchmark

case
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Figure 4.5.2: Efficient frontiers: RSJD vs RS-

GBM

Figure 4.5.1 shows the efficient frontiers in States 1 and 2 of the problem under the

regime-switching jump-diffusion model (4.5.3) with our benchmark parameters. Since

States 1 and 2 represent a “Good” economy and a “Bad” economy, respectively. The

risky shares are more volatile in State 2 than in State 1. So the efficient frontier in

State 1 lies on the left of that in State 2. It implies that given the same expected

terminal wealth, the agent can achieve a smaller variance of the terminal wealth if the

current economy is “Good”.

In Figure 4.5.2, we compare the efficient frontiers of the problem under the regime-

switching jump-diffusion model (RSJD) and the regime-switching GBM model (RS-

GBM). We only show the efficient frontiers in State 1 for both models. It can be seen

that with the same expected terminal wealth, the variance of the terminal wealth un-

der the regime-switching GBM model is smaller than that under the regime-switching

jump-diffusion model. This is intuitive since additional jump risk definitely results in

a higher overall risk (i.e. the variance) of the portfolio.
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Figure 4.5.3 gives the efficient frontiers under the regime-switching jump-diffusion

model (4.5.3). In all subfigures, the blue lines represent the efficient frontiers in State
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Figure 4.5.3: Efficient frontiers with different values of T , A and λ

1 for our benchmark parameters given in (4.5.1)-(4.5.2) and Table 4.5.1, while the red

lines and the green lines represent those for the alternative values of the parameters

given in (4.5.5)-(4.5.7).

In Subfigure (a), the efficient frontiers with longer planned terminal times lie on the

right of those with shorter terminal times. Our explanation to this finding is that the

impacts of the regime switching and the uncertain investment horizon on the portfolio

increase with the length of the planned terminal time. Indeed, in a longer time span, it

is more likely that there exist structural changes in economy and the portfolio may be

liquidated prior to the terminal time, which introduces extra economic and liquidation

risks to the portfolio and hence increase the variance.

In Subfigure (b), it is shown that the efficient frontiers with rate matrices related

to larger transition probabilities fall on the right of those with rate matrices related

to smaller transition probabilities. The explanation in Subfigure (a) also applies here.

That is, the larger the transition probability of the underlying Markov is, the more

economic risk is introduced to the portfolio. Another interesting finding in Subfigure

(b) is that the efficient frontier for the zero rate matrix is tangent to the y-axis. In other
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words, the minimum variance portfolio in this case is a zero variance portfolio, i.e. we

can achieve a risk-free investment. When the rate matrix is zero, the regime-switching

effect is degenerate in our modeling framework. Therefore, the risk-free investment is

certainly expected in the mean-variance problem without regime-switching.

In Subfigure (c), we can see the efficient frontiers with higher intensities lie on the

right of those with lower ones. A higher intensity results in a larger probability that the

portfolio may be liquidated before the planned terminal time. This introduces extra

liquidation risk to the portfolio and increase the variance of the terminal wealth.

4.6 Conclusion

We considered a mean-variance portfolio selection problem with uncertain investment

horizon under a regime-switching jump-diffusion model. The dynamic programming

principle was applied to solve the problem. Although the investment horizon is un-

certain in our problem, it was proved that most results in the classical mean-variance

problem with fixed investment horizon still hold. Specifically, we derived the efficient

portfolio, the efficient frontier and the mutual fund theorem to the problem. Numerical

examples were provided to illustrate our theoretical results.
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Chapter 5

Stochastic differential game,

Esscher transform and general

equilibrium under a Markovian

regime-switching Lévy model

5.1 Introduction

The valuation of contingent claims has long been an important topic in economics and

finance. It plays a central role in the investment, financing and risk management activi-

ties of the finance and insurance markets around the globe. The seminal works of Black

and Scholes (1973) and Merton (1973) provided a path-breaking solution to this impor-

tant problem. Under the assumptions of a Geometric Brownian Motion (GBM) for the

price dynamics of the underlying risky asset, a perfect market and the absence of arbi-

trage opportunities, they derived a preference-free, closed-form option pricing formula
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for a standard European call option. The pricing formula is widely adopted by market

practitioners for pricing, hedging and managing risk of options. Despite its popularity,

it is known that the GBM assumption for the price dynamics is not realistic and fails to

incorporate many important stylized features of assets returns and option prices. Over

the past few decades, various extensions to the Black-Scholes-Merton model have been

introduced. These models include jump-diffusion models, GARCH models, stochastic

volatility models, pure jump models, Lévy processes, regime-switching models, just to

name a few.

One key economic insight behind the Black-Scholes-Merton model is the concept of

the risk-neutral valuation, where the price of an option is determined as its discount-

ed expected value under an “artificial” probability measure, namely, a risk-neutral

probability measure or an equivalent martingale measure. The market considered by

Black-Scholes (1973) and Merton (1973) is complete since there exists only one un-

derlying risky asset with randomness driven by a one-dimensional Brownian motion,

and thus any contingent claim can be perfectly replicated by continuously rebalanc-

ing the composition of a portfolio consisting of the risk-free asset and the underlying

risky asset. However, the financial markets described by other more realistic models

are mostly incomplete. As shown by Harrison and Kreps (1979) and Harrison and

Pliska (1981, 1983), the market completeness is equivalent to the uniqueness of an

equivalent martingale measure. So there exist infinitely many equivalent martingale

measures in an incomplete financial market. A natural question is how to choose an

equivalent martingale measure among infinitely many equivalent martingale measures.

Different approaches have been proposed to address this problem. Recently, Øksendal

and Sulem (2007a) introduced a stochastic differential game approach to choose an

equivalent martingale measure for option pricing in a jump-diffusion market, where a

representative agent chooses a portfolio which maximizes the expected utility of ter-
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minal wealth, while the market chooses a probability measure which minimizes this

maximal expected utility. It was shown in Øksendal and Sulem (2007a) that choos-

ing an equivalent martingale measure is an optimal strategy for the market (see also

Siu (2008) for the stochastic differential game under regime-switching models). The

pioneering work by Gerber and Shiu (1994) adopted a time-honored tool in actuarial

science, namely the Esscher transform to choose an equivalent martingale measure for

option valuation in an incomplete market. The use of the Esscher transform for option

valuation can be justified by maximizing the expected power utility of an economic

agent. Their works highlighted the interplay between the financial and actuarial pric-

ing in incomplete markets. Applications of the Esscher transform for option pricing

under regime-switching models can be found in Elliott et al. (2005), Siu and Yang

(2009), Siu (2005, 2008, 2011), Elliott and Siu (2013) and others. Fu and Yang (2012)

proposed a general equilibrium approach to choose an equivalent martingale measure

for the price dynamics driven by a Lévy process. Many empirical features such as the

negative variance risk premium, implied volatility smirk and negative skewness risk

premium can be explained based on the derived equivalent martingale measure. Other

works with restrictions on the distribution of the jump component on this approach

include Pan (2002), Liu and Pan (2003), Liu et al. (2005) and Zhang et al. (2010).

In this chapter, we investigate the game theoretic approach, the Esscher transfor-

mation approach and the general equilibrium approach to choose equivalent martingale

measures for the valuation of contingent claims under a regime-switching Lévy mod-

el. A financial market consisting of a risk-free bond and a risky share is considered.

The price dynamics of the risky share are governed by a Markovian regime-switching

geometric Lévy process. The market interest rate, the appreciation rate, the volatility

and the Lévy measure are assumed to switch over time according to a continuous-

time, finite-state, observable Markov chain, whose states may represent some (macro)-
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economic factors (e.g. gross domestic product and purchase management index) or

credit rating of a region. Firstly, we consider a two-player, zero-sum, stochastic differ-

ential game approach to choose an equivalent martingale measure for the valuation of

contingent claims. Here the representative agent and the market are the two players

in this game. The representative agent has a power/logarithmic utility and chooses his

optimal investment-consumption strategy so as to maximize the expected, discounted

utility from intertemporal consumption and terminal wealth. Whereas, the market

is a fictitious player of the game and selects a real-world probability measure so as

to minimize the maximal expected utility of the representative agent. We formulate

this min-max problem as a stochastic differential game. We then provide a verifica-

tion theorem for the Hamilton-Jacobi-Bellman-Issac (HJBI) solution to the game and

derive explicit expressions for the optimal strategies of the representative agent, the

market and the value function. An equivalent martingale measure is determined by

the saddle-point of the game. Secondly, we adopt a generalized version of the Esscher

transform using stochastic exponentials and the Laplace cumulant process to choose an

equivalent martingale measure. Thirdly, we consider a general equilibrium approach

to choose an equivalent martingale measure. We formulate the general equilibrium

problem of the representative agent as a stochastic optimal control problem. Then a

verification theorem for the Hamilton-Jacobi-Bellman (HJB) solution to the control

problem is provided. Under a market clearing condition, we derive explicit expressions

for the optimal consumption rate of the representative agent, the value function and

the equilibrium equity premium. Finally, we compare equivalent martingale measures

chosen by the three approaches and identify the conditions under which these measures

are identical. Since we apply the stochastic control theory, which is tailor-made for

portfolio optimization problems, to investigate the selection of equivalent martingale

measures in asset pricing problems, this chapter may provide a link between asset
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pricing and portfolio optimization under regime-switching models.

