
LEARNING WITH JOINT INFERENCE AND

LATENT LINGUISTIC STRUCTURE IN

GRAPHICAL MODELS

By

Jason Naradowsky

A THESIS SUBMITTED TO MACQUARIE UNIVERSITY

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTING

APRIL 2015

ii

c© Jason Naradowsky, 2015.

Typeset in LATEX 2ε.

iii

Statement of Candidate

As a cotutelle student at Macquarie University and The Uni-
versity of Massachusetts, Ahmerst, I certify that the work in
this thesis entitled “Learning with Joint Inference and Latent
Linguistic Structure in Graphical Models” has not previously
been submitted for a degree nor has it been submitted as part
of requirements for a degree to any other university or insti-
tution other than Macquarie University and The University
of Massachusetts, Amherst.
I also certify that the thesis is an original piece of research
and it has been written by me. Any help and assistance that
I have received in my research work and the preparation of
the thesis itself have been appropriately acknowledged. In
addition, I certify that all information sources and literature
used are indicated in the thesis.
The research presented in this thesis did not require approval
by the Macquarie University Ethics Review Committee.

Jason Naradowsky, Student ID: 42509203

iv

Acknowledgements

They say calm seas never made a skilled sailor. I take this as some consolation: throughout the
course of my dissertation I often felt like a vessel trapped in a tumultuous sea, rammed with
unexpected challenges, and pushed to many far-flung ports. Even as far as PhDs go, the last six
years have felt like both an oddity and an odyssey, and it has been an absolutely transformative
experience. During the course of my graduate studies I have lived on four continents and have
been a member of just as many research labs. As such I owe a tremendous debt of gratitude to the
many people who have helped me along the way.

First and foremost, I am forever indebted to my primary advisor, David Smith. David has
been a constant source of intellectual inspiration, and it is no surprise that many of the ideas David
toyed with during his thesis are also present throughout my own. Through the many less-than-ideal
situations we’ve found ourselves in, I’ve always been thankful for having the the freedom to try to
make the best of them in my own way.

I must also thank the incomparable Mark Johnson. Mark is generous with his time, precise
in every endeavor, and a scientist through-and-through. While Mark’s assistance in shaping the
dissertation’s narrative was indispensable, I’m confident that a bigger debt of gratitude will be
owed for countless snippets of great advice, and the lead-by-example lessons I’ll be incorporating
into my research life for years to come.

Though we did not pursue much research together, Andrew McCallum played a pivotal role
in bringing me to UMass and introducing me to many of the concepts and themes that would
later serve as the foundation of this thesis. And while much of my time at UMass was spent
in the classroom, I have enjoyed pub nights, casual chats, and an occasional lunch with IESL
peers: Sameer Singh, Greg Druck, Limin Yao, David Mimno, Kedar Bellare, Adam Saunders,
and Sebastian Riedel. Leeanne Leclerc and Kate Moruzzi have been incredibly helpful in guiding
me through the exorbitant amount of additional paperwork and bureaucratic hoops my research
path has required, and it has been greatly appreciated. Additional thanks to Joe Pater, Lyn Frazier,
and other members of the UMass Linguistics faculty for helping maintain the charade of being a
competent linguist.

I would never have embarked on this long educational journey if not for the guidance and
special attention given to me by a few exemplary teachers. A special thanks to my SUNY Oswego
professors, Craig Graci and David Vampola, without whom I may never have discovered this field,
and my serious interest in AI and NLP may have never been sparked.

Similarly, I have been blessed to have started my research career under the auspices of Sharon
Goldwater, and I’m thankful for her role in nudging me from student to researcher. I have been
similarly fortunate to have worked early in my PhD career with Kristina Toutanova, and I’m thank-
ful for her role in the nudge from researcher to researcher-who-wants-an-industry-job.

v

vi ACKNOWLEDGEMENTS

I’m sincerely indebted to Yuji Matsumoto and Kevin Duh for hosting me in Japan on more than
one occasion, and to an innumerable number of the nicest graduate students at the Nara Institute
of Science and Technology (NAIST). If the reader of this acknowledgement is a PhD student, then
I highly recommend the EAPSI fellowship program (and specifically through collaboration with
Japanese Society for the Promotion of Science). But in that case I also recommend skipping the
rest of the front matter and reading a more substantive section of the dissertation!

And perhaps most importantly, to all the close friends who have helped to shaped not just my
PhD experience, but my aspirations, perspective, and life throughout the past decade of graduate
school. To Mallory Earnshaw, Van Dang, Hanna Wallach, Tim Vieira, Bevan K. Jones, Benjamin
Börschinger, and Maria Chan, thank you.

vii

Abstract

A human listener, charged with the difficult task of mapping language to meaning, must infer
a rich hierarchy of linguistic structures, beginning with an utterance and culminating in an under-
standing of what was spoken. Much in the same manner, developing complete natural language
processing systems requires the processing of many different layers of linguistic information in
order to solve complex tasks, like answering a query or translating a document.

Historically the community has largely adopted a “divide and conquer” strategy, choosing to
split up such complex tasks into smaller fragments which can be tackled independently, with the
hope that these smaller contributions will also yield benefits to NLP systems as a whole. These
individual components can be laid out in a pipeline and processed in turn, one system’s output be-
coming input for the next. This approach poses two problems. First, errors propagate, and, much
like the childhood game of “telephone”, combining systems in this manner can lead to unintelligi-
ble outcomes. Second, each component task requires annotated training data to act as supervision
for training the model. These annotations are often expensive and time-consuming to produce,
may differ from each other in genre and style, and may not match the intended application.

In this dissertation we pursue novel extensions of joint inference techniques for natural lan-
guage processing. We present a framework that offers a general method for constructing and
performing inference using graphical model formulations of typical NLP problems. Models are
composed using weighted Boolean logic constraints, inference is performed using belief propa-
gation. The systems we develop are composed of two parts: one a representation of syntax, the
other a desired end task (part-of-speech tagging, semantic role labeling, named entity recognition,
or relation extraction). By modeling these problems jointly, both models are trained in a single,
integrated process, with uncertainty propagated between them. This mitigates the accumulation
of errors typical of pipelined approaches. We further advance previous methods for performing
efficient inference on graphical model representations of combinatorial structure, like dependency
syntax, extending it to various forms of phrase structure parsing.

Finding appropriate training data is a crucial problem for joint inference models. We observe
that in many circumstances, the output of earlier components of the pipeline is often irrelevant –
only the end task output is important. Yet we often have strong a priori assumptions regarding what
this structure might look like: for phrase structure syntax the model should represent a valid tree,
for dependency syntax it should represent a directed graph. We propose a novel marginalization-
based training method in which the error signal from end task annotations is used to guide the
induction of a constrained latent syntactic representation. This allows training in the absence of
syntactic training data, where the latent syntactic structure is instead optimized to best support the
end task predictions. We find that across many NLP tasks this training method offers performance
comparable to fully supervised training of each individual component, and in some instances im-
proves upon it by learning latent structures which are more appropriate for the task.

viii ACKNOWLEDGEMENTS

Contents

Acknowledgements v

List of Figures xiii

List of Tables xv

1 Introduction 1
1.1 Overview . 3

1.1.1 Model Combination: Maintaining Uncertainty 3
1.1.2 Marginalization-based Approaches to Training 7

1.2 Joint Inference in Graphical Models . 9
1.2.1 Graphical Models . 9
1.2.2 Factor Graphs . 9
1.2.3 Inference . 10

1.3 A Comparison of Approaches to Joint NLP . 11
1.3.1 Joint Decoding . 11
1.3.2 Joint Training . 16

1.4 Contributions of Dissertation . 19
1.5 Outline of Dissertation . 19

2 Factor Graphs, Belief Propagation, and Combinatorial Constraints 21
2.1 A Running Example . 22
2.2 Probabilistic Graphical Models . 23

2.2.1 Sequence Tagging with Probabilistic Models 24
2.2.2 Factor Graphs and Log-Linear Models . 26
2.2.3 Factor Graph Sequence Models . 26
2.2.4 Log-linear Models . 28

2.3 Inference via Belief Propagation . 28
2.3.1 What Inference Accomplishes . 29
2.3.2 Belief Propagation with the Sum-Product Algorithm 30
2.3.3 Loopy Belief Propagation . 33
2.3.4 Message Order . 34
2.3.5 Minimum Bayes-Risk . 34

2.4 Structured Models and Combinatorial Constraints 36
2.4.1 Message Computation for the IsAtMost1 36

ix

x CONTENTS

2.4.2 Constraint Inventory . 40
2.4.3 Constructing Joint Models . 43

2.5 Parameter Estimation . 45
2.5.1 Conditional Maximum Likelihood . 45
2.5.2 Optimizing with hidden variables . 47
2.5.3 Stochastic Gradient Descent . 47
2.5.4 Computing the Gradient . 49
2.5.5 Training with Latent Variables . 50
2.5.6 Learning to Coordinate Between Models 51
2.5.7 Regularization . 52

2.6 A Hidden Syntax Approach to Tagging . 53
2.6.1 The Role of Syntax in Tagging . 53
2.6.2 A Joint Model of Tagging and Syntax . 54
2.6.3 Experimental Design and Results . 56

2.7 Conclusions . 58

3 Factor Graph Representations of Syntax 61
3.1 Phrase Structure Parsing . 62

3.1.1 The Inside-Outside Algorithm . 66
3.1.2 Representing Phrase Structure in Factor Graphs 69
3.1.3 Grammatical Rules as Factors . 85
3.1.4 Experiments . 89

3.2 Dependency Parsing . 97
3.2.1 Dependency Grammar . 98
3.2.2 Representing Dependency Syntax in Factor Graph Models 99

3.3 Conclusions . 100

4 Jointly Modeling Syntax and Named Entity Recognition 103
4.1 Overview of Named Entity Recognition . 104

4.1.1 The Relationship Between Syntax in NER 105
4.2 Joint Modeling via Grammar Augmentation . 107
4.3 Description of Joint Model . 109

4.3.1 Modeling Named Entity Prediction . 109
4.3.2 A Joint Model of NER and Constituent Syntax 113
4.3.3 Features . 115

4.4 Experiments . 116
4.4.1 Data . 116
4.4.2 Experimental Design . 117
4.4.3 Results . 118

4.5 Conclusions . 124

5 Joint Models for Relation Extraction 125
5.1 An Overview of Relation Extraction . 126

5.1.1 Factor Graph Models for Relation Extraction 128
5.1.2 Factors for Coordinating Relation Extraction and Syntax 128

CONTENTS xi

5.2 Experiments . 130
5.2.1 Data . 130
5.2.2 Model Configurations . 131
5.2.3 Features . 132
5.2.4 Design . 133
5.2.5 Results . 134

5.3 Conclusion . 136

6 Semantic Role Labeling with Latent Syntax 137
6.1 Semantic Role Labeling . 138

6.1.1 The Role of Syntax in SRL . 139
6.1.2 Related Work . 141

6.2 Factor Graph Models of SRL . 143
6.2.1 Baseline Model: SRL without syntax . 143
6.2.2 Joint Approaches to Sense and Role Prediction 144
6.2.3 A Joint Model of Dependency Parsing and SRL 147

6.3 Experiments . 148
6.3.1 Data . 148
6.3.2 Features . 148
6.3.3 Experimental Design . 151
6.3.4 Evaluation . 152
6.3.5 Results . 153
6.3.6 Valency Results . 155
6.3.7 Performance on SRL Frames . 156

6.4 Conclusion . 162

7 Conclusion 163
7.1 Future Directions . 166

7.1.1 Additional Latent Linguistic Structure . 166
7.1.2 Exploring New End Tasks . 168
7.1.3 Incorporation of Approximate or Pruned Approaches to Inference 169
7.1.4 Exploring the use of additional supervision 170

7.2 Final Thoughts . 170

References 173

xii CONTENTS

List of Figures

1.1 Annotations for three common NLP tasks . 3
1.2 A pipeline approach to model combination . 5
1.3 Failure of the Viterbi approximation . 6
1.4 Bidirectional information flow via belief propagation 12

2.1 Representations of graphical models . 26
2.2 A linear chain CRF represented as a factor graph 27
2.3 BP message calculations: variable to factor . 31
2.4 BP message calculations: factor to variable . 32
2.5 A factorial CRF . 33
2.6 Outgoing message computation for the ISATMOST1 factor 37
2.7 Message Computations for ISATMOST1 Factor 39
2.8 Coordinating models with soft NAND factors . 46
2.9 Heatmaps of conditional tag probabilities. 54
2.10 A joint model of tagging and parsing. 56

3.1 A phrase structure tree . 62
3.2 Inside & Outside trees. 68
3.3 Variables for phrase structure syntax . 71
3.4 Pseudocode for CKY-TREE . 73
3.5 Pseudocode of a right-branching binarization . 78
3.6 Binarized trees . 79
3.7 Pseudocode for unlabeled parser decoding . 80
3.8 Graphical depiction of the labeled parsing model 81
3.9 Number of distinct span labels at varying span widths 85
3.10 Grammatical rules as factors . 86
3.11 Pseudocode for rule factor learning with the Perceptron algorithm 88
3.12 A comparison of parser decoding speeds . 96
3.13 A non-projective dependency tree . 99

4.1 A sentence annotated with syntax and NER . 105
4.2 Unaligned entities . 107
4.3 Grammar transformations for joint parsing and NER 108
4.4 Semi-Markov models . 111
4.5 Pseudocode for the SEMI-CRF factor propagator 112
4.6 A joint model of NER and phrase structure syntax 113

xiii

xiv LIST OF FIGURES

4.7 An example of joint inference improving both syntax and NER analyses. 122

5.1 Relationships between syntax and relation extraction 127

6.1 An example sentence with dependency tree and SRL annotations 138
6.2 Correspondence between syntax and SRL predicate-argument pairs 140
6.3 An example of crossing syntactic and SRL dependencies 141
6.4 Modeling valency in SRL . 146
6.5 A joint model of SRL and dependency syntax . 148
6.6 SRL frame arity across models . 156
6.7 Examining induced latent syntax for SRL . 158
6.8 English gloss for Japanese example in Fig. 6.7. 159
6.9 German NP structure . 160
6.10 English ORACLE error analysis . 161

List of Tables

2.1 Tagging accuracy for English and Latin . 58

3.1 Features for span-factored constituent parsing . 83
3.2 OntoNotes data statistics . 89
3.3 Performance of the parsers in an unlabeled evaluation 92
3.4 Label parsing performance . 93
3.5 NP prediction results . 95

4.1 NER and constituent syntax alignment statistics 106
4.2 Features for NER factors . 115
4.3 Features for coordination factors . 116
4.4 F&M09 OntoNotes data statistics. 117
4.5 NER baseline and joint model performance on the OntoNotes corpus 119
4.6 Standalone and joint parsing performance on the OntoNotes corpus 123

5.1 Relation extraction results on ACE . 135

6.1 SRL Results on CoNLL 2009 data sets . 154
6.2 SRL Valency Model Results . 155

xv

xvi LIST OF TABLES

1
Introduction

When humans interpret language they infer a rich hierarchy of linguistic structures prior to con-
structing a semantic and pragmatic representation. Many of the tasks commonly explored in nat-
ural language processing (NLP) are approached in the same way: first, the system recovers the
relevant supporting linguistic structure (a parse tree, a tag sequence, etc.), which it then utilizes to
improve performance on the desired task. However, the working assumption underlying most NLP
research is that linguistic processing can be modularized (often into lexical, morphological, syn-
tactic, semantic, and pragmatic information), and that these modules can be modeled and trained
independently. The resulting models can be composed in a serial fashion, feeding the output of
one component forward to serve as input to the next, in a pipeline, in order to perform complex
NLP tasks.

A typical pipeline might comprise a tagger, a parser, and an end task - the goal of the system.
While the notion of an end task varies, we consider tasks like named entity recognition, relation
extraction, and semantic role labeling to be sufficiently close to a user’s goal to be considered end
tasks. Beginning with a sentence of raw text, a tagging model might pair each word with its most
probable part-of-speech tag, before passing this information forward to the parser. The parser,
leveraging the additional information provided by the tag sequence, assigns the most probable
tree, and so forth. This provides a great deal of structured information from which to make end
task predictions, but each model pushes forward only a fraction of the information it captures, and
information never flows backward.

Linguistic evidence points to a decidedly different view of the human language processor, one
in which information can flow more freely between components, helping to resolve ambiguity
jointly [1–4]. Similar strategies have been pursued in the NLP community [5–8], yet so-called
joint inference techniques have yet to become the standard approach to model composition. We
hypothesize that this may be in part due to the lack of a flexible, general framework for constructing
models for joint inference, with the ability to efficiently represent highly-structured models (such
as models of syntactic structure). Additionally, we observe that jointly annotated data – a single

1

2 INTRODUCTION

data set annotated for multiple tasks, sufficient for training all the models of a pipeline system – is
scarce, and in most instances the outputs of intermediary models are never evaluated nor utilized
other than to improve performance on a singular end task.

To this end we present a general approach for constructing joint models: models which unite
more than one task-specific model, which we refer to as a component model, and where informa-
tion is shared freely between them during inference. Unlike the pipeline approach, information can
flow in both directions. In theory this allows a joint model to recover from errors made by compo-
nents which appear early in the pipeline, preventing further errors from accumulating downstream.

We argue that factor graphs [9] are an ideal formalism for defining joint models. Factor graphs
are a type of graphical model which are capable of representing many common NLP models, and
provide many characteristics which are beneficial for joint modeling in NLP:

• In a factor graph there exists a natural semantics for modeling dependent components, and
this provides a principled method for connecting two component models, using probability
theory as the language of coordination. Thus factor graphs provide a means of constructing
joint models from common single-task models.

• In a joint model, dependencies between component models often create cyclic dependencies
(loops). In a factor graph, there are inference algorithms (belief propagation, [10]) which
provide approximate solutions for arbitrary graph structures, even those with cyclic depen-
dencies. Therefore, factor graphs have a mechanism for reasoning with joint models.

• One of the most common components of an NLP pipeline is a parser, which produces a
syntactic analysis for each sentence. Due to the combinatorial nature of syntactic structure,
incorporating a model of syntax can lead to difficult, if not intractable, inference. Following
the recent work of [11], this problem can be circumvented in factor graphs through the use
of specialized combinatorial factors.

Having addressed the problem of constructing and reasoning with joint models, we investigate
new methods for training them. In order to train an NLP pipeline in the typical fully-supervised
case, each component requires its own training data. For a joint model, the data requirements are
significantly more demanding, as a single data set must be annotated with the labels for each task.
Annotated data is already exceedingly scarce for most tasks in most languages, making this a very
burdensome requirement.

To counter this we propose a paradigm shift away from the traditional motivation for joint in-
ference, in which two or more tasks benefit mutually from fully-supervised joint training [6], and
focus instead on the scenario where joint inference is applied solely towards improving perfor-
mance of a single task. In this scenario, we can reduce the labeled data requirements of joint mod-
eling by treating all supporting models (component models which are not the end task) as latent, or
unobserved during training, requiring no training data of their own. For these models training su-
pervision comes only indirectly, through the annotations of the end task, and is propagated through
model dependencies during inference. In this scenario joint inference offers something new: a prin-
cipled approach to learning with a combination of supervised and unsupervised components in a
task-directed manner. We show, across a variety of NLP tasks, that this method provides perfor-
mance comparable to fully-supervised training while requiring far less training data, and in some
circumstances even improving over identical models using gold or parser-produced annotations.

1.1 OVERVIEW 3

a.) Part-of-speech Tags b.) Dependency Parse c.) Semantic Role Labels

The cat scratched the man

DET NN VB DET NN

The cat scratched the man The cat scratched the man

AGENT PATIENT

FIGURE 1.1: Annotations for three common NLP tasks.

1.1 Overview

1.1.1 Model Combination: Maintaining Uncertainty

The natural language processing community works largely under the assumption that language can
be effectively partitioned into largely independent modules – phonology, morphology, syntax, and
semantics – each of which can be tackled independently. Each model assumes that all prerequi-
site steps have already been solved, and the input annotated accordingly. For example, a parser
typically assumes the input has been part-of-speech tagged, and a semantic role labeling system
typically assumes the input has been parsed.

But this strategy is only optimal when the tasks are largely independent of one another, i.e.,
that the solution to the latter problem does not influence the former. In the pipeline approach,
errors made by earlier components force the following components to base their predictions on
erroneous information, making it more likely for additional errors to accrue. If the models are
dependent, information from later components could influence these early decisions. Methods
of joint decoding aim to solve this problem. Starting from pre-trained models for individual
tasks, joint decoding methods aim to find the optimal solution by considering information from all
component models jointly. This may be the best solution for the entire pipeline (i.e., the best global
solution), or it could be the optimal solution for only a subset of these components, conditioned on
others.

In order to provide some context in which to discuss the problem of model combination, let us
consider the task of semantic role labeling. Semantic role labeling (SRL) is the task of identifying
basic semantic relationships in text. Given a sentence, the first step is to identify key verbs, known
as predicates, and group them with their associated arguments. Each argument is given a label to
describe the nature of its relationship with the predicate, known as its semantic role (i.e., agent,
patient, instrument, etc..) For the example sentence “The cat scratched the man”, the correct SRL
analysis identifies scratched as a predicate, cat and man as its arguments, and labels them AGENT

and PATIENT respectively. These annotations are shown in Fig.1.1c.
Current state-of-the-art SRL systems require a parsing component. In turn, because part-of-

speech tags are required to train the parsing model (Fig.1.1a), the system will require yet another
model to tag words with their parts-of-speech. We can define a set of models that reflect this this
hierarchy:

ModelTags =P (Tags|Words,ΘTags)

ModelTree =P (Tree|Tags,Words,ΘTree)

ModelSRL =P (SRL|Tree, Tags,Words,ΘSRL)

(1.1)

4 INTRODUCTION

where ModelTags, ModelTree, and ModelSRL are models for part-of-speech tagging, parsing, and
SRL, Tags, Tree, and SRL are the predicted variables, ΘTags,ΘTree,ΘSRL are the corresponding
model parameters, and Words is a variable representing a sequence of words provided to each
model as input. During training a parameter estimation method is used to optimize each model’s
parameters. In a supervised pipeline approach (Fig. 1.2) each model is trained independently,
and requires its own annotated data set. During testing these models are utilized to annotate raw
text with SRL annotations. Models for tagging, parsing and SRL will be defined in full detail in
Chapters 2, 3 and 6, but for now let us consider how to decode (i.e., utilize the model’s predictions
to assign structure to raw text) using these models on an arbitrary sentence.

Our goal is to find the most probable SRL analysis, but, due to the hierarchical nature of the
dependencies between these three models, finding this solution requires us to first consider the
values of the Tree and Tags variables. However, in this scenario Tree and Tag are latent vari-
ables: we have models specifying distributions over these variables, but their actual values are
unknown. Here we present and contrast two approaches to dealing with these latent variables. The
first decoding strategy truncates the latent variable distributions to a set of their most probable ele-
ments. A second decoding strategy relaxes this approximation, considering each possible analysis
of latent structure and contributing its probability mass toward the SRL solutions that are most
compatible with it.

N-Best Pipelines

Perhaps the most straightforward approach to decoding a set of dependent models is to process
each model in turn, taking the output from each model and using it as input to the next. Here
the model dependencies impose a natural order, beginning with the Tag prediction, proceeding to
Tree prediction, before finally reaching the goal, SRL prediction. This is aptly referred to as an
n-best pipeline, where n is the number of analyses put forth by each component model (Figure
1.2). When the output from each model is its single best hypothesis, n = 1, this strategy can be
summarized by the following equation:

GOAL1−best = arg max
s∈S

P (SRL = s|Tree = t, Tags = p,Words = w,ΘSRL)

max
t∈T

P (Tree = t|Tags = p,Words = w,ΘTrees)

max
p∈P

P (Tags = p|Words = w,ΘTags)

(1.2)

where S, T , and P are the sets of all possible SRL analyses, trees and tag sequences, respec-
tively, and GOAL1−best is the single-best SRL analysis, conditioned on the single-best tree and tag
sequence.

This is a very practical approach, but when viewing this decoding strategy as a maximization
over each model in turn, it becomes clear that this is merely an approximation of a more exhaustive
search. The approximation used here, known as the Viterbi approximation (in reference to the
Viterbi decoding algorithm for hidden Markov models [12]), replaces each distribution with the
most probable element of that distribution. This could also be viewed as three applications of
maximum a posteriori (MAP) decoding, one for each of the three models, or as a case of n-best
decoding, where n = 1.

1.1 OVERVIEW 5

Tagged
Docs

Part-of-Speech
Model

Text
Docs

Tree
Docs

SRL
Docs

SRL
Output

SRL
Model

Parsing
Model

N-best Tags N-best Trees

Testing Configuration

Training Configuration

FIGURE 1.2: A pipeline approach to model combination. Individual models are trained independently
from their own task-specific annotations, i.e. tagged documents are annotated with part-of-speech tags,
tree documents with syntactic trees, and SRL documents with predicate-argument pairs. These data sets
may come from difference sources (top). During testing, where the goal is to use the system to make end
task predictions for new data, the only input to the system is raw text. Each successive model applies an
additional layer of annotation, propagating it forward to be used as input to the next (bottom). This is
often the single most probable analysis, but components can also propagate forward larger lists of analyses
(known as an n-best list, of size n) in order to give later components some chance at recovering from a poor
decision early in the pipeline.

While attractive from a practical perspective, pipeline approaches – both the Viterbi approx-
imation and the more general n-best list decoding strategy – are severely handicapped when it
comes to finding globally optimal solutions in NLP. In general, if the distribution of a preced-
ing component is peaked (i.e., concentrated primarily on a small percentage of the analyses), the
Viterbi approximation has a greater chance of selecting the correct hypothesis. If the distribution
is flatter, the model is less certain, the most probable analysis inherently a poorer approximation to
the full distribution.

To understand how this affects model combination in practice, consider the example outlined in
Figure 1.3. Here we depict three syntactic trees and their probabilities as specified by ModelTree,
paired with the correct SRL analysis. Let us assume that a syntax tree provides evidence for
an SRL analysis if there exists a corresponding syntactic dependency for each SRL dependency.
When using the Viterbi approximation, ideally the most probable parse tree provides the maximum
amount of evidence in support of the correct SRL analysis. However, here we find that the most
probable parse tree, t1 with probability 0.3, is incorrect, and only partially supports the correct
SRL analysis. The most probable SRL analysis under the distribution P (SRL|Tree = t1, Tags =
p,Words = w), conditioning on incorrect information, is also likely to be incorrect.

In this case, broadening the approximation to include all three parse trees would allow the

6 INTRODUCTION

The cat scratched the man

DET NN VB DET NN

The cat scratched the man

DET NN VB DET NN

The cat scratched the man

DET NN VB DET NN

Syntax Analysis t1: P = 0.3 Syntax Analysis t2: P = 0.2 Syntax Analysis t3: P = 0.2

AGENT PATIENT AGENT PATIENT AGENT PATIENT

FIGURE 1.3: Failure of the Viterbi approximation. The top three trees of the parsing model’s distribution
are shown, along with the correct SRL analysis below. SRL dependencies that are supported by the syntactic
analysis are shaded in green, and those which do not are shaded in grey. The solution chosen by the viterbi
approximation (leftmost tree) does not maximally support the correct SRL analysis (shown below each tree),
as it shares only one of the SRL solution’s two arcs. In comparison, if the entire ModelTree distribution is
utilized the correct SRL analysis would receive additional (and greater) support from trees t2 and t3.

model to include additional information from tree t2 and t3 that would be beneficial to SRL predic-
tion. However, in practice this strategy is flawed: the space of possible parse trees for a sentence
is often too large to tractably pass forward from one component to another. We now present an
alternative method to decoding in which all syntactic analyses contribute in part to the decoding of
the SRL model.

Marginalization-based Decoding

In a 1-best decoding strategy only a model’s most probable analysis will affect the distributions
of later models. All other information about the model distribution is discarded at each step. An
alternative approach, which we will refer to as marginalization-based decoding, generalizes over
the n-best list approach, and provides a method for including more of the information captured by
the latent distributions. It does this by marginalizing (summing over) all possible values for the
latent variables (Tree and Tags):

GOALMarg = arg max
s∈SRL

∑
t∈T

∑
p∈P

P (SRL = s|Tree = t, Tags = p,Words = w,ΘSRL)

P (Tree = t|Tags = p,Words = w,ΘTrees)

P (Tags = p|Words = w,ΘTags)

(1.3)

where GOALMarg is once again the single most probable SRL analysis, but this time conditioning
on all possible values of latent trees and tag sequences, weighted by their probabilities. This makes
it more robust to the effects of flatter model distributions.

Returning to the example analyzing the effect of parser decoding on the SRL model (Fig. 1.3),
recall that the Viterbi decoding strategy selects the most probable parse tree, t1, and ModelSRL con-
ditions upon it when finding the most probable SRL solution. Tree t1 provides only partial support
for the SRL analysis, with one of the two correct SRL dependencies having a corresponding syntac-
tic dependency. Using the marginalization-based decoding strategy, summing over trees will pro-
vide nearly half (P (t2|Tags = p,Words = w)+P (t3|Tags = p,Words = w) = 0.2+0.2 = 0.4)

1.1 OVERVIEW 7

of the latent distribution’s probability mass to work in favor of the correct SRL solution. The sum
of support for the correct analysis now outweighs the support for the incorrect analysis, 0.4 to
0.3. For illustrative purposes our example here contains just three hypotheses. In practice there
are thousands of possible trees for reasonably-sized sentences, and this mass must be distributed
across many more trees, making the distribution inherently flatter and the Viterbi approach a poorer
approximation of the full distribution.

We conclude with a clarification. The n-best and marginalization-based approach to decod-
ing are useful for illustrating the difference between how model combination is typically done in
practice, as an approximation, and the more general marginalization-based approach. However,
the models we propose are joint. Joint models unite the advantages discussed here (maintaining
uncertainty at each step) with bidirectional information flow. This allows the beliefs of the later
models to influence other models which would appear earlier in the pipeline. For instance, bidirec-
tional information flow allows the beliefs of the SRL model to influence the parsing model, during
both decoding and training. Instead of taking a set of pre-trained models as input to decoding, a
joint model provides just one (individual component models are not factored out).

1.1.2 Marginalization-based Approaches to Training
We have presented an initial set of motivations for preferring a marginalization-based or joint
decoding strategy over alternatives like n-best lists or Viterbi decoding. By operating on full dis-
tributions marginalization-based decoding avoids some of the potential pitfalls of approximate
solutions to the global problem. But if this is our ideal decoding strategy, then what is the cor-
responding ideal method for training? Here we describe an analog to training we refer to as a
marginalization-based training, which extends to optimization the philosophy of working with
full distributions.

Let us start by discussing the pipeline approach to training. During training in this scenario,
there are no latent variables. In the case of our SRL example, the SRL model is given the true
values for SRL, Tree, and Tags. The Tree model would observe the true analyses for Tree and
Tags, and so forth. These true analyses are derived not from the output of a previous model, as
it is during testing, but are provided in annotated data. This decoupling allows the models to be
trained independently of each other, as illustrated in Fig. 1.2 (top). Optimizing the set of models
can then be done as follows:

ΘML−SRL = arg max
ΘSRL

n∏
i=1

P (SRLi|Treei, Tagi,Wordsi,ΘSRL)

ΘML−Tree = arg max
ΘTree

n∏
i=1

P (Treei|Tagi,Wordsi,ΘTree)

ΘML−Tags = arg max
ΘTags

n∏
i=1

P (Tagsi|Wordsi,ΘTags)

where i corresponds to the ith item from the training data, of which there are n in total. This
type of optimization is known as maximum likelihood estimation (MLE). In MLE the goal is to

8 INTRODUCTION

optimize the likelihood of the parameters given the data, L(Θ|x). This is equivalent to maximizing
P (x|Θ), and thus the right hand side of each equation is a likelihood. Each instance of the training
data is treated as independently generated, thus the likelihood of generating the entire data set is
the product of all individual likelihoods.

There are some practical advantages to this approach. It is easier to find a separate data set
for training each model than it is to find a single data set annotated for all three tasks, and it is
also easier to train each model independently than to jointly optimize all models simultaneously.
However, the disadvantage to training each model off an unrelated data set is that there will be
some degree of domain or genre mismatch between them. [13] shows that a parser trained on a
corpus of newswire performs notably worse when tested on a mixed-domain data set. A similar
problem exists when training systems off of several task-specific data sets. For instance, both the
SRL and parsing models utilize parse trees during training, each from their own respective data
sets. During decoding, the trees used by the SRL model are obtained from the parsing model. If
these trees are not representative of the trees the SRL model was trained on, the setting is identical
to testing on out of domain data, and may be subject to similar performance loss.

In this thesis we propose a different strategy for training dependent models. Instead of training
each model toward its own goal (i.e. a tagging model which attempts to best reproduce the gold
tags from a corpus, a parsing model which attempts to reproduce the gold trees from another), we
train all models toward one goal: improving performance on the end task. In the example case, the
end task is SRL. Once we treat component models as parts of one larger, end-task directed model,
there is no need to require task-specific annotations for each component model.

In theory this allows us to perform a complex end task like SRL, without requiring any training
data for supporting tasks, like part-of-speech tagging or parsing. The resulting optimization on a
joint model has the following form:

ΘML−Marg =

arg max
ΘSRL,ΘTree,ΘTags

∏
i

∑
t∈T ,p∈P

P (SRLi, T reei = t, Tagsi = p|Wordsi,ΘSRL,ΘTree,ΘTags) (1.4)

where SRLi is the correct SRL structure for the ith training example, and we once again sum over
the latent Tag and Tree variables. But this is during training – if supervision for these models
is not required, what constitutes a probable tree or tag sequence? What these models will learn
to represent is something more abstract, with supervision coming only indirectly, through the end
task annotations. The fact that this is a joint model is what allows the error signal, originating with
end task annotations, to propagate out and influence these latent structures. Simultaneously, we
provide general constraints on the kinds of latent structures that are permissible. For syntax, these
constraints force the latent structure to be a directed graph or a tree. The learned latent structure
will be one that optimizes Eq. 1.4 while adhering to these general structural constraints.

This discussion has provided a high level view of the approach pursued throughout this disser-
tation, leaving open the question of how we construct models, and how this method compares to
other approaches. In the next section we introduce graphical models, a framework which we argue
is convenient for constructing joint models, and performing joint inference.

1.2 JOINT INFERENCE IN GRAPHICAL MODELS 9

1.2 Joint Inference in Graphical Models
We have previously described our marginalization-based approach to both model training and de-
coding. This goal requires information to be shared between component models, but we have not
yet discussed how this communication is possible. The answer lies in inference, the process of
drawing conclusions from data by using a statistical model. In this section we introduce graphical
models, a powerful framework for representing and reasoning with probabilistic models. Here in-
ference will be used to answer the question, for a variable x and a value q, “Given values for certain
variables, what is the probability that variable x has value q?”. The answer provides a key com-
ponent, marginals, required for training these models when using a gradient-based optimization
method.

1.2.1 Graphical Models

Graphical models are a family of formalisms that use graph theory to express probabilistic rela-
tionships, namely conditional independence assumptions, which are useful for defining efficient
inference algorithms. Here we provide a brief overview of graphical models, before discussing
them at depth in Section 2.2 (pg. 23).

A probabilistic model encodes a problem domain using a set of random variables, the value of
each variable capturing the state of particular aspect of the world. In NLP, a random variable may
represent a word’s part-of-speech tag, a syntactic dependency between two words, or named entity
over a span of words. A probabilistic model defines a distribution over these variables, specifying
the probability for any possible assignment of values to the variables in the model.

But a distribution over a set of n variables, each with m values, yields O(mn) configurations,
growing exponentially with the number of variables in the model. The models presented in this
dissertation will often contain thousands, if not tens of thousands of variables, and thus working
with the distribution directly would be intractable.

Graphical models are a type of probabilistic model which use graph structure to represent a
factorization of this distribution. Variables correspond to nodes in the graph, and the graph’s edges
encode dependencies between variables. More precisely, the absence of edges in the graph speci-
fies the conditional independence properties of the model (this is described in detail in Section 2.2
on pg. 23). This allows graphical models to factor the distribution as the product of many simpler
functions, each of which deals with a much smaller subset of variables. The sparser the connec-
tions are in the graph, the more compactly the distribution can be represented using a graphical
model.

This is the key to tractable representations of probabilistic models, but it is also a convenient
factorization: a sparsely connected graph provides a more compact representation of the distribu-
tion which helps to support efficient inference, but it simultaneously complements the modeler’s
goal of applying their expert knowledge to define the problem in a simple, intuitive manner.

1.2.2 Factor Graphs

In this dissertation we focus on a type of graphical model known as a factor graph. Factor graphs
make the dependencies between variables more explicit using a second set of nodes known as

10 INTRODUCTION

factors. A factor scores any assignment of values to its neighboring variables. A factor which
neighbors just a single Boolean variable, whose values range over {true, false}, specifies a score
for the variable being true, and a score for the variable being false. The model’s score for a
configuration of variables is simply the product of all the corresponding factor scores for that
configuration.

The factorization provided by a graphical model only yields a significant reduction in complex-
ity when edges in the graph are sparse. When graphs are densely connected, the factorization is
not as efficient and inference can become intractable. In NLP, one such case is that of syntax trees.
Two leading syntactic formalisms, phrase structure and dependency structure, can be represented
in a factor graph using O(n2) variables. However, to ensure that all configurations of variables
correspond only to valid trees, a large (sometimes exponential) number of factors is required.

Factor graphs provide a solution to this problem. Instead of constraining variable configura-
tions using many factors over small sets of variables, a single globally-connected special-purpose
combinatorial factor can enforce this constraint. Such a factor encapsulates a function, different
from standard inference procedure, to update the values of all syntactic variables simultaneously.
This can be done in a much more efficient manner by leveraging dynamic programming algorithms
developed earlier in the parsing literature, requiring only O(n3) time. We make use of this strategy
throughout this thesis to efficiently represent structured models, primarily syntactic models, and
present a novel factor for efficiently representing phrase structure syntax (Sec. 3.1.2).

Special-purpose factors are also useful in constructing joint models. We define Boolean logic
factors to coordinate between corresponding variables from separate component models. For in-
stance, if an SRL dependency commonly corresponds to a syntactic dependency, we can model
a correlation between the two corresponding variables by connecting them with a Boolean logic
factor. These factors contribute a score when the Boolean logic is violated. This score can be de-
rived from a set of feature weights, so the model can learn how strongly these variables correlate.
While there may be many such factors used in modeling the connections between two models,
each connecting factor is associated with different features and will contribute a context-sensitive
score to the model.

1.2.3 Inference

During training, maximum likelihood estimation is used to find the parameters for which the model
most accurately predicts the data. In order to efficiently search the vast space of all real-valued pa-
rameters, we use gradient-based optimization, which in turn requires computing the gradient of the
model parameters. This gradient is a difference between expectations (see pg. 48, Algorithm 2,
line 11) – one expectation taken deterministically from the labeled training data, a second expec-
tation calculable via inference. Inference in a factor graph produces factor marginals, sometimes
called beliefs. A factor’s marginal defines a distribution over the values of its neighboring vari-
ables, and is calculated by summing over them, the same marginalization process discussed earlier
in Section 1.1.2 (pg. 7).

It follows that in order to compute the marginal for a single factor, other factors must be in-
volved in the computation. To compute the marginal for a second factor, nearly all of the same
factors will be used in an identical manner. A more attractive solution is offered by message pass-
ing algorithms, a family of inference algorithms for graphical models that operate by distributing

1.3 A COMPARISON OF APPROACHES TO JOINT NLP 11

and collecting information across the graph. The key insight of message passing inference is that
these otherwise redundant calculations can be cached locally, allowing for exact inference in just
two passes through chain or tree-shaped graphs. For general graphs inference is intractable, but it
can be approximated using loopy belief propagation, an inference method used repeatedly in this
thesis.

Wrapping inference inside a gradient-based learning scheme is a common approach to super-
vised training, but to realize the goal of training in the presence of latent variables, as described in
Eq. 1.4, we only need to slightly modify this procedure. Instead of acquiring the first expectation
entirely from labeled training data, this too can be calculated (or approximated, in cyclic graphs)
via inference. For this calculation the subset of observed variables are set to their true values prior
to inference. Inference and gradient calculations can then be performed normally, with the result-
ing update reflecting a marginalization over latent variables whose true values were provided by
the training data. By utilizing this two-step inference procedure inside gradient-based optimization
we are able to train in the presence of latent variables, optimizing all model parameters toward the
goal of improving end task performance.

1.3 A Comparison of Approaches to Joint NLP

The NLP community has made great strides in improving the performance of NLP models on
single tasks, but the real-world success of these models will hinge on how well such models work
together in the context of an end-to-end NLP system. In response to this need, model combination
has received a great deal of attention in recent years. We divide these contributions into two groups
along the conceptual axis of whether the models are trained independently and combined only
during testing (joint decoding), or if they are treated jointly throughout (joint training). Common
to all combination methods is the need to communicate or negotiate between model components.
However, how models exchange information is unique to each approach.

1.3.1 Joint Decoding

Perhaps the simplest method of combining models is to train them independently and aggregate
their output in a manner that solves the global problem. We refer to this class of approaches as
joint decoding methods.

Comparisons to Pipeline Decoding with n-best Lists

As discussed previously, one of the most straightforward methods of model combination is the
n-best pipeline, in which each model is processed in sequence, the output of one model – a set
containing the n most probable analyses – becoming the input to the next. In Section 1.1.1 we pro-
vided a high-level overview of why an marginalization-based decoding scheme may be preferable
alternative, but having now introduced the machinery by which we implement and train our mod-
els, we discuss the remaining advantages of our approach: (1) unidirectional vs. multidirectional
information flow, and (2) passing complete analyses vs. beliefs over parts of analyses.

12 INTRODUCTION

Man the harpoons

VB DET NN

Man the harpoons

NN DET VB

Man the harpoons

NN DET NN

0.0 1.0

Man the harpoons

VB DET NN

Man the harpoons

NN DET VB

Man the harpoons

NN DET NN

0.0 1.0

Man the harpoons

VB DET NN

Man the harpoons

NN DET VB

Man the harpoons

NN DET NN

0.0 1.0

Revised Tagger BeliefsInitial Parser BeliefsInitial Tagger Beliefs

Bi-directional
Information

Sharing

a1

a2

a3

a1

a2

a3

a1

a2

a3

FIGURE 1.4: Bidirectional information flow via belief propagation. The figure depicts three analyses
over tag sequences (a1, a2, and a3) as scored by models prior to global inference (left and middle) and
after (right). In a traditional NLP pipeline information flows in only one direction: forward. When a
component suggests a poor analysis early in the pipeline, as is the case when taking the 1-best analysis of the
tagger (left), downstream models (the parser, middle) are more likely to make poorer predictions, and errors
multiply. A joint model (depicted within the bounding box) can circumvent confident, erroneous modeling
components by allowing information to flow backwards in the pipeline, and influence earlier models. The
resulting tagger beliefs favor the analysis most compatible with both models’ beliefs (right).

Unidirectional vs. Bidirectional Information Flow

Recall that the pipeline approach fails when the optimal local solution falls outside of the n-best
list. Passing forward a poor set of analyses provides a faulty foundation from which to make the
next stage of predictions, leading to increasingly poorer predictions as information moves through
the pipeline. One solution to this problem is to increase the size of n, making it more likely that the
optimal local solution is contained within the larger list. In practice this strategy is rarely helpful, as
even increasing the list capacity to hold thousands of elements rarely makes a significant difference
when the list items are heavily structure objects with an enormous number of possible structures,
like trees [14]. The larger problem is that information in a pipeline only flows in one direction.

This is a handicap not shared by other approaches. For instance, a joint model can circumvent
these issues because each component model’s contribution accounts for only part of the global
model’s final solution. In this sense, joint inference acts as a discourse in which all models partic-
ipate. Like a jury slowly nudging a dissenter toward a unified consensus, inference has the effect
of mitigating the weaker sources of conflicting information.

Let us consider how a joint model might recover from a poor local analysis in the context of
a joint part-of-speech tagging and dependency parsing model. The sentence “Man the harpoons.”
is lexically ambiguous: both man and harpoons can be either nouns or verbs. Consider a simple
tagging model, a unigram model, which contains no dependencies between adjacent tags. Each
word receives its most frequent tag. The word “man” is not frequently a verb, so the model would
incorrectly assign the most probability to analyses where it is labeled a noun (Fig. 1.4, left).

1.3 A COMPARISON OF APPROACHES TO JOINT NLP 13

However, a parser scores trees based on a separate set of criteria. For instance, a parser may
assign a very low score to a tree that contains no verb, as verbs play an important syntactic role and
trees without them are uncommon (Fig. 1.4, middle). Thus an analysis that was initially considered
very probably under the tagger becomes very unlikely when placed in the larger context. If these
components were connected in a 1-best pipeline, the system would already be committed to the
incorrect tag sequence and leave successive components little chance to recover. In the Fig. 1.4
example, the resulting parse, a3, would be highly unlikely.

A joint model circumvents this by allowing information to flow in both directions. During in-
ference, the beliefs that a factor has over its neighbors propagate throughout the graph, influencing
the beliefs of even distantly connected factors. In a joint model of tagging and parsing, the model’s
beliefs over syntactic variables can help guide its beliefs over part-of-speech variables, and vice
versa. In essence, joint inference entirely discards the notion of a serialized order that was inherent
in the pipeline. When inference ends and the model beliefs have converged to a globally-informed
optimum, the resulting solution may differ from either the tagger or parser’s single most probable
independent analysis (Fig. 1.4, right), but will reflect the pooled information of all component
models.

Units of Exchange

A second point of divergence is scope of the information that is passed between models. In an
n-best pipeline the model components pass forward lists of complete structures. If the model is a
tagger, a list of complete tag sequences is pushed forward. If the model is a parser, a list of trees.
In doing so, n-best lists force the system to multiply out ambiguities.

A joint factor graph model can differ in this respect, as it can coordinate component models on
a much finer level of granularity. In the method we propose, it is not models that share information,
as much as it parts of models that share information. Assume there is a model of syntax and a model
of semantic role labeling. Coordination between these models occurs at the level of corresponding
variables. If we believe that a syntactic span over a pair of indices is correlated with an SRL
relationship over those indices, the variables representing these structures can be connected via a
factor.

During inference, the information shared between component models takes the form of variable-
to-variable interactions. A variable from one model, the source, sends a message to the coordinat-
ing factor. This message represents the variable’s belief about its values in light of all the evidence
it has received from all of its other neighbors. The coordinating factor receives this message and
multiplies in its own score before relaying it to the destination variable in the opposing model. This
score either reflects the modeler’s intuition regarding the nature of the coordinated variables, and
we consider the special case where this intuition is captured by a Boolean logic relationship, or it
could alternatively be learned entirely from data. The process of coordinating between component
models in factor graphs is described in Section 2.4.3 (pg. 43).

While an n-best list might also pass forward additional information to better describe the
model’s distribution, fine-grained information is still lost. For example, in a pipeline a parser
may push forward a list of trees and their associated probabilities, but the weights of substructures
within each tree are lost. This would be similar to classifier stacking, where each model outputs
a posterior distribution instead of a finite subset of possible analyses. If knowledge of a particular

14 INTRODUCTION

substructure is useful to the end task prediction, much of this information may be lost by the n-best
approximation.

For instance, in SRL, in determining whether a semantic dependency exists between two words
it is useful to know if there is a corresponding syntactic dependency between them. When con-
sidering the model’s beliefs over all trees, it may be very likely that this dependency exists in the
tree, but this is no guarantee that it will be present in the trees selected for the n-best list. This is
not true of our joint approach, where the corresponding syntax and SRL variables can be directly
connected in the graph. During inference, the information sent from the syntactic variable to the
SRL variable represents precisely what is desired: the syntax model’s total belief that the syntactic
dependency is present.

This also affects the scalability of these models. For a combinatorial structure, like a syntax
tree, the number of possible trees for a given sentence length can be exceedingly large. This is
often an intractable number to pass forward, and motivates approximations where only a subset
of the total number of trees, the n-best, are exchanged. It’s the fine-grained nature of connecting
model variables rather than models, that allows our approach to remain tractable without such
approximations1

Other Approaches to Joint Decoding

Our approach is not the first method to solve the joint decoding problem. In this section we discuss
two alternatives: Integer Linear Programming, and Dual Decomposition.

Integer Linear Programming
Integer linear programming (ILP) is a form of mathematical optimization which can be used to
perform global inference across a set of component models. ILP maximizes a linear objective
function, and requires each model (and the relationships between them) be expressed as a set of
linear constraints. ILP is NP-hard but tractable for many problems, and when solved ILP provides
an exact solution.

When a model is intractable one strategy to circumventing computational inefficiency is to
decompose the problem into many subproblems which may be easier to solve individually. ILP
provides a method for finding the global solution from a set of solvers, each solving part of the
problem. This strategy has been applied to dependency parsing [15], SRL [16], and natural lan-
guage generation [17], among others. When these subproblems are component models, ILP be-
comes a method of model combination, and an alternative to the pipeline approach. [18] show that
a global decoding strategy with ILP outperforms a pipeline approach when applied to named-entity
recognition and relation extraction. In SRL, a task we pursue in Chapter 6, many joint parsing and
ILP systems have been proposed and are included in some of the state-of-the-art systems for this
task [19, 20].

Not all problems are easily expressible in terms of linear constraints. [15] notes that non-
projective dependency parsing requires an exponential number of constraints, making ILP in-
tractable. A similar problem occurs when expressing non-projective dependency parsing with

1Note that we do at times employ approximate inference techniques, but always refrain from the hard decisions
found in n-best lists.

1.3 A COMPARISON OF APPROACHES TO JOINT NLP 15

factor graphs. [15] avoid this problem by incrementally introducing constraints into the model, at-
tempting to limit the number of necessary constraints to a tractable size. In our own approach with
factor graphs, we adopt the method of [11] using combinatorial factors. This method is discussed
further in Section 2.4 (pg. 36).

Dual Decomposition

A second and related approach is dual decomposition (DD, also known more generally as la-
grangian relaxation2). DD has the same theoretical underpinnings as ILP, and is another technique
borrowed from the mathematical optimization literature. In DD, models are coerced into agree-
ment by adjusting Lagrange multipliers, iteratively tuning these parameters until the solutions of
individual components models are consistent with one another. If the exact solution is found, it
also returns a guarantee of optimality.

DD has been applied to a large number of joint tasks ranging from combining dependency
parsing and constituency parsing [21], language models with syntactic machine translation [22],
with phrase-based translation models [23], CCG super tagging and parsing [24], and MT alignment
models [25]. As a decoding strategy, DD is an attractive framework. It’s fundamental shortcoming
as it pertains to our task-directed learning framework is that it is currently unclear how to apply it
during training, in the presence of latent variables.

There are numerous differences between these alternative joint decoding method and our pro-
posed method. Both ILP and DD have the benefit of exactness: ILP returns an exact solution if
computation terminates, and DD has a high rate of discovering and proving exact solutions in a
number of NLP tasks [21]. But exactness comes at a cost. ILP is NP-Hard and while the solution
is guaranteed to be exact, the ILP solver may not return one in a practical amount of time. DD is
also somewhat limited, requiring that subproblems have efficient solutions, and non-overlapping
features (such as first order logic features and features that violate Markov assumptions) . Over-
coming some of these difficulties has been addressed in previous work [26], but remains an open
area of investigation.

In contrast, while loopy belief propagation only finds approximate solutions, this approxima-
tion compares favorably to DD in practice [24]. Graphical model representations have already
been developed for many NLP problems, alleviating the need to find novel ways of represent-
ing the model in a particular framework. Models can be overlapping, and dependencies between
models can be specified arbitrarily between any sets of variables.

However, the most distinguishing and most pertinent difference between these approaches and
the joint factor graph approach is that our method can extend beyond test time, coupling models
during training as well. Joint inference during training is a crucial aspect of the framework, ulti-
mately allowing us to achieve our goal of optimizing latent structure towards a specific end task.
Neither of these differences is entirely unexplored, but both come up only rarely in the literature.
DD has been used during training previously [27], since any model that can be decoded can also
have its parameters updated based upon these decoded structures (as an example, we perform such
updates in Section 3.1.3, pg. 85, in order to learn sets of grammatical rules on top of our factor
graph model’s predictions). But this is not common and differs strongly from the message-passing

2Dual decomposition refers to a special case of Lagrangian relaxation methods in which two or more combinatorial
algorithms are used.

16 INTRODUCTION

view of joint inference by making hard decisions, where the message we propose works entirely
with expectations. Additionally, DD has been used in the presence of latent variables (see [28] for
learning latent variable CRFs using max-margin criteria), but these methods have not been applied
to highly structured latent variables or NLP models.

1.3.2 Joint Training
In Section 2.5.2 (pg. 47) we presented a simple approach to decoding a set of dependent models,
the n-best pipeline, and discussed scenarios where it is unlikely to find the global maximum. Joint
decoding methods like ILP and DD circumvent these shortcomings, but still assume the models
have already been trained, often independently from one another and using a separate data set for
each. In this scenario there may be domain mismatch between data sets, and models which appear
earlier in the pipeline ignore useful information from later models. In contrast, joint training
optimizes all models toward a single objective.

In this section we provide an overview of two methods of joint training, and contrast them with
our own.

Combining Predictions Instead of Models
One way in which to perform joint training is not to combine models per se, but rather to combine
the structures they predict. The problem then shifts from learning how to coordinate model com-
ponents, to how to train the more complicated model. Consider the sentence John saw Mary. A
possible parse tree for this sentence is:

(S (NP (NN JOHN)) (VP (VB SAW) (NN MARY))).

And a corresponding named-entity span to indicate that John and Mary are named entities:

(PER John) saw (PER Mary)

If one wished to pursue a joint approach to named-entity recognition and parsing, one needs only to
modify the grammar used by the parser to incorporate the named-entity information. The following
tree reflects the predictions of both tasks:

(S (NP (NN-PER JOHN)) (VP (VB SAW) (NN-PER MARY))).

Using standard parsing methods with this grammar produce what can be thought of as a joint
analysis, with one problem cleverly nested inside of another [6]. But this is precisely one of the
limitations of the approach: only a problem that can be conveniently described inside of another
can be pursued in this manner. For NER this is an intuitive method of coupling - a named entity is a
specialized noun phrase, but trying to combine two problems where dependent structures are likely
to cross would not be possible with this method. For instance, prosodic information is commonly
characterized as a series of breaks, or pauses, in a spoken utterance. While the prosody and syntax
are correlated, [29] notes that prosodic breaks do not always correspond to syntactic boundaries.
A parse tree’s syntactic spans cannot cross, and therefore there is no way to jointly model prosody
and syntax in this manner.

1.3 A COMPARISON OF APPROACHES TO JOINT NLP 17

A second disadvantage is that when combining a task with a parser, as described above, the
grammar would grow multiplicatively, as a copy of each nonterminal must be made for each of the
named entity labels. While many cubic time parsing algorithms exist, n as it pertains to parsing
is often very small (< 40), and in practice the complexity of parsing is largely determined by the
size of the grammar. Thus, from an efficiency standpoint, multiplicative increases to the size of the
grammar affect the parsing algorithm at an especially susceptible point. This issue is explored in
greater detail in Sec. 4.2.

A third disadvantage of this approach is one common to many joint models: data. In order to
train the joint syntax and NER model there must be a data set jointly annotated with the structures
for both tasks, as joint training hinges on learning the correlation between two tasks. In proportion
to the amount of unstructured data in the world, annotated data is scarce, and jointly annotated
data is still unobtainable in many languages for many pairs of tasks. [30] show how a joint model
can benefit from additional singly-annotated data. In addition to the joint model, a standalone
NER model is trained on data containing only NER annotations, and a standalone parser is trained
on data containing only syntax trees. During training, a prior can be used to promote agreement
between the standalone and joint models. This may reduce the amount of jointly annotated data
required for comparable performance, but it does not remove the need for it.

Learning over Constrained Latent Representations
A second approach to joint training, and perhaps the work most closely resembling our own, is
the Learning over Constrained Latent Representations (LCLR) framework of [31]. Both LCLR
and our own approach share similar goals: both aim to learn the optimal latent structure for a
particular end task, where only end task annotations are observed. This removes the need for
jointly annotated data. However LCLR does not define latent structure to the extent that it can be
thought of as a series of intermediate models – there is only input, a latent representation, and an
output. As such there are no analogous supervised correlates for this algorithm (like the pipeline
approach). Our method is more general and could in theory couple more than two models, yet for
the scope of this thesis the setup is identical to our own.

In LCLR the end task annotations are used to guide the induction of the latent structure. Though
LCLR is an attempt to improve upon the “two stage” learning method, in which a supporting
task is decoded, features are extracted from these structures, and the end task model is trained to
optimize these features (essentially a two-component n-best pipeline), it can also be thought of in
two stages. In the first stage the algorithm proposes a set of “feasible” latent representations from a
given example and its end task labels. These are problem-specific, and like the systems we present
these could theoretically be syntax. Previous work has focused primarily on alignments [31] and
chunking [32]. Current proposals for using LCLR rely on ILP for this step, requiring that these
structures are capable of being phrased as a set of linear constraints.

Features are used to score intermediary structures, and the ultimate end task predictions. Learn-
ing in LCLR attempts to optimize the parameter weights that provide high scores to intermediary
representations, while minimizing loss on the end task. Each latent structure decomposes, as in our
framework, into many substructures. A sentence-level alignment decomposes into an alignment
between words, a parse tree (in dependency syntax) decomposes into many pairwise relationships,
and so forth. An optimal latent structure is one whose substructures correspond most directly to
the correct substructures of the end task (each substructure scored via a function outputting {0, 1}

18 INTRODUCTION

with respect to the end task), while providing the greatest benefit to classification accuracy. Previ-
ously SVMs have been used for learning, and thus the best latent structure is the one which is the
most capable of pushing otherwise incorrect end task predictions across the decision boundary.

A key difference between LCLR and our marginalization-based approach to joint training is
that LCLR is more explicit in the representation of latent structure. Like n-best lists, LCLR pro-
poses sets of complete latent structures during the first step. In the case of structures with combina-
torial characteristics, and therefore the potential for an intractably large number of possible latent
structures, this step requires heuristic pruning to carefully tune which structures are proposed in
this restricted set. And importantly, the features used for the end task classification are constructed
solely from the single best latent structure. Thus the most significant difference between these
methods may lie in how latent structure contributes to the end task predictions. In our method the
set of all possible latent structures are marginalized over, whereas in LCLR this summation is a
maximization.

Other Approaches: Task-driven Grammar Induction
A related line of research also seeks to use end task annotations to guide the induction of a task-
specific parser. The major distinction between this and the aforementioned work is the focus on
evaluating the latent structure and not the downstream task. [33] improved unsupervised depen-
dency parsing accuracy by using HTML markup, viewed as an easily-obtainable noisy semantic
annotation. [34] present a generative model which utilizes a small corpus annotated with seman-
tic relations (of the sort found in the relation extraction task, Chapter 5) to train a joint model of
syntax and relation extraction, with the aim of producing a better parser. The model puts sev-
eral constraints on the relationship between syntax and semantics, noting that the different types
of semantic relations are expressed syntactically in different ways, that semantic arguments of a
word often form a syntactic constituent span, and that function words do not define semantic re-
lations. Inference is done via Gibbs sampling, first sampling the latent tree, then the semantic
structure. This method outperforms other leading grammar induction approaches, including the
HTML-driven training of [33], and the previous state-of-the-art in purely unsupervised approaches
[35].

[36], extend the augmented loss framework of [37] to include training in the absence of sup-
porting (syntactic) training data. They posit that parsing errors dealing with coordination (Google
and MSR) or apposition (tech giant Google) are due to a lack of real-world knowledge in the parser,
and use facts from Freebase, a publicly available knowledge base, during training. Augmented loss
training jointly optimizes two loss functions: an extrinsic loss function for the downstream task
(here, relation extraction) and an intrinsic loss function for the supporting task (parsing). However,
because parse trees are not available during training, the intrinsic loss function is replaced with
a sampling function which, for a given candidate tree and the gold standard relation structure, is
guaranteed to return a tree no worse than the candidate. Within this sampling function, a classifier,
trained from jointly annotated data, is used to correct candidate trees. It is similar to LCLR, with
both approaches proposing a set of candidate latent structures, and then selecting the single latent
structure which best supports the downstream classification. Experiments on parse accuracy show
significant improvement in the classification of coordination and apposition phrases.

These approaches hinge on finding the single parse tree which is most beneficial to the end task,
training jointly but attempting to improve the performance of 1-best decoding in a task-specific

1.4 CONTRIBUTIONS OF DISSERTATION 19

way. Our approach differs in that we marginalize over latent syntax trees, learning the distribution
over latent trees which best supports the end task. The technical approach is similar to previous
work in the computer vision [38], where missing values are marginalized over when performing
scene interpretation in the presence of partially-labeled data (discussed further in Section 2.5.2,
pg. 47).

1.4 Contributions of Dissertation
This thesis contains several contributions to our understanding of natural language processing and
machine learning. First, we introduce new combinatorial factors for representing unlabeled phrase
structure grammar and semi-Markov constraints analogous to previous work [11]. We utilize the
former to construct the first factor graph representation of constituent parsing, show that it performs
comparably by some metrics to state-of-the-art parsers, and extend it to incorporate grammatical
rule learning. We then utilize Boolean soft factors to construct joint models. Similar factors have
been used previously in translation [39], but not to coordinate across different tasks. Using this
approach we construct factor graph models for named entity recognition, relation extraction, and
semantic role labeling, all of which are novel (and the named entity model is notable as it is span-
based – a significant departure from the typical linear-chain and semi-Markov models used for the
task). Here we show that joint inference with syntax frequently outperforms syntactically-unaware
baselines.

