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SYNOPSIS

DESHPANDE, AMOGH. Applications of Asymptotic methods in Quantitative Finance and
Insurance. (Under the direction of Tak Kuen Siu.)

This thesis 1 deals with three essays related to studying asymptotic behavior of a port-

folio tail loss, asymptotic behavior of options price and asymptotic stability of a class of jump

diffusion process.

In the first article that constitutes our first essay , we study an enhancement to the

CreditRisk+ model termed as the 2-stage CreditRisk+. We determine under what conditions

on the portfolio does the 2-stage CreditRisk+ credit risk model gives higher Value at Risk

than the CreditRisk+. This entails studying rare event probability of large portfolio loss event.

For the same we use technique from the theory of large deviations.

In the second article, we consider an asymptotic options pricing problem in a Markov

modulated regime switching market. In such market, the key model parameters are modu-

lated by a continuous-time, finite-state, Markov chain. Such a market is incomplete and hence

there exist a range of options price. For an asymptotic analysis , we consider two variations

of the chain, namely, a slow chain and a fast chain. It has been observed that there exists

an asymptotic option price for the slow chain case while it is been argued that such price

may not exist for the fast chain case. In this article, we attempt to show why this is so by

determining the range of options price for the slow chain and the fast chain.

In the third and the last article, we consider a jump-diffusion process whose drift, diffu-

sion and the jump kernel is modulated by a semi-Markov process. The semi-Markov process

is a generalization over the Markov chain case since its sojourn time need not be exponen-

tially distributed. We study the issue of asymptotic stability of this process with regards to

almost sure and moment exponential sense. We study this issue here because of its motiva-

tional connection to the ruin theory in insurance. We also study the issue of stabilization and

de-stabilization of a non-linear system of differential equation perturbed by a semi-Markov

modulated jump diffusion process. We thereby comment on the interesting behaviour that

we observe with regards to (de)-stabilization of the system of differential equation in one and

in higher dimension.

1The thesis is in the format of thesis by publication. The guidelines for the same can be found on
the webpage http://www.businessandeconomics.mq.edu.au/current_students/higher_degree_research_

students/guidelines/thesis_by_publication_guidelines.



Chapter 1

Introduction

In this thesis1 we focus on understanding and quantifying asymptotic phenomena observed

in problems motivated from finance and insurance. The tools that we use to study them

are derived from the large deviations theory , asymptotic perturbation analysis and asymp-

totic stability. We apply these to a problem in credit risk management, options pricing and

insurance respectively. These three problems are motivated from the published works in Desh-

pande and Iyer [24], Basu and Ghosh[9] and Yin and Xi [84] respectively. The work on large

deviations application to credit risk modeling has appeared in Deshpande [20]. The work on

asymptotic stability that constitutes chapter 4 of this thesis has been published as Deshpande

[21]. The central theme of this thesis is to understand and quantify the asymptotic behavior

of the random phenomena observed in these three problems.

The thesis is organized as follows. Chapter 2 compares the Value at Risk performance of

two competing credit risk models utilizing the tool of large deviations. Chapter 3 is based on

studying existence of asymptotic options price . Chapter 4 is on understanding the asymp-

totic stability of semi-Markov modulated jump diffusion.

In this chapter, we first provide technical introduction to the large deviations theory

followed by a brief literature survey of its applications to finance. We next detail the theo-

retical underpinnings related to the Markov modulated regime switching models which we

shall use in Chapter 3 for options pricing and a brief literature survey of its application to fi-

nance. We conclude this chapter by presenting in brief, the theoretical background behind the

1The references occurring in this chapter and in the main text of Ch.2, Ch.3 and Ch.4 are detailed in a
collective reference list towards the end of the thesis (refer p.82). References occurring inside the articles are
mentioned in a reference list at the end of that respective article.
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semi-Markov modulated jump diffusion and detail the previous study done on understanding

asymptotic stability of random processes.

1.1 Concepts of Large deviations theory

Large deviations theory is a topic in probability that deals with the description of events in

which a sum of random variables deviates from its mean by more than a “normal” amount,

i.e. beyond what is described by the central limit theorem. Large deviations theory finds

applications in probability theory, statistics, operations research, financial mathematics and

many other areas. The estimation of the probability of rare events, amounting to an asymp-

totic expansion of the tails of the probability density functions of a given random variable or

stochastic process, is the subject of this theory.

Consider generically the empirical means T̂N = 1
N

∑N
j=1Xj for R-valued random vari-

ables X1, ..., XN , ... T̂N is distributed according to the probability law PN ∈ M1(R) i.e

T̂N =d PN , where M1(R) denotes the space of all probability measures on R. The large

deviations principle characterizes the limiting behavior as N →∞ of (PN )∞N=1 on the space

(R, B(R)) in terms of a (rate) function. This characterization is via the asymptotic upper

or lower exponential bounds on the values that PN assigns to measurable subsets of R. We

formally define it as follows.

Definition (Large deviations principle) (PN )∞N=1 satisfies the Large Deviations Princi-

ple (LDP) with a rate function Λ∗ if, for all Γ ⊂ R,

− inf
x∈Γ0

Λ∗(x) ≤ lim inf
N→∞

1

N
logPN (Γ) ≤ lim sup

N→∞

1

N
logPN (Γ) ≤ − inf

x∈Γ̄
Λ∗(x),

where Γ0 is the interior of Γ and Γ̄ is the closure of Γ. A rate function is a lower semicontin-

uous mapping Λ∗ : R→ [0,∞]. It is a “good” rate function if the level sets {x ∈ R : Λ∗(x) ≤
M} are compact for all M <∞.

An important result in Large deviations theory called Cramer’s theorem considers an

LDP setup for Xj for j ∈ {1, ..., N} being i.i.d. R-valued random variables with (speed)
1
N . Another fundamental result, the Gärtner–Ellis theorem covers the case when Xj for

j ∈ {1, ..., N} is non-i.i.d. Refer to (Dembo and Zeitouni,[18] ) for an accessible introduction

to large deviations theory.

We state here the Gärtner–Ellis theorem. We utilize it in our first article while we try

understanding rare large portfolio loss values.
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Assumption 1

1. We represent the moment-generating function for the sequence (Xn) as φn(t) = Ee〈t,Xn〉 t ∈
Rd, n ∈ N and let Λ , limn→∞

1
n log φn(t) exists.

2. 0 ∈ int(DΛ), with DΛ = {t ∈ Rd : Λ(t) <∞}.
Theorem (Gärtner–Ellis theorem) Let Assumption 1 be valid. Let Pn(·) = P(Xn ∈ ·).
(Pn)∞n=1 satisfies the LDP with rate function Λ∗. In other words,

(a) For every closed set C ⊂ Rd,

lim sup
n→∞

1

n
logPn(C) ≤ −Λ∗(C);

(b) and for every open set O ⊂ Rd,

lim inf
n→∞

1

n
logPn(O) ≥ −Λ∗(O ∩ E).

where E = E(Λ,Λ∗) is the set of exposed points of Λ∗ whose exposing hyperplane belongs to

int(DΛ)

(c) Suppose, in addition, that Λ satisfies:

(1) Λ is lower semi-continuous on Rd

(2) Λ is differentiable on int(DΛ)

(3) Either (DΛ) = Rdor Λ is steep at ∂DΛ, i.e., limt→∂DΛ:t∈DΛ
| 5 |Λ(t) =∞

Then O∩E may be replaced by O in the RHS of (b). Consequently (Pn)∞n=1 satisfies LDP on

Rd with rate n and with rate function Λ∗.

Proof We sketch the proof here. Refer to den Hollander [64] for details.

Upper bound We begin with compact sets. Pick an arbitrary δ > 0. For x ∈ Rd define

Λ∗δ(x) , min{Λ∗(x)− δ, 1

δ
}.

For every x ∈ Rd there exists tx ∈ Rd such that

〈x, tx〉 − Λ(tx) ≥ Λ∗δ(x).

Moreover, for every x ∈ Rd, there exists a neighbourhood Ax of x such that

inf
y∈Ax

〈y − x, tx〉 ≥ −δ.

3



By the exponential Chebyshev’s inequality we therefore have

Pn(Ax) = P(Xn ∈ Ax)

≤ P(〈Xn − x, tx〉 ≥ −δ)

≤ eδnE[en〈Xn−x,tx〉]

= eδnφn(ntx)e−n〈x,tx〉.

Let K ⊂ Rd be compact. Then the covering of ∩x∈KAx of K has a finite subcovering

∩i=1,...,NAxi and by the property that the largest exponent wins we have

1

n
logPn(K) ≤ 1

n
log[N max

i=1,...,N
Pn(Axi)]

≤ 1

n
logN + δ − min

i=1,...,N
[〈xi, txi〉 −

1

n
log φn(ntxi)].

As n→∞ and δ ↓ 0,

lim sup
n→∞

1

n
logPn(K) ≤ −Λ∗(K).

The extension from compact sets to closed sets amounts to showing the exponential tightness

of (Pn)∞n=1, which then concludes the proof for the upper bound.

Lower bound Let 3 be the symbol for “such that”. Let Bε(x) denote the open ball of radius

ε around x. It suffices to prove the following.

lim
ε↓0

lim inf
n→∞

1

n
logPn(Bε(x)) ≥ −Λ∗(x) x ∈ E.

Indeed, for any open set O we have,

Pn(O) ≥ Pn(Bε(x)) ∀ x 3 (O ∩ E) ∀ ε ≤ ε0(x),

and so the claim follows after letting n → ∞ and ε ↓ 0, and optimising over x ∈ O ∩ E. Fix

x ∈ E and let τ ∈ int(DΛ) where DΛ = {t ∈ Rd : Λ(t) < ∞} be an exposing hyperplane for

x. Then φn(nτ) < ∞ for n large enough and so we can define a tilted probability measure

P̂n by writing

dP̂n
dPn

(y) =
en〈y,τ〉

φn(nτ)
y ∈ Rd.

4



Thus we have

1

n
logPn(Bε(x)) =

1

n
log

∫
Bε(x)

Pn(dy)

=
1

n
log φn(nτ) +

1

n
log

∫
Bε(x)

e−n〈y,τ〉P̂n(dy)

≥ 1

n
log φn(nτ)− 〈x, τ〉 − ε|τ |+ 1

n
log P̂n(Bε(x)),

where the last inequality uses the fact that |y − x| ≤ ε for y ∈ Bε(x). Hence

lim
ε↓0

lim inf
n→∞

1

n
logPn(Bε(x)) ≥ [Λ(τ)− 〈x, τ〉] + lim

ε↓0
lim inf
n→∞

1

n
log P̂n(Bε(x))

= −Λ∗(x) + lim
ε↓0

lim inf
n→∞

1

n
log P̂n(Bε(x)).

To end the proof of the lower bound, we show that

lim
ε↓0

lim inf
n→∞

1

n
log P̂n(Bε(x)) = 0,

followed by proving that Λ∗(O ∩ E) = Λ∗(O).

1.1.1 Literature overview of the applications of large deviations theory in

finance.

Large deviations theory as described above is an asymptotic approach to determine the prob-

ability of rare events. It has been applied to important problems in finance where occurrence

of rare events play a crucial role. Its significance can be gauged from the current global finan-

cial crisis, which was triggered by the collapse of Lehman Brothers in 2009. The shockwave

generated by this collapse affected many financial companies and banks. The failure of such

big corporations, which were perceived to be in quite robust financial health, is therefore a

rare event scenario. If hedged for such worst-case scenarios, such drastic situations may not

have arisen. This elucidates the need for exhaustive application of large deviations theory

to problems that involve computation of the probabilities of very rare events causing large

portfolio losses. The existing body of work in this work is small since applications of large

deviations to problems in finance are fairly recent.

Monte Carlo simulation is commonly used as a tool to price options [10], in which the

5



importance sampling technique critically enhances the simulation’s performance. The basic

idea of the importance sampling technique is to reduce the variance of the estimator that

denotes the options price by changing the probability measure from which price paths are

generated. More specifically, the idea is to change the distributions of similar price processes

by taking the specifications of the payoff function into account and deriving the process from

the region of high contribution to the required expectation. An interesting approach to opti-

mally change the probability measure is by a large deviations approximation of the required

expectation . Refer [39] for details.

The application of large deviations is seen while determining the first-passage proba-

bility observed in barrier options pricing. Baldi et al. [7] provides a sharp large deviations

estimate for the first-passage probability. Large deviations provide a powerful tool for de-

scribing the limiting behavior of implied volatilities. Various asymptotics (small time, large

time, fast mean-reverting, extreme strike) for stochastic volatility have been studied in Feng

et al. [32], Forde and Jacquier[33] and Tehranchi [76].

Large deviations have also found application in the optimal long-term investment prob-

lem, where investors are interested in maximizing the probability that their wealth exceeds

a predetermined index. Stutzer [57] considers an asymptotic version of this out performance

criterion when the time horizon goes to infinity, which leads to a large deviations portfolio

criterion.

The application of large deviations to credit risk management is also relatively new, al-

though it has a natural appeal in helping us compute the rare event probability of a large loss

to a portfolio. Dembo et al.[19] first suggested that generically, rare events are exponentially

rare in the dimension of the portfolio. In other words, the tail of the loss distribution of the

portfolio decays at the rate of e−λN where N is the number of assets in the portfolio and λ is

some positive constant. The same conclusion was obtained in a recent work by Glasserman

[40]. A fairly new application of large deviations is in the study of rare event analysis for

Collateralized Debt Obligations (CDOs). These financial instruments provide ways of aggre-

gating risk from a large number of sources like bonds and reselling it in a number of parts,

each part having different risk–reward characteristics. The Financial Crisis Inquiry Com-

mission (FCIC), the US congressional panel mandated to scrutinize the 2009 financial crisis

deliberated the role CDOs played in the crisis. Interesting reasonings that became pertinent

during the hearing were the surge in transactions of CDOs, the timing of these transactions,

inaccuracies defining key CDO parameters (e.g. maturity, degree of diversification, average

rating), erroneous risk models and perhaps inadequate monetary-policy expectations that

created faulty scenarios. Analysis that could have connected such faulty scenarios with rare

large event scenarios could perhaps help provide robust strategies that financial companies

dealing with CDO’s could employ in the future. An article by Sowers [55] analyzed rare events

6



related to losses in senior tranches of CDOs. In chapter 2 we use large deviations to compare

the Value at Risk performance of the two competing credit risk models, the CreditRisk+ and

its recent enhancement called the 2-stage CreditRisk+.

We next detail what do we mean by Markov modulated diffusion process and follow it

up with its application in finance. As said earlier, utilize this process in our second article

that constitutes chapter 3 wherein we determine the existence of an asymptotic options price

of a European option in a Markov-modulated regime-switching economy.

1.2 Markov-modulated regime-switching models

We consider a simplified continuous-time financial market consisting of two primitive

securities, namely, a (locally) risk-free bond and a risky share. These securities can be traded

continuously over time in a finite time horizon T := [0, T ], where T <∞. As usual, we suppose

that there are no transaction costs and taxes, that any fractional units of the securities can be

traded, and that the borrowing and lending rates are the same. To describe uncertainty, we

consider a complete probability space (Ω,F ,P), where P is a real-world probability measure.

Let θ := {θ(t)|t ∈ T } be a continuous-time, finite-state, Markov chain on the probability

space (Ω,F ,P) with state space E := {e1, e2, · · · , eM} ⊂ <M , where the jth-component of ei

is the Kronecker delta δij for each i, j = 1, 2, · · · ,M . The state space E is called a canonical

state space for the chain θ. We suppose that the Markov chain is homogeneous and irreducible.

To specify the probability law of the chain, we define a rate matrix, or an intensity matrix,

Λ := [λij ]i,j=1,2,··· ,M , where λij is the constant transition intensity of the chain θ from state

ei to state ej . Note that for each i, j = 1, 2, · · · ,M with i 6= j,
∑M

j=1 λij = 0 and λij ≥ 0, so

λii ≤ 0. Let Fθ := {Fθ(t)|t ∈ T } be the right-continuous, P-completed, filtration generated

by the values of the chain θ. We now provide the proof for the semi-martingale dynamics of

the Markov chain provided in Elliott et al. [25].

Theorem V(t) defined by the following equation is an RM -valued, square-integrable (Fθ,P)-

martingale.

V(t) := θ(t)− θ(0)−
∫ t

0
Λθ(u−)du , t ∈ T .

Hence the semi-martingale dynamics of the Markov chain are given by

θ(t) = θ(0) +

∫ t

0
Λθ(u)du+ V(t) , t ∈ T .

7



Proof Let the state space for the Markov chain {θ(t), t ≥ 0} be denoted by the set

S={e1, ..., eM}. Write pit = P(θ(t) = ei), 0 ≤ i ≤ M . We shall suppose that for some family

of matrices Λ, pt = (p1
t , ..., p

N
t )
′

satisfies the forward Kolmogorov equation

dpt
dt

= Λpt.

{Λ}, is, therefore, the family of so-called Q matrices of the process. The fundamental tran-

sition matrix associated with θ will be denoted by Φ(t, s), so with I the M ×M identity

matrix we have

dΦ(t, s)

dt
= ΛΦ(t, s), Φ(s, s) = I (1)

dΦ(t, s)

dt
= −Φ(t, s)Λ Φ(t, t) = I. (2)

Consider the process in state, say, i ∈ X at time s and write θ(s,t)(ei) for its state at the

later time t ≥ s. Then E[θ(s,t)(i)] = Es,i[θ(t)] = Φ(t, s)ei. Defining V(t) := θ(t) = θ(0) +∫ t
0 Λθ(u−)du , t ∈ T , we now need to show that it is an Ft = σ{θ(s), 0 ≤ s ≤ t}martingale.

We do so in the following way.

E[Vt − Vs|Fs] = E[θ(t)− θ(s)−
∫ t

s
Λθ(u−)du|Fs]

= E[θ(t)− θ(s)−
∫ t

s
Λθ(u−)du|θ(s)]

= E[θ(t)− θ(s)−
∫ t

s
Λθ(u)du|θ(s)].

Because θ(u) = θ(u−) = limε>0,ε→0 θ(u − ε) for each ω ∈ Ω, except for countably many u,

this is

E[Vt − Vs|Fs] = E[θ(t)|θ(s)]− θ(s)−
∫ t

s
ΛE[θ(u)|θ(s)]du

= Φ(t, s)θ(s)− θ(s)−
∫ t

s
ΛΦ(u, s)du = 0

from above. This gives

θ(t) = θ(0) +

∫ t

0
Λθ(u)du+ V(t) , t ∈ T .

8



A European option price governed by a Markov modulated stock price dynamics is

well known to satisfy a system of partial differential equations with weak coupling. Refer

Deshpande and Ghosh [23] for details. We will now formulate this partial differential equation,

that is satisfied by a European call option in a Markov-modulated regime-switching economy.

However before we do so, for the sake of completeness, we describe first a purely probabilistic

approach to pricing European-style options payoff in a Markov-modulated regime-switching

economy. This discussion is based on the work of Elliott et al. (2005)[26]. In their work

they provide option valuations based on the joint characteristic function of the occupation

times of the Markov chain. In this approach they consider that the market interest rate, the

appreciation rate and the volatility of the underlying risky asset, depend on unobservable

states of the economy which are modeled by a continuous-time Hidden Markov process Xt.

Mathematically, rt := 〈r,Xt〉 , µt := µ(t,Xt) = 〈µ,Xt〉 , σt := σ(t,Xt) = 〈σ,Xt〉. States are as

usual denoted by i ∈ {1, ...,M}. Define Zt = (µt − 1
2σ

2
t )dt+ σtdWt. The filtration generated

by Zt is denoted by FZt . Let Ji(t, T ) denote the occupation time of {Xt}t∈(t,T ] in state i over

the duration [t, T ]. Then,

Pt,T =

∫ T

t
〈r,Xs〉 ds =

M∑
i=1

riJi(t, T )

Ut,T =

∫ T

t
〈σ,Xs〉2 ds =

M∑
i=1

σ2
i Ji(t, T ).