The rest of this chapter is organized as follows. In Section 5.2, we describe the

model dynamics and formulate the optimal investment-consumption problem of the

representative agent. Section 5.3 presents and compares three different approaches to

choose equivalent martingale measures in our modeling framework. The final section

gives concluding remarks.

5.2 The Model dynamics

We consider a simplified, continuous-time, financial market with two primitive assets,

namely, a risk-free bond and a risky share. These assets are traded continuously over

time in a finite horizon T := [0, T ], where T < ∞. We fix a complete probability

space (Ω,F ,P), which describes randomness in the market. Here P is a real-world

probability measure or a reference probability measure from which a family of real-

world probability measures is generated. We further equip (Ω,F ,P) with a right-

continuous, P-complete filtration F := {F(t)|t ∈ T }, where F(t) is the enlarged σ-field

generated by information about the values of a Brownian motion, a Poisson random

measure and a Markov chain up to time t, which will be defined precisely in the later

part of this section.

We model the evolution of the state of an economy over time by a continuous-time,

finite-state, observable Markov chain X := {X(t)|t ∈ T } on (Ω,F ,P). As in Elliott

et al. (1994), we identify the state space of the chain by a set of standard unit vectors

E := {e1, e2, · · · , eN} ⊂ ℜN , where the jth component of ei is the Kronecker delta δij,

for each i, j = 1, 2, . . . , N . This is usually called the canonical state space of the chain

X. To describe the statistical laws of the chain X under P , we consider a constant rate

matrixA := [aij]i,j=1,2,··· ,N , where aij is the instantaneous transition rate of the chainX

109



from state ej to state ei. Let FX := {FX(t)|t ∈ T } be the right-continuous, P-complete

filtration generated by the chain X. With the canonical state space representation of

X, Elliott et al. (1994) obtained the following semimartingale dynamics for X:

X(t) = X(0) +

∫ t

0

AX(u)du+M(t) , (5.2.1)

where M := {M(t)|t ∈ T } is an ℜN -valued, (FX,P) -martingale.

Let J(·, ·) be a Poisson random measure on the product measurable space (T ×

ℜ0,B(T )⊗B(ℜ0)), where B(T ) and B(ℜ0) denote the Borel σ-fields generated by open

subsets of T and ℜ0 := ℜ \ {0}, respectively. Indeed, the Poisson random measure J

can be represented as a counting measure:

J(dt, dy) =
∑
k≥1

δ(Tk,∆Y (Tk))(dt, dy)1{Tk<∞,∆Y (Tk )̸=0} .

Here, Tk is the random time of the kth jump; ∆Y (Tk) is the random size of the kth

jump at the time epoch Tk; δ(Tk,∆Y (Tk))(·, ·) is the random delta function at the point

(Tk,∆Y (Tk)) ∈ T × ℜ0; 1E is the indicator function of an event E. We assume that

the Poisson random measure J has a Markov-modulated Lévy measure under P:

νX(t)(dy) := ⟨ν(dy),X(t)⟩ =
N∑
i=1

⟨X(t−), ei⟩ νi(dy) ,

where ν(dy) := (ν1(dy), ν2(dy), · · · , νN(dy))′. Here C′ is the transpose of a matrix, or

a vector, C. The scalar product ⟨·, ·⟩ selects the component of the vector ν(dy) of the

Lévy measures in force at time t depending on the state of the chain X. In particular,

when the chain X is in the ith state at time t, (i.e. X(t) = ei), the Lévy measure of J

at time t, say νX(t)(dy), is νi(dy). Write J̃(·, ·) for a compensated version of the Poisson

random measure, i.e.

J̃(dt, dy) := J(dt, dy)− νX(t)(dy)dt .
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Denote by FJ := {FJ(t)|t ∈ T } the right-continuous, P-complete natural filtration

generated by the Poisson random measure J ; that is

FJ
0 (t) := σ

(∫ u

0

∫
E

J(dt, dy);u ≤ t, E ∈ B(ℜ0)

)
,

and

FJ(t) :=
∩
u>t

(FJ
0 (u) ∨N ) ,

where N denotes all P-null sets and σ1∨σ2 denotes the minimal σ-field containing both

σ1 and σ2. Let W := {W (t)|t ∈ T } be a one-dimensional standard Brownian motion

with respect to its right-continuous, P-complete natural filtration FW := {FW (t)|t ∈

T }. Based on the above definition, the filtration F = {F(t)|t ∈ T } denotes the enlarged

filtration of FW , FJ and FX, i.e. for each t ∈ T ,

F(t) := FW (t) ∨ FJ(t) ∨ FX(t) .

In what follows, we describe the model dynamics of the primitive assets. To be

more specific, we first extend the Lévy process in Fu and Yang (2012) to its regime-

switching variant to describe the dynamics of the share price. Then we formulate

investment-consumption problem of a representative agent.

Let r(t) be the instantaneous, continuously compounded risk-free rate at time t,

which is modulated by the chain X as follows:

r(t) := ⟨r,X(t)⟩ ,

and

r := (r1, r2, · · · , rN)′ ∈ ℜN .
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We assume that there exists a risk-free bond for instantaneous borrowing and lending

at the risk-free rate. Then the dynamics of the risk-free bond B := {B(t)|t ∈ T }

follows

dB(t) = r(t)B(t)dt, B(0) = 1 . (5.2.2)

Let µ(t) and σ(t) be the appreciation rate and the volatility of the share at time t,

which are modulated by the chain X as follows:

µ(t) := ⟨µ,X(t)⟩ , σ(t) := ⟨σ,X(t)⟩ ,

and

µ := (µ1, µ2, · · · , µN)
′ ∈ ℜN , σ := (σ1, σ2, · · · , σN)′ ∈ ℜN

++ ,

where ℜ++ is the positive real line. We assume that the share price process S :=

{S(t)|t ∈ T } evolves over time as an exponential regime-switching Lévy process:

S(t) = S(0) exp(Y (t)) , S(0) = s > 0 .

The logarithmic return process Y := {Y (t)|t ∈ T } is a one-dimensional regime-

switching Lévy process with the following decomposition:

Y (t) =

∫ t

0

[
µ(u)− 1

2
σ2(u)−

∫
ℜ0

(
ey − 1− y1|y|<1

)
νX(u)(dy)

]
du

+

∫ t

0

σ(u)dW (u) +

∫ t

0

∫
|y|≥1

yJ(du, dy) +

∫ t

0

∫
|y|<1

yJ̃(du, dy) ,(5.2.3)

where, as in Fu and Yang (2012), we assume that the jump component of Y has finite

variation, i.e. ∫
|y|<1

|y|νi(dy) <∞ ,
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for each i = 1, 2, · · · , N . It it clear that (5.2.3) can be simplified as

Y (t) =

∫ t

0

[
µ(u)− 1

2
σ2(u)−

∫
ℜ0

(
ey − 1

)
νX(u)(dy)

]
du

+

∫ t

0

σ(u)dW (u) +

∫ t

0

∫
ℜ0

yJ(du, dy) . (5.2.4)

Applying Itô’s differentiation rule to S(t) = S(0) exp(Y (t)), we obtain the dynamics

of the share price process:

dS(t) = S(t−)

[(
r(t) + ϕ(t)

)
dt+ σ(t)dW (t) +

∫
ℜ0

(
ey − 1

)
J̃(dt, dy)

]
, (5.2.5)

where

ϕ(t) = µ(t)− r(t) ,

is the equity premium and is also modulated by the chain X as follows:

ϕ(t) := ⟨ϕ,X(t)⟩ = ⟨µ− r,X(t)⟩ ,

and

ϕ := (ϕ1, ϕ2, · · · , ϕN)
′ = (µ1 − r1, µ2 − r2, · · · , µN − rN)

′ ∈ ℜN .