The main contribution of the thesis is how we train these models in the presence of latent
variables, marginalizing over the variables of syntactic models for which we do not have labeled
data. As noted before, this technique is not novel [38], but its application to NLP (namely syntax),
and its use in conjunction with strongly constrained latent structures, is new. We show that across
a diverse set of NLP tasks that this architecture and semi-supervised training approach consistently
performs comparably to fully-supervised joint models, while requiring no syntactic training data.
This allows for the development of statistical NLP models for the vast majority of languages and
domains where syntactic training data is often not available.

1.5 Outline of Dissertation
• Background (Chapter 2), formally introduces factor graphs, the graphical model formalism

used exclusively throughout the dissertation, discussing common factor graph architectures
and inference techniques. We show how factors can be used to encapsulate algorithms that
would be inefficient or intractable to represent explicitly in the graph structure, providing
a method for representing syntactic formalisms and useful combinatorial logic. Gradient-
based methods for training are described, and marginalization-based training is shown in
greater detail.

• Syntactic Representations (Chapter 3), introduces the model structure used for representing
constituency and dependency syntax in factor graph models. These representations function
throughout the dissertation as latent structure for supporting a variety of end task predictions.
We review the variables and factors used for representing first and second order dependency

20 INTRODUCTION

parsing (a contribution of previous work [11]), and introduce those used for labeled and
unlabeled constituent parsing. We discuss the necessary related issues, like binarization, and
show unique extensions, like how grammatical rules may be represented as factors, and how
these rule factors can be incrementally applied to the model to fix erroneous predictions. We
demonstrate the effectiveness of these parsing models by comparing their performance to
standard state-of-the-art parsers in a fully supervised parsing task.

• Named-Entity Recognition (Chapter 4), focus shifts to joint models, and we present a
joint model coupling constituency syntax to a model named-entity recognition. We again
utilize a combinatorial factor, this time for applying a semi-CRF constraint to the named-
entity model, which allows the named-entity variables to represent spans instead of bound-
aries. With this design there is a one-to-one correspondence between syntactic variables
and named-entity variables, which can be connected and coordinated via factors express-
ing logical relationships. We evaluate on the OntoNotes data set, showing state-of-the-art
performance and an improvement even over other joint approaches to this task.

• Relation Extraction (Chapter 5), we develop a model for joint syntax (both dependency
and constituency formalisms) and couple it with simple relation prediction and labeling. We
compare the performance of training with parser-provided tree annotations (from state-of-
the-art parsers) to our marginalization-based training method, and to a baseline consisting of
only relation extraction predictions.

• Semantic Role Labeling (Chapter 6), we extend upon the relation extraction model of Chap-
ter 5 to the similar, but more structured predictions of an SRL task. We perform a similar
series of evaluations, but also compare against models observing gold-standard parse trees
and find that our approach performs comparably, and sometimes even improves upon it by
learning a more appropriate latent representation for the task.

• Conclusion (Chapter 7), summarizes the modeling and algorithmic contributions of this
thesis and describes its implications for future work.

2
Factor Graphs, Belief Propagation, and

Combinatorial Constraints

In this dissertation we present a framework for solving NLP problems using joint inference, with
special attention paid to joint models in which one component model is a representation of syn-
tax (either phrase structure or dependency structure), the other is a representation of the end task,
and the two models are coordinated via soft Boolean logic constraints. We also describe how to
train these models in the absence of syntactic annotation, inducing a task-specific syntactic rep-
resentation to best support the model’s predictions on the end task. We integrate several different
techniques from machine learning to achieve this goal.

This chapter provides a discussion of the requisite material necessary for understanding the
joint models, inference, and training methods used throughout the remainder of the dissertation.

• Section 2.2 introduces graphical models, a family of models which unify probability and
graph theory to compactly represent distributions over larger numbers of variables. Here
we describe factor graphs, our formalism of choice. We also review common factor graph
models used for NLP tasks, and detail how these models can be extended to contain rich
dependencies in arbitrary graph structures.

• Section 2.3 provides a discussion of belief propagation inference, a method for reasoning in
graphical models. We discuss the requirements for exact inference, loopy belief propagation
for approximate inference in cyclic graphs, and the effects of order on convergence.

• Section 2.4 provides a detailed analysis of combinatorial factors: specialized factors for
efficiently representing structured constraints, like those found in syntax. We also provide
an inventory of all special-purpose factors used throughout the remainder of the dissertation.

• Section 2.5 describes parameter estimation using stochastic gradient descent. It illustrates
how training with latent variables can be naturally accommodated by the SGD algorithm,

21

22 FACTOR GRAPHS, BELIEF PROPAGATION, AND COMBINATORIAL CONSTRAINTS

provided the model supports the inference strategies necessary for computing the gradient
(feature expectations). We also discuss more practical issues in optimization, like regular-
ization.

• Section 2.6 is an application of the theory discussed in this chapter, and the conclusion
of the running example used throughout. Here we present a joint model of parsing and
tagging, which incorporates long-distance dependencies to supplement the local sequential
dependencies typically used in tagging models.

Many of these concepts may be familiar to a machine learning researcher. We recommend
that such a reader review Section 2.4, as this material is unique to our approach and will be used
repeatedly throughout the dissertation.

2.1 A Running Example

Before we delve into the technical details which constitute this chapter, let us consider an exam-
ple application of our proposed marginalization-based training method. Here we motivate a joint
model of part-of-speech tagging and syntax, treating the syntax as latent structure and utilizing it
to capture long-range dependencies that would be obscured in a purely sequential tagging model.

The problem of assigning labels to an ordered sequence of observations, otherwise known as
tagging, is an important task in many fields, including bioinformatics [40], speech processing [41],
and our current topic, computational linguistics [42]. Even information extraction tasks have been
phrased as tagging problems [43]. Consider the task of part-of-speech tagging, where we observe
a sequence of words W = {w}N1 , and must predict the most likely part-of-speech tag (or word
class) sequence, T = {t}N1 :

pos-tags: D N V D N
words: The cat scratches the man

The pervasive ambiguity of natural language can make this a challenging task. For instance, the
word scratches can be either a noun (N, as in “He was covered in scratches.”) or a verb (V,
as shown above). Humans accomplish this disambiguation through our knowledge of syntax and
semantics, and sometimes with the help of additional linguistic cues. In order to tag a word without
comparable deep linguistic knowledge, computational models must rely on the word’s local context
within the sentence.

A typical part-of-speech tagger models sequential dependencies. For instance, a hidden Markov
model (HMM) conditions the choice of tag ti on the previous tag, ti−1. With respect to other de-
pendencies that could be modeled (for instance, a dependency between ti and t0 or between ti
and tN), these dependencies are very local, and yet using only local dependencies such models
achieve greater than 95% accuracy on standard English data sets [44]. The discriminative analogs
of HMMs, linear chain conditional random fields (CRFs), can attain over 97% accuracy [45], rival-
ing human performance and convincing many that supervised part-of-speech tagging is a solved
problem [46].

2.2 PROBABILISTIC GRAPHICAL MODELS 23

However, long-range dependencies may help improve tagging performance. Consider Latin,
where words in a syntactic relationship often agree in many morphological attributes. Here mor-
phological tagging would benefit from knowledge of the sentence’s syntactic structure [7]. This
may seem antichronististic, as tagging is often pursued as a prerequisite step for parsing, but if
syntax is treated as a latent structure, this structure can be optimized to best suit the tagging task
without requiring any training data of its own.

In this chapter we introduce a joint model of parsing and tagging as a pedagogical example,
using it to explain how we can define joint models, perform inference (even in cyclic factor graph
models), and utilize marginalization during training to induce latent structures specific to the end
task.

2.2 Probabilistic Graphical Models
Natural language is full of ambiguity. Words with identical sounds or identical spellings may
have different parts of speech and entirely different meanings. A sequence of words may have
many syntactic analyses, and yet each may be equally grammatical. Even identical sentences, with
identical syntactic analyses, may mean different things in different (pragmatic) contexts. How
can we model natural language phenomena when uncertainty is so pervasive, touching nearly all
aspects of language?

Graphical models offer a solution. Graphical models are a family of models, encompassing
Bayesian networks and Markov random fields, which couple probability and graph theory. As a
probabilistic model, a graphical model is well suited to capturing the uncertainty that abounds in
language. By relying on graph theory, graphical models are capable of compactly representing
models with rich sets of dependencies. It is our hypothesis that when placed in an appropriate
context – the context offered by modeling NLP tasks jointly – a better global solution can be found.
Efforts to model this richer context benefit from the compact representation, and for these reasons
we choose graphical models as the modeling formalism of choice throughout this dissertation. We
now discuss what it means to be a probabilistic model.

A probabilistic model encodes a problem in terms of random variables, where each variable
corresponds to one piece of information from the world. In NLP, a random variable may represent
a part-of-speech tag, the presence of a syntactic dependency between two words, the location of a
morpheme boundary, etc. Variables can be continuous and real-valued, or categorical and discrete.
In this dissertation we will be concerned only with discrete-valued variables, thus each variable
has a finite number of distinct values (a multinomial variable). If a multinomial variable has just
two values, true or false, it is a Boolean variable.

Following the excellent presentation of graphical models in [47], we define a set of variables
V , and make an important distinction between observed variables X , and predicted variables Y .
We introduce the set of latent variables Z, such that X ∪ Y ∪ Z = V . The values of observed
variables are given to the model, both during training and testing. Determining the values of
predicted variables is the purpose of the model, thus their values are provided during training but
not during testing. Hidden variables are neither observed nor predicted – their values must be
inferred. Members of these sets are denoted by lowercase variables, i.e., x ∈ X , y ∈ Y , and
z ∈ Z, often indexed with subscripts as {x0, x1, ..., xn} = X . The subset A ⊆ X is denoted as
xA. Let x denote an assignment of values to the variables in X . We denote a configuration (an

24 FACTOR GRAPHS, BELIEF PROPAGATION, AND COMBINATORIAL CONSTRAINTS

assignment of values to all variables) to the subset A ⊆ X as xA, or explicitly state a variable’s
value, x = “cat′′.

The purpose of a probabilistic model is to specify a distribution over the configurations of
variables in the model. We refer to this distribution as the model distribution. If the model aims
to capture the probability of randomly generating the observed data, x, the model distribution will
be the joint probability distribution, P (x, y).1 If the aim of the model is to predict a set of variables
given a set of observations, the model distribution will be the conditional distribution, P (y|x).
Models of the latter type are known as discriminative (or conditional) models, and are the focus of
this dissertation.

Such a distribution can be represented explicitly as a table, with each table entry corresponding
to a single distinct configuration of variables (known as either a joint or conditional probability
table). This requires m|V | cells, where |V | is the number of variables in V , and m is the number
of values per variable. Models with thousands of variables are not uncommon, and operating
on the model distribution directly quickly becomes intractable. Fortunately, with respect to the
fully-specified model distribution, the dependencies in our models will tend to be relatively sparse.
Graphical models leverage this characteristic to factorize the model distribution into the product of
localized functions, each ideally interacting with only a small number of variables.

2.2.1 Sequence Tagging with Probabilistic Models

Let us define a simple part-of-speech tagging model. Given a sequence of words W = {w}N1 ,
we model the choice of part-of-speech tag for word wi using a multinomial variable, yi. Each tag
variable yi ranges over L values, where L = {D, N, V}, the set of part-of-speech tags. The the
model specifies the probability of any configuration of these variables, and tagging the sentence
amounts to finding the set of variable values which maximize this probability. For a generative
model:

GOAL = arg max
y

P (x, y)

where x is the set of observed variables, held fixed for a given sentence. For the sentence “The cat
scratches the man”, the observed variables are:

x = {x1 =“the”, x2 =“cat”, x3 =“scratches”, x4 =“the”, x5 =“man” }.

Consider one configuration of the predicted variables,

y = {y1 = D, y2 = N, y3 = V, y4 = D, y5 = N}.

A model could assign a probability by storing a table which maps any possible configuration of
variables to its probability. For example, the model may score this configuration:

1A model which specifies the joint probability distribution, P (x, y) can also be used to optimize the conditional
probability, P (y|x), through the application of Bayes rule. It follows from Bayes rule that P (x, y) is equal to
P (x)P (y|x). In a classification task the observed variables are held fixed, and the remaining quantity is the con-
ditional probability.

2.2 PROBABILISTIC GRAPHICAL MODELS 25

P (x, y) = P (y1 = D, y2 = N, y3 = V, y4 = D, y5 = N,

x1 = “the′′, x2 = “cat′′, x3 = “scratches′′, x4 = “the′′, x5 = “man′′)

= 0.7

Any such table represents a valid distribution provided it contains an entry for every configuration
of variables, and that it normalizes as follows:

1.0 =
∑
x,y

P (x, y) (2.1)

However, explicitly representing the model distribution with a table is not very efficient, as it
does not exploit the dependencies, or the lack thereof, inherent between the variables. Here naively
representing the distribution for a fixed sentence length of n requires a table of size of |L|n for the
y variables, times an additional |V |n to account for the x variables. In this example where there
are five words, three possible tags, and four possible words in the vocabulary, the table would be
of size 35 × 45 = 248832.

A graphical model exploits the intuition that actual dependencies between variables will be
relatively sparse, and that variables will not strongly depend on a large number other variables.
In English, the part-of-speech of word wi is often highly indicative of the part-of-speech of the
following word, wi+1. For instance, if a word is a determiner (the), the following word will likely
be a noun or adjective. But knowing this information is rarely useful when predicting the part-
of-speech tag of word wi+5, five words away. We can reflect this characteristic in the model by
removing dependencies between distant tag variables.

Given sets of variables A, B, and C, we say A is conditionally independent of B given C if
knowledge about B provides no additional information regarding A, in light of C. Formally, A is
conditionally independent of B given C if P (A,B|C) = P (A|C)P (B|C). In the tagging model
we assume that yi is conditionally independent of yi−2, given yi−1. This is known as making an
independence assumption. The resulting model factorizes as follows:

P (x, y) = P (x1|y1)
n∏
i=2

P (xi|yi)P (yi|yi−1) (2.2)

In this factorization the probability of any variable configuration can be expressed as the product
of multiple tables, requiring one table with 12 entries for the distribution P (xi|yi) and 9 entries
for the distribution P (yi|yi−1), for a total of 12 × 9 = 108 entries. This is already a significant
computational savings, but in practice it is often orders of magnitude larger. For instance, in this
thesis we will define models which contain thousands of variables for a typical sentence, and here
graphical models make what is often otherwise an intractable problem, tractable in many cases.

Most graphical models factorize the model distribution, but precisely how the distribution is
formally defined is a property of the type of graphical model chosen. We now turn to discussing a
particular class of graphical models, factor graphs, which we will focus on throughout the disser-
tation.

26 FACTOR GRAPHS, BELIEF PROPAGATION, AND COMBINATORIAL CONSTRAINTS

t2

a.) Bayesian Network (HMM) b.) Markov Network (CRF) c.) Factor Graph

FIGURE 2.1: Representations of graphical models. Variable nodes are represented as circles, and factor
nodes by boxes. Observed variables are shaded. In the factor graph representation the observed variables
may be absorbed as features into factors, and are depicted as such throughout the dissertation.

2.2.2 Factor Graphs and Log-Linear Models

A factor graph [9] is a class of graphical model in which dependencies between variables are
modeled using a set of additional nodes known as factors. Formally, a factor graph is an undirected
bipartite graph G = {V, F,E} connecting variable nodes v ∈ V and factor nodes f ∈ F , with
edges e ∈ E ⊆ V × F . For any sets of variables A,B,C ⊆ V , A is separated from B if there is
no path from a ∈ A to b ∈ B that does not pass through a variable in C. In a factor graph, if A is
separated fromB byC,A is conditionally independent ofB givenC (see the Hammersley-Clifford
theorem [48] for more details).

A factor f has a corresponding potential function, Ψf , which assigns a real-valued weight to
any configuration of its neighboring variables. Likely configurations of variables receive a high
weight, unlikely configurations receive a low weight. These weights are known as potentials.
Factor potentials play a pivotal role in how the model distribution is factorized in a factor graph
model:

P (x, y) =
1

Z

∏
f∈F

Ψf (xA, yA) (2.3)

where A is the subset of variables which neighbor f , and where Z, the partition function, ensures
that the model normalizes to produce a proper probability distribution:

Z =
∑
x,y

∏
f∈F

Ψf (xA, yA) (2.4)

In many cases computing this partition function will be intractable, but efficient approximations
exist.

Graphically, factor graphs are depicted using circle nodes for variables and boxed nodes for
factors, as illustrated in Figure 2.1c. Observed variables are shaded.

2.2.3 Factor Graph Sequence Models

Returning to our discussion of part-of-speech tagging, recall that we wish to leverage the proper-
ties of graphical models to efficiently factorize the model distribution. This can be accomplished
by making an independence assumption, treating some variables as conditionally independent of
others. A common independence assumption made in sequence models is to make yt conditionally

2.2 PROBABILISTIC GRAPHICAL MODELS 27

The cat scratches the man

y1

D N V

D

N

V

y3

y4

0 7 3

0

1 53

5 4

D

N

V

8

0

0

y1
y2 y3 y4 y5

D

N

V

0

7

2

y5

FIGURE 2.2: A linear chain CRF represented as a factor graph. A factor’s potential function scores a
configuration of variables, which may be represented by a table whose dimensionality corresponds to the
number of neighboring variables. Each tag variable yi is connected to a factor, ui, whose potential table
contains a potential for each tag value. The bi factors, which connect yi−1 and yi model the interactions
between adjacent tag variables. We illustrate a subset of the model’s potential tables, shown for factors u1,
u5 and b4.

independent of all other previous tag variables given yt−1, otherwise known as a Markov assump-
tion. When represented as a factor graph, this yields a first-order linear-chain conditional random
field, as illustrated in Figure 2.2. For the sentence “The cat scratches the man”, the model factor-
izes its distribution as follows:

P (y|x) =
1

Z

n∏
i=1

Ψui(yi)×
n∏
i=2

Ψbi(yi−1, yi) (2.5)

where ui is the factor which neighbors yi, and bi is the factor which neighbors yi and yi+1.
What has happened to the observed variables, x? A factor graph is a conditional model, and in

conditional likelihood training we are interested in finding the model parameters which maximize
the likelihood of the data, assuming the data is generated according to a conditional distribution.
Because x variables are observed, their values are held fixed. Due to their role only as conditioning
context, these variables can be incorporated into the factor functions themselves, as features, in-
stead of being modeled explicitly. This is reflected in graphical depictions of factor graph models,
as shown in the transition between Fig. 2.1b and c.

In this model the ui factors each score how likely each tag is for the corresponding yi tag
variable. For u5, Ψu5(y5 = N) = 7, significantly higher than other tags, reflecting the model’s
preference for variable y5 to have the value N. The bi factors score transitions from one part-of-
speech tag to the next. For a common tag sequence, like D N, this score may be comparatively
high, while sequences the model deems as unlikely, like D D, will be comparatively low. The
highest scoring configuration is Ψb4(y3 = D, y4 = N) = 7. However, individual factors may
contribute conflicting information. For instance, it is unlikely that the best solution will contain
y3 = D and y4 = N despite being the highest tag transition score, due to conflicting evidence from

28 FACTOR GRAPHS, BELIEF PROPAGATION, AND COMBINATORIAL CONSTRAINTS

u3: scratches does not function as a determiner so a data driven estimate of Ψu3(y3 = D) will be
extremely low.

Finding the global consensus of which variables should have which values is the subject of
inference, and is discussed in Section 2.3 (pg. 28).

2.2.4 Log-linear Models

We have described how a factor graph model uses factor potentials to factorize the joint distri-
bution, but where do these potentials come from and how does learning occur? Many factors,
which we refer to as soft factors, output a non-negative real-valued potential derived from feature
weights. For the remainder of this section we can assume that each soft factor potential function
has the general form of a log-linear model with a K-dimensional parameter vector, θ:

Ψf (xA, yA) = exp

(∑
k∈K

θk · ξfk(xA, yA)

)
(2.6)

where ξf is a feature function of factor f over a configuration of its neighboring variables yA, and
conditioned on observed variables xA. ξfk returns the count of the feature associated with k, an
index into the model parameters, for the given configuration. For an indicator feature, which is
either present or not, ξk = {0, 1}. Under this formulation the model views the data only through
factors, which in turn view the data only through sets of associated features. The weight of each
feature is a parameter in the model. During learning a parameter estimation method is used to fit
the model distribution to the empirical distribution through the adjustment of feature weights.

This concludes the preliminary discussion of factor graph models. However, one of the ad-
vantages of modeling with factor graphs lies in being much more adventurous in the definition
of potential functions. By defining specialized factors, logical or combinatorial constraints can
be imposed in the model. Section 2.4 describes this approach and Section 2.4.2 lists a complete
set of factors used throughout the dissertation. These can be thought of as the building blocks of
factor graph models – each factor a modular, reusable component – which in sum are capable of
representing many sophisticated models, with little problem-specific implementation. This gen-
eral approach is largely due to message passing inference, the subject of the next section, which
provides a method for reasoning regardless of graph structure.

2.3 Inference via Belief Propagation

Inference on factor graph models can be performed using efficient, well-studied message-passing
algorithms, even on large graphs with many interdependent variables. In this section we describe
the standard sum-product algorithm which provides an exact solution to inference when the graph
is a chain or tree. When the graph contains cycles, a variant of this algorithm known as “loopy”
belief propagation provides a method for performing approximate inference and has been shown
to perform well in practical applications. We present belief propagation inference in the following
section, and discuss the role of inference in decoding in Section 2.3.5 (pg. 34).

2.3 INFERENCE VIA BELIEF PROPAGATION 29

2.3.1 What Inference Accomplishes

When training a model using maximum likelihood estimation, model parameters are updated to
maximize the likelihood of the training data. If the optimization method is gradient-based, as it is
throughout this thesis, the likelihood is maximized by first calculating the gradient of the likelihood
function, and then updating the parameters proportionally. The key to computing this gradient lies
in inference. We will see in Section 2.5.4, (pg. 49) how the gradient decomposes into a difference
between two expectations over model parameters. Inference produces marginal distributions,
which can in turn be used to compute the expectations necessary for optimization.

A marginal distribution (also referred to simply as a marginal, or as a belief) is a probability
distribution over a set of variables without any reference to the values of variables outside of the
set. This differs from a conditional probability where the probability of a set of variables xA is
conditioned on an additional set of variables (however, a marginal may still be conditioned on
observed variables in a factor graph, since they can be incorporated into the model as features).

Let π(xA) be the marginal probability of a set of variables, xA. A marginal probability can be
calculated by summing over (marginalizing) all values of the remaining variables, yB:

π(xA) = P (xA) =
∑

y

P (xA, y) =
∑

y

P (xA|y)P (y) (2.7)

Consider a marginal computation in the simple linear-chain CRF (of the sort shown in Fig.
2.1c) with the factorization over three variables: y1, y2 and y3. Let b1,2 be the factor that coordinates
between y1 and y2, and let b2,3 be the factor that coordinates between y2 and y3:

P (y1, y2, y3) =
1

Z
Ψb1,2(y1, y2)Ψb2,3(y2, y3) (2.8)

We omit the factors over single variables for brevity. For the purpose of training, we will require a
marginal for each variable. To compute the marginal P (y2) we sum over the other variables:

P (y2) =
∑
y1

∑
y3

1

Z
Ψu1(y1, y2)Ψu2(y2, y3) (2.9)

This can be simplified using the distributive law [49]:

P (y2) =
∑
y1

∑
y3

1

Z
Ψu1(y1, y2)Ψu2(y2, y3) (2.10)

=
∑
y1

1

Z
Ψu1(y1, y2)

∑
y3

Ψu2(y2, y3) (2.11)

=
∑
y1

1

Z
Ψu1(y1, y2)m3 (2.12)

=
1

Z
m1m3 (2.13)

30 FACTOR GRAPHS, BELIEF PROPAGATION, AND COMBINATORIAL CONSTRAINTS

substituting temporary m factors in for the marginalized terms. Assuming each variable has r
values, this factorization reduces the complexity from r3 in Eq. 2.9 to r2 in Eq. 2.10, as noted by
a reduction in the maximum number of variables within each summation.

Now consider the marginal computation for y1. Calculating π(y1) requires the same
∑

y3
Ψb2,3(y2, y3)

term needed for the the computation of π(y2). For training we will require marginals for every
variable (or factor) in the model, and repeatedly computing the same intermediate terms should be
avoided. This is an advantage of belief propagation inference, which provides an efficient method
for simultaneously computing all marginals in the graph.

The logic lies in the observation that an ideal elimination order for each variable will marginal-
ize out its neighbors before marginalizing out itself. To compute the marginal for y1 we must first
eliminate y3, then y2. To compute the marginal for y3 we must first eliminate y1, then y2. If as
we eliminated these terms we were to cache in y2 the temporary factors produced, when all of
its neighbors have been marginalized y2 will contain all the necessary quantities to compute its
marginal. This holds for all intermediate nodes in the chain. So the quantities required to produce
all marginals of a chain or tree can be computed by one pass through the chain (which is sufficient
for calculating the marginal of the chain’s end, yt, as it only has one neighbor), and one pass back.
Because child nodes (and their successors) are conditionally independent given a shared root node,
and a tree is merely a set of chains with a shared root, this algorithm also generalizes to trees.

It may be more convenient to drop the notion of elimination, and instead view the operation
of recursive elimination and caching as distributing messages across the graph. Variables which
have received messages from all their neighbors have stored the necessary information to compute
their marginal. In Eq. 2.10, the temporary m factors are precisely these messages. Methods of this
sort are known as message-passing algorithms, and can be thought of as a dynamic programming
solution to efficient inference, dating back to [10]. Pearl first described belief propagation as a
message-passing algorithm for inference in directed graphical models, though message-passing
algorithms subsume or parallel other model-specific inference algorithms later developed in the
NLP community: the forward-backward algorithm for inference in HMMs [50], and the inside-
outside algorithm for PCFGs [51].

In comparison to Gibbs sampling, belief propagation makes use of expectations rather than
discrete choices. As we now turn to the sum-product algorithm, we note that modified versions of
this algorithm (Section 2.4, pg. 36) allow for the efficient computation of highly-structured models
that are slow to mix with a sampling-based approach.

2.3.2 Belief Propagation with the Sum-Product Algorithm

The sum-product algorithm is a message-passing inference algorithm for factor graphs and the
standard inference method used throughout this dissertation. We described the general calculation
of marginal messages in Sec. 2.3.1. For factor graphs, which contains two different types of nodes,
there are two different types of messages.

First, messages from variables to factors. Paraphrasing from [52], the desired outgoing mes-
sage from a variable v to its neighboring factors conveys the information, “My other neighbors
jointly suggest I have the posterior distribution mv→u(v) over my values.” We treat incoming mes-
sages as independent, so it follows that the way in which neighboring factors jointly suggest a

2.3 INFERENCE VIA BELIEF PROPAGATION 31

v

Π

0.3 0.7

0.5 0.5

0.9 0.1

0.135 0.035

u1

u2

u3

u4

0.79 0.21

Normalization

mu→v(v) =

mu→v(v) =

mu→v(v) =
mv→u(v) =

F T

F T

FIGURE 2.3: BP message calculations: variable to factor. To calculate the outgoing message from
variable v to factor u4 we collect messages from all neighboring factors, excluding u4, and multiply cor-
responding elements from all incoming messages, i.e., all message components corresponding to the value
true are multiplied together, and all corresponding to false are multiplied together.

variable’s posterior is through the multiplication of their messages. When dealing with the multi-
plication of messages and potentials we are referring to element-wise multiplication: all message
components corresponding to the variable’s value being true are multiplied together, and all mes-
sage components corresponding to the variable’s value being false are multiplied together, and so
forth for all values in the case of multinomial variables.

• Messages from a variable node v to a factor node u:

mv→u(v) =
∏

u∗∈N (v)\{u}

mu∗→v(v) (2.14)

where N (v) is the set of factors which neighbor variable v, and where \{u} omits factor u from
this set. An example variable message calculation is provided in Figure 2.3.

Computing messages from factors to variables is slightly more involved. Here the desired
message from a factor u to a variable v conveys “Together with my potential function and the
messages from my other neighbors, I suggest you have the posterior distribution mu→v(v) over
your values.” Again we would like to combine the messages from all neighbors N(u) which are
not the destination variable v, but in this case we must combine those messages with the factor’s
own potential function, and marginalize over those beliefs to produce the desired output message:

• Messages from a factor node u to a variable node v:

mu→v(v) =
∑

˜v

 ∏
v∗∈N (u)\{v}

Ψu ·mv→u(v
∗)

 (2.15)

32 FACTOR GRAPHS, BELIEF PROPAGATION, AND COMBINATORIAL CONSTRAINTS

v1 u4
v2

0.263 0.737

 Σ

mu→v(v2) =

0.79

0.21

0.2

0.5

0.8

0.5

Ψu4(v1,v2)mv→u(v1)

Π
Π

 Σ

u4

0.737

0.79

0.21
Π
Π

u4

Π
Π

0.158

0.105

0.632

0.105

FIGURE 2.4: BP message calculations: factor to variable. To calculate the outgoing message from factor
u4 to variable v2. Factors maintain distributions (in the form of potential tables in the discrete case) over
neighboring variables, so when computing the message to variable v1, all incoming messages are multiplied
into the potential table using element-wise multiplication, excluding the destination variable v2. It should be
noted that each incoming message aligns to a different dimension of the potential table (i.e., here the reverse
message from u4 to v1 would multiply down Ψu4). The outgoing message is computed by marginalizing
over the dimensions associated with the incoming message, yielding the factor’s belief of v2’s values as
informed by all other neighboring variables. This is clear in the case of a two-dimensional potential table:
an incoming message may multiply across rows, making the marginalization operation a sum down columns.

Here we use Ψu to directly reference u’s potential table, a matrix with |N | dimensions. Each
dimension of Psiu corresponds to one neighboring variable, with the size of the matrix in that
dimension being equal to the number of values the corresponding variable can take. Thus the term
within parenthesis returns a matrix consisting of the u’s original potential table, multiplied with
the incoming messages from each neighboring variable (excluding v).

Outside of the parenthesis, the summation over ˜v indicates that the matrix is summed over,
element-wise, in the direction of v. This produces a vector whose length is the number of possible
values v can take (i.e., if v is Boolean, the resulting vector will have two elements). This is u’s
outgoing message to v.

These operations are illustrated visually in the case of a two-dimensional potential table (Figure
2.3.2). In the example calculation the single incoming message multiplies across the potential table
and the marginalization is a summation downward, producing the desired binary-valued output
message. For more detailed discussion of the basic theory underlying message-passing inference,
we refer the reader to [49].

Computing Beliefs

Once message passing has terminated the marginals can be computed as follows:

P (v) =
1

Z

∏
u∈N(v)

mu→v(v) (2.16)

2.3 INFERENCE VIA BELIEF PROPAGATION 33

x1,3 x2,3 x3,3 xT,3

x1,2 x2,2 x3,2 xT,2

y1,3

y1,2

y1,1

C

 c
ha

in
s

T time slices

y2,3

y2,2

y2,1

y3,3

y3,2

y3,1

yT,3

yT,2

yT,1
. . .

. . .

. . .

x1,1 x2,1 x3,1 xT,1

Observation Variables

FIGURE 2.5: A factorial CRF. A model whose graph contains many cycles, but where approximate
inference has proven suitable for NLP models [47]. The models presented in this thesis frequently exhibit a
similar mix of cyclic dependencies and repeated substructures which can be used in defining a specialized
inference order. The unary factors which attach to each label variable have been omitted for clarity.

P (u) =
1

Z

∏
v∈N(u)

Ψu ·mv→u(v) (2.17)

Marginals are calculated for each type of node in a manner analogous to the messages they pass, but
aggregate the messages from all neighbors, and normalize. Here Z refers to normalization within
this calculation and not the global model normalization. Our earlier discussion cited marginals as
the quantities of interest, necessary for gradient-based optimization. While this is true, it is in fact
the factor marginals that are utilized in our work, as factors serve to connect the graph structure to
features.

2.3.3 Loopy Belief Propagation
Belief propagation is only guaranteed to provide an exact solution when the graph is a chain or tree,
but often times our goal will be to perform inference on a graph that contains cycles. Consider the
factorial CRF, which models both sequential dependencies and dependencies between each chain
(Fig. 2.5). While the sequential chain structure of the model is apparent, dependencies between
chains create loops, preventing the graph from containing a single non-repeating order in which
to perform message passing. In this situation one may choose to ignore this fact and use the sum-
product algorithm regardless in what is known as loopy belief propagation (LBP).

Loopy inference differs from standard sum-product in that there is no longer a well-defined
order in which to send messages, and thus there is no guarantee that inference will converge to the
exact solution. Instead, the algorithm is applied for some set number of iterations, typically with
some threshold to signify convergence (i.e., the maximum change in a single variable’s beliefs in a
single iteration, the sum change of variable beliefs in the graph, etc.). If the maximum deviation in

34 FACTOR GRAPHS, BELIEF PROPAGATION, AND COMBINATORIAL CONSTRAINTS

marginal beliefs from one iteration to the next is less than this threshold, the procedure terminates.
Aside from these differences, the algorithm is identical.

This may sound unprincipled. Indeed, the behavior of belief propagation in loopy graphs
is still not well understood, and BP may not be convergent at all: it can also cycle or diverge
from the correct solution. It has been shown that a graph containing only a single cycle is still
guaranteed to converge [53], and some sufficient conditions for convergence have been identified
[54]. Convergence in loopy graphs has been linked to the Gibbs measure [55], such that LBP is
capable of reaching a state of convergence whenever the Gibbs measure is unique. There have also
been bounds placed on the propagation of message errors [56]. When the degree of error goes to
zero, convergence can be assumed. However, these contributions remain largely theoretical.

Despite these concerns, LBP has proven exceptionally useful in many tasks. LBP is equiva-
lent to algorithms developed for efficient turbo decoding and free energy approximation [57], and
in practice has been used repeatedly in NLP (for sequence models [47], parsing [11]). It also
compares favorably to other approaches to model combination, such as dual decomposition [24].

The models presented in this dissertation are significantly more complex than the models used
for performing turbo code decoding and other problems that are exemplary applications for LBP,
and a natural question to ask may be, “how good is the approximation provided by loopy be-
lief propagation for work in the NLP setting, for the types of models presented in the following
chapters?” We do not attempt to answer this question directly, and show only that from a practi-
cal perspective these models are capable of state-of-the-art performance in many tasks using this
inference strategy.

2.3.4 Message Order

Belief propagation in guaranteed to converge in chains and trees, but the efficient two-iteration
convergence associated with the forward-backward computations is only possible when messages
traverse the graph from end to end. With LBP the ideal message order is less clear, but can still
be an important factor for the performance of inference. For instance, a factorial CRF is a cyclic
model, but it has strong linear constraints, and previous work has explored the benefits of special-
ized message queues to exploit this structure [58].

Message ordering as an important consideration, but defer to future sections where these details
are provided on a model-specific basis. For some models we use an essentially random message-
passing order, and in others we try to exploit substructures where a more efficient ordering can
be employed. In all models we prioritize messages from unary factors, computing these mes-
sages first, as these factors have only one neighboring variable and need not be updated until their
marginal values are queried at the end of inference. Repeatedly processing them only leads to
redundant computations.

2.3.5 Minimum Bayes-Risk

In Section 1.1.1 (pg. 3) we discussed a joint decoding strategy which made use of full model poste-
riors instead of approximations in which each model contributes only a list of its most probable so-
lutions, often containing just the single most probable analysis under the model. Message-passing
inference techniques can also be thought of as a generalization of these special-purpose decoding

2.3 INFERENCE VIA BELIEF PROPAGATION 35

algorithms.
A common decoding strategy consists of calculating the maximum a posteriori (MAP) solution,

which minimizes the expected loss for an entire structure, yielding the 1-best solution:

yMAP = arg min
y

EP (ŷ|x)[δ(y, ŷ)] (2.18)

where δ(y, ŷ) is a loss function ranging over {0, 1} (knowns as 0-1 loss):

δ(y, ŷ) =

{
0, if y = ŷ
1, otherwise

(2.19)

and y is the set of predicted variables which collectively specify a complete structure, and ŷ is the
corresponding gold structure. If the model is a parser, then MAP decoding seeks to minimize the
expected whole-tree loss, with δ(y, ŷ) returning 1 if the entire tree is accurate, and 0 otherwise.
If the model is a tagger, δ(y, ŷ) returns 1 if the entire tag sequence is accurate, and 0 otherwise.
This solution can be computed – either exactly or approximately – using posteriors produced via
max-product inference.2

However, there are many reasons to consider an alternate decoding method. The standard
evaluation measures for many structured prediction tasks rarely score entire structures with a 0-
1 loss, opting instead to decompose evaluation metrics over smaller substructures. For instance,
the standard parsing evaluation – precision, recall, and F1 – are calculated over individual arcs
or constituents, not entire trees. In cases like these, a loss function that more directly reflects
the evaluation measure has shown to improve performance. Maximizing expected recall has been
suggested as an alternative loss function for parsing, both for CCG [59] and PCFG [60] parsing.

It is also worth considering how suitable the goal of MAP decoding is for joint models with
hidden structure. If the model is joint, and one or more component models represent a supporting
task which is of no consequence, then a decoding method which includes these variables in the
maximization may not be ideal. An alternate decoding method might incorporate the beliefs of
the supporting models, but maximize only over the posteriors of the variables associated with the
end task. This could again be thought of as choosing a decoding strategy which more accurately
reflects the evaluation measure.

This is precisely the advantage offered by Minimum Bayes-risk decoding (MBR), which gen-
eralizes Eq. 2.18 to an arbitrary loss function, l:

yGOAL = arg min
y

EP (ŷ|x)[l(y, ŷ)] (2.20)

Here the loss function l can be chosen to match the evaluation measure. For instance, the most
common evaluation loss function for a part-of-speech tagger is the number of tag errors. This can
be integrated into an MBR decoding method:

2Max-product inference is a message-passing inference procedure analogous to sum-product, but for which the
summation in the factor-to-variable message computation (Eq. 2.3.2, pg. 31) is replaced with a maximization.

36 FACTOR GRAPHS, BELIEF PROPAGATION, AND COMBINATORIAL CONSTRAINTS

ŷ = arg min
y

EP (ŷ|x)

(
n∑
i=1

l(yi, ŷi)

)
(2.21)

= arg max
y

n∑
i=1

P (yi = ŷi|x) (2.22)

The tag variable posteriors required for Eq. 2.22 can be calculated for the model using the
sum-product algorithm. In the case of joint models, these posteriors inherently reflect the beliefs
of any hidden structure variables, and any hard constraints we may place over them. Ultimately
this is a question of whether hidden structure variables should be maximized together with query
variables, or summed over. Max-product inference provides the maximization solution (and the
MAP decoding strategy), and sum-product inference provides the summation solution and poste-
riors compatible with MBR decoding. When l is a 0-1 loss over entire structures, and there are no
hidden variables, these decoding strategies are identical.

2.4 Structured Models and Combinatorial Constraints
Belief propagation provides an efficient method for performing marginal inference, but there are
situations where this efficiency breaks down. While factor graphs can represent many NLP models
using only basic components, representing combinatorial structures such as syntactic trees requires
densely-connected graphs to rule out invalid structures. In a graphical model a clique is a subset
of variables in which every two variables is connected in the graph (via factors, in the case of
factor graphs). Complexity of inference in graphical models is a function of the largest clique
size, often making inference in combinatorial structures intractable. A recent innovation allows
us to sidestep some of these complexity problems by incorporating efficient enumerations and
dynamic programming algorithms into factor message computations. We refer to such factors as
combinatorial factors.

In Section 2.4.1 we introduce the general method for implementing combinatorial factors by
describing the message computation for the ISATMOST1 combinatorial factor. In Section 2.4.2
(pg. 40) we list all the special-purpose factors used in the thesis. Once defined, these factors can
be thought of as a set of modular building blocks for factor graph models. It is straightforward
to construct new models simply by connecting subsets of variables with the appropriate factors,
and inference and learning can remain largely unchanged. Section 2.4.3 (pg. 43) describes how
Boolean logic factors can be used to define an interface between two component models, producing
a joint model where inference can be performed jointly over both tasks.

2.4.1 Message Computation for the IsAtMost1
In this section we introduce the ISATMOST1, a combinatorial factor originally described in [11],
and describe how the outgoing messages are computed for this factor. This serves as an overview
of the general methodology underlying all combinatorial factors presented in this thesis.

The ISATMOST1 factor is useful for representing, with Boolean variables, a labeled struc-
ture which may or may not be present. Such structures occur frequently throughout this thesis,

2.4 STRUCTURED MODELS AND COMBINATORIAL CONSTRAINTS 37

Algorithm 1 Computing outgoing messages for an IsAtMost1 factor

1: procedure PROPAGATEISATMOST1(vI , {d1, ..., dm}) . indicator, label variables
2: ¬qvI ← vI(false)/vI(true) . Collect log-odds
3: for v ← {d1, ..., dm} do
4: qv ← v(true)/v(false)
5: end for
6: Z ← ¬qvI . Sum Z
7: for v ← {d1, ..., dm} do
8: Z

⊕←− qv
9: end for

10: mu→vI (vI)← [1.0, Z − ¬qvI]
11: for v ← {d1, ..., dm} do . Assign messages to edges
12: mu→v(v)← [Z − qv, 1.0]
13: end for
14: end procedure

FIGURE 2.6: Outgoing message computation for the ISATMOST1 factor. The notation v(true) references
variable v’s belief that it is true, obtained from the incoming message from v. First the incoming messages
are collected and converted to an odds ratio. Second, Z is computed, using the terms in Eq. 2.25. Finally,
outgoing messages are computed as a ratio with respect to the variable being true or false. A plussed arrow
(⊕←−) indicates incremental assignment.

and include syntactic spans (Chapter 3), named entities (Chapter 4), relations (Chapter 5) and se-
mantic roles (Chapter 6). Let vI be the Boolean variable indicating the presence of a structure,
and {d1, ..., dm} be a set of label variables. An ISATMOST1 factor constrains the set of Boolean
variables using the following potential function:

ΨISATMOST1(vI , d1, .., dm) =

0, if

vI = false ∧ ∃di ∈ {d1, .., dm} : di = true
vI = true ∧ ∀di ∈ {d1, .., dm} : di = false
vI = true ∧ ∃di, dj : di = true ∧ dj = true ∧ i 6= j

1, otherwise
(2.23)

If the indicator variable is false (vI = false) there is no structure to label, and the factor imposes a
hard constraint preventing any of the label set variables from being true. If the indicator variable
is true (vI = true) exactly one variable from the label set must also be true. Permissible configu-
rations correspond to an output of 1, and impermissible configurations correspond to an output of
0. In this sense the factor and its neighboring variables function like a multinomial variable where
one of the multinomial’s values is the null value, to indicate the lack of a structure.

38 FACTOR GRAPHS, BELIEF PROPAGATION, AND COMBINATORIAL CONSTRAINTS

Though this factor imposes a hard constraint, the outgoing messages computed during infer-
ence adjust variable beliefs toward one of these outcomes (i.e., the model does not force all neigh-
boring variables to adhere to this constraint). In order to compute this gradient, we must compute
a normalization function. The following describes this process, and the intuition which underlies
a similar computation in all the combinatorial factors we present in this dissertation.

What distinguishes combinatorial factors from standard factors is that a combinatorial factor
does not utilize a potential table to compute outgoing messages. Doing so would be inefficient
in most cases, and intractable in others. Consider the ISATMOST1 factor. All variables which
neighbor an ISATMOST1 factor are Boolean, yielding 2n possible assignments, but only n + 1 of
these configurations do not violate the constraint. Clearly it would be burdensome to enumerate
all possible 2n assignments, multiplying messages and marginalizing as defined in Eq. 2.3.2,
especially in situations where a model requires a large number of labels or ISATMOST1 factors.

A more efficient strategy is to compute the normalization function, Z, and the outgoing mes-
sages directly. Assume an ISATMOST1 factor coordinates between four variables: an indicator
variable vI and a set of three label variables ({d1, d2, d3}). The total score of non-violating assign-
ments under this constraint, Z, can be expressed as:

Z = (1− vI)(1− d1)(1− d2)(1− d3)

+ vI · d1(1− d2)(1− d3)

+ vI · d2(1− d1)(1− d3)

+ vI · d3(1− d1)(1− d2)

The first line is a score pertaining to the satisfying configuration where all variables are false. The
remaining three lines each represent the score for when the indicator variable is true, and exactly
one of the three remaining variables is true.

A factor potential table could be implemented to compute outgoing messages in accordance
with Eq. 2.3.2, where ΨISATMOST1(x, y) = 0 for all but the above four cases, in which case the
output of the function should be 1. A combinatorial factor differs in that it has no explicit potential
table, and computes Z directly. In the case of ISATMOST1, note that if we divide out vI (1− d1)
(1− d2) (1− d3), then Z is simply the sum of these four quantities:

Z =
1− vI
vI

+
d1

1− d1

+
d2

1− d2

+
d3

1− d3

(2.24)

with each term having the form of an odds ratio. We denote the odds ratio qv = v(true)
v(false)

and

¬qv = v(false)
v(true)

.This greatly simplifies the computation. As shown in Fig. 2.6, like many of the
combinatorial factor computations, the computation of outgoing messages for ISATMOST1 can
now be partitioned into three steps: (1) gather incoming messages and convert to odds ratios,
(2) calculate the normalizing constant Z, (3) compute and propagate each outgoing message by
subtracting the corresponding incoming component from the partition function. The calculation
hinges primarily on the calculation of Z, which is nearly trivial in this case, but may rely on more
complex dynamic programming algorithms to express structure constraints (see the description of
the CKY-TREE factor for phrase structure syntax, Section 3.1.2, pg. 72). Here we only substitute
the odds ratios terms, qv for variable v, into Eq. 2.24:

2.4 STRUCTURED MODELS AND COMBINATORIAL CONSTRAINTS 39

IsAtMost1i d1

d1

d1

IsAtMost1i d1

d1

d1

IsAtMost1i d1

d1

d1

a.) Collect log odds
 mv→u(i) = [0.27, 0.73]
 mv→u(d1) = [0.39, 0.61]
 mv→u(d2) = [0.20, 0.80]
 mv→u(d3) = [0.13, 0.87]

b.) Sum Z
 Z = 0.27 / 0.73
 Z += 0.61 / 0.39
 Z += 0.80 / 0.20
 Z += 0.87 / 0.13
 Z = 1.49

c.) Output Messages
 mu→v(j) = [1.0, 1.05]
 mu→v(j) = [0.8, 1.0]
 mu→v(j) = [1.17, 1.0]
 mu→v(j) = [1.27, 1.0]

IsAtMost1i d1

d1

d1

FIGURE 2.7: Message Computations for ISATMOST1 Factor. The indicator variable variable begins
with a strong lean toward a value of true at 0.73, while the three dependent variables beliefs are in varying
degrees of false. After summing Z (note the reciprocal fraction to compute i’s contribution) and computing
output messages (note that only one value is computed for each variable as a ratio with respect to 1.0) both
i and d1 become more likely, while d2 and d3 strengthen their false beliefs.

Z = ¬qvI + qd1 + qd2 + qd3 (2.25)

The outgoing messages are computed as ratios with respect to the variable being true or false. For
the indicator variable the outgoing message is:

mu→vI (vI = true) = Z − vI(false)

vI(true)
(2.26)

mu→vI (vI = false) = 1.0 (2.27)

For the variables representing the label set, the outgoing messages are as follows:

mu→dI (di = true) = 1.0 (2.28)

mu→dI (di = false) = Z − di(false)

di(true)
(2.29)

Figure 2.7 illustrates the calculation of these outgoing messages for a simple model.
This concludes the discussion of how combinatorial factors differ from standard feature-based

soft factors with log-linear potentials. In future chapters we will delve into the implementations
behind many other factors while highlighting the contexts in which they are useful. An overview
of all factors contained in this dissertation is presented in the following section.

40 FACTOR GRAPHS, BELIEF PROPAGATION, AND COMBINATORIAL CONSTRAINTS

2.4.2 Constraint Inventory
The following sections introduce the various special-purpose factors that serve as building blocks
for the models described throughout this dissertation. Here we categorize factors along three major
distinctions:

• Soft Factors

A soft factor f is a factor whose possible outputs cover the entire range of R+, and whose
potential function is learned as a function of parameters in the model. For the purposes
of this dissertation, soft potential functions are always a log-linear combination of feature
functions and model parameters:

Ψf (xA, yA) = exp

(∑
k

θk · ξfk(xA, yA)

)
(2.30)

where θk is the kth model parameter, and ξf is the feature function for factor f . The feature
function returns the count of each feature that factor f associates with the configuration
of variables, (xA, yA), with ~ξfk(xA, yA) returning the count of the feature corresponding to
parameter θk.

Soft Boolean logic factors, a special case of soft factors, learn a potential only for configura-
tions which violate a given Boolean logic. Following the conventions outlined in [52], soft
Boolean logic factors are named for the case in which the Boolean logic returns false. For
instance, a NAND factor is defined such that its soft potential applies to the case where both
variables are true:

NANDΨA(x1,x2) =

{
exp

∑
k θk · ξfk(xA, yA), if x1 = true ∧ x2 = true

1, otherwise
(2.31)

Instead of imposing a hard constraint which prohibits configuration of variables that violate
the Boolean logic, a soft Boolean logic factor can learn a real-valued weight to penalize or
promote this configuration. These factors are utilized at the interface between joint models,
as described in Section 2.4.3 (pg. 43).

• Hard Factors

A hard factor f discerns between only two scenarios: a configuration of neighboring vari-
ables is valid, or it is not valid. In the former case the factor does not alter the model score,
multiplying in a potential of 1. In the latter case, it multiplies in a potential of 0, prohibiting
the configuration. These factors are not associated with a set of features.

• Combinatorial Factors

A combinatorial factor is a special-purpose factor for efficiently enforcing a combinatorial
structure constraint on a set of variables. While not a category outside of the hard/soft

2.4 STRUCTURED MODELS AND COMBINATORIAL CONSTRAINTS 41

distinction – combinatorial factors are a type of hard factor – they are used in two very
distinct ways.

A combinatorial factor is more global in nature (earlier work even goes so far as to refer
to such factors as global factors [11]), connecting to all the variables used to represent the
structures of a particular model (span variables in phrase structure parsing or named en-
tity recognition, and dependency relation variables in dependency parsing). Therefore it is
rare that any one component model would have more than one combinatorial factor, while a
component model may have many non-combinatorial hard factors, primarily to aid in repre-
senting the interface between models with Boolean variables.

The algorithms implemented by combinatorial factors are also very different in nature and
scope, their origins firmly nested in the NLP literature. In contrast, the other hard factors
implement simple algorithms to constrain configurations of variables in ways expressible
by a logical function, with no sophisticated in-domain knowledge. In short and in practice,
a combinatorial factor is used to efficiently encode a single useful syntactic or otherwise
structural constraint, and the factors we refer to as hard factors are used to repeatedly and
locally infuse simple bits of logic into the model.

Hard Factors

• EXACTLY1 is a hard factor which coordinates a set of Boolean variables to ensure that
exactly one variable of the set is true. This is useful for situations where the behavior of a
multinomial distribution is required, but Boolean variables are preferred.

EXACTLY1Ψ(x1,..,xn) =

0, if either

{
∀x, y : x = true ∧ y = true ∧ x 6= y

∀x : x = false
1, otherwise

(2.32)

• ISATMOST1 is a hard factor as described in Section 2.4.1 (pg. 36). It constrains a set
of Boolean variables, one an indicator variable, with the following logic: if the indicator
variable is false, all other variables are false. If the indicator variable is true, exactly one of
the remaining variables must be true. This factor is useful for predicting a labeled structure
which may or may not be present.

ΨISATMOST1(vI , d1, .., dm) =

0, if

vI = false ∧ ∃di ∈ {d1, .., dm} : di = true
vI = true ∧ ∀di ∈ {d1, .., dm} : di = false
vI = true ∧ ∃di, dj : di = true ∧ dj = true ∧ i 6= j

1, otherwise
(2.33)

42 FACTOR GRAPHS, BELIEF PROPAGATION, AND COMBINATORIAL CONSTRAINTS

Why not simply model labeled structures using multinomial variables? The primary motiva-
tion of decomposing to Boolean variables is one of convenience. In this thesis joint models
are constructed by connecting Boolean variables from individual component models using
soft Boolean logic factors (Sec. 2.4.3, pg. 43), but our intuition is that it is the structures of
these models, and not the labels, that are highly correlated. For instance, in Chapter 4 we
describe a joint model of phrase structure parsing and named entity recognition. Both the
constituent spans of phrase structure trees and named entity spans are labeled structures: for
a given pair of indices (i, j), a structure may or may not exist, and if it exists it should be
labeled.

It is therefore more efficient to separate structure and label prediction, so that structure vari-
ables from opposing models can be directly coupled without the inclusion of the correspond-
ing label variables. In principle it is just as easy to couple two multinomial variables, how-
ever it requires larger potential tables. There are also scenarios, as shown in Section 3.1.3,
pg. 85), where this decomposition aids in coarse-to-fine strategies. We are able to efficiently
assess the model’s belief of particular labels, and attach higher-order factors to select sets of
these variables without the need to include any extraneous ones.

• EPLURIBUSUNUM is a hard factor used to apply a constraint similar to ATMOST1, but in
the situation where the indicator variable is Boolean and the set of dependent variables is rep-
resented by a single multinomial, which includes a null value. When the indicator variable
is false, the factor constrains the multinomial to the null value, i.e., an EPLURIBUSUNUM

factor contributes a potential of 0 when the indicator variable is false and the multinomial
variable has any non-null value. It also contributes this potential when the indicator variable
is true and the multinomial is null. It otherwise contributes a potential of 1.

EPUΨA(vI ,x) =

0, if

{
vI = false ∧ x 6= null
vI = true ∧ x = null

1, otherwise

(2.34)

Soft Factors

• NAND factors are soft factors used to learn a correlation between two or more variables.
This factor fires when all of the tethered variables are true, contributing a potential derived
from its feature function. It otherwise multiplies in a potential of 1.0 to the model score.

NANDΨA(x1,x2) =

{
exp

∑
k θk · ~ξfk(x1, x2), if x1 = true ∧ x2 = true

1, otherwise
(2.35)

• IMPLIES factors are a similar to NAND factors, but implement the logic of an implies, firing
when the indicator variable (antecedent) is true while the remaining variables (consequents)
are false.

2.4 STRUCTURED MODELS AND COMBINATORIAL CONSTRAINTS 43

IMPLIESΨA(x1,x2) =

{
exp

∑
k θk · ~ξfk(xA, yA), if x1 = true ∧ x2 = false

1, otherwise
(2.36)

Combinatorial Factors

Here we present a series of combinatorial syntax factors which efficiently constrain a set of Boolean
variables representing trees in the chosen syntactic formalism. While some structures, like depen-
dency trees and constituency trees, are theoretically interchangeable, within the modeling frame-
work it is often preferable to choose one over another as some representations are inherently better
suited for pairing with certain problems and their corresponding factor graph representations.

• CKY-TREE is a global combinatorial factor for imposing a tree-structured constraint for
phrase structure grammar, computing outgoing messages in O(n3) time. It is discussed in
Section 3.1.2 (pg. 72).

• DEP-TREE is a global combinatorial factor, as presented in [11], used to represent a syn-
tactic analysis in dependency grammar. Like other syntactic combinatorial constraints, it is
O(n3). Dependency grammar constraints are discussed in Section 3.2.2 (pg. 99).

• PROJ-TREE is a global combinatorial factor and a variant of DEP-TREE, which additionally
requires that the graph be projective. A graph is projective if its edges do not cross.

• SEMI-CRF is a global combinatorial factor which imposes a 0th-order semi-Markov con-
straint [61] over a set of Boolean span variables. It is similar to the CKY-TREE factor in that
its primary purpose is to prohibit spans from crossing, but it differs in that spans do not nest,
and there is a maximum span width. These are useful properties for modeling named entity
recognition. It is discussed in more detail in Section 4.3.1 (pg. 110).

Many of these factors are introduced in the work of [11], where they were applied to the
task of dependency parsing. The novel factors are the CKY-TREE and SEMI-CRF factors, but
it is primarily how we combine these components and utilize structured constraints over latent
variables that is novel to this work. We now describe the construction of joint models using soft
Boolean logical constraints, a key aspect of our approach.

2.4.3 Constructing Joint Models
Joint models couple component models for two or more tasks, allowing inference to be performed
jointly. This is done in the hope that by sharing uncertainty between component models, the joint
model will find a better global solution. In Chapter 1 we discussed many of the methods used for
coupling two or more models: dual decomposition and ILP for joint decoding, and constrained la-
tent representations and grammar augmentation for joint inference during training. Alternatively,
factor graphs provide an attractive framework for constructing joint models. In a factor graph,
variables connected via a factor are dependent. Therefore, a joint factor graph model can be con-
structed simply by connecting dependent variables from separate component models with a factor

44 FACTOR GRAPHS, BELIEF PROPAGATION, AND COMBINATORIAL CONSTRAINTS

that expresses the nature of their dependency. The question remains: what kind of factor should be
used to connect these variables?

We argue that it is natural to conceptualize and express many general relationships between
NLP tasks in terms of Boolean logic. In Chapter 4 we examine the relationship between named
entities and phrase structure syntax, where both the entities and syntactic predictions consist of
spans of words. In this domain we assume that the presence of a named entity from word wi to wj
implies the presence of a corresponding syntactic span, composed of words wi to wj . In Chapter 6
we construct a joint model of semantic role labeling and dependency syntax. Similarly, we assume
that a semantic relationship from word wi to word wj implies the presence of a syntactic relation-
ship between these words. Due to the convenience of these types of constraints, we propose the use
of Boolean logic to coordinate between component models. This logic can be easily implemented
in a factor, provided that the variables which sit at the interface between component models are
Boolean.

Natural language is full of ambiguity, and these constraints do not hold universally in any of
the data sets we examine, but this is not a problem. Instead of restricting the potential function’s
range to {0, 1}, as in traditional Boolean logic, the factor’s potential can range over the entire set of
non-negative real numbers. The potentials of these soft Boolean logic factors are derived from an
exponentiated sum of feature weights, allowing the model to learn a context-specific weight of co-
ordination. In situations where variables should be coordinated (both true), the factor contributes
a higher potential. A low potential can be contributed in situations which prove to be exceptions to
the rule. This allows constraints to be conceptually simple, expressing the logic we believe reflects
the interaction between these tasks a priori, while simultaneously being robust to noise. This is
important not just for handling true linguistic exceptions, but also mismatches in annotation. In
previous work [6], manual pre-processing of the data was required to eliminate instances where an
NER span did not align with a syntactic span, an unnecessary requirement in our approach to joint
modeling.

Coordinating Between Tagging and Parsing Models

Returning to the tagging model, our aim in constructing a joint model is to allow for the beliefs of
tag variables ti and tj to influence and be influenced by the beliefs of the corresponding syntactic
dependency variable. For instance, if the model’s beliefs indicate tha there may be a syntactic de-
pendency between two words, wi and wj , the model may assign a higher score to the configuration
ti = V and tj = N than to ti = N, tj = N , as it is more likely for a verb and noun to exist in a
syntactic dependency than a noun and a noun.

To model this phenomenon, assume a set of Boolean variables bi,j,Ti,Tj each representing the
presence of a tag combination Ti, Tj such that ti = Ti and tj = Tj when bi,j,Ti,Tj = true. There is a
bigram variable for every tag combination between every pair of words. Let li,j be a set of Boolean
variables representing the presence a syntactic dependency between word wi and wj when true
(details regarding the dependency syntax formalism and its representation in a factor graph are
provided in Section 3.2.2, pg. 99).

We can coordinate variables across component models using a set of soft Boolean logic factors.
Let Ci,j,Ti,Tj be a set of soft NAND factors which connect each li,j variable to all bi,j,Ti,Tj variables.
Though we do not know the precise nature of this relationship, the “soft” aspect of the coordinat-
ing factor provides the freedom to be rather noncommittal in the choice of coordinating logic by

2.5 PARAMETER ESTIMATION 45

learning a factor potential to capture the degree of coordination. A potential > 1.0 in a NAND

factor will raise the true beliefs of connected variables, a potential < 1.0 will lower them. Let us
examine how these coordinating factors affect the neighboring variable beliefs during inference,
and the resulting marginal of the coordinating factor.

Assume two variables at the interface send the following (normalized) messages to a shared
C3,5,V,N factor:

ml3,5→c3,5,V,N
(l3,5 = true) = 0.7

mb3,5,V,N→c3,5,V,N
(b3,5 = true) = 0.2

Thus the syntactic component of the model believes that a syntactic dependency exists from word
w3 to w5, and the tagging component initially has a very low belief that word w3 is a verb and w5

is a noun.
Assuming that verbs and nouns are very likely to exist in a syntactic dependency, this intuition

will enter the model in the form of a learned potential in coordinating factors. Assume coordinating
factor C3,5,V,N is a NAND factor with a potential φ = 2.5. In this situation the coordinating factor
will drive the beliefs of both variables higher, as illustrated in Figure 2.8. Here the use of joint
inference increases the marginal (true) belief of b3,5,V,N from 0.2 to 0.33 (normalizing from the
resulting beliefs, b3,5,V,N(true) = 0.4 and b3,5,V,N(false) = 0.8). While this may not seem like
a significant change, this is simply the result of one round of inference on a single portion of a
highly connected model, and even the addition of this one factor may influence the individual tag
variables, which connect to the B3,5,V,N factor, to more accurate predictions.