At any time t ≤ T , the price of a European-style option written on a Markov-modulated stock

price dynamics S with payoff V (ST ) at maturity T for the underlying filtration Gt generated

by {Xt, St, t ≤ T} is given by

V (t, T, St, Pt,T , Ut,T ) = EQ[exp(−
∫ T

t
rsds)V (ST )|Gt],

where EQ is the expectation computed under the martingale probability measure PQ. Since

Pt,T and Ut,T are unknown in practice, the price V (t, T, St, Pt,T , Ut,T ) is also unknown. As

in Buffington and Elliott [12], one can take a second expectation of V (t, T, St, Pt,T , Ut,T )

with respect to the probability distributions of Pt,T and Ut,T , which can be interpreted as a

statistical estimation of the unobservable price V (t, T, St, Pt,T , Ut,T ), given observable market

information. Indeed to determine the distribution of Pt,T and Ut,T one needs to determine

the joint distribution of the occupation times J(t, T ) := (J1(t, T ), J2(t, T ), ..., JM (t, T )). Let
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D denote a diagonal matrix consisting of the elements in the vector ξ := (ξ1, ξ2, ..., ξM ) as its

diagonal. Then for any ξ, the characteristic function of J(t, T ) is given by

E[exp(i 〈ξ, J(t, T )〉)|FZt ] = 〈exp[(A+ iD)(T − t)]Xt, I〉 , (3)

where i =
√
−1 and I := (1, 1, ..., 1) ∈ RM . Let φ(J1, J2, ..., JM ) denote the joint probabil-

ity distribution for the occupation times (J1(t, T ), J2(t, T ), ..., JM (t, T )).This joint probability

distribution can be completely determined by the characteristic function E[exp(i 〈ξ, J(t, T )〉)|FZt ].

Let Φ be the cumulative distribution function for the standard normal distribution. Hence

the price of a European call option at time t with strike price K and maturity time T in the

purely probabilistic format is given by

V (t, T, St, Pt,T , Ut,T ) =

∫ T

t

∫ T

t
· · ·
∫ T

t
V (t, T, St, Pt,T , Ut,T )φ(J1, J2, ..., JM )dJ1dJ2...dJM , (4)

where

V (t, T, St, Pt,T , Ut,T ) = StΦ(d1,t,T )−K exp(−Pt,T )Φ(d2,t,T ) (5)

and

d1,t,T = (Ut,T )−1/2(ln
St
K

+ Pt,T +
1

2
Ut,T ), d2,t,T = d1,t,T − (Ut,T )1/2. (6)

This concludes our discussion on the pure probabilistic approach. We come back to formulate

Black-Scholes PDE for Markov-modulated regime switching diffusion that is satisfied by the

European Options price. In this discussion we refer to the chain by θ and to the stock price

by St for t ∈ T . Let r(t,θ(t)) be the (locally) risk-free rate of interest of the bond at time

t. We suppose that r(t,θ(t)) is modulated by the chain θ by r(t,θ(t)) = 〈r(t),θ(t)〉 . Here

r(t) := (r1(t), r2(t), · · · , rM (t))′ ∈ <M and ri(t) > 0 for each i = 1, 2, · · · ,M and each t ∈ T ;

ri(t) is the interest rate when θ(t) = ei; the scalar product 〈·, ·〉 selects the component of the

vector r(t) of interest rates in force according to the state of the Markov chain θ(t) at the

current time t. The price process of the (locally) risk-free bond evolves over time as:

B(t) = exp

(∫ t

0
r(u,θ(u))du

)
, t ∈ T , B(0) = 1 .

As usual, for each t ∈ T , let µ(t,θ(t)) and σ(t,θ(t)) be the appreciation rate and the volatility

of the risky share price at time t. We suppose that the chain θ modulates µ(t,θ(t)) and
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σ(t,θ(t)) as

µ(t,θ(t)) = 〈µ(t),θ(t)〉 , σ(t,θ(t)) = 〈σ(t),θ(t)〉 .

Here µ(t) := (µ1(t), µ2(t), · · · , µM (t))′ ∈ RM and σ(t) := (σ1(t), σ2(t), · · · , σM (t))′ ∈ RM ;

for each i = 1, 2, · · · ,M , µi(t) and σi(t) are the appreciation rate and the volatility of the

risky share when θ(t) = ei; µi(t) > ri(t) and σi(t) > 0.

Let W := {W (t)|t ∈ T } be the standard Brownian motion on (Ω,F ,P) with respect to

the right-continuous, P-completion of its natural filtration FW := {FW (t)|t ∈ T }. Then we

suppose that under P, the evolution of the share price process S , {θ(t)|t ∈ T } over time is

governed by the following Markovian, regime-switching, geometric Brownian motion:

dS(t) = µ(t,θ(t))S(t)dt+ σ(t,θ(t))S(t)dW (t) , S0 = s0 > 0 .

Our market includes the two underlying assets B and S. Write

V (t, S,θ) = E[exp(−
∫ T

0
r(u)du)(S(T )−K)+|Gt], (7)

where Gt is defined as the filtration generated by (S(t),θ(t)) i.e. Gt = σ{S(u),θ(u) : u ≤ t}.
Write

V(t, S) = (V (t, S, e1), ..., V (t, S, e2)),

so that V (t, St,θt) = 〈V(t, St,θt)〉. Applying Ito’s rule to V we have

V (t, S(t),θ(t)) = V (0, St,θ(t)) +

∫ t

0

∂V

∂u
du+

∫ t

0

∂V

∂S
(µ(u),θ(u))Sudu+ σ(u, θu)SudBu)

+
1

2

∫ t

0

∂2V

∂S2
σ2(u,θu)du+

∫ t

0
〈V,Λθ(u)〉du . (8)

By definition, as V is a martingale, all the time integral terms in the above equation must

sum to zero identically. That is,

∂V

∂t
+
∂V

∂S
(µ(t),θ(t))St +

1

2

∂2V

∂S2
σ2(t,θ(t))(S2

t ) + 〈V,Λ〉 = 0 .

Let C be the price of, say, a European Call option having a terminal value of C(t, T, S,θ) =

(S−K)+. Now V = exp(−
∫ t

0 rudu)C, so with C(t, T, S, ·) = (C(t, T, S, e1), ..., C(t, T, S, eM )),
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C satisfies the following system of coupled Black–Scholes PDE,

−riCi +
∂Ci
∂t

+ µiS
∂Ci
∂S

+
1

2
σ2
i S

2∂
2Ci
∂S2

+ 〈C,Λei〉 = 0 (9)

with the terminal condition

C(T, T, S, ei) = (S −K)+.

This is the underlying PDE used to determine the asymptotic option price for a European

option.

We now describe overview of applications of Markov modulated regime-switching models in

finance.

1.2.1 Literature overview of Markov-modulated regime-switching models

in finance

The third chapter of this thesis is based on asymptotic evaluation of a European option in

an economy wherein the interest rate and the volatility switches according to an underlying

Markov chain that describes the state of the economy. Such models originated in econometrics,

pioneered by Hamilton’s work [61]. Hamilton first proposed that the unobserved regime (or

state) follows a first-order Markov process. Dai and Singleton [17] pointed out that mere

addition of jumps to diffusion models may not always capture “turbulent” and “quiet” periods

of bond markets. This feature exemplified the need to have models that addressed these

changes in these periods. This also galvanized much work in finance and economics, for

example Hamilton and Susmel [63], Schaller and Norden [74] for stock prices; Engle and

Hamilton [31] for time series of exchange rates; Elliott and Mamon [27], Mamon and Rodrigo

[51], Kallimpalli and Susmel [46] and Wu and Zeng [81] for short-term interest rates. For

American options, Buffington and Elliott [12] discussed a model involving a two-state Markov

chain while closed-form solutions for perpetual American put options in a regime switching

framework were proposed in a recent study by Guo and Zhang [43]. An interesting approach

of using game theory to price options in a Markov-modulated economy was proposed by Siu

[53].

Although the Markov regime-switching models reflect the tenets of the efficient market

hypothesis that states that the entire history of the underlying price process is no more

useful than its current value, the catch is that these models make the market incomplete.
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This incompleteness is the result of having two sources of randomness (i.e. the randomness

due to the Markov chain and that due to the Brownian motion) in a single equation of

asset price dynamics. Therefore there exist many Equivalent martingale measures EMMs on

which the derivatives could be priced. To resolve this issue Guo [42] proposed to complete the

market via the introduction of new securities. Deshpande and Ghosh [23] proposed selecting

the minimal martingale measure (MMM) from the space of EMM’s and pricing European

option under it . Models for pricing zero coupon risky bond under the MMM was discussed

recently by Deshpande [22]. Elliott et al. [26] introduced the Gerber–Shiu–Esscher transform

technique for pricing options in a Markov-modulated economy.

A novel approach of incorporating a “feedback” effect to pricing and hedging European

options in a “double” Markov-modulated regime-switching economy was recently proposed

by Elliott et al. [29]. The price dynamics of the risky asset are governed by the double-

Markovian regime-switching model. In their approach they incorporated the feedback effect

of the price process of the risky asset on the economic conditions by assuming that the

rate transition matrix of the chain was modulated by the price process. Elliott and Siu [28]

recently studied pricing and hedging of contingent claims in a Markov-modulated economy by

incorporating two sources of risk. The first is the risk associated with fluctuations of market

prices, referred to as financial risk. The second is due to fluctuations of underlying Markov

chain and is referred to as regime switching risk. They combine these by introducing a general

pricing kernel defined by the product of two density processes: one for a measure change for

a diffusion process and other one for a measure change for a Markov chain.

Jump-diffusion models of the regime-switching type are also widely applied in options

pricing theory. There are many references. We mention here just a few as in this thesis we will

be generally concentrating on the Markov modulated diffusion process. Yuen and Yang [83]

priced options in a jump-diffusion regime-switching model where they used the trinomial tree

method for pricing. Elliott et al. [30] considered pricing options under a generalized Markov-

modulated jump-diffusion model wherein the underlying measure process was defined to be

a generalized mixture of Poisson random measures that encompassed a generalized gamma

process. Siu et al. [54] studied pricing life insurance products under a generalized jump-

diffusion model with a Markov-switching compensator.

The body of work referenced above dealt with pricing and hedging of options under

Markov-modulated regime switching in which an option price was either determined as an

solution to the above described PDE expression or by utilizing Monte Carlo simulation. A

very recent work of Basu and Ghosh [9] provides asymptotic analysis of option prices in a

Markov-modulated market. This generalizes the work of Fouque et al. [34] who do not consider

Markov modulation of the stock price dynamics. They considered two variations of the chain,
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the slow chain and the fast chain. They obtained asymptotic expansion for the slow-chain case

while arguing that such an expansion may not exist for the fast-chain case. In the slow chain

the transition intensity of the modulating Markov chain becomes very small while for the

fast chain case it becomes very large. As noted earlier Markov modulated regime switching

market is incomplete and hence is characterized by many equivalent martingale measures if

they exist. Hence there is a range of options price. By simple application of Ito’s theorem

we show that for any small positive perturbation of the underlying Markov chain, the option

price for the slow chain case is bounded above by the underlying stock price at current time

t and bounded below by the corresponding Black-Scholes options price evaluated at current

time t. For the fast chain case, the options price is nothing but the the Black-Scholes price

evaluated at current time t for averaged out interest rate, drift and volatility process. Thus we

would then infer that there exist an asymptotic options price for the slow chain case contrary

to the fast chain case. These results constitute chapter 3 of this thesis.

We now provide technical introduction to semi-Markov modulated jump diffusion. We

explain our motivation in studying it’s stability property in this thesis. We follow it up with a

brief literature overview of study done on the stability of regime switching random processes.

1.3 semi-Markov modulated jump diffusion, stochastic stabil-

ity and its connection to ruin theory and options pricing

theory

Consider the following semi-Markov Modulated Jump Diffusion (sMMJD) described as fol-

lows:

dXt = b(Xt, θt)dt+ σ(Xt, θt)dWt + dJt

dJt =

∫
Γ
g(Xt, θt, γ)N(dt, dγ)

X0 = x, θ0 = θ, (10)

where X takes values in Rr and θt is a finite-state semi-Markov process taking values in

X = {1, ...,M}. Let Γ be a subset of Rr − 0; it is the range space of impulsive jumps. For

any set B in Γ, N(t, B) counts the number of jumps on [0, t] with values in B and is in-

dependent of the Brownian motion Wt, b(·, ·) : Rr × X → Rr, σ(·, ·) : Rr × X → Rr × Rd,
g(·, ·, ·) : Rr × X × Γ → Rr. For future use we define the compensated Poisson measure

Ñ(dt, dγ) = N(dt, dγ)− λπ(dγ)dt where π(·) is the jump distribution and 0 < λ <∞ is the
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jump rate.

In this chapter, as mentioned earlier, we intend to study the stability of Equation (10)

with regards to the following stability criteria, namely, almost surely and moment exponential

stability. We define this below.

Definition: Almost-sure exponential stability The trivial solution of Equation (10)

is almost surely exponentially stable if

lim sup
t→∞

1

t
log |Xt| < 0 a.s. ∀X0 ∈ Rr.

Definition: Moment exponential stability Let p > 0. The trivial solution of (10) is said

to be pth-moment exponentially stable if there exists a pair of constants λ > 0 and c > 0, such

that for any X0 ∈ Rr

E[|Xt|p] ≤ C|X0|p exp(−λt) ∀ t ≤ 0.

Before we delve further into studying the stability of the sMMJD, we first describe our main

motivation in doing so. The motivation stems from its interesting connection with ruin theory,

a result recently attributed to the work of Khasminskii and Milstein [47], which in turn is

connected to options pricing theory- a result attributed to Gerber and Shiu [37]. We first

sketch the connection stability theory has with ruin theory.

Connection of stability theory to ruin theory

Consider the one dimensional SDE of the following form:

dXt = bXtdt+

k∑
r=1

σrXtdBr(t). (11)

The pth-moment Lyapunov exponent of a solution to (11) is defined by

g(p;x) = lim sup
t→∞

1

t
logE|Xt|p X0 = x, ∀ p ∈ R.

It was shown in Appendix B of ([47])that under a certain non degeneracy condition on (11),

g(p;x) is independent of x, i.e. g(p;x) = g(p) for all p ∈ R, x 6= 0 and

g(p) = lim
t→∞

1

t
logE|Xt|p x 6= 0, (12)
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where, if b and σr are some constants, they show that g(p) can be explicitly calculated as

g(p) = pb+
1

2
p(p− 1)

k∑
r=1

σ2
r .

If g(p) > 0 then E|Xt|p → ∞ as t → ∞ and if g(p) < 0 then E|Xt|p → 0 as t → ∞. If

g(p) = 0 then there exist two constants 0 < c < C < ∞ such that c ≤ E|Xt|p ≤ C, t ≥ 0.

Let a∗ = g
′
(0) < 0. In this case g(p) < 0 for sufficiently small positive p. If g(p) → ∞ as

p → ∞ (proposition B.4 in [47] gives sufficient conditions for such a behavior of g(p)), then

the equation g(p) = 0 has a unique root γ∗ > 0 (recall that g(0) = 0). The uniqueness follows

from the convexity of g. We call γ∗ the stability index. Under certain conditions via Theorem

B.8 in [47], it has been shown that for a∗ = g′(0) < 0, γ∗ > 0 being a root of (g(p) = 0), for

some constant K ≥ 1 and for any δ > 0 under |x| < δ, the inequalities

1

K
(|x|/δ)γ∗ ≤ P{sup

t≥0
|Xt| > δ} ≤ K(|x|/δ)γ∗

are fulfilled. The term P{supt≥0 |Xt| > δ}; |x| < δ is the celebrated ruin probability that

occurs often in insurance. Gerber and Shiu [37] connected the ruin theory to the Options

pricing theory as shall be seen below.

Connection of stability theory to options pricing theory

Consider some net wealth/surplus process Ut at time t, t ≥ 0, where the time to ruin T

is denoted by T := inf{t : Ut < 0}. The probability of ultimate ruin as a function of the ini-

tial surplus U0 = u ≥ 0 is defined as Ψ(u) = P [T <∞|U0 = u]. Let w(x, y) be a nonnegative

function of x > 0 and y > 0. We consider that for u ≥ 0 the function Φ(u) is defined as

Φ(u) = E[w(UT−, |UT |)e−δT I(T<∞)|U0 = u], (13)

In this equation, δ could be interpreted as a force of interest and w is some kind of penalty

at ruin now replaced by a net payoff on the exercise of a perpetual American put option. As

a special case, if this net payoff “w” is of constant value 1 and δ = 0, then Φ(·) corresponds

to the probability of ultimate ruin. This probability of ultimate ruin, which as we saw from

the earlier result of Khasminskii and Milstein ([47]), is connected to the stability theory.

By logical implication, stability theory could hence be connected to the options pricing for

perpetual American Put option, and, is of constant value 1 , i.e. with no discounting.

We next provide a succinct literature review of stability of regime switching random processes.
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1.3.1 Literature overview of regime-switching models in stability theory

The stability of stochastic differential equations (SDEs) has a long history with some key

works being those of Arnold [4], Khasminskii and Milstein [47] and Ladde and Lakshmikan-

tham [69]. SDEs with Markov switching have been applied in such diverse areas as finance

(as described earlier) and Biology, refer Hanson [60]. The stability of these processes has

also garnered much attention, in particular from Ji and Chizeck [66] and Mariton [71] who

both studied the stability of a jump-linear equation of the form dxt
dt = A(rt)xt, where rt is

a Markov chain. Basak et al. [8] discussed the stability of a semilinear SDE with Marko-

vian regime switching of the form ẋt = A(rt)xtdt + σ(rt, xt)dWt. Mao [70] studied the ex-

ponential stability of a general nonlinear diffusion with Markovian switching of the form

dxt = f(t, xt, rt)dt+g(t, xt, rt)dWt. A very recent work of Yin and Xi [84] studied the stability

of Markov-modulated jump-diffusion processes. In this thesis, we study the asymptotic stabil-

ity of general semi-Markov-modulated jump diffusion. Unlike the special Markov-modulated

case where the x-dependent diffusion is a partial differential operator, the semi-Markov pro-

cess involves a general integro-partial differential operator. This work constitutes Chapter 4.

As described earlier, we now start with discussing understanding asymptotic phenomenon

in credit risk management (see Ch.2), options pricing (see Ch. 3) and asymptotic stability

(see Ch.4).
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Chapter 2

Value at Risk performance

comparison of the CreditRisk+ and

the 2-stage CreditRisk+: A Large

Deviations Approach.

2.1 Synopsis

Credit risk models, as the name suggests, are used to quantify the risks involved in dealing

with credit. There are two primary types of models in the literature that attempt to describe

default processes for debt obligations and other defaultable financial instruments. They are

usually referred to as structural and reduced-form (or intensity) models. Structural models

use the evolution of firms’ structural variables, such as asset and debt values, to determine the

time of default. Intensity based models do not consider the relation between default and firm

value in an explicit manner. In contrast to structural models, the time of default in intensity

models is not determined via the value of the firm, but is the first jump of an exogenously

given jump process.

Structural default models provide a link between the credit quality of a firm and the

firm’s economic and financial conditions. Thus, defaults are endogenously generated within
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the model instead of exogenously given as in the reduced-form approach. Another difference

between the two approaches appears in the treatment of recovery rates: whereas reduced

models exogenously specify recovery rates, in structural models the value of the firm’s assets

and liabilities at default will determine its recovery rate. Refer to Arora et al. [5] for an

excellent detailed discussion on the differences between structural and reduced-form models.

A third approach, closer to the reduced-form approach is called the “actuarial” approach.

The CreditRisk+ (CR+) model that we will discuss later belongs to this particular approach

to quantifying credit risk. Under the actuarial approach, default is an “end-of-game” surprise

with a known probability that follows the Poisson distribution. The actuarial method ignores

all other factors such as leverage, volatility of asset returns, or even downgrade risk, and

considers that defaults “arrive” at a certain rate per unit of time (say years) and considers

them distributed according to the Poisson distribution. This approach is quite similar to the

reduced-form approach as they both define the risk at default loss only. Neither approach

uses transition matrices and they both treat recovery rates as deterministic “loss given de-

fault”. However, there are also some differences between these two approaches. For example,

although they both use conditional probabilities for defaults, in the actuarial approach used

in CR+, the conditional probabilities for default are a function of common risk factors, while

for the intensity-based approach, they are a function of macrofactors. The risk drivers for

the actuarial approach are expected default rates while for the reduced-form approach the

driver is the hazard rate. As for the numerical implementation, the actuarial approach is a

closed-form analytic approach unlike the reduced-form approach, which involves tree-based

simulation. As CreditRisk+ focuses only on defaults and the default process is assumed to

follow an exogeneous Poisson process, we consider the CreditRisk+ approach in the frame-

work of actuarial approach. For a systematic treatment of all these three approaches, we refer

to Crouhy et al. [15].

The CR+ model developed by Credit Suisse Financial Products computes portfolio

loss distribution analytically without relying on Monte Carlo simulation. This is its main

strength. The loss distribution in the original CR+ model was computed using a recursion

scheme due to Panjer [73]. Gordy [44] showed that this method was numerically unstable for

large portfolios. Further, it is difficult to extend this method to more complex models. Giese

[38] provided a breakthrough by suggesting a method for evaluating the loss distribution that

used recursive computation of exponential and logarithmic polynomials. This computation

allows incorporation of a wider range of risk factor distributions.

