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Chapter 1

Introduction

This thesis analyses three types of financial risks in a quantitative framework.

Applied in empirical studies, the proposed analytical methods evaluate the

financial risks in novel ways and help improve the accuracy when making

predictions for future risk events. The results presented in this thesis contribute

to the risk analysis discipline by modifying and enhancing established approaches

for better risk management.

Financial risk arises due to instabilities in the financial markets and uncertainty

relating to future financial events. It is one of the major concerns of businesses,

individuals, government and regulators. In order to anticipate the potential impact

of such risk, it is of great importance to evaluate the risk and make reasonable

predictions for better decision-making. Output from this analysis can inform

business strategies, investment options or the implementation of new regulations

to protect the stability of the financial system.

As a result, the topic of financial risk modelling and management has been

intensively studied in the literature. An accumulation of models have been

developed to identify different financial risks and their sources, and forecast the

probability of risk events using selected variables (Campbell et al., 1997). Financial

institutions, including banks, credit rating companies and insurance companies,

also adopt and implement internal risk management systems, to evaluate their

key risk exposure in preparation for a plan to react to adverse events (Saunders

& Cornett, 2003).

1



Chapter 1. Introduction 2

Among the many different types of financial risks, this thesis focuses on the

assessment of the following three risks using quantitative methods, each of which

is addressed in one research paper:

• Insurance claim count risk

• Sovereign credit risk

• Corporate default risk

This chapter gives an introduction and an overview of the thesis. Section

1.1 discusses these financial risks and relevant analytical models in the current

literature. Section 1.2 describes the structure of the thesis and the contributions

made by each of the research papers.

1.1 Financial risk modelling and techniques

1.1.1 Insurance claim count risk

Insurance claim count risk refers to uncertainty in the number of claims made

on an insurance company for a particular line of insurance business. Managing

insurance claim count risk is crucial, as it is important for insurance companies to

differentiate between low-risk and high-risk customers. Except for health insurance

companies which operate under a community rating system, other insurance

companies can discriminate between customers by charging different premiums,

which reflect the perceived risk level of the customer based on the information

collected about the customer. Over- or under-charging customers is not only

detrimental to business profit, but also leads to problems such as under-reserving

and adverse selection.

Often the predicted number of claims is analysed with the aid of policyholder’s

characteristics. For example, for motor insurance the claim frequency is commonly

linked to the policyholder’s age, driving history, living address and so on.

Modelling insurance claim count data concerns the relationship between the

observed counts and such explanatory variables.



Chapter 1. Introduction 3

Generalised linear models (GLMs) are commonly used as a mathematical

formulation for this modelling purpose. A linear combination of explanatory

variables, representing various characteristics of the policyholder, is used as the

basis for estimating the expected claim count for this policyholder. The model

can be calibrated based on the data of existing policyholders, in order to assess

the risk level of new customers. Common distributions used in GLMs to analyse

count data are the Poisson distribution and the negative binomial distribution

(McCullagh & Nelder, 1989). The former assumes the mean and the variance of

the response variable are equal, and the latter allows the variance to be higher than

the mean. When the interest lies in the analysis of two types of policies held by

the policyholder, a bivariate model with a properly designed correlation structure

can be used as the claim counts of the two policies are likely to be correlated.

In empirical studies, it is important to choose the right distribution in the GLM

and the association structure if two types of policies are studied. The other issue

in analysing the claim count is the number of independent variables used in the

model, as it is not always optimal to include as many variables. If the problem of

over-fitting is present, this may lead to reduced out-of-sample prediction accuracy.

Thus it may be necessary to shrink the model and only use the most important

independent variables.

1.1.2 Sovereign credit risk

Sovereign credit risk is defined as the risk for a sovereign entity to default on

its debt payments. Sovereign default events are infrequent but can lead to

financial crisis or recession. Due to the serious consequences of such default

events, managing sovereign risk is not only important for the investors who hold

sovereign debts in their investment portfolio, but also for the sovereign government

who issues sovereign debt instruments. The significance of this assessment has

increased substantially since the global financial crisis when several European

countries encountered periods of financial difficulties.

Sovereign risk is normally linked to the sovereign entity’s fiscal condition, such

as the budget deficit, trade balance and tax receipts. Economic factors can also

help analyse sovereign risk, such as the GDP growth rate, inflation rate and the

unemployment rate. The deterioration in these figures or ratios can help predict

default events. However, most of these figures are only available at a low frequency,
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released by the government’s department of statistics with delays. So even if the

model that links the figures to the sovereign risk is correctly specified, it is difficult

for such model to give early warnings and provide time for reactions and responses.

No matter how sophisticated the model is, the prediction result is not likely to be

indicative.

As an attempt to mitigate the problem, a bottom-up approach is proposed in

Altman & Rijken (2011a) that links the financial health of the sovereign entity to

the health of its private sector, which is justified by the fact that the major source

of income for the sovereign entity is the tax receipts collected in the private sector.

This approach is further improved in this thesis, with more frequently updated

and forward-looking market data as the inputs and focusing on state governments

without existing financial problems.

1.1.3 Corporate default risk

Corporate default risk is defined as the risk for a corporation to default on its

debt payments, which may be followed by the liquidation and bankruptcy of the

company. Compared to sovereign default events, corporate default events are more

frequent and thus provide ample data for model development. The literature in

this discipline focuses on the modelling of the probability of default, which is linked

to a range of independent variables that are believed to have explanatory power

for the default event. Credit rating agencies are also contributors of the default

analysis, assigning different ratings to companies based on probability of default

computed using the internal models.

In general, there are three model-based approaches to the analysis of default risk.

Structural models calculate the company’s distance to default, which is defined as

the number of standard deviations of the asset value between the mean asset value

and the debt value. The larger the distance to default, the higher the chance to

have adequate money for debt payments. Scoring models combine the company’s

accounting ratios in simple regression models to perform discriminant analysis.

The dependent variable in the scoring model is the score for the company, which

can be used for classification purposes. Because of their simplicity, scoring models

are widely adopted in all types of credit risk analysis. Finally, survival models

analyse the default intensity. The model assumes the default is a surprise event

driven by exogenous random variables and the time to default is governed by the
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hazard rate of default. The model automatically adjust for period at risk, which

is one of the advantages over the structural model and the scoring model. These

three types of models are discussed in detail in Chapter 4.

The thesis assesses corporate default risk using a joint model (Rizopoulos, 2012),

which combines a linear mixed-effects (LME) model with a survival model, so that

the longitudinal observations of the company is fitted with a smooth function,

before it is linked to the hazard rate of default of the company. The model relaxes

the assumption that the independent variables are constant between observations,

and a well-modelled longitudinal trajectory helps increases the prediction accuracy

as indicated by the results.

1.1.4 Statistical software

This thesis uses R to analyse data in empirical studies. It is used for data

organisation, data processing and computation. The computation procedure

involves fitting models to the data to estimate parameters, and generate

predictions. Because the results of the proposed models are compared to

benchmark models, R is also used to produce charts and tables for the presentation

of the results.

One advantage of using R is the availability of a range of packages ready to be

used for different computation purposes. The analysis of the data in this thesis is

based on several main packages, including

• graphics (R Core Team, 2015a): For producing a variety of diagrams and

plots.

• JMbayes (Rizopoulos, 2016a): The main package used in Chapter 4 for fitting

the model and computing out-of-sample prediction results.

• MASS (Venables & Ripley, 2002a): A library of functions and datasets to

support various calculations.

• nlme (Pinheiro et al., 2017): A package for linear and nonlinear mixed-effects

models, which is used together with JMbayes in Chapter 4 to fit a LME

model.
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• splines (R Core Team, 2015b): A package for regression spline functions and

classes.

• stats (R Core Team, 2015c): A package containing functions for statistical

calculations and random number generation. The function “lm” is used in

Chapter 3 to fit regression models.

• survival (Therneau, 2015): A package for survival analysis, containing the

basic routines such as the definitions of objectives in a survival model.

In addition to these packages, the author has also developed code as required in

the analysis. As an example, part of the coding work involved in analysing the

insurance claim data is presented in the appendices.

1.2 Thesis structure and contribution

The three main chapters of the thesis (Chapters 2-4) are based on three research

papers, each of which focuses on one type of financial risk.

Chapter 2: Application of the bivariate negative binomial regression model in

analysing insurance count data

This study analyses insurance claim frequency data using the bivariate negative

binomial regression (BNBR) model, using general insurance data on claims from

simple third-party liability insurance and comprehensive insurance. It is found

that bivariate regression, with its capacity for modelling correlation between the

two observed claim counts, provides a superior fit and improved out-of-sample

prediction compared to the more common practice of fitting univariate negative

binomial regression (UNBR) models separately to each claim type. Noting

the complexity of BNBR models and their potential for a large number of

parameters, this study explores the use of model shrinkage, namely the Lasso

and ridge regression. Results show that models estimated using shrinkage

methods outperform the ordinary likelihood-based models when being used to

make predictions out-of-sample. It can also be shown that the Lasso performs

better than ridge regression as a method of shrinkage in the context considered

here.
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This study contributes to the literature by demonstrating the importance of the

BNBR model in analysing over-dispersed general insurance claims data, especially

when interest lies in claim count data that are likely to be correlated. Moreover, the

results obtained by shrinking the original models provide evidence that shrunken

models provide higher out-of-sample prediction accuracy. This may due to the

over-fitting problem of the original models where all explanatory variables are

used.

Chapter 3: Assessing Sovereign Risk: A Bottom-Up Approach

This chapter assesses sovereign default risk of individual states in the U.S. using

information about default risk at the company level. The integrated risk factors

of the private sector is linked to the overall sovereign risk of state governments

in conjunction with additional financial variables. Using data on Moody’s

KMV expected default frequencies (EDFs) on corporate default risk, credit risk

indicators for different industries are derived. Building on these measures, state

level credit risk indicators are developed encompassing industry compositions to

explain the behaviour of credit default swap (CDS) spreads for individual states.

It is found that market-based measures of private sector credit risk are strongly

associated with subsequent shifts in sovereign credit risk premiums measured

by CDS spreads. The developed credit risk indicators are highly significant in

forecasting sovereign CDS spreads at weekly and monthly sampling frequencies.

The study contributes to the sovereign risk analysis literature by applying a novel

approach that evaluates sovereign risk form a new perspective. The findings

of the study suggest a strong predictive link between market expectations of

private sector credit quality and expectations of sovereign credit quality - a

connection that is not directly discernible from scoring models. Moreover, the

study complements and extends earlier work on a bottom-up approach by using

high-frequency forward-looking market data and analysing sovereign entities that

are not selected with reference to their financial health to avoid survival bias.

Chapter 4: A joint model for longitudinal and time-to-event data in corporate

default risk modelling

This chapter applies a joint model for longitudinal and time-to-event data to assess

corporate default risk. The joint model analyses the independent variable in a

linear mixed-effects model to assess the subject-specific time evolutions, before

using it to evaluate event time and risk. The joint model does not assume
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constant values for the independent variable between observations, and can take

advantage of the fully-specified subject-specific longitudinal trajectories. Data

collected on U.S. listed companies from 1997 to 2016 is used to test the ability of

the joint model to predict corporate default events. Two independent variables,

the distance-to-default and the age of a company, are used to assess the company’s

probability of default over various time horizons. It is found that the joint models

outperform the Cox model and the Weibull model in making predictions of default

events. The results show that the joint model is more suitable in assessing

corporate default risk than selected standard survival models.

While the joint model is widely used in medical and biostatistical studies, it is

to the best knowledge of the author that it is the first time that joint model is

applied in credit risk analysis. It helps mitigate the problem of simply assuming

the independent variable values are constant between observations. By better

modelling the longitudinal trajectory of the independent variable, the joint model

can better assess the relationship between the independent variable the probability

of default, and thus making more accurate predictions.

To conclude the thesis, Chapter 5 summarises the main results from Chapters 2,

3 and 4 and the main contributions to the current literature. It also identifies

several directions for future research in the area of financial risk analysis.



Chapter 2

Application of the bivariate

negative binomial regression

model in analysing insurance

count data

Feng Liu (contribution 80%), David Pitt (contribution 20%)

A research paper based on this chapter has been published:

• Liu, F., & Pitt, D. (2017). Application of bivariate negative binomial

regression model in analysing insurance count data. Annals of Actuarial

Science 11(2), 390-411.

2.1 Introduction

We explore the use of a bivariate negative binomial regression (BNBR) model in

the context of modelling bivariate insurance claim frequency data. Two types of

insurance claims, the third party liability claim and the comprehensive cover claim,

made by the same policyholder are assumed to be correlated and to be explained

by a set of explanatory variables. By allowing a correlation between the two

response variables, the performance of the BNBR is better than if two univariate

negative binomial regression (UNBR) models are fitted separately, both in terms

9
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of in-sample goodness-of-fit and out-of-sample prediction. We also find that the

BNBR also outperforms the bivariate Poisson regression (BPR) model.

In addition, we apply two shrinkage techniques, the Lasso and ridge regression,

to reduce the number of covariates used in the original unshrunken BNBR

model. Although an increasing number of explanatory variables will increase

in-sample goodness-of-fit, an overfitted model may result which performs less well

in out-of-sample prediction. By selecting more relevant risk factors and removing

unnecessary explanatory variables, we find that the shrunken models outperform

the unshrunken model in out-of-sample prediction.

We use the model specification for BNBR in Famoye (2010b), where correlation

structure allows for both a negative and a positive relationship between the two

claim type frequencies.

The contributions of this chapter are threefold. First, we successfully demonstrate

the importance of the BNBR model in analysing over-dispersed general insurance

claim data, which outperforms the BPR model. Second, the correlation factor is

found to be significant, with the implication that BNBR model is more suitable

when the two claim counts are correlated. A similar conclusion is not evident

in Famoye (2010b), where the correlation between the two variables considered

is too low for useful dependence modelling, and thus univariate models seem

to be adequate. Third, we shrink both BNBR models and UNBR models to

reduce the size of coefficients of irrelevant explanatory variables, some of which are

eliminated totally from the regression model. The shrinkage results are consistent

with James et al. (2013, Chapter 6), in that the shrunken models provide much

higher out-of-sample prediction accuracy, compared to the original full BNBR

models.

The chapter is organised as follows: Section 2.2 gives a summary of existing

methods to analyse claim counts, including univariate and bivariate generalised

linear models. Section 2.3 describes the model used in this study as well as the

shrinkage techniques. Section 2.4 introduces the claims data. Section 2.5 gives the

modelling results and a discussion of findings. Section 2.6 concludes the chapter.
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2.2 Literature review

Modelling of insurance claim count data has been an active area of research

for some decades. The research interest often lies in modelling the relationship

between the observed counts and a set of explanatory variables. Generalised

linear models (GLMs) are very commonly used for this purpose as a mathematical

formulation of the relationship. With a chosen link function, the mean of the

distribution can be expressed as a linear function of the explanatory variables.

Under the GLM framework, the response variable is modelled using a member of

the exponential dispersion family of distributions. Two common choices for this

distribution in the case of insurance count data are the Poisson distribution and the

negative binomial distribution (see McCullagh & Nelder, 1989). While the Poisson

regression model assumes equality between the underlying mean and variance of

the response variable, negative binomial regression relaxes the assumption and

accounts for over-dispersion in the data (see Cameron & Trivedi, 2005). Both

models have been widely adopted to analyse claim count data in general insurance.

For a comprehensive review of the GLM, including different models and their

specification, and applications and examples, refer to McCullagh & Nelder (1989).

An early example of the application of GLM in insurance modelling is Samson &

Thomas (1987), where a GLM was applied to analyse claim costs for an automobile

insurance account portfolio of a major British insurance company. They found

that the categorical independent variables of policyholder age, area of residence,

vehicle type, and no-claim discount (NCD) status were statistically significant

predictors of claim costs. Dionne & Vanasse (1989) used both Poisson and negative

binomial regression models for automobile insurance risk classification. Hürlimann

(1990) studied the properties of maximum likelihood equations, based on the

pseudo compound Poisson representation of any discrete distribution defined on

the positive integers. Renshaw (1995) provides an overview of the potential of

GLMs as a means of modelling the salient features of the claims process in the

presence of rating factors. Haberman & Renshaw (1996) illustrated the use of

the over-dispersed Poisson model in analysing life insurance claim counts, after

presenting a summary of GLMs in actuarial science.

Various extensions to the basic GLM framework have been proposed in the

statistics literature and explored in insurance contexts. For example, Generalised

Additive Models (GAMs) are postulated by combining an original GLM with
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additive models in the linear regression model, where smooth functions with

semi-parametric or non-parametric forms are applied to explanatory variables.

So with a chosen link function, the mean of the response variable is expressed

as a linear function of unknown smooth functions of explanatory variables (see

Hastie & Tibshirani, 1990). The GAM framework is adopted in Denuit & Lang

(2004) to account for discrete, continuous, and spatial risk factors in a Bayesian

framework for insurance ratemaking purposes. Mixtures of GLMs, such as Poisson

mixtures, can be used to accommodate non-homogeneous populations (see Karlis

& Xekalaki, 2005). More recently, increasing attention has been given to the

application of extended GLMs in accounting for excess zeroes and over-dispersion

in count data, especially for automobile insurance count numbers under no claim

discount system. The proposed zero-inflated models are considered as a mixture

of a zero point mass and a Poisson or negative binomial regression models under

the original GLM framework. Yip & Yau (2005) provided a good summary of

zero-inflated models with an application in general insurance count data. Heller

et al. (2007) considered a group of candidate distribution to model claim counts,

including Poisson, zero-inflated Poisson and negative binomial. Thorough reviews

for count data regression can be found in Denuit et al. (2007) and Cameron &

Trivedi (1998).

In addition to univariate models, bivariate regression models have been proposed

to analyse two response variables that are possibly correlated. These models

offer sufficient flexibility by allowing the two response variables to be affected

by different predictive factors. Moreover, a bivariate model is more helpful for

inference and prediction purposes because it allows us to properly specify the

dependency between the two dependent variables (Shi & Valdez, 2014).

One way to introduce the correlation factor is to use copulas to analyse the

correlation structure, by linking univariate marginals to the full multivariate

distribution (see Frees & Valdez, 1998). The use of copulas is common in

analysing correlation structure related to continuous variables such as claim losses.

Denuit, Van Keilegom, Purcaru et al. (2006) used Archimedean copulas to analyse

non-life insurance data, which was applied to an actual loss-ALAE (allocated loss

adjustment expense) data set. Frees & Valdez (2008) adopted copula functions to

specify the joint multivariate distribution of the claims arising from various claims

types. They used two different copulas, the standard normal (Gaussian) copula

and the t-copula. Czado et al. (2012) presented a mixed copula approach to allow
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for dependency between the number of claims and its corresponding average claim

size using a Gaussian copula.

In studying discrete variables such as the number of insurance claims, Cameron

et al. (2004) used a bivariate copula in modelling the difference between

self-reported and true doctor visits, but the application is limited to studying the

distribution of the difference between two counts. Shi & Valdez (2014) considered

three types of automobile claim counts using a mixture of copulas and the family

of elliptical copulas. A review of using copulas to specify correlation structure can

be found in a recent study by Chen & Hanson (2017).

Another group of studies analyse the correlation structure through the trivariate

reduction method, where the pair of dependent variables are specified using three

random variables. For example, by setting Y1 = X1 + X12 and Y2 = X2 + X12,

where X1, X2 and X12 are independent Poisson random variables, Y1 and Y2 have

a bivariate Poisson distribution with a covariance term derived from the use of the

common Poisson variable X12 (see Kocherlakota & Kocherlakota, 1992; Johnson

et al., 1997).

The trivariate reduction method has been explored in many studies. For example,

Jung & Winkelmann (1993) adopted a bivariate regression framework based on the

trivariate reduction method for an analysis of data on two types of labour mobility.

King (1989) proposed a joint Poisson regression estimator for the analysis of two

contemporaneously correlated endogenous event count variables. Kocherlakota &

Kocherlakota (2001) adopted the trivariate reduction method in specify a bivariate

Poisson distribution and applied the method to simulated data.

In addition to the original trivariate reduction method, Karlis & Xekalaki (2005)

proposed an extended model to allow for a combination of common random

variables. Bermúdez & Karlis (2011) postulated a zero-inflated multivariate

Poisson model to account for excess of zeros in automobiles insurance claim

data. In another context of frequency modelling, a multivariate Poisson-lognormal

regression model has been used for prediction of crash counts (Ma et al., 2008).

El-Basyouny & Sayed (2009) applied a similar multivariate Poisson-lognormal

model to collision data to account for the correlation between two types of claims.

Although the trivariate reduction model can be extended to capture

over-dispersion in the data, one drawback is that the correlation can only be

positive (see Famoye, 2010b; Shi & Valdez, 2014). One way to address this
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issue is to use an imposed parameter in the bivariate probability function to

specify a covariance term to account for correlation. As the value of this

correlation parameter can be negative, zero and positive, the limitation of positive

correlation is removed. Thus the model is obviously more flexible with a more

straightforward covariance structure. Lakshminarayana et al. (1999) defined a

bivariate Poisson regression (BPR) model by including a multiplicative factor

to capture the correlation between the two response variables. The probability

function for the bivariate distribution is composed of two univariate Poisson

probability functions, linked by the multiplicative correlation factor whose value

depends on the embedded correlation parameter.

Based on a similar correlation structure, Famoye (2010b) applied a bivariate

negative binomial regression (BNBR) model to analyse the bivariate distribution of

two series of count data, while addressing over-dispersion in the sample. The study

models marginal means of the two response variables with a set of explanatory

covariates in a log-linear relationship. Data from the 1977-1978 Australian health

survey is used to illustrate the model and the coefficients are estimated with

maximum likelihood technique. The test results show that the BNBR model

provides a better fit to the data than the BPR model, and supports the use of

BNBR when the variance of the data is very different from the mean. However,

the correlation parameter is not significant, thus two univariate negative binomial

regression (UNBR) models may be able to provide similar results in his study.

2.2.1 Shrinkage methods

One drawback of the likelihood-based estimation of the regression models described

above in the analysis of count data is that it commonly leads to a large number

of variables being used. Although it is very tempting to incorporate as much

information as possible to account for the heterogeneity in the population, this

strategy is more time consuming in terms of model estimation. Too many

explanatory variables in a regression model can also result in overfitting and

consequently poor out-of-sample predictions.

The Lasso (least absolute shrinkage and selection operator) and ridge regression

are two popular methods to shrink models (see Tibshirani, 1996; James et al.,

2013). Model shrinkage refers to the process of determining a smaller subset of

variables that provide stronger explanatory power. Both techniques constrain the
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coefficient estimates through a penalty term in the maximum likelihood estimation

algorithm, comprised of the coefficient values and a shrinkage parameter ω. The

higher the shrinkage parameter, the higher the impact of the shrinkage penalty.

As a result, the coefficient values will approach zero as ω increases without bound.

The optimal ω is commonly selected using cross-validation.

The two techniques differ in the way coefficient values are incorporated in the

shrinkage penalty. The Lasso uses the sum of absolute values of coefficients, and

ridge regression uses the sum of squared values. Ridge regression tends to shrink

all coefficients towards zero, but will not generally set any of them to exactly zero.

The Lasso is an alternative to ridge regression and can force some of the coefficient

estimate to exactly zero if ω is sufficiently large. In other words, Lasso performs

variable selection (see James et al., 2013, Chapter 6).

The importance of model shrinkage has been recognised in the actuarial literature.

First proposed by Tibshirani (1996), the Lasso has been extended to GLMs

to handle count data (see Park & Hastie, 2007). Tang et al. (2014) applied

adaptive Lasso to car insurance data. The risk factor selection improves the model

goodness-of-fit both in the Poisson model as well as zero-inflated Poisson model.

Wang et al. (2015) considered over-dispersed data and added a Lasso penalty

to the maximum likelihood function of the negative binomial regression model.

Their study concludes that a parsimonious model offers better prediction and

interpretation. Both Tang et al. (2014) and Wang et al. (2015) used univariate

regression models and applied the shrinkage technique to only one response

variable. Ridge regression is shown to improve mean squared error in an early

study by Hoerl & Kennard (1970). The technique is then applied to many areas

of science. Some examples are Shen et al. (2013), Douak et al. (2013) and Meijer

& Goeman (2013).

The two shrinkage methods can be applied to regression models to remove

less significant variables. As a consequence, the unnecessary complexity in the

model can be reduced and this leads to easier interpretation and potentially

improved out-of-sample predicition (see James et al., 2013, Chapter 6). It is these

possibilities which we explore in the context of bivariate insurance claim data in

this chapter.
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2.3 Methodology

2.3.1 Bivariate negative binomial regression model

The bivariate Poisson distribution proposed in Lakshminarayana et al. (1999) has

a probability function as the product of Poisson marginals with a multiplicative

factor:

P (y1, y2) =
2∏
t=1

θytt e
−θt

yt!
×
[
1 + λ(e−y1 − e−dθ1)(e−y2 − e−dθ2)

]
, y1, y2 = 0, 1, 2, . . .

(2.1)

where d = 1 − e−1. θt is the mean of Yt (t = 1, 2), and Y1 and Y2 are both

Poisson distributed. The covariance between Y1 and Y2 is λθ1θ2d
2e−d(θ1+θ2) and

the correlation is ρ = λ
√
θ1θ2d

2e−d(θ1+θ2). Depending on the value of λ, the

two response variables Y1 and Y2 can be positively or negatively correlated, or

independent if λ is equal to zero.

By using a similar approach, Famoye (2010b) defined a bivariate negative binomial

distribution. Following the same covariance specification as Lakshminarayana

et al. (1999), a bivariate negative binomial distribution has the following

probability function:

P (y1, y2) =
2∏
t=1

(
yt +m−1

t − 1

yt

)
θyt(1− θ)m

−1
t ×

[
1 + λ(e−y1 − c1)(e−y2 − c2)

]
,

y1, y2 = 0, 1, 2, . . . (2.2)

Both Y1 and Y2 are random variables and follow a negative binomial distribution,

with dispersion parameters m−1
1 and m−1

2 respectively. The mean of Yt (t = 1, 2) is

µt = m−1
t θt/(1−θt) and the variance is σ2

t = m−1
t θt/(1−θt)2. Also, ct = E(e−Yt) =

[(1− θt)/(1− θte−1)]
m−1
t .

Let n denote the sample size and Yit (t = 1, 2; i = 1, 2, . . . , n) denote the

count response variable, the corresponding vector of l explanatory variables is

represented as xi = (xi0 = 1, xi1, . . . , xil). Assuming a log-linear model and the
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same set of covariates as possible explanatory variables for both Yi1 and Yi2, the

means of the two response variables can be modelled as:

E(Yit|xi) = µit = exp(xiβt), t = 1, 2 (2.3)

where βTt = (βt0, βt1, βt2, . . . , βtl) and is the vector of the coefficients estimated

using the maximum likelihood method. Given that θit = µit/(m
−1
t +µit), equation

(2.2) can be rewritten as:

P (yi1, yi2) =
2∏
t=1

(
yit +m−1

t − 1

yit

)(
µit

m−1
t + µit

)yit ( m−1
t

m−1
t + µit

)m−1
t

×
[
1 + λ(e−yi1 − c1)(e−yi2 − c2)

]
. (2.4)

The likelihood function, L is defined as:

L =
n∏
i=1

P (yi1, yi2)

Accordingly, the log-likelihood function, which is set to a maximum to estimate

the model parameters, for the unshrunken model is:

logL =
n∑
i=1

{ 2∑
t=1

[
yit log µit −m−1

t logmt − (yit +m−1
t ) log(µit +m−1

t )− log(yit!)

+

yit−1∑
j=1

log(m−1
t + j)

]
+ log[1 + λ(e−yi1 − c1)(e−yi2 − c2)]

}
, (2.5)

where ct = (1 + dµitmt)
−1/mt with d = 1− e−1. Equation (2.5) can be maximised

with respect to βt, mt and λ. The asymptotic standard deviations of the estimated

parameters are obtained in the usual way from Hessian matrix.

