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Abstract

Multi-Phase Transport controls a number of important processes in the Earth’s interior.

Unfortunately, most available modelling platforms (and their underlying system of equations)

are not well-suited to deal with the MPT nature of geological processes . The aim of this

project is to develop a compressible Multi-Phase formulation able to handle the required

level of complexity of both turbulent and non-turbulent natural systems. This platform

will provide a unique and holistic understanding of key geological processes such as melt

generation and migration, core formation, metasomatism, magma-chamber formation, ore

generation and emplacement, and secular evolution of planetary bodies.
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1
Introduction

The interaction of multiple phases in natural flows, as well as how these interactions affect

the bulk behaviour of the flows, are topics of great practical importance (e.g. modelling

of nuclear reactors, extraction of oil and gas, modelling of pyroclastic flows, etc). Within

the realm of the geosciences, multiphase flows are ubiquitous. For instance, when magma

is generated at depth, it tends to move upwards due to its low relative density, percolating

through a matrix of more or less viscous materials. The melt-matrix system can therefore

be considered as a two-phase viscous system. The motion of magma in shallow levels of

the crust is also a multiphase flow made up of gas bubbles, solid crystals and liquid. The

eruption and collapse of pyroclastic are another two examples of a fluid composed of multiple

interacting phases. These are just a few examples of relevance to geodynamics, geochemistry

and geophysics.
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2 Introduction

The modelling of such flows requires a multiphase formulation of the governing equa-

tions. In the multiphase approach, there will generally be a discontinuity in field variables

(velocity, density, etcetera) across the phases’ boundaries. A way of dealing with this is by

introducing boundary conditions between each phase, though it may be tedious, depending

on the system’s configuration, and must be repeated for each unique experiment. Addi-

tionally, turbulence effects may cause excitation in arbitrary directions. A useful technique

which can alleviate both of these problems is averaging ; it allows some generalizations to be

made about interface transport, simplifying considerably the final formulation of the prob-

lem. Averaging techniques will be discussed in Chapter 2.

Multiphase and multicomponent flow in geodynamics is a relatively underdeveloped field.

While today there are numerous textbooks describing the modelling of viscous, creeping

flows in the geodynamic community (e.g. for mantle convection simulations), the same

is not true for multiphase and/or multicomponent flows. Due to the inherent complexity

of modelling multiple phases and the lack of experimental results to constrain formulations,

multiphase flow models for n-phase, m-component systems have progressed relatively slowly.

An important result from the geophysical community for two-phase incompressible flow came

from McKenzie [1] who presented a Darcy energetic flow system applied to a partial melting

example. Beginning from laws of conservation, the paper resulted in a one-dimensional

compaction model from which practical numerical results were procured in the form of depth

dependent plots.

This model was subsequently extended for multiple component flows [2][3] by introduc-

tion of a transport equation for concentration. This allowed chemical development, such as

phase change information and evolution of system concentrations, to be studied. A change

in independent variable is demonstrated possible by Spiegelman [4], who reforms McKenzie’s

equations to be pressure dependent.

Some years later, Bercovici, Ricard and Schubert presented a (volume) averaged two-

phase model [5][6][7]. Their result had notable advantages over McKenzie’s, among them:

an more fundamental treatment of phase-phase momentum transport and flux, which does
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not conform to Darcy’s law. However, this work was still restricted to two phases. Modi-

fications were made later by Bercovici [8] and Sramek [9] which focused on improving the

model for interfacial transfer terms. Particularly, the former paper studied the interface en-

ergy partitioning, while the second developed expressions for pressure drop interfacial mass

transfer using phenomenological logic (see de Groot’s textbook [10]).

Recently, an n-phase m-component model was put forward by Oliveira et al. [11] based

on the approach of ensemble averaging. In this model, each phase is explicitly modelled

with its own balance equations, which are interrelated via interaction terms such as mass

transfer due to phase change. Steps towards a sturdy numerical framework are taken, aimed

at application in the Earth sciences.

In the literature cited so far, incompressibility is ultimately assumed and turbulence is ne-

glected under the assumption of a Stokes’ flow, where all quantities are transported instan-

taneously.

The assumption of constant density is an inaccuracy of varying degrees in all cases. Par-

ticularly, it is significant in the case of liquid melt migration [12]. The use of turbulent-free

equations is common in geodynamics due to small Reynolds number characterising many

flows of interest. However, this assumption leaves out a large number of processes of geo-

chemical, geophysical and geodynamic interest (e.g. the dynamics of magma chambers,

volcanic eruptions, magma degassing and emplacement, rapid migration of large volumes

of magma at shallow depths, among others). In these cases, it is of interest to implement

turbulence models and find whether their neglect is justifiable.

This document presents an ensemble averaged compressible multi-phase multi-component

system of equations including turbulence. In the second chapter, the volume, time and the

ensemble averaging approaches will be introduced and described. In the third chapter,

averaging techniques will be applied to a compressible n-phase, m-component system of

equations, which are then completed using a set of averaged complementary models for

stress, turbulence, interface transfer, and Fourier’s heat law and Murnaghan’s Equation of

State. Finally, in the fourth chapter, the product of previous parts will be applied in some
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examples to observe effects of compressibility and turbulence for comparison to results of

McKenzie [1], Bercovici et al. [5] and Oliveira et al. [11].



2
Averaging Techniques

2.1 Purposes of Averaging

In three dimensional single-phase flow, boundary conditions are only specified on surfaces

- the set of variables describing the system are continuous throughout the domain. When

additional phases are introduced, however, each variable field has a discontinuity as it crosses

the interface between phases due to the different physical properties in each phase. For

example, the density field changes abruptly between a pond and the stone falling through it.

Of two methods for dealing with these discontinuities, the first is to include jump conditions

for each system parameter at the interface [13, p 31]. This may be useful for separated

flows, but is very difficult to apply for the case of porous or dispersed media due to vast

number of interfaces (however methods for capturing the interfaces have been studied [14]).

Additionally, these conditions are only applicable in the experiment for which they were

5



6 Averaging Techniques

formed. The second method is to replace the deterministic multi-boundary representation

with a simpler representation and then use generic interface interaction models.

Turbulent motion is a second important reason to utilise an averaged system. In a turbulent

flow, descriptive physical variables are excited arbitrarily in an infinite number of directions

[15]. Hence, the fields are generally functions of an extremely complicated nature (i.e. there

are many non-negligible Fourier expansion terms); it is practically impossible to describe the

time-dependence of physical variables (Figure 3.1). In these cases, a statistical description

is required, and an averaged system proves useful. An important consequence of averaging

a k-phase system is that the k-phases then coexist with different probabilities, represented

by a quantity φk, the phase density.

The three main averaging approaches for continuous phase equations are: time, volume and

ensemble averaging (see Figure 2.1 for an illustrative example). A large number of studies

have been conducted into each of these approaches, with Bercovici et al. [5][6][7] being one

of the leading references for volume averaging in geodynamics; Ishii [16] investigating time-

averaging extensively in his textbook and studies utilising ensemble averaging being largely

Figure 2.1: Illustrative representation of time, volume and ensemble averaging techniques. The
first panel represents volume averaging. The blobs are solid grains embedded in a flowing fluid.
This method of averaging integrates field properties over the volume of one phase and treats them
as the averaged field variables. For instance, porosity is undefined at a point, but volume averaging
can lend the point a value based on the neighbourhood it resides in. The second panel shows
microscopic pore lines embedded in a solid is useful for viewing ensemble averaging. A fluid flowing
through this system may take a variety of paths. Ensemble averaging takes the average flow and
defines field variables based on that. The third panel is for time averaging and shows the value of
a field variable measured over a certain interval of time. Time averaging will assign the value of
the average of this field variable in the time interval as the averaged field variable (solid line).
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developed by Drew and Passman [13][17] with applications taken into bubbly two-phase

flows by Park, et al. [18], incompressible fluid-particle suspensions by Joseph et al. [19] and

general multi-phase, multi-component reactive transports by Oliveira, et al. [11].

The ensemble average is taken over every imaginable structure and development of a system

with set initial and boundary conditions. Hence, the time and volume averages are samples

on the ensemble average [20]; representative in a statistical sense. The generality of it is

attractive in the context of the numerous types of geophysical and geodynamic flows that

can be tackled. Ensemble averaging is also less developed in geodynamics than its volume

and time counterparts.

2.2 Ensemble Averaging

Given set boundary conditions, a range of flow configurations may be realised. This may be

because of unobserved damage or alterations in the system, or simply due to the random

nature of turbulence. ”Ensemble averaging” is an average over the ensemble of these possible

realizations of the flow. Consider the middle tile of Figure 2.1. The flow may travel through

the volume using a number of paths; the exact one taken in separate, identical experiments

is impossible to predict with total certainty. If there is some continuity in the flow (e.g. ve-

locity) with the position and subsequent locations, then it may be reasonable to average over

the paths for the flow properties when predicting the development of the system. That is, if

taking a different path has a minor effect on the flow, then averaging over the possible paths

will give an average flow in roughly the same direction as the exact flow. All realizations in

the ensemble are equivalent in the averaged sense. This attribute lends repeatability to the

flow system; at each repetition of the experiment, the probability of getting an exact repeti-

tion of a flow is practically zero, while we will always get another element in the average class.
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2.2.1 Defining the Ensemble Average

The formalism of ensemble averaging will be presented following the method of Drew and

Passman[13] and Drew[17], while using the textbook by Doob[21] as a reference.

Before presenting the definition of ensemble average, it is necessary to introduce a few

definitions from measure theory. First

DEFINITION 1. A collection of subsets S is named an algebra if all of the following four

properties hold,

(1) the empty set belongs to S: ∅ ∈ S (2.1)

(2) S is closed under the complement: if A ∈ S then Ac ∈ S (2.2)

(3) S is closed under finite intersections: if Ai ∈ S∀i = 1, 2, 3 . . . N then
N⋂
i

Ai ∈ S (2.3)

(4) S is closed under finite unions: if Ai ∈ S∀i = 1, 2, 3 . . . N then
N⋃
i

Ai ∈ S. (2.4)

and second,

DEFINITION 2. An algebra S of subsets of a space S is a σ-algebra if S contains the

limit of every monotone sequence of its sets. That is, for non-increasing Ai ∈ S,

∩i≥nAi ∈ S

and non-decreasing Bi ∈ S

∪i≥nBi ∈ S

equivalently, one replaces property (3) and (4) of the algebra with closure under countable

unions and intersections. Combined, (S,S) is then called a measurable space, and the sets

in S called measurable.

then the class of Borel subsets may be defined.

DEFINITION 3. The class of Borel subsets of a metric space S is the σ-algebra σ(G) =

σ(F) where G and F are the classes of open and closed subsets of S1.