The standard CR+ model apportions the risk of each individual obligor to different

sectors, which can be thought of as industry sectors. The sector default rates are assumed

uncorrelated and have fixed net exposures. Burgisser [14] was the first to introduce correla-

tions amongst the sector default rates. This was done by adjusting the portfolio default rate
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standard deviation to account for the sector correlations and then carrying out single-sector

analysis. Giese showed that the Burgisser model cannot adequately capture concentration

risk arising from sectors with large exposures and large factor variance. In Giese [38], cor-

relation is induced among the sectors via a single variable that follows a compound gamma

distribution which introduces a uniform level of covariance between the sector default rates.

While the compound gamma model of Giese performs better than the Burgisser model, it

distorts the concentration risks by enhancing low levels of correlation and suppressing higher

levels of correlation. Further, estimation of this uniform covariance from observed data can

be inconsistent. The 2-stage CreditRisk+ (2-CR+) model proposed recently by Deshpande

and Iyer [24] is a generalisation over Giese’s compound Gamma model.

We will briefly describe the CR+ and the 2-CR+ models. Before we do so, we explain

two key portfolio measures of risk called the Value at Risk (VaR) and the Expected Shortfall

(ES) risk measure. We use VaR in our portfolio risk computations. We will also provide moti-

vational guidance so as to understand the need to use the large deviations theory to compare

the VaR performance of CR+ and 2-CR+.

The VaR measure is defined as follows. For some confidence level α ∈ (0, 1), the VaR of

the portfolio is given by the smallest number l such that the probability that the portfolio

loss L exceeds l is not larger than 1− α. Mathematically, it is represented as

V aRα = inf{l ∈ R : P (L > l) ≤ (1− α)}.

Quite in contrast to the VaR, ES produces better incentives for traders than VAR . ES is

also sometimes referred to as conditional VaR, or tail loss. Where VaR asks the question

“how bad can things get?”, ES asks “if things do get bad, what is our expected loss?” If the

underlying portfolio loss distribution for L is a continuous distribution, then ES is equivalent

to the tail conditional expectation (TCEα)defined by

TCEα = E[−L|L ≤ −V aRα(L)].

Informally, this equation says “in case of losses so severe that they occur only alpha percent

of the time, what is our average loss?”

In general a measure of risk is said to be coherent if it satisfies the following properties.

- Monotonicity: If a portfolio has lower returns than another portfolio for every state of

the world, its risk measure should be greater.

- Translation invariance: If we add an amount of cash K to a portfolio, its risk measure

if coherent should go down by K.

- Homogeneity: Changing the size of a portfolio by a factor (say λ) while keeping the rel-
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ative amounts of different items in the portfolio the same should result in the risk measure

being multiplied by (λ).

- Subadditivity: The risk measure for two portfolios after they have been merged should

be no greater than the sum of their risk measures before they were merged.

The first three conditions are straightforward while the fourth condition states that diversi-

fication helps reduce risks. Refer to Artzner et al. [6] for an in-depth treatment on coherent

measures of risk. VaR satisfies all the above properties except for being subadditive. ES sat-

isfies all the properties for the risk measures to be coherent. Hence VaR is not a coherent

measure of risk. The issue of VaR not satisfying the subadditive property is not just a theo-

retical issue. Risk managers sometimes find that, when portfolio A is combined with portfolio

B to form a single portfolio, for risk management purposes, the total VAR goes up rather

than down. Thus this defeats the sole purpose of diversification. Although ES is coherent, it

has its own share of problems. The one most discussed is that it fails to eliminate the tail

risk. For example suppose that the magnitude of an extreme loss is much higher for portfolio

B than for portfolio A. Then, if a risk measure is free of tail risk, the risk measure should

choose portfolio A, since its extreme loss is smaller than portfolio B’s. Instead, ES may choose

portfolio B. Yet another criticism of ES is that its choice of portfolio is inconsistent with that

from the utility theory. For details on these two criticisms, refer to Yamai and Yoshiba [82].

Notwithstanding the criticisms of VaR, worldwide adoption of the Basel II Accord gave fur-

ther impetus to its use. From the definition of VaR we know that we need to determine the

large loss event probability P (L > l). To compute the probability of this event we utilise

the tools from the theory of large deviations. We now describe here the CR+ and the 2-CR+

models.

Let a suitable base unit of currency ∆L be chosen. An obligor of a portfolio is de-

noted by a number and there are a finite number of obligors O. Obligors are thus numbered

from 1, ..., O. In CR+, the adjusted exposure Ei of obligors i ∈ {1, ..., O} is replaced by

νi = bEi∆Lc, where b.c denote the integer part of a real number. Let pi be the average

default probability for obligor i for the time horizon considered (typically one year) . Let Ni

denote the default of obligor i ∈ {1, ..., O}. Therefore the portfolio loss is represented by the

integer random variable

L =

O∑
i=1

νiNi. (1)

γ is a (K × 1) vector consisting of gamma-distributed random variables that signify sectoral

default rates where K is the number of sectors. Conditional on γ, the default variables Ni are

assumed independent and Poisson distributed with intensity Xi(γ) i.e. Ni(γ) =d Poi(Xi(γ)).

Technically, it is reasonable to assume nonexistence of multiple defaults because sequential
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defaults seldom occur in a short time. For details on this assumption refer to the (CreditRisk+

document, 1997). Hence we assume that Ni ∈ {0, 1} for each i.

2.1.1 CreditRisk+

The standard CR+ model is a popular credit risk management model because of its ability

to analytically compute the portfolio loss distribution. This is in contrast to other credit risk

models such as Creditmetrics or KMV which utilise computer-intensive Monte Carlo-based

simulations. Apart from being able to compute tail losses analytically, CR+ is considered more

flexible as it can compute the loss distribution for a portfolio of assets which do not share

the common (Bernoulli) distribution. The losses are not independent of each other because

the obligors from the same industry or country share similar developments. Moreover it

can accommodate obligors characterised by stochastic probability of default with different

expected values and a rich structure of default correlations amongst them that are valid for

different levels of net exposures. The price one pays for these various benefits is that the

Poisson approximation embedded in its analysis requires the expected default probability to

be small. Also, only positive default correlations need be considered. CR+ also tends to assume

that the recovery rates and defaults are independent of each other. A cautious approach to

cope with this problem in practice and to acknowledge the fact of negative correlation is to

use conservatively estimated recovery rates. Refer to Grunlach and Lehrbass [41] for details.

In the standard CR+ model, the default rate of each sector is represented by a nonnegative

gamma random variable γk=
dΓ( 1

σk
, σk) that satisfies E[γk] = 1 ∀ k = 1, ...,K and has

covariance matrix Cov(γk, γl) = 0, ∀k, l = 1, ...,K.

For each obligor “i” ∈ {1, ..., O} the CR+ framework assumes that the default rates of

the obligors depend on the sector default rates via the linear relationship

Xi(γ) = pi

K∑
k=1

gikγk, (2)

where Xi(γ) is the default rate of obligor i conditional on the sector default rates γ =

(γ1, ..., γK). The risk of each obligor is apportioned among a set of K sectors (industries) by

choosing gik such that
∑K

k=1 g
i
k = 1 for each i ∈ {1, ..., O}.

For the sake of completeness we provide here the expression for the probability-generating
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function (p.g.f.) of the loss distribution computed by CR+, denoted by (GCR
+

(·)).

GCR
+

(z) = exp(−
K∑
k=1

1

σk
log(1− σk

O∑
i=1

gikpi(z
νi − 1)).

We now introduce the terms portfolio default rate and mean portfolio default rate for CR+

as follows. The portfolio default rate for CR+ is defined as

TK(γ) :=

O∑
i=1

Xi(γ) =

O∑
i=1

pi

K∑
k=1

gikγk

=
K∑
k=1

g̃kγk, (3)

where g̃k =
∑O

i=1 g
i
kpi ∀ k = 1, ...,K, while the mean portfolio default rate for CR+ is

T̂K(γ) := TK(γ)
K .

2.1.2 The 2-stage CreditRisk+:

The 2-stage CR+ (2- CR+) model proposed recently by (Deshpande and Iyer, 2009) explains

default risk at two levels. In the first level, as in CR+, the risk of each obligor is apportioned

to a common set of industry sectors using the parameter gik for each i ∈ {1, ..., O}. In the

second level, the default rates of the industry sectors γk k = 1, ...,K are assumed to depend

linearly on a set of common independent risk factors Y1, ..., YM i.e.

γk =
M∑
i=1

akiYi, (4)

where Yi are independent gamma-distributed random variables with mean 1 and variance

σ̃i,
∑M

i=1 aki = 1 ∀ k = 1, ...,K and aki < 1. Since K ≥ M , we can better approximate γk

(i.e. with less residual error) if we regress γk with M = K macroeconomic random variables

Yi. The variables γk, now a sum of independent gamma-distributed random variables, will

thus have a general univariate distribution for each k. Also, as they are regressed by a common

set of Yi, they then will be correlated through this common set, for example if γ1 is regressed

by (Y1, Y2, Y3), and γ2 is regressed by (Y1, Y3, Y4) then Cov(γ1, γ2) =Cov(Y1, Y3) 6= 0 where

Cov(·) is a covariance function. This is in sharp contrast to the γk k ∈ {1, ...,K} of the

CR+, which are independent nonidentically distributed random variables. The p.g.f. of the
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loss distribution computed by the 2-Stage CR+ is a closed form expression given as

G2−CR+
(z) = exp(−

M∑
i=1

− 1

σ̃i
log(1− σ̃i

K∑
k=1

aki

O∑
i=1

gikpi(z
νi − 1))).

See Deshpande and Iyer [24] for details. As they observed, the 2-CR+ model is therefore

an extended CR+ model that incorporates correlation amongst the sectoral default rates

while maintaining the analytical tractability of its primitive, CR+. This feature makes 2-

CR+ attractive for the risk managers to implement. The variables Yi can be obtained from a

principal component analysis of macroeconomic variables that influence the sectoral default

rates. A factor analysis based on the observed default rate correlation matrix would suffice

to obtain an estimate of aki.

Similarly to CR+, the portfolio default rate and its mean for the 2-CR+ model are

defined as follows. The portfolio default rate for 2-CR+ is

TM (γ) :=

K∑
k=1

g̃kγk =

K∑
k=1

g̃k

M∑
i=1

akiYi

=
M∑
i=1

giYi, (5)

where gi =
∑K

k=1 g̃kaki ∀ i = 1, ...,M , while the mean portfolio default rate for the 2-CR+

is T̂M (γ) := TM (γ)
M .

In this chapter, we infer the tail loss probability by understanding the large deviations

behaviour of T̂K(γ) and T̂M (γ) (refer Lemma 1) by assuming
∑O

i=1 g
i
kpi := Gp∗ ∀k ∈ {1, ...K}

and
∑K

k=1 aki = ai = a ∀ k ∈ {1, ...K} and ∀ i ∈ {1, ...,M}. We utilise a key theorem in large

deviations theory called the Gärtner–Ellis theorem . We then obtain explicit representation

of the rate functions associated with the rare event asymptotes of T̂K(γ) and T̂M (γ). They

are (q−Gp∗)2

2G2p∗2
∑K
k=1 σk

, q ∈ (Gp∗,∞) for CR+ and (q−(G)p∗)2

2(G)2p∗2
∑M
i=1 σ̃i

for q ∈ (Gp∗,∞) for 2-CR+. We

conclude this chapter by comparing these two tail decay rates and comment that the VaR

produced by 2-CR+ is definitively higher than the one produced by CR+ for a particular type

of credit portfolio. We will also support this risk analysis through numerical examples.
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2.2 Article “Comparing the Value at Risk performance of the

CreditRisk+ and its enhancement: a large deviations ap-

proach” – A.Deshpande

2.2.1 Abstract

The standard CreditRisk+ (CR+)is a well-known default-mode credit risk model. An exten-

sion to the CR+ that introduces correlation through a two-stage hierarchy of randomness has

been discussed by Deshpande and Iyer, [5] and more recently by (Sowers, [9]). It is termed

the 2-stage CreditRisk+ (2-CR+) in the former. Unlike the standard CR+, the 2-CR+ model

is formulated to allow correlation between sectoral default rates through dependence on a

common set of macroeconomic variables. Furthermore the default rates for 2-CR+ are dis-

tributed according to a general univariate distribution, which is in stark contrast to the

uniformly gamma-distributed sectoral default rates in the CR+. We would then like to un-

derstand the behavior of these two models with regards to their computed Value at Risk

(VaR) as the number of sectors and macroeconomic variables approaches infinity. The for-

mer asymptote refers to portfolio diversification while the later refers to the phenomena of

incorporating many independent macro-economic variables thereby making it able to predict

the sectoral default rates with less residual regression error (higher precision) as the following

article would reveal. In particular we would like to ask whether 2-CR+ produces higher VaR

than CR+ and if so, then for which types of credit portfolio. Utilizing the theory of large

deviations, we provide a methodology for comparing the VaR performance of these two com-

peting models by computing associated rare event probabilities. In particular we show that

this is definitively true for a particular class of credit portfolio, which we call a “balanced”

credit portfolio. We support this risk analysis through numerical examples.

Keywords: Value at Risk, CreditRisk+, 2-stage CreditRisk+ model, rare event, large devi-

ations principle, Gärtner–Ellis Theorem.

2.2.2 Introduction

Value at Risk or VaR is an important measure of portfolio risk and is popular amongst port-

folio risk managers. Worldwide adoption of the Basel II Accord in 1999 gave further impetus

to its use. A large credit portfolio handled by risk managers includes exposures to many
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obligors whose default probabilities are very small. Occurrence of these rare but large loss

events puts emphasis on obtaining the small probabilities of large losses that are relevant

in computing VaR. A credit risk model producing high VaR is preferable as then the model

puts more emphasis on the occurrence of large loss events. VaR is mathematically expressed

as the smallest number l such that the probability that the loss exceeds l is not larger than

1-α for α ∈ (0, 1). This is formally defined as V aRα := inf{l ∈ R : Pr(L > l) ≤ (1 − α)}.
Thus, the larger the tail losses, the higher the VaR. Large deviations theory has recently

gained importance in computing the probability of rare large loss events. See (Pham, [8])

for an excellent introduction. Let us denote VaRCR+

α and VaR2−CR+

α as VaR computed by

the CR+ and the 2-CR+ model respectively under the same underlying credit portfolio for

particular values of α. In this article we seek to discover whether VaRCR+

α ≤ VaR2−CR+

α . We

employ tools from the theory of large deviations to answer this question. The strength of this

theory is that it allows us to compare VaR performance between these two credit risk models

without making any distributional assumption on the portfolio loss. This is in stark contrast

to the standard mean–variance theory of Markovitz which inherently assumes the normality

of the underlying loss distribution.

For the sake of completeness we briefly introduce here the Large Deviations Principle

(LDP). Consider generically the empirical means T̂N = 1
N

∑N
j=1Xj for R-valued random

variables X1, ..., XN , ... T̂N , distributed according to the probability law PN ∈ M1(R) i.e.

T̂N =d PN , where M1(R) denotes the space of all probability measures on R. The large de-

viations principle characterizes the limiting behaviour as N → ∞ of (PN )∞N=1 on the space

(R, B(R)) in terms of a (rate) function. This characterization is via the asymptotic upper or

lower exponential bounds on the values that PN assigns to measurable subsets of R.

Definition 1 (Large deviations principle) (PN )∞N=1 satisfies the large deviations prin-

ciple with a rate function Λ∗ if, for all Γ ⊂ R,

− inf
x∈Γ0

Λ∗(x) ≤ lim inf
N→∞

1

N
logPN (Γ) ≤ lim sup

N→∞

1

N
logPN (Γ) ≤ − inf

x∈Γ̄
Λ∗(x),

where Γ0 is the interior of Γ and Γ̄ is the closure of Γ. A rate function is a lower semicontin-

uous mapping Λ∗ : R→ [0,∞]. It is a “good” rate function if the level sets {x ∈ R : Λ∗(x) ≤
M} are compact for all M <∞.

An important result in large deviations theory called Cramer’s theorem considers LDP

setup for Xj for j ∈ {1, ..., N} being i.i.d. R-valued random variables with (speed) 1
N . Another

fundamental result, the Gärtner–Ellis theorem that we utilise here covers the case when Xj

for j ∈ {1, ..., N} is non-i.i.d. Refer to Dembo and Zeitouni, ([4]) for an accessible introduc-

tion to large deviations theory.
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Application of the large deviations theory to credit risk analysis is rather new and

dates back to the work of (Dembo et al., [3]) who suggested that generically, rare events

are exponentially rare in the dimension of the portfolio. In other words, the tail of the loss

distribution of the portfolio decays at the rate of e−λN , where N is the number of assets in

the portfolio and λ is some positive constant. The same conclusion was obtained in a recent

work of (Glasserman et al., [7]). Let us denote by LCR
+

and L2−CR+
the credit portfolio

loss computed by the CR+ and the 2-Stage CR+ respectively. From the definition of VaR

it is clear that showing VaRCR+

α ≤ VaR2−CR+

α is equivalent to proving that Pr(LCR
+
> l)≤

Pr(L2−CR+
> l) for a large positive value l. We will show further in (Section 2.2.3, Lemma

1) that proving Pr(LCR
+
> l) ≤ Pr(L2−CR+

> l) is equivalent to showing Pr(T̂CR+(γ) > q)≤
Pr(T̂2−CR+(γ) > q) for some specific value of q (which will be made precise later), where

T̂CR+(γ) and T̂2−CR+(γ) are the mean portfolio default rates (empirical means) for the CR+

and the 2-Stage CR+ respectively.

Thus, to prove VaRCR+

α ≤ VaR2−CR+

α , we need only show that Pr(T̂CR+(γ) > q)≤
Pr(T̂2−CR+(γ) > q). We observe that for a meaningful value of q, this condition is sufficient

to prove that VaR computed by CR+ is lower than that for 2-CR+. This meaningful value of

q is characterized for a class of credit portfolio which we term a “balanced” credit portfolio.

In fact, the original portfolios considered both in ([6]) and ([5]) are balanced. Hence, such

portfolios can be realistic. Moreover as an exercise in performing a stress test analysis on any

other type of credit portfolio, a credit risk manager can perturb it to this framework and

analyze accordingly.

We note that T̂CR+(γ) is PK distributed while T̂2−CR+(γ) is PM distributed. Via the

Gärtner–Ellis theorem (detailed in Section 2.2.4, Theorem 4), we are interested in deter-

mining the limiting behaviour as K → ∞ of (PK)∞K=1 on space (R, B(R)) in terms of a

(rate) function Λ∗CR+(·) for the CR+. Similarly we will determine the limiting behaviour as

M →∞ of (PM )∞M=1 on space (R, B(R)) in terms of a (rate) function Λ∗2−CR+(·) for 2-CR+.

Knowledge of Λ∗CR+(·) and Λ∗2−CR+(·) will help us compute and compare the probabilities

Pr(T̂CR+(γ) > q) and Pr(T̂2−CR+(γ) > q).

Thus, in this emerging paradigm of applying large deviations to credit risk analysis, we

compare the VaR numbers computed by CR+ and 2-CR+ credit risk models by computing

and comparing the rate of the tail decay of T̂CR+(γ) and T̂2−CR+(γ). This paves the way for

VaR comparison without making assumptions on the portfolio loss distribution. To the best

of our knowledge, no such comparison has been done before between any known competing

portfolio credit risk models; our approach is unique because it uses large deviations under-

standing of the mean portfolio default rate.

The paper is organized as follows. In the second section i.e Section 2.2.3, we briefly de-

scribe CR+ and 2-CR+ and formally introduce the terms T̂CR+(γ) and T̂2−CR+(γ). We then

27



connect the portfolio’s large deviations behaviour with large losses that will help initiate our

analysis. In the third section i.e. 2.2.4, via the Gärtner–Ellis theorem, we quantify and com-

pare the tail decay rate of T̂CR+(γ) and T̂2−CR+(γ). This is followed by a VaR performance

comparison of these credit risk models. The paper as usual ends with concluding remarks.

2.2.3 CreditRisk+ and 2-stage CreditRisk+

In this section, we very briefly describe the methodology by which the CR+ and the 2-

Stage CR+ compute the p.g.f. of the loss distribution. For details we refer the reader to the

(CreditRisk+ technical document, 1997), ([6]) and ([5]). We first briefly describe the structure

of the credit portfolio on which the CR+ is based. The same structure is valid for the 2-CR+

model.