Suppose that there exists a representative agent1 in the market who not only invests

his wealth in the risk-free bond and the risky share, but also consumes part of his wealth

over time. The objective of the agent is to maximize the expected, discounted utility

from intertemporal consumption and terminal wealth. In this chapter, we assume that

the agent has the constant relative risk aversion (CRRA) utility:

U(v) =


v1−γ

1− γ
, γ > 0 , γ ̸= 1 ,

log v , γ = 1 ,

(5.2.6)

1The existence of a representative agent is one of the most fundamental problems in modern

economic theory. For more discussions, interested readers can refer to Arrow and Debreu (1954),

Rubinstein (1974), Detemple and Gottardi (1998), Cuoco and He (2001) and references therein.
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where γ is called the relative risk aversion coefficient.

Let π(t) and 1− π(t) be the fractions of the agent’s wealth invested in the share S

and the bond B at time t, respectively. In addition, the amount of wealth consumed

by the agent is c(t) at time t. Suppose that π := {π(t)|t ∈ T } and c := {c(t)|t ∈ T }

are an F-predictable, càdlàg process and a nonnegative F-predictable, càdlàg process,

which are called the portfolio process and the consumption rate process, respectively.

Let V π,c := {V π,c(t)|t ∈ T } be the wealth process of the agent associated with the

portfolio-consumption pair (π, c). To simplify our notation, we suppress the superscript

(π, c) and write V (t) for V π,c(t), for each t ∈ T . Furthermore, we assume that the agent

is endowed with an initial wealth v > 0. Then under P , the wealth process of the agent

evolves over time as:

dV (t) = V (t−)

[(
r(t) + π(t)ϕ(t)

)
dt+ π(t)σ(t)dW (t)

+π(t)

∫
ℜ0

(
ey − 1

)
J̃(dt, dy)

]
− c(t)dt , V (0) = v > 0 . (5.2.7)

We say that a portfolio-consumption pair (π, c) is admissible if the following conditions

hold:

1.
∫ T

0
π2(u)du <∞ and

∫ T

0
c(u)du <∞, P-a.s.;

2. the stochastic differential equation (5.2.7) admits a unique strong solution, such

that V (t) ≥ 0, P-a.s., for each t ∈ T .

Write A for the space of all admissible portfolio-consumption pairs (π, c).
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5.3 Main results

5.3.1 Stochastic differential game

In this subsection, we consider a two-player, zero-sum stochastic differential game

between the representative agent and the market in the Markovian regime-switching

Lévy market. Here the goal of the agent is to select an optimal pair of portfolio

and consumption rate process so as to maximize the expected, discounted utility from

intertemporal consumption and terminal wealth, while the market is interpreted as a

fictitious player in the game and acts antagonistically to select a probability measure

corresponding to a worst-case scenario that minimizes the maximal expected utility of

the agent.

First of all, we generate a family of probability measuresQξ equivalent to P on F(T )

associated with two F-predictable, càdlàg processes or random fields ξ0 := {ξ0(t)|t ∈ T }

and ξ1 := {ξ1(t, y)|(t, y) ∈ T ×ℜ0}. Write Ξ for the admissible set of all such processes

ξ := (ξ0, ξ1) satisfying

1. ξ1(t, y) < 1, for a.a. (t, y, ω) ∈ T × ℜ0 × Ω;

2.
∫ T

0
{ξ20(u) +

∑N
i=1[

∫
ℜ0
ξ21(u, y)νi(dy) ⟨X(u), ei⟩]}du <∞, P-a.s.

Define, for each ξ ∈ Ξ, a real-valued, F-adapted process Λξ := {Λξ(t)|t ∈ T } as follows:

Λξ(t) := exp

(
−

∫ t

0

ξ0(u)dW (u) +

∫ t

0

∫
ℜ0

ln(1− ξ1(u−, y))J̃(du, dy) (5.3.1)

−1

2

∫ t

0

ξ20(u)du+

∫ t

0

∫
ℜ0

[
ln(1− ξ1(u−, y)) + ξ1(u−, y)

]
νX(u)(dy)du

)
.

Note that Λξ is the controlled state process of the market.

Applying Itô’s differentiation rule to Λξ(t) gives

dΛξ(t) = Λξ(t−)

[
− ξ0(t)dW (t)−

∫
ℜ0

ξ1(t−, y)J̃(dt, dy)
]
, Λξ(0) = 1 . (5.3.2)
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So Λξ is an (F,P)-local-martingale. We suppose that the process ξ is such that Λξ is

an (F,P)-martingale. Then E[Λξ(T )] = 1.

For each ξ ∈ Ξ, we define a probability measure Qξ equivalent to P on F(T ) as

follows:

dQξ

dP

∣∣∣∣
F(T )

:= Λξ(T ) . (5.3.3)

So, we can generate a family Q(Ξ) of real-world probability measures Qξ parameterized

by ξ ∈ Ξ. Note that the market can choose a real-world probability measure or

generalized scenario from Q(Ξ) through selecting a process ξ ∈ Ξ. Hence, Ξ is the set

of admissible controls of the market.

In what follows, we consider the two-person, zero-sum stochastic differential game

between the representative agent and the market. For notational simplicity, we define a

vector-valued controlled state process Z := {Z(t)|t ∈ T } of the agent and the market:

dZ(t) = (dZ0(t), dZ1(t), dZ2(t), dZ3(t))
′

= (dZ0(t), dZ
π,c
1 (t), dZξ0,ξ1

2 (t), dZ3(t))
′ ,

= (dt, dV π,c(t), dΛξ(t), dX(t))′ ,

Z(0) = z = (u, z1, z2, z3) .

Under P , the evolution of the components of the controlled state process Z over time

is governed by:

dZ0(t) = dt ,

dZ1(t) = Z1(t−)

[(
r(t) + π(t)ϕ(t)

)
dt+ π(t)σ(t)dW (t)

+π(t)

∫
ℜ0

(
ey − 1

)
J̃(dt, dy)

]
− c(t)dt ,

dZ2(t) = Z2(t−)

[
− ξ0(t)dW (t)−

∫
ℜ0

ξ1(t−, y)J̃(dt, dy)
]
,
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dZ3(t) = AZ3(t)dt+ dM(t) . (5.3.4)

Then the stochastic differential game of the agent and the market can be formulated

into finding the value function φ(u, z1, z2, z3), the optimal strategies ξ̂ = (ξ̂0, ξ̂1) ∈ Ξ

and (π̂, ĉ) ∈ A such that

φ(u, z1, z2, z3) = inf
(ξ0,ξ1)∈Ξ

sup
(π,c)∈A

Eξ
z

[ ∫ T

u

e−
∫ t
u ρ(s)dsU(c(t))dt+ e−

∫ T
u ρ(s)dsU(Zπ,c

1 (T ))

]
,

= Eξ̂
z

[ ∫ T

u

e−
∫ t
u ρ(s)dsU(ĉ(t))dt+ e−

∫ T
u ρ(s)dsU(Z π̂,ĉ

1 (T ))

]
, (5.3.5)

where Eξ
z[·] and Eξ̂

z[·] are the conditional expectations under Qξ and Qξ̂, respectively,

given that Z(0) = z. Here ρ(t) denotes the instantaneous discount rate of the agent at

time t. We suppose that ρ(t) is also modulated by the chain as:

ρ(t) := ⟨ρ,X(t)⟩ ,

and

ρ := (ρ1, ρ2, · · · , ρN)′ ∈ ℜN .

By a version of the Bayes’ rule, we have

φ(u, z1, z2, z3) = inf
(ξ0,ξ1)∈Ξ

sup
(π,c)∈A

Ez

[ ∫ T

u

e−
∫ t
u ρ(s)dsZ2(t)U(c(t))dt

+e−
∫ T
u ρ(s)dsZ2(T )U(Z1(T ))

]
, (5.3.6)

where Ez[·] represents an expectation under P given that Z(0) = z.

It is noted in Elliott (1982) that if the state processes are Markovian, it may not be

unreasonable to consider optimal Markovian controls. Furthermore, under some mild

technical conditions, Markovian controls and general adapted controls have essentially

the same performance (see, for example, Øksendal and Sulem (2007b)). Since the
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vector-valued process Z is Markovian with respect to the enlarged filtration F, it is

not unreasonable to assume that the control processes (ξ0, ξ1) and (π, c) are Markovian

with respect to F. Let O := (0, T )× (0,∞)× (0,∞) be our solvency region. Suppose

that K1, K2, K3 and K4 denote the sets such that ξ0(t) ∈ K1, ξ1(t, y) ∈ K2, π(t) ∈ K3

and c(t) ∈ K4. To consider Markovian controls, we assume that

ξ0(t) = ξ0(Z(t)) , ξ1(t, y) = ξ1(Z(t), y) ,

and

π(t) = π(Z(t)) , c(t) = c(Z(t)) ,

for some measurable functions ξ0 : O×E → K1, ξ1 : O×E×ℜ0 → K2, π : O×E → K3

and c : O × E → K4. These are called feedback controls. To save notation, we do not

distinguish ξ0, ξ1, π and c with ξ0, ξ1, π and c, respectively.