The deviance for a UNBR model, which is a measure of the goodness-of-fit for the

model, is commonly defined as:
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DUNBR = 2
n∑
i=1

[
yi log

(
yi(m

−1 + µ̂i)

µ̂i(m−1 + yi)

)
+m−1 log

(
m−1 + µ̂i
m−1 + yi

)]

Accordingly, the deviance for the BNBR model, is defined as:

DBNBR =2
n∑
i=1

{ 2∑
t=1

[
yit log

(
yit(m

−1
t + µ̂it)

µ̂it(m
−1
t + yit)

)
+m−1

t log

(
m−1
t + µ̂it

m−1
t + yit

)]

log

(
1 + λ

∏2
t=1(e−yit − c̄t)

1 + λ
∏2

t=1(e−yit − ĉt)

)}
, (2.6)

where c̄t and ĉt are the values of ct evaluated at µit = yit and µit = µ̂it respectively,

and µ̂it is the predicted value of µit found using equation (2.3) with estimated

coefficients that maximise equation (2.5).

2.3.2 The Lasso and ridge regression

Given the BNBR model in equation (2.4), the coefficient vector βt can be estimated

by maximising equation (2.5). The resulting model will be called the full model

in what follows. Here βt (t=1,2) are vectors each having k + 1 values. These

relate to the model intercept and k explanatory variable coefficients. When k is

large, the model may produce poor out-of-sample results because of an overfitting

problem. It is therefore useful to shrink the estimated BNBR model using either

the Lasso approach or ridge regression, by subtracting a shrinkage penalty from

the log-likelihood function.

We define the log-likelihood function of the BNBR model in subsection 2.3.1,

which is log L in equation (2.5). The new functions to be maximised under the

two shrinkage approaches, with 2× l coefficients to be analysed are specified as:

The Lasso: logL− ω
2∑
t=1

l∑
j=1

|βtj|

Ridge regression: logL− ω
2∑
t=1

l∑
j=1

β2
tj

(2.7)
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where ω is the shrinkage parameter. Adopting an increasing number of coefficients

may increase the log-likelihood, however can also lead to an increase in both
2∑
t=1

l∑
j=1

|βtj| and
2∑
t=1

l∑
j=1

β2
tj. These two shrinkage methodologies are used to find

the optimal combination of coefficients that maximise equation (2.7), and some

previously non-zero coefficients in the original full model may become zero in the

shrunken models as a result.

Here t takes values 1 and 2, indicating that the shrinkage models consider

regression coefficients for both y1 and y2. Thus the above equations specify the two

shrinkage models in the context of a bivariate model, and y1 and y2 can represent,

for example, claim numbers for two types of insurance policies bought by the same

policyholder.

Note that we do not shrink the intercept coefficients (βt0), as they simply constitute

a measure of the mean value of the response variables when other explanatory

variables are set to zero. Similarly, we also exclude the two over-dispersion

parameters (m1,m2) and the correlation parameter (λ) from shrinkage, as we are

focusing on shrinking the estimated association of each explanatory variable with

the response. As a result, for each response variable, l regression coefficients are

included in the shrinkage penalty.

When ω is equal to zero, both the Lasso and ridge regression will generate the

same coefficients as the full model. A larger ω gives greater emphasis to model

simplicity compared to in-sample goodness of fit. Consequently coefficient values

will deviate from the maximum likelihood estimates, resulting in reduced in-sample

goodness-of-fit. At the same time, the model is simplified with the potential for

improved out-of-sample performance.

It is clear that different ω values will lead to different coefficients in the shrunken

model and therefore differing out-of-sample prediction results. In order to perform

the two shrinkage techniques as specified in equation (2.7) using the maximum

likelihood method, the optimal value must be chosen for ω based on only the

sample data to achieve the possibly best out-of-sample prediction accuracy. In

this study we use k-fold cross-validation for this purpose, where commonly k is set

to be 5 or 10 (Kohavi, 1995). In the cross-validation process, the sample data are

randomly divided into k groups. One group is chosen as the validation set, while

the model is fitted on the remaining k − 1 groups. The fitted model is applied to

the validation set to calculate the out-of-sample deviance, as the validation set is
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held out in the model fitting process. As there are k groups, the procedure can be

repeated k times resulting in k deviances when each of the k groups is held out as

the validation set. The average of the k deviance values, each denoted deviancei

(i=1,2,. . . ,k), is taken as the cross-validation result, or k-fold CV, at a particular

ω value (James et al., 2013),

CV(ω) =
1

k

k∑
i=1

deviancei.

For each of the ω values, we perform the procedure as described previously. Among

the grid of ω values, the most appropriate ω is the one that generates the lowest

k-fold CV. As the CVs are calculated on the validation set, separated from the

data to fit the model, when ω increases the CV is expected to decrease initially

and later increase again when the impact from the penalty term is too strong. The

ω that gives the minimum CV should be chosen.

For example, in a 5-fold cross-validation with a grid of 10 values chosen for ω

(ω1, ω2, . . . , ω10), the sample data will be divided into 5 groups. The first training

set is composed of group 1 to group 4, and a BNBR model will be fitted to the

training set, where the shrinkage parameter ω takes the value of ω1. The fitted

model is then used to calculate the out-of-sample deviance using group 5 which is

the validation set. This process is repeated another 4 times at the same value of ω

where each of the other 4 groups (group 1 to group 4) is held out as the validation

set. So 5 deviances are generated at ω1, and the average of the 5 deviances is the

CV(ω1). The purpose of the cross-validation is find ωi(i = 1, 2, . . . , 10) among the

10 chosen values that returns the lowest CV(ωi) .

We note here that although we develop different log-likelihood functions and

shrinkage functions for the bivariate model, the validation process is standard.

This is because the validation process only takes into consideration the deviances

generate by a model, whether it is univariate or bivariate. Given the specified

shrinkage models in equation (2.5), the validation process mentioned previously is

proper for the BNBR model.

The shrinkage parameter, ω, is not assumed to be the same for the two shrinkage

methods. A separate cross-validation is performed for each of the methods to

locate the best ω value. Once this is achieved, the model is fitted again to the

full set of data, disregarding the previously k group classifications. The shrunken
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models can then be compared to the full model, which is estimated using maximum

likelihood without any penalty term.

2.4 Data

The study is based on data from 14,000 automobile policies from a major insurance

company in Spain, randomly selected from a pool of 80,994 policies. A subset of

the data is also used in Brouhns et al. (2003), Bolancé et al. (2008), Bolancé

et al. (2003), Boucher & Denuit (2008), Boucher et al. (2007), Bermúdez &

Karlis (2011) and Boucher et al. (2009). We use 10,000 policies to estimate the

model parameters, and the remaining 4,000 policies are used to test the model’s

out-of-sample prediction accuracy.

We model two types of claims, and their associated claim counts are recorded as

Y1 and Y2. Y1 represents the simple third-party liability with basic guarantees,

and Y2 stands for comprehensive cover. The same set of explanatory variables are

assumed to affect both Y1 and Y2. The explanatory variables are summarised in

Table 2.1. A similar table can also be found in Boucher et al. (2009).

Table 2.1. Explanatory variables in the regression model.

Variable Description
v1 equals 1 for women and 0 for men
v2 equals 1 when driving in urban area, 0 otherwise
v3 equals 1 when zone is medium risk (Madrid and Catalonia)
v4 equals 1 when zone is high risk (Northern Spain)
v5 equals 1 if the driving license is between 4 and 14 years old
v6 equals 1 if the driving license is 15 or mode years old
v7 equals 1 if the client is in the company for more than 5 years
v8 equals 1 if the insured is 30 years old or younger
v9 equals 1 if includes comprehensive coverage (except fire)
v10 equals 1 if includes comprehensive and collision coverage
v11 equals 1 if horsepower is greater than or equal to 5500cc

We present in Table 2.2 a summary of the effects of the covariates on claim count

based on all 80,994 policies1. The covariates are classified into eight groups. In the

first column, we present the total number of policies that fall into each subgroup,

followed by the percentage of policies with claim counts equal to 0, 1 or 2 (including

higher than 2) for Y1 and Y2 respectively.

1 Similar distribution figures can be generated for the sample chosen in this paper, which are
not presented here.
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For example, in the case of gender, we see here 12,957 of the policyholders are

female. 93% of these female policyholders do not make a third party liability

claim and 91.64% do not make a claim on the comprehensive cover. This is to

be compared to the male policyholders, where 93.80% of them do not make a

third party liability claim and 92.59% make no claim on the comprehensive cover.

Ignoring other covariates and factors, female policyholders tend to have a slightly

riskier profile compared to male policyholders.

Table 2.2. Summary statistics of claim frequencies as classified by the explanatory variables.

Total Y1 Y2

(Third-party liability claim) (Comprehensive cover claim)
Count=0 Count=1 Count≥2 Count=0 Count=1 Count≥2

Gender
Female (v1=1) 12957 93.29% 5.38% 1.33% 91.64% 6.14% 2.22%

Male (v1=0) 68037 93.80% 4.86% 1.34% 92.59% 5.60% 1.81%
Area

Urban (v2=1) 54183 93.81% 4.86% 1.33% 92.21% 5.84% 1.95%
Other (v2=0) 26811 93.53% 5.10% 1.37% 92.89% 5.37% 1.74%

Zone risk level
low (v3=0, v4=0) 45958 94.03% 4.65% 1.33% 93.78% 4.83% 1.39%

medium (v3=1, v4=0) 19320 93.78% 5.01% 1.22% 88.65% 8.14% 3.21%
high (v3=0, v4=1) 15716 92.73% 5.73% 1.55% 93.17% 5.17% 1.66%

Driver license
below 4 years (v5=0, v6=0) 1894 90.87% 7.18% 1.95% 93.19% 5.33% 1.48%

between 4 and 14 years (v5=1, v6=0) 20854 92.93% 5.57% 1.51% 90.46% 7.19% 2.35%
above 14 years (v5=0, v6=1) 58246 94.09% 4.65% 1.26% 93.12% 5.16% 1.72%

Years with the company
less than 5 years (v7=0) 11670 92.60% 5.79% 1.61% 90.26% 7.22% 2.53%

longer than 5 years (v7=1) 69324 93.90% 4.80% 1.30% 92.80% 5.43% 1.77%
Age

30 years old or younger (v8=1) 7484 91.98% 6.27% 1.75% 90.62% 7.16% 2.22%
older than 30 years (v8=0) 73510 93.89% 4.81% 1.30% 92.62% 5.54% 1.84%

Insuarance cover
no extra cover (v9=0, v10=0) 39791 93.97% 4.75% 1.29% 98.62% 1.17% 0.21%

only comprehensive (except fire)
cover (v9=1, v10=0)

12613 93.61% 5.05% 0.90% 78.36% 14.39% 7.25%

both comprehensive and collision
cover (v9=0, v10=1)

28590 93.41% 5.17% 1.42% 90.04% 8.13% 1.83%

Horsepower
< 5500cc (v11=0) 15725 94.07% 4.67% 1.27% 96.09% 2.93% 0.98%
≥ 5500cc (v11=1) 65269 93.63% 5.01% 1.36% 91.56% 6.35% 2.08%

Mean 0.081 0.102
Variance 0.123 0.168

Similar observations can be made for the other groups of covariates. A lower

claim count tends to be associated with driving in a low risk zone, a longer driving

experience, a longer time with the insurance company, an older age and a smaller

car horsepower. The effects of driving area (v2) and insurance cover (v9, v10)

seem to be minimal based on this one-way analysis.

The estimated mean and variance of Y1 and Y2 are given at the end of Table 2.2.

Y1 has a lower mean and smaller variance compared to Y2. Moreover, the variance

is much higher than the mean for both claim types. This feature implies that
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a model capable of handling over-dispersed data, such as the negative binomial

regression model, is more appropriate compared to a Poisson regression model.

The correlation coefficient between Y1 and Y2 is 0.187, taking into account all

80,944 observations. A scatter plot is presented in Figure 2.1, including a trend

line. The two variables can only take integer values. The number of observations

at each of the dots is relatively indicated by the size of the dot, which is a rough

reflection of the exact count summary shown in Table 2.3.

Figure 2.1. Scatter plot of two insurance claim counts. The size of the dot at each point gives a
relative indication of the number of observations. The trend line is also presented.

Table 2.3. Summary table of two types of insurance counts .

Y1

0 1 2 3 4 5 6 7 8

Y2

0 71087 3022 574 149 29 4 2 1 0
1 3722 686 138 42 15 1 1 0 0
2 807 184 55 21 3 0 0 0 1
3 219 71 15 6 2 0 1 1 0
4 51 26 8 6 1 0 0 0 0
5 14 10 4 1 1 0 0 0 0
6 4 3 1 0 0 2 0 0 0
7 0 1 1 1 0 0 0 0 0

We also analyse the correlation structure in the tail, when at least one of the

claim counts is not zero. The correlation coefficient is computed at 0.126, which is

lower than if all observations are considered. This is consistent with the two types

of insurance counts presented in Table 2.3. If a higher right-tailed correlation is

found, modelling tools such as copulas can be used to more accurately model the

correlation structure (see Denuit, Dhaene, Goovaerts & Kaas, 2006, Chapter 4.4.4).
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As tail dependency is not presented in this study, the model specified in equation

(2.2) will suffice.

In addition to the variables listed in previous tables, we also consider two-way

interaction effects among the variables. Adding interaction terms between

independent covariates helps to relax the assumption that each of those

independent variables only has additive effect in the regression model (see Fahrmeir

et al., 2013). Interaction effects are frequently analysed in regression models and

have been considered in claim count models (see Yip & Yau, 2005; Shi & Valdez,

2014). We initially considered 14 potential two-way interactions. These terms

cover the interaction effects between different groups of covariates, for example

gender and driving experience, and are summarised in Table 2.4. We note that

after model shrinkage many of the interaction terms were removed from the model.

Table 2.4. Interaction terms used in the regression model.

with v1 with v2 with v6 with v7 with v8

v1v2 v2v6 v6v7 v7v8 v8v11
v1v6 v2v7 v6v11 v7v11
v1v7 v2v8
v1v8 v2v11
v1v11

The total number of variables we use in the regression model is 25, excluding the

intercept. Although we use the same set of variables for both response variables,

we don’t expect all explanatory variables to be significant in evaluating the claim

counts, nor that the coefficients are the same for Y1 and Y2.

2.5 Results

2.5.1 Bivariate negative binomial regression model

We present in Table 2.5 the results of fitting four models: the BNBR model,

UNBR model for Y1, UNBR model for Y2, and the BPR model. The four models

are classified as full models as opposed to shrunken models, since at this stage

we use all available variables including the chosen interaction terms. The BNBR

model is specified in equation (2.4). The two UNBR models are fitted separately

for each of the two response variables. The BPR model specification is the same
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as in Lakshminarayana et al. (1999) and is given in equation (2.1). The function

glm.nb from R package MASS is used to fit the univariate models (Venables &

Ripley, 2002b). The R code developed to fit the two bivariate models, BNBR and

BPR, can be found in Appendix A and Appendix B.

The results from the BNBR model are compared to the UNBR models. Coefficients

from the BNBR model are consistent with those in UNBR models, both in terms

of sign and statistical significance. By introducing a correlation factor λ, which is

significant at the 1% level in the BNBR model, it is observed that the deviance of

BNBR model is much lower than the sum of the deviances of the two UNBR

models. This is true both in sample and out of sample, implying that the

BNBR model provides a better in-sample goodness-of-fit, as well as more accurate

out-of-sample prediction. It adds value to analyse the two correlated variables in

a bivariate model, to properly account for the dependence between the two types

of claim counts.

Consistent with expectation, the BNBR model also outperforms the BPR model.

Although the BPR model recognises the correlation between the two response

variables, the BNBR is more appropriate here when the data are over-dispersed

and the variance of the claim counts is much higher than the mean for both types

of claims as shown in Table 2.2. For this reason the BNBR generates both lower

in-sample and out-of-sample deviances as expected.

2.5.2 The Lasso and ridge regression

The first step when applying the two shrinkage techniques is to choose the most

optimal shrinkage parameter ω through cross-validation. We choose k = 10 and

use 10-fold cross-validation which is widely used and effective, see for example

Kohavi (1995)2. The two intercept coefficients (β10 and β20), the dispersion

parameters (m1 and m2) and the correlation parameter (λ) are excluded from

the shrinkage process. For each of the two dependent variables, Y1 and Y2, 25

coefficients are estimated by maximising the penalised log-likelihood in equation

(2.7).

We select a grid of values for ω ranging from 0 to 50, and perform the procedure

as described in Section 2.3.2. The sample data containing 10,000 policyholders is

2 In addition to 10-fold cross-validation, we also conduct 5-fold cross-validation and the results
are robust to the number of k. Here we present the results for k = 10.
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randomly divided into 10 groups. One group is held out as the validation group

while the model is fitted on the other nine groups at various ω values. This results

in a number of different shrunken models and accordingly different deviance values

based on equation (2.6) calculated on the validation set. Repeated 10 times for

10 different validation sets, we reach a series of CV(a) computed as the average of

deviances from the 10 validation sets at a, where a denotes different ω values from

0 to 50.

We present in Figure 2.2 the CV(a) values from the cross-validation process. As

expected, CV(a) decreases initially to a minimum before increasing again. When ω

is zero, the shrunken models are equivalent to the full model. When ω increases,

the deviances calculated using the held-out group firstly decrease, indicating better

out-of-sample prediction results. Both of the curves increase again after reaching

a minimum, where the shrinkage penalty is too strong and affects the models’

prediction power.

Figure 2.2. Deviances from cross-validation at different ω values. Each deviance in the graph is
calculated as the average of the ten deviances at the same ω generated in the 10-fold cross-validation
process.

The shrinkage parameter, ω, in the Lasso and ridge regression are chosen using

the cross-validation procedure. We get distinct optimal ω values that minimise

deviance under the two different methods. As can be seen in Figure 2.2, the

optimal ω chosen for the Lasso was found to be around 13, and the optimal ω for

ridge regression was found to be around 4. We refit the BNBR model under two

shrinkage approaches at given ω using the penalised log-likelihood as specified in

equation (2.7). The estimated coefficients as well as the chosen ω are all presented
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in Table 2.6. The full BNBR model fitted previously in Section 2.5.1 is also

included.

Two observations from Table 2.6 can be made. First, the full model provides the

best in-sample goodness-of-fit among the three, indicated by its lowest in-sample

deviance. This is as expected as the full model is estimated to fit the sample data

as closely as possible. Second, both shrunken models outperform the full model in

out-of-sample prediction accuracy. The Lasso-shrunken model is the best among

the three, with an out-of-sample deviance of 2586.82, lower than 2626.77 of the

shrunken model obtained using ridge regression.

The shrinkage effect is more obvious in the Lasso-shrunken model. Many of the

coefficients are forced to zero, including the insignificant ones identified in the full

model. This indicates that those variables are not important in assessing the claim

counts, and once removed, the out-of-sample prediction of the model is greatly

improved. One possible explanation is that the full model overfits the sample

data and thus underperforms shrunken models in making predictions. With fewer

explanatory variables, the shrunken model is also much easier to interpret.

The shrinkage effect is not as obvious in the model regularised by ridge regression

and none of the coefficients is zero after the shrinkage process. However, many

coefficient values are more close to zero than in the full model, while the more

significant variables, such the intercept, have a higher absolute coefficient and are

still significant. This may explain why the shrunken model also outperforms the

full model even when it uses a similar set of variables. Some coefficients of the

regression may be reduced as ridge regression can be applied to treat the problem of

collinearity between independent variables (see Garćıa et al., 2015). In this study,

we use categorical variables with values of 0 or 1, which may still lead to some

potential for collinearity, for example between the policyholder’s age and driving

experience measured in years. As a result, treating the problem of collinearity

may further improve the out-of-sample prediction accuracy.

The different results from the Lasso and ridge regression can also be explained with

reference to Figure 2.3, which is similar to that in James et al. (2013, Chapter 6,

page 222). The graph on the left refers to a two-dimensional coefficient scope of

the Lasso, and the graph on the right represents the ridge regression. In both

graphs, the dot inside the ellipses indicates the maximum likelihood estimate β̂

without any shrinkage penalty. Assuming the same constraint amount s is used in



Chapter 2. Application of the BNBR model 28

both methods, this means |β1|+|β2| ≤ s and β2
1 +β2

2 ≤ s, which can be represented

by the grey area. If s is large enough to reach β̂, the Lasso and ridge regression

estimates will be the same as the maximum likelihood estimates (for example when

ω = 0).

Figure 2.3. Comparison of the Lasso (left) and ridge regression (right).

The ellipses around β̂ represent regions of constant log-likelihood. The ellipses

will expand away from β̂ and touch the grey constraint area to satisfy the imposed

shrinkage penalty. During this process, the Lasso is very likely to end up on one

axis while ridge regression will land on the sphere, both shown in the graph as the

cross. As a result, in the Lasso selection coefficients are commonly set to zero, while

the same cannot be said for ridge regression. This simple graphical example can be

extended to the higher dimensional case, when many Lasso estimated coefficients

are equal to zero simultaneously.

To support the discussion and to show how the coefficient values react under the

two shrinkage techniques, we present the shrunken coefficients at different ω values

from the cross-validation procedure, computed as the average value across the 10

different models, each fitted when one group is held as the validation set. Note that

we only plot the coefficients of explanatory variables, which are directly reduced in

the shrinkage process. Figure 2.4 and Figure 2.5 show the results from the Lasso

and ridge regression respectively, and present how the 25 coefficients change when

the shrinkage parameter increases from 0 to 50 for Y1 and Y2 in separate graphes.

As expected, all coefficients decrease with an increasing shrinkage parameter. They

behave differently for Y1 and Y2, with some persistent coefficients significantly

different from zero even at large ω values. These are specifically labelled on the

figures.
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However, it is quite noticeable that when ω is very large (i.e. set to 50), the

coefficients in Figure 2.4 for the Lasso are much closer to zero, compared to those

found in ridge regression in Figure 2.5. In particular, it can be observed that

although the coefficients in Figure 2.5 approach zero initially and a few of them

eventually become very close to zero in the end, most coefficients keep a constant

distance away from zero which lasts to the end. The findings confirm the discussion

made previously, that the two shrinkage techniques affect the coefficients in much

distinctive ways.

Figure 2.4. Shrunken coefficients: the Lasso.
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Figure 2.5. Shrunken coefficients: ridge regression .

The two shrinkage techniques are also applied to UNBR models in a similar way.

For each response variable, two shrunken models are generated at given ω values

selected by cross-validations. The results are presented in Table 2.7. Two full

UNBR models estimated previously are also presented here.

Similar conclusions can be drawn from the shrunken UNBR models. For Y1, both

of the two shrunken models outperform the full model in out-of-sample prediction,

implied by lower deviances. For Y2, although the full model provides the best

in-sample goodness-of-fit, it underperforms the shrunken models out-of-sample,

with a lower log-likelihood and higher deviance.
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By comparing the results for the Lasso-shrunken BNBR model in Table 2.6 and

the two Lasso-shrunken UNBR models in Table 2.7, we see that the in-sample

deviance of the BNBR model is much lower than the deviances from the two UNBR

models combined, implying a better in-sample goodness-of-fit. The out-of-sample

deviances are similar for the BNBR model and UNBR models. Obtained using

ridge regression, the shrunken BNBR model outperforms the two shrunken UNBR

models, providing both lower in-sample and out-of-sample deviances. This is in

consistent with the conclusion we draw from the full models. It is beneficial to

analyse the two response variables together in a bivariate model and properly

account for the correlation structure between them.
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Table 2.5. Modelling results of the BNBR model, two UNBR models and the BPR model, which are
all classified as the full models. The coefficients of each variable are shown, followed by their standard
deviation in parentheses. *,** and *** represent respectively statistical significance at the 10%, 5%
and 1% level, calculated based on the t-statistics of coefficients of each variable.

Variable BNBR UNBR(Y1) UNBR(Y2) BPR

Y1 (Third-party liability claim)
Intercept −1.984(0.570)∗∗∗ −1.896(0.573)∗∗∗ −1.990(0.452)∗∗∗

v1 −0.114(0.431) −0.186(0.434) −0.123(0.341)
v2 −0.070(0.376) −0.112(0.377) −0.091(0.301)
v3 0.003(0.108) 0.036(0.109) 0.013(0.089)
v4 0.122(0.115) 0.113(0.115) 0.115(0.091)
v5 −0.341(0.295) −0.374(0.300) −0.316(0.224)
v6 −0.865(0.501)∗ −0.952(0.507)∗ −0.833(0.387)∗∗
v7 0.053(0.437)∗ 0.056(0.438) 0.064(0.349)
v8 −0.655(0.592) −0.064(0.594) −0.710(0.476)
v9 −0.012(0.132) 0(0.133) 0.074(0.109)

v10 0.173(0.099)∗ 0.179(0.099)∗ 0.195(0.079)
v11 −0.157(0.433)∗ −0.198(0.434) −0.155(0.347)

v1v2 −0.056(0.253) −0.017(0.252) −0.061(0.200)
v1v6 0.452(0.277) 0.481(0.277)∗ 0.443(0.221)∗∗
v1v7 0.011(0.322) 0.019(0.322) 0.035(0.253)
v1v8 −0.100(0.380) −0.086(0.382) −0.116(0.308)

v1v11 −0.042(0.282) −0.027(0.282) −0.052(0.226)
v2v6 0.023(0.241) 0.057(0.242) 0.010(0.193)
v2v7 −0.255(0.281) −0.253(0.282) −0.254(0.224)
v2v8 0.255(0.366) 0.244(0.369) 0.266(0.294)

v2v11 0.335(0.241) 0.360(0.242) 0.368(0.197)
v6v7 0.068(0.277) 0.059(0.279) 0.057(0.216)

v6v11 0.356(0.295) 0.381(0.296) 0.345(0.236)
v7v8 0.666(0.397)∗ 0.634(0.400) 0.688(0.322)∗∗

v7v11 −0.170(0.344) −0.179(0.346) −0.197(0.282)
v8v11 −0.070(0.430) −0.044(0.434) −0.051(0.339)
m1 6.454(0.649)∗∗∗ 6.440(0.648)∗∗∗

Y2 (Comprehensive cover claim)
Intercept −5.104(0.629)∗∗∗ −5.041(0.640)∗∗∗ −4.732(0.525)∗∗∗

v1 0.068(0.400) 0.039(0.412) −0.001(0.324)
v2 0.489(0.346) 0.486(0.355) 0.355(0.279)
v3 0.136(0.084) 0.151(0.087)∗ 0.184(0.065)∗∗∗
v4 −0.257(0.108) −0.293(0.108)∗∗∗ −0.253(0.089)∗∗∗
v5 0.421(0.314) 0.431(0.323) 0.328(0.267)
v6 0.373(0.489) 0.252(0.506) 0.143(0.405)
v7 0.578(0.477) 0.572(0.476) 0.403(0.406)
v8 0.209(0.605) 0.194(0.609) −0.064(0.510)
v9 2.946(0.130)∗∗∗ 2.943(0.131)∗∗∗ 2.942(0.120)∗∗∗

v10 1.941(0.126)∗∗∗ 1.948(0.127)∗∗∗ 1.955(0.120)∗∗∗
v11 0.848(0.497) 0.843(0.495)∗ 0.659(0.422)

v1v2 −0.351(0.225) −0.331(0.222) −0.278(0.181)
v1v6 −0.080(0.236) −0.039(0.239) −0.129(0.192)
v1v7 0.274(0.275) 0.246(0.275) 0.317(0.223)
v1v8 0.142(0.327) 0.132(0.327) 0.168(0.261)

v1v11 −0.142(0.283) −0.140(0.283) −0.183(0.231)
v2v6 −0.165(0.203) −0.143(0.207) −0.190(0.163)
v2v7 −0.213(0.228) −0.209(0.231) −0.171(0.177)
v2v8 −0.406(0.310) 0.506(0.314) −0.404(0.247)

v2v11 −0.023(0.244) −0.024(0.250) 0.119(0.201)
v6v7 0.080(0.216) 0.098(0.231) 0.234(0.172)

v6v11 −0.102(0.293) −0.034(0.297) −0.058(0.240)
v7v8 −0.276(0.305) −0.199(0.312) −0.075(0.240)

v7v11 −0.884(0.411) −0.924(0.414)∗∗ −0.865(0.361)∗∗∗
v8v11 0.177(0.505) 0.177(0.513) 0.252(0.441)
m2 2.532(0.254)∗∗∗ 2.504(0.254)∗∗∗
λ 5.663(0.396)∗∗∗ 5.748(0.371)∗∗∗

In-sample log-likelihood −5556.90 −2384.60 −2945.76 −5880.94
Out-of-sample log-likelihood −2605.69 −1136.68 −1519.55 −2845.35
In-sample deviance 5215.18 2384.60 2866.00 8764.67
Out-of-sample deviance 2854.57 1025.36 1851.15 4494.50

.
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Table 2.6. Modelling result for the original full BNBR model and shrunken models. The coefficients
of each variable are shown, followed by their standard deviation in parentheses. *,** and *** represent
respectively statistical significance at the 10%, 5% and 1% level, calculated based on the t-statistics of
coefficients of each variable.