The original credit portfolio:

A suitable base unit of currency ∆L is chosen. An obligor of a portfolio is denoted by a

number and there are a finite number of obligors O. Obligors are thus denoted from 1, ..., O.

In CR+, the adjusted exposure Ei of obligors i ∈ {1, ..., O} is replaced by νi = bEi∆Lc,
where b·c denotes the integer part of a real number, pi is the average default probability for

obligor i for the time horizon considered (typically 1 year) and Ni denotes default of obligor

i ∈ {1, ..., O}. Henceforth νi is the referred to as the exposure of obligor “i”. Therefore the

portfolio loss is represented by the integer random variable

L =

O∑
i=1

νiNi. (6)

γ is a (K × 1) vector consisting of gamma-distributed random variables that signify sec-

toral default rates where K is the number of sectors. Conditional on γ, the default vari-

ables Ni are assumed to be independent and Poisson-distributed with intensity Xi(γ), i.e.

Ni(γ) =d Poi(Xi(γ)). Technically, it is reasonable to assume the nonexistence of multiple

defaults because sequential defaults seldom occur in a short time. Hence without loss of gen-

erality, Ni,∈ {0, 1} i ∈ {1, ..., O} For details on this assumption refer to the (CreditRisk+

document, 1997).

CreditRisk+:

The standard CR+ model is a popular credit risk management model because of its

ability to analytically compute the portfolio loss distribution. This is in contrast to the other

credit risk models like Creditmetrics or KMV, which otherwise utilize computer-intensive

Monte Carlo-based simulations. In the standard CR+ model, the default rate of each sector
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is represented by a nonnegative gamma-distributed random variable γk=
dΓ( 1

σk
, σk) that sat-

isfies E[γk] = 1 ∀ k = 1, ...,K and covariance matrix Cov(γk, γl) = 0, ∀k, l = 1, ...,K.

For each obligor i ∈ {1, ..., O}, the CR+ framework assumes that the default rates of

the obligors depend on the sector default rates via the linear relationship

Xi(γ) = pi

K∑
k=1

gikγk, (7)

where Xi(γ) is the default rate of obligor i conditional on the sector default rates γ =

(γ1, ..., γK). The risk of each obligor is apportioned among a set of K sectors (industries) by

choosing gik ≥ 0 3
∑K

k=1 g
i
k = 1 for each i ∈ {1, ..., O}.

For the sake of completeness we provide here the expression for the p.g.f. of the loss

distribution computed by the CR+ denoted by (GCR
+

(·)).

GCR
+

(z) = exp(−
K∑
k=1

1

σk
log(1− σk

O∑
i=1

gikpi(z
νi − 1)).

We now introduce the terms “portfolio default rate” and “mean portfolio default rate” for

CR+. The portfolio default rate for CR+ is defined as

TCR+(γ) :=

O∑
i=1

Xi(γ) =

O∑
i=1

pi

K∑
k=1

gikγk

=
K∑
k=1

g̃kγk, (8)

where g̃k =
∑O

i=1 g
i
kpi ∀ k = 1, ...,K, while the mean portfolio default rate for CR+ is

T̂CR+(γ) :=
TCR+ (γ)

K .

2-stage CreditRisk+:

The 2-stage CR+ (2- CR+) model proposed recently by (Deshpande and Iyer, [5]) ex-

plains default risk at two levels. In the first level, as in CR+, the risk of each obligor is appor-

tioned to a common set of industry sectors using the parameters gik for each i ∈ {1, ..., O}.
In the second level the default rates of the industry sectors γk k = 1, ...,K are assumed to

depend linearly on a set of common independent risk factors Y1, ..., YM , i.e.

γk =
M∑
i=1

akiYi, (9)
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where Yi are independent gamma-distributed r.v.s with mean 1 and variance σ̃i,
∑M

i=1 aki =

1 ∀ k = 1, ...,K and 0 ≤ aki < 1. Since K ≥M , one can definitely better approximate γk (i.e.

with less residual error) if we regress γk with M = K macroeconomic random variables Yi.

The variable γk is now any general univariate distribution other than the gamma distribution

for each k and for the sake of comparison with CR+ is assumed to have variance σk. Also,

as γk for k ∈ {1, ,K}are regressed by a common set of Yi, they also will then be correlated

through this common set. For example, if γ1 is regressed by (Y1, Y2, Y3) and γ2 is regressed

by (Y1, Y3, Y4), then Cov(γ1, γ2) 6= 0 where Cov(·) is a covariance function. This is in sharp

contrast to the γks, k ∈ {1, ...,K} of CR+, which are independent non-identically distributed

random variables. The p.g.f. of the loss distribution computed by the 2-Stage CR+ is a

closed-form expression given as

G2−CR+
(z) = exp(−

M∑
i=1

− 1

σ̃i
log(1− σ̃i

K∑
k=1

aki

O∑
i=1

gikpi(z
νi − 1))).

See ([5]) for details. As they observed, the 2-Stage CR+ model is therefore an extended CR+

model that incorporates correlation amongst the sectoral default rates while still maintaining

the analytical tractability of its primitive, CR+. This feature makes 2-CR+ attractive for risk

managers to implement. The variables Yi can be obtained from a principal component analysis

of macro-economic variables that influence the sectoral default rates. A factor analysis based

on the observed default rate correlation matrix would suffice to obtain an estimate of aki.

Similarly to CR+, the portfolio default rate and its mean for the 2-CR+ model are

defined as follows. The portfolio default rate for 2-CR+ is

T2−CR+(γ) :=
K∑
k=1

g̃kγk =
K∑
k=1

g̃k

M∑
i=1

akiYi

=
M∑
i=1

giYi, (10)

where gi =
∑K

k=1 g̃kaki ∀ i = 1, ...,M , while the mean portfolio default rate for 2-CR+ is

T̂2−CR+(γ) :=
T2−CR+ (γ)

M .

Remark We make a choice of gamma distribution for γ and Y since it mainly allows us to

obtain an explicit expression for the probability generating function for the loss distribution.

Definition 2 (Notional credit portfolio) This is a counterpart of the original credit

portfolio except that the obligors have unit exposure, i.e. νi = 1 for each i ∈ {1, ..., O}.
We first show in the following lemma why the rare large behaviour of T̂CR+(γ) and

T̂2−CR+(γ) is instrumental in our understanding of a large loss in a notional credit portfolio.
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Lemma 1 Consider a notional credit portfolio. If K = M and Pr(T̂CR+(γ) > q) ≤
Pr(T̂2−CR+(γ) > q) for q large enough (to be determined later), then VaRCR+

α ≤ VaR2−CR+

α

for every α ∈(0,1).

Proof. From the definition of a notional credit portfolio, the portfolio loss is

L =
O∑
i=1

νiNi =
O∑
i=1

Ni = Ñ ,

where Ñ =
∑O

i=1Ni is thus a sum of independent Poisson-distributed random variables. As

(Ni(γ) =d Poi(Xi(γ))., hence from (8) and (2), by the Poisson law of small numbers, for CR+

(Ñ(γ) =d Poi(TCR+(γ)) and (Ñ(γ) =d Poi(T2−CR+(γ)) for 2-CR+. The probability that the

portfolio is subject to more than k defaults in CR+ is given by the simple formula

PrCR
+

(Ñ(γ) > k) = 1−
k∑
j=0

e−TCR+ (γ)(TCR+(γ))j

j!

= 1− e−KT̂CR+ (γ)
k∑
j=0

(KT̂CR+(γ))
j

j!

Similarly for 2-CR+ and assuming K = M we have

Pr2−CR+
(Ñ(γ) > k) = 1− e−MT̂2−CR+ (γ)

k∑
j=0

(MT̂2−CR+(γ))
j

j!

= 1− e−KT̂2−CR+ (γ)
k∑
j=0

(KT̂2−CR+(γ))
j

j!
.

We use ≤D to signify first-order stochastic dominance. By L’Hôpital’s rule, for some r > 0 and

x ∈ R+, erx grows faster than the power function. Hence for some fixed number of defaults

k, T̂CR+(γ) ≤D T̂2−CR+(γ) iff PrCR
+

(Ñ(γ) > k) ≤ Pr2−CR+
(Ñ(γ) > k) is true. Thus, as

the loss variable L is directly related to the number of defaults Ñ , we have Pr(LCR
+
> l) ≤

Pr(L2−CR+
> l) for large enough l, which by the definition of VaR then implies VaRCR+

α ≤
VaR2−CR+

α .

To utilize Lemma 1, we need to determine a meaningful value of q ∈ R+. We also need

to consider certain assumptions on the structure of the credit portfolio. The following Lemma

will highlight this structure and explains its necessity.

Lemma 2 For a credit portfolio, if
∑O

i=1 g
i
kpi = Gp∗ ∀k ∈ {1, ...K}, then T̂CR+(γ) converges
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to Gp∗ in probability as K →∞, i.e. for each δ > 0, we have

lim
K→∞

P
{∣∣∣T̂CR+(γ)−Gp∗

∣∣∣ ≥ δ} = 0.

Additionally, if K = M , and
∑K

k=1 aki = ai = a for each i ∈ {1, ...,M}, then T̂2−CR+(γ)

converges to Gp∗ in probability as M →∞, i.e. for each δ > 0, we have

lim
M→∞

P
{∣∣∣T̂2−CR+(γ)−Gp∗

∣∣∣ ≥ δ} = 0.

Proof. As the γk in CR+ are independent, gamma-distributed random variables with mean 1,

we have E
[
TCR+ (γ)

K

]
= E

[∑K
k=1

∑O
i=1 g

i
kpiγk

K

]
. Thus, to meaningfully quantify the convergence

of T̂CR+(γ) we select
∑O

i=1 g
i
kpi := Gp∗ ∀k ∈ {1, ...K} leading to E

[
TCR+ (γ)

K

]
= Gp∗ for some

positive constants G and p∗. Therefore

E

[(
T̂CR+(γ)−Gp∗

)2
]

=
G2p∗2

K2
E

K∑
k=1

[(γk − 1)2]

=
G2p∗

2

K2

K∑
k=1

σk.

It is thus easy to see that T̂CR+(γ) converges to Gp∗ in probability for each δ > 0. Similarly,

when K = M and
∑K

k=1 aki = a we have a = 1. This is because as
∑M

i=1 aki = 1, switching

summations we have
∑M

i=1

∑K
k=1 aki = K. Hence

∑M
i=1 a = K, therefore aM = K implies

a = 1. Following similar lines of proof as above we can easily conclude that T̂2−CR+(γ)
p→ Gp∗

as M →∞ for each δ > 0

From Lemma 2 above we have Pr(T̂CR+(γ) > q)=Pr(
TCR+ (γ)

K > q) for q ∈ (Gp∗,∞),

which constitutes the rare event probability for CR+ while Pr(T̂2−CR+(γ) > q)=Pr(
T2−CR+ (γ)

M >

q) for q ∈ (Gp∗,∞) constitutes the rare event probability for 2-CR+.

To summarize, from Lemma 1 and Lemma 2 we conclude that we can make meaningful

and definitive comparison of the two credit risk models using the theory of large deviations,

for a credit risk portfolio with the appropriate structure. Such a credit portfolio is termed a

“balanced” credit portfolio and is formally defined as follows.

Definition 3 (Balanced credit portfolio) A balanced credit portfolio (either notional or

nonnotional) is one in which K = M ,
∑O

i=1 g
i
kpi = Gp∗ and

∑K
k=1 aki = ai = a ∀ k ∈ {1, ...K}

and ∀ i ∈ {1, ...,M}.
We mention here why we have used the word balanced. The condition K = M obvi-

ously implies that the number of risk sectors is equal to the number of macroeconomic risk
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drivers. The financial interpretation of the condition
∑O

i=1 g
i
kpi = Gp∗ is that one provides

equal weights Gp∗ to each sector k, k ∈ {1, ...,K} in the portfolio. Likewise, the condition∑K
k=1 aki = ai = a implies that each macroeconomic variable Yi ∀i ∈ {1, ...,M} is given equal

significance in the portfolio risk computations. Note that from equation (9) and switching

summations we have

K∑
k=1

σk =
K∑
k=1

M∑
i=1

aki
2σ̃i ≤

M∑
i=1

K∑
k=1

akiσ̃i =
M∑
i=1

aσ̃i ≤
M∑
i=1

σ̃i. (11)

Remark If we assume that the loss L has a Gaussian distribution, as is the case in the

Markovitz portfolio theory, then equation (11) to show that VaRCR+

α ≤ VaR2−CR+

α for every

α ∈(0,1). However, as we do not know the portfolio loss distribution, we hence need to com-

pute the rare event probability of the portfolio default rate exceeding the value q.

We summarise below the steps required to compare VaR numbers computed using CR+ and

2-CR+.

Methodology for comparing VaRs computed by the CR+ and the 2-Stage CR+:

1. We start with the original/nonnotional balanced credit portfolio.

2. We convert the original credit portfolio to a notional credit portfolio by reassigning the

obligor exposure values to 1, i.e. νi = 1∀i ∈ {1, ..., O}.
3. We then compare the VaR numbers computed by CR+ and 2-CR+ for this notional credit

portfolio by computing the rare event probabilities P (T̂CR+(γ) > q) and P (T̂2−CR+(γ) > q)

for q ∈ (Gp∗,∞), utilising the Gärtner–Ellis theorem in large deviations theory.

4. We then extrapolate the inference made in step 3 back to the original credit portfolio.

Remark All the subsequent calculations shown in Section 2.2.4 are also similar for the

2-stage CR+ model, except that σk is replaced by σ̃i, TCR+(γ) is replaced by T2−CR+(γ) and

T̂CR+(γ) is replaced by T̂2−CR+(γ).

2.2.4 Analysis of the problem

We note from Lemma 2 that T̂CR+(γ)
p→ Gp∗ as K →∞. We thus are interested in the large

deviation asymptotics of P (T̂CR+(γ) > q) for q ∈ (Gp∗,∞). As usual, we wish to do this by

identifying the rate of growth of the logarithmic moment-generating function of T̂CR+(γ). We

want to find a sequence {AK}K∈N such that AK ↗ ∞ as K → ∞ and such that for each
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λ ∈ R,

ΛCR+(λ) := lim
K→∞

1

AK
logE

[
exp

{
λAK T̂CR+(γ)

}]
(12)

is an appropriately nontrivial function of λ. We then should compute the Legendre–Fenchel

transform of ΛCR+(λ), i.e.

Λ∗CR+(q)(λ) = sup
λ∈R
{λq − ΛCR+(λ)}. (13)

In this spirit we first arrive at an expression for the logarithmic moment-generating

function. Subsequently we generate an expression for the rate function by proving the appli-

cability of the Gärtner–Ellis theorem.

Lemma 3 Assume that AK grows at the rate of K2 as K → ∞ i.e. limK→∞
AK
K2 = 1

and
∑∞

i=1 σ̃i < ∞. The logarithmic moment-generating function ΛCR+(·) for any λ ∈ R is

given by

ΛCR+(λ) = Gλp∗ +
G2

2
(λp∗)2

∞∑
k=1

σk.

Proof. We now proceed with calculating ΛCR+(λ).

ΛCR+(λ) = lim
K→∞

1

AK
logE

[
exp

(
λAK

TCR+(γ)

K

)]
= lim

K→∞

1

AK
logE

[
exp

{(
λGp∗AK

K

) K∑
k=1

γk

}]

= lim
K→∞

1

AK
log

K∏
k=1

E

[
exp

{(
λGp∗AKγk

K

)}]

= lim
K→∞

1

AK

K∑
k=1

−1

σk
log

(
1−

(
λGp∗AK

K

)
σk

)

= lim
K→∞

K∑
k=1

−1

σk

[
−
(
λGp∗

K

)
σk −

1

2

(
λGp∗

K

)2

AKσ
2
k − ...

]

By the assumption made on the growth rate of AK , and the finiteness condition
∑∞

i=1 σ̃i <∞
coupled with (11),

ΛCR+(λ) = λGp∗ +
G2(λp∗)2

2

∞∑
k=1

σk.
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We now describe the Gärtner–Ellis theorem and then show that it gives a genuine limit, and

in our case, not just lower and upper bounds for the closed and open sets.

Theorem 4 (Gärtner–Ellis theorem) (PK)∞K=1 satisfies the large deviations princi-

ple with rate function Λ∗CR+ given by (13) with ΛCR+ described in (12). In other words:

• For every s ≥ 0 and for q ∈ (Gp∗,∞),

{q ∈ R : Λ∗CR+(q) ≤ s} ⊂⊂ R;

• For every closed set F ⊂ R,

lim sup
K→∞

1

AK
logPK(F ) ≤ − inf

q∈F
Λ∗CR+(q);

• and for every open set O ⊂ R,

lim inf
K→∞

1

AK
logPK(O) ≥ − inf

q∈O
Λ∗CR+(q).

Proof. Based on Theorem 2.3.6 in Dembo and Zeitouni ([4]), we need to check whether

ΛCR+(λ) is convex in C1(R) and Λ
′

CR+(0) = p∗G. As ΛCR+(λ) is quadratic in λ, the exis-

tence of the first and second derivative of Λ(·), viz. (Λ
′

CR+ and Λ
′′

CR+), can easily be shown.

Moreover as Λ
′

CR+(λ) is linear in λ, we have Λ
′

CR+(λ) ∈ C1(R). As Λ
′′

CR+ = p∗2G2
∑∞

k=1 σk,

which is strictly positive, ΛCR+(λ) is convex. From a simple calculation of Λ
′

CR+ it follows

that Λ
′

CR+(0) = p∗G.

The rate function can now be explicitly calculated. For CR+ we have Λ∗CR+(q) =

supλ∈R[λq − ΛCR+(λ)] where, ΛCR+(λ) = λp∗G + (λp∗)2

2 G2
∑∞

k=1 σk. The function inside

the supremum is concave and has a unique optimum λ∗ given by simple calculus. It is λ∗ =
q−p∗G

p∗G2
∑∞
k=1 σk

. Substituting this in the objective function we find Λ∗CR+(q) = (q−Gp∗)2

2(Gp∗)2∑∞
k=1 σk

for

q ∈ (Gp∗,∞). Similarly, since Yi is Gamma distributed, i.e. Γ( 1
σ̃i
, σ̃i) and from (2.4) we will

obtain the rate function as Λ∗2−CR+(q) = (q−Gp∗)2

2G2p∗2
∑∞
i=1 σ̃i

for q ∈ (Gp∗,∞). One can easily

observe that Λ∗CR+(Gp∗) = 0 and Λ∗CR+(q) > 0 for q 6= Gp∗. Secondly, Λ∗CR+(q) is increas-

ing on q ∈(Gp∗,∞) and decreasing on (−∞, Gp∗). Analogous observations can be made for

Λ∗2−CR+(q). We next have the following corollary.

Corollary 5 Fix q such that q ∈ (Gp∗,∞). Then

lim
K→∞

1

AK
log
{
P
(
T̂CR+(γ)

)
> q
}

= −Λ∗CR+(q).
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Proof. This is a straightforward consequence of the fact that Λ∗CR+ is increasing on (Gp∗,∞)

and is continuous on R.

We now present an important result in our analysis that compares the VaR numbers

computed by the CR+ and the 2-Stage CR+ for both the notional as well as its original

balanced class of a credit portfolio.

Lemma 6 For the notional balanced credit portfolio, the Value at Risk computed by CR+

is less than or equal to the one computed by 2-CR+, i.e. VaRCR+

α ≤ VaR2−CR+

α . The same

conclusion holds true for the original balanced credit portfolio.

Proof.

• Consider the notional balanced credit portfolio. From the definition, PK(·) tends to zero

exponentially rapidly in K2, i.e. Pr
(
T̂CR+(γ) > q

)
� e−K

2Λ∗
CR+ (q), while PM (·) tends to zero

exponentially rapidly in M2, i.e. Pr
(
T̂2−CR+(γ) > q

)
� e−M

2Λ∗
2−CR+ (q)

for q ∈ (Gp∗,∞). As∑∞
k=1 σk ≤

∑∞
i=1 σ̃i, from the formulas for Λ∗CR+(q) and Λ∗2−CR+(q), Λ∗CR+(q) ≥ Λ∗2−CR+(q).

This implies that Pr
(
T̂CR+(γ) > q

)
≤ Pr

(
T̂2−CR+(γ) > q

)
. Hence from Lemma 1 VaRCR+

α

≤ VaR2−CR+

α .