Other logics behave in different ways. If the connection between models was implemented as
an IMPLIES factor, all model beliefs and parameters remaining constant, inference would push the
two variable beliefs apart in order to adhere to the factor’s logic.

How these feature weights are learned falls under the topic of optimization, and is discussed in
the next section.

2.5 Parameter Estimation
In previous sections we discussed constructing graphical models of natural language processing
problems, and how to perform inference over these models (exact inference in the case of trees
or chains, and approximate loopy BP inference in graphs with loops). We also introduced a cat-
egory of factors with log-linear feature functions known as soft factors, which in sum comprise
the model’s learnable parameters. But how does inference interact with training, and how do we
optimize these feature weights to fit a data set? In this section we turn to optimization and describe
how marginal beliefs can be utilized to learn a model from data. We will give special attention to
learning in the presence of hidden structure.

2.5.1 Conditional Maximum Likelihood
The first step towards constructing an optimization method is to choose an objective function to
optimize. Here we turn to maximum-likelihood estimation, which defines an objective function in

46 FACTOR GRAPHS, BELIEF PROPAGATION, AND COMBINATORIAL CONSTRAINTS

l3,5 u4

1.0 0.737

 Σ

mu→v(b3,5,V,N) =

0.79

0.21

1.0

1.0

2.5

1.0

Ψc3,5,V,N(l3,5,b3,5,V,N)mv→u(l3,5)

Π
Π

 Σ

u4

2.0

0.7

0.3
Π
Π

c3,5,V,N

Π
Π

0.7

0.3

1.7

0.3

b3,5,V,N

u4u4c3,5,V,N b3,5,V,N
u4u4b3,5,V,N

Π

1.0 2.0

0.8 0.2

mu→v(v) =

mu→v(v) =

F T

0.8 0.4

FIGURE 2.8: Coordinating models with soft NAND factors.

terms of the model parameters θ and the training data, D = {x(i), y(i)}Ni=1. Each x(i) is a set of
observations, and each y(i) a set of labels. The goal of optimization is to find the parameter values
which maximize the likelihood of the data, defined as:

L(θ|D) = P (D|θ) (2.37)

With the maximum likelihood estimate we seek to find the values of the model parameters
which maximize the likelihood function L, maximizing the fit of the model – as defined by L –
to the observed data. The maximum likelihood estimate provides a general framework for dis-
cussing estimation, and is well-defined for many families of distributions. Because the models we
present are conditional, we will define the likelihood in terms of conditional probability. Assum-
ing the observation data is independent and identically distributed, we can express the conditional
likelihood:

L(θ|D) ∝ arg max
θ

∏
i

P (y(i)|x(i), θ) (2.38)

In practice it is often more convenient to phrase this maximization in terms of log likelihood, `,

2.5 PARAMETER ESTIMATION 47

replacing the product form with sums. Because the logarithmic function is monotonic, this yields
an equivalent maximizer:

`(θ|D) = arg max
θ

∑
i

logP (y(i)|x(i), θ) (2.39)

Replacing the general conditional probability with the exponentiated conditional probability fac-
torization for factor graphs (Eq. 2.6) allows the log and exponent to cancel, yielding the following
conditional likelihood:

`(θ|D) = arg max
θ

∑
i

∑
f

∑
A

∑
k

θk · ξfk(x(i)
A , y

(i)
A)− logZ(x(i)) (2.40)

where Z(x(i)) is the global normalization term for example x(i) (from Eq. 2.4, pg. 26). Maxi-
mizing the likelihood of the data is identical to finding the model parameters which maximize the
probability of the model on that data. Here the model comprises a set of weighted feature functions
over subsets of variables A.

2.5.2 Optimizing with hidden variables
The likelihood in Eq. 2.40 is only suitable when the set of model variables is fully observed in
the training data. Many of the models we present treat syntactic structure as a latent variable, and
thus we require a likelihood which incorporates a set of latent variables Z ⊂ V (though we will
henceforth reference latent variables only in assignments to them, z, avoiding confusion with the
partition function). However, it is straightforward to augment the previous likelihood to account
for latent variables:

L(θ|D) = arg max
θ

∏
i

∑
z

P (y(i), z(i)|x(i), θ) (2.41)

where z(i) is a configuration of latent variables compatible with the input, x(i). Latent variables are
neither observed, nor the target of supervised training. For this reason they are sometimes referred
to as nuisance variables. We incorporate latent variables into the likelihood by marginalizing
(summing over) all assignments to these variables, z. Thus maximizing this likelihood searches
for the best distribution over latent variables, where the worth of a latent structure is measured by
how much it improves the probability of generating the correct target variables, y(i).

Similar approaches have been used previously in NLP. For instance, [62] incorporate latent
word senses into a model of parse reranking. Assignments to these latent variables are marginalized
out to obtain a distribution over parse trees.

2.5.3 Stochastic Gradient Descent
Having defined an objective function for models trained in either a fully-supervised manner or in
the presence of hidden variables, the remaining decision is how best to optimize this objective.
For log-linear models, of the form we present, a common approach is the class of gradient-based
methods. In these approaches the optimizer navigates the search space by computing the gradient
of the objective function, and descending in this direction until a minimum is found. For convex

48 FACTOR GRAPHS, BELIEF PROPAGATION, AND COMBINATORIAL CONSTRAINTS

Algorithm 2 Stochastic Gradient Descent

1: function SGD(D = {x(i), y(i)}Ni=1) . data pairs of observed variables x, labels y
2: θ← 0 . Initialize parameters
3: t← 1 . blah
4: repeat
5: for ((x, y) ∈ D) do
6: G← construct graph from x, initializing beliefs w.r.t. θ
7: A∗ ← variable assignment specified by observed labels y.
8: BP(G) . Inference
9: Ep[ξl(x, y,)]←

∑
k log fk(A

∗) . Computed from true labels
10: Ep[ξl(x, ,)]←

∑
f ′
∑

Amfk′→(A)∇θfk′(A) . Computed from marginals
11: ∇θL← Ep[ξfl(x, y)]− Ep[ξfl(x, ,)] . Gradient as specified in Eq. 2.51
12: θ ← θ − ηt · ∇θL . SGD update, Eq. 2.42
13: t← t+ 1
14: end for
15: until max iterations exceeded or converged
16: return w
17: end function

spaces, like those defined in the fully-supervised training via conditional likelihood, these methods
are guaranteed to find the global optimum. When the model contains latent variables the space is
non-convex, and gradient-based approaches may become stuck in local minima.

Gradient methods can be classified into batch and online algorithms. Batch algorithms, like the
standard gradient descent, LBFGS [63], and quasi-newton methods process the entire data set be-
fore computing the gradient and performing a parameter update. Online algorithms, like stochastic
gradient descent or the structured perceptron algorithm [64, 65], approximate the gradient using
only some subset of the data, typically updating the model parameters after viewing each example.

Here we focus on stochastic gradient decent (SGD). Most of the data sets used for the tasks
presented in this dissertation are large, and most of the joint models presented are complex enough
that updating after each full pass through the data is quite cumbersome. Online learning methods
will often make tens of thousands of updates per iteration, and reach good solutions after just a few
full passes through the data [66].

Each SGD parameter update takes the form:

θ(t+1) = θ(t) − η(t) ∇L(t)
Θ (2.42)

where ∇L(t)
Θ is the approximation of the gradient produced from training example t, and ηt is the

learning rate for example t. The learning rate can be reduced over the course of learning, as a
function of t, to reduce the odds of over-stepping a minimum in the search space. SGD is guar-
anteed to converge to a single global minimum in convex spaces when paired with an appropriate
and decreasing rate. When training with hidden variables, the parameter space is non-convex and
SGD may find only a local minimum.

Fig. 2.5.3 describes the SGD algorithm in pseudocode. Placing the SGD update within the

2.5 PARAMETER ESTIMATION 49

larger algorithm highlights how inference is incorporated into training: inference yields factor
marginals, and these quantities are in turn used to produce feature expectations, which specify the
gradient.

2.5.4 Computing the Gradient
We now derive the gradient updates for the hidden conditional likelihood shown in Eq. 2.41. For
any specific parameter θl in a log-linear term, the gradient of the log likelihood with respect to θl
is:

∂L
∂θl

=
∑
i

∂

∂θl
log
∑
A

∑
f

∑
z

exp(θl · ξfl(x(i)
A , y

(i)
A , z

(i)
A))− ∂

∂θl
logZ(x(i)) (2.43)

The gradient for any maximum likelihood training method is a ratio between two terms, each
expressible as an expectation. For the numerator (the left term in the log-likelihood in Eq. 2.43):

∂

∂θl
log
∑
f

∑
A

∑
k

∑
z

exp(θl · ξfl(xA, yA, zA)) =
1∑

z P (y, z|x)

∑
z

∂

∂θl
P (y, z|x) (2.44)

=
∑

z

P (y, z|x) log
∂

∂θl
P (y, z|x) (2.45)

=Ep[ξfl(x, y,)] (2.46)

This follows through an application of the chain rule, and the useful identity ∂f
∂λ

= f(λ)∂ log f
∂λ

[58].
The resulting expectation is of parameter θl under the empirical distribution. When there are no
latent variables this expectation can be deterministically computed from the data (1 if the predicted
structure is present in the gold analysis, 0 if not.).

Differentiating the denominator (the right term in the log-likelihood in Eq. 2.43):

logZ(x)

∂θl
=
∂

∂θl
log
∑
y,z

exp(θl · ξfl(x, y, z)) (2.47)

=
1

Z(x)

∑
x,y

exp(θl · ξfl(x, y, z))
∂θl · ξfl(x, y, z)

∂θl
(2.48)

=
∑
y,z

p(y, z|x)ξfl(x, y, z) (2.49)

=Ep[ξfl(x, ,)] (2.50)

Importantly, this factors into the difference between two expectations:

∂L
∂θl

= Ep[ξfl(x, y)]− Ep[ξfl(x, ,)] (2.51)

The first, an expectation of the empirical distribution under the model, the second, the model’s
expectation. This is noteworthy for two reasons. First, when the feature expectations of the model

50 FACTOR GRAPHS, BELIEF PROPAGATION, AND COMBINATORIAL CONSTRAINTS

perfectly match the distribution of the data (as viewed through the features) these expectations
cancel and there is no parameter update. This is the optimal solution the model can reach with
respect to the training data. Second, both expectations are computable with belief propagation
[67]. In the case where training is fully supervised the first term reduces to ξfl(xi, y

∗
i), where the

feature counts of the data are set deterministically from the provided labels.

2.5.5 Training with Latent Variables
We have now shown how to construct joint models and discussed how to train them in the fully
supervised case. However, this requires jointly annotated training data, with annotations for all
tasks – an unlikely scenario. Here we present a method for training factor graphs not just in the
presence of predicted variables, but in the presence of nuisance variables: variables which help
support end task predictions but are themselves inconsequential. In this training procedure we
observe only the annotations associated with the end task, and the goal is to the propagate the
error signal (from end task annotations) to help guide the induction of useful distributions over
latent structures. Parameters for latent variables are optimized towards improving the model’s
performance on end task predictions.

Despite the ambitious nature of these goals, training in this fashion can be done as a very
straightforward extension to the previously-discussed inference and training methods. In Sec.
2.51 (pg. 49) we described the SGD update as being expressible as the difference between two
expectations. In the fully supervised case we observed that the first expectation, Ep[ξfl(xi, y∗i ,)],
could be defined solely by the data and the associated true labels, without the need for inference.
This was possible because this is an expectation over features when variables are clamped to their
true value, and we observe the true value for all variables. In the case of hidden variable training
we must rely on inference to compute this value.

This makes training a two-step process. In the first step we perform standard sum-product infer-
ence on the model, producing the marginals necessary to compute the denominator of the gradient.
Instead of relying on data to compute the numerator, a second round of inference is performed,
beginning by setting observed variables to their true values. This produces the marginalization
described in Eq.2.41, and the denominator of the gradient.

Returning to the tagging example, instead of observing the true value for the now unobserved
coordinating factor, c3,5,V,N , we substitute the factor marginal computed via inference on the
clamped graph. The marginal for a coordinating factor will be influenced by one variable held
fixed to its true value, the end task, and one latent variable. Assuming its marginal is 0.7, the
partial derivative is:

∂L
∂θl

= 0.7− 0.8 (2.52)

Leading to the following parameter update:

θt+1
f(‘V B+NN ′) = θtf(‘V B+NN ′) − ηt ∗ −0.1 (2.53)

moving the parameter in the opposite direction as the supervised update. The resulting feature
weights for syntax and coordinating factor features may be significantly different, as they are here,

2.5 PARAMETER ESTIMATION 51

than when trained from the true error signal. However, the model learned in this manner has still
honed a distribution over latent variables which supports the end task.

This approach has been previously utilized in scene detection for computer vision [38] to train
in the presence of missing data labels. Variables whose labels are missing are marginalized over
so that the model can be trained to maximize the log-likelihood of existing ones. There are many
similarities between this work and our own: the desire to incorporate both local and global in-
formation, the use of loopy belief propagation (two times) to compute marginal beliefs, and the
use of SGD for parameter optimization. Our work is in a different domain - NLP - and differs
most notably in that we have strong priors over what kinds of latent structures are permissible, and
constrain these variables using combinatorial factors.

2.5.6 Learning to Coordinate Between Models
Let us examine the process of computing the gradient and updating a set of parameters associ-
ated with the factors which coordinate between models. Recall that a joint model of tagging and
parsing could be constructed such that the interface between models involves sets of bigram tag
dependencies and syntactic dependencies. A tag transition from Tk to Tl between words wi and wj
is captured by Boolean variable bi,j,Tk,Tl , and a syntactic dependency between word wi and wj is
captured by Boolean variable li,j . These variables can be connected via a soft Boolean logic factor,
in our case a NAND factor, C3,5,V,N , which learns a weight of coordination between variables from
the two models via a set of features.

Ideally the model would learn that a verb is commonly the syntactic head of a noun. In the
sentence “The cat scratches the man”, both the word scratches and the word man may be either
a noun or a verb. In this case scratches is the syntactic head of man, and this additional evidence
could help the model correctly disambiguate the part-of-speech of both words. From the model
standpoint, this occurs when the C3,5,V,N factors’ ‘VB+NN’ feature weight is sufficiently high, and
the feature weight for ‘NN+NN’ is sufficiently low.

After inference converges, the model can be queried to collect factor marginals. The marginal
for the coordinating factor, π(c3,5,V,N), can be computed as follows:

π(c3,5,V,N) = φ(c3,5,V,N)

∗ml3,5→c3,5,V,N
(l3,5 = true)

∗mb3,5,V,N→c3,5,V,N
(b3,5,V,N = true)

We will assume the following factor belief, continuing from discussion of joint inference in the
joint tagging and parsing model (Section 2.4.3, pg. 44):

π(c3,5,V,N) = 0.33

Training attempts to minimize the divergence between the model’s expectation and the empirical
expectation, shown in Eq. 2.51. Because this factor’s potential over a configuration of variables
that is observed in the training data, empirically it’s marginal should be 1.0.

∂L
∂θl

= 1.0− 0.33 (2.54)

52 FACTOR GRAPHS, BELIEF PROPAGATION, AND COMBINATORIAL CONSTRAINTS

The update to the parameter vector, with learning rate ηt:

θt+1
f(V B+NN) = θtf(V B+NN) + ηt ∗ 0.67 (2.55)

Everything else remaining constant, during the next iteration of training the model the new fea-
ture weights will result in a new potential function for factor C3,5,V,N , the resulting marginal for
this factor will become higher, and the update smaller, indicating that the model distribution has
become more like the empirical distribution of the training data.

2.5.7 Regularization

Perfectly matching the empirical distribution is a theoretically sound goal when the training data
accurately reflects the test data, but in practice this assumption is rarely met, making the objective
less than ideal. In general the models presented here will have an abundance of features: in addition
to the standard set of features required for training each component model independently, the joint
model will require an extra set of features for learning the interactions between these components.
To complicate matters, when learning with latent variables it is difficult to gather useful feature
statistics prior to training, making it difficult to use common feature pruning techniques. As a
result, some of the models presented in later sections will have hundreds of millions of features.
Given the large number of parameters overfitting becomes a concern. As the training procedure
overfits the model to the data, parameters can be driven towards infinity, creating numerical issues.

We can incorporate an additional constraint into the objective function to penalize weights that
are too far from zero, applying a greater penalty the further the deviation, and keeping many values
close to zero:

F =
∑
i

log
∑

z

P (y(i), z(i)|x(i)) +
1

2σ2

∑
l

θ2
l (2.56)

where y(i) is the correct predicted structure for the ith training example, z(i) is the set of hidden
structures compatible with that structure, and σ2 is a variance parameter. This particular form
of regularization is known as L2 regularization. Regularized optimization has connections to
Bayesian MAP estimation [68], and an L2 regularization can be considered as a Gaussian prior
over weights: when the variance is high and the distribution flat the parameter weights are given
more freedom to wander. When the variance is low the values will tend to cluster close to the mean
of zero. For stochastic gradient descent this equates to multiplicatively applying a constant weight
decay over the entirety of the parameter vector upon each update.

As noted in the literature, when the number of model parameters greatly outnumbers the num-
ber of training examples, as will often be the case in our work, there are theoretical motivations to
instead pursue L1 regularization, as the sample complexity (a measure of the number of training
examples required for satisfactory learning) scales at an asymptotically slower rate in comparison
to L2 [69]. While L1 regularization more directly enforces sparsity by forcing many parameters to
zero, in practice L2 is often sufficient to prevent overfitting and numerical problems.

2.6 A HIDDEN SYNTAX APPROACH TO TAGGING 53

2.6 A Hidden Syntax Approach to Tagging

In this chapter we have presented the necessary theoretical background required for constructing,
reasoning with, and training joint factor graph models for NLP tasks. Each topic is grounded in
a running example, and discussed in the context of a joint model of parsing and part-of-speech
tagging. In this section we revisit this example, presenting the complete tagging model and results
on a pair of standard data sets.

2.6.1 The Role of Syntax in Tagging

While the relationship between syntax and morphology (which includes part-of-speech) is often
over-simplified in the NLP community, where they are commonly treated as separate tasks, the
two are inherently linked. Morphological information is useful for parsing, but morphological
attributes are simultaneously constrained by these same syntactic dependencies. [70] points out
that these two information sources exist in a competitive relationship, each vying for roles in the
process of linguistic expression. Languages with relatively free word-order often have rich sys-
tems of morphology that facilitate capturing long-range dependencies between distant words, and
languages with relatively fixed word order can forgo rich morphology by having more predictable
local dependencies. [71] show that for English, a language which is considered to have a more
fixed word order, a majority of syntactic dependencies exist between adjacent words.

We find empirical evidence of this trade-off in a study of conditional tag probabilities in English
and Latin text. The heatmaps in Figure 2.6.1 depict the conditional probability of an arbitrary tag
ti, conditioned on either the preceding tag, ti−1 (top), or the tag of the syntactic head word, thead(i)

(bottom). For English (left) the tag of interest is part-of-speech. For Latin (right) we focus on
morphological case, which is often described as being syntactically-assigned. Cells that are more
heavily shaded indicate high conditional probabilities, and instances where the conditioning tag is
highly informative of current tag.

For English, knowing the tag of the preceding word, ti−1, often narrows the choice of ti down
to just one or two candidates. In Latin these adjacent tag statistics are not as informative, as a
single tag, the null case marking (—) is the most likely tag in any context. Ignoring this tag, the
conditional distributions are less concentrated, implying that knowledge of the previous tag is less
informative for this task in Latin than in English.

Conditioning on syntactic dependencies tells a very different story. In English, the distributions
remain about equally as concentrated, providing more confident information regarding some tag
combinations, and less about others. However, in Latin a statistical correlation that was subtly
present before is now strikingly clear: given the tag of the syntactic head, the most probable tag
will almost always be the identical tag. A morphological phenomenon, noun-modifier agreement,
is the underlying cause. In Latin, adjectives must agree with the nouns they modify in case, gender,
and number, making syntactic information especially useful to the tagging task. [7] have shown
previously that a joint model of these tasks can improve the predictions of morphological attributes
(and, to a lesser extent, parse accuracy), substantiating this claim.

If syntax is a useful cue for tagging, why is it not used more often? There are two likely
justifications for eschewing models of syntax when performing any morphological tagging. First,
a disproportionate amount of the research community’s attention has focused on part-of-speech

54 FACTOR GRAPHS, BELIEF PROPAGATION, AND COMBINATORIAL CONSTRAINTS

English - Part-of-Speech Latin - Morphological Case

 l v d g b n a ---

a

n

b

g

d

v

l

a

n

b

g

d

v

l

P(i | head(i))

P(i | i-1)
NN

VB

IN

DT

JJ

CC

TO

MD

P(i | i-1)

MD TO CC JJ DT IN VB NN

NN

VB

IN

DT

JJ

CC

TO

MD

P(i | head(i))

 l v d g b n a --- MD TO CC JJ DT IN VB NN

Tag
i-1

Tag i

Tag
i-1

Tag i

Tag
head(i)

Tag i

Tag
head(i)

Tag i

FIGURE 2.9: Heatmaps of conditional tag probabilities. Each cell represents the probability of the x-axis
tag conditioned on the y-axis tag (rows normalize), with red indicating a high probability. Heatmaps at the
top of the figure condition on the tag of the previous word, heatmaps at the bottom of the figure condition
on the tag of the syntactic head.

tagging, and subsequent tasks like parsing, for English, where such dependencies are not as useful.
Second, part-of-speech tagging is often considered to be a preprocessing step for tasks like parsing,
and so in the most common scenario syntactic information is unavailable to the tagger. Even when
inducing a model of syntax in a fully unsupervised manner, part-of-speech tags are usually assumed
as input to the model, or are learned through distributional cues in an independent induction process
[72].

2.6.2 A Joint Model of Tagging and Syntax
In previous sections we introduced this model piecewise. We now present the complete joint
model, described by the components below where T is the tagging label set, and n is the length of
the sentence. As in future sections, variables and factors are named to help distinguish their roles
in the graph. Variable names are shown in italics, factors in SMALL CAPITALS:

Tagging Components

2.6 A HIDDEN SYNTAX APPROACH TO TAGGING 55

• LetUnigram(i, Tk), k ∈ |T | beO(n|T |) Boolean unigram tag variables, with corresponding
unary factors. Unigram(i, Tk) = true if and only if word wi has the tag Tk.

• Let UNIGRAM(i, Tk)k ∈ |T | be O(n|T |) factors, each connected to the corresponding
Unigram(i, Tk) variable. Each UNIGRAM(i, Tk) factor has a pair of features: the word
and tag combination, wi + Tk, and the tag, Tk.

• Let EXACTLY1(i) beO(n) combinatorial logic factors which constrain the set ofUnigram(i, Ti)
variables at each i, forcing exactly one variable to have a true value. Each word receives one
tag.

• Let Bigram(i, j, Tk, Tl) be O(n2 × |T |2) Boolean bigram tag variables each representing
whether words wi and wj have tags Tk and Tl respectively. There are no corresponding
unary factors for these variables.

• Let BIGRAM(i, j, Tk, Tl) be O(n2 × |T |2) soft NAND factors which coordinate between
Unigram(i, Tk), Unigram(j, Tl), andBigram(i, j, Tk, Tl) variables. Each BIGRAM(i, j, Tk, Tl)
factor has a pair of features: the combination of words and tags, wi + wj + Tk + Tl, and the
pair of tags, Tk + Tl.

Syntactic Components

• Let Link(i, j), 0 <= i <= n; 1 <= j <= n be O(n2) syntactic dependency variables.
Link(i, j) = true iff there is a syntactic dependency from word wi to wj .

• Let LINK(i, j), 0 <= i <= n; 1 <= j <= n be O(n2) factors which connect to corre-
sponding Link(i, j) variables. These factors are associated with many features, which are
listed in [73].

• Let DEP-TREE be a single global combinatorial factor connecting toO(n2) syntacticLink(i, j)
variables and enforcing a hard constraint, requiring the connected variables to form a valid
syntactic structure. In this instance a structure is valid if it is a non-cyclic directed graph.
This syntactic formalism is discussed in detail in Section 3.2.2 (pg. 99).

Connecting Components

• Let CONNECT(i, j, Tk, Tl) be O(n2× |T |2) logical factors implementing a soft NAND logic,
and connecting Bigram(i, j, Tk, Tl) and Link(i, j). These factors fire when the values of
both variables are true, contributing a non-negative potential, φ, to the model score. The
variables are more likely to be true as φ increases beyond 1, and other configurations more
likely as φ moves closer to 0.

The foundation of this model is a typical linear-chain CRF tagging model, with one exception:
in a tagging model the choice of tag at each i is commonly represented with a multinomial. Here
each multinomial variable has been decomposed into a set of Boolean variables. This necessi-
tates some additional logic, and EXACTLY1 factors are utilized to constrain each set of Boolean
variables such that exactly one variable is true.

This strategy extends to bigram dependencies. In this model, bigram dependencies between
pairs of tag variables are modeled with a set of Boolean variables, and are coordinated with the

56 FACTOR GRAPHS, BELIEF PROPAGATION, AND COMBINATORIAL CONSTRAINTS

U(i, Tk)

B(i, t1)

U
(i,Tk)

U
(j,Tl)

B
(i,j,Tk,Tl)

C(i,j,Tk,Tk)

L
(i,j)

B
(i,j,Tk,Tl)

E-1(i)

L
(i,j)

Dep-Tree

a.) Unigram Tagging Layer b.) Bigram Dependencies c.) Coordination Layer d.) Syntactic Model

U
(i,Tk)

FIGURE 2.10: A joint model of tagging and parsing. The unigram (a.) and bigram (b.) sections constitute
a typical bigram tagging model, albeit expressed entirely using Boolean variables. The syntactic represen-
tation is constrained by a combinatorial DEP-TREE factor, and syntactic variables coordinate with bigram
tag variables via a set of soft logic factors (c.). Names have been abbreviated.

corresponding unigram tag variables with soft NAND factors. Here the motivation for decomposing
the model may become clear. By representing bigram dependencies as Boolean variables, the
interface between the two models consists solely of Boolean variables, allowing corresponding
sets of these variables to be coordinated via soft Boolean logic factors.

In places where syntactic variables are true, the Bigram variables for likely syntactic tag com-
binations will be reinforced. A verb is frequently the syntactic head of a noun, so the (true) belief
of Bigram(i, j, V,N) will be increased when Link(i, j) is true. The beliefs of bigram variables
propagate to unigram tag variables, which are queried at decoding time to produce the predicted
output.

2.6.3 Experimental Design and Results
Data

Models are evaluated on two languages: English and Latin. The English data is derived from a
subset of the standard Penn Treebank Wall Street Journal corpus [74], converted to dependency
syntax, as outline by [75] for use in the 2007 CoNLL shared task [76]. For Latin we make use
of the Latin portion of the Ancient Greek and Latin Dependency Treebanks [77]. This corpus is
an ongoing effort, and consists of roughly 3500 Latin sentences at the time of processing. We
reproduce the training and test splits proposed in previous work [7].

Model Configurations

We evaluate five separate models:

• Unigram
The unigram model consists only of Unigram(i, Tk) variables, a corresponding set of unary
factors, and a set of EXACTLY1 factors to force one tag variable to be true for each position
i ∈ n.

2.6 A HIDDEN SYNTAX APPROACH TO TAGGING 57

• Bigram
The bigram model extends upon the unigram model with bigram variables and coordinating
factors.

• Joint
In the joint model connects bigram variables to corresponding syntactic dependency vari-
ables using Boolean logic (NAND) factors. The correct trees are observed during training,
but not testing time. [7] present a similar joint model, but one which uses the logic factors
to explicitly model agreement phenomena between words.

• Oracle
The oracle model relies on gold, or oracle syntax. The full joint model, as described in
Figure 2.10, is constructed, but during inference the syntactic variables are clamped to their
true values. This is done during both training and testing. It is meant to serve as a ceiling
for the performance of the joint model if the joint model could perfectly predict trees at test
time, though there is no guarantee that these trees are ideal for the task.

• Hidden
In this scenario the full joint model is constructed, but all syntactic components (and con-
sequently all coordinating factors) are treated as unobserved. The marginalization-based
training method (Section 2.5.5, 50) induces a distribution over latent syntactic variables to
improve the conditional maximum likelihood on the data.

Design

Each model was trained using 500 iterations of gradient descent, with learning rate η = 0.1, and
using L2 regularization as described in Section 2.5.7 (pg. 52). We impose a 50 iteration maximum
of belief propagation inference, which is exact in the UNIGRAM and BIGRAM models and approx-
imate in all others. In models with syntactic components, we alternate between forward-backward
sweeps along the chain of tag variables, and inference across the syntactic and connection com-
ponents. The model is decoded by taking the tag Tk of the Unigram(i, Tk) with the highest true
belief, for all i ∈ n.

The features associated with each UNIGRAM(i, Tk) factor are simply the tag (Tk) and the word
concatenated with the tag (wi + Tk). The only feature for the BIGRAM(i, j, Tk, Tl) factors is a
concatenation of the tags involved (Tk + Tl). This type of feature is also used in the CONNECT

factors. In this case there is no need to use a feature which specifies an i, j, tag at position
i, tag at position j, and whether the syntactic arc is present, because the only potential in the
CONNECT factor that is derived from features is for when both variables are true. However we
do differentiate between features for CONNECT and BIGRAM factors, i.e., features are mapped to
different parameters in the model.

Results

The results of these experiments are shown in Table 2.1. We find that the BIGRAM model provides
significant gains over the UNIGRAM tagging model in both languages. In English, where sequence
models have a long and successfully history, we find that bigram dependencies between adjacent

58 FACTOR GRAPHS, BELIEF PROPAGATION, AND COMBINATORIAL CONSTRAINTS

English Latin
Unigram 91.5 95.3

Bigram 96.9 96.2
Joint† 96.4 96.6

Oracle†† 96.7 96.7
Hidden 94.3 96.1

TABLE 2.1: Tagging accuracy for English and Latin. When applied to the English data, the model which
uses local (adjacent) dependencies achieves the highest accuracy. For morphological case prediction in
Latin, syntactic information produces superior results. Models which observe syntactic annotations during
training are marked with a † symbol, and models which observe syntactic annotations during both training
and testing with a †† symbol.

words are more useful than dependencies between words in syntactic relationships – both when
using gold standard syntax, and when predicting syntactic variables. However, for morphological
case prediction in Latin we find that the JOINT and ORACLE, which are trained from gold syn-
tactic dependencies, provide more useful information than local bigram dependencies alone. This
supports the general claim that syntactic information is a potentially useful source for information
for tagging tasks in morphologically rich languages.

In this example we find that the HIDDEN model is not able to induce a latent syntactic repre-
sentation that improves tagging accuracy over the BIGRAM model. This may be attributed to many
potential causes (increased model complexity, a non-convex parameter space, under-training, or
the lack of a sufficiently strong signal from the tagging annotations), but we will show in the
remaining sections that for many NLP tasks an induced syntax can provide a significant improve-
ment over models which do not utilize syntactic information. In many cases these latent syntax
joint models often rival the performance of systems which make use of gold trees or trees produced
by a state-of-the-art parser.

2.7 Conclusions

Our hypothesis is that coupling a model of syntax to a downstream NLP task and training the
models jointly will improve performance on that task. Further, we believe that in many instances
where data limitations would prevent fully supervised training of joint models, useful distributions
over latent syntactic structure can be induced from the limited annotations that are available.

In this chapter we introduced the basic theory and techniques used repeatedly throughout the
dissertation to accomplish these goals. In Section 2.2 we introduced factor graphs, and described
the set of factors that serve as the building blocks for the complex, joint models presented in the
following chapters. In Section 2.3 we described the message-passing inference techniques that
underly exact inference strategies for many common NLP models (HMMs, PCFGs, etc.). The
same inference strategy, when performed repeatedly, provides a useful approximate method for
inference in cyclic graphs. This is particularly important when modeling two tasks jointly, as the
dependencies between component models often create cycles in the graph.

However, structured constraints – like those necessary for representing syntax –can introduce

2.7 CONCLUSIONS 59

an exceedingly large number of factors into the graph, creating large cliques of densely connected
variables, and hindering inference. We discuss combinatorial factors (Section 2.4) as a way of
introducing special-purpose algorithms into the inference procedure to circumvent these issues.

In Section 2.5 we discuss how to optimize model parameters on a set of training data using
gradient-based methods, in both the fully supervised case and when there is no syntactic training
data available (i.e., in the presence of latent variables). We conclude by illustrating the use of these
techniques to create and train a joint model of tagging and parsing (Section 2.6), inducing a latent
syntactic representation to influence tagging performance.

In the following chapter we delve in greater detail into syntax, and the combinatorial factors
used to model syntactic constraints. We introduce two syntactic formalisms: phrase structure
grammar and dependency grammar. For phrase structure grammar, in which a syntactic analy-
sis is represented by a tree, we provide a novel combinatorial factor for efficiently prohibiting
invalid structures in the model. We then show how such a factor can be utilized at the core of
a standalone grammarless phrase structure parsing model, and show performance comparable to
well-established parsers. For dependency grammar we review the work of [11] which introduces
a similar combinatorial factor for constraining syntactic variables to form directed graphs. These
factors are the principle components of the latent syntactic representations we use throughout the
thesis.

60 FACTOR GRAPHS, BELIEF PROPAGATION, AND COMBINATORIAL CONSTRAINTS

3
Factor Graph Representations of Syntax

Syntactic structure is essential to the understanding of natural language. Consider the sentence,
“The cat scratched the man with claws”. There are at least two equally valid syntactic analyses
for this sentence (Fig. 3.1), with each analysis corresponding to a different interpretation of the
events1. If the prepositional phrase attaches high, to the verb scratched, the sentence has a seman-
tics akin to The cat scratched the man with its claws. If it attaches low, to the NP headed by man,
it should be interpreted as The cat scratched the man who has claws. Syntactic analysis removes
some of the ambiguity inherent in language and is therefore crucial for capturing deep linguistic
understanding. Knowledge of the data’s syntactic structure has long been considered a prerequi-
site for NLP tasks like semantic role labeling [19] and relation extraction [79], and methods which
incorporate syntactic features or syntactic structure are becoming increasingly more common [6].

In this thesis we explore the use of syntax as a form of latent scaffolding: structure that serves
little purpose in and of itself, but provides a useful platform from which end task predictions
can be more effectively made. In order to achieve this goal we rely on a marginalization-based
approach to training (Section 2.5.2, pg. 47) to induce a syntactic structure specific to the end task.
This removes the need for syntactic annotations, but requires that both the syntactic and end task
models be represented within the same framework. Here the chosen framework, factor graphs, are
capable of representing a wide variety of models commonly used in NLP, but are not well-suited
for efficiently representing the structured constraints found in syntax.

In this chapter we discuss graphical model approaches to representing two major syntactic
formalisms: phrase structure grammar, in which a syntactic analysis must form a tree, and depen-
dency grammar, in which a syntactic analysis must form a directed acyclic graph (DAG). Naive
approaches to representing either can lead to a troublesome, and sometimes exponential growth in
the number of factors necessary to rule out invalid structures. To circumvent this we introduce to

1A syntactic theory does not determine how a sentence should be interpreted, but many compositional theories of
semantics have a strong correlation with syntactic structure (see rule-to-rule hypothesis, [78, pg. 5, 26]).

61

62 FACTOR GRAPH REPRESENTATIONS OF SYNTAX

The cat scratched the man with claws

NP

S

DET NN

DET NN NP

VP

VB

 PP NN

PP

a.) High PP-attachment

The cat scratched the man with claws

NP

S

DET NN

DET NN NP

VP

VB

 PP NN

PP

b.) LowPP-attachment

FIGURE 3.1: A phrase structure tree. High PP-attachment (left) vs. low PP-attachment (right).

combinatorial factors which override the default message passing algorithm and calculate the out-
going factor messages in a different and often more efficient manner. A single globally-connected
factor can efficiently ensure, through dynamic programming algorithms, that the syntactic vari-
ables represent only valid parses. Thus the syntactic structure induced by these models obey gen-
eral syntactic structure constraints, but may not correspond well to linguists’ notion of syntax nor
capture the subtleties of phenomena like the previously-discussed PP-attachment. However, it may
nonetheless resolve ambiguity and constrain the problem space in a manner befitting the end task.

The remainder of this chapter is organized as follows. In Section 3.1 we discuss the context-
free grammar models that constitute the dominant approach in the field, and the Inside-Outside
algorithm for parameter estimation in these models. Much of the theory introduced in this section
underlies our own work. In Section 3.1.2 we present a factor graph representation of phrase struc-
ture trees. Efficient inference requires the introduction of a combinatorial tree constraint factor,
CKY-TREE, which can compute outgoing messages in O(n3) time (Section 3.1.2). It is possible
to use these components as an unlabeled parser, producing a tree structure with no tree labels.
In Section 3.1.2 we present a set of modeling extensions for performing labeled phrase structure
parsing. In Section 3.1.3 we propose a method for introducing grammatical rules into the model,
coupled with a perceptron-based learning method for estimating rule weights. We evaluate the
performance of these models in Section 3.1.4,where we show that they perform comparably to
more established state-of-the-art parsers while remaining asymptotically faster. In the following
chapters we utilize this phrase structure representation to construct joint models for named entity
recognition (Chapter 4) and relation extraction (Chapter 5)

Section 3.2 summarizes the contributions of [11], who present a combinatorial factor for ef-
ficient dependency parsing within a factor graph model. We rely on this approach in later chap-
ters when constructing joint models of relation extraction (Chapter 5) and semantic role labeling
(Chapter 6).

3.1 Phrase Structure Parsing
Phrase structure grammar, a syntactic formalism perhaps most commonly associated with [80], is
built around the notion of a constituent: a contiguous span of words that functions as a single syn-
tactic unit within a hierarchical structure. Constituents nest within one another, and the resulting
structure is known as a phrase structure tree. A pair of phrase structure trees is shown in Fig. 3.1.

3.1 PHRASE STRUCTURE PARSING 63

The spans of words which constitute a constituent often align closely to the desired predictions in
NLP tasks. For instance, it is exceedingly common for named entities (Chapter 4) to correspond
to noun phrases, and the words at constituent boundaries play an important part in constructing
a semantic role labeling analysis (Chapter 6). Therefore in order to perform many NLP tasks at
a state-of-the-art level, it is necessary to first produce a phrase structure tree using a statistical
parsing model.

Statistical methods revolutionized the field of natural language processing, leading to signifi-
cant and rapid advances in the accuracy of probabilistic phrase structure parsers. Aided by the de-
velopment of large, tree-annotated corpora [74], computers began to produce high-quality parses
of natural language for the first time. A majority of these approaches assume that a sentence’s
syntactic structure can be described by a set of weighted production rules collectively known as
a probabilistic context-free grammar (PCFG). We will now discuss how probability distributions
are defined over trees using PCFGs, and how the parameters of these models can be efficiently
learned. While our own approach to phrase structure parsing is unique in that it does not require a
grammar, it nonetheless shares many of the same underlying concepts.

A probabilistic parser defines a distribution over trees and parses a sentence s by finding the
tree t which maximizes this distribution. If the parser is a generative model, this distribution will
be the joint distribution, P (t, s). If the parser is a conditional model, this distribution will be the
conditional distribution, P (t|s). As [81] notes, maximizing the joint distribution is equivalent to
maximizing the conditional distribution:

tBest = arg max
t

P (t, s)

P (s)
= arg max

t
P (t|s) (3.1)

The question then becomes one of how to define P (t|s). For a majority of statistical parser
research, the answer is to specify this distribution using a PCFG. Formally a PCFG G is a 5-tuple:

G = {V,Σ, R, SD}

1. V is a finite set of nonterminal symbols. In the context of natural language these represent
syntactic categories (i.e., noun phrase, verb phrase, etc.). A nonterminal is characterized by
its ability to be rewritten in accordance with a set of production rules, R.

2. Σ is a finite set of terminal symbols, disjoint from V . In the domain of natural language,
the terminal set typically comprises the words of the language, though they may also refer
to part-of-speech tags if tags are observed. Terminal symbols cannot be rewritten.

3. R is a finite set of rules of the form V → {V ∪ Σ}+, mapping a single nonterminal symbol
to a sequence of nonterminal and/or terminals. As it pertains to trees, V corresponds to a
parent node, and {V ∪Σ}+ a sequence of children. The Kleene plus (+) requires that at least
one nonterminal be present in the right-hand side of the rule.

4. S is a start symbol, S ∈ V , which is used to initially represent the sentence. It is transformed
during parsing by the application of rules in R.

5. φ, is a function of the form R→ [0, 1], assigning a probability to each rule in the grammar.

64 FACTOR GRAPH REPRESENTATIONS OF SYNTAX

The cat scratched the man

NP

S

DET NN

DET NN NP

VP

VB

a.) A Phrase Structure Tree b.) A Probabilistic Context-Free Grammar

V = {S, NP, VP, DET, NN, VB}

Σ = {The, cat, scratched, the, man}
S = S

1.0 S NP VP
1.0 NP DET NN
0.6 VP VB NP
0.4 VP VP PP
0.3 DET The
0.2 NN cat
1.0 VB scratched
0.7 DET the
0.8 NN man

R =

Each rule r has the form X → Y , where X is the parent nonterminal, and Y is a sequence of
terminal or nonterminal children. For a PCFG, φ(r) = P (X → Y |X →), i.e., the probability
of rule r is the conditional probability of the parent X expanding to Y , given that X has already
been chosen as the parent. Thus in a PCFG, for all rules which share the same parent, the sum of
their corresponding rule weights must equal 1:

1 =
∑

Y ∈{V ∪Σ}+
φ(X → Y) (3.2)

With the addition of rule weights we can calculate the probability of any parse, from a poten-
tially infinite set of trees. We denote the derivation of tree t, the sequence of rule applications that
transforms the start symbol Σ into the tree t, with leaf nodes corresponding to the words in s, as
δ(t). Using the chain rule, we define the probability of tree t and sentence s as the product of all
rule weights used in its derivation:

P (t, s) =
∏
r∈δ(t)

φ(r) (3.3)

Figure 3.1 presents a PCFG and phrase structure tree t for the sentence “the cat scratched the
man”. Using this PCFG we can calculate the probability of the tree t as follows:

P (t, s) =φ(S→ NP VP)× φ(NP→ DET NN)

×φ(VP→ VB NP)× φ(NP→ DET NN)

×φ(NN→ cat)× φ(VB→ scratched)

×φ(DET→ The)× φ(DET→ the)

×φ(NN→ man)

P (t, s) =1.0× 1.0× 1.0× 0.6× 0.3× 0.2× 1.0× 0.7× 0.8

P (t, s) =0.02016

In summation, PCFGs define the joint probability of any parse tree and sentence as the product
of the rule weights (conditional probability of children given their head) used in its derivation.

3.1 PHRASE STRUCTURE PARSING 65

Finding the tree that maximizes this distribution is often accomplished through chart-based decod-
ing, and we refer the interested reader to the excellent presentation of the CKY algorithm found in
[82] for further details.

Extensions and alternatives to PCFGs
PCFGs were common in many of the early successful statistical parsing systems.2 A lexicalized
PCFG is a simple extension to standard PCFGs which embellishes the grammar with lexical (head)
information. A headword is the word which directly determines the type of the encompassing
phrase. For instance, “cat” is the head of the noun phrase “the cat”, and “scratched” is the head
of the verb phrase “scratched the man” (See also X’ theory [85, 86]). The work of [87] modeled
bigram dependencies between headwords, and outperformed previous state-of-the-art decision-tree
approaches [84]. They have since become a staple in the field. [88] further extended this model to
include a probabilistic treatment of subcategorization frames for headwords (i.e., the number and
type of children a parent constituent is likely to have), improving upon previous results by 2.3%
on average.

PCFGs are still a component in many state-of-the-art parsing systems. PCFGs can be used to
provide an initial set of parse trees and their posteriors under the model, which can be further re-
fined using discriminative re-ranking [62, 89]. Lexicalized re-ranking parsers currently provide the
best parse accuracy on the WallStreet Journal corpus. Another state-of-the-art parsing approach
which uses PCFGs are latent variable grammars, in which a fine-grained grammar is induced au-
tomatically from the data [90, 91]. These methods use the treebank annotation as an initialization,
but iteratively refine the grammar nonterminals to maximize the likelihood of the data, capturing
useful patterns.

Approaches to parsing which do not rely on PCFGs include log-linear grammars, which derive
rule weights from the sum of exponentiated feature weights [92, 93]. Unlike a PCFG, whose use
of conditional probabilities as rule weights guarantees that the product of those weights yields a
probability, a log-linear grammar must explicitly normalize tree scores to ensure the sum of all
scores for all possible trees is 1.0. It does this through the use of the normalizing constant, Z:

P (t|s) =
1

Z

∏
r∈δ(t)

φ(r) (3.4)

This is known as a globally normalized model. The method we propose is similar to previous
work in log-linear parsing, but with an important distinction: our approach is grammarless. We
train a log-linear model to predict the presence and type of constituent directly, without rules,
and in this respect the parser functions as a set of log-linear classifiers, one for each span. How-
ever, a globally-connected combinatorial factor constrains the constituent variables, prohibiting
configurations which do not represent valid trees. It is this interaction between local and global
information, facilitated through belief propagation, which makes accurate parsing without a gram-
mar possible. In the next section we discuss parameter estimation in grammar-based models and an
important algorithm for inference in tree structures, before discussing analogs in the combinatorial
factor we propose (Sec. 3.1.2, pg. 72).

2Notable exceptions are [83] and [84], which use decision trees to estimate P (t|s).

66 FACTOR GRAPH REPRESENTATIONS OF SYNTAX

3.1.1 The Inside-Outside Algorithm
How are rule weights estimated? For standard PCFG models trained from a tree-annotated corpus,
the maximum likelihood estimate can be computed simply by counting:

φMLE(X → Y) =
count(X → Y)

count(X)
(3.5)

where count(X → Y) is the number of times the rule with parent X and children Y occurs in the
training data, and count(X) is the number of times a rule with parent X occurs in the training data.

However, an EM-based (expectational maximization) approach provides a more general solu-
tion for estimating these parameters when there are rules which are not observed in the data. This
scenario is common in grammar induction, discriminative parsing, semi-supervised training for
parsers, and the factor graph representation presented in this chapter. The EM algorithm alternates
between two procedures: an E-step, which computes the expectation of the log-likelihood calcu-
lated under the model using the current parameters Θ(t), and an M-step, which updates the model
parameters to maximize the E-step’s log-likelihood.

In this section we are interested only in the calculation of the E-step for grammars, as it is
also the foundation of our approach to grammarless parsing. We refer the reader interested in the
M-step or any of the wider applications of the EM algorithm to one of the many in-depth tutorials
on the topic, such as [94].

In the context of parsing, the EM algorithm takes as input a set of sentences s, of size m, with
the ith sentence denoted by si. In the E-step we must compute the expected counts, E[count(r)],
for each rule r:

E[count(r)] =
m∑
i=1

∑
t∈Ti

P (t|si,Θt−1) count(r, t) (3.6)

where Ti represents all possible parse trees for sentence si, and count(r, t) is the number of times
rule r occurs in the derivation of tree t. Explicitly enumerating these trees is not tractable, but this
problem can be efficiently solved using a dynamic programming algorithm known as the Inside-
Outside algorithm [51, 95], a generalization of the Forward-Backward algorithm for exact infer-
ence in tree-structured models.3

The input to the algorithm is:

• A sentence s = (w0, ..., wn−1) of n words. The substring wi, ..., wj−1 is denoted by the pair
of indices (i, j), where 0 <= i <= j <= n.

• A CFG (V,Σ, R, S) in Chomsky normal form. A grammar is said to be in Chomsky normal
form if all rules are of the form (X → Y Z) or (X → x), where X, Y, Z ∈ V and x ∈ Σ.
The conversion to binary-branching trees is discussed further in Section 3.1.2 (pg. 77).

• A potential function φ(r) for each r ∈ R. In a standard PCFG the rule weights will
normalize locally (Eq. 3.5), but here we define a more general potential for a tree t as
φ(t) =

∏
r∈δ(t) φ(r). This is not guaranteed to normalize and must be divided by Z.

3Belief propagation (Sec. 2.3.2, pg. 30) is a generalization of both algorithms, and performs exact inference for
models with chain or tree-structured graphs, or approximate inference in arbitrary graph structures.

3.1 PHRASE STRUCTURE PARSING 67

When the algorithm terminates we are left with three important quantities:

1. µ(X → Y Z, i, k, j), the sum of all potentials φ(t) for all t ∈ T which contain the rule X →
Y Z over span indices i, j, and k. Let a span (i, j) denote a constituent which dominates
words wi, ..., wj−1. Here the rule states that child Y spans (i, j), and child X spans (j, k).

2. µ(X → x, i, k), the analogous sum of potentials for terminal rules, which expand to words
in the sentence.

3. Z, the total probability of all parse trees T :

Z =
∑
t∈T

φ(t) (3.7)

From these quantities we can calculate the expected counts of both nonterminal and terminal
rules, and use these counts for computing the gradient necessary for maximizing the log-likelihood
(the M-step). These three desired quantities are expressible in terms of two intermediate ones: the
inside score, α(i, k, v), and the outside score, β(i, k, v), v ∈ V . Both the inside and outside scores
contain the span (i, j) rooted at a nonterminal v (which we refer to as Span(i, k, v). The inside
score is the sum of potentials of all trees rooted at this span, generating the words within it. The
outside score is the sum of the potentials for all trees rooted at S which generate words w1, .., wi−1

and wk+1, .., wn and ultimately a context for Span(i, k, v). Fig. 3.2 depicts these quantities. We
now discuss the computation of these terms via the Inside-Outside algorithm.

Inside Computation
To define α(i, k, v) formally, let τ(i, k, v) be the set of all trees which begin with the nontermi-
nal v and span (i, k), generating all words wi, .., wk beneath it. Figure 3.1 (pg. 62) depicts two
phrase structure trees. Both trees contain span (2, 7,VP), but differ in the internal structure within
these spans. As such, both subtrees over the span (2, 7) represent two distinct elements of the set
τ(2, 7,VP). Using τ(i, k, v) we can define α(i, k, v) as follows:

α(i, k, v) =
∑

t∈τ(i,k,v)

φ(t) (3.8)

Enumerating all trees in set τ(i, k, v), for all i, k, would be intractable. Instead, note that the
calculation of α(i, k, v) depends on α(i, j,X), where i < j < k and X is any nonterminal such
that there exists a rule of the form v → X . A similar relationship exists between α(i, k, v) and
α(j, k,X). For instance, the computation of α(2, 5, V P), using the grammar provided in Fig. 3.1,
decomposes as follows:

α(2, 5, V P) = φ(V P → V B NP)× α(2, 3, V B)× α(3, 5, NP)

+ φ(V P → V B NP)× α(2, 4, V B)× α(4, 5, NP)

+ φ(V P → V P PP)× α(2, 3, V P)× α(3, 5, PP)

+ φ(V P → V P PP)× α(2, 4, V P)× α(4, 5, PP)

68 FACTOR GRAPH REPRESENTATIONS OF SYNTAX

wi wj wnw0

v

a.) Inside Tree

wi wj wnw0

v

b.) Outside Tree

FIGURE 3.2: Inside & Outside trees. Shaded areas depict the space of trees which are summed over for
each quantity.

The binary-branching structure of the input trees and grammar eliminates the need to consider
decompositions over the three or more spans (i.e., a single decomposition to (2, 3), (3, 4), and
(4, 5) in the above example).

Thus, the computation of α(i, k, v) for any i, k, v can be defined recursively, thus avoiding
the inefficiency of brute force enumeration. The algorithm begins by calculating α(i, k, v) for
the smallest spans first, and proceeds to increasingly larger spans. Each α(i, k, v) is cached to
eliminate redundant calculations. This strategy allows the Inside-Outside algorithm to compute
updated expected counts for rules in O(n3) time.

Outside Computation
Similarly, to formally define the corresponding outside score we introduce the notion of an outside
tree. An outside tree O(i, j, v) is a tree which a.) is rooted at the start symbol, S, b.) generates
Span(i, k, v), and c.) generates the words that precede (w0 to wi) and follow it (wk+1 to wn). In
other words, an outside tree generates a context for span Span(i, k, v). We define the outside term
β(i, j, v) as the sum of the potentials for trees t ∈ O(i, j, v):

β(i, j, v) =
∑

t∈O(i,j,v)

φ(t) (3.9)

The outside scores can be calculated in a similar manner, however the algorithm begins by
computing the outside score for the top-level span, and recursively calculating the β values for
progressively smaller spans. However, note that to compute the β values one must rely on α values
calculated in the previous step. To calculate β(i, k, v) we must examine the outside score for span
(0, n) and the inside score for the remainder, (0, i) and (k, n). We momentarily forgo the details of
this calculation, and discuss instead only the outside calculation as it pertains to the grammarless
factor graph parsing in Section 3.1.2 (pg. 72).

Computing the Gradient
Once the inside and outside scores have been computed, the desired quantities can be expressed in

3.1 PHRASE STRUCTURE PARSING 69

terms of these quantities. Z, the partition function, is the total probability of all parses for a given
sentence x of length n. It is required to normalize rule potentials to produce expected counts. Note
that this is equal to the inside probability of the top-level span, beginning with the start symbol S:

Z = α(0, n, S) (3.10)

To compute µ(X → Y Z, i, k, v) we combine the outside score of the span (i, k) and the inside
score for the two analyses within the span, (i, j) and (j, k):

µ(X → Y Z, i, k, j) = φ(X → Y Z, i, k, j)

× β(i, j,X) (3.11)
× α(i, k, Y)× α(k, j, Z)

Summing over the span indices and normalizing yields the expected counts for the rule, and the
necessary quantity for computing the parameter update:

E[count(X → Y Z)] =
∑
i,j,k

µ(X → Y Z, i, k, j)

Z
(3.12)

Rules of the form X → x are handled analogously. These expected counts can then be utilized in
the M-step to compute the gradient and update the model parameters.

The Inside-Outside algorithm is used in a wide variety of applications. [96] use the Inside-
Outside algorithm to infer the parameters of a PCFG from a partially-annotated treebank, con-
taining a mix of full parsed, partially-parsed, and unparsed sentences. [97] utilize the algorithm
in an attempt to adapt hand-written parse rules to new corpora. Conditional random field parsing
[93], and latent variable grammars [90, 98] also rely on variants of this algorithm for parameter
estimation.

This concludes our discussion of the Inside-Outside algorithm and the theory underlying effi-
cient computation of rule expectations. In the following section we present a factor graph represen-
tation of phrase structure trees and show how the principles described in this section can be used to
construct a new variant of the Inside-Outside algorithm which does not compute rule expectations,
but rather the expectation that a given (unlabeled) constituent span is present in the tree. From
within a globally-connected combinatorial factor, this algorithm can compute outgoing messages
during inference which guide variable beliefs towards representing a valid phrase structure tree.

3.1.2 Representing Phrase Structure in Factor Graphs
In the previous section we discussed PCFG-based parsing and parameter estimation for discrimina-
tive or latent variable parsing models (including unsupervised models and training from partially-
annotated corpora) using EM and the Inside-Outside algorithm. In this section we now contrast
these methods with our own approach to parsing. Here we demonstrate how to represent phrase
structure syntax in a factor graph, and how to perform efficient inference using a combinatorial
factor. This produces an unlabeled tree structure which may be well-suited for use as a syntactic
component in joint models. We then detail extensions necessary for competitive performance in
parsing tasks, which includes labeled parsing and unary chain prediction, before discussing more
practical considerations, like pruning heuristics. We begin with the factor graph representation.

70 FACTOR GRAPH REPRESENTATIONS OF SYNTAX

For a sentence with n words there are O(n2) possible constituent spans. Recall that if a con-
stituent spans (i, j) its leaf nodes are words wi to wj−1, and thus there is one possible constituent
span for each 0 ≤ i < j ≤ n. In order to represent a model of phrase structure syntax as a factor
graph, we use O(n2) Boolean variables, each representing the presence of a constituent span when
true, and the absence of a constituent span when false. This provides the a representation for
any possible unlabeled phrase structure tree, but the suitability of each variable is scored locally
by potentials, calculated via features, in corresponding unary factors. Formally, we describe this
structure as follows:

• Let {Span(i, j) : 0 ≤ i < j ≤ n} be O(n2) Boolean variables such that Span(i, j) = true
iff there is a span beginning at index i and ending at index j in the constituent structure.4

• Let {SPAN(i, j) : 0 ≤ i < j ≤ n} be O(n2) unary factors, each attached to the correspond-
ing Span(i, j) variable. These factors score, via a set of exponentiated feature weights, the
suitability of each span to appear in an unlabeled phrase structure tree.

This collection of variables is capable of representing all possible unlabeled phrase structure
trees, provided that these trees do not contain multiple spans over the same pair of indices (i.e., a
unary chain). However, it is also capable of representing many invalid structures. For instance, two
variables representing overlapping spans (Span(i, j), Span(k, l) : i < k < j < l) cannot be in a
valid phrase structure tree. We now discuss the formal properties of a restricted class of trees, and
a combinatorial factor which constrains configurations of Span variables to form valid members
of this set.

For our purposes of defining a phrase structure representation for joint inference, the usefulness
of syntax lies purely in its structure (i.e., whether or not a span is in the tree) and not in its ability
to reproduce treebank-style annotation. Therefore we do not aim to predict unary chains (though
a method for reintroducing unary chains is discussed in Section 3.1.2, pg. 81). Similarly, an
unlabeled constituent spanning a single word is not informative to other tasks, as we assume their
presence (part-of-speech tags and words are observed). Therefore only spans of width two or
greater are necessary. Our inference methods share the same underlying principles as previous
parsing work, and similarly require binary-branching structure. Thus the class of phrase structure
trees we are interested in modeling are unlabeled, binary-branching trees with constituents of width
two or greater, and no more than one constituent per pair of indices.

Formally a tree drawn from this restricted set of phrase structure trees is any set of spans
Span(i, j) where 0 <= i <= j <= n, and 5:

1. Span(0, n) = 1
All trees must contain a root constituent spanning the entire sequence of terminal nodes.

2. ∀(i < j < k < l) : ¬(Span(i, k) ∧ Span(j, l))
Spans are not permitted to cross.

3. ∀(i < j < k; k − i > 3) : Span(i, k) =⇒ ∃j : Span(i, j) ∧ Span(j, k)
All spans of width 4 or greater must have exactly two children.

4In practice, we do not need to include variables for spans of width 1 or n, since they will always be true.
5These are variants of the more extensive set of axioms described in [99]

3.1 PHRASE STRUCTURE PARSING 71

the cat scratched the man

NAND

Span
(0,2)

Span
(1,3)

Span
(1,4)

Span
(1,5)

Span
(0,3)

Span
(0,4)

Span
(0,5)

Span
(2,4)

Span
(2,5)

Span
(3,5)

NAND

FIGURE 3.3: Variables for phrase structure syntax. The variables here represent the constituent tree for
the sentence “The cat scratched the man”, adapted from the example in Fig. 3.1. Shaded variables indicating
a true value and the presence of a constituent span in the tree. The grid may aid readers who are familiar
with chart parsing to grasp the correspondence between the factor graph representation and the traditional
parsing literature. Hard NAND factors can be used to prohibit two overlapping span variables from being
true simultaneously, but a quartic number of such factors would be required.

4. ∀(i < j < k; k − i = 3) : Span(i, k) =⇒ k − i = 3 ∧ (∃j : Span(i, j) ∨ Span(j, k)
All spans of width 3 will have exactly one child, aligning either to the left or right side of the
encompassing span. Spans of width 2 act as terminal nodes, in that they have no children.

The top level span variable, Span(0, n), can be explicitly set to true, satisfying axiom #1.
The Inside-Outside algorithm operates on binary-branching trees, and this binarization, which we
do to all trees prior to training and is assumed throughout the entire algorithm, guarantees that
axiom #3 and #4 is satisfied (single word spans do not need to be represented in the model, so
2-word spans become the smallest in the tree). However, there is no mechanism for preventing
variable configurations in which two variables representing overlapping spans are simultaneously
true. This would violate axiom #2, which requires that spans properly nest. Thus the crux of
expressing a constituent tree as a factor graph lies in finding an efficient way to provide this con-
straint, preventing violations to axiom #2, and guaranteeing that the collection of Span variables
describes a valid tree.