Variable Full model the Lasso Ridge regression

ω 0 13 4
Y1(Third-party liability claim)

Intercept −1.984(0.570)∗∗∗ −2.371(0.283)∗∗∗ −2.418(0.297)∗∗∗
v1 −0.114(0.431) 0(0.009) −0.008(0.241)
v2 −0.070(0.376) 0(0.009) −0.018(0.225)
v3 0.003(0.108) 0(0.009) 0.009(0.103)
v4 0.122(0.115) 0(0.009) 0.118(0.108)
v5 −0.341(0.295) −0.012(0.274) −0.124(0.203)
v6 −0.865(0.501)∗ −0.131(0.268) −0.224(0.254)
v7 0.053(0.437)∗ 0.082(0.121) 0.026(0.230)
v8 −0.655(0.592) 0(0.009) −0.081(0.258)
v9 −0.012(0.132) 0(0.009) −0.059(0.122)

v10 0.173(0.099)∗ 0.058(0.091) 0.141(0.094)
v11 −0.157(0.433)∗ 0(0.009) −0.023(0.230)

v1v2 −0.056(0.253) 0(0.009) −0.042(0.194)
v1v6 0.452(0.277) 0(0.009) 0.268(0.201)
v1v7 0.011(0.322) 0(0.009) 0.026(0.213)
v1v8 −0.100(0.380) 0(0.009) −0.127(0.246)

v1v11 −0.042(0.282) 0(0.009) −0.053(0.203)
v2v6 0.023(0.241) 0(0.009) −0.062(0.175)
v2v7 −0.255(0.281) 0(0.009) −0.141(0.189)
v2v8 0.255(0.366) 0(0.009) 0.071(0.229)

v2v11 0.335(0.241) 0(0.009) 0.241(0.177)
v6v7 0.068(0.277) −0.002(0.025) −0.105(0.186)

v6v11 0.356(0.295) 0(0.009) 0.140(0.189)
v7v8 0.666(0.397)∗ 0(0.009) 0.275(0.233)

v7v11 −0.170(0.344) 0(0.009) −0.061(0.200)
v8v11 −0.070(0.430) 0(0.009) −0.159(0.238)
m1 6.454(0.649)∗∗∗ 6.459(0.643)∗∗∗ 6.501(0.653)∗∗∗

Y2 (Comprehensive cover claim)
Intercept −5.104(0.629)∗∗∗ −4.073(0.328)∗∗∗ −3.895(0.294)∗∗∗

v1 0.068(0.400) 0(0.009) −0.001(0.229)
v2 0.489(0.346) 0.067(0.081) 0.158(0.211)
v3 0.136(0.084) 0.159(0.085)∗ 0.184(0.080)∗∗∗
v4 −0.257(0.108) −0.133(0.105) −0.219(0.101)∗∗
v5 0.421(0.314) 0.163(0.084)∗ 0.270(0.198)
v6 0.373(0.489) 0(0.009) 0.061(0.245)
v7 0.578(0.477) 0.010(0.331) −0.022(0.221)
v8 0.209(0.605) 0(0.009) −0.018(0.249)
v9 2.946(0.130)∗∗∗ 2.756(0.123)∗∗∗ 2.509(0.107)∗∗∗

v10 1.941(0.126)∗∗∗ 1.748(0.120)∗∗∗ 1.545(0.104)∗∗∗
v11 0.848(0.497) 0.375(0.323) 0.260(0.224)

v1v2 −0.351(0.225) 0(0.009) −0.215(0.178)
v1v6 −0.080(0.236) 0(0.009) −0.049(0.183)
v1v7 0.274(0.275) 0(0.009) 0.174(0.194)
v1v8 0.142(0.327) 0(0.009) 0.073(0.229)

v1v11 −0.142(0.283) 0(0.009) −0.079(0.195)
v2v6 −0.165(0.203) 0(0.009) −0.065(0.155)
v2v7 −0.213(0.228) 0(0.009) −0.104(0.166)
v2v8 −0.406(0.310) 0(0.009) −0.212(0.210)

v2v11 −0.023(0.244) 0(0.009) 0.117(0.170)
v6v7 0.080(0.216) 0(0.009) 0.104(0.162)

v6v11 −0.102(0.293) 0(0.009) −0.043(0.184)
v7v8 −0.276(0.305) 0(0.009) −0.174(0.210)

v7v11 −0.884(0.411) −0.361(0.345) −0.340(0.194)∗
v8v11 0.177(0.505) 0(0.009) 0.186(0.235)
m2 2.532(0.254)∗∗∗ 2.511(0.253)∗∗∗ 2.545(0.255)∗∗∗
λ 5.663(0.396)∗∗∗ 3.797(0.429)∗∗∗ 5.774(0.413)∗∗∗

In-sample log-likelihood −5556.90 −5587.42 −5567.22
Out-of-sample log-likelihood −2605.69 −2491.68 −2493.17
In-sample deviance 5215.18 5228.46 5228.87
Out-of-sample deviance 2854.57 2586.82 2626.77
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Table 2.7. Modelling results of the original full UNBR model and UNBR models shrunken by the two methods. The coefficients of each variable are shown, followed by their standard
deviation in parentheses. *,** and *** represent respectively statistical significance at the 10%, 5% and 1% level, calculated based on the t-statistics of coefficients of each variable .

Variable Y1 (Third-party liability claim) Y2 (Comprehensive cover claim)
UNBR the Lasso Ridge regression UNBR the Lasso Ridge regression

ω 0 7 29 0 23 2
Intercept −1.896(0.573)∗∗∗ −2.469(0.206)∗∗∗ −2.542(0.163)∗∗∗ −5.041(0.64)∗∗∗ −4.124(0.349)∗∗∗ −4.111(0.373)∗∗∗

v1 −0.186(0.434) 0(0.014) 0.008(0.110) 0.039(0.412) 0(0.007) −0.014(0.283)
v2 −0.112(0.377) 0(0.012) 0.006(0.106) 0.486(0.355) 0.070(0.085) 0.221(0.256)
v3 0.036(0.109) 0(0.018) 0.021(0.082) 0.151(0.087) 0.151(0.088)∗ 0.178(0.084)∗∗
v4 0.113(0.115) 0.020(0.110) 0.064(0.085) −0.293(0.108)∗∗∗ −0.024(0.106) −0.269(0.105)∗∗∗
v5 −0.374(0.300) −0.001(0.012) −0.013(0.107) 0.431(0.323) 0.134(0.091) 0.303(0.240)
v6 −0.952(0.507)∗ −0.101(0.273) −0.058(0.112) 0.252(0.506) 0(0.008) 0.015(0.312)
v7 0.056(0.438) −0.054(0.243) −0.032(0.107) 0.572(0.476) 0(0.352) 0.060(0.279)
v8 −0.064(0.594) 0(0.013) 0.003(0.114) 0.194(0.609) 0(0.161) 0.008(0.326)
v9 0(0.133) 0(0.013) −0.011(0.091) 2.943(0.131)∗∗∗ 2.656(0.122)∗∗∗ 2.692(0.117)∗∗∗

v10 0.179(0.099)∗ 0.120(0.092) 0.122(0.077) 1.948(0.127)∗∗∗ 1.690(0.119)∗∗∗ 1.719(0.113)∗∗∗
v11 −0.198(0.434) 0(0.017) 0.032(0.107) 0.843(0.495)∗ 0.416(0.344) 0.335(0.283)

v1v2 −0.017(0.252) 0(0.013) −0.011(0.110) −0.331(0.222) 0(0.007) −0.249(0.198)
v1v6 0.481(0.277)∗ 0.070(0.164) 0.097(0.111) −0.039(0.239) 0(0.007) −0.020(0.205)
v1v7 0.019(0.322) 0(0.015) 0.026(0.110) 0.246(0.275) 0(0.007) 0.197(0.224)
v1v8 −0.086(0.382) 0(0.013) −0.040(0.121) 0.132(0.327) 0(0.270) 0.076(0.266)

v1v11 −0.027(0.282) 0(0.013) −0.010(0.109) −0.140(0.283) 0(0.008) −0.096(0.224)
v2v6 0.057(0.242) 0(0.013) −0.029(0.100) −0.143(0.207) 0(0.013) −0.065(0.175)
v2v7 −0.253(0.282) −0.041(0.166) −0.064(0.099) −0.209(0.231) 0(0.023) −0.125(0.191)
v2v8 0.244(0.369) 0(0.254) 0.022(0.115) −0.506(0.314) 0(0.007) −0.316(0.248)

v2v11 0.360(0.242) 0.077(0.161) 0.109(0.099) −0.024(0.250) 0(0.011) 0.093(0.196)
v6v7 0.059(0.279) −0.032(0.259) −0.085(0.102) 0.098(0.231) (0.009) 0.123(0.188)

v6v11 0.381(0.296) 0.010(0.174) 0.052(0.102) −0.034(0.297) 0(0.007) −0.004(0.215)
v7v8 0.634(0.400) 0(0.257) 0.071(0.115) −0.199(0.312) 0(0.007) −0.134(0.245)

v7v11 −0.179(0.346) 0(0.013) −0.024(0.099) −0.924(0.414)∗∗ −0.289(0.365) −0.458(0.243)∗
v8v11 −0.044(0.434) 0(0.012) −0.028(0.115) 0.177(0.513) 0(0.008) 0.184(0.299)

m 6.440(0.648)∗∗∗ 6.47(0.666)∗∗∗ 6.571(0.658)∗∗∗ 2.504(0.254)∗∗∗ 2.547(0.269)∗∗∗ 2.511(0.254)∗∗∗

In-sample log-likelihood −2725.21 −2732.89 −2731.50 −2945.76 −2961.10 −2949.04
Out-of-sample log-likelihood −1136.68 −1112.983 −1111.99 −1519.55 −1400.59 −1453.35
In-sample deviance 2384.60 2394.80 2377.77 2865.60 2882.55 2869.90
Out-of-sample deviance 1025.36 976.22 968.92 1851.15 1608.78 1717.86
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2.6 Conclusion

In this chapter we used the BNBR model to analyse general insurance claim data.

We show that with a more flexibly specified correlation structure, the BNBR model

adequately captures the relationship between the two claim counts and the set of

explanatory variables. The correlation, which is totally ignored if two UNBR

models are fitted separately, proves to be essential in analysing the two types of

claim counts from the same policyholder. Note that the correlation coefficient

between the two claim count is only 0.187 in this study which is considered as a

weak correlation. When a higher correlation coefficient is present, it is likely that

a bivariate model with a proper specification of the correlation structure is more

suitable than a univariate model.

In addition, we apply two shrinkage techniques to choose core independent

variables in modelling claim counts. The results from the Lasso and ridge

regression are different, but both shrunken models outperform original full

regression models which are likely to suffer from the overfitting problem. The

shrunken models provide much better out-of-sample prediction accuracy in both

UNBR and BNBR models. This automatic approach to model selection has

considerable potential for application in actuarial modelling where very large

numbers of variables and data points are often available. Moreover, the shrunken

BNBR models also outperforms the two separately fitted shrunken UNBR models,

which again emphasises the importance of properly accounting for the correlation

structure between response variables.

In addition to BNBR model in this study, some extended Poisson model can also

incorporate over-dispersion. For example the zero-inflated versions of multivariate

Poisson models used in Bermúdez & Karlis (2011), where the correlation structure

in equation (2.2) can be implemented instead of the full covariance specification.

The bivariate generalised Poisson regression model in Famoye (2010a) follows a

similar correlation structure as in this study, which also allows for over-dispersion.

These potential alternative models can be considered in future research.
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A Bottom-Up Approach. Economic Modelling (70), 525-542.

3.1 Introduction

In recent years there has been an increased interest in sovereign credit risk, see,

e.g., Pan & Singleton (2008); Caceres et al. (2010); Ang & Longstaff (2013);

Longstaff et al. (2011); Aizenman et al. (2013); Janus et al. (2013). Sovereign

risk is typically measured by credit spreads associated with the probability of

default (PD) on sovereign debt securities, as there is uncertainty about receiving

scheduled payments on time. Since the onset of the global financial crisis (GFC),

Europe in particular has been the focus of much of this concern. While research

on sovereign risk and advanced risk management tools had also accumulated

before the European debt crisis, the crisis was still unseen by many market

participants. Despite being preceded by the GFC, in early 2009 neither observed

CDS spreads nor ratings for European sovereign entities provided an indication

36
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of the magnitude of the soon-to-occur sovereign debt crisis. This may indicate a

need to assess and predict sovereign credit risk using more responsive measures

based on additional risk sources. Further, despite much effort from governments

and global financial institutions, sovereign debt sustainability remains a major

concern, which motivates us to develop a new framework for predicting sovereign

default risk.

This study provides a new bottom-up approach to assess sovereign default risk

at the state-level for 18 state governments in the U.S. As argued by Ang &

Longstaff (2013), each U.S. state government retains the authority to establish

its independent legal system and the ability to issue state bonds. As a result,

state bonds are similar to federal bonds and the economic behaviour of a state

government can be considered as being similar to a sovereign entity. Given

the recent financial distress of large municipalities such as Detroit or the U.S.

territory of Puerto Rico, we also believe that a more in depth analysis of sovereign

debt at the state level is an important exercise more generally. We start with

Moody’s KMV expected default frequencies (EDFs) to assess credit risk at

the corporate level for industries of economic importance. We then aggregate

information extracted from EDFs at the company level to develop industry credit

risk indicators (ICRIs). In a second step, the constructed ICRIs are then used

to derive state credit risk indicators (SCRIs), based on the industry composition

of each state. In this way we calculate real-time bottom-up credit risk indicators

at the state-level. Clearly, our motivation for constructing the SCRIs is to better

understand whether variation in default risk in the private sector can presage

prediction for market views on a sovereign’s ability to service its debt obligations.

Our study follows the motivation of Altman & Rijken (2011b) in investigating the

influence of the private sector on a sovereign entity’s default risk. We assume

that publicly listed companies contribute to a sovereign entity’s wealth and, thus,

also to its risk of default. The derived SCRIs are then investigated with regards

to their predictive power for changes in credit default swap (CDS) spreads for

the individual states. We find that the derived market-based measures of private

sector credit risk are strongly associated with subsequent shifts in sovereign credit

risk premiums, as measured by CDS spreads. Overall, the developed SCRIs are

highly significant in forecasting sovereign CDS spreads at weekly and monthly

sampling frequencies.

Traditionally, the assessment of sovereign risk has relied heavily on macroeconomic



Chapter 3. Assessing Sovereign Risk 38

variables containing information on economic conditions and aggregated national

accounts. A variety of econometric frameworks using macroeconomic variables

have been applied to explain the behavior of sovereign risk over time. Grinols

(1976) applies both discriminant and discrete analysis to a sample of 64 nations to

identify five significant national account variables in his assessment of debt service

capability. Morgan (1986) studies debt rescheduling based on new short-term debt

data and variables representing economic shocks, using logit and discriminant

models. A more recent example is Haugh et al. (2009), where a range of

macroeconomic explanatory variables are incorporated in a panel model to study

sovereign spread differentials among European countries. Others studies such as

Fuertes & Kalotychou (2004) and Hilscher & Nosbusch (2004) also examine the

predictive power of similar variables.

A common approach across all these studies is the reliance on macroeconomic

data, such as annual GDP growth rates, the balance of trade, tax receipts or

debt servicing ratios, or similar. Although there is a significant body of research

supporting the explanatory power of macroeconomic variables, the forecasting

ability of these variables for crises or changes in credit quality of sovereigns has

been questioned. In a comprehensive overview paper, Babbel (1996) argues that

macroeconomic forecasting approaches generally fail to perform satisfactorily, and

that the claimed predictive power of macroeconomic models is only illusory. The

author argues that, upon closer inspection the studies are mostly unsuccessful.

Bertozzi (1995) also questions the ability of macroeconomic models to provide a

signal for early warning. One possible reason for the inadequate response times

of macroeconomic models are the infrequent updates of input data, which are

also subject to delayed release by government statistical offices. Thus for timely

projections of changes in sovereign risk, it might be more beneficial to identify

early warning signals in order to harness the limited time that policy makers

and financial managers typically have to change strategies (Bertozzi, 1995; Neziri,

2009). Models that only use one set of observations per year will undoubtedly

have difficulties in capturing changes in sovereign risk in a timely manner (Oshiro

& Saruwatari, 2005). Aizenman et al. (2013) also argue that while macroeconomic

factors are statistically and economically important determinants of sovereign risk,

the pricing of this risk for Eurozone periphery countries is not predicted accurately

either in-sample or out-of-sample with these factors.

Therefore, over the last decade sovereign risk has typically been measured by more
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timely and frequently available data from financial variables such as sovereign

bond prices or CDS spreads. Examples include Pan & Singleton (2008), Beber

et al. (2009), Hui & Chung (2011), Fender et al. (2012), Aizenman et al. (2013),

Ang & Longstaff (2013), Arce et al. (2013), Calice et al. (2013), Groba et al.

(2013), Janus et al. (2013), Dewachter et al. (2015) and Chen et al. (2016). Recent

studies have focussed on CDS spreads in particular, since they provide a more

direct measure of sovereign risk. Pan & Singleton (2008) analyze default risk and

recovery rates implicit in the term structure of sovereign CDS spreads. Ang &

Longstaff (2013) adopt CDS spreads for the U.S. Treasury, individual U.S. states,

and major Eurozone countries, to study the nature of systemic sovereign credit

risk. Aizenman et al. (2013) examine CDS as a measure of sovereign default

risk and argue that CDS spreads provide a good proxy for market-based pricing

of default risk. The authors also provide a market-based real-time indicator of

sovereign credit quality and default risk. Beber et al. (2009), Arce et al. (2013) and

Calice et al. (2013) focus on price discovery, liquidity spill-over and flight-to-quality

effects in the sovereign CDS market. Groba et al. (2013) focus on financially

distressed economies inside the European Union and their impact on the CDS

market.

One limitation of these studies in assessing sovereign risk is that so far little

attention is given to the private sector, which can yield a more direct measure

of economic activities within a sovereign entity. Generally, the productivity, profit

and economic performance of companies in a state can be expected to have a

direct impact on tax receipts and the wealth of a sovereign government. As a

result, financial health of a sovereign entity will be sensitive to financial crises, the

poor performance of major industries in a state or a slowdown of the economy.

Incorporating forward-looking company level information into the risk assessment

process therefore has the potential to provide important fundamental information

that may help to predict financial distress at the state or government level. Due

to the importance of measuring default risk at the firm level in financial markets,

credit rating agencies such as Standard & Poor’s, Fitch or Moody’s KMV provide

timely information on default risks at the company level (Trück & Rachev, 2009).

To take advantage of the abundant company level data for assessing sovereign risk,

Altman & Rijken (2011b) were among the first to propose a bottom-up approach to

incorporate private sector information in the assessment process, considering this

information as a crucial determinant of sovereign risk. They test the predictive
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power of factors generated from listed companies at country level, assuming that

sovereign financial health relies on the economic performance of the private sector.

Altman & Rijken (2011b) focus on major European countries during the debt crisis

and assess the probability of sovereign default based on the credit risk of the private

sector. Their prediction model demonstrates greater effectiveness in providing

advance warnings compared to those of credit rating agencies. Incorporating listed

company information also enlarges the available data points and gives greater

opportunity for investigating sovereign default risk.

A potential disadvantage of the approach developed by Altman & Rijken (2011b) is

its reliance on corporate credit scores, based on infrequently updated variables such

as company leverage, profitability, and liquidity. Thus, corporate credit scores may

provide a picture of retrospective rather than prospective company performance.

In addition, macroeconomic variables such as GDP growth and inflation, that are

available at a low frequency only, are also included in the model (Altman & Rijken,

2011b).

To overcome these shortcomings, this study assesses sovereign risk at the state

level, using market variables encompassing industries of economic importance

to each state. However state government defaults are different from corporate

defaults because of different legal enforcements. Unlike the bankruptcy procedure

following the default of a company, a state government’s assets cannot be credibly

liquidated or transferred to the debtor (Ang & Longstaff, 2013). Therefore, we

argue that state governments can be considered as independent sovereign entities.

Our motivation is to better understand whether variation in default risk in the

private sector can improve prediction for a sovereign’s ability to service its debt

obligations. Our study follows the motivation of Altman & Rijken (2011b) by

investigating the influence of the private sector on a sovereign entity’s credit

risk. We assume that publicly listed companies contribute to a sovereign entity’s

wealth and also its risk of default, and use Moody’s KMV EDFs for individual

companies to create industry-level and state-level credit risk indicators. EDFs are

forward-looking measures of default risk, based on the structural model developed

by Merton (1974) combined with information on historical defaults. The accuracy

of EDFs for predicting defaults has been documented in a number of studies, see,

e.g. Kealhofer (2003), Dwyer & Korablev (2007), Bharath & Shumway (2008).

Next to the developed EDF-based industry- and state-level credit risk indicators,

our model also incorporates additional financial variables that have been suggested
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to have predictive power for default risk. In contrast to previous studies, we use

a bottom-up approach to predict sovereign CDS spreads that may be particularly

useful for capturing and forecasting short-term changes in sovereign risk. Due to

the inclusion of the derived SCRIs, the proposed models may be able to better

predict state CDS spreads at the weekly and monthly frequency. Thus, they could

prove to be helpful to participants in financial markets, in particular those who

trade credit-default swaps or other instruments related to default risk at the state

level. Besides, the developed ICRIs and SCRIs may also provide policy makers

with a monitoring tool or early warning indicators at longer time horizons. An

upward-shift or permanent increase in the derived indicators may well be a sign

of a possible increase in sovereign credit risk at the state level in future periods.

We examine the default risk of 19 state governments in the U.S., covering the time

period from June 2006 to April 2013. In our analysis we treat each of the states as

an independent sovereign entity. CDS spreads on state government debt are used

to measure the default risk for each of these states. We first develop ICRIs that

are then used to calculate the SCRIs based on the industry composition of each

state. Each industry has its own default index that is built on the credit risk of

listed companies in the sector.

Our results indicate that the developed SCRIs, using information from the private

sector, are highly significant in predicting CDS spreads for the vast majority of

the states considered in this study. Regression analysis strongly suggests the

benefits of incorporating company level information on default risk to augment

macro-financial variables for the assessment of sovereign credit risk. Our findings

are also confirmed by robustness checks, using a variety of forecasting frequencies

as well as alternative state credit risk indicators based on the major industries in

each state only. We also apply quantile regression to estimate the coefficients for

the independent variables at different quantiles of the distribution, and we test the

predictive relationship using both through-the-cycle and point in time measures of

company credit risk. The robustness checks confirm our findings on the usefulness

of the developed credit risk indicators.

Overall, our results emphasize the importance of information from the private

sector for predicting sovereign default risk. Our findings complement those of

Altman & Rijken (2011b), by using a distinctively different and more timely

assessment method. First, instead of using company scores, our study adopts

Moody’s KMV EDFs to assess corporate level credit risk. Second, our analysis
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focuses on a significantly longer time horizon, examining the sovereign risk of state

governments in the U.S. over seven years, also covering the pre- and post-financial

crisis period. Moreover, constructing and incorporating ICRIs addresses the

influence of variation in industry compositions on overall sovereign risk, an

issue which was not examined by Altman & Rijken (2011b). Further, financial

companies are not excluded from our study, addressing one of the caveats of

Altman & Rijken (2011b). Finally, in contrast to previous studies that have applied

bottom-up approaches to sovereign default risk, our model examines CDS spreads

that may be particularly useful for capturing and forecasting short-term changes

in sovereign risk.

The remainder of this chapter is organised as follows. Section 3.2 provides a brief

review of the EDF measure and then describes our approach to derive bottom-up

industry and state credit risk indicators. Section 3.3 describes the data and the

applied models, while Section 3.4 provides results for the empirical analysis as well

as various robustness checks. Section 3.5 concludes and provides suggestions for

future work.

3.2 Bottom-Up Credit Risk Indicators

3.2.1 Industry Credit Risk Indicators (ICRIs)

In the following, we aim to derive industry and state specific credit risk indicators

that will reflect information on default risk available at the company level. As a

first step, for each industry a sector-specific indicator of default risk is developed

that can then be used to derive state-specific indicators of default risk.

We use Moody’s KMV one-year EDFs to measure corporate credit risk in the

private sector as a predictive measure of credit risk at the firm level. We include

all U.S. companies available in the Moody’s KMV EDF universe and use one-year

EDF estimates as measures for a company’s credit risk. The timely availability

of EDFs allows for almost immediate incorporation of new information relevant

to measurement of sovereign credit risk. One-year EDFs provide an estimate of

the probability of default for a particular company within a time horizon of twelve

months. Unlike credit ratings that typically involve a relative rank-order scale,

EDFs are measured on a quantitative scale (Moody’s, 2012). Note that a number of
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previous empirical studies has also confirmed the usefulness of EDFs or the Merton

distance to default for predicting bankruptcies at the corporate level. Kealhofer

(2003) shows that EDFs contain additional information for default prediction that

is not captured in ratings. Results by Bharath & Shumway (2008) suggest that

almost two thirds of defaulting firms had probabilities of default in the highest

decile based on the Merton distance to default during the quarter they defaulted.

Dwyer & Korablev (2007) also emphasize the usefulness of EDFs for predicting

defaults, when computing accuracy ratios for North America, Europe and Asia.

The EDF model belongs to a class of structural credit risk models pioneered

by Merton (1974), incorporating more realistic assumptions and enriching the

originally suggested model with empirical data on defaults to reflect real-world

measures of credit risk (Moody’s, 2012). Starting from Merton’s framework, the

model assumes that a firm’s value follows a stochastic process with an expected

growth rate and volatility. The model assesses the probability of asset values falling

below liabilities payable, the so-called default point. The distance to default (DD)

is then calculated as the difference between the expected outcome for the firm’s

value based on the underlying stochastic process and the default point, measured

by the number of standard deviations of the annual percentage change in the

market value of the firm’s assets. To derive real-world default frequencies, Moody’s

KMV then conduct a mapping process. The relationship between DD and default

frequency is developed based on empirical observations to account for the actual

number of default for different DDs. A mapping procedure is then applied to

create EDFs for companies based on their DDs. Moody’s KMV frequently update

their EDF estimates and ratings to reflect a company’s credit risk based on new

information that affect price or volatility. The real-world probability of default at

time t (EDFt) can then be denoted by Equation 3.1 (De Servigny et al., 2004):

EDFt = F (−(log(Vt)− log(X) + (µ− σ2
V /2)(T − t)

σV
√
T − t

), (3.1)

where F is the function mapping the distance to default calculated by a

Merton-type model to the actual EDF. Vt denotes the value of the firm at time t,

X is the default threshold, µ is the expected return on assets, and σV is the asset

volatility of the firm. T − t is set equal to 1 in the calculation, according to the

calibration of EDFs to a one-year horizon.
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We use Moody’s one-year EDFs from June 2006 to April 2013 for all U.S. listed

companies at weekly and monthly frequency. Over the sample, the EDFs range

from 1 basis point to a maximum of 35%. Over time, some companies have been

delisted and newly listed companies have been added. A total of 8105 companies

are included in our study over the sample period. Note that one-year EDFs are

actually updated on a daily basis, while the average number of observations on a

typical trading day is around 4300. We use end of week observations. When the

Friday of a week coincides with a public holiday and no observation is available,

the observed EDF on the Thursday of the same week is used. During the whole

study period, we only observe 12 public holidays falling on a Friday.

