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with equal count in each bin nc = 5, sample size n = 500 and censoring

proportions πc = 20%, 50% and 80%. . . . . . . . . . . . . . . . . . . . . . 102

4.3 AEST, BIAS, MCSD, AASD and MSE for the estimate of β̂, and aver-

age integrated squared error (AISE) for the baseline hazard estimate ĥ0(t)
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Abstract

Interval-censored failure time data arise in many areas including demographical, finan-

cial, actuarial, medical and sociological studies. By interval censoring, we mean that the

failure time is not always exactly observed and we can only observe an interval within

which the failure event has occurred. The goal of this dissertation is to develop maxi-

mum penalized likelihood (MPL) methods for proportional hazard (PH), additive hazard

(AH) and accelerated failure time (AFT) models with partly interval-censored failure

time data, which contains exactly observed, left-censored, finite interval-censored and

right-censored data. We fit these three semi-parametric regression models by estimating

the underlying non-parametric baseline hazard functions and regression coefficients. For

the PH and AFT models, we compute these estimates simultaneously using the Newton

and multiplicative iterative (Newton-MI) algorithm with line search steps, where the non-

negativity of baseline hazard functions is imposed in a direct way. For the AH model,

we obtain the estimates using the primal-dual interior point algorithm, with which the

baseline hazard function and hazard function are constrained to be non-negative simulta-

neously. The MPL methods provide smoothness for the baseline hazard estimates, which

can clearly show the trend of how the baseline hazard estimates are changing over time.

The asymptotic properties of these MPL estimators are studied.

We investigate the performance of our proposed MPL methods by conducting simu-

lation studies, and the simulation results demonstrate that our methods work well. In

addition, we also make comparisons between our MPL methods and some existing meth-

ods. In a real data analysis, the proposed MPL methods are applied to the AIDS example

provided by Lindsey and Ryan (1998).



Keywords: Interval-censored failure time data; Proportional hazard model; Additive

hazard model; Accelerated failure time model; Maximum penalized likelihood; Newton-

MI algorithm; Primal-dual interior point algorithm; Cross validation.

ii



Chapter 1

Introduction

1.1 Failure time data

Failure time data concerns positive random variables representing times to a certain event,

such as death, the onset of a disease or the failure of a mechanical component of a machine.

Failure time data arises extensively in medical studies, but there are many other areas

where it may also appear. These areas include biological studies, demographic studies,

actuarial studies and sociological studies.

Censoring is the main feature of failure time data. By censoring, we mean that the

failure time is observed only to fall into a certain range, instead of being known exactly.

Hence censored data only provides partial information. Truncation is another feature

existing in failure time data. This refers to cases where a subject is included in a study

only if the corresponding failure time satisfies certain conditions. For example, in a cohort

study, subjects are included in the study only if they experience an initial event prior to the

failure event, hence their failure times are greater than the occurrence time of the initial

event. This type of truncation is commonly known as left-truncation. In our dissertation,

we only analyze failure time data with censoring, and do not consider truncation. Next
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we give definitions of four types of censoring.

Suppose there are n independent subjects in a survival study. For each subject i,

i = 1, · · · , n, we denote Ti as the failure time, Ci as the censoring time if Ti is not exactly

observed, and X i as a p× 1 vector of covariates. The definition of right censoring is that

the failure time Ti is not exactly observed, but is known to be greater than the censoring

time Ci. Left censoring is defined as when Ti is known only to be less than Ci. Current

status data arises when each subject is observed only once and the corresponding failure

time Ti can only be determined to lie above or below a censoring time Ci. In other words,

we can only observe

{Ci, I(Ti ≤ Ci),X i; i = 1, · · · , n}, (1.1)

where I(A) is an indicator function for event A. Current status data is commonly en-

countered in biomedicine, economics, sociology and other scientific areas. For example,

in carcinogenicity experiments, animals are randomly assigned to various doses of a sus-

pected carcinogen and are examined at sacrifice or death time for evidence of a malignancy.

Here the time to tumour onset is of interest, but not directly observable. Rather, we only

know at the age of death whether the tumour is present or not.

Interval censoring, which is the focus of the thesis, is another type of censoring. By

interval censoring, we mean that the failure time Ti is not always exactly observed and

we can only observe an interval within which the failure event has occurred. A typical

example of interval censoring is in medical or health studies that entail periodic follow-ups.

Many clinical trials and longitudinal studies fall into this category. In such situations,

interval-censored data may arise in several ways. For instance, an individual may miss one

or more observation times that have been scheduled to clinically observe possible changes

in disease status, and then return with a changed status. Alternatively, individuals may

choose convenient times to visit clinical centers rather than visiting at predetermined

2



observation times. Under both situations, the data on status changes is interval-censored.

1.2 Formulations for interval-censored data

In this section, we define some notation for interval-censored data. From the definition

of interval censoring given in Section 1.1, we know that, for each subject i, there is an

observed interval (Li, Ri] such that the corresponding failure time Ti satisfies

Ti ∈ (Li, Ri], i = 1, · · · , n (1.2)

with Li < Ri. Note that, instead of (Li, Ri], we can also present interval-censored data

using [Li, Ri], [Li, Ri), or (Li, Ri) (Peto, 1973; Turnbull, 1976). However, since we assume

that Ti is continuous throughout the thesis, there is no difference among these expressions

and they all represent the same observed information about Ti. We say the failure time

Ti is finite interval-censored if the observed interval (Li, Ri] satisfies 0 < Li < Ri <∞. In

the case where Li = Ri, we mean Ti is exactly observed, Li = 0 means Ti is left-censored

and Ri = ∞ means Ti is right-censored. Therefore, interval-censored data contains left-

censored, right-censored and finite interval-censored data. We can regard current status

data (1.1) as a special case of interval-censored data. We define partly interval-censored

data as a combination of exactly observed and interval-censored data, and we analyze

partly interval-censored data throughout the thesis.

Another way to represent interval-censored data by Sun (2006) is based on the as-

sumption that each subject i in a survival study is observed twice, so we have

{Ci1, Ci2, ξi1 = I(Ti ≤ Ci1), ξi2 = I(Ci1 < Ti ≤ Ci2), ξi3 = 1− ξi1 − ξi2; i = 1, · · · , n} ,

(1.3)

where we call Ci1 and Ci2 the monitoring random variables, satisfying Ci1 < Ci2. With the

formulation (1.3), we can easily obtain the corresponding data with representation (1.2).
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Specifically, for the indicator functions in (1.3), if ξi1 = 1, the failure time of subject i is

left-censored, and we have Li = 0 and Ri = Ci1; if ξi2 = 1, it is finite interval-censored,

and we have Li = Ci1 and Ri = Ci2; and if ξi3 = 1, it is right-censored, and we have

Li = Ci2 and Ri =∞.

We can also obtain a more generalized form of (1.3) by assuming that each subject i is

observed more than twice, so that there exists a sequence of monitoring time points, say

Ci1 ≤ Ci2 ≤ · · · ≤ CiMi
, where Mi is the number of monitoring time points for subject i.

Then the observed information is expressed in the form of

{Mi, Cij, ξij = I(Cij−1 < Ti ≤ Cij), i = 1, · · · , n; j = 1, · · · ,Mi} , (1.4)

where Ci0 = 0. It is apparent that the above formulation provides a natural representation

of interval-censored data arising from longitudinal studies with periodic follow-up. For

data given in the formulation (1.4), if ξij = 1, then we have Li = Cij−1 and Ri = Cij. If,

on the other hand, ξij = 0 for all j, then Ti is right-censored and we have Li = CiMi
and

Ri =∞. The formulations (1.2)-(1.4) will be used in Chapter 2 for literature review.

1.3 Some functions

In this section, we introduce some basic functions used in survival studies. The hazard

function h(t) is defined as the instantaneous probability that a subject fails at time t given

that the subject has not failed before t (Kalbfeisch and Prentice, 2002). It is expressed as

h(t) = lim
∆t→0+

Pr(t ≤ T < t+ ∆t|T ≥ t)

∆t
. (1.5)

It is also called the force of mortality in demography and actuarial science. It must be

non-negative, i.e. h(t) ≥ 0. It may be increasing, decreasing or non-monotonic, depending

on the risk characteristics of subjects. We denote f(t) and S(t) as the density and survival

functions of failure time at t, respectively. There is a one-to-one relationship among the
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survival, density and hazard functions. To be specific, given the density and survival

functions, we have

h(t) =
f(t)

S(t)
= −d logS(t)

dt
.

On the other hand, given the hazard function, we have

S(t) = e−
∫ t
0 h(s)ds = e−H(t) (1.6)

and

f(t) = h(t)e−H(t), (1.7)

where H(t) =
∫ t

0
h(s)ds, which is called the cumulative hazard function of T at time t.

1.4 Three semi-parametric regression models

Semi-parametric regression analysis is used to to assess covariate effects on the failure

time or the hazard function. In this section, we describe three semi-parametric regression

models analyzed throughout the thesis. They are the proportional hazard (PH), additive

hazard (AH) and accelerated failure time (AFT) models.

1.4.1 Proportional Hazards (PH) Model

For each subject i, the PH model specifies the hazard function, h(t|X i), at time point t

according to

h(t|X i) = h0(t) exp
{
XT

i β
}
, (1.8)

where h0(·) is an unspecified baseline hazard function, β is a p × 1 vector of regression

coefficients, usually of primary interest in the model fitting, and X i is a covariate vector.

The PH model relates covariate effects multiplicatively to the hazard. Now consider two

subjects with their covariate vectors denoted by X i and Xj. Then the ratio of their
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hazards at time t is

h(t|X i)

h(t|Xj)
=
h0(t) exp

{
XT

i β
}

h0(t) exp
{
XT

j β
} = exp

{
(X i −Xj)

Tβ
}
.

Hence we conclude that the hazards are proportional to each other and do not depend on

time, i.e., h(t|X i) ∝ h(t|Xj). From (1.8), the corresponding cumulative hazard function

is

H(t|X i) =

∫ t

0

h(s|X i)ds = H0(t) exp
{
XT

i β
}
, (1.9)

where H0(t) =
∫ t

0
h0(s)ds, which is called the cumulative baseline hazard function. Using

equations (1.6) and (1.7), the conditional survival and density functions of Ti given X i

have the form

S(t|X i) = exp
{
−H0(t) exp(XTβ)

}
= [S0(t)]exp(XT

i β)

and

f(t|X i) = h0(t) exp(XT
i β) exp

{
−H0(t) exp(XT

i β)
}
,

where S0(·) is the baseline survival function.

1.4.2 Additive Hazards (AH) Model

The AH model specifies the hazard function by summation of the baseline hazard and the

regression function of covariates. To be specific, it is assumed that given X i, the hazard

function of Ti has the additive form given by

h(t|X i) = h0(t) +XT
i β. (1.10)

Hence the effect of covariates is to additively increase or decrease the hazard function.

The corresponding cumulative hazard function is

H(t|X i) = H0(t) +XT
i βt. (1.11)
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Under the AH model, the conditional survival and density functions of Ti given X i are

S(t|X i) = S0(t) exp{−XT
i βt}

and

f(t|X i) = [h0(t) +XT
i β] exp{−[H0(t) +XT

i βt]}.

Under the AH model, β can be understood as the risk difference. In particular, for two

subjects with X i and Xj, we have

h(t|X i)− h(t|Xj) = (X i −Xj)
Tβ.

1.4.3 Accelerated Failure Time (AFT) Model

The AFT model assumes that the logarithm of failure time is associated linearly with

covariates,

log Ti = XT
i β + εi, (1.12)

where εi is an error variable with an unknown distribution function. Under the AFT

model, the effect of covariates is also considered to be multiplicative as in the PH model,

but on the failure time Ti instead of the hazard function. In other words, the effect is to

change the timescale and therefore to accelerate or decelerate the time to failure.

We define ε∗i = eεi . Let hε∗i (·) denote the hazard function of ε∗i , which is independent of

β. Using definition (1.5) and model (1.12), we can get a relationship between the hazard

function of failure time Ti and the hazard function of ε∗i , that is

h(t|X i) = e−X
T
i βhε∗i (te

−XT
i β). (1.13)

The relationship (1.13) will be used in estimation for the AFT model in Chapter 5. The

corresponding cumulative hazard function is then given by

H(t|X i) =

∫ t

0

h(s|X i)ds = Hε∗i
(te−X

T
i β), (1.14)

7



where Hε∗(t) =
∫ t

0
hε∗i (s)ds. The conditional survival and density functions of Ti given

X i are expressed as

S(t|X i) = e
−Hε∗

i
(te−X

T
i β)

and

f(t|X i) = e−X
T
i βhε∗i (te

−XT
i β)e

−Hε∗
i

(te−X
T
i β)
.

1.5 Existing methods

There exists an extensive literature for fitting the three semi-parametric regression models,

discussed in Section 1.4, with right-censored data. Cox (1975) develops a partial likelihood

(PL) approach to estimate the regression coefficient β under the PH model, where the

baseline hazard h0(·) is considered as a nuisance quantity and is not estimated. But

the baseline hazard can be obtained using the Breslow estimator (Breslow, 1972), and

smoothed estimates of h0(·) can be derived by kernel (Gray, 1990), or penalized likelihood

(Anderson and Senthilselvan, 1980; Ma et al., 2014). For the AH model, Lin and Ying

(1994) construct an estimating function for β, which mimics the martingale feature of

the partial likelihood score function in the PH model. The estimator for the cumulative

baseline hazard function parallels the Breslow estimator for the corresponding quantity

under the PH model. For the estimation in the AFT model, Miller(1976), Buckley and

James (1979), and Jin et al. (2006) apply a least squares method. Tsiatis (1990), Ritov

(1990), Jin et al. (2003), Park and Wei (2003), and Gay (2000) develop linear rank

statistics as estimation functions for the regression coefficient β. Zeng and Lin (2007)

propose a likelihood-based method, where they construct a smooth approximation to a

profile likelihood function using a kernel function, and β is estimated by maximizing the

kernel-smoothed profile log-likelihood function through a Quasi-Newton search algorithm.

In this dissertation, we devote ourselves to analyzing interval-censored data. Below we
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summarize existing methodologies for interval-censored data, and detail will be given in

Chapter 2.

To fit the PH model with interval-censored data, Pan (2000) proposes an imputation

method. The imputation approach generates the failure time Ti from a conditional distri-

bution function given Ti is left-censored or finite interval-censored, while right-censored

observations are kept unchanged. Then, existing inference procedures for right-censored

data can be applied for estimation. Satten (1996), Goggins et al. (1998) and Satten

et al. (1998) develop a rank-based likelihood method, where estimations of the baseline

hazard are not involved. The method first generates a ranking of the failure times from

a ranking probability function. Based on the generated ranking, a score function for β is

constructed, then β is computed by solving roots of the score function. Finkelstein (1986),

Pan (1999), and Goetghebeur and Ryan (2000) use a maximum likelihood (ML) method to

estimate β. Finkelstein (1986) considers estimations of the baseline survival S0(·) and im-

poses the constraint 0 ≤ S0(·) ≤ 1 by parametrization. Pan (1999) considers estimations

of the baseline distribution function F0(·) with the constraint 0 ≤ F0(·) ≤ 1 by using

an iterative convex minorant (ICM) algorithm (Groeneboom and Wellner, 1992).Geot-

ghebeur and Ryan (2000) produce a non-negative baseline hazard estimate using the EM

algorithm, but the baseline estimate is not smooth, and hence the trend of changing the

baseline hazard over time may not be clear. Betensky et al. (2002) obtain a smooth

estimate of the baseline hazard by a local likelihood method. The method starts with

approximating log h0(·) at local time points near some estimation times by a polynomial

function. Then a local likelihood function is constructed, where kernel functions are in-

cluded to ensure smoothness of the baseline hazard estimate. Estimates of β and h0(·) are

computed by maximizing the local likelihood using the EM algorithm. Cai and Betensky

(2003), and Joly et al. (1998) also obtain the smooth estimate of baseline hazard by
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using a maximum penalized likelihood (MPL) method, where both methods model h0(·)

by splines, and impose the non-negativity constraint on h0(·) in indirect ways. Joly et

al. (1998) use squared coefficients for spline, which may cause convergence issues when

some coefficients are zero. Cai and Betensky (2003) impose the constraint on h0(·) by

approximating the log-baseline hazard using a linear spline, using the log function may

lead to unstable estimation procedures when the baseline hazard estimate approaches

zero, and give rise to difficulties in obtaining the cumulative baseline hazard in closed

form for spline orders higher than linear. In the MPL method, estimates are computed

by maximizing a penalized log-likelihood function, where a roughness penalty function is

included for smoothness of the estimate of h0(·).

For the AH model, Lin et al. (1998) and Wang et al. (2010) propose a counting

process method, where a partial likelihood type score function for β is constructed, and

β is estimated by solving the root of the score function. In this method, the baseline

hazard is regarded as a nuisance parameter and not estimated. Ghosh (2001) and Zeng et

al. (2006) develop a ML method. Ghosh (2001) estimates β and the baseline cumulative

hazard H0(·) using a primal-dual interior point algorithm (Wright, 1997), with constraints

of non-negativity and monotonic increasing imposed on H0(·) directly. Zeng et al. (2006)

fit the AH model by estimating β and S0(·) using the Newton algorithm, and constraints

on S0(·) are imposed indirectly by using a log function. Farrington (1996) applies a

generalized linear model (GLM) approach for estimations. The GLM approach regards

the occurrences of left, right and finite interval-censored observations as independent

Bernoulli trials, and relate the occurrence probability to a linear predictor through a

negative log function. β and the baseline hazard are considered as covariate coefficients

in this linear predictor, and estimated by fitting the GLM using the statistical package

GLIM. However, the GLM method does not guarantee the smoothness and non-negativity
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constraint for the baseline hazard estimate.

For the AFT model, Rabinowitz et al. (1995) and Betensky et al. (2001) propose

using linear rank statistics as estimating functions for β, and estimate β by solving roots

of the estimating functions. However, as the dimension of β is high, implementation

of the method becomes numerically difficult. The method involves estimations of the

distribution function for the error variable ε, and the distribution function is estimated

by a ML method. A rank statistic derived by Li and Pu (2003) can only be applied to

estimate β in one dimension. It is not straightforward to generalize the statistic to high-

dimensional covariates. Komárek et al. (2005) develop a MPL method for estimations of

β and the density function of standardized ε. Denote ε̃ to be the standardized ε and let

fε̃(t) be the density function of ε̃. The MPL method starts with approximating fε̃(t) by a

linear combination of Gaussian density functions, and imposes the constraints, fε̃(t) > 0

and
∫
fε̃(t)dt = 1, indirectly by transforming fε̃(t). MPL estimates of β and fε̃(t) are

obtained by maximizing a penalized log-likelihood function, where a roughness penalty

function is used for smoothness of the estimate of fε̃(t).

1.6 Goal

In this dissertation, we assume that (i) the observations from different subjects are in-

dependent, (ii) covariates are time-independent and the distribution of covariates do not

involve regression coefficients, and (iii) censoring time is independent of failure time. We

propose novel methods to fit the PH model, AH model and AFT model for partly interval-

censored data, which contains fully observed, left-censored, finite interval-censored and

right-censored data.

We fit the PH model by estimating the regression coefficient β and the baseline hazard

h0(·). We compute the estimates of β and h0(·) simultaneously by maximizing a penalized

11



log-likelihood function, where the non-negative constraint on h0(·) is imposed in a direct

way. We solve this constrained optimization problem by using the Newton-MI algorithm

(Ma et al., 2014). This algorithm ensures the non-negativity for the baseline hazard, and

also avoids using the second derivative of the penalized log-likelihood when estimating the

baseline hazard. To produce a smoothed estimate of the baseline hazard so that its trend

of changing over time can be clearly observed, we use a penalty function. We derive the

asymptotic properties of the MPL estimates, and the asymptotic properties can be used

to perform hypothesis testing and to obtain variance estimates for the MPL estimates.

Under the AH model, since effects of the covariates are additive on the hazard function,

h(·|X i), we have to constrain both h(·|X i) and the baseline hazard h0(·) to be non-

negative in the estimation procedure. For this purpose, we use a primal-dual interior

point algorithm (Wright, 1997). These two constraints can be imposed simultaneously

and directly in this algorithm. This algorithm has also been applied by Ghosh (2001) in

studying current status data. We obtain the MPL estimates of β and h0(·) simultaneously

by maximizing a penalized log-likelihood function with a penalty function included for

smoothness of the baseline hazard estimate.

To fit the AFT model, we also develop a MPL method for estimation. We estimate

β and the hazard function of ε∗, where ε∗ = eε and ε is the error variable in the AFT

model, which has been defined in Section 1.4.3. Again we obtain estimates of β and the

hazard of ε∗ simultaneously by maximizing a penalized log-likelihood function using the

Newton-MI algorithm, where the non-negative constraint on the hazard is imposed in a

direct way. For smoothness of the hazard estimate, we use a roughness penalty function,

which relates to the value of its second derivative. The asymptotic properties of the MPL

estimates are derived.

In summary, the goal of this dissertation is to develop MPL methods to estimate
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the PH model, AH model and AFT model with partly interval-censored data. The per-

formance of the proposed methods is investigated through simulation studies, and the

proposed methods are applied in analyzing a real data set. The statistical package R is

used for both the simulation and application studies.

1.7 Outline

Chapter 2 reviews some existing methods to fit the PH, AH and AFT models.

Chapter 3 proposes an estimation method for the PH model with partly interval-

censored data using MPL and Newton-MI algorithm. The asymptotic properties of the

MPL estimators are derived and a simulation study is conducted. The MPL method is

also applied to analyze a set of real data.

Chapter 4 proposes an estimation method for the AH model in the case of partly

interval-censored data, using MPL and a primal-dual interior point algorithm. The asymp-

totic properties of the MPL estimates are derived. A simulation study is conducted to

evaluate the proposed method, and results from real data analysis are reported.

Chapter 5 fits the AFT model with partly interval-censored data by MPL and Newton-

MI algorithm. The asymptotic properties of the MPL estimates are presented. A simula-

tion study is conducted to investigate the performance of the proposed method, and real

data is analyzed.

Conclusions are drawn in Chapter 6.
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Chapter 2

Literature Review

In this chapter, we will review some existing methodologies for semi-parametric regres-

sion analysis of interval-censored failure time data under the proportional hazard (PH),

additive hazard (AH) and accelerated failure time (AFT) models. Semi-parametric regres-

sion models assume some relationships between covariate effects and the hazard function

or failure time, but the underlying distribution functions for failure time are unspeci-

fied and need to be estimated. Hence the semi-parametric regression models have both

parametric and non-parametric parts. In this dissertation, we concentrate ourselves on

estimations for the semi-parametric regression models. Before reviewing methods for the

semi-parametric regression models, we briefly summarize some approaches for parametric

and non-parametric estimations.

Parametric inference methods assume parametric models for the failure time T , and

there are three models commonly used, which are the Weibull, log-normal and log-logistic

models. One can refer to Kalbfleisch and Prentice (2002), and Lawless (2011) for more

parametric models. The advantage of parametric inference approaches is that their im-

plementation is straightforward in principle and standard maximum likelihood theory

can be easily applied. The disadvantage is that there often does not exist enough prior
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information or data to suggest or verify a parametric distribution for the failure time T .

Non-parametric regression models cannot specify the underlying failure time distribu-

tions, and the underlying distribution functions are estimated without considering covari-

ate effects. With interval-censored data, non-parametric estimations of survival functions

for T have been analyzed by Peto (1973), Turnbull (1976), Gentleman and Geyer (1994),

Li et al. (1997), Yu et al. (2000), Groeneboom and Wellner (1992), and Wellner and

Zhan (1997). For non-parametric estimations of density functions for T , methods have

been developed by Keiding (1991), and Kooperberg and Stone (1992).

The chapter is organized as follows. In Section 2.1, we review some existing methods

for the proportional hazard (PH) model. In Section 2.2, we review methods for the

additive hazard (AH) model. In Section 2.3, we review methods for the accelerated

failure time (AFT) model. In Section 2.4, we give a brief summary of the methods that

will be developed in this dissertation for the PH, AH and AFT models.

2.1 Proportional Hazard (PH) Model

In this section, we review existing approaches to fit the proportional hazard (PH) model

with interval-censored data. Recall the definition of interval-censored data given in

Chapter 1, which contains left-censored data, finite interval-censored data and right-

censored data. Suppose there are n subjects in a survival study, and for each sub-

ject i = 1, · · · , n, the PH model specifies the hazard function h(t|X i) according to

h(t;X i) = h0(t) exp{XT
i β}, where h0(·) is an unspecified baseline hazard function, X i is

a p× 1 covariate vector and assumed to be time-independent, and β is a p× 1 regression

coefficient vector.
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2.1.1 Imputation Approaches

Imputation approaches are somtimes used to transform the problem of analyzing interval-

censored data to that of analyzing right-censored data, so that one can apply existing

inference procedures and statistical software developed for right-censored data. The sim-

plest imputation method modifies the left-censored and finite interval-censored data. For

instance, it is assumed that the corresponding unobserved failure time T lies at the middle-

point of the observed interval (L,R], i.e., T = (L + R)/2, while the right censored data

is kept unchanged. Therefore, the data set now consists of imputed failure time data

(L + R)/2 and the right censored data, and the data set is known as imputed right-

censored data (Pan, 2000). This method is called mid-point imputation. Alternatively, it

can also be assumed that the corresponding unobserved T is uniformly distributed over

(L,R] for the left-censored and finite interval-censored data.

With the imputed right-censored data, one can apply the partial likelihood method.

Assuming there are no tied imputed failure times, the regression coefficients β are esti-

mated by maximizing the partial likelihood given by

Lp(β) =
K∏
i=1

exp(XT
(i)β)∑

j∈R(t(i))
exp(XT

j β)
, (2.1)

where t(i) is the ith ordered statistic of the imputed failure times, K is the number of

the imputed failure times, X(i) is X i corresponding to t(i) and R(t(i)) is the risk set

of individuals at t−(i). Law and Brookmeyer (1992) assess the performance of the mid-

point imputation method and conclude that wide intervals lead to biased estimates and

underestimated standard errors. In addition, they show that the statistical properties of

the β estimate depend strongly on the width of the interval (L,R] and on the distribution

of the failure time T . Therefore, it is not reliable to apply the mid-point imputation

method when the observed intervals are wide.

To overcome this shortcoming, Pan (2000) applies a multiple imputation approach,
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which is originally proposed by Tanner and Wong (1987) for grouped right censored data.

The multiple imputation method improves the accuracy by generating multiple sets of im-

puted right-censored data, each of which is analyzed separately as in the mid-point impu-

tation approach, and then the results are combined. Specifically, the multiple imputation

method iterates between an imputation step and an estimation step. In the imputation

step, it is supposed to generate M sets of imputed right-censored data from the observa-

tions {Li, Ri,X i, i = 1, · · · , n} using the poor man’s data augmentation (PMDA) (Wei

and Tanner, 1991) or asymptotic normal data augmentation (ANDA) (Wei and Tanner,

1991). Here we describe the kth iteration of the PMDA algorithm for demonstration. For

each subject i and each imputed data set j, j = 1, · · · ,M , let δ
(k)
(j),i be an indicator, where

δ
(k)
(j),i = 0 if the failure time of subject i is right censored, and δ

(k)
(j),i = 1 if left censored or

finite interval censored. For δ
(k)
(j),i = 0, set Ri =∞ and define T

(k)
(j),i to be the corresponding

censored time, i.e., T
(k)
(j),i = Li. While for δ

(k)
(j),i = 1, T

(k)
(j),i is defined to be the corresponding

imputed failure time and is generated from the distribution conditional on T
(k)
(j),i ∈ (Li, Ri]

using the current estimates of β(k) and S
(k)
0 (·), that is to solve

Pr(T
(k)
(j),i ≥ t|T (k)

(j),i ∈ (Li, Ri]) =
[S

(k)
0 (Li)]

exp(XT
i β

(k)) − [S
(k)
0 (t)]exp(XT

i β
(k))

[S
(k)
0 (Li)]exp(XT

i β
(k)) − [S

(k)
0 (Ri)]exp(XT

i β
(k))

by an inversion method. Repeating this step M times gives rise to M sets of imputed

right-censored data denoted by

{
T

(k)
(j),i, δ

(k)
(j),i,X i, i = 1, · · · , n, j = 1, · · · ,M

}
.

In the estimation step, for each of the M data sets, an estimate of β
(k)
(j) is obtained by

applying the partial likelihood approach, and its corresponding covariance estimate, Σ
(k)
(j) ,

is computed by the observed Fisher information matrix that can be derived from the

partial likelihood (2.1). Finally, the Breslow estimate of S
(k)
0,(j)(·) is calculated. Then the

estimates are updated by β(k+1) =
∑M

j=1 β
(k)
(j)/M, S

(k+1)
0 =

∑M
j=1 S

(k)
0,(j)/M and Σ(k+1) =
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∑M
j=1 Σ

(k)
(j)/M + (1 + 1

M
)
∑M

j=1[β
(k)
(j) − β

(k+1)][β
(k)
(j) − β

(k+1)]T/(M − 1). Note the updated

covariance estimate is the sum of the within-imputation and between-imputation variance

estimates. The initial values of the iteration procedure can be computed via the mid-point

imputation approach.

2.1.2 Rank-based approach

Satten (1996) proposes a rank-based marginal likelihood approach, in which data com-

prises a set of all possible rankings of the failure times, postulated from their corresponding

censored intervals {(Li, Ri], i = 1, · · · , n}. Since the failure times are unobserved, there

may be different failure time ranking results when some censored intervals overlap. Note

that when none of them overlap, there will be only one ranking result. Denote the set

of all possible rankings by R, and each element of this set by r = [r1, · · · , rn]T . That

is, every element is a permutation of the integers from 1 to n. For example, if we take

n = 3, then r = [1, 2, 3]T , [1, 3, 2]T , [2, 1, 3]T , [2, 3, 1]T , [3, 1, 2]T or [3, 2, 1]T . Now define

Pr(r|β,X) to be the probability of ranking r under the PH model given β and Xn×p.

Based on the ranking set R, one can derive the following marginal log-likelihood

`(β) = ln
∑
r∈R

Pr(r|β,X). (2.2)

Assuming there are no tied failure times, the ranking probability Pr(r|β,X) is

Pr(r|β,X) =
n∏
i=1

eX
T
i β∑

j∈R(i) e
XT
j β
,

where R(i) is the risk set of subjects at the ith ranked failure time under r. The corre-

sponding score function is obtained by taking the first derivative of `(β) with respective

to β, that is

S(β) =
∑
r∈R

w(r|β,X)Sβ(r|X), (2.3)
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where w(r|β, X) is the weight given by

w(r|β,X) =
Pr(r|β,X)∑
r∈R Pr(r|β,X)

, (2.4)

and Sβ(r|X) is the score function based on the rank r, which can be calculated by

Sβ(r|X) = ∂ log Pr(r|β,X)/∂β. Note that w(r|β,X) can also be understood as a prob-

ability distribution on the set R, so that S(β) can be considered to be the expected value

of the score Sβ(r|X) with respect to the distribution w(r|β,X). Therefore, equation

(2.3) can be rewritten as

S(β) = E[Sβ(r|X)]. (2.5)

Let β̂ be the maximum marginal likelihood estimates of β, obtained by solving S(β) = 0.

Satten (1996) calculates β̂ by implementing a stochastic approximation method, which can

be considered as a variant of the Newton method. As a consequence of (2.5), Sβ(r|X) is an

unbiased estimator of S(β) if a random element r of R is selected with the distribution

w(r|β,X). Therefore, the kth iteration of the stochastic approximation involves two

steps: (i) generating rankings r using the probability w(r|β(k),X) which can be achieved

by a Gibbs sampling scheme, and (ii) computing β(k+1) by estimating the root of S(β)

using a Robbins-Munro process (Ruppert et al., 1984). The stochastic approximation

scheme is run until k = k∗, where k∗ is determined by a termination criterion.

One drawback of this method is that maximization of the log-likelihood (2.2) can be

difficult when there are many overlapping censoring intervals, as the ranking set R will

be large in this case. To overcome this difficulty, Goggins et al. (1998) maximize (2.2)

using an EM algorithm, where the complete data is the ranking of the unobserved failure

times of all subjects. Let r be the true ranking and β(k) denote the estimate of β at the

kth iteration of the EM algorithm. The E step is to find the conditional expectation of
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the complete data log-likelihood, given by

∑
r∈R

log[L(β|r)]w(r|β(k),X), (2.6)

where L(β|r) ∝ Pr(r|β,X), and w(r|β(k),X) is the conditional distribution of r that is

given in (2.4). Then the M step maximizes (2.6) to update β. However, it is difficult to

maximize (2.6) if the ranking set R is large. Goggins et al. (1998) propose using Monte

Carlo in the E step. Specifically, a sample of N rankings, {rj, rj ∈ R, j = 1, · · · , N}, are

drawn from w(r|β(k),X) given the current estimate β(k), where an MCMC algorithm

(Hastings, 1970) is applied for the drawing. In the M-step, the average of the individual

log-likelihood, given by

1

N

N∑
j=1

log[L(β|rj)],

is maximized with respective to β to give β(k+1). These two steps are repeated until the

β estimates converge.

Alternative to the approach by Satten (1996), Satten et al. (1998) consider a different

estimating equation that is also an expectation of the partial likelihood score function, but

now with respect to the distribution of the imputed right-censored data. The definition

of imputed right-censored has been given in Section 2.1.1. For interval-censored data

{(Li, Ri], i = 1, · · · , n}, let δ be an indicator vector with components δi = 0 if failure

time Ti is right-censored and δi = 1 otherwise. Define t∗ = [t∗1, · · · , t∗n]T to be the vector

of imputed right-censored data. The distribution function of t∗ is

F (t∗|δ;β,θ) =
n∏
i=1

F (t∗i |Li, Ri;β,θ)δiI(Li ≤ t∗i )
1−δi ,

where

F (t∗i |Li, Ri;β,θ) =
F (t∗i |β,θ)− F (Li|β,θ)

F (Ri|β,θ)− F (Li|β,θ)
I(t∗i ∈ (Li, Ri])

and I(·) is an indicator function. Now let Sβ(t∗|X) denote the partial likelihood score
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function, then the score function for β is

S(β,θ) =

∫
Sβ(t∗|X)dF (t∗|δ;β,θ). (2.7)

Estimates of β and θ are computed alternatively. Specifically, with a fixed value of β, the

estimate of θ is obtained by maximizing the observed log-likelihood function with respect

to θ, where the observed log-likelihood is

`(β,θ) =
n∑
i=1

{δi ln[F (Ri|β,θ)− F (Li|β,θ)] + (1− δi) ln[1− F (Li|β,θ)]} .

Denote the resulting estimator by θ̂. With θ̂, β is then estimated by solving S(β, θ̂) = 0.

To estimate the root of S(β, θ̂), the imputed right-censored data t∗ is firstly generated

from F (t∗|δ;β, θ̂), and then a recursive stochastic approximation method is applied,

which is similar to that in Satten (1996). Although the generation of t∗ depends on the

underlying distribution, simulation studies conducted by Satten et al. (1998) show that

the estimation method performs well even when the distribution is misspecified. This can

be explained by the fact that the partial likelihood score function Sβ(t∗|X) is independent

of the distribution and depends only on the ranks of the imputed times.

2.1.3 Maximum likelihood (ML) approach

Finkelstein (1986) proposes a maximum likelihood (ML) approach to fit the PH model

with interval-censored data. In this method, the log-likelihood function is constructed in

terms of the regression coefficient β and the baseline survival S0(·) by

`(β, S0) =
n∑
i=1

log
{
S0(Li)

exp(XT
i β) − S0(Ri)

exp(XT
i β)
}
. (2.8)

Let 0 = u0 < u1 < u2 < · · · < um < um+1 = ∞ be the ordered distinct time points

of all observed interval end points {Li, Ri; i = 1, · · · , n}. Here S0(·) is only estimated at

these ordered distinct time points. In order to impose the constraints 0 ≤ S0(·) ≤ 1,
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S0(·) is transformed by αj = log[− logS0(uj)], j = 0, · · · ,m+ 1, where clearly α0 = −∞

and αm+1 = ∞. Let α = [α0, · · · , αm+1]T . Now define indicator variables ζij = I(uj ∈

(Li, Ri]). Then (2.8) can be re-expressed in terms of β and α by

`(β,α) =
n∑
i=1

log
{m+1∑

j=1

ζij
[
e− exp(αj−1+XT

i β) − e− exp(αj+X
T
i β)
]}
. (2.9)

Finally, estimates of β and α are computed by maximizing (2.9) using the Newton algo-

rithm.

Pan (1999) reformulates an iterative convex minorant (ICM) algorithm (Groeneboom

and Wellner, 1992) as a special case of the generalized gradient projection (GGP) method

(Bertsekas, 1982) to maximize (2.9), where (2.9) is rewritten using the baseline distribu-

tion vector F 0 = [F0(u1), · · · , F0(um)]T ,

`(β,F 0) =
n∑
i=1

log

{
m+1∑
j=1

ζij
[
(1− F0(uj−1))exp(XT

i β) − (1− F0(uj))
exp(XT

i β)
]}

. (2.10)

In contrast to the Newton algorithm applied by Finkelstein (1986), which uses the inverse

Hessian matrix at each iteration, the ICM algorithm only uses the diagonal elements of the

Hessian matrix. Let ∇1(F 0,β) = ∂`(β,F 0)/∂β and ∇2(F 0,β) = ∂`(β,F 0)/∂F 0. Let

D1(F 0,β) andD2(F 0,β) be diagonal matrices with diagonal elements of−∂`2(β,F 0)/∂β∂βT

and −∂`2(β,F 0)/∂F 0∂F
T
0 , respectively. To have a proper baseline distribution function,

the constraints F 0 ∈ C = {F 0 : 0 ≤ F0(u1) ≤ · · · ≤ F0(um) ≤ 1} must be imposed in each

iteration of the ICM algorithm. Then F 0 and β are updated simultaneously by

F
(k+1)
0 = Proj[F

(k)
0 + ω1jD2(F

(k)
0 ,β(k))−1∇2(F

(k)
0 ,β(k)), D2(F

(k)
0 ,β(k)), C] (2.11)

and

β(k+1) = β(k) + ω2jD1(F
(k)
0 ,β(k))−1∇1(F

(k)
0 ,β(k)), (2.12)

where Proj is a projection operation defined by

Proj[F 0, D2(F 0,β), C] = arg min
F

{
(F − F 0)TD2(F 0,β)(F − F 0) : F ∈ C

}
, (2.13)
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and ω1j and ω2j are step sizes used to ensure the increasing of the log-likelihood. The

projection (2.13) is just an isotonic least squares regression problem and can be solved by

the pool-adjacent-violators algorithm (Robertson et al., 1988) , for example.

Huang and Wellner (1995,1997) also adopt the ICM algorithm. But they estimate β

and F 0 alternatively, where `(β(k),F 0) is firstly maximized with respect to F 0 by the

ICM algorithm to get F
(k+1)
0 , and then `(β,F

(k+1)
0 ) is maximized with respect to β by

the Newton algorithm to give β(k+1).

Lindsey and Ryan (1998), and Goetghebeur and Ryan (2000) consider fitting the

PH model for partly interval-censored data by estimating the baseline hazard h0(·) and

β. Recall the definition of partly interval-censored data given in Chapter 1, which con-

tains exactly observed failure time data and interval-censored data. In their method,

the baseline hazard is assumed to be piecewise constant. Suppose there are m intervals,

{(τj−1, τj], j = 1, · · · ,m}, which divide up the time scale, then h0(t) = θj for t ∈ (τj−1, τj].

Let θ = [θ1, · · · , θm]T . For simplicity, assume that each of the m intervals has unit width,

and each observed failure time or right censoring time is rounded up to the endpoint of

the interval within which it occurs. Let Dij indicate whether the failure occurs in the

jth interval for subject i, and Yij indicate whether subject i is at risk in that interval.

Estimates of θ and β are obtained by using an EM algorithm, where the exactly observed

failure time data, and the unobserved failure time that is left-, right- and finite interval-

censored are considered to be the complete data. The complete-data log-likelihood is then

given by

`(β,θ) =
n∑
i=1

m∑
j=1

{
log(θj) Dij +XT

i βDij − θj exp(XT
i β)Yij

}
. (2.14)

In the E-step, the conditional expectation of (2.14) is derived, which simply involves cal-

culating expectations of Dij and Yij at τj. The expectations of Dij and Yij are denoted by

ρij and νij respectively. For left- and finite interval-censored data, with current estimates
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β(k) and θ(k),

ρ
(k)
ij =

p
(k)
ij∑

τu∈(Li,Ri]
p

(k)
iu

, (2.15)

where p
(k)
ij = θ

(k)
j exp(XT

i β
(k)) exp

{
−
∑j

u=1 θ
(k)
u exp(XT

i β
(k))
}

. For exactly observed fail-

ure time data, ρ
(k)
ij = 1, and for right-censored data, ρ

(k)
ij = 0. Now let di be an indicator

taking value one if the failure time Ti is left- or finite interval-censored, and zero if Ti is

right- censored. Then the conditional expectation of Yij is given by

ν
(k)
ij =

∑
u≥j

ρ
(k)
iu di + I(τj ≤ Li)(1− di). (2.16)

In the M-step, estimates of β and θ are updated by maximizing the expectation of (2.14).

The solution with fixed β(k) takes the form of

θ
(k+1)
j =

∑n
i=1 ρ

(k)
ij∑n

i=1 exp(XT
i β

(k))ν
(k)
ij

. (2.17)

Equation (2.17) shows that θ
(k+1)
j is non-negative, and hence the non-negativity of the

baseline hazard estimate is automatically guaranteed. With fixed θ
(k+1)
j , β(k+1) is com-

puted by maximization of the expectation of (2.14). In this method, smoothness of the

estimated baseline hazard is not guaranteed.

2.1.4 Local likelihood approach

Betensky et al. (1999) and Betensky et al. (2002) obtain a smooth estimate of the

baseline hazard h0(·) by a local likelihood method with partly interval-censored data. Let

{tj; j = 1, · · · ,m} be the time points at which h0(·) is estimated. The local likelihood

estimate of h0(·) at tj starts with approximating log h0(·) in a smoothing window with

bandwidth b at local points near tj using a polynomial function, that is

log h0(s) ≈ θ0j + θ1j(s− tj) + · · ·+ θqj(s− tj)q = θTj P j,q(s) for |s− tj| ≤ b,

where θj = [θ0j, θ1j, · · · , θqj]T and P j,q(s) = [1, (s− tj), · · · , (s− tj)q]T . Note that the log

function guarantees the positivity of h0(·).
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In this local likelihood approach, parameters β and θj are estimated alternatively.

Given the observed data {(Li, Ri],X i; i = 1, · · · , n} and the current estimates β(k) and

θ
(k)
j , θj is firstly updated by using an EM algorithm with β fixed at β(k), where the exactly

observed failure time data is viewed as the incomplete data and the failure time that is left,

right, or finite interval-censored is considered to be the missing data. Note that h
(k)
0 (tj) =

eθ
(k)
0j , and for |u − tj| ≤ b, h

(k)
0 (u) = exp{(θ(k)

j )TP j,q(u)}, S(k)
0 (u) = exp{−

∫ u
0
h

(k)
0 (v)dv}

and f
(k)
0 (u) = h

(k)
0 (u)S

(k)
0 (u). For each subject i, set S

(k)
i (u) = [S

(k)
0 (u)]exp(XT

i β
(k)) and

f
(k)
i (u) = h

(k)
0 (u) exp(XT

i β
(k))S

(k)
i (u). The E-step computes the conditional expectation

of the complete-data local log-likelihood, that is

E
[
`i(u, tj|β,θj)|Ti ∈ (Li, Ri]

]
=

∫ Ri
Li
`i(u, tj|β(k),θj)f

(k)
i (u)du∫ Ri

Li
f

(k)
i (u)du

, (2.18)

where

`i(u, tj|β,θj) = XT
i β +K(

u− τj
b

)θTj P j,q(u)

−
∫ u

0

exp
{
XT

i β + θTj P j,q(s)
}
K(

s− τj
b

)ds. (2.19)

In (2.19), K(·) is a kernel function used for smoothness of the baseline hazard estimate.

In the M step, θj is updated by maximizing (2.18) with respect to θj. Let θ
(k+1)
j be the

resulting estimate. With fixed θ
(k+1)
j , β(k+1) is then obtained by maximizing

n∑
i=1

[
ln{(S(k+1)

0 (Li))
exp(XT

i β) − (S
(k+1)
0 (Ri))

exp(XT
i β)}

]

using, for example, the Newton algorithm.

2.1.5 Maximum penalized likelihood (MPL) approach

The smooth estimate of h0(·) can also be produced by the maximum penalized likelihood

(MPL) approach. In the MPL method, β and the smooth estimate of h0(·) are obtained

by maximizing a penalized log-likelihood function,

Φ(β, h0) = `(β, h0)− γ̃J(h0), (2.20)
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where `(β, h0) is the log-likelihood given by

`(β, h0) =
n∑
i=1

log
{

exp
[
− eXT

i β

∫ Li

0

h0(s)ds
]
− exp

[
− eXT

i β

∫ Ri

0

h0(s)ds
]}
,

γ̃ is a non-negative smoothing parameter controlling the trade-off between the goodness

of fit to data and smoothness of the estimated baseline hazard, and J(h0) is a penalty

function measuring the roughness of h0(·). Common choices for the penalty function can

be

J(h0) =

∫
s

[h′0(s)]2ds

or

J(h0) =

∫
s

[h′′0(s)]2ds,

where h′0(s) and h′′0(s) are the first and second derivatives of h0(s) with respect to s.

Selecting a suitable smoothing value is crucial for good fitting. The smoothing value

can be determined empirically, or automatically from the data using the cross validation

method, i.e., see (O’Sullivan, 1988).

The MPL estimation procedure starts with modeling h0(·). Ma et al. (2014) use a

linear combination of general basis functions to approximate h0(·). Therefore, estimating

h0(·) is equivalent to estimating coefficients of the basis functions. Let θ = [θ1, · · · , θm]T

be the basis coefficients. The parameters β and θ are estimated alternatively by using the

Newton and Multiplicative Iterative (Newton-MI) algorithm (Ma et al., 2014). At each

iteration of the algorithm, β is updated by the Newton algorithm, while θ is updated

by the Multiplicative Iterative (MI) algorithm (Ma, 2010). The MI algorithm ensures

θ ≥ 0m×1 so that the non-negativity of h0(·) can be constrained directly. We also adopt

the Newton-MI algorithm for estimations in Chapters 3 and 5.