Suppose that H denotes the space of functions h(·, ·, ·, ·) : O×E → ℜ such that for

each z3 ∈ E , h(·, ·, ·, z3) ∈ C1,2,2(O). Write

h(u, z1, z2) :=
(
h(u, z1, u2, e1), h(u, z1, u2, e2), · · · , h(u, z1, u2, eN)

)′ ∈ ℜN .

To unburden our notation, write

h := h(u, z1, z2, z3) ,

and

h := h(u, z1, z2) ,

whenever no confusion arises. Let hu, hz1 and hz2 denote the derivatives of h with

respect to u, z1 and z2, and hz1z1 and hz2z2 denote the second order derivatives of h

with respect to z1 and z2.
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Define a Markovian regime-switching generator Lξ0,ξ1,π,c acting on a function h ∈ H

for the Markov process Z as

Lξ0,ξ1,π,c[h(u, z1, z2, z3)]

= −ρ(u)h+ hu +

[(
r(u) + π(z)ϕ(u)− π(z)

∫
ℜ0

(
ey − 1

)
νz3(dy)

)
z1 − c(z)

]
hz1

+
1

2
π2(z)σ2(u)z21hz1z1 +

1

2
ξ20(z)z

2
2hz2z2 − π(z)ξ0(z)σ(u)z1z2hz1z2 + ⟨h,Az3⟩

+

∫
ℜ0

[
h
(
u, z1(1 + π(z)(ey − 1)), z2(1− ξ1(z, y)), z3

)
− h+ ξ1(z, y)z2hz2

]
νz3(dy) .

The following lemma presents a version of the Dynkin formula for a regime-switching

Lévy process and will be used for the development of a verification theorem for the

HJBI solution of the stochastic differential game.

Lemma 5.3.1. Let τ be a stopping time such that τ <∞, P-a.s.. Assume further that

for each (ξ0, ξ1, π, c) ∈ Ξ×A, h(Z(t)) and Lξ0,ξ1,π,c[h(Z(t))] are bounded on t ∈ [0, τ ].

Then,

Ez[e
−

∫ τ
u ρ(t)dth(Z(τ))] = h(z) + Ez

[ ∫ τ

u

e−
∫ t
u ρ(s)dsLξ0,ξ1,π,c[h(Z(t))]dt

]
.

Proof. The result follows immediately by applying Itô’s differentiation rule to e−
∫ t
u ρ(s)dsh(Z(t))

and conditioning on Z(0) = z under P .

Let O be the closure of O. We now present the HJBI solution to the stochastic dif-

ferential game between the agent and the market in the following verification theorem.

This verification theorem is a saddle-point result.

Theorem 5.3.1. Suppose that, for each z3 ∈ E, there exists a function h(·, ·, ·, z3) ∈

C1,2,2(O) ∩ C(O), and a Markovian control (ξ̂0, ξ̂1, π̂, ĉ) ∈ Ξ×A such that:

1. Lξ0,ξ1,π̂,ĉ[h(u, z1, z2, z3)]+z2U(ĉ(u, z1, z2, z3)) ≥ 0, for all (ξ0, ξ1) ∈ Ξ and (u, z1, z2, z3) ∈

O × E ;
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2. Lξ̂0,ξ̂1,π,c[h(u, z1, z2, z3)]+z2U(c(u, z1, z2, z3)) ≤ 0, for all (π, c) ∈ A and (u, z1, z2, z3) ∈

O × E ;

3. Lξ̂0,ξ̂1,π̂,ĉ[h(u, z1, z2, z3)] + z2U(ĉ(u, z1, z2, z3)) = 0, for all (u, z1, z2, z3) ∈ O × E ;

4. for all (ξ0, ξ1, π, c) ∈ Ξ×A,

lim
u→T−

h(u, Z1(u), Z2(u),Z3(u)) = Z2(T )U(Z1(T )) ;

5. let K denote the set of stopping times τ ≤ T . The family {h(Z(τ))}τ∈K is uni-

formly integrable.

Write, for each z = (u, z1, z2, z3) ∈ O × E and (ξ0, ξ1, π, c) ∈ Ξ×A,

Jξ0,ξ1,π,c(u, z1, z2, z3) := Ez

[ ∫ T

u

e−
∫ t
u ρ(s)dsZ2(t)U(c(t))dt+ e−

∫ T
u ρ(s)dsZ2(T )U(Z1(T ))

]
.

Then,

h(u, z1, z2, z3) = φ(u, z1, z2, z3)

= inf
(ξ0,ξ1)∈Ξ

(
sup

(π,c)∈A
Jξ0,ξ1,π,c(u, z1, z2, z3)

)
= sup

(π,c)∈A

(
inf

(ξ0,ξ1)∈Ξ
Jξ0,ξ1,π,c(u, z1, z2, z3)

)
= inf

(ξ0,ξ1)∈Ξ
Jξ0,ξ1,π̂,ĉ(u, z1, z2, z3)

= sup
(π,c)∈A

J ξ̂0,ξ̂1,π,c(u, z1, z2, z3)

= J ξ̂0,ξ̂1,π̂,ĉ(u, z1, z2, z3) ,

and (ξ̂0, ξ̂1, π̂, ĉ) is a saddle point in the space of Markovian strategies of the game.

Proof. Applying Lemma 5.3.1, the proof of Theorem 5.3.1 resembles that of Theorem

3.2 in Mataramvura and Øksendal (2008). So we do not repeat it here.
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Now we can re-state the conditions of Theorem 5.3.1 as follows:
inf

(ξ0,ξ1)∈Ξ
sup

(π,c)∈A
{Lξ0,ξ1,π,c[φ(u, z1, z2, z3)] + z2U(c(u, z1, z2, z3))} = 0 ,

φ(T, z1, z2, z3) = z2U(z1) .

(5.3.7)

Theorem 5.3.1 implies that the value function φ is a classical solution of the HJBI

equation (5.3.7) and we only need to solve the HJBI equation (5.3.7) for solving the

stochastic differential game (5.3.4) and (5.3.6) between the agent and the market.

The following theorem gives the value function and the optimal Markovian control

(ξ̂0, ξ̂1, π̂, ĉ), which is the saddle-point of the game.

Theorem 5.3.2. The saddle point (ξ̂0, ξ̂1, π̂, ĉ) of the game described in (5.3.4) and

(5.3.6) between the agent and the market is given by

ϕ(u) = ξ̂0(z)σ(u) +

∫
ℜ0

ξ̂1(z, y)
(
ey − 1

)
νz3(dy) , (5.3.8)

π̂(z) = 0 , (5.3.9)

and

ĉ(z) =


z1

[P (u, z3)]
1
γ

, γ > 0 , γ ̸= 1 ,

z1
Q(u, z3)

, γ = 1 .

(5.3.10)

Furthermore, the value function is

φ(u, z1, z2, z3) =


P (u, z3)z2

z1−γ
1

1− γ
, γ > 0 , γ ̸= 1 ,

Q(u, z3)z2 log z1 +R(u, z3)z2 , γ = 1 .

(5.3.11)

Here, for each z3 ∈ E, the functions P (u, z3), Q(u, z3) and R(u, z3) are assumed to

be continuously differentiable with respect to u. Specifically, P := P (u, z3) > 0 is the
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unique solution of the following Markovian regime-switching nonlinear ODE
dP

du
+ b(u)P + γP 1− 1

γ + ⟨P,Az3⟩ = 0 ,

P (T, z3) = 1 ,

(5.3.12)

where

b(u) := (1− γ)r(u)− ρ(u) ,

and

P :=
(
P (u, e1), P (u, e2), · · · , P (u, eN)

)′ ∈ ℜN .

Q(u, z3) and R(u, z3) are given by the following explicit expressions

Q(u, z3) =

⟨
exp

[
(A− ρ)(T − u)

]
1N

+

∫ T

u

exp
[
(A− ρ)(t− u)

]
1Ndt, z3

⟩
, (5.3.13)

and

R(u, z3) =

⟨∫ T

u

exp
[
(A− ρ)(t− u)

]
f(t)dt, z3

⟩
, (5.3.14)

where

1N := (1, 1, · · · , 1)′ ∈ ℜN ,

ρ := diag
[
(ρ1, ρ2, · · · , ρN)′

]
,

and

fi(u) := riQ(u, ei)− log(Q(u, ei))− 1 ,

f(u) := (f1(u), f2(u), · · · , fN(u))′ ∈ ℜN .
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Proof. Denote by

Ψ(u, z1, z2, z3; ξ0, ξ1, π, c) = Lξ0,ξ1,π,c[φ(u, z1, z2, z3)] + z2U(c(u, z1, z2, z3)) .