• Original or non-notional balanced credit portfolio. The VaR computed by CR+ and 2-CR+

depends on the values of pi, νi, gk
i, σk and σ̃j for each i ∈ {1, ..., O}, k ∈ {1, ...,K} and

j ∈ {1, ...,M}, of which pi, g
i
k and νi are obligor specific. Since both CR+ and 2-CR+ operate

on the same set of obligors, the variables that really affect the VaR are σk and σ̃j . In brief,

both credit risk models operate on the same set of obligors i ∈ {1, ..., O} whose exposure

values νi just scale the portfolio loss through expression (6). Thus as VaRCR+

α ≤ VaR2−CR+

α

is valid for the notional balanced credit portfolio, the same conclusion also holds true for the

non-notional balanced credit portfolio with only the VaR values being rescaled in the latter

while the order is left unchanged, i.e. VaRCR+

α ≤ VaR2−CR+

α .

Remark We have made a reference earlier of utilizing large deviations technique to un-

derstand stress-testing phenomenon. With the credit risk models discussed here, one could

design a stress-tested scenario by assigning uniform maximum exposure and uniform maxi-

mum default probability to all the obligors. Portfolio II given below provides insights into how

stress-testing of Portfolio I (original portfolio) can be carried out. In that portfolio, based on

our need to assign uniform obligor exposure we had assigned an exposure of 1 unit to each

obligor. In similar fashion, for stress-testing purpose, we could otherwise uniformly assign the

highest value of exposure to each obligor and as well uniformly assign highest default proba-

bility to them. This would result in one example of the stress tested scenario for our portfolio.

In the values used while describing portfolio (PII) here, we notice that for the same values of∑12
k=1 σk and

∑12
i=1 σ̃i as in portfolio (PI), our portfolio (PII) produces higher value of VaR.

This is an indication of how uniformity of values either for the portfolio exposure or default
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probabilities or both can result in thicker tail loss distributions and higher values of VaR- a

scenario typical of stress-testing.

In support of Lemma 6, we now provide a numerical investigation as to why VaRCR+

α

≤ VaR2−CR+

α for α= 0.1, 0.05, 0.01.

2.2.5 Numerical results

We now consider the class of portfolio described above and compute the VaR numbers using

the CR+ and the 2-CR+ models. In this example Gp∗ = 6.5, a = 1 and we compute VaR for

α = 0.1, α = 0.05 and α = 0.01. We assume that limK→∞
∑K

k=1 σk converges to
∑12

k=1 σk

and limM→∞
∑M

m=1 σ̃m converges to
∑12

m=1 σ̃m.

Portfolio (PI). The test portfolio is made up of K = M = 12 sectors, each containing

3000 obligors. Obligors in sectors 3–10 belong in equal parts to one of three classes with

adjusted exposures E1 = 1, E2 = 2.5 and E3 = 5 monetary units and their respective default

probabilities are p1 = 0.55%, p2 = 0.08%, p3 = 0.02%. For the three obligor classes in sectors

1, 2, 11 and 12, we assume the same default rates but the exposures are twice as large (

E1 = 2, E2 = 5 and E3 = 10). We consider the risk factor variances σ̃i for all i ∈ {1, ...,M}
to be sampled from a notional U(·, ·) distribution. For the 2-stage model, the correlation

between sector default rates would in principle be the outcome of dependence on common set

of risk factors, i.e. γk = 0.7Yk + 0.3Yk+1 for k ∈ {1, ..., 11} while γ12 = 0.7Y12 + 0.3Y1. VaR

computations on this non-notional portfolio for the three cases yields the following results.
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Table 2.1: VaR99.0 comparison for PI

σ̃
∑K

k σk
∑M

i σ̃i VaR99-CR+ VaR99-2 Stage CR+

σ̃i ∼ U(0.1, 0.25) 1.2306 2.1218 0.1427 0.1476
σ̃i ∼ U(0.26, 0.75) 3.9033 6.7298 0.1573 0.1710
σ̃i ∼ U(0.76, 0.95) 5.988 10.4201 0.1669 0.1839

Table 2.2: VaR99.5 comparison for PI

σ̃
∑K

k σk
∑M

i σ̃i VaR99.5-CR+ VaR99.5-2 Stage CR+

σ̃i ∼ U(0.1, 0.25) 1.2306 2.1218 0.1476 0.1532
σ̃i ∼ U(0.26, 0.75) 3.9033 6.7298 0.1653 0.1806
σ̃i ∼ U(0.76, 0.95) 5.988 10.4201 0.1758 0.1960

Table 2.3: VaR99.9 comparison for PI

σ̃
∑K

k σk
∑M

i σ̃i VaR99.9-CR+ VaR99.9-2 Stage CR+

σ̃i ∼ U(0.1, 0.25) 1.2306 2.1218 0.1597 0.1669
σ̃i ∼ U(0.26, 0.75) 3.9033 6.7298 0.1823 0.2040
σ̃i ∼ U(0.76, 0.95) 5.988 10.4201 0.1960 0.2226
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In the next example we construct a notional portfolio counterpart (PII) from the realistic

portfolio (PI).

Portfolio (PII). The test portfolio is again made up of K = M = 12 sectors, each containing

3000 obligors. Obligors in sectors 1–12 belong in equal parts to one of three classes with

adjusted exposures E1 = 1, E2 = 1 and E3 = 1 monetary units and the respective default

probabilities are p1 = 0.55%, p2 = 0.08%, p3 = 0.02%. We use the same sector default rate

variances as for (PI). For the 2-stage model, as in (PI), the correlation between sector default

rates would in principle be the outcome of their dependence on a common set of risk factors,

i.e. γk = 0.7Yk + 0.3Yk+1 for k ∈ {1, ..., 11} while γ12 = 0.7Y12 + 0.3Y1. VaR computations on

this notional portfolio for the three cases gave the following results.

Table 2.4: VaR99 comparison for PII

σ̃
∑K

k σk
∑M

i σ̃i VaR99-CR+ VaR99-2 Stage CR+

σ̃i ∼ U(0.1, 0.25) 1.2306 2.1218 0.2800 0.3083
σ̃i ∼ U(0.26, 0.75) 3.9033 6.7298 0.2972 0.3583
σ̃i ∼ U(0.76, 0.95) 5.988 10.4201 0.3194 0.3889

Table 2.5: VaR99.5 comparison for PII

σ̃
∑K

k σk
∑M

i σ̃i VaR99.5-CR+ VaR99.5-2 Stage CR+

σ̃i ∼ U(0.1, 0.25) 1.2306 2.1218 0.2861 0.3194
σ̃i ∼ U(0.26, 0.75) 3.9033 6.7298 0.3056 0.3778
σ̃i ∼ U(0.76, 0.95) 5.988 10.4201 0.3306 0.4111
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Table 2.6: VaR99.9 comparison for PII

σ̃
∑K

k σk
∑M

i σ̃i VaR99.9-CR+ VaR99.9-2 Stage CR+

σ̃i ∼ U(0.1, 0.25) 1.2306 2.1218 0.2901 0.3417
σ̃i ∼ U(0.26, 0.75) 3.9033 6.7298 0.3278 0.4194
σ̃i ∼ U(0.76, 0.95) 5.988 10.4201 0.3583 0.4639

The following observations are based on the results tabulated above.

Observations

From the above computations, we observe that the VaR numbers in (PI) are scaled

down from (PII) with the VaR order preserved, i.e. VaRCR+ ≤ VaR2−CR+
. This confirms

the conclusion we drew from Lemma 6. Note from the first observation that in all the above

computations,
∑K

k=1 σk=1.2306 while
∑M

i=1 σ̃i = 2.1218 for K = M = 12. As this difference

between
∑K

k=1 σk and
∑M

i=1 σ̃i is relatively small, the VaR results were close enough since the

tail decay rates of the portfolio default rate process for both CR+ and 2-CR+ were nearly the

same. The difference in the VaR numbers computed by the CR+ and the 2-CR+ naturally

increases as the difference between
∑K

k=1 σk and
∑M

i=1 σ̃i increases. This phenomenon can be

observed in the second and third observations of all the above tables.

2.2.6 Conclusion

We have provided a methodology for comparing the VaR values computed by the 2-stage

CR+ model and its primitive, the CR+ model, using the theory of large deviations. We have

shown that for the particular class of credit portfolio called a balanced portfolio, the VaRs

produced by the 2-CR+ model are higher than those computed by the CR+ model.
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Chapter 3

On the existence of an asymptotic

options price in a Markov

modulated economy.

3.1 Article “ On the existence of an asymptotic options price

in a Markov modulated economy”-A. Deshpande and T.K.

Siu

3.1.1 Abstract

Asymptotic analysis in option pricing was introduced in Fouque et al. [8]. An asymptotic

analysis for option valuation in a Markovian, regime-switching, financial market has been

recently proposed by Basu and Ghosh [1]. In such market, the key model parameters are

modulated by a continuous-time, finite-state, Markov chain. For an asymptotic analysis,

they discussed two variations of the chain, namely, a slow chain and a fast chain. They

observed that there exists an asymptotic option price for the slow chain case while argued

that such price may not exist for the fast chain case. Since the Markov modulated market

is incomplete there are many equivalent martingale measures if they exist. This results in a

range of option prices. In this note, we characterize the range of option prices for the slow

42



and fast chain. More precisely we determine the range of option prices for the slow chain case.

Based on the premise that a European call option price in the fast chain case is lower than

the corresponding limiting price, we prove that for the fast chain case there exists no range

of option prices. We thereby positively conclude that the observation of Basu and Ghosh [1]

with regards to the existence of an asymptotic option price is indeed true.

Keywords: Regime Switching Market; Asymptotic Option Pricing.

3.1.2 Synopsis

Markovian regime-switching models have had a long history in economics. Quandt [15] and

Goldfeld and Quandt [9] adopted two-state, regime-switching, regression models to model and

analyze nonlinear and non-stationary economic data. Tong [17], [18], [20] and Tong and Lim

[19] pioneered the idea of regime switching in nonlinear time series analysis and introduced

one of the oldest nonlinear time series models, namely, the class of threshold time series mod-

els. Hamilton [11] popularized the use of Markovian regime-switching models in economics

and econometrics. Since then, much attention has been paid to examining the empirical

performance of Markovian regime-switching models in fitting economic and financial time

series. Numerous empirical studies support the use of Markovian regime-switching models

in economics, finance and actuarial science. Indeed, Markovian regime-switching models pro-

vide a natural and convenient way to incorporate structural changes in economic conditions

when modeling asset prices movements. They can describe a number of important “stylised”

facts of economic and financial time series, such as the heavy-tailedness of assets’ returns,

time-varying conditional volatility, volatility clustering, regime switchings, nonlinearity and

nonstationarity.

Recently, attention has turned to option valuation under regime-switching models. Some

works on this topic include Guo [10], Buffington and Elliott [3], Elliott et al. [7], Siu [16],

Deshpande and Ghosh [6]and Basu and Ghosh [1], Deshpande [4], and amongst others. The

main difficulty of option valuation in a Markovian regime-switching model is that the market

is incomplete, and hence, there is more than one equivalent martingale measure. Guo [10]

addressed this problem by completing the market with a set of fictitious assets. Elliott et al. [7]

adopted the Esscher transform, a time-honored tool in actuarial science, to pick an equivalent

martingale measure for valuation. Deshpande and Ghosh [6] addressed the valuation problem

from the perspective of risk minimization. In a recent paper by Basu and Ghosh [1], the

concept and existence of asymptotic option prices in Markovian regime-switching diffusion
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markets were discussed from the perspective of partial differential equations. The authors

introduced the asymptotic option prices by fast and slow variations of the chain. They found

that an asymptotic option price exists for a slow chain, but observed that it may not exist

for a fast chain.

In this paper, we consider an asymptotic analysis for option valuation in a Markovian,

regime-switching, financial market by determining the range of option prices in an incomplete

market. Here we consider the situation where the modulating Markov chain is observable

and interpret the states of the chain as proxies of the levels of some observable economic

factors, such as gross domestic product, retail price index and sovereign credit ratings, etc.

The introduction of the Markov chain randomness and the Brownian motion randomness in

a single equation results in market incompleteness. For the asymptotic analysis of an option

price, we consider two variations of the chain, namely, a slow chain and a fast chain. From

the deduction of the range of available option prices, we show the existence of an asymptotic

option price for a slow chain and the non-existence of such price for a fast chain. This provides

a theoretical justification for the key result in the asymptotic analysis for option pricing in a

Markovian, regime-switching, financial market obtained in Basu and Ghosh [1].

The paper is structured as follows. The next section presents the model dynamics. In

Section 3.1.4, we discuss the concepts of asymptotic option prices in a Markovian regime-

switching market. Section 3.1.5 develops the main approach in our current paper and estab-

lishes, using the range of option prices, the existence of an asymptotic option price for a slow

chain and the non-existence of an asymptotic option price for a fast chain. The final section

gives some concluding remarks.

3.1.3 The Model Dynamics

We consider a simplified continuous-time financial market consisting of two primitive secu-

rities, namely, a (locally) risk-free bond and a risky share. These securities can be traded

continuously over time in a finite-time horizon T := [0, T ], where T <∞. As usual, we sup-

pose that there are no transaction costs and taxes, that any fractional units of the securities

can be traded, and that the borrowing and lending rates are the same. To describe uncer-

tainty, we consider a complete probability space (Ω,F ,P), where P is a real-world probability

measure.
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Let θ := {θ(t)|t ∈ T } be a continuous-time, finite-state, Markov chain on the probability

space (Ω,F ,P) with state space E := {e1, e2, · · · , eM} ⊂ <M , where the jth-component of

ei is the Kronecker delta δij for each i, j = 1, 2, · · · ,M . The state space E is called the

canonical state space for the chain θ. It has been introduced in Elliott et al. [6] for the

purpose of mathematical convenience. We suppose that the Markov chain is homogeneous

and irreducible. To specify the probability law of the chain, we define a rate matrix, or

an intensity matrix, Λ := [λij ]i,j=1,2,··· ,M , where λij is the constant transition intensity of

the chain θ from state ei to state ej . Note that for each i, j = 1, 2, · · · ,M with i 6= j,∑M
j=1 λij = 0 and λij ≥ 0, so λii ≤ 0. Let Fθ := {Fθ(t)|t ∈ T } be the right-continuous,

P-complete, filtration generated by the values of the chain θ. Then with the canonical state

space of the chain, Elliott et al. [6] obtained the following semimartingale dynamics for the

chain:

θ(t) = θ(0) +

∫ t

0
Λθ(u)du+ V(t) , t ∈ T .

Here V := {V(t)|t ∈ T } is an <M -valued, square-integrable, (Fθ,P)-martingale.

For each t ∈ T , let r(t,θ(t)) be the, (locally), risk-free rate of interest of the bond at

time t. We suppose that r(t,θ(t)) is modulated by the chain θ as:

r(t,θ(t)) = 〈r(t),θ(t)〉 .

Here r(t) := (r1(t), r2(t), · · · , rM (t))′ ∈ <M and ri(t) > 0 for each i = 1, 2, · · · ,M and each

t ∈ T ; ri(t) is the interest rate when θ(t) = ei; the scalar product 〈·, ·〉 selects the component

of the vector r(t) of interest rates in force according to the state of the Markov chain θ(t) at

the current time t.

Then the price process of the, (locally), risk-free bond evolves over time as:

B(t) = exp

(∫ t

0
r(u,θ(u))du

)
, t ∈ T , B(0) = 1 .

For each t ∈ T , let µ(t,θ(t)) and σ(t,θ(t)) be the appreciation rate and the volatility of

the risky share price at time t, respectively. Similarly, we suppose that the chain θ modulates

µ(t,θ(t)) and σ(t,θ(t)) as:

µ(t,θ(t)) = 〈µ(t),θ(t)〉 , σ(t,θ(t)) = 〈σ(t),θ(t)〉 .
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Here µ(t) := (µ1(t), µ2(t), · · · , µM (t))′ ∈ <M and σ(t) := (σ1(t), σ2(t), · · · , σM (t))′ ∈ <M ,

respectively; for each i = 1, 2, · · · ,M , µi(t) and σi(t) are the appreciation rate and the

volatility of the risky share when θ(t) = ei; µi(t) > ri(t) and σi(t) > 0.

Let W := {W (t)|t ∈ T } be the standard Brownian motion on (Ω,F ,P) with respect

to the right-continuous, P-completion of its natural filtration FW := {FW (t)|t ∈ T }. We

assume that µi(t), ri(t) and σi(t) are bounded for each i = 1, 2, · · · ,M and t ∈ T . For each

t ∈ T , let

F(t) := FW (t) ∨ Fθ(t) ∨N .

Here A ∨ B is the minimal σ-algebra containing both the σ-algebras A and B; N is the

collection of all P-null subsets of F . Write F := {F(t)|t ∈ T }.

Then we suppose that under P, the evolution of the share price process X := {X(t)|t ∈
T } over time is governed by the following Markovian, regime-switching, geometric Brownian

motion:

dX(t) = µ(t,θ(t))X(t)dt+ σ(t,θ(t))X(t)dW (t) , X(0) = x0 > 0 .

It is known that the Markovian, regime-switching, market is, in general, incomplete. Conse-

quently, there is more than one equivalent martingale measure for valuation. Here we adopt

either the Risk Minimizing options pricing theory as like in Deshpande and Ghosh [6] or an

actuarial approach as like the regime-switching Esscher transform proposed in Elliott et al.

[7] to pick an equivalent martingale measure. It was shown in Deshpande and Ghosh [6] and

Elliott et al. [7] that under an EMM, say Q, the share price process follows the dynamics:

dX(t) = r(t,θ(t))X(t)dt+ σ(t,θ(t))X(t)dWQ(t) ,

where WQ := {WQ(t)|t ∈ T } defined by:

W ε(t) = WQ(t) := W (t)−
∫ t

0

(
r(u,θ(u))− µ(u,θ(u))

σ(u,θ(u))

)
du ,

is an (F,Q)-standard Brownian motion. To simplify our discussion, we assume that the Brow-

nian motion WQ and the chain θ are independent under Q. It is not our focus to discuss

the selection of an equivalent martingale measure here. For a discussion on this issue, inter-

ested readers may refer to Deshpande and Ghosh [6] and Elliott et al. [7]. We can represent

the Markov chain as a stochastic integral with respect to a Poisson random measure. For
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i, j ∈ X = {1, 2, ...,M}, let ∆i,j be consecutive (w.r.t. to lexicographic ordering on X × X )

left closed right open intervals of the real line, each having a length λi,j . By embedding X
into RM , define a function h̄ : X × R→ RM by,

h̄(i, z) =

{
j − i if z ∈ ∆ij(y)

0 otherwise

Then,

dX(t) =

∫
R
h̄(X(t−), z)p(dt, dz)

where p(dt, dz) is a Poisson random measure with intensity dt × m(dz), where m(dz) is

the Lebesgue measure on R; p(·, ·) and W (·) are independent and where p̃(dt, dz) is the

compensated random measure associated with the chain.

3.1.4 Asymptotic Option Prices

In the case of a Markovian regime-switching model, the main focus of an asymptotic analysis

of option pricing is to study the behavior of an option price when the transition intensity

of the modulating Markov chain becomes either very small or very large. The mathematical

formulation of the analysis is given as follows.

For each ε > 0, let θε := {θε(t)|t ∈ T } be a “perturbation” of the original continuous-

time Markov chain θ associated with ε so that the transition intensities λεij ’s of θε are defined

by those of θ as follows:

λεij := ελij , i, j = 1, 2, · · · ,M .

Then it is easy to see that for each i, j = 1, 2, · · · ,M with i 6= j,
∑M

j=1 λ
ε
ij = 0 and λεij ≥ 0.

For each ε ≥ 0, let Fε := {F ε(t)|t ∈ T } be the right-continuous, P-complete, natural

filtration generated by the perturbed chain θε := {θε(t)|t ∈ T }. For each t ∈ T , let

Gε(t) := FW (t) ∨ F ε(t) ∨N .

Write Gε := {Gε(t)|t ∈ T }.
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Consider, for each ε ≥ 0, the following Gε-adapted process Λε := {Λε(t)|t ∈ T }:

Λε(t) := exp

(
− 1

2

∫ t

0
η2(u,θε(u))du−

∫ t

0
η(u,θε(u))dW (u)

)
,

where

η(t,θε(t)) :=
µ(u,θε(u))− r(u,θε(u))

σ(u,θε(u))
.

Note that {η(t,θε(t))|t ∈ T } is bounded, so the Novikov’s condition is satisfied. Consequently,

Λε is an (Gε,P)-martingale. Then for each ε ≥ 0, we define probability measure Qε ∼ P on

Gε(T ) by putting:

dQε

dP

∣∣∣∣
Gε(T )

:= Λε(T ) .

By a version of Girsanov’s theorem, the process

WQ
ε
(t) := W (t) +

∫ t

0
η(u,θε(u))du , t ∈ T ,

is an (Gε,Qε)-standard Brownian motion.