Cai and Betensky (2003) use a linear spline to approximate the log baseline hazard,

log h0(t) = α0 + α1t+
m∑
j=1

θj(t− µj)+,
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where x+ = max(0, x) and {µ1, · · · , µm} are the knots, see also Kooperberg and Clarkson

(1997) for the ML estimation. The disadvantage of the log transformation is that when

the estimated baseline hazard approaches zero, the estimation procedure will become

unstable. The penalty function in this method is taken in the form of J(h0) = 1
2
θTθ. In

this context, θ is treated as a random effect,

θ ∼ N(0, σ2I),

where I is an identity matrix and variance σ2, whose reciprocal is acting as γ̃ in (2.20),

controls the amount of smoothness.

Alternative to estimating log h0(·), Joly et al. (1998) directly model h0(·) by using a

linear combination of non-negative q-order M-splines with squared coefficients,

h0(t) =
m∑
j=1

θ2
jMj(t|q). (2.21)

The M-spline of order q in (2.21) can be calculated recursively by

Mj(t|q) =
q[(t− µj)Mj(t|q − 1) + (µj+q − t)Mj+1(t|q − 1)]

(q − 1)(µj+q − µj)

for t ∈ (µj, µj+q], and

Mj(t|1) =
1

µj+1 − µj

for t ∈ (µj, µj+1], where {µj, ; j = 1, · · · ,m} are the knots. The M-splines are positive,

and hence the positivity of h0(·) is satisfied. However, the way the constraint is imposed

on h0(·) may cause convergence issues, especially when some elements of θ are zero. In

this method, the penalty function takes the form J(h0) =
∫

[
∑m

j=1 θjM
′′
j (u|q)]2du. The

MPL estimates of β and θ are obtained by using a combination of the Newton algorithm

and a steepest descent algorithm.
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2.2 Additive Hazard (AH) Model

In this section, we review three approaches to fit the additive hazard (AH) model with

interval-censored data. Suppose there are n subjects in a survival study, for each subject

i = 1, · · · , n, the AH model specifies the hazard function according to

h(ti|X i) = h0(ti) +XT
i β, (2.22)

where h0(·) is an unspecified baseline hazard function, X i is a p× 1 covariate vector and

assumed to be time-independent, and β is a p× 1 regression coefficient vector.

2.2.1 Counting process approach

We first review a counting process method given by Lin et al. (1998) for current status

data. Later Wang et al. (2010) adopted this counting process method to study general

interval-censored data. Recall the definition of current status data given in Chapter 1,

where the exact value of the failure time Ti is never known, but only observed below or

above the monitoring time variable Ci. Therefore, we can only observe Ci and δi = I(Ci ≤

Ti), where I(·) is an indicator function. In this context, we denote the observation by

{Ci, δi,X i}. Lin et al. (1998) study the AH model under two cases: (i) the monitoring

time Ci is independent of X i, and (ii) the monitoring time Ci is dependent on X i.

They also conduct analysis to compare estimation results between these two cases. The

conclusion reveals that estimates of β obtained in case (ii) have smaller standard errors

than those in case (i).

Here we demonstrate the counting process method under case (ii). Lin et al. (1998)

formulate the dependence of Ci on X i through the proportional hazard (PH) model, and

model the hazard function of Ci at time t by

dH̄(t|X i) = eX
T
i αdH̄0(t), (2.23)
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where H̄0(·) is an unspecified baseline cumulative hazard function, and α is a p×1 vector

of unknown regression parameters representing the effect of X i on Ci. Note that α = 0

means that Ci is independent of X i, which is case (i).

Now define a counting process Ni(t) = δiI(t ≥ Ci). The process Ni(t) jumps by one

unit at time t if and only if t = Ci and Ci ≤ Ti. Subject i is at risk for the event at t if

t ≤ Ci. Let Yi(t) = I(t ≤ Ci), the hazard of Ni(t) takes the form of

dΛ̄i(t) = Yi(t)e
−XT

i βt+X
T
i αdΛ̄0(t), (2.24)

where dΛ̄0(t) = e−H0(t)dH̄0(t) with H0(t) =
∫ t

0
h0(s)ds. Note that equation (2.24) is just

the PH model. Lin et al. (1998) prove that the process

Mi(t) = Ni(t)−
∫ t

0

Yi(s)e
−XT

i βs+X
T
i αdΛ̄0(s)

is a martingale. One can then apply the partial likelihood method to model (2.24) for

inference about β, yielding the partial likelihood score function for β given α

Uβ(β,α) =
n∑
i=1

∫ ∞
0

[
tX i −

W
(1)
β (t;β,α)

W
(0)
β (t;β,α)

]
dNi(t), (2.25)

where, for j = 0, 1,

W
(j)
β (t;β,α) =

n∑
i=1

Yi(t)(tX i)
(j)e−tX

T
i β+XT

i α,

with (tX i)
(0) = 1 and (tX i)

(1) = tX i. Since the monitoring time Ci is always observed,

for estimation of α, Lin et al. (1998) apply the partial likelihood approach to model

(2.23). This gives the partial likelihood score function for α,

Uα(α) =
n∑
i=1

∫ ∞
0

[
X i −

W
(1)
α (t;α)

W
(0)
α (t;α)

]
dI(Ci ≤ t),

where, for j = 0, 1, W
(j)
α (t;α) =

∑n
i=1 Yi(t)X

(j)
i eX

T
i α with X

(0)
i = 1 and X

(1)
i = X i. Let

α̂ be the solution to Uα(α) = 0. Then the estimate of β is computed by finding a root

of Uβ(β, α̂). Both α̂ and β̂ can be obtained by the Newton algorithm. Although the
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approach requires Ci to follow the PH model, which could result in biased estimates of

β if the assumption is incorrect, one can easily verify the PH assumption because Ci is

always observed. On the other hand, the dependence of Ci on X i through the PH model

may cause dependent censoring, since Ti is also dependent on X i, but through the AH

model.

Motivated by Lin et al. (1998), Wang et al. (2010) propose an estimating equation

approach for interval-censored data {(Li, Ri],X i : i = 1, · · · , n}. In this approach, it is

assumed that there exist only two monitoring times for each subject i, denoted by Ci1

and Ci2 with Ci1 < Ci2. Assume that Ti is independent of Ci1 and Ci2. Define indicator

functions by ξ1i = I(Ti < Ci1), ξ2i = I(Ci1 ≤ Ti < Ci2) and ξ3i = 1 − ξ1i − ξ2i. From

these indicator functions, one can determine whether failure of subject i has occurred

before Ci1, during the interval (Ci1, Ci2], or after Ci2. In other words, for ξ1i = 1, we have

Li = 0 and Ri = Ci1; for ξ2i = 1, Li = Ci1 and Ri = Ci2; and for ξ3i = 1, Li = Ci2 and

Ri = +∞. Similar to the analysis by Lin et al. (1998), Wang et al. (2010) model Ci1 and

Ci2 respectively through the PH model,

dH̄i1(t|X i) = eX
T
i αdH̄01(t) (2.26)

and

dH̄i2(t|Ci1,X i) = I(t > Ci1)eX
T
i αdH̄02(t), (2.27)

where H̄01(·) and H̄02(·) are unspecified cumulative baseline hazard functions, and α is

a p × 1 vector of unknown regression parameters. For each subject i, define counting

processes Ni1(t) = (1− ξ1i)I(t ≥ Ci1) and conditional Ci1,

Ni2(t) =


ξ3iI(t ≥ Ci2) if t ≥ Ci1

0 if t < Ci1.

Define Yi1(t) = I(t ≤ Ci1) and Yi2(t) = I(Ci1 < t ≤ Ci2). Following similar arguments as

those in Lin et al. (1998), under models (2.22), (2.26) and (2.27), the hazard functions
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for Ni1(t) and Ni2(t) are respectively derived by

dΛ̄i1(t) = Yi1(t)e−X
T
i βt+X

T
i αdΛ̄01(t) (2.28)

and

dΛ̄i2(t) = Yi2(t)e−X
T
i βt+X

T
i αdΛ̄02(t), (2.29)

where dΛ̄01(t) = e−H0(t)dH̄01(t) and dΛ̄02(t) = e−H0(t)dH̄02(t). It is clear that models

(2.28) and (2.29) are the PH models, and (2.29) is a conditional model since the starting

time point is Ci1. Given α, the score function for β is given by

Uβ(β,α) =
n∑
i=1

[∫ ∞
0

{
tX i −

W
(1)
1,β(t,β,α)

W
(0)
1,β(t,β,α)

}
dNi1(t)+

∫ ∞
0

{
tX i −

W
(1)
2,β(t,β,α)

W
(0)
2,β(t,β,α)

}
dNi2(t)

]
,

where, for j = 0, 1,

W
(j)
1,β(t,β,α) =

n∑
i=1

Yi1(t)e−tX
T
i β+XT

i α(tX i)
(j)

and

W
(j)
2,β(t,β,α) =

n∑
i=1

Yi2(t)e−tX
T
i β+XT

i α(tX i)
(j)

with (tX i)
(0) = 1 and (tX i)

(1) = tX i. Define counting processes Ñi1(t) = I(t ≥ Ci1) and,

conditional on Ci1,

Ñi2(t) =


I(t ≥ Ci2) if t ≥ Ci1

0 if t < Ci1.

For estimation of α, one can apply the partial likelihood approach to (2.26) and (2.27) to

obtain the score function for α

Uα(α) =
n∑
i=1

[∫ ∞
0

{
X i −

W
(1)
1,α(t,α)

W
(0)
1,α(t,α)

}
dÑi1(t) +

∫ ∞
0

{
X i −

W
(1)
2,α(t,α)

W
(0)
2,α(t,α)

}
dÑi2(t)

]
,

where, for j = 0, 1,

W
(j)
1,α(t,α) =

n∑
i=1

Yi1(t)eX
T
i αX

(j)
i

and

W
(j)
2,α(t,α) =

n∑
i=1

Yi2(t)eX
T
i αX

(j)
i
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with X
(0)
i = 1 and X

(1)
i = X i. Let α̂ be the root of Uα(α), then β is estimated by

solving Uβ(β, α̂) = 0. Wang et al. (2010) show that the resulting estimators α̂ and β̂ are

consistent and asymptotically normal, and the covariance matrix for β̂ can be consistently

estimated.

The advantage of the counting process estimation approach is that it does not involve

estimation of any baseline hazard function. However, the method assumes the PH model

for the monitoring time variables, which requires the user to test the validity of this

assumption before applying it.

2.2.2 Maximum likelihood (ML) approach

Alternative to the counting process estimation methods, Ghosh (2001) and Zeng et al.

(2006) develop maximum likelihood (ML) approaches for the AH model. Ghosh (2001)

considers current status data, and fits the AH model by estimating β and a cumulative

baseline hazard function H0(·). These estimates are computed by using a primal-dual

interior point algorithm (Wright, 1997), where the algorithm imposes constraints of posi-

tivity and monotonic increasing on H0(·) and the cumulative hazard Hi(·). The resulting

maximum likelihood estimator of β is shown to be consistent and converge to a multivari-

ate normal distribution. Details of the primal-dual interior point algorithm will be given

in Chapter 4, where we will also use this algorithm for estimations in the AH model with

partly interval-censored data.

Zeng et al. (2006) fit the AH model with interval-censored data, where the log-

likelihood function is expressed in terms of S0(·) and β as

`(β, S0) =
n∑
i=1

log
{
S0(Li)e

−XT
i βLi − S0(Ri)e

−XT
i βRi

}
. (2.30)

Similar to Section 2.1.3, let 0 = u0 < u1 < u2 < · · · < um < um+1 = ∞ denote the

unique ordered time points of all observed interval end points {Li, Ri; i = 1, · · · , n}. Let
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S0 = [S0(u0), S0(u1), · · · , S0(um+1)]T , where S0(u0) = 1 and S0(um+1) = 0. Estimation

of S0(·) is considered at these ordered distinct time points. Define indicator functions

ζij = I(uj ∈ (Li, Ri]) for j = 1, · · · ,m + 1 and i = 1, · · · , n. Then the log-likelihood

(2.30) can be rewritten as

`(β,S0) =
n∑
i=1

log

{
m+1∑
j=1

ζij
[
S0(uj−1)e−X

T
i βuj−1 − S0(uj)e

−XT
i βuj

]}
. (2.31)

In order to ensure the positivity and monotonic decreasing of S0(·), which is that 0 <

S0(um) < · · · < S0(u1) < 1, transformation is performed on S0(·) according to

ωj =


logS0(u1) for j = 1

log[S0(uj−1)− S0(uj)] for j = 2, · · · ,m.

Let ω = [ω1, · · · , ωm]T . Estimates of β and ω are obtained by maximizing the log-

likelihood `(β,S0(ω)) that is given by replacing S0 in (2.31) by ω. The Newton algorithm

can be used to solve this optimization problem. However, this method may be time

consuming when the sample size is large, because of the need for estimation of the baseline

survival at each distinct observed time point.

2.2.3 Generalized linear model (GLM) approach

Farrington (1996) fits the AH model for interval censored data using a generalized linear

model (GLM) approach. Before giving descriptions of the method, we define some no-

tation. Let nL be the number of subjects with their failure times left-censored, nI the

number of subjects finite interval-censored and nR the number of subjects right-censored,

then we have n = nL + nR + nI . Denote S(·|X i) as the survival function conditional on

X i. The likelihood is expressed in terms of S(·|X i) by

L =

nL∏
i=1

[1− Si(Ri|X i)]

nL+nR∏
i=nL+1

Si(Li|X i)
n∏

i=nL+nR+1

Si(Li|X i)
[
1− Si(Ri|X i)

Si(Li|X i)

]
, (2.32)
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where the first product term is the likelihood for the left-censored observations, the second

for the right-censored observations and the third for the finite interval-censored observa-

tions.

The GLM approach considers (2.32) as a particular realization of an associated model

involving n + nI independent Bernoulli trials with response ri and probability πi, where

i = 1, · · · , n+nI . The associated model is defined as follows. Consider the ith observation,

if it is left-censored, it contributes one Bernoulli trial with πi = 1− S(Ri|X i), ri = 1 and

Di = (0, Ri]. If, on the other hand, the ith observation is right-censored, it also contributes

one Bernoulli trial with πi = 1 − S(Li|X i), ri = 0 and Di = (0, Li]. Finally, if the ith

observation is finite interval-censored (with i from n − nI + 1 to n), it contributes two

Bernoulli trails. The first has πi = 1− S(Li|X i), ri = 0 and Di = (0, Li], and the second

has πi+nI = 1− S(Ri|Xi)
S(Li|Xi)

, ri = 1 and Di+nI = (Li, Ri]. Then (2.32) is rewritten as

L =

n+nI∏
i=1

πrii (1− πi)1−ri , (2.33)

where

πi = 1− exp

{
−
∫
Di

h(t|X i)dt

}
. (2.34)

Therefore, maximizing (2.32) is equivalent to maximizing (2.33). In this method, the

baseline hazard h0(·) is assumed to be piecewise constant over some intervals, (τk−1, τk],

k = 1, · · · ,m, which divide up the time line. Then h0(t) = θk for t ∈ (τk−1, τk]. Let

θ = [θ1, · · · , θm]T . Now denote the length of Di by ai, and the length of Di ∩ (τk−1, τk] by

bik. Then based on (2.34), the probability πi is related to a linear predictor through

ηi = − ln(1− πi) = XT
i βai +

m∑
k=1

θkbik. (2.35)

Then β and θ can be estimated by fitting the generalized linear model. However, in the

estimation procedure, one has to ensure all the linear predictors in (2.35) remain positive,

which may cause some difficulties. In addition, neither non-negativity nor smoothness for
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the baseline hazard estimate can be guaranteed.

2.3 Accelerated Failure Time (AFT) Model

In this section, we review existing methods for estimations in the accelerated failure time

(AFT) model. For each subject i, the AFT model specifies that

log Ti = XT
i β + εi, (2.36)

where X i is a covariate vector with dimension p, assumed to be time-independent, β is a

p× 1 regression coefficient vector and εi is an error variable with its distribution function

unknown.

2.3.1 Least squares approach

The estimation procedures in the AFT model have been studied extensively in the liter-

ature for right-censored data, and several estimators have been proposed. For example,

Miller (1976), and Buckley and James (1979) apply a least squares method. However,

the computation of the least squares estimator is based on an unstable iterative algo-

rithm, which may lead to multiple limiting values and hence the resulting solution may

not converge to the least squares estimator (Currie, 1996).

2.3.2 Linear rank estimation approach

Alternative to the least squares estimator, rank estimators have been studied by several

authors. Among them, Tsiatis (1990) uses linear rank statistics, developed by Prentice

(1978) as estimation functions for β with right-censored data. The linear rank statistics

are usually defined by

S(β) =
n∑
i=1

ci(β)X i, (2.37)
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where ci(·) can be either assigned or estimated. As discussed below, one can choose or

estimate ci(·) such that S(β) approximates the score function for β.

Rabinowitz et al. (1995) propose a class of linear rank statistics for estimating β with

interval-censored data, {(Li, Ri]; i = 1, · · · , n}. To present this method, we first give some

notations. Denote Fε(·) as the distribution function of ε. Define Li(β) = logLi−XT
i β and

Ri(β) = logRi−XT
i β. Clearly, for Li = 0, Li(β) = −∞ and for Ri = +∞, Ri(β) = +∞.

Define a vector F ε by F ε = [Fε(L1(β)), Fε(R1(β)), · · · , Fε(Ln(β)), Fε(Rn(β))]T , then the

log-likelihood function is

`R(β,F ε) =
n∑
i=1

log[Fε(Ri(β))− Fε(Li(β))]. (2.38)

Based on (2.38), Rabinowitz et al. (1995) choose ci(β) in (2.37) by

ci(β) =
g[Fε(Ri(β))]− g[Fε(Li(β))]

Fε(Ri(β))− Fε(Li(β))
,

which gives rise to a set of statistics

SR(β) =
n∑
i=1

g[Fε(Ri(β))]− g[Fε(Li(β))]

Fε(Ri(β))− Fε(Li(β))
X i (2.39)

with F ε replaced by the maximum likelihood estimate F̂ ε derived by maximizing (2.38)

with a fixed β. In the statistics (2.39) , g(·) is a weight function. For example, if selecting

g(·) = fε ◦ F−1
ε (·), then SR(β) becomes the score function for β. An advantage of the

statistics given in (2.39) is that the weight function g(·) can be selected in such a way

that the resulting estimate of β will have the minimum asymptotic variance under suitable

regularity conditions. However, the computational effort involved can be heavy for the

method to be applied in practice (Betensky et al., 2001).

Alternative to this computationally demanding procedure, Betensky et al. (2001)

propose a method based on the assumption that, for each subject i, there is a sequence of

monitoring times which are independent of Ti. Recall the definition (1.4) given in Chapter

1, where we formulate the monitoring times by {Mi, Cij, ξij, i = 1, · · · , n; j = 1, · · · ,Mi},

36



where Mi is the number of monitoring times for subject i, Ci1 < · · · < CiMi
are the

monitoring times, and ξij is an indicator function defined by ξij = I(Cij−1 < Ti ≤ Cij).

In order to choose ci(·) in (2.37), Betensky et al. (2001) treat all the Cij’s as if they arise

from M1 + · · ·+Mn independent subjects. Define Iij = I(Ti ≤ Cij), then a set of current

status data is obtained and denoted by {Cij, Iij; j = 1, · · · ,Mi, i = 1, · · · , n}. Based on

the new set of current status data, the log-likelihood function is

`B(β,F ε) =
n∑
i=1

Mi∑
j=1

{
Iij log

[
Fε(Cij(β))

]
+ (1− Iij) log

[
1− Fε(Cij(β))

]}
, (2.40)

where F ε = [Fε(C11(β)), · · · , Fε(CnMn(β))]T , and Cij(β) = logCij − XT
i β. The first

derivative of `B(β,F ε) with respective to β gives

`B(β,F ε)

∂β
=

n∑
i=1

X i

Mi∑
j=1

−fε(Cij(β))

Fε(Cij(β))
[
1− Fε(Cij(β))

][Iij − Fε(Cij(β))
]
.

Since E(Iij) = Fε(Cij(β)), Betensky et al (2001) suggest taking

ci(β) =

Mi∑
j=1

[
Iij − F̂ε(Cij(β))

]
,

which results in a linear rank statistic

SB(β) =
n∑
i=1

Mi∑
j=1

[
Iij − F̂ε(Cij(β))

]
X i, (2.41)

where F̂ε(·) is the MLE of Fε(·) obtained by maximizing (2.40) with a fixed β. Betensky

et al. (2001) show that asymptotically SB(β) has expectation of zero, hence the estimate

of β can be calculated by searching for the root of SB(β).

Li and Pu (2003) derive a rank statistic by directly ranking the observed censored

intervals {(Li, Ri]; i = 1, · · · , n}. The proposed statistic is given by

SLP (β) =
∑
i<k

[I(Xi < Xk)− I(Xi > Xk)][I(Ri(β) < Lk(β))− I(Li(β) > Rk(β))], (2.42)

where I(·) is the indicator function. However, in this proposed statistic, it is assumed

that there exists only one covariate, which means that the Xi’s and β are scalars. It is

not straightforward to generalize this method to multiple covariates.
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2.3.3 Penalized likelihood approach

Komárek et al.(2005) propose a penalized likelihood method for the AFT model with

partly interval-censored data. In this method, they first standardize the error variable εi

by reformatting (2.36) as

log Ti = α +XT
i β + σεi,

where E(εi) = 0, Var(εi) = 1, and α and σ are the scale parameters. The method

starts with modeling the density function of the standardized ε by a linear combination

of Gaussian density functions, that is

fε(t) =
m∑
j=1

θjϕ(t;µj, σ
2
0), (2.43)

where ϕ(t;µj, σ
2
0) is the Gaussian density with mean µj and variance σ2

0, and θ =

[θ1, · · · , θm]T is a coefficient vector. Values of µj’s and σ0 are fixed by design. Komárek

et al.(2005) fit the AFT model by estimating α, log σ, β and θ, with three constraints

imposed on θ, which are

m∑
j=1

θj = 1, θj > 0 for j = 1, · · · ,m, (2.44)

m∑
j=1

θjµj = 0 (2.45)

and
m∑
j=1

θj(µ
2
j + σ2

0) = 1. (2.46)

The constraint (2.44) guarantees fε(t) is a proper density function, i.e. fε(t) > 0 and∫
fε(t)dt = 1. The constraints (2.45) and (2.46) ensure E(εi) = 0 and Var(εi) = 1

respectively. To impose the constraint (2.44), θ is reparametrized by

θj(c) =
exp(cj)∑m
l=1 exp(cl)

for j = 1, · · · ,m,

where c = (c1, · · · , cm)T . The equality constraints (2.45) and (2.46) can be imposed

by expressing, for example, cm−2 and cm−1 as functions of the remaining ci’s. Now let
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d = (c1, · · · , cm−3, cm)T and rewrite (2.43) as

fε(t) =
m∑
j=1

θj(d)ϕ(t;µj, σ
2
0). (2.47)

The model parameters to be estimated are ω = [α, log σ,βT ,dT ]. Denote `(ω) as the

log-likelihood. To ensure the estimate of fε(t) is smooth, a penalty function J(fε) is

subtracted from `(ω), resulting in a penalized log-likelihood function

Φ(ω) = `(ω)− λ̃J(fε),

where λ̃ is a smooth parameter. Komárek et al.(2005) adopt a squared second-order

difference penalty function. The estimate of ω is computed by maximizing Φ(ω) using

the Newton algorithm, for example. In chapter 5, we will make comparisons between our

proposed penalized likelihood method and the method by Komárek et al.(2005).

2.4 The proposed methods

In this section, we summarize the methods that will be developed in this dissertation

to fit the PH, AH and AFT models. Our methods can be applied to partly interval-

censored data which contains exactly observed, left-censored, finite interval-censored and

right-censored failure time data.

We fit the PH model by estimating simultaneously the regression coefficient β and

the baseline hazard function h0(·). Our method attempts to maximize a penalized log-

likelihood function, which is constructed with the assumption that the baseline hazard is

approximated by piecewise constant functions. We obtain a smoothed baseline hazard es-

timate through a penalty function and a smoothing parameter. Choosing an appropriate

smoothing parameter can substantially reduce the standard deviation, without signifi-

cantly increasing the bias of the baseline hazard estimate. For estimations, we use the
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Newton-MI algorithm, which combines the Newton algorithm and the multiplicative it-

erative (MI) algorithm of Ma (2010). The MI algorithm is used because (i) it guarantees

non-negativity for the baseline hazard estimate, and (ii) it only demands the first deriva-

tive of the penalized log-likelihood with respect to the baseline hazard for estimating the

baseline hazard, which makes it easy to derive and implement. The Newton-MI algorithm

has been adopted by Ma et al. (2014) for fitting the PH model with right-censored data.

We also develop asymptotic properties for the resulting maximum penalized log-likelihood

(MPL) estimators.

For the AH model, we estimate β and h0(·), where h0(·) is assumed to be piecewise

constant. We produce a smoothed baseline hazard estimate again by using a penalty

function. Since the AH model assumes covariate effects act additively on the hazard

function h(·|X i), we have to impose the non-negativity constraint on both h0(·) and

h(·|X i) when maximizing the penalized log-likelihood function. We obtain the MPL

estimates of β and h0(·) by using a primal-dual interior point algorithm (Wright, 1997),

with which h(·|X i) and h0(·) are constrained to be non-negative simultaneously. This

algorithm has also been applied by Ghosh (2001) for estimations in the AH model with

current status data.

In fitting the AFT model, we first model the hazard function of ε∗, where ε∗ = eε, using

a linear combination of Gaussian basis functions. Then a penalized log-likelihood function

is derived, with a roughness penalty included for smoothness of the hazard estimate.

The regression coefficient β and the hazard are estimated simultaneously by maximizing

the penalized log-likelihood function. In the estimation procedure, we must ensure non-

negativity of the hazard estimate. To solve this constrained optimization problem, we

again use the Newton-MI algorithm.
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Chapter 3

Maximum penalized log-likelihood

approach for proportional hazard

model with partly interval-censored

failure time data

3.1 Introduction

In this chapter, we develop a penalized likelihood method to fit the proportional hazard

(PH) model with partly interval-censored failure time data. The PH model assumes that

the effect of covariates acts multiplicatively on the hazard function. For subject i, let Ti

be the failure time, X i the covariate vector and h(t|X i) the hazard function at time t

conditional on X i. The PH model then specifies that

h(t|X i) = h0(t) exp{XT
i β},

where β is a regression coefficient vector and h0(·) is an unspecified baseline hazard

function (Kalbfleisch and Prentice, 2002). The PH model has been studied widely by
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researchers with right-censored failure time data. For instance, Cox (1975) develops a

partial likelihood method. The main advantage of this method is that it only involves

estimating β, avoiding estimations of the baseline hazard h0(·). However, if failure times

involve other censoring types, such as interval censoring, the partial likelihood method

cannot be applied directly (Sun, 2006).

There exist some methodologies to fit the PH model with interval-censored data, which

have been reviewed in Section 2.1. Pan (2000) considers a multiple imputation approach.

This method iterates between two steps. Firstly, the failure time is imputed from left and

finite interval censored data based on current estimates of β and the baseline survival

S0(·), with the right-censored data kept unchanged. Secondly, the Cox partial likelihood

method is applied to the imputed data for updating the estimates. Satten (1996), Goggins

et al. (1998) and Satten et al. (1998) propose a rank-based method, where the estimation

of h0(·) is not involved. Finkelstein (1986) develops a maximum likelihood (ML) approach

to estimate β and S0(·), where the constraint 0 ≤ S0(·) ≤ 1 is imposed indirectly by using

the transformation log[− logS0(·)]. Betensky et al. (2002), Joly et al. (1998), and Cai and

Betensky (2003) fit the PH model by estimating β and h0(·), and the resulting estimated

baseline hazard is smooth. Specifically, Betensky et al. (2002) develop a local likelihood

method, where log h0(·) is expressed in terms of a polynomial function. Cai and Betensky

(2003) develop a penalized likelihood approach and model log h0(·) by a linear spline.

Although the logarithm transformation assures non-negativity of the estimated baseline

hazard, these estimation procedures will become unstable as the estimated baseline hazard

tends to zero. Joly et al (1998) develop a penalized likelihood method, where h0(·) is

modeled by a linear combination of M-splines, and the non-negativity of the estimated

baseline hazard is constrained by using squared spline coefficients. However, the way

the constraint on h0(·) imposed may cause convergence issues, particularly when some
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coefficients are zero.

Our method proposed in this chapter is different from the methods described above in

four aspects: (i) we develop a maximum penalized log-likelihood (MPL) method for partly

interval-censored data, which contains exactly observed, left-, right-, and finite interval-

censored failure time data; (ii) we model the baseline hazard h0(·) by a linear combination

of piecewise constant functions, and guarantee non-negativity of the estimated baseline

hazard in a direct way by imposing a non-negativity constraint on the coefficients of

the piecewise constant functions, (iii) we estimate β and h0(·) simultaneously by using

the Newton-MI algorithm, which combines the Newton algorithm and the Multiplicative

Iterative (MI) algorithm (Ma, 2010), and (iv) we ensure smoothness of the estimated

baseline hazard by using a penalty function. Under certain conditions, we show that the

resulting MPL estimators are asymptotically normal and consistent.

The chapter is organized as follows. Section 3.2 constructs a penalized log-likelihood

function with partly interval-censored data under the PH model. Section 3.3 develops

the Newton-MI algorithm to compute the MPL estimators. Section 3.4 describes an

automatic method of selecting the smoothing parameter. Asymptotic properties of the

MPL estimators are presented in Section 3.5. Section 3.6 reports numerical results via

simulations. Section 3.7 applies the MPL method to a real life example. Section 3.8

concludes with some discussions.

3.2 Penalized log-likelihood functions under the Pro-

portional Hazard (PH) model

We first introduce some notations which will be used in this and the following chapters.

Suppose there are n subjects in a survival study with their failure times denoted as
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{Ti : i = 1, . . . , n}, and some of them are censored and the corresponding censoring times

are observed. Different censoring types are considered in our analysis. For subject i,

its related subscript will generally be denoted by ic, where c takes one of the following

values: L – if Ti is left censored, R – if right censored, I – if finite interval censored

and O – if exactly observed (i.e., uncensored). However, in the case where there is

no need to specify censoring types, we simply use the single subscript i. Let X i be a

p× 1 vector of covariates, and we assume X i is time-independent throughout the thesis.

Then observations for subject i regarding Ti fall into one of the following four exclusive

categories:

{tiO,X iO} if Ti is observed at tiO, Ti = tiO;

{tiL,X iL, } if Ti is left censored at tiL, Ti ∈ (0, tiL];

{tiIL, tiIR,X iI , } if Ti is interval censored within an interval (tiIL, tiIR], Ti ∈ (tiIL, tiIR];

{tiR,X iR, } if Ti is right censored at tiR, Ti ∈ (tiR,+∞).

(3.1)

Let nO be the number of subjects with their failure times exactly observed, nL the number

of subjects with their failure times left-censored, nI the number of subjects with their

failure times finite interval-censored, and nR the number of subjects with their failure

times right-censored.

For each subject i, the PH model specifies a linear relationship between the logarithm

of h(t|X i) and X i in the form of

h(t|X i) = h0(t) exp{XT
i β}. (3.2)

Since the form of h0(·) is unknown, model (3.2) is a semi-parametric regression model.

The corresponding cumulative hazard function is

H(t|Xi) =

∫ t

0

h(s|Xi)ds = H0(t) exp{XT
i β} (3.3)
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whereH0(·) is the cumulative baseline hazard function. We fit the PH model by estimating

β and h0(·).

We start the estimation procedure with approximating the baseline hazard h0(·). Di-

rect estimation of h0(·) is ill-conditioned, since this is a problem of estimating an infinite

dimensional parameter from finite observations. However, we can simplify the problem by

discretizing h0(·), or equivalently h0(·) is taken to be piecewise constant. To be specific,

assume all observations fall in a finite interval

I = [t(1), t(n+nI)], (3.4)

where t(1) = min{tiv, i = 1, · · · , n + nI , v = O,L, IL, IR,R} and t(n+nI) = max{tiv, i =

1, · · · , n+nI , v = O,L, IL, IR,R}. Suppose there are m bins, {B1, · · · , Bm}, partitioning

the interval I with edge points t(1) = τ0 < τ1 < · · · < τm = t(n+nI), where

Bu = {t : τu−1 < t ≤ τu} for u = 1, · · · ,m, (3.5)

∪mu=1Bu = I and Bu ∩ Bv = ∅ if u 6= v. The baseline hazard is assumed to be piecewise

constant over the bins (3.5). Then, at time t, it takes the form

h0(t) =
m∑
u=1

θuI(τu−1 < t ≤ τu), (3.6)

where I(·) is an indicator function, and {θu : u = 1, · · · ,m} are basis coefficients. We

define θ = [θ1, · · · , θm]T . Clearly, after discretization, estimating h0(·) is equivalent to

estimating the vector θ, subject to θu ≥ 0 for all u. We comment that although h0(·) is

discretized, its non-parametric nature is still somewhat preserved as there is no restriction

on the number of bins m. The corresponding cumulative baseline hazard function is

H0(t) =
m∑
u=1

[
(t− τu−1)I(τu−1 < t ≤ τu) + δuI(t > τu)

]
θu, (3.7)

where δj = τj − τj−1 is the width of bin Bj. From the equations (3.2), (3.3), (3.6) and

(3.7), the hazard, cumulative hazard and survival functions concerning β and θ are then
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expressed respectively as

h(t|β,θ,X i) =
[ m∑
u=1

θuI(τu−1 < t ≤ τu)
]

exp(XT
i β), (3.8)

H(t|β,θ,X i) =

[
m∑
u=1

(
(t− τu−1)I(τu−1 < t ≤ τu) + δuI(t > τu)

)
θu

]
exp(XT

i β) (3.9)

and

S(t|β,θ,X i) = exp

{
−

[
m∑
u=1

(
(t− τu−1)I(τu−1 < t ≤ τu) + δuI(t > τu)

)
θu

]
exp(XT

i β)

}
.

(3.10)

Now we define O as the index set for exactly observed data, L the index set for left

censored data, I the index set for finite interval-censored data and R the index set for

right censored data. We assume that the censoring time is independent of the failure time

Ti and that the distribution of censoring does not involve the regression coefficient vector

β. Then, using equations (3.8)-(3.10) and the notation (3.1), the log-likelihood function

involving β and θ is

`(β,θ) =
∑
i∈L

ln
[
1− S(tiL|β,θ,X iL)

]
+
∑
i∈I

ln
[
S(tiIL|β,θ,X iI)− S(tiIR|β,θ,X iI)

]
−
∑
i∈R

H(tiR|β,θ,X iR) +
m∑
u=1

NO
u · log θu +

∑
i∈O

[
XT

iOβ −H(tiO|β,θ,X iO)
]
,

(3.11)

where NO
u is the number of subjects with their failure times exactly observed and lying

in bin Bu. To produce a smooth estimate of the baseline hazard, i.e., neighboring θu’s are

similar, a penalty function for the baseline hazard is subtracted from the log-likelihood

(3.11), giving rise to a penalized log-likelihood function

Φ(β,θ) = `(β,θ)− γ̃J(h0), (3.12)

where γ̃ ≥ 0 is a smoothing parameter used to control the trade-off between the goodness

of fit to data and smoothness of the estimated baseline hazard, and J(h0) is a penalty
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function. The penalty J(h0) in (3.12) can be, for instance, a roughness penalty, i.e.,

J(h0) =
∫
h
′′
0(u)du, measuring total curvature of the baseline hazard. Due to discretiza-

tion of h0(·), we adopt a penalty representing the square of the second order differences,

that is

J(h0) = J(θ) =
m−1∑
j=2

(θj−1 − 2θj + θj+1)2 ,

This penalty can be rewritten in a quadratic form of

J(θ) = θTRθ, (3.13)

where R = CTC with C being an m × m matrix given by the requirement that Cθ

represents the second order difference of θ. Therefore, the matrix R is given by

R =



1 −2 1 0 0 0 0

−2 5 −4 1 0 0 0

1 −4 6 −4 1 0 0

0
. . . . . . . . . . . . . . . 0

0 0 1 −4 6 −4 1

0 0 0 1 −4 5 −2

0 0 0 0 1 −2 1



.

The penalty (3.13) helps to penalize the discrepancy between θu and the average of its

neighborhoods. Smoothness of the estimated baseline hazard function is achieved when

the neighbor of θu’s are similar.

3.3 Maximum penalized likelihood estimation

We obtain the MPL estimators of β and θ by maximizing the penalized log-likelihood

function (3.12) with respect to β and θ, with θ non-negative, namely

(β̂, θ̂) = arg max
β,θ
{Φ(β,θ)} (3.14)

47



subject to θ ≥ 0m×1.

We combine the Newton Algorithm and the MI algorithm (Ma, 2010), named as

the Newton-MI algorithm, to solve the constrained optimization problem (3.14). Before

proceeding, we first give some notations. In deriving the first and second derivatives of

Φ(β,θ), for simplicity, we denote S(·) to be S(·|β,θ,X i) defined in (3.10), and H(·) to

be H(·|β,θ,X i) defined in (3.9). We define

η̄iI = H(tiIR)S(tiIR)−H(tiIL)S(tiIL)

and

ζiI = H2(tiIR)S(tiIR)−H2(tiIL)S(tiIL).

The first derivative of the objective function Φ(β,θ) with respective to β is

∂Φ(β,θ)

∂β
= XT

LA1nL +XT
I B1nI −X

T
RC1nR +XT

OD1nO , (3.15)

where XL is the covariate matrix for subjects with their failure times left-censored, XI

the covariate matrix for subjects with their failure times finite interval-censored, XR for

subjects with their failure times right-censored and XO for subjects with their failure

times exactly observed. In (3.15), the matrices A, B, C and D are diagonal matrices

defined by

A = diag

{
H(tiL)S(tiL)

1− S(tiL)

}
,

B = diag

{
η̄iI

S(tiIL)− S(tiIR)

}
,

C = diag{H(tiR)},

and

D = diag{1−H(tiO)}.

For convenience in deriving the first and second derivatives of Φ(β,θ) with respect

to θu, u = 1, · · · ,m, we introduce some notations. For subject i whose observed data
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tiv is in Bu, its tiv is then denoted to be tivu to reflect the dependence on bin Bu, and

its corresponding covariate Xiv is denoted to be Xivu , where v = {L, IL, IR,R,O}. For

subject i with its failure time finite interval-censored, if its censoring times tiIL and tiIR

are in bins tiIL ∈ Bu and tiIR ∈ Bk, then they are denoted respectively to be tiILu and

tiIRk , and its corresponding XiI is denoted to be XiILu or XiIRk . Let Ou be the index set

for exactly observed data falling in Bu, Lu the index set for left censored data falling in

Bu, ILu the index set for finite interval-censored data with its left limit falling in Bu, i.e.,

ILu = {i : tiIL ∈ Bu}, IRu the index set for finite interval-censored data with its right

limit falling in Bu, i.e., IRu = {i : tiIR ∈ Bu}, and Ru the index set for right censored

data falling in Bu. Let NO
u be the number of subjects with their failure times exactly

observed and lying in Bu. Define

aivu = (tivu − τu−1) exp(XT
ivuβ). (3.16)

Then the first derivative of Φ(β,θ) with respective to θu is given by

∂Φ(β,θ)

∂θu
=
∑
i∈Lu

[
aiLuS(tiLu)

1− S(tiLu)

]
+ δu

∑
w>u

∑
i∈Lw

[
S(tiLw) exp(XT

iLwβ)

1− S(tiLw)

]

+
∑
v<u

∑
i∈ILv

[ ∑
i∈IRu

aiIRuS(tiIRu)

S(tiILv)− S(tiIRu)
+ δu

∑
w>u

∑
i∈IRw

exp(XT
iIRwβ)S(tiIRw)

S(tiILv)− S(tiIRw)

]

+
∑
i∈ILu

[ ∑
i∈IRu

aiIRuS(tiIRu)− aiILuS(tiILu)

S(tiILu)− S(tiIRu)

]

+
∑
i∈ILu

∑
w>u

∑
i∈IRw

[
δuS(tiIRw) exp(XT

iIRwβ)− aiILuS(tiILu)

S(tiILu)− S(tiIRw)

]

− δu
∑

w≥v>u

∑
i∈ILv

∑
i∈IRw

exp(XT
iIRwβ)−

∑
i∈Ru

aiRu − δu
∑
w>u

∑
i∈Rw

exp(XT
iRwβ)

−
∑
i∈Ou

aiOu − δu
∑
w>u

∑
i∈Ow

exp(XT
iOwβ) +

NO
u

θu
− 2γ̃Ruθ, (3.17)

where Ru is the u-th row of R.

The Karush-Kuhn-Tucker (KKT) necessary conditions for the constrained MPL esti-
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mations of β and θ are

∂Φ(β,θ)

∂βj
= 0 (3.18)

for j = 1, · · · , p, and

∂Φ(β,θ)

∂θu


= 0 if θu > 0

< 0 if θu = 0

(3.19)

for u = 1, · · · ,m. We compute MPL estimators of β and θ by solving the equations (3.18)

and (3.19) iteratively using the Newton-MI algorithm (Ma et al., 2014). The algorithm

is outlined below.

1. We first choose initial values β(0) and θ(0), where θ
(0)
u > 0 for u = 1, · · · ,m.

2. Let β(k) and θ(k) be the estimates of β and θ at iteration k, respectively. By fixing θ

at θ(k), we maximize Φ(β,θ(k)) with respect to β to obtain β(k+1) using a modified

Newton algorithm. A line search step is included in the procedure to guarantee

increment of the penalized log-likelihood function Φ(β,θ(k)) when β moves from

β(k) to β(k+1), namely Φ(β(k+1),θ(k)) ≥ Φ(β(k),θ(k)), where the equality holds only

if the iterations have converged.

3. With β fixed at β(k+1), we then maximize Φ(β(k+1),θ) with respect to θ to obtain

θ(k+1) using the multiplicative iterative (MI) algorithm (Ma, 2010). A line search

step is included to guarantee Φ(β(k+1),θ) increases when θ moves from θ(k) to

θ(k+1), namely Φ(β(k+1),θ(k+1)) ≥ Φ(β(k+1),θ(k)), where the equality holds only

if the iterations have converged. The MI procedure respects the non-negativity

constraint on θ(k+1).

4. Go to step 2 and the process is repeated until both β(k) and θ(k) have converged

satisfying the criterion maxj |β(k+1)
j − β(k)

j | < 10−5 and maxu |θ(k+1)
u − θ(k)

u | < 10−5.

The MI algorithm in step 3 has the advantage that it only demands the first derivative
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of the penalized log-likelihood function with respect to the discretized baseline hazard,

which leads to its straightforward derivation and implementation.

In Step 1 of the Newton-MI algorithm, one iteration of the Newton algorithm for

updating β(k) is

β(k+1) = β(k) − α(k)

[
∂2Φ(β(k),θ(k))

∂β∂βT

]−1
∂Φ(β(k),θ(k))

∂β
, (3.20)

where α(k) ∈ (0, 1] is a line search step size. The step size can be computed by using the

Armijo’s rule (Luenberger, 2003). Firstly, from (3.20), we express β(k+1) in terms of the

step size α as

β(k+1)(α) = β(k) + αd
(k)
N , (3.21)

where

d
(k)
N = −

[
∂2Φ(β(k),θ(k))

∂β∂βT

]−1
∂Φ(β(k),θ(k))

∂β
.

The line search starts with α = 1, and then tests whether the following condition is

satisfied:

Φ(β(k+1)(α),θ(k)) ≥ Φ(β(k),θ(k)) + cα

[
∂Φ(β(k),θ(k))

∂β

]T
d

(k)
N , (3.22)

where 0 < c < 1 is a fixed parameter and usually chosen to be small (e.g. c = 10−2). If

α satisfies (3.22), then stop; otherwise, reset α = ρα, where ρ ∈ (0, 1] (e.g. ρ = 0.6) and

then re-valuate the condition (3.22). The second derivative ∂2Φ(β,θ)/∂β∂βT in (3.20)

is derived by

∂2Φ(β,θ)

∂β∂βT
= −XT

LEXL −XT
I FXI −XT

RCXR −XT
OGXO, (3.23)

where the matrices E , F and G are diagonal matrices defined by

E = diag

{
H(tiL)S(tiL)

[
S(tiL)− 1 +H(tiL)

]
[
1− S(tiL)

]2

}
,

F = diag

{[ η̄iI
S(tiIL)− S(tiIR)

]2

+
ζiI − η̄iI

S(tiIL)− S(tiIR)

}
,

51



and

G = diag{H(tiO)}.

To implement the MI algorithm in Step 2, we first define

ςu(β,θ) =
∑
i∈Lu

[
aiLuS(tiLu)

1− S(tiLu)

]
+ δu

∑
w>u

∑
i∈Lw

[
S(tiLw) exp(XT

iLwβ)

1− S(tiLw)

]
+
NO
u

θu

+
∑
v<u

∑
i∈ILv

[ ∑
i∈IRu

aiIRuS(tiIRu)

S(tiILv)− S(tiIRu)
+ δu

∑
w>u

∑
i∈IRw

exp(XT
iIRwβ)S(tiIRw)

S(tiILv)− S(tiIRw)

]

+
∑
i∈ILu

∑
i∈IRu

[
aiIRuS(tiIRu)

S(tiILu)− S(tiIRu)

]
+ δu

∑
i∈ILu

∑
w>u

∑
i∈IRw

[
S(tiIRw) exp(XT

iIRwβ)

S(tiILu)− S(tiIRw)

]

and

ξu(β,θ) =
∑
i∈ILu

∑
i∈IRu

[
aiILuS(tiILu)

S(tiILu)− S(tiIRu)

]
+
∑
i∈ILu

∑
w>u

∑
i∈IRw

[
aiILuS(tiILu)

S(tiILu)− S(tiIRw)

]

+ δu
∑

w≥v>u

∑
i∈ILv

∑
i∈IRw

exp(XT
iIRwβ) +

∑
i∈Ru

aiRu +
∑
i∈Ou

aiOu

+ δu
∑
w>u

[ ∑
i∈Rw

exp(XT
iRwβ) +

∑
i∈Ow

exp(XT
iOwβ)

]
.

For any constant c, we define [c]+ = cI(c ≥ 0) and [c]− = cI(c ≤ 0), so that c = [c]+ +[c]−.