Using the first order condition that minimizes Ψ with respect to (ξ0, ξ1), we have

ξ0(z)z
2
2φz2z2 − π(z)σ(u)z1z2φz1z2 = 0 , (5.3.15)

and ∫
ℜ0

[
− z2φz2

(
u, z1(1 + π(z)(ey − 1)),

z2(1− ξ1(z, y)), z3
)
+ z2φz2

]
νz3(dy) = 0 . (5.3.16)

Similarly, using the first order condition that maximizes Ψ with respect to (π, c), we

have

ϕ(u)z1φz1 + π(z)σ2(u)z21φz1z1 − ξ0(z)σ(u)z1z2φz1z2 (5.3.17)

+

∫
ℜ0

(ey − 1)z1

[
φz1

(
u, z1(1 + π(z)(ey − 1)), z2(1− ξ1(z, y)), z3

)
− φz1

]
νz3(dy) = 0 ,

and

−φz1 + z2Uc(c(z)) = 0 . (5.3.18)

1. γ > 0 and γ ̸= 1

From the terminal condition of the HJBI equation (5.3.7), we try a solution of the

following form:

φ(u, z1, z2, z3) = P (u, z3)z2
z1−γ
1

1− γ
, (5.3.19)

where P is assumed to be continuously differentiable with respect to u.
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Substituting (5.3.19) into (5.3.15) and (5.3.18) gives the optimal pair of portfolio and

consumption rate processes

π̂(z) = 0 , (5.3.20)

and

ĉ(z) =
z1

[P (u, z3)]
1
γ

. (5.3.21)

Then substituting (5.3.19) and (5.3.20) into (5.3.17), we obtain the following equity

premium equation

ϕ(u) = ξ̂0(z)σ(u) +

∫
ℜ0

ξ̂1(z, y)(e
y − 1)νz3(dy) . (5.3.22)

Note that the value function of the form (5.3.19) ensures that (5.3.16) always holds

regardless of the value of ξ1(z, y). Therefore, substituting (5.3.19)-(5.3.21) into (5.3.7)

yields that P (u, z3) satisfies the Markovian regime-switching nonlinear ODE (5.3.12).

Equivalently, Pi := P (u, ei), for each i = 1, 2, · · · , N , satisfy the following system of

ODEs 
dPi

du
+ biPi + γP

1− 1
γ

i + ⟨P,Aei⟩ = 0 ,

P (T, ei) = 1 ,

(5.3.23)

where

bi := (1− γ)ri − ρi .

Note that Eq. (5.3.23) is a system of N -coupled, nonlinear ODEs. In general, it is

difficult, if not possible, to derive the closed-form solution. However, we could modify

Lemma 3.2 in Pirvu and Zhang (2011) and prove the existence and uniqueness of a

continuously differentiable solution Pi to (5.3.23), for each i = 1, 2, · · · , N . Since the
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modification is trivial, we omit it here. In the sequel, we verify the positivity of Pi, for

each i = 1, 2, · · · , N . Rearranging (5.3.23) gives:

dPi

du
+ biPi + γP

1− 1
γ

i + aiiPi +
N∑
j ̸=i

aijPj = 0 .

Then

d[e−(bi+aii)uPi]

du
+ e−(bi+aii)u

[
γP

1− 1
γ

i +
N∑
j ̸=i

aijPj

]
= 0 ,

which immediately leads to:

P (u, ei) = e(bi+aii)(T−u) +

∫ T

u

e(bi+aii)(s−u)

[
γP 1− 1

γ (s, ei) +
N∑
j ̸=i

aijP (s, ej)

]
ds .(5.3.24)

Define

ti0 := sup{t ∈ [0, T ]|P (t, ei) ≤ 0} , i = 1, 2, · · · , N .

We denote by t0 := t10 ∨ t20 ∨ · · · ∨ tN0 . Recalling that sup ∅ = −∞, we can see that the

range of t0 is {−∞}∪ [0, T ]. If t0 = −∞ (i.e. t10 = t20 = · · · = tN0 = −∞), the positivity

of Pi is satisfied. Otherwise, if t0 ∈ [0, T ], we can find at least one k ∈ {1, 2, · · · , N}

such that t0 = tk0 ∈ [0, T ]. From P (T, ei) = 1 > 0, the continuity of Pi and the

definition of t0, we have that P (u, ei) > 0, for each u ∈ (t0, T ] and i = 1, 2, · · · , N .

Furthermore, since akj > 0, j ̸= k and γ > 0, setting u = t0 and i = k on both sides of

(5.3.24) yields that

0 ≥ P (t0, ek) = e(bk+akk)(T−t0) +

∫ T

t0

e(bk+akk)(s−t0)

[
γP 1− 1

γ (s, ek) +
N∑
j ̸=k

akjP (s, ej)

]
ds > 0 .

This is a contradiction. Therefore, we must have t0 = −∞ and the positivity of Pi is

proved.

125



2. γ = 1

From the terminal condition of the HJBI equation (5.3.7), we try the solution of

following form

φ(u, z1, z2, z3) = Q(u, z3)z2 log(z1) +R(u, z3)z2 , (5.3.25)

where Q and R are assumed to be continuously differentiable with respect to u.

Similarly, substituting (5.3.25) into (5.3.15) and (5.3.18) gives the optimal pair of

portfolio and consumption rate processes

π̂(z) = 0 , ĉ(z) =
z1

Q(u, z3)
. (5.3.26)

Then substituting the optimal portfolio process π̂(z) = 0 in (5.3.26) and (5.3.25) into

(5.3.17) leads to the equity premium equation

ϕ(u) = ξ̂0(z)σ(u) +

∫
ℜ0

ξ̂1(z, y)(e
y − 1)νz3(dy) . (5.3.27)

Note that the value function of the form (5.3.25) ensures that (5.3.16) always holds

regardless of the value of ξ1(z, y). To simplify our notation, write Q := Q(u, z3),

R := R(u, z3), Qi := Q(u, ei), Ri := R(u, ei), for each i = 1, 2, · · · , N , and

Q := (Q1, Q2, · · · , QN)
′ ∈ ℜN ,

R := (R1, R2, · · · , RN)
′ ∈ ℜN .

Substituting (5.3.25)-(5.3.26) into (5.3.7), we obtain

[
dQ

du
− ρ(u)Q+ ⟨Q,Az3⟩+ 1

]
z2 log(z1)

+

[
dR

du
− ρ(u)R + ⟨R,Az3⟩+ f(u)

]
z2 = 0 ,

Q(T, z3) = 1 , R(T, z3) = 0 ,

(5.3.28)
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where

f(u) := r(u)Q− log(Q)− 1 .

Setting the coefficients of z2 log(z1) and z2 equal zeros, we obtain the following Marko-

vian regime-switching ODEs:

dQ

du
− ρ(u)Q+ ⟨Q,Az3⟩+ 1 = 0 , (5.3.29)

and

dR

du
− ρ(u)R + ⟨R,Az3⟩+ f(u) = 0 . (5.3.30)

Or equivalently,

dQi

du
− ρiQi + ⟨Q,Aei⟩+ 1 = 0 ,

and

dRi

du
− ρiRi + ⟨R,Aei⟩+ fi(u) = 0 ,

for each i = 1, 2, · · · , N .

Then we can rewrite (5.3.29) and (5.3.30) as the following matrix-valued ODEs:
dQ

du
+ (A− ρ)Q+ 1N = 0N ,

Q(T ) = 1N ,

and 
dR

du
+ (A− ρ)R+ f(u) = 0N ,

R(T ) = 0N ,

where

0N := (0, 0, · · · , 0)′ ∈ ℜN .
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Therefore, the solutions of (5.3.29) and (5.3.30) are given by (5.3.13) and (5.3.14),

respectively.

From Theorem 5.3.2, we can verify that the probability measure Qξ̂, where ξ̂ =

(ξ̂0, ξ̂1) is determined by Eq. (5.3.8), is an equivalent martingale measure. That is,

the discounted share price process S̃ := {S̃(t)|t ∈ T } is an (F,Qξ̂)-(local)-martingale,

where

S̃(t) := exp

{
−
∫ t

0

r(u)du

}
S(t), t ∈ T .

Applying Itô’s differentiation rule to Λξ̂(t)S̃(t), we have

Λξ̂(t)S̃(t)− Λξ̂(0)S̃(0) =

∫ t

0

(
σ(u)− ξ̂0(u)

)
Λξ̂(u)S̃(u)dW (u)

+

∫ t

0

∫
ℜ0

(
ey − 1− ey ξ̂1(u, y)

)
Λξ̂(u)S̃(u)J̃(du, dy) .

Then the process {Λξ̂(t)S̃(t)|t ∈ T } is an (F,P)-(local)-martingale. By Lemma 7.2.2

in Elliott and Kopp (2004), we can see that S̃ is indeed an (F,Qξ̂)-(local)-martingale.