In order to assign companies to industries, a set of industry classifications is

constructed. The definition of each industry is based on Moody’s EDF industry

definitions as well as industry categories defined by the U.S. Department of

Commerce, Bureau of Economic Analysis (BEA). Note that Moody’s KMV assigns

companies to a total of 61 detailed industries, including one unassigned category

that contains companies without a clearly matching industry. The BEA on the

other hand adopts 20 industry categories only. We define industry classifications

by combining the two schemes, such that ICRIs can be constructed using Moody’s

EDF, and the indices can later be combined according to BEA’s statistics on GDP

compositions for each state. The industry mapping scheme is shown in Table 3.1

alongside the corresponding industries defined by Moody’s KMV and the BEA.

According to the BEA industry classification, U.S. listed companies that were

originally assigned to 61 industries by Moody’s KMV, are then regrouped into

15 industries. Note that the Moody’s KMV industry classification of a company

may change multiple times throughout the study period, such that every time

a change occurs the company will be assigned accordingly to the corresponding

industry category. At each point in time, EDF values for all companies in the

same industry are collected, and the ICRI is defined as the median of the observed

EDFs for the industry cohort.

Figure 3.1 presents the derived ICRIs for six of the 15 industries. We find that the

credit risk indicators behave quite differently across industries during the study

period as a result of different sensitivities to movement in economic conditions. We

also observe that all ICRIs increase significantly during the GFC period between

2008 and 2009, and tend to move back to their pre-crisis level afterwards. ICRIs

for real estate, rental and leasing as well as for arts, entertainment and recreation
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Figure 3.1. Time series of ICRIs for real estate, rental and leasing and arts, entertainment and
recreation (upper panel), mining and retail/wholesale trade (middle panel), and agriculture, forestry,
fishing and hunting and utilities (lower panel) for the sample period June 2006 to April 2013.
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New category BEA Moody’s
1.Agriculture, forestry, fishing

1.Agriculture, forestry, fishing and hunting
N02 Agriculture

and hunting N33 Lumber & Forestry

2.Mining 2.Mining
N38 Mining
N39 Oil Refining

3.Utilities 3.Utilities
N58 Utilities Nec
N59 Utilities, Electric
N60 Utilities, Gas

4.Construction 4.Construction
N13 Construction
N14 Construction Materials

5.Durable goods 5.Durable goods

N05 Automotive
N11 Computer Hardware
N15 Consumer Durables
N20 Electrical Equipment
N21 Electronic Equipment
N27 Furniture & Appliances
N34 Machinery & Equipment
N35 Measure & Test Equipment
N36 Medical Equipment
N49 Semiconductors
N50 Steel & Metal Products
N54 Transportation Equipment

6.Nondurable goods 6.Nondurable goods

N04 Apparel & Shoes
N10 Chemicals
N17 Consumer Products
N40 Oil, Gas & Coal Expl/Prod
N41 Paper
N42 Pharmaceuticals
N43 Plastic & Rubber
N44 Printing
N52 Textiles
N53 Tobacco

7.Retail/Wholesale trade

7.Wholesale trade N08 Business Products Whsl
8.Retail trade N16 Consumer Durable Retl/Whsl

N18 Consumer Products Retl/Whsl
N26 Food & Beverage Retl/Whsl

8.Transportation and warehousing 9.Transportation and warehousing
N03 Air Transportation
N55 Transportation
N56 Trucking

9.Information 10.Information

N07 Broadcast Media
N12 Computer Software
N45 Publishing
N51 Telephone
N61 Cable TV

10.Finance and insurance 11.Finance and insurance

N06 Banks and S&Ls
N23 Finance Companies
N24 Finance Nec
N29 Insurance - Life
N30 Insurance - Prop/Cas/Health
N31 Investment Management
N47 Real Estate Investment Trusts
N48 Security Brokers & Dealers

11.Real estate, rental and leasing 12.Real estate and rental and leasing
N32 Lessors
N46 Real Estate

12.Professional, scientific and
13.Professional, scientific and technical services

N09 Business Services
technical services N19 Consumer Services

N37 Medical Services
13.Arts, entertainment and recreation 18.Arts, entertainment and recreation N22 Entertainment & Leisure

14.Accommodation and food services 19.Accommodation and food services
N25 Food & Beverage
N28 Hotels & Restaurants

15.Other

14.Management of companies and enterprises N01 Aerospace & Defense
15.Administrative and waste

N57 Unassignedmanagement services
16.Educational services
17.Health care and social assistance
20.Other services, except government

Table 3.1. Assigned industry classifications based on allocated industry definitions from BEA and
Moody’s KMV. The first column provides the classification of industries applied in this study, columns
2 and 3 present corresponding industries from BEA and Moody’s KMV that were assigned to each
category. The classification typically follows BEA.

are the two most volatile amongst the 15 indices and are presented in the upper

panel of Figure 3.1. Median default probabilities for these categories reach as high

as 12% during the GFC and exhibit a declining trend afterwards. It is no surprise

that the real estate sector was affected greatly by the subprime credit crunch, while

spillover effects are likely to have influenced industries such as entertainment.

The middle panel of Figure 3.1 illustrates that the industry categories mining and

retail/wholesale trade are less volatile in comparison to the two industry categories
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described above. Their ICRIs peak at approximately 5% in the middle of 2009

which is less than half of the median EDF for the real estate category. Finally, in

the lower panel of Figure 3.1 we present the derived ICRIs for agriculture, forestry,

fishing and hunting and utilities. These industries appear least affected by the

GFC, indicated by the small change in the overall level of default probabilities.

Throughout the entire sample period the median EDF does not exceed a value of

1% for these two industries.

3.2.2 State Credit Risk Indicators (SCRIs)

We combine the 15 ICRIs to generate predictive credit risk indicators at the state

level. Henceforth, for each state we define an SCRI as the weighted average of

the ICRIs. The weight of each industry as a contributor to the SCRI is based on

an industry’s GDP percentage contribution to the entire state GDP, following the

decomposition for the prior 10 years, provided by the BEA. The BEA releases the

total GDP for each state and for each industry in the regional economy each year.

The contribution of each industry to a state’s total GDP can then be calculated

as the average percentage contribution over the ten year period from 2003-2013.1

A summary of the compositions for industries across states can be found in Table

3.2, where the average composition, the maximum and minimum percentage, and

difference between the two are shown for each industry. As expected, the GDP

contribution for each industry varies significantly across the 19 states, yielding

cross-sectional variation in risk profiles over the sample period.

Based on the 15 ICRIs and corresponding contributions for each state, the SCRIs

are created as the weighted average of the 15 indices in each of the 19 states,

calculated according to Equation (3.2):

 ICRI1,1 · · · ICRI1,15

...
. . .

...

ICRI1,360 · · · ICRI15,360

×
 w1,1 · · · w1,19

...
. . .

...

w15,1 · · · w15,19

 =

 SCRI1,1 · · · SCRI1,19

...
. . .

...

SCRI360,1 · · · SCRI360,19

 (3.2)

1 Note that the contributions of the different industries to the GDP for a state are typically
relatively stable through time. To examine whether the choice of the period for calculating
the average contribution of an industry has an impact on the results in Section 4, we
conducted various robustness checks, using the average industry composition also for shorter
periods. The results were qualitatively the same and almost identical to those when the
average composition for 2003-2013 was used.
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Average Max Min Max-Min

Agriculture, forestry, fishing and hunting 0.70% 2.15% 0.18% 1.97%
Mining 0.91% 9.37% 0.01% 9.36%
Utilities 1.91% 2.57% 1.22% 1.35%
Construction 5.06% 8.75% 3.51% 5.24%
Durable goods 6.92% 15.39% 2.47% 12.92%
Nondurable goods 5.53% 14.82% 1.28% 13.54%
Retail/Wholesale trade 13.31% 16.26% 8.60% 7.65%
Transportation and warehousing 2.81% 3.96% 1.40% 2.56%
Information 4.85% 9.62% 2.16% 7.46%
Finance and insurance 11.85% 39.33% 6.09% 33.25%
Real estate, rental and leasing 15.01% 19.48% 10.33% 9.15%
Professional, scientific and technical services 8.72% 14.30% 5.50% 8.80%
Arts, entertainment and recreation 1.09% 2.60% 0.67% 1.94%
Accommodation and food services 3.74% 16.41% 2.06% 14.35%
Other 17.60% 21.98% 13.15% 8.83%

Table 3.2. Summary statistics of contribution to the GDP of the 19 states for different industries.
We report average contributions for the time period 2003-2013 provided by the U.S. Department of
Commerce, Bureau of Economic Analysis (BEA).

Recall that we have 360 weekly observations for the EDFs and ICRI. ICRIt,j then

denotes the ICRI value at time t for industry j, with t = 1, ..., 360 and j = 1, ..., 15,

while wj,k represents the weight for industry j in state k with k = 1, ..., 19. The

product of the two matrices then yields 19 time series of SCRIs, one for each of the

states considered in this study. Thus, SCRIt,k denotes the state risk indicator at

time t for state k. We present the time series for the derived SCRI for California

in Figure 3.2. Based on the different industry contributions for each state, we also

observe a quite different behaviour in the developed state credit risk indicators

throughout the sample period. Overall, we believe that the derived SCRIs will

provide an appropriate measure of private sector credit risk for the considered

states.

3.3 Data and Models

We use market data on CDS spreads of 19 US state governments for the time

period June 2, 2006 to April 26, 2013 in order to examine the relationship

between the constructed bottom-up SCRIs and sovereign default risk at the state

level. Using weekly observations, we analyze CDS spreads for the following

states: California, New York, Texas, Florida, Illinois, Pennsylvania, Ohio, New
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Figure 3.2. Time series of California’s constructed SCRI for the sample period June 2, 2006 to April
26, 2013.

Jersey, Michigan, Massachusetts, North Carolina, Virginia, Wisconsin, Maryland,

Minnesota, Connecticut, Delaware, Nevada and Rhode Island. CDS spreads for all

state governments are obtained from Datastream and Bloomberg and are quoted

in basis points.2 We decided to use five-year CDS spreads, because they have

the greatest liquidity. Note that due to limited availability of CDS spreads for

some of the states during the sample period, not all time series are of equal

length. Table 3.3 provides summary statistics of the CDS spreads for the 18

state governments, including the number of observations, the mean, maximum

and minimum spread and the standard deviation of the observed spreads. Table

3.3 also presents the initial point in time when information on CDS spreads was

available for a particular state.3

In addition to SCRIs, we relate changes in CDS spreads to five additional financial

variables with a view to capturing changes in general financial and economic

conditions. Note that due to the forward-looking nature of this study and the

use of data at a relatively high (weekly) frequency, we decided not to include

2 The included states were selected as a result of data availability on CDS spreads. The
beginning of the sample period (June 2006) was determined based on the fact that from
this point onwards data on CDS spreads was available for at least six states, namely Florida,
Maryland, New Jersey, New York, North Carolina, and Pennsylvania. We decided to only
include states, where observations for CDS spreads were available from October 2010 at the
latest, to guarantee at least 130 weekly observations for each state. Based on this criteria
we have a cross-section of 19 states in our sample, see Table 3.3 for more details.

3 Note that four states have missing values after the first available observation, namely
North Carolina (from 24/09/2010 to 29/10/2010), Virginia (from 25/03/2011 to
29/06/2012), Delaware (from 09/12/2011 to 24/02/2012), Rhode Island (from 24/09/2010
to 22/10/2010).
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any macroeconomic explanatory variables in our analysis. We argue that despite

the impact of macroeconomic conditions on the ability of a state’s government to

service its debt, variables that are updated only infrequently throughout the year

and often on a delayed basis are not appropriate for the purpose of this study.

We use the Chicago Board Options Exchange Market Volatility Index (VIX) as

a forward-looking measure of volatility in the equity market, a proxy for the

uncertainty faced by investors. We also include the term spread, i.e. the difference

between short-term government bills (1 month) and long-term government bonds

(20 years). Changes in the term spread are often used as an indicator of economic

conditions and credit risk, since the spread is expected to contain information

on future economic growth and has been successfully applied to forecasting the

probability of a recession, see, e.g., Stock & Watson (1989), Dotsey (1998).

Both the VIX and term spread are expected to be positively related to state

CDS spreads, as both variables can be considered proxies for increasing risks in

equity and debt markets. These variables have also been widely suggested as

determinants of sovereign risk in previous studies, see for example, Hilscher &

Nosbusch (2004), Giesecke & Kim (2011), Longstaff et al. (2011), Dieckmann &

Plank (2012), just to name a few. Welch & Goyal (2008) also identify a link

between equity premiums required by investors and the market volatility and the

term spread. We also include returns of the S&P 500 index as a measure of stock

market performance, as well as 5-year U.S. Treasury CDS spreads. Finally, we

consider returns of the S&P U.S. issued investment grade corporate bond index

(the CDX IG index). While the coefficients of the Treasury CDS spreads are

expected to be positive for all states, market returns and the returns of CDX IG

index are expected to be negatively correlated with state sovereign CDS spreads.

We include these additional market variables to complement the information

contained in the derived bottom-up SCRIs. Note that a similar set of explanatory

variables has also been applied by Ang & Longstaff (2013), when assessing systemic

sovereign credit risk for several European countries and states in the U.S. We

collect weekly observations for all predictive variables for the June 2006 to April

2013 period. Data for the VIX is available from Bloomberg, while yields on federal

securities are available from the U.S. Treasury database. Data on the S&P 500

index is sourced from CRSP, while U.S. Treasury CDS spreads and the CDX IG

index are available through Datastream.
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We estimate the following model to measure the impact of the predictive variables

on CDS spreads in the 19 states:

CDSi,t =β0,i + β1,i ∗ SCRIi,t−1 + β2,i ∗ V IXt−1 + β3,i ∗ TSt−1 + β4,i ∗ SP500t−1

+ β5,i ∗ TCDSt−1 + β6,i ∗ CDXt−1 + εi
(3.3)

In the above equation, CDSi,t denotes the observed CDS spread for state i in

period t, while SCRIt−1 denotes the constructed state credit risk indicator at t−1.

V IX denotes the Chicago Board Options Exchange Market Volatility Index, TS

the term spread, SP500 the return on the S&P500 index, TCDS the Treasury

CDS spread, and CDX refers to the return on the CDX IG index. Since we are

particularly interested in the predictive power of these factors, all explanatory

variables are measured in period t− 1. In contrast to some previous studies that

focused on forecasting infrequent default events, such as Oshiro & Saruwatari

(2005) and Giesecke & Kim (2011), we focus on CDS spreads as observable proxy

measures of default risk for these states. Note that while the observed CDS spreads

could also be transformed into PD estimates when additional assumptions on

recovery rates for the states are applied, we don’t make such adjustments in the

current study.

Figure 3.3 provides a plot of the CDS spreads for the states of California, New

York, Texas, Florida, Illinois and Ohio from December 2007 to April 2013. For

all states we find that CDS spreads were at a low level at the beginning of 2007

and increase significantly during the GFC. The highest spreads could be observed

in 2008, typically followed by several smaller peaks and troughs, with the CDS

spreads exhibiting a declining trend in later periods of the sample.

3.4 Empirical Analysis

3.4.1 Baseline Model

As a first step, we estimate the coefficients for model (3.3), where all six

explanatory variables are included to assess sovereign default risk. The model
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Obs Mean Max Min σ Available from

California 281 198.3 455.0 46.0 83.9 Dec 2007
New York 360 121.1 356.8 29.0 69.4 Jun 2006
Texas 284 74.5 205.0 20.0 35.4 Nov 2007
Florida 360 104.4 273.0 35.0 46.8 Jun 2006
Illinois 284 184.0 360.0 24.3 81.6 Nov 2007
Pennsylvania 360 72.9 157.0 45.0 37.4 Jun 2006
Ohio 257 121.0 280.0 34.5 42.0 May 2008
New Jersey 360 125.8 370.0 29.0 75.0 Jun 2006
Michigan 272 162.7 404.8 39.0 79.4 Feb 2008
Massachusetts 280 107.1 246.0 20.6 49.1 Dec 2007
North Carolina 246 93.0 179.4 20.7 39.0 Jul 2008
Virginia 296 69.0 146.5 36.0 24.9 Jun 2006
Wisconsin 173 97.4 145.6 29.0 23.7 Jan 2010
Maryland 360 73.9 109.0 12.5 38.9 Jun 2006
Minnesota 130 70.2 175.2 12.5 19.4 Oct 2010
Connecticut 206 118.8 166.0 63.4 24.4 May 2009
Delaware 192 58.2 105.0 27.7 14.3 Jun 2009
Nevada 271 145.3 373.2 40.0 63.6 Feb 2008
Rhode Island 142 123.6 168.7 60.0 26.0 Jul 2010

Table 3.3. Summary statistics for weekly 5-year CDS spreads for the 19 states considered. Descriptive
statistics are based on CDS spreads denoted in basis points. We report mean, maximum, minimum,
standard deviation (σ) as well as the beginning of the sample period for each state. For all states, the
last observation of the sample period is April 2013.

is estimated for each state separately, using the derived SCRI as well as the five

additional forecasting variables.

Table 3.4 presents the results for the estimated regression model for each state.

We find that the average explanatory power of the estimated models, measured by

R2, across all states is around 0.64. The coefficient of determination ranges from

0.28 for Connecticut up to 0.83 for New Jersey, and exceeds 0.5 for more than half

the sample.

We are particularly interested in the predictive power of the SCRIs, presented

in the first column of Table 3.4. The coefficient of the variable is positive and

significant at the 1% level for 16 out of 19 states. The estimated coefficients in 16

states show the expected sign, suggesting that an increase in a state’s credit risk

at the firm level at time t will typically lead to an increase in sovereign risk for the

state at time t+1. The results are consistent with our hypothesis that firm level

information forecasts overall sovereign risk.

We further observe that while the coefficients for the SCRIs are mostly positive

and significant for the 19 states, estimated coefficients for the other explanatory
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Figure 3.3. Time series of weekly observations for CDS spreads for the states of California (upper left
panel), New York (upper right panel), Texas (middle left panel), Florida (middle right panel), Illinois
(lower left panel) and Ohio (lower right panel) from May 2008 to April 2013.

variables, except for the Treasury CDS spreads, are generally less significant with

inconsistent signs. We argue that this is not necessarily inconsistent with the

expected univariate relationship between these variables and default risk at the

state level, since changes in less significant variables may well be captured by

other variables, in particular the developed bottom-up SCRIs. For example, the

estimation of EDFs for a company will take into account the volatility of the

individual stock, that will also be related to the overall volatility of the equity

market. Therefore, it is likely that information similar to that provided by the

VIX will also be incorporated in the derived SCRIs. Changes in the VIX will

most likely be accompanied by changes in EDFs, and consequently in SCRIs.
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R2 Obs SCRI VIX TS S&P500 T-CDS CDX IG

California 0.66 281 40.27*** -0.91*** 17.80*** 1.13 2.37*** 6.59**
(5.55) (0.35) (4.52) (1.01) (0.22) (2.98)

New York 0.74 360 58.72*** -0.70*** -6.19*** 1.52** 1.47*** 1.97
(3.74) (0.24) (1.81) (0.70) (0.14) (2.10)

Texas 0.81 284 24.68*** 0.22** -4.29*** 1.02*** 1.01*** 2.15**
(2.03) (0.11) (1.37) (0.32) (0.07) (0.94)

Florida 0.77 360 32.88*** 0.23 -4.18*** 1.35*** 1.03*** 1.83
(2.21) (0.15) (1.11) (0.44) (0.09) (1.31)

Illinois 0.56 284 -26.31*** -0.24 17.16*** 1.27 4.06*** 4.52
(6.62) (0.38) (4.79) (1.11) (0.24) (3.29)

Pennsylvania 0.55 360 -35.10*** -0.26 2.56** 0.25 1.81*** 1.43
(2.80) (0.17) (1.26) (0.49) (0.10) (1.48)

Ohio 0.70 257 18.74*** 0.33** -12.59*** 1.78*** 1.73*** 3.14**
(3.05) (0.17) (2.39) (0.49) (0.12) (1.42)

New Jersey 0.83 360 28.69*** 0.10 3.82** 1.64*** 2.36*** 4.05**
(3.11) (0.21) (1.57) (0.62) (0.13) (1.84)

Michigan 0.76 272 61.26*** -0.14 4.29 2.12*** 1.84*** 6.47***
(5.09) (0.28) (3.90) (0.81) (0.19) (2.39)

Massachusetts 0.75 280 25.83*** -0.10 -3.18 1.31*** 1.76*** 2.59*
(3.08) (0.18) (2.34) (0.51) (0.11) (1.51)

North Carolina 0.62 246 38.04*** -1.23*** 8.94*** 0.46 0.26* 3.97***
(3.17) (0.17) (2.57) (0.52) (0.14) (1.51)

Virginia 0.77 295 32.58*** -0.82*** 2.88*** -0.47* -0.35*** -0.46
(1.43) (0.09) (0.62) (0.26) (0.06) (0.73)

Wisconsin 0.40 173 29.01*** 0.75** -1.71 0.99 0.58** -0.41
(6.78) (0.32) (2.96) (0.69) (0.25) (1.56)

Maryland 0.60 360 26.39*** -1.06*** -0.82 0.41 0.90*** 2.95**
(2.47) (0.17) (1.24) (0.49) (0.10) (1.46)

Minnesota 0.67 130 56.83*** -0.75** 37.49*** 0.03 0.17 7.42***
(12.97) (0.31) (4.46) (0.03) (0.20) (0.88)

Connecticut 0.28 207 4.63 0.54 -5.19* 1.02 1.46*** 0.89
(5.18) (0.33) (3.06) (0.68) (0.21) (1.65)

Delaware 0.41 192 11.65*** 0.65*** -2.97 1.07*** 0.47*** 1.30
(3.06) (0.19) (1.88) (0.39) (0.11) (0.89)

Nevada 0.77 271 39.65*** -0.13 5.23 1.41 1.92*** 4.79***
(3.79) (0.22) (3.13) (0.63) (0.15) (1.86)

Rhodes Island 0.53 142 57.90*** -0.16 -4.01 0.85 0.74*** -0.22
(8.39 ) (0.40) (3.25) (0.76) (0.29) (1.57)

Table 3.4. Results for regressing state CDS spreads on SCRI, VIX, TS, SP500, Treasury CDS, and
CDX IG, using weekly observations. For each state, the coefficient of determination (R2) is provided in
the first column, followed by the number of observations in the second column. Estimated coefficients
are reported in the subsequent columns, with heteroskedasticity and autocovariance consistent (HAC)
standard errors (Newey & West, 1987) in brackets. *,** and *** indicate significance of the coefficients
at the 10%, 5% and 1% level, respectively.

Therefore, estimated coefficients for the VIX may have unexpected signs since

the linkage between the VIX and observed state CDS spreads is already partially

explained by the estimated coefficient for the SCRI. Similar arguments can be

made regarding the other explanatory variables.

In order to further investigate the predictive performance of the SCRIs, we
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compare the full model regression results to results for restricted models without

SCRI as explanatory variable.4 We carry out model comparison tests for each state

to examine the fit of the full model relative to the nested models and present the

results in Table 3.5. The first two columns provide the R2 values for the models,

with the column indicating the goodness-of-fit for the nested model, and the second

column referring to the full model (3.3) including SCRI as predictive variable. The

third and fourth columns report the F -statistics and the corresponding p-values

for significance of a superior fit of the full model.

Restricted Model Full Model F-stat p-value

California 0.59 0.66 52.70 0.00
New York 0.55 0.74 246.60 0.00
Texas 0.71 0.81 147.86 0.00
Florida 0.63 0.77 220.51 0.00
Illinois 0.53 0.56 15.82 0.00
Pennsylvania 0.35 0.55 157.17 0.00
Ohio 0.66 0.70 37.78 0.00
New Jersey 0.78 0.83 85.16 0.00
Michigan 0.63 0.76 144.82 0.00
Massachusetts 0.68 0.75 70.35 0.00
North Carolina 0.39 0.62 144.16 0.00
Virginia 0.36 0.77 518.67 0.00
Wisconsin 0.33 0.40 18.32 0.00
Maryland 0.47 0.60 114.32 0.00
Minnesota 0.62 0.67 19.21 0.00
Connecticut 0.27 0.28 0.80 0.37
Delaware 0.36 0.41 14.54 0.00
Nevada 0.68 0.77 109.41 0.00
Rhodes Island 0.36 0.53 47.66 0.00

Table 3.5. Results for model comparison tests to examine the superior fit of the full model in
comparison to a restricted model that excludes the SCRIs. The first column provides the coefficient
of determination for the nested model, the second column the coefficient of determination for the
full model. The third and fourth columns present the F-statistic and the corresponding p-values for
significance of a superior fit of the full model.

Our findings suggest that the coefficient of determination is typically much higher

for the full model that includes the SCRIs. The average R2 also increases from

0.53 for the restricted model in comparison to 0.64 for the full model, while the

R2 even doubles for the state of Virginia. Model comparison tests also support

the full model as being superior for 18 out of 19 states. These results suggest

that SCRIs are not only statistically significant but their inclusion substantially

4 Model estimates and coefficients for the restricted models are not reported here but are
available upon request to the authors.
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increases predictive fit. SCRIs appear to offer substantial predictive gains with

reference to CDS spreads.

Overall, our results strongly support the predictive power of granular information

from the private sector in assessing sovereign default risk at the state level.

Information on default risk at the company level appears to be an important

determinant of the market’s view on the ability of a state government to service

its debt securities. The estimated positive coefficients for the SCRIs imply that

changes in the median corporate credit risk within a state at time t can help

predict sovereign risk at t+1. In the following sections we conduct a number of

tests to examine the robustness of our results.

3.4.2 Robustness Checks

3.4.2.1 Results for Monthly Frequency

We first test the predictive power of SCRIs for state CDS spreads, by also looking

at monthly observations.5 Overall, financial variables such as CDS spreads are

expected to react rather quickly to changes in market perceptions on credit risk

conditions at the company or state level. However, information contained in SCRIs

may also influence perceived risks for the credit quality of a state over a longer

time horizon. Therefore, the SCRIs are expected to still have significant predictive

power for state CDS spreads when the relationship is examined using monthly

frequencies. We re-estimate model (3.3) using monthly observations, applying

a one-month lag to the explanatory variables. If the suggested relationship

between the derived bottom-up risk indicators and state CDS spreads is robust,

the estimated models should remain significant.

Monthly regression results for monthly observations are shown in Table 3.6. Our

findings illustrate that also for monthly frequencies, 15 out of 18 states yield

positive and significant coefficients for SCRIs. Also Treasury CDS spreads and

the CDX IG index remain highly significant in most of the estimated models.