Then we rearrange (3.17) into an equation, of which both sides are non-negative, that is

ξu(β,θ) + 2γ̃[Ruθ]+ = ςu(β,θ)− 2γ̃[Ruθ]−. (3.24)

Multiplying the equation (3.24) by θu, we have

θu{ξu(β,θ) + 2γ̃[Ruθ]+} = θu{ςu(β,θ)− 2γ̃[Ruθ]−}. (3.25)

From the equation (3.25), we suggest updating θu by two steps. In the first step, a

temporary estimate θ(k+1/2) is computed from θ(k) via

θ(k+1/2)
u = θ(k)

u

ςu(β
(k+1),θ(k))− 2γ̃[Ruθ

(k)]− + εu

ξu(β
(k+1),θ(k)) + 2γ̃[Ruθ

(k)]+ + εu
(3.26)

for u = 1, · · · ,m, where εu is a small constant (such as 10−5) used to avoid a zero denom-

inator. It is clearly seen from (3.26) that θ(k+1/2) satisfies the non-negativity constraint if
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θ(k) > 0. However, this θ(k+1/2) may fail to increase Φ(β(k+1),θ) when θ moves from θ(k)

to θ(k+1/2). Hence a line search step is required. We first rewrite the equation (3.26) as a

gradient algorithm:

θ(k+1/2) = θ(k) + S(θ(k))
∂Φ(β(k+1),θ(k))

∂θ
, (3.27)

where S(θ(k)) is a diagonal matrix with diagonal elements s
(k)
u , u = 1, · · · ,m, given by

s(k)
u =

θ
(k)
u

ξu(β
(k+1),θ(k)) + 2γ[Ruθ

(k)]+ + εu
. (3.28)

Here s
(k)
u is non-negative due to the fact that θ

(k)
u is constrained to be non-negative in the

estimation procedure. Then, from equation (3.27), we know that the MI iteration given

by (3.26) proceeds along the gradient direction with a non-negative step size. Let ω(k) be

the step size of the line search. Then, in the second step of the MI algorithm, θ(k+1) is

computed by

θ(k+1) = θ(k) + ω(k)d
(k)
M , (3.29)

where d
(k)
M = θ(k+1/2)− θ(k) is the search direction. In order to guarantee that θ(k+1) ≥ 0,

we restrict ω(k) ∈ (0, 1]. The line search step size ω(k) is computed using the Armijo’s

rule (Luenberger, 2003). Following similar arguments as in Ma et al. (2014), we can show

that, under certain regular conditions, (i) the Newton-MI algorithm converges, and (ii) it

converges to the solution satisfying the KKT conditions (3.18) and (3.19).

3.4 Selection of the smoothing parameter

Using suitable values of the smoothing parameter γ̃ is crucial in providing good balance

between the fit to the data and the smoothness of the MPL baseline hazard estimates.

Although we can select these values empirically, automatic determination of them by data

is less subjective.
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The automatic selection of γ̃ can be implemented by the cross-validation method

(Silverman, 1984). Let η = [βT ,θT ]T . The standard cross-validation score (CVS), which

is minimized to obtain the optimal smoothing value, is

CVS(γ̃) = −
n∑
i=1

`i(η̂
(−i)
γ̃ ),

where η̂
(−i)
γ̃ is the MPL estimator of η computed with γ̃ using the sample in which the

subject i is removed, and `i(·) is the log-likelihood for the subject i. However, minimizing

CVS(γ̃) involves a great deal of computation, since it performs a minimization for each

subject i and different values of γ̃. O’Sullivan (1988) suggests a one-step Newton-Raphson

expansion for approximations, and the resulting approximate CVS is given by

CVS(γ̃) = −`(η̂γ̃) + trace([Φ
′′
(η̂γ̃)]

−1`
′′
(η̂γ̃)), (3.30)

where Φ
′′
(η) and `

′′
(η) are respectively the second derivatives of Φ(η) and `(η) with

respect to η, and η̂γ̃ is the MPL estimate of η calculated with γ̃. The expression (3.30)

is indeed equivalent to the AIC criterion if we interpret its second term as the model

degrees of freedom (O’Sullivan, 1988). We extend the score (3.30) to our case and select

the optimal smoothing value γ̃op according to

γ̃op = arg min
γ̃
{CVS(γ̃)} . (3.31)

We can choose γ̃op by computing CVS(γ̃) for a grid of γ̃ values and searching for the one

that minimizes CVS(γ̃). The method (3.31) has also been used by other researchers for

the baseline hazard estimation, see Joly et al. (1998) for instance.

3.5 Asymptotic properties of the MPL estimators

In this section, we analyze the asymptotic consistency and asymptotic distribution of the

MPL estimators. Recall that η = [βT ,θT ]T is the model parameter vector with dimension
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p + m. We define Γ as the parameter space of η, i.e., η ∈ Γ. Let η̂ = [β̂
T
, θ̂

T
]T be the

MPL estimator of η. Let η0 = [βT0 ,θ
T
0 ]T be the true value of η. For convenience in the

asymptotic study, we re-express the partly interval-censored data (3.1), arising from n

i.i.d subjects, as

{(Li, Ri],X i, ξi : i = 1, · · · , n}, (3.32)

where ξi = 1 if the failure time for subject i is exactly observed so that we have Li = Ri =

Ti, and ξi = 0 if censored. Clearly, for left-censored data, Li = 0 and for right-censored

data, Ri = +∞. Let u(Li, Ri) and k(X i) denote respectively the joint density function

of the censoring bivariate random variable (Li, Ri] and the density function of X i. We

assume both the censoring times and covariates are independent of the failure time Ti.

Then, the joint density function of (3.32) is given by

g(Li, Ri,X i, ξi|η) = {[S(Li|η)− S(Ri|η)]u(Li, Ri)}1−ξif(Li|η)ξik(X i), (3.33)

where S(·|η) is the survival function of failure time defined in (3.10), and f(·|η) is the

density function of failure time given by f(t|η) = h(t|η)S(t|η), where h(·|η) is defined in

(3.8). The joint density function (3.33) can be simplified by

g(Li, Ri, ξi|η) = [S(Li|η)− S(Ri|η)]1−ξif(Li|η)ξi . (3.34)

Now we can rewrite the log-likelihood function (3.11) as

`(η) =
n∑
i=1

`i(η) =
n∑
i=1

log g(Li, Ri, ξi|η).

We replace the notation of the penalized log-likelihood function Φ(η) in (3.12) by Φn(η)

to reflect its dependence on sample size n, and re-express Φn(η) as

Φn(η) =
n∑
i=1

{`i(η)− γ̃nJ(η)},

where J(η) = J(θ) and γ̃n = γ̃/n.
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In the analysis of asymptotic properties of η̂, we fix the number of bins m, although

potentially large, and assume γ̃n is fixed at a value independent of sample size n. To

develop the asymptotic properties, additional assumptions are required and stated below.

Assumptions:

3.1 The parameter space Γ of η is compact.

3.2 There exists a measurable function m(Li, Ri,X i, ξi) with E[m(Li, Ri,X i, ξi)] <∞,

which satisfies |log g(Li, Ri, ξi|η)| ≤ m(Li, Ri,X i, ξi) for all η ∈ Γ.

3.3 Eη0
[n−1Φn(η)] exists and has a unique maximum at η∗ ∈ int(Γ), where η∗ is not

necessarily equal to η0 due to the penalty term.

3.4 Φn(η) is continuous over Γ and is twice differentiable in a neighborhood of η∗. Also,

the matrices

G0(η) = Eη0

[
n−1∂Φn(η)

∂η

∂Φn(η)

∂ηT

]
and

F0(η) = −Eη0

[
n−1∂

2Φn(η)

∂η∂ηT

]
exist and are positive definite in a neighborhood of η∗.

3.5 The penalty function J(η) is continuous and bounded over Γ. Both ∂J(η)/∂η and

∂2J(η)/∂η∂ηT exist for all η ∈ Γ, and ∂2J(η)/∂η∂ηT is bounded in a neighborhood

of η∗.

The asymptotic results are presented in the following theorem.

Theorem 3.1. Suppose that Assumptions 3.1-3.5 are satisfied. Then, when n→∞, the

MPL estimator η̂ is consistent for η∗ and

√
n(η̂ − η∗) D→ N(0(p+m)×1, V (η∗)),
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where

V (η∗) = F0(η∗)−1G0(η∗)F0[(η∗)−1]T (3.35)

Proof. Detail of the proof is omitted here, since it is a simple modification of that in

Yu and Ruppert (2002) for penalized spline estimation in partially linear single-index

models.

Note that if we let γ̃n → 0 as n → ∞, with Assumption 3.5, the penalty term in

the penalized log-likelihood will disappear in proving asymptotic normality of the MPL

estimators, and the analysis will follow the same ways with those in studying the maximum

likelihood estimator (MLE). In practice, η∗ is generally unavailable, but we can replace

it by η̂ due to the consistency result. The variance formula (3.35) for the asymptotic

normal distribution is called the sandwich formula, and can be estimated by replacing

F0(η∗) and G0(η∗) by their empirical versions, with η∗ replaced by η̂. The asymptotic

confidence interval for each element of the true parameter vector η0 is calculated based

on a finite-size sample. Specifically, the approximate 95% asymptotic confidence interval

of βj is constructed by

β̂j ± z0.025

√
V̂ar(β̂j), j = 1, · · · , p, (3.36)

where z0.025 = 1.96 and V̂ar(β̂j) is obtained from the estimate of the asymptotic variance

(3.35). By defining a vector A(t) = [I(τ0 < t ≤ τ1), · · · , I(τm−1 < t ≤ τm)]T , the

baseline hazard (3.6) can be rewritten in a matrix form as h0(t) = A(t)Tθ. Then we have

ĥ0(t) = A(t)T θ̂ and h∗0(t) = A(t)Tθ∗. Define a function gt(θ) by gt(θ) = A(t)Tθ. Then

we have gt(θ̂) = ĥ0(t) and gt(θ
∗) = h∗0(t). Since gt(θ) is a continuously differentiable

function in θ with dgt(θ)/dθ = At, according to Theorem 3.3 and the Delta Theorem, at

time t, we have

√
n(ĥ0(t)− h∗0(t))

D→ N(0,A(t)TVar(θ∗)A(t)), (3.37)
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where Var(θ∗) is obtained from the asymptotic covariance matrix (3.35), and its estimate

is obtained from the estimate of the asymptotic covariance matrix (3.35). Hence the

approximate 95% asymptotic confidence interval for h0(t) at time t is given by

ĥ0(t)± z0.025

√
A(t)T V̂ar(θ̂)A(t), (3.38)

where z0.025 = 1.96.

Analyzing the asymptotic variance of η̂ requires that η is interior to its parameter

space Γ, i.e., θu > 0 for all u. However, it is possible that some elements of θ take

zero values, causing difficulties to develop asymptotic properties for β̂ and θ̂. In this

case, the bootstrapping method can be applied to approximate the mean and variance.

However, this can be computationally intensive, since large numbers of estimations of the

parameters are required. The simulation study in Section 3.6 indicates that the sandwich

formula (3.35) for the asymptotic variance is generally accurate.

Note that the second derivative of the log-likelihood function with respective to η is

given by

∂2`(η)

∂η∂ηT
=

 ∂2`(β,θ)

∂β∂βT
∂2`(β,θ)

∂β∂θT

∂2`(β,θ)

∂θ∂βT
∂2`(β,θ)

∂θ∂θT

 ,
where,

∂2`(η)

∂θ2
u

= −
∑
i∈Lu

[
(aiLu)2S(tiLu)

(1− S(tiLu))2

]
− δ2

u

∑
w>u

∑
i∈Lw

[
S(tiLw)(exp(XT

iLwβ))2

(1− S(tiLw))2

]

−
∑
i∈ILu

∑
i∈IRu

[
(aiILu − aiIRu)2S(tiILu)S(tiIRu)

(S(tiILu)− S(tiIRu))2

]

−
∑
w>u

∑
i∈ILu

∑
i∈IRw

[
(aiILu − δu exp(XT

iIRwβ))2S(tiILu)S(tiIRw)

(S(tiILu)− S(tiIRw))2

]

−
∑
v<u

∑
i∈ILv

∑
i∈IRu

[
(aiIRu)2S(tiILv)S(tiIRu)

(S(tiILv)− S(tiIRu))2

]

−δ2
u

∑
v<u

∑
w>u

∑
i∈ILv

∑
i∈IRw

[
(exp(XT

iIRwβ))2S(tiILv)S(tiIRw)

(S(tiILv)− S(tiIRw))2

]

−N
O
u

θ2
u

,
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for u > k, we have

∂2`(η)

∂θk∂θu
= −δk

∑
i∈Lu

[
aiLu exp(XT

iLuβ)S(tiLu)

(1− S(tiLu))2

]
− δuδk

∑
w>u

∑
i∈Lw

[
(exp(XT

iLwβ))2S(tiLw)

(1− S(tiLw))2

]

−δk
∑
v<k

∑
i∈ILv

∑
i∈IRu

[
aiIRu exp(XT

iIRuβ)S(tiILv)S(tiIRu)

(S(tiILv)− S(tiIRu))2

]

−
∑
i∈ILk

∑
i∈IRu

[
aiIRu(δk exp(XT

iIRuβ)− aiILk)S(tiILk)S(tiIRu)

(S(tiILk)− S(tiIRu))2

]

−δuδk
∑
v<k

∑
w>u

∑
i∈ILv

∑
i∈IRw

[
(exp(XT

iIRwβ))2S(tiILv)S(tiIRw)

(S(tiILv)− S(tiIRw))2

]

−δu
∑
w>u

∑
i∈ILk

∑
i∈IRw

[
exp(XT

iIRwβ)(δk exp(XT
iIRwβ)− aiILk)S(tiILk)S(tiIRw)

(S(tiILk)− S(tiIRw))2

]

and ∂2`(η)/∂θu∂θk = ∂2`(η)/∂θk∂θu. We define

bivu = S(tivu) exp(XT
ivuβ),
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then we have

∂2`(η)

∂β∂θu

=
∑
i∈Lu

[
−[H(tiLu) + S(tiLu)− 1]aiLuS(tiLu)

(1− S(tiLu))2
X iLu

]

+ δu
∑
w>u

∑
i∈Lw

[
−[H(tiLw) + S(tiLw)− 1]biLw

(1− S(tiLw))2
X iLw

]

+
∑
v<u

∑
i∈ILv

∑
i∈IRu

[
aiIRuS(tiIRu)[S(tiILv)− S(tiIRu)− S(tiILv)(H(tiIRu)−H(tiILv))]

(S(tiILv)− S(tiIRu))2
X iIRu

]

+ δu
∑
v<u

∑
w>u

∑
i∈ILv

∑
i∈IRw

[
biIRw [S(tiILv)− S(tiIRw)− S(tiILv)(H(tiIRw)−H(tiILv))]

(S(tiILv)− S(tiIRw))2
X iIRw

]

+
∑
i∈ILu

∑
i∈IRu

[
aiIRuS(tiIRu)− aiILuS(tiILu)

S(tiILu)− S(tiIRu)
X iIRu

]

+
∑
i∈ILu

∑
i∈IRu

[
[H(tiILu)−H(tiIRu)]S(tiILu)S(tiIRu)(aiIRu − aiILu)

(S(tiILu)− S(tiIRu))2
X iIRu

]

+
∑
w>u

∑
i∈ILu

∑
i∈IRw

[
δu exp(XT

iIRwβ)S(tiIRw)− aiILuS(tiILu)

S(tiILu)− S(tiIRw)
X iIRw

]

+
∑
w>u

∑
i∈ILu

∑
i∈IRw

[
[H(tiILu)−H(tiIRw)]S(tiILu)S(tiIRw)(δu exp(XT

iIRwβ)− aiILu)

(S(tiILu)− S(tiIRw))2
X iIRw

]
− δu

∑
w≥v>u

∑
i∈ILv

∑
i∈IRw

exp(XT
iIRwβ)X iIRw −

∑
i∈Ru

aiRuX iRu

−
∑
i∈Ou

aiOuX iOu − δu
∑
w>u

[ ∑
i∈Rw

exp(XT
iRwβ)X iRw +

∑
i∈Ow

exp(XT
iOwβ)X iOw

]
.

These expressions are used to estimate the asymptotic variance.

3.6 Simulation studies

In this section, a simulation study is conducted to evaluate the MPL method in fitting

the PH model with partly interval-censored data. All computations are done by using the

R language and the R code is provided in Appendix A. The objectives of the simulation

study are

1. to investigate effects of the censoring proportion and sample size on the MPL esti-

mators of regression coefficient β and baseline hazard h0(·),
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2. to compare the asymptotic standard deviations with the Monte Carlo standard

deviations of the MPL estimators, and

3. to compare our proposed MPL method with the ML method by Pan (1999) which

has been reviewed in Section 2.1.3. The ML method is available in CRAN.

The first objective attempts to analyze the sensitivity of the MPL estimators of β and

h0(·) to the censoring proportion πc and the sample size n. We use n = 100, 500 and 1000

as small, intermediate and large sample sizes respectively, with approximate censoring

proportions of πc = 20%, 50% and 80% for each value of the sample sizes. Results are

presented in Tables 3.1-3.3 and Figures 3.1-3.3.

For the second objective of the simulation study, we investigate whether the asymp-

totic standard deviations computed by the sandwich formula (3.35) are accurate for the

MPL estimators, and this is achieved by comparing them with the Monte Carlo standard

deviations. The results are reported in Tables 3.1-3.3, and Figures 3.1-3.3.

For the third objective, we demonstrate improvements of our MPL method in esti-

mating β and h0(·) compared with the ML method (Pan, 1999). Results can be viewed

in Table 3.4 and Figure 3.4.

We generate a random sample of data, {(Li, Ri],X i : i = 1, 2, · · · , n}, by the following

two steps:

1. For each subject i = 1, · · · , n, the failure time Ti is simulated from the Weibull

distribution with the hazard function

h(ti) = 3t2i exp{Xi1 − 0.3Xi2 + 0.5Xi3}. (3.39)

Model (3.39) is the PH model with the baseline hazard function

h0(ti) = 3t2i . (3.40)
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We set regression coefficients β = [β1, β2, β3]T to be β1 = 1, β2 = −0.3 and β3 = 0.5.

For the covariate vector X i = (Xi1, Xi2, Xi3)T , Xi1 is generated from a Bernoulli

random variable with parameter of 0.5, and Xi2 and Xi3 are generated according to

Xi2 ∼ Unif(0, 3) and Xi3 ∼ Unif(0, 5) respectively.

An inversion method is applied to generate Ti based on the relationship ui = FT (ti),

where ui is a standard uniform random variable and FT (ti) is the distribution func-

tion of Ti, given by

FT (ti) = 1− exp

[
− t3i exp(XT

i β)

]
.

2. For each subject i, independently of Ti, we generate two monitoring times according

to Ci1 ∼ Unif(0, 1) and Ci2 = Ci1 + Unif(0, 1). Then we generate one standard

uniform random variable ui. If ui ≥ πc, the failure time Ti is deemed to be exactly

observed and we set Li = Ri = Ti. If ui ≤ πc, the failure time is censored and there

are three cases: if Ti ≤ Ci1, it is left-censored and we set Li = 0 and Ri = Ci1;

if Ci1 < Ti ≤ Ci2, it is finite interval-censored and Li = Ci1 and Ri = Ci2 and if

Ti > C2i, it is right-censored and Li = Ci2 and Ri = +∞. We can manipulate the

censoring proportion by adjusting πc.

In discretising the baseline hazard, the bins are selected in such a way that the number

of observations in each bin, nc, is approximately the same. Some preliminary tests have

been done to indicate that generally the MPL estimator β̂ is not very sensitive to the

choice of nc, as long as nc is not too large and the smoothing value γ̃ is appropriate.

We set nc = 2 for n = 100, nc = 5 for n = 500 and nc = 8 for n = 1000. We set

the smoothing parameter γ̃ by γ̃(λ) = λ/(1 − λ), so that we can select γ̃ by selecting

the tuning parameter λ in the range [0, 1). The value of λ is determined according to

the criterion (3.31). The convergence criterion of the Newton-MI algorithm is defined as
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the absolute value of differences of both β and θ updates between consecutive iterations

being less than 10−5. We obtain the MPL estimates when Newton-MI converges or the

maximum of 5000 iterations are reached, whichever occurs first.

For each combination of n and πc, we perform Monte Carlo simulations using N = 300

repeated samples, and thus obtain 300 MPL estimates of β and h0(·) by our MPL method.

From the 300 estimates of β, we can compute the average estimate (AEST), the bias

(BIAS), the Monte Carlo standard deviation (MCSD), the average asymptotic standard

deviation (AASD) and the mean squared error (MSE) of β̂. Specifically, let β̂jk be the

estimate of βj, j = 1, 2, 3, from the kth sample, k = 1, · · · , N , then we have

AEST(β̂j) =
N∑
k=1

β̂jk/N, (3.41)

BIAS(β̂j) = βj − AEST(β̂j), (3.42)

MCSD(β̂j) =

√√√√ 1

N − 1

N∑
k=1

(β̂jk − AEST(β̂j))2, (3.43)

AASD(β̂j) =
N∑
k=1

ASD(β̂jk)/N, (3.44)

and

MSE(β̂j) = [BIAS(β̂j)]
2 + [MCSD(β̂j)]

2, (3.45)

where ASD(β̂jk) is the asymptotic standard deviation of the estimator of βjk obtained by

the sandwich formula (3.35).

Let ĥ0k(t) be the MPL estimate of the true baseline hazard h0(t) at time t in the kth

sample, k = 1, · · · , N . From the N = 300 estimates of h0(t), we calculate the AEST,

MCSD and AASD of ĥ0(t) by

AEST(ĥ0(t)) =
N∑
k=1

ĥ0k(t)/N, (3.46)

MCSD(ĥ0(t)) =

√√√√ 1

N − 1

N∑
k=1

(ĥ0k(t)− AEST(ĥ0(t)))2, (3.47)
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and

AASD(ĥ0(t)) =
N∑
k=1

ASD(ĥ0k(t))/N, (3.48)

where ASD(ĥ0k(t)) is the asymptotic standard deviation of the estimator ĥ0k(t) at time t

and obtained from the formula (3.37). For each sample k, we calculate the distances be-

tween the true baseline hazard and the MPL estimate. The distance used is the integrated

squared error (ISE) and is given by

ISEk =

∫
J

[
h0(t)− ĥ0k(t)

]2
dt, (3.49)

where J is a time interval over which the ISEk is calculated. Hence the average integrated

squared error (AISE) of the 300 baseline hazard estimates is

AISE =
N∑
k=1

ISEk/N. (3.50)

Tables 3.1-3.3 summarize the AEST, BIAS, MCSD, AASD and MSE values for the

MPL estimates of β with different censoring proportions and sample sizes. We observe

that (i) with a fixed sample size n, the MSE increases with censoring proportion, and

the MCSD, AASD and absolute value of BIAS follow the same trend, (ii) with a fixed

censoring proportion, all of these four quantities are decreasing as sample size increases,

and (iii) comparison between MCSD and AASD demonstrates that the sandwich formula

(3.35) is generally accurate in approximating the variance of the MPL estimates of β,

particularly when sample size becomes larger or censoring proportion becomes smaller.

Figures 3.1-3.3 exhibit plots for the true baseline hazard, AEST of the MPL estimates,

the corresponding 95% Monte Carlo piecewise confidence intervals (PWCI) and the corre-

sponding mean of the 95% asymptotic piecewise confidence intervals (PWCI). We detect

that (i) AESTs are all very close to the true baseline hazard under different sample sizes

and censoring proportions, (ii) the 95% Monte Carlo PWCI is close to the mean of the

95% asymptotic PWCI, hence the sandwich formula (3.35) gives a good variance approxi-
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mation for the MPL estimates of ĥ0(t), and (iii) both the 95% Monte Carlo PWCI and the

mean of the 95% asymptotic PWCI become wider as the censoring proportion increases,

but narrower when the sample size increases.

Tables 3.1-3.3 also give AISEs for the MPL estimates of h0(t) plotted in Figures 3.1-3.3

respectively. It is observed that the AISEs exhibit an increasing trend as the censoring

proportion increases, but a decreasing trend as the sample size increases.

To make comparison between our MPL method and the ML method by Pan (1999),

we have to set the censoring proportion πc to be one in our method, since the ML method

only considers interval-censored data with no considerations to exactly observed failure

time data. The two methods are evaluated based on the same data sets. The simulated

data for both methods have sample sizes n = 100, 500 and 1000. Monte Carlo simulations

are done with 300 repeated samples. The covariates X i = [Xi1, Xi2, Xi3]T and regression

coefficients β = [β1, β2, β3]T are the same as above. In our MPL method, for the equal

count of observations in each bin, we set nc = 2 for n = 100, nc = 5 for n = 500

and nc = 8 for n = 1000. Estimates from the ML method are computed by using the

R package, intcox. In this package, asymptotic standard deviations are not available,

hence we only compute Monte Carlo standard deviations. Table 3.4 reports estimation

results for β from the two methods. We observe that, under each of the three sample

sizes, the biases of estimates in MPL are smaller than those in ML, although they yield

similar standard deviations. Thus MPL achieves lower MSE than ML. Figure 3.4 displays

baseline hazard estimations for the two methods. Clearly, the MPL estimate is closer to

the true baseline hazard than the ML estimate. Table 3.4 also report values of AISE for

the baseline hazard estimate. We observe that our MPL method gives much smaller AISE

than ML.

65



3.7 AIDS example

In this section, we apply our MPL method to fit the PH model using a data set from the

AIDS example given by Lindsey and Ryan (1998). This example concerns the study of

development of drug resistance (measured using a plaque reduction assay) to zidovudine

in patients. The patients are enrolled in four clinical trials for the treatment of AIDS

and samples are collected at scheduled visit times dictated by the four protocols. This

data has very wide intervals and a high proportion of right censoring, since there were

few assessments on each patient due to the high cost of the resistance assays. There are

four covariates that may have an effect on the time to development of resistance: stage of

disease, dose of zidovudine and CD4 lymphocyte counts at time of randomization (CD4:

100-399 and CD4: ≥ 400). We define Ti to be the time to development of resistance for

patient i, i = 1, · · · , 31, and also define X1i for the covariate variable of stage of disease,

X2i for dose of zidovudine, X3i for CD4: 100-399 and X4i for CD4: ≥ 400. For this data

set, we assume that the observation times are independent of Ti’s, and assume the Ti’s

follow the PH model (3.2). In fitting the PH model to this data set, we choose the number

of observations in each bin as nc = 3, and select the smoothing value λ = 1−10−4. Based

on the consistency and asymptotic normality properties of β̂, we perform a hypothesis test

of the null hypothesis, H0: βj = 0 versus alternative hypothesis, Ha: βj 6= 0, j = 1, 2, 3, 4.

We use a z-test. Results are summarized in Table 3.5 and Figure 3.5.

Table 3.5 summarizes the MPL estimates of regression coefficients β, asymptotic stan-

dard deviations, the p-values and 95% confidence intervals. We conclude that none of the

covariates has significant effects on the time to develop resistance. Figure 3.5 displays the

MPL estimates of the baseline hazard with its 95% PWCI, and the MPL estimate of the

baseline survival function. We observe that the estimated baseline hazard rises sharply

at month 2, and then is monotonically decreasing afterwords.
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3.8 Conclusion

In this chapter, we have developed a MPL method to fit the semi-parametric PH model

with partly interval-censored data, where a quadratic penalty term is added to the log-

likelihood function to assure smoothness of the estimated baseline hazard. To obtain

MPL estimators of the regression coefficients and baseline hazard, we use the Newton-MI

algorithm which combines the Newton algorithm and the MI algorithm. The Newton-MI

algorithm is easily implemented and successful in imposing the non-negativity constraint

on the estimated baseline hazard. In addition to piecewise constant approximation to

the baseline hazard in our method, the Newton-MI algorithm can also be easily ap-

plied in other approximation approaches, such as spline or kernel. The simulation study

demonstrates that our MPL method works well, and the sandwich formula given in the

asymptotic analysis provides accurate variance approximations for both the regression

coefficients and baseline hazard.

In developing the MPL method, we assume the covariate variables are time indepen-

dent and the censoring time is independent of the failure time. However, we can extend

our method to fit the PH model with time-dependent covariates and dependent censor-

ing. In addition to the PH model, our MPL approach can also be adapted to fit other

semi-parametric regression models, such as additive hazard model and accelerated failure

time model, which will be studied in depth in the next two chapters.

67



n=100

πc 20% 50% 80%

nc 2 2 2

β1 = 1 AEST 0.9695 0.9710 0.9425

BIAS 0.0305 0.0290 0.0575

MCSD 0.2444 0.2919 0.2959

AASD 0.2385 0.2860 0.2973

MSE (0.0607) (0.0861) (0.0909)

β1 = −0.3 AEST -0.3012 -0.3160 -0.2989

BIAS 0.0012 0.0160 -0.0011

MCSD 0.1366 0.1376 0.1442

AASD 0.1312 0.1461 0.1570

MSE (0.0187) (0.0192) (0.0208)

β2 = 0.5 AEST 0.5012 0.5086 0.4830

BIAS -0.0012 -0.0086 0.0170

MCSD 0.0789 0.1095 0.1148

AASD 0.0799 0.0949 0.1104

MSE (0.0062) (0.0121) (0.0135)

h0(t) AISE 0.2861 0.3964 0.4386

Table 3.1: AEST, BIAS, MCSD, AASD and MSE for the estimate β̂, and average inte-

grated squared error (AISE) for the baseline hazard estimate ĥ0(t) with equal count in

each bin nc = 2, sample size n = 100 and censoring proportions πc = 20%, 50% and 80%.
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n=500

πc 20% 50% 80%

nc 5 5 5

β1 = 1 AEST 1.0057 1.0211 0.9762

BIAS -0.0057 -0.0211 0.0238

MCSD 0.1141 0.1186 0.1256

AASD 0.1060 0.1126 0.1301

MSE (0.0131) (0.0145) (0.0163)

β1 = −0.3 AEST -0.2989 -0.3052 -0.3058

BIAS -0.0011 0.0052 -0.0058

MCSD 0.0618 0.0682 0.0690

AASD 0.0553 0.0627 0.0730

MSE (0.0038) (0.0047) (0.0048)

β2 = 0.5 AEST 0.5042 0.5048 0.4861

BIAS -0.0042 -0.0048 0.0139

MCSD 0.0353 0.0401 0.0459

AASD 0.0340 0.0424 0.0477

MSE (0.0013) (0.0016) (0.0023)

h0(t) AISE 0.1428 0.231 0.2671

Table 3.2: AEST, BIAS, MCSD, AASD and MSE for the estimate β̂, and average inte-

grated squared error (AISE) for the baseline hazard estimate ĥ0(t) with equal count in

each bin nc = 5, sample size n = 500 and censoring proportions πc = 20%, 50% and 80%.
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n=1000

πc 20% 50% 80%

nc 8 8 8

β1 = 1 AEST 0.9943 0.9941 0.9899

BIAS 0.0057 0.0059 0.0101

MCSD 0.0619 0.0730 0.0821

AASD 0.0686 0.0783 0.0887

MSE (0.0039) (0.0054) (0.0068)

β1 = −0.3 AEST -0.3034 -0.3050 -0.2954

BIAS 0.0034 0.0050 -0.0046

MCSD 0.0380 0.0423 0.0534

AASD 0.0396 0.0435 0.0578

MSE (0.0015) (0.0018) (0.0029)

β2 = 0.5 AEST 0.5005 0.5029 0.4978

BIAS -0.0005 -0.0029 0.0022

MCSD 0.0242 0.0292 0.0348

AASD 0.0242 0.0280 0.0376

MSE (0.0006) (0.0009) (0.0012)

h0(t) AISE 0.0498 0.0800 0.1004

Table 3.3: AEST, BIAS, MCSD, AASD and MSE for the estimate β̂, and average inte-

grated squared error (AISE) for the baseline hazard estimate ĥ0(t) with equal count in

each bin nc = 8, sample size n = 1000 and censoring proportions πc = 20%, 50% and

80%.
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n=100 n=500 n=1000

MPL ML MPL ML MPL ML

β1 = 1 AEST 0.9735 1.0844 1.0141 0.9467 0.9870 0.8638

BIAS 0.0265 -0.0844 -0.0141 0.0533 0.0130 0.1362

MCSD 0.2865 0.3161 0.1980 0.1704 0.0901 0.0760

AASD 0.3160 0.1901 0.0894

MSE (0.0828) (0.1070) (0.0395) (0.0319) (0.0083) (0.0243)

β2 = −0.3 AEST -0.2926 -0.2079 -0.3160 -0.1454 -0.2912 -0.0681

BIAS -0.0074 -0.0921 0.0160 -0.1546 -0.0088 -0.2319

MCSD 0.1931 0.2011 0.0910 0.0890 0.05534 0.0416

AASD 0.1861 0.1040 0.0503

MSE (0.0373) (0.0489) (0.0085) (0.0318) (0.0031) (0.0555)

β3 = 0.5 AEST 0.4876 0.5013 0.4966 0.4302 0.4970 0.3867

BIAS 0.0124 -0.0013 0.0034 0.0698 0.0030 0.1133

MCSD 0.1078 0.1092 0.0711 0.0612 0.0398 0.0322

AASD 0.1267 0.0747 0.0401

MSE (0.0118) (0.0119) (0.0051) (0.0086) (0.0016) (0.0139)

h0(t) AISE 0.5887 1.2588 0.3633 1.5292 0.1966 1.6820

Table 3.4: Comparisons of regression coefficient estimates and the baseline hazard es-

timates between the MPL method and the ML method by Pan (1999) using simulated

samples, with sample size of n = 100, 500 and 1000.
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research/R and matlab/R for PH model Phd/100cp.eps
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Figure 3.1: Plots of the true baseline hazard h0(t) (solid), the average MPL estimates of

h0(t) (dash), the 95% Monte Carlo piecewise confidence interval (PWCI) (dot-dash), and

the average 95% asymptotic PWCI (dots), assuming sample size n = 100, equal count in

each bin nc = 2, and censoring proportions of 20%, 50% and 80% corresponding to top,

middle and bottom plots respectively.
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Figure 3.2: Plots of the true baseline hazard h0(t) (solid), the average MPL estimates of

h0(t) (dash), the 95% Monte Carlo piecewise confidence intervals (PWCI) (dot-dash), and

the average 95% asymptotic PWCI (dots), assuming sample size n = 500, equal count in

each bin nc = 5, and censoring proportions of 20%, 50% and 80% corresponding to top,

middle and bottom plots respectively.
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Figure 3.3: Plots of the true baseline hazard h0(t) (solid), the average MPL estimates of

h0(t) (dash), the 95% Monte Carlo piecewise confidence intervals (PWCI) (dot-dash), and

the average 95% asymptotic PWCI (dots), assuming sample size n = 1000, equal count in

each bin nc = 8, and censoring proportions of 20%, 50% and 80% corresponding to top,

middle and bottom plots respectively.
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Figure 3.4: Plots of the baseline hazard estimates with its 95% piecewise confidence

intervals (PWCI) for the MPL method and the ML method, with sample sizes of n = 100,

500 and 1000, and censoring proportion πc = 1
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Figure 3.5: Plots of the estimates for the AIDS example, top, the baseline hazard and its

95% PWCI; bottom, the survival function.
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Effects β̂ astd p-value 95% C.I

stage 1.1341 0.7665 0.1390 (-0.3682, 2.6364)

dose 0.8662 0.9173 0.3450 (-0.9317, 2.6641)

CD4: 100-399 -0.0356 0.9790 0.9710 (-1.9544, 1.8832)

CD4: ≥ 400 0.1146 1.0571 0.9137 (-1.9573, 2.1865)

Table 3.5: Regression coefficient estimates given by the MPL method with asymptotic

standard deviations (astd), p-values and 95% confidence intervals.
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Chapter 4

Penalized Likelihood Methods for

Additive Hazard Model with Partly

Interval-Censored Failure Time Data

4.1 Introduction

In this chapter, we develop a penalized log-likelihood method to fit the additive hazard

(AH) model with partly interval-censored failure time data. In contrast to the propor-

tional hazard (PH) model where the covariates are assumed to act multiplicatively on the

baseline hazard function, the AH model assumes that the effect of covariates is to addi-

tively increase or decrease the hazard function. For subject i, let h(t|X i) be the hazard

function at time t conditional on the covariate vector X i. The AH model specifies that

h(t|X i) = h0(t) +XT
i β, (4.1)

where β is a p × 1 regression coefficient vector and h0(·) is an unspecified baseline haz-

ard function (Kalbfleisch and Prentice, 2002). Since the form of h0(·) is unknown, the

model (4.1) is indeed a semi-parametric regression model. The AH model may be more
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appropriate when we concentrate on the absolute change in the hazard, instead of the

hazard ratio, or when the proportional hazard assumption for the PH model is violated.

In addition, the AH model has the attractive feature in that it provides a simple structure

for modeling failure time data when latent variables or frailties exist (Sun, 2006).

The approach to fitting the AH model developed in this chapter differs from that of

Wang et al. (2010), Farrington (1996), Ghosh (2001) and Zeng et al. (2006). Wang et al.

(2010) develop a counting process estimation approach with interval-censored data, where

the baseline hazard is considered to be a nuisance parameter and is not estimated. The

method requires the PH model assumption for monitoring time variables. Therefore, we

have to test the validity of this assumption before applying it. Zeng et al. (2006) apply

a maximum likelihood (ML) method to estimate β and the baseline survival function

S0(·) with interval-censored data. The method constrains positivity and monotonic de-

creasing on S0(·) by using a logarithm transformation. However, the way the constraints

are imposed can make the estimation procedure unstable when the baseline survival es-

timate approaches zero. The ML approach is also adopted by Ghosh (2001) in studying

current status data, where estimation of the cumulative baseline hazard is involved with

constraints of monotonic increasing and non-negativity on it. Farrington (1996) develops

a generalized linear model (GLM) approach with interval-censored data, where the oc-

currences of left-, right- and finite interval-censored observations are assumed to be from

independent Bernoulli trials, and the occurrence probability is related to a linear predic-

tor by a negative log link function. The regression coefficients and the baseline hazard in

the AH model are considered to be covariate coefficients in the linear predictor, and are

estimated by fitting this GLM model. However, the resulting estimated baseline hazard

is not guaranteed to be smooth.

We fit the AH model by estimating the regression coefficients β and the baseline hazard
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h0(·). Our method contributes in three perspectives: (i) we consider all censoring types of

data which contain exactly observed, left-, right-, and finite interval-censored failure time

data; (ii) our method is developed based on maximizing a penalized log-likelihood function

with a penalty function included for smoothness of the estimated baseline hazard, hence

the smoothness of the estimated baseline is guaranteed; (iii) and similar to Chapter 3, we

model the baseline hazard through assuming it is piecewise constant. In the estimation

procedure, we impose the non-negativity constraints both on h0(·) and the hazard h(·|X i)

in a direct way, and obtain the estimates of β and h0(·) simultaneously by using a primal-

dual interior-point algorithm (Wright, 1997). Under certain conditions, we show that the

resulting maximum penalized likelihood (MPL) estimators are asymptotically consistent

and normally distributed.

This chapter is organized as follows. In Section 4.2, we develop a penalized log-

likelihood function with partly interval-censored data under the AH model. In Section

4.3, we analyze the convexity of the negative penalized log-likelihood function. In Section

4.4, we propose the primal-dual interior-point algorithm to compute the MPL estimators,

and present its convergence result. Asymptotic results of the MPL estimators are given

in Section 4.5. In Section 4.6, we investigate the performance of our proposed method

by conducting simulation studies. The MPL method is also illustrated using a set of real

data in Section 4.7. Finally, we draw conclusions in Section 4.8.

4.2 Penalized log-likelihood function under the Ad-

ditive Hazard (AH) model

Using the data formulation defined in (3.1), for each subject i, we express its observed data

as (tiO,X iO) or (tiL,X iL) or (tiIL, tiIR,X iI) or (tiR,X iR) depending on censoring status
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of its failure time. The AH model specifies a hazard function according to h(t|X i) =

ho(t) + XT
i β, where the covariate vector X i is assumed to be time-independent. The

cumulative hazard function is

H(t|X i) =

∫ t

0

h(s|X i)ds = H0(t) +XT
i βt, (4.2)

whereH0(·) is the cumulative baseline hazard function. We fit the AH model by estimating

the regression coefficient vector β and the baseline hazard h0(·). The baseline hazard

h0(·) belongs to an infinite dimensional parameter space subject to the non-negativity

constraint. Similar to Section 3.2, we model h0(·) using a linear combination of indicator

functions, that is

h0(t) =
m∑
u=1

θuI(τu−1 < t ≤ τu), (4.3)

where I(·) is an indicator function. Therefore, estimating the baseline hazard is equivalent

to estimating the parameter vector θ = [θ1, · · · , θm]T ∈ Rm
+ , where Rm

+ = {θ ∈ Rm|θ ≥ 0m×1}.

The corresponding cumulative baseline hazard function is then expressed as

H0(t) =
m∑
u=1

θu[(t− τu−1)I(τu−1 < t ≤ τu) + δuI(t > τu)], (4.4)

where δu = tu − tu−1 is the width of Bu, where Bu has been defined in (3.5).

Similar to Section 3.5, let η = [βT ,θT ]T and let Γ be the parameter space of η, i.e.,

η ∈ Γ. We define two vectors C(t,X i) and D(t,X i) by

C(t,X i) = [xi1, · · · , xip, I(τ0 < t ≤ τ1), · · · , I(τm−1 < t ≤ τm)]T

and

D(t,X i) = [xi1t, · · · , xipt, (t− τ0)I(τ0 < t ≤ τ1) + δ1I(t > τ1),

· · · , (t− τm−1)I(τm−1 < t ≤ τm) + δmI(t > τm)]T .

Using equations (4.3) and (4.4), the hazard, cumulative hazard and survival functions

concerning the model parameter η are given respectively by

h(t|η,X i) = C(t,X i)
Tη, (4.5)
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H(t|η,X i) = D(t,X i)
Tη (4.6)

and

S(t|η,X i) = exp{−D(t,X i)
Tη}. (4.7)

We assume the censoring time is independent of the failure time conditional on the observ-

able covariates, and the distribution of the censoring time does not depend functionally

on the regression coefficients. Then using equations (4.5)-(4.7), the log-likelihood function

involving η is

`(η) =
∑
i∈L

log
[
1− S(tiL|η,X iL)

]
+
∑
i∈I

log
[
S(tiIL|η,X iI)− S(tiIR|η,X iI)

]
+
∑
i∈O

[
log h(tiO|η,X iO)−H(tiO|η,X iO)

]
−
∑
i∈R

H(tiR|η,X iR). (4.8)

Note that the first sum term in (4.8) is the log-likelihood for left-censored observations,

the second for finite interval-censored observations, the third for exactly observed failure

time observations and the fourth for right-censored observations. To assure smoothness

of the estimated baseline hazard, a penalty function is subtracted from the log-likelihood

function (4.8), resulting in a penalized log-likelihood function,

Φ(η) = `(η)− γ̃J(h0), (4.9)

where γ̃ > 0 is a smoothing parameter used to balance fidelity of the fitted model to the

data and smoothness of the estimated baseline hazard, and J(h0) is a penalty function.

In this chapter, the penalty function J(h0) is taken to be of the same form as that in

Section 3.2, i.e., J(h0) = J(θ) = θTRθ.
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4.3 Convexity of negative penalized log-likelihood func-

tion

In this section, we analyze convexity of the negative penalized log-likelihood function (4.9).

The convexity implies that a local minimizer of −Φ(η) will also be a global minimizer,

and the global minimizer is unique if the convexity is strict.

We first re-express the negative penalized log-likelihood −Φ(η) as

−Φ(η) = −
∑
i∈L

log
[
1− S(tiL|η,X iL)

]
−
∑
i∈I

[
logS(tiIL|η,X iI) + log

(
1− S(tiIR|η,X iI)

S(tiIL|η,X iI)

)]
−
∑
i∈O

[
log h(tiO|η,X iO)−H(tiO|η,X iO)

]
+
∑
i∈R

H(tiR|η,X iR) + γ̃θTRθ

= ΦL(η) + ΦI(η) + ΦO(η) + ΦR(η) + γ̃θTRθ, (4.10)

where

ΦL(η) =
∑
i∈L

− log
[
1− exp{−D(tiL,X iL)Tη}

]
,

ΦI(η) =
∑
i∈I

[
− log

(
1− exp{−(D(tiIR,X iI)−D(tiIL,X iI))

Tη}
)

+D(tiIL,X iI)
Tη
]
,

ΦO(η) =
∑
i∈O

[
− log

(
C(tiO,X iO)Tη

)
+D(tiO,X iO)η

]
and

ΦR(η) =
∑
i∈R

D(tiR,X iR)Tη.

To prove the convexity of −Φ(η), we need the following Lemma.

Lemma 4.1. Let V i be vectors with m + p dimensions, such that V T
i η > 0, i = 1, 2, 3.

Then with any strictly convex function G(x) in x ∈ R+, where R+ is the positive real

number space, the functions GV 1,V 2(η) and GV 3(η) defined by

GV 1,V 2(η) = G(V T
1 η) + V T

2 η (4.11)
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and

GV 3(η) = G(V T
3 η) (4.12)

are strictly convex in η ∈ Γ.

Let W 1, · · · ,W r be vectors with dimension of m + p, such that W T
j η > 0 for j =

1, · · · , r, and let K(η) be a strictly convex function in η, then the function Q(η) defined

by

Q(η) = K(η) +
r∑
j=1

W T
j η (4.13)

is strictly convex in η ∈ Γ.

Proof. The proof is omitted here since it is a simple modification of the proof in Theorem

5.7 of Rockafellar (1997).

It can be easily verified that both functions − log
[
1−exp(−x)

]
and − log x are strictly

convex in x ∈ R+. Since the sum of strictly convex functions is a strictly convex function,

and (D(tiIR,X iI) − D(tiIL,X iI))
Tη > 0, D(tiL,X iL)Tη > 0 and D(tiIL,X iI)

Tη >

0, using Lemma 4.1 where we set G(x) = − log
[
1 − exp(−x)

]
, V 1 = D(tiIR,X iI) −

D(tiIL,X iI) and V 2 = D(tiIL,X iI) in equation (4.11), and V 3 = D(tiL,X iL)Tη in

equation (4.12), we conclude that both ΦL(η) and ΦI(η) are strictly convex in η. Since

C(tiO,X iO)Tη > 0 and D(tiO,X iO)Tη > 0, the strict convexity of ΦO(η) follows simply

by setting G(x) = − log x, V 1 = C(tiO,X iO) and V 2 = D(tiO,X iO) in equation (4.11).