5.3.2 Esscher transform

In this subsection, we adopt the approach considered in Elliott and Siu (2013) to find an

equivalent martingale measure of the regime-switching Lévy model based on stochastic

exponential (see also Bühlmann et al., 1997 and Kallsen and Shiryaev, 2002).

Let L(Y ) be the space of all processes θ := {θ(t)|t ∈ T } such that

1. For each t ∈ T , θ(t) = ⟨θ,X(t)⟩, where θ := (θ1, θ2, · · · , θN)′ ∈ ℜN ;

2. θ is integrable with respect to Y in the sense of stochastic integration.
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In what follows, we call θ the Esscher transform parameter. For each θ ∈ L(Y ),

define an F-adapted process Gθ := {Gθ(t)|t ∈ T } by

Gθ(t) := exp

(
−
∫ t

0

θ(u)dY (u)

)
.

Applying Itô’s differentiation rule to Gθ(t) under P , we have

Gθ(t) = 1 +

∫ t

0

Gθ(u−)dHθ(u) ,

where Hθ := {Hθ(t)|t ∈ T } is an F-adapted process defined by putting

Hθ(t) :=

∫ t

0

[
− θ(u)

(
µ(u)− 1

2
σ2(u)−

∫
ℜ0

(
ey − 1

)
νX(u)(dy)

)
+
1

2
θ2(u)σ2(u) +

∫
ℜ0

(
e−θ(u)y − 1

)
νX(u)(dy)

]
du

−
∫ t

0

θ(u)σ(u)dW (u) +

∫ t

0

∫
ℜ0

(
e−θ(u)y − 1

)
J̃(du, dy) .

Consequently, Gθ is the Doléans-Dade stochastic exponential of Hθ under P , i.e.

Gθ(t) = E(Hθ(t)) .

Since Hθ is a special semi-martingale, its predictable part of finite variation is the

Laplace cumulant process of {−
∫ t

0
θ(u)dY (u)|t ∈ T } under P . In other words, the

Laplace cumulant process, denoted by Mθ := {Mθ(t)|t ∈ T }, is given by

Mθ(t) :=

∫ t

0

[
− θ(u)

(
µ(u)− 1

2
σ2(u)−

∫
ℜ0

(
ey − 1

)
νX(u)(dy)

)
+
1

2
θ2(u)σ2(u) +

∫
ℜ0

(
e−θ(u)y − 1

)
νX(u)(dy)

]
du . (5.3.31)

Given that Mθ is a finite variation process, the Doléans-Dade exponential E(Mθ(t))

of Mθ(t) is

E(Mθ(t)) = exp(Mθ(t)) .
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So the logarithm transform M̃θ := {M̃θ(t)|t ∈ T } of Mθ(t) follows

M̃θ(t) := log(E(Mθ(t))) = Mθ(t) . (5.3.32)

Consider an F-adapted process Λθ := {Λθ(t)|t ∈ T } associated with θ ∈ L(Y ) defined

by putting

Λθ(t) := exp

(
−

∫ t

0

θ(u)dY (u)− M̃θ(t)

)
.

This is the generalized version of the Esscher density process, where the Laplace cumu-

lant process is used to replace the moment generating function in the classical Esscher’s

measure change.

From (5.2.4) and (5.3.31)-(5.3.32), we obtain

Λθ(t) = exp

(
− 1

2

∫ t

0

θ2(u)σ2(u)du−
∫ t

0

∫
ℜ0

(
e−θ(u)y − 1 + θ(u)y

)
νX(u)(dy)du

−
∫ t

0

θ(u)σ(u)dW (u)−
∫ t

0

∫
ℜ0

θ(u)yJ̃(du, dy)

)
. (5.3.33)

Applying Itô’s differentiation rule to Λθ(t) gives

Λθ(t) = 1−
∫ t

0

Λθ(u−)θ(u)σ(u)dW (u)

+

∫ t

0

∫
ℜ0

Λθ(u−)
(
e−θ(u)y − 1

)
J̃(du, dy) . (5.3.34)

So Λθ is an (F,P)-local-martingale. We suppose that the process θ is such that Λθ is

an (F,P)-martingale. Then E[Λθ(T )] = 1.

For each θ ∈ L(Y ), we define a new probability measure Qθ equivalent to P on

F(T ) by the Radon-Nikodym derivative:

dQθ

dP

∣∣∣∣
F(T )

:= Λθ(T ) .
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From a version of the second fundamental theorem of asset pricing (see Harrison

and Kreps (1979) and Harrison and Pliska (1981, 1983)), the absence of arbitrage

is ‘essentially’ equivalent to the existence of an equivalent martingale measure under

which the discounted share price is a martingale. We provide a necessary and sufficient

condition for the martingale condition.

Theorem 5.3.3. The discounted share price process S̃ = {S̃(t)|t ∈ T } is an (F,Qθ)-

martingale if and only if the Esscher transform parameter θ satisfies the following

equation:

ϕ(u) = θ(u)σ2(u) +

∫
ℜ0

(
1− e−θ(u)y

)(
ey − 1

)
νX(u)(dy) . (5.3.35)

Proof. By Lemma 7.2.2 in Elliott and Kopp (2004), S̃ is an (F,Qθ)-martingale if and

only if ΛθS̃ := {Λθ(t)S̃(t)|t ∈ T } is an (F,P)-martingale. Using Itô’s product rule, we

have

Λθ(t)S̃(t)− Λθ(0)S̃(0) (5.3.36)

=

∫ t

0

Λθ(u−)dS̃(u) +

∫ t

0

S̃(u−)dΛθ(u) +

∫ t

0

d[S̃(u),Λθ(u)]c +
∑

0<u≤t

∆Λθ(u)∆S̃(u)

=

∫ t

0

[
ϕ(u)− θ(u)σ2(u) +

∫
ℜ0

(
e−θ(u)y − 1

)(
ey − 1

)
νX(u)(dy)

]
Λθ(u)S̃(u)du

+

∫ t

0

(1− θ(u))σ(u)Λθ(u)S̃(u)dW (u) +

∫ t

0

∫
ℜ0

(
e(1−θ(u))y − 1

)
Λθ(u)S̃(u)J̃(du, dy) .

Then ΛθS̃ is an (F,Qθ)-martingale if and only if the predictable part of finite variation

in (5.3.36) is indistinguishable from the zero process. This leads to the desired result

immediately.

For each ei ∈ E , i = 1, 2, · · · , N , the Esscher transform parameter θi = ⟨θ, ei⟩

satisfies the following equation

ϕi = θiσ
2
i +

∫
ℜ0

(1− e−θiy)(ey − 1)νi(dy) . (5.3.37)
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Define a function gi : ℜ → ℜ as follows

gi(θi) = θiσ
2
i +

∫
ℜ0

(1− e−θiy)(ey − 1)νi(dy) .

Clearly, gi is a continuous and strictly increasing function and maps (−∞,+∞) into

(−∞,+∞), since

dgi
dθi

= σ2
i +

∫
ℜ0

e−θiyy(ey − 1)νi(dy) > 0 ,

and

lim
θi→−∞

gi(θi) = −∞ , lim
θi→+∞

gi(θi) = +∞ .

Therefore, θi is uniquely determined by (5.3.37), for each i = 1, 2, · · · , N .

Note that there is only one equation (5.3.8) or the martingale condition for (ξ̂0, ξ̂1) in

the stochastic differential game approach. Therefore, (ξ̂0, ξ̂1) is not uniquely determined

by (5.3.8). As in Siu (2008), if we impose the following additional conditions

ξ̂0(z) = λ(u)σ(u) , (5.3.38)

and

ξ̂1(z, y) = 1− e−λ(u)y , (5.3.39)

where λ(u) is modulated by the chain as follows:

λ(u) := ⟨λ,X(u)⟩ ,

and

λ := (λ1, λ2, · · · , λN)′ ∈ ℜN ,
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then Eq. (5.3.8) becomes

ϕ(u) = λ(u)σ2(u) +

∫
ℜ0

(1− e−λ(u)y)(ey − 1)νX(u)(dy) .

Equivalently, for each i = 1, 2, · · · , N ,

ϕi = λiσ
2
i +

∫
ℜ0

(1− e−λiy)(ey − 1)νi(dy) . (5.3.40)

Combining (5.3.37) and (5.3.40) gives

ϕi = gi(θi) = gi(λi) . (5.3.41)

Since gi is a strictly increasing function, we must have

θi = λi , i = 1, 2, · · · , N , (5.3.42)

and Qθ and Qξ̂ are identical.