1by an inductive argument it is possible to construct the Borel subsets to be the smallest σ-algebra
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Probabilities may be assigned naturally to Borel sets. Hence, these sets will be used to tie

probabilities to realizations to prepare for averaging. The following subsets of the ensemble

E of realizations are defined as the collection of Borel sets

E(x, t;F ) = {µ|f(x, t;µ) ≤ F )} (2.5)

for all values of F , where f is a parameter of the system, e.g. velocity or density, µ is a

realization and E is the ensemble. This definition says that the set E is the collection of

realizations µ such that, for instance, the velocity v ≤ F . As F increases, the number

of realizations in E monotonically increases. These can be used to construct the desired

minimal Borel sets

dE(x, t;F, F + dF ) = E(x, t, F + dF ) ∩ E(x, t, F ) (2.6)

This set is the slice of realizations of the variable f within (F, F + dF ) (See Figure (2.2)).

The union of all of these slices must equal E . Another useful set is defined

dE(f ∗, dF ) =

{
µ

∣∣∣∣max
(x,t)
|f(x, t;u)− f ∗(x, t)| ≤ dF

}
. (2.7)

containing the open sets. If it is not already, then remove the intersection of all of the subsets in the class.

Assume there is a smaller class of Borel subsets, and then show that it does not contain an element in the

original set S. Thus, we can assume that our Borel subsets are the made up of the smallest open sets.

Figure 2.2: The above figure illustrates the intersection of the two sets Ec(x, t, F ) and E(x, t, F+
dF ). The shaded space represents the fraction of realizations in the ensemble which the sets
encompass, where the entire box represents the ensemble. The first tile represents E(x, t, F ), the
second E(x, t, F + dF ), and the third E(x, t, F + dF ) ∩ E(x, t, F ). Note that if one takes dF small
enough, the intersection will be an infinitely small slice, yet the union of them will represent the
ensemble.
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The above equation represents the set of realizations such that the function f(x, t;µ) is

within dF of the function f ∗(x, t). Keep in mind that these functions may be density ρ,

velocity, v or any other field quantity. As we are finding the average of parameter f , we

need to define the probability measure m on E . It is a finite measure

DEFINITION 4. A finite measure λ is a mapping on an algebra S to a subset of the

extended real line R = R∪−∞,+∞, either [−∞,∞) or (−∞,∞] that is countably additive.

That is,

λ(
⋃

Ai) =
∑
i

λ(Ai) (2.8)

where Ai are a disjoint, infinite sequence of sets belonging to S.

with the additional properties,

(1) m(S) = 1;

(2) m is monotone, i.e. : if E1, E2 ∈ E and E1 ⊂ E2 then m(E1) ≤ m(E2)

(3) m is countably additive, i.e. : for any sequence of disjoint sets E1, E2, · · · , En, · · · one has

µ

(
∞⋃
n=1

En

)
=
∞∑
n=1

µ(An).

the probability m(S) is then defined on the sets E and dE . For instance, m(E) with f =

ρ is the probability that the density, ρ ≤ F (that is, the element µ1 ∈ E is realised).

Similarly, m(dE) would represent the probability that ρ is in (F, F + dF ). Finally, the

function m(dE(f ∗, dF )) is the probability that f is within dF of the arbitrary function f ∗

(using sup |f − dF | as a measure of distance).

Using the definition (2.7), the average of a function f can now be defined

f̄(x, t) = lim
N→∞

N−1∑
i=1

Fim(dE(x, t;Fi, dFi)) (2.9)

where

−∞ < F1 < F2 < · · · < FN <∞ (2.10)

and dFi = Fi+1 − Fi.

As N → ∞, the ensemble is partitioned into slices at each value of Fi. The average of
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f is defined as the sum of the multiple of probability of each outcome by that outcome’s

respective f value. f̄ in Equation 2.9 thus may be interpreted as the average value of f .

The ensemble average may also be defined in terms of integral notation:

〈f〉 (x, t) =

∫
E
f(x, t;µ)dm(µ). (2.11)

This is essentially the same definition as (2.9) but using an integral instead with the density

dm(µ) = dE(x, t;F, F + dF ): the probability that f is in (F, F + dF ).

2.2.2 Averaging Application and Identities

In Chapter 3, the postulated conservation equations will be reduced to phase-specific av-

eraged models by first separating the equations by multiplying by a phase characteristic

function and then ensemble averaging by using Equation (2.11).

To split the governing equations into a set of equations for each phase k, they will be mul-

tiplied by a characteristic function χk

χk(x, t;µ) =


1, if x ∈ k in realization µ

0, if otherwise

(2.12)

χk is a tool to pick out the k’th phase from the total system by essentially equaling zero

elsewhere. For instance, where ρ is density, χkρ(x, y) is non-zero only in phase k, thus

represents the k’th phase density. In the next section its use will be demonstrated.

As averaged values are defined differently to non-averaged quantities, it is necessary to

introduce a variety of equalities that hold for averaged variables. The following three are

called the Reynolds’ rules [17]:

〈f + g〉 = 〈f〉+ 〈g〉 (2.13)

〈〈f〉 g〉 = 〈f〉 〈g〉 (2.14)

〈c〉 = c (2.15)

for functions f and g and constants c, and the two below are named the Leibniz’ rule and

Gauss’ rule [17] respectively, and they hold as long as the function is well-defined. This
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condition is necessary since, by the definition of an average, differentiation and integration

operations are being exchanged. For instance, in a closed 2D space (x, y) ∈ [a, b] × [c, d],

f(x, y) and ∂f(x,y)
∂x

must be continuous in variables x and y 2.〈
∂f

∂t

〉
=

∂

∂t
〈f〉 (2.16)〈

∂f

∂xi

〉
=

∂

∂xi
〈f〉 (2.17)

these results will be useful when manipulating the averaged equations of flow. They allow

the averaging of derivatives without introducing an additional variable, e.g.
〈
∂f
∂t

〉
. Finally

there is the so-called topological equation

ρ
∂χk
∂t

+ ρvi · ∇χk = 0 (2.18)

where vi is the interface velocity. Thus the above states that the material derivative of the

characteristic function on the interface is always zero. When considering a point on the

interior of a phase k, χk is either 0 or 1 implying the derivatives of χk are zero. Now at

a point on the interface, there is a jump in χk. Since the material derivative tracks the

trajectory of a point with time, and the jump in χk at that point on the interface remains

the same as time progresses, the material derivative of a point on the interface must be zero.

Hence the material derivative of χk is zero in all cases and the above equation holds.

2For those interested in the specifics, the definition of a well-defined function, check out the premise of

the integral rule at this hyperlink; otherwise, it simply indicates that the function has a few nice properties

that allow it to be integrated over with little worry.

http://planetmath.org/differentiationundertheintegralsign


3
Equations of Flow

The averaging technique introduced in the previous chapter is applied in the following to

present a closed system of balance equations governing fluid flow; particularly of mass, force

and internal energy. The equations will describe compressible flow and be averaged over the

set of possible realizations. Either of the sets of variables (〈v〉ρ, 〈p〉χ, 〈T 〉ρ) or (〈v〉ρ, 〈p〉χ, 〈s〉ρ)

where v is velocity, p is thermodynamic pressure (see Section 3.2 for discussion of this

pressure), T is temperature, s is specific entropy, may be used, depending on the how

the energy equation is developed. The governing equations are to be first presented in an

averaged form, then closed by presenting models for the unknown variables: the constitutive

laws. The following notation is used throughout the text:

1. Ensemble Average of variable θ: 〈θ〉

13



14 Equations of Flow

2. Phase-weighted Ensemble Average of variable θ

〈θ〉χ =
〈χkθ〉
〈χk〉

(3.1)

3. Mass-weighted Ensemble Average of variable θ:

〈θ〉ρ =
〈χkρθ〉
〈χk〉〈ρ〉χ

(3.2)

where θ is some field variable, ρ is density and χk is the phase characteristic function which

is 1 in phase k and 0 otherwise. Note that the phase and mass-weighted averages are phase-

specific because the characteristic function χk is implicit in them. Taking instead a mass or

phase-weighted average of a governing variable in place of the usual average greatly helps in

simplifying equations by reducing average of products into products of averages1.

Additionally, on occasion it is suitable to use the notation

〈f〉ρ = fk (3.3)

or

〈g〉χ = gk (3.4)

where f and g are some field variables. Note that the left hand side of both of the above

equations are phase specific because of the χk present in the definitions 3.1 and 3.2. The

right-hand side notation is useful when different phase variables must be compared.

3.1 Governing Equations

3.1.1 Mass Equation

The first and most simple of the governing equations is the conservation of mass. It is a

postulate from physics which simply states that in a closed system, there can be no loss

of total mass. However, it will be seen that for the phase-specific equations, there may be

a loss of mass attributed to mass undergoing phase change (melting, boiling, etc.). The

1for instance, density ρ is often in a product with velocity v due to the definition of momentum. Thus,

using the definitions, 〈ρv〉 becomes 〈ρ〉〈v〉ρ - a product of averages rather than average of products.
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Eulerian reference frame is used, meaning that the balance equation considers fixed points,

rather than moving particles (which is the domain of the Lagrangian reference frame).2 The

statement for total mass conservation is as follows

∂ρ

∂t
+∇ · ρv = 0 (3.5)

The first term describes local changes in the mass with time, while the second term represents

advective changes. The above equation states that, at a particular point, the change in mass

with time is negative the amount of mass leaving the point with velocity v.

Breaking the total mass equation (3.5) down into k phase-specific equations by multiplication

of a phase characteristic function (Equation (2.12)) and then ensemble averaging

〈χk
∂ρ

∂t
+ χk∇ · ρv〉 = 0 (3.6)

bringing χk into the derivatives by use of the product rule, and using linearity of ensemble

average (i.e. linearity of integration)

〈∂χkρ
∂t
〉+ 〈∇ · χkρv〉 − 〈ρ

∂χk
∂t
〉 − 〈ρv · ∇χk〉 = 0. (3.7)

Two observations from Drew and Passman [13] are now utilised for the above equation.

The first is that ensemble averages and partial derivatives can be interchanged by use of

the Leibniz rule (2.16). The second is the topological equation, Equation 2.18, which says

ρ∂χk
∂t

= −ρvi · ∇χk
∂〈χk〉〈ρ〉χ

∂t
+ 〈∇ · χkρv〉+ 〈ρvi · ∇χk〉 − 〈ρv · ∇χk〉 = 0 (3.8)

Hence, the averaged phase-specific mass equation is

∂〈χk〉〈ρ〉χ
∂t

+∇ · 〈χk〉〈ρ〉χ〈v〉ρ = Γm,k (3.9)

where Γk = 〈ρ(v−vi) ·∇χk〉. An additional term (on the right-hand side) has appeared due

to the introduction of χk into the equation of mass (3.5). The term on the right-hand side

is only non-zero on the interface (where ∇χk 6= 0). Thus, it is interpreted to represent mass

transfer between phases.