Since ΦL(η) + ΦI(η) + ΦO(η) is strictly convex in η, and D(tiR,X iR)Tη > 0, by setting

K(η) = ΦL(η)+ΦI(η)+ΦO(η), W i = D(tiR,X iR) and r = nR in equation (4.13), where

nR is the number of right-censored observations, we conclude that ΦL(η)+ΦI(η)+ΦO(η)+

ΦR(η) is strictly convex in η. The penalty term in (4.10) is strictly convex because it

is a quadratic function of θ. Therefore, the negative penalized log-likelihood function is

strictly convex in η ∈ Γ.
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4.4 Maximum penalized likelihood (MPL) estimation

Recall that the AH model specifies the hazard function by h(t|X i) = h0(t) +XT
i β. Since

the covariate effects act additively on the baseline hazard function, both the baseline

hazard function and the hazard function have to be constrained to be non-negative in

computing the MPL estimators of η, i.e., h0(t) ≥ 0 and h(t|X i) ≥ 0. Hence the proper

constrained optimization problem is to solve

η̂ = argmaxηΦ(η), (4.14)

subject to the following two conditions,

θu ≥ 0 for u = 1, · · · ,m (4.15)

and

C(tiv,X iv)
Tη ≥ 0 for i = 1, · · · , n+ nI and v = {O,L, IL, IR,R}, (4.16)

where nI is the number of subjects with their failure times finite interval-censored.

4.4.1 Constrained optimization by the primal-dual interior-point

algorithm

We first define a function f by

f(η) = [f1(η), f2(η), . . . , fm+n+nI (η)]T , (4.17)

where fi(η) = −θi, i = 1, 2, · · · ,m and fm+i(η) = −C(tiv,X iv)
Tη, i = 1, 2, · · · , n + nI .

We define a matrix M 1 by M 1 =
[
0m×p, Im×m

]
, where 0m×p is a zero matrix and Im×m

is an identity matrix, and define M 2 to be a (n+ nI)× (m+ p) matrix with row vectors

given by C(tiv,X iv)
T . By combining M 1 and M 2, we define M̄ =

[
MT

1 ,M
T
2

]T
. Then

the function (4.17) can be written equivalently by

f(η) = −M̄η. (4.18)
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The constrained optimization problem (4.14)-(4.16) can now be reformulated to find η̂ ∈

F such that

η̂ = arg min
η∈F⊂Γ

{−Φ(η)} , (4.19)

In (4.19), F is a feasible set and defined by

F =
{
η|fi(η) = −M̄ iη ≤ 0, i = 1, · · · ,m+ n+ nI

}
,

where M̄ i is the ith row vector of matrix M̄ . The set F is also called a polyhedral set,

and the polyhedral is a closed convex set; see Example 1.3.3 in Sun and Yuan (2006).

Since the objective function −Φ(η) is strictly convex in η ∈ Γ, we conclude that (4.19)

is a convex optimization problem.

Let −∇Φ(η) be the gradient of −Φ(η). The constrained optimization problem (4.19)

is solved by the following theorem.

Theorem 4.2. Let η ∈ Γ, such that −Φ(η) < ∞, then η solves the constrained opti-

mization problem (4.19) if and only if there exist vectors λ and s satisfying the following

Karush-Kuhn-Tucker (KKT) conditions:

−∇Φ(η) +∇fT (η)λ = 0(m+p)×1, (4.20)

f(η) + s = 0(m+n+nI)×1, (4.21)

λisi = 0, i = 1, · · · ,m+ n+ nI , (4.22)

and

(λ, s) ≥ 0(m+n+nI)×1, (4.23)

where ∇f(η) = −M̄ by equation (4.18), λ is a vector of Lagrange multipliers, and s is

a vector of slack variables for the constraints.

Proof. Detail of the proof of the theorem is omitted here since it is a simple modification

of the proof given in Chapter 8 of Sun and Yuan (2006).
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Based on Theorem 4.2, we compute the MPL estimators of η by using a primal-dual

interior point algorithm. The algorithm is known as primal-dual for the reason that we

solve simultaneously the primal problem for the vector η and the dual problem for the

vectors λ and s. In each iteration, the algorithm searches for solutions of the KKT system

(4.20)-(4.23) firstly by applying Newton’s method to the three equality conditions (4.20)-

(4.22), so that a Newton direction is obtained. Then a line search is performed along the

Newton direction to guarantee that the inequality condition (4.23) is satisfied strictly for

new updates. However, we can only take a small step along the Newton direction before

violating the inequality condition (Wright, 1997). Hence the Newton direction does not

allow us to make much progress toward a solution. But we can modify the Newton

procedure by requiring that each pairwise product λisi has the same positive value and

setting λisi = σµ. The parameter σ is called a centering parameter satisfying σ ∈ [0, 1],

and µ is called a duality measure defined by

µ =
λTs

m+ n+ nI
, (4.24)

which measures the average value of λisi. Since the modified Newton step is toward the

interior of the non-negative orthant (λ, s) ≥ 0m+n+nI , where the pairwise product λisi is

kept strictly positive, we can take longer steps before violating the positivity condition.

During each iteration of the algorithm, as µ goes to zero, λisi decreases to zero at the

same rate, and condition (4.22) is satisfied.

The algorithm has been studied in depth by Wright (1997) and Sun and Yuan (2006),

and one can refer to them for more detail. Ghosh (2001) has applied the algorithm in

studying the AH model with current status data. Before presenting the algorithm, we

introduce some definitions. We define rp(η, s) and rd(η,λ) by

rp(η, s) = f(η) + s (4.25)
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and

rd(η,λ) = −∇Φ(η) +∇f(η)Tλ, (4.26)

and define φλ(η) by φλ(η) = −Φ(η) + λTf(η). Let ∇ηηφλ(η) be the Hessian matrix of

φλ(η) with respect to η. Let I be an identity matrix with dimension (m+n+nI)× (m+

n+ nI). Define Λ and S respectively as diagonal matrices with diagonal elements λi and

si, i = 1, · · · ,m+ n+ nI . For a fixed ρ > 0, we define N (µ) as

N (µ) = {(η,λ, s)| ‖rp(η, s)‖ ≤ ρµ, ‖rd(η,λ)‖ ≤ ρµ, (λi, si) ≥ 0,

λisi ≥ µ/2, i = 1, · · · ,m+ n+ nI} ,

where ‖.‖ is the Euclidean norm. With these definitions, we outline the computational

procedure of the algorithm below:

1. We select η(0) by β(0) = 0p×1 and θ(0) = 1m×1, leading to f(η(0)) < 0. We take

λ(0) = s(0) = 1(m+n+nI)×1.

2. At the kth iteration of the algorithm, we have η(k), λ(k) and s(k). Then the du-

ality measure is given by µk = (λ(k))Ts(k)/(m + n + nI). The Newton direction,

(dηT , dλT , dsT )T , is obtained by solving the following equation:
∇ηηφλ(η

(k)) ∇f(η(k))T 0

∇f(η(k)) 0 I

0 S(k) Λ(k)




dη(k)

dλ(k)

ds(k)

 =


−rd(η(k),λ(k))

−rp(η(k), s(k))

−Λ(k)S(k)e+ σµ(k)e

 .

(4.27)

where σ is set to be σ = 0.5. Then the updated iterate is computed according to

(η(k+1),λ(k+1), s(k+1)) = (η(k),λ(k), s(k)) + αk(dη
(k), dλ(k), ds(k)), (4.28)

and the updated duality measure is given by µk+1 = (λ(k+1))Ts(k+1)/(m + n + nI).

The step length αk in (4.28) is chosen to be the first element in the sequence

{1, κ, κ2, κ3, · · · },
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where κ ∈ (0, 1), such that (η(k+1), λ(k+1), s(k+1)) ∈ N (µk) and the following condi-

tion holds,

µk+1 ≤ (1− 0.01αk)µk. (4.29)

3. Go to step 2 and repeat the process until µk is below a certain tolerance criterion,

such as 10−5 or 10−10.

The algorithm requires the first and second derivatives of Φ(η) with respect to η. For

simplicity, we denote S(·) to be S(·|η,X i) defined in (4.7), and h(·) to be h(·|η,X i)

defined in (4.5). Then the first derivative of Φ(η) with respect to β is

∂Φ(η)

∂β
= XT

LA1nL +XT
I B1nI −X

T
RC1nR +XT

OD1nO ,

where nL, nI , nR and nO are all defined in Chapter 3. The second derivative of Φ(η) with

respect to β is

∂2Φ(η)

∂β∂βT
= −XT

LEXL −XT
I GXI −XT

OLXO,

where XL, XI and XO are defined in Chapter 3, and matrices A, B, C, D, E , G and L

are diagonal matrices defined by

A = diag

{
tiLS(tiL)

1− S(tiL)

}
,

B = diag

{
tiIRS(tiIR)− tiILS(tiIL)

S(tiIL)− S(tiIR)

}
,

C = diag {tiR} ,

D = diag

{
1

h(tiO)
− tiO

}
,

E = diag

{
(tiL)2S(tiL)

[1− S(tiL)]2

}
,

G = diag

{
(tiIR − tiIL)2S(tiIR)S(tiIL)

[S(tiIL)− S(tiIR)]2

}
and

L = diag

{
1

h2(tiO)

}
.
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For convenience in deriving the first and second derivatives of Φ(η) with respect to θu,

we adopt the notation defined in Page 49 in Section 3.3. Then the first derivative of Φ(η)

with respect to θu is

∂Φ(η)

∂θu
=

∑
i∈Lu

[
(tiLu − τu−1)S(tiLu)

1− S(tiLu)

]
+ δu

∑
w>u

∑
i∈Lw

[
S(tiLw)

1− S(tiLw)

]

+
∑
v<u

∑
i∈ILv

∑
i∈IRu

[
(tiIRu − τu−1)S(tiIRu)

S(tiILv)− S(tiIRu)

]

+δu
∑
v<u

∑
w>u

∑
i∈ILv

∑
i∈IRw

[
S(tiIRw)

S(tiILv)− S(tiIRw)

]

+
∑
i∈ILu

∑
i∈IRu

[
(tiIRu − τu−1)S(tiIRu)− (tiILu − τu−1)S(tiILu)

S(tiILu)− S(tiIRu)

]

+
∑
w>u

∑
i∈ILu

∑
i∈IRw

[
δuS(tiIRw)− (tiILu − τu−1)S(tiILu)

S(tiILu)− S(tiIRw)

]
− δu

∑
w>u

N IL
w

+
∑
i∈Ou

[
1

θu +XT
iOuβ

− (tiOu − τu−1)

]
−
∑
i∈Ru

(tiRu − τu−1)

−δu
∑
w>u

(NO
w +NR

w )− 2γRuθ,

where N IL
w is the number of subjects whose failure times are finite interval-censored with

the corresponding observed left limit tiIL in Bw, NR
w is the number of subjects whose

failure times are right-censored with the corresponding observed time tiR in Bw, and NO
w

is the number of subjects whose failure times are exactly observed with the corresponding
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failure time tiO in Bw. The second derivative of Φ(η) with respect to θu is

∂2Φ(η)

∂θ2
u

= −
∑
i∈Lu

[
(tiLu − τu−1)2S(tiLu)

(1− S(tiLu))2

]
− δ2

u

∑
w>u

∑
i∈Lw

[
S(tiLw)

(1− S(tiLw))2

]

−
∑
v<u

∑
i∈ILv

∑
i∈IRu

[
(tiIRu − τu−1)2S(tiILv)S(tiIRu)

(S(tiILv)− S(tiIRu))2

]

−δ2
u

∑
v<u

∑
w>u

∑
i∈ILv

∑
i∈IRw

[
S(tiILv)S(tiIRw)

(S(tiILv)− S(tiIRw))2

]

−
∑
i∈ILu

∑
i∈IRu

[
(tiILu − tiIRu)2S(tiILu)S(tiIRu)

(S(tiILu)− S(tiIRu))2

]

−
∑
w>u

∑
i∈ILu

∑
i∈IRw

[
(tiILu − τu−1 − δu)2S(tiILu)S(tiIRw)

(S(tiILu)− S(tiIRw))2

]

−
∑
i∈Ou

[
1

(θu +XT
iOuβ)2

]
− 2γ̃ruu,

where ruu is the uth diagonal entry of the matrix R. For u > k, we have

∂2Φ(η)

∂θk∂θu
= −δk

∑
i∈Lu

[
(tiLu − τu−1)S(tiLu)

(1− S(tiLu))2

]
− δuδk

∑
w>u

∑
i∈Lw

[
S(tiLw)

(1− S(tiLw))2

]

−δk
∑
v<k

∑
i∈ILv

∑
i∈IRu

[
(tiIRu − τu−1)S(tiIRu)S(tiILv)

(S(tiILv)− S(tiIRu))2

]

−
∑
i∈ILk

∑
i∈IRu

[
(tiIRu − τu−1)(δk + τk−1 − tiILk)S(tiILk)S(tiIRu)

(S(tiILk)− S(tiIRu))2

]

−δkδu
∑
v<k

∑
w>u

∑
i∈ILv

∑
i∈IRw

[
S(tiIRw)S(tiILv)

(S(tiILv)− S(tiIRw))2

]

−δu
∑
w>u

∑
i∈ILk

∑
i∈IRw

[
(δk + τk−1 − tiILk)S(tiIRw)S(tiILk)

(S(tiILk)− S(tiIRw))2

]
− 2γ̃rku,
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where rku is the entry in the kth row and uth column of the matrix R, and

∂2Φ(η)

∂β∂θu
= −

∑
i∈Lu

[
tiLu(tiLu − τu−1)S(tiLu)

(1− S(tiLu))2
X iLu

]
− δu

∑
w>u

∑
i∈Lw

[
tiLwS(tiLw)

(1− S(tiLw))2
X iLw

]

−
∑
v<u

∑
i∈ILv

∑
i∈IRu

[
(tiIRu − tiILv)(tiIRu − τu−1)S(tiIRu)S(tiILv)

(S(tiILv)− S(tiIRu))2
X iIRu

]

−δu
∑
v<u

∑
w>u

∑
i∈ILv

∑
i∈IRw

[
(tiIRw − tiILv)S(tiIRw)S(tiILv)

(S(tiILv)− S(tiIRw))2
X iIRw

]

−
∑
i∈ILu

∑
i∈IRu

[
(tiILu − tiIRu)2S(tiILu)S(tiIRu)

(S(tiILu)− S(tiIRu))2
X iIRu

]

−
∑
w>u

∑
i∈ILu

∑
i∈IRw

[
(tiIRw − tiILu)(δu + τu−1 − tiILu)S(tiIRw)S(tiILu)

(S(tiILu)− S(tiIRw))2
X iIRw

]

−
∑
i∈Ou

[
1

(θu +XT
iOuβ)2

X iOu

]
.

4.4.2 Convergence of the algorithm

In this section, we analyze global convergence of the primal-dual interior point algorithm.

We first give a brief description of two types of convergence rate. The convergence rate is

a local characterization of an algorithm and can be used to measure the effectiveness of

an optimization method. Suppose there is an iterative sequence {a(k)} generated by an

algorithm and converging to a∗ in some norm, i.e.,

lim
k→∞
‖a(k) − a∗‖ = 0.

If there is a constant b ∈ (0, 1), which is independent of the iteration number k, and

satisfies

lim
k→∞

‖a(k+1) − a∗‖
‖a(k) − a∗‖

= b,

then we say that the sequence {a(k)} converges Q-linearly. The sequence {a(k)} is said to

be R-linearly convergent to a∗ if there is a sequence of non-negative scalars {c(k)} such
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that

‖a(k+1) − a∗‖ ≤ c(k) for all k,

with {c(k)} converging Q-linearly to zero. Now we state the global convergence of the

primal-dual interior algorithm in the following theorem.

Theorem 4.3. The sequence of iterates (η(k),λ(k), s(k)) generated by the primal-dual inte-

rior point algorithm converges to a solution satisfying the KKT conditions (4.20)-(4.23).

Furthermore, the sequence of the duality measure {µk} converges Q-linearly to zero, and

the sequences of residual norms ‖rp(η(k), s(k))‖ in (4.25) and ‖rd(η(k),λ(k))‖ in (4.26)

converge R-linearly to zero.

Proof. The proof is omitted here, since it is a simple modification of that given in Wright

(1997), and Ralph and Wright (1997).

4.5 Asymptotic properties of the MPL estimators

The methods for analyzing asymptotic properties of the MPL estimators under the PH

model in Section 3.5 can be applied to the MPL estimators under the AH model. In

the analysis of the asymptotic properties, we restrict ourselves to the situation of fixed

dimension of θ (i.e., fixed m). Let η0 be the true value of η and η̂ be the MPL estimator of

η. For convenience, we use the observation formulation defined in (3.32), {(Li, Ri],X i, ξi},

i = 1, · · · , n. We denote g(Li, Ri, ξi|η) as a density function of {(Li, Ri],X i, ξi}, and

express it by

g(Li, Ri, ξi|η) =
[
S(Li|η)− S(Ri|η)

]1−ξif(ti|η)ξi , (4.30)

where ξi is an indicator with ξi = 1 if the failure time of subject i is exactly observed, or

ξi = 0 if censored. In the density function (4.30), S(·|η) is the survival function of the
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failure time given by (4.7), and f(·|η) is the density function of the failure time given by

f(ti|η) = h(ti|η)S(ti|η) = C(ti,X i)
Tη exp{−D(ti,X i)

Tη},

where h(·|η) is given by (4.5). Let `i(η) = log g(Li, Ri, ξi|η). Then the log-likelihood from

the g(Li, Ri, ξi|η) is identical to (4.8). We denote the penalized log-likelihood function in

(4.9) by Φn(η) to indicate its dependence on the sample size, and re-express it as

Φn(η) =
n∑
i=1

{`i(η)− γ̃nJ(η)},

where J(η) = J(θ) and γ̃n = γ̃/n. The following assumptions are needed to develop the

asymptotic properties of η̂.

Assumptions:

4.1 {(Li, Ri],X i, ξi : i = 1, · · · , n} are independently and identically distributed, and

the distribution of covariate X i is independent of η.

4.2 The censoring time is independent of the failure time conditionally on the covariates,

and the distribution of censoring is independent of η.

4.3 The parameter space Γ of η is compact.

4.4 The density function g(Li, Ri, ξi|η) is greater than zero. There exists a measurable

functionm(Li, Ri,X i, ξi) withE[m(Li, Ri,X i, ξi)] <∞, satisfying |log g(Li, Ri, ξi|η)| ≤

m(Li, Ri,X i, ξi) for all η ∈ Γ.

4.5 Eη0
[n−1Φn(η)] exists and has a unique maximum at η∗ ∈ int(Γ), which is not

necessarily equal to η0 due to the penalty function.

4.6 Φn(η) is continuous over Γ and is twice differentiable in a neighborhood of η∗. Also,

the matrices

G0(η) = Eη0

[
n−1∂Φn(η)

∂η

∂Φn(η)

∂ηT

]
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and

F0(η) = −Eη0

[
n−1∂

2Φn(η)

∂η∂ηT

]
exist and are positive definite in a neighborhood of η∗.

4.7 The penalty function J(η) is continuous and bounded over Γ. Both ∂J(η)/∂η and

∂2J(η)/∂η∂ηT exist for all η ∈ Γ, and ∂2J(η)/∂η∂ηT is bounded in a neighborhood

of η∗.

The asymptotic results are stated in Theorem 4.4 below. Their proof is the same as that

in Chapter 3 and hence is omitted here.

Theorem 4.4. Assume that Assumptions 4.1-4.7 are satisfied, then the MPL estimator

η̂ is consistent for η∗ and the distribution of
√
n(η̂n − η∗) converges, when n→∞, to a

multivariate normal distribution N(0(p+m)×1, V (η∗)), where

V (η∗) = F0(η∗)−1G0(η∗)F0(η∗)−1 (4.31)

In developing the asymptotic properties of η̂, we keep γ̃n fixed as n → ∞. In the

case where γ̃n → 0 as n→∞, the asymptotic results and proof follow from those in the

maximum likelihood estimation (MLE) method. In practice, η∗ can be replaced by η̂ due

to the strong consistency property. The simulation study in Section 4.6 shows that the

asymptotic sandwich formula (4.31) is generally accurate.

4.6 Simulation studies

In this section, simulation studies are conducted to evaluate the performance of our pro-

posed MPL method in fitting the AH model with partly interval-censored data. We

concentrate on the following three objectives:
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1. Investigating effects of the censoring proportion and sample size on the MPL esti-

mators of regression coefficients β and the baseline hazard h0(·). The results are

summarized in Tables 4.1-4.3 and Figures 4.1-4.3.

2. Evaluating whether the asymptotic standard deviations computed by the sand-

wich formula, F0(η̂)−1G0(η̂)F0(η̂)−1, are accurate for the MPL estimators. This

is achieved by comparing them with the Monte Carlo standard deviations. Results

can be viewed in Tables 4.1-4.3, and Figures 4.1-4.3.

3. Comparing our proposed MPL method with an estimation method based on the

counting process by Lin and Ying (1994) to demonstrate improvement of the esti-

mations of β and h0(·) by our MPL method. Results are reported in Table 4.4 and

Figure 4.4. R code for the counting process method is available in CRAN.

All the simulation results are computed using the R program, and the relevant R codes

are provided in Appendix B.

We choose n = 100, 500 and 1000 respectively as small, intermediate and large sample

sizes, with approximate censoring proportions of πc = 20%, 50% and 80% for each value of

n. For each subject i, i = 1, · · · , n, we generate the covariate vector X i = [Xi1, Xi2, Xi3]T

in the same way as in the simulation study in Chapter 3, where Xi1 follows a Bernoulli

distribution with parameter 0.5, Xi2 ∼ Unif(0, 3) and Xi3 ∼ Unif(0, 5). For regression

coefficient vector β = [β1, β2, β3]T , we set β1 = 1, β2 = −0.3 and β3 = 0.5, which are the

same as those in Chapter 3. We simulate the failure time Ti using the hazard function

h(ti) = 3t2i +Xi1 − 0.3Xi2 + 0.5Xi3,

which is the AH model with the baseline hazard

h0(ti) = 3t2i .
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An inversion method is applied to obtain Ti based on the relationship ui = FT (ti), where

ui is a standard uniform random variable, and FT (·) is the distribution function of Ti

given by

FT (ti) = 1− exp

[
− t3i − (Xi1 − 0.3Xi2 + 0.5Xi3)ti

]
.

For each subject i, independently of Ti, we generate two monitoring times in the same

way as in Chapter 3, which are Ci1 ∼ Unif(0, 1) and Ci2 = Ci1 + Unif(0, 1). Methods

to simulate left-censored data, finite interval-censored data and right-censored data in

Chapter 3 are also applied here.

In discretising the baseline hazard, bins are selected in such a way that each bin

contains an approximately equal number of observations, denoted by nc. We set nc = 2

for n = 100, nc = 5 for n = 500, and nc = 8 for n = 1000. The smoothing value is

selected according to the method described in Chapter 3. The convergence criterion of

the primal-dual interior-point algorithm is defined as when the duality measure becomes

less than 10−5, i.e., µk < 10−5.

For each combination of n and πc, 300 repeated samples are generated. Based on the

300 Monte Carlo samples, we compute the average estimate (AEST), the bias (BIAS),

the Monte Carlo standard deviation (MCSD), the average asymptotic standard deviation

(AASD) and the mean squared error (MSE) for the estimate of β by the formulas (3.41)-

(3.45). For the estimate of h0(·), we compute its AEST, MCSD and AASD by the formulas

(3.46)-(3.48) and average integrated squared error (AISE) by the formula (3.50). We

assess the performance of different β estimates by examining the BIAS and MCSD or

MSE. We assess the performance of the h0(·) estimates by inspecting plots of its AEST,

95% Monte Carlo piecewise confidence interval (PWCI) and 95% asymptotic piecewise

confidence interval (PWCI), and examining its AISE.
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Tables 4.1-4.3 provide the MPL estimates of β with different sample sizes n and

censoring proportions πc. We observe that, for the same sample size, MCSD, AASD, MSE

and absolute value of BIAS all decrease as censoring proportion decreases, and for the

same censoring proportion, a decreasing trend for the four quantities exists with increasing

sample size. Comparing MCSD against AASD indicates that the sandwich formula (4.31)

generally gives accurate variance approximation for the β estimates, especially with large

sample size.

Figures 4.1-4.3 exhibit plots for the true baseline hazard, its AESTs, the corresponding

95% Monte Carlo PWCIs and the corresponding mean of the 95% asymptotic PWCIs for

different sample sizes and censoring proportions. We detect that the AESTs of h0(·)

become increasingly close to h0(·) as the sample size increases. It is also shown that both

the 95% Monte Carlo PWCIs and mean of the 95% asymptotic PWCIs become wider with

increasing censoring proportion but narrower with increasing sample size. By inspecting

the closeness of the 95% Monte Carlo PWCIs to the mean of 95% asymptotic PWCIs, we

deduce that the formula (4.31) approximates the variance of baseline hazard estimates

well, especially when the sample size is large or the censoring proportion is small. Tables

4.1-4.3 also provide the values of AISE for the MPL estimates of h0(·) plotted in Figures

4.1-4.3. We observe that the values of AISE decrease with sample size but increase with

censoring proportion.

The counting process (CP) method by Lin and Ying (1994) is applied to study right-

censored data, rather than interval-censored data, under the AH model. However, our

proposed MPL method can deal with any censoring type of data. Therefore, for compar-

ison, we only generate right-censored data. The censoring proportion is chosen approxi-

mately as πc = 0.4. The sample sizes are taken as n = 100, 500 and 1000. In our MPL

method, we select equal counts of observations in each bin to be nc = 2 for n = 100,
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nc = 5 for n = 500, and nc = 8 for n = 1000. The covariates X i = [Xi1, Xi2, Xi3]T and

regression coefficients β = [β1, β2, β3]T are the same as above. 300 Monte Carlo samples

are generated for each sample size. We use the R package, ahaz, to compute estimates

from the method of Lin and Ying (1994). These two methods are evaluated based on

the same data sets. Results are reported in Table 4.4. We observe that, for each of the

sample sizes, our MPL estimates for the three regression parameters have lower MCSDs

and MSEs. By making comparisons between MCSDs and AASDs separately in these

two methods, we conclude that the asymptotic standard deviation formulas from the two

methods are working accurately in variance approximations. Figure 4.4 displays estimates

of the baseline hazard together with 95% PWCIs. Since the asymptotic variance of the

baseline hazard estimate is not available from the package ahaz, we only compute its 95%

Monte Carlo PWCIs. From Figure 4.4, it can be seen clearly that our MPL method has

better estimates for the baseline hazard, and the 95% Monte Carlo PWCIs are very close

to the mean of 95% asymptotic PWCIs. In addition, our MPL method gives smaller

values of AISE for the MPL estimates of h0(·).

4.7 A real data example

In this section, we apply the primal-dual interior point algorithm to fit the AH model,

using the data from the AIDS study (Lindsey and Ryan, 1998). The data is also analyzed

in Chapter 3 under the PH model. Suppose that the failure times Ti, i = 1, · · · , 31, can

be reasonably described by the AH model. We use our MPL method to fit the model

using a smoothing value of 1 − 10−4, and equal number of observations nc = 1 in each

bin. Based on the consistency and asymptotic normality properties of β̂, we perform

hypothesis tests on β, i.e., H0: βj = 0 versus Ha: βj 6= 0 for j = 1, 2, 3, 4. Table 4.5

reports the MPL estimates of β with the corresponding asymptotic standard deviations
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(astd), p-values and 95% confidence intervals. We observe that none of the covariates

has significant effects on the hazard of the time to development of drug resistance (i.e.,

p > 0.05). Figure 4.5 displays the baseline survival estimate and baseline hazard estimate

with its 95% asymptotic PWCI. The baseline hazard plot shows that the baseline risk of

time to development peaks after a few months, then monotonically decreases until month

25, and finally falls sharply on month 26.

4.8 Conclusion

This chapter develops a maximum penalized log-likelihood (MPL) method to fit the addi-

tive hazard (AH) model with partly interval-censored failure time data, where a penalty

function is included to ensure the smoothness of the estimated baseline hazard function.

In the estimation procedure, the baseline hazard is assumed to be piecewise constant, and

the estimates of hazard and baseline hazard are constrained to be non-negative simulta-

neously and directly by using the primal-dual interior point algorithm. The algorithm

provides simultaneously the MPL estimates of the baseline hazard and the regression

coefficient vector β.
√
n-consistency and asymptotic normality of the MPL estimates

are shown. The asymptotic standard deviations generally give accurate estimates of the

standard deviations for the MPL estimates.

Although we assume independent censoring and time-independent covariates in devel-

oping the MPL method for the AH model, we can relax these assumptions and extend the

method to cases of dependent censoring or time-dependent covariates. Our MPL method

can also be adopted in fitting models which are generalizations of the AH model (4.1) in

this chapter. For instance, Lin and Ying (1995) consider an additive-multiplicative hazard

model which combines the PH model and the AH model together, but only right-censored

data is analyzed. Analysis of interval-censored data is possible by using our method.
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n=100

πc 20% 50% 80%

nc 2 2 2

β1 = 1 AEST 0.9657 1.0368 1.1204

BIAS 0.0343 -0.0368 -0.1204

MCSD 0.3662 0.4301 0.4409

AASD 0.3877 0.4176 0.4492

MSE (0.1353) (0.1863) (0.2089)

β2 = −0.3 AEST -0.4150 -0.4556 -0.5513

BIAS 0.1150 0.1556 0.2513

MCSD 0.2199 0.2191 0.2457

AASD 0.2186 0.2333 0.2509

MSE (0.0616) (0.0722) (0.1235)

β3 = 0.5 AEST 0.5166 0.4713 0.5373

BIAS -0.0166 0.0287 -0.0373

MCSD 0.1355 0.1374 0.1409

AASD 0.1425 0.1499 0.1609

MSE (0.0186) (0.0197) (0.0212)

h0(t) AISE 0.2612 0.2786 0.3724

Table 4.1: AEST, BIAS, MCSD, AASD and MSE for the estimate of β̂, and average

integrated squared error (AISE) for the baseline hazard estimate ĥ0(t) with equal count

in each bin nc = 2, sample size n = 100 and censoring proportions πc = 20%, 50% and

80%.
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n=500

πc 20% 50% 80%

nc 5 5 5

β1 = 1 AEST 0.9881 1.0327 0.9620

BIAS 0.0119 -0.0327 0.0380

MCSD 0.1675 0.1848 0.1852

AASD 0.1571 0.1746 0.1868

MSE (0.0282) (0.0352) (0.0357)

β2 = −0.3 AEST -0.3151 -0.3194 -0.2538

BIAS 0.0151 0.0194 -0.0462

MCSD 0.0970 0.1071 0.1108

AASD 0.0852 0.0951 0.1015

MSE (0.0096) (0.0119) (0.0144)

β3 = 0.5 AEST 0.5131 0.4812 0.4690

BIAS -0.0131 0.0188 0.0310

MCSD 0.0584 0.0598 0.0553

AASD 0.0602 0.0649 0.0681

MSE (0.0036) (0.0039) (0.0040)

h0(t) AISE 0.0714 0.0913 0.0985

Table 4.2: AEST, BIAS, MCSD, AASD and MSE for the estimate of β̂, and average

integrated squared error (AISE) for the baseline hazard estimate ĥ0(t) with equal count

in each bin nc = 5, sample size n = 500 and censoring proportions πc = 20%, 50% and

80%.
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n=1000

πc 20% 50% 80%

nc 8 8 8

β1 = 1 AEST 0.9915 0.9899 0.9711

BIAS 0.0085 0.0101 0.0289

MCSD 0.1112 0.1248 0.1292

AASD 0.1129 0.1215 0.1309

MSE (0.0124) (0.0157) (0.0175)

β2 = −0.3 AEST -0.3005 -0.2953 -0.2787

BIAS 0.0005 -0.0047 -0.0213

MCSD 0.0733 0.0734 0.0737

AASD 0.0611 0.0669 0.0715

MSE (0.0053) (0.0054) (0.0059)

β3 = 0.5 AEST 0.5073 0.4824 0.4772

BIAS -0.0073 0.0176 0.0228

MCSD 0.0460 0.0461 0.0462

AASD 0.0422 0.0449 0.0474

MSE (0.0022) (0.0024) (0.0027)

h0(t) AISE 0.0385 0.0529 0.0825

Table 4.3: AEST, BIAS, MCSD, AASD and MSE for the estimate of β̂, and average

integrated squared error (AISE) for the baseline hazard estimate ĥ0(t) with equal count

in each bin nc = 8, sample size n = 1000 and censoring proportions πc = 20%, 50% and

80%.
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n=100 n=500 n=1000

MPL CP MPL CP MPL CP

β1 = 1 AEST 0.9529 0.9501 0.9667 0.9963 0.9733 0.9766

BIAS 0.0471 0.0499 0.0333 0.0037 0.0267 0.0234

MCSD 0.4254 0.4273 0.2370 0.2477 0.1127 0.1189

AASD 0.4549 0.4195 0.2468 0.2348 0.1311 0.1273

MSE (0.1832) (0.1851) (0.0573) (0.0614) (0.0134) (0.0147)

β2 = −0.3 AEST -0.4295 -0.2844 -0.3106 -0.2890 -0.3001 -0.2945

BIAS 0.1295 -0.0156 0.0106 -0.0110 0.0001 -0.0055

MCSD 0.2251 0.2581 0.1209 0.1255 0.0636 0.0666

AASD 0.2514 0.2363 0.1381 0.1293 0.0730 0.0702

MSE (0.0674) (0.0668) (0.0147) (0.0159) (0.0040) (0.0045)

β3 = 0.5 AEST 0.5206 0.5186 0.4589 0.4864 0.4853 0.4862

BIAS -0.0206 -0.0156 0.0411 0.0136 0.0147 0.0138

MCSD 0.1369 0.2581 0.0696 0.0822 0.0381 0.0406

AASD 0.1775 0.2363 0.0628 0.0827 0.0496 0.0449

MSE (0.0192) (0.0668) (0.0065) (0.0069) (0.0017) (0.0018)

h0(t) AISE 0.3436 1.7654 0.1507 1.7884 0.1130 1.7963

Table 4.4: Comparisons of regression coefficient estimates and the baseline hazard es-

timates between the MPL method and the counting process (CP) method by Lin and

Ying (1994) using simulated samples with sample sizes of n = 100, 500 and 1000, and

approximate censoring proportion of πc = 0.4.
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Figure 4.1: Plots of the true hazard h0(t) (solid), the average MPL estimate of h0(t)

(dash), the 95% Monte Carlo PWCI (dot-dash), and the average 95% asymptotic PWCI

(dots), assuming sample size n = 100, equal count in each bin nc = 2 and censoring

proportions of 20%, 50% and 80% respectively.
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Figure 4.2: Plots of the true hazard h0(t) (solid), the average MPL estimate of h0(·)

(dash), the 95% Monte Carlo PWCI (dot-dash), and the average 95% asymptotic PWCI

(dots), assuming sample size n = 500, equal count in each bin nc = 5 and censoring

proportions of 20%, 50% and 80% respectively.
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Figure 4.3: Plots of the true hazard h0(t) (solid), the average MPL estimate of h0(t)

(dash), the 95% Monte Carlo PWCI (dot-dash), and the average 95% asymptotic PWCI

(dots), assuming sample size n = 1000, equal count in each bin nc = 8 and censoring

proportions of 20%, 50% and 80% respectively.
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Figure 4.4: Plots of the baseline hazard estimate with its 95% PWCI for the MPL method

and the counting process (CP) method, with sample sizes of n = 100, 500 and 1000 and

censoring proportion of 40%.
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Figure 4.5: Plots of the estimates for the AIDS example, top, the baseline hazard estimate

and its 95% PWCI; bottom, the baseline survival estimate.
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Effects β̂ astd p-value 95%C.I

stage 0.0290 0.0321 0.3663 (-0.0339, 0.0919)

does 0.0000 0.0252 0.9999 (-0.0494, 0.0494)

CD4: 100-399 -0.0374 0.0626 0.5502 (-0.1601, 0.0853)

CD4: ≥ 400 -0.0410 0.0576 0.4766 (-0.1539, 0.0719)

Table 4.5: Regression coefficient estimates given by the MPL method with asymptotic

standard deviations (astd), p-values and 95% confidence intervals.
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Chapter 5

Accelerated Failure Time (AFT)

Model with Partly Interval-Censored

Failure Time Data

5.1 Introduction

In this chapter, we develop a penalized likelihood procedure to fit an accelerated failure

time (AFT) model with partly interval-censored failure time data. Alternative to a PH

model where the effect of covariates is assumed to be multiplicative on the hazard function,

the AFT model assumes that the effect of covariates is to accelerate or decelerate the time

to failure. Specifically, let Ti be the failure time and X i the covariate vector for subject

i, then the AFT model specifies that

log Ti = XT
i β + εi, (5.1)

where β is the regression coefficient vector and εi is an error variable independent of

(Kalbfleisch and Prentice, 2002). The distribution of εi is unknown, hence the model

(5.1) is a semi-parametric regression model. The AFT model has some advantages when
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compared with the PH model: (i) it does not require the assumption of proportional

hazard; and (ii) it models directly the covariate effects on the failure time, so that the

interpretation of the estimate results is more easily understood in terms of effects on the

mean failure time. Therefore, it is of interest to develop estimation procedures for the

AFT model.

The presence of censoring causes major challenges in the semi-parametric analysis of

the AFT model. However, there exist some methods to fit the AFT model with interval-

censored failure time data, which have been reviewed in Section 2.3. Rabinowitz et al.

(1995) and Betensky et al. (2001) propose a linear rank estimation method. This method

involves estimations of the distribution function of the error variable ε, but the resulting

distribution estimate is not guaranteed to be smooth. The major disadvantage of this

method is that the implementation becomes numerically difficult for high-dimensional co-

variate variables. Komárek et al.(2005) develop a maximum penalized likelihood (MPL)

method with partly interval-censored data. This method starts by standardizing ε, and

then fits the AFT model by estimating the regression coefficient β and the density func-

tion of the standardized ε, where the density is approximated by a linear combination of

Gaussian density functions. Let ε̃ denote the standardized ε. Let f̂ε̃(t) be the estimated

density of ε̃. In the estimation procedure, there are three constraints imposed: namely

(i) f̂ε̃(t) > 0 and
∫
f̂ε̃(t)dt = 1; (ii) E(ε̃) = 0; and (iii) Var(ε̃) = 1. The three con-

straints are imposed indirectly by transforming coefficients of the Gaussian density basis.

The smoothness of f̂ε̃(t) is controlled by a penalty term based on squared second-order

differences between adjacent basis coefficients. Finally, the estimates of the regression co-

efficients and the density of ε̃ are obtained by using the sequential quadratic programming

algorithm and the Newton algorithm.

We adopt the MPL method for the AFT model, allowing for exactly observed, left-,
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right-, and finite interval-censored failure time data. In our approach, we consider ε∗ = eε,

and let hε∗(·) denote the hazard function of ε∗. Our method differs from the method by

Komárek et al.(2005) in four aspects: (i) we fit the AFT by estimating β and the hazard

hε∗(·), with the hazard modeled by a linear combination of Gaussian basis functions; (ii)

in the estimation procedure, we only have one constraint, which is the non-negativity

of the hazard estimate, and the constraint is imposed in a direct way by imposing non-

negativity on the Gaussian basis coefficients; (iii) we guarantee the smoothness of the

hazard estimate by a roughness penalty function, which involves its second derivative;

and (iv) we obtain the MPL estimators of β and hε∗(·) simultaneously by the Newton-MI

algorithm, which has been used in Chapter 3. We show that, under certain conditions,

the MPL estimators are asymptotically consistent and multivariate normal.

The chapter is organized as follows. In Section 5.2, we construct a penalized log-

likelihood function with partly interval-censored data under the AFT model. In section

5.3, we develop the Newton-MI algorithm to compute the MPL estimators, and study

the convergence of the algorithm. In Section 5.4, we present asymptotic results of the

MPL estimators. In Section 5.5, we investigate the performance of our proposed method

by simulation studies. In Section 5.6, we report results from real data analysis. Finally,

conclusions and some discussions are given in Section 5.7.

5.2 Penalized log-likelihood functions under the AFT

model

Consider a random sample of n subjects. For each subject i, i = 1, · · · , n, its observed

data is denoted by (tiO,X iO) or (tiL,X iL) or (tiIL, tiIR,X iI) or (tiR,X iR) depending on

the censoring type of its failure time. These formulations for the observed data have been
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used in Chapter 3. The AFT model specifies a linear relationship between the logarithm of

the failure time Ti and the covariate vector X i in the form of log Ti = XT
i β+εi, where X i

is assumed to be time-independent. Recall that ε∗ = eε and hε∗(·) is the hazard function

of ε∗. Let Hε∗(·) be the cumulative hazard function of ε∗. Let h(·|X i) and H(·|X i) denote

the conditional hazard and cumulative hazard functions of the failure time Ti given X i.

In Section 1.4.3, we have obtained the relationship between the hazard function of Ti and

the hazard function of ε∗,

h(t|X i) = e−X
T
i βhε∗(te

−XT
i β). (5.2)

Based on (5.2), the cumulative hazard function of Ti is given by

H(t|X i) =

∫ t

0

h(s|X i)ds = Hε∗(te
−XT

i β), (5.3)

where Hε∗(t) =
∫ t

0
hε∗(s)ds. By letting X i = 0p×1 in equation (5.2), we get a direct rela-

tionship between the baseline hazard function of Ti and the hazard function of ε∗, that is

h0(t) = hε∗(t). Therefore, equation (5.2) can be rewritten as h(t|X i) = e−X
T
i βh0(te−X

T
i β),

and estimating h0(·) is equivalent to estimating hε∗(·). We fit the AFT model by estimat-

ing the regression coefficient vector β and the hazard function hε∗(·).

We start to fit the AFT model by approximating the hazard function hε∗(·). The

approximation is given by

hε∗(t) =
m∑
j=1

θj · ϕ(t;µj, σ
2
j ), (5.4)

where ϕ(t;µj, σ
2
j ) = e

−
(t−µj)

2

2σ2
j is an unscaled Gaussian basis function, {µj : j = 1, · · · ,m}

are knots satisfying µ1 < · · · < µm, m is the number of knots, {σj : j = 1, · · · ,m}

are non-negative parameters, and {θj : j = 1, · · · ,m} are basis coefficients. We write

θ = [θ1, · · · , θm]T . Values of {µ1, · · · , µm} and {σ1, · · · , σm} are fixed by design and will

be determined in Section 5.5. The corresponding cumulative hazard function of ε∗ is

Hε∗(t) =

∫ t

0

hε∗(s)ds =
√

2π
m∑
j=1

θjσj

[
Φ(t;µj, σ

2
j )− Φ(0;µj, σ

2
j )
]
, (5.5)
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where Φ(·;µj, σ2
j ) is the cumulative distribution function of the normal distribution with

mean µj and variance σ2
j . For simplicity, we write ϕj(·) = ϕ(·;µj, σ2

j ) and Φj(·) =

Φ(·;µj, σ2
j ). From equations (5.2), (5.3), (5.4) and (5.5), the hazard, cumulative haz-

ard and survival functions of the failure time Ti concerning the model parameters β and

θ are expressed respectively as

h(t|β,θ,X i) = e−X
T
i β

m∑
j=1

θj · ϕj(te−X
T
i β), (5.6)

H(t|β,θ,X i) =
√

2π
m∑
j=1

θjσj

[
Φj(te

−XT
i β)− Φj(0)

]
, (5.7)

and

S(t|β,θ,X i) = exp
{
−
√

2π
m∑
j=1

θjσj

[
Φj(te

−XT
i β)− Φj(0)

]}
. (5.8)

We make the standard assumptions that the censoring time is independent of the

failure time conditional on covariates, and that the distribution of the censoring time

does not involve β and θ. Then, using equations (5.6)-(5.8), the log-likelihood function

involving β and θ is

`(β,θ) =
∑
i∈L

log
[
1− S(tiL|β,θ,X iL)

]
−
∑
i∈R

H(tiR|β,θ,X iR)

+
∑
i∈I

log
[
S(tiIL|β,θ,X iI)− S(tiIR|β,θ,X iI)

]
+
∑
i∈O

[
log
(
h(tiO|β,θ,X iO)

)
−H(tiO|β,θ,X iO)

]
. (5.9)

Note that the first sum term is the log-likelihood for left-censored observations, the second

for right-censored observations, the third for finite interval-censored observations and the

fourth for exactly observed failure time observations. To guarantee smoothness of the

estimate of hε∗(·), we subtract a penalty term J(hε∗), which is a function of hε∗(·), from

the log-likelihood `(β,θ), resulting in a penalized log-likelihood function,

`P (β,θ) = `(β,θ)− γ̃J(hε∗), (5.10)

115



where γ̃ is a smoothing parameter that controls balance between smoothness of the esti-

mated hazard and fit to the data. The optimal smooth value of γ̃ can be selected using

the method similar to that developed in Section 3.4. We assume that the hazard func-

tion hε∗(·) is continuous and twice differentiable, and that its second derivative is square

integrable. Then the smooth aspect of hε∗(·) can be related to the value of its second

derivative, which leads to a roughness penalty given by

J(hε∗) =

∫
I(β)

[h′′ε∗(s)]
2ds. (5.11)

In equation (5.11), I(β) is an interval varying with the value of β and defined by

I(β) = [tmin(β), tmax(β)], where tmin(β) = min{tice−X
T
icβ : i = 1, · · · , n}, tmax(β) =

max{tice−X
T
icβ : i = 1, · · · , n} and c = {L,R, IL, IR,O}. The penalty term (5.11) can

also be expressed in a quadratic form, i.e., J(hε∗) = θTRθ, whereR is a m×m symmetric

matrix with elements ruv =
∫
I(β)

ϕ′′u(s)ϕ
′′
v(s)ds, and

ϕ′′u(s) = e
− (s−µu)2

2σ2u

[
(
s− µu
σ2
u

)2 − 1

σ2
u

]
.