Let Xε := {Xε(t)|t ∈ T } be the “perturbed” share price process associated with the

“perturbed” modulating Markov chain θε. Then, under Qε, the price process of the share is

governed by:

dXε(t) = r(t,θε(t))Xε(t)dt+ σ(t,θε(t))Xε(t)dWQ
ε
(t) .

Hence, for each ε ≥ 0, Qε is an equivalent martingale measure. Note also that under Qε,
WQ

ε
and θε are stochastically independent.

It is known that for each i = 1, 2, · · · ,M , the sojourn time of θε in state ei is exponen-

tially distributed with rate |λεii|. When ε becomes very small, |λεii| is relatively small compared

to µi for each i = 1, 2, · · · ,M . Consequently, the chain θε moves slowly compared with that

of the perturbed share price process Xε. In this case, the chain θε is said to be a slow chain.

Remark We note an economic interpretation of slow and fast chain . As ε goes to zero,

for the slow chain case, the share price movement is more volatile. This is un-usual since

correspondingly the economy is not switching rapidly. Likewise for the fast chain case, as ε
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gets smaller , the share price is less volatile even though the economy fluctuates rapidly.

Consider now a standard European call option with strike price K and maturity at time T .

Then for the slow chain case, the payoff of the call option at maturity T is given by:

φε := (Xε(T )−K)+ .

Write, for each i = 1, 2, · · · ,M , φε(t, x, i) for the value of the call option at time t given that

Xε(t) = x and θε(t) = ei. For each i = 1, 2, · · · ,M , we define the following generator, or

partial differential operator:

Li := r(t, i)x
∂

∂x
+

1

2
σ2(i, t)x2 ∂

2

∂x2
.

For the slow chain it is easy to check that φε(t, x, i), i = 1, 2, · · · ,M , satisfy the following

system of coupled partial differential equations:

(
∂

∂t
+ Li

)
[φε(t, x, i)] +

M∑
j=1

λεijφ
ε(t, x, i) = 0 , (1)

with terminal condition φε(T, x, i) = (x−K)+.

It can be shown, using the same arguments as in Ladyzhenskaya et al. [12], that the

above Cauchy problem (1) has a unique smooth solution given by a family of smooth func-

tions {φε(t, x, i)|i = 1, 2, · · · ,M} ⊂ C1,2(T × <) having at most polynomial growth, where

C1,2(T ×<) is the space of functions which are continuously differentiable in t ∈ T and twice

continuously differentiable x ∈ <. It has also been shown in Deshpande and Ghosh [6] that

the unique solution {φε(t, x, i)|i = 1, 2, · · · ,M} of the Cauchy problem (1) is the set of locally

risk minimizing option prices over different states of the economy. Indeed, this set of option

prices also coincides with those obtained from the regime-switching Esscher transform. Let

for each i = 1, 2, · · · ,M ,

r̃(t, i) :=
1

T − t

∫ T

t
r(u, ei)du =

1

T − t

∫ T

t
ri(u) 〈θε(u), ei〉 du ,

and

σ̃(t, i) :=

√
1

T − t

∫ T

t
σ2(u, ei)du =

√
1

T − t

∫ T

t
σ2
i (u) 〈θε(u), ei〉 du .
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At each time t ∈ [0, T ], an arbitrage-free price of the contingent claim is given by:

R̃(t, i)Ṽ ε(t) , Eε[R̃(T, i)ξε|Gε(t)] ,

where Eε[·|Gε(t)] is a conditional expectation given Gε(t) under Qε and

R̃(t,θε(t)) := e−
∫ t
0 r̃(s,θ

ε
(s))ds .

More precisely, R̃(t,θε(t)) should be written as R̃(t, {θε(s); s ∈ [0, t]},θε(t)). For our treat-

ment here, we wish to emphasize that the discounted factor is a function of the terminal

regime of the chain, so we adopt the notation R̃(t,θε(t)).

The following result is due to Basu and Ghosh [1], (see Theorem 3.1 (i) therein). We state it

here without giving the proof.

Lemma 1. For a slow moving Markov chain,

lim
ε→0

φε(t, x, i) = φ0(t, x, i) = φBS(t, x, r̃(i), σ̃(i),K, T ) , ∀ (t, x, i) ,

where φBS is the Black-Scholes-Merton call option price.

Similarly we consider another perturbed Markov chain θ̄
ε

:= {θ̄ε(t)|t ∈ T } with transi-

tion intensities:

λij = λ̄ij :=
λij
ε
, i, j = 1, 2, · · · ,M .

Write X̄ε := {X̄ε(t)|t ∈ T } for the share price process corresponding to the chain θ̄
ε
. When

ε becomes very small, |λεii| becomes very large compared to µi, for each i = 1, 2, · · · ,M .

Consequently, the perturbed share price process X̄ε moves slowly compared to the chain θ̄
ε
.

In other words, θ̄
ε

is a fast chain.

Similarly, for each i = 1, 2, · · · ,M , let φ̄ε(t, x, i) be the value of the call option at time

t given that X̄ε(t) = x and θ̄
ε
(t) = ei in the fast chain case. Then it is also easy to see

that φ̄ε(t, x, i), i = 1, 2, · · · ,M , satisfy the following system of coupled partial differential

equations:

(
∂

∂t
+ Li

)
[φ̄ε(t, x, i)] +

M∑
j=1

λ̄εijφ̄
ε(t, x, i) = 0 , (2)

with terminal condition φ̄ε(T, x, i) = (x−K)+.
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We now discuss the situation where the underlying Markov chain is a fast chain. Before

that, we need to know what typical values the option price takes for the fast chain case.

Accordingly we define µ̄(t) =
∑M

i=1 µ(i, t)πi, r̄(t) =
∑M

i=1 r(i, t)πi and σ̄(t) =
∑M

i=1 σ(i, t)πi

where π = (π1, ..., πM ) is the unique invariant measure of the Markov chain {θ(t)}t≥0 gener-

ated by its intensity matrix. Let r̂ = 1
T−t

∫ T
t r̄(u)du and σ̂ =

√
1

T−t
∫ T
t σ̄2(u)du .

Lemma 2 Consider the fast chain dynamics. Then

lim
ε→0

φε(t, x, r(t,θε(t)), σ(t,θε(t)),K, T ) = φBS(t, x, r̂, σ̂,K, T ) ,

where φBS is again the Black-Scholes-Merton price.

Proof. Refer Basu and Ghosh [1], Theorem 3.2.

In Basu and Ghosh [1], asymptotic expansions for approximating φε(t, x, i) and φ̄ε(t, x, i)

in terms of the Black-Scholes-Merton option pricing formula have been discussed. Loosely

speaking, the basic idea of an asymptotic analysis of option prices is to investigate the behavior

of option prices when some key model parameters become either very small or very large. We

say that for each (t, x, i) ∈ T × <+ × {1, 2, · · · ,M}, there exists an asymptotic option price

φε(t, x, i) at the point (t, x, i) if there is a sequence of coefficients {φ(k)(t, x, i)|k = 0, 1, · · · }
such that φε(t, x, i) admits the following asymptotic expansion:

φε(t, x, i) = φ(0)(t, x, i) + εφ(1)(t, x, i) + ε2φ(2)(t, x, i)... i ∈ {1, ...,M} (3)

Alternatively, we say that there exists an asymptotic option price φε(t, x, i) if we can write

it in terms of the Black-Scholes Merton formula i.e φε(·) = φBS(·) + O(ε) for any small but

positive ε. On the other hand, we say that there is no asymptotic option price at (t, x, i) ∈
T ×<+×{1, 2, · · · ,M} if we cannot find a sequence of coefficients {φ(k)(t, x, i)|k = 0, 1, · · · }
such that φε(t, x, i) admits the above asymptotic expansion. In other words, there does

not exist an asymptotic option price φε(t, x, i) if we cannot write it in terms of the corre-

sponding Black-Scholes-Merton formula. i.e φε(·) = φBS(·)+O(ε) for any small but positive ε.

Basu and Ghosh [1] showed that in the slow chain case, there exists an asymptotic

option price, (see Theorem 3.1 therein). That is, one can approximate φε(t, x, i) in terms of
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the sum of the Black-Scholes Merton formula and the correction term. However, in the fast

chain case, they mentioned that an asymptotic option price may not exist, (see Remark 3.1

therein), i.e. one cannot approximate φε(t, x, i) in terms of the Black-Scholes Merton formula

and the correction term. They attributed it to the possible non-existence of the limiting

Markov chain. The objective of this paper is to provide a concrete justification for this claim

by determining the range of European options prices. In particular we show that there exists

a range of option prices for the slow chain case, while no such range exists for the fast chain

case. Our analysis draws an inspiration from Bellamy and Jeanblanc [2].

Remark We mostly keep the notations in the following text commensurate with the ones used

in Basu and Ghosh [1]. This we do so to preserve uniformity in notations thereby providing

easy readability between the research article of Basu and Ghosh ([1]) and the following text.

In the next section we provide a mathematical analysis for this situation.

3.1.5 Analysis

In this section, we present the asymptotic analysis of option pricing considered in Basu and

Ghosh [1].

Let ξε be a European contingent claim which is a non-negative random variable in

L2(Ω,Gε(T ),P). The objective is to characterize the bounds viz. [infε∈E Ṽ
ε(t), supε∈E Ṽ

ε(t)]

for the slow and fast chain cases. We start our analysis for the slow chain case.

Slow Chain case

We restrict our attention to the case where ξε takes the form ξε = h(Xε(T )) for some

convex function h having bounded one sided derivatives. We define the Black-Scholes function

φBS(t, x, i) by

R̃(t, i)φBS(t, x, i) = E[R̃(T, i)h(Xε(T ))|(Xε(t) = x,θε(t) = ei)] φBS(T, x, i) = h(x)

∀ i ∈ {1, ...,M}

where the stock price dynamics of Xε is given by,

dXε(t) = r̃(t,θε(t))Xε(t)dt+ σ̃(t,θε(t))Xε(t)dW ε(t) Xε(0) = x

For a fixed state say i, the drift and the volatility terms of this SDE are constants. Then
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the Black-Scholes function is known to be given by

φBS(t, x, i) =
R̃(T, i)

R̃(t, i)
E

[
h

(
xR̃(T, i)

R̃(t, i)
exp[Σ̃(t, i)U − 1

2
Σ̃2(t, i)]

)]

where U is a standard normal variable and Σ̃(t, i) =
∫ T
t σ̃(s, i)ds . Under the additional

assumption on σ̃ to be continuous in (t, i), and Hölder continuous in x ∈ [0,∞] uniformly in

t ∈ [0, T ], coupled with the fact that h is convex, we have that φBS(t, x, i) is convex w.r.t.

to x and belongs to C1,2 and its Delta is bounded i.e. |∂φ
BS

∂x (t, x, i)| ≤ C for some positive

constant C, Refer [13]. We consider the operators Ls and Λs defined on C1,2 functions by

Lsf(t, x, i) =
∂f

∂t
(t, x) + r̃(t, i)x

∂f

∂x
+

1

2
x2σ̃2(t, i)

∂2f

∂x2
(t, x)

Λsf(t, x, i) =

M∑
j=1,j 6=i

ελijf(t, x, j) ,

where the superscript “s” in the above generators represent the slow chain case.

Here the Black-Scholes function satisfies Ls(R̃φBS)(t, x, i) = 0. We have the following

important theorem

Theorem 1

Suppose Ṽ ε(t) is an arbitrage-free price process defined by

R̃(t, i)Ṽ ε(t) = Eε[R̃(T, i)h(Xε(T ))|Gε(t)],

for each i = 1, 2, · · · ,M .

1. The hedging error caused by jumps in Markov chain is given by ΛsφBS(t, x, i). More pre-

cisely

R̃(t, i)Ṽ ε(t) = R̃(t, i)φBS(t, x, i) + eε(t, i)

where eε(t, i) = Eε[
∫ T
t R̃(s, i)ΛsφBS(s, x, i)ds|Gε(t)].

2. Any arbitrage-free price is bounded below by the Black-Scholes function, evaluated at the

underlying asset value i.e.

φBS(t, x, i) ≤ Ṽ ε(t) ∀ ε > 0 ,

3. If moreover 0 ≤ h(x) ≤ x, h(0) = 0 and h(x) is bounded, any viable price is bounded above
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by the underlying asset value

φBS(t,Xε(t), i) ≤ Ṽ ε(t) ≤ Xε(t) ∀ ε > 0 .

Proof Let Xε be solution of

dXε(t) = r̃(t, i)Xε(t)dt+ σ̃(t, i)Xε(t)dW ε(t)

As φBS ∈ C1,2. From the Ito’s formula for a Markov modulated diffusion process we have,

R̃(T, i)φBS(T,Xε(T ), i) = R̃(t, i)φBS(t,Xε(t), i)

+

∫ T

t

[
Ls(R̃φBS)(s,Xε(s), i) + R̃(s, i)ΛsφBS(s,Xε(s), i)

]
ds

+

∫ T

t
R̃(s, i)

∂φBS

∂x
(s,Xε(s), i)Xε(s)σ̃(s, i)dW ε(s)

+

∫
R

[φBS(s,Xε(s−), i+ h̄(i, z))− φBS(s,Xε(s−), i)]p̃ε(du, dz) ,

p̃ε(dt, dz) is the compensated random measure associated with the chain under Qε.

From the boundedness of the delta and the existence of the moments of the price process,

the stochastic integral in above expression is a P ε- martingale. Coupled with the fact that

L(R̃φBS)(s,Xε(s), i) = 0 and taking P ε conditional expectation with respect to Gε(t) gives,

Eε(R̃(T, i)φBS(T,Xε(T ), i)|Gε(t))

= Eε(R̃(T, i)h(Xε(T ), i)|Gε(t))

= R̃(t, i)φBS(t,Xε(t), i) + Eε
∫ T

t
R̃(s, i)ΛsφBS(s,Xε(s), i)ds

From the convexity of φBS(t, ·, ·) we have ΛsφBS(t, ·, ·) ≥ 0. Hence we have Ṽ ε(t) ≥
φBS(t,Xε(t), i). We also have limε→0 Ṽ

ε(t) = φBS(t, x, i). Therefore we have for any small

but positive ε, Ṽ ε(t) = φBS(t, x, i) +O(ε).

Now let us briefly discuss what will happen for the fast chain case.

Fast Chain case

We define the Black-Scholes function φBS(t, x) by

R̄(t)φBS(t, x) = E[R̄(t)h(X̄0(T ))|(X̄0(t) = x)] φBS(T, x) = h(x)
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where R̄(t) = e
∫ T
t r̄(s)ds and the stock price dynamics of X̄0 is given by,

dX̄0(t) = r̂X̄0(t)dt+ σ̂X̄0(t)dW 0(t) X̄0(0) = x

Note that X̄0(t) is the limiting stock price dynamics of the fast Markov chain modulated

dynamics. In the limit as ε→ 0, the drift and the volatility terms of this SDE are constants

then, the Black-Scholes function is known to be given by

φBS(t, x) =
R̄(T )

R̄(t)
E

[
h

(
xR̄(T )

R̄(t)
exp[Σ̄(t)(t)U − 1

2
Σ̄2(t)]

)]
where U is a standard normal variable and R̄(t) = e−(T−t)r̂, Σ̄2(t) = (T − t)σ̂2. Under the

additional assumption on σ̄ to be continuous in (t, x), and Hölder continuous in x ∈ [0,∞]

uniformly in t ∈ [0, T ], coupled with the fact that h is convex, we have that φBS(t, x) is

convex w.r.t. to x and belongs to C1,2 and its Delta is bounded i.e. |∂φ
BS

∂x (t, x)| ≤ C for some

positive constant C [13]. We consider the operators Lf and Λf defined on C1,2 functions by

Lf (f)(t, x) =
∂f

∂t
(t, x) + r̄(t)x

∂f

∂x
+

1

2
x2σ̄2(t)

∂2f

∂x2
(t, x)

Λff(t, x) = 0

where the superscript f in the above generators represents the fast chain situation.

By Ito’s formula for the Markov-modulated diffusion,

R̄(T )φBS(T, X̄0(T )) = R̄(t)φBS(t, X̄0(t))

+

∫ T

t

[
L(R̄φBS)(s, X̄0(s))

]
ds

+

∫ T

t
R̄(s)

∂φBS

∂x
(s, X̄0(s))X̄0(s)σ̄(s)X̄0(s)dW 0(s) (4)

for any ε > 0. As L(R̄φBS)(s, X̄0(s)) = 0, arguing as in the case of the slow chain case we

have , V̄ 0(t) = φBS(t, X̄0(t)).

Now let us suppose that one can write the European call option price for the fast chain

dynamics with ε > 0 in an asymptotic fashion i.e. write it around the Black-Scholes option

price. Then we have V̄ ε(t) > φBS(t, X̄0(t)). From the result in (4), we have V̄ ε(t) > V̄ 0(t).

This implies that the limiting European call option price is lower than the more riskier

European call option price under the fast chain dynamics. This in general is not true and hence

our assumption is not true. Hence there exist no such equation like V̄ ε(t) = φBS(t, X̄0(t)) +
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O(ε). Therefore there exists no asymptotic options price in the fast chain case.

Remark For the fast chain case, as ε gets smaller, the share price moves slower than the

underlying Markov chain that signifies the state of the economy. Hence stock price volatility

fluctuates less rapidly than the underlying economy. Therefore for a given expiration, for a

European call option, in the limit as ε goes to zero, the underlying stock price fluctuates less

in comparison to the strike price. Higher value of (implied) volatility of the underlying share

price results in higher value of option prices and otherwise. Therefore for the fast chain case,

the options prices are lower as ε→ 0 and thereby we have lower level of the implied volatility.

Hence for the fast chain case, graphing the implied volatility against the strike prices towards

expiration would yield a relatively flat curve in comparison to the skewed smile.

3.1.6 Concluding Remarks

We showed how one can determine the range of options price for proving that there exist an
asymptotic expansion for the slow chain case and opposite for the fast chain case.
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Chapter 4

Asymptotic stability of

semi-Markov modulated jump

diffusions.

4.1 Synopsis

In this chapter, we will study issues of stability for the class of semi-Markov modulated

jump diffusions (sMMJDs) whose operator turns out to be an integro-partial differential

operator. We find conditions under which the solutions of this class of switching jump-

diffusion processes are almost surely exponentially stable and moment-exponentially stable.

We also provide conditions that imply almost sure convergence of the trivial solution when the

moment-exponential stability of the trivial solution is guaranteed. We further investigate and

determine the conditions under which the semi-Markov modulated jump diffusion perturbed

nonlinear system of differential equations dXt
dt = f(Xt) is almost surely exponentially stable.

It is observed that for a one-dimensional state space, an unstable system of linear differential

equation could be stabilized just by the addition of a jump process and that any addition of a

Brownian motion part has no effect on its stability. However, we show that for a state space of

dimension 2 or higher, the Brownian motion in fact destabilizes the sMMJD perturbed system

of nonlinear differential equations. Our main motivation for studying asymptotic stability in

this thesis is its connection to the ruin problem in risk theory as proposed by Khasminskii
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and Milstein [47]. We have shown in Chapter 1 how in fact the stability of an SDE could be

further connected to the options pricing problem in finance. Also, a very recent recent book

by Swishchuk and Islam [58] reports discussing connection of stochastic stability to finance.

On an explicit application front, jump-diffusion models of the regime-switching type are also

widely applied in options pricing theory. There have been many studies of the latter. Yuen

and Yang [83] priced options in a jump-diffusion regime-switching model where they used

the trinomial tree method for pricing. Elliott et al. [30] considered pricing options under a

generalized Markov-modulated jump-diffusion model wherein the underlying measure process

was defined to be a generalized mixture of Poisson random measures and encompassed a gen-

eral class of processes, including a generalized gamma process. Siu et al. [54] studied pricing

life insurance products under a generalized jump-diffusion model with a Markov-switching

compensator. This, together with the result of Khasminskii and Milstein connecting stability

theory to ruin theory encourages us to study the issue of stability with regards to a semi-

Markov-modulated jump-diffusion of the following type:

dXt = b(Xt, θt)dt+ σ(Xt, θt)dWt + dJt

dJt =

∫
Γ
g(Xt, θt, γ)N(dt, dγ)

X0 = x, θ0 = θ, (1)

where X(·) takes values in Rr and θt is a finite-state semi-Markov process taking values in

X = {1, ...,M}. Let Γ be a subset of Rr − 0; it is the range space of impulsive jumps. For

any set B in Γ, N(t, B) counts the number of jumps on [0, t] with values in B and is in-

dependent of the Brownian motion Wt, b(·, ·) : Rr × X → Rr,σ(·, ·) : Rr × X → Rr × Rd,
g(·, ·, ·) : Rr × X × ×Γ → Rr. For future use we define the compensated Poisson measure

Ñ(dt, dγ) = N(dt, dγ)− λπ(dγ)dt, where π(·) is the jump distribution and 0 < λ <∞ is the

jump rate.