2there’s an interesting alignment between choice of reference frame and the method of solving homo-

geneous transport equations. To solve the equation ut + cux = 0 for u(x, t), one takes transformation of

variables ξ = x− ct, reducing the equation to vt = 0 where v(ξ, t) = u(x, t). Notice that the new coordinates

are moving coordinates, the analogy of the Lagrangian form.
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3.1.2 Chemical Transport

The chemical balance equation behaves comparably to the mass because it describes a vari-

able very similar: concentration. However, instead of having N equations for N phases,

there will be N ×M , where M is the number of unique chemical components. This set of

equations will give chemical evolution in the system, additionally providing information on

the mass transfer rate Γ, as phase changes can occur as a consequence of chemical reactions.

The non-averaged set of chemical transport equations is given by

∂ρcb

∂t
+∇ · ρcbv = 0 (3.10)

where cb is the concentration of component b. Splitting by phase and then averaging〈
χk
∂ρcb

∂t
+ χk∇ · ρcbv

〉
= 0 (3.11)

once again using the topological equation as well as linearity of the ensemble average

∂〈χk〉〈ρ〉χ〈cb〉
∂t

+∇ · 〈χk〉〈ρ〉χ〈cb〉ρ〈v〉ρ = Γb,k (3.12)

where Γb =
〈
ρcb(v − vi) · ∇χk

〉
measures the amount of component cb is changing phase

due to chemical reaction. This value may be estimated through knowledge of the chemical

reaction taking place.

3.1.3 Momentum Equation

The momentum conservation equation is a statement of Newton’s Second Law: the physical

postulate that the change in momentum is equal to the sum of forces on the system:

∂ρv

∂t
+∇ · (ρvv) = ∇ · σ + ρb. (3.13)

On the left-hand side there is the sum of the local and advective changes in momentum. On

the right-hand side, there are surface forces ∇ · σ summed with body forces ρb. Multiplying

by the characteristic function and ensemble averaging Equation (3.13)

〈χk
∂ρv

∂t
〉+ 〈χk∇ · (ρvv)〉 = 〈χk∇ · σ〉+ 〈χkρb〉 (3.14)
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taking the same steps as in the mass equation (3.6): moving χk inside the derivatives, using

the topological equation as well as interchanging derivative and ensemble average operators

∂〈χk〉〈ρ〉χ〈v〉ρ
∂t

+∇ · 〈χkρvv〉 = ∇ · 〈χkσ〉+ 〈χk〉〈ρ〉χ〈b〉ρ− 〈ρv[(v− vi)− σ] · ∇χk〉. (3.15)

As opposed to mass conservation, the momentum equation has the non-linear term χkρvv.

This presents a problem because 〈χkρvv〉 is in neither of the sets of the variables mentioned

at the beginning of the chapter; to close the system this average of products will be reduced

to a product of averages. A method for this comes from applying the Reynolds expansion:

θ = 〈θ〉 + θ′′ where θ is some field variable in some realization of the ensemble with that is

the sum of the average 〈θ〉 and fluctuation from the average θ′′ (see Figure 3.1).

Expanding the velocities in the non-linear term

∂〈χk〉〈ρ〉χ〈v〉ρ
∂t

+∇ · 〈χkρ(〈v〉ρ + v′′)(〈vρ〉+ v′′)〉 = ∇ · 〈χkσ〉+ 〈χk〉〈ρ〉χ〈b〉ρ

− 〈ρv[(v − vi)− σ] · ∇χk〉.
(3.16)

The Reynolds expansion taken for velocity was mass-weighted v = 〈v〉ρ + v′′ρ and the sub-

script on the fluctuation term will be omitted for convenience. The results of Appendix

A.2 provide the method of dealing with the product of Reynolds expansions. The averaged,

phase-weighted momentum equation becomes

∂〈χk〉〈ρ〉χ〈v〉ρ
∂t︸ ︷︷ ︸
(M1)

+∇ · 〈χk〉〈ρ〉χ〈v〉ρ〈v〉ρ︸ ︷︷ ︸
(M2)

=∇ · 〈χkσ〉︸ ︷︷ ︸
(M3)

−∇ · 〈χkρv′′v′′〉︸ ︷︷ ︸
(M4)

+ 〈χk〉〈ρ〉χ〈b〉ρ︸ ︷︷ ︸
(M5)

+ Mk︸︷︷︸
(M6)

.

(3.17)

where all elements of this equation are detailed below

(M1) represents the local changes in average momentum.

(M2) is the advective changes in momentum

(M3) represents the averaged surface forces acting on the system. σ is the surface stress,

whose model will be discussed in Section 3.2.
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Figure 3.1: Where f is a field variable the above plot illustrates the definition of the Reynolds
decomposition. f ′ (the dotted line) is defined as the difference between the actual variable f and
averaged variable f .

(M4) is the turbulent momentum flux, also commonly called Reynolds stress. Notice that

it appears as a by-product of averaging. Terms like this are representative of chaotic

motion in the system that may occur, and is one of the reasons averaging is useful;

that the effects of turbulence may be isolated. Section 3.3 is dedicated to modelling

turbulent terms.

(M5) represents the body forces on the system. In most cases, b is replaced with gravity g.

(M6) appears as a result of phase-splitting the total momentum equation and represents the

transport of momentum across the interface. Section 3.4 is concerned with modelling

interface terms.

3.1.4 Energy Equation

The classical conservation of internal energy equation is a balance between changes in specific

internal energy with heat and work sources

∂ρu

∂t
+∇ · ρvu = −∇ · q +Q+ σ : ∇v (3.18)
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where u is internal energy, q is surface heat flux, Q accounts for volume heat sources (e.g.

radioactive decay) and σ : ∇v represents the work done by surface stresses. The left-hand

side may be re-expressed by use of the mass conservation equation (3.5) (employed in the

first term on the right-hand side below)

∂ρu

∂t
+∇ · ρvu = u

(
∂ρ

∂t
+∇ · ρv

)
+ ρ

∂u

∂t
+ ρv · ∇u

= ρ

(
∂u

∂t
+ v · ∇u

) (3.19)

this provides a form in which laws of thermodynamics may be readily incorporated. The

thermodynamic pressure term may be extracted from the work on the right-hand side of

(3.18) like so3

ρ

(
∂u

∂t
+ v · ∇u

)
= −∇ · q +Q− p∇ · v + τττ : ∇v (3.20)

where τττ = ξtr(εεε)I + 2µεεε′ is the stress tensor minus the thermodynamic pressure term −pI

(see the Section 3.2). Instead of taking specific internal energy as a variable, specific entropy

s or temperature T will be adopted. Assuming local thermodynamic equilibrium (means?)

in the thermodynamic processes, 4 internal energy may be expressed by using the first and

second laws of thermodynamics (for instance, see Ricard’s [22])

du = Tds− pd(ρ)−1 (3.21)

du = cvdT − (p+ T

(
∂p

∂T

)
V

)d(ρ)−1 (3.22)

where cv is specific heat capacity at constant volume (i.e. amount of heat required for a

change in temperature at constant volume). Substituting the entropy equation (3.21) into

3 That −pI : ∇v = −p∇ · v can be easily verified:


p 0 0

0 p 0

0 0 p


:



∂v1
∂x1

∂v1
∂x2

∂v1
∂x3

∂v2
∂x1

∂v2
∂x2

∂v2
∂x3

∂v3
∂x1

∂v3
∂x2

∂v3
∂x3


= p ∂v1∂x1

+ p ∂v2∂x2
+

p ∂v3∂x3
= p∇ · v.

4which is rather bold for geodynamic processes, e.g. consider volcanic eruptions, low viscosity magma

chambers, etc.
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(3.20) and once again using the mass equation (and applying the chain rule)

ρT

(
∂s

∂t
+ v · ∇s

)
− ρp

(
∂(ρ)−1

∂t
+ v · ∇(ρ)−1

)
= −∇ · q +Q− p∇ · v + τττ : ∇v

ρT

(
∂s

∂t
+ v · ∇s

)
+
p

ρ

(
∂ρ

∂t
+ v · ∇ρ

)
= −∇ · q +Q− p∇ · v + τττ : ∇v

ρT

(
∂s

∂t
+ v · ∇s

)
+
p

ρ
(−ρ∇ · v) = −∇ · q +Q− p∇ · v + τττ : ∇v

(3.23)

and on cancelling the pressure terms on both sides

ρT

(
∂s

∂t
+ v · ∇s

)
= −∇ · q +Q+ τττ : ∇v (3.24)

reverting back to a form similar to Equation (3.18) using mass conservation

T

(
∂ρs

∂t
+∇ · ρvs

)
= −∇ · q +Q+ τττ : ∇v. (3.25)

An equation for temperature can be derived similarly using Equation (3.22)

cv

(
∂ρT

∂t
+∇ · ρvT

)
= −∇ · q +Q+ τττ : ∇v + αKT∇ · v. (3.26)

where KT is the isothermal compressibility and α is the thermal expansiveness. The last

term represents heat transfer due to isothermal processes, where instead of a change in

temperature, expansion or compaction occurs. This term is zero for the incompressible case

because compaction cannot occur.

The aim of this chapter is to present two closed systems of equations for modelling averaged

multi-phase, multi-component flow using variables (〈v〉ρ, 〈p〉χ, 〈s〉ρ) and (〈v〉ρ, 〈p〉χ, 〈T 〉ρ).

With that in mind, averaged multi-phase versions of both Equations (3.25) and (3.26) are

desirable. To avoid modelling complicated turbulence terms, an assumption is required

for both the entropy and temperature equations. Particularly, consider a mass-weighted

Reynolds Expansion of temperature

T = 〈T 〉ρ + T ′′ρ

T

〈T 〉ρ
= 1 +

T ′′

〈T 〉ρ
.