5.3 Constrained optimization by the Newton-MI al-

gorithm

We fit the AFT model by estimating the regression coefficient vector β and the basis

coefficient vector θ. Since the basis functions {ϕj(·) : j = 1, · · · ,m}, given in (5.4), are

non-negative, it suffices to impose the non-negativity constraint on θ to guarantee that

the estimate of hε∗(·) is non-negative. The problem can now be stated as maximizing the

penalized log-likelihood function `P (β,θ), given in (5.10), with respect to β and θ, with

θ non-negative, namely

(β̂, θ̂) = arg max
β,θ
{`P (β,θ)} (5.12)
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subject to θ ≥ 0m×1.

Similar to Chapter 3, we use the Newton-MI algorithm to solve the constrained op-

timization problem (5.12). To describe the algorithm in the present setting, we first

introduce some notations. For simplicity in deriving the first and second derivatives of

`P (β,θ), we denote S(·) to be S(·|β,θ,X i) defined in (5.8). We define

t∗ic = tic exp
{
−XT

icβ
}
,

η̄(t∗ic) = hε∗(t
∗
ic)t
∗
ic,

ξiI = η̄(t∗iIL)S(tiIL)− η̄(t∗iIR)S(tiIR),

wj(t
∗
ic) =

θj(t
∗
ic − µj)
σ2
j

,

A(t∗ic) =
m∑
j=1

wj(t
∗
ic)ϕj(t

∗
ic),

ρic,j =
√

2πS(tic)σj

[
Φj(t

∗
ic)− Φj(0)

]
,

qiI = η̄(t∗iIL)2S(tiIL)− η̄(t∗iIR)2S(tiIR),

H̄(t∗ic) = t∗ichε∗(t
∗
ic)− (t∗ic)

2A(t∗ic),

h̄iI = H̄(t∗iIL)S(tiIL)− H̄(t∗iIR)S(tiIR),

zj(t
∗
iO) =

t∗iO − µj
σ2
j

wj(t
∗
iO),

aj =
θj
σ2
j

,

B(t∗iO) =
m∑
j=1

zj(t
∗
iO)ϕj(t

∗
iO),

C(t∗iO) =
m∑
j=1

ajϕj(t
∗
iO),

κ1u(β,θ) =
∑
i∈L

[
ρiL,u

1− S(tiL)

]
+
∑
i∈I

[
ρiIR,u

S(tiIL)− S(tiIR)

]
+
∑
i∈O

[
ϕu(t

∗
iO)

hε∗(t∗iO)

]
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and

κ2u(β,θ) =
∑
i∈I

[
ρiIL,u

S(tiIL)− S(tiIR)

]
+
√

2πσu
∑
i∈R

[
Φu(t

∗
iR)− Φu(0)

]
+
√

2πσu
∑
i∈O

[
Φu(t

∗
iO)− Φu(0)

]
.

Then the first derivative of `P (β,θ) with respect to β is

∂`P (β,θ)

∂β
= XT

LM11nL +XT
IM21nI +XT

RM31nR +XT
OM41nO , (5.13)

where matrices M1, M2, M3 and M4 are diagonal matrices defined by

M1 = diag

{
−η̄(t∗iL)S(tiL)

1− S(tiL)

}
,

M2 = diag

{
ξiI

S(tiIL)− S(tiIR)

}
,

M3 = diag
{
η̄(t∗iR)

}
and

M4 = diag

{
− 1 +

t∗iOA(t∗iO)

hε∗(t∗iO)
+ η̄(t∗iO)

}
.

The Hessian matrix of β is

∂2`P (β,θ)

∂β∂βT
= XT

LM5XL +XT
IM6XI −XT

RM7XR +XT
OM8XO, (5.14)

where matrices M5, M6, M7 and M8 are diagonal matrices defined by

M5 = diag

{
[H̄(t∗iL)− η̄(t∗iL)2]S(tiL)

1− S(tiL)
−
[ η̄(t∗iL)S(tiL)

1− S(tiL)

]2
}
,

M6 = diag

{
−h̄iI + qiI

S(tiIL)− S(tiIR)
−
[ ξiI
S(tiIL)− S(tiIR)

]2
}
,

M7 = diag
{
H̄(t∗iR)

}
and

M8 = diag

{
−t∗iOA(t∗iO) + (t∗iO)2(B(t∗iO)− C(t∗iO))

hε∗(t∗iO)
−
[t∗iOA(t∗iO)

hε∗(t∗iO)

]2

− H̄(t∗iO)

}
.
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The first derivative of `P (β,θ) with respect to θj, j = 1, · · · ,m, is

∂`P (β,θ)

∂θj
=

∑
i∈L

[
ρiL,j

1− S(tiL)

]
+
∑
i∈I

[
ρiIR,j − ρiIL,j

S(tiIL)− S(tiIR)

]
−
√

2πσj
∑
i∈R

[
Φj(t

∗
iR)− Φj(0)

]
+
∑
i∈O

[
ϕj(t

∗
iO)

hε∗(t∗iO)
−
√

2πσj(Φj(t
∗
iO)− Φj(0))

]
− 2γ̃Rjθ, (5.15)

where Rj is the jth row of matrix R. The KKT necessary conditions for the constrained

MPL estimations of β and θ are

∂`P (β,θ)

∂βj
= 0 for j = 1, · · · , p (5.16)

and

∂`P (β,θ)

∂θu


= 0 if θu > 0

< 0 if θu = 0

(5.17)

for u = 1, · · · ,m.

We obtain the MPL estimators of β and θ by solving equations (5.16) and (5.17)

iteratively using the Newton-MI algorithm. In this algorithm, β is updated using the

Newton-Raphson algorithm, while θ is updated, due to its positivity constraint, by a

Multiplicative Iterative (MI) algorithm of Ma (2010). Details of the algorithm are pro-

vided below:

1. Choose initial values of β(0) and θ(0), with θ
(0)
j > 0 for j = 1, · · · ,m.

2. Let β(k) and θ(k) be the estimates of β and θ at iteration k. With fixed θ(k), β(k)

is updated by

β(k+1) = β(k) − α(k)

[
∂2`P (β(k),θ(k))

∂β∂βT

]−1
∂`P (β(k),θ(k))

∂β
, (5.18)

where α(k) is a line search step determined by the Armijo’s rule, similar to Chapter

3.
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3. By fixing β at β(k+1), θ(k) is obtained by running one iteration of the MI algorithm.

θ(k+1/2)
u = θ(k)

u ·
κ1u(β

(k+1),θ(k))− 2γ̃[Ruθ
(k)]− + νu

κ2u(β
(k+1),θ(k)) + 2γ̃[Ruθ

(k)]+ + νu
(5.19)

and

θ(k+1) = θ(k) + ω(k)(θ(k+1/2) − θ(k)), (5.20)

where νu is a small constant (e.g., 10−5) included to avoid a zero denominator, which

will not affect where the MI algorithm converges to, ω(k) is the step size determined

by the Armijo’s rule, similar to Chapter 3.

4. Go to Step 2 and repeat the process until both β(k) and θ(k) satisfy certain termi-

nation criteria, such as maxj |β(k+1)
j − β(k)

j | < 10−5 and maxu |θ(k+1)
u − θ(k)

u | < 10−5.

Following the same arguments as those in Chapter 3, we can show that the sequence{
β(k),θ(k)

}
generated by the Newton-MI algorithm converges to a solution satisfying the

KKT conditions defined in (5.16) and (5.17).

5.4 Asymptotic properties

Asymptotic properties for the MPL estimator of η = [βT ,θT ]T are analyzed in the same

ways as those in Chapter 3. Define Γ as parameter space of η. Let η0 = [βT0 ,θ
T
0 ]T be the

true model parameter. Let η̂ = [β̂
T
, θ̂

T
] be the MPL estimator of η. In analyzing the

asymptotic properties, we fix the dimension of θ. For convenience, we use the notation for

observations {(Li, Ri],X i, ξi : i = 1, · · · , n}, which has been used in Chapter 3. We denote

the penalized log-likelihood function (5.10) as `P,n(η) to reflect its dependence on n, and

rewrite `P,n(η) as `P,n(η) =
∑n

i=1{`i(η) − γ̃nJ(η)}, where J(η) = J(hε∗) and γ̃n = γ̃/n.

Here we have `i(η) = log g(Li, Ri, ξi|η), where g(Li, Ri, ξi|η) denotes the density function

for {(Li, Ri],X i, ξi}. We assume that both the censoring time and covariate variable are
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independent of failure time, and their distribution functions are free of η. Then the density

function g(Li, Ri, ξi|η) is given by g(Li, Ri, ξi|η) = [S(Li|η)−S(Ri|η)]1−ξif(Li|η)ξi , where

S(t|η) is the survival function of the failure time given in (5.8), and f(t|η) is the density

function given by f(t|η) = h(t|η)S(t|η) with h(t|η) given by (5.6).

In order to develop the asymptotic properties of the MPL estimate η̂, we require

additional assumptions similar to those in Section 3.5 on the model parameter space,

penalized log-likelihood function and penalty function.

Assumptions:

5.1 The parameter space Γ of η is compact.

5.2 There exists a measurable function m(Li, Ri,X i, ξi) with E[m(Li, Ri,X i, ξi)] <∞,

which satisfies |log g(Li, Ri, ξi|η)| ≤ m(Li, Ri,X i, ξi) for all η ∈ Γ.

5.3 Eη0
[n−1`P,n(η)] exists and has a unique maximum at η∗ ∈ int(Γ), where η∗ is not

necessarily equal to η0 due to the penalty term.

5.4 `P,n(η) is continuous over Γ and is twice differentiable in a neighborhood of η∗. The

matrices

G0(η) = Eη0

[
n−1∂`P,n(η)

∂η

∂`P,n(η)

∂ηT

]

and

F0(η) = −Eη0

[
n−1∂

2`P,n(η)

∂η∂ηT

]

exist and are positive definite in a neighborhood of η∗.

5.5 The penalty function J(η) is continuous and bounded over Γ. Both ∂J(η)/∂η and

∂2J(η)/∂η∂ηT exist for all η ∈ Γ, and ∂2J(η)/∂η∂ηT is bounded in a neighborhood

of η∗.
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Theorem 5.1. Assume that Assumptions 5.1-5.5 are satisfied, when n → ∞, the MPL

estimator η̂ is consistent for η∗ and the distribution of
√
n(η̂ − η∗) converges to the

multivariate normal distribution N(0(p+m)×1, V (η∗)), where

V (η∗) = F0(η∗)−1G0(η∗)F0(η∗)−1. (5.21)

In practice, we can estimate the sandwich formula (5.21) consistently by replacing F0(η∗)

and G0(η∗) by their empirical versions, with η∗ replaced by η̂ due to its consistency

property.

We denote the MPL estimator of hε∗(t) at time t by ĥε∗(t). We define a vector W (t) =

[ϕ1(t), · · · , ϕm(t)]T . From (5.4), we can write ĥε∗(t) = W (t)T θ̂ and h∗ε∗(t) = W (t)Tθ∗.

Define a function Kt(θ) = W (t)Tθ, then we have Kt(θ̂) = ĥε∗(t) and Kt(θ
∗) = h∗ε∗(t).

Since the function Kt(θ) is a continuously differentiable function of θ with dKt(θ)/dθ =

W (t), according to Theorem 5.3 and the Delta Theorem, we have

√
n(ĥε∗(t)− h∗ε∗(t))

D→ N(0,W (t)TVar(θ∗)W (t)),

where Var(θ∗) is the covariance matrix of θ∗ obtained from the asymptotic variance

matrix (5.21). Its estimate, V̂ar(θ̂), can be obtained from the estimate of (5.21). Hence

the approximate 95% asymptotic pointwise confidence interval for hε∗(t), at time t, is

ĥε∗(t)± z0.025

√
W (t)T V̂ar(θ̂)W (t),

where z0.025 = 1.96. The approximate 95% asymptotic confidence intervals of βj, j =

1, · · · , p, are constructed in a similar way to that in Chapter 3.

Note that the second derivatives of `P (β,θ) (5.10) with respect to θj, j = 1, · · · ,m, is

∂2`P (β,θ)

∂θ2
j

= −
∑
i∈L

[
τiL,j

1− S(tiL)

]
−
∑
i∈L

[
ρiL,j

1− S(tiL)

]2

−
∑
i∈I

[
τiIR,j − τiIL,j

S(tiIL)− S(tiIR)

]

−
∑
i∈I

[
ρiIR,j − ρiIL,j

S(tiIL)− S(tiIR)

]2

−
∑
i∈O

[
ϕj(t

∗
iO)

hε∗(t∗iO)

]2

− 2γ̃rjj,
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where

τic,j = 2πσ2
jS(tic)

[
Φj(t

∗
ic)− Φj(0)

]2

,

and, for k 6= j,

∂2`P (β,θ)

∂θk∂θj
= −

∑
i∈L

[
ρiL,jρiL,k/S(tiL)

1− S(tiL)

]
−
∑
i∈L

[
ρiL,jρiL,k

(1− S(tiL))2

]

−
∑
i∈I

[
ρiIR,jρiIR,k/S(tiIR)− ρiIL,jρiIL,k/S(tiIL)

S(tiIL)− S(tiIR)

]

−
∑
i∈I

[
(ρiIR,j − ρiIL,j)(ρiIR,k − ρiIL,k)

(S(tiIL)− S(tiIR))2

]

−
∑
i∈O

[
ϕj(t

∗
iO)ϕk(t

∗
iO)

h2
ε∗(t

∗
iO)

]
− 2γ̃rjk.

The second derivative of `P (β,θ) with respect to β and θj, j = 1, · · · ,m, are

∂2`P (β,θ)

∂β∂θj
=

∑
i∈L

[
ΩiL,j

1− S(tiL)
+
ρiL,j η̄(t∗iL)S(tiL)

(1− S(tiL))2

]
X iL +

∑
i∈R

[
ϕj(t

∗
iR)t∗iR

]
X iR

+
∑
i∈O

[
(t∗iO − µj)ϕj(t∗iO)

σ2
j

t∗iO
hε∗(t∗iO)

− ϕj(t∗iO)
t∗iOA(t∗iO)

h2
ε∗(t

∗
iO)

+ ϕj(t
∗
iO)t∗iO

]
X iO

+
∑
i∈I

[
ΩiIR,j − ΩiIL,j

S(tiIL)− S(tiIR)
− (ρiIR,j − ρiIL,j)ξiI

(S(tiIL)− S(tiIR))2

]
XT

iI ,

where

Ωic,j = −ϕj(t∗ic)t∗icS(tic) + ρic,j η̄(t∗ic).

5.5 Simulation studies

In this section, we conduct simulation studies to evaluate the performance of our proposed

MPL method in fitting the AFT model with partly interval-censored failure time data.

The main objectives are listed below:

1. Investigating effects of sample size and censoring proportion on the MPL estimates

of β and hε∗(·).
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2. Comparing the asymptotic standard deviations with the Monte Carlo standard de-

viations of the MPL estimates, and

3. Comparing our method with the method by Komárek et al.(2005). The method by

Komárek et al.(2005) can be found in CRAN.

All the results are obtained using R, and the relevant R codes are provided in Appendix

C.

Objective 1 is to investigate sensitivities of our method to sample sizes and censoring

proportions for the MPL estimates β̂ and ĥε∗(·). Results are presented in Tables 5.1-.5.3

and Figures 5.1-5.3. Objective 2 is to test whether the asymptotic standard deviations

computed by the sandwich formula (5.21) are accurate for the MPL estimates, and this

is achieved by comparing them with the Monte Carlo standard deviations. Results are

reported in Tables 5.1-5.3 and Figures 5.1-5.3. For the third objective, we want to investi-

gate how our method differs from the method by Komárek et al.(2005). The comparative

results are reported in Table 5.4 and Figures 5.4-5.6.

We use samples with sizes of n = 100, 500, and 1000 corresponding to small, inter-

mediate and large sample sizes respectively. For each sample size, we consider censoring

proportions of πc = 20%, 50% and 80%. The data is generated as follows.

1. We use the same regression coefficient vector as that in Chapter 3, namely, β =

[1,−0.3, 0.5]T . For each subject i = 1, · · · , n, we generate covariate variables in the

same ways as those in Chapter 3: the covariate Xi1 is from a Bernoulli distribution

with the parameter 0.5; Xi2 is generated by Xi2 ∼ Unif(0, 3); and Xi3 generated by

Xi3 ∼ Unif(0, 5). The logarithm of failure time Ti, i = 1, · · · , n is then generated

according to the model

log Ti = 1 ·Xi1 − 0.3 ·Xi2 + 0.5 ·Xi3 + εi.
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Therefore, the true failure time is obtained by

Ti = exp {1 ·Xi1 − 0.3 ·Xi2 + 0.5 ·Xi3} · ε∗i ,

where ε∗i = eεi . We generate the error variable εi from an extreme value distribution

with location parameter equal to 0 and scale parameter equal to 1
3
, which has the

density function given by fεi(t) = 3 exp {3t− e3t}. Therefore, the random variable ε∗i

follows the Weibull distribution with shape parameter equal to 3 and scale parameter

equal to 1, i.e., ε∗i ∼WEB(3, 1). The hazard function of ε∗i is given by

hε∗i (t) = 3t2.

2. Independently of Ti, we generate two monitoring times, Ci1 and Ci2, for each subject

i, which are generated in the same ways as those in Chapter 3, i.e., Ci1 is from a

standard uniform Unif(0, 1) and Ci2 is obtained by Ci2 = Ci1 + Unif(0, 1). Then we

generate the censoring times Li and Ri following the same steps as those in Chapter

3.

For each combination of n and πc, we generate 300 Monte Carlo samples. Based on the

300 Monte Carlo samples, we compute the average estimate (AEST), bias (BIAS), Monte

Carlo standard deviation (MCSD), average asymptotic standard deviation (AASD) and

mean squared error (MSE) for the MPL estimate β̂ by the formulas (3.41)-(3.45). For the

MPL estimate ĥε∗(t) at time t, we compute its AEST, MCSD, and AASD by the formula

(3.46)-(3.48), and AISE by the formula (3.50).

Recall the Gaussian basis used to approximate the hazard function hε∗(·) in (5.4),

i.e., ϕ(t;µj, σ
2
j ) = e

−
(t−µj)

2

2σ2
j , j = 1, · · · ,m. We select the knots µj’s in the interval

I(β) = [tmin(β), tmax(β)], where tmin(β) = min{tice−X
T
icβ : i = 1, · · · , n}, tmax(β) =

max{tice−X
T
icβ : i = 1, · · · , n} and c = {L,R, IL, IR,O}. Following the arguments by

Komárek et al.(2005), we select the knots in such a way that the distance between two
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consecutive knots is constant, i.e., δ = µj+1−µj, and we choose σj by σj = 2/3(µj+1−µj) =

2/3δ. Note that the knots depend on β, and hence they change with respect to the esti-

mated values of β during the iterative estimation algorithm. But in any case, there must

be a knot before or at the point tmin(β) and after or at the point tmax(β). For number of

knots m, we set m = 8 for n = 100, m = 12 for n = 500 and m = 18 for n = 1000. We

choose the smoothing value according to the method described in Chapter 3.

Tables 5.1-5.3 provide the AEST, BIAS, MCSD, AASD and MSE values for the MPL

estimates of β assuming different sample sizes and censoring proportions. We observe

that the absolute value of BIAS, the MCSD, AASD and MSE all increase when censoring

proportion increases, but decrease when sample size increases. Comparing MCSD with

AASD in these three tables demonstrates that the sandwich formula (5.21) generally

gives accurate variance approximation for the MPL estimates of β, particularly with

large sample size or small censoring proportion.

Figures 5.1-5.3 exhibit plots of the true hazard function hε∗(·), its AESTs, the corre-

sponding 95% Monte Carlo piecewise confidence intervals (PWCIs) and the corresponding

average of 95% asymptotic PWCIs under different sample sizes and censoring proportions.

We detect that: (i) the AEST of hazard becomes closer to the true hazard as sample size

increases or censoring proportion decreases; (ii) both the 95% Monte Carlo PWCI and

the average of 95% asymptotic PWCI become wider as censoring proportion increases but

narrower with increasing sample size, and they all cover the true hazard; and (iii) the 95%

Monte Carlo PWCI is close to the average of 95% asymptotic PWCI, and they become

indistinguishable from each other when sample size increases or censoring proportion de-

creases. The closeness indicates that the sandwich formula (5.21) generally works well in

approximating variance for the MPL estimate of hε∗(·).
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Tables 5.1-5.3 also report values of AISE for the MPL estimates of hε∗(·) plotted in

Figures 5.1-5.3 under different sample sizes and censoring proportions. We observe that

the AISE exhibits increasing trend when the censoring proportion increases and decreasing

trend when the sample size increases.

To compare our method with the method by Komárek et al.(2005), we use sample sizes

n = 100, 500 and 1000, and censoring proportion πc = 0.5. We generate N = 300 Monte

Carlo samples. For both methods, we use the same number of knots. We select m = 8

for n = 100, m = 12 for n = 500 and m = 18 for n = 1000. The regression coefficients

β = [β1, β2, β3]T and the covariates X i = [Xi1, Xi2, Xi3]T are the same as above. The two

methods are evaluated based on the same data sets. Let fε(·) be the density function of ε.

Although Komárek et al.(2005) fit the AFT model involving estimation of the density of

standardized ε, we can obtain the estimates of fε(·) and hε∗(·). For comparison, we also

compute the estimate of fε(·). We use the R package, smoothSurv, to obtain estimates of

β, fε(·) and hε∗(·) from the method by Komárek et al.(2005), where asymptotic standard

deviation (astd) for the β estimate is computed based on the asymptotic theory for the

penalized method and the corresponding astd formula is similar to our sandwich formula

(5.21). Comparison between these two methods are accomplished by examining values

of BIAS, MCSD, AASD and MSE for estimates of β, and values of AISE for estimates

of fε(·) and hε∗(·). Results are presented in Table 5.4 and Figures 5.4-5.6. For each

sample size, we observe that our method gives higher absolute values of BIAS but lower

values of MCSD for estimates of β. Overall these two methods achieve quite similar

MSE values. In each of the two methods, we compare values of MCSD with values of

AASD for β estimates, and conclude that the astd formulas under these two methods

generally approximate variance accurately. Figures 5.4-5.6 exhibit plots of the estimates

for fε(·) and hε∗(·) with their true values and corresponding 95% Monte Carlo PWCIs
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under different sample sizes. In our method, we also include the corresponding average of

95% asymptotic PWCIs for estimates of hε∗(·). We observe that these two methods give

good estimates both for fε(·) and hε∗(·), especially when the sample size is large, since

the estimates are very close to their true values. In addition, all the 95% Monte Carlo

PWCIs cover the true values, and they become narrower when the sample size increases.

For sample sizes n = 500 and 1000, these two methods give similar values of AISE for

the estimates of fε(·) and hε∗(·). However, for sample size n = 100, our method achieves

lower values of AISE.

5.6 Real data analysis

In this section, we re-analyze the data from the AIDS study (Lindsey and Ryan, 1998)

described in Chapter 3, using the Newton-MI estimation procedure. Let the Ti’s and X i’s

be defined as in Section 3.7 and assume that the distribution of Ti can be described by

the AFT model (5.1). We set the number of knots m = 8 and smoothing value of 0.5.

To test if the four covariates, stage of disease, dose of zidovudine, CD4: 100 − 399 and

CD4: ≥ 400, affect the time to development of resistance, based on the consistency and

asymptotic normality properties of β (see Section 5.4), we perform a hypothesis test of

the null hypothesis, H0: βj = 0 versus alternative hypothesis, Ha: βj 6= 0, j = 1, 2, 3.

Table 5.5 summarizes the MPL estimates β̂ with the corresponding asymptotic standard

deviations, p-values and 95% confidence intervals. We deduce that only the covariate of

stage has significant effect on the time to development of resistance. Figure 5.7 shows plots

for the MPL estimates of baseline hazard and baseline survival with their 95% asymptotic

piecewise confidence intervals (PWCIs). We observe that the estimated baseline hazard

remains stable over time and its 95% asymptotic PWCI becomes narrower until month

10, and then wider afterward.
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5.7 Conclusions

This chapter has developed a MPL method to fit the AFT model with partly interval-

censored failure time data, where the hazard function hε∗(·) is modeled by a linear com-

bination of Gaussian basis functions. We obtain the MPL estimates of hε∗(·) and the re-

gression coefficient vector β simultaneously by using a pioneer algorithm. The algorithm

constitutes two alternative steps in each estimation iteration. The first step updates β

by the modified Newton algorithm and the second step updates the Gaussian basis coef-

ficients θ by the MI algorithm. The resulting estimated hazard function is smooth and

satisfies the non-negativity constraints. The sandwich formula (5.21) provides accurate

estimates of the standard deviations for the MPL estimates.

Although we have developed the MPL method assuming independent censoring and

time-independent covariates, it can be easily extended to fit the AFT model with de-

pendent censoring or time-dependent covariates. For example, Lin and Ying (1995) have

developed estimation methods for the AFT model with time-dependent covariates, but

only considering right-censored data. In addition, our MPL approach can also be adapted

to fit other models, such as an accelerated failure time partial linear model (AFT-PLM).

The model incorporates a nonlinear structure of covariate into the AFT model, that is

log Ti = XT
i β + g(Zi) + εi,

where β is the p-dimensional vector of regression coefficients, X i is the p-dimensional

vector of covariates, Zi is a 1-dimensional covariate, εi is an error variable with an unknown

distribution, and g(·) is an unknown function. Zou et al. (2011) have proposed an

estimation procedure for this model with right-censored data.
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n=100

πc 20% 50% 80%

m 8 8 8

β1 = 1 AEST 0.9950 0.9757 0.9558

BIAS 0.0050 0.0243 0.0442

MCSD 0.0901 0.1018 0.1605

AASD 0.0846 0.0978 0.1325

MSE (0.0081) (0.0109) (0.0277)

β2 = −0.3 AEST -0.3238 -0.3234 -0.3479

BIAS 0.0238 0.0234 0.0479

MCSD 0.0440 0.0616 0.0866

AASD 0.0374 0.0536 0.0698

MSE (0.0025) (0.0043) (0.0097)

β3 = 0.5 AEST 0.4865 0.4867 0.4706

BIAS 0.0135 0.0133 0.0294

MCSD 0.0356 0.0359 0.0555

AASD 0.0275 0.0274 0.0404

MSE (0.0014) (0.0015) (0.0039)

hε∗(t) AISE 0.1627 0.1995 0.3284

Table 5.1: AEST, BIAS, MCSD, AASD and MSE for the estimates β̂, and average

integrated squared error (AISE) for the hazard estimates ĥε∗(t) with number of knots m =

8, sample size n = 100 and censoring proportions πc = 20%, 50% and 80% respectively.
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n=500

πc 20% 50% 80%

m 12 12 12

β1 = 1 AEST 0.9963 0.9919 0.9926

BIAS 0.0037 0.0081 0.0074

MCSD 0.0338 0.0386 0.0556

AASD 0.0318 0.0407 0.0582

MSE (0.0012) (0.0016) (0.0031)

β2 = −0.3 AEST -0.3025 -0.3050 -0.3160

BIAS 0.0025 0.0050 0.0160

MCSD 0.0178 0.0243 0.0317

AASD 0.0172 0.0220 0.0300

MSE (0.0003) (0.0006) (0.0013)

β3 = 0.5 AEST 0.4988 0.4938 0.4937

BIAS 0.0012 0.0062 0.0063

MCSD 0.0109 0.0139 0.0210

AASD 0.0104 0.0132 0.0199

MSE (0.0001) (0.0002) (0.0005)

hε∗(t) AISE 0.0486 0.0648 0.0851

Table 5.2: AEST, BIAS, MCSD, AASD and MSE for the estimates β̂, and average

integrated squared error (AISE) for the hazard estimates ĥε∗(t) with number of knots m =

12, sample size n = 500 and censoring proportions πc = 20%, 50% and 80% respectively.
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n=1000

πc 20% 50% 80%

m 18 18 18

β1 = 1 AEST 0.9960 1.0044 0.9928

BIAS 0.0040 -0.0044 0.0072

MCSD 0.0266 0.0279 0.0457

AASD 0.0230 0.0274 0.0394

MSE (0.0007) (0.0008) (0.0021)

β2 = −0.3 AEST -0.3006 -0.3047 -0.3072

BIAS 0.0006 0.0047 0.0072

MCSD 0.0127 0.0160 0.0251

AASD 0.0124 0.0150 0.0200

MSE (0.0002) (0.0003) (0.0007)

β3 = 0.5 AEST 0.4990 0.4971 0.4983

BIAS 0.0010 0.0029 0.0017

MCSD 0.0097 0.0098 0.0148

AASD 0.0090 0.0090 0.0119

MSE (0.0001) (0.0001) (0.0002)

hε∗(t) AISE 0.0202 0.0340 0.0715

Table 5.3: AEST, BIAS, MCSD, AASD and MSE for the estimates β̂, and average

integrated squared error (AISE) for the hazard estimates ĥε∗(t) with number of knots

m = 18, sample size n = 1000 and censoring proportions πc = 20%, 50% and 80%

respectively.
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n=100 n=500 n=1000

MPL1 MPL2 MPL1 MPL2 MPL1 MPL2

β1 = 1 AEST 0.9677 0.9955 0.9947 0.9983 0.9977 0.9994

BIAS 0.0323 0.0045 0.0053 0.0017 0.0023 0.0006

MCSD 0.0908 0.1173 0.0502 0.0494 0.0311 0.0329

AASD 0.0839 0.1026 0.0404 0.0401 0.0290 0.0292

MSE (0.0093) (0.0138) (0.0025) (0.0024) (0.0010) (0.0011)

β2 = −0.3 AEST -0.3357 -0.2986 -0.3063 -0.3001 -0.3021 -0.3000

BIAS 0.0357 -0.0014 0.0063 0.0001 0.0021 0.0000

MCSD 0.0557 0.0704 0.0257 0.0245 0.0148 0.0148

AASD 0.4991 0.0601 0.0234 0.0231 0.0161 0.0162

MSE (0.0044) (0.0050) (0.0007) (0.0006) (0.0002) (0.0002)

β3 = 0.5 AEST 0.4812 0.4999 0.4966 0.4996 0.4985 0.4994

BIAS -0.0188 0.0001 0.0034 0.0004 0.0015 0.0006

MCSD 0.0304 0.0381 0.0127 0.0122 0.0102 0.0106

AASD 0.0289 0.0254 0.0136 0.0137 0.0097 0.0096

MSE (0.0013) (0.0015) (0.0002) (0.0001) (0.0001) (0.0001)

hε∗(t) AISE 0.2065 0.8785 0.0722 0.0852 0.0303 0.0350

fε(t) AISE 0.0570 0.0828 0.0105 0.0096 0.0051 0.0045

Table 5.4: Comparisons of estimates between our MPL method, denoted by MPL1, and

the MPL method by Komárek et al.(2005), denoted by MPL2, using simulated samples

with sample sizes of n = 100, 500 and 1000, and censoring proportion of πc = 0.5.
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Figure 5.1: Plots of the true hazard hε∗(t) (solid), the average MPL estimates of hε∗(t)

(dash), the 95% Monte Carlo piecewise confidence interval (PWCI) (dot-dash), and the

average 95% asymptotic PWCI (dots), assuming sample size n = 100, number of knots

m = 8 and censoring proportions of 20%, 50% and 80% respectively.
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Figure 5.2: Plots of the true hazard hε∗(t) (solid), the average MPL estimates of hε∗(t)

(dash), the 95% Monte Carlo piecewise confidence interval (PWCI) (dot-dash), and the

average 95% asymptotic PWCI (dots), assuming sample size n = 500, number of knots

m = 12 and censoring proportions of 20%, 50% and 80% respectively.
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Figure 5.3: Plots of the true hazard hε∗(t) (solid), the average MPL estimates of hε∗(t)

(dash), the 95% Monte Carlo piecewise confidence interval (PWCI) (dot-dash), and the

average 95% asymptotic PWCI (dots), assuming sample size n = 1000, number of knots

m = 18 and censoring proportions of 20%, 50% and 80% respectively.
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Figure 5.4: Plots of the estimates for the two methods. Left side: our MPL method for

the hazard estimate of ε∗ and the density estimate of ε. Right side: the MPL method by

Komárek et al.(2005) for the hazard estimate of ε∗ and the density estimate of ε. Sample

size is n = 100 and censoring proportion is πc = 50%.
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Figure 5.5: Plots of the estimates for the two methods. Left side: our MPL method for

the hazard estimate of ε∗ and the density estimate of ε. Right side: the MPL method by

Komárek et al.(2005) for the hazard estimate of ε∗ and the density estimate of ε. Sample

size is n = 500 and censoring proportion is πc = 50%.

138



research/R and matlab/R for AFT model Phd/1000mc1.eps

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

time.point

ha
za

rd

true
mean
95% MC PWCI
95% MC PWCI
95% Asy PWCI
95% Asy PWCI

Hazard and 95% PWCI

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
time.point

ha
za

rd

true
mean
95% MC PWCI
95% MC PWCI

Hazard and 95% PWCI

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

time.point

er
ro

r 
de

si
ty

 fu
nc

tio
n

true
mean
95% MC PWCI
95% MC PWCI

Density and 95% PWCI

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

time.point

er
ro

r 
de

ns
ity

 fu
nc

tio
n

true
mean
95% MC PWCI
95% MC PWCI

Density and 95% PWCI

Figure 5.6: Plots of the estimates for the two methods. Left side: our MPL method for

the hazard estimate of ε∗ and the density estimate of ε. Right side: the MPL method by

Komárek et al.(2005) for the hazard estimate of ε∗ and the density estimate of ε. Sample

size is n = 1000 and censoring proportion is πc = 50%.
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Figure 5.7: Plots of the estimates for the AIDS study. Top: the baseline hazard and its

95% piecewise confidence interval (PWCI). Bottom: the baseline survival function with

its 95% PWCI.
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Effects β̂ astd p-value 95%C.I

stage -1.2068 0.4833 0.0125 (-2.1541, -0.2595)

dose -0.8508 0.4833 0.0783 (-1.7981, 0.0965)

CD4: 100-399 0.6826 0.6156 0.2675 (-0.5240, 1.8892)

CD4: ≥ 400 0.7156 0.4747 0.1317 (-0.2148,1.6460)

Table 5.5: Regression coefficient estimates given by the MPL method with asymptotic

standard deviations (astd), p-values and 95% confidence intervals.
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Chapter 6

Conclusions and future work

6.1 Conclusions

This dissertation has developed novel estimation methods for the PH, AH and AFT

models with partly interval-censored data, which contains exactly observed, left-censored,

finite interval-censored and right-censored data. These methods attempt to maximize

the penalized log-likelihood functions. We assumed that the data were from independent

subjects. For each subject, the covariate vector was assumed to be time-independent, and

censoring time was independent of failure time.

We fitted the PH model by estimating the regression coefficients and baseline hazard.

We first assumed the baseline hazard to be piecewise constant, and then expressed it in

terms of piecewise constant functions. We obtained estimates of the regression coefficients

and baseline hazard simultaneously by maximizing the penalized log-likelihood function

using the Newton-MI algorithm, which combines the Newton algorithm and the MI algo-

rithm (Ma, 2006). In the estimation procedure, the regression coefficients are updated by

the Newton algorithm, while the baseline hazard is updated by the MI algorithm. The

MI algorithm not only guarantees the non-negative constraint for the baseline hazard,
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but also avoids requiring the second derivatives of the penalized log-likelihood with re-

spect to the baseline hazard. The convergence of this algorithm have been proved by

Ma et al. (2014). We produced the smoothed estimate of the baseline hazard through

the penalty function which represents the square of the second order differences for the

basis coefficients of the baseline hazard. Our MPL method differs from those of Joly et

al. (1998) and Cai and Betensky (2003) in the way the non-negative constraint on the

baseline hazard is handled. They imposed the constraint in some indirect ways which may

cause estimation or convergence issues. On the other hand, we imposed the constraints

directly by constraining non-negativity on the basis coefficients of the baseline hazard. In

addition, the algorithms they proposed also differ from the Newton-MI algorithm.

For the AH model, we estimated the regression coefficients and the baseline hazard by

maximizing the penalized log-likelihood function, where the penalty function was included

for smoothness of the baseline hazard estimate. In the estimation procedure, we not only

imposed a non-negative constraint on the baseline hazard, but also on the hazard. The

constraint on these two quantities are imposed simultaneously and directly by the primal-

dual interior point algorithm. This algorithm has also been used by Ghosh (2001) in

studying current status data, but only for the maximum likelihood estimation which may

not yield a smoothed baseline hazard estimate.

Under the AFT model, we simultaneously computed the estimates for the regression

coefficients and the hazard of the exponential function of the error variable by maximizing

the penalized log-likelihood function, where we used the roughness penalty function for

smoothness of the hazard estimate. The roughness penalty function relates the smooth-

ness of the hazard estimate to its second derivative. We approximated the hazard using

a linear combination of Gaussian basis functions, and constrained the hazard to be non-

negative directly by imposing the non-negativity on the basis coefficients. The Newton-
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MI algorithm was applied for the estimations. This can be compared with Komárek et

al.(2005), who proposed a penalized likelihood method that produced a smoothed es-

timate for the density function of the standardized error variable, but there are three

constraints imposed in the estimation procedure which are imposed indirectly. Moreover,

the Newton-MI algorithm we used is not like that used by Komárek et al.(2005).

We fit the PH and AFT models using the Newton-MI algorithm. While, for the AH

model, we compute estimators using the primal-dual interior point algorithm. The reason

is that, under the AH model, it is easier to prove convexity of the penalized log-likelihood

function in η, where η = [βT ,θT ]T , and the estimator of η can be obtained just by

solving the KKT equations for β and θ simultaneously during the estimation procedure

of the primal-dual interior point algorithm. Under the PH and AFT models, it is harder

to prove concavity of the penalized log-likelihood function in η. Using the Newton-MI

algorithm, we can solve the KKT equations for β and θ. Under the AFT model, we model

the baseline hazard function by a linear combination of Gaussian basis functions instead

of piecewise constant functions. This is because the penalized log-likelihood function

constructed based on the assumption of piecewise constant on the baseline hazard is not

differential with respect to β with fixed θ.

We investigated our proposed MPL method under the three models by conducting

simulation studies. For all three models, the results of the simulation studies showed that

the bias and standard deviation for the MPL estimate of regression coefficients increased

with the censoring proportion but decreased with the sample size. The MPL estimate for

the hazard also exhibited the same trend. The sandwich formula derived using asymptotic

theory provided a good estimate for the standard deviation, especially when the sample

size was large or the censoring proportion was small. Comparisons between our method

and other methods were also made in the simulation studies. Under the PH model, we
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compared our method with the method by Pan (1999), and the results showed that our

method gave lower mean squared error (MSE) for the estimate of the regression coefficients

and lower average integrated squared error (AISE) for the baseline hazard estimate. Under

the AH model, we compared our method with that produced by Lin and Ying (1994).

The results demonstrated that although the estimates of the regression coefficients were

similar, our MPL method gave better estimates for the baseline hazard. For the AFT

model, we compared with the method by Komárek et al.(2005). Estimates under the two

methods were similar. For a real data analysis, we observed that the smoothed baseline

hazard estimate, produced by our MPL method, gave clear patterns of hazard over time.

6.2 Future work

We can extend the proposed MPL methods of this dissertation further based on the

following future research directions.

In developing the MPL methods, we assume the covariate variables are time indepen-

dent and the censoring time is independent of the failure time. However, we can extend

our methods to estimate the PH, AH and AFT models with partly interval-censored data

under time-dependent covariates and dependent censoring. Dependent censoring can be

modeled using either a copula function or a frailty model, where a copula can be rep-

resented as a function of the marginal distributions of the failure and censoring times,

which is the joint distribution function, and a frailty is the common random variable

shared between the failure and censoring times, and the joint distribution function of the

failure and censoring times is the integral of the conditional joint distribution function

given the frailty value.

In addition, our MPL methods can also be applied in fitting more general models.

For example, we can fit an additive-multiplicative hazard model, which combines the
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PH and AH models together, with partly interval-censored data. Lin and Ying (1995)

considered some estimation procedures for this model, but only with right-censored data.

Alternatively, we can use our MPL methods to study an accelerated failure time partial

linear model (AFT-PLM), which incorporates a nonlinear structure of covariates into the

AFT model.
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Appendix A R codes for PH model

Note that the following codes are the selected R codes for this dissertation. The electronic

version of the R codes will be provided under the request of the examiners.