The average R2 across all states is 0.70, and for most states is slightly higher in

5 We exclude Minnesota in this robustness check, due to its low number of monthly CDS
spread observations.
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R2 Obs SCRI VIX TS S&P500 T-CDS CDX IG

California 0.68 65 39.57*** -1.02 17.19* -0.49 2.09*** 13.54**
(11.94) (0.87) (9.74) (2.26) (0.45) (5.61)

New York 0.78 83 57.76*** -0.50 -5.58 0.29 1.32*** 8.17**
(7.52) (0.55) (3.59) (1.47) (0.28) (3.87)

Texas 0.84 66 23.64*** 0.14 -4.93* 1.25* 0.98*** 3.46**
(4.09) (0.27) (2.69) (0.67) (0.13) (1.67)

Florida 0.83 83 31.45*** 0.15 -5.04** 0.69 1.08*** 7.72***
(4.20) (0.33) (2.08) (0.86) (0.17) (2.27)

Illinois 0.55 66 -31.90** -0.13 18.65* 1.96 4.00*** 10.14
(15.05) (1.02) (10.59) (2.63) (0.52) (6.59)

Pennsylvania 0.57 83 -39.98*** 0.11 2.46 -0.01 1.86*** 7.01**
(5.97) (0.42) (2.65) (1.09) (0.21) (2.88)

Ohio 0.76 60 18.96*** 0.36 -14.98*** 1.07 1.62*** 5.55**
(6.18) (0.40) (4.72) (1.02) (0.24) (2.52)

New Jersey 0.84 83 28.71*** 0.02 4.48*** 1.68 2.22*** 8.34**
(6.46) (0.51) (3.22) (1.33) (0.26) (3.50)

Michigan 0.80 63 64.46*** -0.31 -0.94 2.07 1.61*** 7.13**
(10.52) (0.68) (7.86) (1.74) (0.37) (4.31)

Massachusetts 0.77 65 25.58*** -0.24 -5.43 1.89* 1.70*** 5.99**
(6.56) (0.43) (4.94) (1.13) (0.23) (2.81)

North Carolina 0.68 57 39.17*** -1.23*** 6.76 -0.71 0.07* 5.28**
(6.44) (0.43) (5.06) (1.10) (0.28) (2.68)

Virginia 0.81 68 33.29*** -0.85*** 2.27* -0.70 -0.37*** 1.26
(3.06) (0.22) (1.28) (0.56) (0.12) (1.39)

Wisconsin 0.57 40 27.72* 1.11 -0.58 1.21 0.54 5.56**
(14.42) (0.69) (6.54) (1.57) (0.49) (2.62)

Maryland 0.62 83 26.95*** -1.35*** -0.66* -0.86 0.87*** 5.32**
(5.22) (0.41) (2.59) (1.07) (0.21) (2.82)

Connecticut 0.45 48 -2.44 0.98 -3.49 3.36** 1.21*** 7.26***
(10.03) (0.65) (6.14) (1.48) (0.37) (2.61)

Delaware 0.59 45 13.72** 0.58* -5.28 2.37*** 0.44** 3.90***
(5.84) (0.35) (3.72) (0.79) (0.20) (1.36)

Nevada 0.82 63 43.94*** -0.44 -0.10 1.41 1.71*** 6.49**
(7.63) (0.51) (6.10) (1.31) (0.28) (3.26)

Rhodes Island 0.64 33 60.25*** -0.38 -9.00 1.74 1.04* 4.47*
(17.35) (0.81) (7.25) (1.68) (0.55) (2.60)

Table 3.6. Results for regressing state CDS spreads on SCRI, VIX, TS, SP500, Treasury CDS, and CDX
IG using monthly observations. For each state, the coefficient of determination (R2) is provided in the first
column, followed by the number of observations in the second column. Estimated coefficients are reported
in the subsequent columns, with heteroskedasticity and autocovariance consistent (HAC) standard errors
(Newey & West, 1987) in brackets. *,** and *** indicate significance of the coefficients at the 10%, 5%
and 1% level, respectively.

comparison to the results for weekly data.6 While the number of observations in

each state is much smaller because of the change from weekly to monthly frequency,

6 Note, however, that as pointed out by Boudoukh et al. (2008) higher levels of predictability
with widening horizons are to be expected in longer term horizon regressions. As the
sampling error that is almost surely present in small samples shows up in each regression,
both the estimator and R2 are proportional to the forecast horizon. Therefore, better
results for long horizons in the form of higher increasing R2s generally provide little if any
evidence for a better forecasting performance over and above the weekly results. From this
perspective, the increasing explanatory power of the applied models for monthly horizons
should be interpreted with care.
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our main results on the predictive power of the constructed SCRIs for sovereign

default risk at the state level are confirmed.

3.4.2.2 Using ICRIs based on the mean of corporate risk measures

We also test the predictive relationship between the SCRIs and state CDS spreads,

using a slightly different approach for the construction of the SCRIs. That is,

instead of using the median of the observed EDFs for all companies in a specific

industry, we use the mean of the EDFs to construct the ICRI. The mean is expected

to be more sensitive to changes in EDFs of companies with a higher default risk.

An SCRI based on such ICRIs is also likely to exhibit more volatility through

time. Results for this alternative specification of the SCRIs are reported in Table

3.7.

Our findings suggest that the results are also quite robust with respect to the

construction of the ICRIs and SCRIs. Again we find that for 16 out of 19 states

the model yields positive and significant coefficients on SCRIs. The average R2

for the estimated models is 0.64 and thus very similar to the baseline specification

of the model. The significance of the coefficients and the explanatory power

of the estimated models for the individual states are qualitatively unchanged.

However, we observe that in comparison to the baseline model, the estimated

SCRI coefficients are much smaller in magnitude. This is a result of the skewed

distribution of company EDFs for each industry that leads to the mean typically

being significantly higher than the median. At the same time, neither the sign

nor the magnitude of the estimated coefficients for the other explanatory variables

change significantly. Overall, these findings strongly support the robustness of the

baseline results.

3.4.2.3 A bottom-up Credit Risk Indicator using Top Industries only

So far the derived SCRIs were based on all industries contributing to a state’s

GDP output. However, one could argue that it is typically the major industries

with a large contribution to a state’s GDP, that will have the largest influence on

market perceptions of sovereign risk. Therefore, as an additional robustness check,

we examine the sensitivity of our results with regards to the construction of the

bottom-up indicators. To do this, we use an alternative approach and include only
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R2 Obs SCRI VIX TS S&P500 T-CDS CDX IG

California 0.70 281 25.57*** -1.28*** 13.46*** 0.41 2.11*** 4.78*
(2.62) (0.33) (4.26) (0.95) (0.22) (2.98)

New York 0.72 360 27.47*** -0.56** -11.08*** 1.27* 1.31*** 1.14
(1.91) (0.24) (2.01) (0.73) (0.15) (2.19)

Texas 0.83 284 12.59*** 0.16 -5.98*** 0.79*** 0.97*** 1.42
(0.89) (0.11) (1.32) (0.30) (0.06) (0.89)

Florida 0.77 360 16.26*** 0.27* -7.54*** 1.14*** 0.94*** 1.20
(1.11) (0.15) (1.20) (0.44) (0.09) (1.32)

Illinois 0.54 284 -6.63** -0.63 13.13*** 1.04 3.87*** 3.81
(3.52) (0.39) (5.00) (1.14) (0.24) (3.38)

Pennsylvania 0.48 360 -12.97*** -0.52*** 4.04*** 0.19 1.76*** 1.43
(1.36) (0.18) (1.43) (0.53) (0.11) (1.59)

Ohio 0.73 257 10.78*** 0.14 -14.27*** 1.44*** 1.73*** 2.35*
(1.30) (0.16) (2.24) (0.47) (0.11) (1.36)

New Jersey 0.83 360 15.35*** 0.08 0.12 1.37** 2.21*** 3.25*
(1.54) (0.20) (1.66) (0.61) (0.13) (1.82)

Michigan 0.76 272 28.36*** -0.23 4.26 1.60** 1.93*** 5.24**
(2.27) (0.28) (3.82) (0.81) (0.18) (2.37)

Massachusetts 0.76 280 13.32*** -0.18 -4.62** 1.03** 1.71*** 1.87
(1.41) (0.17) (2.31) (0.50) (0.11) (1.48)

North Carolina 0.65 246 18.71*** -1.40*** 9.31*** 0.12 0.42*** 3.22**
(1.47) (0.17) (2.42) (0.50) (0.13) (1.47)

Virginia 0.68 295 14.19*** -0.66*** -0.29 -0.46 -0.33*** -0.67
(0.85) (0.10) (0.81) (0.31) (0.07) (0.88)

Wisconsin 0.42 173 10.60*** 0.96*** 2.41 0.97 0.65*** -0.33
(2.18) (0.28) (2.19) (0.68) (0.25) (1.53)

Maryland 0.63 360 15.02*** -1.14*** -4.52*** 0.10 0.74*** 2.03
(1.18) (0.16) (1.27) (0.47) (0.10) (1.40)

Minnesota 0.62 130 27.37*** 0.29 -3.76*** 0.03 0.06 -6.06***
(2.59) (0.32) (0.53) (0.03) (0.22) (0.94)

Connecticut 0.28 207 2.58 0.51* -5.38** 0.95 1.50*** 0.82
(1.97) (0.30) (2.62) (0.68) (0.21) (1.64)

Delaware 0.42 192 4.97*** 0.69*** -2.40 1.04*** 0.50*** 1.36
(1.21) (0.17) (1.67) (0.38) (0.12) (0.89)

Nevada 0.77 271 18.50*** -0.16 5.99* 1.14* 1.92*** 3.97**
(1.78) (0.22) (3.11) (0.64) (0.15) (1.88)

Rhodes Island 0.62 142 21.06*** 0.16 2.75 0.59 0.94*** -0.23
(2.17 ) (0.31) (2.29) (0.68) (0.26) (1.40)

Table 3.7. Results for regressing weekly state CDS spreads on the newly developed SCRI based on
mean of the EDFs for each industry to construct the ICRIs. Additional explanatory variables are the
same as in the baseline model, i.e., VIX, TS, SP500, Treasury CDS, and CDX IG. For each state, the
coefficient of determination (R2) is provided in the first column, followed by the number of observations in
the second column. Estimated coefficients are reported in the subsequent columns, with heteroskedasticity
and autocovariance consistent (HAC) standard errors (Newey & West, 1987) in brackets. *,** and ***
indicate significance of the coefficients at the 10%, 5% and 1% level, respectively.

the five largest industries in a state (with regards to their contribution to GDP)

when constructing the SCRIs. Typically, for our sample, the five major industries

constitute more than half of the total GDP of a state and, thus, are expected to

exert a large influence on a state’s economy.

As a first step we identify the five largest industries in each state. We observe that
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certain industries such as retail/wholesale trade and the real estate sector play

a dominant role in most states, while the contribution of other industries varies

significantly across the states. For example, the mining industry is the fourth

largest industry in Texas, but it constitutes a small proportion of the GDP in

most of the other states. We also find that companies in the information sector

(media, computer software, publishing and telephone,) make a large contribution

to state GDPs in California and Wisconsin, but not elsewhere.

The SCRIs are then computed as the weighted average of the corresponding ICRIs

for the five major industries. We then test the predictive power, using the revised

SCRIs with concentrated industry compositions together with the supplementary

predictive variables. SCRIs based only on the most important industries for a

state are still expected to provide important information for the assessment of

sovereign default risk. Thus, we expect qualitatively similar results.

Table 3.8 shows regression results for the revised SCRIs. The average R2 is 0.65

and 16 states have positive, significant coefficients also for the revised SCRIs. The

higher overall R2 suggests a slightly higher predictive power of the models when

only major industries are used for construction of the SCRIs. Overall, the results

affirm the predictive power of the developed bottom-up credit risk indicators.

3.4.2.4 Through-the-Cycle Credit Risk Measures

We next examine the predictive relationship when the effect of the credit cycle on

company level default risk is filtered. Therefore, instead of using point-in-time

EDFs at the company level to derive the ICRIs and SCRIs, we use Moody’s

KMV’s through-the-cycle EDFs (TTCEDFs) to develop these indicators. These

robustness tests will then help us to confirm whether credit risk information at the

company level is significant in assessing sovereign risk independent of the credit

cycle.

Like standard EDFs, TTCEDFs also provide a measure of credit quality for

a firm over a one-year time horizon. However, standard EDFs are so-called

point-in-time (PIT) measures and thus incorporate not only information about

companies’ individual credit risk profile, but also geographic, sectoral as well as

cyclical macro-credit factors. Hence, Moody’s KMV argue that standard PIT

EDF measures as we have used them so far in this analysis typically provide early

warning signals of rapid changes in default risk. On the other hand, TTCEDF
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R2 Obs SCRI VIX TS S&P500 T-CDS CDX IG

California 0.64 281 30.17*** -0.70* 21.99*** 1.27 2.50*** 7.24**
(4.94) (0.36) (4.48) (1.03) (0.22) (3.05)

New York 0.73 360 55.91*** -0.53** -5.99*** 1.57** 1.48*** 2.17
(3.67) (0.23) (1.83) (0.71) (0.15) (2.13)

Texas 0.81 284 21.58*** 0.20* -3.07** 1.00*** 1.01*** 2.24**
(1.76) (0.11) (1.32) (0.32) (0.07) (0.94)

Florida 0.79 360 29.99*** 0.32** -3.59*** 1.37*** 1.04*** 1.99
(2.09) (0.15) (1.12) (0.44) (0.09) (1.32)

Illinois 0.58 284 -26.35*** -0.25 17.56*** 1.31 4.08*** 4.58
(6.14) (0.37) (4.73) (1.10) (0.23) (3.27)

Pennsylvania 0.57 360 -33.39*** -0.35** 2.41* 0.23 1.80*** 1.34
(2.66) (0.17) (1.26) (0.49) (0.10) (1.48)

Ohio 0.72 257 16.96*** 0.38** -12.00*** 1.82*** 1.74*** 3.25**
(2.90) (0.16) (2.38) (0.49) (0.13) (1.43)

New Jersey 0.84 360 25.63*** 0.20 4.23*** 1.69*** 2.38*** 4.23**
(2.97) (0.21) (1.58) (0.62) (0.13) (1.86)

Michigan 0.77 272 55.34*** -0.08 9.04** 2.18** 1.91*** 6.97***
(4.98) (0.29) (3.85) (0.83) (0.19) (2.45)

Massachusetts 0.77 280 24.46*** -0.03 -2.97 1.32*** 1.77*** 2.65*
(2.91) (0.17) (2.33) (0.51) (0.11) (1.51)

North Carolina 0.63 246 33.61*** -1.12*** 9.59*** 0.49 0.28* 4.11***
(2.89) (0.17) (2.59) (0.52) (0.14) (1.53)

Virginia 0.79 295 28.45*** -0.76*** 2.92*** -0.47* -0.33*** -0.41
(1.24) (0.08) (0.62) (0.26) (0.06) (0.73)

Wisconsin 0.40 173 23.84*** 0.97*** 0.53 1.14 0.55** -0.26
(6.96) (0.32) (2.91) (0.70) (0.25) (1.58)

Maryland 0.62 360 24.93*** -1.02*** -0.57 0.41** 0.90*** 3.00**
(2.31) (0.16) (1.23) (0.49) (0.10) (1.45)

Minnesota 0.67 130 50.74*** -0.66** 36.96*** 0.03 0.13 7.21***
(11.88) (0.31) (4.69) (0.03) (0.20) (0.87)

Connecticut 0.28 207 5.13 0.51 -5.57* 1.00 1.47*** 0.84
(4.82) (0.33) (3.04) (0.68) (0.21) (1.64)

Delaware 0.40 192 10.77*** 0.68*** -2.79 1.09*** 0.45*** 1.33
(3.03) (0.19) (1.94) (0.39) (0.11) (0.90)

Nevada 0.76 271 36.57*** 0.07 7.00** 1.50** 1.96*** 5.14***
(3.76) (0.21) (3.15) (0.65) (0.15) (1.89)

Rhodes Island 0.52 142 56.95*** -0.12 -4.22 0.86 0.70** -0.22
(8.41) (0.40) (3.31) (0.77) (0.29) (1.57)

Table 3.8. Results for regressing state CDS spreads on SCRI, VIX, TS, SP500, Treasury CDS, and CDX
IG, using weekly observations and constructing the SCRIs based on the state’s top five industries only. For
each state, the coefficient of determination (R2) is provided in the first column, followed by the number
of observations in the second column. Estimated coefficients are reported in the subsequent columns,
with heteroskedasticity and autocovariance consistent (HAC) standard errors (Newey & West, 1987) in
brackets. *,** and *** indicate significance of the coefficients at the 10%, 5% and 1% level, respectively.

measures isolate a company’s underlying credit trend from the macro-credit

cyclical effect. TTCEDF are primarily driven by changes in a company’s long-run

credit quality, which tends to be more stable over time and exhibit less variation.

Thus, while we expect EDFs and TTCEDFs to share a similar (long-run) trend,

since they are both developed using a company’s own credit risk profile, the values

of the two measures may differ significantly during a major credit crisis, since
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TTCEDFs will minimize the impact of the macro-credit cycle.

To derive the revised risk indicators, we implement the same approach as outlined

earlier for the construction of the original SCRIs. Weekly TTCEDFs for all listed

companies are collected based on the last trading day of each week. Using the

same industry categories as described in Table 3.1, companies are then grouped

into 15 industries and the median TTCEDF of all companies in the same industry

is taken as the industry’s TTCEDF. This results in 15 through-the-cycle industry

credit risk indicators (TTCICRIs).

Figure 3.4 demonstrates the significant differences between the original ICRIs and

the new TTCICRIs. As expected, the industry of real estate, rental and leasing

was greatly affected during the subprime credit crisis, leading to a peak of default

risk implied by the ICRI in late 2008 and during 2009. However, as shown in

the upper panel, TTCICRIs for the industry are significantly less affected by the

GFC period. Similar observations can be made for the industry of retail/wholesale

trade and utilities in the middle and bottom panel of Figure 3.4. The effect of the

GFC is diminished for the derived TTCICRIs, resulting in a more stable measure

of credit risk at the company and industry level. Still we find that also for the

constructed TTC industry measures average values as well as the dynamics of the

risk indicators differ significantly for the 15 industries.

Based on an industry’s percentage contribution to total GDP in each state, the

TTCICRIs are then used to derive through-the-cycle state credit risk indicators

(TTCSCRIs). The same set of industry weights that has been used for the

construction of the SCRIs is adopted here, such that the TTCSCRI for each state

is essentially a weighted average of the 15 TTCICRIs. We plot the original SCRI as

well as the TTCSCRI for California in Figure 3.5. As expected, the two time series

differ significantly, in particular, during the period from late 2008 to early 2010,

when the TTCSCRI is significantly less affected by market conditions prevalent

during the crisis period. Similar observations can be made for the other states in

our sample.

We re-estimate model 3.3, replacing the SCRIs with the calculated TTCSCRIs,

to examine the predictive power of the explanatory variables for sovereign default

risks. We consider observations at weekly frequencies and present the results for

the regression in Table 3.9. We find that the average explanatory power (measured

by R2) is 0.65, and therefore, quite similar to the results obtained for the original
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Figure 3.4. Time series of constructed TTCICRI and ICRIs for selected industries: real estate, rental
and leasing (upper panel), retail/wholesale trade (middle panel), and utilities (lower panel) for the
sample period June 2006 to April 2013.
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Figure 3.5. Time series of constructed TTCSCRI and SCRI for the state of California during the
sample period June 2006 to April 2013.

SCRIs. Again we find that for 16 of the 19 states the estimated coefficients for

the TTCSCRI are both positive and significant, which is consistent with earlier

findings. Thus, our results on the predictive power of the constructed SCRIs also

hold for measures being based on through-the-cycle EDFs. Overall, these results

suggest the importance of adopting firm-level information in assessing sovereign

risk independent of the credit cycle.

3.4.2.5 Predictive Model with Lagged CDS Changes

Up until now the CDS spreads have only been used as dependent variables to

represent the level of sovereign risk. In this robustness test we include lagged

changes in state CDS spreads to examine whether changes in CDS spreads

help forecast future CDS spreads. We are interested in examining the new

predictive relationship and in particular whether the SCRIs are still of incremental

importance. If the coefficients for the SCRIs in this model are positive and

significant for predicting CDS spreads, it can be concluded that the predictive

power of the baseline model is not due to the correlation with the lagged changes in

the dependent variable. If the relationships between the SCRIs and the dependent

variables are robust, we expect SCRIs to retain their incremental importance.

Following the model in Aizenman et al. (2013), we test the predictive power of

the regression model specified as follows, where we use the lagged changes in the

dependent variable, CDSi,t−1 − CDSi,t−2, to predict the value of the dependent

variable at time t:
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R2 Obs TTCSCRI VIX TS S&P500 T-CDS CDX IG

California 0.72 281 461.97*** -1.75*** -5.08 -0.17 2.65*** 3.86
(41.96) (0.33) (5.03) (0.93) (0.18) (2.73)

New York 0.76 360 437.08*** -0.76*** -12.35*** 0.81 2.08*** 1.20
(24.93) (0.22) (1.84) (0.68) (0.13) (2.01)

Texas 0.8 284 183.82*** 0.15 -9.94*** 0.69 1.22*** 1.67*
(16.41) (0.12) (1.74) (0.33) (0.06) (0.98)

Florida 0.79 360 239.24*** 0.29** -8.70*** 0.98** 1.39*** 1.31
(15.00) (0.14) (1.18) (0.43) (0.08) (1.27)

Illinois 0.54 284 -66.67 -0.77* 12.83** 0.91 3.70*** 3.33
(55.67) (0.41) (6.01) (1.16) (0.22) (3.41)

Pennsylvania 0.47 360 -176.98*** -0.60 4.26*** 0.25** 1.45*** 1.13
(19.82) (0.18) (1.47) (0.54) (0.10) (1.61)

Ohio 0.74 257 213.84*** 0.01 -23.60 1.15* 1.77*** 1.84*
(23.32) (0.16) (2.78) (0.46) (0.11) (1.33)

New Jersey 0.84 360 245.83*** -0.01** -1.48*** 1.11 2.64*** 3.16*
(21.20) (0.20) (1.62) (0.59) (0.11) (1.75)

Michigan 0.79 272 553.22*** -0.65 -19.49*** 0.83* 2.16*** 4.00
(38.1) (0.27) (4.52) (0.77) (0.16) (2.24)

Massachusetts 0.75 280 214.57*** -0.25 -10.61*** 0.93* 1.98*** 1.87
(24.61) (0.18) (2.83) (0.51) (0.10) (1.51)

North Carolina 0.74 246 395.75*** -1.75*** -8.89*** -0.58 0.42*** 1.89
(22.48) (0.15) (2.67) (0.44) (0.11) (1.28)

Virginia 0.66 295 174.91*** -0.59*** 0.28 -0.54* 0.13** -0.25
(10.92) (0.10) (0.82) (0.32) (0.06) (0.89)

Wisconsin 0.45 173 191.18*** 0.36 -8.89*** 0.35 0.54** -0.90
(31.63) (0.32) (3.33) (0.68) (0.24) (1.49)

Maryland 0.54 360 139.57*** -0.79*** -2.60* 0.44 1.22*** 3.21**
(18.43) (0.17) (1.43) (0.53) (0.10) (1.56)

Minnesota 0.72 130 207.28*** 0.28 -38.03*** 0.03 0.04 -6.07***
(49.42) (0.32) (5.01) (0.04) (0.21) (0.97)

Connecticut 0.28 207 53.33 0.38 -7.76** 0.83 1.47*** 0.73
(37.5) (0.35) (3.82) (0.70) (0.20) (1.64)

Delaware 0.40 192 81.53*** 0.67*** -3.55 0.97** 0.42*** 1.36
(25.34) (0.20) (2.29) (0.40) (0.11) (0.90)

Nevada 0.8 271 378.34*** -0.45** -11.11*** 0.60 2.15*** 3.30*
(30.57) (0.21) (3.72) (0.61) (0.13) (1.78)

Rhodes Island 0.62 142 338.28*** -0.45 -12.22*** 0.03 0.56** -0.81
(35.93) (0.35) (3.29) (0.70) (0.26) (1.42)

Table 3.9. Results for regressing state CDS spreads on TTCSCRI, VIX, TS, SP500, Treasury CDS, and
CDX IG, using weekly observations. For each state, the coefficient of determination (R2) is provided in
the first column, followed by the number of observations in the second column. Estimated coefficients
are reported in the subsequent columns, with heteroskedasticity and autocovariance consistent (HAC)
standard errors (Newey & West, 1987) in brackets. *,** and *** indicate significance of the coefficients at
the 10%, 5% and 1% level, respectively.

CDSi,t =β0,i + β1,i ∗ SCRIi,t−1 + β2,i ∗ V IXt−1 + β3,i ∗ TSt−1 + β4,i ∗ SP500t−1

+ β5,i ∗ TCDSt−1 + β6,i ∗ CDXt−1 + β7,i ∗ (CDSi,t−1 − CDSi,t−2) + εi
(3.4)

The regression results are quite robust and are presented in Table 3.10. The
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R2 Obs SCRI VIX TS S&P500 T-CDS CDX IG ∆CDSi,t−1

California 0.67 279 42.12*** -1.23*** 17.72*** 1.72* 2.34*** 6.39** 0.62***
(5.44) (0.35) (4.47) (0.99) (0.21) (2.92) (0.15)

New York 0.75 358 59.42**** -0.85*** -5.48*** 2.00*** 1.41*** 2.38 0.55***
(3.65) (0.23) (1.78) (0.69) (0.14) (2.05) (0.12)

Texas 0.81 282 25.54*** 0.16 -4.64*** 1.08*** 0.98*** 2.40** 0.29**
(2.05) (0.12) (1.41) (0.32) (0.07) (0.94) (0.12)

Florida 0.78 358 33.37*** 0.14 -3.88*** 1.59*** 1.01*** 2.50* 0.38***
(2.18) (0.15) (1.10) (0.43) (0.09) (1.29) (0.09)

Illinois 0.55 282 -25.38*** -0.31 16.25*** 1.54 4.03*** 4.65 0.31
(6.66) (0.39) (4.97) (1.12) (0.24) (3.29) (0.20)

Pennsylvania 0.56 358 -35.51*** -0.27 2.60** 0.49 1.82*** 1.48 0.66***
(2.77) (0.17) (1.25) (0.49) (0.10) (1.46) (0.20)

Ohio 0.70 255 19.93*** 0.25 -13.20*** 1.80*** 1.67*** 3.11** 0.22*
(3.09) (0.17) (2.41) (0.49) (0.13) (1.42) (0.13)

New Jersey 0.83 358 29.81*** -0.06 4.16*** 1.83*** 2.33*** 4.43** 0.42***
(3.09) (0.21) (1.55) (0.61) (0.13) (1.82) (0.12)

Michigan 0.76 270 63.16*** -0.37 4.32 2.08** 1.81*** 6.82*** 0.44***
(5.09) (0.29) (3.90) (0.81) (0.19) (2.37) (0.14)

Massachusetts 0.74 278 26.30*** -0.14 -3.42 1.40*** 1.73*** 2.84* 0.17
(3.11) (0.18) (2.37) (0.52) (0.11) (1.53) (0.16)

North Carolina 0.64 244 38.86*** -1.32*** 8.52*** 0.43 0.17 3.71** 0.63***
(3.07) (0.17) (2.49) (0.50) (0.14) (1.47) (0.16)

Virginia 0.79 293 32.47*** -0.85*** 3.11*** -0.32 -0.36*** -0.42 0.52***
(1.39) (0.08) (0.61) (0.25) (0.06) (0.71) 0.11

Wisconsin 0.44 171 33.43*** 0.57* -2.08 1.30* 0.50** -0.00 0.36
(6.90) (0.32) (2.91) (0.72) (0.24) (1.54) (0.22)

Maryland 0.60 358 26.67*** -1.12*** -0.60 0.44 0.88*** 3.00** 0.36***
(2.45) (0.17) (1.24) (0.49) (0.10) (1.45) (0.13)

Minnesota 0.72 128 47.60*** -0.48 40.04*** 0.02 0.18 7.54*** 0.59***
(12.59) (0.30) (4.35) (0.03) (0.19) (0.83) (0.17)

Connecticut 0.29 205 2.37 0.56 -4.27 1.17 1.45*** 0.90 0.22
(5.43) (0.34) (3.14) (0.73) (0.21) (1.66) (0.19)

Delaware 0.39 190 9.72*** 0.68*** -2.47 1.16*** 0.41*** 1.24 0.17
(3.01) (0.18) (1.83) (0.37) (0.11) (0.87) (0.16)

Nevada 0.78 269 40.85*** -0.26 5.17* 1.81*** 1.90*** 4.76*** 0.40***
(3.76) (0.22) (3.12) (0.63) (0.15) (1.83) (0.12)

Rhodes Island 0.54 140 57.95*** -0.14 -3.28 1.44* 0.60** 0.00 0.44*
(8.59 ) (0.40) (3.27) (0.82) (0.30) (1.57) (0.24)

Table 3.10. Results for regressing state CDS spreads on SCRI, VIX, TS, SP500, Treasury CDS, CDX IG and CDS
spreads changes from the previous period, using weekly observations. ∆CDSi,t−1 represents the new independent
variable CDSi,t−1 − CDSi,t−2. For each state, the coefficient of determination (R2) is provided in the first column,
followed by the number of observations in the second column. Estimated coefficients are reported in the subsequent
columns, with heteroskedasticity and autocovariance consistent (HAC) standard errors (Newey & West, 1987) in
brackets. *,** and *** indicate significance of the coefficients at the 10%, 5% and 1% level, respectively.

average R2 across states is 0.66, which is 0.02 higher than that of the baseline

model (3.3). We further observe that the coefficients of SCRI are positive and

significant in 16 out of 19 states, indicating that the SCRIs remain important

in predicting the changes in the dependent variables. This is consistent with the

regression results from the baseline model. The coefficients of the new explanatory

variable are all positive and some of them are significant at various levels, as
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expected. The coefficients of the other variables are approximately the same, as

are their standard deviations. Thus, the baseline results are largely unaffected by

the inclusion of lagged changes in the dependent variable.