5.3.3 General Equilibrium

In this subsection, we adopt the convention of the literature on equilibrium asset pricing

models and consider the general equilibrium of a representative agent under the regime-

switching Lévy model. Here we assume the existence of the representative agent and

also suppose that the representative agent can trade in both the risk-free bond and the

risky share and consume over the time horizon T .

As in Subsection 3.1, we define a vector-valued controlled state process Z :=

{Z(t)|t ∈ T } of the agent by putting

dZ(t) = (dZ0(t), dZ1(t), dZ2(t))
′

= (dZ0(t), dZ
π,c

1 (t), dZ2(t))
′

= (dt, dV π,c(t), dX(t))′ ,
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Z(0) = z = (u, z1, z2) ,

where, under P, the evolution of the components of the controlled state process Z over

time is governed by

dZ0(t) = dt ,

dZ1(t) = Z1(t−)

[(
r(t) + π(t)ϕ(t)

)
dt+ π(t)σ(t)dW (t)

+π(t)

∫
ℜ0

(
ey − 1

)
J̃(dt, dy)

]
− c(t)dt ,

dZ2(t) = AZ2(t)dt+ dM(t) . (5.3.43)

Let Ez[·] denote an expectation under P given that Z(0) = z. The general equilibri-

um problem of the agent is to find an optimal portfolio-consumption pair (π̂, ĉ) ∈ A so

as to maximize the expected, discounted utility from intertemporal consumption and

terminal wealth

Ez

[ ∫ T

u

e−
∫ t
u ρ(s)dsU(c(t))dt+ e−

∫ T
u ρ(s)dsU(V (T ))

]
, (5.3.44)

subject to the market clearing condition π̂(t) = 1, for each t ∈ T . So the value function

of the general equilibrium problem is defined as:

φ(u, z1, z2) = sup
(π,c)∈A

Ez

[ ∫ T

u

e−
∫ t
u ρ(s)dsU(c(t))dt+ e−

∫ T
u ρ(s)dsU(V (T ))

]
. (5.3.45)

Indeed, the general equilibrium problem of the representative agent is a stochastic

control problem with the state processes and performance functional given by (5.3.43)

and (5.3.44), respectively.

Let D := (0, T )×(0,∞) be our solvency region. Suppose that L1 and L2 denote the

sets such that π(t) ∈ L1 and c(t) ∈ L2. As in Subsection 3.1, we consider Markovian

controls and assume that

π(t) = π(Z(t)) , c(t) = c(Z(t)) ,
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for some measurable functions π : D × E → L1 and c : D × E → L2. Again, to save

notation, we do not distinguish π and c with π and c, respectively.

Let H denote the space of functions h(·, ·, ·) : D×E → ℜ such that for each z2 ∈ E ,

h(·, ·, z2) ∈ C1,2(D). We write hu and hz1 for the derivatives of h with respect to u and

z1, and hz1z1 for the second order derivative of h with respect to z1. Denote by

h(u, z1) := (h(u, z1, e1), h(u, z1, e2), · · · , h(u, z1, eN))′ ∈ ℜN .

To simplify our notation, we suppress u, z1 and z2 and write h and h for h(u, z1, z2)

and h(u, z1), respectively, whenever no confusion arises. For each (π, c) ∈ A, we define

a regime-switching partial differential operator Lπ,c acting on h ∈ H for the process Z

as:

Lπ,c[h(u, z1, z2)]

= −ρ(u)h+ hu +

[(
r(u) + π(z)ϕ(u)− π(z)

∫
ℜ0

(
ey − 1

)
νz2(dy)

)
z1 − c(z)

]
hz1

+
1

2
π2(z)σ2(u)z21hz1z1 +

∫
ℜ0

[
h(u, z1(1 + π(z)(ey − 1)), z2)− h

]
νz2(dy) +

⟨
h,Az2

⟩
.

As in Subsection 3.1, we need the following version of the Dynkin formula for regime-

switching Lévy processes to develop a verification theorem for the HJB solution of the

stochastic control problem (i.e. the general equilibrium problem).

Lemma 5.3.2. Let τ be a stopping time such that τ < ∞, P-a.s.. Assume further

that for each (π, c) ∈ A, h(Z(t)) and Lπ,c[h(Z(t))] are bounded on t ∈ [0, τ ]. Then,

Ez[e
−

∫ τ
u ρ(t)dth(Z(τ))] = h(z) + Ez

[ ∫ τ

u

e−
∫ t
u ρ(s)dsLπ,c[h(Z(t))]dt

]
.

Proof. Applying Itô’s differentiation rule to e−
∫ t
u ρ(s)dsh(Z(t)) and conditioning on Z(0) =

z lead to the desired result immediately.
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Let D be the closure of D. We now present the HJB solution to the stochastic

control of the agent in the following verification theorem.

Theorem 5.3.4. Suppose that, for each z2 ∈ E , there exists a function h(·, ·, z2) ∈

C1,2(D) ∩ C(D), and a Markov control (π̂, ĉ) ∈ A such that:

1. Lπ,c[h(u, z1, z2)] + U(c(u, z1, z2)) ≤ 0, for all (π, c) ∈ A and (u, z1, z2) ∈ D × E;

2. Lπ̂,ĉ[h(u, z1, z2)] + U(ĉ(u, z1, z2)) = 0, for all (u, z1, z2) ∈ D × E;

3. for all (π, c) ∈ A,

lim
u→T−

h(u, Z1(u),Z2(u)) = U(Z1(T )) ;

4. let K denote the set of stopping times τ ≤ T . The family {h(Z(τ))}τ∈K is uni-

formly integrable.

Write, for each z = (u, z1, z2) ∈ D × E and (π, c) ∈ A,

J
π,c
(u, z1, z2) := Ez

[ ∫ T

u

e−
∫ t
u ρ(s)dsU(c(t))dt+ e−

∫ T
u ρ(s)dsU(Z1(T ))

]
.

Then,

h(u, z1, z2) = φ(u, z1, z2)

= sup
(π,c)∈A

J
π,c
(u, z1, z2)

= J
π̂,ĉ
(u, z1, z2) ,

and (π̂, ĉ) is an optimal Markovian control.

Proof. Applying Lemma 5.3.2, the proof of Theorem 5.3.4 resembles that of Theorem

3.1 in Øksendal and Sulem (2007b). So we do not repeat it here.
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As in Subsection 3.1, we can re-state the conditions of Theorem 5.3.4 as follows:
sup

(π,c)∈A
{Lπ,c[φ(u, z1, z2)] + U(c(u, z1, z2))} = 0 ,

φ(T, z1, z2) = U(z1) .

(5.3.46)

Theorem 5.3.5. In the stochastic control problem (5.3.43) and (5.3.45) of the rep-

resentative agent, the equilibrium equity premium and the optimal consumption rate

process are given by

ϕ(u) = γσ2(u) +

∫
ℜ0

(
1− e−γy

)(
ey − 1

)
νz2(dy) , (5.3.47)

and

ĉ(z) =


z1

[P (u, z2)]
1
γ

, γ > 0 , γ ̸= 1 ,

z1

Q(u, z2)
, γ = 1 .

(5.3.48)

Furthermore, the value function is

φ(u, z1, z2) =


P (u, z2)

z1−γ
1

1− γ
, γ > 0 , γ ̸= 1 ,

Q(u, z2) log z1 +R(u, z2) , γ = 1 .

(5.3.49)

Here, for each z3 ∈ E, the functions P (u, z2), Q(u, z2) and R(u, z2) are assumed to

be continuously differentiable with respect to u. Specifically, P := P (u, z2) > 0 is the

unique solution of the following Markovian regime-switching nonlinear ODE
dP

du
+ b(u)P + γP

1− 1
γ +

⟨
P,Az2

⟩
= 0 ,

P (T, z2) = 1 ,

(5.3.50)

where

b(u) = −ρ(u) + (1− γ)r(u) +
1

2
(1− γ)γσ2(u) +

∫
ℜ0

[
(1− γ)e−γy + γe(1−γ)y − 1

]
νz2(dy) ,
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and

P :=
(
P (u, e1), P (u, e2), · · · , P (u, eN)

)′ ∈ ℜN .

Q(u, z2) and R(u, z2) are given by the following explicit expressions

Q(u, z2) =

⟨
exp

[
(A− ρ)(T − u)

]
1N

+

∫ T

u

exp
[
(A− ρ)(t− u)

]
1Ndt, z2

⟩
, (5.3.51)

and

R(u, z2) =

⟨∫ T

u

exp
[
(A− ρ)(t− u)

]
f(t)dt, z2

⟩
, (5.3.52)

where

f(u) :=
(
f(u, e1), f(u, e2), · · · , f(u, eN))′ ,

with

f(u, ei) :=

(
ri +

1

2
σ2
i −

∫
ℜ0

(
1− y − e−y

)
νi(dy)

)
Q(u, ei)− log(Q(u, ei))− 1 ,

for each i = 1, 2, · · · , N .