If the fluctuation term T ′′ρ is small with respect to 〈T 〉ρ, then T may be interchanged with

〈T 〉ρ. This is the assumption that will be taken for the entropy equation. An analogous
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assumption c′′v = 0 is taken for the temperature equation (3.26). With respect to each ex-

periment under identical conditions, the temperature and specific heat capacity are assumed

constant. The entropy equation (3.25) becomes〈
χkT

(
∂ρs

∂t
+∇ · ρvs

)〉
= −〈χk∇ · q〉+ 〈χkQ〉+ 〈χkτττ : ∇v〉 (3.27)

on bringing χk inside derivatives by use of the product rule and taking T out of the average

(since T ≈ 〈T 〉ρ)

T

〈(
∂χkρs

∂t
+∇ · χkρvs− [ρs(v − vi) · ∇χk]

)〉
= −〈∇·χkq〉+〈q·∇χk〉+〈χkQ〉+〈χkτττ : ∇v〉

(3.28)

and taking the following steps

1. using the linearity property of the ensemble average

2. split the non-linear terms by use of Reynolds expansions

3. apply the definition of mass and phase-weighted averages (e.g. 〈ρ〉χ = 1
〈χk〉
〈χkρ〉; see

Equations 3.1 and 3.2)

4. group the interfacial terms on the right-hand side

results in the below equation

T

(
∂〈χk〉〈ρ〉χ〈s〉ρ

∂t
+∇ · 〈χk〉〈ρ〉χ〈v〉ρ〈s〉ρ

)
︸ ︷︷ ︸

(S1)

= −∇ · 〈χk〉〈q〉χ︸ ︷︷ ︸
(S2)

+ 〈χkτττ〉 : ∇〈v〉ρ︸ ︷︷ ︸
(S3)

+ 〈χk〉〈Q〉χ︸ ︷︷ ︸
(S4)

+ 〈χkτττ ′′ : ∇v′′〉︸ ︷︷ ︸
(S5)

+∇ · 〈χkρv′′s′′〉︸ ︷︷ ︸
(S6)

+ 〈[ρs(v − vi) + q] · ∇χk]〉︸ ︷︷ ︸
(S7)

.

(3.29)

where from left to right each term represents

(S1) represents the standard Eulerian transport of the averaged specific entropy.

(S2) is the averaged heat flux through the surface. This term can be modelled as propor-

tional to a gradient in temperature by using Fourier’s heat law (see Equation (3.86)).
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(S3) is the work dissipation caused by viscous stress acting on the system. The derivation

and discussion for the stress tensor is given in Section 3.2.

(S4) is the internal heating in the system which can be assumed exclusively radioactive

decay. As an example, taking a rock sample and identifying the constituents along

with the rate of decay, one can estimate the energy being emitted due to radioactive

decay.

(S5) is dilatation dissipation. It represents the loss of energy due to fluctuations in work.

This term as well as (S5) are modelled in Section 3.3.

(S6) is the turbulent entropy flux. This term represents the influence of departures from the

average entropy flow upon the averaged system; it is a contribution by turbulence. In

a physical sense this phenomenon can be imagined as eddies occurring in a water flow.

Analogously, swirls in an entropy continuum may be imagined as being represented by

this term.

(S7) represents the entropy transfer across the interface. As energy flows from one phase

to another, the number of microstates which are energetically possible changes in both

states5, thus implying a change in entropy [23].

Following a similar process, using that c′v = 0 instead of T ′ = 0, the temperature statement

of the energy conservation can be shown to be

cv

(
∂〈χk〉〈ρ〉χ〈T 〉ρ

∂t
+∇ · 〈χk〉〈ρ〉χ〈v〉ρ〈T 〉ρ

)
︸ ︷︷ ︸

(T1)

=−∇ · 〈χk〉〈q〉χ︸ ︷︷ ︸
(T2)

+ 〈χk〉〈Q〉χ︸ ︷︷ ︸
(T3)

+ 〈χkτττ〉 : ∇〈v〉ρ︸ ︷︷ ︸
(T4)

+ 〈χkτττ ′′ : ∇v′′〉︸ ︷︷ ︸
(T5)

+∇ · 〈χkρv′′T ′′〉︸ ︷︷ ︸
(T6)

+αKT 〈T 〉ρ∇ · 〈v〉ρ︸ ︷︷ ︸
(T7)

+ αKT 〈T 〉ρ∇ · v′′︸ ︷︷ ︸
(T8)

+ 〈[ρT (v − vi)− q] · ∇χk]〉︸ ︷︷ ︸
(T9)

.

(3.30)

where from left to right each term represents

5referring to the Boltzmann definition of entropy.



3.2 Viscous Stress Tensor 23

(T1) represents the standard Eulerian transport of the averaged temperature.

(T2) - (T5) are identical to (S2) - (S5).

(T6) is a turbulent temperature flux.

(T7) is the averaged expansion caused by isothermal heat flux. When heat enters the system

and does not cause a change in temperature, it contributes to expansion work. In this

term, 〈T 〉χ is replaced with 〈T 〉ρ according to Appendix A.1

(T8) is turbulent isothermal expansion due to heat. This term is neglected; in a relatively

continuous system, a field’s fluctuations may well be significantly smaller than the

averaged values. Additionally, the source of this turbulence term is only a portion of

the heat interacting with the system by definition.

(T9) represents the temperature transfer across the interface. As heat flows from one phase

to another, the average kinetic energy will change, meaning a change in temperature.

In order to close the system, all terms in Equations (3.29) and (3.30) must be modelled

as functions of averaged pressure, temperature and velocity. The following sections are

dedicated towards this goal.

3.2 Viscous Stress Tensor

3.2.1 Newtonian Definition

Elasticity (deformation depends only on stress) and plasticity (permanent deformation past

a stress limit) are interesting and useful concepts, particularly in geodynamics where the

Earth’s mantle may be modelled as an elastic solid in the short term and plastic fluid in the

long term [24]. However, here the model is restricted to viscosity, resistance to deformation,

for simplicity. Following the procedure of Kundu [25], Batchelor [26] and Aris [27] the stress

tensor has the form

σij = −p̄δij + τij (3.31)
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where −p̄δij is the isotropic component and the τij is the deviatoric part associated with

deformation without any necessary changes in volume. Assuming a linear relation between

non-isotropic stress and the velocity gradient ∂vi
∂xj

= 1
2

(
∂vi
∂xj

+
∂vj
∂xi

)
+ 1

2

(
∂vi
∂xj
− ∂vj

∂xi

)
τij = Kijmnemn (3.32)

where emn = 1
2

(
∂vm
∂xn

+ ∂vn
∂xm

)
are the elements of the strain rate tensor and Kijmn is a fourth

order tensor coefficient. The antisymmetric part of the velocity gradient tensor 1
2

(
∂vi
∂xj
− ∂vj

∂xi

)
is neglected because stresses cannot be generated by rotation (e.g. see [26]). Thus, there

is an 81 coefficient relationship between the deviatoric stress and strain rate tensors. If the

medium is isotropic, then the stress-strain relation (3.32) has no orientation dependence.

Thus, rotations of the coordinate system should not affect Kijmn, implying it is an isotropic

tensor. Aris [27, pp 30-34] shows that all isotropic tensors may be expressed linearly in terms

of the isotropic second order tensor δij

Kijmn = λδijδmn + µδimδjn + γδinδjm. (3.33)

where λ, µ and γ are constants. It can be shown by conservation of angular momentum

that the stress tensor is symmetric ([27, pp 103-105]). Hence, from (3.32), Kijmn is also a

symmetric tensor:

Kijmn = λδijδmn + 2µδimδjn. (3.34)

Substituting this into Equation (3.32)

τij = Kijmnemn = 2µeij + λemmδij. (3.35)

Thus the stress tensor (3.31) becomes

σij = −pδij + 2µeij + λemmδij. (3.36)

It is a possible observation that by using Newton’s Law of Viscosity (3.32) τij, which is

idealized as the deviatoric (traceless) component of the stress tensor, has a non-zero trace

given by (2µ+3λ)∇·v. Because of this, there are two kinds of pressures: mechanical pressure

as well as thermodynamic pressure which are equivalent under incompressibility. Mechanical

pressure is defined as the mean of the diagonal stresses, i.e. a third of the trace of the stress
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tensor 1
3
σij. If thermodynamic pressure is used, then the trace of τij exists separately. To

relate the two pressures, set i = j and sum over the three components:

σii = −3p+ 2µeii + 3λeii

p = −1

3
σii + (

2

3
µ+ λ)∇ · v

(3.37)

so there is a relation between the two pressures: p, the thermodynamic pressure, and the

mechanical pressure p̄ = −1
3
σii. They are equivalent under the Stokes’ assumption 2µ

3
+λ = 0

which is something not taken here. The thermodynamic pressure is that which is used in

the equation of state, and if the mean pressure is required it is simple to evaluate it from

the relationship

p− p = −(
2

3
µ+ λ)∇ · v. (3.38)

In substituting the above for thermodynamic pressure in (3.36), the stress tensor is split

into isotropic (mechanical pressure) and traceless components. The trace is taken out of the

strain-rate 2µeij

σij = −pδij + ξejjδij + 2µe′ij (3.39)

or in vector form

σσσ = −pI + ξtr(εεε)I + 2µεεε′. (3.40)

where µ is named the shear viscosity, ξ = 2
3
µ+λ is the bulk viscosity and e′ij = eij − 2

3
µeii is

the traceless deviatoric strain rate. If mechanical pressure is substituted into equation (3.36)

the following results

σij = −pδij + 2µε′ij (3.41)

where the first term is the isotropic stresses on the system and the second is the traceless

stresses.

3.2.2 Averaged Viscous Stress Tensor

In this section the stress equation (3.40) is ensemble averaged, making it suitable for appli-

cation in the momentum and energy governing equations respectively. A new expression for

shear and bulk viscosity coefficients µ and ξ is taken

µ =
ρ

〈ρ〉χ
µ∗ ξ =

ρ

〈ρ〉χ
ξ∗ (3.42)
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where µ∗ and ξ∗ are assumed to be approximately constant with respect to the ensemble, i.e.

〈µ∗〉 = µ∗ and 〈ξ∗〉 = ξ∗. This means that fluctuations in the modified viscosity coefficients

are nearly zero within the phases as the experiment is repeated with the same constraints.

The strain-rate tensor, which represents deformation of an object, appears throughout the

stress tensor (3.40) due to the Newtonian assumption that stress is proportional to strain

rate. Thus in preparation to average the stress tensor, the strain rate is averaged

εεε =
1

2

(
∇v + [∇v]T

)
(3.43)

it is required that velocity be mass-weighted when averaged, so taking the weighted averaging

(3.2) of the strain rate

〈εεε〉ρ =
1

2〈χk〉〈ρ〉χ
(
〈χkρ∇v〉+ 〈χkρ∇v〉T

)
(3.44)

before taking the average inside the derivatives, the characteristic function must be taken

inside the derivative

〈εεε〉ρ =
1

2〈χk〉〈ρ〉χ
(
∇〈χkρv〉+∇〈χkρv〉T −

[
〈v∇χkρ〉+ 〈v∇χkρ〉T

])
=

1

2〈χk〉〈ρ〉χ

(
∇〈χk〉〈ρ〉χ〈v〉ρ + [∇〈χk〉〈ρ〉χ〈v〉ρ]T −

[
U + UT

]) (3.45)

the term U = 〈v∇χkρ〉 contains information on velocity of masses along the interface.