One approach to solving this problem is to tackle it piecewise, attempting to capture a global
constraint through the interactions of many simple local constraints. This approach is illustrated in
Fig. 3.3. An invalid tree is formed when two overlapping spans are present, and therefore factors
may be inserted between each pair of overlapping Span variables to prohibit these configurations.
Such a factor would be implement by a logical NAND, contributing a score of 0 when both variables
are true, penalizing the configuration, and 1 otherwise. But note that the number of such factors
necessary to accomplish this grows at a rate quartic, O(n4), in the length of the sentence, as a
factor is required for all pairs of Span(i, j) and Span(k, l) variables such that i < k ≤ j < l. Not
only does this drastically increase the number of factors in the graph, but it creates a highly cyclic

72 FACTOR GRAPH REPRESENTATIONS OF SYNTAX

graph which may significantly hinder inference. This makes it an unfavorable option.
In the same way we propose MRFs as a common language for joint models, [100] propose case-

factor diagrams (CFDs) as a common language for structured models, including PCFGs. CFDs
subsume MRFs, can represent a PCFG using O(|G|n3) Boolean variables, and can calculate vari-
able marginals (or a corresponding Viterbi solution) in time linear in the number of variables. A
CFD decomposes structured models into Boolean variables, and uses factors to coordinate between
these variables in order to express the compositionality of constituent spans in the tree. To rep-
resent a PCFG it requires |V |n2 variables of the kind presented above to represent a nonterminal
v ∈ V spanning from i to j for all 0 ≤ i < j ≤ n (we propose an identical set of variables for
performing labeled parsing in Sec. 3.1.2, pg. 79), and a branch variable “Xi,k → Yi,j, Zj,k” for
each production rule in the grammar. The key insight of CFDs is that by decomposing the PCFG
representation out into Boolean variables, inference in the graph can function in a zero-suppressed
manner, meaning that the hierarchical structure of the tree can be exploited and portions of the
graph which represent invalid configurations do not need to be explicitly searched. This makes
them well-suited to sparse problems of the sort common in NLP. Therefore CFDs provide another
method of providing a tree constraint, but require specialized inference.

Yet another approach for providing this constraint is to use a single globally-connected factor.
[11] previously used this approach to efficiently represent dependency syntax in factor graphs,
where variables must be constrained to prohibit cycles. In comparison to modeling the constraint
through many pairwise factors, this has the benefit of not producing such a densely connected
graph. In fact, inference is exact. Unlike CFDs, the constraint logic is encoded in a single factor,
and not distributed throughout the graph. With the exception of this one factor, standard inference
algorithms can be used. In the next section we present our application of this design to constituent
parsing, the CKY-TREE factor.

Description of the CKY-TREE Factor

Given a set of Boolean variables, each representing the presence of a constituent span, a single
global factor can be used to constrain these variables to form valid phrase structure trees. We
introduce this factor formally as follows:

• Let CKY-TREE be a global combinatorial factor attached to all the Span(i, j) variables.
This factor contributes a potential of 1 to the model’s score if the span variables collectively
form a legal, binary-branching tree (as specified in the axioms in Section 3.1.2, pg. 69)and
a potential of 0 otherwise. It enforces, therefore, a hard constraint on the variables. All
outgoing messages from this factor are computed simultaneously by a variant of the Inside-
Outside algorithm, described in Fig. 3.4.

In order to provide the necessary constraint, the desired factor needs to collect the beliefs
of all Span variables, and efficiently produce for each variable Span(i, j) an outgoing message
mCKY-TREE→Span(i,j) which reflects (1) the beliefs of all other Span variables, and (2) their role
within the hierarchical structure. This is an expectation of the Span variable’s value taking into
account the beliefs of all other Span variables. Note that this goal is similar to that of general
marginal inference (Section 2.3, pg. 28). Here we rely on a variant of the Inside-Outside algorithm
(originally discussed in Section 3.1.1, pg. 66).

3.1 PHRASE STRUCTURE PARSING 73

Algorithm 3 Bracket inside algorithm
1: function INSIDE(u, n)
2: for w ← 2, ..., n do
3: for i← 0, ..., (n− w) do
4: k ← i+ w
5: s← 0
6: for j ← (i+ 1)..(k − 1) do
7: s

⊕←− α(i, j)⊗ α(j, k)
8: end for
9: α(i, k)← s+ u(i, k)

10: end for
11: end for
12: return α
13: end function

14:

Algorithm 4 Bracket outside algorithm
1: function OUTSIDE(u, α, n)
2: β(0, n)← α(0, n)
3: for w ← n, ..., 2 do
4: for i← 0, ..., (n− w) do
5: k ← i+ w
6: for j ← (i+ 1)..(k − 1) do
7: β(i, j)

⊕←− β(i, k)⊗ α(j, k)⊗ u(i, k)

8: β(j, k)
⊕←− β(i, k)⊗ α(i, j)⊗ u(i, k)

9: µ(i, k)
⊕←− β(i, k)⊗α(i, j)⊗α(j, k)

10: end for
11: end for
12: end for
13: return µ
14: end function

FIGURE 3.4: Pseudocode for CKY-TREE. The inside algorithm is responsible for computing inside
scores α(i, k) from input odds ratios u(i, k). The outside algorithm similarly computes outside scores
β(i, k), and uses both inside and outside scores to compute the gradient µ(i, k). The ⊕←− denotes incremental
assignment.

First, because we aim to encapsulate this algorithm inside a factor, the algorithm needs to
function over the type of information captured by the variables in the model. Thus the input to
the algorithm is a message from each Span variable, i.e., the expectation of its value given the
beliefs of its other neighbors. In this initial parsing model Span variables have no neighboring
variables, and their beliefs are informed solely by unary SPAN factors. As in earlier work in
dependency parsing [11] and using a strategy detailed in Section 2.4 (pg. 36), the algorithm begins
by gathering all incoming messages, mSpan(i,k)→CKY-TREE, and converting each to an odds ratios,
u(i, k), to allow for efficient computation of the partition function:

u(i, k) =
mSpan(i,k)→CKY-TREE(true)

mSpan(i,k)→CKY-TREE(false)
(3.13)

As described in Section 3.1.1, the Inside-Outside algorithm decomposes the complete compu-
tation into two parts. The inside pass computes α(i, k), for all i, k : 0 ≤ i < k ≤ n, the score
for the span at (i, k) generating the words wi, ..., wk. The outside pass computes β(i, k), for all
i, k : 0 ≤ i < k ≤ n, the score for generating the words w0, ..., wi−1 and wk+1, ..., wn immediately
outside of the span at (i, k), from the top-level span at (0, n). To reiterate, in other words, for
a given span (i, k) the inside score refers to the total score of all analyses capable of generating
the words within the span, while the outside score refers to the total score of all analyses which
generate the words outside of the span. The desired outcome, gradient µ(i, k), is the normalized
product of β(i, k) and α(i, k).

74 FACTOR GRAPH REPRESENTATIONS OF SYNTAX

After running the Inside-Outside algorithm to compute the gradient µ(i, k) in O(n3) time, we
calculate the O(n2) outgoing messages from CKY-TREE as:

mCKY-TREE→Span(i,j)(true) = µ(i, j)

mCKY-TREE→Span(i,j)(false) = 1− u(i, j) · µ(i, j)

The resulting variable beliefs reflect the beliefs of all other Span(i, j) variables and their roles
within the hierarchical tree structure.

Proof
How do we know that the algorithm presented in Fig. 3.4 computes the constraint described in
Section 3.1.2? First, we show that the outgoing messages can be derived from the outside scores.

As shown in the ISATMOST1 factor discussion of Section 2.4.1, efficient computation of out-
going messages in a combinatorial factor relies on expressing the partition function, Z, in terms of
incoming variable messages. This avoids explicitly summing over entries in a potential table. In
the ISATMOST1 factor message computation it was straightforward to define Z in terms of odds
ratios from incoming messages. Here we can apply the same technique, but over a hierarchical
structure.

We once again turn to the notion of an inside score, which we define recursively as:

α(i, k) =

{
if k − i = 2 : u(i, k)

if k − i > 2 : u(i, k)
∑

j:i<j<k α(i, j)× α(j, k)
(3.14)

We can then define Z in terms of inside scores:

Z = α(0, n) (3.15)

where α(0, n) is the sum score of all possible trees for a sentence of length n.

As described in Eq. 2.3.2 (pg. 31), in order to calculate outgoing messages to a variable v
we must marginalize over the contributions of neighboring variables, excluding those from v. In
the CKY-TREE factor, we exploit the hierarchical nature of the dependencies to more efficiently
perform this same calculation. As shown in Eq. 3.14, the inside score computation for a span (i, k)
marginalizes over the contributions of potential subspans. The marginalization over messages from
spans larger than (i, k) occurs in the outside computation:

β(i, k) =
∑

s1:0≤s1<i

β(s1, k)× α(s2, i)× u(s1, k) +
∑

s2:k<s2≤n

β(i, s2)× α(k, s2)× u(i, s2)

where s1 and s2 range across all possible indices for constructing a left and right context respec-
tively. As in the example exact marginal computation in Eq. 2.10 (pg. 29), multiplying all incom-
ing marginalized messages and normalizing produces the variable’s marginal. Here multiplying
these two quantities yields the expectation of the variable’s marginal, the desired quantity, gradient
µ:

µ(i, k) = α(i, k)× β(i, k)

3.1 PHRASE STRUCTURE PARSING 75

Thus the desired quantities can be expressed in terms of α and β scores, computed by incoming
variable messages.

Second, we show that the gradient, µ(i, k), for any span can be computed via a dynamic pro-
gramming transformation, provided the algorithm exhibits the dynamic program property of op-
timal substructure, i.e., that the solution the entire problem can be computed efficiently from the
solutions to its subproblems. It is straightforward to show that the Inside variant algorithm pre-
sented in Fig. 3.4 exhibits this property, using the definitions provided in the previous section.

Any inside score α(i, k) reflects the sum score for all possible trees within (i, k). By the
definition in Eq. 3.14 we see that this can be computed efficiently by summing the scores for all
possible child trees, using a single split point j : i < j < k to divide (i, k) into (i, j) and (j, k).
Each analysis of subtrees contributes u(i, k) × α(i, k) × α(j, k) to the sum score, and summing
over all such analysis can be shown to be an exhaustive search, as we assume trees to be binary-
branching.

Therefore we have shown that this problem adheres to the optimal substructure property of
dynamic programs. We can therefore apply a mechanical transformation which transforms the
Inside algorithm (Algorithm 3 of Fig. 3.4) into the Outside algorithm (Algorithm 4 of Fig. 3.4),
which produces the desired messages. We refer the reader to [see 101, pg. 150-161] for further
discussion of this method.

CKY-TREE: An Example
Let us examine the CKY-TREE computation on an example sentence, “The cat scratched the man”,
with the correct binarized tree shown in Fig. 3.6, (left). We focus on the behavior of three spans:
Span(0, 2), Span(2, 5), and Span(1, 5), covering the cat, scratched the man, and cat scratch the
man. The following table contains the quantities computed during the algorithm, and the rows
corresponding to the spans of interest are highlighted:

π(Span(i, k)) m(Span(i,k) π(Span(i, k))
Span before u(i, k) α(i, k) β(i, k) µ(i, k) (true) after
0,2 0.80 4.00 4.00 0.18 0.18 0.37 0.70
1,3 0.20 0.25 0.25 0.25 0.25 0.21 0.06
2,4 0.20 0.25 0.25 0.23 0.23 0.19 0.06
3,5 0.80 4.00 4.00 0.23 0.23 0.80 0.94
0,3 0.10 0.11 0.47 0.15 0.65 0.41 0.07
1,4 0.10 0.11 0.06 0.06 0.03 0.03 0.00
2,5 0.50 1.00 4.25 0.20 0.87 0.87 0.87
0,4 0.10 0.11 0.17 0.04 0.06 0.05 0.01
1,5 0.60 1.50 7.96 0.04 0.20 0.22 0.29

Each of the three Span variables begins with either a neutral belief or a strong belief of its own
value being true, shown in the second column, but not all of these spans can be present in the
predicted tree: Span(1, 5) conflicts with Span(0, 2). How does the CKY-TREE constraint alter
the variable beliefs in this case?

The algorithm begins by converting variable beliefs to odds ratios, as shown in Eq. 3.13 6 Note
that the top-level span is omitted from this calculation, as it must always be true. The inside scores,
α(i, j), are computed as the product of the odds ratio, u(i, j), and the inside scores of any properly

6In practice it is prudent to convert to log-space prior to computing the odds ratio to avoid underflow errors.

76 FACTOR GRAPH REPRESENTATIONS OF SYNTAX

nesting spans within it. Span(0, 2) is the smallest representable in the model, and therefore cannot
be decomposed further. Its inside score is simply its odds ratio:

α(0, 2) = u(0, 2)

= 4.0

For span (2, 5) there are two possible split points (j = 3, and 4)7:

α(2, 5) = u(2, 5)× ((α(2, 3)× α(3, 5)) + (α(2, 4)× α(4, 5)))

= 1.0× ((1.0× 4.0) + (0.25× 1.0))

= 4.25

For span (1, 5) there are three possible split points (j = 2, 3, and 4):

α(1, 5) = u(1, 5)× ((α(1, 4)× α(4, 5)) + (α(1, 3)× α(3, 5)) + (α(1, 2)× α(2, 5)))

= 1.5× ((0.06× 1.0) + (0.25× 4.00) + (1.0× 4.25))

= 7.96

Each group of inner parentheses indicate the contributions from a different analysis of the tree
structure under (i, k), i.e. calculations using a different split point j. In cases where the split point
j produces a single width span (i.e., j − i = 1 or k − j = 1), it does not contribute to inside term
α(i, k). In contrast to the Inside-Outside algorithm as presented for grammar-based parsing in Sec.
3.1.1 (pg. 66), note that the odds ratio substitutes for the rule weight: we no longer have any rules
or beliefs pertaining to rules, but we do have a belief regarding each span’s presence in the tree.

We calculate outside scores β(i, j) similarly, working from larger to smaller spans:

β(0, 2) = (u(0, 5)× β(0, 5)× α(2, 5))

+ (u(0, 4)× β(0, 4)× α(2, 4))

+ (u(0, 3)× β(0, 3)× α(2, 3))

= 0.18

β(2, 5) = (u(0, 5)× β(0, 5)× α(0, 2))

+ (u(1, 5)× β(1, 5)× α(1, 2))

= 0.2

β(1, 5) = (u(0, 5)× β(0, 5)× α(0, 1))

= 0.04

7Intermediary terms are rounded to the nearest hundredth.

3.1 PHRASE STRUCTURE PARSING 77

The computation of the gradient:

µ(0, 2) = (α(0, 1)× α(1, 2)× β(0, 2)

= 0.18

µ(2, 5) = (α(2, 3)× α(3, 5)× β(2, 5))

+ (α(2, 4)× α(4, 5)× β(2, 5))

= 0.87

µ(1, 5) = (α(1, 3)× α(3, 5)× β(1, 5))

+ (α(1, 4)× α(4, 5)× β(1, 5))

= 0.2

And the outgoing messages:

mCKY-TREE→Span(0,2)(true) =µ(0, 2) = 0.18

mCKY-TREE→Span(0,2)(false) =1− u(0, 2)× µ(2, 5) = 0.3

mCKY-TREE→Span(2,5)(true) =µ(2, 5) = 0.87

mCKY-TREE→Span(2,5)(false) =1− u(2, 5)× µ(2, 5) = 0.13

mCKY-TREE→Span(1,5)(true) =µ(1, 5) = 0.20

mCKY-TREE→Span(1,5)(false) =1− u(1, 5)× µ(1, 5) = 0.71

Normalizing produces the final outgoing messages. Examining the posteriors of the three vari-
ables reveals the influence of the CKY-TREE constraint: Span(1, 5) is heavily penalized, altering
it’s beliefs across the threshold from true to false. This is not surprising given that the span
conflicts not only with Span(0, 2), but other variables with strong true beliefs as well. But this
conflict also influenced the beliefs of Span(0, 2), and its true belief has been reduced to 0.7. The
remaining span, Span(2, 5), did not conflict with any span with a strong true belief, and its own
true belief increased significantly to 0.87. Thus the CKY-TREE factor took as input a set of vari-
able beliefs which did not represent a valid tree structure, and adjusted these beliefs using global
information. Here the resulting beliefs, when decoded, would produce the desired gold tree.

Binarization

When computing inside and outside scores in the CKY-TREE factor, there is an assumption made
regarding the structure of the tree. By searching for just a single split point j within the bounds
of span (i, k), we assume that the tree has a binary-branching structure. This is a general assump-
tion prevalent in CKY parsing, necessary for achieving an O(n3) complexity, and thus we must
transform all trees in the training data to be binary-branching.

However, there is not a consensus on precisely the best method for converting n-ary branching
trees to their binary-branching counterparts. The choice of binarization strategy has shown to be
important for efficiency considerations in parsing [102], and with synchronous grammars [103],
but [104] find only small differences in performance across different binarization schemes. We
adopt a right-branching 0-Markov binarization strategy (pseudocode for this method is provided

78 FACTOR GRAPH REPRESENTATIONS OF SYNTAX

Algorithm 5 Binarization algorithm
1: function BINARIZE(t)
2: if |children(t)| > 2 then
3: l← if (labelOf(l)[0, 1] = “@′′) then labelOf(l) else “@′′+labelOf(l)
4: return (labelOf(t),

(binarize(head(children(t))), . Left Child
(l, tail(children(t)).map{c→ binarize(c)}))) . Right Child

5: else
6: return (labelOf(t), children(t).map{c→ binarize(c)})
7: end if
8: end function

FIGURE 3.5: Pseudocode of a right-branching binarization. The algorithm assumes that a tree is a tuple
consisting of a label and a list of child trees.

in Fig. 3.5), and convert all trees prior to training. English has a predominantly right-branching
structure, potentially making it a more appropriate choice than a simple left-branching scheme,
as it improves the rate of agreement between syntactic spans and spans for other NLP tasks, like
named entity recognition (4.1.1, pg. 105)

Figure 3.6 illustrates the trees produced by right-branching binarization, as applied to the n-ary
branching trees shown in Fig. 3.1. To reiterate how these trees would be represented within the
model, the true-valued variables which would produce each tree are as follows:

High PP-attachment Low PP-attachment
Span(0, 2) Span(0, 2)
Span(3, 5) Span(5, 7)
Span(5, 7) Span(4, 7)
Span(3, 7) Span(3, 7)
Span(2, 7) Span(2, 7)
Span(0, 7) Span(0, 7)

All binary-branching trees over an identical number of leaf nodes will have an identical number of
spans.

Decoding

The CKY-TREE factor prohibits configurations of Span variables which do not represent members
of the restricted class of trees presented in Section 3.1.2. However, it does not accomplish this
goal immediately; it only adjusts Span variable beliefs toward a valid configuration. To ensure
that the model predicts valid trees it is necessary to decode using a special procedure, not unlike
the decoding methods of traditional chart-parsing systems. While the CKY-TREE factor can be
thought of as a variant of the sum-product algorithm for marginal inference which adheres to the
axioms Section 3.1.2 (pg. 69), our decoding strategy can be thought of as the analogous max-
product algorithm.

3.1 PHRASE STRUCTURE PARSING 79

The cat scratched the man with claws

NP

S

DET NN

DET NN

NP

VP

VB

 PP NN

PP

a.) High PP-attachment

The cat scratched the man with claws

NP

S

DET @NP

DET NN NP

VP

VB

 PP NN

PP

b.) LowPP-attachment

@VP

NN

FIGURE 3.6: Binarized trees. The above trees are produced using right-branching binarization on the
sentences shown in Fig. 3.1. Nonterminal labels with the @ prefix have been introduced in the binarization
process.

Figure 3.7 provides pseudocode for the decoding procedure. The first step is to find the set
of split points which yields the highest weighted subtrees, using the procedure described in the
BRACK-DECODE function. Here we rely once again on the inside scores, α(i, k). For a span over
(i, k) we examine all possible inner structures, split points j where i < j < k. We define the score
of each decomposition, s(i, j, k), as the product of α(i, j) and α(j, k). Note that for any two split
points j and j′, if s(i, j, k) > s(i, j′, k), and if the most probable tree contains a span over (i, k),
then it must contain s(i, j, k). Thus by processing spans from smallest to largest and finding for
each span the split point that yields the highest score, we ensure that the maximum split point over
(0, n) is the max tree.

Once the maximum split points have been calculated, it is only a matter of backtracking through
these points to determine which spans should be present in the maximum tree. The BACK-TRACE

function performs a recursive search beginning at the top-level span and exploring progressively
smaller spans, taking the maximum split point at each step. Thus all spans visited in this search
are present in the final tree. The observed words and part-of-speech tags are then inserted into the
tree, functioning as leaf nodes.

Labeled Parsing in Factor Graphs

The previous section discussed a factor graph approach for unlabeled phrase structure parsing. This
structure can be useful in the context of a joint model, but the parsing evaluation measures labeled
accuracy: a constituent is not considered correct unless the gold tree contains a span over the same
indices, and both constituents share the same label. We now propose a model of labeled phrase
structure parsing, which we evaluate against previous state-of-the-art parsers in Section 3.1.4 (pg.
89).

Extending the unlabeled parsing model to predict constituent types requires: a.) a set of vari-
ables to represent the constituent label set L for each span, and b.) a set of factors to coordinate
between corresponding span and label variables. We formally introduce these components below:

• Let {Label(i, j, λ) : λ ∈ L, and 0 ≤ i < j ≤ n} be O(|L|n2) Boolean variables such that
Label(i, j, λ) = true iff there is a span from i to j with constituent label λ.

80 FACTOR GRAPH REPRESENTATIONS OF SYNTAX

Algorithm 6 Bracket Parser Decoding
1: function BRACK-DECODE(n)
2: for w ← 2..n do
3: for i← 0..(n− w) do
4: k ← i+ w
5: for j ← (i+ 1)..(k − 1) do
6: s← α(i, j)⊗ α(j, k)
7: if s > inside then
8: best-inside← s
9: best-split← j

10: end if
11: end for
12: α(i, k)← best-inside +P (Span(i, k) = true)
13: splits(i, k)← best-split
14: end for
15: end for
16: best-inside← 0
17: for j ← 1..n do
18: s← α(0, j)⊗ α(j, n)
19: if s > inside then
20: best-inside← s
21: best-split← j
22: end if
23: end for
24: splits(0,n)← best-split
25: return BACK-TRACE(0, n, splits, bracks)
26: end function

Algorithm 7 Finding the Best Path
1: function BACK-TRACE(i, k, splits, bracks)
2: j ← splits(i, k)
3: if j > i+ 1 then
4: bracks(i, j) = true
5: BACK-TRACE(i, j, splits, bracks)
6: end if
7: if j < k − 1 then
8: bracks(j, k) = true
9: BACK-TRACE(j, k, splits, bracks)

10: end if
11: end function

FIGURE 3.7: Pseudocode for unlabeled parser decoding

• Let {ISATMOST1(i, j) : 0 ≤ i < j ≤ n} be O(n2) factors, each coordinating between a
single Span(i, j) variable and the set of corresponding Label(i, j, λ) variables, as illustrated
in Fig. 3.8. This factor constrains these variables such that iff Span(i, j) = true, a single
Label(i, j, λ) variable will also be true. Otherwise all variables are false.

It may seem unnecessary to represent each label as its own Boolean variable, when a single
multinomial would suffice. This representation has the disadvantage that it also requires an ad-
ditional combinatorial logic factor, ISATMOST1, to coordinate between corresponding Span and
Label variables. However, representing each label as a separate Boolean variable allows sim-
ple Boolean logic factors to have individual access to each label variable. This will prove to be
convenient when implementing certain extensions, such as incorporating grammatical rule factors
into the model (Section 3.1.3, pg. 85), or constructing joint models which use logical factors to
coordinate between an NLP task and a set of Label variables.

It is important to understand that incorporating a set of label variables does not merely assign a
label to the unlabeled tree structure. The addition of label variables is more significant, influencing
and potentially altering the unlabeled structure predicted by the model via the bidirectional infor-
mation flow during inference. Corresponding Label and Span variables are coordinated using an
ISATMOST1 factor, implementing a hard constraint: when Span is true, a single corresponding

3.1 PHRASE STRUCTURE PARSING 81

CKY-TREE

Span
(0,2)

Span
(0,3)

Span
(0,N)

Span
(1,3)

Span
(1,N)

Span
(N-1,N)

Span
(0,4)

Span
(1,4)

Span
(2,4)

IsAtMost1

ADJP
(0,2)

ADVP
(0,2)

VP
(0,2)

WHNP
(0,2)

FIGURE 3.8: Graphical depiction of the labeled parsing model. Double-boxed rectangles refer to the
labeling structure shown in the cut out (left). For the sake of clarity, label variable names are replaced with
their corresponding label value.

Label variable must also be true. Otherwise, all variables are false. Consequently, if the model
strongly believes that a particular Label variable must be true, this may sway an unlikely Span
variable’s beliefs to become true in order to satisfy the ISATMOST1 constraint.

Unary Chains

While our primary motivation for introducing factor graph parsing models is for their use as a
latent component in a larger joint model, in this chapter we also aim to show that this model, when
treated as a standalone parser, is competitive with state-of-the-art parsers. However, the standard
evaluation for phrase structure trees scores spans that are present in treebank annotation but not
represented in our model. These spans, known as unary chains, occur when there are multiple
spans for a given pair of indices (i, j). A example of a common unary chain in English is NP
→ NN, due to the noun playing two roles in the tree: a lexical role as a leaf node, and an NP at
a higher point in the tree. Evaluating our parser without modeling at least some of these spans
would significantly hinder our efforts to be competitive with state-of-the-art models on standard
evaluations.

In grammar-based approaches the prediction of unary chains falls out naturally from the re-
cursive definition of the model, but in our span-factored formulation they must be handled by
a separate prediction. Similarly, [105] predict leaf-level unary chains separately from the main
model, albeit for the purpose of improving decoding speed. Focusing on leaf-level unary chains is
a good compromise between not predicting any, as it only requires predicting an extra n possible
spans, instead of the n2 that may appear elsewhere, with a majority of unary chains occur at leaf-
level (only 11% to 15% of all unary chains found in the newswire sections of the OntoNotes occur
at non-leaf spans). We adopt this approach and forfeit the performance gains that might come from
successfully predicting unary chains in the remainder of the tree.

82 FACTOR GRAPH REPRESENTATIONS OF SYNTAX

To accomplish this we train two models. For the label parser, described above, all unary
rewrites have been removed from the data. In cases where a tree contains a unary chain, it is
collapsed into its top-most node (e.g., NP→ NN→ “cat” becomes NP→ “cat”). A second model
is trained on the original data, and is used solely for predicting leaf-level unary chains. The goal of
this model is to predict (NN → “cat”, which would then be added into the parser-produced tree).
This model is described below:

• Let {Unary-Span(i) : 0 ≤ i < n} be O(n) Boolean variables such that Unary-Span(i) =
true iff there is a unary chain immediately above the part-of-speech tag at word wi.

• Let {Unary-Label(i, λ) : λ ∈ L, and 0 ≤ i < n} be O(|L|n) Boolean variables such that
Label(i, j, λ) = true iff there is a unary chain span around the part-of-speech preterminal at
word i with constituent label λ.

• Let {UNARY-ATMOST1(i) : 0 ≤ i < n} beO(n) logical factors, each coordinating Unary-
Span(i) with the corresponding set of label variables, Unary-Label(i, λ). When Unary-
Span(i) = true, a single Unary-Label(i, λ) is also true. Otherwise all variables are false.

Unlike the Span variables of the unlabeled parser, the beliefs of the Unary-Span variables
do not influence each other. In this sense they function as independent log-linear classifiers for
predicting the presence and label of each leaf-level unary chain.

Decoding

When decoding the labeled parsing model, decoding begins with the unlabeled parser decoding
(Sec. 3.1.2, pg. 78) to yield an unlabeled tree. For each span in the tree the corresponding Label
variable with the maximum belief is taken as the span label. The unary classifier then predicts the
presence (or absence) of a unary chain above each terminal node for all words in the sentence. If
a unary rewrite is predicted, it is labeled by taking the Unary-Label variable with the maximal
belief as its label.

Unlike the unlabeled parsing model, constituents introduced through binarization can be iden-
tified and removed from the final tree. Spans of this sort are identified by the “@” prefix attached
to their labels, and easily removed.

Features

In this section we discuss the features used to compute potentials for many of the factors in the
model. Features are required for SPAN, LABEL, UNARY-SPAN, and UNARY-LABEL factors.

Features for Parsing
Experiments on development data indicate that the information most useful for determining the
presence of a constituent span is also an effective indicator of the type (label) of that span. There-
fore we present one set of features for both the identification and labeling of constituent spans.
When these features are used for calculating a potential for a LABEL factor, the label is attached as
a prefix to the string representation of the feature, i.e., a feature for identification is “width − 5”,

3.1 PHRASE STRUCTURE PARSING 83

Unigram Constituent Span Features
Feature String Comment

[width]-3 Width of the span.
[span-start]-2 Index of the start of the span.
[span-end]-5 Index of the end of the span.

[start-word]-scratched Word at the start of the span.
[start-tag]-VB POS tag at the start of the span.

[start-cap]-false Whether the word at the start of the span is capitalized.
[start-word-tag]-scratched-VB Word and POS tag of the start of the span.

Bigram Constituent Span Features
Feature String Comment

[bigram-w-w]-scratched-man The words at the start and end of the span.
[bigram-w-p]-scratched-NN The word at the start of the span and POS tag at the end of the span.

[bigram-p-w]-VB-man The POS tag at the start of the span and word at the end of the span.
[bigram-p-p]-VB-NN The POS tags at the start and end of the span.

Span-based and Miscellaneous Constituent Span Features
Feature String Comment

[bias] For capturing the prior belief of a span being present
[tags-from-start-2]-DET-NN POS tags from (and excluding) the start of the span.
[words-from-start-2]-the-man Words from (and excluding) the start of the span.
[tags-from-end-2]-END-END POS tags from (and excluding) the end of the span.

[words-from-end-2]-END-END Words from (and excluding) the end of the span.
[outside-pos-2]-DET-NN-END-END POS tags outside of the start and end of the span.
[start-footprint-1-2]-NN-VB-DET-NN A number of preceding and following POS tags.

[contains-tag]-VB Feature for if span contains the POS tag.
[contains-tag-no]-PRP Feature for if span does not contain the POS tag.

TABLE 3.1: Features for span-factored constituent parsing. Tables list the features used in our parsing
model. All example feature strings are computed for a span (2, 5), on the sentence The cat scratched the
man.

where one of the corresponding features for labeling is “NP − width − 5”. Thus the factor po-
tentials for SPAN and LABEL factors (for all possible labels) are each calculated from mutually
exclusive sets of features, but are derived from the same information.

We divide the set of features into three conceptual categories: unigram, bigram, and span-based
features. Unigram features (1) are derived from a single index i, and contain information related to
the word, part-of-speech tag, capitalization, previous or following tags, etc., at a given index. For
a span (i, j) we construct unigram features around indices i, j, i − 1, and j + 1. Bigram features
(2) are constructed over pairs of indices. Here we use a subset of the cross-product of unigram
features over each index. Many of these features are similar, if not identical to, the features used
in edge-factored dependency parsing [106].

Finally, span-based features (3) capture useful information over the entire span, reducing it
to events that are observed sufficiently frequently in the data to be useful. Span-based features
include (a) POS tag concatenations over the entire span, (b) the presence of a particular POS tag
anywhere in the span, (c) the absence of a POS tag from the span, and (d) the span width. Many
of these features can be extremely informative for labeling. For instance, a span which does not

84 FACTOR GRAPH REPRESENTATIONS OF SYNTAX

contain a verb is unlikely to be a verb phrase, but that classification might not be captured well
by relying solely on information at the edges of the span. A more complete description of these
features is provided in Table 3.1.

Features composed of words tend to be sparse, and part-of-speech tags provide a useful back-
off for creating a more robust statistic. The use of part-of-speech tags in the construction of features
is enabled by either relying on gold part-of-speech tags, or by first pre-processing the data with
a statistical part-of-speech tagger [45]. While these annotations are quite common, it should be
noted that grammar-based parsing systems can, and typically do, include grammar rules which
generate part-of-speech tags and words. Thus these models do not require this information.

Features for Unary Rewrite Prediction
Features for unary predictions are much simpler, largely due to our decision to focus solely on
leaf-level unary spans (i.e., spans of the form (NP (NN cat))). This not only reduces the number
of edges for which it is necessary to predict unary spans from n2 to n, but it eliminates the need
for more sophisticated span-based features drawn from tree structure. Instead the unary prediction
features are simply n-grams over a three-word window, including both words and POS tags. For
the labels of unary chains, the labels are again concatenated onto the feature string prior to being
converted into a parameter vector index.

Pruning

The labeled parsing model instantiates a single Span variable and an L-sized set of Label variables
for each pair of indices (i, j). However, many of these spans are unlikely to be present in the
predicted tree, and many can be pruned away using simple corpus statistics, removing them from
the model’s consideration. For instance, constituent label variables can be heuristically pruned
from the graphical model based on span width, yielding significant improvements to training and
decoding speed while having no discernible effect on performance. We observe that the number
of distinct constituent labels found at each span width decreases quickly as the width of the span
increases (Fig. 3.9). For instance, spans which contain more than 15 words are extremely unlikely
to be noun phrases, and the size of the graph can be greatly reduced by choosing not to instantiate
NP Label variables for such spans.

Following this strategy we construct a pruned label set for each span width. Each set includes
all constituent labels observed at that width in the training data, and all labels observed in spans
with larger widths. We find this approximately triples the speed of graph construction and infer-
ence, while still guaranteeing that the correct label will not fall outside of the pruned space during
training. The effect on performance is negligible, and often positive.

Another method of improving the speed of the parser is to reduce the set of span labels in-
troduced in the conversion to binary-branching trees. This process creates a corresponding “bina-
rized” label for most nonterminals (@NP, for NP), and therefore nearly doubles the size of the
label set. Reducing this set to a single @ label can also significantly reduce the size of the graph
and improve decoding speed. Both methods are simple to implement, and produce multiplicative
increases in efficiency while having little effect on performance.

3.1 PHRASE STRUCTURE PARSING 85

10 20 30 40

0
20

40
60

Span Width

of

 D
is

tin
ct

 L
ab

el
s

Distinct Labels by Span Width

FIGURE 3.9: Number of distinct span labels at varying span widths. Statistics were collected from the
OntoNotes version of the WallStreet Journal Corpus, converted to binary-branching trees, described in Sec.
3.1.4 (pg. 89).

3.1.3 Grammatical Rules as Factors

Almost without exception8, research in constituent parsing has focused on grammar-based ap-
proaches. This is not surprising, as grammars have a long-established history in the linguistics
literature, and probabilistic grammars have been used with great success as the basis of many
probabilistic parsers. In contrast, the approach to parsing presented in this chapter is entirely
grammarless: the model’s variables are constrained such that any configuration of variables must
represent a valid tree, but there are no dependencies between constituent labels (as there are in
a grammar). This leads to very efficient parsing, as the size of the grammar can otherwise con-
tribute significantly to the parsing algorithm’s complexity. But this architecture is not without its
disadvantages.

Constituents can be predicted with great accuracy when spans are small, and features are both
informative and well-represented in the data. These features become sparser as span widths in-
crease, making span-factored prediction more difficult and less accurate. In these circumstances,
modeling dependencies between parent and child constituent spans may improve accuracy in ways
that would be difficult to capture with word or tag-based features alone. These are the kind of
dependencies captured by a grammar.

In this section we discuss how factors may be used to represent grammatical rules, and how
the weights of these factors can be learned using the perceptron algorithm. These rule factors can
then be added to the model selectively during inference. This approach offers a unique solution to
the parsing problem: shorter spans can be predicted from local features alone, while wider spans
benefit from a sparse set of rule factors.

8Shallow parsing [107] and NP-chunking [108] do not rely on grammars, but both rarely attempt to define a deep
constituent tree from top to bottom, and therefore are not parsing in the same sense.

86 FACTOR GRAPH REPRESENTATIONS OF SYNTAX

RULE (3, 7, 9)
(NP → NP VP)

ADVP
(3, 7)

NP
(3, 7)

VP
(3, 7)IsAtMost1Span

(3, 7)

ADVP
(7, 9)

NP
(7, 9)

VP
(7, 9)

IsAtMost1
Span
(7, 9)

ADVP
(3, 9)

NP
(3, 9)

VP
(3, 9)

Span
(3, 9)

IsAtMost1

to CKY-TREE

to CKY-TREE

to CKY-TREE

FIGURE 3.10: Grammatical rules as factors. A RULE factor connecting three Label variables. Not every
span or constituent label must participate in a rule and the number of rules added to the labeled bracket model
may be quite small. Rules act only to fix up mistakes made by the labeled parsing model, where features
derived from the input string lead it to incorrect solutions. Here shaded variables are Boolean variables with
true values.

Rule Representation

In a binary-branching tree with no unary chains, a grammatical rule r ∈ R has the form X → Y Z,
where X, Y, Z ∈ V , the nonterminal label set. Rule r represents a parent constituent (i, k) with
label X , and its two child constituents, one of type Y over indices (i, j) and one of type Z over
indices (j, k). In a weighted context-free grammar (WCFG) each rule r is paired with a real-valued
non-negative weight φ(r). Representing a grammar rule as a factor provides a natural analog for
this weight: the factor’s potential. Formally we define this type of factor as follows:

• Let {RULE(i, j, k,X, Y, Z) : 0 ≤ i < j < k ≤ n;X, Y, Z ∈ L}, be a set of ternary factors
which connect Label(i, k,X), Label(i, j, Y) and Label(j, k, Z) Boolean variables. Each
rule factor implements a soft NAND logic, contributing a potential of φ(r) when all three
variables are true and mimicking a weighted CFG rule X → Y, Z with a weight of φ(r).

A rule factor connects a triple of Label variables as described above (and as illustrated in Fig.
3.10), contributing its potential to the model’s score. If any of the three variables is false, the factor
contributes a potential of 1.0 and the score is unchanged. However, if all three variables are true
the factor contributes a non-unit potential. The higher the potential, the higher the model’s score
for this variable configuration. Like other soft factors, this potential is the sum of exponentiated
feature weights. Here we rely only on simple features: the string representation of the rule (“X→
Y Z”), and a pair of back-off features (“X→ Y LEFT” and “X→ Z RIGHT”).

In theory rule factors could coordinate between every valid triplet of Label variables (valid in
the sense that the indices of the three spans are (i, k), (i, j), (j, k), such that i < j < k). This
would still differ from a grammar-based model, like a weighted CFG [109], as the score of the

3.1 PHRASE STRUCTURE PARSING 87

tree is also calculated from unlabeled span variables, in addition to the rule factors over labeled
span variables. However, what is truly unique about our approach to grammar-based parsing is that
grammatical rules do not need to specify this full derivation, and can instead be selectively added to
the graph. There are many ways in which this might be accomplished. The method presented here
can be thought of as a coarse-to-fine strategy for grammar-based parsing with factor graphs: first,
the factor graph for the labeled parsing model is constructed and inference is run on this graph.
Second, subject to some criteria, rule factors are placed over selected triples of Label variables.
Third, inference is run on the full graph and the model is decoded identically to the labeled parsing
model (Sec. 3.1.2, pg. 82).

To understand how such an architecture might improve parse accuracy, consider the example
sentence “The cat scratched the man” and the beliefs of four label variables after inference:

The cat scratched the man

NP

S

DET NN

DET NN NP

@VP

VB

Label(0,5,S)
Label(0,2,NP)
Label(2,5,VP)
Label(2,5,@VP)

1.0
0.7
0.2
0.3

A common mistake made by the labeled parser is the mis-labeling of constituents as their
binarized counterpart. In this example the VP scratched the man is erroneously predicted as the
binarized VP, @VP. This is a difficult problem to solve when relying solely on information in the
input string to predict constituent spans. However, the rule S→NP VP is common in many English
corpora. If a rule factor is added to the graph which connects Label(0, 5, S), Label(0, 2, NP), and
Label(2, 5, V P) variables, and the factor’s non-unity potential is high enough, the model’s beliefs
regarding the label of span (2, 5) can be significantly altered to predict the correct label.

What criteria should be used to determine where to add rule factors? There are many possible
solutions, but the approach pursued in this dissertation is to threshold label variable beliefs. We
inspect all variable beliefs, calculating the product of all true beliefs for variables in each triple
whose indices form a valid parent/child relationship. For every product that is above some set
threshold (which we set to 0.1), a rule factor is added to that location in the graph. Other sources
of information that might serve as useful criteria are the span widths (to focus on more problematic
sections of the tree), the types of labels being considered (whether any are introduced via binariza-
tion), or the presence of certain word or tag combinations, but exploring these criteria is beyond
the scope of this dissertation. We now turn to a discussion of how to learn the feature weights
associated with RULE factors in a coarse-to-fine setting.

Learning Rule Weights

We use the perceptron algorithm to learn a set of weights for grammar rules. This approach as-
sumes a pre-trained labeled parsing model, and the parameters of this model are held fixed while
rule weights are learned. For each sentence in the training data, we begin by constructing a labeled
parsing model, performing belief propagation inference, and obtaining posteriors for Label vari-
ables. Initially the set of rules is empty and does not contain any rules. Otherwise, a rule is placed
over any triplet of Label variables whose product of beliefs is above a threshold (0.1). We refer

88 FACTOR GRAPH REPRESENTATIONS OF SYNTAX

1: function LEARN-RULES(x,w, iters, ε) . data, parameters, iterations and leaning rate
2: for i←iters do
3: for x← ~x do
4: Ttest ←LABEL-DECODE(RUN-BP(GRAMMAR-MODEL(x)) . Tree predicted by model
5: Tgold ← x . Tree from training data
6: for r ← δ(Ttest) ∪ δ(Tgold) do . All rules from both trees’ derivations
7: for f ← φ(r) do
8: w(f)

⊕←− (count(r, Tgold)− count(r, Ttest)) ∗ ε
9: end for

10: end for
11: end for
12: end for
13: return w
14: end function

FIGURE 3.11: Pseudocode for rule factor learning with the Perceptron algorithm. The parameter vector
w is initialized by training a labeled parsing model, and these parameters are held fixed during rule learning.
Rule weights are updated proportional to the difference in the number of times the rule should occur in the
tree, as specified by the gold standard, and the number of times it actually does occur in the predicted tree.

to the resulting model as GRAMMAR-MODEL. We then decode the model using the same strategy
used for decoding the labeled parsing model.

The perceptron algorithm is error-driven. The parse tree decoded in the previous step is de-
composed into a set of constituent spans, which are compared against the spans of the gold tree.
Rule weights receive an update proportional to the amount of times they appear in the gold tree and
not the test tree, multiplied by some learning rate ε. Rule factors can affect Label variable beliefs
in both ways: they can either increase the beliefs of the connected variables, or decrease them to
prohibit unfavorable combinations. For instance, in the previous example the rule S → NP @V P
is implied by the tree produced by the labeled parsing model. In comparison to the gold tree, it
occurs once more than it should, and it is corrected with an adjustment of -ε, penalizing this config-
uration. In addition, the perceptron method has a advantageous base-case property: learning starts
with an empty grammar, and rules are added to the grammar when their weights are first updated.
We cap the size of the grammar at 1,000 rules. Further updates continue to update rule weight but
do not introduce new grammatical rule factors. Pseudocode for this algorithm is listed in Fig. 3.11.

Why pursue an alternate form of optimization when this could be done using the same belief
propagation inference and SGD optimization used in other models? This is due to the sheer number
of potential variables that need to be scored by the model even before optimization. One strategy
for circumventing the massive is to heuristically prune the graph prior to instantiating the full set
of rule factors. This can be achieved using relaxed marginal inference [110], or the more recent
delayed row and column generation strategies [111] which retain a guarantee of optimality. A
second strategy, and the one we pursue, is to use an alternative optimization strategy where the set
of rules can be explored piecewise, starting with an empty grammar and adding rules incrementally,
without immediately including a large number of rule factors in the model. The error-driven nature
of the perceptron algorithm offers this, and has the additional benefit of being very fast in practice.

3.1 PHRASE STRUCTURE PARSING 89

Train Test
ABC 1195 199
CNN 5092 1521
MNB 509 245
NBC 552 245
PRI 1707 394
VOA 1512 383
WSJ 10793 1262

TABLE 3.2: OntoNotes data statistics. The train and test split is a recreation of previous work [6]. For
the OntoNotes distribution of the Wall Street Journal corpus, which was not used for evaluation in previous
work, we use the standard partition of sections 0-21 for training and section 23 for testing.

3.1.4 Experiments

In the previous sections we introduced three factor graph models of phrase structure syntax. The
first model is an unlabeled parser presented in Section 3.1.2 (pg. 69), which consists only of the
span variables necessary to represent the desired tree structure, the corresponding set of unary
factors, and a globally-connected combinatorial CKY-TREE factor. The second model extends
upon this to produce a labeled parser, and predicts unary chains using a separate classifier (Section
3.1.2, pg. 79). We refer to this model here as the labeled bracket model (LBM). Finally, we
augment the label parser with a sparse set of grammatical rule factors with weights learned via the
perceptron algorithm (which we refer to as +RULES). In this section we compare the performance
of models, both in terms of parse accuracy and in decoding speed, to more established state-of-
the-art parsers.

Unless otherwise noted all experiments are performed using 30 iterations of SGD, with a learn-
ing rate η = 0.01 and L2 regularization (Gaussian with a variance of 1.0). These parameters were
chosen based on performance on the ABC corpus, which we use as a development set, but we find
this training strategy to be very robust to changes in these parameters: 0.001 ≤ η ≤ 0.1 all result
in similar performance if given at least 30 iterations of training. Inference is performed via belief
propagation, which is exact and converges in two iterations for the parsers which do not utilize
grammar factors.

Data Sets

For evaluating parse accuracy we use the OntoNotes (v.2) data set [112], which has been used in
previous work to evaluate discriminatively trained factor graph parsing models [6]. We reproduce
the data preprocessing pursued in that work, partitioning the data to achieve an approximate 3:1
train to test set ratio, remove sentences longer than 40 words, remove empty leaf nodes, and coarsen
all nonterminal labels (e.g., NP, not NP-PRD). Statistics for the resulting data set are shown in
Table 3.2. In supplementary parsing experiments we make use of the OntoNotes distribution of
the Wall Street Journal (WSJ) Corpus, filter out sentences with more than 40 words, and adopt
the standard train/test split. Note that the annotations found in this corpus differ somewhat from
the standard Penn Treebank distribution, and therefore the parse accuracy of the state-of-the-art
models will differ from the well-established results published on the Penn data.

90 FACTOR GRAPH REPRESENTATIONS OF SYNTAX

Parsers

We compare against three parsers representing the state-of-the-art in parsing in traditional grammar-
based parsing, and a CRF parser which most closely resembles our own.

• Stanford-PCFG: A reference implementation of a PCFG parser [113], as found in the Stan-
ford Parser distribution 9. PCFGs are at the heart of many of the advances in parse accuracy
made over the last two decades. They are simple and well-understood, and we therefore
consider them a good candidate for a baseline parsing model.

• Stanford-Lex: An early improvement to standard PCFGs was the inclusion of lexicalization:
additional markup which annotates constituents with their head word. We include results
from the lexicalized parser included in the Stanford Parser [114].

• Berkeley: The Berkeley Parser iteratively refines grammar nonterminals, splitting coarse
labels to more specific ones, and aiming to capture more subtle phenomena with a more
sophisticated grammar [98].

• F&M09: [6] present a CRF-based parser which discriminatively learns rule weights, and
like traditional PCFG-based approach relies on a dynamic programming chart for efficient
decoding.

Evaluation

The standard metrics for evaluating phrase structure parsing are precision, recall, and F1, as cal-
culated over constituent spans. Precision describes what percentage of the predicted spans are
correct:

precision =
true spans

predicted spans
(3.16)

Recall describes what percentage of the gold standard spans are predicted by the model:

recall =
true spans

gold spans
(3.17)

The F1 score is the harmonic mean of precision and recall:

F1 =
2× precision× recall
2 + precision+ recall

(3.18)

For labeled evaluation, a span is considered correct if an identical span is found in the gold
tree, matching in start index, end index, and label. In unlabeled evaluation a span is considered
correct if it matches a span from the gold tree in just start and end index.

An additional metric is the crossing bracket score (CB) indicating the percentage of test spans
(sometimes referred to as brackets) which cross gold spans:

9V. 1.68, http://nlp.stanford.edu/software/lex-parser.shtml

3.1 PHRASE STRUCTURE PARSING 91

CB =
1

|Ttest|
∑

Span(i,j)∈Ttest

{
1, ∃Span(k, l) ∈ Tgold : i < k < j < l

0, otherwise
(3.19)

where Ttest is the parser-produced tree, Tgold is the gold standard tree, and |T | denotes the
number of spans in tree T . Crossing bracket errors are sometimes considered more serious than
mislabeling a span, or predicting an extra span that nests properly within the surrounding structure.
A final metric, no-crossing (NC), is the percentage of all sentences which contain no crossing
brackets. We score parse trees using Evalb10, a reference implementation of these metrics.

Unlabeled Parsing

In this section we present results for an unlabeled parsing task. This serves three goals: (1) it
allows us to gauge approximately how accurate unlabeled tree structure will be in a joint model,
(2) it demonstrates how sensitive the parser’s performance is to different feature sets, and (3) we
can determine whether information fromLabel variables in the labeled parser improves the model’s
prediction of unlabeled structure.

Without constituent labels, evaluating parsed trees against gold trees puts the model at a severe
disadvantage, as it is not possible to identify which spans are introduced through binarization.
Therefore we present two sets of evaluations. One set of evaluations is performed against gold
trees. Performance, measured in terms of F1, is expectedly lower in this scenario as all test trees
are binarized, and all binarized trees have an identical number of constituent spans, n-1. The
number of spans found in the gold trees will never exceed this number, and is in all likelihood
much smaller than in their parser-produced counterparts. These results are presented in Table 3.3
(right).

A second evaluation uses binarized gold trees in place of the true gold trees. We also prune all
unary chains from the tree, making these results more closely reflect the performance of the model
on its training objective. These results are presented in Table 3.3 (left).

We evaluate three model configurations. To demonstrate the importance of rich feature sets
we present one variant of the unlabeled model which uses very simple features, and one that uses
the rich feature set presented in Section 3.1.2. In the simple feature model we use two features:
the concatenation of all part-of-speech tags within the span, and the concatenation of the two
part-of-speech tags immediately outside of it, making it a discriminatively-trained version of the
constituent context model [72]. We refer to this model as CCM, and the unlabeled parser as BM
(bracket model). Additionally we include results from the labeled parsing model (LBM), without
unary chain prediction, but evaluate it solely on the accuracy of its (unlabeled) structure.

The results reveal the importance of a rich feature set. The rich features of the BM model
result in an average F1 of 56.68% (gold evaluation), a 3.23% F1 improvement over the CCM
model. This is not surprising: without a grammar, these features are the sole source of information
assessing how likely a sequence of tokens corresponds to a constituent span. The global CKY--
TREE constraint merely provides an optimal way of filtering out incongruent spans.

Perhaps the most interesting observation from these results is the significant improvement in
unlabeled accuracy gained from incorporating a set of Label variables into the model. The LBM

10Evalb, http://nlp.cs.nyu.edu/evalb/

92 FACTOR GRAPH REPRESENTATIONS OF SYNTAX

Unlabeled Evaluation
Binarized Trees Gold Trees

Data Feats CB NC P R F1 CB NC P R F1

ABC
CCM 4.4 26.1 73.1 62.4 67.3 3.4 33.3 53.0 54.7 53.8

BM 3.5 32.2 78.5 67.1 72.3 3.0 40.6 56.1 57.8 57.0
LBM 2.9 11.6 80.8 69.1 74.5 2.5 5.5 57.2 58.9 58.4

CNN
CCM 3.5 30.1 74.3 61.7 67.4 2.9 37.8 53.5 52.7 53.1

BM 2.6 41.2 80.7 66.9 73.2 2.2 47.9 57.5 56.5 57.0
LBM 2.6 40.8 82.2 68.4 74.7 2.1 51.2 59.1 60.7 59.9

MNB
CCM 2.6 24.1 70.0 58.2 63.6 3.6 34.4 50.5 49.7 50.1

BM 3.9 28.7 73.4 60.8 66.5 3.3 37.4 51.9 51.0 51.4
LBM 2.8 25.5 76.7 63.9 69.7 2.4 19.6 43.5 53.7 54.1

NBC
CCM 4.9 16.5 71.5 61.6 66.2 3.8 24.8 48.6 53.2 50.8

BM 4.1 24.0 76.1 65.4 70.3 3.4 28.9 50.8 55.5 53.0
LBM 3.7 27.7 78.2 67.3 72.3 3.2 32.7 52.9 57.5 55.1

PRI
CCM 4.4 21.5 72.1 61.2 66.2 3.7 27.0 53.4 53.8 53.6

BM 3.0 39.7 80.8 68.6 74.2 2.7 45.7 58.4 58.7 58.5
LBM 2.5 41.0 84.3 72.2 77.8 2.4 48.8 60.0 60.3 60.1

VOA
CCM 4.0 17.8 78.8 70.5 74.4 3.4 21.4 57.3 61.3 59.3

BM 2.9 29.5 84.5 75.6 79.8 2.5 32.4 61.1 65.4 63.2
LBM 2.5 5.7 87.2 78.1 82.4 2.1 18.2 62.6 67.4 64.9

TABLE 3.3: Performance of the parsers in an unlabeled evaluation. Not surprisingly, the feature rich
unlabeled parser (BM) significantly outperforms the feature poor variant (CCM). More interestingly, the
labeled parser (LBM) produces more accurate parse trees, demonstrating the influence of Label variable
beliefs on corresponding Span variables. Naturally, all parsers perform better when compared against the
binary-branching variants of the gold trees, with unary chains filtered out (left), than to the original gold
trees.

performance is 2.0% F1 (gold) higher than the BM. Recall that the LBM contains a set of Label
variables, but in this evaluation these variable beliefs are not considered during decoding. This
means that the beliefs of the Label variables, determined in part from a distinct set of label features,
influence the beliefs of Span variables in a very significant, and positive way. As it pertains to joint
inference, these results provide a reason to train a labeled parsing model even when Label variables
are not used in coordinating between the two models.

Label Parsing

Evaluating the labeled parsing model can be done in a more standard manner. Here we present the
traditional labeled evaluation (precision, recall, and F1), where a constituent span is considered
correct only if there is a corresponding span in the gold tree with a matching start index, end index,
and label (Table 3.4, right). We also present a corresponding unlabeled parsing evaluation in order
to isolate the parser’s ability to predict constituent span boundaries from its ability to label these
spans (Table 3.4, left).

3.1 PHRASE STRUCTURE PARSING 93

Bracket Evaluation Labeled Evaluation
Data Model Prec Recall F1 CB NC Prec Recall F1

ABC
LBM 82.80 79.65 81.20 1.72 50.78 79.75 76.72 78.20
+Rules – – – – – 80.66 77.92 79.26
F&M ‘09 – – – 2.28 46.88 70.18 70.12 70.15

CNN
LBM 86.40 83.12 84.73 0.96 67.41 83.30 80.14 81.69
+Rules – – – – – 84.66 80.88 82.72
F&M ‘09 – – – 1.11 70.06 76.92 77.14 77.03

MNB
LBM 80.77 76.18 78.41 1.40 59.26 76.98 72.61 74.73
+Rules – – – – – 79.09 73.05 75.96
F&M ‘09 – – – 1.88 59.03 63.97 67.07 65.49

NBC
LBM 80.77 77.37 79.04 1.41 49.66 74.81 71.67 73.20
+Rules – – – – – 76.94 72.34 74.57
F&M ‘09 – – – 2.67 48.92 59.72 63.67 61.63

PRI
LBM 85.01 82.15 83.56 1.44 57.40 82.70 79.92 81.29
+Rules – – – – – 81.90 80.44 81.17
F&M ‘09 – – – 1.72 56.70 76.22 76.49 76.35

VOA
LBM 85.71 81.96 83.80 1.63 43.34 83.55 79.89 81.68
+Rules – – – – – 83.07 82.69 82.88
F&M ‘09 – – – 2.44 38.89 76.56 75.74 76.15

Onto WSJ

LBM 84.88 80.33 82.54
+Rules 84.32
Stanford-PCFG 80.71 79.86 80.28
Stanford-Lex 81.64 81.65 81.64
Berkeley 86.61 85.81 86.21

TABLE 3.4: Labeled parsing performance. The feature-rich labeled parsing model (LBM) provides
significant gains over previously published CRF parsing scores (F&M09), and the inclusion of rule factors
provides a 0.96 average improvement in labeled F1. The state-of-the-art Berkeley parser still offers better
performance than any of the factor graph-based parsing models, yielding an 1.89 labeled F1 improvement
on the OntoNotes distribution of the Wall Street Journal corpus, but it is unclear how to perform joint
training with the Berkeley parser as a component model. Factor graph-based approaches offer competitive
performance, and are proven to work in a joint setting.

In comparison to the CRF-based approach of F&M09, the labeled parsing model (LBM) per-
forms significantly better in terms of labeled F1, 78.47 vs. 71.13 average across the six smaller
newswire corpora, an improvement of 7.34. Augmenting the model with rule factors increases
performance by an average of 1.4 F1, to 79.43. These results are the highest reported for this data
set. While we cannot explain why our model performs so much better than the F&M09 parser,
there are two likely hypotheses. First, as illustrated in Section 3.1.4, different feature sets can lead
to significantly different performance measures. A comparatively uninformative feature set could
cause the F&M09 parser to perform poorly, but this is unlikely. Rich feature sets are one of the
biggest attractions of discriminative models like the LBM and F&M09, we have done our best
efforts to remain generally comparable to F&M09 in terms of features. Our feature set is far from
exhaustive, and we have not deliberately incorporated any unorthodox or exceedingly sophisticated
features.

94 FACTOR GRAPH REPRESENTATIONS OF SYNTAX

A second hypothesis is that the model structure itself is responsible, and there are many aspects
of the system which inherently differ from the F&M09 system (e.g., an alternate inference method,
the span-factored vs. rule-factored nature of the model, the alternate method of labeling spans,
or the separate classification of unary chains). However, it is beyond the scope of this work to
perform piecewise analysis against the F&M09 system. We can only conclude that, in comparison
to parsing models used previously for joint inference, our model produces more accurate parse trees
when functioning as a standalone parser. Given that it is also part of a more flexible framework
(and is capable of connecting to other models in ways that F&M09 cannot), it fulfills our needs as
an attractive syntactic representation for joint inference.

In Comparison to State-of-the-art Parsers
The CRF-based parser of F&M09 produced the best previous results on the set of six smaller
OntoNotes newswire corpora, prior to our work, but how do these CRF/factor graph-based ap-
proaches compare against more established parsers? Table 3.4 shows the performance of the
Stanford-PCFG, Stanford-Lex (lexicalized), and Berkeley parsing models on the WSJ section of
the OntoNotes. The LBM outperforms both Stanford parsers by 2.24 and 0.9 labeled F1. This is a
surprising result: without relying on a probabilistic grammar, the LBM offers better performance
than two reference implementations of previous grammar-based state-of-the-art models. Current
state-of-the-art models, like the Berkeley parser, still offer better performance than the LBM or
+Rules models. While this amounts to a very significant improvement of 3.67 over the LBM and
1.89 over the +Rules models in terms of labeled F1, it is still unclear how to perform a grammar-
refining training method in the context of joint optimization.

But recall that our intent in pursuing the factor graph representation of phrase structure syntax
is not to improve parse accuracy, but to improve performance on other NLP tasks which might
benefit from joint training with this syntax. In that respect, there may be other aspects of the tree
that are more important to our goals than labeled F1. If we restrict our evaluation to focus solely
on noun phrase detection, we find the factor graph parsers, LBM and +Rules, outperform all other
parsing models on the NP identification task (Figure 3.5). This result is of particular importance
to joint inference, as tasks like named entity recognition hinge on the successful identification of
noun phrases. For these tasks, a model of syntax which excels at NP identification may prove
more valuable than one which sacrifices NP identification to improve general parse accuracy. This
issue is discussed further in Section 4.1.1. However, one must concede that all margins, though
statistically significant, are rather small. The ability to use the LBM representation as a component
in a joint model is the principal advantage of these new models.

How does the LBM outperform the Berkeley parser on this task? The span-factored nature
of the model, and the rich set of features used to make span predictions, leads to better parsing
accuracy on smaller span widths where these features are extremely informative and less sparse.
Noun phrases occur frequently at smaller span widths, and thus benefit more heavily from the
LBM parser’s strengths.

Grammar-based Parsing

In the previous section we showed the performance of the LBM parser exceeded that of traditional
grammar-based approaches (Stanford-PCFG and Stanford-Lex), and other discriminatively trained

3.1 PHRASE STRUCTURE PARSING 95

Model NP-P NP-R NP-F1
LBM 90.07 90.02 90.42
+Rules 90.15 91.07 90.60
Stanford-PCFG 83.88 85.74 84.80
Stanford-Lex 85.07 87.83 86.43
Berkeley 89.17 90.96 90.06

TABLE 3.5: NP prediction results on WSJ. While some established parsers outperform LBM in general
parsing F1 (82.54 LBM vs. 86.21 Berkeley), the LBM outperforms all evaluated parsers on a measure more
reflective of its potential in NP-based joint modeling scenarios, while remaining asymptotically faster.

log-linear parsing models ([93]). If NLP tasks are to benefit from joint inference, as previously
illustrated by [6], then grammarless parsing may provide a suitable syntactic representation. How-
ever, competing with modern parsers without the high-level dependencies, of the sort captured by
grammatical rules, may not be a realistic goal.