In this article as suggester earlier, we intend to study the stability of Equation 1 with

regards to the criterions of almost sure exponential stability and moment exponential stabil-

ity. We have defined these criterions in chapter 1.

Our first main result, Theorem 3.1, provides conditions under which the trivial so-

lution to (1) is almost surely exponentially stable. We then determine the conditions under

which the trivial solution to 1 is moment exponentially stable via Theorem 3.2. Theorem 3.3

determines the conditions that guarantee that the trivial solution to (1) is almost certainly

asymptotically stable if it is moment exponentially stable. In section 4 we illustrate these
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two criterions of stability using some simple examples. We further investigate and determine

the conditions under which the sMMJD-perturbed nonlinear system of differential equations
dXt
dt = f(Xt) is almost surely exponentially stable (Theorem 5.1). It is observed that for

one-dimensional state spaces, an linear unstable system of differential equation could be sta-

bilized just by the addition of a jump process and that any addition of a Brownian motion

part has no effect on its stability. However, we show that for a state space of dimension two or

higher, the Brownian motion in fact destabilizes the sMMJD-perturbed system of nonlinear

differential equations (Theorem 5.2).
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4.2 Article “Asymptotic stability of semi-Markov-modulated

jump diffusions”—A. Deshpande

4.2.1 Abstract

We consider the class of semi-Markov modulated jump diffusions (sMMJDs) whose operator

turns out to be an integro-partial differential operator. We find conditions under which the

solutions of this class of switching jump-diffusion processes are almost surely exponentially

stable and moment exponentially stable . We also provide conditions that imply almost sure

convergence of the trivial solution when the moment exponential stability of the trivial solu-

tion is guaranteed. We further investigate and determine the conditions under which the triv-

ial solution of the sMMJD-perturbed nonlinear system of differential equations dXt
dt = f(Xt)

is almost surely exponentially stable. It is observed that for a one-dimensional state space,

a linear unstable system of differential equations when stabilized just by the addition of the

jump part of an sMMJD process does not get destabilized by any addition of a Brownian

motion. However in a state space of dimension at least two, we show that a corresponding

nonlinear system of differential equations stabilized by jumps gets de-stabilized by addition

of Brownian motion.

Keywords: semi-Markov modulated jump diffusions, almost sure stability, moment-exponential

stability.
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4.2.2 Introduction

The stability of stochastic differential equations (SDEs) has a long history with some key

works being those of Arnold [4], Hasminskii and Milstein [9], and Ladde and Lakshmikantham

[14]. SDEs with switching have been applied in diverse areas such as finance (Deshpande and

Ghosh [6]) and biology (Hanson [8]). On the same note, the stability of these processes has

been much studied, in particular by Ji and Chizeck [11] and Mariton [17], who both studied

the stability of a jump-linear system of the form ẋt = A(rt)xt, where rt is a Markov chain.

Basak et al. [9] discussed the stability of a semilinear SDE with Markovian-regime switching of

the form ẋt = A(rt)xtdt+σ(rt, xt)dWt. Mao [16] studied the exponential stability of a general

nonlinear diffusion with Markovian switching of the form dxt = f(xt, t, rt)dt+g(xt, t, rt)dWt.

Yin and Xi [18] studied the stability of Markov-modulated jump-diffusion processes (MMJDs).

Consider the following jump-diffusion equation in which the coefficients are modulated

by an underlying semi-Markov process:

dXt = b(Xt, θt)dt+ σ(Xt, θt)dWt + dJt

dJt =

∫
Γ
g(Xt, θt, γ)N(dt, dγ)

X0 = x, θ0 = i, (2)

where X(·) takes values in Rr and θt is a finite-state semi-Markov process taking values

in X = {1, ...,M}. Let Γ be a subset of Rr − 0; it is the range space of impulsive jumps.

For any set B in Γ, N(t, B) counts the number of jumps on [0, t] with values in B and is

independent of the Brownian motion Wt, b(·, ·) : Rr × X → Rr,σ(·, ·) : Rr × X → Rr × Rd,
g(·, ·, ·) : Rr × X × Γ → Rr. For future use we define the compensated Poisson measure

Ñ(dt, dγ) = N(dt, dγ)− λπ(dγ)dt, where π(·) is the jump distribution and 0 < λ <∞ is the

jump rate. Equation (2) can be regarded as the result of the following M equations:

dXt = b(Xt, i)dt+ σ(Xt, i)dWt +

∫
Γ
g(Xt, i, γ)N(dt, dγ)

X0 = x, θ0 = θ,

that switch from one state to another according to the underlying movement of the semi-

Markov process.

Unlike the special Markov-modulated case in which the x-dependent diffusion is a partial

differential operator, the semi-Markov case is characterized by an integro-partial differential

operator. In this article we study the asymptotic stability of sMMJDs. We also investigate the
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perturbation of the nonlinear differential equation dXt
dt = f(Xt) by an sMMJD. We determine

the conditions under which the perturbed system is almost surely exponentially stable. We

show that for a one-dimensional state space, the deterministic linear unstable system of

differential equations that can be stabilized by the addition of a jump component of the

process Xt, surprisingly can never be destabilized by an addition of a Brownian motion. An

interesting question we may ask here is, can the similar inference hold true for Xt in higher

dimension? The answer is surprisingly no. We show that for a state space with dimension

greater than or equal to 2, a corresponding non-linear system that is stabilized by the jump

component of the process Xt can in fact be destabilized by addition of the Brownian motion

part. We organize the article as follows.

In Section 4.1.2 we briefly establish a representation of a class of semi-Markov processes

as a stochastic integral with respect to a Poisson random measure. We define the concepts

of almost sure exponential stability and moment exponential stability. In Section 4.2.4, we

present conditions that guarantee almost sure exponential stability and moment exponential

stability of the trivial solution of (2). In general there is no connection between these two

stability criteria. However, under additional conditions one can say when does the moment

exponential stability guarantees or implies almost sure exponential stability. We elaborate

on this aspect while concluding this section. In Section 4.2.5 we provide some examples to

illustrate these two stability criterion in our context. In Section 4.2.6, we investigate the

conditions for which a nonlinear system of differential equation of the type dXt
dt = f(Xt) is

almost surely exponentially stable. We then investigate its behavior in higher-dimensional

state space, as mentioned earlier. The article ends with concluding remarks.

4.2.3 Preliminaries

We assume that the probability space (Ω,F , {Ft},P) is complete with filtration {Ft}t≥0

and is right-continuous and F0 contains all P null sets. If v is some vector then |v| is its

Euclidean norm and v
′

is its transpose, while if A is a matrix then its trace norm is denoted

as |A| =
√
tr(A′A). R+ stands for positive part of the real line while r is a positive integer.

Let C2,1(Rr × X × R+) denote the family of all functions on Rr × X × R+ which are twice

continuously differentiable in x and continuously differentiable in y. Consider {θt}t≥0 as

a semi-Markov process taking values in X with transition probability pi,j and conditional

holding time distribution F (t|i). Thus if 0 ≤ t0 ≤ t1 ≤ ... are times when jumps occur, then

P (θtn+1 = j, tn+1 − tn ≤ t|θtn = i) = pijF (t|i). (3)
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Matrix [pij ]{i,j=1,...,M} is irreducible and for each i, F (·|i) has continuously differentiable and

bounded density f(·|i). Embed X in Rr by identifying i with ei ∈ Rr. For y ∈ [0,∞) i, j ∈ X ,

let

λij(y) = pij
f(y|i)

1− F (y|i)
≥ 0 and ∀ i 6= j, λii(y) = −

∑
j∈X ,j 6=i

λij(y) ∀ i ∈ X .

Let the stationary distribution of the semi-Markov process be defined as νi , limt→∞
1
t

∫ t
0 Iθs=ids

where I· takes value 1 if θs = i and 0 otherwise for any i ∈ X .

For i 6= j ∈ X , y ∈ R+ let Λij(y) be consecutive (with respect to lexicographic ordering

on X × X ) left-closed, right-open intervals of the real line, each having length λij(y). Define

the functions h̄ : X × R+ × R→ R and ḡ : X × R+ × R→ R+ by

h̄(i, y, z) =

{
j − i if z ∈ Λij(y)

0 otherwise

ḡ(i, y, z) =

{
y if z ∈ Λij(y), j 6= i

0 otherwise

LetM(R+×R) be the set of all nonnegative integer-valued σ-finite measures on a Borel

σ-field of (R+ ×R). Define the process {θ′t, Yt} described by the following stochastic integral

equations:

θ
′
t = θ

′
0 +

∫ t

0

∫
R
h̄(θu−, Yu−, z)N1(du, dz)

Yt = t−
∫ t

0

∫
R
ḡ(θu−, Yu−, z)N1(du, dz),

(4)

where N1(dt, dz) is an M(R+ × R)-valued Poisson random measure with intensity dtm(dz)

independent of the X -valued random variable θ
′
0, where m(·) is a Lebesgue measure on R.

We define the corresponding compensated or centered Poisson measure as Ñ1(ds, dz) =

N1(ds, dz) − dsm(dz). It was shown in Theorem 2.1 of Ghosh et al. [7] that θ
′
t is a semi-

Markov process with transition probability matrix [pij ]{i,j=1,...,M} with conditional holding

time distributions F (y|i). Therefore one can write θ
′
t = θt. We assume that N(·, ·), N1(·, ·)

and θ0,Wt, S0 defined on (Ω,F ,P) are independent.

To ensure that zero is the only equilibrium point of (2) we need the following assumption.

Assumption 1: Assume g(x, i, γ) is B
(
Rr×X × (R−{0})

)
-measurable and that constants
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C > 0 exist such that for each i ∈ X , x1, x2 being Rr-valued and for each γ ∈ Γ we have

|b(x1, i)− b(x2, i)|+ |σ(x1, i)− σ(x2, i)| ≤ C|x1 − x2|,

and

|g(x1, i, γ)− g(x2, i, γ)| ≤ C|x1 − x2|.

We also need the condition that the generator matrix Q(·) is bounded and continuous. b(0, i) =

0, σ(0, i) = 0 and g(x, i, 0) = 0 and g(0, i, γ) = 0 for each x ∈ Rr, i ∈ X and each γ ∈ Γ.

The process (Xt, θt, Yt)defined on (Ω,F ,P) in equations (2) and (4) is jointly Markov

and has a generator G given as follows. For f ∈ C2,1(Rr,X ,R+), we have

Gf(x, i, y) =
1

2

r∑
k,l=1

akl(x, i)
∂f(x, i, y)

∂xk∂xl
+

r∑
k=1

bk(x, i)
∂f(x, i, y)

∂xk

+
∂f(x, i, y)

∂y
+

f(y|i)
1− F (y|i)

∑
j 6=i,j∈X

pij [f(x, j, 0)− f(x, i, y)]

+ λ

∫
Γ

(f(x+ g(x, i, γ), i, y)− f(x, i, y))π(dγ), (5)

where x ∈ Rr, a(x, i) = σ(x, i)σ′(x, i) is a Rr×r matrix and akl(x, i) is the (k, l)th element of

the matrix a while bk(x, i) is the kth element of the vector b(x, i).

We define the jump times, i.e. time epochs when jumps occur by {τNn }, where τN1 <

τN2 < · · · < τNn < · · ·, to be the enumeration of all elements in the domain Dp of the point

process p(t) corresponding to the stationary Ft-Poisson point process N(dt, dγ). It is easy to

see that {τNn } is an Ft-stopping time for each n. Moreover, we have limn→∞ τ
N
n = +∞ since

the characteristic measure m(·) is finite. Next, let us denote the successive switching instants

of the second component, which is the semi-Markov process θt that switches from one point on

the space X to another and is denoted by τ θ0 = 0, τ θn = inf{t : t > τ θn−1, Xt 6= Xτθn−1
}, n ≥ 1.

Since the Poisson random measure N(·, ·) is independent of N1(·, ·), one could adapt the

proof of Xi ([19]) to show that with probability 1, {τNn : n ≥ 1} and {τ θn : n ≥ 1} are

mutually disjoint. Hence between two chain-switching epochs the process Xt behaves like an

ordinary jump-diffusion process without switching, a fact that we will use below to show

the existence and uniqueness of the sMMJD process Xt. Accordingly, we describe next the

existence–uniqueness theorem for Equation (2).

Theorem 2.1 Assume that Assumption 1 holds. Then there exists a unique solution (Xt, t ≥
0) with initial data (X0, θ0, Y0) to Equation (2).

Proof We only provide a sketch of the proof here. Consider [s, t], τ θ1 , ..., τ
θ
N ≤ t. Then as de-
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scribed above, on each of the intervals between the chain switching times, i.e. [s, τ θ1 ), ..., (τ θN , t],

the sMMJD process Xt behaves like a jump-diffusion process. We can then use the standard

Picard iteration argument in Applebaum [1] to show the existence–uniqueness of solution Xt.

Before we proceed with our main analysis concerning these two stability issues we in-

troduce a key Lemma.

Lemma 2.2 {P (Xt 6= 0, t 6= 0)} = 1 for any X0 = x 6= 0, and θ0 = θ ∈ X . Thus almost all

sample paths of any solutions of (2) starting from a nonzero state will never reach the origin.

Proof We show this in a simple way. From the condition on the coefficients, b(0, i) =

0, σ(0, i) = 0 and g(0, i, 0) = 0. So Equation (2) admits a trivial solution Xt = 0. From

Theorem 2.1 above, due to the uniqueness of the solution of (2) the conclusion now follows.

We next have the following generalized Ito’s formula.

Lemma 2.3 Utilizing the operator G in (5), the generalized Ito’s formula is given by

f(Xt, θt, Yt) − f(x, θ, y) =

∫ t

0
Gf(Xs, θs, Ys)ds+

∫ t

0
(∇f(Xs, θs, Ys))

′σ(Xs, θs)dWs

+

∫ t

0

∫
Γ

[f(Xs− + g(Xs−, θs−, γ), θs, Ys−)− f(Xs−, θs−, Ys−)]Ñ(ds, dγ)

+

∫ t

0

∫
R

[f(Xs−, θs− + h̄(θs−, Ys−, z), Ys− − ḡ(θs−, Ys−, z))− f(Xs−, θs−, Ys−)]Ñ1(ds, dz)

(6)

where the local martingale terms are explicitly defined as

dM1(t) := (∇f(Xt, θt, Yt))
′σ(Xt, θt)dWt,

dM2(t) :=
∫

Γ [f(Xs− + g(Xs−, θs−, γ), θs−, Ys−)− f(Xs−, θs−, Ys−)]Ñ(ds, dγ),

dM3(t) :=
∫
R [f(Xs−, θs− + h̄(θs−, Ys−, z), Ys− − ḡ(θs−, Ys−, z))− f(Xs−, θs−, Ys−)]Ñ1(ds, dz),

Proof For details refer to Ikeda and Watanabe [10].

We now discuss the two criteria for stochastic stability that we intend to consider.

Definition 2.4: Almost sure exponential stability The trivial solution of equation (2)

is almost surely exponentially stable if

lim sup
t→∞

1

t
log |Xt| < 0 a.s. ∀X0 ∈ Rr a.s

The quantity on the left hand side of the above equation is termed as the sample Lyapunov

exponent.

Definition 2.5: Moment exponential stability Let p > 0. The trivial solution of (2)
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is said to be pth moment exponentially stable if there exists a pair of constants λ > 0 and

C > 0, such that for any X0 ∈ Rr

E[|Xt|p] ≤ C|X0|p exp(−λt) ∀ t ≤ 0.

In the next section we detail the proofs for obtaining the conditions under which the

trivial solution of (2) is almost surely exponentially stable and moment exponentially stable.

4.2.4 Almost sure stability and Moment exponential stability

In the sequel we shall always, as standing hypotheses, assume that Assumption 1 holds. From

Theorem 2.1 we deduce that there exists a unique solution to Equation (2). By Lemma 2.2

we know that Xt will never reach zero whenever X0 6= 0. So in what follows we will only need

a function V (x, i, y) ∈ C2,1(Rr×X ×R+) defined on the domain of the deleted neighborhood

of zero. Our first main result provides conditions under which the trivial solution to (2) is

almost surely exponentially stable.

Theorem 3.1 Assume that there exist a function V ∈ C2,1(Rr × X × R+) in any deleted

neighborhood of zero. Moreover assume that there exist positive constants α, β, ρ1, ρ2, ρ̄1 and

ρ̄2 for each x ∈ Rr, i ∈ X and for each γ ∈ Γ such that

G log V (x, i, y) ≤ −α

|(∇xV (x, i, y))
′
σ(x, i)| ≤ βV (x, i, y)

ρ1 ≤
(
V (x+ g(x, i, γ), i, y)

V (x, i, y)

)
≤ ρ2

ρ̄1 ≤
(
V (x, i+ h̄(i, y, z), y − ḡ(i, y, z))

V (x, i, y)

)
≤ ρ̄2,

then the solution to (2) is almost surely exponentially stable.

Proof Note that

log V (Xt, θt, Yt) = log V (X0, θ0, Y0) +

∫ t

0
G log V (Xs, θs, Ys)ds+M1(t) +M2(t) +M3(t). (7)

Here the local martingale terms M1(t),M2(t) and M3(t) are respectively

M1(t) =

∫ t

0

(∇xV (Xs, θs, Ys))
′
σ(Xs, θs)

V (Xs, θs, Ys)
dWs,
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M2(t) =

∫ t

0

∫
Γ

log

(
V (Xs− + g(Xs−, θs−, γ), θs−, Ys−)

V (Xs−, θs−, Ys−)

)
Ñ(ds, dγ),

M3(t)

=

∫ t

0

∫
R

[log V (Xs−, θs− + h̄(θs−, Ys−, z), Ys− − ḡ(θs−, Ys−, z))− log V (Xs−, θs−, Ys−)]Ñ1(ds, dz).

We deal with Equation (7) term by term to derive an upper bound on

lim supt→∞
log V (Xt,i,Yt)

t . Consider first the drift term of Equation (7). It is easy to see from the

assumptions made that
∫ t

0 G log V (Xs, θs, Ys)ds will be bounded above by −αt. Secondly, we

now concentrate on the local martingale terms of (7). First consider the quadratic variation

of the M1(t) term. By Ito’s isometry we have

〈M1(t),M1(t)〉 =

∫ t

0

∣∣∣∣(∇xV (Xs, θs, Ys))
′
σ(Xs, θs)

V (Xs, θs, Ys)

∣∣∣∣2ds
≤

∫ t

0
β2ds ≤ β2t.

Next consider the quadratic variation of the local martingale term M2(t). Based on the

following result presented in Kunita [13], page 323, and noting that the jump distribution π

is a probability measure i.e.
∫

Γ π(dγ) = 1 we have,

〈M2(t),M2(t)〉 =

∫ t

0

∫
Γ

(
log [

V (Xs− + g(Xs−, θs−, γ), θs−, Ys−)

V (Xs−, θs−, Ys−)
]

)2

π(dγ)ds

≤ max[(log ρ1)2, (log ρ2)2]t.

On very similar lines one can easily show that the quadratic variation of the local martingale

term M3(t) is given by

〈M3(t),M3(t)〉 ≤ max[(log ρ̄1)2, (log ρ̄2)2]t.

Thus by SLLN for local martingales (refer to Lipster and Shiryayaev [15] p. 140–141), we can

say that

lim sup
t→∞

M1

t
= lim sup

t→∞

M2

t
= lim sup

t→∞

M3

t
= 0.

Thus from (7) and the above discussion one can infer that

lim sup
t→∞

log V (x, i, y)

t
≤ −α. (8)
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Thus, since by assumption α > 0, from the definition of almost sure exponential stability, the

trivial solution to (2) is almost surely exponentially stable.

We now provide conditions under which the trivial solution to (2) is moment exponen-

tially stable.

Theorem 3.2 Let p, α, α1, α2 > 0. Assume that there exists a function V (x, i, y) ∈ C2,1(Rr,X ,R+)

such that

α1|x|p ≤ V (x, i, y) ≤ α2|x|p

and GV (x, i, y) ≤ −α|x|p

Then, lim sup
t→∞

1

t
logE|Xt|p ≤

−α
α2
|X0|

p

.

As a result the trivial solution of (2) is pth-moment exponentially stable under the conditions

discussed above and the pth −moment Lyapunov exponent should not be greater than −αα2
.

Proof The proof is omitted as it is a simple extension of the Markov-modulated SDE case

discussed in Mao [16].