A similar approach to that of Bercovici et al. ([5]) is taken to model this term. Before

proceeding it is important to note that their work dealt with averaging the deviatoric stress

tensor τij while the strain-rate tensor εεε is averaged here.

In the compressible case, U must satisfy the following criteria

1. It must contain an objective component to assure that the stress tensor is objective.

Objectivity means that the stress tensor is independent of the reference frame, that is,

the motion of the observer.

2. The deviatoric stress tensor τ must have a zero trace on substitution of the model for

U.

3. U must not be chosen such that the entire deviatoric stress tensor becomes zero.
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4. By the second law of thermodynamics, the dissipation function must be positive defi-

nite, i.e. ∇vk : τk > 0.

A non-unique solution to these constraints may be chosen

〈U〉 = (∇〈χk〉〈ρ〉χ) 〈v〉ρ (3.46)

the reason for this choice is the reason that, on substituting into Equation (3.45), one obtains

〈εεε〉ρ =
1

2

(
∇〈v〉ρ + [∇〈v〉ρ]T

)
. (3.47)

which is analogous to the true strain-rate tensor in Equation 3.43. The strain-rate tensor

has been averaged and can be used to average the stress (3.40)

〈χkσ〉 = −〈χkp〉I + 〈χkξtr (εεε)〉+ 〈2χkµεεε〉 (3.48)

substituting (3.42) and using the definition of mass-weighting 3.2 allows the strain-rate

averages to be represented as products of averages

〈χkσ〉 = −〈χkp〉I + ξ∗〈χk
ρ

〈ρ〉χ
tr (εεε)〉+ µ∗〈2χk

ρ

〈ρ〉χ
εεε〉

= −〈χkp〉I + ξ∗tr

(
〈χkρεεε〉
〈ρ〉χ

)
+

µ∗

〈ρ〉χ
〈2χkρεεε〉

= −〈χkp〉I + ξ∗tr (〈χk〉〈εεε〉ρ) + 2µ∗〈χk〉〈εεε〉ρ

(3.49)

where the interchangeability of trace with average due to linearity has been used. Once

again using interchangeability and applying the average of the strain rate tensor shown in

Equation (3.47)

〈χkσ〉 =− 〈χk〉〈p〉χI + ξ∗〈χk〉tr
(

1

2

(
∇〈v〉ρ + [∇〈v〉ρ]T

))
+ µ∗〈χk〉

(
∇〈v〉ρ + [∇〈v〉ρ]T − 2∇ · 〈v〉ρ

) (3.50)

leading to an averaged expression of stress in terms of variables 〈p〉χ and 〈v〉ρ

〈χkσ〉 = −〈χk〉〈p〉χI + ξ∗〈χk〉∇ · 〈v〉ρI + µ∗〈χk〉
(
∇〈v〉ρ + [∇〈v〉ρ]T − 2∇ · 〈v〉ρ

)
(3.51)
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3.3 Turbulence Modelling

To close the system, a model must be presented for the turbulence terms - those products

of fluctuations that arise from averaging non-linear terms. That is the aim of the following

section, where established turbulence models are presented.

3.3.1 Turbulent Stress

The product of fluctuations term −〈χkρv′′v′′〉 is a result of averaging the advection term in

Equation (3.13); it is representative of fluctuations in momentum transport. The term can

be derived to have the form

〈−χkρv′′i v′′j 〉 = 2〈χk〉µt
(
∂〈vi〉ρ
∂xj

+
∂〈vj〉ρ
∂xi

− 1

3

∂〈vk〉ρ
∂xk

δij

)
− 1

3
〈χkρv′′i v′′i 〉. (3.52)

by either dimensional analysis [28, p. 47] or the Prandtl mixing length [29, p. 53-60], which

is based upon treating turbulent motion as an analogy to molecular diffusion. On referring

to Equation (3.37), the above model suggests Reynolds stress is a contribution to the total

stress; it enhances the rate of momentum diffusion. Turbulent eddies along the flow act

to equalise momentum throughout the system by additional mixing. Along with the above

model a new variable is introduced: 〈χkρv′′i v′′i 〉, however, this contribution may be ignored

under the condition 〈χkρv′′i v′′i 〉 << p (see Wilcox [29] and https://turbmodels.larc.nasa.

gov/implementrans.html). µt is a new coefficient, called the eddy viscosity which must be

assigned to close the system. The eddy viscosity may be approximated, as seen in Monin-

Yaglom [15] by

µt = l2mix

∣∣∣∣d〈v〉1dx2

∣∣∣∣ (3.53)

where lmix is a mixing length chosen based on the application of the model and depends on

a characteristics of the system. For instance, in the flat plate boundary layer mixing-length

model, lmix = κy where κ is known as Kármán’s constant. Coles and Hirst [30] found that for

attached, incompressible boundary layers with and without pressure gradients that κ ≈ 0.41.

This is an overly specific case for determining lmix; more general models are considered in

Section 3.3.4.

An important consideration is discussed in the fundamental text by Tennekes and Lumley

https://turbmodels.larc.nasa.gov/implementrans.html
https://turbmodels.larc.nasa.gov/implementrans.html
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([28, p .47]): the equation for Reynolds stress, Equation 3.52), may be nothing more than a

dimensional necessity. The correlation coefficient c12 = 〈v1v2〉
v′1v
′
2

for turbulent flows driven by

shear is of order 1 [28], while the correlation coefficient for molecular motion is of order 10−6,

implying the analogy between these kinds of motions is inappropriate, though the dimensions

are acceptable. However this expression for turbulent momentum flux is still being applied

[31]; an alternative to eddy viscosity seems rare.

3.3.2 Turbulent Scalar Flux

Analogously to Equation (3.52), entropy turbulence is treated as an additional flux of entropy

with a coefficient which depends on eddy diffusivity (Monin-Yaglom [15]), Equation 5.9’).

This method may be called the gradient diffusion hypothesis [32] and it states that the

turbulent transport of a scalar f is related linearly to the mean gradient ∇〈f〉: that the

effects of turbulence act to hasten diffusion of scalar f . Thus in the case of entropy

〈χkρv′′s′′〉 = −Ks,t〈χk〉〈ρ〉χ∇〈s〉ρ (3.54)

where Ks,t is the coefficient of turbulent entropy diffusivity. It is related to the eddy viscosity

by the turbulent Prandtl number [33]:

Ks,t =
µt
Prt

(3.55)

where Prt is between u 0.9 for near-wall flows and u 0.7 for free flows [34, p 487]. Similarly,

the temperature turbulence term can be treated as an additional quantity down the gradient

〈χkρv′′T ′′〉 = −Ck,t〈χk〉〈ρ〉χ∇〈T 〉ρ (3.56)

where Ck,t is turbulent conductivity. Note that the above equation, along with Fourier’s

Heat Law, implies that there is an additional heat flux with coefficient −Ck,t.

3.3.3 Turbulent Energy Dissipation

The turbulent dissipation rate appears due to non-linearity when the viscous work contribut-

ing to the system is averaged. It is a new variable which represents the work energy loss due
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to fluctuations in flow acceleration, and must be modelled in order to close the system. It

has the form

〈ρ〉χe = 〈χktij
∂v′′i
∂xj
〉 (3.57)

where tij are elements of the viscous stress tensor: tij = 2µSij + ξ ∂vk
∂xk

δij. It follows from the

turbulent kinetic energy equation (see Wilcox [29]) that

〈ρ〉χe = 〈χktij
∂v′′i
∂xj
〉 =

1

2
〈ρ〉〈χktijS ′′ij〉. (3.58)

Hence, the equation for turbulent dissipation may be expressed

〈ρ〉χe = 〈2µSijS ′′ij + ξ
∂v′′i
∂xi

∂v′′i
∂xi
〉 (3.59)

Assuming the correlation of kinematic shear viscosity ν and bulk viscosity λ with their

complement terms is zero

〈ρ〉χe = 2〈ν〉〈ρS ′′ijS ′′ji〉+ 〈λ〉〈ρ∂v
′′
i

∂xi

∂v′′i
∂xi
〉 (3.60)

splitting Sij into vorticity and deformation

〈ρ〉χe = 〈ν〉
(
〈ρωiω′′i 〉+ 〈ρ∂v

′′
i

∂xj

∂v′′j
∂xi
〉
)

+ 〈λ〉〈ρ∂v
′′
i

∂xi

∂v′′i
∂xi
〉 (3.61)

assuming that the turbulence is homogeneous, meaning that the turbulent flow is uniform

in all directions6, one can replace
∂v′′i
∂xj

∂v′′j
∂xi
≈
(
∂v′′i
∂xi

)2
〈ρ〉χe = 〈ρ〉χes + 〈ρ〉χed + 〈ρ〉χeb (3.62)

where 〈ρ〉χes = 〈ν〉〈ρω′′i ω′′i 〉 is known as the solenoidal dissipation; 〈ρ〉χed = 2〈ν〉〈ρ ∂vi
∂xi

∂vi
∂xi
〉 as

the dilatation dissipation and 〈ρ〉χeb = 〈λ〉〈ρ ∂vi
∂xi

∂vi
∂xi
〉 as the bulk (dilatation) dissipation.