In preliminary work, orthogonal to our goals in joint inference, we describe a method for
incorporating a set of grammatical rule factors into the labeled parsing model (Section 3.1.3, pg.
85). We cap the maximum grammar size at 1000 rules, and train the model using 30 iterations of
the perceptron algorithm with a learning rate of ε = 0.1. For each training instance the LBM is
used as a coarse parsing model, and grammatical rule factors are inserted into the model for all
applicable 3-tuples of Label variables where the product of variable beliefs exceeds 0.1.

On the six newswire corpora used in F&M09 we see a significant improvement in average
labeled parse accuracy, from 78.5% to 79.4%, when incorporating rule factors into the model.
This improvement is due to both better parse accuracy in the general sense, and also due to better
identification of binarized nonterminals, a problem more endemic to our span-factored parsing
models. On the largest corpus, the OntoNotes distribution of the Wall Street Journal, we find the
largest increase in labeled parsing performance, from 82.54 to 84.32, a 1.78 improvement. While
these results are still lower than the results of the Berkeley parser, there are many possible avenues
for future work including different rule features, a more sophisticated criteria for determining
where to add rule factors, and the prospect of integrating LBM and rule model training, without
the need for a separate perceptron-based training procedure.

Decoding Speed

The grammarless factor graph parsers presented here differ drastically from previous grammar-
based approaches, and the effects of these differences extend to parsing speed. In this section we
analyze the decoding speed of these parsers in comparison to more established grammar-based
parsing models. We begin by comparing the decoding speed of grammarless parsers to PCFG and
lexicalized parsers and examining the effect of sentence length on decoding spend. In addition
we also examine the decoding speed of the rule-based parsing model, and how it compares to the
PCFG parser as the grammar size increases.

Grammarless Parsing vs. PCFG Parsing
The complexity of parsing using a PCFG model is O(|G|n3), where G is the grammar size (the
number of rules in the grammar) and n is the length of the sentence. Like the PCFG model, the

96 FACTOR GRAPH REPRESENTATIONS OF SYNTAX

sentence length

de
co

di
ng

 ti
m

e
(s

ec
on

ds
)

10 20 30 40

Decoding Speed
(seconds/sentence)

0

1

2

3

4

Lexicalized
PCFG
Label
Label−Pruned

grammar size (# of rules)

de
co

di
ng

 ti
m

e
(s

ec
on

ds
)

1000 5,000 10000 50,000

Speed vs. Grammar Size
(seconds/sentence)

0

1

2

3

4

PCFG
Grammar with 5 BP Iters
Grammar with 2 BP Iters

FIGURE 3.12: A comparison of parser decoding speeds. Comparing the decoding efficiency of the
labeled parsing model, in both its standard and pruned configuration, with standard PCFG and lexicalized
parsing baselines (left), shows that the factor graph models generally decode faster than their grammar-
based counterparts. While feature extraction cost (illustrated by the inverted caret) hinders the speed of
factor graph models, the pruned model remains the fastest across sentences of all lengths. Examining the
effects of grammar size (right), the rule-based factor graph approach, decoded using five iterations of BP,
offers better asymptotic performance than the PCFG model as the grammar size tends to infinity. The models
are comparable when using grammars containing approximately 7,000 rules, a reasonable grammar size by
modern standards.

grammarless approach uses the same chart-based decoding strategy (responsible for cubic com-
plexity), but without the grammar its decoding speed is simplyO(n3) in the unlabeled case. Adding
the machinery for labeled parsing increases this toO(|L|n2+n3), whereL is the set of nonterminals
used to label constituent spans. This is because when using belief propagation, adding additional
factors to the model increases the complexity additively, reflecting the additional messages which
need to be computed.

In practice this alternative complexity results in an improvement in decoding speed across all
sentence lengths. The plot in Figure 3.12 (left) depicts the decoding times of four models: the
Stanford lexicalized and PCFG models, the labeled parsing model, and the labeled parsing model
using the pruning techniques described in Section 3.1.2 (pg. 84). With pruning the grammarless
parsing model decodes four times faster than the lexicalized parser, while simultaneously produc-
ing more accurate parses. It is also evident from the plot that the grammarless parsing models scale
to longer sentences better than their grammar-based counterparts, with the pruned model having a
much lower delta between n = 30 and n = 40 (0.18) than the PCFG parser (0.98).

However, it must be noted that for each example feature extraction must be performed before
the model can be constructed, and the sentence decoded. The position of the carets, shown above
each data point for the labeled and pruned parsers, indicate the total decoding speed when including
the feature extraction cost. In the case of the labeled model, the feature extraction cost eliminates
any advantage over the PCFG in terms of decoding speed, but it still significantly outperforms this

3.2 DEPENDENCY PARSING 97

model in parse accuracy.
The unlabeled parsing model (not shown in the plot) offers exceptional parsing speed, decoding

length 40 sentences at more than 10 per second, inclusive of feature extraction cost. In joint
models, where the cost of inference is inherently larger, the trade-off between speed and accuracy
may make the unlabeled parsing model a more attractive option.

Decoding Speed vs. Grammar Size
Incorporating grammatical rules as ternary factors has an additive effect on the cost of runtime,
resulting in a complexity of O(|G| + |L|n2 + n3), in comparison to the O(|G|n3) complexity of
PCFG parsing. In practice n is often quite small, and the size of the grammar, |G|, orders of
magnitude larger. For parsers which use latent variable grammar refinement techniques [92], |G|
can be in excess of tens of thousands of rules. In this scenario, the additive vs. multiplicative
relationships between the cubic n3 factor and the grammar constant can have a pronounced effect
on the decoding times of these two models. We now analyze the effect of varying grammar sizes
on decoding speed, comparing the +RULES factor graph and PCFG models.

The plot in (Figure 3.12, right) shows the average decoding speed as the grammar is artificially
inflated in size from a thousand to fifty thousand rules. We present results from three models:
the same reference PCFG implementation used throughout this section (Stanford-PCFG), the rule-
based factor graph model decoded after two iterations of belief propagation (as if it was performing
exact inference in a non-cyclic graph), and the same model decoded after five iterations of belief
propagation, the average number required for convergence. The factor graph-based parsers suf-
fer from a higher overhead, and initially do not decode as efficiently as the PCFG model, when
grammars are small. As the grammar size climbs above five thousand, both factor graph models
quickly begin to outpace the PCFG model, and as the grammar reaches sizes of fifty thousand, the
asymptotic performance for these models becomes much more compelling.

We conclude this section having shown that the grammarless factor graph models presented in
this chapter are capable of producing more accurate parses than previous CRF-based parsing mod-
els, and both lexicalized and unlexicalized variants of PCFGs. In addition, grammarless models
outperform all tested parsers on the task of NP-identification. We also demonstrate how rule fac-
tors can be incorporated into the model to provide a significant increase in parse accuracy, though
we leave this area largely unexplored. Finally, we show that our factor graph parsing models de-
code faster than PCFG models (which they outperform in accuracy), and that representing rules as
factors in a factor graph model offers better asymptotic behavior, in terms of decoding speed, than
PCFGs as grammar size increases.

3.2 Dependency Parsing

Theories of phrase structure grammar, which posit that the constituent serves as the basic unit of
syntactic structure, represent only a fraction of the many hypotheses regarding the nature of the
human syntactic process. An alternate theory, dependency grammar [115], shifts the emphasis
away from constituents, stressing instead the role of word-to-word relationships. In this section
we formally introduce dependency grammar, and restate a method for efficiently representing de-
pendency grammar within a factor graph model, originally presented by [11] . We also discuss

98 FACTOR GRAPH REPRESENTATIONS OF SYNTAX

the advantages of this formalism and the corresponding model representation as it pertains to joint
modeling.

3.2.1 Dependency Grammar
In dependency grammar, a syntactic analysis centers around the notion of a dependency relation,
a syntactic relationship between a pair of words. Typically, and consistent with the presentation of
dependency grammar here, a dependency relation expresses a syntactic head-modifier relationship.
Recall from previous discussion (Section 3.1, pg. 62) that a syntactic head, also known as a head-
word, is the word which defines the syntactic type of the encompassing phrase. Thus dependency
grammar formulates a syntactic analysis not by the explicit grouping of words into phrases, but by
the head words which implicitly define them. Such an analysis may be expressed solely in terms
of these pairwise head-modifier relationships. The resulting structure is a directed acyclic graph
(DAG) known as a dependency tree:

The cat scratched the man
DET NN VB DET NN

In a dependency tree all words are connected by a directed path to the finite verb, which serves
as the root of the graph. Such an analysis does not represent phrases, only pairwise head-modifier
relations, but it does implicitly acknowledge their presence. To illustrate this point, consider the
phrase “man”. As a noun phrase, we can expect the head of the phrase to have a noun part of
speech. In this simple case, the is a determiner and man a noun, leaving only one reasonable choice,
man, for the head of the phrase.11 When represented as a pairwise relationship, man is considered
the syntactic head of the, the syntactic modifier. Broadening our focus to the encompassing verb
phrase, “scratched the man”, the word scratched is the head of the phrase. The head of the phrase
is the syntactic head for any word under the dependency which does not already specify one. Thus
scratched becomes the syntactic head of man, demonstrating how a dependency analysis can be
constructed from a corresponding phrase structure tree.

On a more theoretical note, not all dependency trees have a corresponding phrase structure tree.
A projective tree, dependencies are not permitted to cross one another. For non-projective trees
this constraint is relaxed, allowing the graph to capture a broader set of phenomena which, although
rare in English, are common in languages with free word order (Fig. 3.13). As a consequence, non-
projective trees do not have a corresponding phrase structure analysis.

For our purposes, in the context of a joint model for another NLP task, there are many instances
where a dependency representation of syntax may be preferable to phrase structure grammar. For
instance, it may be more convenient to model an NLP problem with variables whose semantics
capture a head-to-modifier relationship. In this situation it is natural to use dependency grammar,
as it allows for the two models to be connected using Boolean logic and a one-to-one mapping.

11The rules governing which word acts as the head of the phrase in more ambiguous circumstances are specific to
each language.

3.2 DEPENDENCY PARSING 99

The cat scratched a man this morning who wanted to sleep
DET NN VB DET NN DET NN WP VB TO VB

FIGURE 3.13: A non-projective dependency tree. Non-projective phenomena are rare in English, but
prevalent in many of the world’s languages. Here a dependency across a relative clause boundary makes
this tree non-projective.

We find this to be the case for the task of semantic role labeling (Chapter 6), where the goal
is to identify pairs of words which occur in a predicate-argument relationship. Predicates are
often verbs and together with their arguments align closely with the head-modifier semantics of
dependency structure. Capturing this in a span-factored model of phrase structure is difficult, as
the verb is “hidden” within the constituent span and not immediately accessible by the model’s
SRL component.

3.2.2 Representing Dependency Syntax in Factor Graph Models
We propose representing dependency parsing in the edge-factored manner originally presented in
[11]. This allows a one-to-one correspondence between syntactic variables and the variables of
other edge-factored models (like semantic role labeling). As in phrase structure grammar, it will
be convenient to represent the atomic units of syntactic analysis, in this case edges, with Boolean
variables. This allows variables of each component model to be combined with using Boolean
logic factors.

• Let {Link(i, j) : 0 ≤ i < n, 1 ≤ j ≤ n, n 6= j} be O(n2) Boolean variables correspond-
ing to the possible arcs in a dependency parse. Link(i, j) = true implies that there is a
dependency from parent i to child j.

• Let {LINK(i, j) : 0 ≤ i < n, 1 ≤ j ≤ n, n 6= j} be O(n2) unary factors, each paired with
a corresponding Link(i, j) variable and expressing the independent belief that Link(i, j) =
true.

As was the case for phrase structure parsing Section 3.1.2 (pg. 69), these components provide
the necessary structure for predicting, independently, the basic components of a syntactic analysis,
but they also permit many invalid structures. A configuration of variables could represent a graph
which contains cycles, multiple heads for a single word, or multiple roots. As before, these prob-
lems could be addressed using many pairwise factors, but would require an exponential number of
such factors, and would hinder the effectiveness of inference. We instead rely upon combinatorial
factors to provide an efficient solution to this problem. Depending on the type of syntactic analysis
desired, [11] provide two constraints:

• DEP-TREE, a global combinatorial factor, as originally presented in [11]. A DEP-TREE

factor attaches to all Link(i, j) variables, contributing a potential of 1 iff the configuration

100 FACTOR GRAPH REPRESENTATIONS OF SYNTAX

of variables results in a valid non-projective dependency graph. It otherwise contributes a
protential of 0, prohibiting the configuration. The calculation of outgoing messages is based
on the Matrix Tree Theorem [116].

• PROJ-TREE, a global combinatorial factor, also originally presented in [11]. It is similar
to DEP-TREE, but further requires that the resulting structure form a valid projective depen-
dency graph, prohibiting edges from crossing.

Both constraints calculate outgoing messages in O(n3) time. For implementation details of these
algorithms, we defer to [11]. The features we utilize for this model are derived from the [73]
feature set for graph-based dependency parsing, and only differ in that we do not construct features
from coarse part-of-speech tags. We similarly refer the interested reader to the detailed description
provided in that work.

This representation also allows for higher order models of dependency parsing through the
use of additional factors. For instance, second order models, which coordinate between two Link
variables, can capture grandparent or sibling relationships. This has been shown to significantly
improve parser performance [73]. However, when treated as latent structure in a joint model,
a first order representation of syntax may learn a more direct form of syntax, collapsing longer
directed paths into single dependencies, and approximating the benefits of a higher order model
by capturing the types of structure most useful to the end task. In the context of semantic role
labeling (Chapter 6), if a semantic relationship exists between word wi and wk, but the syntax has
a directed path wi → wj → wk, the desired latent syntactic representation might directly capture
this relationship, assigning a strong belief that Link(i, k) = true.

3.3 Conclusions
In this chapter we introduced factor graph formulations of two leading syntactic formalisms:
phrase structure, in which a syntactic analysis is a hierarchy of nested constituent spans, and de-
pendency structure, where a syntactic analysis is expressed via pairwise dependencies between a
headword and modifier. Both are difficult to efficiently represent in a factor graph, with phrase
structure requiring a quartic number of logical factors to prohibit constituents from crossing, and
dependency grammar requiring an exponential number of logical factors to prohibit cycles in the
graph. But complexity is only part of the problem. The multitude of logical constraint factors
required to rule out invalid structures would also introduce many cycles into the graph, resulting in
poor inference. To circumvent this we described three global, combinatorial factors which reduce
the complexity of representing such structured models.

Our novel contributions are specific to phrase grammar. We begin by introducing the CKY--
TREE factor and a factor graph representation of unlabeled phrase structure. This structure is
perhaps of little use from a traditional parsing perspective, but may be a suitable representation for
joint inference where models are connected across unlabeled components (e.g., a constituent span
variable connected to a named entity span variable, both variables representing the boundaries of
the span and not the type). We then introduce a set of factors and variables to provide labels to
these constituent spans, and the necessary components to create a labeled phrase structure parser.
On the OntoNotes data set we outperform a similar CRF-based parser, and against PCFGs and

3.3 CONCLUSIONS 101

their lexicalized variants we show that our parser provides a significant improvement in parse
accuracy while remaining asymptotically faster. We also demonstrate that the labeled parsing
model produces better unlabeled tree structure than the unlabeled variant, motivating the use of
label variables even when they are not evaluated directly. This representation is used throughout
the dissertation to construct joint models and to serve as latent structure.

Also included in this chapter is preliminary work toward incorporating grammar rule factors
into the model. In this approach we utilize the perceptron algorithm to learn a set of rule factor
weights in a coarse-to-fine manner on top of the labeled phrase structure parsing model. We show
significant improvements in parse accuracy over the corresponding grammarless model, but the
answers to many pertinent questions are beyond the scope of this work. These questions include
what criteria should determine how rule factors are added to the model, what rule factor features
are most useful, what is an optimal grammar size, and how might the learning of rule weights be
incorporated into the same procedure which optimizes the other model parameters. In reference
to the latter, recent work in delayed row and column generation solves a similar problem [111],
where it is computationally difficult to score the number of structures prior to optimization, and
may be a promising line of research for addressing this issue.

In the second section we introduced dependency structure, and positioned it as an alternative
to phrase structure which may be more convenient when the end task relies on head-modifier type
relationships. The combinatorial properties of dependency structure again poses a problem for
representation in factor graph models, and we turn to the approach of [11] for a solution. We
summarize the contributions of this work, introducing a projective and non-projective dependency
tree constraint factor. We rely on these constraints to construct joint models for relation extraction
and semantic role labeling.

We conclude with a final thought: is it necessary to have factor graph representations of both
phrase and dependency structure? Both structures encode similar information, which may at first
seem to lessen the need for more than a single representation. The underlying headwords of a
phrase structure tree can be recovered using a set of language-specific heuristics, of the sort de-
scribed in [88]. Similarly, a projective dependency tree implicitly defines constituent spans in the
nesting of its dependency arcs, and an unlabeled phrase structure trees can be constructed from
such a tree, making these representations largely isomorphic. Many NLP systems treat syntax
trees as observed, skirting the issue by utilizing rich feature sets which can capture many of the
strengths of each formalism, without the need to convert manually from one to another.

However, when pursuing joint models it is difficult to be ambivalent. While it is trivial to con-
vert between dependency and constituent trees when trees are observed, it is far more difficult when
trees are represented by hidden variables. It is then necessary to add additional model structure,
including higher level dependencies or combinatorial factors. We believe the cost of attempting
this kind of “on the fly” conversion to be prohibitive. It follows that if such conversion is ruled out,
then some representations will naturally lend themselves better to particular NLP models.

This will become apparent throughout the remainder of the dissertation, where we leverage the
syntactic representations introduced here in order to construct joint models of NLP tasks. Chapter
4 combines the phrase structure syntax with a span-factored model of named entity recognition,
and we demonstrate state-of-the-art performance on the OntoNotes data set, outperforming both
our own baseline and a previous joint model. In Chapter 5 we develop two joint models for rela-
tion extraction, one using phrase structure, the other using dependency structure. Our focus in this

102 FACTOR GRAPH REPRESENTATIONS OF SYNTAX

chapter is on comparing the effectiveness of each representation on the task. We conclude in Chap-
ter 6, where we develop the most sophisticated joint model presented in the dissertation, applying
it to the task of semantic role labeling. Here we show competitive results against participating
systems in a shared task competition, without observing any syntactic annotation.

For each of these tasks we provide more traditional results, where the joint model is trained
in a supervised manner, either predicting syntax jointly or setting the syntactic variables to reflect
gold syntactic analyses. However, we also provide results where syntactic structure is induced via
marginalization-based training in a joint model, learning a syntax specific to each task and data
set. Learning syntax without the need for syntactic annotations is a more scalable approach to joint
modeling in NLP, and we show there is little loss in performance from doing so.

4
Jointly Modeling Syntax and Named Entity

Recognition

In this chapter we apply our joint modeling framework to the task of named entity recognition
(NER), coupling a phrase structure parser to a span-based NER model. The motivation for this
coupling is clear: in theory, named entities should correspond to syntactic noun phrases. Thus
knowledge of a sentence’s syntactic structure constrains the possible locations of named entities,
and knowledge regarding the location of a named entity span eliminates the possibility of any
syntactic span that would cross it. We aim to leverage this interdependent relationship to improve
performance on both tasks using joint inference.

This is a goal shared shared by previous work. [6] also present a joint model of phrase structure
parsing and NER, coupling the two tasks by augmenting the parser’s grammar with named entity
labels. A grammar rule NP→ DET NP might be replaced with an augmented rule NP-ORG→
DET NP-ORG, which augments the purely syntactic NP grammar rule with the entity label for
organizations. Here the use of joint inference resulted in a 3.92% average F1 improvement (8.95%
max) in named entity recognition accuracy, and a modest 0.71% average F1 improvement (1.36%
max) in parsing. However, in this approach augmented rules must exist for each entity label, and
this yields a multiplicative increase in the grammar size (Section 4.2, pg. 107 details the adverse
effect this has on overall complexity). Additionally, any mismatches between syntax and named
entity annotations in the training data need to be filtered out during preprocessing as only entities
which nest within the syntax tree can be represented. Our approach circumvents the need for such
preprocessing, connecting the syntax and named entity models with soft Boolean logic constraints,
and the model’s label set grows only additively.

We present two models. One model is a span-based NER model with no syntactic information,
to serve as a baseline. The second is the same model, coupled with a model of phrase structure
syntax, trained and decoded using joint inference. We refer to these as NER-ONLY and NER-
JOINT respectively. For each model we experiment with two feature sets: one intended to more

103

104 JOINTLY MODELING SYNTAX AND NAMED ENTITY RECOGNITION

closely compare to the linear-chain CRF features used in previous work [6], and one meant to
showcase the full capabilities of the model. Evaluating on the OntoNotes corpus [112] our joint
model with linear-chain features significantly improves accuracy over the baseline with linear chain
features, resulting in a 4.6% F1 increase in NER accuracy. When using the full feature set the gains
provided by joint inference are less pronounced, but the performance of the feature rich model is
comparable to all previous results, and is even able to outperform a system trained in a semi-
supervised manner on additional labeled data [30] on some data sets.

We present two additional training scenarios for the joint model. One, which we refer to as
the NER-ORACLE model, can observe the “true” values, given in the training data, of syntactic
variables during both training and testing. Another, the NER-HIDDEN model, treats syntax as
a latent variable during training and testing. We find that the NER-ORACLE model provides
the highest overall accuracy, but inducing a latent syntactic structure using marginalization-based
training is more accurate than the NER-JOINT model on most data sets.

We begin by presenting an overview of the named entity recognition task, and discuss the
relationship between named entities and constituent syntax. We then present our span-based NER
model (Section 4.3, pg. 109), which relies on a combinatorial factor for implementing a semi-
CRF constraint. Extending this to a joint model with a phrase structure parser is straightforward,
and relies only on the inclusion of the parsing architecture presented previously (in Section 3.1.2,
pg. 69) and a set of logical factors to coordinate between variables of opposing models. We
conclude with a set of experimental results on the OntoNotes data set (Section 4.4, pg. 116), in
which we revisit respresent results from feature rich and feature poor variants of our baseline and
joint models, and compare against previous work. The models presented in this Chapter were first
described in [117].

4.1 Overview of Named Entity Recognition
Named entity recognition (NER) is a fundamental task in the field of information extraction. The
goal of NER is to identify and categorize the important entities that participate in the sentence.
Entities may be loosely defined as “things of interest”, including people, places, organizations,
events, dates, times, and so forth. Consider the sentence:

[The Darjeeling Limited]MISC reviews on [metacritic]ORG prove overwhelmingly positive

Here, “The Darjeeling Limited” is an entity of type MISC (a film), and “metacritic” an entity of
type ORG (a movie review website).

The identification of such entities is a prerequisite step for other IE tasks. For instance, NER
is considered an important prerequisite step to relation extraction (Chapter 5), which often begins
with the entity boundaries defined, and seeks to identify the relationships between them. NER is
also important to coreference, a task in which the underlying entities are identified and linked, even
though the form of their mentions may differ (i.e., the president, President Obama, Barack Obama,
Barack).

Named entities are typically small, often comprising only a couple of words, and models mak-
ing use of local dependencies have performed very well on the task. HMMs were among the
earliest statistical models applied to the task [118–120], but feature-rich discriminative methods

4.1 OVERVIEW OF NAMED ENTITY RECOGNITION 105

The Darjeeling Limited reviews on metacritic prove overwhelmingly positive

NP

ADJPNP

NP

ADV

DET

VP

NN

NN NN

NP

NN

PP

PRP ADJ

VB

S

MISC ORG

FIGURE 4.1: A sentence annotated with syntax and NER. A simple NER model which looks only at
words and word contexts may be mislead by the lexical ambiguity of the phrase limited reviews and the
rarity of words like darjeeling, which form the complex NP The Darjeeling Limited, a feature film. When
viewed in light of the sentence’s syntactic structure, these aspects are less confounding as the NP-structures
provide strong cues as to where the named entities might lie.

represent the current state-of-the-art, with approaches based on SVMs [121], linear chain CRFs
[43, 122], and extensions which capture some long-distance dependencies, like skip-chain CRFs
[58, 123].

However, while sequence models can accurately predict named entities, these models do not
reflect the hierarchical nature of syntactic structure. For small entities, this may not be problematic.
A sequence model for NER may identify tag sequences like DET NN NN as likely named entity
candidates. These patterns occur frequently enough that they can be successfully learned by the
model, and the model may attain high NER accuracy over short entities. However, when named
entities are longer, these types of sequential statistics naturally become much sparser. If a named
entity is truly a type of noun phrase then knowing the underlying syntax could be beneficial: does
the proposed entity span align with a syntactic span? Does it align with an NP? As motivation for
a joint model of NER and phrase structure syntax, we now discuss the relationship between these
two tasks.

4.1.1 The Relationship Between Syntax in NER
Joint inference may be warranted in situations where tasks are interdependent, and knowing the
solution to one problem can assist in solving the other. In the case of named entity recognition,
entities, being things, often closely correspond to the syntactic notion of a noun phrase (NP). In
theory, whenever there is a named entity from i to j, there must be an NP from i to j. In practice
this is not always the case. Table 4.1.1 shows the extent of this correlation in selections of the
OntoNotes (v. 2) data set.

The statistics describe the percentage of named entity spans that align to particular constituent

106 JOINTLY MODELING SYNTAX AND NAMED ENTITY RECOGNITION

NP NML QP ADJP ADVP PP TOTAL BIN
ABC 59.15 2.77 5.36 1.66 1.66 0.37 72.35 94.15
CNN 52.28 8.38 5.49 1.97 2.10 0.39 71.33 92.94
MNB 59.00 8.79 4.18 0.42 1.67 0.0 77.41 93.48
NBC 54.22 8.44 4.55 0.00 0.65 0.00 77.86 93.02
PRI 51.97 4.37 3.76 1.14 2.89 0.0 64.48 91.24

VOA 39.93 9.51 4.04 2.15 1.17 0.07 50.01 93.91

TABLE 4.1: NER and constituent syntax alignment statistics. The table entries contain the percent-
age of named entities corresponding to constituent spans of varying kinds in the newswire sections of the
OntoNotes (v.2) corpus. Transforming trees using a right-branching binarization strategy (BIN) raises the
total percentage of correlation significantly.

spans. The leading assumption, that named entities correspond to noun phrases, occurs approx-
imately half the time. There is some degree of correlation to other constituents, notably NMLs,
which mark NP-internal structure, and quantifier phrases (QPs), which describe a complex measure
or amount. Both could be considered variants of NPs.

Between 30 to 50% of the named entities do not align to any constituent span in the gold
data. Examining these mismatches reveals that this is more a product of the style of treebank
annotation than it is a failure of our linguistic intuition that all named entities should correspond to
NPs. Treebank-style parse trees occasionally lack structure that would produce a greater degree of
correlation between the two tasks. For instance, many NPs fail to explicitly show right-branching
internal structure (Fig. 4.2, left). Ideally a phrase like an additional 265 million dollars should not
only correspond to an NP, but should also include an additional NP (265 million dollars) nested
inside. Instead, many NPs found in the OntoNotes treebanks are much flatter structures, similar
to the base-NPs of [124]. Here the nested structure is not explicitly marked, and the correlation
between constituent and named entity span is lost.

However, this may not be as detrimental to joint inference as it may at first seem, because the
trees used to train the model are binarized: each nonterminal constituent forced to have at most
two children. This process introduces many more constituent spans, and consequently increases the
chance that a syntactic span will align to a given entity. Trees are predominantly right-branching
in English, and by using a right-branching binarization strategy many of the constituents (those
which share a right edge with the entity) that are not explicitly annotated in the data are rein-
troduced. Table 4.1.1 shows that using binarized trees raises the degree of correlation to over
90%. The significance of a correlation is reduced, but the degree to which there is a correlation is
strengthened.

We also note that the extent to which nested NP structure is made explicit is not consistent. For
instance, the name Al Gore forms an NP when in isolation, and often forms an NP when nested
within a larger structure. Yet there are still many exceptions in which they are not grouped into a
single constituent (Fig. 4.2, right). While the joint model we present (Sec. 4.3.2, pg. 113) is robust
to a lack of correlation in cases where we theorize one should exist (via soft Boolean logic factors
handling the coordination between models), the inconsistent nature of the annotation scheme may
have some effect on the performance of joint models in general.

A constraint that does hold true in nearly all cases is that named entity and constituent spans
should not cross. This constraint is less susceptible to tree annotation style, though [6] note that

4.2 JOINT MODELING VIA GRAMMAR AUGMENTATION 107

seek an additional 265 million dollars

NPVB

VP

NNPQP

NN NN

NMLDET

NP

PRP

MISC

NNS

CD CD

Vice President Al Gore

NNP

PER

FIGURE 4.2: Unaligned entities. Flat NP structure prevents the entity (265 million dollars) from directly
aligning to any syntactic constituent (left). Other annotation inconsistencies also contribute to the mismatch
(right). Here the entity Al Gore does not correspond to a syntactic constituent, but is otherwise considered
an NP in many other locations in the data, even when positioned similarly within a larger NP structure.

there are some inconsistencies based on whether trailing punctuation is treated as inside or outside
the entity span. We now turn to a discussion of joint models, outlining the approach used by
[6] and presenting our own joint model both of which aim to capture the relationships presented
above in an effort to improve NER and parsing performance. [6] exploits dependencies between
labeled syntactic constituents and NER labels. Our approach differs in that it models dependencies
between unlabeled syntactic and NER spans, chosen based on the statistics above.

4.2 Joint Modeling via Grammar Augmentation
In this section we turn to discussing previous work which focuses on the joint modeling of NER
and parsing. Despite previous work showing the usefulness of parse features in predicting NER
[125], we are aware of only one other line of research which aims to perform both tasks jointly.
This work, described primarily in [6] 1, and here on referred to as F&M09, serves as the primary
comparison to our work.

The model presented in F&M09 couples NER and parsing using a method we refer to as gram-
mar augmentation. A phrase structure parser groups words into constituent spans and associates
each span with a constituent label. The intuition behind the F&M09 approach is that this label need
not only indicate the span’s syntactic category. A constituent label can also describe, in addition to
syntactic category, the type of named entity of the span if applicable. This can be accomplished by
augmenting the parser’s grammar to include specialized nonterminal symbols (Fig. 4.3). The rule
NP→ NP PP might be augmented with entity information to produce the rule NP→ NP-MISC
PP to generate an entity of a miscellaneous type. Instead of PP → PRP NN the rule might be
PP → PRP NN-ORG. This follows the pioneering work of [126], which makes use of a similar
technique to phrase relation extraction as a parsing task.

However, this approach has unfortunate computational complexity. Starting with a grammar G
of size |G|, expanding all grammar rules to accommodate the entity label set L produces a grammar

1[30] present a hierarchical joint model which incorporates the F&M09 work, but trains the model using additional
data annotated solely for either task.

108 JOINTLY MODELING SYNTAX AND NAMED ENTITY RECOGNITION

The Darjeeling Limited reviews on metacritic

NP

NP

NP

DET

NN

NN NN

NP

NN

PP

PRP

MISC ORG

The Darjeeling Limited reviews on metacritic

NP-MISC

NP

NP

DET-MISC

NN-ORG

NN-MISC NN-MISC

NP-MISC

NN

PP

PRP

MISC ORG

FIGURE 4.3: Grammar transformations for joint parsing and NER. Such transformations are used in [6].

of size |G| ∗ |L|. This is a multiplicative growth in the model’s label set size.2 Having embedded
NER labels within the grammar, both tasks can be solved simultaneously using standard statistical
parsing techniques. Here the issue of label size comes to bear. The complexity of chart-based
parser decoding is O(|G|n3). However, in the context of parsing, n, being the sentence length,
is often quite small, whereas the grammar can often contain thousands of rules. In the case of
grammars induced via nonterminal refinement techniques like split-merge [92], this can be closer
to a hundred thousand. Thus the efficiency of decoding is particularly susceptible to the size of
the grammar, and multiplicative increases can significantly slow the algorithm. Pursuing joint
inference in this manner can be computationally burdensome, and F&M09 are forced to reduce the
data’s more refined label set of 18 entity types to a more smaller 4-label set.

The grammar augmentation approach is also limited in what types of problems it can represent.
This approach is only a viable option for joint inference when one problem is capable of nesting
within the phrase structure tree – the structures of the end task corresponding to constituent spans
in the parse tree. For named entity recognition, this assumption is an appropriate one, but consider
a problem that might also benefit from joint inference, but where the problem structure does not
overlap. For instance, evidence suggests that the interaction between syntax and prosodic informa-
tion (intonational phrases) is one such problem. In natural speech the pitch of one’s voice rises and
falls, providing many important intonational cues which have been shown to aid in disambiguat-
ing syntactic ambiguities [127, 128], and in parsing [129, 130]. Syntactic structure may also help
identify prosodic boundaries [131].

The interdependent nature of syntax and prosody indicates that the two tasks may be a good
candidate for joint inference, but the relationship between the two is fuzzy. [132] argues for the
existence of linguistic constraints which favor left or right alignment of intonational phrases to
constituent phrases, but importantly the boundary of one task is permitted to cross a boundary
of the other. It is possible in a factor graph model to capture dependencies between an end task
and phrase structure syntax that agree in just one edge, and whose other edge crosses syntactic
boundaries. The grammar augmentation approach cannot represent the possibility of this type

2In practice and for the case of joint named entity recognition and phrase structure parsing, this need not be the
case. Some nonterminals, like S, are unlikely to ever exactly dominate a named entity, making nonterminals like
S-PER or S-ORG unnecessary.

4.3 DESCRIPTION OF JOINT MODEL 109

of structure as the prediction of one task is rigidly constrained on both sides by the syntactic
structure.3

We now present a joint factor graph model of NER and phrase structure parsing. Not only does
this model rely on a combinatorial factor to prohibit invalid trees in the syntactic component, but
it also features a new combinatorial factor to prohibit overlapping NER spans. The two models
are connected via soft Boolean logic factors between corresponding NER and syntactic spans. In
comparison to the grammar augmentation approach for joint inference, label set size suffers only
additive growth when the two tasks are combined, and the soft nature of the constraints which
connect the two models alleviates the need to filter out mismatched training data (as done in [6]).

4.3 Description of Joint Model
NER is well-suited to sequence models, and many state-of-the-art approaches combine sequential
dependencies with the rich feature sets associated with discriminative training [43, 122]. In this
section we present two NER models. The first is a standalone NER model, utilizing a combinatorial
factor to implement a semi-CRF constraint which ensures that named entities do not cross one
another. This is unlike many previous NER models in that it is span-factored: variables represent
spans and not boundaries. This proves to be a convenient property when extending the standalone
model to produce the second model: a joint model of NER and phrase structure syntax. Due
to the span-based representation of NER, each NER span variable can be directly coupled to a
corresponding syntactic span variable.

4.3.1 Modeling Named Entity Prediction
We present a simple span-factored model for handling NER span and label predictions. This model
serves as a baseline and a basis of comparison for assessing the usefulness of joint inference. The
basic model structure consists of three components: span variables, label variables, and factors
which coordinate between them.

The presence of an NER span is represented by a Boolean variable, one for each O(n2) pairs
of indices. This is almost identical to the manner in which we model constituent spans in the
factor graph phrase structure parser (Sec. 3.1, pg. 62), differing only in that entities with more
than ten words are exceedingly unlikely and so we impose a maximum value on the width of a
span, µ = 10. The method for labeling these spans also differs slightly, as constituent span labels
were represented with Boolean variables (one per label) in order to make it more convenient to
instantiate sparse grammatical rule factor connections. Here this is no longer necessary, and the
set of NER labels for a particular span is represented as a single multinomial variable. The logic
coordinating the multinomial label variable to the Boolean span variable is handled by a special-
purpose “e pluribus unum” factor, introduced in [52], and described below.We formally describe
these components:

• Let {NER-Span(i, j) : 0 ≤ i < j ≤ n, and j − i ≤ µ} be O(n2) Boolean variables such
that NER-Span(i, j) = true if and only if there is a named entity in the sentence spanning

3One exception is combinatorial categorical grammar (CCG), where a joint model could potentially avoid this issue
because CCG can explicitly represent structures that are not complete constituents [133].

110 JOINTLY MODELING SYNTAX AND NAMED ENTITY RECOGNITION

from i to j (encompassing words i to j − 1). The maximum span width, µ, is set to 10 in all
experiments.

• Let {NER-Label(i, j) : 0 ≤ i < j ≤ n and j − i ≤ µ} be O(n2) multinomial variables
ranging over values λ ∈ L, where L is the NER label set. The set L includes two additional
values. One of these is a false value. NER-Label(i, j) = false when NER-Span(i, j)
is false, and j − i > 1. The second of these is a null entity label O. NER-Span(i, j) =
O when j − i = 1. This ensures that all tokens which are not part of an entity are treated
identically, i.e., there is presumably no regularities in non-entity tokens that would justify
predicting non-entity spans of varying lengths. For all other labels NER-Label(i, j) = λ if
and only if the span from i to j corresponds to a named entity of type λ.

• Let EPU(i, j) : 0 ≤ i < j ≤ n and j − i ≤ µ} be O(n2) “e pluribus unum” factors coor-
dinating between NER-Span(i, j) and NER-Label(i, j) variables. This factor guarantees
that NER-Label(i, j) = false if and only if NER-Span(i, j) is false.

Each NER-Span and NER-Label variable has a corresponding unary factor, associated with
a set of features (described in Table 4.2, pg. 115), which locally provide each variable’s local
beliefs. Thus every variable and unary factor pair is equivalent to a log-linear (maximum entropy)
classifier. However, unlike many previous approaches to NER that utilize similar classifiers [43],
beliefs are shared between pairs of corresponding span and label variables during inference. One
set of features is used to calculate a potential for an NER-Span(i, j) variable, and a second set
of features, disjoint from the first, is used to calculate a potential for each of the labels in the
corresponding NER-Label(i, j) variable. In our approach it is possible for the propagation of
beliefs to sway the model’s predictions in ways that wouldn’t be possible in a pipelined approach
to NER prediction.

For instance, a NER-Span variable may have a strong belief that its value is false if the
tokens in the span, and the features derived from them, are not generally indicative of a named
entity. However, there may be features indicative of a particular type of entity. This would lead to
a strong belief that a NER-Label variable is true. In the pipelined approach this span would be
classified as a non-entity span, and no further predictions would be necessary. In the factor graph
approach, global inference makes it possible for the beliefs of NER-Label variables to influence
NER-Span beliefs, allowing for correct prediction in such a scenario.

A Combinatorial Factor for Semi-CRFs

A recurring problem when representing structured outputs in factor graph models is the need to
incorporate global information to prohibit invalid structures. In the case of NER the model needs to
ensure that entity spans do not overlap. Hidden semi-Markov models [134, 135] and semi-Markov
CRFs [61] offer this guarantee, but are not span-factored. Instead these models use a Boolean
variable chain to represent segmentation points, implicitly defining spans, in conjunction with a
second variable chain for labeling. A parameter γ specifies a maximum segment width. Variables
from the second chain depend on the γ-1 previous segmentation variables, allowing these variables
to predict labels in light of the model’s predicted segmentation. Fig. 4.4 (left) illustrates a model
with this type of structure.

4.3 DESCRIPTION OF JOINT MODEL 111

a.) Hidden Semi-Markov Model b.) Global Semi-CRF Factor

FIGURE 4.4: Semi-Markov models. The Semi-Markov HMM (left) has three rows of variables: obser-
vation variables (bottom row), segmentation variables (middle row), and label variables (top row). Label
variables depend on a number of previous segmentation variables (up to a max segmentation length, γ),
allowing the model to jointly assess likely segmentations and labels, while inherently preventing spans
from overlapping. In contrast, the combinatorial factor technique (right) implements similar logic within a
globally connected factor. Variables in this model are span-factored, and the combinatorial factor prevents
variable configurations in which spans overlap.

For our goals of coupling NER and syntactic span variables, we propose an alternate strategy
for implementing this constraint which replaces structural dependencies with a globally-connected
combinatorial factor. This allows us to efficiently prevent invalid structures in a span-factored NER
model. NER span variables can then be connected to the span variables of a phrase structure gram-
mar model in a convenient 1-to-1 correspondence (for all spans with widths < γ. We introduce
this semi-CRF constraint factor formally as:

• Let SEMI-CRF be a combinatorial constraint connected to all NER-Span(i, j) variables.
The factor implements a weighted 0th order Semi-CRF with a maximum span width γ, as
described in [61], over the log-odds of each NER-Span variable’s Boolean values. Unlike
the valid-bracketing constraint imposed by the CKY-TREE factor, this effect can be achieved
with a polynomial number of binary factors, but the O(γ2n2) such pairwise factors would
result in an extremely loopy graph and inefficient inference.

ΨSEMI-CRF(NER− Span(i, j)) =

0, if ∃i, j, k, l : NER-Span(i, j) = true ∧ NER-
Span(k, l) = true ∧ i < k < j < l

1, otherwise

Pseudocode for computing the out-going messages from this factor is provided in Fig. 4.5.
The goal of preventing overlapping NER spans is similar to the goal of prohibiting invalid trees,
and naturally the SEMI-CRF factor logic is similar to that of the CKY-TREE factor. In both
algorithms the calculation of out-going messages is decomposed into two steps: in the first step
the computation sweeps forward through the chain computing forward scores (analogous to the
inside scores used in the CKY-TREE factor), and a second step that sweeps backward through the
chain (analogous to the outside scores used in the CKY-TREE). The forward and backward scores
can then be multiplied to produce the gradient, µ(i, j), which is used.

112 JOINTLY MODELING SYNTAX AND NAMED ENTITY RECOGNITION

Algorithm 8 Propagator for Semi-CRF Factor

1: procedure PROPAGATE SEMI-CRF(n, γ) . Sentence Length, Max Segment Size
2: for v ← {v1, ..., vm} do
3: qv ← v(true)/v(false)
4: end for
5: α(0)← 0 . Forward Computation
6: for k ← 1 to n do
7: for w ← 1 to min(γ, k) do
8: i = k − w
9: α(k)

⊕←− α(i) + score(i)(w)
10: end for
11: end for
12: β(n) = −α(n) . Backward Computation
13: for i← n− 1 to 0 do
14: for w ← min(n− i, γ) to 1 do
15: k ← i+ w
16: β(i)

⊕←− β(k) + score(i)(w)

17: µ(i)(w)
⊕←− β(k) + α(i) . Gradient Calculation

18: end for
19: end for
20: end procedure

FIGURE 4.5: Pseudocode for the SEMI-CRF factor propagator. Let score(i)(w) be the odds ratio of
incoming messages from variable NER-Span(i, i+ w). The ⊕←− indicates incremental assignment.

The forward computation answers the question, “For any state k representing whether or not
an entity span begins at position i, 1 ≤ i ≤ n, what is the probability of beginning at the start of
the sentence and generating up to state k?” We define this quantity by the forward score, α(k).
This can be computed efficiently using dynamic programming, beginning at the start of the chain
(k = i), caching each α(k), and proceeding through to the end of the chain. As illustrated in the
semi-Markov HMM in Fig. 4.4, the computation of each α(k) involves looking back at only the
forward scores that fall within the maximum span width’s distance away.

The goal is reversed for the backward computation. Each backward term, β(k), is the score
of all possible analyses beginning at state k and continuing through to the end of the chain. To
compute this efficiently, a procedure analogous to the forward computation begins at the end of the
chain, moving backward to the beginning of the sentence, incorporating the sum of all span analy-
ses at each step. The gradient for a span, µ(i)(k) with width w, can be computed by combining the
forward score for the start of the span, α(i), and the backward score for the end of the span, β(k).
The gradient can then be used to calculate out-going messages in a manner identical to their use in
the CKY-TREE computation (pg. 72). Message computation for this factor has a time complexity
of O(γ2).

4.3 DESCRIPTION OF JOINT MODEL 113

k K
j N

SPAN (i,j)

Span
(i,j)

LABEL (i,j,k)

Label
(i,j,k)

IS-AT-MOST (i,j)

i N

CKY-TREE

NER-SPAN (i,j)

NER
Span
(i,j)

SEMI-CRF

EPU (i,j)

NER-LABEL (i,j)

NER
Label
(i,j)

NER-CONNECT (i,j)

FIGURE 4.6: A joint model of NER and phrase structure syntax. Depicted in a plate diagram, the baseline
NER model (right) is a span-factored model for predicting NER boundaries (using NER-Span variables)
and NER labels (using NER-Label variables). The SEMI-CRF factor constrains NER-Span variables to
prohibit overlapping spans. The model of phrase structure syntax (left) is as described in Section 3.1.2 (pg.
69). The two models coordinate across pairs of unlabeled span variables, using NER-CONNECT factors to
implement a soft Boolean NAND logic. The number in the bottom corner of each plate indicates the number
of times the contained structure repeats.

Together with the modeling components presented in Section 4.3.1 (pg. 109), this constitutes
the NER-ONLY model.

4.3.2 A Joint Model of NER and Constituent Syntax
The factor graph parsing model we present in Sec. 3.1 (pg. 62) is an improvement over previ-
ous CRF-based parsers, but it is not competitive with state-of-the-art re-ranking or latent variable
grammar models. The advantage of parsing with this factor graph model is not absolute F1 per-
formance, but rather the ease with which it can be combined with other models to create a joint
model, with the guarantee that there is an approximate inference strategy (belief propagation) for
whatever the resulting graph structure may be. Here we describe the construction of a joint model
of phrase structure parsing and NER. This extension requires only an additional set of pairwise
logical factors to coordinate the variables from the opposing component models.

First, in addition to the named entity model described above, we assume the presence of the
phrase structure variables and factors described in Sec. 3.1.2 (pg. 69). This includes Span(i, j)
and Label(i, j, k) variables to represent the space of all possible labeled parses, the correspond-
ing unary factors to locally score these variables, and a CKY-TREE factor to globally constrain
Span(i, j) variables to form a valid tree.

Previous work has argued that every named entity should correspond to a noun phrase [6].
Following this logic we might implement a joint model which connects the NER-Span(i, j) vari-
ables to Label(i, j, k = NP) variables. However, an analysis of the data shows that this correlation
only holds for slightly more than half of all entities (Table 4.1.1), motivating us to choose a more
general coupling between models in which solely the structural components of each model, Span
and NER-Span variables, are coupled using soft Boolean logic factors.

114 JOINTLY MODELING SYNTAX AND NAMED ENTITY RECOGNITION

Here the motivation for using a combinatorial factor for modeling the semi-CRF constraint
becomes clear: although a traditional semi-Markov model can be expressed strictly through many
pairwise factors and would also rule out over-lapping entity spans, spans are not explicitly repre-
sented in the model. By using a combinatorial factor to express the semi-Markov logic we adopt
a span-based representation for the NER model, which allows a convenient mapping between the
NER and syntactic models. Thus for every Boolean NER-Span(i, j) variable there is a corre-
sponding syntactic Span(i, j) variable, and these variables can be coordinated using a Boolean
logic factor.

The factors which coordinate between models impose a soft NAND logic. If either input is
false, a logical NAND outputs true. Similarly, if either coordinated variable is false, the NAND

factor contributes a potential of 1.0 and does not affect outgoing messages. When both variables
are true the NAND factor applies in a potential derived from a set of associated features and feature
weights. Optimization adjusts these feature weights, learning the degree of coordination between
variables.

Formally we introduce this factor as follows:

• Let {NER-CONNECT(i, j) : 0 ≤ i < j ≤ n; 1 < j − i ≤ γ} be a set of at most O(n2) soft
NAND factors coordinating syntactic Span(i, j) and named entity NER-Span(i, j) vari-
ables. A NAND factor (multiplicatively) contributes a potential of 1 to the model score un-
less both variables are true, in which case it multiplies a connective potential φ(i, j) derived
from its features.

Intuitively the joint model might learn features weights such that φ(i, j) > 1, i.e., constituents
and NER spans are more likely to be coterminous. The number of these coordinating factors is
constrained to the number of NER span variables, subject to the maximum span-width γ = 10.

The soft aspect of this factor is critical to the performance of the joint model. Only a small
number of constituent spans will correspond to named entities, and even using binarized trees there
will still be a significant number of named entities that, due to annotation style, do not correspond
to a constituent span. To capture noisy correlations of this nature we introduce a set of features,
described in Sec. 4.3.3, which are used to learn a context-specific weight for each NER-CONNECT

factor’s potential.
To illustrate how this might function, consider the feature comprising the concatenation of the

sequence of part-of-speech tags for each word in the span. For shorter spans, many instantiations
of this feature will occur many times in the data and this feature will often be a good indicator of
1.) what type of constituent is at that span, and 2.) whether or not the span is a named entity. In
cases where there is a syntactic span and it is NP-like, this feature may strengthen the connection,
assigning a high potential to the model score. In cases where there is a syntactic span and it
is NP-like, this feature may elicit the opposite effect, assigning a low score to the configuration
where both the syntactic span and named entity are present. Thus, despite having no connections
between Label(i, j, k) variables and NER-Span(i, j) variables, features in the NER-CONNECT

(i.e., NAND) factor can approximate the information that would be gained from connections with
a constituent label predictions.

We now discuss the feature sets used in these soft constraints, as well as the rest of the features
used in the NER model.

4.3 DESCRIPTION OF JOINT MODEL 115

Span Features
Feature String Comment

BIAS A bias factor to capture how likely any span is to be an entity.
The-Darjeeling-Limited A concatenation of all words in the span.

DET-NN-NN A concatenation of all tags in the span.
C-C-C A concatenation of capitalization (C for yes, c for no).

The-DET-Darjeeling-NN-Limited-NN A concatenation of words and tags.
w-3 Span width.

DET-NN Part-of-speech tags of boundary words (inside the span).
Unigram Features

Word Feature String Comment
Darjeeling Darjeeling The word.
Darjeeling NN The part-of-speech tag.
Darjeeling is-capitalized Capitalization feature.
Darjeeling darjeeling word to lowercase.
Darjeeling Darjeeling-NN Word and tag.
Darjeeling s-ngram-1-3-Dar Character grams. Substrings of 2-5 letters from start of word.
Darjeeling e-ngram-1-3-ing Character grams. Substrings of 2-5 letters from end of word.

Dec. MONTH Month-matching regex.
12:59PM TIME Time-matching regex.

third ORDINAL Ordinal-matching regex.
fourteenth FRACTION Fraction-matching regex.

Wed DAY Day-matching regex.
E.T. INITIAL Initial-matching regex.
ET CAPS All-capitalized-matching regex.
et LOWER All-lowercase-matching regex.
IV ROMAN Roman-numeral-matching regex.
!? PUNC Punctuation-matching regex.

TABLE 4.2: Features for NER factors. Span-based features (top) provide a barebones set of features for
entity prediction. Unigram features (bottom) are included for each of the boundary words i and j for a span
over i, j, as well as a previous token and following token when applicable. These features are concatenated
with the word’s location in the span.

4.3.3 Features

Five distinct sets of factors in the joint model rely on features: SPAN(i, j) and LABEL(i, j, k)
parsing factors, NER-SPAN(i, j) and NER-LABEL(i, j) NER factors, and NER-CONNECT(i, j)
coordinating factors.

Features for NER factors

We use an identical set of features for both identifying and labeling NER spans. Due to the need to
identify and classify strings of names, the NER features are more lexically oriented than features
used for parsing, and include word shape, character n-grams (windows of 2 to 5), capitalization,
normalization, and regular expressions for initials, numerics, times, dates, and Roman numerals.
Other features are included to capture more span-level information, including the combined part-
of-speech of all words in the span, combined capitalization of all words in the span, span width,
and the part-of-speech tags at the edge of each span. When used in NER-LABEL(i,j) factors, the
associated label of the span, λ, is concatenated onto each feature string before being converted

116 JOINTLY MODELING SYNTAX AND NAMED ENTITY RECOGNITION

Feature String Comment
Agree-BIAS A bias feature governing the general degree of agreement between variables.

Agree-3 Span width.
Agree-The-Darjeeling-Limited A word concatenation feature.

Agree-DET-NN-NN A part-of-speech concatenation feature.
Agree-DET Initial part-of-speech tag.
Agree-NN Final part-of-speech tag.

Agree-DET-NN Start and end part-of-speech tag.

TABLE 4.3: Features for coordination factors.

into an integer representation to produce a distinct set of features for each label. NER features are
summarized in Table 4.2.

Features for parse factors

The features utilized by the parsing factors are identical to those used in the standalone parsing
model (See Section 3.1.2, pg. 82).

Features for coordinating factors

The data statistics (shown in Table 4.1.1) reveal only an average degree of correlation between
named entity and syntactic spans, and the feature set for coordinating factors (described in Ta-
ble 4.3.3) is necessary for providing a context-specific coordination potential. These features are
essentially identical to the span-based features used for named entity identification. Tag concate-
nation features were good predictors of constituent span and constituent type for short spans. Since
a majority of named entity spans contain only a few words, it is possible that similar features will
be well-represented in the data and suitable for learning soft weights for the correlation between
entity and syntactic spans.

4.4 Experiments
In this section we evaluate a number of model configurations, demonstrating the usefulness of joint
inference, and the usefulness of inducing a latent syntactic representation in situations where gold
syntax does not correlate highly with the end task.

4.4.1 Data
Data which is jointly annotated for NER and parsing is exceedingly rare. For evaluation pur-
poses we rely on a selection of six corpora drawn from the English broadcast news section of the
OntoNotes 2.0 dataset[112], the only data set we are aware of which is jointly annotated for both
NER and phrase structure syntax. Each corpus corresponds to a different news broadcast organi-
zation (ABC, CNN, MNB, NBC, PRI, VOA). We partition each corpus to achieve an approximate
3:1 ratio between training and test sets, reproducing the partitioning found in F&M09. Corpus
statistics are presented in Table 4.4. As in that work, we remove empty leaf nodes and coarsen
nonterminal labels in the parse trees (NP, not NP-PRD), and filter out sentences longer than 40

4.4 EXPERIMENTS 117

Training Testing
Range #Sent Range #Sent

ABC 0-55 1195 56-69 199
CNN 0-375 5092 376-437 1521
MNB 0-17 509 18-25 245
NBC 0-29 552 30-39 149
PRI 0-89 1707 90-112 394

VOA 0-198 1512 199-264 383

TABLE 4.4: F&M09 OntoNotes data statistics. Ranges indicate the file IDs of files used to construct each
data set.

words. We map the fine-grained entity label set found in OntoNotes into the four-label entity set
found in F&M09. PER, GPE, and ORG are kept as is, while all other named entity labels are
collapsed into MISC.

4.4.2 Experimental Design
Each set of experiments compares four different model configurations:

• NER-Only, a baseline model consisting only of the NER component as described in Section
4.3.1 (pg. 109). This includes the SEMI-CRF combinatorial factor.

• NER-Joint, the joint model described in Sec. 4.3.2 (pg. 113) using an unlabeled phrase
structure parser and factors which coordinate between syntax and NER spans.

• NER-Oracle, the same joint model, but with constituent span variables set to their observed
values as specified in the hand-annotated gold parse trees included in the OntoNotes corpus.
These are observed and used both during training and testing.

• NER-Hidden, the same joint model, but syntactic annotations are ignored and the model
learns a distribution over a latent syntactic representation using the marginalization-based
training method described in Section 2.5.5 (pg. 50).

We train each model using 100 iterations of stochastic gradient descent, using a learning rate
η = 0.1. We use L2 regularization, corresponding to a Gaussian prior with a variance of 1.0. A
maximum of 40 iterations of belief propagation are used for each example, but convergence often
occurs much earlier, and is exact (two iterations) for the NER-ONLY model. These parameters
are set based on preliminary experiments using the ABC portion of the corpus as a development
set. We did not perform an exhaustive sweep, noting only that η values of an order of magnitude
higher or lower, and as few as 20 iterations of SGD, were generally sufficient for performance
comparable with the results presented in Fig. 4.5. Decoding is performed by taking the entity set
which maximizes the score of the SEMI-CRF factor. If the SEMI-CRF computation is thought
of as sum-product inference with a structured constraint, decoding is done simply through max-
product inference with the structure constraint, an application of minimum Bayes-risk decoding.
All NER results were scored using macro-averaged F1, as used in conlleval, and all parse results
scored using Evalb.

118 JOINTLY MODELING SYNTAX AND NAMED ENTITY RECOGNITION

We perform two sets of experiments, each using a different feature set. First, the linear-chain
feature set (Chain Feats) does not contain any features which require both a start and an end index
of the span, and instead contain sliding windows of word/tag/capitalization n-grams along either
the start or end index. This more closely approximates the features of F&M09. Formally the linear-
chain feature set is theUnigram set described in Table 4.2 (pg. 115), at both the start and end index
of the span, and as bigrams between pairs of indices in a 3-word index around either of the span
indices. The second feature set (Span Feats) is composed of span-based features, which includes
span width, bigrams of information from the start and end of the span, and word/tag/capitalization
concatenations from all of the tokens within the span, and both the tokens immediately outside the
span. It is exactly the feature set described in Table 4.2.

The size of each model and its computational requirements for the smallest (MNB) and largest
(CNN) data sets is given below. Training times listed are the amount of time necessary to perform
one iteration of SGD.

Chain Feats Span Feats
MNB CNN MNB CNN

#Feats Time #Feats Time #Feats Time #Feats Time
NER-Only 30k 40s 150k 4m 35k 50s 180k 1m
NER-Joint† 115k 2m 770k 8m 123k 10m 800k 8m

NER-Oracle†† 75k 1.5m 540k 6m 110k 2m 680k 7m
NER-Hidden 750k 7m 6.3M 19m 890k 7m 9.5M 23m

Models which require syntactic annotations during training are marked with a † symbol. Mod-
els which rely on syntactic annotations for both training and decoding are marked with †† symbol.

4.4.3 Results

The Case for Joint Inference

In this section we discuss the performance results of the baseline and joint models using the linear-
chain feature set. We also revisit the results of previous work from [117], which are more directly
comparable to F&M09.

The results of the NER accuracy experiments are given in Table 4.5. Included in these results is
a set of experiments using the linear chain features (left), which were performed in an effort to more
closely reproduce the baseline system of F&M09. In comparison to this system, our own baseline,
the NER-ONLY system, performs much lower overall, with an averaged label F1 of 70.67% vs.
F&M09’s 73.17%. However, this lower performance baseline does help highlight the differences
between the various chain feature models.

For all data sets, joint inference results in significant increases in labeled and unlabeled F1.
The standard joint model, NER-JOINT, provides an average improvement of 2.71% labeled F1
(73.38% average F1). Perhaps unsurprisingly, the use of the observed trees leads to still higher
performance in the ORACLE model, a gain of 3.33% F1 over NER-ONLY and 0.64% F1 over
NER-JOINT. This is not always the case: predicting trees, rather than observing them, yields
higher performance for the NER-JOINT model for the NBC and PRI data sets, but these margins
are small.

4.4 EXPERIMENTS 119

C
ha

in
Fe

at
s

Sp
an

Fe
at

s
U

nl
ab

el
ed

L
ab

el
ed

U
nl

ab
el

ed
L

ab
el

ed
F&

M
P

R
F1

P
R

F1
P

R
F1

P
R

F1
‘0

9

A
B

C

N
E

R
O

nl
y

85
.7

78
.4

81
.9

71
.8

65
.6

68
.6

89
.3

85
.9

87
.6

78
.9

75
.9

77
.4

74
.5

N
E

R
Jo

in
t†

87
.2

79
.7

83
.3

76
.7

70
.1

73
.2

89
.3

85
.9

87
.6

79
.6

76
.6

77
.4

78
.7

N
E

R
O

ra
cl

e†
†

88
.0

80
.4

84
.0

77
.1

70
.4

73
.6

88
.7

86
.1

87
.3

79
.4

77
.0

78
.2

–
N

E
R

H
id

de
n

86
.1

78
.7

82
.2

76
.3

69
.8

72
.9

89
.4

86
.9

88
.2

79
.5

77
.3

78
.4

–

C
N

N

N
E

R
O

nl
y

83
.6

80
.9

82
.2

72
.6

70
.2

71
.4

87
.9

87
.6

87
.8

78
.4

77
.7

78
.0

75
.8

N
E

R
Jo

in
t†

86
.7

84
.7

85
.7

74
.9

73
.1

74
.0

89
.1

88
.6

88
.9

78
.4

77
.9

78
.1

78
.7

N
E

R
O

ra
cl

e†
†

87
.6

85
.6

86
.6

75
.7

73
.9

74
.8

88
.6

88
.3

88
.4

78
.9

78
.6

78
.7

–
N

E
R

H
id

de
n

87
.7

86
.0

86
.9

76
.2

74
.8

75
.5

89
.6

89
.2

89
.4

78
.4

78
.1

78
.3

–

M
N

B

N
E

R
O

nl
y

79
.7

64
.6

71
.4

70
.9

57
.4

63
.5

82
.5

77
.4

79
.9

69
.4

65
.1

67
.2

62
.2

N
E

R
Jo

in
t†

80
.6

66
.2

72
.7

71
.2

58
.5

64
.2

83
.5

77
.9

80
.6

69
.8

65
.1

67
.4

66
.5

N
E

R
O

ra
cl

e†
†

79
.6

66
.2

72
.3

72
.2

60
.0

65
.5

84
.6

79
.0

81
.7

71
.4

66
.7

69
.0

–
N

E
R

H
id

de
n

77
.4

65
.1

70
.8

69
.5

58
.5

63
.5

80
.4

75
.9

78
.1

68
.0

64
.1

66
.0

–

N
B

C

N
E

R
O

nl
y

76
.2

70
.6

73
.3

64
.9

60
.1

62
.8

79
.2

75
.2

77
.2

70
.0

66
.4

68
.2

63
.9

N
E

R
Jo

in
t†

77
.2

72
.9

75
.0

67
.0

63
.3

65
.1

79
.4

76
.2

77
.8

70
.8

67
.9

69
.3

68
.0

N
E

R
O

ra
cl

e†
†

76
.1

73
.0

74
.5

66
.0

63
.3

64
.6

79
.2

75
.2

77
.2

70
.5

67
.0

68
.7

–
N

E
R

H
id

de
n

78
.0

74
.8

76
.3

67
.0

64
.2

65
.6

80
.0

77
.1

78
.5

71
.4

68
.8

70
.1

–

PR
I

N
E

R
O

nl
y

84
.5

80
.6

82
.5

78
.1

74
.5

76
.2

91
.7

89
.7

90
.7

86
.4

84
.6

86
.0

83
.4

N
E

R
Jo

in
t†

87
.2

83
.9

85
.5

81
.7

78
.6

80
.1

91
.2

89
.1

90
.1

85
.7

83
.7

84
.7

86
.3

N
E

R
O

ra
cl

e†
†

87
.2

83
.6

85
.4

81
.7

78
.3

79
.9

91
.9

89
.9

90
.9

86
.4

84
.6

85
.5

–
N

E
R

H
id

de
n

90
.1

86
.2

88
.1

84
.4

80
.8

82
.5

91
.6

90
.4

91
.0

86
.4

85
.2

85
.8

–

V
O

A

N
E

R
O

nl
y

89
.6

85
.1

87
.3

83
.7

79
.5

81
.5

92
.5

90
.1

91
.3

87
.5

85
.2

86
.3

79
.2

N
E

R
Jo

in
t†

91
.7

87
.9

89
.8

85
.5

82
.0

83
.7

92
.7

90
.8

91
.7

87
.7

85
.9

86
.8

88
.2

N
E

R
O

ra
cl

e†
†

93
.0

90
.1

91
.5

87
.0

84
.3

85
.6

94
.8

92
.7

93
.4

89
.2

87
.9

88
.5

–
N

E
R

H
id

de
n

91
.3

89
.0

90
.1

85
.8

83
.6

84
.7

92
.7

91
.4

92
.1

87
.9

86
.7

87
.3

–

TA
B

L
E

4.
5:

N
E

R
ba

se
lin

e
an

d
jo

in
tm

od
el

pe
rf

or
m

an
ce

on
th

e
O

nt
oN

ot
es

co
rp

us
.