In the next theorem we provide criteria to connect these two seemingly disparate sta-

bilty criteria. Specifically, we provide conditions under which the pth-moment exponential

stability for p ≥ 2 always implies Almost sure exponential stability for (2).

Theorem 3.3 Assume that there exists a positive constant C such that for each i ∈ X

|b(x, i)| ∨ |σ(x, i)| ∨ |g(x, i, γ)| ≤ C|x|. (9)

If ∀ X0 = x0 ∈ Rr,

lim sup
t→∞

1

t
logE(|Xt|p) ≤ −a, (10)

then

lim sup
t→∞

1

t
log (|Xt|) ≤ −

a

p
a.s.

Then pth-moment exponential stability implies almost sure exponential stability.

We need the Burkholder-Davis-Gundy inequality and is detailed in the remark below.

Remark Let us recall that [X] denotes the quadratic variation of a process say X, and

X∗t ≡ sups≤t |Xs| is its maximum process. Then the Burkholder-Davis-Gundy theorem states

that for any 1 ≤ p <∞, there exist positive constants cp, Cp such that, for all local martingales
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X with X0 = 0 and stopping times τ , the following inequality holds,

cpE
[
[X]p/2τ

]
≤ E [(X∗τ )p] ≤ CpE

[
[X]p/2τ

]
.

Furthermore, for continuous local martingales, this statement holds for all 0 < p < ∞. For

its proof refer to Theorem 3.28 pp. 166 in Karatzas and Shreve [12].

Proof of Theorem 3.3 Let X0 ∈ Rr. Let ε be arbitrarily small positive number . By the

definition of pth-moment exponential stability , there exists a constant K such that

E|Xt|p ≤ K exp−(a−ε)t, t ≥ 0. (11)

Let δ > 0 be sufficiently small such that,

5pCp(δp + Cpδ
p
2 ) <

1

4
(12)

From (2) we have

Xt = X0 +

∫ t

0
b(Xs, θs)ds+

∫ t

0
σ(Xs, θs)dWs +

∫ t

0

∫
Γ
g(Xs−, θs−, γ)Ñ(ds, dγ)

+ λ

∫ t

0

∫
Γ
g(Xs−, θs−, γ)π(dγ)ds.

Noting that for a, b, c, d, e ≥ 0

(a+ b+ c+ d+ e)p ≤ [5(a ∨ b ∨ c ∨ d ∨ e)]p = 5p(ap ∨ bp ∨ cp ∨ dp ∨ ep)

≤ 5p(ap + bp + cp + dp + ep)

we have,

E[ sup
(k−1)δ≤t≤kδ

|Xt|p] ≤ 5pE[|X(k−1)δ|p] + 5pE(

∫ kδ

(k−1)δ
|b(Xs, θs)|ds)p

+ 5pE( sup
(k−1)δ≤t≤kδ

∫ t

(k−1)δ
|σ(Xs, θs)dWs|p)

+ 5pE( sup
(k−1)δ≤t≤kδ

∫ t

(k−1)δ

∫
Γ
|g(Xs−, θs−, γ)Ñ(ds, dγ)|p)

+ 5pλpE(

∫ kδ

(k−1)δ

∫
Γ
|g(Xs−, θs−, γ)|π(dγ)ds)p. (13)
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Noting that
∫

Γ π(dγ) = 1 we have

E( sup
(k−1)δ≤t≤kδ

∫ t

(k−1)δ

∫
Γ
|g(Xs−, θs−, γ)Ñ(ds, dγ)|p) ≤ CpE(

∫ kδ

(k−1)δ
|g(Xs−, θs−, γ)|2ds)(p/2)

≤ CpE(δ sup
(k−1)δ≤s≤kδ

|g(Xs−, θs−, γ)|2)(p/2)

≤ CpC
pδp/2E[ sup

(k−1)δ≤s≤kδ
|Xs|p], (14)

Similarly,

E(|
∫ kδ

(k−1)δ

∫
Γ
|g(Xs−, θs−, γ)|π(dγ)ds)p ≤ E[δ sup

(k−1)δ≤s≤kδ
|g(Xs−, θs−, γ)|]p

≤ CpδpE( sup
(k−1)δ≤s≤kδ

|Xs|p). (15)

From (11), one can easily show that

E[|X(k−1)δ|p] ≤ K exp−(a−ε)(k−1)δ (16)

E(

∫ kδ

(k−1)δ
|b(Xs, θs)|ds)p ≤ CpδpE[ sup

(k−1)δ≤s≤kδ
|Xs|p] (17)

E( sup
(k−1)δ≤t≤kδ

∫ t

(k−1)δ
|σ(Xs, θs)|dWs)

p ≤ CpCpδp/2E[ sup
(k−1)δ≤s≤kδ

|Xp
s |]. (18)

Hence, substituting (14)-(18) in (13) we obtain

E[ sup
(k−1)δ≤t≤kδ

|Xt|p](1− 5p(Cpδp + CpC
pδ

p
2 + CpC

pδ
p
2 + Cpδp)) ≤ K5p exp−(a−ε)(k−1)δ . (19)

From (12) we obtain that,

E[ sup
(k−1)δ≤t≤kδ

|Xt|p] ≤ 2× 5pK exp−(a−ε)(k−1)δ,

and utilizing the Borel–Cantelli Lemma as in Mao [16] we deduce the desired implication

that pth-moment stability implies almost sure exponential stability.
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4.2.5 Examples

We now provide some simple examples to illustrate both the almost surely exponential stabil-

ity and moment exponential stability. We start with an example on almost surely exponential

stability. Consider a two state semi-Markov modulated Jump diffusion problem with

Xt ∈ Rr and V (Xt, i, Yt) = |Xt| where the generator matrix is given by

Q =

∣∣∣∣∣ −2 2

1 −1

∣∣∣∣∣ .
Let the holding time in each regime be assumed to follow f(y|i) = λie

−λiy, y > 0, i ∈ {1, 2}.
Note that with the choice of the holding time distribution, the sMMJD collapses to the

MMJD case in which case the generator G acting on V (x, i, y) is given by,

GV (x, i, y) =
1

2
trace

[(
I

|x|
− xx

′

|x|3

)
σ(x, i)σ

′
(x, i)

]
+
x
′

|x|
b(x, i) + λ

∫
Γ

[|x+ g(x, i, γ)| − |x|]π(dγ)

(20)

Now from Assumption 1 as,

|σ(x, i)| = |σ(x, i)− σ(0, i)| ≤ C|x|

|b(x, i)| = |b(x, i)− b(0, i)| ≤ C|x|

and |g(x, i, γ)| ≤ C|x| we have,

GV (x, i, y) ≤ C|x|+ C|x|+ λ(2 + C)|x|

= (2C + λC + 2λ)|x|

if we choose C and λ such that for any x ∈ Rr − {0} , there exists α := (2 + λ)C + 2λ ≥ 0

such that Glog V (x, i, y) ≤ −α. Also |∇xV (x,i,y)
′
σ(x,i)

V (x,i,y) | ≤ C. Similarly if there exist a positive

constant β such that for any x ∈ Rr, C ≤ β then, |∇xV (x,i,y)
′
σ(x,i)

V (x,i,y) | ≤ β. If there exists

constants ρ1 and ρ2 such that ρ1 ≤ g(x, i, γ) ≤ ρ2 for any x ∈ Rr, i ∈ X and γ ∈ Γ then it is

easy to see that (ρ1) ≤
(
V (x+g(x,i,γ),i,y)

V (x,i,y)

)
≤ (ρ2) . Thus in brief for certain conditions on the

growth of the drift , diffusion and the integrand of the jump component of the process given

by (2), we satisfy the conditions of Theorem 3.1 for the solution to (2) to be almost surely

exponentially stable.
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We next provide a simple example to illustrate Theorem 3.2. Consider that x ∈ R and

V (x, i, y) = x2. Also assume that the conditional holding time distribution be f(y|i) = λie
−λiy

for i ∈ {1, 2}. Let g(x, i, γ) = x, λi = 1, b(x, i) = a1x, σ(x, i) = a2x for i ∈ {1, 2}. Then from

(4) we have GV (x, i, y) = (2a1 + a2 + 3)x2. If 2a1 + a2 + 3 < 0 and x 6= 0 then condition

(ii) of Theorem 3.2 for p = 2 is satisfied. Moreso if we assume that there exist constants α1

and α2 such that α1|x|2 ≤ V (x, i, y) ≤ α2|x|2 is true, then condition (i) of Theorem 3.2 is

satisfied. Thus both conditions (i) and (ii) now guarantee that the solution of (2) is moment

exponentially stable.

Next we discuss the issue of stochastic stabilization and de-stabilization of non-linear

systems.

4.2.6 Stochastic stabilization and destabilization of nonlinear systems

We now investigate the stability of the nonlinear deterministic system of differential equations

given by the following dynamics

dXt

dt
= f(Xt) (21)

on t ≥ 0 with X0 = x0 ∈ Rr where f(x) : Rr → Rr is locally Lipschitz continuous and

furthermore there exists some constant K > 0 such that |f(x)| ≤ K|x| ∀ x ∈ Rr. When

perturbed by noise, the non-linear system (21) is either stable if it originally unstable, in the

sense that by adding noise we can force the solution of the stochastic differential equation

to converge to the trivial solution as time increases indefinitely. This is the aim of stochastic

stabilization. Likewise if our original system in stable, then this system is said to destabilize

when perturbed by noise if the sample paths of the process escapes to infinity almost surely

instead of converging to the trivial solution as time tends to infinity. This is termed as

stochastic de-stabilization. Consequently the system then becomes what is known as unstable.

Mao [16] and Applebaum and Siakalli [2] have established a general theory of stochastic

stabilization/de-stabilization of (21) using a Brownian motion and the general Levy process

respectively. However no specific work has been done so far for the case where Xt is a sMMJD.

In this article we focus on the first-order nonlinear system of ODEs that is perturbed by a

sMMJD. In the following section we show that an unstable linear system counterpart of (21)

wherein dXt
dt = aXt for a > 0 can be stabilized just by the addition of a jump component to the

dynamics of the one-dimensional process Xt. We observe that such a jump-stabilized system

of DEs cannot be destabilized by further addition of a Brownian motion. On the contrary, we
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show that such a jump-stabilized nonlinear system of differential equations can surprisingly

be destabilized by addition of Brownian motion if the dimension of the state space is at

least two. Before we go into the proofs of these statements, we begin by mentioning the key

dynamics of the sMMJD process {Xt, t ≥ 0} that we consider here and some assumptions that

follow. Suppose we have an m-dimensional standard FT -adapted Brownian motion process

B = (B1(t), ..., Bm(t)) for each t ≥ 0. The system (21) is perturbed by the following sMMJD

dynamics of Xt given by

dXt = f(Xt)dt+
m∑
k=1

Gk(θt)XtdBk(t) + λ

∫
Γ
D(θt−, γ)Xt−N(dt, dγ) ∀ t ≥ 0, (22)

where Gk(i) is Rr×r for each i ∈ X . Likewise D(i, γ) is a Rr×r-valued matrix for each i ∈ X
and γ ∈ Γ ⊂ Rr − {0}. We refer to a system (21) perturbed by the dynamics of Xt as in (22)

as just a perturbed system. We make the following key assumption that remains valid until

the end of this section.

Assumption 2: Let ||A|| =
√
tr(A′A) be trace norm of matrx A. Assume that for each

i ∈ X and γ ∈ Γ we have∫
Γ

(
||D(i, γ)|| ∨ ||D(i, γ)||2

)
π(dγ) < ∞ and that D(i, γ) does not have an eigenvalue equal

to −1 π almost surely.

In the following, we will establish the conditions on the coefficients of (22) for the triv-

ial solution of the perturbed system to be almost surely exponentially stable. In particular,

this surprisingly demonstrates that the jump process can have a stabilizing effect, as for the

Brownian motion part as has been shown by Mao [16]. We state this formally as one of our

main theorems.

Theorem 5.1 Assume that Assumption 2 holds. Suppose that the following conditions are

satisfied for a(i) > 0, b(i) ≥ 0:

(i)
∑m

k=1 |Gk(i)x|2 ≤ a(i)|x|2

(ii)
∑m

k=1 |x
′
Gk(i)x|2 ≥ b(i)|x|4 for each i ∈ X and x ∈ Rr.

Then the sample Lyapunov exponent of the solution of (22) exists and satisfies

lim supt→∞ log |Xt| ≤ K −
∑

i∈X [(b(i)− a(i)
2 − λlog(1 + ||D(i, γ)||))]νi for any X0 6= 0. If

−K +
∑

i∈X [b(i)− a(i)
2 − λlog(1 + ||D(i, γ)||)]νi > 0, then the trivial solution to the sys-

tem in (22) is almost surely exponentially stable.

Proof Step 1: Define V (x, i, y) = log |x| ∀ i ∈ X . As V (x, i, y) is independent of states i and
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y, the following terms in (4) are zero:

f(y|i)
1− F (y|i)

∑
j 6=i,j∈X

pij [V (x, j, 0)− V (x, i, y)] = 0

∂V (x, i, y)

∂y
= 0.

Hence as an application of the generalized Ito’s formula we have for t > 0

log |Xt| = log |X0|+
∫ t

0

X
′
s

|Xs|2
f(Xs)ds+

1

2

m∑
k=1

∫ t

0

[
|Gk(i)Xs|2

|Xs|2
− 2|X ′sGk(i)Xs|2

|Xs|4

]
ds

+ λ

∫ t

0

∫
Γ

log

(
|Xs− +D(θs−= i, γ)Xs−|

|Xs−|

)
π(dγ)ds+M1(t) +M2(t),

whereM1(t) =
∑m

k=1

∫ t
0 |

X
′
sGk(i)Xs
|Xs|2 |dBk(s) andM2(t) =

∫ t
0

∫
Γ log

(
(|Xs−+D(θs−,γ)Xs−|)

|Xs−|

)
Ñ(ds, dγ)

are the two local martingale terms.

Step 2: Consider now the quadratic variation of the two martingale terms. From Ito’s isometry

and noting that

|X ′sGk(i)Xs|
2

|Xs|4
=
|X ′s(G

′
k(i) +Gk(i))Xs|2

4|Xs|4

≤ ρ(Gk(i))
2,

where ρ(Gk(i)) is the spectral radius of the symmetric r × r matrix
Gk(i)+G

′
k(i)

2 ,

〈M1(t),M1(t)〉 ≤
m∑
k=1

∫ t

0

|X ′sGk(i)Xs|2

|Xs|4
ds ≤ tm max

1≤k≤m,i=1,...,M
ρ(Gk(i)).

Next, the quadratic variation of the process M2(t) is given by

〈M2(t),M2(t)〉 = 2

∫
Γ

∫ t

0
log

[
(|Xs− +D(θs−, γ)Xs−|)

|Xs−|

]
dsπ(dγ)

≤ 2t log(1 + max
1≤i≤M

||D(i, γ)||).

Step 3: We work with the rest of the terms in the following way.

lim sup
t→∞

|1
t

∫ t

0

X
′
sf(Xs)

|Xs|2
ds| ≤ K;
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also

lim sup
t→∞

1

t

∫ t

0

1

2

[ m∑
k=1

(
|Gk(i)Xs|2

|Xs|2
− 2|XsGk(i)Xs|2

|Xs|4

)]
ds

≤ 1

t

∑
i∈X

∫ t

0

[
a(i)

2
− b(i)

]
Iθs=ids

≤
∑
i∈X

[
a(i)

2
− b(i)]νi,

and

lim sup
t→∞

λ

t

∫ t

0

∫
Γ

log

(
|Xs− +D(θs−, γ)Xs−|

|Xs−|

)
π(dγ)ds

≤ λ
∑
i∈X

log(1 + ||D(i, γ)||)νi.

Thus, lim supt→∞
1
t log |Xt| < 0 if K +

∑
i∈X [(a(i)

2 − b(i) + λ log(1 + ||D(i, γ)||))]νi < 0.

Remark: Consider a 1-D sMMJD with the dynamics

dXt = aXtdt+ b(i)XtdBt + c(i, γ)XtdÑt, (23)

where b(x, i) > 0 and c(i, γ) > −1 for each x ∈ R, i ∈ {1, ...,M} and γ ∈ Γ. Bt is a 1-D

Brownian motion and {Ñt, t ≥ 0} is a compensated Poisson process with Ñt = Nt − λt,

where λ > 0 is the intensity of the Poisson process. Assume that the processes Bt and Nt are

independent. Then one can show from the SLLN for a Brownian motion and for a Poisson

process (refer to Applebaum [1]) that for each i ∈ {1, 2, ...,M}

lim sup
t→∞

1

t
log |Xt| = a+ [−λc(i, γ)− 1

2
b2(i) + λ log(1 + c(i, γ))] < 0 a.s.

Note that b2(i) ≥ 0 ∀i ∈ X and has a negative sign attached to it. Hence when the one-

dimensional perturbed system dXt
dt = aXt for a > 0 is stabilized by the addition of a jump

process infact can never be destabilized by the addition of a Brownian motion. An interesting

question we may ask here is: can the same inference hold true in higher dimensions? The

answer is surprisingly no. In the following theorem we show that for a state space of dimension

greater than or equal to two, an unstable nonlinear system of differential equation stabilized

by a jump component can still be destabilized by the addition of the Brownian motion . This

surprising phenomenon was also observed by Applebaum and Siakalli [3] for the Levy process

case.

To prove this assertion let us now consider system of non-linear differential equation (21)
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stabilized by (22) but with Gk(i) = 0 for each i = 1, ...,M and k = 1, ...,m. We now show

that it gets de-stabilized by further addition of the m-dimensional Brownian motion to (21).

This corresponds to Gk(i) 6= 0 for each i = 1, ...,M and k = 1, ...,m.

Theorem 5.2 Assume that matrix D is an r × r symmetric positive definite matrix. Now

let

(i)
∑m

k=1 |Gk(i)x|2 ≥ a(i)|x|2

(ii)
∑m

k=1 |x
′
Gk(i)x|2 ≤ b(i)|x|4,

for a(i) > 0, b(i) ≥ 0 for each i ∈ X ,x ∈ Rr. Hence

lim inft→∞
1
t log |Xt| ≥ −K+

∑
i∈X

[(
a(i)

2 −b(i)+λ log(1+min1≤i≤M ||D(i, γ)||)
)]
νi for any

X0 6= 0. In particular if −K +
∑

i∈X [a(i)
2 − b(i) + λlog(1 + min1≤i≤M ||D(i, γ)||)]νi > 0 ,then

the trivial solution of (22) tends to infinity almost surely exponentially fast.

Proof Fix X0 6= 0. From Lemma 2.2, Xt 6= 0 ∀t ≥ 0. Applying Ito’s lemma to log |Xt|, for

t > 0 and for each i ∈ X ,

log |Xt| = log |X0|+
∫ t

0

X
′
s

|Xs|2
f(Xs)ds+

1

2

m∑
k=1

∫ t

0

[
|Gk(i)Xs−|2

|Xs−|2
− 2|Xs−Gk(i)Xs−|2

|Xs−|4

]
ds

+ λ

∫ t

0

∫
Γ

log

(
(|Xs− +D(θs−= i, γ)Xs−|)

|Xs−|

)
π(dγ)ds+M1(t) +M2(t), (24)

whereM1(t) =
∑m

k=1

∫ t
0

|X′s−Gk(i)Xs−|
|Xs−|2 dBk(s) andM2(t) =

∫
Γ

∫ t
0 log

(
(|Xs−+D(θs−=i,γ)Xs−|)

|Xs−|

)
Ñ(ds, dγ)

are the two local martingale terms. Now using methodology similar to Theorem 5.1 we find

lim inf
t→∞

1

t
log |Xt| ≥ −K +

∑
i∈X

[
(
a(i)

2
− b(i) + λ log(1 + min

1≤i≤M
||D(i, γ)||))

]
νi

for any X0 6= 0. In particular, if −K+
∑

i∈X [a(i)
2 −b(i)+λlog(1 + min1≤i≤M ||D(i, γ)||)]νi > 0,

then the trivial solution of the Xt-perturbed system given by (22) tends to infinity almost

surely exponentially fast.

4.2.7 Concluding remarks

We presented conditions under which the solution of an semi Markov Modulated jump diffu-
sion is almost surely exponentially stable and moment exponentially stable . We also provide
conditions that connect these two notions of stability. We further determine the conditions
under which the trivial solution of the sMMJD-perturbed nonlinear system of differential
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equation dXt
dt = f(Xt) is almost surely exponentially stable. We show that an unstable deter-

ministic system can be stabilized by adding jumps. Such jump stabilized system however can
get de-stabilized by Brownian motion if the dimension of the state space is at least two.
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