A.1 Data generation

# n: sample size p: censoring proportion categorial variable

Ca = matrix(rep(0, n))

ur = runif(n)

Ca[ur <= 0.5] = 1

Ca[ur > 0.5] = 0

# Covariate matrix

X = cbind(Ca, runif(n, min = 0, max = 3), runif(n, min = 0, max = 5))

# beta values

beta = matrix(c(1, -0.3, 0.5))

# Generate data

SimData <- function(beta, X, p, n) {

u = runif(n)

t = (-log(1 - u)/exp(X %*% beta))^(1/3)

Cl = runif(n)

Cr = Cl + runif(n)

indicator = matrix(rep(0, n))

a = runif(n)

indicator[a <= p] = 1
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indicator[a > p] = 0

L = matrix(rep(0, n))

R = matrix(rep(0, n))

status = matrix(rep(0, n))

for (i in 1:n) {

if (indicator[i] == 0) {

L[i] = t[i]

R[i] = t[i]

status[i] = 0

} else {

if (t[i] <= Cl[i]) {

L[i] = 0

R[i] = Cl[i]

status[i] = 1

} else if (Cl[i] < t[i] && t[i] < Cr[i]) {

L[i] = Cl[i]

R[i] = Cr[i]

status[i] = 2

} else if (t[i] >= Cr[i]) {

L[i] = Cr[i]

R[i] = Inf

status[i] = 3

}

}

}

return(cbind(L, R, status))

}

data = SimData(beta, X, p, n)

A.2 Classify data

155



#count: equal count in each bin

classification=function(data,count,n){

#summarize observations

fobs=matrix(data[,1][data[,3]==0])

nf=dim(fobs)[1]

lc=matrix(data[,2][data[,3]==1])

nl=dim(lc)[1]

ilc=matrix(data[,1][data[,3]==2])

irc=matrix(data[,2][data[,3]==2])

ni=dim(ilc)[1]

rc=matrix(data[,1][data[,3]==3])

nr=dim(rc)[1]

#combine all observations

obs=rbind(fobs,lc,ilc,irc,rc)

#order and distinct them

odobs=unique(sort(obs))

#equal number for each bin,

dn=length(odobs)

nbins=ceiling(dn/count)

#bin edg

binedg=matrix(0,nbins+1,1)

for (j in 2:nbins){

binedg[j]=odobs[(j-1)*count]

binedg[nbins+1]=max(odobs)

}

#bin width

binw=diff(binedg)

#matrix: number in each bin for the observations

nob=matrix(0,nbins,5)

idf=matrix(0,nf,1)

idl=matrix(0,nl,1)

idil=matrix(0,ni,1)

idir=matrix(0,ni,1)
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idr=matrix(0,nr,1)

{if (nf==0){

nob[,1]=matrix(0,nbins,1)}

else{

for (i in 1:nf){

for (j in 1:nbins){

if (binedg[j]<fobs[i] & fobs[i]<=binedg[j+1]){

nob[j,1]=nob[j,1]+1

idf[i]=j}

}}

}

if (nl==0){

nob[,2]=matrix(0,nbins,1)}

else{

for (i in 1:nl){

for (j in 1:nbins){

if (binedg[j]<lc[i] & lc[i]<=binedg[j+1]){

nob[j,2]=nob[j,2]+1

idl[i]=j}

}}

}

if (ni==0){

nob[,3]=nob[,4]=matrix(0,nbins,1)}

else{

for (i in 1:ni){

for (j in 1:nbins){

if (binedg[j]<ilc[i] & ilc[i]<=binedg[j+1]){

nob[j,3]=nob[j,3]+1

idil[i]=j}

if (binedg[j]<irc[i] & irc[i]<=binedg[j+1])

{nob[j,4]=nob[j,4]+1

idir[i]=j}

}}
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}

if (nr==0){

nob[,5]=matrix(0,nbins,1)}

else{

for (i in 1:nr){

for (j in 1:nbins){

if (binedg[j]<rc[i] & rc[i]<=binedg[j+1]){

nob[j,5]=nob[j,5]+1

idr[i]=j}

}}

}

}

#matrix: firts column contains observations,

#second column contains bin ID

classifyf=cbind(fobs,idf)

classifyl=cbind(lc,idl)

classifyil=cbind(ilc,idil)

classifyir=cbind(irc,idir)

classifyr=cbind(rc,idr)

return(list(nbins=nbins,nf=nf,nl=nl,ni=ni,nr=nr,

binw=binw,binedg=binedg,classifyf=classifyf,

classifyl=classifyl,classifyil=classifyil,

classifyir=classifyir,classifyr=classifyr,

nob=nob))

}

info=classification(data,count,n)

A.3 The MPL method
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#penalty R matrix

#nbins: number of bins

pen=function(nbins){

M=matrix(0,nbins,nbins)

for (u in 1:nbins){

M[u,u]=6

}

for (u in 1:(nbins-1)){

M[u+1,u]=-4

M[u,u+1]=-4

}

for (u in 1:(nbins-2)){

M[u,u+2]=1

M[u+2,u]=1

}

M[1,1]=M[nbins,nbins]=1

M[2,2]=M[nbins-1,nbins-1]=5

M[2,1]=M[1,2]=M[nbins,nbins-1]=M[nbins-1,nbins]=-2

return(M)

}

#MPL estimation

#smooth: smoothing value

maxiter=5000

mplPH=function(data,X,count,n,maxiter,smooth){

info=classification(data,count,n)

nbins=info$nbins

#Penalty R matrix

R=pen(nbins)

#number of observations for each data type

nf=info$nf

nl=info$nl

ni=info$ni
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nr=info$nr

nob=info$nob

#exactly observed failure time data

classifyf=info$classifyf

yf=classifyf[,1]

idf=classifyf[,2]

#left censored

classifyl=info$classifyl

yl=classifyl[,1]

idl=classifyl[,2]

#left endpoint for interval-censored data

classifyil=info$classifyil

yil=classifyil[,1]

idil=classifyil[,2]

#right endpoint for interval-censored data

classifyir=info$classifyir

yir=classifyir[,1]

idir=classifyir[,2]

#right-censored data

classifyr=info$classifyr

yr=classifyr[,1]

idr=classifyr[,2]

#bin width and points

binw=info$binw

binedg=info$binedg

p=dim(X)[2]

id=data[,3]

#covariate matrix for each data type

tX=X

X=X-matrix(rep(colMeans(X),each=n),ncol=p)

Xf=matrix(X[id==0],nf,p)

Xl=matrix(X[id==1],nl,p)

Xi=matrix(X[id==2],ni,p)
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Xr=matrix(X[id==3],nr,p)

#initial values

eta=1e-1

beta0=matrix(0,p,1)

bh0=matrix(1,nbins,1)

oldbeta=beta0

oldbh=bh0

#cumulative baseline

oldcumbh=cumsum(binw*oldbh)

oldcumbh=c(0,oldcumbh)

#cumulative baseline hazard function

{if (nf==0){

oldcbhf=0}

else{

oldcbhf=oldcumbh[idf]+oldbh[idf]*(yf-binedg[idf])

}

if (nl==0){

oldcbhl=0}

else{

oldcbhl=oldcumbh[idl]+oldbh[idl]*(yl-binedg[idl])

}

if (ni==0){

oldcbhil=0

oldcbhir=0}

else{

oldcbhil=oldcumbh[idil]+oldbh[idil]*(yil-binedg[idil])

oldcbhir=oldcumbh[idir]+oldbh[idir]*(yir-binedg[idir])

}

if (nr==0){

oldcbhr=0}

else{

oldcbhr=oldcumbh[idr]+oldbh[idr]*(yr-binedg[idr])

}
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}

#cumulative hazard function

oldvf=exp(Xf%*%oldbeta)

oldvl=exp(Xl%*%oldbeta)

oldvi=exp(Xi%*%oldbeta)

oldvr=exp(Xr%*%oldbeta)

oldchf=oldcbhf*oldvf

oldchl=oldcbhl*oldvl

oldchil=oldcbhil*oldvi

oldchir=oldcbhir*oldvi

oldchr=oldcbhr*oldvr

#survival function

oldsl=exp(-oldchl)

oldsil=exp(-oldchil)

oldsir=exp(-oldchir)

oldgl=1-oldsl

oldgi=oldsil-oldsir

cvg=matrix(0,maxiter,2)

#begin algorithm

for (iter in 1:maxiter){

#algorithm for updating beta

llik0=sum(log(oldgl))+sum(log(oldgi))-sum(oldchr)

+sum(Xf%*%oldbeta-oldchf)

#gradient for beta

oldeta=oldchir*oldsir-oldchil*oldsil

oldxi=(oldchir^2)*oldsir-(oldchil^2)*oldsil

A=(oldchl*oldsl)/oldgl

B=oldeta/oldgi

D=matrix(1,nf,1)-oldchf

{if (nl==1){

AA=t(Xl)%*%A%*%matrix(1,nl,1)}

else{

AA=t(Xl)%*%diag(c(A))%*%matrix(1,nl,1)
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}

if (ni==1){

BB=t(Xi)%*%B%*%matrix(1,ni,1)}

else{

BB=t(Xi)%*%diag(c(B))%*%matrix(1,ni,1)

}

if (nr==1){

CC=t(Xr)%*%oldchr%*%matrix(1,nr,1)}

else{

CC=t(Xr)%*%diag(c(oldchr))%*%matrix(1,nr,1)

}

if (nf==1){

DD=t(Xf)%*%D%*%matrix(1,nf,1)}

else{

DD=t(Xf)%*%diag(c(D))%*%matrix(1,nf,1)

}

}

bgrad=AA+BB-CC+DD

#Hessian matrix for beta

E=(oldchl*oldsl*(oldsl-1+oldchl))/(oldgl)^2

F=(oldxi-oldeta)/oldgi+(oldeta/oldgi)^2

{if (nl==1){

EE=t(Xl)%*%E%*%Xl}

else{

EE=t(Xl)%*%diag(c(E))%*%Xl

}

if (ni==1){

FF=t(Xi)%*%F%*%Xi}

else{

FF=t(Xi)%*%diag(c(F))%*%Xi

}

if (nr==1){

CCC=t(Xr)%*%oldchr%*%Xr}

163



else{

CCC=t(Xr)%*%diag(c(oldchr))%*%Xr

}

if (nf==1){

GG=t(Xf)%*%oldchf%*%Xf}

else{

GG=t(Xf)%*%diag(c(oldchf))%*%Xf

}

}

Hesb=-EE-FF-CCC-GG

#new estimates for beta

incb=solve(Hesb)%*%bgrad

newbeta=oldbeta-incb

#half new cumulative hazard and survival

newvf=exp(Xf%*%newbeta)

newvl=exp(Xl%*%newbeta)

newvi=exp(Xi%*%newbeta)

newvr=exp(Xr%*%newbeta)

hnewchf=oldcbhf*newvf

hnewchl=oldcbhl*newvl

hnewchil=oldcbhil*newvi

hnewchir=oldcbhir*newvi

hnewchr=oldcbhr*newvr

hnewsl=exp(-hnewchl)

hnewsil=exp(-hnewchil)

hnewsir=exp(-hnewchir)

hnewgl=1-hnewsl

hnewgi=hnewsil-hnewsir

llik1=sum(log(hnewgl))+sum(log(hnewgi))-sum(hnewchr)

+sum(Xf%*%newbeta-hnewchf)

ome=0.6

while(llik1<=llik0){

#newbeta
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newbeta=oldbeta-ome*incb

#half new cumulative hazard and survival functions

newvf=exp(Xf%*%newbeta)

newvl=exp(Xl%*%newbeta)

newvi=exp(Xi%*%newbeta)

newvr=exp(Xr%*%newbeta)

hnewchf=oldcbhf*newvf

hnewchl=oldcbhl*newvl

hnewchil=oldcbhil*newvi

hnewchir=oldcbhir*newvi

hnewchr=oldcbhr*newvr

hnewsl=exp(-hnewchl)

hnewsil=exp(-hnewchil)

hnewsir=exp(-hnewchir)

hnewgl=1-hnewsl

hnewgi=hnewsil-hnewsir

llik1=sum(log(hnewgl))+sum(log(hnewgi))-sum(hnewchr)

+sum(Xf%*%newbeta-hnewchf)

if (ome>=1e-2)

ome=ome*0.6

else if (ome < 1e-2 & ome >= 1e-5)

ome = ome*5e-2

else if (ome<1e-5 & ome>1e-20)

ome = ome*1e-5

else

break

}

llik1=sum(log(hnewgl))+sum(log(hnewgi))-sum(hnewchr)

+sum(nob[,1]*log(oldbh))-sum(hnewchf)-

(smooth/(1-smooth))*t(oldbh)%*%R%*%oldbh

dpen=2*(smooth/(1-smooth))*R%*%oldbh

#new estimates for baseline hazrd

a1=matrix(0,(nbins-1),1)
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c1=matrix(0,(nbins-1),1)

d1=matrix(0,(nbins-1),1)

a=matrix(0,nbins,1)

b1=matrix(0,nbins,1)

b2=matrix(0,nbins,1)

c=matrix(0,nbins,1)

d=matrix(0,nbins,1)

for (i in 1:(nbins-1)){

if (nl==0){

a1[i]=0}

else{

a1[i]=sum(newvl[idl==i+1]*hnewsl[idl==i+1]

/hnewgl[idl==i+1])

}

if (nr==0){

c1[i]=0}

else{

c1[i]=sum(newvr[idr==i+1])

}

if (nf==0){

d1[i]=0}

else{

d1[i]=sum(newvf[idf==i+1])

}

}

cuma1=c(rev(cumsum(rev(a1))),0)

cumc1=c(rev(cumsum(rev(c1))),0)

cumd1=c(rev(cumsum(rev(d1))),0)

for (i in 1:nbins){

if (nl==0){

a[i]=0}

else{

a[i]=sum(newvl[idl==i]*(yl[idl==i]-binedg[i])
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*hnewsl[idl==i]/hnewgl[idl==i])+binw[i]*cuma1[i]

}

if (ni==0){

b1[i]=0

b2[i]=0}

else{

for (j in 1:ni){

if (idil[j]<i & idir[j]==i)

b2[i]=b2[i]+newvi[j]*(yir[j]-binedg[i])*hnewsir[j]

/hnewgi[j]

else if (idil[j]<i & idir[j]>i)

b2[i]=b2[i]+binw[i]*newvi[j]*hnewsir[j]/hnewgi[j]

else if (idil[j]==i & idir[j]==i){

b1[i]=b1[i]+newvi[j]*(yil[j]-binedg[i])*hnewsil[j]

/hnewgi[j]

b2[i]=b2[i]+newvi[j]*(yir[j]-binedg[i])*hnewsir[j]

/hnewgi[j]}

else if (idil[j]==i & idir[j]>i){

b1[i]=b1[i]+newvi[j]*(yil[j]-binedg[i])*hnewsil[j]

/hnewgi[j]

b2[i]=b2[i]+binw[i]*newvi[j]*hnewsir[j]/hnewgi[j]}

else if (idil[j]>i & idir[j]>i){

b1[i]=b1[i]+binw[i]*newvi[j]}

else{

b1[i]=b1[i]+0

b2[i]=b2[i]+0}

}

}

if (nr==0){

c[i]=0}

else{

c[i]=sum(newvr[idr==i]*(yr[idr==i]-binedg[i]))

+binw[i]*cumc1[i]
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}

if (nf==0){

d[i]=0}

else{

d[i]=sum(newvf[idf==i]*(yf[idf==i]-binedg[i]))

+binw[i]*cumd1[i]

}

}

nume=a+b2+nob[,1]/oldbh-matrix(apply(dpen,1,

function(x) min(x,0)))

deno=b1+c+d+matrix(apply(dpen,1,function(x) max(x,0)))

newbh=oldbh*((nume+eta)/(deno+eta))

incbh=newbh-oldbh

cumbh=cumsum(binw*newbh)

cumbh=c(0,cumbh)

#new cumulative baseline hazard function

{if (nf==0){

newcbhf=0}

else{

newcbhf=cumbh[idf]+newbh[idf]*(yf-binedg[idf])

}

if (nl==0){

newcbhl=0}

else{

newcbhl=cumbh[idl]+newbh[idl]*(yl-binedg[idl])

}

if (ni==0){

newcbhil=0

newcbhir=0}

else{

newcbhil=cumbh[idil]+newbh[idil]*(yil-binedg[idil])

newcbhir=cumbh[idir]+newbh[idir]*(yir-binedg[idir])

}
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if (nr==0){

newcbhr=0}

else{

newcbhr=cumbh[idr]+newbh[idr]*(yr-binedg[idr])

}

}

#new cumulative hazard, sruvival functions

newchf=newcbhf*newvf

newchl=newcbhl*newvl

newchil=newcbhil*newvi

newchir=newcbhir*newvi

newchr=newcbhr*newvr

newsl=exp(-newchl)

newsil=exp(-newchil)

newsir=exp(-newchir)

#new g function

newgl=1-newsl

newgi=newsil-newsir

llik2=sum(log(newgl))+sum(log(newgi))-sum(newchr)

+sum(nob[,1]*log(newbh))-sum(newchf)-

(smooth/(1-smooth))*t(newbh)%*%R%*%newbh

ome=0.6

while(llik2<=llik1){

newbh=oldbh+ome*incbh

cumbh=cumsum(binw*newbh)

cumbh=c(0,cumbh)

#new cumulative baseline hazard function

{if (nf==0){

newcbhf=0}

else{

newcbhf=cumbh[idf]+newbh[idf]*(yf-binedg[idf])

}

if (nl==0){
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newcbhl=0}

else{

newcbhl=cumbh[idl]+newbh[idl]*(yl-binedg[idl])

}

if (ni==0){

newcbhil=0

newcbhir=0}

else{

newcbhil=cumbh[idil]+newbh[idil]*(yil-binedg[idil])

newcbhir=cumbh[idir]+newbh[idir]*(yir-binedg[idir])

}

if (nr==0){

newcbhr=0}

else{

newcbhr=cumbh[idr]+newbh[idr]*(yr-binedg[idr])

}

}

#new cumulative hazard, sruvival functions

newchf=newcbhf*newvf

newchl=newcbhl*newvl

newchil=newcbhil*newvi

newchir=newcbhir*newvi

newchr=newcbhr*newvr

newsl=exp(-newchl)

newsil=exp(-newchil)

newsir=exp(-newchir)

#new g function

newgl=1-newsl
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newgi=newsil-newsir

llik2=sum(log(newgl))+sum(log(newgi))-sum(newchr)

+sum(nob[,1]*log(newbh))-sum(newchf)-

(smooth/(1-smooth))*t(newbh)%*%R%*%newbh

if (ome>=1e-2)

ome=ome*0.6

else if (ome < 1e-2 & ome >= 1e-5)

ome = ome*5e-2

else if (ome<1e-5 & ome>1e-20)

ome = ome*1e-5

else

break

}

plik=sum(log(newgl))+sum(log(newgi))-sum(newchr)

+sum(nob[,1]*log(newbh))+sum(Xf%*%newbeta-newchf)-

(smooth/(1-smooth))*t(newbh)%*%R%*%newbh

cvg[iter,1]=iter

cvg[iter,2]=plik

if (max(abs(newbh-oldbh))<1e-5 &

max(abs(newbeta-oldbeta))<1e-5)

{

cvg = cvg[1:iter,]

break

}

else{

oldbh=newbh

oldbeta=newbeta

oldcbhf=newcbhf

oldcbhl=newcbhl

oldcbhil=newcbhil

oldcbhir=newcbhir

oldcbhr=newcbhr

oldchf=newchf
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oldchl=newchl

oldchil=newchil

oldchir=newchir

oldchr=newchr

oldsl=newsl

oldsil=newsil

oldsir=newsir

oldgl=newgl

oldgi=newgi

}

}

bh= newbh*exp(-colMeans(tX)%*%newbeta)[1]

{if (nf==0){

newcbhf=0}

else{

newcbhf=cumbh[idf]+bh[idf]*(yf-binedg[idf])

}

if (nl==0){

newcbhl=0}

else{

newcbhl=cumbh[idl]+bh[idl]*(yl-binedg[idl])

}

if (ni==0){

newcbhil=0

newcbhir=0}

else{

newcbhil=cumbh[idil]+bh[idil]*(yil-binedg[idil])

newcbhir=cumbh[idir]+bh[idir]*(yir-binedg[idir])

}

if (nr==0){

newcbhr=0}

else{

newcbhr=cumbh[idr]+bh[idr]*(yr-binedg[idr])
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}

}

#new cumulative hazard, sruvival functions

newchf=newcbhf*newvf

newchl=newcbhl*newvl

newchil=newcbhil*newvi

newchir=newcbhir*newvi

newchr=newcbhr*newvr

newsl=exp(-newchl)

newsil=exp(-newchil)

newsir=exp(-newchir)

#new g function

newgl=1-newsl

newgi=newsil-newsir

llik=sum(log(newgl))+sum(log(newgi))-sum(newchr)

+sum(nob[,1]*log(bh))+sum(Xf%*%newbeta-newchf)

#Hessian matrix for beta

neweta=newchir*newsir-newchil*newsil

newxi=(newchir^2)*newsir-(newchil^2)*newsil

E=(newchl*newsl*(newsl-1+newchl))/(newgl)^2

F=(newxi-neweta)/newgi+(neweta/newgi)^2

{if (nl==1){

EE=t(Xl)%*%E%*%Xl}

else{

EE=t(Xl)%*%diag(c(E))%*%Xl

}

if (ni==1){

FF=t(Xi)%*%F%*%Xi}

else{

FF=t(Xi)%*%diag(c(F))%*%Xi

}

if (nr==1){

CCC=t(Xr)%*%newchr%*%Xr}
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else{

CCC=t(Xr)%*%diag(c(newchr))%*%Xr

}

if (nf==1){

GG=t(Xf)%*%newchf%*%Xf}

else{

GG=t(Xf)%*%diag(c(newchf))%*%Xf

}

}

Hesb=-EE-FF-CCC-GG

#Hessian matrix for theta

{if (nl==0){

tHesl=matrix(0,nbins,nbins)

}

else{

suml=matrix(0,(nbins-1),1)

for (u in 1:(nbins-1)){

suml[u]=-sum((newsl[idl==u+1]*

(newvl[idl==u+1])^2)/(newgl[idl==u+1])^2)

}

cuml=c(rev(cumsum(rev(suml))),0)

Al=matrix(0,nbins,1)

for (u in 1:nbins){

Al[u]=-sum((newsl[idl==u]*((yl[idl==u]-binedg[u])

*newvl[idl==u])^2)/(newgl[idl==u])^2)+

cuml[u]*(binw[u])^2

}

tHesl=diag(c(Al))

Bl=matrix(0,(nbins-1),1)

for (u in 1:(nbins-1)){

Bl[u]=-sum((newsl[idl==u+1]*(yl[idl==u+1]-

binedg[u+1])*(newvl[idl==u+1])^2)

/(newgl[idl==u+1])^2)
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}

for (i in 2:nbins){

for (j in 1:(i-1)){

tHesl[i,j]=binw[j]*Bl[i-1]+binw[j]*cuml[i]*binw[i]

}

}

for (i in 1:(nbins-1)){

for (j in (i+1):nbins){

tHesl[i,j]=tHesl[j,i]

}

}

}

}

{if (ni==0){

tHesi=matrix(0,nbins,nbins)

}

else{

Ai=matrix(0,nbins,1)

for (u in 1:nbins){

for (i in 1:ni){

if (idil[i]<u & idir[i]==u)

Ai[u]=Ai[u]-(newsil[i]*newsir[i]*

((yir[i]-binedg[u])*newvi[i])^2)/(newgi[i])^2

else if (idil[i]<u & idir[i]>u)

Ai[u]=Ai[u]-(newsil[i]*newsir[i]*

(binw[u]*newvi[i])^2)/(newgi[i])^2

else if (idil[i]==u & idir[i]==u)

Ai[u]=Ai[u]-(newsil[i]*newsir[i]*

((yil[i]-yir[i])*newvi[i])^2)/(newgi[i])^2

else if (idil[i]==u & idir[i]>u)

Ai[u]=Ai[u]-(newsil[i]*newsir[i]*

((yil[i]-binedg[u]-binw[u])*newvi[i])^2)
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/(newgi[i])^2

else

Ai[u]=Ai[u]+0

}

}

tHesi=diag(c(Ai))

for (i in 2:nbins){

for (j in 1:(i-1)){

for (k in 1:ni){

if (idil[k]<j & idir[k]==i)

tHesi[i,j]=tHesi[i,j]-newsil[k]*newsir[k]*binw[j]*

(yir[k]-binedg[i])*(newvi[k])^2/(newgi[k])^2

else if (idil[k]==j & idir[k]==i)

tHesi[i,j]=tHesi[i,j]-newsil[k]*newsir[k]*

(yir[k]-binedg[i])*(binw[j]-yil[k]+binedg[j])*

(newvi[k])^2/(newgi[k])^2

else if (idil[k]<j & idir[k]>i)

tHesi[i,j]=tHesi[i,j]-newsil[k]*newsir[k]*

binw[i]*binw[j]*(newvi[k])^2/(newgi[k])^2

else if (idil[k]==j & idir[k]>i)

tHesi[i,j]=tHesi[i,j]-binw[i]*(binw[j]-yil[k]+binedg[j])

*newsil[k]*newsir[k]*(newvi[k])^2/(newgi[k])^2

else

tHesi[i,j]=tHesi[i,j]+0

}

}

}

for (i in 1:(nbins-1)){

for (j in (1+i):nbins){

tHesi[i,j]=tHesi[j,i]

}

}

}
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}

{if (nf==0){

Af=matrix(0,nbins,1)

}

else{

Af=matrix(0,nbins,1)

for (u in 1:nbins){

Af[u]=-nob[u,1]/(bh[u])^2

}

}

}

tHesf=diag(c(Af))

tHes=tHesl+tHesi+tHesf

#second derivative with repective to beta and theta

summl=matrix(0,p,(nbins-1))

summr=matrix(0,p,(nbins-1))

summf=matrix(0,p,(nbins-1))

for (u in 1:(nbins-1)){

if (nl==0){

summl[,u]=matrix(0,p,1)

}

else{

summl[,u]=-t(matrix(Xl[idl==u+1],nob[u+1,2],p))%*%

((newchl[idl==u+1]+newsl[idl==u+1]-1)*newvl[idl==u+1]

*newsl[idl==u+1]/(newgl[idl==u+1])^2)

}

if (nr==0){

summr[,u]=matrix(0,p,1)

}

else{

summr[,u]=-t(matrix(Xr[idr==u+1],nob[u+1,5],p))
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%*%newvr[idr==u+1]

}

if (nf==0){

summf[,u]=matrix(0,p,1)

}

else{

summf[,u]=-t(matrix(Xf[idf==u+1],nob[u+1,1],p))

%*%newvf[idf==u+1]

}

}

cumml=matrix(0,p,(nbins-1))

cummr=matrix(0,p,(nbins-1))

cummf=matrix(0,p,(nbins-1))

for (u in 1:(nbins-1)){

cumml[,u]=summl[,u:(nbins-1)]%*%matrix(1,(nbins-u),1)

cummr[,u]=summr[,u:(nbins-1)]%*%matrix(1,(nbins-u),1)

cummf[,u]=summf[,u:(nbins-1)]%*%matrix(1,(nbins-u),1)

}

cumml=cbind(cumml,matrix(0,p,1))

cummr=cbind(cummr,matrix(0,p,1))

cummf=cbind(cummf,matrix(0,p,1))

dbtl=matrix(0,p,nbins)

dbti=matrix(0,p,nbins)

dbtr=matrix(0,p,nbins)

dbtf=matrix(0,p,nbins)

for (u in 1:nbins){

if (nl==0){

dbtl[,u]=matrix(0,p,1)

}

else{

dbtl[,u]=-t(matrix(Xl[idl==u],nob[u,2],p))%*%

((newchl[idl==u]+newsl[idl==u]-1)*(yl[idl==u]-binedg[u])

*newvl[idl==u]*newsl[idl==u]/(newgl[idl==u])^2)
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+binw[u]*cumml[,u]

}

if (ni==0){

dbti[,u]=matrix(0,p,1)

}

else{

for (i in 1:ni){

if (idil[i]<u & idir[i]==u)

dbti[,u]=dbti[,u]+t(Xi[i,])*((yir[i]-binedg[u])*newvi[i]*

newsir[i]*(newgi[i]+newsil[i]*(newchil[i]-newchir[i]))

/(newgi[i])^2)

else if (idil[i]<u & idir[i]>u)

dbti[,u]=dbti[,u]+t(Xi[i,])*(binw[u]*newvi[i]*newsir[i]*

(newgi[i]+newsil[i]*(newchil[i]-newchir[i]))

/(newgi[i])^2)

else if (idil[i]==u & idir[i]==u)

dbti[,u]=dbti[,u]+t(Xi[i,])*((newgi[i]*((yir[i]-binedg[u])

*newvi[i]*newsir[i]-(yil[i]-binedg[u])*newvi[i]*newsil[i])

+(newchil[i]-newchir[i])*newsil[i]*newsir[i]*(yir[i]-yil[i])

*newvi[i])/(newgi[i])^2)

else if (idil[i]==u & idir[i]>u)

dbti[,u]=dbti[,u]+t(Xi[i,])*((newgi[i]*(binw[u]*newvi[i]

*newsir[i]-(yil[i]-binedg[u])*newvi[i]*newsil[i])+

(newchil[i]-newchir[i])*newsil[i]*newsir[i]*

(binw[u]-yil[i]+binedg[u])*newvi[i])/(newgi[i])^2)

else if (idil[i]>u & idir[i]>u)

dbti[,u]=dbti[,u]-t(Xi[i,])*(binw[u]*newvi[i])

else

dbti[,u]=dbti[,u]+matrix(0,p,1)

}

}

if (nr==0){

dbtr[,u]=matrix(0,p,1)
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}

else{

dbtr[,u]=-t(matrix(Xr[idr==u],nob[u,5],p))

%*%((yr[idr==u]-binedg[u])*newvr[idr==u])

+binw[u]*cummr[,u]

}

if (nf==0){

dbtf[,u]=matrix(0,p,1)

}

else{

dbtf[,u]=-t(matrix(Xf[idf==u],nob[u,1],p))

%*%((yf[idf==u]-binedg[u])*newvf[idf==u])

+binw[u]*cummf[,u]

}

}

dbt=dbtl+dbti+dbtr+dbtf

#Hessian matrix

H=rbind(cbind(Hesb,dbt),cbind(t(dbt),tHes))

HesbinvD=matrix(diag(solve(-Hesb)))

tHesp=-tHes+2*smooth*R/(1-smooth)

tHespinvD=matrix(diag(solve(tHesp)))

Hessp=rbind(cbind(-Hesb,-dbt),cbind(-t(dbt),tHesp))

#dHessp=diag(Hessp); idHessp=diag(1/sqrt(dHessp))

#sHessp=idHessp%*%Hessp%*%idHessp

#sHessp is better scaled than Hessp

#Hesspinv=idHessp%*%(solve(sHessp)%*%idHessp)

#varcov=Hesspinv%*%(-H)%*%Hesspinv

varcov=solve(Hessp)%*%(-H)%*%solve(Hessp)

{if (p==1){

betavar=varcov[1:p,1:p]

}

else{

betavar=matrix(diag(varcov[1:p,1:p]))
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}

}

betavar[betavar<0]=HesbinvD[betavar<0]

bhvar=matrix(diag(varcov[(p+1):(p+nbins),(p+1):(p+nbins)]))

bhvar[bhvar<0]=tHespinvD[bhvar<0]

#selection criterion for smoothing value

df=sum(diag(solve(-Hessp)%*%H))

AIC=-llik+df

#plot of baseline hazard

time.point=seq(0.05,1,length=50)

tbh=3*time.point^2

ebh=matrix(0,50,1)

ebhvar=matrix(0,50,1)

for (i in 1:50){

for (j in 1:nbins){

if (binedg[j]<time.point[i] & time.point[i]<=binedg[j+1]){

ebh[i]=bh[j]

ebhvar[i]=bhvar[j]

}

}

}

nd=500

minv=min(time.point)

maxv=max(time.point)

delta=(maxv-minv)/nd

bin.point=matrix(seq(minv,maxv,delta))

mp=matrix(0,nd,1)

for (i in 1:nd){

mp[i]=(bin.point[i]+bin.point[i+1])/2

}

ISEs=matrix(0,nd,1)
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for (i in 1:nd){

for (j in 1:nbins){

if (binedg[j]<mp[i] & mp[i]<=binedg[j+1]){

ISEs[i]=(3*mp[i]^2-bh[j])^2

}

}

}

ISE=delta*sum(ISEs)

par(mfrow=c(2,1))

plot(cvg[,1],cvg[,2],type='l',xlab='iteration',

ylab='cvg',main='convergence view')

plot(time.point,tbh,type='l',col='red',

ylab='baseline hazard function',

main='ture hazard v.s estimated hazard')

lines(time.point,ebh,type='l',col='blue')

return(list(binedg=binedg,newbeta=newbeta,ebh=ebh,

betavar=betavar,ebhvar=ebhvar,ISE=ISE,AIC=AIC))

}

phfit=mplPH(data,X,count,n,maxiter,smooth)

A.4 Monte Carlo simulation

#Select the smoothing value

#smv: vector of smoothing values

selSm<-function(data,X,count,n,maxiter,smv){

time.point=seq(0.05,1,length=50)

tbh=3*time.point^2

ns=dim(smv)[1]

id=matrix(seq(1,ns,1))

AICs=matrix(0,ns,1)

newbetas=matrix(0,ns,3)

betavars=matrix(0,ns,3)
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ISEs=matrix(0,ns,1)

ebhs=matrix(0,50,ns)

for (i in 1:ns){

phfit=mplPH(data,X,count,n,maxiter,smv[i])

AICs[i]=phfit$AIC

newbetas[i,]=matrix(phfit$newbeta,nrow=1)

betavars[i,]=matrix(phfit$betavar,nrow=1)

ebhs[,i]=matrix(phfit$ebh)

ISEs[i]=phfit$ISE

print(i)

}

AICm=min(AICs)

id=id[AICs==AICm]

smop=smv[id]

newbetaop=newbetas[id,]

betavarop=betavars[id,]

ISEop=ISEs[id]

ebhop=ebhs[,id]

return(list(smop=smop,AICm=AICm,AICs=AICs,

newbetaop=newbetaop,

betavarop=betavarop,ISEop=ISEop,

newbetas=newbetas,betavars=betavars,ISEs=ISEs))

}

SmSel=selSm(data,X,count,n,maxiter,smv)

#Monte Carlo Simulation.

#n: sample size.

#p: censoring proportion.

#count: equal count of observations in each bin.

#beta: beta values.

#N: N Monte Carlo samples.

#maxiter: number of iterations in the Newton-MI algorithm.
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#smop: smoothing value selected by SmSel.

MCsimu<-function(n,p,count,beta,N,maxiter,smop){

#initials

np=dim(beta)[1]

betas=matrix(0,N,np)

betavars=matrix(0,N,np)

time.point=seq(0.05,1,length=50)

ebhs=matrix(0,50,N)

ebhvars=matrix(0,50,N)

ISEs=matrix(0,N,1)

#Monte Carlo simulation

for(i in 1:N){

#categorial variable

Ca=matrix(rep(0,n))

ur=runif(n)

Ca[ur<=0.5]=1

Ca[0.5<ur & ur<=1]=0

#Covariate matrix

X=cbind(Ca,runif(n,min=0,max=3),runif(n,min=0,max=5))

# data generation

data=SimData(beta,X,p,n)

phfit=mplPH(data,X,count,n,maxiter,smop)

betas[i,]=matrix(phfit$newbeta,nrow=1)

ebhs[,i]=matrix(phfit$ebh)

betavars[i,]=matrix(phfit$betavar,nrow=1)

ebhvars[,i]=matrix(phfit$ebhvar)

ISEs[i]=phfit$ISE

print(i)

}

#average of integrated squared error

mISE=mean(ISEs)

#mean, bias, std, astd, mse of beta

meanb=matrix(colMeans(betas),1,np)
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biasbeta=t(beta)-meanb

varb=matrix(0,1,np)

for (j in 1:np){

varb[1,j]=var(betas[,j])

}

stdb=sqrt(varb)

astdb=matrix(colMeans(sqrt(betavars)),1,np)

mseb=biasbeta^2+varb

#summary for beta

summaryb=rbind(meanb,biasbeta,stdb,astdb,mseb)

#sample mean, std and astd of baseline hazard estimate

meanbh=matrix(colMeans(t(ebhs)))

varbh=matrix(0,50,1)

for (j in 1:50){

varbh[j]=var(ebhs[j,])

}

#MC standard deviation

stdbh=sqrt(varbh)

#Average asymptotic standard deviation

aastdbh=matrix(colMeans(t(sqrt(ebhvars))))

#summary for the baseline hazard

# 95% MC PWCI

mclbh=meanbh-1.96*stdbh

mcubh=meanbh+1.96*stdbh

# average of 95% asymptotic PWCI

aasylbh=meanbh-1.96*aastdbh

aasyubh=meanbh+1.96*aastdbh

mclbh[mclbh<0]=0

aasylbh[aasylbh<0]=0

summarybh=cbind(meanbh,mclbh,mcubh,aasylbh,aasyubh)

return(list(summaryb=summaryb,summarybh=summarybh,

mISE=mISE))

}
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sim=MCsimu(n,p,count,beta,N,maxiter,smop)

A.5 Method comparison

#Datasets used for method comparisons

beta=matrix(c(1,-0.3,0.5))

GenerateData=function(beta,n,p,N){

obsets=matrix(0,n,3*N)

Xs=matrix(0,n,3*N)

for (i in 1:N){

Ca=matrix(rep(0,n))

ur=runif(n)

Ca[ur<=0.5]=1

Ca[ur>0.5]=0

#Covariate matrix

Xs[,(3*i-2):(3*i)]=cbind(Ca,runif(n,min=0,max=3),

runif(n,min=0,max=5))

data=SimData(beta,Xs[,(3*i-2):(3*i)],p,n)

obsets[,(3*i-2):(3*i)]=data

}

return(list(obsets=obsets,Xs=Xs))

}

dataset=GenerateData(beta,n,p,N)

datas=dataset$obsets

Xs=dataset$Xs

datasets=matrix(0,n,5*N)

int.datas=matrix(0,n,2*N)

for (i in 1:N){

int.datas[,(2*i-1):(2*i)]=datas[,(3*i-2):(3*i-1)]

int.datas[,2*i][int.datas[,2*i]==Inf]=NA

datasets[,(5*i-4):(5*i-3)]=int.datas[,(2*i-1):(2*i)]
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datasets[,(5*i-2):(5*i)]=Xs[,(3*i-2):(3*i)]

}

colnames(datasets)=rep(c('L','R','x1','x2','x3'),N)

#MC simulations for the method from Pan (1999)

pan.sim=function(datasets,n,N){

times=seq(0.05,1,length=50)

betas=matrix(0,N,3)

ebhs=matrix(0,50,N)

ISEs=matrix(0,N,1)

for (i in 1:N){

dataset=data.frame(datasets[,(5*i-4):(5*i)])

pan.fit=intcox(Surv(L, R, type = "interval2")

~x1 + x2+x3, data = dataset)

betas[i,]=matrix(pan.fit$coef,nrow=1)

time.value=matrix(pan.fit$time.point)

cumhaz=matrix(pan.fit$lambda0)

bh=rbind(0,diff(cumhaz))

ntp=dim(time.value)[1]

ebh=matrix(0,50,1)

for (k in 1:50){

for (j in 1:(ntp-1)){

if (time.value[j]<times[k] & times[k]<=time.value[j+1]){

ebh[k]=((times[k]-time.value[j])/(time.value[j+1]-time.value[j]))

*bh[j]+((time.value[j+1]-times[k])/(time.value[j+1]-time.value[j]))

*bh[j+1]

}

}

}

ebhs[,i]=ebh

nd=500

minv=min(times)

maxv=max(times)
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delta=(maxv-minv)/nd

bin.point=matrix(seq(minv,maxv,delta))

mp=matrix(0,nd,1)

for (k in 1:nd){

mp[k]=(bin.point[k]+bin.point[k+1])/2

}

ISE=matrix(0,nd,1)

embh=matrix(0,nd,1)

for (k in 1:nd){

for (j in 1:(ntp-1)){

if (time.value[j]<mp[k] & mp[k]<=time.value[j+1]){

embh[k]=((mp[k]-time.value[j])/(time.value[j+1]-time.value[j]))

*bh[j]+((time.value[j+1]-mp[k])/(time.value[j+1]-time.value[j]))

*bh[j+1]

ISE[k]=(3*mp[k]^2-embh[k])^2

}

}

}

ISEs[i]=delta*sum(ISE)

print(i)

}

mISE=mean(ISEs)

meanb=matrix(colMeans(betas),1,3)

biasbeta=t(beta)-meanb

varb=matrix(0,1,3)

for (j in 1:3){

varb[1,j]=var(betas[,j])

}

stdb=sqrt(varb)

mseb=biasbeta^2+varb

summaryb=rbind(meanb,biasbeta,stdb,mseb)

meanbh=matrix(colMeans(t(ebhs)))

varbh=matrix(0,50,1)
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for (j in 1:50){

varbh[j]=var(ebhs[j,])

}

stdbh=sqrt(varbh)

mclbh=meanbh-1.96*stdbh

mcubh=meanbh+1.96*stdbh

mclbh[mclbh<0]=0

summarybh=cbind(meanbh,mclbh,mcubh)

return(list(summaryb=summaryb,betas=betas,

summarybh=summarybh,mISE=mISE))

}

pansim=pan.sim(datasets,n,N)

#Monte Carlo simulations for our MPL method

MCsimu<-function(datas,Xs,n,count,N,maxiter,smop){

#initials

np=dim(beta)[1]

betas=matrix(0,N,np)

betavars=matrix(0,N,np)

time.point=seq(0.05,1,length=50)

ebhs=matrix(0,50,N)

ebhvars=matrix(0,50,N)

ISEs=matrix(0,N,1)

#MC simulation

for(i in 1:N){

phfit=mplPH(datas[,(3*i-2):(3*i)],Xs[,(3*i-2):(3*i)],

count,n,maxiter,smop)

betas[i,]=matrix(phfit$newbeta,nrow=1)

ebhs[,i]=matrix(phfit$ebh)

betavars[i,]=matrix(phfit$betavar,nrow=1)

ebhvars[,i]=matrix(phfit$ebhvar)

ISEs[i]=phfit$ISE
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print(i)

}

mISE=mean(ISEs)

#mean, bias, std, astd and mse of beta

meanb=matrix(colMeans(betas),1,np)

biasbeta=t(beta)-meanb

varb=matrix(0,1,np)

for (j in 1:np){

varb[1,j]=var(betas[,j])

}

stdb=sqrt(varb)

astdb=matrix(colMeans(sqrt(betavars)),1,np)

mseb=biasbeta^2+varb

#summary for beta

summaryb=rbind(meanb,biasbeta,stdb,astdb,mseb)

#mean, std and astd of baseline hazard estimate

meanbh=matrix(colMeans(t(ebhs)))

varbh=matrix(0,50,1)

for (j in 1:50){

varbh[j]=var(ebhs[j,])

}

#MC standard deviation

stdbh=sqrt(varbh)

#Average asymptotic standard deviation

aastdbh=matrix(colMeans(t(sqrt(ebhvars))))

#summary for the baseline hazard estimate

# 95% MC PWCI

mclbh=meanbh-1.96*stdbh

mcubh=meanbh+1.96*stdbh

# average of 95% asymptotic PWCI

aasylbh=meanbh-1.96*aastdbh

aasyubh=meanbh+1.96*aastdbh

mclbh[mclbh<0]=0
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aasylbh[aasylbh<0]=0

summarybh=cbind(meanbh,mclbh,mcubh,aasylbh,aasyubh)

return(list(summaryb=summaryb,summarybh=summarybh,

mISE=mISE))

}

sim=MCsimu(datas,Xs,n,count,N,maxiter,smop)
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Appendix B R codes for AH model

B.1 Data generation

# Generate data

#beta values

beta=matrix(c(1,-0.3,0.5))

#n: sample size.

#p: censoring proportion.

event <- function(beta,p,n){

t=matrix(0,n,1)

X=matrix(0,n,3)

for (i in 1:n){

repeat{

Ca=0

ur=runif(1)

Ca[ur<=0.5]=1

Ca[ur>0.5]=0

X[i,]=c(Ca,runif(1,min=0,max=3),

runif(1,min=0,max=5))

t1=log(1-runif(1))

t2=X[i,]%*%beta

f=function(x)(x^3)+x*t2[1]+t1[1]

t[i]=uniroot.all(f,c(0,10))

if ((t[i]!=0) & (length(t[i])!=0))
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break

}

}

Cl=runif(n)

Cr=Cl+runif(n)

indicator=matrix(rep(0,n))

sw=runif(n)

indicator[sw<=p]=1

indicator[sw>p]=0

L=matrix(rep(0,n))

R=matrix(rep(0,n))

status=matrix(rep(0,n))

for (i in 1:n){

if (indicator[i]==0) {L[i]=t[i]

R[i]=t[i]

status[i]=0}

else{

if (t[i]<=Cl[i]) {L[i]=0

R[i]=Cl[i]

status[i]=1}

else if (Cl[i]<t[i] && t[i]<=Cr[i]) {L[i]=Cl[i]

R[i]=Cr[i]

status[i]=2}

else if (t[i]>Cr[i]) {L[i]=Cr[i]

R[i]=Inf

status[i]=3}

}

}

return(cbind(L,R,status,X))
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}

dataset=event(beta,p,n)

data=dataset[,1:3]

X=dataset[,4:6]

B.2 Data classification

#count: equal count in each bin

classification=function(data,count,n){

#summarize observations

fobs=matrix(data[,1][data[,3]==0])

nf=dim(fobs)[1]

lc=matrix(data[,2][data[,3]==1])

nl=dim(lc)[1]

ilc=matrix(data[,1][data[,3]==2])

irc=matrix(data[,2][data[,3]==2])

ni=dim(ilc)[1]

rc=matrix(data[,1][data[,3]==3])

nr=dim(rc)[1]

#combine all observations

obs=rbind(fobs,lc,ilc,irc,rc)

#order and distinct them

odobs=unique(sort(obs))

#equal number for each bin

dn=length(odobs)

nbins=ceiling(dn/count)

#bin edg

binedg=matrix(0,nbins+1,1)

for (j in 2:nbins){

binedg[j]=odobs[(j-1)*count]

binedg[nbins+1]=max(odobs)
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}

#bin length

binw=diff(binedg)

#number in each bin for the observations

nob=matrix(0,nbins,5)

idf=matrix(0,nf,1)

idl=matrix(0,nl,1)

idil=matrix(0,ni,1)

idir=matrix(0,ni,1)

idr=matrix(0,nr,1)

{if (nf==0){

nob[,1]=matrix(0,nbins,1)}

else{

for (i in 1:nf){

for (j in 1:nbins){

if (binedg[j]<fobs[i] & fobs[i]<=binedg[j+1]){

nob[j,1]=nob[j,1]+1

idf[i]=j}

}}

}

if (nl==0){

nob[,2]=matrix(0,nbins,1)}

else{

for (i in 1:nl){

for (j in 1:nbins){

if (binedg[j]<lc[i] & lc[i]<=binedg[j+1]){

nob[j,2]=nob[j,2]+1

idl[i]=j}

}}

}

if (ni==0){

nob[,3]=nob[,4]=matrix(0,nbins,1)}

else{
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for (i in 1:ni){

for (j in 1:nbins){

if (binedg[j]<ilc[i] & ilc[i]<=binedg[j+1]){

nob[j,3]=nob[j,3]+1

idil[i]=j}

if (binedg[j]<irc[i] & irc[i]<=binedg[j+1])

{nob[j,4]=nob[j,4]+1

idir[i]=j}

}}

}

if (nr==0){

nob[,5]=matrix(0,nbins,1)}

else{

for (i in 1:nr){

for (j in 1:nbins){

if (binedg[j]<rc[i] & rc[i]<=binedg[j+1]){

nob[j,5]=nob[j,5]+1

idr[i]=j}

}}

}

}

classifyf=cbind(fobs,idf)

classifyl=cbind(lc,idl)

classifyil=cbind(ilc,idil)

classifyir=cbind(irc,idir)

classifyr=cbind(rc,idr)

return(list(nbins=nbins,nf=nf,nl=nl,ni=ni,nr=nr,

binw=binw,binedg=binedg,classifyf=classifyf,

classifyl=classifyl,classifyil=classifyil,

classifyir=classifyir,classifyr=classifyr,nob=nob))

}
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info=classification(data,count,n)

B.3 The MPL estimation

#R matrix for smoothing

pen=function(nbins){

M=matrix(0,nbins,nbins)

for (u in 1:nbins){

M[u,u]=6

}

for (u in 1:(nbins-1)){

M[u+1,u]=-4

M[u,u+1]=-4

}

for (u in 1:(nbins-2)){

M[u,u+2]=1

M[u+2,u]=1

}

M[1,1]=M[nbins,nbins]=1

M[2,2]=M[nbins-1,nbins-1]=5

M[2,1]=M[1,2]=M[nbins,nbins-1]=M[nbins-1,nbins]=-2

return(M)

}

#MPL estimation

sigma=0.5

rho=5000

maxiter=300

#smooth: smoothing value

mplAHM=function(data,X,count,n,sigma,rho,maxiter,smooth){

info=classification(data,count,n)

nbins=info$nbins
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#Penalty R matrix

R=pen(nbins)

#number of obser in each data type

nf=info$nf

nl=info$nl

ni=info$ni

nr=info$nr

nob=info$nob

#exactly observed failure time

classifyf=info$classifyf

yf=classifyf[,1]

idf=classifyf[,2]

#left censored

classifyl=info$classifyl

yl=classifyl[,1]

idl=classifyl[,2]

#left endpoint for interval-censored

classifyil=info$classifyil

yil=classifyil[,1]

idil=classifyil[,2]

#right endpoint for interval-censored

classifyir=info$classifyir

yir=classifyir[,1]

idir=classifyir[,2]

#right-censored data

classifyr=info$classifyr

yr=classifyr[,1]

idr=classifyr[,2]

#bin width and points

binw=info$binw

binedg=info$binedg

p=dim(X)[2]

id=data[,3]
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#covariate matrix

Xf=matrix(X[id==0],nf,p)

Xl=matrix(X[id==1],nl,p)

Xi=matrix(X[id==2],ni,p)

Xr=matrix(X[id==3],nr,p)

#initial values

beta0=matrix(0,p,1)

lamda0=matrix(1,nbins+ni+n,1)

s0=matrix(1,nbins+ni+n,1)

bh0=matrix(1,nbins,1)

oldlamda=lamda0

olds=s0

oldbeta=beta0

oldbh=bh0

oldeta=rbind(oldbh,oldbeta)

mu=sum(oldlamda*olds)/(nbins+n+ni)

#cumulative baseline

oldcumbh=cumsum(binw*oldbh)

oldcumbh=c(0,oldcumbh)

#cumulative baseline hazard

{if (nf==0){

oldcbhf=0}

else{

oldcbhf=oldcumbh[idf]+oldbh[idf]*(yf-binedg[idf])

}

if (nl==0){

oldcbhl=0}

else{

oldcbhl=oldcumbh[idl]+oldbh[idl]*(yl-binedg[idl])

}

if (ni==0){

oldcbhil=oldcbhir=0}

else{
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oldcbhil=oldcumbh[idil]+oldbh[idil]*(yil-binedg[idil])

oldcbhir=oldcumbh[idir]+oldbh[idir]*(yir-binedg[idir])

}

if (nr==0){

oldcbhr=0}

else{

oldcbhr=oldcumbh[idr]+oldbh[idr]*(yr-binedg[idr])

}

}

#cumulative hazard

oldchf=oldcbhf+(Xf%*%oldbeta)*yf

oldchl=oldcbhl+(Xl%*%oldbeta)*yl

oldchil=oldcbhil+(Xi%*%oldbeta)*yil

oldchir=oldcbhir+(Xi%*%oldbeta)*yir

oldchr=oldcbhr+(Xr%*%oldbeta)*yr

#hazard function for exactly failure data

oldhzf=oldbh[idf]+Xf%*%oldbeta

#survival function

oldsvl=exp(-oldchl)

oldsvil=exp(-oldchil)

oldsvir=exp(-oldchir)

# f function

oldf=rbind(-oldbh,-oldhzf,

-(oldbh[idl]+Xl%*%oldbeta),-(oldbh[idil]+Xi%*%oldbeta),

-(oldbh[idir]+Xi%*%oldbeta),-(oldbh[idr]+Xr%*%oldbeta)

)

#M matrix

M0=cbind(-diag(1,nbins),matrix(0,nbins,p))