Jo
in

ti
nf

er
en

ce
co

ns
is

te
nt

ly
im

pr
ov

es
N

E
R

re
su

lts
ac

ro
ss

al
l

co
rp

or
a,

pr
ov

id
in

g
th

e
la

rg
es

tg
ai

ns
on

co
rp

or
a

w
ith

th
e

m
os

td
at

a
an

d
be

st
pa

rs
er

pe
rf

or
m

an
ce

.
W

he
n

us
in

g
th

e
lin

ea
r-

ch
ai

n
fe

at
ur

e
se

tt
he

ov
er

al
l

pe
rf

or
m

an
ce

is
lo

w
er

,b
ut

ga
in

s
be

tw
ee

n
th

e
ba

se
lin

e
an

d
jo

in
tm

od
el

s
is

la
rg

er
.W

he
n

us
in

g
sp

an
-b

as
ed

fe
at

ur
es

m
os

ts
ys

te
m

s
pe

rf
or

m
si

m
ila

rl
y.

120 JOINTLY MODELING SYNTAX AND NAMED ENTITY RECOGNITION

While the average labeled F1 scores would rank the overall system performance as NER-
HIDDEN, NER-ORACLE, NER-JOINT, NER-ONLY, best to worst, the relative performance of
these systems varies largely from data set to data set. For the NBC data set, NER-JOINT outper-
forms NER-ORACLE. On the MNB data set, NER-ORACLE outperforms all other systems by at
least a 1%F1.

What causes these discrepancies? It does not appear to be a factor of data size, as the MNB and
NBC data sets are similarly small and produce two very different rankings. However, the ranking
of the NER-ORACLE model appears to be correlated with the degree to which entity spans align to
syntactic constituents, as presented in Table 4.1.1. The two datasets with the lowest correlations –
NBC and PRI – are the same data sets where NER-HIDDEN has the highest relative performance
over NER-ORACLE. If the gold standard syntax constituents are highly correlated with named
entities, the NER-ORACLE model is able to take the best advantage of it. When the degree of
correlation between NER and syntax is not as strong, the NER-HIDDEN model can induce a better
syntactic representation. This also follows for the NER-JOINT model: when gold syntax is not
strongly correlated with named entities, it can be better to predict trees which are similar, but not
exactly the same as the gold trees.

Comparing Joint Inference Techniques
We more closely replicated the baseline results of F&M09 in previous work [117]. This was
largely due to the use of dictionaries of proper names, cities, etc., when constructing features, as
done in F&M09, which significantly improves the model’s ability to correctly label entity spans.
With these experiments we are able to better compare the two approaches to joint inference: soft
Boolean logic factors in factor graphs, and grammar augmentation with CFGs. In this work our
baseline model achieved an average labeled F1 of 73.67% across all corpora, while the F&M09
baseline has an average labeled F1 of 73.18%. This is a difference of 0.49 F1%, making the two
baseline systems quite comparable.

While both systems benefit greatly from joint inference with a model of phrase structure syntax,
the grammar augmentation approach of F&M09 results in an average F1 of 76.38% across all
corpora, a 3.2 F1% increase over the F&M09 baseline. In comparison, our joint model not only
provides a higher average absolute F1, at 78.27% F1, but also a higher margin, improving NER
accuracy by 4.6% F1 over our own higher accuracy baseline model. In comparison, our joint
model not only provides higher absolute performance, a 78.27% average labeled F1, but also a
higher margin, improving NER accuracy by 4.6% average labeled F1 over our own higher accuracy
baseline model.

These results alone cannot reveal the exact cause of the performance difference. One possible
hypothesis is that there are inherent advantages to our approach to joint inference. Our soft Boolean
logic constraints allow for a more flexible, context-specific coupling. However, it is difficult to
assess how many F&M09 errors might be attributed to the limitations of the “hardness” of its
coordinating constraints, or the extent to which our approach overcomes them. In an additional
set of experiments we reduce the feature set for coordination factors to a single bias feature, thus
forcing the model to learn a single weight to uniformly govern all coordination between syntax and
NER models. This results in a 3.1 decrease in average F1 when compared to our full joint model,
showing the importance of the more flexible coordinating factors.

A second, and perhaps more likely explanation of why our joint model outperforms F&M09 is

4.4 EXPERIMENTS 121

the higher parse accuracy of our parser. The factor graph parser (Sec. 3.1.2, pg. 69) has an average
parse F1 of 78.47, significantly higher than F&M09’s average F1 of 71.13. This constitutes a 7.34
difference in F1. Perhaps more pertinent to NER accuracy is the crossing bracket score, which
measures the average number of constituents in the predicted tree which cross a constituent in the
gold tree. An entity whose boundaries cross a predicted constituent span is unlikely to be found
in the model solution, and is ruled out entirely in the case of the grammar augmentation approach
to joint inference. Our parser has an average of 1.71 crossing brackets per sentence, whereas the
baseline parser used in F&M09’s has an average of 2.02, representing a15.3% reduction in crossing
bracket errors over F&M09.

A motivating example for Joint Inference

How does coupling these tasks benefit NER prediction? Fig. 4.7 provides some insight into the
types of errors which joint inference can avoid. In this example the baseline NER-Only system
incorrectly predicts the entity Social Party of type ORG. This is not serious error: Social Party
would likely be an entity span in another context, and the entity label is correct. The model only
fails because it does not capture the encompassing entity, Social Party of Serbia. The tree produced
by the standalone parser makes an similar mistake, correctly predicting Social Party as an NP but
failing to predict the second encompassing NP.

By sharing beliefs between the syntax and NER models, the joint model finds a better global
solution. The parse tree correctly groups Social Party of Serbia into its own NP, attaching the
following VP to the root of the tree. The named entity model receives stronger evidence for
the entity span Social Party of Serbia, and is able to correctly predict the full entity span. Both
predictions are aided by a potential from the coordinating factor that is > 1, and thus increases the
model’s belief that they are both true. This example is also interesting because the two erroneous
analyses of the standalone models are in agreement. This is the type of problem where a context-
specific weight, provided by the features for the NER-CONNECT factor, may be a critical factor in
reaching the correct solution.

The Effect of Joint Inference on Parsing Performance

The traditional motivation for joint inference argues that both tasks stand to benefit from being
performed jointly. However, while the previous example illustrates an instance where joint infer-
ence being mutually beneficial to both tasks, we find these occurrences to be rare when using our
joint model on this data set. While joint inference significantly improves NER prediction across
all corpora, the net effect of joint inference on parse accuracy is negative: joint inference decreases
the average parse accuracy across all corpora by 0.35 F1. Across the six corpora, joint inference
is just as likely to hurt parser performance as it is to help. This effect is most pronounced in the
ABC corpus, one of the smaller corpora, where it decreases performance by 0.98 on the 199 sen-
tence test set. The maximum improvement is 0.28 F1 on the NBC data set, another of the smaller
corpora. Table 4.6 lists these results.

Our findings differ from those of F&M09, where joint inference provides significant gains
on five of the six corpora, with an average improvement of 0.73 F1. Both approaches to joint
modeling improve parsing the most on the NBC corpus, where the approach of F&M09 increases
parse accuracy by 1.36 F1 (in comparison to our 0.28 F1 increase). However, our baseline parser

122 JOINTLY MODELING SYNTAX AND NAMED ENTITY RECOGNITION

It is true he is the President of Social Party, but Social Party of Serbia has 400,000 members .

ORG ORG MISC

It is true he is the President of Social Party, but Social Party of Serbia has 400,000 members .

ORG MISCORG

NP

CD NNS

VP

VBZIN

NNP

NP

PP

NNP NNP

NP

NPCC

S

. . .

. . .

NP

CD NNS

VP

VBZ

IN

NNP

NP

PP

NNP NNP

NP

NPCC

Sb.) NER-Joint Output

a.) NER-Only/Parse-Only Output

FIGURE 4.7: An example of joint inference improving both syntax and NER analyses. The standalone
NER model (a) is attracted to the shorter NP, Social Party, predicting the correct entity label but failing
to recognize that it is part of a larger entity. The parse-only model makes a similar mistake, correctly
classifying Social Party as an NP, but failing to correctly recognize its role in an encompassing NP. The
joint model (b) correctly predicts this larger NP, and the aligning named entity.

outperforms the F&M09 joint model on all parsing tasks, and it is possible that we are observing
a ceiling effect, with decreases in performance caused by incorrect generalizations and what is
essentially overfitting. In spite of efforts to regularize the model to prevent this, these data sets are
quite small, and more complex joint models may be prone towards finding generalizations in the
training data that are not as present in the test set.

Advancing the State-of-the-Art

In the previous section we showed that joint inference can produce significant improvements in
performance, raising labeled F1 performance by 2.71% with linear-chain features, 4.6% with
the feature set of [117], and 3.2% in F&M09. However, in practice it is hard to outperform a
discriminatively-trained sequence model with good feature selection. In this section we examine
the difference features can make on model performance, attempting to achieve the highest labeled
F1 scores.

Purely sequential models, like the linear-chain CRF, make one prediction, an entity label
(which could be null), for each token. The identities of entities can then be determined from
these purely local labels, but without the notion of a span, the model’s features are limited. Our

4.4 EXPERIMENTS 123

Prec Recall F1 F&M ‘09

ABC
Parse Only 79.75 76.72 78.20 70.15
Parse Joint 78.15 78.15 77.17 69.99

CNN
Parse Only 83.30 80.14 81.69 77.03
Parse Joint 83.41 80.09 81.72 77.71

MNB
Parse Only 76.98 72.61 74.73 65.49
Parse Joint 75.10 71.47 73.20 65.59

NBC
Parse Only 74.81 71.67 73.20 61.63
Parse Joint 75.15 71.88 73.48 62.93

PRI
Parse Only 82.70 79.92 81.29 76.35
Parse Joint 82.98 80.03 81.48 77.41

VOA
Parse Only 83.55 79.89 81.68 76.15
Parse Joint 83.43 79.91 81.63 77.51

TABLE 4.6: Standalone and joint parsing performance on the OntoNotes corpus. Results are calculated
in terms of labeled accuracy using Evalb. In comparison to F&M09 (right) our models offer better parsing
performance, but joint inference provides less significant and less consistent improvements.

model is span-based, making a prediction for each possible span, and thus the features used in our
model can be constructed around spans. The performance of these models is provided in Table 4.5
(right).

Here, by using span-based features, we are able to improve the performance of our baseline
model to levels significantly beyond that of the joint F&M09 model, and mitigating most of the
performance improvements of our own joint model. The average labeled F1 performance of the
model is 85.7% for NER-ONLY, 86.1% for NER-JOINT, 86.2% for NER-HIDDEN, and 86.4%
for NER-ORACLE. The margin of performance between the NER-ONLY and NER-JOINT models
falls to just 0.7% average labeled F1.

There are several factors that contribute to this: the small data size, the predominantly short
NER spans, and perhaps most importantly, the similarity between the information captured by
the baseline and joint models. The small data size limits what can be learned, and pushes the
accuracy of the span-featured models close to a performance ceiling: only a handful of mistakes
are made by any model, and most occur when labeling the spans, not when identifying the spans,
which is where joint inference may be most useful since we couple unlabeled span variables. The
tendency for NER spans to be short, and their position at the leaves of the tree, do limit the extent
to which a joint model can improve over a strong baseline sequence model. However, when using
the span-based feature set, the information captured by the NER-ONLY and joint models is quite
similar, the only significant difference being the structural constraints imposed on each component
in the model. Even here, the constraint imposed on NER variables by the SEMI-CRF factor is very
similar to the constraint imposed on syntactic variables by the CKY-TREE factor.

While this is largely a negative result, we still observe some interesting behavior. In terms of
labeled accuracy, all joint models improve compared to the baseline, but the advantage of the NER-
HIDDEN model is reduced. Inducing a syntax using the marginalization-based training method
renders the optimization search space non-convex, introducing the possibility that optimization
will not find the optimal set of model parameters. We find this to be a recurring problem: the

124 JOINTLY MODELING SYNTAX AND NAMED ENTITY RECOGNITION

hidden syntax models perform better on the unlabeled tasks, which are most directly affected by
the coupling of the models, but do not manage to label these structures quite as well as the model
configurations with convex objectives. Here a hybrid approach which predicts structure using
the NER-HIDDEN and labels it using the predictions of one of the remaining models. Another
alternative would be tune the optimization parameters on development data, though we do not
pursue that approach here.

4.5 Conclusions
In this chapter we discussed the task of named-entity recognition and showed how a model which
performs this task jointly with phrase structure parsing can outperform the performance of the
NER model alone. Our NER baseline model is essentially a common CRF-based model, though it
utilizes a span-based representation and a novel semi-Markov combinatorial constraint to prohibit
NER spans from crossing. This model is connected to a representation of phrase structure syntax
using Boolean logic factors which learn a context-specific coordination potential: the strength of
the coordination between NER and syntax differs based on the width of the span and the words
and part-of-speech tags contained within it.

Our baseline model outperforms a comparable baseline from previous work, our joint model
outperforms the joint model from previous work, and the margin of improvement associated with
joint inference are greater in our framework [117]. Additionally, the joint models which induce a
latent syntactic representation outperform the joint model trained on gold syntactic annotations on
most corpora. However, these very positive findings are ultimately met with a negative result: a
feature-rich baseline can all but eliminate the benefit of the joint inference on our test data set. We
identify several causes contributing to this effect.

In the feature-rich setting, using the gold syntax provides the best performance, but in terms
of unlabeled accuracy the joint model which induces a latent syntax is the next best configuration,
implying that there is hope of outperforming the joint NER model without the need for data jointly
annotated with syntactic trees. These are the best results ever reported for this data set, and it
is possible that we are observing a ceiling effect, reducing the performance differences between
models as we approach the maximum achievable performance with these kinds of methods.

The data set is also problematic. As noted in F&M09, there are many instances where a named
entity should correspond to a syntactic constituent, but doesn’t. This includes nested entities, which
aren’t explicitly annotated in the data. Given the right data, other joint models may yield better
results. A simple and intuitive extension would be to connect NER labeling to syntactic structure
or to syntactic labels. For instance, it is straightforward to add a dependency between the named
entity span and the set of syntactic label variables which can correspond to entities. We leave this
model as future work, as it would be better suited to a data set that more accurately reflected our
intuitions about the relationship between named entities and constituents.

NER couples naturally to phrase structure syntax, as both tasks aim to identify contiguous
spans of words, and NER spans frequently correspond to constituent spans. In the next chapter
we explore the task of relation extraction, where it is less clear which syntactic representation best
suits the problem. We present two joint models, one coupling to phrase structure, the other to
dependency structure, and show that it is possible to induce a latent syntax which allows the model
to outperform the use of gold trees, provided by pre-trained state-of-the-art parsers.

5
Joint Models for Relation Extraction

In the preceding chapter we demonstrated that our factor graph modeling framework can be used
to produce a state-of-the-art baseline NER model, and accuracy can be improved by incorporating
a model of phrase structure grammar and performing inference jointly. However, we also find that
these improvements can be alternatively achieved through careful feature selection and rich feature
sets. But NER is unique among the tasks we present in this dissertation, as many state-of-the-art
approaches to NER do not utilize any syntactic information. Many traditional approaches to NER
rely on purely sequential models, often relying on nothing more than lexical and part-of-speech
information.

The tasks we turn to now – relation extraction and semantic role labeling – often require syn-
tactic information in order to achieve state-of-the-art performance. Often this information will be
incorporated into the system via features or kernels, and not explicitly modeled, as in the pipelined
approach discussed in Chapter 1. We argue that, unlike NER, the task and syntactic structures are
more inherently coupled, and thus both the potential benefits from joint modeling will be greater.

In this chapter we take advantage of the inherently coupled relationship that exists between syn-
tax and relation extraction, modeling these tasks jointly, and using relation extraction annotations
to guide the induction of a latent syntactic structure. We devise two methods for coupling syntax
to relation extraction, one with phrase structure grammar and one with dependency grammar, and
examine the effect of this choice on relation extraction performance. We contrast the effectiveness
of these joint models with a model which makes use of syntactic predictions from a state-of-the-art
parser, as would be common in the pipelined approach. Models which utilize syntax outperform
the RE-only baselines, and, on the larger English data set, we find that inducing a latent syntax
using the marginalization-based training method outperforms the use of parser-produced trees.

125

126 JOINT MODELS FOR RELATION EXTRACTION

5.1 An Overview of Relation Extraction
Relation extraction (RE) is the task of identifying semantic relationships between sets of entities
in text. Typically the entities in the text are assumed to be identified and labeled, making the goal
of an RE system to identify which pairs of entities share in a relation, and to classify the type of
relationship it is. Common relation types include1:

• PHYSICAL, where an entity is situated with respect to another.
ex: The Bridge Tavern is north of Riverrun.

• PART-WHOLE, expressing a hierarchical relationship between entities.
ex: NBC is a subsidiary of Sheinhardt Wig Company.

• PER, for personal or social relationships.
ex: She’s my sister and my daughter!

• ORG, for affiliation or ownership.
ex: Elon Musk is the Chief Product Architect of Tesla Motors.

• AGENT-ARTIFACT, when an agent has possession of or creates an item.
ex: The Lady of the Lake, her arm clad in the purist shimmering samite, held aloft Excalibur
from the bosom of the water.

This kind of structured information can then be used to populate databases and answer queries,
making it a useful task which may align closely with a user’s goal.

Now consider the role that syntax might play in expressing these relationships. We identify
two common relationships, depending on the nature of the relation:

• Verbal Relations

In English, verbs play a central role in expressing many relations. A verb may carry a
meaning which is highly informative of the relation type, and the arguments of the verb are
commonly the entities which share in the relation. For instance, in the sentence “Shigeru
Miyamoto currently manages the Nintendo EAD branch” the verb manages is very indica-
tive of an EMPLOYS relation, as to manage an organization implies employment by that
organization.

But the correlation we focus on here is between syntactic structure and relations. Figure 5.1a
illustrates the syntactic analysis of this sentence using dependency grammar. In relations of
this type, it is common for the verb which specifies the relation to be the syntactic head,
either directly or indirectly, of the relation’s arguments. ACE English relation annotation
guidelines categorizes this set of relations as verbal relations.

• Nominal Relations

We classify another set of relations into the category of nominal relations. These are relations
the ACE guidelines describe as being possessive, prepositional, or formulaic, among other

1These types are drawn from the ACE 2005 taxonomy [136]

5.1 AN OVERVIEW OF RELATION EXTRACTION 127

Shigeru-Miyamoto currently manages the Nintendo-EAD-branch
PER ORG

EMPLOYS

Nobuo-Uematsu , Squaresoft -’s most prolific composer , joined in 1986
PERORG

EMPLOYS

NP

ADJRBS NNPOSNN

NP

NP

a.) Verbal Relation

b.) Possesive Relation

ADJP

FIGURE 5.1: Relationships between syntax and relation extraction. Verbal relations (top) are a class of
relations in which the relationship is generally captured by a verb (manages). This relation is expressible
using a dependency graph, as the arguments are typically syntactic modifiers, either directly or indirectly, to
the verb that defines the relation. Nominal relations (bottom) still have predictable underlying dependency
structure, but also frequently occur at the edges of constituent spans. In this case it may be preferable to
utilize phrase structure grammar when making RE predictions.

miscellaneous types. In the sentence “Nobuo Uematsu, Squaresoft’s most prolific composer,
joined in 1986.”, the relation between the entities Squaresoft and composer does not involve
any verb, and is instead expressed through the use of the possessive particle (’s). There are
many relations of this sort, each type having its own method (or methods) of being expressed
syntactically. We refer to relations of this type as nominal relations.

Some examples of nominal relations are the POSSESSIVE relation, as described above. Re-
lations of this type can also be expressed through the use of a preposition (the hounds of
Baskerville). Relations classified as FORMULAIC have the cookie-cutter constructions of
newswire headlines (April O’Neil, News Channel 6, Northampton MA), and COORDINA-
TION relations are expressed using conjunctions (The Starks and the Lannisters). Despite
each type being expressed syntactically in slightly different ways, in many of these cases the
two entities will each correspond to a syntactic noun phrase, and a noun phrase will begin at
the first entity and end with the second entity. This correlation is illustrated in Figure 5.1b

In previous work the inclusion of syntax in RE systems has produced mixed results. The work
of [137] utilizes multiclass SVMs to make RE predictions, and finds that syntactic information is
only marginally useful. The authors reason that this is due to the large number of highly local
relations in the ACE data set, citing more than 70% of relation extraction instances as being nested

128 JOINT MODELS FOR RELATION EXTRACTION

entity mentions, or adjacent terms, separated by no more than one word. In contrast, syntactic
information has shown to be very useful in graph-based approaches to relation extraction [138],
and systems which rely on graphical models [139]. And in unsupervised and distantly-supervised
work, dependency path features are one of the important kinds of information [140, 141]

In our approach we model syntax explicitly, and connect syntactic variables to relation extrac-
tion variables using soft Boolean logic constraints. We now propose two methods for integrating
syntax and relation extraction, motivated by the two types of correlations discussed above.

5.1.1 Factor Graph Models for Relation Extraction
We represent relation extraction as a pairwise model: a set of Boolean variables is used to predict
the presence or absence of a relation between any two entities, and a separate set of variables is
used to classify the type of relation if one exists. This is implemented in a manner which is nearly
identical in structure to way constituent spans are predicted and labeled in the phrase structure
parser from Section 3.1.2 (pg. 79).

We observe a sequence of words W = {w}N1 . Entities have been identified and collapsed into
single word expressions.

• Let {Rel(i, j) : 0 ≤ i < j ≤ n} be O(n2) Boolean variables such that Rel(i, j) = true
iff a relation is present between the entity at position i and the entity at position j. We treat
relations as undirected pairwise relationships.

• Let {Rel-Label(i, j, λ) : λ ∈ L, and 0 ≤ i < j ≤ n} be O(|L|n2) Boolean variables,
where L is the relation label set. Rel-Label(i, j, λ) = true iff a relation of type λ is present
between the entity at position i and the entity at position j.

• Let {ISATMOST1(i, j) : 0 ≤ i < j ≤ n} be O(n2) factors, each coordinating between
a relation prediction variable Rel(i, j) and the set of corresponding label variables Rel-
Label(i, j). This factor ensures that a single label variable is true if the corresponding
relation variable is true, otherwise all variables are false.

Here the Rel(i, j) and Rel-Label(i, j) variables simply express the representation of the problem,
while the ATMOST1 factors are logical constraints ensuring that only one label will apply to a
particular relation. There is also a corresponding set of unary factors for each of the variables
mentioned above, but their definitions are omitted for clarity.

In practice this space is heavily pruned: only a small subset of words in a sentence are likely
to be entities, and because we observe the location of entities and their labels, only variables for
each potential pairwise relation between variables will be instantiated. If there are m entities
in a sentence, the factor graph for this sentence will contain m(m+1)

2
− 1 sets of Rel(i, j) and

corresponding Rel-Label(i, j, λ) variables.

5.1.2 Factors for Coordinating Relation Extraction and Syntax
The novelty of our approach hinges on our ability to easily and effectively couple end tasks, like
relation extraction, to syntactic representations. In this section we detail two methods of coupling

5.1 AN OVERVIEW OF RELATION EXTRACTION 129

syntax with relation extraction, one with dependency grammar, the other with phrase structure
grammar, reflecting our prior beliefs of the nature of their relationships (as described in Section
5.1, pg. 126).

• Coupling with Dependency Structure

We first assume a representation of dependency syntax, identical to the model presented in
Section 3.2.2, including the DEP-TREE factor. We coordinate between this structure and the
relation extraction model with the addition of the following factors:

Let {D-CONNECT(i, j, k) : 0 ≤ i < k ≤ n; 0 ≤ j ≤ n} be O(n3) ternary soft NAND

factors, each coordinating between two syntactic dependencies, represented with Link(j, i)
and Link(j, k) variables, and a single relation variable, Rel(i, k). In this context word j
functions as a latent syntactic head shared by both entity i and k, based on the assumption
that two entities which appear in a relation will be the syntactic children of the same head
word, as may be the case with many verbal relations.

As in previous sections, the connections between components models are learned via the
weights of the features associated with the coordinating factors. Extending the Boolean
logic to the ternary case, when all three variables are true, the factor contributes a potential
φ to the model score. It otherwise contributes a potential of 1.0. If φ is> 1.0, we might learn
something akin to, “entity i of type ti is likely in a relation with entity k of types tk when they
share the syntactic head j, and j is the word ‘employs’.” Note that each Link variable will
be connected to many D-CONNECT factors.

• Coupling with Phrase Structure

We first assume the presence of a labeled phrase structure representation, identical to the
model presented in Section 3.1.2, including the CKY-TREE factor. We coordinate between
this structure and the relation extraction model with the addition of the following factors:

Let {C-CONNECT(i, j) : 0 ≤ i < j ≤ n} beO(n2) soft NAND factors coordinating between
syntactic Span(i, j) and relation Rel(i, j). This coupling is identical to the method used to
coordinate between Span and NER variables in Section 4.3.2 (pg. 113): one variable from
the syntactic representation pairs directly with one variable from the end task.

The logic behind the D-CONNECT approach to dependency syntax coupling is that by decom-
posing a relation into a two dependency arcs, each specifying a syntactic head/modifier relation-
ship, we make explicit the notion of a head word in the model. This head word may contain
important cues for determining whether a relation is present, and what type of relation it is (though
our model captures only the former).

For instance, in the example sentence (Fig. 5.1a) the model may already have a strong belief
that Shigeru-Miyamoto, of type PER, and Nintendo-EAD-branch, of type ORG, may share a rela-
tion, because PER and ORG entity types are often related. The additional knowledge that these
two entities share a syntactic head strengthens this hypothesis. Similarly, entities of type PER and
ORG may frequently occur in relations, but knowing that they are both headed by the verb man-
ages is indicative of its relation type label, EMPLOYS, though we leave this modeling extension
as future work.

130 JOINT MODELS FOR RELATION EXTRACTION

This information can be used in a constituent-based model, but it is not simple to obtain. Here
we collect features based on the words and word types that fall between the entities that define the
the span. This may work well for nominal relations, but may also capture local verbal relations via
rich features. For instance, in many cases the span will contain just a single verb, and thus a feature
can embody the ORG-EMPLOYS-PER information we aim to capture in the dependency variant
for verbal relations. For larger spans this approximation is less useful, as spans will be more likely
to contain multiple verbs. In sentences with multiple entities the relationship between entities and
their heads will be lost as the notion of a syntactic head is not made explicit in the model.

5.2 Experiments
Our experiments contrast three modeling scenarios, based on how a real-world NLP system might
be constructed to perform relation extraction. In the simplest case, a relation extraction system
would have no syntactic information. Instead the model would rely only on information like word
and part-of-speech information that can be reliably predicted using pre-trained models. In one
scenario, a model might be trained solely from part-of-speech and named entity information. Few
data sets which are annotated with both syntactic trees and relations, and thus the most realistic
method for incorporating syntactic annotations into the model is to first parse the training data
using a pre-trained parser, and then use these trees to construct features for training the relation
extraction model (i.e., the pipeline approach).

Alternatively, in our approach the relation extraction annotations are used to guide the induction
of a latent syntactic structure. This eliminates the need for syntactic annotations in the training
data. Another advantage of this approach is that the syntactic representation learned by the model
is guaranteed to be well-suited to the training data. Pre-trained parsers can suffer from domain
drift, where the data used to train the parser is not representative of the test data causing the
parser to generalize poorly to new data. A disadvantage of this approach is that the learning
signal from the relation extraction annotations may not be strong enough to induce a useful latent
structure (unsupervised approaches to syntax are significantly less accurate than their supervised
counterparts).

We examine the performance of these three configurations on English and Chinese relation
extraction data. This allows us to compare the effectiveness of our two proposed syntactic coupling
methods.

5.2.1 Data
We evaluate these models using the 2005 Automatic Content Extraction (ACE) data set [136],
using the English (dual-annotated) and Chinese (annotator #1 only) sections. Each corpus is an-
notated with entity mentions using a seven-type entity label set: PER, ORG, LOC, as introduced
in Section 4.1, as well as GPE for geo-political entity, FAC for facility, VEH for vehicle, and
WEA for weapon. In addition, many of these entities are annotated with entity subtypes, e.g., a
government organization has type ORG and subtype GOV.

Formatting the data and generating the necessary annotations is a lengthy process, and we re-
lied heavily on the Stanford CoreNLP toolkit. The data was first split from raw text paragraphs into
sentences, and then tokenized. The English data was tokenized according to the Penn Treebank

5.2 EXPERIMENTS 131

standardization, and the Chinese according to Penn Chinese Treebank standards [142]. Sentences
were then annotated with part-of-speech tags using a pre-trained, state-of-the-art CRF-based tag-
ging model [45], and parsed using the Stanford factored parsing model [114]. The pre-trained
grammar is trained from a variety of sources, including biomedical, translation, and question data
in addition to the standard Wall Street Journal corpus. We annotate two versions of the corpus,
one using the unaltered constituent trees produced by the Stanford parser, and a second corpus
annotated with the dependency trees taken from the corresponding Stanford typed dependencies.

We then reintroduced the entity and relation annotations to the data, collapsing multi-word
entities into a single term. Unfortunately in many instances the tokenization, tagger or parser would
fail, or we could not guarantee that the alignment between the ACE annotations and the resulting
text was correct. In these cases, the sentence was discarded from the data set. In addition, we
filter out sentences with fewer than two entities (which are incapable of containing relations) and
sentences with more than 40 words (because they may be unreliable). This yields 6966 sentences
in the English data, and 747 sentences for the Chinese. Nine of every ten sentences constitute the
training set, with every tenth sentence reserved for test.

5.2.2 Model Configurations
We evaluated six different systems. Two were variants of a baseline system, two systems use parses
produced by the pre-trained Stanford parser (one for each formalism), and two systems infer syntax
in a joint model:

• Baseline
The baseline model is the edge-factored model described in Section 5.1.1, consisting of
Rel(i, j) variables, corresponding Rel-Label(i, j, λ) variables, and the set of factors that
attach to them and coordinate between them. Features for this system, which are common to
all model configurations, are combinations of lexical information (i.e., the words that form
the entity, the pos-tags of the entities, etc.) as well as the distance between the relation. This
is a simple model and does not attempt to exhaustively leverage all proven sources of useful
information [79].

• Baseline-Ent
The features in the BASELINE model are very simple, but represent a reasonable choice when
an NER system is not available, or not reliable. As noted previously, ACE data annotations
specify an entity type and a fine-grained entity subtype. This information is very useful for
determining the presence of relations and their relation types. BASELINE-ENT represents a
variant of the BASELINE model in which additional features are added using entity type and
sub-type information.

• Oracle-DP
In this configuration we instantiate the joint dependency syntax model, as described in Sec-
tion 5.1.2. We set the syntax variables to their observed values in the data, as determined by
the Stanford parser-produced dependency trees, allowing the DEP-TREE factor to be omit-
ted from the model. Training is fully supervised, and the values of syntactic variables are
observed both during training and testing.

132 JOINT MODELS FOR RELATION EXTRACTION

• Oracle-CP
A constituent syntax analogue of ORACLE-DP, using the constituent parses provided by the
Stanford factored parser.

• Hidden-DP
A model in which dependency syntax is induced using marginalization-based training. It is
structurally identical to ORACLE-DP, except that the DEP-TREE factor is required, as it is
needed to constrain the set of latent syntactic variables. Because syntax is treated as a latent
variable, no syntactic annotations are required during training or testing.

• Hidden-CP
The constituent syntax analogue of HIDDEN-DP.

As in previous results, models which require syntactic annotations during training are marked with
a † symbol and models which rely on syntactic annotations during both training and testing are
marked with †† symbol.

5.2.3 Features

The features in the BASELINE system are simple, and are used only for predicting the presence
of a relation and its type. These features include the words, part-of-speech tag, and capitalization
information of each entity in the candidate relation, as well as the distance between them. For the
relation from w1 to w5 in the sentence “Shigeru-Miyamoto currently manages the Nintendo-EAD-
Branch”, these features are:

Feature Comment
[e1]-Shigeru-Miyamoto String form of left entity

[e2]-Nintendo-EAD-Branch String form of right entity
[e1-w]-Shigeru Each word contained within left entity

[e2-w]-Nintendo Each word contained within right entity
[e1-pos]-NN-NN Concatenated POS-tags of left entity

[e2-pos]-NN-NN-NN Concatenated POS-tags of right entity
[e1-e2-pos]-NN-NN-NN+NN-NN Concatenated POS-tags of both entities

[dist]-4 Distance between entities
[e1-e2]-Shigeru-Miyamoto-Nintendo-EAD-Branch Entity bigram

[e1-w-e2-w]-Miyamoto-Nintendo Word-level Bigram

The BASELINE-ENT model extends upon the BASELINE model to incorporate entity label and
sub-type label features.

5.2 EXPERIMENTS 133

Feature Comment
[e1-t]-PER Left entity type
[e2-t]-ORG Right entity type

[e1-e2-t]-PER-ORG Entity type bigram
[e1-st]-EMPLOYEE Left entity sub-type
[e2-st]-COMPANY Right entity sub-type

[e1-e2-st]-EMPLOYEE-COMPANY Entity subtype bigram

In models with syntax, the features associated with the syntactic factors are those described
previously in Chapter 3. For dependency parsing this is the [106] feature set, and for phrase
structure parsing we use the features listed in Section 3.1.2 (pg. 3.1.2).

The remaining features are those which govern coordination between component models.

Feature Comment
[co-dist]-4 Distance between entities

[co-e1-e2]-Shigeru-Miyamoto-Nintendo-EAD-Branch Entity bigram
[co-e1-w-e2-w]-Miyamoto-Nintendo Word-level Bigram

[co-e1-t]-PER Left entity type
[co-e2-t]-ORG Right entity type

[co-e1-e2-t]-PER-ORG Entity type bigram
[co-e1-st]-EMPLOYEE Left entity sub-type
[co-e2-st]-COMPANY Right entity sub-type

[co-e1-e2-st]-EMPLOYEE-COMPANY Entity subtype bigram

For the coordination factors in the dependency syntax models, we add the following features which
include information about the latent head word:

Feature Comment
[co-e1-e2-t-hw3]-PER-ORG-manages Type bigram with headword

[co-e1-e2-st-hw3]-EMPLOYEE-COMPANY-manages Subtype bigram with headword

In initial experiments we found the baseline models were able to outperform the syntactic models
when coordination features consisted solely of distance, word, and part-of-speech information.
The inclusion of entity label features appears to be crucial for learning a useful latent syntax.

5.2.4 Design

All models are trained using 20 iterations of stochastic gradient descent, with a learning rate η =
0.01, and using L2 regularization (a Gaussian prior, i.e., variance = 1.0). We use fewer iterations
of SGD than in other experiments because the ACE data sets used here are comparatively much
smaller. Models which contain a representation of dependency syntax are cyclic and loopy belief
propagation is used, a max of 10 iterations per example, to find an approximate inference solution.
For the remaining models the graph is acyclic and inference is exact, requiring two iterations of
BP. Models are decoded by positing a relation for all i, j where the beliefs of Rel(i, j) > 0.5, and
taking the label λ which maximizes Rel-Label(i, j, λ) for each predicted relation span.

134 JOINT MODELS FOR RELATION EXTRACTION

On a quad-core 2.8GHz intel processor, calculating parameter updates in parallel (mini-batches
of size 4), training for the BASELINE model takes 45 seconds per iteration (21k features), 55 sec-
onds per iteration for the ORACLE-CP model (26k features), 3.2 minutes for the ORACLE-DP
model (44k features), 1.7 minutes for the HIDDEN-CP model (81k features), and 5.4 minutes
HIDDEN-DP model (120k features). The BASELINE and BASELINE-ENT models have approx-
imately identical training times despite the BASELINE-ENT model containing some additional
features.

Models are evaluated in terms of precision, recall, and F-measure, for both labeled and unla-
beled cases. An unlabeled prediction for (i, j) is considered correct if there is a relation between
the entities at i and j in the gold data. A labeled prediction is considered correct if this is true, and
the predicted label matches the label of the relation type in the gold data.

5.2.5 Results
The results of our experiments are presented in Table 5.1. In both languages we find that at
least one joint model significantly outperforms the baseline, demonstrating the usefulness of the
marginalization-based training method when no syntactic training data is available. In some cir-
cumstances these models even outperform those which rely on the parses produced by the pre-
trained Stanford parsing model, indicating that this method’s usefulness is not limited only to
low-resource languages and domains.

Performance of Latent Syntactic Structure Models

On the English data we find that all models which utilize syntactic information outperform their
respective syntactically-uninformed baselines. This results in an 1.9% average F1 improvement for
the dependency-based models, and a 3.2% improvement for phrase structure models. Here we find
that both HIDDEN models, which learn a latent syntax, outperform their ORACLE counterparts,
which use trees produced by the Stanford parser.

There are many possible explanations for this. Because the parser is pre-trained, it is possible
that the data used to train the Stanford parser may differ greatly from the ACE data sets we use
in our evaluations, and the parse trees it produces are not very accurate. Performance drops in
out of domain parsing is well-documented [13], and while both the ACE data set and the Stanford
parser training data consist largely of newswire, it may still affect the parser’s performance. This
is a disadvantage of a traditional pipeline approach where models are trained independently from
different data sources.

It is also possible that the assumptions made by the models – that a constituent span or a pair of
dependency edges align directly to a relation – may be too constraining for the ORACLE systems.
Note that in Fig. 5.1 the dependency from Shigeru-Miyamoto to manages is represented with two
dependency arcs, and is therefore not captured by the D-CONNECT-style of model coordination. A
model would need to utilize higher-order connections to capture this phenomena. In other words,
D-CONNECT coordinates between Rel(i, j) with latent head k, and all possible pairs of directed
arcs between (i, k) and (j, k). A higher order version of this factor would need to connect triples
of syntactic dependencies before it could correctly capture the relationship between the relation
and the gold syntax in the example above. Prior work has shown how to model higher-order
connections with additional factors [11], but we leave these extensions unexplored. Thus it is

5.2 EXPERIMENTS 135

ACE Results
English Chinese

Unlabeled Labeled Unlabeled Labeled
Model P R F1 P R F1 P R F1 P R F1
Baseline 85.4 57.0 68.4 83.0 55.3 66.4 42.9 26.8 33.0 42.6 21.3 28.4
Baseline-Ent 87.2 65.4 74.8 85.8 64.4 73.6 55.2 31.1 39.8 51.2 29.4 37.4
Oracle D-P†† 89.3 67.4 76.8 89.3 66.2 75.4 60.0 32.6 42.2 58.1 31.3 40.7
Hidden D-P 87.8 69.8 77.7 85.3 67.8 75.6 48.0 32.0 38.4 47.2 30.0 36.7
Oracle C-P†† 89.1 68.7 77.6 87.5 67.5 76.2 66.8 37.8 48.3 63.8 37.0 46.8
Hidden C-P 90.5 69.9 78.9 88.8 68.6 77.4 56.3 32.3 41.0 53.4 31.6 39.7

TABLE 5.1: Relation extraction results on ACE. Models using hidden phrase structure syntax provide
significant gains over the syntactically-uniformed baseline model in both languages, but the advantages of
the latent syntax were mitigated on the smaller Chinese data set.

possible that the parser-produced trees are of high quality, but these modeling assumptions cannot
take full advantage of them. A pipeline approach would avoid this shortcoming by allowing the
construction of arbitrarily complex features from the parser-produced trees, which can then be
used to aid relation extraction. In order to directly compare identical models with various training
methods, we do not pursue this method here.

On the smaller Chinese data set the HIDDEN-CP model still provides significant improve-
ments over the baseline, but is outperformed, by a large margin, by the ORACLE-CP model. The
HIDDEN-DP model does not improve over the BASELINE-ENT. The lower absolute performance,
relative to the English data, may be indicative of having too little training data to generalize to new
data, and this effect may be more pronounced in the latent syntax models which have far more
parameters to learn.

Dependency Structure vs. Phrase Structure

Models based on phrase structure consistently outperform their dependency structure counterparts.
This may be due to the larger number of factors and parameters that constitute the interface be-
tween relation extraction and dependency grammar, an issue that may be exacerbated by the small
size of the training data. Alternatively, [137] cite the large number of local relations in the ACE
data as a contributing factor to the lack of significant performance increases by incorporating syn-
tactic information into their model. It is possible that constituent spans are more useful in identi-
fying and supporting these local nominal relation predictions than dependency structure is able at
successfully identifying verbal predictions.

On the Chinese data we again find the phrase structure models produce the highest accuracy,
but here the parser-produced trees significantly outperform both the induced syntax models. The
Chinese data set is very small, and potentially too small to learn the large number of parameters
associated with latent syntax and coordination between component models. The small data is also
likely a cause of the low overall performance of all models. Even in this scenario, the HIDDEN C-
PARSE model still represents a low-resource method for recovering some of the gains associated
with syntactic information, in situations where pre-trained parsers and syntactic annotations are
unavailable.

136 JOINT MODELS FOR RELATION EXTRACTION

5.3 Conclusion
In this section we demonstrated the usefulness of the marginalization-based approach for training
joint models in the presence of latent syntactic variables. We also compared the effectiveness of
different syntactic representations in the context of a joint model. For the task of relation extraction,
at least on these relatively small data sets, we find the simplest approach to latent syntactic structure
to be the best: latent phrase structure outperforms latent dependency structure by between 1-3%
labeled F1.

For the larger English data set we find that inducing a latent syntax is not merely an attractive
approach for when syntactic training data is unavailable, but the highest performing approach in
general. This is a promising result: in practice the use of pre-trained parsers is necessary for provid-
ing parse trees for downstream NLP, with the only alternative being the use of fully unsupervised
models with significantly lower accuracy. Outperforming these models with marginalization-based
training indicates that it may be an approach suitable for both low-resource domains, and for NLP
in general. For languages or domains where syntactic training data is scarce or unavailable, the
latent syntax approach may offer a level of performance that would otherwise be unattainable.

A limiting factor in these experiments is the size of the data. The need to heavily pre-process
the raw text to produce high-quality tokenized, part-of-speech tagged data with parse, entity, and
relation annotations meant that a disappointingly large amount of the original text was discarded.
Producing the data set for these experiments has yet another disadvantage: because the resulting
data set is unique to our work, we cannot compare to current state-of-the-art systems. In the
next chapter we aim to address these concerns by evaluating our joint modeling framework and
marginalization-based training method on a standardized task, with a standardized data set.

6
Semantic Role Labeling with Latent Syntax

In this dissertation we present several joint models, covering a number of common NLP tasks. We
have shown previously how our belief propagation approach to joint inference in factor graphs can
produce state-of-the-art results on a fully supervised named entity recognition task, outperforming
other joint inference methods. We then demonstrated the effectiveness of marginalization-based
training with hidden structure, using it to induce latent syntactic representations and improving a
model of relation extraction. The models which induced a latent syntax were also shown to be
preferable to models which utilized parse trees produced by a pre-trained state-of-the-art parser,
which might be used in an NLP pipeline.

Our aim in this chapter is to demonstrate the effectiveness of marginalization-based training
with latent variable syntax models, but in a more sophisticated model and on a task with standard
data sets and evaluation. Here we turn to semantic role labeling, where we present a simple factor
graph model for the task, and describe novel extensions for capturing unique aspects of the prob-
lem – sense prediction and valency – by using variable chains with specially-defined transition
matrices. We extend this baseline to produce a joint model of SRL and dependency syntax.

We use a standard data set in this chapter which was constructed for a shared task competition.
This allows us to directly compare our system to many other systems. As in the relation extraction
experiments (Section 5.2.2, pg. 131), we compare the performance of our latent syntax model
using marginalization-based training to an “oracle” system and a syntactically-uninformed baseline
model. The latent syntax and oracle models are structurally identical, but differ in that the oracle
is given the true parse trees during training and at testing. Unlike the relation extraction scenario,
where these trees were produced from a pre-trained state-of-the-art parser, the shared task data
contains very accurate dependency parses. For most languages these trees are hand-annotated,
making them a potentially more reliable source of syntactic information than the trees used in the
previous chapter.

Despite this, we obtain results similar to those for relation extraction presented in Chapter 6.
For most languages the latent variable syntax models perform comparably to the observed syntax

137

138 SEMANTIC ROLE LABELING WITH LATENT SYNTAX

The cat scratched the man

AGENT PATIENT

scratch.01

FIGURE 6.1: An example sentence with dependency tree and SRL annotations. Here the semantic de-
pendencies of the SRL analysis correspond directly to syntactic dependencies over the same indices. The
identity of a particular predicate sense is generally marked with a numeric suffix on the predicate’s lemma.
Here scratch.01 indicates that this sense of scratch is the first out of a potentially larger set of senses, dis-
tinguishing the current sense “to score the surface (of something) with a sharp or pointed object” from
alternatives like “to cancel or strike out (writing) with a pen or pencil.”

models, achieving on average more than 90% of the performance difference between the baseline
models and the oracles. In some languages, for reasons we explain below (pg. 157), the use of
marginalization-based training with latent syntax provides an improvement over the models which
use of gold parses.

We begin by reviewing the task, and discussing the relationship between dependency structure
and the predicate-argument structure involved in semantic role labeling. In Section 6.2 (pg. 143)
we introduce a series of factor graph models for semantic role labeling. A simple edge-factored
model serves as the baseline, an extension improves upon this by modeling valency and sense
prediction jointly. The full joint model couples this structure with a dependency parsing model.
We conclude (Section 6.3.5, pg.153) by comparing the performance of our model to competing
systems in the 2009 CoNLL shared task [143], and examining the syntactic structures induced by
the latent syntax model.

6.1 Semantic Role Labeling
The application of statistical methods to syntactic parsing resulted in significant improvements
to parse accuracy [88, 144], but aside from the construction of treebanks, these parse trees serve
little practical purpose in and of themselves 1. In the case of Penn Treebank style annotations,
constituent trees are complicated structures with a large sets of constituent labels that precisely
define the syntactic relationships present in the corpus, but ultimately this is still far removed
from a theory of meaning. For practical NLP, where tasks like question answering and database
construction require knowledge of the semantic relationships between entities, a syntactic tree only
provides part of the answer.

In contrast, the aim of semantic role labeling (SRL) is to capture the core meaning of a sen-
tence. SRL annotations (Fig: 6.1), inspired by the frame semantics of Charles Fillmore [148],

1Notable exceptions include much of the work pursued in corpus linguistics, from both historical [145] and psy-
chological [146] perspectives. Treebanks can also be utilized to train models which do not aim to predict trees, as is
the case in tree-based MT systems [147].

6.1 SEMANTIC ROLE LABELING 139

decompose the semantics of a sentence into a set of semantic frames. Each frame is built around
a predicate, an important verb or verb-functioning word. Due to homonyms and subtle seman-
tic variation even within the same word, one token can refer to a number of possible underlying
senses. Verbs like saw are ambiguous, and can refer to the act of seeing or to the act of cutting
– two different predicates with the same orthographic form. To identify the semantics of the sen-
tence it is necessary to identify precisely which of these senses is intended. This is indicated using
a numeric suffix attached to the predicate’s lemma (i.e. saw.01 vs. saw.02).

Each predicate takes zero or more words as arguments. Typically these are nouns or noun-
functioning words which play a particular semantic role within the frame. Figure 6.1 describes a
semantic frame where the word scratched is the predicate, and cat and man are arguments. In this
context the cat is the one who has inflicted the scratches, and hence the role it plays is that of the
AGENT. The man has been scratched by the cat, and as the victim of the scratching he plays the
role of PATIENT. Note that the semantic roles are identical regardless of whether the sentence is
phrased in active voice, as illustrated, or in the passive voice, as in“The man was scratched by the
cat”. That is, SRL annotations abstract over simple grammatical alternations like voice 2.

6.1.1 The Role of Syntax in SRL

In many ways SRL is a simpler task than parsing. Parse trees, especially constituent trees, are
often more deeply structured than SRL analyses, which are multi-rooted trees of height one. Sim-
ple SRL models do not enforce the same structural constraints that necessitate the use of dynamic
programming for efficient parsing, and many SRL systems predict and label predicate-argument
pairs with maxent classifiers [150, 151] or SVMs [152]. However, the presence of semantic rela-
tionships is still heavily constrained by the underlying syntactic structure of the sentence, and thus
the two tasks are inherently linked: to solve SRL at a state-of-the-art level, one must first obtain
syntactic analyses.

Evidence of this comes from the CoNLL shared tasks, which helped define SRL as a standard
task and where early competitions even included a set of parses, for use at both train and test
time, to provide a level playing field in the competition [153]. The highest performing system
in the competition made use of parse structure to prune away conflicting analyses from the space
of solutions, making it feasible to use a global model for SRL predictions [19], while the use of
additional parsers in the open challenge further improved performance in that track. In addition,
many researchers have sought to improve SRL performance by better exploiting syntactic analyses,
either by incorporating new syntactic information from other syntactic formalisms [154], or by
training a joint model to rerank parses to best suit SRL [151].

What is the precise nature of the relationship between SRL and syntax? For the sake of con-
tinuity with the models that will follow, let us focus on the relationship between semantic role
labeling and dependency parsing. Recall that verbs play an important role in dependency grammar
– a verb serves as the root of the dependency graph, and verbs serve as the parents, either directly
or indirectly, of the other word classes which modify them. The nature of its correlation with

2Though it also common for this distinction to be made in syntax, where constituent labels often discriminate
between subject NPs and object NPs. For instance, the Penn Treebank II guidelines suggest including annotations for
these grammatical roles [149]. However, semantic role labels exist for specifying many additional roles not addressed
by syntax alone.

140 SEMANTIC ROLE LABELING WITH LATENT SYNTAX

Gold Trees Parse Trees
Language # sents 1 ≤ 2 ≤ 3 % cross 1 ≤ 2 ≤ 3 % cross
Catalan 13200 100.00 100.00 100.00 0.0 91.12 93.82 94.80 1.05
Chinese 22277 78.09 78.58 78.68 4.97 64.98 68.83 70.13 7.08
Czech 38727 63.90 86.26 89.97 2.74 61.21 80.26 83.84 4.29

English 39279 63.62 64.56 64.70 2.42 59.08 61.29 62.09 3.52
German 36020 77.22 77.98 78.03 3.99 72.34 75.55 76.48 4.12
Japanese 4393 14.32 51.52 60.79 14.68 13.13 48.30 56.74 16.65
Spanish 14329 100.00 100.00 100.00 0.0 91.12 93.99 95.29 0.85

FIGURE 6.2: Correspondence between syntax and SRL predicate-argument pairs. Statistics calculated
from the CoNLL 2009 shared task data set. This table indicates the % of SRL predicate-argument pairs that
correspond to directed paths in the dependency tree. The statistics in the left partition reflect the correlation
between SRL and the gold trees provided by the data set, while the trees used in the right partition are from
parser-produced trees, also provided in the data set (HEAD vs. PHEAD fields).

semantic role labeling is therefore straightforward: predicates are often verbs, and thus function,
directly or indirectly, as the syntactic heads of their arguments. If two words exist in a predicate-
argument relationship, then we can expect that a directed path exists from argument to predicate in
the dependency syntax.

We formally define the order of the relationship between syntax and SRL as follows:

Let A(i, j) represent an SRL predicate-argument pair from predicate i to argument j and
head(i) denote the syntactic head of word wi. For a given pair of indices i and j, a first order
correlation between SRL and syntax exists if A(i, j) =⇒ head(j) = i, where A(i, j) specifies j is
an argument of i, and head(j) returns the syntactic head of the word at index j.

A second order relationship can be defined similarly:

For a given pair of indices i and j, a second order correlation between a dependency tree and
an SRL argument pair exists if A(i, j) =⇒ ∃k : head(j) = k ∧ head(k) = i.

The table in Figure 6.1.1 specifies the extent to which this correlation holds for dependency
paths of various lengths (1 = first order, 2 = second order, etc.) across a collection of seven cor-
pora. For a majority of the languages represented there is a strong implication between the two
task structures: if word i is a predicate and word j its argument, there is likely a direct correspon-
dence in the dependency syntax, with word i functioning as the syntactic head of word j. This is
especially true of the Catalan and Spanish data sets, where it holds without exception. However,
there are instances where the degree of first order correlation can be exceedingly low. This is the
case for Japanese, where a mere 14.32% of SRL predicate-argument pairs have a corresponding
dependency path of length 1.

It is worth noting that the extent of the correlation between syntax and SRL is as much a
product of the annotation style as it is one of language characteristics. This is highlighted in the
Japanese data, where the annotation style causes a low degree of first-order correlation, and a
relatively high degree of second-order correlation. Japanese marks topic, subject, and object using
suffix particles, and in Japanese language processing it is common to tokenize these separately. If a
syntactic dependency exists between two words, these particles are included in the analysis and will

6.1 SEMANTIC ROLE LABELING 141

その 様子 を 見て 観客 は 拍手 喝さい を 送る .

 DDM NN PPM VV NN PPR NNV NNV PPM VV .

GAGA
GA

GA

WO

WO

 the state + [OBJ] see audience + [TOPIC] applaud cheer + [OBJ] send .

FIGURE 6.3: An example of crossing syntactic and SRL dependencies. Syntactic dependencies are
shown above the syntax, semantic dependencies below. Predicates are shown in red, multi-morpheme ex-
pressions boxed in grey. In Japanese, where the correlation between syntax and SRL is the weakest in the
CoNLL data, morphological segmentation is a common pre-processing step which precedes parsing and
other NLP tasks. A syntactic analysis will often attach a word to its head-word’s particle before the head-
word’s root, while roots can be linked directly in the SRL analysis. This leads to a high degree of mismatch
between the two annotations, including a larger degree of crossing dependencies.

intervene in the dependency path. In contrast, SRL dependencies link directly between the roots of
words, often omitting their particles. Thus few SRL dependencies correspond to a single syntactic
dependency in Japanese, but many correspond to 2-arc dependency paths. This phenomenon also
contributes to the higher degree of crossing brackets, where for an SRL dependency over (i, j),
there exists a syntactic dependency (k, l) such that i < k < j < l. Both types of mismatch are
illustrated in Fig. 6.3.

In a many situations it is difficult to obtain high-quality syntactic analyses, and so the possibility
of SRL without parse trees is a promising endeavor. Marginalization-based training with latent
syntax provides one method to accomplish this, and also circumvents problems associated with
ill-suited syntactic representations. In the following sections we will show that in cases of extreme
mismatch, as in the CoNLL 2009 Japanese data set, an induced syntax can align more directly with
the end task of SRL and improve performance over similar models which use the parses specified
in the data.

6.1.2 Related Work
SRL has benefitted greatly from being the focus of a series of shared task competitions. An ini-
tial surge of work occurred in response to the 2004 CoNLL shared task on SRL[155], and many
systems used simple maximum entropy [150] or SVM classifiers [152]. These classifiers predict
“Is there a predicate-argument relationship between a given pair of words?” and “What is the
most likely label for this relation?” The shared task data set paired SRL annotations with hand-
annotated constituent trees from the Wallstreet Journal Treebank, often reducing the SRL task to
one of mapping trees to useful features for these pairwise classifications.

However, there are disadvantages to modeling these predictions independently. Naturally the
sense of the predicate is inherently linked to the number and type of roles that predicate takes,

142 SEMANTIC ROLE LABELING WITH LATENT SYNTAX

which in turn influence each other. A predicate scratch may tend to have one sense if there is an
agent and patient who are likely to claw and be clawed, and a different sense if it has only an agent,
and that agent is a billiards player. Modeling these dependencie jointly significantly improves ac-
curacy compared to independent predictions. Popular approaches for performing or approximating
global inference in SRL includes integer linear programming [16], n-best lists [156], and Markov
Logic, which reduces such constraints to weighted first-order logic formulas [157, 158]. The
Markov Logic approach has connections to our own, as we express weighted logic constraints in
terms of factors whose potential tables encode such logic, and both approaches rely on graphical
models (though it is common to perform inference via sampling in Markov Logic). We discuss
this issue in further detail in Section 6.2.2 (pg. 144).

The goals of the final SRL shared task broadened to focus on the joint predicting both semantic
roles and syntax [143]. Annotations for both SRL and dependency syntax are provided at training,
but competitors were encouraged to predict both at test time (joint track). Optionally, competitors
could also observe syntactic annotations at test time (SRL-only track). It might stand to reason
that a competition of this nature would serve to demonstrate the usefulness of joint inference over
pipelined system architecture, but, echoing the negative results of earlier joint SRL and parsing
systems [151], was not the case. The top system in both tracks were based on pipelined systems.

In the joint track, [159] utilized a second order graph-based parser in the style of [144] to
provide a syntactic analysis. Based on features derived from these parses, a maximum entropy
classifier scores the potential of each word to serve as an argument, and to function as a particular
semantic role. An ILP solver attempts to find the global optimum by coordinating these indepen-
dent scores, subject to a series of high-level constraints. Sense labeling is done separately by an
SVM. Many systems use similar approaches, but differ in the type of parser, the method of solving
the global optimization, and their respective feature sets. The best system in the SRL-only track,
[160] was largely an exploration of automatic feature discovery, again using maximum entropy
models, but relying on a state-of-the-art transition-based dependency parser to serve as a source of
features guiding the SRL predictions.

Thus the general approach common amongst many of the current state-of-the-art systems is
to first obtain the most accurate syntactic analyses as possible, extract features from these parses,
and utilize these features in a global solver. Few systems attempt to solve SRL without the use of
syntactic training data. Two notable exceptions include the work of [161] and [162]. [161] present
a system for SRL in Polish, where both syntactic and SRL annotations are scarce. They circumvent
the lack of syntactic training data by hand-crafting a shallow (“chunk-based”) parser. Argument
identification improves significantly when using features derived from the shallow parser, but this
still requires manual creation of a grammar for the parser. More similar to our approach, [162]
propose utilizing SRL annotations to find useful parse trees without requiring a pre-trained parser.
During training a baseline parser produces a forest (an efficient packed representation of trees),
and the SRL annotations are used to heuristically identify and prune away the most incompatible
entries. However, the syntactic formalism used in this work, combinatorial categorical grammar
(CCG), places a great deal of syntactic information in the lexicon. While this approach does not
require a pre-trained parser, it does require a dictionary of lexical terms (which also specifies part
of its syntactic role), it is not clear to what degree this method can be considered unreliant on
syntactic training data.

6.2 FACTOR GRAPH MODELS OF SRL 143

More recently, the work of [163] builds upon our own method to explore training SRL mod-
els in the absence of syntax, as we do, as well as other information like part-of-speech tags and
morphological attributes, which we assume to be provided in the data.

6.2 Factor Graph Models of SRL
We now present a series of factor graph models for SRL. The first model, the baseline, incorpo-
rates no syntactic information, and treats argument/role prediction and sense prediction as entirely
independent processes. To address some of the shortcomings of the baseline model, we describe
extensions to capture valency (the number and type of arguments a predicate takes) and link argu-
ment prediction to sense prediction. We then present a joint model of dependency syntax and SRL,
connecting these two models with logical factors.