Sarkar et al.[35][36] proposes an algebraic model relating the solenoidal dissipation es and

dilatation and bulk dissipation ed.

ed = α1esM
2
t (3.63)

eb = α2esM
2
t (3.64)

6that is, the probability of the flow being excited in any direction has a uniform distribution
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where Mt is the turbulent Mach number defined by Mt =
√
q2/γR〈T 〉χ. Hence the model

for e becomes

e = es
(
1 + (α1 + α2)esM

2
t

)
(3.65)

replacing the variable e with es. An equation of transport for es may be used to complete the

system. A transport equation that may be used is a multiphase analogy of the dissipation rate

equation of Sarkar (details can be found with Wilcox [29], Sarkar [35], Sarkar-Lakshmanan

[36] and Launder [37]) with phase interaction terms that may be modelled by method of

Simonin-Viollet [38] or Troshko-Hassan [39]

∂〈χk〉〈ρ〉χes,k
∂t

+∇ · (〈χk〉〈ρ〉χ〈v〉ρes,k) = ∇ ·
(
〈χk〉

(
µ+

µt
σk

)
∇es,k

)
+ 〈χk〉 (C1e〈τττ〉χ : ∇〈v〉ρk −

C2e〈ρ〉χes) +
N∑
z

Kk,z (Ck,zes,z − Cz,kes,k)−
N∑
z=1

Kz,k (〈v〉ρz −

〈v〉ρk)
µt,z
〈χz〉σz

∇〈χz〉+
N∑
z=1

Kz,k (〈v〉ρz − 〈v〉ρk)
µt,k
〈χk〉σk

∇〈χk〉+ Πes,k

(3.66)

where es,k is the solenoidal dissipation in the k’th phase and k = 〈χkρv′′i v′′i 〉 is the turbulent

kinetic energy. Terms on the left-hand side represent the sum of the local and advective

changes in dilatation dissipation. On the right-hand side, the terms represent viscous dif-

fusion, dissipation, dispersion and a set of three inter-phase exchange respectively, with

coefficients of the form Kk,k and Ck,k. To complete the system, a transport equation is re-

quired for the turbulent kinetic energy kk. Wilcox provides the one-phase transport equation

in his statement of the k − ε model, which may be presented in multi-phase form

∂〈χk〉〈ρ〉χk
∂t

+∇ · (〈χk〉〈ρ〉χ〈v〉ρkk) =

= ∇ ·
(
〈χk〉

(
µ+

µt
σk

)
∇kk

)
+ (〈χk〉〈τττ〉 : ∇〈v〉 − 〈χk〉〈ρ〉χes)

+
N∑
z

Kk,z (Ck,zkz − Cz,kkk)−
N∑
z=1

Kz,k (〈v〉ρz − 〈v〉ρk)
µt,z
〈χz〉σz

∇〈χz〉

+
N∑
z=1

Kz,k (〈v〉ρz − 〈v〉ρk)
µt,k
〈χk〉σk

∇〈χk〉+ Πkz .

(3.67)

Because in Equation (3.66) there is an additional variable of kk, the turbulent kinetic energy

must also modelled to close the system. Hence, in Equation (3.52) the kinetic energy term
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may be kept. On the other hand, if dilatation dissipation is ignored as it usually is in zero-

equation models [29, p 250], the kinetic energy may be neglected also, leading to a much

simpler system without two additional transport equations.

3.3.4 Comparison of Turbulence Models

To close the system one has to incorporate a model for the turbulence terms7 which arise

as a by-product of the averaging process: in the case of this document, turbulent dilatation

dissipation; entropy, temperature and momentum flux. The simplest category of turbulence

models consists of the zero-, one- and two-equation models. The name of these models

indicate the number of additional transport equations that are implemented. The zero-

equation models are thus simplest to implement, but of course, at a price of accuracy and

rigour; for instance, turbulent dilatation dissipation and kinetic energy are neglected entirely

in zero-equation models.

Zero-Equation models

These models are designed for eddy viscosity alone, allowing inclusion of terms described

in Sections 3.3.1-3.3.2 - turbulent dilatation dissipation is neglected in this case. An old,

yet robust, model of this type is the Cebeci-Smith model [40]. It describes the flow in two

layers: one close to the edge of the flow, which must be specified, where surface stresses

have a larger impact and the second layer is of the remaining fluid (see Figure 3.2). ) The

Baldwin-Lomax model [41] is similar in that it splits the flow into two layers, but it does not

require the determination of the flow edge and is less accurate at modelling separated flow

[42]. These models are considered robust, giving non-physical results only in unusual cases

[43].

One-Equation models

The Spalart-Allmaras model [44] is another option to solve for eddy viscosity. It presents a

transport equation for a variable directly related to it. Recall transport equations generally

have, on the left-hand side, the material transport rate of the physical parameter, and on

7for application in code, https://www.cfd-online.com/Wiki/RANS-based_turbulence_models is a

useful resource.

https://www.cfd-online.com/Wiki/RANS-based_turbulence_models
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the right-hand side: sources of production, diffusive transport, etc. This approach is aimed

at boundary layer, pipe or channel flows in aeronautical applications.

Two-Equation models

Instead of the one transport equation model, two equations may be used; one to solve for

turbulent kinetic energy (Equation (3.67)) and one to solve for either turbulent dilatation

(Equation 3.66) or specific (ω) dissipation [37]. An advantage of these models is that, by the

nature of transport equations, the modelled turbulence has memory. That is, effects such as

diffusion of turbulent energy exist (unlike in the zero- and one- equation models).

Summary

With the inclusion of multiple phases, the one- and two-equation models become significantly

more complicated, as the transport equations introduced have interfacial terms, which must

be also modelled. Modelling of turbulent interfacial interaction is a bit beyond the scope of

this study, thus, in Chapter 4, a zero-equation model for eddy viscosity will be used, where

turbulent dissipation and kinetic energy are ignored8. The nature of the Prandtl molecular

diffusion analogy means that these models are only applicable for dimensions higher than

1. Due to time/page restrictions a simpler model for eddy viscosity is proposed for 1D

applications

µ∗ = µ× 10γf (3.68)

8If using two-equation turbulence it may be worthwhile to include kinetic energy balance into the gov-

erning equations, as its turbulent portion is being modelled anyway.

Figure 3.2: Illustration of a flat-plate the boundary layer problem. µt,inner is different to µt,outer
due to the greater effects of stress near the solid plate. In zero-equation models, the inner and outer
turbulent viscosity are equal.



34 Equations of Flow

where γ is a constant, and f = |dvy
dy
|/|dvy

dy
|max. The above law magnifies µ up to γ orders of

magnitude to simulate the addition of turbulent eddies enhancing mixing. This particular

f is used as a compression analogy to the gradients in the higher dimensional turbulence

model for eddy viscosity.

3.4 Interfacial Interactions

Interactions across phase boundaries must be modelled to close the system. Rather than

incorporating specific boundary conditions for each experiment, generic interfacial transport

models may be used because the system is averaged.

3.4.1 Interfacial Momentum Transport

The last unknown in the momentum equation (??) to deal with is the term labelled (M6).

This term represents the momentum transfer due to the presence of other phases. The model

taken [5] is

〈ρv[(v − vi)− σ] · ∇χk〉 =
∑
z 6=k

ck,z (vk − vz) + pω∇ · 〈χk〉+ ωk∇(σα). (3.69)

where vk = 〈χkρv〉
〈χk〉〈ρ〉χ

as introduced in Equations 3.3 and 3.4. The first two terms on the right-

hand side represent a Galilean invariant phase-interaction forces; drag, where the momentum

of the medium may act directly against the particle, and lift, where non-uniform momentum

in the medium may induce a moment in the projectile. Galilean invariance means that no

matter what reference frame is used to observe the system, the absolute forces are the same.

Newton’s laws of motion hold between all frames.

Each of the new objects ck,z, pw and ωk must be expanded on. The term ck,z (vk − vz)

comes from balance of viscous forces per volume at the interface and has dimensionality

m
l2t2

where m is mass, l is length and t is time. Forces per volume on either side of the

interface must depend on viscosity µk ∼ m
lt

, some characteristic length δk ∼ l and velocities

vi ∼ l
t

and vk ∼ l
t
, where i represents interface property and k represents a phase property.

Considering the dimensionality of the viscous forces, and assuming that they match at the
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interface between two phases (Newton’s Third Law) one has

µ1
v1 − vi
δ21

= µ2
vi − v2

δ22
(3.70)

solving for vi

vi =
µ1µ2(v1 − v2)

µ2δ21 + µ1δ22
(3.71)

and back-substituting into either side gives the equation for viscous forces across the interface

c1,2 (vk − vz) =
µ1µ2(v1 − v2)

µ2δ21 + µ1δ22
(3.72)

hence the general expression c1,2 = µ1µ2
µ2δ21+µ1δ

2
2

can be taken. Lastly, δ1 and δ2 must be

modelled. Assume that they are related to permeability i.e. capacity for material to transmit

fluid, such that they are functions of only the phase fraction: δk = 〈χk〉δ where δ is some

characteristic length independent of phase. McKenzie [1] shows, assuming Darcy’s Law, that

ck,z = µ〈χk〉
Kχ

where Kχ is the permeability of the k′th phase. If µ2
µ1
→ 0, Darcy’s Law should

hold in the above case also. Hence,

lim
µ2
µ1
→0
c = lim

µ2
µ1
→0

µ1µ2

µ2δ21 + µ1δ22
=
µ2

δ22
(3.73)

but Darcy’s law shows

lim
µ2
µ1
→0
c =

µ2

δ22
=
µ2〈χ2〉
Kχ2

(3.74)

Hence, δ2 =

√
Kχ2
〈χ2〉 . Assuming material invariance, δk =

√
Kχ

〈χk〉
. Hence,

c =
µ1µ2

µ2
Kχ1
〈χ1〉 + µ1

Kχ2
〈χ2〉

. (3.75)

This equation is postulated to extend up to n phases like so

c =

∏n
i µi∑n

i µi

[∑n
j 6=i

Kχj
〈χj〉

] (3.76)

though a further study is required. Permeability dependence of Kχ on the phase fraction

〈χk〉 has been empirically accepted in the case of a two-phase system k ∈ {m, f} where

µm � µf to have the form Kχ = k0〈χk〉m with 2 ≤ m ≤ 3. Clearly this is not the arbitrary
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multi-phase case, but for now it is an acceptable model.

The last term on the right-hand side of (3.69) is the surface tension term. It is a result of

an energy anomaly in the interface between phases due to the imbalance of intramolecular

forces. The larger the activation energy (i.e. bond strength) of particles in phase k, the

larger the anomaly is at the interface. The Eyring model of viscosity claims that µ is related

exponentially to activation energy (Bird et al. [45]). Hence, the partitioning of surface

energy between the phases containing components of different activation energy depends on

µ. An adapted model from that proposed by Bercovici and Ricard [8]) is the following

ωk =
〈χk〉µk∑
i〈χi〉µi

(3.77)

The interfacial pressure term pω can be modelled as follows

pω =
∑
k

1− ωk∑
i(1− ωi)

〈p〉χ. (3.78)

An example of the above equation is presented by considering the pressure difference across

the interface in a three-component mixture of phases 1, 2 and 3. In the case where viscosity

of phase 1 is dominant, implying by (3.77) that the surface energy (and the selvedge) is

embedded in phase 1 and ω1 = 1, ω2 = ω3 = 0; the total pressure difference across the

interface is approximated by ∆p12 ≈ (p1 − pω) with (p2 − pω) ≈ 0 and (p3 − pω) ≈ 0. As

predicted by (3.78), pω = 1
2
(p2 + p3).