3.4.2.6 Contemporaneous Model

To this point, we have analyzed our baseline model (3.3) and assessed its

performance by applying a range of robustness tests to it. We now examine the

contemporaneous relationship between the independent variables used in model

(3.3) and the sovereign risk measures. Weekly observations of SCRIs, which are

the same as those used in the baseline model, are used in a contemporaneous

model specified as follows:

CDSi,t =β0,i + β1,i ∗ SCRIi,t + β2,i ∗ V IXt + β3,i ∗ TSt + β4,i ∗ SP500t

+ β5,i ∗ TCDSt + β6,i ∗ CDXt + εi
(3.5)

The results for the contemporaneous model are presented in Table 3.11. The

average R2 across all states is about 0.63, which is slightly lower than that of

the baseline model. Consistent with the baseline model, the SCRI coefficients are

positive and significant at the 1% level in 16 out of the 19 states. The test results

indicate that a higher value for SCRIs at time t is associated with higher state

CDS spreads at that time. The results complement our previous findings, namely

that the derived state credit risk indicators are not only important in forecasting

CDS spreads, but also significant in a contemporaneous relationship.

3.4.2.7 Quantile Regression Models

As a last step, we conduct additional robustness tests in the form of quantile

regressions. The method allows us to compute several different regression relations

corresponding to various quantiles of the dependent variable and thus provides

a more complete picture of the relationship between the variables (Mosteller &

Tukey, 1977). In this way, results from quantile regression will provide additional

information beyond the focus of least squares estimates only. As suggested by

Koenker & Hallock (2001) and Cade & Noon (2003), quantile regression has
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R2 Obs SCRI VIX TS S&P500 T-CDS CDX IG

California 0.66 280 43.07*** -1.39*** 17.05*** 1.06 2.39*** 6.27**
(5.54) (0.35) (4.55) (1.00) (0.22) (2.98)

New York 0.73 359 60.83*** -1.07*** -5.61*** 0.53 1.43*** 2.50
(3.80) (0.24) (1.84) (0.71) (0.15) (2.14)

Texas 0.80 283 27.35*** -0.00 -5.14*** 1.05*** 0.96*** 2.28**
(2.10) (0.12) (1.44) (0.33) (0.07) (0.97)

Florida 0.76 359 34.09*** -0.01 -3.70*** 1.16** 1.01*** 2.45*
(2.27) (0.15) (1.14) (0.45) (0.09) (1.34)

Illinois 0.55 283 -23.93*** -0.47 15.38*** 1.40 4.07*** 5.25
(6.68) (0.39) (4.90) (1.12) (0.24) (3.32)

Pennsylvania 0.56 359 -35.59*** -0.27 2.47** 0.44 1.83*** 1.52
(2.78) (0.17) (1.25) (0.49) (0.10) (1.47)

Ohio 0.68 256 22.20*** 0.02 -13.89*** 1.91*** 1.65*** 4.07***
(3.16) (0.17) (2.49) (0.50) (0.13) (1.47)

New Jersey 0.82 359 30.91*** -0.25 4.15*** 1.60** 2.34*** 5.43***
(3.16) (0.21) (1.60) (0.62) (0.13) (1.87)

Michigan 0.75 271 66.68*** -0.71** 3.22 2.04** 1.77*** 6.40***
(5.20) (0.29) (4.00) (0.83) (0.19) (2.43)

Massachusetts 0.72 279 28.20*** -0.35* -3.66 1.36** 1.69*** 3.04*
(3.22) (0.18) (2.46) (0.53) (0.12) (1.58)

North Carolina 0.60 245 38.11*** -1.34*** 8.80*** -0.04 0.22 3.52**
(3.26) (0.17) (2.66) (0.53) (0.15) (1.56)

Virginia 0.71 294 33.54*** -0.68*** 3.57*** -0.22 -0.53*** -0.81
(1.82) (0.10) (0.71) (0.29) (0.07) (0.83)

Wisconsin 0.39 172 30.20*** 0.61* -2.21 1.33* 0.60** -0.21
(6.89) (0.32) (2.92) (0.68) (0.25) (1.53)

Maryland 0.59 359 27.31*** -1.24*** -0.22 0.36 0.85*** 2.84*
(2.48) (0.17) (1.25) (0.49) (0.10) (1.46)

Minnesota 0.65 129 53.44*** -0.79*** 34.49*** 0.03 0.18 7.45***
(12.85) (0.28) (4.26) (0.04) (0.21) (0.86)

Connecticut 0.27 206 2.57 0.62* -4.84 1.40** 1.38*** 1.06
(5.18) (0.34) (3.06) (0.70) (0.21) (1.66)

Delaware 0.38 191 13.16*** 0.57*** -3.53* 1.43*** 0.42*** 1.07
(3.10) (0.18) (1.83) (0.39) (0.12) (0.91)

Nevada 0.76 270 43.65*** -0.48** 3.50 0.91 1.87*** 4.14**
(3.87) (0.22) (3.22) (0.65) (0.15) (1.90)

Rhodes Island 0.54 141 57.65*** -0.01 -4.60 0.44 0.68** 0.26
(7.58) (0.36) (3.11) (0.77) (0.28) (1.52)

Table 3.11. Results for the contemporaneous model, using weekly observations. For each state, the
coefficient of determination (R2) is provided in the first column, followed by the number of observations in
the second column. Estimated coefficients are reported in the subsequent columns, with heteroskedasticity
and autocovariance consistent (HAC) standard errors (Newey & West, 1987) in brackets. *,** and ***
indicate significance of the coefficients at the 10%, 5% and 1% level, respectively.

the potential to reveal the relationship between explanatory variables and the

dependent variable that have been overlooked by standard regression models.

Further, a conditional median regression is more robust than the conditional mean

regression in terms of outliers in the observations (Yu & Moyeed, 2001).

In the following, we test the predictive relationship between the predictive variables

and state CDS spreads at different quantiles. Naturally, we are specifically
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interested in the results for the SCRIs for various states. Results from quantile

regressions can reveal possible changes in the predictive relationship for different

ranges of the distribution for CDS spreads. Thus, they allow us to draw inferences

at different levels of sovereign risk, for example, during crisis periods or periods

where market participants had a rather low perception of sovereign risk. Results

for the upper quantiles of the dependent variable are of particular interest, since

higher values of market CDS spreads are indicative of a higher sovereign risk at

the state level.

Figure 3.6 provides an overview of the results for the state of California and for

the six predictive variables, namely the state-specific SCRI, the VIX, the term

spread (TS), S&P500 returns, Treasury CDS spreads, and CDX IG. Estimated

values of the coefficient for each quantile are represented by the black dotted line.

The horizontal solid line represents the OLS estimate, while the two dashed lines

represent the 90% confidence intervals for the least squares estimate from the

previous regression model (3.3). The shaded grey area depicts a 90% confidence

band for the quantile regression estimates.

As illustrated by the figure, the value of the estimated coefficient for SCRI in

California is very steady around 50 in all quantiles, as indicated by the dotted

line. The estimated coefficients for the conducted quantile regressions are also

very close to the 90% confidence interval of the mean estimation of the coefficients,

as marked by the two dashed lines. Thus, for California, our results suggest that

the estimated coefficient for the SCRI is not only positive and significant at its

mean value, but also at various quantiles of the distribution. Therefore, these

results confirm our previous conclusions about the strong and significant predictive

relationship between the derived SCRI and state CDS spreads, with little evidence

of quantile effects.

However, quantile regression results for the other five explanatory variables show

different variation patterns. For example, results for TS and TCDS show a clear

upward trend from the lower quantiles to the higher quantiles, indicating a higher

influence of these variables on sovereign CDS spreads in high distress risk states,

while such behavior could not be observed for the estimated coefficients for the

derived SCRI. This could imply that the high levels of sovereign risk are more

likely to be able to be inferred from market conditions, while the influence of

predictive signals from the private sector do not vary across different quantiles

of the distribution. This is a possibility, considering that the performance in the
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Figure 3.6. Results for conducted quantile regression based on data of California. Estimated
coefficients for different quantiles are represented by the black dotted line. Each plot provides results
for quantiles ranging from 0 to 1, while the vertical axis indicates the value of the estimated coefficient.
The solid line in each graph shows the ordinary least squares estimate and the two dashed lines
represent the 90% confidence intervals for the estimated coefficient using OLS regression. The shaded
grey area depicts a 90% confidence band for the quantile regression estimates.
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private sector aids in predicting the state government’s intrinsic ability to service

its debt payments, while the CDS spread is a market-based variable that is more

likely to be influenced by overall market conditions.

Quantile regression results for the estimated coefficients of SCRI of six chosen

states are presented in Figure 3.7. Clearly, the behaviour of estimated coefficients

for SCRI at different quantiles of the CDS spreads varies from state to state.

Typically the quantile regression estimates for the SCRI coefficients are consistent

with OLS estimates, in particular for quantiles ranging from 0.4 to 0.6. Thus, while

OLS and quantile regression coefficients are not identical, the difference between

the estimates is often not significant for many of the considered quantiles, even

when the confidence interval for the OLS coefficient is relatively narrow. However,

for some states, including, e.g., New York and Pennsylvania, estimated coefficients
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Figure 3.7. Quantile regression results based on data of California (upper left panel), New York
(upper right panel), Texas (middle left panel), Florida (middle right panel), Illinois (lower left panel)
and Pennsylvania (lower right panel). We present quantile regression estimates (the black dotted line)
for quantiles ranging from 0 to 1, while the vertical axis indicates the value of the estimated SCRI
coefficient at different quantiles. The solid line in each graph shows the ordinary least squares estimate
and the two dashed lines represent 90% confidence intervals of the OLS estimate. The shaded grey
area depicts a 90% confidence band for the quantile regression estimates.
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based on quantile regression significantly deviate from the OLS estimate of the

coefficient. As illustrated in Figure 3.7 this is true in particular for very low and

high quantiles.

The significant deviation from the mean estimate in the coefficients of SCRIs for

higher quantiles indicates a possible change in the predictive relationship between

SCRI and state CDS spreads. The coefficients are still significant in forecasting

sovereign risk, however the expected change in a state’s CDS spread caused by

one unit variation in the SCRI depends on the level of CDS spreads. In particular,

the size and the direction of the forecast changes differ when the CDS spread is

very high, such as during a credit crisis. When the quantile regression estimate is

outside the confidence band of the OLS estimate, the predictive relationship needs

to be estimated with reference to the quantitle of the CDS spreads. In these cases,

the influence of market-based variables such as VIX and CDX IG should be given

special attention.

Overall, our results suggest that the coefficients for the SCRIs based on quantile

regression are typically consistent with values from the OLS regression for most

states. However, some states exhibit substantial quantile effects, in particular at

very high or low quantiles of the distribution. Nevertheless, the coefficient for

the SCRI is typically still positive and significant even in these quantiles. Overall

the results do suggest further investigation of the predictive relationship between

the derived SCRIs and state CDS spreads under extreme economic scenarios such

as economic crises, using also non-linear models. We leave this task to future

research.

3.5 Conclusion

In this paper we develop a new approach for assessing sovereign risk at the state

level, using bottom-up credit risk indicators based on information about default

risk at the company level. Our study is motivated by the simple rationale that

the ability of state governments to service debt is affected by tax revenues from

the private sector, the latter being dependent on the attendant economic activity

and the performance of major industries in a state. The recent defaults of large

municipalities such as Detroit and the U.S. territory of Puerto Rico also encourage
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us to examine more thoroughly the dynamics and prediction of sovereign debt at

the state level.

Using Moody’s KMV EDF data to measure corporate default risk, we construct

industry credit risk measures that are then used to derive state-specific indicators

for default risk based on the industrial composition of a state. In combination with

additional predictive variables, namely the VIX, the spread between short-term

government bills and long-term government bonds, returns from the S&P500, U.S.

Treasury CDS spreads, and investment grade corporate bond index returns, the

derived credit risk indicators are then examined with respect to their ability to

forecast U.S. state CDS spreads.

Our study complements and extends earlier work by Altman & Rijken (2011b)

in several ways. First, in contrast to the reliance on scoring models in Altman

& Rijken (2011b), our approach uses EDFs that are based on a structural model

for quantifying credit risk at the company level. Market-based EDF measures are

available at a daily frequency for a large universe of private companies. Thus,

our approach overcomes many of the shortcomings of scoring models that are

primarily reliant on accounting information. Second, this study examines a sample

of sovereign U.S. state governments that are selected without reference to their

financial health, thus extending the findings of Altman & Rijken (2011b) who focus

solely on distressed European sovereigns.

Our results show that market-based measures of private sector credit risk are

strongly associated with subsequent shifts in sovereign credit risk premiums,

measured by CDS spreads. Our findings also suggest that SCRIs have higher

predictive value than previously considered financial variables for forecasting

sovereign CDS spreads at weekly and monthly sampling frequencies. These

findings suggest a strong predictive link between market expectations of private

sector credit quality and those of sovereign credit quality - a connection that is not

directly discernible from scoring models. Moreover, we find that the link between

private and public sector credit risk generalizes beyond the sample of distressed

European sovereign entities studied by Altman & Rijken (2011b).

Our findings suggest that, at the very least, private sector based metrics

complement market-based measures of macroeconomic expectations in forecasting

sovereign risk. A closer look at company level information is also helpful for

investors in making informed decisions. As our study suggests, fluctuations in
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credit quality of resident corporations appear to be strongly linked to subsequent

variation in sovereign credit quality. Therefore, based on our findings we strongly

recommend additional research on the relationship between credit risk at the

corporate level and sovereign default risk. For example, the credit risk on the

company levels can be measured using different methods and focusing on particular

aspects that are important to the assessment of sovereign default risk, such as the

company’s ability to pay tax. These credit risk measures are be aggregated with

assigned weights which reflect the relative impact on the sovereign default risk.

The results from these further studies can further improve the understanding and

prediction of the sovereign default risk.



Chapter 4

A joint model for longitudinal

and time-to-event data in

corporate default risk modelling

Feng Liu (contribution 80%), David Pitt (contribution 10%), Stefan Trück

(contribution 10%)

4.1 Introduction

Corporate default risk refers to the probability that a company fails to fulfil its

debt obligations. Inability to pay debt is very often followed by insolvency events

such as liquidation or bankruptcy. The need to manage corporate default risk

arises due to the concern that such default events will lead to a loss for investors

and creditors, and also for policyholders or depositors in the case of a financial

company that declares bankruptcy. Default risk analysis is also useful because it

can be used to calculate theoretical prices for corporate bonds, such as in Longstaff

& Schwartz (1995).

There is considerable literature on assessing corporate default risk. The ability to

service debt payments can be influenced by a variety of factors, such as general

economic conditions (macroeconomic variables) and the financial status of the

company (company-specific variables). For example, a high asset value or market

value relative to interest payments on debt may indicate that the company is

75
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capable of meeting its debt obligations. However, during an economic downturn

with a low rate of GDP growth, a company’s default probability may increase

due to a fall in free cash flows or a drop in asset values. Other variables that are

sometimes associated with a company’s default probability include the Treasury

Bill rate, the company’s stock return, and accounting ratios such as working

capital/total assets (for more on predictors of default, see for example Altman

(1968); Zmijewski (1984); Shumway (2001); Duffie et al. (2007)).

As the corporate default risk varies with a number of factors, it is of interest to

explore the relationship between this risk and independent variables. The results

can then be used for forecasting future default events. Some models have been

developed to calculate the exact default probability, while others aim to develop a

classification system using discriminant analysis. An example of the latter is the

Z -score model, which computes company credit scores as a linear combination of

accounting ratios (Altman, 1968). The scores are then used to provide a basis for

classifying companies as likely or unlikely to default over a given future specified

time horizon. Structural models for default, first put forward by Merton (1974),

calculate the probability that a company’s asset value falls below the debt value

as a measure of default risk, assuming that the asset value follows a stochastic

diffusion process. An application of a structural model to measure default risk

is the company expected default frequencies (EDF) publised by Moody’s KMV.

This is based on the distance to default (DD) defined as the number of standard

deviations between the asset value and the default threshold.

More recently, hazard models have been used to estimate the default probability

by modelling the hazard rate for default. Let T be a continuous random variable

that denotes the company’s future survival time, and S(t) = P (T > t) be its

survival function. The cumulative distribution function for survival time T can

be denoted as F (t) = P (T ≤ t) = 1 − S(t). The probability density function for

T is denoted f(t). The hazard rate of default, h(t), is the instantaneous default

rate in the time interval [t, t+ dt], and h(t) = f(t)/S(t) (Allison, 2010). A hazard

model is used in Shumway (2001) to estimate corporate default events with the

accounting ratios used in Altman (1968), and the model produces one-year default

probability predictions that are more accurate than the existing scoring models

discussed in the chapter. The one-period prediction model is extended by Duffie

et al. (2007) and Duan et al. (2012) to allow for multi-period predictions.

The main problem with existing hazard models is the low frequency of the
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measurement of the independent variables. The hazard function is continuous and

smooth, while the independent variable values are only available periodically. For

example, accounting reports are only available quarterly or sometimes half-yearly

or even only once per year. There is a mismatch issue if we use a step function

based on available covariate data to predict a continuous function of the hazard

rate. Other than interpolation, the popular way to get around this issue is the

so-called “Last Value Carried Forward (LVCF)” approach. The missing value is

substituted by the most recent observation, and the covariate is assumed to be

constant between observations, such as in Shumway (2001). Since the true values

of an observed variable are never constant between observations, the assumption

brings bias to the modelling results, and the corresponding relationship between

the covariate and the probability of default will potentially be inaccurate and

misleading.

In order to mitigate this problem, the joint model for longitudinal and

time-to-event data (Rizopoulos, 2012) is investigated here as an extended hazard

model that can also recognise the behaviour of the covariate between observations

in a mixed-effects submodel. While reducing potential bias, the model can also be

used for forecasting based on the well-modelled trajectory of the covariate. The

joint model is a combination of two submodels: a mixed-effects model for analysing

the longitudinal observations of independent variables, and a Cox model (Cox &

Oakes, 1984) to assess the hazard rate of default and then the default probabilities.

In a joint model, before inputting the observed values of the covariate, the covariate

is first modelled using a mixed-effects model. This gives a model for the value of

the covariate as a continuous function of time. The mixed-effects model describes

the average longitudinal evolution in the population over all subjects, using fixed

effects parameters, and each individual subject can have its own trajectory that

deviates from the population mean as described by subject-specific random effects

parameters (Rizopoulos, 2012). An example is presented in Figure 4.1. The

dots represent the observations of a certain covariate for two companies, and the

solid lines denote the modelling results from a linear mixed-effects (LME) model

assuming a simple regression specification. Step functions are denoted by the

dashed lines, which represent the values to be input in a hazard model with the

LVCF assumption. The LME model allows for subject-specific intercept and slope

coefficients, thus the two distinctive trajectories for the two companies. For more

complicated trajectories, a spline function can be used in place of the simple linear

function shown here.
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Figure 4.1. A representation of LME model results for two companies.

In this way, the trajectories of the covariates can be modelled and predicted,

and the values of the covariates are no longer assumed to be constant between

observations. The fitted values for our covariates from the mixed-effects model

become the inputs to a Cox model (Cox et al., 1972) to assess the association

between the covariates and the corporate default event and predict rates of

corporate default.

The joint model has been applied in many areas such as medical research and

biomedical studies. It is particularly relevant to many cancer clinical trials where

a patient’s biomarkers, such as the blood pressure and cell counts, are observed

and recorded repeatedly (Ibrahim et al., 2010). Henderson et al. (2000) illustrate

the use of the joint model with a clinical study to treat schizophrenia. Xu & Zeger

(2001) uses the joint model to analyse clinical trial data comparing risperidone

with a placebo for the treatment of schizophrenia. Elashoff et al. (2008) applies

the joint model in a scleroderma lung study to evaluate the effect of oral CYC on

the risk of treatment failure or death. The joint model has also been extended

in various ways, such as allowing for multiple failure types, using an accelerated

failure time (AFT) model to replace the Cox model (Tseng et al., 2005; Elashoff

et al., 2008; Rizopoulos & Ghosh, 2011).

We use the joint model to analyse corporate default risk. The study focuses on
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the default probabilities of U.S. listed companies over a 20-year time period. We

calculate the distance to default of these companies using a structural model.

The joint model is calibrated to the dataset to assess the association between the

corporate default risk and the company’s distance to default and time since being

listed (age of the company). The relationship is used to predict default events in

an out-of-sample study.

The results of the study show that the joint model can produce more accurate

out-of-sample predictions of the default risk, compared to selected traditional

survival models such as the Cox and Weibull model (Hosmer et al., 2011).

The results are consistent when predicting over different time horizons, and the

superior performance of the joint model is more pronounced for the longer duration

predictions.

The chapter is organised as follows. Section 4.2 gives a high level summary of

existing methods to analyse default risk, including scoring models, structural

models and hazard models. Section 4.3 describes the specifications of the joint

model. Section 4.4 introduces the default risk data and predictor variables used

in the joint model analysis. Section 4.5 presents the modelling results and a

discussion of findings. Section 4.6 concludes the chapter.

4.2 Literature Review

Scoring models use a linear combination of independent covariates to compute a

credit score, which is linked to the default probability. Structural models compare

the asset value of a company to a predetermined default threshold, and calculate

the probability that the asset value drops below the threshold, triggering a default

event. Scoring models and structural models both focus on the state of the

company at a particular time point to evaluate the company’s default risk, and

are classified as static models.

Hazard models explicitly recognise that a company’s default risk changes through

time. These models can use time-dependent covariates to evaluate the hazard rate,

and can incorporate macroeconomic variables that are the same for all firms in

addition to company-specific variables (Shumway, 2001). In addition to corporate

default analysis, hazard models, such as the Cox model proposed in Cox et al.
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(1972), have a wide application in survival analysis in many other academic areas

as well and a review of these applications can be found in Nikulin & Wu (2016).

4.2.1 Scoring Models

A credit score for a particular company is calculated as a linear combination of

the company’s accounting ratios in a regression model. The score is designed

to discriminate between default and non-default companies (Trueck & Rachev,

2009). Altman (1968) is generally recognised as the first to apply a scoring model

in corporate default risk analysis to classify corporate borrowers. To calculate

the so-called “Z -score” for a particular company, accounting ratios are used,

specifically working capital/total assets, retained earnings/total assets, earnings

before interest and taxes/total assets, market value of equity/book value of total

liabilities, and sales/total assets. The Z -score is then found using

Z = β0 + β1X1 + β2X2 + · · ·+ β5X5, (4.1)

where Xk (k = 1, 2 . . . 5) are the five variables used in the model (Altman, 1968).

Based on empirical data of two groups of companies, which are the failed and

solvent companies, the coefficients βk (k = 1, 2 . . . 5) are estimated by maximising

the between-group variance relative to within group variance in discriminant

analysis.

A company’s credit score can be used to flag high risk companies. This is also very

useful for debt pricing or loan pricing. The credit scores can also be transformed

to probabilities of default. The two most popular approaches are logit and probit

transformation, both having the same general form (Trueck & Rachev, 2009)

Y = f(β0 +
n∑
k=1

βkXk), (4.2)

where Y indicates the probabilities of default, and f denotes the logit/probit

transformation function applied to the credit score. Maximum likelihood

estimation has been widely used to determine parameter estimates in these

models. The goodness of fit and inferential statistics associated with the model

are commonly based on log likelihood and chi-square test statistics.
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The logit model is based on the assumption that the default probability is

logistically distributed. The technique is discussed in detail with a number of

possible applications illustrated by Green (1993) and Hosmer Jr et al. (2013).

Other logit models include the O-scores developed in Ohlson (1980), and the

technique is also applied in Zavgren (1985) and Engelmann et al. (2003).The probit

model assumes that the probability of default is normally distributed, and some

examples of its applications in default analyses are Zmijewski (1984), Platt & Platt

(1991) and Amato & Furfine (2004).

Based on different performance measures, various scoring models are likely to rank

differently. For the users of these scoring models, it is important to be clear about

which aspect of the company performance is more important and then to set up

criteria to select the most suitable model.

Although easy to understand and use, the scoring models have two major

drawbacks. As pointed out by Ohlson (1980), the linear regression model used

to calculate the credit score is restricted by the specific statistical requirements

imposed on the distributional properties of the predictors. The scoring models

also have the disadvantage of relying exclusively on accounting ratios, and the

inadequacy of the simple statistical model in explaining potentially complicated

associations with the default risk. Recent studies have been conducted to compare

the performance of the simpler scoring models with more sophisticated statistical

models such as the hazard models. These studies often conclude that the scoring

models are insufficient and underperforming (Shumway, 2001). This may be due

to the limitations of relying solely on accounting information and the fact that the

model is static.

4.2.2 Structural Models

The original structural model to assess default risk was developed by Merton

(1974). Structural models focus on the capital structure of the company and treat

the default event as an outcome of the deterioration of the firm’s value. The

approach is sometimes referred to as the firm value approach, when the default

event is triggered when the value of the firm falls below some threshold.

In a structural model, the value of the firm is assumed to follow a stochastic

diffusion process with constant volatility. The only possible time for a default
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event is at the maturity of the company debt. The distance to default at maturity

is computed based on the value of the firm and the value of its debt, and defined as

the number of standard deviations by which the asset value exceeds the company

debt. A high distance to default is associated with a high asset value relative to

debt obligations, indicating a high chance for the company to be able to repay

its debt. A low or even negative distance to default raises concern and is likely

to be associated with high probability of default, as the asset value may prove

insufficient to cover debt payments.

The model has many assumptions, including a simple capital structure with only

one debt, a constant risk free rate of interest and normally distributed asset

returns. The probability of default, PDt, is estimated as follows

PDt = N(− log(Vt)− log(X) + (µ− σ2
V /2)(T − t)

σV
√
T − t

), (4.3)

where

N(.) = the cumulative Gaussian distribution function,

Vt = the value of the firm at time t,

X = the default threshold,

σV = the asset volatility of the firm,

µ = the expected return on the assets of the firm

T − t = prediction time horizon.

Later studies improved and modified the original structural model in various ways.

Additional factors have been included in the model such as taxes, bankruptcy costs

and protective covenants, and the original factors are modelled and computed

in more sophisticated ways. The model has also been extended to predict the

probability of default over more than one period. Some examples are Black & Cox

(1976), Leland (1994), Longstaff & Schwartz (1995) and Zhou (1997).

One of the important applications of the original structural model is the

development of the corporate Expected Default Frequency (EDF) published by

Moody’s KMV as a measure of default probabilities (Crosby, 1998). Based

on empirical default frequency, EDF is calibrated to match historical default

frequency based on the distance to default computed from the structural model,

instead of directly obtaining the probability assuming the asset returns follow a
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normal distribution. Moody’s KMV has also introduced more advanced methods

to compute the values of the factors in the structural model, such as an empirical

procedure to estimate the value of the asset and its volatility, instead of relying

on the balance sheet or historical records (Nazeran & Dwyer, 2015).

Compared to the accounting ratios used in scoring models, structural models take

advantage of the forward-looking feature of market data as the market value of the

company is used in the model. As market data is expected to reflect a wide range

of relevant information relating to the firm, it should provide better predictor

variables than those available from the balance sheet (Jovan & Ahčan, 2017).

One major drawback of structural models results from the many assumptions

made by the original model as mentioned previously. Unfortunately many of these

assumptions are likely violated in reality, such as the simplified assumptions about

the capital structure of the firm and the normality of the asset return distribution

(Crouhy et al., 2000). Even if some or all of the assumptions can be relaxed in

subsequent models, such as allowing for a more complicated capital structure with

more than one debt or a less restrictive assumption of the distribution of the asset

return, it is still difficult to assign values to some of the variables in the equation,

such as the true value of the asset and the assumed constant volatility parameter.

Although the structural model was later shown to be inappropriate for predictions,

Merton (1974) was successful in finding a way to estimate the probability of

default implied by equity prices. The default probability is computed based on

relevant market variables, which are generally considered to be forward-looking.

In theory, this model is able to generate a marked-to-market assessment of the

creditworthiness of the company, especially listed companies. As a result, the

distance to default calculated from the model has become a popular covariate

in the area of assessing default risk, to account for the impact of the company’s

capital structure on the probability of default.