6.2.1 Baseline Model: SRL without syntax
We present a simple edge-factored SRL model as a baseline. It is similar to our previous edge-
factored models (5.2.2, pg.131) in that for each pair of indices i, j ∈ n there is a Boolean vari-
able representing the presence of a dependency, which is then labeled via a set of corresponding
Boolean label variables (each representing one label from the set of L possible labels). In this
context, the dependency is a predicate-argument pair from predicate i to argument j, and L is the
set of possible semantic role labels. These are connected by a factor ensuring that at any predicted
argument receives exactly one role label. Formally we define this model as follows:

• Let {Arg(i, j) : 1 ≤ i ≤ n; 1 ≤ j ≤ n} be O(n2) Boolean variables such that Arg(i, j) =
true iff predicate i takes token j as an argument 3.

• Let {Role(i, j, λ) : λ ∈ L, and 1 ≤ i ≤ n; 1 ≤ j ≤ n} be O(|L|n2) Boolean variables
such that Role(i, j, λ) is true iff there is a semantic role of type λ between predicate i and
argument j. This implies that Arg(i, j) is also true, a property guaranteed by the following
factor.

• Let ISATMOST1(i, j) : 1 ≤ i ≤ n; 1 ≤ j ≤ n} be O(n2) factors coordinating between
Arg(i, j) and all Role(i, j, λ) label variables. This factor guarantees that iff Arg(i, j) is
true, exactly one Role(i, j, λ) will be true. If Arg(i, j) is false, all Role(i, j, λ) are false.

• Let {Sense(i, σ) : 1 ≤ i ≤ n, σ ∈ S}, be O(|S|n) Boolean variables, where S is the set of
senses observed for the lemma of predicate i. Sense(i, σ) is true iff predicate i has sense σ.

The Boolean Arg(i, j) and Role(i, j, λ) variables, and the multinomial Sense(i, σ) variables
can represent any SRL analysis. Each of these variables each have a corresponding unary factor,
referred to as ARG(i,j), ROLE(i,j,λ), and SENSE(i,σ) respectively, which locally score the values of

3On a practical note, the SRL task is often defined as including the position of predicates in the data at both training
and test time. This means that in practice there are a much smaller number ofArg variables than implied by theO(n2)
maximum as described above.

144 SEMANTIC ROLE LABELING WITH LATENT SYNTAX

the corresponding variable. When there are no other connections in the model, these are equivalent
to a set of maximum entropy classifiers.

This baseline is similar to the system proposed by [151], which uses a maximum entropy model
to classify whether or not there is a predicate-argument relationship for any pair of indices i, j. If
an argument is present, it uses a separate maximum entropy model to predict its role label. Our
baseline differs slightly, in that argument and role prediction are linked. If the features associ-
ated with a ROLE(i,j,λ) factor strongly indicate that variable Role(i, j, λ) should be true, then
these beliefs may influence the corresponding Arg(i, j) during inference. This can have the effect
of altering variable Arg(i, j)’s value to true, when its own local features would have otherwise
classified it as false.

Few other systems rely solely on a similar maximum entropy or factor graph architecture,
though maxent classifiers have been used in conjunction with other methods. [159] propose using
maxent classifiers as a preliminary classification step to assist in pruning, filtering out unlikely
analyses whose posterior probabilities are below a specified threshold. This reduces the search
space for a more complex global model, which performs inference using an ILP solver. ILPs
and other global inference techniques often outperform other approaches to SRL that make more
independence assumptions, and we do not claim the baseline system is a state-of-the-art system.
We now propose an extension to the baseline model which predicts the number of arguments and
roles predicted for each predicate jointly, and and which couples role labeling to sense prediction.

6.2.2 Joint Approaches to Sense and Role Prediction
The baseline model proposed above has a number of limitations. There are no dependencies be-
tween pairs of Arg(i, j) variables in the baseline model, nor are there dependencies between pairs
of Role(i, j, λ) variables. Each set of predicate-argument and role label predictions (variables
which share the same j index) is independent from next. Similarly, the variables and factors for
sense prediction are isolated from the rest of the graph. The lack of dependencies between these
aspects of the model leads to many unfavorable outcomes:

1. The values of other argument variables (for the same predicate) cannot be considered by
Arg(i, j), and thus a predicate can be assigned many more or many less arguments than is
likely. Many predicates take only a couple of arguments, and even analyses which feature
dozens of arguments per predicate are not penalized by the baseline model.

2. The lack of dependencies between role variables gives rise to a similar problem, and a pred-
icate may erroneously have multiple arguments with an idenitical role label. There are valid
scenarios (for instance, coordination) in which a predicate might have two or more argu-
ments assigned the same role label, but these are rare occurrences in our data. To illustrate
where this would be the correct analysis, in the sentence “Jack and Jill ran up the hill.” both
Jack and Jill perform the action of running and therefore have identical semantic role labels
(AGENT).

3. The predicate sense determines the roles which are associated with that predicate. Naturally
predicate sense and predicate roles should be considered jointly, and independent prediction
of these variables can easily lead to mismatches. A sense which has only been observed

6.2 FACTOR GRAPH MODELS OF SRL 145

taking a single argument (for instance, an intransitive verb like thrive does not take a direct
object), may erroneously take too many arguments, or in other cases, too few.

Both theoretical and empirical sources alike suggest that these decisions should be made jointly.
From the theoretical side, Fillmore’s theory of frame semantics strongly supports the need for joint
inference by conceptualizing argument, role, and predicate sense as a single unit: a semantic
frame4. According to frame semantics a predicate is associated with a particular set of roles “char-
acterizing a small abstract ‘scene’ or ‘situation’, so that to understand the semantic structure of the
verb it was necessary to understand the properties of such schematized scenes” [148, pg. 115].

From a more practical and empirical standpoint, the case for joint inference is illustrated by the
performance of SRL systems in shared competitions. In the most recent shared task competitions,
top performing systems have consistently relied on global inference strategies. A precursor to
many current state-of-the-art SRL systems, [156] has shown that modeling dependencies between
arguments can greatly improve performance over a comparable baseline consisting only of local
predictions. This trend has continued with a variety of global inference strategies, including ILP
[159], Markov Logic [157], and dual decomposition [165].

The intuition underlying why joint inference is useful for SRL is readily apparent, even in
the simple example sentence from Fig. 6.1. In a joint model that couples sense and argument
prediction, it is useful to know how many arguments the predicate sense will take. If there is a
single argument, we may have strong evidence for the billiards sense of scratched, as an intransitive
verb. If there is more than one argument, the predicate’s sense is likely that of clawing an object,
which is a transitive or ditransitive verb. In either case, the sense of the predicate determines how
many arguments are likely, and vice versa. Similarly, the predicate sense determines which roles
these arguments are likely to have.

A shortcoming of the baseline model is that it can easily overpredict a particular role, often
creating predicates with multiple AGENT or PATIENT roles. This is only acceptable in limited
circumstances, like coordination, and is not frequently represented in the CoNLL 2009 data. For
instance, both men and cats are capable of scratching, with men tending to scratch objects like
touchscreens, and cats having a natural inclination for scratching things in general. An SRL model
trained on the right data (perhaps with a combination of gadget blogs and veterinarian logs) could
reasonably predict that either is the AGENT of scratched. If two similar predicates appear in the
same sentence, it is just as likely that both would be labeled as AGENT by the baseline model. In
the following section we propose an extension to the baseline model which predicts argument, role,
and sense variables jointly, and penalizes analyses where a particular role is uncharacteristically
duplicated for the same predicate.

Modeling Valency with Accumulating Chains

Modeling predicate valency requires an additional set of factors beyond those previously discussed
in this dissertation. The problem lies in how Role(i, j, λ) variables have index-specific semantics,
of the sort “Does predicate i have an argument j with role label λ?”, when the question most
relevant to sense prediction is “Does predicate i have an argument (anywhere) with role λ?”,

4Frame semantics was preceded by Fillmore’s case grammar [164], which perhaps even more directly addresses
the concerns of valency. As it pertains to joint versus independent processes, both theories take similar positions.

146 SEMANTIC ROLE LABELING WITH LATENT SYNTAX

SV(i,3,r)

VC(i,3,r)VC(i,2,r)

ROLE(i,1,r)

Sense
(i)

Role
(i,1,r)

ROLE(i,2,r)

Sense
(i)

Role
(i,2,r)

ROLE(i,3,r)

Sense
(i)

Role
(i,3,r)

SENSE(i)

Sense
(i)

Sense
(i)

VC(i,1,r)

Sense
(i)
V

(i,0,r)
Sense
(i)
V

(i,1,r)
Sense
(i)
V

(i,2,r)
Sense
(i)
V

(i,3,r)

ROLE(i,0,r)

Sense
(i)

Role
(i,0,r)

SV(i,j,|R|)

.

.

.

.

VC(i,0,r)

Role
(i,j,r)

V(i,0,r)

 1 0

1

1 0

0

 2+

0

0

T

F Role
(i,j,r)

 0,1 0,0

1

1 0

0

 0,2+

0

0

T

F

V(i,1,r),V(i,2,r)

 1,1 1,0

0

0 1

0

 2

1

0

 2+,1 2+,0

0

0 0

0

 2+,2+

1

1

 1,2+

1

0

FIGURE 6.4: Modeling valency in SRL. Each V variable has three count states: no roles, 1 role, and
more-than-1 role. Explicitly specified potential tables in R factors process the counting logic, rule out any
invalid transitions between V variables. SV factors attach to the final V variable of each chain, allowing
coordination between the set of observed roles and the different senses which might be in use.

and arguably, “If so, how many?”. Our approach to defining variables with these semantics is
to construct chains of V (i, j, λ) variables, one chain for each predicate/role combination. Each
V (i, j, λ) variable acts as a counter over a limited number of bins (here, 0, 1, and > 1). At any
point j, V (i, j, λ) represents the number of times that Role(i, k, λ) has been true, 0 < k ≤ j. The
final variable in the chain, V (i, j = n, λ), captures the intended semantics.

We implement this by deterministically defining the factors which connect chain variables,
only allowing variable configurations which represent valid transitions from one chain variable
to the next. It is straightforward to capture this logic by explicitly defining the potential table
values for these factors, as illustrated in Fig. 6.2.2. To grasp the intuition, consider three variables,
V (i, j, r), Role(i, j, r), and V (i, j + 1, r), all connected by a factor VC(i, j, r). If V (i, j, r) holds
a count of 0, and Role(i, j, r) is true, the count should be incremented to 1 in V (i, j + 1, r). To
accomplish this we set all potential table entries which correspond to invalid transitions to 0, and
those which correspond to valid transitions to 1, enforcing the count logic as a hard constraint. This
is equivalent to implementing a simple finite state machine, and the logic analogously extends to
counting beyond 1. The final variable in the chain connects to the corresponding sense variable
using the SENSEFRAME factors outlined below, allowing the count and type of each role label to
influence sense prediction, and vice versa.

We argue for a 3-way binning for count variables, where the values of V variables correspond
to a count state of 0, 1, or more-than-1 of a particular role at the current position in the chain. While
few senses will have more than one of a particular role, having a bin for more than one occurrence
creates competition between Role variables. If it is highly likely that the predicate sense has just
a single occurrence of role label r then this will be accounted for as beliefs propagate backwards
through the chain, reducing the likelihood that more than one role variable will be true. We find

6.2 FACTOR GRAPH MODELS OF SRL 147

that a 3-way binning significantly outperforms a 2-bin model, which distinguishes only between
seen and unseen (0 and > 0). These results are presented in Section 6.3.5 (pg. 153).

Formally we define the valency modeling structure as follows:

• Let {V (i, j, r) : 0 ≤ i < j ≤ n, r ∈ R} be O(|R|n2) ternary variables, where |R| is the
number of role labels, forming |R| chains. These variables capture the number of predicate-
argument pairs of role r between pair (i, 0) and (i, j), using three bins: 0, 1, and more than
1. While there are few instances where a predicate will have multiple arguments with the
same role label, using a bin of 3 or more helps create competition between role variables for
the more typical event where a particular role occurs only once for each predicate.

• Let VC(i, j, r) : 0 ≤ i < j ≤ n, r ∈ R} be O(|R|n2) factors that deterministically imple-
ment the logic for calculating the values of V variables. These factors are binary at the start
of the chain, and ternary elsewhere. The potential tables of these factors are described in
Fig. 6.2.2.

• Let SENSE-VALENCY(i, r) : 0 ≤ i ≤ n, r ∈ R} be O(|S||R|n) binary factors which
connect the final V variable of each chain, V (i, n, r), to the Sense(i) variable for each
predicate i. The features of these factors capture correlations between predicate senses and
the number of particular roles associated with each.

Other models have also implemented forms of valency modeling, most notably the generative
models of constituent parsing [88, 89, 166] and dependency parsing [144]. Valency information
has also been utilized in discriminative models as part of the conditioning context in transition-
based parsing [167], and in ILP models of the same task [168]. However we are unaware of
previous work modeling valency in factor graph models.

6.2.3 A Joint Model of Dependency Parsing and SRL
Considering the limited attention that joint models have received in recent years, a comparably
large number of approaches exist for joint parsing and semantic role labeling. There is no doubt
that this is due to the CoNLL 2008/9 shared tasks, which focused on joint parsing and semantic role
labeling and featured many participating systems. The best joint results were attained with graph-
based approaches for the synchronous derivation of both structures [169], and later explored with
cube-pruning [170]. ILP models and Markov Logic [157] also performed well in the competition.
More recently, dual decomposition approaches have improved upon these results for English data
[165] and Chinese data [171].

Our approach to model combination relies on logical factors in a joint factor graph model,
and belief propagation for inference. Given the modeling structure we have outlined in previous
chapters, it is a straightforward extension to construct a fully joint model of SRL and dependency
parsing. We first assume the presence of a dependency syntax representation, identical to the first-
order model presented in Section 3.2.2 (pg. 99, including a projective DEP-TREE factor). We
coordinate this structure and the SRL model through the use of an additional set of factors:

• Let {SRL-CONNECT(i, j) : 1 ≤ i ≤ n; 1 ≤ j ≤ n} be O(n2) soft NAND factors coordinat-
ing a single dependency parse edge variable, Link(i, j), with a single predicate-argument

148 SEMANTIC ROLE LABELING WITH LATENT SYNTAX

j N
i N

r R

DEP-TREE

SRL-CONNECT (i,j)

LINK (i,j)

Link
(i,j)

ARG (i,j)

Arg
(i,j)

SENSE (i)

Sense
(i)

ROLE (i,j,r)

Role
(i,j,r)

IS-AT-MOST-1(i,j)
Sense
(i)

FIGURE 6.5: A joint model of SRL and dependency syntax. Depicted as a plate diagram, the baseline
SRL model (left) connects to the combinatorially-constrained dependency parse model (right) via a series
of SRL-CONNECT factors. Valency modeling is omitted here, and senses are predicted independently.

variable, Arg(j, i). This factor is associated with a set of features, and learns a potential to
determine the degree of coordination dependent on the context.

A graphical depiction of this model is shown in Figure 6.5.
This method for coordinating the models is essentially identical to the approach used in Chapter

4 to coordinate constituent spans and named entity spans. Unlike NER, SRL does not require a
combinatorial constraint. Therefore, unlike the joint NER model, there are no cycles in the graph
(i.e., the graph for SRL and joint SRL form a tree) and inference is exact. This is not the case for
any model with the valency modeling extensions.

6.3 Experiments

6.3.1 Data
We evaluate our SRL models using a subset of the data developed for the CoNLL 2009 shared task
competition for joint semantic and syntactic dependency prediction [143], which consists of data
from seven languages: Catalan, Chinese, Czech, English, German, Japanese, and Spanish. This
diversity in language provides a unique opportunity to examine the type and effect of the induced
syntactic structure across a wide variety of different languages and annotation styles.

The data provides word, lemma, part-of-speech, and morphological feature information, along
with both gold and parser-produced dependency trees. Predicates are identified, but the particular
sense is intended to be predicted by the model. Sense labels are provided in the training data, along
with their arguments and role labels.

6.3.2 Features
We now describe the feature set associated with ARG, ROLE, SENSE, LINK, SRL-CONNECT, and,
in the case of valency models, SV factors.

6.3 EXPERIMENTS 149

• ARG and ROLE factors

For the ARG and ROLE factors, which aim to capture arc-factored information, we use an
identical feature set. These features are described below for the example sentence “the cat
scratched the man”, wi = “scratched”, wj = “cat”.

Feature String Comment
arg-bias A general bias for a pred-arg pair.

scratch-cat Predicate word and argument word pair.
VB-NN Predicate POS-tag and argument POS-tag.

scratch-NN Predicate word and argument POS-tag.
VB-cat Predicate POS-tag and argument word.

VB-scratch-NN-cat Predicate and argument words and POS-tags.
VB-NN-1 Predicate POS-tag, argument POS-tag, and distance (|j − i|).

VB-NN-LEFT Predicate POS-tag, argument POS-tag, and direction.
VB-LEFT-1 Predicate POS-tag, direction and distance to argument.
NN-LEFT-1 Argument POS-tag, direction and distance to argument.

For labeling, the role label is concatenated onto each feature so that otherwise identical
features correspond to different parameters in the model (i.e., scratch-cat, a feature used
in the ARG(i, j) factor, is used as a basis for PATIENT-scratch-cat, a feature used in the
ROLE(i, j, r = PATIENT) factor.) In other words, there is no feature sharing between any
pair of the argument, role, sense, valency, syntax, or connection sets of factors.

• SENSE factors.

Sense labeling is done with the following set of features:

Feature Comment
scratched Sense word.
scratch Sense lemma.

VB Sense POS-tag.
cat Neighboring word. Each word within a 5-word window.

cat-1, the+1 Contextual word with offset. Each word within a 3-word window.
cat-scratched-1 Sense word and previous word. Chinese only.
the-scratched+1 Sense word and following word. Chinese only.

Each feature string will also be concatenated with the sense label (i.e., “VB” becomes “VB-
scratched.01”, “VB-scratched.02”, etc.) to produce a new feature for each sense.

• SENSE-VALENCY factors.

The valency variables store the total count for each predicate and role (the final variables
in each chain). They are connected with the sense prediction variables through SENSE-
VALENCY factors, using the following features. Here we illustrate features for just one
sense, one role, and one count value:

150 SEMANTIC ROLE LABELING WITH LATENT SYNTAX

Feature Comment
scratched.01-bin-ARG0-1 A predicate sense with a role and its count.

scratched.01-bin-ARG0-1-scratched Same, but including word form.
scratched.01-bin-ARG0-1-scratch Same, but including word lemma.

scratched.01-bin-ARG0-1-VB Same, but including word POS tag.
bin-ARG0-1 The role and its count.

bin-ARG0-1-scratched Role and count with word form.
bin-ARG0-1-scratch Role and count with word lemma.

bin-ARG0-1-VB Role and count with word POS tag.

The first four features are intended to help model the interactions between senses and role
counts. The latter four features are backoffs, intended to help strictly with influencing the
counts of each role and penalizing them when their values are higher or lower than expected.

• SRL-CONNECT factors

Features for coordinating between SRL and dependency syntax are the following:

Feature Comment
sli-bias A bias for the coordination factor.

sli-scratched-cat Predicate word, argument word.
sli-VB-NN Predicate POS-tag, argument POS-tag.

sli-scratched-NN Predicate word, argument POS-tag.
sli-VB-cat Predicate POS-tag, argument word.

sli-VB-scratched-NN-cat Predicate and argument words and POS-tags.
sli-LEFT Attachment direction.

sli-1 Attachment distance.
sli-LEFT-1 Attachment distance and direction.

sli-scratched-cat-LEFT-1 Predicate and argument words, distance and direction.
sli-VB-NN-LEFT-1 Predicate and argument POS-tags, distance and direction.

sli-VB-NN Predicate and argument POS-tags, distance.
sli-VB-LEFT-1 Predicate POS-tag, distance and direction.
sli-NN-LEFT-1 Argument POS-tag, distance and direction.

sli-VB-NN-LEFT Predicate and argument POS-tags, direction.

Because these features are orthographically similar to those used in other factors, the string
representation of each connection feature includes an “sli” prefix to indicate it belongs to
this feature set.

The features for dependency syntax (LINK factors) are a subset of the McDonald feature set
for supervised graph-based dependency parsing [73], omitting features that include coarse
part-of-speech (as these are not provided in the data sets). Even though the SRL data contains
a great deal of morphological information for some languages, we were not able to make
use of these attributes in any manner that improved performance on development data. We
tried incorporating morphological classes into sense, argument and role features, essentially
creating new features where part-of-speech tags were replaced by morphological classes, but
this often decreased SRL prediction accuracy.

6.3 EXPERIMENTS 151

6.3.3 Experimental Design
We perform a set of experiments to compare the latent syntax model to comparable models which
instead rely on gold syntactic parses, and to models which do not observe parses. We refer to these
four models as BASELINE, ORACLE, VALENCY, and HIDDEN. Due to the increased complexity
of the model, valency modeling is used only as an extension to the baseline and not in conjunction
with syntactic joint models.

• BASELINE: A model which contains no syntactic information, and is strictly argument, role,
and sense prediction, as described in Section 6.2.1 (pg. 143). This model is intended to
represent the best achievable performance from fully-supervised training on a resource-poor
language where syntactic annotations are unavailable.

• ORACLE: A joint model (pg.147) with both SRL and syntax variables. Syntactic variables
are set to their observed values based on the gold standard trees provided by the data, both
during training and testing. Features are still learned for the SRL-CONNECT factors which sit
at the intersection of the two models, giving the model the flexibility to utilize or ignore the
syntactic information depending on the immediate context as captured by the coordinating
feature set.

• HIDDEN: A joint model which treats all syntactic components as latent variables. Syntac-
tic annotations are not used, and the true labels of SRL-CONNECT factors are not known.
Instead this model is trained using the marginalization-based training in order to induce an
latent syntactic representation specific to the task of SRL and the particular training data set.

• VALENCY: Valency modeling (pg.145), which connects role and sense prediction, and
counts the number of times each role is taken by a given predicate. The 2-bin model count
distinguishes only between 0 and greater than 0. The 3-bin model counts 0, 1, and greater
than 1.

We include results from two additional systems from the CoNLL 2009 shared task:

• Che-09: The system described in [159] is the highest performing system in the joint track of
the CoNLL 2009 shared task 5, . In the joint task no syntactic annotations are provided for
the test data, making it comparable to the JOINT or HIDDEN models. [159] present a heavily
pipelined system. Sentences are parsed using a 2nd-order graph based parser [73], with
pseudo-projective extensions for the more non-projective languages: Czech, German, and
English. An SVM is used to predict predicate senses. A log-linear classifier is used to predict
a candidate set of semantic role dependencies, and ILP is used to for global inference over
this candidate set. The feature set is carefully configured for each language, and different
depending on whether the SRL predicate is a noun or verb.

• Zhao-09: The system described in [160] is the highest performing system in the SRL-only
track of the CoNLL 2009 shared task. In the SRL-only task syntactic annotations are pro-
vided for the test data, making it comparable to the ORACLE model. [160] is self-described

5Technically [172] is the highest performing system in terms of SRL performance, but it is largely identical to
ZHAO-09 (and was submitted by the same team), and produces results in line with [159].

152 SEMANTIC ROLE LABELING WITH LATENT SYNTAX

as a “huge feature engineering method” for SRL, and the novelty of the approach lies in
the automatic feature discovery method. An SRL analysis consists of many predictions:
sense prediction, predicate-argument prediction, and role labeling, each requiring a set of
features. The huge space of potential features motivates systems like [159] and [160] which
focus more on feature engineering than on new modeling approaches. For predictions [160]
utilizes a 2nd-order parser, and makes SRL predictions using log-linear classifiers.

All models are trained using 30 iterations of stochastic gradient descent (SGD) with a learning
rate η = 0.01 and L2 regularization (a Gaussian prior with a variance of 1.0). We were limited
by the available computation power in making this decision: 30 iterations of SGD is roughly the
maximum number of training iterations computable in a week when training the most complex of
these models on the largest data sets. It is conceivable that additional training iterations would lead
to higher performance than is presented here. Inference is exact in most cases, but the valency
models do contain cycles and in these instances we use a maximum of 40 iterations of belief
propagation for each instance. The models are pruned, and only consider arguments that are within
20 words of each predicate. A dictionary is also constructed containing all sense labels seen in the
training data, indexed by each predicate’s lemma. For unknown predicates it is common to use
a default sense label, which is typically the lemma with an “.01” suffix (the most frequent sense
label in the data).

We implement feature pruning for the fully-supervised models, removing all features which
are not associated with a single correct instance in the training data. For the smallest data set,
German, there are 12M features for the BASELINE model, 14M for the VALENCY model, 15M
for the ORACLE model, and 72M for the HIDDEN model. Using 4 cores on a 2.6 GHz Intel Xeon
processor, the average amount of time required for performing one iteration of SGD on the German
data is 2 minutes for the BASELINE model, 2 minutes for the ORACLE model, 12 minutes for the
VALENCY model, and 31 minutes for the HIDDEN model. On the largest data set, Chinese, a single
iteration of SGD requires on average 2 hours for the BASELINE model (120M features), 2.5 hours
for the ORACLE model (145M features), 9 hours for the VALENCY model (185M features), and
14.5 hours for the HIDDEN model (885M features). This requires 6GB of RAM to train on the
German data, and 24GB of RAM to train on the Chinese data.

As in previous chapters, models which require syntactic annotations during training are marked
with a † symbol, and models which rely on syntactic annotations during both training and testing
are marked with a †† symbol.

6.3.4 Evaluation
Models are evaluated in three different ways, as performed in the CoNLL 2009 shared task com-
petition:

1. Sense prediction accuracy (SA). Each predicate has a predicate sense, and is evaluated using
accuracy:

SA =
true senses

of predicates

2. Unlabeled evaluation. We report precision, recall and F1 (harmonic mean of precision and
recall) on classifying predictate-argument pairs. The unorthodox aspect of this evaluation is

6.3 EXPERIMENTS 153

that the number of predicates is included in the calculation. For instance, precision of the
unlabeled case is calculated as follows:

PrecisionUnlabeled =
of predicates+ true predicate argument pairs

of predicates+ test predicate argument pairs

3. Labeled evaluation. Precision, recall, and F1 for predicting semantic roles (where a semantic
role is a 3-tuple comprising the predicate, argument, and label). Sense accuracy is included
in this metric. For instance, precision in the labeled case is calculated as follows:

PrecisionLabeled =
true senses+ true roles

of predicates+ test roles

Labeled F1 is the score used in the CoNLL 2009 shared task competition for the purpose of
ranking competing systems. Table 6.1 provides a set of summary statistics from the competition,
including the maximum, mean, and median results for each language.

6.3.5 Results
Here we present the results of our model configurations with respect to the systems entered in
the CoNLL 2009 shared task [143]. Not surprisingly, the BASELINE model, with its independent
predictions and lack of syntactic information, performs poorly. The inclusion of reliable syntactic
information in the ORACLE model leads to performance that is generally comparable with the
average CoNLL scores, and competitive with other joint models. Though the connections between
SRL and syntax are based on first-order (parent-child) relationships, the average scores compare
favorably with more powerful second-order approaches [173]. Despite their overall simplicity,
these models still manage to perform at state-of-the-art levels in a few instances, most notably on
Chinese. Here, even without observing any syntactic annotation, the HIDDEN model manages to
outperform nearly all of the competing systems.

The most compelling results come from comparing ORACLE and HIDDEN models with the
BASELINE. Here the unlabeled results are the most revealing evidence for assessing the effective-
ness of hidden syntactic structure. Abstracting away from the performance comparisons against
other systems, the average unlabeled HIDDEN model score (86.22% F1) is even higher than the
ORACLE model (83.15% F1, and vs. BASELINE’s 67.72% F1). This is mostly due to large mar-
gins over the ORACLE system on the unlabeled Japanese scores. The strong independence between
sense prediction and argument prediction hinders performance on the labeled task, but on all lan-
guages we find an extremely significant improvement from the use of hidden syntactic structure
— the HIDDEN model recovers 94.74% of the gap between the baseline and the observed syntax
model.

There is one caveat to bear in mind when interpreting HIDDEN vs. ORACLE results, and that
lies in how the SRL and dependency parsing models are connected. We have discussed the degree
of agreement between SRL predicate-argument dependencies and corresponding dependency tree
paths of varying lengths (Fig. 6.1.1), showing that for most languages the largest correlation exists
when looking at paths of length 1. Our ORACLE model takes advantage of this correlation, as
SRL-CONNECT factors link single predicate-argument to single dependency parent-child arcs. It

154 SEMANTIC ROLE LABELING WITH LATENT SYNTAX

Unlabeled Labeled CoNLL 2009 F1
Data Model SA P R F1 P R F1 MAX. MEAN MED.

Catalan

BASELINE 84.3 94.7 77.5 85.3 77.8 63.7 70.0
ORACLE†† 84.3 98.5 96.2 97.3 75.7 73.4 74.5
ZHAO-09†† 83.4 96.6 90.7 93.6 82.9 77.9 80.3 80.3 71.0 74.1
HIDDEN 82.7 95.2 92.8 94.0 73.2 70.8 72.0
CHE-09† 80.1 94.6 91.1 92.8 78.6 75.7 77.1

Chinese

BASELINE 94.8 72.5 64.8 68.4 66.0 59.0 62.3
ORACLE†† 94.8 98.6 78.9 87.7 87.6 70.2 78.0
ZHAO-09†† 94.7 86.8 81.2 83.9 80.4 75.2 77.7 78.6 72.2 70.4
HIDDEN 94.8 90.8 79.1 84.5 81.97 71.4 76.3
CHE-09† 94.8 88.9 79.2 83.6 81.7 73.1 77.2

English

BASELINE 90.1 92.5 71.6 80.7 84.6 65.5 73.8
ORACLE†† 90.2 96.7 82.3 88.9 85.5 72.7 78.6
ZHAO-09†† 91.3 94.3 91.3 88.5 88.2 82.8 85.4 85.6 75.6 72.1
HIDDEN 89.9 95.1 79.1 86.3 83.8 69.7 76.1
CHE-09† 91.4 92.9 90.5 91.7 86.7 84.4 85.5

German

BASELINE 82.6 93.3 62.9 75.1 79.1 53.3 63.7
ORACLE†† 82.6 96.4 79.8 87.3 80.4 66.6 72.9
ZHAO-09†† 78.4 92.3 89.4 90.8 77.2 74.8 76.0 79.7 68.1 67.8
HIDDEN 82.1 93.2 88.1 90.5 77.0 72.8 74.8
CHE-09† 82.4 95.2 87.5 91.2 82.1 75.4 78.6

Japanese

BASELINE 100 93.9 62.8 75.3 85.7 57.3 68.7
ORACLE†† 100 94.4 62.4 75.1 86.1 57.0 68.6
ZHAO-09†† 99.1 87.6 80.4 83.8 81.7 74.9 79.2 80.5 70.4 73.4
HIDDEN 100 90.6 75.7 82.5 78.3 65.4 71.3
CHE-09† 99.1 93.2 75.8 83.6 87.3 71.0 78.3

TABLE 6.1: SRL Results on CoNLL 2009 data sets. Without observing any syntactic annotation the
HIDDEN model excels on the unlabeled prediction results, often improving on scores obtained with the
ORACLE model. Both the ORACLE model and the systems represented in the CoNLL column could use
gold standard parses.

is clear, from the same statistics, that this does not hold true for all languages, and Japanese in
particular has a stronger correspondence between predicate-argument pairs and dependency tree
paths of length 2. It could be argued that using method of model connection based on first-order
dependencies on this data puts the ORACLE model at an inherent disadvantage.

However, determining which types of syntactic dependencies are most useful to SRL is a re-
sponsibility that should fall on the model, not the modeler. Higher order models are more robust to
the syntactic variations we see here, but it is not always feasible to implement models of increas-
ingly higher order simply to suit the idiosyncrasies of each data set. There are also clear benefits
to learning which first-order syntactic representations are most useful. Compared to models with
higher-order syntactic representations, the first-order latent syntax models are smaller in terms of
the number of factors necessary to represent them. They do not contain cycles, which allows for
more efficient exact inference. The disadvantage of this model is the greater cost of training, as the
marginalization-based training requires two sets of marginals and thus two rounds of inference.

6.3 EXPERIMENTS 155

Unlabeled Labeled
Data Model SA P R F1 P R F1

Catalan
BASELINE 84.3 94.7 77.5 85.3 77.6 63.7 70.0
VALENCY 2-BIN 82.3 92.3 80.0 85.7 77.4 67.6 72.7
VALENCY 3-BIN 82.2 93.7 83.4 88.3 77.8 68.5 72.9

Chinese
BASELINE 94.8 72.5 64.8 68.4 66.0 59.0 62.3
VALENCY 2-BIN 94.4 73.2 71.1 72.1 69.8 64.5 67.1
VALENCY 3-BIN 94.5 74.8 75.2 75.0 71.9 66.3 69.0

English
BASELINE 90.1 92.5 71.6 80.7 84.6 65.5 73.8
VALENCY 2-BIN 89.1 92.3 71.2 80.4 84.6 65.1 73.6
VALENCY 3-BIN 88.6 92.5 73.4 81.9 84.8 67.6 75.3

German
BASELINE 82.6 93.3 62.9 75.1 79.1 53.3 63.7
VALENCY 2-BIN 79.7 92.2 65.1 76.3 75.2 54.8 63.4
VALENCY 3-BIN 79.5 91.4 70.4 79.6 74.9 57.7 65.2

Japanese
BASELINE 100 93.9 62.8 75.3 85.7 57.3 68.7
VALENCY 2-BIN 100 92.1 61.7 73.9 85.5 58.7 69.6
VALENCY 3-BIN 100 92.1 64.3 75.7 85.0 60.1 70.4

TABLE 6.2: SRL Valency Model Results. The 2-bin model (counting 0 or more-than-1) improves average
labeled accuracy by 1.58 F1 over the baseline. The 3-bin model (counting 0, 1, or more-than-1) improves
accuracy even further, a 2.86 F1 average improvement over the baseline.

6.3.6 Valency Results

Modeling valency structure makes all argument predictions for a given predicate dependent on
one another, and allows argument and role prediction to affect sense prediction (and vice versa).
Figure 6.2 shows the effect of including this structure in the baseline model. In the 2-bin model,
the variables in the valency chains have two states, and expressing whether a particular role has
or has not been observed in the chain. The 3-bin model extends this to an extra state, to represent
having seen 0, 1, or more than 1 occurrence of a particular role. The intuition is that if a predicate
has one sense which prefers one argument (i.e., an intransitive verb), and another prefers two (a
transitive verb), this phenomenon would be better captured by the 3-bin valency model.

In contrast with the baseline, modeling valency nets significant improvements in both labeled
and unlabeled F1 across all languages. The 2-bin model provides a 0.72% F1 gain in average un-
labeled accuracy, and 1.58% F1 in labeled accuracy. The 3-bin model improves performance by
3.14% F1 in the unlabeled case and 2.86% F1 in the labeled case, in some cases closely approxi-
mating the gains we achieved previously through modeling syntactic structure.

Interestingly these additions, which were originally intended to improve sense accuracy, are
unhelpful to this aspect of the model. The reason for this is uncertain but in preliminary exper-
iments we find that the valency models are particularly sensitive to feature sets, especially those
used for coordinating between the Sense(i, r) and V (i, j = n, r) variables. It is possible that
different features or a different method of connecting these variables would remedy this issue.

Additionally, we do not know if the improvements from valency modeling are complimentary
to the improvements from syntactic modeling, and whether combining these models would result
in still greater accuracy. The reason we do not pursue this here is the greater complexity of these

156 SEMANTIC ROLE LABELING WITH LATENT SYNTAX

0

100

200

300

0 1 2 3
of SRL Frames with N Arguments

#
 o

f S
RL

 F
ra

m
es

 P
re

di
ct

ed

Models
Baseline
Valency
Oracle
Hidden
Gold

German Frame Prediction

FIGURE 6.6: SRL frame arity across models. Statistics were collected from experiments on the German
CoNLL 2009 data set. In terms of the number of arguments they contain, the SRL frames predicted by the
HIDDEN more closely reflect the frames of the training data (Gold).

models, and its effect on inference and training. The model which contains both valency and
syntactic variables contains many cycles, and often takes more than 20 iterations of inference to
reach convergence. This results in very long training times, and we do not have the computationally
resources to explore the effectiveness of these models on large CoNLL 2009 data sets. Future work
could explore these issues, or pursue additional pruning techniques to limit the number of valency
chains and the resulting cycles.

6.3.7 Performance on SRL Frames

We have discussed the performance of the various models in terms of their accuracy in making
pairwise predictions, evaluating models in terms of their ability to correctly identify predicate-
argument pairs and the corresponding role label, as is standard in the CoNLL shared tasks. We
now examine the performance of these models from a different angle, assessing their ability to
accurately identify the correct number of arguments for each predicate, sometimes referred to as
an SRL frame.

The plot in Fig. 6.6 depicts the number of frames with n arguments predicted by each model,
where n varies between 0 and 4, for experiments on the German data set. Very few predicates in
the data lack arguments altogether (n = 0), but there is no explicit constraint, either in the model
structure or in the decoding procedure, to prohibit our SRL system from predicting SRL frames
without arguments. This is where the lack of syntax hinders the model: without any syntactic
information to aid the BASELINE model, it must rely solely on lexical information between the
predicate and candidate word. The results indicate that in many cases the model is not confident
enough to predict any predicate-argument pair, severely reducing the model’s performance.

When n > 0, the frame predictions of the HIDDEN model are most closely correlated to the
GOLD model (170 vs. 109 for one argument, 281 vs. 362 for two arguments, 71 vs. 73 for three
arguments, respectively). Interestingly, for n > 0, the ranking of how similar a model’s frame

6.3 EXPERIMENTS 157

prediction matches the gold frame prediction is constant, from best to worst: HIDDEN, ORACLE,
VALENCY (denoting the 3-bin system), and BASELINE. The inclusion of valency modeling offers
a significant improvement over the BASELINE reducing the margin from the number of gold pre-
dictions by 99 (n = 0), 11 (n = 1), 82 (n = 2), but does not outperform the syntactic models. We
conclude that syntactic information, even when induced, is a more useful source of information
than what is offered by the valency chain modeling.

An Analysis of Induced Syntactic Structure

Exactly what kinds of structure does the HIDDEN model learn and why do the ORACLE models
perform poorly on Japanese and German data? Before we dive into this question in detail, it is
interesting to note that the unusually low performance of the ORACLE joint model on these data
sets is not without precedent: in the CoNLL 2009 shared task competition, results on the German
and Japanese data sets consistently had the highest gaps between parsing F1 and SRL labeled
F1. Systems produced accurate parses, but were not able to leverage the strength of their parsing
models to produce accurate SRL analyses. We conclude through an analysis of our own results
that the style of syntactic annotation is a poor match for joint models with first-order connections,
and that this may have contributed to the poor performance of SRL prediction relative to syntactic
prediction.

Japanese

Despite having been trained without any access to gold syntactic annotation, the HIDDEN sys-
tem outperforms both the BASELINE and ORACLE models by significant margins (2.6% F1 and
2.7% F1 respectively). In previous work, which differed only in feature sets and training method,
the numbers reflected a greater divide between baselines and syntax, with the HIDDEN model pro-
viding a 13.99% and 4.57% improvement in labeled F1 [174]. What type of syntactic structure
does this model induce to be preferable even to hand-annotated syntax? We examine this structure
by constructing a heatmap (Fig. 6.7, a gloss for this example is provided in Fig. 6.8). A heatmap
is capable of illustrating the correlation between the real-valued syntactic dependency variable be-
liefs and the discrete-valued (true or false) syntactic arcs found in the gold standard data. Shaded
cells indicate the model’s beliefs regarding each Link(i, j) variable, i on the x-axis and j on the
y-axis. A red square indicates a belief closer to 1.0 (true), and a solid grey square to a belief closer
to 0.0. The correct SRL analyses are depicted by black box borders. Gold syntax is shown on the
left, the latent syntax of the HIDDEN model on the right.

In addition, tree diagrams (top) provide an alternative visualization, showing the decoded syn-
tactic dependencies above the sentence with predicted SRL dependencies below (red). The de-
pendency tree for the HIDDEN model is produced by classifying all dependency variables whose
beliefs are greater than 0.5 as true. This is purely for illustrative purposes. In comparison to
the minimum Bayes risk decoding used in other chapters, this decoding strategy more accurately
reflects the beliefs of the model but does not prevent cycles or non-projective dependencies.

In this example there are four SRL predicate-argument relations specified in the gold data. Our
model uses first-order connections between SRL and syntax, and therefore the model coordinates
between an SRL relation from predicate i to argument j and a syntactic dependency from headword

158 SEMANTIC ROLE LABELING WITH LATENT SYNTAX

modifiers modifiers

he
ad
s

封じ手
、

総
互先
の
制度
も

本因坊
戦
から
始まっ

。

<root>

he
ad
s

封じ手
、

総
互先
の
制度
も

本因坊
戦
から
始まっ

。

<root>

封じ手 、 総 互先 の 制度 も 本因坊 戦 から 始まっ 。<root>

封
じ
手

、 総 互
先

の 制
度
も 本因
坊

戦 から 始まっ
。封
じ
手

、 総 互
先

の 制
度
も 本因
坊

戦 から 始まっ
。

GA KARATO-IUTO-IU
封じ手 、総 互先 の 制度 も 本因坊 戦 から 始まっ 。<root>

GA KARATO-IUTO-IU

FIGURE 6.7: Examining the induced dependency syntax for SRL. In this Japanese example the syntactic
dependency arcs derived from gold standard syntactic annotations are entirely disjoint from the correct pred-
icate/arguments pairs (left, SRL relations depicted by black cell outlines, probability of syntactic relations
depicted by strength of red cells). In contrast, the hidden model structure (right) learns a representation that
closely parallels the desired end task predictions, helping it recover three of the four correct SRL predictions.

i to child word j. None of these SRL relations has a corresponding syntactic arc in the gold
syntax, and, given this low degree of correlation corpus-wide, this provides an explanation for low
performance of the ORACLE model on Japanese data. Due to this fact it is also unsurprising that
none of the correct SRL dependencies are predicted by the ORACLE model in this example.

We now examine why the Japanese data lacks this correlation between syntax and SRL. While
none of the SRL relations in this example have a directly corresponding syntactic arc, two have a
corresponding syntactic path consisting of two dependency arcs, which together link the predicate
word to the argument word. A third relation has a corresponding path of three arcs, and the last
a path of four arcs. Why are words which are directly linked by a SRL relation separated by so
many arcs in the syntactic structure? We touched on the primary reason for this when discussing
the correlation statistics in the data (Sec. 6.1.1, pg. 139): in Japanese particles intercede in the
dependency path, while SRL relations directly link root words.

For instance, the case-marking particleの functions here as a adjectival modifier for the pre-
ceding word. In this example it intercedes between 総互先 (even match) and 制度 (system), to
describe even match as a kind of system. This is also the case for the binding particle, も . In
short, particles in this data act as the syntactic heads of the words they modify. 6 This places

6This syntactic analysis may seem objectively incorrect, given the usual head-modifier semantics of dependency
trees. However, by marking the gramamtical case of the headword, these particles provide important information
about the headword’s syntactic role in the sentence. It is therefore reasonable to annotate particles as syntactic heads,

6.3 EXPERIMENTS 159

封じ手 総 互先 の 制度 も 本因坊 戦 から 始まっ

The sealed move, as well as the all-even-match system, started with the Honinbou Tournament.

sealed move even match case-marking system binding Honinbou tournament case-marking began
 particle particle particle

((()))

FIGURE 6.8: English gloss for Japanese example in Fig. 6.7.

them between the predicate and argument words in the syntactic dependency path, increasing the
dependency parse length. In contrast, in the English CoNLL data a similar modifier would attach
to the word it modifies, allowing the predicate and argument words to link more directly. This is
the syntactic analysis induced by the HIDDEN model for the Japanese data.

But particles are not the only tokens that hinder the correlation between syntax and SRL. Punc-
tuation can also intervene in these dependency paths. For instance, a comma intervenes in the
dependency path between 封じ手 (sealed move) and 制度 (system), extending the dependency
path from three words to four. Again, punctuation could just as easily function as a modifier to the
head of the clause, in which case it would not extend the dependency path. The HIDDEN model
proposes an interesting solution to punctuation: it consistently anchors punctuation to the last to-
ken of the sentence, which, in this data set, is always itself a punctuation character. This prevents
it from interfering with any syntactic path from predicate to argument.

It may be possible to address these issues by preprocessing the data and heuristically modifying
the syntax to better suit the model. One could attempt to adjust the syntactic role of Japanese
particles, setting the preceding root word as the syntactic head and therefore removing the particle
from the predicate-argument dependency path. The preprocessing tactic may provide a simpler
method for improving joint model performance than inducing a latent syntax, but this may be
somewhat of a slippery slope. Performing such preprocessing would solve the correlation problem
for two of the four spans, but even if we were to remove punctuation (reducing the dependency
path of a third SRL relation) it would still be necessary to use second-order connection factors to
capture the relationship between SRL and syntax in the data.

Ultimately the question of which approach is preferable may be an ideological one: is it the
responsibility of the researcher to ensure that the data is tokenized or parsed in the manner which
best suits the end task (and how does one determine this?), or is it the responsibility of the model
and the optimization method to circumvent poor agreement between two sources of information.
We argue for the latter: the marginalization-based may be slower than fully-supervised training,
and inference in the joint model may be more costly than in the baseline, but utilizing this approach
we are able to run our model across a wide variety of languages (and domains), with little to no
language-specific treatment. This reduces the number of hours a human must spend preprocessing
the data, feature engineering, and modifying the syntactic annotations to suit the model.

German
In the Japanese corpus the syntactic annotation style reduces the degree of first-order correlation
between syntax and semantics, but in this case the syntactic trees are intentionally annotated, by

while the semantic dependencies of the SRL analysis generally ignore them.

160 SEMANTIC ROLE LABELING WITH LATENT SYNTAX

Hoffnung auf einen erneuten UrknallHoffnung auf einen erneuten Urknall

a.) Gold German Syntax a.) Induced German Syntax
 Hope for a new big bang Hope for a new big bang

FIGURE 6.9: German NP structure. The gold syntax NP is completely flat, but the HIDDEN SRL model
induces a richer NP structure.

hand, to conform to a set of annotation guidelines. But the correlation between syntax and seman-
tics can also be skewed by automated pre-processing and conversion. We find that this is prevalent
in the NP structures in the German data set.

The Tiger Corpus [175] is a German corpus comprising 50,000 sentences of German newswire
from the Frankfurter Rundschau, a German daily newspaper. The corpus includes POS tags, phrase
structure syntax, and a set of morphological information. These annotations were produced in a
semi-automatic fashion, but corrected by human annotators. However, problems arise when adapt-
ing this data set to new tasks and formalisms. For the CoNLL 2007 and 2009 shared tasks, each
data set contained dependency syntax annotations. To meet this requirement the Tiger Corpus’s
phrase structure syntax was converted to dependency structure using the Tiger2Dep conversion
tool7, resulting in a number of unusual annotations.

In Figure 6.9 we present two dependency trees, one taken from the CoNLL 2009 data set (left),
the other induced by the HIDDEN model (right). The gold standard tree treats the prepositional
phrase headed by auf as a flat structure: all words contained in the NP take auf as their heads.
This removes the possibility of a directed path between any two of the words contained within the
span, excluding the phrase’s head. Consequently, if two of the non-head words within the span
are in a predicate-argument relation, it is impossible to find a corresponding dependency in the
syntax. This can hinder performance of the ORACLE model, as this is precisely the constraint that
the model implements. 8

In contrast, the trees recovered by the HIDDEN model capture a deeper NP structure in which
einen and erneuten are children of the inner noun, Urknall. Not only does this structure aid the
model in recovering more accurate SRL analyses, but in many cases it is more representative
of the syntactic structure found in the Tiger Corpus prior to conversion. To examine how these
trees matched native speaker intuitions, we presented pairs of trees, one from the CoNLL German
data and the other produced by the HIDDEN model, to three native German speakers proficient
in computational linguistics and tree annotation. HIDDEN model syntax was decoded by placing
all arcs corresponding to Link(i, j) variables with beliefs greater than 0.5 into the final tree. All
speakers selected the HIDDEN model trees as being more representative of a correct linguistic
analysis of the sentence.

7http://www.ims.uni-stuttgart.de/forschung/ressourcen/werkzeuge/Tiger2Dep.
en.html

8[39] also observe that flat structure within NPs governed by PPs is a widespread artifact of the conversion process,
and alter these trees prior to evaluating against them.

6.3 EXPERIMENTS 161

a.) Syntactic/Semantic mismatch due to coordination

b.) Syntactic/Semantic mismatch due to modal/auxiliary interference

The proposed changes also would allow executives to
A0 P

Bell makes and distributes electronic and computer products
A0 PP A1

FIGURE 6.10: English ORACLE error analysis. Both coordination and the inclusion of modal verbs along
the dependency path reduces ORACLE prediction accuracy (missed SRL predictions are indicated with red
spans.)

English
Unlike the results on the two previously discussed languages, the HIDDEN system did not outper-
form the ORACLE system on the English data set. There are however several notable cases where
the use of latent syntax consistently led the model to better solutions. One set of improvements
stems from the HIDDEN model finding an alternate internal structure for noun phrases that would
sometimes better align with semantic role dependencies. This is similar to the issue with the OR-
ACLE model and gold syntax for the CoNLL German data discussed previously, although here it
is not the result of a constituent-to-dependency tree conversion. We refrain from discussing this
particular issue further and focus instead on more novel phenomena.

A second major cause of missed syntactic role predictions stems from coordination. Figure
6.10a shows a sentence from the English data set, the gold syntax provided with that data, and a
subset of the semantic roles that should have been predicted by the ORACLE model. In this example
Bell is described as a company which both makes and distributes electronic products. Therefore
a semantic analysis should identify makes and distributes as predicates, with Bell and products
as roles (subject (A0) and direct object (A1), respectively) in both cases. The gold syntactic tree
directly supports this analysis for the makes predicate, but not for distributes. Instead, the head of
distributes is the coordinate and, and is connected to Bell only through makes.

The HIDDEN model learns to correctly predict both sets of semantic roles. It accomplishes
this by avoiding making any hard decision regarding which edges should be in the syntactic tree.
Like the gold syntax, the most probable tree according to the HIDDEN model also lacks a de-
pendency between distributes and products. However, there is a strong pairwise, the marginal
belief corresponding to that edge is µ = 0.63 (strong enough to be included in a tree using simple
µ > 0.5). This belief provides the necessary evidence to correctly predict products as an argument

162 SEMANTIC ROLE LABELING WITH LATENT SYNTAX

of distributes, despite the edge not existing in the most probable tree according to this model, thus
demonstrating the advantages of marginalization within a joint inference framework.

A third source of errors is the behavior of modal verbs. In Fig. 6.10b, the model verb would
creates a conditional statement with its syntactic child, allow. Thus would intercedes in the syntac-
tic path between actions like allow and participants like changes, preventing a direct dependency
path between them. This hinders the ability of the ORACLE model to make the correct seman-
tic role prediction. The marginal corresponding to that edge is low, µ = 0.39, but this is still
significantly more evidence of a syntactic dependency than offered by the gold tree, and through
influencing the corresponding semantic argument variable allows the model to correctly capture
this semantic frame. While the HIDDEN model performs better in this case, it’s important to note
that a pipelined model which uses richer path features (“changes←would→ allow”) when making
SRL predictions may also be less prone to these errors.

6.4 Conclusion
In this chapter we presented several models of SRL, ranging from simple baselines to fully joint
models of dependency parsing and SRL, and outlined how additional modeling structure could be
added to capture valency. We find that the most sophisticated of these models perform comparably
to the other joint systems from the 2009 CoNLL shared task competition, in some instances reach-
ing state-of-the-art performance, and thus demonstrating the general usefulness of our approach to
joint model construction and inference.

When combined with marginalization-based training, the latent syntactic joint model convinc-
ingly recovers a majority of the performance gains offered by observing gold syntactic annotations,
a result that is consistent across all languages. We find that not only is the hidden syntax model
competitive in its own right, outperforming nearly all previous systems on the Chinese data set, but
it also outperforms the gold syntax joint models on German and Japanese. In these instances the
syntactic annotation style of the corpora did not offer good support for the end task predictions.

This emphasizes an underlying assumption of this dissertation: a syntactic representation can-
not be maximally informative for all end tasks, and thus any fully supervised joint model which
aims to leverage its structure toward a single end task is susceptible to poorly suited supporting
annotations. A well-designed model can avoid some of these problems, as might a second-order
model in the case of the Japanese data, but a latent variable approach can guarantee that the induced
syntactic representation is well-suited to the task.

In examining the labeled vs. unlabeled performance of our models, it is clear that weak role
labeling and sense prediction is the primary cause of low overall performance. The unlabeled per-
formance, which most directly reflects the effect of syntactic correspondence, often exceeds 90%
F1, but the model is unable to maintain such performance gains through to the labeled evaluation.
Future work could improve upon the labeling aspect of the model, either through additional model
structure and features, or by inducing a labeled syntax so that labeling could leverage syntactic
cluster information to help identify the types of predicted roles.

7
Conclusion

This thesis has considered how to construct joint models for NLP tasks. As syntactic information
is crucial for many of these problems, and parsing a prerequisite step in many systems, we focus
on models which include a syntactic component. This raises a number of questions:

1. How can we represent syntactic structure in graphical models in a manner that enables effi-
cient and effective inference?

2. How do we formulate the connections between the component models in a joint model?

3. The data requirements for joint inference are high, requiring a single data set with annota-
tions for each task. In most languages and for most combinations of tasks, this data is not
available. This imposes a severe limitation on the potential widespread adoption of joint in-
ference for practical applications, and begs the question: can we better utilize the annotated
data we do have to help alleviate this requirement? More specifically, if we ultimately care
only about the predictions for a single task, and we have annotated data for this task, can we
utilize these annotations to aid in learning unobserved representations?

4. It is unlikely that a single type of linguistic annotation style can be ideal for all tasks. Sta-
tistical parsers are trained in a supervised manner with the aim of reproducing the syntactic
annotation style of their training data. However, there is no guarantee that those trees will
be be maximally beneficial for making end task predictions. Rather than attempting to train
parsers to produce this kind of syntactic structure, can we instead induce a task-specific
“syntactic” structure, subject to very general constraints, that is better suited to the desired
task?

To this end we have presented a framework for constructing and reasoning with joint mod-
els using factor graphs. Our hypothesis is that factor graphs are especially well-suited to joint
inference:

163

164 CONCLUSION

• Factor graphs are a well-established framework. From conditional random fields for se-
quence labeling, to semi-Markov CRFs for information extraction, to more arbitrary graphs
for large-scale problems like coreference, factor graphs have led to state-of-the-art discriminatively-
trained models in nearly all aspects of NLP.

• Factor graphs naturally provide a means for coordinating component problems, through the
shared language of probability theory. If we have reason to believe that two variables from
separate component models are dependent, they can be connected via a factor in the graph,
with the factor specifying the nature of their relationship. Here soft Boolean logic con-
straints provide a particularly intuitive method of coupling models while remaining robust
to exceptions that would likely hinder models with hard constraints.

• Factor graphs offer alternative ways of performing inference in otherwise densely connected
structured models. A major shortcoming of factor graphs in NLP is that for modeling com-
binatorial structures, like those found in syntax, in order to impose the correct structural
constraint it may be necessary to include a large, sometimes exponential, number of addi-
tional factors. By using globally-connected combinatorial factors, this approach leverages
the results of decades of research, taking efficient dynamic programming inference algo-
rithms for structured models, and inserting this logic into model where it can be used in
conjunction with standard message passing algorithms.

• Factor graphs support well-established inference algorithms, sum-product and max-product,
which are exact in chain or tree-structured models, and approximate in cyclic graphs. We
show that while the loopy variant of such algorithms is only approximately correct, these
approximations yield good results in practice. Most importantly, belief propagation infer-
ence provides a principled method for dealing with latent structure, and we marginalize over
latent variables during training to induce syntactic distributions that suit the end task.

Among the contributions of this thesis is a novel combinatorial factor for phrase structure
grammar, which we utilize to construct a factor graph parser. We show that a variant of the
Inside-Outside algorithm can be used during inference, from within such a globally-connected
combinatorial factor, to compute out-going messages for constituent span variables in O(n3) time.
Extending this representation with label variables increases the complexity to O(|L|n3) where L
is the set of constituent labels. Surprisingly the lack of a traditional grammar, one with dependen-
cies between constituent labels, does not significantly hinder this model’s performance on the task
of parsing. Our parser outperforms comparable discriminative grammar-based parsers ([93]) by a
large margin. While our intent is primarily to develop a representation to aid in joint inference,
we also show how grammatical rules can be represented as factors and how they can be selectively
added to the model to correct mistakes of the labeled parsing model alone.

Having provided a method for representing syntactic models in factor graphs, we construct
several novel joint models for a diverse set of common NLP tasks. In named entity recognition,
relation extraction, and semantic role labeling we demonstrate the effectiveness of joint inference
by outperforming baselines trained without syntactic information. We outperform the best reported
results for named entity recognition on the OntoNotes data set1, though joint inference does not

1[30] present better results, but utilize additional singly-annotated training data.

165

provide a significant advantage for all OntoNotes newswire corpora when compared to a feature-
rich span-based NER baseline. The usefulness of joint inference is again demonstrated on a relation
extraction task (primarily on the English data set), where we present two joint models, one coupled
to phrase structure and the other to dependency structure. In SRL our system is competitive with
the top performing systems entered in the CoNLL 2009 shared task competition, many relying on
heavy language-specific feature engineering and tuning.

Most importantly, factor graphs not only provide a method for joint inference, but also for joint
training. For our most central contribution, we have shown how to train joint models with syntactic
components in the absence of syntactic training data. Across a wide variety of tasks, joint models
trained with latent syntactic structure provide performance comparable to or better than analogous
models which utilize gold syntax trees (either from hand-annotated data or produced by pre-trained
state-of-the-art parsers).

More staggering is the performance difference between models with induced syntactic structure
and the baseline models, which do not utilize any syntactic information. Outside of the academic
domain, where the syntactic training data necessary to train a parser is scarce or altogether ab-
sent, there are but two options: use an unsupervised grammar induction method as the parsing
component in a pipeline, or forgo modeling syntax altogether. We have shown that our method
offers substantial improvements over baselines which do not utilize any syntactic information and
[163], in a continuation of our work (using identical models), show that our method outperforms
pipelines with unsupervised parsers in an SRL task.

The degree of success associated with this method depends on a variety of factors. We find the
largest gains in performance from the joint model occur when the end task relies on long-range
syntactic dependencies. In the case of NER, entities are often simple noun phrases and occur
toward the leaves of the tree, often spanning only a few tokens. A span-based model is able to
predict these entities with such a high degree of accuracy that it leaves little room for improvement
in our joint models. In this case, both the NER and syntax models capture similar information, and
the gains are minimal. When the features of the two models are complementary (i.e., NER model
is a linear-chain, with no span-based information), syntax can help a great deal in identifying entity
spans.

Data can also be problematic. In the OntoNotes data the lack of explicit nested NP structure
and inconsistent inclusion of sentence-final punctuation in entities greatly reduces the degree of
correlation between entities and NPs, and likely hurts supervised joint model performance. For
relation extraction on the ACE data set, where heavy preprocessing was necessary to tokenize and
annotate the data with part-of-speech tags, syntax trees, entities, and relations, the accumulation
of errors in the preprocessing pipeline left many sentences unusable. For the Chinese data in
particular, the data amounted to only a few hundred sentences. This is likely too small to accurately
estimate the parameters of a joint model, especially when treating syntax as a latent variable.

Ultimately we concede that a pipeline approach still offers some advantages over fully-supervised
joint inference. It is easier to find many data sets, each annotated for a single task, than it is to find
a single data set annotated for many. Furthermore, because the output of previous components is a
complete decoded structure (i.e., all uncertainty is lost), it is easy to construct arbitrarily complex
features from these structures with little additional computational cost. Consider a higher-order de-
pendency parse feature, a feature indicating the presence of a “grandparent” relation. For a triple
of indices, (i, j, k), k is the grandparent of i if there exists a j such that j is the parent of i and k is

166 CONCLUSION

the parent of j. To incorporate this feature into an SRL model in the pipeline approach, one merely
needs to search the tree produced by the parser component for an appropriate structure. In the joint
model, where the model maintains a belief over syntactic dependencies, modeling this dependency
requires an additional set of factors. For every (i, j, k) triple, a ternary NAND (the strategy taken
in [11]) factor can capture whether the grandparent relation exists, and this information could be
propagated to the SRL model by connecting these factors to variables in the SRL model. Thus
in cases where heavy feature engineering is beneficial, and many of the features are difficult to
efficiently represent in a joint model, there is some performance benefit to pipelined components.
This explains why pipelined models often outperform joint models in shared task competitions,
even ones which are designed with joint models in mind.

However, our joint models offer competitive performance, and couple it with the unique ability
to leverage end task annotations to induce latent structure for supporting tasks. This completely
removes the need for syntactically annotated data and makes the system robust to annotation error
and domain mismatch between the various training data sets often used in a pipeline. This is an
advantage with potentially far-reaching implications, which may help bring state-of-the-art NLP
to many languages and domains where syntactic annotations are unavailable.