{if (nf==0){

Mf=cbind(matrix(0,nf,nbins),-Xf)}

else{

Mf=cbind(matrix(0,nf,nbins),-Xf)

for (j in 1:nf){
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Mf[j,][idf[j]]=-1

}

}

if (nl==0){

Ml=cbind(matrix(0,nl,nbins),-Xl)}

else{

Ml=cbind(matrix(0,nl,nbins),-Xl)

for (j in 1:nl){

Ml[j,][idl[j]]=-1

}

}

if (ni==0){

Mil=Mir=cbind(matrix(0,ni,nbins),-Xi)}

else{

Mil=Mir=cbind(matrix(0,ni,nbins),-Xi)

for (j in 1:ni){

Mil[j,][idil[j]]=-1

Mir[j,][idir[j]]=-1

}

}

if (nr==0){

Mr=cbind(matrix(0,nr,nbins),-Xr)}

else{

Mr=cbind(matrix(0,nr,nbins),-Xr)

for (j in 1:nr){

Mr[j,][idr[j]]=-1

}

}

}

M=rbind(M0,Mf,Ml,Mil,Mir,Mr)

#gradient for beta

{if (nl==1){

A=(yl*oldsvl)/(1-oldsvl)}
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else{

A=diag(c((yl*oldsvl)/(1-oldsvl)))

}

if (ni==1){

B=(yir*oldsvir-yil*oldsvil)/(oldsvil-oldsvir)}

else{

B=diag(c((yir*oldsvir-yil*oldsvil)/(oldsvil-oldsvir)))

}

if (nr==1){

C=yr}

else{

C=diag(c(yr))

}

if (nf==1){

D=1/oldhzf-yf

}

else{

D=diag(c(1/oldhzf-yf))

}

}

oldbgrad=(t(Xl)%*%A%*%matrix(1,nl,1)

+t(Xi)%*%B%*%matrix(1,ni,1)-t(Xr)%*%C%*%matrix(1,nr,1)

+t(Xf)%*%D%*%matrix(1,nf,1))

#gradient for theta

tgradl=matrix(0,nbins,1)

tgradi=matrix(0,nbins,1)

tgradr=matrix(0,nbins,1)

tgradf=matrix(0,nbins,1)

suml=sumr=sumf=matrix(0,nbins-1,1)

for (k in (1:nbins-1)){

if (nl==0){

suml[k]=0}

else{
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suml[k]=sum(oldsvl[idl==k+1]/(1-oldsvl[idl==k+1]))

}

sumr[k]=nob[k+1,5]

sumf[k]=nob[k+1,1]

}

cuml=c(rev(cumsum(rev(suml))),0)

cumr=c(rev(cumsum(rev(sumr))),0)

cumf=c(rev(cumsum(rev(sumf))),0)

for (u in 1:nbins){

if (nl==0){

tgradl[u]=0}

else{

tgradl[u]=sum(((oldsvl[idl==u])*(yl[idl==u]-binedg[u]))

/(1-oldsvl[idl==u]))+binw[u]*cuml[u]

}

if (ni==0){

tgradi[u]=0}

else{

for (i in 1:ni){

if (idil[i]<u & idir[i]==u)

tgradi[u]=tgradi[u]+((yir[i]-binedg[u])*oldsvir[i])

/(oldsvil[i]-oldsvir[i])

else if (idil[i]<u & idir[i]>u)

tgradi[u]=tgradi[u]+(binw[u]*oldsvir[i])

/(oldsvil[i]-oldsvir[i])

else if (idil[i]==u & idir[i]==u)

tgradi[u]=tgradi[u]+((yir[i]-binedg[u])*oldsvir[i]-

(yil[i]-binedg[u])*oldsvil[i])/(oldsvil[i]-oldsvir[i])

else if (idil[i]==u & idir[i]>u)

tgradi[u]=tgradi[u]+(binw[u]*oldsvir[i]-

(yil[i]-binedg[u])*oldsvil[i])/(oldsvil[i]-oldsvir[i])

else if (idil[i]>u & idir[i]>u)

tgradi[u]=tgradi[u]-binw[u]
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else

tgradi[u]=tgradi[u]+0

}

}

if (nr==0){

tgradr[u]=0}

else{

tgradr[u]=sum(yr[idr==u]-binedg[u])+cumr[u]*binw[u]

}

if (nf==0){

tgradf[u]=0}

else{

tgradf[u]=sum(1/oldhzf[idf==u]

-(yf[idf==u]-binedg[u]))-cumf[u]*binw[u]

}

}

oldtgrad=tgradl+tgradi-tgradr+tgradf

#first derivative for objective function

olddPhi=-(rbind(oldtgrad,oldbgrad)

-(smooth/(1-smooth))*rbind(2*R%*%oldbh,matrix(0,p)))

cvg=matrix(0,maxiter,2)

#begin algorithm

for (iter in 1:maxiter){

#Hessian matrix for beta

if (nl==1){

E=-((yl^2)*oldsvl)/(1-oldsvl)^2}

else{

E=diag(c(-((yl^2)*oldsvl)/(1-oldsvl)^2))

}

if (ni==1){

G=-(((yir-yil)^2)*oldsvil*oldsvir)/(oldsvil-oldsvir)^2}

else{

G=diag(c(-(((yir-yil)^2)*oldsvil*oldsvir)
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/(oldsvil-oldsvir)^2))

}

if (nf==1){

L=-1/oldhzf^2}

else{

L=diag(c(-1/oldhzf^2))

}

bHes=t(Xl)%*%E%*%Xl+t(Xi)%*%G%*%Xi+t(Xf)%*%L%*%Xf

#second derivative with respective to beta and theta

{if (nl==0){

cumml=matrix(0,p,nbins-1)}

else{

summl=matrix(0,p,nbins-1)

cumml=matrix(0,p,nbins-1)

for (k in 1:(nbins-1)){

summl[,k]=matrix(0,p,1)

summl[,k]=t(matrix(Xl[idl==k+1],nob[k+1,2],p))

%*%((-yl[idl==k+1]*(oldsvl[idl==k+1]))

/(1-oldsvl[idl==k+1])^2)

}

for (k in 1:(nbins-1)){

cumml[,k]=summl[,k:(nbins-1)]%*%matrix(1,(nbins-k),1)

}

}

}

cumml=cbind(cumml,matrix(0,p,1))

dbtl=matrix(0,p,nbins)

dbti=matrix(0,p,nbins)

dbtf=matrix(0,p,nbins)

for (u in 1:nbins){

if (nl==0){

dbtl[,u]=matrix(0,p,1)}

else{
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dbtl[,u]=t(matrix(Xl[idl==u],nob[u,2],p))%*%

((-yl[idl==u]*(oldsvl[idl==u])*(yl[idl==u]-binedg[u]))

/(1-oldsvl[idl==u])^2)+binw[u]*cumml[,u]

}

if (ni==0){

dbti[,u]=matrix(0,p,1)}

else{

for (i in 1:ni){

if (idil[i]<u & idir[i]==u)

dbti[,u]=dbti[,u]+t(Xi[i,])*(((yir[i]-binedg[u])

*(yil[i]-yir[i])*oldsvil[i]*oldsvir[i])

/(oldsvil[i]-oldsvir[i])^2)

else if (idil[i]<u & idir[i]>u)

dbti[,u]=dbti[,u]+t(Xi[i,])*((-binw[u]*oldsvil[i]

*oldsvir[i]*(yir[i]-yil[i]))

/(oldsvil[i]-oldsvir[i])^2)

else if (idil[i]==u & idir[i]==u)

dbti[,u]=dbti[,u]+t(Xi[i,])*(((-(yil[i]-yir[i])^2)

*oldsvil[i]*oldsvir[i])/(oldsvil[i]-oldsvir[i])^2)

else if (idil[i]==u & idir[i]>u)

dbti[,u]=dbti[,u]+t(Xi[i,])*(((binw[u]-yil[i]+binedg[u])

*(yil[i]-yir[i])*oldsvil[i]*oldsvir[i])

/(oldsvil[i]-oldsvir[i])^2)

else

dbti[,u]=dbti[,u]+matrix(0,p,1)

}

}

if (nf==0){

dbtf[,u]=matrix(0,p,1)}

else{

dbtf[,u]= t(matrix(Xf[idf==u],nob[u,1],p))

%*%(1/(oldhzf[idf==u])^2)

}
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}

dbt=dbtl+dbti-dbtf

#Hessian matrix for theta

{if (nl==0){

tHesl=matrix(0,nbins,nbins)}

else{

Al=matrix(0,nbins,1)

suml=matrix(0,nbins-1,1)

for (u in 1:(nbins-1)){

suml[u]=-sum(oldsvl[idl==u+1]/(1-oldsvl[idl==u+1])^2)

}

cuml=c(rev(cumsum(rev(suml))),0)

for (u in 1:nbins){

Al[u]=-sum(((oldsvl[idl==u])*(yl[idl==u]-binedg[u])^2)

/(1-oldsvl[idl==u])^2)+((binw[u])^2)*cuml[u]

}

tHesl=diag(c(Al))

Bl=matrix(0,nbins-1,1)

for (u in 1:(nbins-1)){

Bl[u]=-sum((oldsvl[idl==u+1]*(yl[idl==u+1]-binedg[u+1]))

/(1-oldsvl[idl==u+1])^2)

}

for (i in 2:nbins){

for (j in 1:(i-1)){

tHesl[i,j]=Bl[i-1]*binw[j]+binw[i]*binw[j]*cuml[i]

}}

for (i in 1:(nbins-1)){

for (j in (i+1):nbins){

tHesl[i,j]=tHesl[j,i]

}}

}

}
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{if (ni==0){

tHesi=matrix(0,nbins,nbins)}

else{

Ai=matrix(0,nbins,1)

for (u in 1:nbins){

for (i in 1:ni){

if (idil[i]<u & idir[i]==u)

Ai[u]=Ai[u]+(-oldsvil[i]*oldsvir[i]*(yir[i]-binedg[u])^2)

/(oldsvil[i]-oldsvir[i])^2

else if (idil[i]<u & idir[i]>u)

Ai[u]=Ai[u]+(-oldsvil[i]*oldsvir[i]*(binw[u])^2)

/(oldsvil[i]-oldsvir[i])^2

else if (idil[i]==u & idir[i]==u)

Ai[u]=Ai[u]+(-oldsvil[i]*oldsvir[i]*(yil[i]-yir[i])^2)

/(oldsvil[i]-oldsvir[i])^2

else if (idil[i]==u & idir[i]>u)

Ai[u]=Ai[u]+(-oldsvil[i]*oldsvir[i]*(binw[u]-yil[i]

+binedg[u])^2)/(oldsvil[i]-oldsvir[i])^2

else

Ai[u]=Ai[u]+0

}}

tHesi=diag(c(Ai))

for (i in 2:nbins){

for (j in 1:(i-1)){

for (k in 1:ni){

if (idil[k]==j & idir[k]==i)

tHesi[i,j]=tHesi[i,j]+((yir[k]-binedg[i])*oldsvil[k]

*oldsvir[k]*(yil[k]-binedg[j]-binw[j]))

/(oldsvil[k]-oldsvir[k])^2

else if (idil[k]<j & idir[k]==i)

tHesi[i,j]=tHesi[i,j]+(-binw[j]*(yir[k]-binedg[i])

*oldsvil[k]*oldsvir[k])/(oldsvil[k]-oldsvir[k])^2

else if (idil[k]==j & idir[k]>i)
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tHesi[i,j]=tHesi[i,j]+(-binw[i]*oldsvil[k]*oldsvir[k]

*(binw[j]+binedg[j]-yil[k]))/(oldsvil[k]-oldsvir[k])^2

else if (idil[k]<j & idir[k]>i)

tHesi[i,j]=tHesi[i,j]+(-oldsvil[k]*oldsvir[k]*binw[i]

*binw[j])/(oldsvil[k]-oldsvir[k])^2

else

tHesi[i,j]=tHesi[i,j]+0

}}

}

for (i in 1:(nbins-1)){

for (j in (i+1):nbins){

tHesi[i,j]=tHesi[j,i]

}}

}

}

{if (nf==0){

tHesf=matrix(0,nbins,nbins)}

else{

Af=matrix(0,nbins,1)

for (u in 1:nbins){

Af[u]=sum(-1/(oldhzf[idf==u])^2)

}

tHesf=diag(c(Af))

}

}

tHes=tHesl+tHesi+tHesf

#Hessian matrix

H1=cbind(tHes,t(dbt))

H2=cbind(dbt,bHes)

H=rbind(H1,H2)

#second derivative for objective function

sdPhi=-(H-(smooth/(1-smooth))
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*rbind(cbind(2*R,matrix(0,nbins,p)),matrix(0,p,nbins+p)))

#Jacobian matrix

W1=cbind(sdPhi,t(M),matrix(0,nbins+p,nbins+n+ni))

W2=cbind(M,matrix(0,nbins+n+ni,nbins+n+ni)

,diag(nbins+n+ni))

W3=cbind(matrix(0,nbins+n+ni,nbins+p)

,diag(c(olds)),diag(c(oldlamda)))

W=rbind(W1,W2,W3)

# Newton disrection

V=rbind(olddPhi+t(M)%*%oldlamda,oldf+olds,diag(c(olds))

%*%diag(c(oldlamda))%*%matrix(1,nbins+n+ni,1)

-sigma*mu*matrix(1,nbins+n+ni,1))

direc=solve(W,-V)

deta=matrix(direc[1:(nbins+p)])

dlamda=matrix(direc[(nbins+p+1):((nbins+n+ni)+(nbins+p))])

ds=matrix(direc[((nbins+n+ni)+(nbins+p)+1)

:(2*(nbins+n+ni)+(nbins+p))])

#mu bound

mc=(1-0.01)*mu

#new estimates and new mu

ome=1

repeat{

neweta=oldeta+ome*deta

newbh=matrix(neweta[1:nbins])

newbeta=matrix(neweta[(nbins+1):(nbins+p)])

newlamda=oldlamda+ome*dlamda

news=olds+ome*ds

newmu=sum(newlamda*news)/(nbins+n+ni)

#new survival function

cumbh=cumsum(binw*newbh)

cumbh=c(0,cumbh)

{if (nf==0){

cbhf=0}
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else{

cbhf=cumbh[idf]+newbh[idf]*(yf-binedg[idf])

}

if (nl==0){

cbhl=0}

else{

cbhl=cumbh[idl]+newbh[idl]*(yl-binedg[idl])

}

if (ni==0){

cbhil=cbhir=0}

else{

cbhil=cumbh[idil]+newbh[idil]*(yil-binedg[idil])

cbhir=cumbh[idir]+newbh[idir]*(yir-binedg[idir])

}

if (nr==0){

cbhr=0}

else{

cbhr=cumbh[idr]+newbh[idr]*(yr-binedg[idr])

}

}

chf=cbhf+(Xf%*%newbeta)*yf

chl=cbhl+(Xl%*%newbeta)*yl

chil=cbhil+(Xi%*%newbeta)*yil

chir=cbhir+(Xi%*%newbeta)*yir

chr=cbhr+(Xr%*%newbeta)*yr

hzf=newbh[idf]+Xf%*%newbeta

svl=exp(-chl)

svil=exp(-chil)

svir=exp(-chir)

#new f

f=rbind(-newbh,-hzf,

-(newbh[idl]+Xl%*%newbeta),-(newbh[idil]+Xi%*%newbeta),

-(newbh[idir]+Xi%*%newbeta),-(newbh[idr]+Xr%*%newbeta)
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)

#new gradient for beta

if (nl==1){

A=(yl*svl)/(1-svl)}

else{

A=diag(c((yl*svl)/(1-svl)))

}

if (ni==1){

B=(yir*svir-yil*svil)/(svil-svir)}

else{

B=diag(c((yir*svir-yil*svil)/(svil-svir)))

}

if (nr==1){

C=yr}

else{

C=diag(c(yr))

}

if (nf==1){

D=1/hzf-yf}

else{

D=diag(c(1/hzf-yf))

}

bgrad=(t(Xl)%*%A%*%matrix(1,nl,1)+t(Xi)%*%B%*%matrix(1,ni,1)

-t(Xr)%*%C%*%matrix(1,nr,1)+t(Xf)%*%D%*%matrix(1,nf,1))

#new gradient for theta

tgradl=matrix(0,nbins,1)

tgradi=matrix(0,nbins,1)

tgradr=matrix(0,nbins,1)

tgradf=matrix(0,nbins,1)

suml=sumr=sumf=matrix(0,nbins-1,1)

for (k in (1:nbins-1)){

if (nl==0){
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suml[k]=0}

else{

suml[k]=sum(svl[idl==k+1]/(1-svl[idl==k+1]))

}

sumr[k]=nob[k+1,5]

sumf[k]=nob[k+1,1]

}

cuml=c(rev(cumsum(rev(suml))),0)

cumr=c(rev(cumsum(rev(sumr))),0)

cumf=c(rev(cumsum(rev(sumf))),0)

for (u in 1:nbins){

if (nl==0){

tgradl[u]=0}

else{

tgradl[u]=sum(((svl[idl==u])*(yl[idl==u]-binedg[u]))

/(1-svl[idl==u]))+binw[u]*cuml[u]

}

if (ni==0){

tgradi[u]=0}

else{

for (i in 1:ni){

if (idil[i]<u & idir[i]==u)

tgradi[u]=tgradi[u]+((yir[i]-binedg[u])*svir[i])

/(svil[i]-svir[i])

else if (idil[i]<u & idir[i]>u)

tgradi[u]=tgradi[u]+(binw[u]*svir[i])

/(svil[i]-svir[i])

else if (idil[i]==u & idir[i]==u)

tgradi[u]=tgradi[u]+((yir[i]-binedg[u])*svir[i]

-(yil[i]-binedg[u])

*svil[i])/(svil[i]-svir[i])

else if (idil[i]==u & idir[i]>u)

tgradi[u]=tgradi[u]+(binw[u]*svir[i]-(yil[i]-binedg[u])
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*svil[i])/(svil[i]-svir[i])

else if (idil[i]>u & idir[i]>u)

tgradi[u]=tgradi[u]-binw[u]

else

tgradi[u]=tgradi[u]+0

}

}

if (nr==0){

tgradr[u]=0}

else{

tgradr[u]=sum(yr[idr==u]-binedg[u])+binw[u]*cumr[u]

}

if (nf==0){

tgradf[u]=0}

else{

tgradf[u]=sum(1/hzf[idf==u]-(yf[idf==u]-binedg[u]))

-binw[u]*cumf[u]

}

}

tgrad=tgradl+tgradi-tgradr+tgradf

# new first derivative of objective function

dPhi=-(rbind(tgrad,bgrad)-(smooth/(1-smooth))

*rbind(2*R%*%newbh,matrix(0,p)))

#neighborhood

indicator=0

if (sqrt(t(dPhi+t(M)%*%newlamda)%*%

(dPhi+t(M)%*%newlamda))<=rho*mu

& sqrt(t(f+news)%*%(f+news))<=rho*mu

& min(newlamda*news)>=mu/2

& min(newlamda)>=0 & min(news)>=0)

indicator=1

if ((newmu<=mc) & (indicator==1) )

break
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#select the step length

ome=ome*0.6

# mu bound

mc=(1-0.01*ome)*mu

}

pllf=-((sum(log(1-svl))+sum(log(svil-svir))-sum(chr)

+sum(log(hzf)-chf))

-(smooth/(1-smooth))*t(newbh)%*%R%*%newbh)

llik=sum(log(1-svl))+sum(log(svil-svir))-sum(chr)

+sum(log(hzf)-chf)

cvg[iter,1]=iter

cvg[iter,2]=newmu

if (cvg[iter,2]<1e-5)

{

cvg = cvg[1:iter,]

break

}

else{

oldeta=neweta

olds=news

oldlamda=newlamda

mu=newmu

oldsvl=svl

oldsvil=svil

oldsvir=svir

oldhzf=hzf

oldf=f

olddPhi=dPhi}

}

bh=newbh

cumbh=cumsum(binw*bh)

cumbh=c(0,cumbh)

{if (nf==0){
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cbhf=0}

else{

cbhf=cumbh[idf]+bh[idf]*(yf-binedg[idf])

}

if (nl==0){

cbhl=0}

else{

cbhl=cumbh[idl]+bh[idl]*(yl-binedg[idl])

}

if (ni==0){

cbhil=cbhir=0}

else{

cbhil=cumbh[idil]+bh[idil]*(yil-binedg[idil])

cbhir=cumbh[idir]+bh[idir]*(yir-binedg[idir])

}

if (nr==0){

cbhr=0}

else{

cbhr=cumbh[idr]+bh[idr]*(yr-binedg[idr])

}

}

chf=cbhf+(Xf%*%newbeta)*yf

chl=cbhl+(Xl%*%newbeta)*yl

chil=cbhil+(Xi%*%newbeta)*yil

chir=cbhir+(Xi%*%newbeta)*yir

chr=cbhr+(Xr%*%newbeta)*yr

hzf=bh[idf]+Xf%*%newbeta

svl=exp(-chl)

svil=exp(-chil)

svir=exp(-chir)

#calculate information matrix

#Hessian matrix for beta

if (nl==1){
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E=-((yl^2)*svl)/(1-svl)^2}

else{

E=diag(c(-((yl^2)*svl)/(1-svl)^2))

}

if (ni==1){

G=-(((yir-yil)^2)*svil*svir)/(svil-svir)^2}

else{

G=diag(c(-(((yir-yil)^2)*svil*svir)/(svil-svir)^2))

}

if (nf==1){

L=-1/hzf^2}

else{

L=diag(c(-1/hzf^2))

}

bHes=t(Xl)%*%E%*%Xl+t(Xi)%*%G%*%Xi+t(Xf)%*%L%*%Xf

#second derivative with respective to beta and theta

{if (nl==0){

cumml=matrix(0,p,nbins-1)}

else{

summl=matrix(0,p,nbins-1)

cumml=matrix(0,p,nbins-1)

for (k in 1:(nbins-1)){

summl[,k]=t(matrix(Xl[idl==k+1],nob[k+1,2],p))

%*%((-yl[idl==k+1]*(svl[idl==k+1]))

/(1-svl[idl==k+1])^2)

}

for (k in 1:(nbins-1)){

cumml[,k]=summl[,k:(nbins-1)]

%*%matrix(1,(nbins-k),1)

}

}

}

cumml=cbind(cumml,matrix(0,p,1))
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dbtl=matrix(0,p,nbins)

dbti=matrix(0,p,nbins)

dbtf=matrix(0,p,nbins)

for (u in 1:nbins){

if (nl==0){

dbtl[,u]=matrix(0,p,1)}

else{

dbtl[,u]=t(matrix(Xl[idl==u],nob[u,2],p))%*%

((-yl[idl==u]*(svl[idl==u])*(yl[idl==u]-binedg[u]))

/(1-svl[idl==u])^2)+binw[u]*cumml[,u]

}

if (ni==0){

dbti[,u]=matrix(0,p,1)}

else{

for (i in 1:ni){

if (idil[i]<u & idir[i]==u)

dbti[,u]=dbti[,u]+t(Xi[i,])*(((yir[i]-binedg[u])

*(yil[i]-yir[i])*svil[i]*svir[i])/(svil[i]-svir[i])^2)

else if (idil[i]<u & idir[i]>u)

dbti[,u]=dbti[,u]+t(Xi[i,])*((-binw[u]*svil[i]

*svir[i]*(yir[i]-yil[i]))/(svil[i]-svir[i])^2)

else if (idil[i]==u & idir[i]==u)

dbti[,u]=dbti[,u]+t(Xi[i,])*(((-(yil[i]-yir[i])^2)

*svil[i]*svir[i])/(svil[i]-svir[i])^2)

else if (idil[i]==u & idir[i]>u)

dbti[,u]=dbti[,u]+t(Xi[i,])*(((binw[u]-yil[i]

+binedg[u])*(yil[i]-yir[i])*svil[i]*svir[i])

/(svil[i]-svir[i])^2)

else

dbti[,u]=dbti[,u]+matrix(0,p,1)

}

}

if (nf==0){
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dbtf[,u]=matrix(0,p,1)}

else{

dbtf[,u]= t(matrix(Xf[idf==u],nob[u,1],p))

%*%(1/(hzf[idf==u])^2)

}

}

dbt=dbtl+dbti-dbtf

#Hessian matrix for theta

{if (nl==0){

tHesl=matrix(0,nbins,nbins)}

else{

Al=matrix(0,nbins,1)

suml=matrix(0,nbins-1,1)

for (u in 1:(nbins-1)){

suml[u]=-sum(svl[idl==u+1]/(1-svl[idl==u+1])^2)

}

cuml=c(rev(cumsum(rev(suml))),0)

for (u in 1:nbins){

Al[u]=-sum(((svl[idl==u])*(yl[idl==u]

-binedg[u])^2)/(1-svl[idl==u])^2)

+((binw[u])^2)*cuml[u]

}

tHesl=diag(c(Al))

Bl=matrix(0,nbins-1,1)

for (u in 1:(nbins-1)){

Bl[u]=-sum((svl[idl==u+1]*(yl[idl==u+1]-binedg[u+1]))

/(1-svl[idl==u+1])^2)

}

for (i in 2:nbins){

for (j in 1:(i-1)){

tHesl[i,j]=Bl[i-1]*binw[j]+binw[i]*binw[j]*cuml[i]

}}

for (i in 1:(nbins-1)){
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for (j in (i+1):nbins){

tHesl[i,j]=tHesl[j,i]

}}

}

}

{if (ni==0){

tHesi=matrix(0,nbins,nbins)}

else{

Ai=matrix(0,nbins,1)

for (u in 1:nbins){

for (i in 1:ni){

if (idil[i]<u & idir[i]==u)

Ai[u]=Ai[u]+(-svil[i]*svir[i]*(yir[i]-binedg[u])^2)

/(svil[i]-svir[i])^2

else if (idil[i]<u & idir[i]>u)

Ai[u]=Ai[u]+(-svil[i]*svir[i]*(binw[u])^2)

/(svil[i]-svir[i])^2

else if (idil[i]==u & idir[i]==u)

Ai[u]=Ai[u]+(-svil[i]*svir[i]*(yil[i]-yir[i])^2)

/(svil[i]-svir[i])^2

else if (idil[i]==u & idir[i]>u)

Ai[u]=Ai[u]+(-svil[i]*svir[i]*(binw[u]-yil[i]

+binedg[u])^2)/(svil[i]-svir[i])^2

else

Ai[u]=Ai[u]+0

}}

tHesi=diag(c(Ai))

for (i in 2:nbins){

for (j in 1:(i-1)){

for (k in 1:ni){

if (idil[k]==j & idir[k]==i)

tHesi[i,j]=tHesi[i,j]+((yir[k]-binedg[i])*svil[k]*svir[k]
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*(yil[k]-binedg[j]-binw[j]))/(svil[k]-svir[k])^2

else if (idil[k]<j & idir[k]==i)

tHesi[i,j]=tHesi[i,j]+(-binw[j]*(yir[k]-binedg[i])

*svil[k]*svir[k])/(svil[k]-svir[k])^2

else if (idil[k]==j & idir[k]>i)

tHesi[i,j]=tHesi[i,j]+(-binw[i]*svil[k]*svir[k]

*(binw[j]+binedg[j]-yil[k]))/(svil[k]-svir[k])^2

else if (idil[k]<j & idir[k]>i)

tHesi[i,j]=tHesi[i,j]+(-svil[k]*svir[k]*binw[i]

*binw[j])/(svil[k]-svir[k])^2

else

tHesi[i,j]=tHesi[i,j]+0

}}

}

for (i in 1:(nbins-1)){

for (j in (i+1):nbins){

tHesi[i,j]=tHesi[j,i]

}}

}

}

{if (nf==0){

tHesf=matrix(0,nbins,nbins)}

else{

Af=matrix(0,nbins,1)

for (u in 1:nbins){

Af[u]=sum(-1/(hzf[idf==u])^2)

}

tHesf=diag(c(Af))

}

}

tHes=tHesl+tHesi+tHesf

#Hessian matrix
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H=rbind(cbind(bHes,dbt),cbind(t(dbt),tHes))

HesbinvD=matrix(diag(solve(-bHes)))

tHesp=-tHes+2*smooth*R/(1-smooth)

tHespinvD=matrix(diag(solve(tHesp)))

Hessp=rbind(cbind(-bHes,-dbt),cbind(-t(dbt),tHesp))

varcov=solve(Hessp)%*%(-H)%*%solve(Hessp)

{if (p==1){

betavar=varcov[1:p,1:p]

}

else{

betavar=matrix(diag(varcov[1:p,1:p]))

}

}

betavar[betavar<0]=HesbinvD[betavar<0]

bhvar=matrix(diag(varcov[(p+1):(p+nbins), (p+1):(p+nbins)]))

bhvar[bhvar<0]=tHespinvD[bhvar<0]

#selection criterion for smoothing value

df=sum(diag(solve(-Hessp)%*%H))

AIC=-llik+df

#plot of the estimated baseline hazard and true baseline hazard

time.point=seq(0.05,1,length=50)

tbh=3*time.point^2

ebh=matrix(0,50,1)

ebhvar=matrix(0,50,1)

nd=500

ISEs=matrix(0,nd,1)

for (i in 1:50){

for (j in 1:nbins){

if (binedg[j]<time.point[i] & time.point[i]<=binedg[j+1]){

ebh[i]=bh[j]

ebhvar[i]=bhvar[j]

}

}
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}

minv=min(time.point)

maxv=max(time.point)

delta=(maxv-minv)/nd

bin.point=matrix(seq(minv,maxv,delta))

mp=matrix(0,nd,1)

for (i in 1:nd){

mp[i]=(bin.point[i]+bin.point[i+1])/2

}

for (i in 1:nd){

for (j in 1:nbins){

if (binedg[j]<mp[i] & mp[i]<=binedg[j+1]){

ISEs[i]=(3*mp[i]^2-bh[j])^2

}

}

}

ISE=delta*sum(ISEs)

par(mfrow=c(2,1))

plot(cvg[,1],cvg[,2],type='l',xlab='iteration',

ylab='duality measure',main='convergence view')

plot(time.point,tbh,type='l',col='red',

ylab='baseline hazard function'

,main='ture hazard v.s estimated hazard')

lines(time.point,ebh,type='l',col='blue')

return(list(newbeta=newbeta,ebh=ebh,cvg=cvg,

betavar=betavar,ebhvar=ebhvar,ISE=ISE,AIC=AIC))

}

ahfit=mplAHM(data,X,count,n,sigma,rho,maxiter,smooth)

B.4 Monte Carlo simulation
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#Select smoothing value.

#smv: vector of smoothing values.

selSm<-function(data,X,count,n,sigma,rho,maxiter,smv){

ns=dim(smv)[1]

id=matrix(seq(1,ns,1))

AICs=matrix(0,ns,1)

newbetas=matrix(0,ns,3)

betavars=matrix(0,ns,3)

ISEs=matrix(0,ns,1)

ebhs=matrix(0,50,ns)

for (i in 1:ns){

ahfit=mplAHM(data,X,count,n,sigma,rho,maxiter,smv[i])

AICs[i]=ahfit$AIC

newbetas[i,]=matrix(ahfit$newbeta,nrow=1)

betavars[i,]=matrix(ahfit$betavar,nrow=1)

ebhs[,i]=matrix(ahfit$ebh)

ISEs[i]=ahfit$ISE

print(i)

}

AICm=min(AICs)

id=id[AICs==AICm]

smop=smv[id]

newbetaop=newbetas[id,]

betavarop=betavars[id,]

ISEop=ISEs[id]

ebhop=ebhs[,id]

return(list(smop=smop,AICm=AICm,AICs=AICs

,newbetaop=newbetaop

,betavarop=betavarop,ISEop=ISEop,newbetas=newbetas

,betavars=betavars,ISEs=ISEs))

}

SmSel=selSm(data,X,count,n,sigma,rho,maxiter,smv)
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#generate datasets for simulations

simudata=function(beta,n,p,N){

obsets=matrix(0,n,3*N)

Xs=matrix(0,n,3*N)

for (i in 1:N){

dataset=event(beta,p,n)

obsets[,(3*i-2):(3*i)]=dataset[,1:3]

Xs[,(3*i-2):(3*i)]=dataset[,4:6]

}

return(list(obsets=obsets,Xs=Xs))

}

dataset=simudata(beta,n,p,N)

#MC simulations.

#N: N MC samples.

MCsimu<-function(dataset,sigma,rho,count,beta,N,maxiter,smop){

#initials

np=dim(beta)[1]

betas=matrix(0,N,np)

betavars=matrix(0,N,np)

time.point=seq(0.05,1,length=50)

ebhs=matrix(0,50,N)

ebhvars=matrix(0,50,N)

ISEs=matrix(0,N,1)

datas=dataset$obsets

Xs=dataset$Xs

#MC simulation

for(i in 1:N){

ahfit=mplAHM(datas[,(3*i-2):(3*i)],Xs[,(3*i-2):(3*i)]

,count,n,sigma,rho,maxiter,smop)

betas[i,]=matrix(ahfit$newbeta,nrow=1)

ebhs[,i]=matrix(ahfit$ebh)

betavars[i,]=matrix(ahfit$betavar,nrow=1)
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ebhvars[,i]=matrix(ahfit$ebhvar)

ISEs[i]=ahfit$ISE

print(i)

}

mISE=mean(ISEs)

#mean, bias, std, astd and mse of beta

meanb=matrix(colMeans(betas),1,np)

biasbeta=t(beta)-meanb

varb=matrix(0,1,np)

for (j in 1:np){

varb[1,j]=var(betas[,j])

}

stdb=sqrt(varb)

astdb=matrix(colMeans(sqrt(betavars)),1,np)

#astdb=matrix(sqrt(colMeans(betavars)),1,2)

mseb=biasbeta^2+varb

#summary for beta

summaryb=rbind(meanb,biasbeta,stdb,astdb,mseb)

#mean, std and astd of theta

meanbh=matrix(colMeans(t(ebhs)))

varbh=matrix(0,50,1)

for (j in 1:50){

varbh[j]=var(ebhs[j,])

}

#MC standard deviation

stdbh=sqrt(varbh)

#Average asymptotic standard deviation

aastdbh=matrix(colMeans(t(sqrt(ebhvars))))

# 95% MC PWCI

mclbh=meanbh-1.96*stdbh

mcubh=meanbh+1.96*stdbh

# average of 95% PWCI

aasylbh=meanbh-1.96*aastdbh
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aasyubh=meanbh+1.96*aastdbh

mclbh[mclbh<0]=0

aasylbh[aasylbh<0]=0

summarybh=cbind(meanbh,mclbh,mcubh,aasylbh,aasyubh)

return(list(summaryb=summaryb,summarybh=summarybh

,mISE=mISE))

}

sim=MCsimu(dataset,sigma,rho,count,beta,N,maxiter,smop)

B.5 Method comparisons

#generate datasets for comparisons

#generate right censored data

beta=matrix(c(1,-0.3,0.5))

event <- function(beta,n){

t=matrix(0,n,1)

X=matrix(0,n,3)

for (i in 1:n){

repeat{

Ca=0

ur=runif(1)

Ca[ur<=0.5]=1

Ca[ur>0.5]=0

X[i,]=c(Ca,runif(1,min=0,max=3),runif(1,min=0,max=5))

t1=log(1-runif(1))

t2=X[i,]%*%beta

f=function(x) (x^3)+x*t2[1]+t1[1]

t[i]=uniroot.all(f,c(0,10))

if ((t[i]!=0) & (length(t[i])!=0))

break

}

}
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C=2*runif(n)

L=matrix(rep(0,n))

R=matrix(rep(0,n))

status=matrix(rep(0,n))

for (i in 1:n){

if (t[i]<=C[i]){

L[i]=t[i]

R[i]=t[i]

status[i]=0

}

else{

L[i]=C[i]

R[i]=Inf

status[i]=3

}

}

return(cbind(L,R,status,X))

}

#N: N MC samples

simudata=function(beta,n,N){

obsets=matrix(0,n,3*N)

Xs=matrix(0,n,3*N)

for (i in 1:N){

dataset=event(beta,n)

obsets[,(3*i-2):(3*i)]=dataset[,1:3]

Xs[,(3*i-2):(3*i)]=dataset[,4:6]

}

return(list(obsets=obsets,Xs=Xs))

}

dataset=simudata(beta,n,N)
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#MC simulations for the method by Lin and Ying (1994)

datas=dataset$obsets

Xs=dataset$Xs

times=matrix(0,n,2*N)

for (i in 1:N){

for (j in 1:n){

if (datas[j,3*i]==0){

times[j,(2*i-1)]=datas[j,(3*i-2)]

times[j,2*i]=1}

else{

times[j,(2*i-1)]=datas[j,(3*i-2)]

times[j,2*i]=0}

}

}

L.sim=function(times,Xs,n,N){

betas=matrix(0,N,3)

betavars=matrix(0,N,3)

time.point=seq(0.05,1,length=50)

ebhs=matrix(0,50,N)

ISEs=matrix(0,N,1)

for (i in 1:N){

set.seed(1010)

times[,(2*i-1)]=times[,(2*i-1)]+runif(n)*1e-2

surv=Surv(times[,(2*i-1)],times[,(2*i)])

L.phfit=ahaz(surv,Xs[,(3*i-2):(3*i)])

betas[i,]=matrix(coef(L.phfit),nrow=1)

betavars[i,]=matrix(diag(summary(L.phfit)$cov),nrow=1)

cumahaz=predict(L.phfit,type='cumhaz')

cumhaz=matrix(cumahaz$cumhaz)

bh=diff(cumhaz)

time.value=matrix(cumahaz$time)

ntp=dim(time.value)[1]
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ebh=matrix(0,50,1)

for (k in 1:50){

for (j in 1:(ntp-1)){

if (time.value[j]<time.point[k]

& time.point[k]<=time.value[j+1]){

ebh[k]=((time.point[k]-time.value[j])

/(time.value[j+1]-time.value[j]))*bh[j]

+((time.value[j+1]-time.point[k])

/(time.value[j+1]-time.value[j]))*bh[j+1]

}

}

}

ebhs[,i]=ebh

nd=500

minv=min(time.point)

maxv=max(time.point)

delta=(maxv-minv)/nd

bin.point=matrix(seq(minv,maxv,delta))

mp=matrix(0,nd,1)

for (k in 1:nd){

mp[k]=(bin.point[k]+bin.point[k+1])/2

}

ISE=matrix(0,nd,1)

embh=matrix(0,nd,1)

for (k in 1:nd){

for (j in 1:(ntp-1)){

if (time.value[j]<mp[k]

& mp[k]<=time.value[j+1]){

embh[k]=((mp[k]-time.value[j])

/(time.value[j+1]-

time.value[j]))*bh[j]

+((time.value[j+1]-mp[k])
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/(time.value[j+1]-time.value[j]))*bh[j+1]

ISE[k]=(3*mp[k]^2-embh[k])^2

}

}

}

ISEs[i]=delta*sum(ISE)

print(i)

}

mISE=mean(ISEs)

meanb=matrix(colMeans(betas),1,3)

biasbeta=t(beta)-meanb

varb=matrix(0,1,3)

for (j in 1:3){

varb[1,j]=var(betas[,j])

}

stdb=sqrt(varb)

astdb=matrix(colMeans(sqrt(betavars)),1,3)

mseb=biasbeta^2+varb

summaryb=rbind(meanb,biasbeta,stdb,astdb,mseb)

meanbh=matrix(colMeans(t(ebhs)))

varbh=matrix(0,50,1)

for (j in 1:50){

varbh[j]=var(ebhs[j,])

}

stdbh=sqrt(varbh)

mclbh=meanbh-1.96*stdbh

mcubh=meanbh+1.96*stdbh

mclbh[mclbh<0]=0

summarybh=cbind(meanbh,mclbh,mcubh)

return(list(summaryb=summaryb,summarybh=summarybh,mISE=mISE))

}

Lsim=L.sim(times,Xs,n,N)
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Appendix C R codes for AFT

model

C.1 Data generation

# Generate data. n: sample size. p: censoring proportion. categorial

# variable.

Ca = matrix(rep(0, n))

ur = runif(n)

Ca[ur <= 0.5] = 1

Ca[0.5 < ur & ur <= 1] = 0

# Covariate matrix

X = cbind(Ca, runif(n, min = 0, max = 3), runif(n, min = 0, max = 5))

beta = matrix(c(1, -0.3, 0.5))

event <- function(beta, X, p, n) {

epsilond = rweibull(n, shape = 3, scale = 1)

t = exp(X %*% beta) * epsilond

Cl = runif(n)

Cr = Cl + runif(n)

indicator = matrix(rep(0, n))

a = runif(n)

indicator[a <= p] = 1

indicator[a > p] = 0

L = matrix(rep(0, n))
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R = matrix(rep(0, n))

status = matrix(rep(0, n))

for (i in 1:n) {

if (indicator[i] == 0) {

L[i] = t[i]

R[i] = t[i]

status[i] = 0

} else {

if (t[i] <= Cl[i]) {

L[i] = 0

R[i] = Cl[i]

status[i] = 1

} else if (Cl[i] < t[i] && t[i] < Cr[i]) {

L[i] = Cl[i]

R[i] = Cr[i]

status[i] = 2

} else if (t[i] >= Cr[i]) {

L[i] = Cr[i]

R[i] = Inf

status[i] = 3

}

}

}

return(cbind(L, R, status))

}

data = event(beta, X, p, n)

C.2 The MPL estimation
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#MPL estimation.

#smooth: smoothing value.

#nknots: number of knots.