4.2.3 Hazard Models

Hazard models differ from structural models in that the default is a surprise event,

instead of an output from a process when the asset value approaches or crosses

the default threshold. The key variable in these models is the time to default,

governed by the hazard rate of default (Sundaresan, 2000; Duffie & Singleton,
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2003). Commonly a Poisson process is assumed for the occurrence of the defaults

in the literature as well as in industry practice, such as in the CreditRisk developed

by Credit Suisse (Suisse, 1997).

Let Ti denote the observed event time for subject i. We define Ti = min(T ∗i , Ci)

so that Ti is the minimum of the default time T ∗i and the censoring time Ci. The

event indicator δi = I(T ∗i ≤ Ci) takes the value 1 if the company defaults and

0 otherwise, where I(·) denotes the indicator function. If p(·) denotes the event

time probability density function, the survival function is defined as

S(t) = Pr(T ∗ > t) =

∫ ∞
0

p(s)ds = exp{−
∫ t

0

h(s)ds}. (4.4)

The hazard function h(·) can be used to describe the instantaneous risk for an

event in the time interval [t, t + dt] conditional on survival up to t. Let yi(t)

denote the longitudinal covariate for subject i (i = 1, 2, ..., n) observed at time

t. If we assume that the covariates have a multiplicative effect on the hazard for

a default event, a proportional hazards model can be postulated in the form of

(Rizopoulos, 2012, Chapter 3, Chapter 5)

hi(t|Yi(t), ωi) = lim
dt→0

Pr(t ≤ T ∗i < t+ dt|T ∗i ≥ t,Yi(t), ωi)
dt

= h0(t) exp{γ>ωi + αyi(t)}, t > 0.

(4.5)

In equation (4.5), Yi(t) denotes the history of the longitudinal process up to time

point t, h0(·) denotes the baseline risk function, ωi is a vector of baseline hazard

covariates with a corresponding vector of regression coefficients γ and yi(t) is

the value of the longitudinal measure for subject i at time t. The parameter α

quantifies the effect of the underlying longitudinal outcome of subject i to the risk

for a default event.

As discussed in Shumway (2001), the advantages of the hazard model over

static models such as scoring models and structural models, are the automatic

adjustment for period at risk, incorporation of time-varying covariates and the

ability to produce more efficient out-of-sample forecasts. The hazard model is

also suitable for incorporating censored observations. Since the focus of the model

is the time until default or censoring over multiple periods, the status of each
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individual can be observed and can contribute to the inference whether it survives

or defaults. On the other hand, the structural and scoring models are considered

to be less efficient in that not all information is used in the development of the

association, when the model is calibrated solely using time of default data. The

survival information which is equally important over time is not accounted for in

the static models.

Hazard models have been applied in default risk analysis, and many models have

been developed over the last twenty years. They have become a standard approach

in the literature to assess and estimate corporate default risk (Orth, 2012).

Shumway (2001) proposed the idea of a discrete-time hazard model in forecasting

default probabilities based on data from 1962 to 1992. In the proportional hazards

model specified in (4.5), the hazard rate is set to depend on some chosen covariates

(in particular the accounting ratios as used in previous scoring models such as in

Altman (1968)) and a logit estimation program is used to calculate maximum

likelihood estimates. The fitted model is then applied to predict the one-period

default rate, where the covariates are modelled in a Gaussian first-order vector

autoregressive time series model. The study concludes that half of the previously

used accounting ratios prove to be poor predictors, while market-driven variables

are strongly related to bankruptcy probabilities. Chava & Jarrow (2004) extends

the study to include financial companies and analyse the industry effect. They

reach similar conclusions to Shumway (2001), namely that the hazard model

outperforms existing accounting based models.

One other influential study is Duffie et al. (2007). This paper aims to forecast the

default risk over multiple periods. The research is based on a dataset with more

than 390,000 firm-months spanning 1980 to 2004. A proportional hazards model

is used with a constant baseline hazard rate, and generates maximum likelihood

estimates of term structures of conditional probabilities of corporate default,

incorporating the dynamics of firm-specific and macroeconomic covariates over

multiple time periods. Four covariates are modelled with Gaussian panel vector

autoregressions. The method allows for the combination of traditional duration

analysis of the dependence of event intensities on time-varying covariates with

conventional time-series analysis of covariates, in order to obtain the maximum

likelihood estimation of multi-period survival probabilities. The term structure of

default hazard rates of individual firms depends significantly on the current state

of economy and especially on the current leverage of the firm.
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One potential drawback of Duffie et al. (2007) lies in the modelling of the

covariates. Although only four variables are measured using a time series

econometric model, the estimation of the model coefficients as well as the

prediction process can be time-consuming when a large number of companies are

analysed (Duan et al., 2012). To address the issue, Campbell et al. (2008) uses

a dynamic logit model to measure directly the association between the lagged

covariates and the default event. The relationship is then used to forecast over

multiple periods based on current values of the covariates. Duan et al. (2012) follow

the same principle. By replacing the logit model with a proportional hazards

model, they propose a forward intensity model for the prediction of corporate

defaults over different future periods, to avoid the difficulty to specify and account

for the dynamic nature of the covariates.

Other relevant applications of hazard models include Hillegeist et al. (2004),

Beaver et al. (2005), Hwang (2012) and Orth (2013). The modelling techniques

are similar, however they differ in the covariates employed to analyse the effects

of different factors. The superior performance of the hazard model over other

conventional models is evident in their studies. Moreover, the distance to default

calculated from a structural model is found to be influential and significant.

Although the structural model has drawbacks as mentioned previously, the

distance to default proves to be an important covariate in assessing default risk.

4.3 Joint Model Specification

The purpose of the joint model is to measure the association between longitudinal

observations of a subject and the subject’s risk for an event. It augments the simple

hazard model, in that the longitudinal covariates are analysed firstly in an LME

model to assess the subject-specific time evolutions. This enables the joint model

to take advantage of the fully-specified subject-specific longitudinal trajectories to

help evaluate event time and risk. The joint model is well explained by Rizopoulos

(2012). The author of the book is also responsible for the development of the R

packages “JM” and “JMbayes”, which are used to fit the joint model and conduct

analysis in this research (Rizopoulos, 2010, 2016b).
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4.3.1 Linear Mixed-Effects Model

A Linear Mixed-Effects model (LME) is used to model the trajectories of response

variables taken on different subjects. It incorporates both fixed effects and random

effects. The fixed effects are parameters associated with the entire population,

while the random effects are associated with the individual behaviours of different

subjects in the population.

In order to model the covariate longitudinal trajectory, let previously defined yi(t)

denote the response of subject i, i = 1, . . . , n, at time t. yi(t) can be expressed

as a function of time t, with subject-specific coefficients. If subject i has ni

observations, let yi denote the ni × 1 vector of longitudinal measures. Define

ti as a design matrix of time, then yi can be expressed as the product of the design

matrix and subject-specific coefficient vector βi

yi = ti ∗ βi + εi. (4.6)

The error terms εi are assumed to be normally distributed with mean zero and

variance σ2. The coefficient vector βi in the formula above can be written as

the sum of two new coefficient vectors β and bi, where β describes the mean

longitudinal evolution in the population averaged over all subjects and bi is

subject-specific.

In other words, the average evolution over all subjects is described with β, and

different subjects can deviate from the population mean trajectory in their own

manner, captured in bi. Accordingly, parameters in β are called fixed effects, while

parameters in bi are called random effects, with a multivariate distribution with

mean zero and covariance matrix D. Equation (4.6) can be reformulated into

its general form, where Xi(t) and Zi(t) are the design matrices for the fixed and

random effects coefficients


yi = Xi(t)β + Zi(t)bi + εi,

bi ∼ N (0,D),

εi ∼ N (0, σ2Ini).

(4.7)

The LME model overcomes difficulties in analysing longitudinal data with

standard statistical models. Repeated measures taken on the same subject are
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expected to be correlated, meaning common statistical tools assuming independent

observations are not appropriate (Rizopoulos, 2010). More importantly,

longitudinal measures are often collected intermittently and with error at a set

of a few time points for each subject. The so-called “Last Value Carried Forward

(LVCF)” approach as discussed in Section 4.1, which assumes the covariate

stays constant between observations, can result in significantly biased estimates

for parameters and standard errors (Prentice, 1982). Finally, under the LVCF

assumption, the covariate values follow a step function over time. The step

function does not represent the evolution of the covariate, and is not appropriate

to explain the continuous and smooth function of the hazard rate.

An LME model is more suitable in that it offers flexibility in modelling the

trajectories by elaborating the specification of the time structure inXi(t) and Zi(t),

expressed in terms of polynomials or splines. Moreover, the use of subject-specific

random effects allows us to reconstruct the complete path of the true, unobserved

value of the longitudinal outcomes, represented here with the term mi(t). Unlike

yi(t) with a step function, mi(t) can be denoted with a continuous smooth

function. This also solves the problem of the imbalance in the data, where different

measurement frequencies may occur for different subjects or the measurements

may be taken at different sets of time points (Rizopoulos, 2010). An example of

yi(t) and mi(t) is in Figure 4.1, where yi(t) refers to the observed values (dots)

and mi(t) is denoted by the straight lines fitted through the dots.

With the introduction of mi(t), equation (4.7) can be written as (Rizopoulos, 2012,

Chapter 4)



yi = mi(t) + εi,

mi(t) = Xi(t)β + Zi(t)bi

bi ∼ N (0,D),

εi ∼ N (0, σ2Ini).

(4.8)

4.3.1.1 Parameter Estimation

The LME model makes it possible to estimate not only the fixed effects parameters

that describe the mean response changes in the population, but also allows to

measure how individual response trajectories change over time. The parameter
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estimation is often based on maximum likelihood, where the marginal density of

the observed outcome for the ith subject is

p(yi) =

∫
p(yi|bi)p(bi)dbi.

Given that the distribution of the random effects bi is assumed to be normal, the

above integral has a closed-form solution. This results in an ni-dimensional normal

distribution with mean Xiβ and variance-covariance matrix Vi = ZiDZ>i + σ2Ini .

Assuming independence across subjects, the log-likelihood of the LME model is

(Rizopoulos, 2012, Chapter 2)

l(θ) =
n∑
i=1

log

∫
p(yi|bi; β, σ2)p(bi; θb)dbi. (4.9)

θ denotes the full parameter vector and can be decomposed into the subvectors

θ> = (β>, σ2, θ>b ), and θb is the vectorisation of the matrix D written as θb =

vech(D). If Vi is assumed to be known, it can be shown that the fixed effects

vector β has the following form that corresponds to the generalised least squares

estimator

β̂ = (
n∑
i=1

X>i V
−1
i Xi)

−1

n∑
i=1

X>i V
−1
i yi. (4.10)

If Vi is not known, the theory of restricted maximum likelihood (REML) estimation

can be used, with the intuitive idea being to separate the part of the data used in

the estimation of Vi from the part used for the estimation of β. The log-likelihood

function to be maximised is slightly modified. Unlike the estimation of β, Vi does

not have a closed form estimator and requires a numerical optimisation routine,

such as the Expectation-Maximisation or the Newton-Raphson algorithm. For

more details on the estimation of Vi, refer to Dempster et al. (1977), Laird &

Ware (1982) and Lindstrom & Bates (1988).

Once both β and Vi are estimated, it can be shown that the variance of the

generalised least squares estimator (4.10) is

ˆvar(β̂) = (
n∑
i=1

X>i Q̂iXi)
−1, (4.11)
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where Q̂i = V̂i
−1

. The standard errors for the estimates of the unique parameters

in Vi can be obtained from the inverse of the corresponding block of the Fisher

information matrix

ˆvar(θ̂b,σ) =

{
E

(
−

n∑
i=1

∂2li(θ)

∂θ>b,σ∂θb,σ
|θb,σ = θ̂b,σ

)}−1

.

4.3.2 Joint Model for Longitudinal and Time-to-Event

Data

The joint model combines a standard proportional hazards model with an LME

model. It aims to assess the risk for an event by evaluating the hazard rate,

expressed as a function of the longitudinal observations. With the introduction

of true values of the time-dependent covariate from the LME model, mi(t), the

hazard rate function (4.5) can be updated to (Rizopoulos, 2012, Chapter 4)

hi(t|Mi(t), ωi) = lim
dt→0

Pr(t ≤ T ∗ < t+ dt|T ∗ ≥ t,Mi(t), ωi)

dt

= h0(t) exp{γTwi + αmi(t)}, t > 0.

(4.12)

As discussed before, the joint model is different from a standard survival model

in that the time-dependent covariate mi(t) in the joint model is fully specified

with a continuous smooth function. This solves the problem of using a standard

proportional hazards model with the LVCF assumption, which postulates that the

hazard for an event, at any time t, is associated with the extrapolated value of the

covariate at the same time point.

The joint model solves this problem by associating the true longitudinal measures

mi(t) with the risk of an event, when the covariate function is smooth and

continuous. The modelling result is expected to be more accurate. We explore

this model further in Section 4.4 and 4.5 in the context of the estimation of default

probabilities.
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4.3.2.1 Parameter Estimation

The main estimation method proposed for the joint model is semi-parametric

maximum likelihood, and the estimates are derived as the modes of the

log-likelihood function corresponding to the joint distribution of the observed

outcome {Ti, δi, yi}. In this framework, the random effects account for both the

association between the longitudinal and event outcomes, and the correlation

between the repeated measurements in the longitudinal process. Under these

assumptions, it can be shown that the log-likelihood contribution for the ith

subject is given as (Rizopoulos, 2012)

log p(Ti, δi, yi; θ) = log

∫
p(Ti, δi, |bi; θt, β)[

∏
j

p{yi(tij)|bi; θy}]p(bi; θb)dbi. (4.13)

θ = (θ>t , θ
>
y , θ

>
b )> denotes the full parameter vector, with θt representing the

parameters for the event outcome, θy the parameters for the longitudinal outcomes,

θb the unique parameters of the random-effects covariance matrix, and yi the vector

of longitudinal responses of the ith subject. The joint density for the longitudinal

responses together with the random effects is

p(yi|bi; θ)p(bi; θ) =
∏
j

p{yi(tij)|bi; θy}p(bi; θb)

= (2πσ2)−n
2/2 exp{−||yi −Xiβ − Zibi||2/2σ2}

× (2π)−qb/2det(D)−1/2 exp(−b>i D−1bi/2),

(4.14)

where qb denotes the dimensionality of the random-effects vector, and ||x|| =

{
∑

i x
2
i }1/2 denotes the Edulidean vector norm. The conditional density for the

survival component, namely p(Ti, δi|bi; θt, β), takes the form

p(Ti, δi|bi; θt, β) = hi(Ti|Mi(Ti); θt, β)δiSi(Ti|Mi(Ti); θt, β)

= [h0(Ti) exp{γ>ωi + αmi(Ti)}]δi

× exp(−
∫ Ti

0

h0(s) exp{γ>ωi + αmi(s)}ds).

(4.15)
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In a standard proportional hazards model, the distributional assumptions for T ∗i

are hidden in the specification of the baseline hazard function. Cox et al. (1972)

showed that estimation of γ and α based on the partial log-likelihood function does

not require the specification of T ∗i . This is one of the advantages of the relative risk

model, which means the standard errors and inference for the regression coefficients

can be based on standard asymptotic distribution theory for maximum likelihood

estimation. The maximum likelihood estimators do not depend on h0(t), so the

baseline risk function can be specified as non-paramestric.

Unlike a standard proportional hazards model, the baseline risk function h0(·) is

explicitly defined in the joint model, with a parametric yet flexible specification.

Because of the use of random effects, the maximum likelihood estimator can not

be derived using the asymptotic features and no closed-form solution can be found.

A feasible solution is to postulate a flexible parametric model for h0(t). Two

commonly proposed options are to use cubic splines or a piecewise-constant model.

In this way, various shapes h0(t) can be well captured by increasing the number

of internal knots, and the estimation of standard errors directly follows from

asymptotic maximum likelihood theory.

Following equation (4.14) and equation (4.15), the maximum of the log-likelihood

function l(θ) =
∑

i log p(Ti, δi, yi; θ) with respect to θ can be found using standard

algorithms such as the Expectation-Maximisation (EM). This studies follows the

steps taken in Rizopoulos (2012) to apply the EM algorithm to generate the

maximum likelihood estimates to previous equations. The process is composed

of the Expectation (E) steps and Maximisation (M) steps. In the E-steps, the

random effects are treated as ”missing data”. In order to find parameter values

θ̂ that maximise the observed data log-likelihood l(θ) =
∑

i logp(Ti, δi, yi; θ), the

expected value of the complete data log-likelihood is maximised in the M-steps.

For more details regarding the M-steps including the simulation techniques, refer to

Rizopoulos (2012). Appendix B in Rizopoulos (2012) gives the specific formulation

of the score vector and Hessian matrix.

4.4 Data

This chapter explores the use of the joint model to assess corporate default risk, by

analysing the association structure between the default event and company-specific
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covariates. A 20-year history of observations between 1997 and 2016 for all

U.S. listed companies has been collected from from CRSP/Compustat database.

Consistent with prior literature, companies analysed in this chapter are common

firms (share code 10 and 11 in CRSP) and traded on NYSE, AMEX and Nasdaq

(exchange codes 1 to 3).

A total of 12,698 companies were identified during this period, of which 788

defaulted and 3,592 were still listed at the end of the sample period in 2016.

The average number of companies under observation per year is 7,110. A default

event for a listed company is defined in this study as being delisted from the

three stock exchanges as a result of declaring insolvency, bankruptcy or being

liquidated. The corresponding delisting codes are those between 400 and 500 for

liquidation, or equal to 572 or 574 for being insolvent consistent with the CRSP

delisting code system. When a company is delisted for reasons other than default,

such as merging with another company, being acquired and becoming a privately

owned company, or moving to trade in a foreign exchange market, the company is

considered to be censored.

The histogram of default frequencies is presented in Figure 4.2. Following the

crisis in the late 1990s, the number of defaults stayed at a lower level from 2004

to 2007. The spike in the number of defaults during the global financial crisis in

2009 is quite obvious. The number then decreases following the crisis and reverts

to the pre-crisis level in recent years.

4.4.1 Computing Distance-to-Default

A structural model assumes that a company defaults when its assets drop below

the default threshold implied by its level of debt. The asset value is modelled

with a geometric Brownian motion, and a firm’s distance-to-default is defined as

the number of standard deviations by which its asset value exceeds the default

threshold (Merton, 1974; Leland, 1994; Duffie et al., 2007). This chapter follows

the approach in Hillegeist et al. (2004) to calculate the distance to default

DDt =
ln(VA/X) + (µ− (σ2

A/2))T

σA
√
T

, (4.16)

where VA is the current market value of assets, X is the default threshold,

T is the prediction time horizon, µ is the annual return on assets and σA is
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Figure 4.2. Histogram of default event and the average distance-to-defaults between 1997 and 2016.

the standard deviation of assets returns. VA and σA are computed using the

Black-Scholes-Merton Probability of Bankruptcy (BSM-Prob) framework (Merton,

1974; Black & Scholes, 1973)

VE = VAe
−δTN(d1)−Xe−rTN(d2) + (1− e−δT )VA,

σE = (VAe
−δTN(d1)σA)/VE, (4.17)

where VE and σE are the value and volatility of equities, r is the annual risk-free

rate, and N(d1) and N(d2) are the standard cumulative normal distribution

function evaluated at d1 and d2, where

d1 =
ln[VA/X] + (r + (σ2

A/2))T

σA
√
T

,

d2 = d1 − σA
√
T .

The one-year distance to default is computed empirically on a quarterly basis.

The necessary accounting ratios are collected from quarterly accounting balance

sheets in the Compustat database, and market information is from the CRSP

database. Similar to Duffie et al. (2007) and Duan et al. (2012), X is measured as
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the firm’s short-term debt (larger of “debt in current liabilities” and “total current

liabilities”), plus one half of the its long-term debt. We calculate σA from daily

stock price using the rolling window approach as described in Duffie & Lando

(2001). The one-year treasury bill yield is denoted by r and T is set to be 1.

A total of 380,719 quarterly observations are drawn for the 12,698 companies over

the period of twenty years. The observations are truncated from the top at 20

(99th percentile) to avoid outliers due to errors in input data. The annual average

DD during the sample period is presented in Figure 4.2. As shown in the figure,

the number of defaults is negatively correlated with the average DD, indicating

that a higher DD is likely to be associated with a lower default probability. A

histogram of the distance to default for the remaining companies is presented in

Figure 4.3. As shown, some DDs are negative, indicating that according to the

applied model, for these companies the assets are lower than the debt values and

thus are not sufficient to cover the corporate debt. These DDs are expected to be

associated with high default probabilities.
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Figure 4.3. Histogram of distance-to-defaults for U.S. listed companies from 1996 to 2016.

4.4.2 Design of the Joint Model

In the LME model, the distance to default is the response variable that is described

as a spline function of time,
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yi(t) =mi(t) + εi(t)

=(β0 + bi0) +
3∑

k=1

(βk + bik)Bn(t, λk) + εi(t). (4.18)

In the specification above, yi(t) represents the observed values of the distance to

default and mi(t) denotes the estimated mean value of the distance to default,

free of errors and in a form of spline curve. {Bn(t, λk); k = 1, 2, 3} denotes a

B-spline matrix for a natural cubic spline of time. We fit the LME model in two

ways: one with two internal knots (df = 3) and the other with three internal knots

in between the two boundary knots (df = 4). The spline coefficients have both

fixed-effects and random-effects components, meaning the coefficients can vary for

different companies.

We also incorporate the age of the company in the joint model as an additional

explanatory variable, which is defined as the time since the company’s Initial

Public Offering (IPO). The Age variable is defined as 1, when the company is

younger than five years (20 quarters), and 0 if the company has existed for more

than five years.1 As an example, for a company with an IPO at 1 Jan 1997, its

age variable is 1 until 1 Jan 2002 when it becomes 0 subsequently.

Based on the two variables, the hazard rate of default is defined as follows

hi(t|Yi(t), Age) = h0(t) exp{γAge+ αmi(t)}, t > 0. (4.19)

The hazard rate hi(t) is expected to be positively related to the Age factor as

companies may be more exposed to default risk in their earlier years, compared

to more mature companies with established markets and business models. The

hazard rate ht(t) is expected to be negatively related to the distance to default

as discussed in Section 4.2.2. As a result, γ is expected to be positive and α is

expected to be negative.

1 We also tried different specifications for the distinction between relatively new and
established companies, for example, a threshold of three years was chosen. However, this
choice did not have a significant impact on the forecasting performance of the estimated
models.
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In addition to the standard joint model as specified in equation (4.19), we also

consider another two extensions of the model with different parameterisations for

the relationship between the longitudinal observations and the time to default.

These extensions and the corresponding estimation process are explained in

Rizopoulos (2012, Chapter 3).

In the first extended model, we consider the effect of the trend of DDs when

analysing the default intensity. We assume that the risk at time t depends on the

current true value of the longitudinal process (mi(t)) as well as the slope of the

true trajectory at time t, with the following specification

hi(t|Yi(t), Age) = h0(t) exp{γAge+ αmi(t) + α′m′i(t)}, t > 0, (4.20)

where m′i(t) = d
dt
mi(t).

Second, we consider the cumulative effect of DDs, as it may be beneficial to

allow the risk to depend on the longitudinal marker history, not just the current

value (Sylvestre & Abrahamowicz, 2009). We assume that the risk at time t

depends on the whole trajectory history of the longitudinal process with different

weights assigned to these past observations. As more recent observations are more

important than those from further in the past, we assign a higher weight to the

more recent observations

hi(t|Yi(t), Age) = h0(t) exp{γAge+ α∗
∫ t

0

$(t− s)mi(s)ds}, t > 0, (4.21)

where $(·) denotes the weight function which places smaller weights in points

further in the past with a normal probability density function ($(x) =

exp(−x2/2)/
√

2π, with variance set to 1). More details on the methodology used

to incorporate this weight function into modelling can be found in Rizopoulos

(2012, Chapter 5).

4.5 Results

We use a randomly sample of 5,000 companies as the training set, and another

2,000 companies for out-of-sample prediction. We fit six joint models with different
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specifications to the training set. First for the LME model, as mentioned in Section

4.4.2, we set the degrees of freedom to be either three (with four knots) or four

(with five knots). Second, we combine each of the two LME models in a standard

joint model (4.19), as well as the two extended joint models (4.20) and (4.21)

described in Section 4.4.2. The six models are listed in Table 4.1. For example,

Models 1, 2 and 3 use the same number of knots in the LME model and they

differ in the joint model specification. Models 1 and 4 have the same joint model

specification, but Model 4 has one more knot in the LME model.

Table 4.1. Summary of the six joint models fitted.

Model LME Joint Model
Model 1 df = 3 Standard joint model
Model 2 df = 3 Joint model with a parameter for slope
Model 3 df = 3 Joint model with a parameter for past observations with assigned weights
Model 4 df = 4 Standard joint model
Model 5 df = 4 Joint model with a parameter for slope
Model 6 df = 4 Joint model with a parameter for past observations with assigned weights

The six joint models are fitted using the R package “JMBayes” as described in

Rizopoulos (2016b). The estimation process has the following three steps:

• Step 1: Fit a LME model to the time series data of DDs grouped by

companies, using the “lme” function of the “nlme” package (Pinheiro et al.,

2017). The number of nodes in the spline function is specified using the ns

function.

• Step 2: Fit a proportional hazards model using the “coxph” function of the

“survival” package (Therneau, 2015). The function takes as inputs the start

time and stop of the observation, and if a default event is observed during

this time period. The inputs are fitted with the independent variable of

company age, as described previously.

• Step 3: The fitted LME model and proportional hazards model are inputs

in this step to fit a joint model to the data, using the “jointModelBayes”

function of the “JMbayes” package. Additional specifications are added to

the inputs for the extended models. For details on defining the additional

specifications, refer to Rizopoulos (2016b).
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4.5.1 Estimation results

The results for parameter estimation are presented in the Table 4.2. The

estimation process is based on the entire 20-year history of the 5,000 in-sample

companies.

Table 4.2. Modelling results of the 6 models. The coefficients of each variable are shown with
their standard deviation in parentheses. *,** and *** represent respectively statistical significance
at the 10%, 5% and 1% level, calculated based on the t-statistics of coefficients of each variable .

Variable Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Linear mixed-effects submodel
Intercept 4.057*** 4.061*** 4.060*** 5.115*** 5.111*** 5.119***

(0.051) (0.047) (0.048) (0.049) (0.049) (0.048)
β1 2.248*** 2.225*** 2.252*** 1.794*** 1.775*** 1.791***

(0.101) (0.102) (0.105) (0.076) (0.081) (0.078)
β2 0.781*** 0.725*** 0.813*** -1.215*** -1.215*** -1.219***

(0.128) (0.121) (0.126) (0.096) (0.094) (0.096)
β3 1.400*** 1.388*** 1.403*** -2.767*** -2.780*** -2.776

(0.094) (0.096) (0.093) (0.097) (0.101) (0.101)
β4 4.066*** 4.044*** 4.059***

(0.069) (0.073) (0.073)
Survival submodel

Age 0.531*** 0.342* 0.528** 0.382** 0.297 0.459**
(0.199) (0.212) (0.210) (0.194) (0.208) (0.190)

α -0.527*** -0.558*** -0.656*** -0.526*** -0.570*** -0.526***
(0.044) (0.040) (0.048) (0.042) (0.041) (0.041)

α′ -4.556*** -3.033***
(0.489) (0.477)

Summary statistics
DIC 830364 830267 830133 839282 839191 839204

For all six models, the parameter α is significant at the 1% level, indicating an

important relationship between the distance to default and the company’s default

probability. In particular, as implied by the negative signs for the coefficients in

the joint models, a higher distance to default is associated with a lower hazard rate.

For example, in Model 1, a unit increase in the DD corresponds to a exp(−α) =

0.59 decrease in the hazard rate. This result is as expected, since a high distance

to default is generated by a high asset value relative to the liability level, meaning

the company is more likely to service its debt given the amount of assets available.

The coefficient of the Age variable is positive in all six models. As the variable

is set to be 1 for a young company, the modelling results indicate that a young

company is more likely to default, in comparison to a company that has survived

for more than five years. A more mature company may have built a well known

brand, acquired a good share of the market and possibly established good business
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relationships with suppliers and customers. Thus, given that a company survives

the first five years after being listed, it is less likely to default compared to a

newly-listed company over the same period of time.