On combining the four equations (3.51), (??), (3.52) and (3.69) the conservation of momen-

tum equation becomes

∂〈χk〉〈ρ〉χ〈v〉ρ
∂t

+∇ · 〈χk〉〈ρ〉χ〈v〉ρ〈v〉ρ =

= ∇ ·
[
−〈χk〉〈p〉χI + ξ∗〈χk〉∇ · 〈v〉ρI + (µ∗ − 2µt)〈χk〉

(
∇〈v〉ρ + (∇〈v〉ρ)T

)
+

2〈χk〉µt
3
∇ · 〈v〉ρI

]
+ 〈χk〉〈ρ〉χ〈b〉ρ −

∑
z 6=k

ck,z

(
〈χkρv〉
〈χk〉〈ρ〉χ

− 〈χzρv〉
〈χz〉〈ρ〉χ

)
+ pω∇ · 〈χk〉+

〈χk〉µk∑
i〈χi〉µi

∇(σα)

(3.79)
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3.4.2 Interfacial Energy Transport

Two-phase interfacial energy transport can be neglected by assuming thermal equilibrium -

that the phases have the same temperature - and taking the difference in the temperature

equations; indeed, this is what is done in the examples section of this thesis. Because of

thermal equilibrium, the amount of temperature leaving one phase must equal the tempera-

ture leaving the other phase. Coming up with a model for general multi-phase entropy and

temperature interfacial transport is still a problem, though Oliveira et al. [11] has proposed

a transport equation for interfacial internal energy transport.

3.5 Additional Laws

3.5.1 Murnaghan’s Equation of State

Although the ideal gas law may be used throughout aerodynamics and is very easy to deal

with, it is inapplicable in areas of geodynamics where high pressures can exist. A more

appropriate equation of state is the Murnaghan’s Equation of State 9. It follows from a

linear expansion in the definition of permeability. Murnaghan’s equation of state is

p =
K0

K ′0

[(
ρ

ρ0

)−K′0
− 1

]
(3.80)

where K0 is bulk modulus, K ′0 is the derivative of the bulk modulus with respect to pressure

and ρ0 is initial density before some compression or expansion. Even if it is assumed that

the average of K0, K
′
0 and ρ0 is independent of the realization, it is difficult to express

Murnaghan’s Law in terms of averaged variables due to the power on the right-hand side.

In dealing with the quadratic term in the transport equations, one can apply a Reynolds

Expansion treatment. However, −K ′0 cannot be treated in the same way. Instead, a revised

Murnaghan’s Law is used: assume that the following holds for averaged variables for a

different parameter K∗0

K∗0 = 〈ρ〉χ
(
∂〈p〉χ
∂〈ρ〉ρ

)
T

(3.81)

9At pressures pertaining to the mantle transition zone and lower mantle, other EoS should be used (e.g.

Vinet [46].
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then taking a revised Murnaghan’s assumption that K∗0 is a linear function of averaged

pressure

K∗0 = K∗0 + 〈p〉χ
∂K∗0
∂〈p〉χ

(3.82)

then on solving Equation (3.81)

〈p〉χ = K∗0/K
∗′
0

[(
〈ρ〉χ
〈ρ〉0

)−K∗′0
− 1

]
(3.83)

now assuming K∗0 and K0 are approximately equal, the following can be taken

〈p〉χ = K0/K
′

0

[(
〈ρ〉χ
〈ρ〉0

)−K′0
− 1

]
(3.84)

this process in the end has the same meaning as stating that Murnaghan’s equation of state

holds identically for averaged variables.

3.5.2 Averaged Heat Flux

Heat flux q can be envisioned to increase as absolute temperature gradient increases; the flux

of heat increases with the temperature disparity between the hot sources and colder sinks.

The statement of Fourier’s heat conduction law is that local heat flux density is linearly

proportional to the negative temperature gradient

q = −K∇T (3.85)

and after averaging while assuming the temperature T is not realization-dependent, as in

Equation (3.25)

〈χk〉〈q〉χ = −Ck〈χk〉∇T (3.86)

Ck is the k’th phase’s conductivity and will be taken as a constant with respect to phases. If

T depends on realization, as in the temperature energy Equation (3.30), another assumption

must be taken. Since T is mass-weighted in Equation (3.30), while it is phase-weighted in

Fourier’s law. Taking the phase-weighted expansion of temperature in Fourier’s law

〈χk〉〈q〉χ = −Ck〈χk〉∇〈T 〉χ + 〈Ckχk∇T ′′〉 (3.87)
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notice that for phase-weighted ∇T , 〈χk〉〈∇T ′′〉χ = 0. First see the Reynolds expansion

∇T = 〈∇T 〉χ + (∇T )′′ (3.88)

now splitting the phases and averaging

〈χk∇T 〉χ = 〈χk〉〈∇T 〉χ + 〈χk(∇T )′′〉 (3.89)

it follows from the definition of the phase average of ∇T

〈χk(∇T )′′〉 = 0. (3.90)

A question arises: under what conditions may it be assumed 〈χk∇T ′′〉 ≈ 〈χk(∇T )′′〉? Taking

the phase-weighted Reynolds expansion of both T and ∇T .

T = 〈T 〉χ + T ′

∇T = 〈∇T 〉χ + (∇T )′′

Taking the gradient on the first equation

∇T = ∇〈T 〉χ +∇T ′ (3.91)

then subtracting from the second equation

[〈∇T 〉χ −∇〈T 〉χ] + [(∇T )′′ −∇(T ′)] = 0 (3.92)

Hence, 〈χk∇T ′′〉 ≈ 〈χk(∇T )′′〉 if

〈∇T 〉χ ≈ ∇〈T 〉χ. (3.93)

In the case of the un-weighted average, this is true as long as T is a well-defined function.

However it the above does not hold in general for phase-weighting:

〈χk∇f〉
〈χk〉

6= ∇〈χkf〉
〈χk〉

(3.94)

for an arbitrary function f . In the interest of proceeding using Fourier’s Heat Law for the

temperature equation, the assumption that 〈∇T 〉χ ≈ ∇〈T 〉χ is taken. One more issue with

Equation (3.87) is that T is phase-weighted, whereas in Equation 3.30 it is mass-weighted.
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As long as the ratio χkρ′T ′

χkρ̂
is negligible, the mass- and phase-weightings may be interchanged

(see Appendix (A.1)). Thus, taking 〈∇T 〉χ ≈ ∇〈T 〉χ and 〈T 〉χ ≈ 〈T 〉ρ, Fourier’s Law takes

the expression

〈χk〉〈q〉χ = −Ck〈χk〉∇〈T 〉ρ (3.95)

using the above in conjunction with Equation (3.84) allows the system of Equations (3.30)

or (3.29); (3.17) and (3.2) to be complete.

3.5.3 Pressure Difference

One final constitutive law is required for the closure of the system: an expression for the

pressure difference between phases. This equation has been studied as a part of many mod-

elling schemes, e.g. McKenzie’s two-phase Darcy flow [1], Bercovici and Ricard’s material

invariant two-phase flow with surface tension [8] for which Šramek provided additional ther-

modynamic rigour [9]. The viscous equivalent of the visco-elastic plastic equation proposed

by Oliveira et al. [11] is applied here, i.e.

∆Pk,j = −ξ (ωkφk∇ · vk − ωjφj∇ · vj) (3.96)

where ∆Pk,j = Pk − Pj.

3.6 Summary

Combining Equations (3.9), (3.79) and (3.30) or (3.29) with the models of Sections 3.2-

3.5, a complete system of compressible n-phase m-component equations with phase-specific

variables of 〈χk〉, 〈ρk〉χ, 〈v〉ρ, 〈p〉χ and either 〈T 〉ρ or 〈s〉ρ is formed. Though the turbulence

and interface interactions models may be simple, they are ideally robust enough for analysis

in the following chapter.



4
Examples

In this section, some simple, yet illustrative, numerical examples are presented that highlight

some of the potential uses of our system of equations for general cases of partial melting.

I explore the behaviour of a thermally-driven upwelling experiencing partial decompression

melting, under three different working hypothesis:

• Non-turbulent formulation with incompressible phases Dρ
Dt

= 0

• Turbulent formulation with incompressible phases Dρ
Dt

= 0

• Non-turbulent formulation with compressible phases

To keep the analysis tractable and focus on the major features of the model, we restrict

ourselves to the illustrative case of systems made up entirely of olivine (i.e. a single solid

solution with two end-members Mg2SiO4 and Fe2SiO4; the melt phase has the same end-

members). Thus three chemical components are kept track of, namely, FeO, MgO and SiO2.
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Thermodynamic data comes from the internally-consistent database of [47]. In addition, I

solve the quasi-static Navier-Stokes equation (i.e. ∂φkρkvk
∂t

= 0). Mass-transfers rates (i.e.

Γm, Γb), solutions from the Murnaghan EoS (Equation 3.84), and physical properties (e.g.

ρk, cp) are consistently retrieved from the thermodynamic solver. More information on the

thermodynamic solver can be found in Oliveira et al. [11].

The work in the following chapter may be extended by including an extended thermo-

dynamic database as well as 2D case studies. A number of benchmarks used to validate the

numerical scheme are presented in Appendix B, Oliveira et al. [11].

4.1 Model description

This example solves a transient two-phase (solid (s) - fluid (f)) multi-component reactive

transport problem for the simple 1D case of a viscous olivine solid solution with homogeneous

initial composition. The experiment is run over a 200 km deep column discretized with 401

nodes and 2.000 randomly distributed Lagrangian markers (∼5 particles per element) and

for 2.5 Ma. The main model features are: (1) uniform initial bulk composition of Mg# = 0.5,

(2) constant viscosities (µs = 1020 µf = 1 Pas and ξ = µ) (3) viscous interaction coefficient

cs,f = 1/k0, where k0 = 10−11 Pa s is the permeability constant, (4) constant mantle inflow

at the bottom of the domain, vs = vins , (5) fixed temperature Tbot = 1920K, composition

cbin and zero melt fraction at the bottom (inflow) of the domain, (6) melt is freely allowed

to flow out of the upper part of the domain, (7) the solid pressure is fixed in the bottom

boundary and (8) initial temperature field with a thermal anomaly given by,

T (y) =Tref + 75 [1 + cos (πmin{r(y); 1})]

where, r(x, y) = 1.5

√(
x

2× 105

)2

+

(
y − 70× 105

105

)2

Tref = m
(
y − 2× 105

)
+ Tbot

Tbot = 1920

m = 3× 105

(4.1)
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Since the examples are of 1D compaction/expansion, the model for eddy viscosity pro-

posed in Equation 3.68 will be used, i.e.

µ∗ = µ× 10γf (4.2)

where γ is a constant, and f = |dvy
dy
|/|dvy

dy
|max. The above law magnifies µ up to γ orders of

magnitude to simulate the addition of turbulent eddies enhancing mixing.

4.2 Results

The transient nature of the problem is illustrated using a unified colour scale in all the figures,

where blue = initial time, and red = final time. Because of the imposed material inflow at

the bottom of the numerical domain, the initially melt-free system is advected upwards.

Figures 4.1 to 4.6 illustrate the behaviour of our system, where the y-axis corresponds to

height in meters.