#maxiter: number of iteration in the algorithm.

maxiter=5000

mplAFT=function(data,X,nknots,smooth,maxiter){

#classify each cesoring type

id=data[,3]

yf=matrix(data[,1][id==0])

nf=dim(yf)[1]

yl=matrix(data[,2][id==1])

nl=dim(yl)[1]

yil=matrix(data[,1][id==2])

yir=matrix(data[,2][id==2])

ni=dim(yil)[1]

yr=matrix(data[,1][id==3])

nr=dim(yr)[1]

#sample size

n=dim(X)[1]

#number of beta

p=dim(X)[2]

#classify covariate matrix

Xf=matrix(X[id==0],nf,p)

Xl=matrix(X[id==1],nl,p)

Xi=matrix(X[id==2],ni,p)

Xr=matrix(X[id==3],nr,p)

#initial value

beta0=matrix(0,p,1)

theta0=matrix(1,(nknots),1)

oldbeta=beta0

oldtheta=theta0

e=10^(-3)

#time scaled
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oldyfs=yf*exp(-Xf%*%oldbeta)

oldyls=yl*exp(-Xl%*%oldbeta)

oldyils=yil*exp(-Xi%*%oldbeta)

oldyirs=yir*exp(-Xi%*%oldbeta)

oldyrs=yr*exp(-Xr%*%oldbeta)

#select knots mu and variance

oldmaxv=max(rbind(oldyfs,oldyls,oldyils,oldyirs,oldyrs))

oldminv=min(rbind(oldyfs,oldyls,oldyils,oldyirs,oldyrs))

oldbinw=(oldmaxv-oldminv)/(nknots-1)

oldknots=matrix(seq(oldminv,oldmaxv,oldbinw))

oldsig=(2/3)*oldbinw

oldgaus0=pnorm(0,oldknots,oldsig)*sqrt(2*pi*oldsig^2)

#baseline hazard and cumulative hazard when time t is scaled

{if (nf==0){

oldbhf=1

oldchf=0}

else{

oldbhf=matrix(0,nf,1)

oldchf=matrix(0,nf,1)

for (i in 1:nf){

oldbhf[i]=t(dnorm(oldyfs[i],oldknots,oldsig)

*sqrt(2*pi*oldsig^2))%*%oldtheta

oldchf[i]=t(pnorm(oldyfs[i],oldknots,oldsig)

*sqrt(2*pi*oldsig^2)-oldgaus0)%*%oldtheta

}

}

if (nl==0){

oldbhl=0

oldchl=0}

else{

oldbhl=matrix(0,nl,1)

oldchl=matrix(0,nl,1)
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for (i in 1:nl){

oldbhl[i]=t(dnorm(oldyls[i],oldknots,oldsig)

*sqrt(2*pi*oldsig^2))%*%oldtheta

oldchl[i]=t(pnorm(oldyls[i],oldknots,oldsig)

*sqrt(2*pi*oldsig^2)-oldgaus0)%*%oldtheta

}

}

if (ni==0){

oldbhil=0

oldbhir=0

oldchil=0

oldchir=0}

else{

oldbhil=matrix(0,ni,1)

oldbhir=matrix(0,ni,1)

oldchil=matrix(0,ni,1)

oldchir=matrix(0,ni,1)

for (i in 1:ni){

oldbhil[i]=t(dnorm(oldyils[i],oldknots,oldsig)

*sqrt(2*pi*oldsig^2))%*%oldtheta

oldbhir[i]=t(dnorm(oldyirs[i],oldknots,oldsig)

*sqrt(2*pi*oldsig^2))%*%oldtheta

oldchil[i]=t(pnorm(oldyils[i],oldknots,oldsig)

*sqrt(2*pi*oldsig^2)-oldgaus0)%*%oldtheta

oldchir[i]=t(pnorm(oldyirs[i],oldknots,oldsig)

*sqrt(2*pi*oldsig^2)-oldgaus0)%*%oldtheta

}

}

if (nr==0){

oldbhr=0

oldchr=0}
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else{

oldbhr=matrix(0,nr,1)

oldchr=matrix(0,nr,1)

for (i in 1:nr){

oldbhr[i]=t(dnorm(oldyrs[i],oldknots,oldsig)

*sqrt(2*pi*oldsig^2))%*%oldtheta

oldchr[i]=t(pnorm(oldyrs[i],oldknots,oldsig)

*sqrt(2*pi*oldsig^2)-oldgaus0)%*%oldtheta

}

}

}

#survival function

oldsl=exp(-oldchl)

oldsil=exp(-oldchil)

oldsir=exp(-oldchir)

{if (nl==0){

oldgl=1}

else{

oldgl=1-oldsl

}

if (ni==0){

oldgi=1}

else{

oldgi=oldsil-oldsir

}

}

cvg=matrix(0,maxiter,2)

#begin algorithm

for (iter in 1:maxiter){

#algorithm for updating beta

llik0=sum(log(oldgl))+sum(log(oldgi))-sum(oldchr)

-sum(Xf%*%oldbeta+oldchf)+sum(log(oldbhf))

#eta function for scaled time
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etaf=oldbhf*oldyfs

etal=oldbhl*oldyls

etail=oldbhil*oldyils

etair=oldbhir*oldyirs

etar=oldbhr*oldyrs

ksi=etail*oldsil-etair*oldsir

#A function for scaled time

{if (nf==0){

Af=0}

else{

Af=matrix(0,nf,1)

for (i in 1:nf){

Af[i]=t(dnorm(oldyfs[i],oldknots,oldsig)

*sqrt(2*pi*oldsig^2))

%*%(oldtheta*(oldyfs[i]-oldknots)/oldsig^2)

}

}

if (nl==0){

Al=0}

else{

Al=matrix(0,nl,1)

for (i in 1:nl){

Al[i]=t(dnorm(oldyls[i],oldknots,oldsig)

*sqrt(2*pi*oldsig^2))

%*%(oldtheta*(oldyls[i]-oldknots)/oldsig^2)

}

}

if (ni==0){

Ail=0

Air=0}

else{
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Ail=matrix(0,ni,1)

Air=matrix(0,ni,1)

for (i in 1:ni){

Ail[i]=t(dnorm(oldyils[i],oldknots,oldsig)

*sqrt(2*pi*oldsig^2))

%*%(oldtheta*(oldyils[i]-oldknots)/oldsig^2)

Air[i]=t(dnorm(oldyirs[i],oldknots,oldsig)

*sqrt(2*pi*oldsig^2))

%*%(oldtheta*(oldyirs[i]-oldknots)/oldsig^2)

}

}

if (nr==0){

Ar=0}

else{

Ar=matrix(0,nr,1)

for (i in 1:nr){

Ar[i]=t(dnorm(oldyrs[i],oldknots,oldsig)

*sqrt(2*pi*oldsig^2))

%*%(oldtheta*(oldyrs[i]-oldknots)/oldsig^2)

}

}

}

#gradient vector for beta

E=-etal*oldsl/oldgl

F=ksi/oldgi

G=-1+oldyfs*Af/oldbhf+etaf

{if (nl==1){

EE=t(Xl)%*%E%*%matrix(1,nl,1)}

else{

EE=t(Xl)%*%diag(c(E))%*%matrix(1,nl,1)

}

if (ni==1){
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FF=t(Xi)%*%F%*%matrix(1,ni,1)}

else{

FF=t(Xi)%*%diag(c(F))%*%matrix(1,ni,1)

}

if (nr==1){

GG=t(Xr)%*%etar%*%matrix(1,nr,1)}

else{

GG=t(Xr)%*%diag(c(etar))%*%matrix(1,nr,1)

}

if (nf==1){

JJ=t(Xf)%*%G%*%matrix(1,nf,1)}

else{

JJ=t(Xf)%*%diag(c(G))%*%matrix(1,nf,1)

}

}

bgrad=EE+FF+GG+JJ

#H function for scaled time

Hf=oldbhf*oldyfs-Af*oldyfs^2

Hl=oldbhl*oldyls-Al*oldyls^2

Hil=oldbhil*oldyils-Ail*oldyils^2

Hir=oldbhir*oldyirs-Air*oldyirs^2

Hr=oldbhr*oldyrs-Ar*oldyrs^2

#Hessian matrix for beta

K=(Hl-etal^2)*oldsl/oldgl-(etal*oldsl/oldgl)^2

#h function for scaled interval-censored

h=oldsil*Hil-oldsir*Hir

qi=(etail^2)*oldsil-(etair^2)*oldsir

L=(-h+qi)/oldgi-(ksi/oldgi)^2

#B and C function for scaled fully observed

{if (nf==0){

B=0

C=0}

else{
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B=matrix(0,nf,1)

C=matrix(0,nf,1)

for (i in 1:nf){

B[i]=t(dnorm(oldyfs[i],oldknots,oldsig)

*sqrt(2*pi*oldsig^2))

%*%(oldtheta*((oldyfs[i]-oldknots)/oldsig^2)^2)

C[i]=t(dnorm(oldyfs[i],oldknots,oldsig)

*sqrt(2*pi*oldsig^2))%*%(oldtheta/oldsig^2)

}

}

}

M=(-oldyfs*Af+(B-C)*oldyfs^2)/oldbhf

-(oldyfs*Af/oldbhf)^2-Hf

{if (nl==1){

KK=t(Xl)%*%K%*%Xl}

else{

KK=t(Xl)%*%diag(c(K))%*%Xl

}

if (ni==1){

LL=t(Xi)%*%L%*%Xi}

else{

LL=t(Xi)%*%diag(c(L))%*%Xi

}

if (nr==1){

NN=t(Xr)%*%Hr%*%Xr}

else{

NN=t(Xr)%*%diag(c(Hr))%*%Xr

}

if (nf==1){

MM=t(Xf)%*%M%*%Xf}

else{

MM=t(Xf)%*%diag(c(M))%*%Xf

}
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}

Hesb=KK+LL-NN+MM

#new estimates for beta

incb=solve(Hesb)%*%bgrad

newbeta=oldbeta-incb

#new time scaled

yfs=yf*exp(-Xf%*%newbeta)

yls=yl*exp(-Xl%*%newbeta)

yils=yil*exp(-Xi%*%newbeta)

yirs=yir*exp(-Xi%*%newbeta)

yrs=yr*exp(-Xr%*%newbeta)

#new knots mu and variance

maxv=max(rbind(yfs,yls,yils,yirs,yrs))

minv=min(rbind(yfs,yls,yils,yirs,yrs))

binw=(maxv-minv)/(nknots-1)

knots=matrix(seq(minv,maxv,binw))

sig=(2/3)*binw

gaus0=pnorm(0,knots,sig)*sqrt(2*pi*sig^2)

{if (nf==0){

hnewbhf=1

hnewchf=0}

else{

hnewbhf=matrix(0,nf,1)

hnewchf=matrix(0,nf,1)

for (i in 1:nf){

hnewbhf[i]=t(dnorm(yfs[i],knots,sig)

*sqrt(2*pi*sig^2))%*%oldtheta

hnewchf[i]=t(pnorm(yfs[i],knots,sig)

*sqrt(2*pi*sig^2)-gaus0)%*%oldtheta

}

}
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if (nl==0){

hnewbhl=0

hnewchl=0}

else{

hnewbhl=matrix(0,nl,1)

hnewchl=matrix(0,nl,1)

for (i in 1:nl){

hnewbhl[i]=t(dnorm(yls[i],knots,sig)

*sqrt(2*pi*sig^2))%*%oldtheta

hnewchl[i]=t(pnorm(yls[i],knots,sig)

*sqrt(2*pi*sig^2)-gaus0)%*%oldtheta

}

}

if (ni==0){

hnewbhil=0

hnewbhir=0

hnewchil=0

hnewchir=0}

else{

hnewbhil=matrix(0,ni,1)

hnewbhir=matrix(0,ni,1)

hnewchil=matrix(0,ni,1)

hnewchir=matrix(0,ni,1)

for (i in 1:ni){

hnewbhil[i]=t(dnorm(yils[i],knots,sig)

*sqrt(2*pi*sig^2))%*%oldtheta

hnewbhir[i]=t(dnorm(yirs[i],knots,sig)

*sqrt(2*pi*sig^2))%*%oldtheta

hnewchil[i]=t(pnorm(yils[i],knots,sig)

*sqrt(2*pi*sig^2)-gaus0)%*%oldtheta

hnewchir[i]=t(pnorm(yirs[i],knots,sig)

*sqrt(2*pi*sig^2)-gaus0)%*%oldtheta
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}

}

if (nr==0){

hnewbhr=0

hnewchr=0}

else{

hnewbhr=matrix(0,nr,1)

hnewchr=matrix(0,nr,1)

for (i in 1:nr){

hnewbhr[i]=t(dnorm(yrs[i],knots,sig)

*sqrt(2*pi*sig^2))%*%oldtheta

hnewchr[i]=t(pnorm(yrs[i],knots,sig)

*sqrt(2*pi*sig^2)-gaus0)%*%oldtheta

}

}

}
#half new survival function

hnewsl=exp(-hnewchl)

hnewsil=exp(-hnewchil)

hnewsir=exp(-hnewchir)

{if (nl==0){

hnewgl=1}

else{

hnewgl=1-hnewsl

}

if (ni==0){

hnewgi=1}

else{

hnewgi=hnewsil-hnewsir

}

}

llik1=sum(log(hnewgl))+sum(log(hnewgi))-sum(hnewchr)

-sum(Xf%*%newbeta+hnewchf)+sum(log(hnewbhf))
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ome=0.6

while(llik1<=llik0){

#newbeta

newbeta=oldbeta-ome*incb

#new time scaled

yfs=yf*exp(-Xf%*%newbeta)

yls=yl*exp(-Xl%*%newbeta)

yils=yil*exp(-Xi%*%newbeta)

yirs=yir*exp(-Xi%*%newbeta)

yrs=yr*exp(-Xr%*%newbeta)

#new knots mu and variance

maxv=max(rbind(yfs,yls,yils,yirs,yrs))

minv=min(rbind(yfs,yls,yils,yirs,yrs))

binw=(maxv-minv)/(nknots-1)

knots=matrix(seq(minv,maxv,binw))

sig=(2/3)*binw

gaus0=pnorm(0,knots,sig)*sqrt(2*pi*sig^2)

if (nf==0){

hnewbhf=1

hnewchf=0}

else{

hnewbhf=matrix(0,nf,1)

hnewchf=matrix(0,nf,1)

for (i in 1:nf){

hnewbhf[i]=t(dnorm(yfs[i],knots,sig)

*sqrt(2*pi*sig^2))%*%oldtheta

hnewchf[i]=t(pnorm(yfs[i],knots,sig)

*sqrt(2*pi*sig^2)-gaus0)%*%oldtheta

}

}

if (nl==0){
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hnewbhl=0

hnewchl=0}

else{

hnewbhl=matrix(0,nl,1)

hnewchl=matrix(0,nl,1)

for (i in 1:nl){

hnewbhl[i]=t(dnorm(yls[i],knots,sig)

*sqrt(2*pi*sig^2))%*%oldtheta

hnewchl[i]=t(pnorm(yls[i],knots,sig)

*sqrt(2*pi*sig^2)-gaus0)%*%oldtheta

}

}

if (ni==0){

hnewbhil=0

hnewbhir=0

hnewchil=0

hnewchir=0}

else{

hnewbhil=matrix(0,ni,1)

hnewbhir=matrix(0,ni,1)

hnewchil=matrix(0,ni,1)

hnewchir=matrix(0,ni,1)

for (i in 1:ni){

hnewbhil[i]=t(dnorm(yils[i],knots,sig)

*sqrt(2*pi*sig^2))%*%oldtheta

hnewbhir[i]=t(dnorm(yirs[i],knots,sig)

*sqrt(2*pi*sig^2))%*%oldtheta

hnewchil[i]=t(pnorm(yils[i],knots,sig)

*sqrt(2*pi*sig^2)-gaus0)%*%oldtheta

hnewchir[i]=t(pnorm(yirs[i],knots,sig)

*sqrt(2*pi*sig^2)-gaus0)%*%oldtheta

}
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}

if (nr==0){

hnewbhr=0

hnewchr=0}

else{

hnewbhr=matrix(0,nr,1)

hnewchr=matrix(0,nr,1)

for (i in 1:nr){

hnewbhr[i]=t(dnorm(yrs[i],knots,sig)

*sqrt(2*pi*sig^2))%*%oldtheta

hnewchr[i]=t(pnorm(yrs[i],knots,sig)

*sqrt(2*pi*sig^2)-gaus0)%*%oldtheta

}

}

#half new survival function

hnewsl=exp(-hnewchl)

hnewsil=exp(-hnewchil)

hnewsir=exp(-hnewchir)

if (nl==0){

hnewgl=1}

else{

hnewgl=1-hnewsl

}

if (ni==0){

hnewgi=1}

else{

hnewgi=hnewsil-hnewsir

}

llik1=sum(log(hnewgl))+sum(log(hnewgi))

-sum(hnewchr)-sum(Xf%*%newbeta+hnewchf)

+sum(log(hnewbhf))

if (ome>=1e-2)
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ome=ome*0.6

else if (ome < 1e-2 & ome >= 1e-5)

ome = ome*5e-2

else if (ome<1e-5 & ome>1e-20)

ome = ome*1e-5

else

break

}

#R matrix

R=matrix(0,nknots,nknots)

nd=500

delta=(maxv-minv)/nd

binedg=matrix(seq(minv,maxv,delta))

mp=matrix(0,nd,1)

for (i in 1:nd){

mp[i]=(binedg[i]+binedg[i+1])/2

}

for (u in 1:nknots){

for (r in 1:nknots){

R[u,r]=delta*sum((-1/(sig)^2+((mp-knots[u])/(sig)^2)^2)

*(-1/(sig)^2+((mp-knots[r])/(sig)^2)^2)

*dnorm(mp,knots[u],sig)*sqrt(2*pi*(sig)^2)

*dnorm(mp,knots[r],sig)*sqrt(2*pi*(sig)^2))

}

}

#algorithm for updating theta

llik2=sum(log(hnewgl))+sum(log(hnewgi))-sum(hnewchr)

-sum(hnewchf)+sum(log(hnewbhf))

-(smooth/(1-smooth))*t(oldtheta)%*%R%*%oldtheta

dpen=2*(smooth/(1-smooth))*R%*%oldtheta

#new estimates for theta

a=matrix(0,nknots,1)

b1=matrix(0,nknots,1)
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b2=matrix(0,nknots,1)

c=matrix(0,nknots,1)

d1=matrix(0,nknots,1)

d2=matrix(0,nknots,1)

for (j in 1:(nknots)){

a[j]=sum(hnewsl*(pnorm(yls,knots[j],sig)

*sqrt(2*pi*(sig)^2)-gaus0[j])/hnewgl)

b1[j]=sum(hnewsir*(pnorm(yirs,knots[j],sig)

*sqrt(2*pi*(sig)^2)-gaus0[j])/hnewgi)

b2[j]=sum(hnewsil*(pnorm(yils,knots[j],sig)

*sqrt(2*pi*(sig)^2)-gaus0[j])/hnewgi)

c[j]=sum(pnorm(yrs,knots[j],sig)

*sqrt(2*pi*(sig)^2)-gaus0[j])

d1[j]=sum(dnorm(yfs,knots[j],sig)

*sqrt(2*pi*(sig)^2)/hnewbhf)

d2[j]=sum(pnorm(yfs,knots[j],sig)

*sqrt(2*pi*(sig)^2)-gaus0[j])

}

#nume=a+b1+d1-min(0,dpen)

nume=a+b1+d1-matrix(apply(dpen,1

,function(x) min(x,0)))

#deno=b2+c+d2+max(0,dpen)

deno=b2+c+d2+matrix(apply(dpen,1

,function(x) max(x,0)))

newtheta=oldtheta*((nume+e)/(deno+e))

incbh=newtheta-oldtheta

{if (nf==0){

bhf=1

chf=0}

else{

bhf=matrix(0,nf,1)

chf=matrix(0,nf,1)
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for (i in 1:nf){

bhf[i]=t(dnorm(yfs[i],knots,sig)

*sqrt(2*pi*sig^2))%*%newtheta

chf[i]=t(pnorm(yfs[i],knots,sig)

*sqrt(2*pi*sig^2)-gaus0)%*%newtheta

}

}

if (nl==0){

bhl=0

chl=0}

else{

bhl=matrix(0,nl,1)

chl=matrix(0,nl,1)

for (i in 1:nl){

bhl[i]=t(dnorm(yls[i],knots,sig)

*sqrt(2*pi*sig^2))%*%newtheta

chl[i]=t(pnorm(yls[i],knots,sig)

*sqrt(2*pi*sig^2)-gaus0)%*%newtheta

}

}

if (ni==0){

bhil=0

bhir=0

chil=0

chir=0}

else{

bhil=matrix(0,ni,1)

bhir=matrix(0,ni,1)

chil=matrix(0,ni,1)

chir=matrix(0,ni,1)

for (i in 1:ni){
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bhil[i]=t(dnorm(yils[i],knots,sig)

*sqrt(2*pi*sig^2))%*%newtheta

bhir[i]=t(dnorm(yirs[i],knots,sig)

*sqrt(2*pi*sig^2))%*%newtheta

chil[i]=t(pnorm(yils[i],knots,sig)

*sqrt(2*pi*sig^2)-gaus0)%*%newtheta

chir[i]=t(pnorm(yirs[i],knots,sig)

*sqrt(2*pi*sig^2)-gaus0)%*%newtheta

}

}

if (nr==0){

bhr=0

chr=0}

else{

bhr=matrix(0,nr,1)

chr=matrix(0,nr,1)

for (i in 1:nr){

bhr[i]=t(dnorm(yrs[i],knots,sig)

*sqrt(2*pi*sig^2))%*%newtheta

chr[i]=t(pnorm(yrs[i],knots,sig)

*sqrt(2*pi*sig^2)-gaus0)%*%newtheta

}

}

}

#half new survival function

sl=exp(-chl)

sil=exp(-chil)

sir=exp(-chir)

{if (nl==0){

gl=1}

else{
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gl=1-sl

}

if (ni==0){

gi=1}

else{

gi=sil-sir

}

}

llik3=sum(log(gl))+sum(log(gi))-sum(chr)

-sum(chf)+sum(log(bhf))

-(smooth/(1-smooth))*t(newtheta)%*%R%*%newtheta

ome=0.6

while (llik3<=llik2){

#new estimates for baseline

newtheta=oldtheta+ome*incbh

if (nf==0){

bhf=1

chf=0}

else{

bhf=matrix(0,nf,1)

chf=matrix(0,nf,1)

for (i in 1:nf){

bhf[i]=t(dnorm(yfs[i],knots,sig)

*sqrt(2*pi*sig^2))%*%newtheta

chf[i]=t(pnorm(yfs[i],knots,sig)

*sqrt(2*pi*sig^2)-gaus0)%*%newtheta

}

}

if (nl==0){

bhl=0

chl=0}

else{
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bhl=matrix(0,nl,1)

chl=matrix(0,nl,1)

for (i in 1:nl){

bhl[i]=t(dnorm(yls[i],knots,sig)

*sqrt(2*pi*sig^2))%*%newtheta

chl[i]=t(pnorm(yls[i],knots,sig)

*sqrt(2*pi*sig^2)-gaus0)%*%newtheta

}

}

if (ni==0){

bhil=0

bhir=0

chil=0

chir=0}

else{

bhil=matrix(0,ni,1)

bhir=matrix(0,ni,1)

chil=matrix(0,ni,1)

chir=matrix(0,ni,1)

for (i in 1:ni){

bhil[i]=t(dnorm(yils[i],knots,sig)

*sqrt(2*pi*sig^2))%*%newtheta

bhir[i]=t(dnorm(yirs[i],knots,sig)

*sqrt(2*pi*sig^2))%*%newtheta

chil[i]=t(pnorm(yils[i],knots,sig)

*sqrt(2*pi*sig^2)-gaus0)%*%newtheta

chir[i]=t(pnorm(yirs[i],knots,sig)

*sqrt(2*pi*sig^2)-gaus0)%*%newtheta

}

}

if (nr==0){

253



bhr=0

chr=0}

else{

bhr=matrix(0,nr,1)

chr=matrix(0,nr,1)

for (i in 1:nr){

bhr[i]=t(dnorm(yrs[i],knots,sig)

*sqrt(2*pi*sig^2))%*%newtheta

chr[i]=t(pnorm(yrs[i],knots,sig)

*sqrt(2*pi*sig^2)-gaus0)%*%newtheta

}

}

#new survival function

sl=exp(-chl)

sil=exp(-chil)

sir=exp(-chir)

if (nl==0){

gl=1}

else{

gl=1-sl

}

if (ni==0){

gi=1}

else{

gi=sil-sir

}

llik3=sum(log(gl))+sum(log(gi))-sum(chr)

-sum(chf)+sum(log(bhf))

-(smooth/(1-smooth))*t(newtheta)%*%R%*%newtheta

if (ome>=1e-2)

ome=ome*0.6

else if (ome < 1e-2 & ome >= 1e-5)

ome = ome*5e-2
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else if (ome<1e-5 & ome>1e-20)

ome = ome*1e-5

else

break

}

plik=sum(log(gl))+sum(log(gi))-sum(chr)

-sum(Xf%*%newbeta+chf)+sum(log(bhf))

-(smooth/(1-smooth))*t(newtheta)%*%R%*%newtheta

cvg[iter,1]=iter

cvg[iter,2]=plik

if (max(abs(newtheta-oldtheta))<1e-5

& max(abs(newbeta-oldbeta))<1e-5)

{

cvg = cvg[1:iter,]

break

}

else{

oldbeta=newbeta

oldtheta=newtheta

oldyfs=yfs

oldyls=yls

oldyils=yils

oldyirs=yirs

oldyrs=yrs

oldknots=knots

oldsig=sig

oldbhf=bhf

oldbhl=bhl

oldbhil=bhil

oldbhir=bhir

oldbhr=bhr

oldchr=chr

oldchf=chf
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oldsl=sl

oldsil=sil

oldsir=sir

oldgl=gl

oldgi=gi

}

}
#second derivative with respective to beta

#new A function for scaled time

if (nf==0){

Af=0}

else{

Af=matrix(0,nf,1)

for (i in 1:nf){

Af[i]=t(dnorm(yfs[i],knots,sig)

*sqrt(2*pi*sig^2))%*%(newtheta*(yfs[i]-knots)/sig^2)

}

}

if (nl==0){

Al=0}

else{

Al=matrix(0,nl,1)

for (i in 1:nl){

Al[i]=t(dnorm(yls[i],knots,sig)*sqrt(2*pi*sig^2))

%*%(newtheta*(yls[i]-knots)/sig^2)

}

}

if (ni==0){

Ail=0

Air=0}

else{

Ail=matrix(0,ni,1)

Air=matrix(0,ni,1)

for (i in 1:ni){
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Ail[i]=t(dnorm(yils[i],knots,sig)*sqrt(2*pi*sig^2))

%*%(newtheta*(yils[i]-knots)/sig^2)

Air[i]=t(dnorm(yirs[i],knots,sig)*sqrt(2*pi*sig^2))

%*%(newtheta*(yirs[i]-knots)/sig^2)

}

}

if (nr==0){

Ar=0}

else{

Ar=matrix(0,nr,1)

for (i in 1:nr){

Ar[i]=t(dnorm(yrs[i],knots,sig)*sqrt(2*pi*sig^2))

%*%(newtheta*(yrs[i]-knots)/sig^2)

}

}

#new H function for scaled time

Hf=yfs*bhf-Af*yfs^2

Hl=yls*bhl-Al*yls^2

Hil=yils*bhil-Ail*yils^2

Hir=yirs*bhir-Air*yirs^2

Hr=yrs*bhr-Ar*yrs^2

#new Hessian matrix for beta

etal=bhl*yls

etail=bhil*yils

etair=bhir*yirs

ksi=etail*sil-etair*sir

K=(Hl-etal^2)*sl/gl-(etal*sl/gl)^2

#new h function for scaled interval-censored

h=sil*Hil-sir*Hir

qi=(etail^2)*sil-(etair^2)*sir

L=(-h+qi)/gi-(ksi/gi)^2

#new B and C function for scaled fully observed

if (nf==0){
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B=0

C=0}

else{

B=matrix(0,nf,1)

C=matrix(0,nf,1)

for (i in 1:nf){

B[i]=t(dnorm(yfs[i],knots,sig)*sqrt(2*pi*sig^2))

%*%(newtheta*((yfs[i]-knots)/sig^2)^2)

C[i]=t(dnorm(yfs[i],knots,sig)*sqrt(2*pi*sig^2))

%*%(newtheta/sig^2)

}

}

M=(-yfs*Af+(B-C)*yfs^2)/bhf-(yfs*Af/bhf)^2-Hf

if (nl==1){

KK=t(Xl)%*%K%*%Xl}

else{

KK=t(Xl)%*%diag(c(K))%*%Xl

}

if (ni==1){

LL=t(Xi)%*%L%*%Xi}

else{

LL=t(Xi)%*%diag(c(L))%*%Xi

}

if (nr==1){

NN=t(Xr)%*%Hr%*%Xr}

else{

NN=t(Xr)%*%diag(c(Hr))%*%Xr

}

if (nf==1){

MM=t(Xf)%*%M%*%Xf}

else{

MM=t(Xf)%*%diag(c(M))%*%Xf

}

258



Hesb=KK+LL-NN+MM

#second derivative with respective to theta

sig=matrix(sig,nknots,1)

diagl=matrix(0,nknots,1)

diagi=matrix(0,nknots,1)

diagf=matrix(0,nknots,1)

for (j in 1:(nknots)){

diagl[j]=-(sum(sl*((pnorm(yls,knots[j],sig[j])

*sqrt(2*pi*(sig[j])^2)-gaus0[j])^2)/gl)+

sum((sl*(pnorm(yls,knots[j],sig[j])

*sqrt(2*pi*(sig[j])^2)-gaus0[j])/gl)^2))

diagi[j]=-(sum((sir*(pnorm(yirs,knots[j],sig[j])

*sqrt(2*pi*(sig[j])^2)-gaus0[j])^2

-sil*(pnorm(yils,knots[j],sig[j])

*sqrt(2*pi*(sig[j])^2)-gaus0[j])^2)/gi)

+sum(((sir*(pnorm(yirs,knots[j],sig[j])

*sqrt(2*pi*(sig[j])^2)-gaus0[j])

-sil*(pnorm(yils,knots[j],sig[j])

*sqrt(2*pi*(sig[j])^2)-gaus0[j]))/gi)^2))

diagf[j]=-(sum((dnorm(yfs,knots[j],sig[j])

*sqrt(2*pi*(sig[j])^2)/bhf)^2))

}

tHesl=diag(c(diagl))

tHesi=diag(c(diagi))

tHesf=diag(c(diagf))

for (j in (2:(nknots))){

for (k in (1:(j-1))){

tHesl[k,j]=-(sum(sl*(pnorm(yls,knots[j],sig[j])

*sqrt(2*pi*(sig[j])^2)-gaus0[j])

*(pnorm(yls,knots[k],sig[k])

*sqrt(2*pi*(sig[k])^2)-gaus0[k])/gl)

+sum((pnorm(yls,knots[j],sig[j])

*sqrt(2*pi*(sig[j])^2)-gaus0[j])
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*(pnorm(yls,knots[k],sig[k])

*sqrt(2*pi*(sig[k])^2)-gaus0[k])*(sl^2)/(gl^2)))

tHesi[k,j]=-(sum((sir*(pnorm(yirs,knots[j],sig[j])

*sqrt(2*pi*(sig[j])^2)-gaus0[j])

*(pnorm(yirs,knots[k],sig[k])

*sqrt(2*pi*(sig[k])^2)-gaus0[k])

-sil*(pnorm(yils,knots[j],sig[j])

*sqrt(2*pi*(sig[j])^2)-gaus0[j])

*(pnorm(yils,knots[k],sig[k])

*sqrt(2*pi*(sig[k])^2)-gaus0[k]))/gi)

+sum((sir*(pnorm(yirs,knots[j],sig[j])

*sqrt(2*pi*(sig[j])^2)-gaus0[j])

-sil*(pnorm(yils,knots[j],sig[j])

*sqrt(2*pi*(sig[j])^2)-gaus0[j]))

*(sir*(pnorm(yirs,knots[k],sig[k])

*sqrt(2*pi*(sig[k])^2)-gaus0[k])

-sil*(pnorm(yils,knots[k],sig[k])

*sqrt(2*pi*(sig[k])^2)-gaus0[k]))/gi^2))

tHesf[k,j]=-sum(dnorm(yfs,knots[j],sig[j])

*sqrt(2*pi*(sig[j])^2)*dnorm(yfs,knots[k],sig[k])

*sqrt(2*pi*(sig[k])^2)/bhf^2)

}

}

tHes=tHesl+tHesi+tHesf

for (j in (2:(nknots))){

for (k in (1:(j-1))){

tHes[j,k]=tHes[k,j]

}

}

#second derivative with respective to beta and theta

dbtl=matrix(0,p,(nknots))
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dbti=matrix(0,p,(nknots))

dbtr=matrix(0,p,(nknots))

dbtf=matrix(0,p,(nknots))

for (j in 1:(nknots)){

if (nl==1){

dbtl[,j]=(t(Xl)%*%((-dnorm(yls,knots[j],sig[j])

*sqrt(2*pi*(sig[j])^2)*yls*sl

+sl*(pnorm(yls,knots[j],sig[j])

*sqrt(2*pi*(sig[j])^2)-gaus0[j])*bhl*yls)/gl

+(sl^2)*(pnorm(yls,knots[j],sig[j])

*sqrt(2*pi*(sig[j])^2)-gaus0[j])*bhl*yls/gl^2)

%*%matrix(1,nl,1))}

else{

dbtl[,j]=(t(Xl)%*%diag(c((-dnorm(yls,knots[j],sig[j])

*sqrt(2*pi*(sig[j])^2)*yls*sl

+sl*(pnorm(yls,knots[j],sig[j])

*sqrt(2*pi*(sig[j])^2)-gaus0[j])*bhl*yls)/gl

+(sl^2)*(pnorm(yls,knots[j],sig[j])

*sqrt(2*pi*(sig[j])^2)-gaus0[j])

*bhl*yls/gl^2))%*%matrix(1,nl,1))

}

if (ni==1){

dbti[,j]=(t(Xi)%*%(((-dnorm(yirs,knots[j],sig[j])

*sqrt(2*pi*(sig[j])^2)*yirs*sir

+sir*(pnorm(yirs,knots[j],sig[j])

*sqrt(2*pi*(sig[j])^2)-gaus0[j])*bhir*yirs)

-(-dnorm(yils,knots[j],sig[j])

*sqrt(2*pi*(sig[j])^2)*yils*sil

+sil*(pnorm(yils,knots[j],sig[j])

*sqrt(2*pi*(sig[j])^2)-gaus0[j])*bhil*yils))/gi

-(sir*(pnorm(yirs,knots[j],sig[j])

*sqrt(2*pi*(sig[j])^2)-gaus0[j])
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-sil*(pnorm(yils,knots[j],sig[j])

*sqrt(2*pi*(sig[j])^2)-gaus0[j]))

*(bhil*yils*sil-bhir*yirs*sir)/gi^2)

%*%matrix(1,ni,1))}

else{

dbti[,j]=(t(Xi)%*%diag(c(((-dnorm(yirs,knots[j],sig[j])

*sqrt(2*pi*(sig[j])^2)*yirs*sir

+sir*(pnorm(yirs,knots[j],sig[j])

*sqrt(2*pi*(sig[j])^2)-gaus0[j])*bhir*yirs)

-(-dnorm(yils,knots[j],sig[j])

*sqrt(2*pi*(sig[j])^2)*yils*sil

+sil*(pnorm(yils,knots[j],sig[j])

*sqrt(2*pi*(sig[j])^2)-gaus0[j])*bhil*yils))/gi

-(sir*(pnorm(yirs,knots[j],sig[j])

*sqrt(2*pi*(sig[j])^2)-gaus0[j])

-sil*(pnorm(yils,knots[j],sig[j])

*sqrt(2*pi*(sig[j])^2)-gaus0[j]))

*(bhil*yils*sil-bhir*yirs*sir)/gi^2))

%*%matrix(1,ni,1))

}

if (nr==1){

dbtr[,j]=t(Xr)%*%(dnorm(yrs,knots[j],sig[j])

*sqrt(2*pi*(sig[j])^2)*yrs)%*%matrix(1,nr,1)}

else{

dbtr[,j]=t(Xr)%*%diag(c(dnorm(yrs,knots[j],sig[j])

*sqrt(2*pi*(sig[j])^2)*yrs))%*%matrix(1,nr,1)

}

if (nf==1){

dbtf[,j]=(t(Xf)%*%(((yfs-knots[j])

*dnorm(yfs,knots[j],sig[j])*sqrt(2*pi*(sig[j])^2)

/(sig[j])^2)*(yfs/bhf)
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-dnorm(yfs,knots[j],sig[j])

*sqrt(2*pi*(sig[j])^2)*yfs*Af/bhf^2

+dnorm(yfs,knots[j],sig[j])*sqrt(2*pi*(sig[j])^2)*yfs)

%*%matrix(1,nf,1))}

else{

dbtf[,j]=(t(Xf)%*%diag(c(((yfs-knots[j])

*dnorm(yfs,knots[j],sig[j])*sqrt(2*pi*(sig[j])^2)

/(sig[j])^2)*(yfs/bhf)

-dnorm(yfs,knots[j],sig[j])*sqrt(2*pi*(sig[j])^2)

*yfs*Af/bhf^2+dnorm(yfs,knots[j],sig[j])

*sqrt(2*pi*(sig[j])^2)*yfs))%*%matrix(1,nf,1))

}

}

dbt=dbtl+dbti+dbtr+dbtf

#Hessian matrix

H=rbind(cbind(Hesb,dbt),cbind(t(dbt),tHes))

HesbinvD=matrix(diag(solve(-Hesb)))

tHesp=-tHes+2*smooth*R/(1-smooth)

tHespinvD=matrix(diag(solve(tHesp)))

Hessp=rbind(cbind(-Hesb,-dbt),cbind(-t(dbt),tHesp))

varcov=solve(Hessp)%*%(-H)%*%solve(Hessp)

{if (p==1){

betavar=varcov[1:p,1:p]

}

else{

betavar=matrix(diag(varcov[1:p,1:p]))

}

}

betavar[betavar<0]=HesbinvD[betavar<0]

thetavar=matrix(diag(varcov[(p+1):(p+nknots)

, (p+1):(p+nknots)]))

varcov.theta=matrix(varcov[(p+1):(p+nknots)

, (p+1):(p+nknots)],nknots,nknots)
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thetavar[thetavar<0]=tHespinvD[thetavar<0]

diag(varcov.theta)=thetavar

#selection criterion

df=sum(diag(solve(Hessp)%*%(-H)))

#df=sum(diag(Hesspinv%*%(-H)))

llik=sum(log(gl))+sum(log(gi))

-sum(chr)-sum(Xf%*%newbeta+chf)+sum(log(bhf))

AIC=-llik+df

#plots of estimated hazard and true hazard

time.point=matrix(seq(0,1,length=50))

num.p=dim(time.point)[1]

minv=min(time.point)

maxv=max(time.point)

nd=500

delta=(maxv-minv)/nd

binedg=matrix(seq(minv,maxv,delta))

mp=matrix(0,nd,1)

for (i in 1:nd){

mp[i]=(binedg[i]+binedg[i+1])/2

}

ISEbhs=matrix(0,nd,1)

ISEdfs=matrix(0,nd,1)

ebh=matrix(0,num.p,1)

edf=matrix(0,num.p,1)

ebhvar=matrix(0,num.p,1)

#if (datatype=='E'){

for (i in 1:num.p){

ebh[i]=t(dnorm(time.point[i],knots,sig)

*sqrt(2*pi*sig^2))%*%newtheta

edf[i]=exp(time.point[i])

*t(dnorm(exp(time.point[i]),knots,sig)

*sqrt(2*pi*sig^2))%*%newtheta*

exp(-t(pnorm(exp(time.point[i]),knots,sig)
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*sqrt(2*pi*sig^2)-gaus0)%*%newtheta)

ebhvar[i]=t(dnorm(time.point[i],knots,sig)

*sqrt(2*pi*sig^2))%*%(varcov.theta)

%*%(dnorm(time.point[i],knots,sig)*sqrt(2*pi*sig^2))

}

tbh=3*time.point^2

tdf=3*exp(3*time.point-exp(3*time.point))

medf=matrix(0,nd,1)

for (i in 1:nd){

ISEbhs[i]=(3*mp[i]^2-t(dnorm(mp[i],knots,sig)

*sqrt(2*pi*sig^2))%*%newtheta)^2

medf[i]=exp(mp[i])*(t(dnorm(exp(mp[i]),knots,sig)

*sqrt(2*pi*sig^2))%*%newtheta)*

exp(-t(pnorm(exp(mp[i]),knots,sig)

*sqrt(2*pi*sig^2)-gaus0)%*%newtheta)

ISEdfs[i]=(3*exp(3*mp[i]-exp(3*mp[i]))-medf[i])^2

}

ISEbh=delta*sum(ISEbhs)

ISEdf=delta*sum(ISEdfs)

par(mfrow=c(2,1))

plot(time.point,tdf,type='l',col='red')

lines(time.point,edf,type='l',col='blue')

plot(time.point,tbh,type='l',col='red')

lines(time.point,ebh,type='l',col='blue')

return(list(newbeta=newbeta,newtheta=newtheta

,cvg=cvg,betavar=betavar

,thetavar=thetavar,ebhvar=ebhvar

,ebh=ebh,edf=edf,AIC=AIC,

ISEbh=ISEbh,ISEdf=ISEdf))

}

C.3 MC simulations for method comparisons
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#Select the smoothing value

#smv: vector of smoothing values

selSm<-function(data,X,nknots,smv,maxiter){

ns=dim(smv)[1]

id=matrix(seq(1,ns,1))

AICs=matrix(0,ns,1)

np=dim(X)[2]

newbetas=matrix(0,ns,np)

betavars=matrix(0,ns,np)

time.point=matrix(seq(0,1,0.05))

num.p=dim(time.point)[1]

ISEs=matrix(0,ns,1)

ebhs=matrix(0,num.p,ns)

for (i in 1:ns){

aftfit=mplAFT(data,X,nknots,smv[i],maxiter)

AICs[i]=aftfit$AIC

newbetas[i,]=matrix(aftfit$newbeta,nrow=1)

betavars[i,]=matrix(aftfit$betavar,nrow=1)

ebhs[,i]=matrix(aftfit$ebh)

ISEs[i]=aftfit$ISE

print(i)

}

AICm=min(AICs)

id=id[AICs==AICm]

smop=smv[id]

newbetaop=newbetas[id,]

betavarop=betavars[id,]

ISEop=ISEs[id]

ebhop=ebhs[,id]

return(list(smop=smop,AICm=AICm,newbetaop=newbetaop

,betavarop=betavarop,ISEop=ISEop,ebhop=ebhop

,AICs=AICs,newbetas=newbetas,
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betavars=betavars,ISEs=ISEs))

}

SmSel=selSm(data,X,nknots,smv,maxiter)

#Datasets used for method comparisons.

#N: N Monte Carlo samples.

GenerateData=function(beta,n,p,N){

obsets=matrix(0,n,3*N)

Xs=matrix(0,n,3*N)

for (i in 1:N){

Ca=matrix(rep(0,n))

ur=runif(n)

Ca[ur<=0.5]=1

Ca[ur>0.5]=0

#Covariate matrix

Xs[,(3*i-2):(3*i)]=cbind(Ca,runif(n,min=0,max=3)

,runif(n,min=0,max=5))

obsets[,(3*i-2):(3*i)]=event(beta

,Xs[,(3*i-2):(3*i)],p,n)

}

return(list(obsets=obsets,Xs=Xs))

}

dataset=GenerateData(beta,n,p,N)

datas=dataset$obsets

Xs=dataset$Xs

#MC simulations for the method by Komarek et al. (2005).

#nknots: number of knots

Ksim=function(datas,Xs,nknots,N){

betas=matrix(0,N,3)

astds=matrix(0,N,3)

time.point=matrix(seq(0,1,length=50))

num.p=dim(time.point)[1]
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ebhs=matrix(0,num.p,N)

edfs=matrix(0,num.p,N)

ISEebhs=matrix(0,N,1)

ISEedfs=matrix(0,N,1)

for (i in 1:N){

t1=datas[,(3*i-2)]

t2=datas[,(3*i-1)]

t1[t1==0]=-NA

t2[t2==Inf]=NA

x1=Xs[,(3*i-2)]

x2=Xs[,(3*i-1)]

x3=Xs[,(3*i)]

surv <- Surv(t1, t2, type = "interval2")

Kfit<- smoothSurvReg(surv~x1+

x2+x3,info=FALSE, knots=seq(-6,6,length=nknots)

, difforder=3,init.logscale=0)

regre=Kfit$regre

betas[i,]=matrix(regre$Value[2:4],nrow=1)

astds[i,]=matrix(regre$Std.Error2[2:4],nrow=1)

scale=regre$Value[6]

intercept=regre$Value[1]

sig=(2/3)*diff(seq(-6,6,length=nknots))[1]

knots=matrix(seq(-6,6,length=nknots))

theta=Kfit$spline

theta=as.matrix(as.matrix(theta)[,3])

ebh=matrix(0,num.p,1)

edf=matrix(0,num.p,1)

for (k in 1:num.p){

ebh[k]=((1/time.point[k])*(1/scale)*(t(dnorm((log(time.point[k])

-intercept)/scale,knots,sig))%*%theta))/

(1-t(pnorm((log(time.point[k])-intercept)

/scale,knots,sig))%*%theta)

edf[k]=(1/scale)*(t(dnorm((time.point[k]-intercept)
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/scale,knots,sig))%*%theta)

}

ebhs[,i]=ebh

edfs[,i]=edf

minv=min(time.point)

maxv=max(time.point)

nd=500

delta=(maxv-minv)/nd

binedg=matrix(seq(minv,maxv,delta))

mp=matrix(0,nd,1)

for (k in 1:nd){

mp[k]=(binedg[k]+binedg[k+1])/2

}

embh=matrix(0,nd,1)

emdf=matrix(0,nd,1)

ISEebh=matrix(0,nd,1)

ISEedf=matrix(0,nd,1)

for (k in 1:nd){

embh[k]=((1/mp[k])*(1/scale)*(t(dnorm((log(mp[k])-intercept)

/scale,knots,sig))%*%theta))/

(1-t(pnorm((log(mp[k])-intercept)/scale,knots,sig))%*%theta)

ISEebh[k]=(3*mp[k]^2-embh[k])^2

emdf[k]=(1/scale)*(t(dnorm((mp[k]-intercept)

/scale,knots,sig))%*%theta)

ISEedf[k]=(3*exp(3*mp[k]-exp(3*mp[k]))-emdf[k])^2

}

ISEebhs[i]=delta*sum(ISEebh)

ISEedfs[i]=delta*sum(ISEedf)

print(i)

}

mISEebh=mean(ISEebhs)

mISEedf=mean(ISEedfs)

meanb=matrix(colMeans(betas),1,3)
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biasbeta=t(beta)-meanb

varb=matrix(0,1,3)

for (j in 1:3){

varb[1,j]=var(betas[,j])

}

stdb=sqrt(varb)

mseb=biasbeta^2+varb

astdb=matrix(colMeans(astds),1,3)

summaryb=rbind(meanb,biasbeta,stdb,astdb,mseb)

meanbh=matrix(colMeans(t(ebhs)))

meandf=matrix(colMeans(t(edfs)))

varbh=matrix(0,num.p,1)

vardf=matrix(0,num.p,1)

for (j in 1:num.p){

varbh[j]=var(ebhs[j,])

vardf[j]=var(edfs[j,])

}

stdbh=sqrt(varbh)

stddf=sqrt(vardf)

mclbh=meanbh-1.96*stdbh

mcubh=meanbh+1.96*stdbh

mcldf=meandf-1.96*stddf

mcudf=meandf+1.96*stddf

mclbh[mclbh<0]=0

mcldf[mcldf<0]=0

summarybh=cbind(meanbh,mclbh,mcubh,meandf,mcldf,mcudf)

return(list(summaryb=summaryb,summarybh=summarybh

,mISEebh=mISEebh,mISEedf=mISEedf))

}

K.sim=Ksim(datas,Xs,nknots,N)

#Monte Carlo simulations for our MPL method.

#n: sample size.
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#p: censoring proportion.

#nknots: number of knots.

#beta: beta values.

#N: N Monte Carlo samples.

#maxiter: number of iterations in the Newton-MI algorithm.

#smop: smoothing value selected by SmSel.

MCsimu<-function(datas,Xs,nknots,smop,beta,N,maxiter){

#initials

np=dim(beta)[1]

betas=matrix(0,N,np)

betavars=matrix(0,N,np)

time.point=matrix(seq(0,1,length=50))

num.p=dim(time.point)[1]

ebhs=matrix(0,num.p,N)

edfs=matrix(0,num.p,N)

ebhvars=matrix(0,num.p,N)

ISEbhs=matrix(0,N,1)

ISEdfs=matrix(0,N,1)

#MC simulation

for(i in 1:N){

aftfit=mplAFT(datas[,(3*i-2):(3*i)]

,Xs[,(3*i-2):(3*i)],nknots,smop,maxiter)

betas[i,]=matrix(aftfit$newbeta,nrow=1)

betavars[i,]=matrix(aftfit$betavar,nrow=1)

ebhs[,i]=matrix(aftfit$ebh)

edfs[,i]=matrix(aftfit$edf)

ebhvars[,i]=matrix(aftfit$ebhvar)

ISEbhs[i]=aftfit$ISEbh

ISEdfs[i]=aftfit$ISEdf

print(i)

}

mISEbh=mean(ISEbhs)

mISEdf=mean(ISEdfs)
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#mean, bias, std, astd and mse of beta

meanb=matrix(colMeans(betas),1,np)

biasbeta=meanb-t(beta)

varb=matrix(0,1,np)

for (j in 1:np){

varb[1,j]=var(betas[,j])

}

stdb=sqrt(varb)

astdb=matrix(colMeans(sqrt(betavars)),1,np)

mseb=biasbeta^2+varb

#summary for beta

summaryb=rbind(meanb,biasbeta,stdb,astdb,mseb)

#sample mean, std and astd of the hazard

meanbh=matrix(colMeans(t(ebhs)))

meandf=matrix(colMeans(t(edfs)))

varbh=matrix(0,num.p,1)

vardf=matrix(0,num.p,1)

for (j in 1:num.p){

varbh[j]=var(ebhs[j,])

vardf[j]=var(edfs[j,])

}

# MC standard deviation

stdbh=sqrt(varbh)

stddf=sqrt(vardf)

#Average asymptotic standard deviation

aastdbh=matrix(colMeans(t(sqrt(ebhvars))))

# 95% MC PWCI

mclbh=meanbh-1.96*stdbh

mcubh=meanbh+1.96*stdbh

mcldf=meandf-1.96*stddf

mcudf=meandf+1.96*stddf

# average of asymptotic 95% PWCI

aasylbh=meanbh-1.96*aastdbh
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aasyubh=meanbh+1.96*aastdbh

mclbh[mclbh<0]=0

mcldf[mcldf<0]=0

aasylbh[aasylbh<0]=0

summarybh=cbind(meanbh,mclbh,mcubh,aasylbh,aasyubh

,meandf,mcldf,mcudf)

return(list(summaryb=summaryb,summarybh=summarybh

,mISEbh=mISEbh,mISEdf=mISEdf))

}

sim=MCsimu(datas,Xs,nknots,smop,beta,N,maxiter)
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