We also present summary statistics for the joint models in Table 4.2. The

DIC represents the deviance information criterion and a lower DIC indicates a

better goodness-of-fit (Rizopoulos, 2016a). The DICs for the six joint models

are generally similar, and the extended joint models tend to generate a higher

goodness-of-fit compared to a standard joint model. First, adding a slope

parameter to the standard joint model helps to improve the modelling results

what is illustrated by the lower DICs of Model 2 and Model 5 in comparison to

Model 1 and Model 4. This implies that the default risk at time t depends not only

on the DDs at time t, but also on the trend of the DDs measured as the slope of

the longitudinal trajectory. Second, of the six joint models, Model 3 provides the

best fit, indicating the significance of incorporating the history of DDs in assessing

the hazard rate.

We note that Models 1, 2 and 3 have lower DICs than Models 4, 5 and 6,

which have one more knot in the LME model. It may be expected that a

more flexible specification of the LME model generates a more accurate in-sample

goodness-of-fit. However, we argue that the DIC results are not necessarily a

contradiction to this expectation. While adopting a spline curve with a higher

degree of freedom still leads to a more accurate fit, these benefits are outweighed

by the need to estimate additional parameters, resulting in higher DIC values. Due

to this result, for the rest of the study, we focus on the first three joint models as

they outperform the other three joint models in terms of in-sample goodness-of-fit,

as well as out-of-sample prediction accuracy as shown in the next subsection.

In addition to the six joint models, for comparison purposes, we also fit a standard

Cox model and an accelerated failure time (AFT) model with a Weibull response

distribution (Cox & Oakes, 1984). These models are fitted using the “survival”

package in R. It is expected that the signs of the coefficients of the two variables

in the Cox model will be the same as the joint models, and will be the opposite

to those in the Weibull model with an AFT specification. Consistent with the

expectation, the parameter α is -0.315 in the Cox model and 0.064 in the Weibull

model, and is significant at the 1% level in both models. The coefficient for the

Age variable is 0.447 in the Cox model, significant at the 5% level. The Age

variable is not significant in the Weibull model with a coefficient of -0.027.
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4.5.2 Out-of-sample prediction

To test the predictive ability of the eight models (six joint models, the Cox model

and the Weibull model) for company default, we apply these fitted models to 2,000

companies not used in the model fitting process. To start with, we first apply the

eight models to make a five-year prediction given the observations in the previous

15 years. In other words, we use the first 60 quarters’ observations to forecast the

probability that the company will default within the next five years.

As an example, Figure 4.4 presents the fitted longitudinal process, mi(t), of a

random company, generated by Model 1 and Model 4 as specified in Table 4.1. In

the LME submodel, Model 1 has three internal knots (df = 3) and Model 4 has

four internal knot (df = 4). In Figure 4.4, the dots represent the observed values

of distance to default, yi(t), for this company over the 15 years (60 quarters).

The step function connecting these dots is shown as the solid line. The fitted

values generated by the joint models, which are used to make predictions of the

continuous hazard rate, are denoted by the two smooth lines through the dots.

The solid line representing Model 4 is more flexible than the dotted line. This is

as expected since Model 4 allows for one more knot in the spline function.

Figure 4.4. Fitted longitudinal process of distance to default for a randomly chosen company over
15 years.

The prediction results from the models are then compared to the actual default

experience of these 2,000 companies. Receiver Operating Characteristic (ROC)
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(Hanley & McNeil, 1982) curves are produced for the six joint models, the Cox

model and the Weibull model, and they are presented in Figure 4.5 . We include

the first three joint models to be compared to the Cox and Weibull models. The

horizontal and vertical axes are the False Positive Rate (FPR) and the True

Positive Rate (TPR) respectively. A curve that is closer to the vertical axis and the

line TPR = 1 indicates good prediction power, as the model is able to discriminate

an actual default companies with a high predicted default rate while not falsely

indicating non-default companies.

Figure 4.5. ROC curves generated by the 5 models when making out-of-sample 5-year predictions.

The prediction accuracy is measured using the Area Under the Curve (AUC) value,

which is defined here as the total area under the ROC curve. The higher the AUC,

the better the discriminatory ability. The highest AUC value is produced by Model

2 at 0.914, followed by Model 1 at 0.846. Model 5 generates an AUC at 0.717,

lower than the other joint models but still higher than the Cox and Weibull models

(0.661 and 0.672). Based on the AUC values, the joint models all outperform the

Cox model and Weibull model.

4.5.3 Walk-forward prediction

In addition to the above results, we also test the prediction accuracy of the eight

models over different time periods and for different prediction horizons. Note that



Chapter 4. A joint model in corporate default risk modelling 103

for this exercise we use the same 2,000 out-of-sample companies as in subsection

4.5.2. We make predictions for a horizon of two, three, four and five years using a

rolling-window approach. For each of the models, we start by making predictions

based on the first ten years (from 1997 to 2006 inclusive) for the probability of

default in the next two years until 2008. Next we use observations from 1998 to

2007 to predict the probability for the company to default before 2009, given it

is still listed and active at the end of 2009. This process is carried out until the

prediction end point reaches the last quarter of 2016. So for a prediction horizon

of two years, for each of the models we are able to make nine predictions. We then

repeat the procedure for prediction horizon of three, four and five years, with the

same one year rolling window.

Summary statistics are presented in Table 4.3, including the means and medians

of the AUCs generated by all eight models. For example, 0.781 is the mean of the

nine AUCs generated by Model 1 when predicting default events over a forecast

horizon of two years. A higher mean indicates a better prediction accuracy on

average. We note that the AUC values are higher for all joint models than for the

Cox/Weibull models for all prediction horizons. The results for the joint models

are similar to each other, varying by different horizons.

The average of the four means are also computed for all the models and given in

the bottom row of Table 4.3. Using the average of means, which is an indication of

the average prediction performance over all horizons, all joint models outperform

the Cox and Weibull models as expected. This is consistent with the results for a

five-year prediction as presented in subsection 4.5.2, indicating that joint models

are able to produce more accurate predictions over different time periods and for

various forecast horizons. Among the six joint models, Model 2 appears to be the

best, confirming the results presented in Figure 4.5.

Similar to the results of the in-sample goodness-of-fit, we also note that a

more flexible specification of the LME model does not necessarily lead to better

out-of-sample prediction results. As shown in Table 4.3, Model 1 generates a

higher average AUC than Model 4, which has the same structure as Model 1

except for the additional knot placed in the spline curve in the LME model

function. The same conclusions can be drawn when comparing Model 2 and

Model 5. Although opposite results are presented for Model 3 and Model 6, the

two AUCs are approximately the same. These results may be due to the problem

of overfitting, when the priority of estimating the models is to fit the training
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data as closely as possible, which in this case reduces the models’ ability to make

out-of-sample predictions for companies that are different from the ones included

in the training data.

Table 4.3. Summary statistics of AUCs for different prediction horizons for the 8 models .

Horizon Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Cox Weibull

2 Year
Mean 0.771 0.783 0.776 0.757 0.805 0.784 0.744 0.758

Median 0.761 0.773 0.775 0.757 0.804 0.789 0.763 0.779
3 Year

Mean 0.782 0.821 0.790 0.767 0.767 0.799 0.687 0.717
Median 0.777 0.811 0.801 0.764 0.762 0.792 0.670 0.728

4 Year
Mean 0.784 0.819 0.793 0.765 0.776 0.797 0.660 0.682

Median 0.785 0.785 0.808 0.763 0.776 0.799 0.640 0.674
5 Year

Mean 0.781 0.812 0.794 0.754 0.751 0.789 0.658 0.653
Median 0.784 0.799 0.803 0.753 0.756 0.787 0.652 0.655

Average of Means
Average 0.780 0.809 0.788 0.761 0.775 0.792 0.687 0.702

We plot the AUC values for different prediction horizons over time, presented in

Figure 4.6, Figure 4.7, Figure 4.8 and Figure 4.9 respectively. We only include

Models 1, 2 and 3 to be compared to the Cox/Weibull models, as they are better

than or equivalent to their peer models as discussed previously. The minimum

value on the vertical axis is set at 0.5 to better compare the models. The horizontal

axis represents the starting point for prediction in quarters. For example, 40 refers

to the 40th quarter, where the first 40 quarters are used to predict the default

events in the next certain number of years.

Figure 4.6. AUC values for 2-year prediction.
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Figure 4.7. AUC values for 3-year prediction.

Figure 4.8. AUC values for 4-year prediction.

Some observations can be made by comparing the joint models to the Cox/Weibull

models. First, it is confirmed again that the joint models outperform the Cox

model and the Weibull model for all prediction horizons and over time, implied by

higher AUC values. Second, the difference between the Cox or Weilbull models

and the joint model widens with increasing prediction horizon. The eight models

are relatively similar when projecting default events in the near future. However,

the Cox model and Weibull model only use the most recent observations of the

distance to default and ignore the longitudinal trajectory of the variable. When

interest lies in forecasting long-term default rates, the joint models clearly perform

much better. This is due to the joint model’s ability to capture the dynamic nature

of the distance to default in order to assess the hazard rate.
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Figure 4.9. AUC values for 5-year prediction.

Overall, based on Figures 4.6-4.9, Model 2 appears to perform best also in a

dynamic setting, confirming the static prediction results illustrated in Figure 4.5.

Model 2 produces similar results as Model 1 and 3 in the early years, and it starts

to outperform the two models significantly after quarter 52, corresponding to year

2011, i.e. the post-crisis period. It may imply that after the global financial crisis,

also the trend in the DD of a company becomes more important in assessing the

corporate default risk.

Moreover, Model 2 outperforms Model 3, which indicates that applying an

additional weight function in the model estimation does not help to improve the

results. In fact, Model 1 and Model 3 yield a similar performance during the

post-crisis period, which suggests that including information on past observations

of DDs does not improve the accuracy of predicting future default probabilities.

4.6 Conclusion and Future Plans

We apply the joint model for longitudinal and time-to-event data to assess

corporate default risk. Our findings suggest that the joint models outperform

selected traditional parametric survival models such as a Weibull and Cox model.

We suggest that this outperformance is related to the fact that joint models

initially apply a LME model for the DDs, before evaluating the association between

DD and default risk. The superior performance is also evidenced by higher AUCs

observed for the applied joint models at different prediction horizons.
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There is scope for future research in the application of the joint model in this

area. Currently the JMbayes package only allows for one longitudinal process

when fitting a joint model: in our application this was the longitudinal process

for the DD. As indicated by Rizopoulos (2016b), the package is to be expanded

in the future to consider multiple longitudinal outcomes. Once this is achieved,

more company-specific variables can be included in the model, for example the

balance sheet ratios used in Duffie et al. (2007). This may result in more accurate

prediction results.

Another potential modification relates to the censoring mechanism. Currently

we only identify one exit risk which is by default. As the joint model can

be extended to allow for competing risks, in future research, we can better

distinguish and classify companies based on the actual reason for exiting the

sample. For example, companies may exit through mergers and acquisitions, which

are currently recognised as being censored. A clearly defined system of exit reasons

might help us to find variables that are more closely linked to company default

risk.



Chapter 5

Conclusion

5.1 Summary of main results

This thesis focuses on the evaluation of three types of financial risks, which are

the insurance claim count risk, sovereign credit risk and corporate default risk.

The aim of the three research papers is to improve the accuracy of the modelling

results obtained previously in these three areas of applications. This is achieved

by implementing novel analytical methods that haven’t been applied before in

these contexts, and/or using variables that can better explain the changes in the

underlying risk.

Chapter 2 which is based on the research paper ‘Application of the bivariate

negative binomial regression model in analysing insurance count data’ uses a

bivariate negative binomial model to evaluate the claim count made on general

insurance policies. The use of the BNBR model is justified for two reasons. First,

when over-dispersion presents in the data, a negative binomial model is more

suitable than a Poisson model. Second, when the aim is to jointly assess the

claim counts made on two types of policies by the same policyholder, it makes

sense to use a bivariate model to properly account for the correlation between the

two count numbers. As expected, the BNBR model generates a higher in-sample

goodness-of-fit as well as out-of-sample prediction accuracy. It outperforms the

bivariate Poisson model as well as the two univariate negative binomial models

combined, each assessing one policy independently.
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In addition, two shrinkage methods are applied to the full model and the results

show that both shrunken models generate better out-of-sample forecast figures

than the full model. This implies that the shrunken models mitigate the problem

of over-fitting, which arises as a result of incorporating too many policyholder

features that limit the full model’s ability to make predictions given different

values of inputs. Moreover, the model shrunken by the Lasso performs better

than the one shrunken by the ridge regression. As discussed previously in Chapter

2, the Lasso method tends to reduce variables to exact zero, which is more effective

when performing variable selection.

Chapter ?? which is based on the research paper ‘Assessing Sovereign Risk:

A Bottom-Up Approach’ shows the importance of the private sector’s financial

health in assessing the sovereign entity’s credit risk. Compared to the traditional

top-down approaches, where the independent variables are values aggregated on

the sovereign level and are infrequently updated, the bottom-up approach takes

advantages of the credit risk information on company level that are available at

a much higher frequency. Moreover, the paper uses a market-based measure of

credit risk which is also forward looking. This helps overcome the drawbacks of

using just fiscal accounting ratios.

The empirical study performed on 18 U.S. state governments shows that the

state credit risk factor, which is developed using company level credit risk

information combined with each state’s unique industry mix, is very important

in forecasting the state CDS spreads. The inclusion of the state credit risk factor

significantly increases the prediction accuracy of the nested model where only other

macroeconomic independent variables are used. Given that these macroeconomic

variables incorporate a wide range of market information that can be used to

assess sovereign credit risk, this paper shows that crucial information is missing

if the performance of the private sector is ignored. To conclude, the developed

credit risk indicators are highly significant in forecasting sovereign CDS spreads.

This finding is also supported by the consistent results generated in a range of

robustness checks.

Chapter 4 which is based on the research paper ‘A joint model for longitudinal

and time-to-event data in corporate default risk modelling’ analyses the corporate

default risk with a novel approach. The joint model for longitudinal and

time-to-event data combines a LME model with a standard survival model, so that

a smooth function will be fitted to the independent variable and associated with the
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continuous hazard rate of default for prediction. This overcomes the drawback of

assuming constant values for the independent variables between observations or the

so-called LVCF (last-value-carried-forward) approach. Moreover, the prediction

results of the default events are more accurate with a well-analysed longitudinal

trajectory for the independent variables.

The corporate DDs and the age of the company are used to assess the corporate

default risk. Based on the empirical study covering U.S. listed companies over two

decades, it is shown that a range of chosen joint models outperform a standard

Cox and Weibull survival model, both in in-sample and out-of-sample predictions.

The AUCs of the joint models are much higher than those of the Cox/Weibull

models, supporting the importance of incorporating a LME model to analyse the

independent variables. The results in the walk-forward predictions also show that

the joint models outperform the two benchmark models over a range of prediction

horizons, in particular the longer horizon. This provides the evidence that an

analysed longitudinal trajectory for covariates aids in the prediction of default

events.

5.2 Contributions and future research

As discussed briefly in Chapter 1, the results of the three research papers contribute

to the financial risk assessment discipline, in terms of the evaluation approaches

and the independent variables used to predict risk events. This section summarises

the major contributions of each of the research papers, and discusses some

directions for future research.

For insurance claim count analysis, the results presented in Chapter 2 demonstrate

the use of a flexible correlation structure, which serves as an alternative to the

copula or trivariate models. This correlation specification does not put restrictions

on the relationship between the two dependent variables. The corresponding

parameter estimation process is also relatively straight-forward by maximising

the log likelihood, as shown in the R code presented in appendices. Another

contribution of this research paper is questioning the advantages of using as

much information as possible, as it is shown that the shrunken models with

fewer independent variables outperform the full model incorporating the maximum

number of independent variables. To the author’s best knowledge, it is the first
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time this area of research has been considered and addressed in an empirical study

on general insurance data. The inclusion of every available characteristic of the

policyholder may help fit the model as closely as possible to the in-sample data,

but it may pose problems when the fitted model is to be used for forecasting claim

counts for different policyholders. The over-fitting problem is very obvious in this

empirical study, as both shrunken models produce more accurate out-of-sample

prediction results compared to the full model. This has important implications

for future studies in the area of claim count modelling and insurance policy pricing.

Future research may further apply a similar correlation structure to other models

that can incorporate the over-dispersion presented in data, such as the extended

Poisson models. Currently these extended Poisson models are used to assess

correlated count data with a full covariance structure or copula, which may be

replaced by the more flexible correlation specification used in Chapter 2. This will

likely reduce the computation difficulty.

Regarding the sovereign credit risk analysis, the thesis discovers that the market

expectation of the private sector’s credit quality helps forecast the sovereign credit

quality, which currently has received little attention in the sovereign credit risk

literature. Moreover, this study is based on the earlier work by Altman & Rijken

(2011b), and extends it further by removing the reliance on scoring models and

less frequently updated accounting information. The implications for the investors

who have risk exposure to sovereign risk is that a closer look at company level

information is helpful. The fluctuations in the credit quality of the private sector

can be used to predict the future variations in the sovereign credit quality, as

argued by the results in Chapter 3.

Future research can look for alternative variables that can be linked to sovereign

credit risk but supported with stronger economic reasons. Although the study

in this thesis shows that the information from the private sector is important

for the sovereign credit risk analysis, it does not provide the exact reason or

evidence explaining this association other than through tax payments/receipts.

Future studies can address this issue by using variables that can directly reflect

the relationship between the corporate level and sovereign level credit quality. For

example, one may consider the tax receipt figures released by state governments,

and use the corporate tax component as a measure of the financial health of

the private sector, which can be linked to the sovereign credit risk. Studies on
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such variables will provide further evidence that the company level information is

important in assessing sovereign credit risk.

The corporate default risk analysis in this thesis contributes to the current

literature by modifying the exisiting survival models. Survival models are generally

recognised as the most suitable approach to evaluate the corporate default risk,

but the assumption that the independent variable is constant between observations

can bring bias to the modelling results. The joint model for longitudinal

and time-to-event data is able to mitigate the problem by first analysing the

independent variables. Without the LVCF assumption, the joint model produces

better prediction results. The application of the joint model in this empirical

analysis demonstrates the necessity to evaluate the trajectory of the independent

variable, which is not considered previously in the literature when a standard

survival model is used.

Future research may modify the current joint model to allow for a more

sophisticated analysis of the corporate default risk. One possibility is to introduce

competing risks, so that the joint model can correctly account for other exit reasons

such as mergers and acquisitions. Currently these types of the companies are

classified as being censored. A more detailed classification system in terms of

exit reasons may help increase the prediction accuracy. The other possibility is

to include more longitudinal processes, aiming to increase further the modelling

accuracy. When this is allowed for in the R package, it is very likely that the

parameter estimation process takes much longer. So the benefits and costs of

having multiple longitudinal processes have to be considered together, to justify

the necessity of incorporating additional independent variables.



Appendix A

R code to fit a BNBR model to

sample data

This appendix presents the R codes to fit a BNBR model to the insurance data

in this study. The two types of policy claims are named “NCRC” for Y1 and

“NSRC” for Y2 respectively, and the independent variables are as described in

Table 2.1. The data is stored in the data-table of sample in R, and each row of

sample represents the observations made on a policyholder for both dependent

and independent variables. For example, the data for the first 3 policyholders are

as follows. For convenience in the later part of the computation regarding the

log-likelihood function, the intercept variable (int in column 1) and all interaction

terms are calculated and listed as well.

> head(sample ,n=3)

int V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V1V2 V1V6 V1V8 V1V9 V1V12

1 1 0 1 0 0 0 1 1 0 0 1 1 0 0 0 0 0

2 1 0 0 0 0 1 0 1 0 0 1 1 0 0 0 0 0

3 1 0 1 0 1 0 1 1 0 0 1 1 0 0 0 0 0

V2V6 V2V8 V2V9 V2V12 V6V8 V6V12 V8V9 V8V12 V9V12 NCRC NSRC

1 1 1 0 1 1 1 0 1 0 0 0

2 0 0 0 0 0 0 0 1 0 0 0

3 1 1 0 1 1 1 0 1 0 0 0

Given the data sample, the R codes to fit the model are presented here:

### Fit UNBR models for both policy types and extract the coefficients .

nbr1 <-glm.nb(NCRC~V1+V2+V3+V4+V5+V6+V7+V8+V9+V10+V11

+V1*V2+V1*V6+V1*V7+V1*V8+V1*V11+V2*V6+V2*V7

+V2*V8+V2*V11+V6*V7+V6*V11+V7*V8+V7*V11+V8*V11 ,data=sample)

nbr2 <-glm.nb(NSRC~V1+V2+V3+V4+V5+V6+V7+V8+V9+V10+V11

+V1*V2+V1*V6+V1*V7+V1*V8+V1*V11+V2*V6+V2*V7

+V2*V8+V2*V11+V6*V7+V6*V11+V7*V8+V7*V11+V8*V11 ,data=sample)
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b_1<-nbr1$coefficients

b_2<-nbr2$coefficients

m_1<-1/nbr1$theta

m_2<-1/nbr2$theta

### Calculate the initial values of required variables.

### The 27th and 28th columns in sample store the claim numbers for

#the two types of policies.

theta_1<-1-mean(sample_i[ ,27])/sd(sample [ ,27])^2

theta_2<-1-mean(sample_i[ ,28])/sd(sample [ ,28])^2

c_1<-((1-theta_1)/(1-theta_1*exp ( -1)))^(m_1^( -1))

c_2<-((1-theta_2)/(1-theta_2*exp ( -1)))^(m_2^( -1))

a_1<-m_1^( -1)*theta_1*exp(-1)/(1-theta_1*exp(-1))-m_1^(-1)*theta_1/(1-theta_1)

a_2<-m_2^( -1)*theta_2*exp(-1)/(1-theta_2*exp(-1))-m_2^(-1)*theta_2/(1-theta_2)

### initial value for lambda

lmd <-cov(sample [,27], sample [,28])/(c_1*c_2*a_1*a_2)

### Group initial values.

par <-NULL

par [1:26] <-b_1

par [27:52] <-b_2

par [53] <-m_1

par [54] <-m_2

par [55] <-lmd

### Define the log - likelihood function.

log.lklh.bnb <-function(par){

mu_1<-exp(as.matrix(sample [ ,1:26]) %*% par [1:26]);

mu_2<-exp(as.matrix(sample [ ,1:26]) %*% par [27:52]);

y_1<-sample [,27];

y_2<-sample [,28];

m_1<-par [53];

m_2<-par [54];

c_1<-(1+(1 -exp(-1))*mu_1*m_1)^( -1/m_1)

c_2<-(1+(1 -exp(-1))*mu_2*m_2)^( -1/m_2)

lmd <-par [55]

a<-vector(length=x); ###x represents the number of rows in the data

for (k in 1:x){

a[k]<-y_1[k]*log(mu_1[k])-m_1^(-1)*log(m_1)

-(y_1[k]+m_1^( -1))*log(m_1^( -1)+mu_1[k])-log(factorial(y_1[k]))

+sum.log(m_1,y_1[k])+y_2[k]*log(mu_2[k])-m_2^(-1)*log(m_2)

-(y_2[k]+m_2^( -1))*log(m_2^( -1)+mu_2[k])-log(factorial(y_2[k]))

+sum.log(m_2,y_2[k])

+log(1+lmd*(exp(-y_1[k])-c_1[k])*(exp(-y_2[k])-c_2[k]))

}

return(sum(a))

}

### Extract the fitted coefficient values by maximising the defined

#log - likelihood function ( minimising with R function "nlminb ").

coe_bnbr <-nlminb(start=par , objective=-log.lklh.bnb)$par
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R code to fit a BRP model

The R codes to fit a BPR model only differ from the codes in Appendix A in the

definition of the log-likelihood function, presented as follows.

### Group initial values from the UNBR results.

par <-NULL

par [1:26] <-b_1

par [27:52] <-b_2

par [53] <-lmd

### Define the log likelhood function.

log.lklh.bpr <-function(par){

mu_1<-exp(as.matrix(sample_i[ ,1:26]) %*% par [1:26]);

mu_2<-exp(as.matrix(sample_i[ ,1:26]) %*% par [27:52]);

y_1<-sample_i[ ,27];

y_2<-sample_i[ ,28];

lmd <-par [53]

a<-vector(length=x);##x represents the number of rows in the data

for (i in 1:x){

a[i]<-y_1[i]*log(mu_1[i])+y_2[i]*log(mu_2[i])-(mu_1[i]+mu_2[i])

+log(1+lmd*(exp(-y_1[i])-exp(-(1-exp(-1))*mu_1[i]))*(exp(-y_2[i])

-exp(-(1-exp(-1))*mu_2[i])))-log(factorial(y_1[i]))

-log(factorial(y_2[i]))

}

return(sum(a))

}

### Extract the fitted coefficient values by maximising the defined

#log - likelihood function ( minimising with R function "nlminb ").

coe_bpr <-nlminb(start=par ,object=-log.lklh.bpr)$par
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R code for model shrinkage

Two shrinkage methods are used in this study, namely the LASSO and ridge

regression. The key thing to shrink the full model using these two methods is to

include the penalty term in the log-likelihood function. It is the same for univariate

models and bivariate models, and here we use the BNBR model as an example.

As noted before, we are using standard shrinkage methods, so the penalty term is

not unique to the BNBR model or any mentioned model in this study.

For the Lasso as specified in equation (2.7), the newly-defined function is presented

as follows.

###Log - likelihood function for the LASSO

log.lklh.bnb <-function(par){

mu_1<-exp(as.matrix(sample [ ,1:26]) %*% par [1:26]);

mu_2<-exp(as.matrix(sample [ ,1:26]) %*% par [27:52]);

y_1<-sample [,27];

y_2<-sample [,28];

m_1<-par [53];

m_2<-par [54];

c_1<-(1+(1 -exp(-1))*mu_1*m_1)^( -1/m_1)

c_2<-(1+(1 -exp(-1))*mu_2*m_2)^( -1/m_2)

lmd <-par [55]

a<-vector(length=x); ###x represents the number of rows in the data

for (k in 1:x){

a[k]<-y_1[k]*log(mu_1[k])-m_1^(-1)*log(m_1)

-(y_1[k]+m_1^( -1))*log(m_1^( -1)+mu_1[k])-log(factorial(y_1[k]))

+sum.log(m_1,y_1[k])+y_2[k]*log(mu_2[k])-m_2^(-1)*log(m_2)

-(y_2[k]+m_2^( -1))*log(m_2^( -1)+mu_2[k])-log(factorial(y_2[k]))

+sum.log(m_2,y_2[k])

+log(1+lmd*(exp(-y_1[k])-c_1[k])*(exp(-y_2[k])-c_2[k]))

}

### lambda_i represents the shrinkage parameter

return(sum(a)-lambda_i*sum(abs(par[c(2:26 ,27:52)])))

}
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The ridge regression differs from the LASSO in the specification of the penalty

term, shown as follows.

###Log - likelihood function for ridge regression

log.lklh.bnb <-function(par){

mu_1<-exp(as.matrix(sample [ ,1:26]) %*% par [1:26]);

mu_2<-exp(as.matrix(sample [ ,1:26]) %*% par [27:52]);

y_1<-sample [,27];

y_2<-sample [,28];

m_1<-par [53];

m_2<-par [54];

c_1<-(1+(1 -exp(-1))*mu_1*m_1)^( -1/m_1)

c_2<-(1+(1 -exp(-1))*mu_2*m_2)^( -1/m_2)

lmd <-par [55]

a<-vector(length=x); ###x represents the number of rows in the data

for (k in 1:x){

a[k]<-y_1[k]*log(mu_1[k])-m_1^(-1)*log(m_1)

-(y_1[k]+m_1^( -1))*log(m_1^( -1)+mu_1[k])-log(factorial(y_1[k]))

+sum.log(m_1,y_1[k])+y_2[k]*log(mu_2[k])-m_2^(-1)*log(m_2)

-(y_2[k]+m_2^( -1))*log(m_2^( -1)+mu_2[k])-log(factorial(y_2[k]))

+sum.log(m_2,y_2[k])

+log(1+lmd*(exp(-y_1[k])-c_1[k])*(exp(-y_2[k])-c_2[k]))

}

### lambda_i represents the shrinkage parameter

return(sum(a)-lambda_i*sum(par[c(2:26 ,27:52)]^2))

}
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