4.2.1 Non-turbulent and incompressible formulation

Figure 4.1 presents the predicted non-turbulent, incompressible evolution of the olivine sys-

tem from a depth of 200km. At time t = 0, Figure 4.1D shows that melting begins around

the height of 50km, where the temperature is about 2000K. Partial melting causes a drop

in the FeO content of the solid phase, which is reflected in a higher Mg# number and an

associated decrease in density. As expected for this binary system, the opposite behavior

(FeO enrichment) may be observed in the melt phase. T, #Mg and φ increases to a local

maximum around 130km. Higher than that, the melt ratio begins to decrease as reduced

temperatures limit the amount of melting. As t > 0, the thermal instability travels upwards

(due to the bottom inflow), enters lower pressure zones and causes decompression melting.

In Figure 4.2, the development of densities (plots labelled A and B), velocities (C and D)

and pressures (E) are illustrated. The density of the solid begins at 4000kg/m3, and decreases

in presence of melt due to its lower content in FeO. At t = 0, the solid velocity steadily

decreases with height with the melt fraction. The eventual overtaking of the solid velocity

by melt velocity is due to lower density of ρf causing the fluid to experience less gravitational
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pull. As time progresses, however, the density difference plot shows that the fluid density

can outweigh the solid density, and thus the velocity difference become smaller. The relative

pressure of the fluid (stronger fluid’s overpressure, i.e. compaction) is a maximum, where

the solid density is minimum, as the increased solid’s volume pushes against the melt.

4.2.2 Turbulent and incompressible formulation

The thermal, compositional and melt evolution is similar to the previous case, and thus it

is not shown here. However, Figures 4.3-4.4 show the influence of the turbulence model

on velocities and pressure difference for different values of γ. In general, the bigger γ is,

the more momentum diffusion is enhanced by the turbulent effect. In velocity, Figure 4.3,

this causes the gradients to become more extreme as accelerations are dampened; it also

means the velocity magnitudes are smaller than in the non-turbulent case. When γ = 1, the

effect of the eddy viscosity makes the pressure differences bigger (Figure 4.4A) - possibly

due to the increased pressure because of the slower-moving system. The new viscosity is

not homogeneous throughout the column (as it depends on the velocity gradient), which is

why the curve shows a different pattern to the non-turbulent case. When γ is increased to

2 (Figure 4.4B), the eddy viscosity changes by an additional order of magnitude, causing

a further increase of the pressure difference (Figure 4.4) and a further decrease in velocity

differences (Figure 4.3C and D).

4.2.3 Compressible formulation

In Figure 4.5, the temperature in the compressible case is not noticeably different from the

incompressible case, which implies that the thermal expansivity is small and that the overall

advection of the system is similar in both cases. The phase abundance in subfigure B follows

a similar evolution as the incompressible case in Figure 4.1D.

Figure 4.6C, however, shows a different solid velocity behavior; the curve has a much

larger amplitude changes with time in an irregular fashion compared to the incompressible

case (Figure 4.2C). The (mass-weighted) velocity derivatives in the model are all different

and the inclusion of additional terms in the mass conservation equation (i.e. in this case
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Dρ
Dt
6= 0) cause this alteration. Consequently, the pressure difference undergoes a significant

change, whereas the velocity difference remains the same. This suggests that the incorpo-

ration of compressibility affects the velocity patterns - causing overpressure of the fluid; the

velocity changes are however controlled by the interaction terms, which in this case remain

unchanged. At lower depths, the relative fluid pressure is much higher. That the fluid may

contract is clear from the second panel, where fluid density eventually overtakes solid density.

The pressure on the solid transfers to the fluid by making it compact further, thus giving

the Figure 4.6E.
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Figure 4.1: Incompressible non-turbulent evolution with depth of fluid variables, particularly,
(A) #Mg in the solid, (B) #Mg in the liquid, (C) temperature and (D) phase abundance. The
plot is colour-coded from blue, indicating initial time, to red, indicating final time. For instance,
as time progresses, #Mg increases in the solid and liquid while it travels upward

Figure 4.2: Incompressible non-turbulent evolution with depth of fluid variables, particularly,
(A) Solid density ρs, (B) density difference ∆ρ = ρs − ρf , (C) solid velocity vs, (D) velocity
difference ∆v = vs − vf and (E) pressure difference ∆P = Ps − Pf .
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Figure 4.3: Incompressible turbulent evolution with depth of fluid variables, particularly, (A)
solid velocity vs with γ = 1, (B) solid velocity vs with γ = 2, (C) velocity difference ∆v = vs−vf
for γ = 1 and (D) velocity difference ∆v = vs − vf for γ = 2.

Figure 4.4: Incompressible turbulent evolution with depth of fluid variables, particularly, (A)
pressure difference ∆P = Ps − Pf for γ = 1 and (B) pressure difference ∆P = Ps − Pf for γ = 2.
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Figure 4.5: Compressible non-turbulent evolution with depth of fluid variables, particularly,
(A) temperature T and (B) phase abundance φ.

Figure 4.6: Compressible non-turbulent evolution with depth of fluid variables, particularly,
(A) solid density ρs, (B) density difference ∆ρ = ρs−ρf , (C) solid velocity vs, (D) velocity difference
∆v = vs − vf and (E) pressure difference ∆P = Ps − Pf (particularly note the change in axes).



5
Conclusion & Discussion

In this thesis, a full set of compressible equations describing flow of averaged velocity, pres-

sure and either temperature or entropy has been derived. The equations describe a system

with an arbitrary number of phases and components, as well as dimensions. They were

averaged using the ensemble averaging approach (Chapter 2), with the emerging turbulence

terms treated in Section 3.3. The mathematical representation is general enough that it may

be used as a shell for study of a variety of problems in geophysical fluid dynamics, with or

without turbulence.

In Chapter 4, the equations were applied to some steady-state examples, particularly: (1)

incompressible with no turbulence, (2) incompressible with turbulence and (3) compressible

with no turbulence. Comparing (1) and (2), one can see that by including turbulence, the
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velocity becomes dampened and as a consequence the pressure difference increases dramati-

cally (see pressure jump conditions posed by Bercovici et al. [5], Sramek [9], Keller [48] and

Oliveira et al. [11]). Comparing (1) and (3), one could see that while the melt content and

temperature remain similar, densities and velocities experience some change, while the pres-

sure difference undergoes a comparably huge change. Since the fluid is far more compressible

than the solid, it makes sense that the fluid pressure takes the weight of the compressible

system.

In both a turbulent and compressible system it was seen that the pressure difference is

significantly larger than in the incompressible case. This implies that if the incompressible,

non-turbulent scheme is used in an unsuitable application, results for field variable evolution

may contain significant error. In particular, if the system is plastic, there may be some

unanticipated volumetric fracturing [48].

In the future, numerical implementation could be expanded to solve non-steady state

problems of higher dimension and with established turbulence models. The gap between in-

compressibility and compressibility should widen in the unsteady case, as a time-derivative

forms part of the material derivative of density. As for the mathematical model, the tur-

bulent aspects stand to improve significantly. Firstly, closing the system with the T ′′ = 0

assumption relaxed in the entropy equation (Section 3.1.4). Secondly, implementation of

one or two-equation turbulence models into the multi-phase scheme. Thirdly, revision of the

model such that the logic of Appendix A.1 is unnecessary, that is, never neglecting χkρ′f ′

χkρ̂f̂

where f is a field variable; alternatively, providing a thorough analytical reasoning for the

assumption may suffice. Clear improvements may also be made for the surface stress model:

a visco-elastic plastic model is preferred over the viscous stress used here (see Section 3.2).

Including elasticity using a Maxwell model (see Schubert [24]) and plasticity using an ”effec-

tive viscosity approach” (e.g. Moresi [49], Kaus [50] and Keller [48]) is a logical next step.

Oliveira et al. [11] provide implementation of visco-elastic plasticity into the incompressible

multiphase ensemble averaged scheme.



A
Averaging Properties

A.1 Interchanging Phase- and Mass-Weightings

Consider the definition of an arbitrary mass-weighted variable:

f̃ =
χkρf

χkρ̂
(A.1)

where an over-line indicates regular average; hat phase-weighted and tilde mass-weighted

averages. Expanding ρ and f

f̃ =
χk(ρ̂+ ρ′)(f̂ + f ′)

χkρ̂
=
χkρ̂f̂

χkρ̂
+
χkρ′f ′

χkρ̂
(A.2)

which follows because χkρ̂f ′ = 0 and χkf̂ρ′ = 0 by definition of Reynolds decomposition.

Dividing each side of Equation (A.2) by f̂

f̃

f̂
= 1 +

χkρ′f ′

χkρ̂f̂
(A.3)
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thus, if the average of the product of fluctuations χkρ′f ′ is negligible with respect to the

product of averaged variables χkρ̂f̂ , then the phase-weighted temperature may be replaced

by mass-weighted temperature f̃ ≈ f̂

.

A.2 Fluctuation Products

The averages of the fluctuations terms is zero; 〈χkρθ′′〉 = 0 and 〈χkθ′′〉 = 0.

This can be shown quite easily. The ensemble average of the fluctuation term is zero by

definition, as can be seen by averaging either side of the following (and noting 〈〈θ〉〉 = 〈θ〉)

θ = 〈θ〉+ θ′′. (A.4)

We want to show that the phase and mass weighted fluctuation terms are zero too. Starting

from the definition of a mass-weighted average of the field variable (Equation 3.2)

〈χkρ〉〈θ〉ρ = 〈χkρθ〉

= 〈χkρ(〈θ〉ρ + θ′′)〉

= 〈ρ〈θ〉〉ρ + 〈χkρθ′′〉

= 〈χk〉〈ρ〉χ〈θ〉ρ + 〈χkρθ′′〉

(A.5)

It is left to show the second term on the right-hand side is zero. By definition of the mass-

weighted average of θ in Equation (3.2)

〈χkρθ′′〉 = 〈χkρ〉〈θ′′〉ρ = 〈χk〉〈ρ〉χ〈θ′′〉ρ = 0 (A.6)

Similarly, it can be shown using Equation (3.1)

〈χkθ′′〉 = 0 (A.7)

It is of interest to apply this property to a term of the form (〈v〉ρ + v′′)(〈v〉ρ + v′′) as in

Equation (3.17)

〈(〈θ〉+ θ′′)(〈θ〉+ θ′′)〉 = 〈〈θ〉〈θ〉+ 〈θ〉θ′′ + θ′′〈θ〉+ θ′′θ′′〉 = 〈θ〉〈θ〉+ θ′′θ′′ (A.8)
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because 〈θ′′〈θ〉〉 = 〈θ′′〉〈θ〉 = 0 because 〈θ′′〉 = 0.
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