7.1 Future Directions
In this dissertation we present a framework for joint inference with the intent of making it as gen-
eral and widely-applicable to other NLP problems as possible. As such, there are many interesting
research directions still to be investigated. We categorize these areas broadly as exploring up-
stream, into new latent structure below syntax, downstream, into applying these methods to new
end tasks, and speed, utilizing pruning and coarse-to-fine strategies to allow for more sophisticated
modeling structure.

7.1.1 Additional Latent Linguistic Structure
Of the many areas of formal study within the field of linguistics, not all have shared in receiving
the same degree of attention as syntax. Syntactic information has become a critical component
in many NLP systems, and for many NLP tasks. Its widespread use and combinatorial nature
motivate our decision to focus on syntax as the latent component in joint models throughout this
dissertation. However, there are many other aspects of linguistic theory that might be borrowed,
and many other structures which might be learned in an unsupervised manner, in order to improve
the performance of NLP systems.

Morphology

For morphology, the study of sub-word structure, this may be a very natural transition. Learning
morphology segmentations has received considerable research attention, with a particular focus
given to unsupervised methods, where models are developed from a cognitive slant. Many of
these models are based around the minimum description length principle: assume a set of data,
composed of words types or tokens, and a codebook which represents it. Representing each type
or token as its own entry will have a set cost. The words “throw”, “throwing”, “throws” would

7.1 FUTURE DIRECTIONS 167

occupy three entries in the codebook. An alternative solution is to break up these words and store
substrings. For instance, storing “throw” as its own entry in the codebook reduces this cost to
one, assuming the codebook already contains the suffixes “+s”, “+ing”, and “+s”. The model
prefers smaller codebooks, thus favoring a sparse solution. This is the same intuition underlying
Goldwater’s morphology work, where a Bayesian interpretation of MDL is used [176].

This type of model is not particularly well-suited to a factor graph: if the data is represented as
a consecutive string, ranging from 1 ≤ i ≤ n, a segmentation model could place a boolean variable
at each index i, representing the presence of a morphological (or word) boundary, but all of these
variables must then connect to a global factor to impart the combinatorial MDL constraint. Such
a combinatorial factor could also implement a similar semi-Markov constraint, limiting the size of
segmentations, or of particular segment types (stems, prefixes, suffixes, etc.). However, there are
no theoretic hurdles to overcome, and there are many benefits that could come from transitioning
from unsupervised morphology learning to task-directed morphology learning.

This is especially true when thinking of NLP outside of English. Morphological representa-
tions have been shown to be important when parsing morphologically-rich languages. Similarly,
parse information has been shown to guide morphological assignments [7]. Morphology has been
shown to improve automatic speech recognition quality in Arabic [177]. It has also been a useful
component in MT, both in preprocessing [178] and in jointly inferring an alignment model. Im-
portantly, each of these tasks can be tackled with discriminative end-to-end models, and are all
models where we observe some form of end task supervision, whether it be parse trees, properly
transcribed speech, or parallel text. We can phrase them as a discriminative joint model where
morphological segmentations, and perhaps other structures, are treated as unobserved variables,
and the corresponding parameters learned as to optimize performance on the end task. This could
also be true of morphological paradigms, which have already been learned in a fully unsupervised
manner [179], and these models could be adapted to task-directed training.

Orthography and Phonology

Another source of linguistic information which might be accurately captured in a task-driven man-
ner is phonology. Phonetics is the study of the physical properties of speech sounds the artic-
ulations that produce them, morphology studies the minimal meaningful linguistic units, and in
between the two is phonology, which studies how speech sounds are categorized internally. For
instance, the l sound (as at the start of linguistics) and the r sound (as in rule) are indistinguishable
most Japanese native speakers, as the phonology of Japanese maps the physical sound associated
with each to the same internal unit, knows as phoneme.

Just as humans internalize the speech stream as a sequence of phonemes, a computational
model could learn a latent clustering of observed speech sounds. This latent structure could be
constrained according to phonological theory. For instance, previous work has marginalized hid-
den metrical structures [180], and a rich latent phonological structure (including morae, syllable
structure, and stress) could be modeled and marginalized over to aid in tasks like speech recogni-
tion or speech-to-speech machine translation.

But phonological theory is not entirely limited to speech processing, and even text bears arti-
facts of phonological processes. In English there are many predictable orthographic transforma-
tions, often mimicking phonological transformations. For instance, when the word bet is the basis
of a gerund, formed by adding the +ing suffix, the ‘t’ is duplicated. Systems that attempt to reduce

168 CONCLUSION

words to their stems or lemmas need to capture this kind of information to perform well. [181]
show that this information can be induced in an unsupervised manner jointly with morphological
segmentations, but it could also be induced in a task-directed manner guided by the annotations of
a downstream task.

7.1.2 Exploring New End Tasks

In this thesis we have explored many potential end tasks, including part-of-speech tagging, named
entity recognition, relation extraction, and semantic role labeling. Still, there are many other tasks
which typically rely upon syntax and syntactic features to achieve state-of-the-art performance,
and could potentially benefit from our approach. Here we will detail one such task, disfluency
detection, but others may include machine translation or natural language generation.

In all tasks presented in this dissertation, the input is text, and is pre-processed to remove many
of the noise, errors, and back-tracking found in natural human speech. Consider the sentence:

I want to uh book a flight to Boston , uh , I mean to New York

The speaker’s intention is to inform the listener of his desire to fly to New York, but a performance
error causes him to mistakenly replace “New York” with “Boston”. What we observe is a common
pattern in disfluent speech: an error is made (the reparandum), a noise or phrase indicates the de-
sire to backtrack (the interregnum, “uh, I mean”), and the speaker ultimately substitutes the correct
phrase (the repair). There is a long research history studying disfluent speech, and many charac-
teristics which could serve as the basis of a modeling constraint. For our purposes, a disfluency
has syntactic and semantic dependencies which can be modeled in our factor graph framework.

In terms of syntax, the connections between model variables might be similar to that of the joint
named entity model of Chapter 4. However, the right edge of the reparandum may have uniquely
important cues, as the abrupt speech error leaves a constituent fragment whose left side is typical
and whose right side is unusual. Our feature-rich discriminative parser may be able to cope well
with identifying these spans.

Often a subset of the words in the reparandum are semantically related to the a subset of the
words in the repair, or serve similar syntactic functions. We can model this similarity through
decomposition. Intuitively the degree to which a span is similar to another is the degree to which
its subspans are similar to subspans in the opposing span. For span (7,9), to Boston, and span
(14,17), to New York, the similarity measure could be taken as the sum or max of all possible
alignments between subspans. Span (7,8) and (14,15) are identical, contributing a high similarity
score. Spans (8,9) and (15,17) are both places, and this could either be learned in a supervised
manner, or through clustering or distributional cues in training data or additional raw text. This is
the intuition behind previous approaches [182], but instead of modeling the similarity with a tree-
adjoining grammar, the alignment could be decomposed and expressed in terms of (hard) logic
factors. In the complete joint model, syntax could be marginalized over to improve disfluency
detection, or disfluencies could be marginalized over to improve parsing.

7.1 FUTURE DIRECTIONS 169

7.1.3 Incorporation of Approximate or Pruned Approaches to Inference
In this work we have focused primarily on demonstrating the effectiveness of joint inference and its
use in inducing task-directed latent syntactic structure. However, it has become apparent through-
out the course of this work that the efficiency of inference and training, though not our primary
concern, may warrant additional attention. In general we believe our architecture has many ad-
vantageous properties in this area. Adding factors to the model increases the complexity of belief
propagation inference additively (instead of multiplicatively), less tractable model structures can
be replaced with combinatorial factors, and training can be performed in an online manner. Yet,
the training time for the latent syntax models on larger data sets can be exorbitant. For the English
and Chinese data sets for the SRL task, training can easily exceed a week’s worth of time.

Thus an important area of future research would seek to perform inference and training more
efficiently. Many of the procedures for this have already been outlined. In terms of training, there
are limited ways in which to improve significantly upon stochastic gradient descent. Parallelism
is difficult in online methods, and while it has been suggested that parameter updates can be done
in an entirely non-locking manner (Hogwild!, [183]) we are limited in the number of cores readily
available (16 cores) and we do find small performance drops in preliminary experimentation with
this method. Parallelism during inference (parallelism in message computation) could also be a
viable method for improving efficiency.

Another approach is to limit the number of model parameters by hashing features into a lower
dimensional space. Here we find significant improvements in speed with little performance degra-
dation in many of the fully supervised models, but more notable performance loss when hashing
models with latent structure. Additionally, in the supervised case features which do not appear on
correct structures can be removed, but this cannot be exploiting in the unsupervised case. There
may be ways to similarly prune this space (one could use frequency as a simple criterion).

A promising approach to drastically speeding up inference is to construct the graph incremen-
tally. This can be done in many ways, but most involve first constructing a coarse-grained or
simplified version of the full graph. The usefulness of new factors and variables is then scored,
and structure that meets a given criterion is added to the graph. [110] present one method, re-
laxed marginal inference, where KL divergence is used to score candidate factors. For dependency
parsing (second order models) this approach resulted in a ten-fold increase in inference speed.
Similarly, delayed row and column generation [111] provides another approach to selectively con-
structing the graph, with guarantees of optimality. A phrase structure parser could have as its
simplest model an unlabeled parser, adding labeling components for a select set of brackets, and
adding a sparse set of rules over select constituent labels. A tagger might begin by tagging with a
coarse tagset, add variables representing a subset of fine tags (or variable values in the multinomial
case), before adding connections to other morphological tag variables, or to syntactic dependen-
cies. One might also leverage this technique to build models that go beyond the sentence level,
performing parsing, relation extraction, or semantic role labeling over paragraphs or small docu-
ments.

The opposite may also be true: inference could start by operating on the full graph, and nodes
may be selectively removed once their beliefs have converged to reduce the number of messages
which must be calculated. Many joint models couple just two tasks, but [184] present a joint model
of three – named entity labeling (where boundaries are already identified), relation extraction, and
coreference. To reduce the speed of inference, variables whose beliefs are sufficiently close to 1 or

170 CONCLUSION

0 are pushed to the nearest value. Factors which connect only fixed variables can be removed from
future computations.

There is a vast space of possible directions to take this in which might result in improved
efficiency, but the importance of this improvement is to incorporate additional modeling structure.
As we observe in the SRL models, both syntactic structure and valency modeling improve SRL
performance. However, inference becomes too slow to train models with both for the same number
of iterations on all but the smallest of CoNLL data sets. While we have not yet achieved state-of-
the-art results in the SRL scores we present, it is possible that we have already presented state-of-
the-art models. Further exploration into more efficient inference techniques may serve to verify
this, and provide more compelling evidence for joint inference over pipelined approaches with
heavy feature engineering.

7.1.4 Exploring the use of additional supervision
This thesis treats the nature of learning algorithms as a dichotomy: the joint models proposed here
are trained in either a fully-supervised manner where syntactic annotations are observed for all
instances, or in a semi-supervised manner in which all syntactic variables are unobserved and are
marginalized out during training. This reflects a worldview in which either syntactic annotations
are completely available, or completely unavailable. In practice this will often be inaccurate, as it
is likely that either there is some syntactic annotation available, or that a small number of syntactic
annotations could be produced for use in training.

Previous work has shown that a small number of labeled instances can significantly outperform
fully unsupervised training [185], and whether or not such an approach would be useful in the
proposed task-driven semi-supervised approach is an open question. However, the models and
marginalization-based training scheme presented here can naturally accommodate training from
whatever labels are available through the same two-step inference approach, clamping observed
variables to their true values and marginalizing over unobserved variables during the calculation
of the “gold” feature expectations. Therefore an obvious extension of this work could explore the
use of partially-labeled syntactic data of varying sizes and sources in the marginalization-based
training scheme. This could also help answer the question of how best to utilize human annotators,
and how to maximize system performance vs. annotator time trade-off.

Additionally, an underlying hypothesis of this thesis is that as we move closer to the user’s end
task it generally becomes easier for non-experts to provide the annotations necessary for training
them. For instance, it is likely easier to ask non-experts to create SRL annotations than treebank
annotations, as humans are naturally more familiar with the concepts of agent and patient in SRL
frames than they are with abstract syntactic concepts drawn from linguistic theory. While we do
not pursue a large scale study to validate this hypothesis here, it is complementary to the aforemen-
tioned question of how useful a small number of syntactic annotations can be to semi-supervised
training.

7.2 Final Thoughts
Language is a trait unique to our species, and we excel at the acquisition and understanding of
language to a degree not yet matched by the most powerful computers or the most sophisticated

7.2 FINAL THOUGHTS 171

algorithms. Part of the explanation for our proficiency in all aspects of language processing is
our ability to integrate linguistic information from varying sources. A misinterpreted word, an
incorrect attachment, or a phrase out of context are potential sources of errors which consistently
cause NLP systems to fail, but rarely pose any significant problem to the human listener. It stands
to reason that computational models will also require this ability in order to succeed at mastering
language processing.

What will these models of the future look like? How will they be trained? In such a fast-
paced field it is too early to even begin to answer these questions, but in this thesis we have
attempted to push the current state-of-the-art toward this vision of integrated language processing.
It is exceedingly unlikely that we will ever have annotations to train intermediary models, like
syntax, for all the domains and languages which we hope will benefit from state-of-the-art NLP
systems. By utilizing the error signal of end task annotations, we aim to reduce the annotation
burden associated with joint inference, and eliminate the possibility of training data that is poorly
matched in domain or style. We believe this work serves as both a proof of concept of this approach
and an outline of a flexible architecture for future exploration into ever more complex, ever more
practical joint models.

172 CONCLUSION

References

[1] M. C. MacDonald. The interaction of lexical and syntactic ambiguity. Journal of Memory
and Language 32, 692 (1993).

[2] D. Plaut, J. Mcclelland, M. Seidenberg, and K. Patterson. Understanding nor-
mal and impaired word reading: Computational principles in quasi-regular domains
(1996). URL http://citeseerx.ist.psu.edu/viewdoc/summary?doi=
10.1.1.57.2570.

[3] J. C. Trueswell, M. K. Tanenhaus, and S. M. Garnsey. Semantic influences on parsing: Use
of of thematic role information in syntactic ambiguity resolution. Journal of Memory and
Language 33, 285 (1994).

[4] R. Treiman, C. Clifton, A. Meyer, and L. Wurm. Language comprehension and production,
vol. 4, pp. 527–548 (John Wiley & Sons, 2003).

[5] H. Poon and P. Domingos. Joint inference in information extraction. In In Proceedings of
the 22nd National Conference on Artificial Intelligence (2007, pp. 913–918 (2007).

[6] J. R. Finkel and C. D. Manning. Joint parsing and named entity recognition. In Proceed-
ings of Human Language Technologies: The 2009 Annual Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics, pp. 326–334 (Association
for Computational Linguistics, Boulder, Colorado, 2009). URL http://www.aclweb.
org/anthology/N/N09/N09-1037.

[7] J. Lee, J. Naradowsky, and D. A. Smith. A discriminative model for joint morphological
disambiguation and dependency parsing. In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human Language Technologies, pp. 885–894
(Association for Computational Linguistics, Portland, Oregon, USA, 2011). URL http:
//www.aclweb.org/anthology/P11-1089.

[8] S. Singh, S. Riedel, B. Martin, J. Zheng, and A. McCallum. Joint inference of entities,
relations, and coreference. In CIKM Workshop on Automated Knowledge Base Construction
(AKBC) (2013).

[9] F. Kschischang, S. Member, B. J. Frey, and H. andrea Loeliger. Factor graphs and the
sum-product algorithm. IEEE Transactions on Information Theory 47, 498 (2001).

[10] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference
(Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1988).

173

174 REFERENCES

[11] D. Smith and J. Eisner. Dependency parsing by belief propagation. In Proceedings of
the 2008 Conference on Empirical Methods in Natural Language Processing, pp. 145–156
(Association for Computational Linguistics, Honolulu, Hawaii, 2008). URL http://
www.aclweb.org/anthology/D08-1016.

[12] A. Viterbi. Error bounds for convolutional codes and an asymptotically optimum decoding
algorithm. IEEE Trans. Inf. Theor. 13(2), 260 (1967). URL http://dx.doi.org/10.
1109/TIT.1967.1054010.

[13] D. Gildea. Corpus variation and parser performance. In L. Lee and D. Harman, eds., Pro-
ceedings of the 2001 Conference on Empirical Methods in Natural Language Processing,
pp. 167–202 (2001).

[14] L. Huang and D. Chiang. Better k-best parsing. In Proceedings of the Ninth International
Workshop on Parsing Technology, Parsing ’05, pp. 53–64 (Association for Computational
Linguistics, Stroudsburg, PA, USA, 2005). URL http://dl.acm.org/citation.
cfm?id=1654494.1654500.

[15] S. Riedel and J. Clarke. Incremental integer linear programming for non-projective depen-
dency parsing. In Proceedings of the 2006 Conference on Empirical Methods in Natural
Language Processing, EMNLP ’06, pp. 129–137 (Association for Computational Linguis-
tics, Stroudsburg, PA, USA, 2006). URL http://dl.acm.org/citation.cfm?
id=1610075.1610095.

[16] V. Punyakanok, D. Roth, W. tau Yih, and D. Zimak. Semantic role labeling via integer
linear programming inference. In In Proceedings of COLING-04, pp. 1346–1352 (2004).

[17] T. Marciniak and M. Strube. Beyond the pipeline: discrete optimization in NLP. In Proceed-
ings of the Ninth Conference on Computational Natural Language Learning, CONLL ’05,
pp. 136–143 (Association for Computational Linguistics, Stroudsburg, PA, USA, 2005).
URL http://dl.acm.org/citation.cfm?id=1706543.1706568.

[18] D. Roth and W. tau Yih. A linear programming formulation for global inference in natural
language tasks. In In Proceedings of CoNLL-2004, pp. 1–8 (2004).

[19] V. Punyakanok, D. Roth, and W. tau Yih. The necessity of syntactic parsing for semantic role
labeling. In In Proceedings of the International Joint Conference on Artificial Intelligence
(IJCAI, pp. 1117–1123 (2005).

[20] T. Tsai, C. wei Wu, Y. chun Lin, and W. lian Hsu. Exploiting full parsing information to
label semantic roles using an ensemble of me and svm via integer linear programming. In
In Proceedings of CoNLL-2005 (2005).

[21] A. M. Rush, D. Sontag, M. Collins, and T. Jaakkola. On dual decomposition and lin-
ear programming relaxations for natural language processing. In Proceedings of the 2010
Conference on Empirical Methods in Natural Language Processing, pp. 1–11 (Association
for Computational Linguistics, Cambridge, MA, 2010). URL http://www.aclweb.
org/anthology/D10-1001.

REFERENCES 175

[22] A. M. Rush and M. Collins. Exact decoding of syntactic translation models through la-
grangian relaxation. In Proceedings of the 49th Annual Meeting of the Association for Com-
putational Linguistics: Human Language Technologies, pp. 72–82 (Association for Compu-
tational Linguistics, Portland, Oregon, USA, 2011). URL http://www.aclweb.org/
anthology/P11-1008.

[23] Y.-W. Chang and M. Collins. Exact decoding of phrase-based translation models through
lagrangian relaxation. In Proceedings of the 2011 Conference on Empirical Methods
in Natural Language Processing, pp. 26–37 (Association for Computational Linguistics,
Edinburgh, Scotland, UK., 2011). URL http://www.aclweb.org/anthology/
D11-1003.

[24] M. Auli and A. Lopez. A comparison of loopy belief propagation and dual decomposition
for integrated CCG supertagging and parsing. In Proceedings of the 49th Annual Meet-
ing of the Association for Computational Linguistics: Human Language Technologies, pp.
470–480 (Association for Computational Linguistics, Portland, Oregon, USA, 2011). URL
http://www.aclweb.org/anthology/P11-1048.

[25] J. DeNero and K. Macherey. Model-based aligner combination using dual decomposition.
In Proceedings of the 49th Annual Meeting of the Association for Computational Linguis-
tics: Human Language Technologies, pp. 420–429 (Association for Computational Linguis-
tics, Portland, Oregon, USA, 2011). URL http://www.aclweb.org/anthology/
P11-1043.

[26] A. Martins, N. Smith, M. Figueiredo, and P. Aguiar. Dual decomposition with many overlap-
ping components. In Proceedings of the 2011 Conference on Empirical Methods in Natural
Language Processing, pp. 238–249 (Association for Computational Linguistics, Edinburgh,
Scotland, UK., 2011). URL http://www.aclweb.org/anthology/D11-1022.

[27] S. Riedel and A. McCallum. Robust biomedical event extraction with dual decomposi-
tion and minimal domain adaptation. In Proceedings of the BioNLP Shared Task 2011
Workshop, BioNLP Shared Task ’11, pp. 46–50 (Association for Computational Linguis-
tics, Stroudsburg, PA, USA, 2011). URL http://dl.acm.org/citation.cfm?
id=2107691.2107698.

[28] N. Komodakis. Learning to cluster using high order graphical models with latent vari-
ables. In IEEE International Conference on Computer Vision, ICCV 2011, Barcelona,
Spain, November 6-13, 2011, pp. 73–80 (2011).

[29] M. Ostendorf and N. Veilleux. A hierarchical stochastic model for automatic prediction
of prosodic boundary location. Comput. Linguist. 20(1), 27 (1994). URL http://dl.
acm.org/citation.cfm?id=972509.972511.

[30] J. R. Finkel and C. D. Manning. Hierarchical joint learning: improving joint parsing
and named entity recognition with non-jointly labeled data. In Proceedings of the 48th
Annual Meeting of the Association for Computational Linguistics, ACL ’10, pp. 720–
728 (Association for Computational Linguistics, Stroudsburg, PA, USA, 2010). URL
http://dl.acm.org/citation.cfm?id=1858681.1858755.

176 REFERENCES

[31] M.-W. Chang, D. Goldwasser, D. Roth, and V. Srikumar. Discriminative learning over con-
strained latent representations. In Human Language Technologies: The 2010 Annual Con-
ference of the North American Chapter of the Association for Computational Linguistics,
HLT ’10, pp. 429–437 (Association for Computational Linguistics, Stroudsburg, PA, USA,
2010). URL http://dl.acm.org/citation.cfm?id=1857999.1858065.

[32] A. Clifton, M. Whitney, and A. Sarkar. An online algorithm for learning over constrained
latent representations using multiple views (2013).

[33] V. I. Spitkovsky, D. Jurafsky, and H. Alshawi. Profiting from mark-up: Hyper-text annota-
tions for guided parsing. In Proceedings of the 48th Annual Meeting of the Association for
Computational Linguistics, pp. 1278–1287 (Association for Computational Linguistics, Up-
psala, Sweden, 2010). URL http://www.aclweb.org/anthology/P10-1130.

[34] T. Naseem and R. Barzilay. Using semantic cues to learn syntax. In W. Burgard and D. Roth,
eds., AAAI (AAAI Press, 2011).

[35] P. Blunsom and T. Cohn. Unsupervised induction of tree substitution grammars for de-
pendency parsing. In Proceedings of the 2010 Conference on Empirical Methods in Nat-
ural Language Processing, EMNLP ’10, pp. 1204–1213 (Association for Computational
Linguistics, Stroudsburg, PA, USA, 2010). URL http://dl.acm.org/citation.
cfm?id=1870658.1870775.

[36] A. Gesmundo and K. Hall. Projecting the knowledge graph to syntactic parsing. In Proceed-
ings of the 14th Conference of the European Chapter of the Association for Computational
Linguistics, volume 2: Short Papers, pp. 28–32 (Association for Computational Linguis-
tics, Gothenburg, Sweden, 2014). URL http://www.aclweb.org/anthology/
E14-4006.

[37] K. B. Hall, R. T. McDonald, J. Katz-Brown, and M. Ringgaard. Training dependency
parsers by jointly optimizing multiple objectives. In EMNLP, pp. 1489–1499 (ACL, 2011).

[38] J. Verbeek and B. Triggs. Scene segmentation with conditional random fields learned from
partially labeled images (2008).

[39] D. A. Smith and J. Eisner. Quasi-synchronous grammars: Alignment by soft projection of
syntactic dependencies. In Proceedings of the Workshop on Statistical Machine Translation,
StatMT ’06, pp. 23–30 (Association for Computational Linguistics, Stroudsburg, PA, USA,
2006). URL http://dl.acm.org/citation.cfm?id=1654650.1654655.

[40] A. Culotta, D. Kulp, and A. McCallum. Gene prediction with conditional random fields. IR
419, University of Massachusetts, Amherst (2005).

[41] F. Jelinek. Statistical methods for speech recognition (MIT Press, Cambridge, MA, USA,
1997).

[42] A. Ratnaparkhi. A maximum entropy model for part-of-speech tagging. In EMNLP 1997
(1997).

REFERENCES 177

[43] A. McCallum and W. Li. Early results for named entity recognition with conditional ran-
dom fields, feature induction and web-enhanced lexicons. In Proceedings of the seventh
conference on Natural language learning at HLT-NAACL 2003 - Volume 4, CONLL ’03,
pp. 188–191 (Association for Computational Linguistics, Stroudsburg, PA, USA, 2003).
URL http://dx.doi.org/10.3115/1119176.1119206.

[44] E. Charniak, C. Hendrickson, N. Jacobson, and M. Perkowitz. Equations for part-of-speech
tagging. In In Proceedings of the Eleventh National Conference on Artificial Intelligence,
pp. 784–789 (1993).

[45] K. Toutanova and C. D. Manning. Enriching the knowledge sources used in a maximum
entropy part-of-speech tagger. In Proceedings of the 2000 Joint SIGDAT conference on
Empirical methods in natural language processing and very large corpora: held in con-
junction with the 38th Annual Meeting of the Association for Computational Linguistics -
Volume 13, EMNLP ’00, pp. 63–70 (Association for Computational Linguistics, Strouds-
burg, PA, USA, 2000). URL http://dx.doi.org/10.3115/1117794.1117802.

[46] C. D. Manning. Part-of-speech tagging from 97% to 100%: Is it time for some linguis-
tics? In Proceedings of the 12th International Conference on Computational Linguis-
tics and Intelligent Text Processing - Volume Part I, CICLing’11, pp. 171–189 (Springer-
Verlag, Berlin, Heidelberg, 2011). URL http://dl.acm.org/citation.cfm?id=
1964799.1964816.

[47] C. Sutton, A. McCallum, and K. Rohanimanesh. Dynamic conditional random fields: Fac-
torized probabilistic models for labeling and segmenting sequence data. Journal of Machine
Learning Research 8, 693 (2007).

[48] J. M. Hammersley and P. E. Clifford. Markov random fields on finite graphs and lattices.
Unpublished manuscript (1971).

[49] M. I. Jordan and C. Bishop. Introduction to graphical models (2004).

[50] L. R. Rabiner. A tutorial on hidden Markov models and selected applications in speech
recognition. Proceedings of the IEEE 77(2), 257 (1989).

[51] K. Lari and S. J. Young. The estimation of stochastic context-free grammars using the
inside-outside algorithm. Computer Speech and Language 4, 35 (1990).

[52] D. A. Smith. Efficient Inference for Trees and Alignments: Modeling Monolingual and
Bilingual Syntax with Hard and Soft Constraints and Latent Variables. Ph.D. thesis, Johns
Hopkins University, Baltimore, MD (2010). URL http://cs.jhu.edu/˜jason/
papers/#smith-2010.

[53] Y. Weiss. Correctness of local probability propagation in graphical models with
loops. Neural Comput. 12(1), 1 (2000). URL http://dx.doi.org/10.1162/
089976600300015880.

178 REFERENCES

[54] J. Mooij and H. Kappen. Sufficient conditions for convergence of loopy belief propaga-
tion. In Proceedings of the Twenty-First Conference Annual Conference on Uncertainty in
Artificial Intelligence (UAI-05), pp. 396–403 (AUAI Press, Arlington, Virginia, 2005).

[55] S. C. Tatikonda and M. I. Jordan. Loopy belief propagation and Gibbs measures. In In
Uncertainty in Artificial Intelligence, pp. 493–500 (Morgan Kaufmann, 2002).

[56] E. T. Ihler, J. W. F. Iii, and A. S. Willsky. Message errors in belief propagation. In In
Advances in Neural Information Processing Systems (MIT Press, 2004).

[57] K. P. Murphy, Y. Weiss, and M. I. Jordan. Loopy belief propagation for approximate infer-
ence: An empirical study. In In Proceedings of Uncertainty in AI, pp. 467–475 (1999).

[58] C. Sutton and A. McCallum. An introduction to conditional random fields. Foundations and
Trends in Machine Learning 4(4), 267 (2012).

[59] S. Clark and J. R. Curran. Parsing the WSJ using CCG and log-linear models. In Pro-
ceedings of the 42nd Meeting of the Association for Computational Linguistics (ACL’04),
Main Volume, pp. 103–110 (Barcelona, Spain, 2004). URL http://www.aclweb.
org/anthology/P04-1014.

[60] J. Goodman. Parsing algorithms and metrics. In Proceedings of the 34th annual meeting on
Association for Computational Linguistics, ACL ’96, pp. 177–183 (Association for Com-
putational Linguistics, Stroudsburg, PA, USA, 1996). URL http://dx.doi.org/10.
3115/981863.981887.

[61] S. Sarawagi and W. W. Cohen. Semi-Markov conditional random fields for information
extraction. In In Advances in Neural Information Processing Systems 17, pp. 1185–1192
(2004).

[62] T. Koo and M. Collins. Hidden-variable models for discriminative reranking. In In Pro-
ceedings of HLTEMNLP, pp. 507–514 (2005).

[63] D. C. Liu and J. Nocedal. On the limited memory method for large scale optimization. Math.
Prog. B 45(3) (1989).

[64] F. Rosenblatt. The perceptron: A probabilistic model for information storage and organiza-
tion in the brain. Psychological Review 65(6), 386 (1958).

[65] M. Collins. Discriminative training methods for hidden Markov models: theory and ex-
periments with perceptron algorithms. In Proceedings of the ACL-02 conference on Em-
pirical methods in natural language processing - Volume 10, EMNLP ’02, pp. 1–8 (As-
sociation for Computational Linguistics, Stroudsburg, PA, USA, 2002). URL http:
//dx.doi.org/10.3115/1118693.1118694.

[66] L. Bottou. Stochastic learning. In O. Bousquet and U. von Luxburg, eds., Advanced Lec-
tures on Machine Learning, Lecture Notes in Artificial Intelligence, LNAI 3176, pp. 146–
168 (Springer Verlag, Berlin, 2004). URL http://leon.bottou.org/papers/
bottou-mlss-2004.

REFERENCES 179

[67] A. Quattoni, M. Collins, and T. Darrell. Incorporating semantic constraints into a discrim-
inative categorization and labelling model. In Proceedings of the Tenth IEEE International
Conference on Computer Vision Workshops, ICCVW ’05, pp. 1877– (IEEE Computer So-
ciety, Washington, DC, USA, 2005). URL http://dx.doi.org/10.1109/ICCV.
2005.256.

[68] G. Wahba. Spline models for observational data, vol. 59 (Society for industrial and applied
mathematics, 1990).

[69] A. Y. Ng. Feature selection, l1 vs. l2 regularization, and rotational invariance. In Pro-
ceedings of the twenty-first international conference on Machine learning, ICML ’04, pp.
78– (ACM, New York, NY, USA, 2004). URL http://doi.acm.org/10.1145/
1015330.1015435.

[70] J. Bresnan. Explaining morphosyntactic competition. Handbook of contemporary syntactic
theory pp. 11–44 (2001).

[71] A. Rush and S. Petrov. Vine pruning for efficient multi-pass dependency parsing. In The
2012 Conference of the North American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies (NAACL ’12), p. Best Paper Award (2012). URL
http://petrovi.de/data/naacl12.pdf.

[72] D. Klein and C. D. Manning. A generative constituent-context model for improved grammar
induction. In Proceedings of the 40th Annual Meeting on Association for Computational
Linguistics, ACL ’02, pp. 128–135 (Association for Computational Linguistics, Strouds-
burg, PA, USA, 2002). URL http://dx.doi.org/10.3115/1073083.1073106.

[73] R. McDonald. Discriminative learning and spanning tree algorithms for dependency pars-
ing. Ph.D. thesis, University of Pennsylvania, Philadelphia, PA, USA (2006). AAI3225503.

[74] M. P. Marcus, M. A. Marcinkiewicz, and B. Santorini. Building a large annotated corpus
of English: the penn treebank. Comput. Linguist. 19(2), 313 (1993). URL http://dl.
acm.org/citation.cfm?id=972470.972475.

[75] R. Johansson and P. Nugues. Extended constituent-to-dependency conversion for English.
In Proceedings of NODALIDA 2007 (Tartu, Estonia, 2007). URL http://dspace.
utlib.ee/dspace/bitstream/10062/2560/1/reg-Johansson-10.pdf.

[76] S. Buchholz and E. Marsi. Conll-x shared task on multilingual dependency parsing. In In
Proc. of CoNLL, pp. 149–164 (2006).

[77] D. Bamman and G. Crane. The design and use of a latin dependency treebank. In Proceed-
ings of the Fifth International Workshop on Treebanks and Linguistic Theories (TLT 2006),
pp. 67–78 (Prague, 2006).

[78] R. Cann. Formal Semantics: an introduction (Cambridge University Press, 1993).

180 REFERENCES

[79] Z. GuoDong, S. Jian, Z. Jie, and Z. Min. Exploring various knowledge in relation extraction.
In Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics,
ACL ’05, pp. 427–434 (Association for Computational Linguistics, Stroudsburg, PA, USA,
2005). URL http://dx.doi.org/10.3115/1219840.1219893.

[80] N. Chomsky. Syntactic structures. Ianua linguarum : Series minor ; 4 (Mouton, 1962).

[81] E. Charniak. Statistical parsing with a context-free grammar and word statistics. In
B. Kuipers and B. L. Webber, eds., AAAI/IAAI, pp. 598–603 (AAAI Press / The MIT Press,
1997).

[82] D. Jurafsky and J. H. Martin. Speech and Language Processing (2nd Edition) (Prentice Hall
Series in Artificial Intelligence) (Prentice Hall, 2008), 2 ed.

[83] E. Jelinek, J. Lafferty, D. Magerman, R. Mercer, A. Ratnaparkhi, and S. Roukos. Decision
tree parsing using a hidden derivation model. In Proc. Darpa Speech and Natural Language
Workshop (1994).

[84] D. M. Magerman. Statistical decision-tree models for parsing. In Proceedings of the
33rd Annual Meeting on Association for Computational Linguistics, ACL ’95, pp. 276–
283 (Association for Computational Linguistics, Stroudsburg, PA, USA, 1995). URL
http://dx.doi.org/10.3115/981658.981695.

[85] N. Chomsky. Remarks on nominalization (Waltham: Ginn, 1970).

[86] R. Jackendoff. X-bar-Syntax: A Study of Phrase Structure, vol. 2 (MIT Press, 1977).

[87] M. J. Collins. A new statistical parser based on bigram lexical dependencies. In Proceedings
of the 34th Annual Meeting on Association for Computational Linguistics, ACL ’96, pp.
184–191 (Association for Computational Linguistics, Stroudsburg, PA, USA, 1996). URL
http://dx.doi.org/10.3115/981863.981888.

[88] M. Collins. Three generative, lexicalised models for statistical parsing. In Proceedings
of the 35th Annual Meeting of the Association for Computational Linguistics and Eighth
Conference of the European Chapter of the Association for Computational Linguistics, ACL
’98, pp. 16–23 (Association for Computational Linguistics, Stroudsburg, PA, USA, 1997).
URL http://dx.doi.org/10.3115/976909.979620.

[89] E. Charniak and M. Johnson. Coarse-to-fine n-best parsing and maxent discriminative
reranking. In Proceedings of the 43rd Annual Meeting of the Association for Computa-
tional Linguistics (ACL’05), pp. 173–180 (Association for Computational Linguistics, Ann
Arbor, Michigan, 2005). URL http://www.aclweb.org/anthology/P05-1022.

[90] T. Matsuzaki, Y. Miyao, and J. Tsujii. Probabilistic CFG with latent annotations. In Pro-
ceedings of the 43rd Annual Meeting on Association for Computational Linguistics, ACL
’05, pp. 75–82 (Stroudsburg, PA, USA, 2005). URL http://dx.doi.org/10.3115/
1219840.1219850.

REFERENCES 181

[91] S. Petrov, L. Barrett, R. Thibaux, and D. Klein. Learning accurate, compact, and inter-
pretable tree annotation. In Proceedings of the 21st International Conference on Computa-
tional Linguistics and the 44th Annual Meeting of the Association for Computational Lin-
guistics, ACL-44, pp. 433–440 (Association for Computational Linguistics, Stroudsburg,
PA, USA, 2006). URL http://dx.doi.org/10.3115/1220175.1220230.

[92] S. Petrov and D. Klein. Discriminative log-linear grammars with latent variables. In In
Proceedings of NIPS 20 (2008).

[93] J. Finkel, A. Kleeman, and C. Manning. Efficient, feature-based, conditional random field
parsing. In Proceedings of the 46th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies, pp. 959–967 (2008).

[94] J. Bilmes. A gentle tutorial of the EM algorithm and its application to parameter estima-
tion for gaussian mixture and hidden Markov models. Tech. rep., University of California
Berkeley (1998).

[95] J. K. Baker. Trainable grammars for speech recognition. The Journal of the Acoustical
Society of America 65(S1), S132 (1979).

[96] F. Pereira and Y. Schabes. Inside-outside reestimation from partially bracketed corpora.
In Proceedings of the 30th Annual Meeting on Association for Computational Linguistics,
ACL ’92, pp. 128–135 (Association for Computational Linguistics, Stroudsburg, PA, USA,
1992). URL http://dx.doi.org/10.3115/981967.981984.

[97] D. Chiang and D. M. Bikel. Recovering latent information in treebanks. In Proceedings of
the 19th International Conference on Computational Linguistics - Volume 1, COLING ’02,
pp. 1–7 (Association for Computational Linguistics, Stroudsburg, PA, USA, 2002). URL
http://dx.doi.org/10.3115/1072228.1072354.

[98] S. Petrov and D. Klein. Improved inference for unlexicalized parsing. In Human Lan-
guage Technologies 2007: The Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics; Proceedings of the Main Conference, pp. 404–411
(Association for Computational Linguistics, Rochester, New York, 2007). URL http:
//www.aclweb.org/anthology/N/N07/N07-1051.

[99] R. Backofen, J. Rogers, and K. Vijay-shanker. A first-order axiomatization of the theory of
finite trees. Journal of Logic, Language and Information 4, 5 (1995).

[100] D. A. McAllester, M. Collins, and F. Pereira. Case-factor diagrams for structured proba-
bilistic modeling. CoRR abs/1207.4135 (2012).

[101] N. A. Smith. Linguistic Structure Prediction. Synthesis Lectures on Human Language
Technologies (Morgan and Claypool, 2011).

[102] X. Song, S. Ding, and C.-Y. Lin. Better binarization for the CKY parsing. In Proceedings
of the Conference on Empirical Methods in Natural Language Processing, EMNLP ’08, pp.
167–176 (Association for Computational Linguistics, Stroudsburg, PA, USA, 2008). URL
http://dl.acm.org/citation.cfm?id=1613715.1613739.

182 REFERENCES

[103] L. Huang, H. Zhang, D. Gildea, and K. Knight. Binarization of synchronous context-free
grammars. Computational Linguistics 35(4), 559 (2009). URL http://dx.doi.org/
10.1162/coli.2009.35.4.35406.

[104] S. Petrov. Coarse-to-Fine Natural Language Processing. Ph.D. thesis, University of Cali-
fornia at Berkeley (2009).

[105] N. Bodenstab, A. Dunlop, K. Hall, and B. Roark. Beam-width prediction for efficient
context-free parsing. In Proceedings of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Technologies - Volume 1, HLT ’11, pp.
440–449 (Association for Computational Linguistics, Stroudsburg, PA, USA, 2011). URL
http://dl.acm.org/citation.cfm?id=2002472.2002529.

[106] R. McDonald, F. Pereira, K. Ribarov, and J. Hajič. Non-projective dependency parsing
using spanning tree algorithms. In Proceedings of the conference on Human Language
Technology and Empirical Methods in Natural Language Processing, HLT ’05, pp. 523–530
(Association for Computational Linguistics, Stroudsburg, PA, USA, 2005). URL http:
//dx.doi.org/10.3115/1220575.1220641.

[107] F. Sha and F. Pereira. Shallow parsing with conditional random fields. In Proceedings
of the 2003 Conference of the North American Chapter of the Association for Compu-
tational Linguistics on Human Language Technology - Volume 1, NAACL ’03, pp. 134–
141 (Association for Computational Linguistics, Stroudsburg, PA, USA, 2003). URL
http://dx.doi.org/10.3115/1073445.1073473.

[108] H. Shen and A. Sarkar. Voting between multiple data representations for text chunking. In
Proceedings of the 18th Canadian Society conference on Advances in Artificial Intelligence,
AI’05, pp. 389–400 (Springer-Verlag, Berlin, Heidelberg, 2005). URL http://dx.doi.
org/10.1007/11424918_40.

[109] N. A. Smith and M. Johnson. Weighted and probabilistic context-free grammars are equally
expressive. Computational Linguistics p. 491 (2007).

[110] S. Riedel and D. A. Smith. Relaxed marginal inference and its application to dependency
parsing. In Human Language Technologies: The 2010 Annual Conference of the North
American Chapter of the Association for Computational Linguistics, HLT ’10, pp. 760–768
(Association for Computational Linguistics, Stroudsburg, PA, USA, 2010). URL http:
//dl.acm.org/citation.cfm?id=1857999.1858116.

[111] S. Riedel, D. A. Smith, and A. McCallum. Parse, price and cut - delayed column and
row generation for graph based parsers. In Proceedings of the Conference on Empirical
methods in natural language processing (EMNLP ’12) (2012).

[112] E. Hovy, M. Marcus, M. Palmer, L. Ramshaw, and R. Weischedel. Ontonotes: The 90%
solution. In Proceedings of the Human Language Technology Conference of the NAACL,
Companion Volume: Short Papers, pp. 57–60 (Association for Computational Linguis-
tics, New York City, USA, 2006). URL http://www.aclweb.org/anthology/
N/N06/N06-2015.

REFERENCES 183

[113] D. Klein and C. D. Manning. Accurate unlexicalized parsing. In In Proceedings of the 41st
Annual Meeting of the Association for Computational Linguistics, pp. 423–430 (2003).

[114] D. Klein and C. Manning. Fast exact inference with a factored model for natural language
processing. In NIPS (2002).

[115] L. Tesnière. Elements de syntaxe structurale (Editions Klincksieck, 1959).

[116] T. Koo, A. Globerson, X. Carreras, and M. Collins. Structured prediction models via the
matrix-tree theorem. In In EMNLP-CoNLL (2007).

[117] J. Naradowsky, T. Vieira, and D. A. Smith. Grammarless parsing for joint inference. In 24th
International Conference on Computational Linguistics (COLING) (Mumbai, India, 2012).

[118] D. M. Bikel, R. Schwartz, and R. M. Weischedel. An algorithm that learns what‘s
in a name. Machine Learning 34(1-3), 211 (1999). URL http://dx.doi.org/10.
1023/A:1007558221122.

[119] G. Zhou and J. Su. Named entity recognition using an HMM-based chunk tagger. In
Proceedings of the 40th Annual Meeting on Association for Computational Linguistics,
ACL ’02, pp. 473–480 (Association for Computational Linguistics, Stroudsburg, PA, USA,
2002). URL http://dx.doi.org/10.3115/1073083.1073163.

[120] S. Zhao. Named entity recognition in biomedical texts using an HMM model. In Proceed-
ings of the International Joint Workshop on Natural Language Processing in Biomedicine
and its Applications, JNLPBA ’04, pp. 84–87 (Association for Computational Linguis-
tics, Stroudsburg, PA, USA, 2004). URL http://dl.acm.org/citation.cfm?
id=1567594.1567613.

[121] H. Isozaki and H. Kazawa. Efficient support vector classifiers for named entity recogni-
tion. In In Proceedings of the 19th International Conference on Computational Linguistics
(COLING 2002, pp. 390–396 (2002).

[122] J. R. Finkel, T. Grenager, and C. Manning. Incorporating non-local information into infor-
mation extraction systems by Gibbs sampling. In Proceedings of the 43rd Annual Meeting
on Association for Computational Linguistics, ACL ’05, pp. 363–370 (Association for Com-
putational Linguistics, Stroudsburg, PA, USA, 2005). URL http://dx.doi.org/10.
3115/1219840.1219885.

[123] J. Liu, M. Huang, and X. Zhu. Recognizing biomedical named entities using skip-chain
conditional random fields. In Proceedings of the 2010 Workshop on Biomedical Natural
Language Processing, BioNLP ’10, pp. 10–18 (Association for Computational Linguis-
tics, Stroudsburg, PA, USA, 2010). URL http://dl.acm.org/citation.cfm?
id=1869961.1869963.

[124] L. A. Ramshaw and M. P. Marcus. Text chunking using transformation-based learning.
CoRR cmp-lg/9505040 (1995).

184 REFERENCES

[125] J. Finkel, S. Dingare, H. Nguyen, M. Nissim, C. Manning, and G. Sinclair. Exploiting
context for biomedical entity recognition: from syntax to the web. In Proceedings of
the International Joint Workshop on Natural Language Processing in Biomedicine and
its Applications, JNLPBA ’04, pp. 88–91 (Association for Computational Linguistics,
Stroudsburg, PA, USA, 2004). URL http://dl.acm.org/citation.cfm?id=
1567594.1567614.

[126] S. Miller, H. Fox, L. Ramshaw, and R. Weischedel. A novel use of statistical pars-
ing to extract information from text. In Proceedings of the 1st North American Chapter
of the Association for Computational Linguistics Conference, NAACL 2000, pp. 226–
233 (Association for Computational Linguistics, Stroudsburg, PA, USA, 2000). URL
http://dl.acm.org/citation.cfm?id=974305.974335.

[127] I. Lehiste. Phonetic Disambiguation of Syntactic Ambiguity. The Journal of the Acoustical
Society of America 53(1), 380 (1973).

[128] M. Ostendorf, P. J. Price, J. Bear, and C. W. Wightman. The use of relative duration in syn-
tactic disambiguation. In Proceedings of the workshop on Speech and Natural Language,
HLT ’90, pp. 26–31 (Association for Computational Linguistics, Stroudsburg, PA, USA,
1990). URL http://dx.doi.org/10.3115/116580.116594.

[129] N. M. Veilleux, M. Ostendorf, and C. Wightman. Parse scoring with prosodic information.
In In Int. Conf. on Spoken Language Processing, pp. 51–54 (1992).

[130] C. Clifton, K. Carlson, and L. Frazier. Informative Prosodic Boundaries. Language &
Speech 45(Peer Reviewed Journal), 87 (2002).

[131] K. Rayner, M. Carlson, and L. Frazier. The interaction of syntax and semantics during sen-
tence processing: eye movements in the analysis of semantically biased sentences. Journal
of Verbal Learning and Verbal Behavior 22, 358 (1983).

[132] E. Selkirk. Comments on intonational phrasing in English (2005).

[133] M. Steedman. The Syntactic Process (MIT Press, Cambridge, MA, USA, 2000).

[134] L. E. Baum and T. Petrie. Statistical inference for probabilistic functions of finite state
Markov chains. Annals of Mathematical Statistics 37, 1554 (1966).

[135] J. Naradowsky and K. Toutanova. Unsupervised bilingual morpheme segmentation and
alignment with context-rich hidden semi-Markov models. In Proceedings of the 49th Annual
Meeting of the Association for Computational Linguistics: Human Language Technologies,
pp. 895–904 (Association for Computational Linguistics, Portland, Oregon, USA, 2011).
URL http://www.aclweb.org/anthology/P11-1090.

[136] C. Walker, S. Strassel, J. Medero, and K. Maeda. Ace 2005 multilingual training corpus.
Linguistic Data Consortium, Philadelphia (2005). URL http://www.ldc.upenn.
edu/Catalog/CatalogEntry.jsp?catalogId=LDC2006T06.

REFERENCES 185

[137] Z. GuoDong, S. Jian, Z. Jie, and Z. Min. Exploring various knowledge in relation extraction.
In Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics,
ACL ’05, pp. 427–434 (Association for Computational Linguistics, Stroudsburg, PA, USA,
2005). URL http://dx.doi.org/10.3115/1219840.1219893.

[138] R. Mcdonald, F. Pereira, S. Kulick, S. Winters, Y. Jin, and P. White. Simple algorithms
for complex relation extraction with applications to biomedical ie. In In Proceedings of
the 43nd Annual Meeting of the Association for Computational Linguistics (ACL-05, pp.
491–498 (2005).

[139] S. Zhao and R. Grishman. Extracting relations with integrated information using kernel
methods. In Proceedings of the 43rd Annual Meeting on Association for Computational
Linguistics, ACL ’05, pp. 419–426 (Association for Computational Linguistics, Strouds-
burg, PA, USA, 2005). URL http://dx.doi.org/10.3115/1219840.1219892.

[140] L. Yao, A. Haghighi, S. Riedel, and A. McCallum. Structured relation discovery using gen-
erative models. In Proceedings of the Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP ’11, pp. 1456–1466 (Association for Computational Linguis-
tics, Stroudsburg, PA, USA, 2011). URL http://dl.acm.org/citation.cfm?
id=2145432.2145587.

[141] S. Riedel, L. Yao, B. M. Marlin, and A. McCallum. Relation extraction with ma-
trix factorization and universal schemas. In Joint Human Language Technology Con-
ference/Annual Meeting of the North American Chapter of the Association for Compu-
tational Linguistics (HLT-NAACL ’13) (2013). URL http://www.riedelcastro.
org/publications/papers/riedel13relation.pdf.

[142] N. Xue, F. Xia, F.-d. Chiou, and M. Palmer. The penn chinese treebank: Phrase structure
annotation of a large corpus. Nat. Lang. Eng. 11(2), 207 (2005). URL http://dx.doi.
org/10.1017/S135132490400364X.

[143] J. Hajič, M. Ciaramita, R. Johansson, D. Kawahara, M. A. Martı́, L. Màrquez, A. Meyers,
J. Nivre, S. Padó, J. Štěpánek, P. Straňák, M. Surdeanu, N. Xue, and Y. Zhang. The CoNLL-
2009 shared task: Syntactic and semantic dependencies in multiple languages. In CoNLL:
Shared Task, pp. 1–18 (2009).

[144] J. M. Eisner. Three new probabilistic models for dependency parsing: an exploration. In
Proceedings of the 16th conference on Computational linguistics - Volume 1, COLING ’96,
pp. 340–345 (Association for Computational Linguistics, Stroudsburg, PA, USA, 1996).
URL http://dx.doi.org/10.3115/992628.992688.

[145] D. Bamman and G. Crane. Corpus linguistics, treebanks and the reinvention of philology. In
K.-P. Fähnrich and B. Franczyk, eds., Informatik, vol. 176 of LNI, pp. 542–551 (GI, 2010).

[146] D. Roland, F. D.ck, and J. L. Elman. Frequency of basic English grammatical structures: A
corpus analysis (2007).

186 REFERENCES

[147] J. Tinsley, M. Hearne, and A. Way. Exploiting parallel treebanks to improve phrase-
based statistical machine translation. In Proceedings of the 10th International Conference
on Computational Linguistics and Intelligent Text Processing, CICLing ’09, pp. 318–331
(Springer-Verlag, Berlin, Heidelberg, 2009). URL http://dx.doi.org/10.1007/
978-3-642-00382-0_26.

[148] C. J. Fillmore. Frame semantics, pp. 111–137 (Hanshin Publishing Co., Seoul, South Korea,
1982).

[149] A. Bies, M. Ferguson, K. Katz, R. MacIntyre, V. Tredinnick, G. Kim, M. A. Marcinkiewicz,
and B. Schasberger. Bracketing guidelines for treebank ii style penn treebank project. Tech.
rep., University of Pennsylvania (1995).

[150] P. Blunsom. Maximum entropy Markov models for semantic role labelling (2004).

[151] C. Sutton and A. McCallum. Joint parsing and semantic role labeling. In Proceedings of
CoNLL-2005, pp. 225–228 (2005).

[152] G. Ngai, D. Wu, M. Carpuat, C. shing Wang, and C. yung Wang. Semantic role labeling
with boosting, SVMs, maximum entropy, SNOW, and decision lists. In In Proceedings of
SENSEVAL-3: Third International Workshop on the Evaluation of Systems for the Semantic
Analysis of Text (2004).

[153] X. Carreras and L. Marquez. Introduction to the conll-2005 shared task: Semantic role
labeling (2005).

[154] Y. Liu and A. Sarkar. Using LTAG-based features for semantic role labeling. In Proceedings
of the Eighth International Workshop on Tree Adjoining Grammar and Related Formalisms,
pp. 127–132 (Association for Computational Linguistics, Sydney, Australia, 2006). URL
http://www.aclweb.org/anthology/W/W06/W06-1518.

[155] X. Carreras and L. Màrques. Introduction to the conll-2004 shared task: Semantic role
labeling. In Proceedings of CoNLL-2004, pp. 89–97 (Boston, MA, USA, 2004).

[156] K. Toutanova, A. Haghighi, and C. D. Manning. A global joint model for semantic role
labeling. Comput. Linguist. 34(2), 161 (2008). URL http://dx.doi.org/10.1162/
coli.2008.34.2.161.

[157] S. Riedel and I. Meza-Ruiz. Collective semantic role labelling with Markov logic. In Pro-
ceedings of the Twelfth Conference on Computational Natural Language Learning, CoNLL
’08, pp. 193–197 (Association for Computational Linguistics, Stroudsburg, PA, USA,
2008). URL http://dl.acm.org/citation.cfm?id=1596324.1596357.

[158] I. Meza-Ruiz and S. Riedel. Jointly identifying predicates, arguments and senses using
Markov logic. In Joint Human Language Technology Conference/Annual Meeting of the
North American Chapter of the Association for Computational Linguistics (HLT-NAACL
’09) (2009).

REFERENCES 187

[159] W. Che, Z. Li, Y. Li, Y. Guo, B. Qin, and T. Liu. Multilingual dependency-based syn-
tactic and semantic parsing. In Proceedings of the Thirteenth Conference on Computa-
tional Natural Language Learning: Shared Task, CoNLL ’09, pp. 49–54 (Association for
Computational Linguistics, Stroudsburg, PA, USA, 2009). URL http://dl.acm.org/
citation.cfm?id=1596409.1596417.

[160] H. Zhao, W. Chen, C. Kit, and G. Zhou. Multilingual dependency learning: a huge feature
engineering method to semantic dependency parsing. In Proceedings of the Thirteenth
Conference on Computational Natural Language Learning: Shared Task, CoNLL ’09, pp.
55–60 (Association for Computational Linguistics, Stroudsburg, PA, USA, 2009). URL
http://dl.acm.org/citation.cfm?id=1596409.1596418.

[161] K. Goluchowski and A. Przepiórkowski. Semantic role labelling without deep syntactic
parsing. In Advances in Natural Language Processing, vol. 7614, pp. 192–197 (springer,
2012). URL http://nlp.ipipan.waw.pl/˜adamp/Papers/2012-japtal.

[162] S. Boxwell, C. Brew, J. Baldridge, D. Mehay, and S. Ravi. Semantic role labeling without
treebanks? In Proceedings of 5th International Joint Conference on Natural Language
Processing, pp. 192–200 (Asian Federation of Natural Language Processing, Chiang Mai,
Thailand, 2011). URL http://www.aclweb.org/anthology/I11-1022.

[163] M. R. Gormley, M. Mitchell, B. Van Durme, and M. Dredze. Low-resource semantic role
labeling. In Proceedings of ACL (2014).

[164] C. Fillmore. The case for case. In E. Bach and R. Harms, eds., Universals in Linguistic
Theory (Holt, Rinehart, and Winston, New York, 1968).

[165] X. Lluı́s, X. Carreras, and L. Màrquez. Joint arc-factored parsing of syntactic and semantic
dependencies. Transactions of the Association for Computational Linguistics (TACL) 1(1),
219,230 (2013).

[166] D. Klein and C. D. Manning. Corpus-based induction of syntactic structure: models of de-
pendency and constituency. In Proceedings of the 42nd Annual Meeting on Association for
Computational Linguistics, ACL ’04 (Association for Computational Linguistics, Strouds-
burg, PA, USA, 2004). URL http://dx.doi.org/10.3115/1218955.1219016.

[167] Y. Zhang and J. Nivre. Transition-based dependency parsing with rich non-local fea-
tures. In Proceedings of the 49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies: short papers - Volume 2, HLT ’11, pp. 188–
193 (Association for Computational Linguistics, Stroudsburg, PA, USA, 2011). URL
http://dl.acm.org/citation.cfm?id=2002736.2002777.

[168] A. F. T. Martins, N. A. Smith, and E. P. Xing. Concise integer linear programming for-
mulations for dependency parsing. In Proceedings of the Joint Conference of the 47th
Annual Meeting of the ACL and the 4th International Joint Conference on Natural Lan-
guage Processing of the AFNLP: Volume 1 - Volume 1, ACL ’09, pp. 342–350 (As-
sociation for Computational Linguistics, Stroudsburg, PA, USA, 2009). URL http:
//dl.acm.org/citation.cfm?id=1687878.1687928.

188 REFERENCES

[169] I. Titov, J. Henderson, P. Merlo, and G. Musillo. Online projectivisation for synchronous
parsing of semantic and syntactic dependencies. In In Proceedings of the Internation Joint
Conference on Artificial Intelligence (IJCAI), pp. 1562–1567 (Pasadena, California, USA,
2009).

[170] R. Johansson. Statistical bistratal dependency parsing. In EMNLP, pp. 561–569 (ACL,
2009).

[171] M. Y. Luo Yanyan, Asahara Masayuki. Robust integrated models for chinese predicate-
argument structure analysis. China Communications 9(3), 10 (pages 8) (2012). URL
http://www.chinacommunications.cn/EN/abstract/article_7863.
shtml.

[172] H. Zhao, W. Chen, J. Kazama, K. Uchimoto, and K. Torisawa. Multilingual dependency
learning: Exploiting rich features for tagging syntactic and semantic dependencies. In
Proceedings of the Thirteenth Conference on Computational Natural Language Learn-
ing: Shared Task, CoNLL ’09, pp. 61–66 (Association for Computational Linguistics,
Stroudsburg, PA, USA, 2009). URL http://dl.acm.org/citation.cfm?id=
1596409.1596419.

[173] X. Lluı́s, S. Bott, and L. Màrquez. A second-order joint eisner model for syntactic and
semantic dependency parsing (2012).

[174] J. Naradowsky, S. Riedel, and D. A. Smith. Improving NLP through marginalization of
hidden syntactic structure. In Proceedings of the 2012 Conference on Empirical Meth-
ods in Natural Language Processing (Association for Computational Linguistics, Jeju,
Korea, 2012). URL http://www.cs.umass.edu/˜narad/_papers/relmarg_
emnlp2012.pdf.

[175] S. Brants, S. Dipper, S. Hansen, W. Lezius, and G. Smith. The TIGER treebank. In Pro-
ceedings of the workshop on treebanks and linguistic theories, pp. 24–41 (2002).

[176] S. Goldwater. Nonparametric Bayesian Models of Lexical Acquisition. Ph.D. thesis, Brown
University (2006).

[177] D. Vergyri, K. Kirchhoff, K. Duh, and A. Stolcke. Morphology-based language modeling
for arabic speech recognition. In In Proc. of ICSLP, pp. 2245–2248 (2004).

[178] S. Goldwater and D. McClosky. Improving statistical mt through morphological analysis.
In Proceedings of the Conference on Empirical Methods in Natural Language Processing
(Vancouver, 2005).

[179] M. Dreyer and J. Eisner. Discovering morphological paradigms from plain text using a
Dirichlet process mixture model. In Proceedings of the Conference on Empirical Methods
in Natural Language Processing, EMNLP ’11, pp. 616–627 (Association for Computational
Linguistics, Stroudsburg, PA, USA, 2011). URL http://dl.acm.org/citation.
cfm?id=2145432.2145504.

REFERENCES 189

[180] J. Naradowsky, J. Pater, D. Smith, and R. Staubs. Learning hidden metrical structure with a
log-linear model of grammar. In Workshop on Computational Modelling of Sound Pattern
Acquisition (2010).

[181] J. Naradowsky and S. Goldwater. Improving morphology induction by learning spelling
rules. In Proceedings of the 21st international jont conference on Artifical intelligence,
pp. 1531–1536 (Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2009). URL
http://portal.acm.org/citation.cfm?id=1661445.1661691.

[182] M. Johnson and E. Charniak. A tag-based noisy channel model of speech repairs. In Pro-
ceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp.
33–39 (Association for Computational Linguistics, 2004).

[183] B. Recht, C. Re, S. Wright, and F. Niu. Hogwild: A lock-free approach to paralleliz-
ing stochastic gradient descent. In J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and
K. Weinberger, eds., Advances in Neural Information Processing Systems 24, pp. 693–701
(2011).

[184] S. Singh, S. Riedel, B. Martin, J. Zheng, and A. McCallum. Joint inference of entities,
relations, and coreference. In CIKM Workshop on Automated Knowledge Base Construction
(AKBC) (2013).

[185] D. Garrette and J. Baldridge. Learning a part-of-speech tagger from two hours of annota-
tion. In Proceedings of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies (NAACL-HLT-13), pp. 138–147 (Atlanta,
GA, 2013). URL http://www.cs.utexas.edu/users/ai-lab/?garrette:
naacl13.