Proof. Since the proof of this theorem is similar to that of Theorem 5.3.2, we only

present some key steps of derivations here. Using the first order condition for maxi-

mizing Lπ,c[φ(u, z1, z2)] + U(c(u, z1, z2)) with respect to (π, c) ∈ A gives[
ϕ(u)−

∫
ℜ0

(
ey − 1

)
νz2(dy)

]
z1φz1 + π(z)σ2(u)z21φz1z1

+

∫
ℜ0

[
(ey − 1)z1φz1(u, z1(1 + π(z)(ey − 1)), z2)

]
νz2(dy) = 0 , (5.3.53)

and

−φz1 + Uc(c(z)) = 0 . (5.3.54)
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Applying the market clearing condition π̂(z) = 1 to Eq. (5.3.53) implies that the

equilibrium equity premium satisfies

ϕ(t) = − 1

φz1

{
σ2(u)z1φz1z1 +

∫
ℜ0

[
(ey − 1)φz1(u, z1e

y, z2))
]
νz2(dy)

}
+

∫
ℜ0

(
ey − 1

)
νz2(dy) . (5.3.55)

Then substituting π̂(z) = 1 and (5.3.55) into (5.3.46) gives

−ρ(u)φ+ φu + r(u)z1φz1 −
1

2
σ2(u)z21φz1z1 −

∫
ℜ0

[
(ey − 1)z1φz1(u, z1e

y, z2)
]
νz2(dy)

+

∫
ℜ

[
φ(u, z1e

y, z2))− φ(u, z1, z2)
]
νz2(dy) + ⟨φ,Az2⟩ − ĉ(z)φz1 + U(ĉ(z)) = 0 .

(5.3.56)

Since the agent has a different type of utility functions when γ takes different values,

we conjecture that the solution of (5.3.56) has the following parametric form

φ(u, z1, z2) =


P (u, z2)

z1−γ
1

1− γ
, γ > 0 , γ ̸= 1 ,

Q(u, z2) log z1 +R(u, z2) , γ = 1 .

(5.3.57)

In what follows, we suppress u and z2 and write Φ for Φ(u, z2) whenever no confu-

sion arises, where Φ := P , Q and R. Furthermore, suppose that Φ is continuously

differentiable with respect to u. To simplify our notation, denote by

Φ :=
(
Φ(u, e1),Φ(u, e2), · · · ,Φ(u, eN)

)′ ∈ ℜN ,

where Φ := P, Q and R.

Substituting (5.3.57) into the first order condition (5.3.54), we obtain the optimal

consumption rate

ĉ(z) =


z1

[P (u, z2)]
1
γ

, γ > 0 , γ ̸= 1 ,

z1

Q(u, z2)
, γ = 1 .

(5.3.58)
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Substituting (5.3.57)-(5.3.58) into (5.3.56), we obtain the following Markovian regime-

switching ODEs:

1. γ > 0 and γ ̸= 1 
dP

du
+ b(u)P + γP

1− 1
γ +

⟨
P,Az2

⟩
= 0 ,

P (T, z2) = 1 .

(5.3.59)

2. γ = 1 

[
dQ

du
− ρ(u)Q+

⟨
Q,Az2

⟩
+ 1

]
log z1

+

[
dR

du
− ρ(u)R +

⟨
R,Az2

⟩
+ f(u)

]
= 0 ,

Q(T, z2) = 1 , R(T, z2) = 0 ,

(5.3.60)

where

f(u) =

(
r(u) +

1

2
σ2(u)−

∫
ℜ0

(
1− y − e−y

)
νz2(dy)

)
Q− log(Q)− 1 .

As in Subsection 3.1, we could follow Lemma 3.2 in Pirvu and Zhang (2011) to prove

that (5.3.59) admits a unique continuously differentiable solution. Similarly, we can

verify the positivity of this solution as in the proof of Theorem 5.3.2. In addition, the

closed-form solutions of (5.3.60) are given by (5.3.51)-(5.3.52).

Consequently, substituting (5.3.57) into (5.3.55) gives the equilibrium equity premium

ϕ(u) = γσ2(u) +

∫
ℜ0

(
1− e−γy

)(
ey − 1

)
νz2(dy) . (5.3.61)

From Theorem 5.3.5, if Eq. (5.3.47) holds, (i.e. the equity premium is in its

equilibrium state), we can define a new probability measure Qγ

dQγ

dP

∣∣∣∣
F(T )

= Λγ(T ) ,
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where

dΛγ(t)

Λγ(t−)
= −γσ(t)dW (t) +

∫
ℜ0

(e−γy − 1)J̃(dt, dy) .

It is easy to verify that Qγ is also an equivalent (local)-martingale measure. Indeed,

applying Itô’s differentiation rule to Λγ(t)S̃(t) gives

Λγ(t)S̃(t)− Λγ(0)S̃(0)

=

∫ t

0

(1− γ)σ(u)Λγ(u)S̃(u)dW (u) +

∫ t

0

∫
ℜ0

(
e(1−γ)y − 1

)
Λγ(u)S̃(u)J̃(du, dy) .

So {Λγ(t)S̃(t)|t ∈ T } is an (F,P)-(local)-martingale and thus {S̃(t)|t ∈ T } is an

(F,Qγ)-(local)-martingale.

For each ei ∈ E , the equilibrium equity premium for the representative agent is

determined by

ϕi = γσ2
i +

∫
ℜ0

(
1− e−γy

)(
ey − 1

)
νi(dy) = gi(γ) .

Comparing with the martingale condition (5.3.35) of the Esscher transform approach

when the equity premium is in its equilibrium state, we obtain

ϕi = gi(θi) = gi(γ) . (5.3.62)

Again, since gi is a strictly increasing function, for each i = 1, 2, · · · , N , we must have

θ1 = θ2 = · · · = θN = γ ,

and Qγ and Qθ are identical. Note that if the market is in equilibrium, the Esscher

transform parameter is state independent and is equal to the relative risk aversion

coefficient in all states.

Remark 5.3.1. Throughout this section, we have employed three different approach-

es to choose equivalent martingale measures for the valuation of contingent claims
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in a regime-switching Lévy model. The equivalent martingale measures determined

by the stochastic differential game approach and the Esscher transform approach are

preference-free. Under conditions (5.3.38)-(5.3.39), the two equivalent martingale mea-

sures Qξ̂ and Qθ are identical. So under conditions (5.3.38)-(5.3.39), the prices of any

contingent claim under Qξ̂ and Qθ are the same regardless of the preference of the

agent. However, the equivalent martingale measure determined by the general equilibri-

um approach is preference-dependent. The two equivalent martingale measures Qθ and

Qγ are identical only if the equity premium is in its equilibrium state. So the prices of

any contingent claim under Qθ and Qγ are the same from the representative agent’s

perspective.

5.4 Conclusion

We considered three different approaches, namely, the stochastic differential game,

the Esscher transform and the general equilibrium to choose equivalent martingale

measures for the valuation of contingent claims under a regime-switching Lévy model.

We identified the conditions under which these equivalent martingale measures are

identical. Our results are important for pricing various contingent claims in finance

and insurance under a general modeling framework, including both Poisson jumps and

regime switches. In particular, the pricing framework of our regime-switching models

can be used for the valuation of long-dated insurance products, where an economy

usually experiences several structural changes in the life spans of these products.
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Chapter 6

Conclusion

In this thesis, we have investigated several interesting applications of regime-switching

models in finance. Specifically, we have discussed the valuation of European option-

s and variance swaps under different versions of regime-switching models. Then we

have considered a mean-variance portfolio selection problem with uncertain invest-

ment horizon under a regime-switching jump-diffusion model. Finally, we have applied

the stochastic optimal control theory to study the selection of equivalent martingale

measures under a regime-switching Lévy model.

Various possible extensions to this work remain. So far, we have only considered

the valuation of vanilla options under regime-switching models. For path-dependent

and American options, the closed-form pricing formulae for regime-switching models

are difficult to derive. In the future research, we plan to derive the closed-form pricing

formulae of path-dependent and American options under regime-switching models using

the Laplace transform, which are convenient to be implemented via some standard

inversion methods. These closed-form pricing formulae are important for the valuation

of numerous insurance products with exotic options embedded.

143



Another potential research topic is portfolio optimization problems under regime-

switching models with random coefficients, in the sense that model parameters may

depend on not only the current state of but also the full path of the underlying Markov

chain. Research on this topic is still at an infant stage. We shall use a BSDE approach

to investigate the mean-variance portfolio selection, the investment-consumption and

the optimal reinsurance problems under regime-switching models with random coeffi-

cients.
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